forked from rateixei/si-mu-lator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
si_mu_late.py
241 lines (186 loc) · 8.33 KB
/
si_mu_late.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import numpy as np
import argparse
from detmodel.detector import Detector
import multiprocessing
import tqdm
import time
import sys
import h5py
import pandas
my_configs = 0
parser = argparse.ArgumentParser(description='Si-MU-late')
# general and required
parser.add_argument('-d', '--detector', dest='detcard', type=str, required=True,
help='Detector card')
parser.add_argument('-n', '--nevents', dest='nevs', type=int, required=True,
help='Number of events')
parser.add_argument('--minhits', dest='min_n_hits', type=int, required=False, default=1,
help='Minimum number of hits per event over all detector')
parser.add_argument('--minhitsdet', dest='min_n_hits_per_detector', nargs='*', required=False, default=None,
help='Minimum number of hits per event per detector type')
parser.add_argument('--override-n-noise-hits-per-event', dest='override_n_noise_hits_per_event', type=int, required=False, default=-1,
help='Override noise setting, requires exact number of noise hits in an event')
parser.add_argument('-o', '--outfile', dest='outf', type=str, required=True,
help='Out h5 file')
# muon simulation
parser.add_argument('-m', '--addmuon', dest='ismu', action='store_true', default=False,
help='Simulate muon')
parser.add_argument('-x', '--muonx', nargs=2, metavar=('muxmin', 'muxmax'),
default=(0,0), type=float, help='Generated muon X')
parser.add_argument('-y', '--muony', nargs=2, metavar=('muymin', 'muymax'),
default=(0,0), type=float, help='Generated muon Y')
parser.add_argument('-a', '--muona', nargs=2, metavar=('muamin', 'muamax'),
default=(0,0), type=float, help='Generated muon angle')
parser.add_argument('--coverage-angle', dest='covangle', action='store_true', default=False,
help='Use angle distribution given by the geometrical coverage')
# background simulation
parser.add_argument('-b', '--bkgrate', dest='bkgr', type=float, default=0,
help='Background rate scale factor')
# other
parser.add_argument('-r', '--randomseed', dest='randseed', type=int, default=42,
help='Set random seed')
my_configs = parser.parse_args()
my_detector = Detector()
my_detector.read_card(my_configs.detcard)
def get_coverage_angles(detect, mux):
dz = detect.planes[-1].z - detect.planes[0].z
dx = 0.5*detect.planes[-1].sizes['x']
th_p = np.max( [np.arctan((dx-mux)/dz), 0] )
th_m = np.min( [-np.arctan((dx+mux)/dz), 0] )
return (th_m,th_p)
def run_event(randseed, hits_det_dict=None):
my_detector.reset_planes()
## muon
mu_config = None
np.random.seed(randseed)
if my_configs.ismu:
mu_x = 0
if my_configs.muonx[0] < my_configs.muonx[1]:
mu_x = np.random.uniform(low=my_configs.muonx[0], high=my_configs.muonx[1])
mu_y = 0
if my_configs.muony[0] < my_configs.muony[1]:
mu_y = np.random.uniform(low=my_configs.muony[0], high=my_configs.muony[1])
mu_a = 0
if my_configs.muona[0] < my_configs.muona[1] or my_configs.covangle:
mu_a_min = my_configs.muona[0]
mu_a_max = my_configs.muona[1]
if my_configs.covangle:
mu_a_min, mu_a_max = get_coverage_angles(my_detector, mu_x)
mu_a = np.random.uniform(low=mu_a_min, high=mu_a_max)
my_detector.add_muon(mu_x=mu_x, mu_y=mu_y, mu_theta=mu_a, mu_phi=0, mu_time=0, randseed=randseed)
mu_config = [mu_x, mu_y, mu_a, 0, 0]
## background
if my_configs.bkgr > 0:
my_detector.add_noise(my_configs.bkgr,
override_n_noise_hits_per_event=my_configs.override_n_noise_hits_per_event,
randseed=randseed+1)
## signals
signals = my_detector.get_signals(my_configs.min_n_hits, minhits_per_det_type=hits_det_dict)
if signals is not None:
return (signals[0], signals[1], mu_config)
else:
return None
def make_signal_matrix(res, hit_dict=None):
evs = []
max_sigs = []
ncols = -10
for iiev,iev in enumerate(res):
if iev.get() is not None:
max_sigs.append(iev.get()[0].shape[0])
if ncols == -10:
ncols = iev.get()[0].shape[1]
else:
try:
assert ncols == iev.get()[0].shape[1]
except AssertionError:
print('Got something wrong with the number of columns in this event.', ncols, iev.get()[0].shape )
sys.exit()
n_nonzero_sigs = len(max_sigs)
max_sigs = np.max(max_sigs)
out_matrix = -99 * np.ones( ( n_nonzero_sigs, max_sigs, ncols ) )
key = []
mu_configs = []
iiev = 0
for iev in res:
if iev.get() is not None:
this_res, this_key, muconf = iev.get()
if len(key) == 0:
key = this_key[:]
this_shape = this_res.shape
out_matrix[iiev][ :this_shape[0], : ] = this_res
mu_configs.append(muconf)
iiev += 1
return(out_matrix, key, mu_configs)
def make_event_dict(sig_mat, mu_configs, sig_keys):
event_dict = {
'n_signals': [],
'n_mu_signals': [],
'mu_x': [],
'mu_y': [],
'mu_theta': [],
'mu_phi': [],
'mu_time': []
}
for iev in range(sig_mat.shape[0]):
indx_hit_type = sig_keys.index('is_muon')
## number of signals with is_muon that is not -99
event_dict['n_signals'].append( np.sum(sig_mat[iev,:,indx_hit_type] > -1) )
## number of signals with is_muon == 1
event_dict['n_mu_signals'].append( np.sum(sig_mat[iev,:,indx_hit_type] == 1) )
## injected mu x
if mu_configs[iev] is not None:
event_dict['mu_x'].append( mu_configs[iev][0] )
event_dict['mu_y'].append( mu_configs[iev][1] )
event_dict['mu_theta'].append( mu_configs[iev][2] )
event_dict['mu_phi'].append( mu_configs[iev][3] )
event_dict['mu_time'].append( mu_configs[iev][4] )
else:
event_dict['mu_x'].append( -99 )
event_dict['mu_y'].append( -99 )
event_dict['mu_theta'].append( -99 )
event_dict['mu_phi'].append( -99 )
event_dict['mu_time'].append( -99 )
return event_dict
def main():
print("Running events...")
ncpu = multiprocessing.cpu_count()
print(f"---> Using {ncpu} CPUs for parallelization")
print(f"---> Using {my_configs.randseed} as random seed")
np.random.seed(my_configs.randseed)
pool = multiprocessing.Pool(ncpu)
pbar = tqdm.tqdm(total=my_configs.nevs)
hits_det_dict = None
if my_configs.min_n_hits_per_detector is not None:
hits_det_dict = {'mm':0, 'stgc': 0, 'mdt': 0}
for det in hits_det_dict:
if det in my_configs.min_n_hits_per_detector:
ind_det = my_configs.min_n_hits_per_detector.index(det)
hits_det_dict[det] = int(my_configs.min_n_hits_per_detector[ind_det+1])
print(hits_det_dict)
def update(*a):
pbar.update()
#make array of random seeds
random_seeds = np.random.randint(1, 2**30, size=my_configs.nevs, dtype=int)
results = []
for i in range(pbar.total):
this_res = pool.apply_async(run_event, args=(random_seeds[i],hits_det_dict,), callback=update)
results.append(this_res)
pool.close()
pool.join()
if len(results) < 1 or results is None:
print("No results found...")
sys.exit()
sig_matrix, sig_keys, mu_confs = make_signal_matrix(results)
ev_dict = make_event_dict(sig_matrix, mu_confs, sig_keys)
out_file_name = my_configs.outf.replace('.h5',
f'_Rnd{my_configs.randseed}.h5')
with h5py.File(out_file_name, 'w') as hf:
hf.create_dataset("signals", data=sig_matrix)
dt = h5py.special_dtype(vlen=str)
feature_names = np.array(sig_keys, dtype=dt)
hf.create_dataset("signal_keys", data=feature_names )
for kk in ev_dict:
hf.create_dataset('ev_'+kk, data=np.array(ev_dict[kk]) )
print("Saved!")
if __name__== "__main__" :
main()