-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
146 lines (108 loc) · 4.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import time
import tensorflow as tf
import numpy as np
from model import WaveRNN
from utils import split_signal
#
hidden_size = 896
sample_rate = 24000
batch_size = 128
tbptt_size = 960
data_path = "./dataset/data.wav"
q_levels = 256
#
dataset = tf.data.Dataset.list_files(data_path)
dataset = dataset.map(lambda fname: tf.contrib.ffmpeg.decode_audio(tf.read_file(fname), file_format='wav', samples_per_second=sample_rate, channel_count=1))
def normalize(x):
with tf.name_scope('normalize'):
neg_peak = tf.abs(tf.reduce_min(x))
pos_peak = tf.reduce_max(x)
peak = tf.maximum(neg_peak, pos_peak)
return x / tf.clip_by_value(peak, np.finfo(np.float32).eps, np.finfo(np.float32).max)
dataset = dataset.map(normalize)
def quantize(x):
x = (x + 1) / 2
x = -0x8000 + 0xFFFF * x
x = tf.cast(x, dtype=tf.int32)
return x
dataset = dataset.map(quantize)
dataset = dataset.cache()
def random_slice(x):
start = tf.random_uniform([], 0, tf.shape(x)[0] - (tbptt_size + 1) + 1, tf.int32)
x = x[start:start + tbptt_size + 1]
return x
dataset = dataset.map(random_slice)
dataset = dataset.repeat()
dataset = dataset.batch(batch_size)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
#
aud_data_c, aud_data_f = split_signal(next_element)
aud_data = tf.concat([aud_data_c, aud_data_f], axis=-1)
tgt = aud_data[:,1:,:]
aud_data = tf.cast(aud_data, dtype=tf.float32)
aud_data = (aud_data / 255) * 2 - 1
aud_data = tf.transpose(aud_data, perm=[1,0,2])
#
out_ta_coarse = tf.TensorArray(dtype=tf.float32, size=tbptt_size, clear_after_read=False, element_shape=(batch_size, q_levels))
out_ta_fine = tf.TensorArray(dtype=tf.float32, size=tbptt_size, clear_after_read=False, element_shape=(batch_size, q_levels))
#
wavernn = WaveRNN(hidden_size=hidden_size)
#
hidden_state = tf.zeros((batch_size, hidden_size))
i0 = tf.constant(0)
def body(i, out_ta_coarse, out_ta_fine, hidden_state):
current_aud = aud_data[i,:,:]
next_coarse = aud_data[i+1,:,:][:,:1]
out_coarse, out_fine, next_hidden_state = wavernn(current_aud, next_coarse, hidden_state)
out_ta_coarse = out_ta_coarse.write(i, out_coarse)
out_ta_fine = out_ta_fine.write(i, out_fine)
return [i + 1, out_ta_coarse, out_ta_fine, next_hidden_state]
i0, out_ta_coarse, out_ta_fine, next_hidden_state = tf.while_loop(lambda i, out_ta_coarse, out_ta_fine, hidden_state: i < tbptt_size, body, loop_vars=[i0, out_ta_coarse, out_ta_fine, hidden_state], swap_memory=True)
#
out_coarse = out_ta_coarse.stack()
out_fine = out_ta_fine.stack()
out_coarse = tf.transpose(out_coarse, perm=[1,0,2])
out_fine = tf.transpose(out_fine, perm=[1,0,2])
#
coarse_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=out_coarse, labels=tgt[:,:,0])
fine_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=out_fine, labels=tgt[:,:,1])
coarse_loss_avg = tf.reduce_mean(coarse_loss)
fine_loss_avg = tf.reduce_mean(fine_loss)
tf.summary.scalar('coarse_loss', coarse_loss_avg)
tf.summary.scalar('fine_loss', fine_loss_avg)
total_loss = tf.concat([coarse_loss, fine_loss], axis=-1)
loss = tf.reduce_mean(total_loss)
tf.summary.scalar('loss', loss)
#
optimizer = tf.train.AdamOptimizer(0.001)
gvs = optimizer.compute_gradients(loss)
#clipped_grads_and_vars = [(None if grad is None else tf.clip_by_norm(grad, 1.0), var) for grad, var in gvs]
global_step = tf.train.get_or_create_global_step()
train = optimizer.apply_gradients(gvs, global_step=global_step)
#
saver = tf.train.Saver()
merged_summary = tf.summary.merge_all()
#
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
#
graph = tf.get_default_graph()
writer = tf.summary.FileWriter(logdir='logdir/wavernn', graph=graph)
writer.flush()
#
ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints_wavernn/wavernn'))
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
#
while(True):
start = time.time()
_, _global_step, _loss, _coarse_loss, _fine_loss, _summary = sess.run([train, global_step, loss, coarse_loss_avg, fine_loss_avg, merged_summary])
end = time.time()
print "Iter %d: loss = %f coarse_loss = %f fine_loss = %f time = %f" % (_global_step, _loss, _coarse_loss, _fine_loss, end - start)
writer.add_summary(_summary, global_step=_global_step)
if _global_step % 1000 == 999:
print("Saving checkpoint...")
saver.save(sess, 'checkpoints_wavernn/wavernn', global_step=_global_step)
print("Done!")