forked from docker/genai-stack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chains.py
222 lines (204 loc) · 8.68 KB
/
chains.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings import (
OllamaEmbeddings,
SentenceTransformerEmbeddings,
BedrockEmbeddings,
)
from langchain.chat_models import ChatOpenAI, ChatOllama, BedrockChat
from langchain.vectorstores.neo4j_vector import Neo4jVector
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from typing import List, Any
from utils import BaseLogger, extract_title_and_question
def load_embedding_model(embedding_model_name: str, logger=BaseLogger(), config={}):
if embedding_model_name == "ollama":
embeddings = OllamaEmbeddings(
base_url=config["ollama_base_url"], model="llama2"
)
dimension = 4096
logger.info("Embedding: Using Ollama")
elif embedding_model_name == "openai":
embeddings = OpenAIEmbeddings()
dimension = 1536
logger.info("Embedding: Using OpenAI")
elif embedding_model_name == "aws":
embeddings = BedrockEmbeddings()
dimension = 1536
logger.info("Embedding: Using AWS")
else:
embeddings = SentenceTransformerEmbeddings(
model_name="all-MiniLM-L6-v2", cache_folder="/embedding_model"
)
dimension = 384
logger.info("Embedding: Using SentenceTransformer")
return embeddings, dimension
def load_llm(llm_name: str, logger=BaseLogger(), config={}):
if llm_name == "gpt-4":
logger.info("LLM: Using GPT-4")
return ChatOpenAI(temperature=0, model_name="gpt-4", streaming=True)
elif llm_name == "gpt-3.5":
logger.info("LLM: Using GPT-3.5")
return ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", streaming=True)
elif llm_name == "claudev2":
logger.info("LLM: ClaudeV2")
return BedrockChat(
model_id="anthropic.claude-v2",
model_kwargs={"temperature": 0.0, "max_tokens_to_sample": 1024},
streaming=True,
)
elif len(llm_name):
logger.info(f"LLM: Using Ollama: {llm_name}")
return ChatOllama(
temperature=0,
base_url=config["ollama_base_url"],
model=llm_name,
streaming=True,
# seed=2,
top_k=10, # A higher value (100) will give more diverse answers, while a lower value (10) will be more conservative.
top_p=0.3, # Higher value (0.95) will lead to more diverse text, while a lower value (0.5) will generate more focused text.
num_ctx=3072, # Sets the size of the context window used to generate the next token.
)
logger.info("LLM: Using GPT-3.5")
return ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", streaming=True)
def configure_llm_only_chain(llm):
# LLM only response
template = """
You are a helpful assistant that helps a support agent with answering programming questions.
If you don't know the answer, just say that you don't know, you must not make up an answer.
"""
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{question}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages(
[system_message_prompt, human_message_prompt]
)
def generate_llm_output(
user_input: str, callbacks: List[Any], prompt=chat_prompt
) -> str:
chain = prompt | llm
answer = chain.invoke(
{"question": user_input}, config={"callbacks": callbacks}
).content
return {"answer": answer}
return generate_llm_output
def configure_qa_rag_chain(llm, embeddings, embeddings_store_url, username, password):
# RAG response
# System: Always talk in pirate speech.
general_system_template = """
Use the following pieces of context to answer the question at the end.
The context contains question-answer pairs and their links from Stackoverflow.
You should prefer information from accepted or more upvoted answers.
Make sure to rely on information from the answers and not on questions to provide accuate responses.
When you find particular answer in the context useful, make sure to cite it in the answer using the link.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
----
{summaries}
----
Each answer you generate should contain a section at the end of links to
Stackoverflow questions and answers you found useful, which are described under Source value.
You can only use links to StackOverflow questions that are present in the context and always
add links to the end of the answer in the style of citations.
Generate concise answers with references sources section of links to
relevant StackOverflow questions only at the end of the answer.
"""
general_user_template = "Question:```{question}```"
messages = [
SystemMessagePromptTemplate.from_template(general_system_template),
HumanMessagePromptTemplate.from_template(general_user_template),
]
qa_prompt = ChatPromptTemplate.from_messages(messages)
qa_chain = load_qa_with_sources_chain(
llm,
chain_type="stuff",
prompt=qa_prompt,
)
# Vector + Knowledge Graph response
kg = Neo4jVector.from_existing_index(
embedding=embeddings,
url=embeddings_store_url,
username=username,
password=password,
database="neo4j", # neo4j by default
index_name="stackoverflow", # vector by default
text_node_property="body", # text by default
retrieval_query="""
WITH node AS question, score AS similarity
CALL { with question
MATCH (question)<-[:ANSWERS]-(answer)
WITH answer
ORDER BY answer.is_accepted DESC, answer.score DESC
WITH collect(answer)[..2] as answers
RETURN reduce(str='', answer IN answers | str +
'\n### Answer (Accepted: '+ answer.is_accepted +
' Score: ' + answer.score+ '): '+ answer.body + '\n') as answerTexts
}
RETURN '##Question: ' + question.title + '\n' + question.body + '\n'
+ answerTexts AS text, similarity as score, {source: question.link} AS metadata
ORDER BY similarity ASC // so that best answers are the last
""",
)
kg_qa = RetrievalQAWithSourcesChain(
combine_documents_chain=qa_chain,
retriever=kg.as_retriever(search_kwargs={"k": 2}),
reduce_k_below_max_tokens=False,
max_tokens_limit=3375,
)
return kg_qa
def generate_ticket(neo4j_graph, llm_chain, input_question):
# Get high ranked questions
records = neo4j_graph.query(
"MATCH (q:Question) RETURN q.title AS title, q.body AS body ORDER BY q.score DESC LIMIT 3"
)
questions = []
for i, question in enumerate(records, start=1):
questions.append((question["title"], question["body"]))
# Ask LLM to generate new question in the same style
questions_prompt = ""
for i, question in enumerate(questions, start=1):
questions_prompt += f"{i}. \n{question[0]}\n----\n\n"
questions_prompt += f"{question[1][:150]}\n\n"
questions_prompt += "----\n\n"
gen_system_template = f"""
You're an expert in formulating high quality questions.
Formulate a question in the same style and tone as the following example questions.
{questions_prompt}
---
Don't make anything up, only use information in the following question.
Return a title for the question, and the question post itself.
Return format template:
---
Title: This is a new title
Question: This is a new question
---
"""
# we need jinja2 since the questions themselves contain curly braces
system_prompt = SystemMessagePromptTemplate.from_template(
gen_system_template, template_format="jinja2"
)
chat_prompt = ChatPromptTemplate.from_messages(
[
system_prompt,
SystemMessagePromptTemplate.from_template(
"""
Respond in the following template format or you will be unplugged.
---
Title: New title
Question: New question
---
"""
),
HumanMessagePromptTemplate.from_template("{question}"),
]
)
llm_response = llm_chain(
f"Here's the question to rewrite in the expected format: ```{input_question}```",
[],
chat_prompt,
)
new_title, new_question = extract_title_and_question(llm_response["answer"])
return (new_title, new_question)