-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdependencies.sml
1099 lines (868 loc) · 33.3 KB
/
dependencies.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(***** hash-inc.sml *****)
signature HASH_INCREMENT =
sig
val hashInc : Word.word -> Word.word -> Word.word
end
(***** hash-inc.sml *****)
structure JenkinsHash :> HASH_INCREMENT
=
struct
(* Jenkins hash function *)
fun hashInc hash datum =
let
val hash = Word.+ (hash, datum)
val hash = Word.+ (hash, Word.<< (hash, 0w10))
val hash = Word.xorb (hash, Word.>> (hash, 0w6))
in
hash
end
end
(* A non-commutative variant of the Jenkins hash. *)
structure MJHash :> HASH_INCREMENT
=
struct
fun hashInc hash datum =
let
val hash = Word.+ (hash, Word.<< (hash, 0w10))
val hash = Word.xorb (hash, Word.>> (hash, 0w6))
val hash = Word.+ (hash, datum)
in
hash
end
end
(***** ordered.sml *****)
signature ORDERED =
sig
type t
val eq : t * t -> bool
val compare : t * t -> order
end
(***** ordered.sml (partial) *****)
structure IntInfOrdered
:> ORDERED where type t = IntInf.int
=
struct
type t = IntInf.int
val eq : IntInf.int * IntInf.int -> bool = (op =)
val compare = IntInf.compare
end
structure StringOrdered
:> ORDERED where type t = string
=
struct
type t = string
val eq : string * string -> bool = op =
val compare = String.compare
end
(***** red-black-tree.sml *****)
structure RedBlackTree =
struct
datatype color = RED | BLACK
datatype 'a tree =
Leaf
| Node of color * 'a * 'a tree * 'a tree
datatype 'a zipelem =
LEFT of color * 'a * 'a tree
| RIGHT of color * 'a * 'a tree
fun zip tree zipper =
(case zipper of
[] => tree
| LEFT (color, label, right) :: rest =>
zip (Node (color, label, tree, right)) rest
| RIGHT (color, label, left) :: rest =>
zip (Node (color, label, left, tree)) rest)
(* Precondition:
(zip (Node (RED, label, left, right) zipper) satisfies the black-height
invariant, but possibly not the red-black invariant.
*)
fun zipRed (label, left, right) zipper =
(case zipper of
[] =>
Node (BLACK, label, left, right)
| LEFT (BLACK, label1, right1) :: rest =>
zip
(Node (BLACK, label1,
Node (RED, label, left, right),
right1))
rest
| RIGHT (BLACK, label1, left1) :: rest =>
zip
(Node (BLACK, label1,
left1,
Node (RED, label, left, right)))
rest
| LEFT (RED, label1, right1) ::
LEFT (_ (* BLACK *), label2, Node (RED, label3, left3, right3)) :: rest =>
(* Grandparent is BLACK, by red-black invariant. *)
zipRed
(label2,
Node (BLACK, label1,
Node (RED, label, left, right),
right1),
Node (BLACK, label3, left3, right3))
rest
| LEFT (RED, label1, right1) ::
RIGHT (_ (* BLACK *), label2, Node (RED, label3, left3, right3)) :: rest =>
(* Grandparent is BLACK, by red-black invariant. *)
zipRed
(label2,
Node (BLACK, label3, left3, right3),
Node (BLACK, label1,
Node (RED, label, left, right),
right1))
rest
| RIGHT (RED, label1, left1) ::
LEFT (_ (* BLACK *), label2, Node (RED, label3, left3, right3)) :: rest =>
(* Grandparent is BLACK, by red-black invariant. *)
zipRed
(label2,
Node (BLACK, label1,
left1,
Node (RED, label, left, right)),
Node (BLACK, label3, left3, right3))
rest
| RIGHT (RED, label1, left1) ::
RIGHT (_ (* BLACK *), label2, Node (RED, label3, left3, right3)) :: rest =>
(* Grandparent is BLACK, by red-black invariant. *)
zipRed
(label2,
Node (BLACK, label3, left3, right3),
Node (BLACK, label1,
left1,
Node (RED, label, left, right)))
rest
| LEFT (RED, label1, right1) ::
LEFT (_ (* BLACK *), label2, node3) :: rest =>
(* Grandparent is BLACK, by red-black invariant. *)
zip
(Node (BLACK, label1,
Node (RED, label, left, right),
Node (RED, label2, right1, node3)))
rest
| LEFT (RED, label1, right1) ::
RIGHT (_ (* BLACK *), label2, node3) :: rest =>
(* Grandparent is BLACK, by red-black invariant. *)
zip
(Node (BLACK, label,
Node (RED, label2, node3, left),
Node (RED, label1, right, right1)))
rest
| RIGHT (RED, label1, left1) ::
LEFT (_ (* BLACK *), label2, node3) :: rest =>
(* Grandparent is BLACK, by red-black invariant. *)
zip
(Node (BLACK, label,
Node (RED, label1, left1, left),
Node (RED, label2, right, node3)))
rest
| RIGHT (RED, label1, left1) ::
RIGHT (_ (* BLACK *), label2, node3) :: rest =>
(* Grandparent is BLACK, by red-black invariant. *)
zip
(Node (BLACK, label1,
Node (RED, label2, node3, left1),
Node (RED, label, left, right)))
rest
| [LEFT (RED, _, _)] =>
(* The root cannot be red. *)
raise (Fail "invariant")
| [RIGHT (RED, _, _)] =>
(* The root cannot be red. *)
raise (Fail "invariant"))
(* Precondition:
1. tree is Leaf or BLACK
2. (zip tree zipper) satisfies the red-black invariant, but the black-height
of tree is 1 too small, unless zipper=[],
*)
fun zipBlack tree zipper =
(case zipper of
[] => tree
| LEFT (color1, label1, Node (_ (* BLACK *), label2,
left2,
Node (RED, label3, left3, right3))) :: rest =>
zip
(Node (color1, label2,
Node (BLACK, label1, tree, left2),
Node (BLACK, label3, left3, right3)))
rest
| RIGHT (color1, label1, Node (_ (* BLACK *), label2,
Node (RED, label3, left3, right3),
right2)) :: rest =>
(* Sibling is BLACK by red-black invariant. *)
zip
(Node (color1, label2,
Node (BLACK, label3, left3, right3),
Node (BLACK, label1, right2, tree)))
rest
| LEFT (color1, label1, Node (_ (* BLACK *), label2,
Node (RED, label3, left3, right3),
right2)) :: rest =>
(* Sibling is BLACK by red-black invariant. *)
zip
(Node (color1, label3,
Node (BLACK, label1, tree, left3),
Node (BLACK, label2, right3, right2)))
rest
| RIGHT (color1, label1, Node (_ (* BLACK *), label2,
left2,
Node (RED, label3, left3, right3))) :: rest =>
(* Sibling is BLACK by red-black invariant. *)
zip
(Node (color1, label3,
Node (BLACK, label2, left2, left3),
Node (BLACK, label1, right3, tree)))
rest
| LEFT (RED, label1, Node (_ (* BLACK *), label2, left2, right2)) :: rest =>
(* Sibling is BLACK by red-black invariant.
Previous cases rule out left2 or right2 being a red node.
*)
zip
(Node (BLACK, label1,
tree,
Node (RED, label2, left2, right2)))
rest
| RIGHT (RED, label1, Node (_ (* BLACK *), label2, left2, right2)) :: rest =>
(* Sibling is BLACK by red-black invariant.
Previous cases rule out left2 or right2 being a red node.
*)
zip
(Node (BLACK, label1,
Node (RED, label2, left2, right2),
tree))
rest
| LEFT (BLACK, label1, Node (BLACK, label2, left2, right2)) :: rest =>
(* Previous cases rule out left2 or right2 being a red node. *)
zipBlack
(Node (BLACK, label1,
tree,
Node (RED, label2, left2, right2)))
rest
| RIGHT (BLACK, label1, Node (BLACK, label2, left2, right2)) :: rest =>
(* Previous cases rule out left2 or right2 being a red node. *)
zipBlack
(Node (BLACK, label1,
Node (RED, label2, left2, right2),
tree))
rest
| LEFT (BLACK, label1, Node (RED, label2, left2, right2)) :: rest =>
zipBlack
tree
(LEFT (RED, label1, left2) :: LEFT (BLACK, label2, right2) :: rest)
| RIGHT (BLACK, label1, Node (RED, label2, left2, right2)) :: rest =>
zipBlack
tree
(RIGHT (RED, label1, right2) :: RIGHT (BLACK, label2, left2) :: rest)
| LEFT (_, _, Leaf) :: _ =>
(* Impossible by black-height invariant. *)
raise (Fail "invariant")
| RIGHT (_, _, Leaf) :: _ =>
(* Impossible by black-height invariant. *)
raise (Fail "invariant"))
fun search f tree zipper =
(case tree of
Leaf =>
(Leaf, zipper)
| Node (color, label, left, right) =>
(case f label of
LESS =>
search f left (LEFT (color, label, right) :: zipper)
| GREATER =>
search f right (RIGHT (color, label, left) :: zipper)
| EQUAL =>
(tree, zipper)))
fun searchMin tree zipper =
(case tree of
Leaf => zipper
| Node (color, label, left, right) =>
searchMin left (LEFT (color, label, right) :: zipper))
fun searchMax tree zipper =
(case tree of
Leaf => zipper
| Node (color, label, left, right) =>
searchMax right (RIGHT (color, label, left) :: zipper))
(* Precondition:
(zip (Node (color, _, Leaf, child)) zipper) is a valid tree,
or (zip (Node (color, _, child, Leaf)) zipper) is a valid tree.
*)
fun deleteNearLeaf color child zipper =
(case color of
RED =>
(* child cannot be RED, by red-black invariant,
so it must be Leaf, by black-height invariant.
*)
zip Leaf zipper
| BLACK =>
(case child of
Node (_ (* RED *), label, _ (* Leaf *), _ (* Leaf *)) =>
(* Must be RED with Leaf children, by black-height invariant. *)
zip (Node (BLACK, label, Leaf, Leaf)) zipper
| Leaf =>
zipBlack Leaf zipper))
(* Precondition:
zip (Node (color, _, left, right)) zipper is a valid tree.
*)
fun delete color left right zipper =
(case right of
Leaf =>
(case left of
Leaf =>
(case color of
RED =>
zip Leaf zipper
| BLACK =>
zipBlack Leaf zipper)
| _ =>
(case searchMax left [] of
RIGHT (colorLeftMin, labelLeftMin, leftLeftMin) :: zipper' =>
deleteNearLeaf
colorLeftMin leftLeftMin
(zipper' @ LEFT (color, labelLeftMin, right) :: zipper)
| _ =>
raise (Fail "postcondition")))
| _ =>
(case searchMin right [] of
LEFT (colorRightMin, labelRightMin, rightRightMin) :: zipper' =>
deleteNearLeaf
colorRightMin rightRightMin
(zipper' @ RIGHT (color, labelRightMin, left) :: zipper)
| _ =>
raise (Fail "postcondition")))
end
(***** dict.sig *****)
signature DICT =
sig
type key
type 'a dict
exception Absent
val empty : 'a dict
val singleton : key -> 'a -> 'a dict
val insert : 'a dict -> key -> 'a -> 'a dict
val remove : 'a dict -> key -> 'a dict
val find : 'a dict -> key -> 'a option
val lookup : 'a dict -> key -> 'a
val union : 'a dict -> 'a dict -> (key * 'a * 'a -> 'a) -> 'a dict
val operate : 'a dict -> key -> (unit -> 'a) -> ('a -> 'a) -> 'a option * 'a * 'a dict
val insertMerge : 'a dict -> key -> 'a -> ('a -> 'a) -> 'a dict
val isEmpty : 'a dict -> bool
val member : 'a dict -> key -> bool
val size : 'a dict -> int
val toList : 'a dict -> (key * 'a) list
val domain : 'a dict -> key list
val map : ('a -> 'b) -> 'a dict -> 'b dict
val foldl : (key * 'a * 'b -> 'b) -> 'b -> 'a dict -> 'b
val foldr : (key * 'a * 'b -> 'b) -> 'b -> 'a dict -> 'b
val app : (key * 'a -> unit) -> 'a dict -> unit
end
(***** dict-red-black.sml *****)
functor RedBlackDict (structure Key : ORDERED)
:> DICT where type key = Key.t
=
struct
type key = Key.t
open RedBlackTree
type 'a dict = int * (key * 'a) tree
exception Absent
val empty = (0, Leaf)
fun singleton key datum =
(1, Node (BLACK, (key, datum), Leaf, Leaf))
fun isEmpty (n, _) = n = 0
fun size (n, _) = n
fun insert (n, tree) key datum =
(case search (fn (key', _) => Key.compare (key, key')) tree [] of
(Leaf, zipper) =>
(n+1, zipRed ((key, datum), Leaf, Leaf) zipper)
| (Node (color, _, left, right), zipper) =>
(n, zip (Node (color, (key, datum), left, right)) zipper))
fun remove (dict as (n, tree)) key =
(case search (fn (key', _) => Key.compare (key, key')) tree [] of
(Leaf, _) => dict
| (Node (color, _, left, right), zipper) =>
(n-1, delete color left right zipper))
fun memberMain tree key =
(case tree of
Leaf => false
| Node (_, (key', datum), left, right) =>
(case Key.compare (key, key') of
EQUAL =>
true
| LESS =>
memberMain left key
| GREATER =>
memberMain right key))
fun member (n, tree) key =
memberMain tree key
fun findMain tree key =
(case tree of
Leaf => NONE
| Node (_, (key', datum), left, right) =>
(case Key.compare (key, key') of
EQUAL =>
SOME datum
| LESS =>
findMain left key
| GREATER =>
findMain right key))
fun find (n, tree) key =
findMain tree key
fun lookupMain tree key =
(case tree of
Leaf =>
raise Absent
| Node (_, (key', datum), left, right) =>
(case Key.compare (key, key') of
EQUAL =>
datum
| LESS =>
lookupMain left key
| GREATER =>
lookupMain right key))
fun lookup (_, tree) key =
lookupMain tree key
fun operate (n, tree) key absentf presentf =
(case search (fn (key', _) => Key.compare (key, key')) tree [] of
(Leaf, zipper) =>
let
val datum = absentf ()
in
(NONE, datum,
(n+1, zipRed ((key, datum), Leaf, Leaf) zipper))
end
| (Node (color, (_, datum), left, right), zipper) =>
let
val datum' = presentf datum
in
(SOME datum, datum',
(n, zip (Node (color, (key, datum'), left, right)) zipper))
end)
fun insertMerge dict key x f =
#3 (operate dict key (fn () => x) f)
fun foldlMain f x tree =
(case tree of
Leaf => x
| Node (_, (key, elem), left, right) =>
foldlMain f (f (key, elem, foldlMain f x left)) right)
fun foldrMain f x tree =
(case tree of
Leaf => x
| Node (_, (key, elem), left, right) =>
foldrMain f (f (key, elem, foldrMain f x right)) left)
fun foldl f x (_, tree) = foldlMain f x tree
fun foldr f x (_, tree) = foldrMain f x tree
fun toList (_, tree) = foldrMain (fn (key, datum, l) => (key, datum) :: l) [] tree
fun domain (_, tree) = foldrMain (fn (key, _, l) => key :: l) [] tree
fun mapMain f tree =
(case tree of
Leaf => Leaf
| Node (color, (key, datum), left, right) =>
Node (color, (key, f datum), mapMain f left, mapMain f right))
fun map f (n, tree) =
(n, mapMain f tree)
fun appMain f tree =
(case tree of
Leaf => ()
| Node (_, label, left, right) =>
(
appMain f left;
f label;
appMain f right
))
fun app f (_, tree) =
appMain f tree
fun union (dict1 as (n1, tree1)) (dict2 as (n2, tree2)) f =
if n1 <= n2 then
foldlMain
(fn (key, datum, dict) =>
insertMerge dict key datum
(fn datum' => f (key, datum, datum')))
dict2
tree1
else
foldlMain
(fn (key, datum, dict) =>
insertMerge dict key datum
(fn datum' => f (key, datum', datum)))
dict1
tree2
end
(***** hashable.sig *****)
signature HASHABLE =
sig
type t
val eq : t * t -> bool
val hash : t -> word
end
(***** hashable.sml (partial) *****)
structure IntInfHashable
:> HASHABLE where type t = IntInf.int
=
struct
type t = IntInf.int
val eq : IntInf.int * IntInf.int -> bool = op =
val hash = Word.fromLargeInt
end
structure StringHashable
:> HASHABLE where type t = string
=
struct
type t = string
val eq : string * string -> bool = op =
fun hash str =
let
val len = String.size str
fun loop i h =
if i >= len then
h
else
loop (i+1) (JenkinsHash.hashInc h (Word.fromInt (Char.ord (String.sub (str, i)))))
in
loop 0 0w0
end
end
(***** hash-table.sig *****)
signature HASH_TABLE =
sig
type key
type 'a table
exception Absent
val table : int -> 'a table
val reset : 'a table -> int -> unit
val member : 'a table -> key -> bool
val insert : 'a table -> key -> 'a -> unit
val remove : 'a table -> key -> unit
val find : 'a table -> key -> 'a option
val lookup : 'a table -> key -> 'a
val operate : 'a table -> key -> (unit -> 'a) -> ('a -> 'a) -> 'a option * 'a
val insertMerge : 'a table -> key -> 'a -> ('a -> 'a) -> unit
val lookupOrInsert : 'a table -> key -> (unit -> 'a) -> 'a
val toList : 'a table -> (key * 'a) list
val fold : (key * 'a * 'b -> 'b) -> 'b -> 'a table -> 'b
val app : (key * 'a -> unit) -> 'a table -> unit
end
(***** hash-table.sml *****)
functor HashTable (structure Key : HASHABLE)
:> HASH_TABLE where type key = Key.t
=
struct
type key = Key.t
datatype 'a entry =
Nil
| Cons of word * key * 'a ref * 'a entry ref
(* This is a little clumsy, since the first entry in a bucket is modified
by updating the array and the remaining entries are modified using by
assigning to a reference, but it's okay because we want to special-case
the first entry anyway.
*)
type 'a table =
{ residents : int ref, (* current number of residents *)
size : word,
thresh : int, (* number of residents at which to resize *)
arr : 'a entry array } ref
exception Absent
fun resizeLoad n = n div 3 * 4
fun table sz =
if sz <= 0 then
raise (Fail "illegal size")
else
ref { residents = ref 0,
size = Word.fromInt sz,
thresh = resizeLoad sz,
arr = Array.array (sz, Nil) }
fun reset table sz =
if sz <= 0 then
raise (Fail "illegal size")
else
table := { residents = ref 0,
size = Word.fromInt sz,
thresh = resizeLoad sz,
arr = Array.array (sz, Nil) }
fun search hash key curr =
(case !curr of
Nil =>
Nil
| entry as Cons (hash', key', datumref, next) =>
if hash = hash' andalso Key.eq (key, key') then
(
curr := !next; (* remove from list *)
entry
)
else
search hash key next)
fun resize (table as ref { residents, size, thresh, arr, ... } : 'a table) =
if !residents < thresh then
()
else
let
val newsize = 2 * Word.toInt size + 1
val newsize' = Word.fromInt newsize
val arr' = Array.array (newsize, Nil)
fun move entry =
(case entry of
Nil => ()
| Cons (hash, _, _, next) =>
let
val entry' = !next
val n = Word.toInt (hash mod newsize')
in
next := Array.sub (arr', n);
Array.update (arr', n, entry);
move entry'
end)
in
(* Move entries to new array. *)
Array.app move arr;
table := { residents = residents,
size = newsize',
thresh = resizeLoad newsize,
arr = arr' }
end
fun member (ref { size, arr, ...} : 'a table) key =
let
val hash = Key.hash key
val n = Word.toInt (hash mod size)
val bucket = Array.sub (arr, n)
in
(case bucket of
Nil => false
| Cons (hash', key', _, next) =>
(hash = hash' andalso Key.eq (key, key'))
orelse
(case search hash key next of
Nil => false
| entry as Cons (_, _, _, next') =>
(
next' := bucket;
Array.update (arr, n, entry);
true
)))
end
fun insert (table as ref { residents, size, arr, ... } : 'a table) key datum =
let
val hash = Key.hash key
val n = Word.toInt (hash mod size)
val bucket = Array.sub (arr, n)
in
(case bucket of
Nil =>
(
Array.update (arr, n,
Cons (hash, key, ref datum, ref Nil));
residents := !residents + 1;
resize table
)
| Cons (hash', key', datumref, next) =>
if hash = hash' andalso Key.eq (key, key') then
datumref := datum
else
(case search hash key next of
Nil =>
(
Array.update (arr, n,
Cons (hash, key, ref datum, ref bucket));
residents := !residents + 1;
resize table
)
| entry as Cons (_, _, datumref', next') =>
(
next' := bucket;
Array.update (arr, n, entry);
datumref' := datum
)))
end
fun remove (table as ref { residents, size, arr, ... } : 'a table) key =
let
val hash = Key.hash key
val n = Word.toInt (hash mod size)
val bucket = Array.sub (arr, n)
in
(case bucket of
Nil => ()
| Cons (hash', key', _, next) =>
if hash = hash' andalso Key.eq (key, key') then
Array.update (arr, n, !next)
else
(
search hash key next;
()
))
end
fun find (table as ref { residents, size, arr, ... } : 'a table) key =
let
val hash = Key.hash key
val n = Word.toInt (hash mod size)
val bucket = Array.sub (arr, n)
in
(case bucket of
Nil => NONE
| Cons (hash', key', datumref, next) =>
if hash = hash' andalso Key.eq (key, key') then
SOME (!datumref)
else
(case search hash key next of
Nil => NONE
| entry as Cons (_, _, datumref', next') =>
(
next' := bucket;
Array.update (arr, n, entry);
SOME (!datumref')
)))
end
fun lookup (table as ref { residents, size, arr, ... } : 'a table) key =
let
val hash = Key.hash key
val n = Word.toInt (hash mod size)
val bucket = Array.sub (arr, n)
in
(case bucket of
Nil =>
raise Absent
| Cons (hash', key', datumref, next) =>
if hash = hash' andalso Key.eq (key, key') then
!datumref
else
(case search hash key next of
Nil =>
raise Absent
| entry as Cons (_, _, datumref', next') =>
(
next' := bucket;
Array.update (arr, n, entry);
!datumref'
)))
end
fun operate (table as ref { residents, size, arr, ... } : 'a table) key absentf presentf =
let
val hash = Key.hash key
val n = Word.toInt (hash mod size)
val bucket = Array.sub (arr, n)
in
(case bucket of
Nil =>
let
val datum = absentf ()
in
Array.update (arr, n,
Cons (hash, key, ref datum, ref Nil));
residents := !residents + 1;
resize table;
(NONE, datum)
end
| Cons (hash', key', datumref, next) =>
if hash = hash' andalso Key.eq (key, key') then
let
val datum = !datumref
val datum' = presentf datum
in
datumref := datum';
(SOME datum, datum')
end
else
(case search hash key next of
Nil =>
let
val datum = absentf ()
in
Array.update (arr, n,
Cons (hash, key, ref datum, ref bucket));
residents := !residents + 1;
resize table;
(NONE, datum)
end
| entry as Cons (_, _, datumref', next') =>
let
val datum = !datumref'
val datum' = presentf datum
in
next' := bucket;
Array.update (arr, n, entry);
datumref' := datum';
(SOME datum, datum')
end))
end
fun insertMerge table key x f =
(
operate table key (fn () => x) f;
()
)
fun lookupOrInsert table key datumf =
#2 (operate table key datumf (fn x => x))
fun foldEntry f x entry =
(case entry of
Nil => x
| Cons (_, key, ref datum, ref next) =>
foldEntry f (f (key, datum, x)) next)
fun fold f x (ref { arr, ... } : 'a table) =
Array.foldl
(fn (bucket, acc) => foldEntry f acc bucket)
x
arr
fun toList table =
fold (fn (key, datum, l) => (key, datum) :: l) [] table
fun appEntry f entry =
(case entry of
Nil => ()
| Cons (_, key, ref datum, ref next) =>
(
f (key, datum);
appEntry f next
))
fun app f (ref { arr, ... } : 'a table) =
Array.app (appEntry f) arr