-
Notifications
You must be signed in to change notification settings - Fork 6
/
setup.py
35 lines (33 loc) · 1.78 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from setuptools import setup, find_packages
requirements = [
'tensorflow', 'bokeh', 'numpy', 'scikit-learn', 'keras', 'torch', 'allennlp'
]
setup(
name='EpiDope',
version=0.3,
description="Prediction of B-cell epitopes from amino acid sequences using deep neural networks. ",
license="MIT",
author="Florian Mock, Maximilian Collatz",
author_email='[email protected]',
url='https://github.com/flomock/EpiDope',
py_modules=['epidope'],
packages=find_packages(),
package_data={'epidope': ['elmo_settings/options.json', 'elmo_settings/weights.hdf5',
'epidope_weights/weights_model_k-fold_run_1_both_embeddings_50epochs.hdf5',
'epidope_weights/weights_model_k-fold_run_2_both_embeddings_50epochs.hdf5',
'epidope_weights/weights_model_k-fold_run_3_both_embeddings_50epochs.hdf5',
'epidope_weights/weights_model_k-fold_run_4_both_embeddings_50epochs.hdf5',
'epidope_weights/weights_model_k-fold_run_5_both_embeddings_50epochs.hdf5',
'epidope_weights/weights_model_k-fold_run_6_both_embeddings_50epochs.hdf5',
'epidope_weights/weights_model_k-fold_run_7_both_embeddings_50epochs.hdf5',
'epidope_weights/weights_model_k-fold_run_8_both_embeddings_50epochs.hdf5',
'epidope_weights/weights_model_k-fold_run_9_both_embeddings_50epochs.hdf5',
'epidope_weights/weights_model_k-fold_run_10_both_embeddings_50epochs.hdf5']},
entry_points={
'console_scripts': [
'epidope=epidope.cli:cli'
]
},
install_requires=requirements,
keywords='EpiDope'
)