-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
503 lines (368 loc) · 17.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
from enum import Enum
from functools import partial
import pandas as pd
import requests
import urllib.parse
from chembl_webresource_client.new_client import new_client
from chembl_webresource_client.utils import utils
from pubchempy import get_compounds, Compound
from rdkit import Chem
from rdkit.Chem import Descriptors
import rdkit.Chem.rdMolDescriptors as Desc
import json
import math
import pprint
from json_utils import *
import np_classifier
# get specific logger
import logging
import logging.config
logging.config.fileConfig(fname='logger.conf', disable_existing_loggers=False)
logger = logging.getLogger(__name__)
halogens = [9, 17, 35, 53]
def count_element(mol, number):
return sum(1 for atom in mol.GetAtoms() if atom.GetAtomicNum() == number)
def count_H(mol):
return count_element(mol, 1)
def count_C(mol):
return count_element(mol, 6)
def count_N(mol):
return count_element(mol, 7)
def count_O(mol):
return count_element(mol, 8)
def count_P(mol):
return count_element(mol, 15)
def count_S(mol):
return count_element(mol, 16)
def count_halogens(mol):
return sum(1 for atom in mol.GetAtoms() if atom.GetAtomicNum() in halogens)
def num_o_atoms(df):
return df[Columns.rdkit_mol.name].apply(count_O)
def num_n_atoms(df):
return df[Columns.rdkit_mol.name].apply(count_N)
def num_c_atoms(df):
return df[Columns.rdkit_mol.name].apply(count_C)
def num_h_atoms(df):
return df[Columns.rdkit_mol.name].apply(count_H)
def num_s_atoms(df):
return df[Columns.rdkit_mol.name].apply(count_S)
def num_p_atoms(df):
return df[Columns.rdkit_mol.name].apply(count_P)
def num_halogen_atoms(df):
return df[Columns.rdkit_mol.name].apply(count_halogens)
def mol_formula(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: None if mol is None else Desc.CalcMolFormula(mol))
def exact_mass(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: round(Descriptors.ExactMolWt(mol), 5))
def mass_defect(df):
return df[Columns.exact_mass.name].apply(lambda exact_mass: round(exact_mass - math.floor(exact_mass), 5))
def mol_weight(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: round(Descriptors.MolWt(mol), 5))
def mol_log_p(df):
return df[Columns.rdkit_mol.name].apply(Descriptors.MolLogP)
def NumValenceElectrons(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: Descriptors.NumValenceElectrons(mol))
def calc_hbd_donor(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: Desc.CalcNumHBD(mol))
def calc_hba_acceptor(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: Desc.CalcNumHBA(mol))
def calc_rotatable_bonds(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: Desc.CalcNumRotatableBonds(mol))
def num_hetero_atoms(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: Desc.CalcNumHeteroatoms(mol))
def num_aromatic_rings(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: Desc.CalcNumAromaticRings(mol))
def num_heavy_atoms(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: Desc.CalcNumHeavyAtoms(mol))
def canonical_smiles(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: Chem.MolToSmiles(mol, True))
def inchi(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: Chem.MolToInchi(mol))
def inchi_key(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: Chem.MolToInchiKey(mol))
def smarts(df):
return df[Columns.rdkit_mol.name].apply(lambda mol: Chem.MolToSmarts(mol))
def rdkit_mol(df):
if Columns.canonical_smiles.name in df.columns:
return df[Columns.canonical_smiles.name].apply(lambda smiles: Chem.MolFromSmiles(smiles))
elif Columns.inchi.name in df.columns:
return df[Columns.inchi.name].apply(lambda inchi: Chem.MolFromInchi(inchi))
elif Columns.smiles.name in df.columns:
return df[Columns.smiles.name].apply(lambda smiles: Chem.MolFromSmiles(str(smiles)))
else:
raise AttributeError("Data frame with inchi or smiles column needed")
def get_original_structures(df):
if Columns.canonical_smiles.name in df.columns:
return df[Columns.canonical_smiles.name]
elif Columns.inchi.name in df.columns:
return df[Columns.inchi.name]
elif Columns.smiles.name in df.columns:
return df[Columns.smiles.name]
else:
raise AttributeError("Data frame with inchi or smiles column needed")
class Columns(Enum):
rdkit_mol = partial(rdkit_mol)
smiles = partial(canonical_smiles)
canonical_smiles = partial(canonical_smiles)
inchi = partial(inchi)
inchi_key = partial(inchi_key)
smarts = partial(smarts)
formula = partial(mol_formula)
exact_mass = partial(exact_mass)
mass_defect = partial(mass_defect)
mw = partial(mol_weight)
mol_log_p = partial(mol_log_p)
hba = partial(calc_hba_acceptor)
hbd = partial(calc_hbd_donor)
num_rot_bonds = partial(calc_rotatable_bonds)
hetero_atoms = partial(num_hetero_atoms)
h_atoms = partial(num_h_atoms)
c_atoms = partial(num_c_atoms)
n_atoms = partial(num_n_atoms)
o_atoms = partial(num_o_atoms)
p_atoms = partial(num_p_atoms)
s_atoms = partial(num_s_atoms)
halogen_atoms = partial(num_halogen_atoms)
heavy_atoms = partial(num_heavy_atoms)
aromatic_rings = partial(num_aromatic_rings)
valenz = partial(NumValenceElectrons)
def create_col(self, df):
return self.__call__(df)
def __str__(self):
return self.namedef
def __call__(self, *args): # make it callable
return self.value(*args)
NP_CLASSIFIER_URL = "https://npclassifier.ucsd.edu/classify?smiles={}"
CLASSYFIRE_URL = "https://gnps-structure.ucsd.edu/classyfire?smiles={}"
PUBCHEM_SUFFIX = "_pubchem"
CHEMBL_SUFFIX = "_chembl"
CLASSYFIRE_SUFFIX = "_classyfire"
NP_CLASSIFIER_SUFFIX = "_np_classifier"
# IDS ChEBI, PubChem, ChemSpider
# DBE
# violin plots
# NPAtlas:
# ORIGIN ORGANISM TYPE
NP_ATLAS_URL = "https://www.npatlas.org/api/v1/compounds/basicSearch?method=full&{}&threshold=0&orderby=npaid&ascending=true&limit=10"
NP_ATLAS_STRUCTURE_SEARCH_URL = "https://www.npatlas.org/api/v1/compounds/structureSearch?structure={}" \
"&type={}&method=sim&threshold=0.9999&skip=0&limit=10&stereo=false"
def np_atlas_url_by_inchikey(inchi_key):
return NP_ATLAS_URL.format("inchikey="+urllib.parse.quote(inchi_key))
def np_atlas_url_by_smiles(smiles):
return NP_ATLAS_URL.format("smiles="+urllib.parse.quote(smiles))
def np_atlas_url_similar_structure(structure, type="inchikey"):
return NP_ATLAS_URL.format(urllib.parse.quote(structure), type)
def search_np_atlas_by_inchikey_smiles(entry):
# try inchikey - otherwise smiles
result = get_json_response(np_atlas_url_by_inchikey(entry[Columns.inchi_key.name]), True)
if result is None:
result = get_json_response(np_atlas_url_by_smiles(entry[Columns.canonical_smiles.name]), True)
# similar structure
if result is None:
result = get_json_response(np_atlas_url_similar_structure(entry[Columns.inchi_key.name]), True)
if result is None:
result = get_json_response(np_atlas_url_similar_structure(entry[Columns.canonical_smiles.name], "smiles"), True)
return result
def search_np_atlas(df):
npa = df.apply(lambda row: search_np_atlas_by_inchikey_smiles(row), axis=1)
df["num_np_atlas_entries"] = npa.apply(len)
npa = npa.apply(lambda result: result[0] if result else None)
suffix = NP_CLASSIFIER_SUFFIX
json_col(df, npa, suffix, "npaid")
json_col(df, npa, suffix, "original_name")
json_col(df, npa, suffix, "cluster_id")
json_col(df, npa, suffix,"node_id")
json_col(df, npa, suffix, "original_type")
json_col(df, npa, suffix, "original_organism")
json_col(df, npa, suffix, "original_doi")
return df
def get_pubchem_mol_by_inchikey(inchi_key):
try:
return get_compounds(inchi_key, 'inchikey')
except Exception as e:
logger.warning("Error during pubchem query:",e)
return None
def add_pubchem_columns(df):
# seems to be sorted in reverse
compounds = get_pubchem_mol_by_inchikey(df[Columns.inchi_key.name].tolist())
pc_dict = {compound.inchikey : compound for compound in compounds}
pubchem = df[Columns.inchi_key.name].apply(lambda inchi_key: pc_dict[inchi_key])
# df["num_pubchem_entries"] = pubchem.apply(len)
pubchem = pubchem.apply(lambda result: result.to_dict() if result else None)
suffix = PUBCHEM_SUFFIX
json_col(df, pubchem, suffix, "cid")
json_col(df, pubchem, suffix, "xlogp")
json_col(df, pubchem, suffix, "atom_stereo_count")
json_col(df, pubchem, suffix, "complexity")
json_col(df, pubchem, suffix, "iupac_name")
json_col(df, pubchem, suffix, "tpsa", None, "topological_polar_surface_area") # Topological Polar Surface Area
return df
def get_chembl_mol_by_inchikey(molecule, inchi_key):
try:
return molecule.filter(molecule_structures__standard_inchi_key=inchi_key)
except Exception as e:
logger.warning("Error during chembl query:",e)
return None
def add_chembl_columns(df):
# show all available key words
# available_resources = [resource for resource in dir(new_client) if not resource.startswith('_')]
# logger.info(available_resources)
# chembl
molecule = new_client.molecule
chembl = df[Columns.inchi_key.name].apply(lambda inchikey: get_chembl_mol_by_inchikey(molecule, inchikey))
# .only(['molecule_chembl_id', 'pref_name']))
# add number of results column and then filter to only use first result
df["num_chembl_entries"] = chembl.apply(len)
chembl = chembl.apply(lambda result: None if result is None else result[0])
logger.debug("chembl read finished")
suffix = CHEMBL_SUFFIX
json_col(df, chembl, suffix, "molecule_chembl_id")
json_col(df, chembl, suffix, "pref_name")
json_col(df, chembl, suffix, "molecule_synonyms", lambda syn: join_array_by_field(syn, "molecule_synonym"))
json_col(df, chembl, suffix, "therapeutic_flag")
json_col(df, chembl, suffix, "natural_product")
json_col(df, chembl, suffix, "indication_class")
json_col(df, chembl, suffix, "chirality")
json_col(df, chembl, suffix, "max_phase")
json_col(df, chembl, suffix, "cross_references", lambda xrefs: get_chembl_xref(xrefs, "Wikipedia"), "wikipedia_id")
json_col(df, chembl, suffix, "cross_references", lambda xrefs: get_chembl_xref(xrefs, "PubChem"), "pubchem_id")
# properties
json_col(df, chembl, suffix, "molecule_properties", lambda prop: prop["alogp"], "alogp")
json_col(df, chembl, suffix, "molecule_properties", lambda prop: prop["cx_logd"], "cx_logd")
json_col(df, chembl, suffix, "molecule_properties", lambda prop: prop["cx_logp"], "cx_logp")
json_col(df, chembl, suffix, "molecule_properties", lambda prop: prop["cx_most_apka"], "cx_most_apka")
json_col(df, chembl, suffix, "molecule_properties", lambda prop: prop["cx_most_bpka"], "cx_most_bpka")
return df
# molecule.set_format('json')
# aspirin = molecule.search('aspirin')
# aspirin = molecule.search('CC(=O)OCC(CCC=C(C)C)=CCCC(CO)=CCCC(C)=CCO')
# for r in aspirin:
# pref_name = r['pref_name']
# if pref_name is not None:
# print(pref_name)
def main(data_file, export_file, compute_rdkit=True, search_npclass=True, search_classyfire=True, search_pubchem=True, search_chembl=True):
# create mol column and filter rows - missing mol means unparsable smiles or inchi
try:
logger.info("Start import")
original_df = import_data(data_file)
logger.info("Data imported from{}".format(data_file))
# smiles, inchikey,... columns from rdkit
if compute_rdkit:
filtered_df = compute_rdkit_columns(original_df)
else:
filtered_df = original_df
# read classes from gnps APIs
if search_npclass:
filtered_df = np_class(filtered_df)
if search_classyfire:
filtered_df = classyfire(filtered_df)
# read data bases
if search_pubchem:
try:
add_pubchem_columns(filtered_df)
except Exception as e:
logger.warning("broke up pubchem search", e)
if search_chembl:
try:
add_chembl_columns(filtered_df)
except Exception as e:
logger.warning("broke up chembl search", e)
# search_np_atlas(filtered_df)
except Exception as e:
logger.error("Error while parsing molecular structures", e)
exit(1)
# write in any case
export_tsv_file(export_file, filtered_df)
# success
exit(0)
def export_tsv_file(export_file, filtered_df):
logger.info("Export results to file {}".format(export_file))
filtered_df.to_csv(export_file, sep='\t', encoding='utf-8', index=False)
def compute_rdkit_columns(original_df):
logger.info("Computing values by rdkit")
original_df[Columns.rdkit_mol.name] = Columns.rdkit_mol.create_col(original_df)
filtered_df = original_df[original_df[Columns.rdkit_mol.name].astype(bool)]
unparsable_rows = len(original_df) - len(filtered_df)
if unparsable_rows > 0:
unparsed_df = original_df[original_df[Columns.rdkit_mol.name].astype(bool) == False]
logger.info("n=%d rows (structures) were not parsed", unparsable_rows)
else:
logger.info("All row structures were parsed")
# add new columns for chemical properties
for col in Columns:
if col.name not in filtered_df:
filtered_df[col.name] = col.create_col(filtered_df)
logger.info("RDKIT values computed")
filtered_df.drop(columns=[Columns.rdkit_mol.name], axis=1, inplace=True)
return filtered_df
def import_data(data_file):
return pd.read_csv(data_file, sep="\t")
def classyfire_url(smiles):
return CLASSYFIRE_URL.format(urllib.parse.quote(smiles))
def np_class_url(smiles):
return NP_CLASSIFIER_URL.format(urllib.parse.quote(smiles))
def get_json_response(url, post=False):
try:
response = requests.post(url) if post else requests.get(url)
response.raise_for_status()
return json.loads(response.text)
except requests.exceptions.HTTPError as errh:
print("Http Error:", errh)
except requests.exceptions.ConnectionError as errc:
print("Error Connecting:", errc)
except requests.exceptions.Timeout as errt:
print("Timeout Error:", errt)
except requests.exceptions.RequestException as err:
print("Other error:", err)
# on error return None
return None
def get_unique_canocical_smiles_dict(df):
"""
Dict with unique canonical smiles as keys
:param df: input data frame with Columns.canonical_smiles column
:return: dict(canonical_smiles, None)
"""
return dict.fromkeys(df[Columns.canonical_smiles.name])
def np_class(df):
unique_smiles_dict = get_unique_canocical_smiles_dict(df)
for smiles in unique_smiles_dict:
unique_smiles_dict[smiles] = get_json_response(np_class_url(smiles))
# temp column with json results
result_column = df[Columns.canonical_smiles.name].apply(lambda smiles: unique_smiles_dict[smiles])
# extract and join values from json array - only isglycoside is already a value
json_col(df, result_column, NP_CLASSIFIER_SUFFIX, "class_results", join)
json_col(df, result_column, NP_CLASSIFIER_SUFFIX, "superclass_results", join)
json_col(df, result_column, NP_CLASSIFIER_SUFFIX, "pathway_results", join)
json_col(df, result_column, NP_CLASSIFIER_SUFFIX, "isglycoside")
json_col(df, result_column, NP_CLASSIFIER_SUFFIX, "fp1")
json_col(df, result_column, NP_CLASSIFIER_SUFFIX, "fp2")
return df
def classyfire(original_df):
unique_smiles_dict = get_unique_canocical_smiles_dict(original_df)
# Query classyfire on GNPS
for smiles in unique_smiles_dict:
unique_smiles_dict[smiles] = get_json_response(classyfire_url(smiles))
# temp column with json results
result_column = original_df[Columns.canonical_smiles.name].apply(lambda smiles: unique_smiles_dict[smiles])
# extract information
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "kingdom", extract_name)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "superclass", extract_name)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "class", extract_name)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "subclass", extract_name)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "intermediate_nodes", extract_names_array)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "alternative_parents", extract_names_array)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "direct_parent", extract_name)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "molecular_framework")
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "substituents", join)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "description")
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "external_descriptors", extract_external_descriptors)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "ancestors", join)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "predicted_chebi_terms", join)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "predicted_lipidmaps_terms", join)
json_col(original_df, result_column, CLASSYFIRE_SUFFIX, "classification_version")
return original_df
if __name__ == '__main__':
# main("data/all_smiles.tsv", "results/converted.tsv")
main("data/MCE_Library_zdenek.tsv", "results/MCE_Library_zdenek_converted.tsv", compute_rdkit=True,
search_npclass=True,
search_classyfire=True, search_pubchem=False, search_chembl=True)