-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnodes.py
120 lines (94 loc) · 4.77 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
from .helper import unpack_conditioning, NoiseWrapper, random_walk
from .blend_modes import BLEND_MODES
from .travel_modes import reflect_values, TRAVEL_MODES
REQUIRED_TYPES = {
"start": ("LATENT",),
"end": ("LATENT",),
"steps": ("INT", {"default": 9, "min": 3, "max": 10000, "step": 1}),
"factor": ("FLOAT", {"default": 0.5}),
"blend": (list(BLEND_MODES),),
"travel": (list(TRAVEL_MODES),),
"reflect": ("BOOLEAN", {"default": False}),
}
class LatentWalkBase:
CATEGORY = "latentWalk"
def latent_walk(self, start, end, steps, factor, blend, travel, reflect):
if hasattr(start, "shape") and hasattr(end, "shape"):
if start.shape != end.shape:
raise ValueError(f"Start and end latents must have the same shape. {start.shape} != {end.shape}")
try:
blend = BLEND_MODES[blend]
except KeyError:
raise ValueError(f"Unsupported blending mode {blend}. Please choose from {list(BLEND_MODES.keys())}")
# Get cutpoints based on travel mode
try:
cut_points = TRAVEL_MODES[travel](steps, factor)
if reflect:
cut_points = reflect_values(cut_points)
except KeyError:
raise ValueError(f"Unsupported travel mode {travel}. Please choose from {list(TRAVEL_MODES.keys())}")
# Blend latents using travel cutpoints and blend mode
return [blend(end, start, t) for t in cut_points]
class LatentWalkVae(LatentWalkBase):
@classmethod
def INPUT_TYPES(cls):
return {"required": {**REQUIRED_TYPES}, "optional": {"vae": ("VAE",)}}
RETURN_TYPES = ("LATENT", "IMAGE",)
RETURN_NAMES = ("latents", "images",)
FUNCTION = "latent_walk_vae_decoding"
def latent_walk_vae_decoding(self, start, end, steps, factor, blend, travel, reflect, vae):
start, end = start["samples"], end["samples"]
latents = super().latent_walk(start, end, steps, factor, blend, travel, reflect)
samples = torch.cat(latents, 0)
decoded = vae.decode(samples) if vae is not None else None
return {'samples': samples}, decoded
class LatentWalkNoise(LatentWalkBase):
@classmethod
def INPUT_TYPES(cls):
r = {**REQUIRED_TYPES, "start": ("NOISE",), "end": ("NOISE",)}
# hardcode add as blend-mode, as other blend-modes don't work easily with noise
r.pop("blend")
return {"required": r}
RETURN_TYPES = ("ACCUMULATION", "NOISE")
RETURN_NAMES = ("ACCUMULATION", "NOISE_BATCH")
FUNCTION = "latent_walk_noise"
def latent_walk_noise(self, start, end, steps, factor, travel, reflect):
start, end = NoiseWrapper(start), NoiseWrapper(end)
out_noise = super().latent_walk(start, end, steps, factor, "add", travel, reflect)
return {'accum': out_noise}, out_noise
class LatentWalkConditional(LatentWalkBase):
@classmethod
def INPUT_TYPES(cls):
return {"required": {**REQUIRED_TYPES, "start": ("CONDITIONING",), "end": ("CONDITIONING",)}}
RETURN_TYPES = ("CONDITIONING",)
RETURN_NAMES = ("CONDITIONINGS",)
FUNCTION = "latent_walk_conditional"
def latent_walk_conditional(self, start, end, steps, factor, blend, travel, reflect):
sc, sp = unpack_conditioning(start)
ec, ep = unpack_conditioning(end)
assert sc.shape == ec.shape, f"Conditioning shapes don't match: {sc.shape} != {ec.shape}"
assert sp.shape == ep.shape, f"Pooled shapes don't match: {sp.shape} != {ep.shape}"
rc = super().latent_walk(sc, ec, steps, factor, blend, travel, reflect)
rp = super().latent_walk(sp, ep, steps, factor, blend, travel, reflect)
return ([[torch.cat(rc, 0), {"pooled_output": torch.cat(rp, 0)}]],)
class LatentWalkConditionalRandom:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"start": ("CONDITIONING",),
"dist_mult": ("FLOAT", {"default": 0.5, "min": 0.001, "max": 1000.0, "step": 0.01}),
"momentum": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"steps": ("INT", {"default": 9, "max": 10000, "step": 1}),
}}
RETURN_TYPES = ("CONDITIONING",)
RETURN_NAMES = ("CONDITIONINGS",)
FUNCTION = "latent_walk_conditional_random"
def latent_walk_conditional_random(self, start, dist_mult, momentum, steps):
sc, sp = unpack_conditioning(start)
rc = torch.cat(list(random_walk(sc, dist_mult, momentum, steps)), 0)
rp = torch.cat(list(random_walk(sp, dist_mult, momentum, steps)), 0)
return ([[rc, {"pooled_output": rp}]],)
classes = [LatentWalkVae, LatentWalkNoise, LatentWalkConditional, LatentWalkConditionalRandom]
NODE_CLASS_MAPPINGS = {cls.__name__: cls for cls in classes}
NODE_DISPLAY_NAME_MAPPINGS = {cls.__name__: cls.__name__ for cls in classes}