-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgen.py
149 lines (109 loc) · 3.32 KB
/
gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import torch
import numpy as np
from setup_training import models, get_model_args
from train import gen_multi_batch
feature_maxes = {
"g": [1.4532885551452637, 0.520724892616272, 0.8537549376487732, 1.0],
"q": [1.6211985349655151, 0.4568111002445221, 0.8896132111549377, 1.0],
"t": [1.4242753982543945, 0.4949831962585449, 0.8774275183677673, 1.0],
}
feature_norms = [1.0, 1.0, 1.0, 1.0]
feature_shifts = [0.0, 0.0, -0.5, -0.5]
class objectview(object):
"""converts a dict into an object"""
def __init__(self, d):
self.__dict__ = d
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--G-state-dict",
type=str,
default="",
help="Path to generator's state dict.",
)
parser.add_argument(
"--G-args",
type=str,
default="",
help="Path to generator's args file.",
)
parser.add_argument(
"--num-samples",
type=int,
default="",
help="# of samples to generate.",
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
help="Batch size when generating.",
)
parser.add_argument(
"--output-file",
type=str,
default="./gen_jets.npy",
help="Path to gen jets output file.",
)
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda", "cpu"],
help="Use CPU ('cpu') or GPU ('cuda') for generation.",
)
parser.add_argument(
"--datasets-path",
type=str,
default="./datasets/",
help="Path to gen jets output file.",
)
args = parser.parse_args()
return args
def main():
args = parse_args()
if not torch.cuda.is_available():
args.device = "cpu"
with open(args.G_args, "r") as f:
G_args = objectview(eval(f.read()))
G_args.device = args.device
G = models(G_args, gen_only=True)
G.load_state_dict(torch.load(args.G_state_dict, map_location=args.device))
_, model_args, extra_args = get_model_args(G_args)
if G_args.mask_c:
from jetnet.datasets import JetNet
labels = JetNet(G_args.jets, data_dir=args.datasets_path, train=False).jet_features
rng = np.random.default_rng()
rand = rng.choice(len(labels), size=args.num_samples)
labels = labels[rand].to(args.device)
else:
labels = None
print("Generating samples")
gen_jets = gen_multi_batch(
model_args,
G,
args.batch_size,
args.num_samples,
G_args.num_hits,
model=G_args.model,
labels=labels,
detach=True,
**extra_args,
)
print("Generated samples")
for i in range(3):
if feature_shifts[i] is not None and feature_shifts[i] != 0:
gen_jets[:, :, i] -= feature_shifts[i]
if feature_norms[i] is not None:
gen_jets[:, :, i] /= feature_norms[i]
gen_jets[:, :, i] *= feature_maxes[G_args.jets][i]
if G_args.mask:
mask = gen_jets[:, :, -1] >= 0.5 if G_args.mask else None
gen_jets[~mask] = 0
gen_jets[:, :, 2][gen_jets[:, :, 2] < 0] = 0
print("Unnormalized samples")
np.save(args.output_file, gen_jets[:, :, :3])
print("Saved samples")
if __name__ == "__main__":
main()