forked from BrennaS/Activity-4_B-Owned
-
Notifications
You must be signed in to change notification settings - Fork 0
/
02_plot.phenocam.R
44 lines (34 loc) · 1.14 KB
/
02_plot.phenocam.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
## Define ciEnvelope function
ciEnvelope <- function(x,ylo,yhi,col="lightgrey",...){
## identify chunks of data with no missing values
has.na = apply(is.na(cbind(x,ylo,yhi)),1,sum)
block = cumsum(has.na);block[has.na>0] = NA
blocks = na.omit(unique(block))
for(i in blocks){
sel = which(block==i)
polygon(cbind(c(x[sel], rev(x[sel]), x[sel[1]]), c(ylo[sel], rev(yhi[sel]),
ylo[sel[1]])), col=col,border = NA,...)
}
}
##' Plot Phenocam data
##'
##' @param dat dataframe of date, gcc_mean, gcc_std
##' @param ... additional graphing parameters
plot.phenocam <- function(dat,...){
if(!is.null(dat)){
## QC flags
gcc_mean = dat$gcc_mean
gcc_mean[dat$outlierflag_gcc_mean>-9999] = NA
## base plot
plot(dat$date,dat$gcc_mean,type='l',...)
## calculate CI
ylo = dat$gcc_mean-1.96*dat$gcc_std
yhi = dat$gcc_mean+1.96*dat$gcc_std
## add confidence envelope
ciEnvelope(dat$date,ylo,yhi)
## replot mean line
lines(dat$date,dat$gcc_mean,lwd=1.5)
} else {
print("plot.phenocam: input data not provided")
}
}