-
Notifications
You must be signed in to change notification settings - Fork 4
/
model.py
68 lines (58 loc) · 2.27 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
class FairRep():
def __init__(self, n_features, n_dim, n_protected=2, encoder=None, decoder=None, critic=None):
self.n_prot = n_protected
if encoder is None:
self.encoder = nn.Sequential(nn.Linear(n_features, n_dim))
else:
self.encoder = encoder
if decoder is None:
self.decoder = nn.Sequential(nn.Linear(n_dim, n_features))
else:
self.decoder = decoder
if critic is None:
'''
self.critic = nn.Sequential(nn.Linear(n_dim, n_dim),
nn.ReLU(True),
nn.Linear(n_dim,n_dim),
nn.ReLU(True),
nn.Linear(n_dim,n_dim),
nn.ReLU(True),
nn.Linear(n_dim,n_dim),
nn.ReLU(True),
nn.Linear(n_dim,1))
'''
#self.critic = [nn.Sequential(nn.Linear(n_dim, 5), nn.ReLU(), nn.Linear(5,1))
# for _ in range(n_protected)]
self.critic = [nn.Sequential(nn.Linear(n_dim,1))] * n_protected
else:
self.critic = critic
def wdist(self, x_0, x_1, p):
c_0 = self.critic[p](self.encoder(x_0))
c_1 = self.critic[p](self.encoder(x_1))
w_dist = torch.mean(c_0 - c_1)
return w_dist
def cuda(self):
self.encoder = self.encoder.cuda()
self.decoder = self.decoder.cuda()
for t in range(self.n_prot):
self.critic[t] = self.critic[t].cuda()
def cpu(self):
self.encoder.cpu()
self.decoder.cpu()
for t in range(self.n_prot):
self.critic[t] = self.critic[t].cpu()
def forward(self, x_0, x_rest, p):
g_0 = self.encoder(x_0)
g_1 = self.encoder(x_rest)
# mse loss
r_0 = self.decoder(g_0)
r_1 = self.decoder(g_1)
mse_0 = torch.mean(torch.pow(r_0 - x_0, 2))
mse_1 = torch.mean(torch.pow(r_1 - x_rest, 2))
mse = mse_0 + mse_1
return mse, self.wdist(x_0, x_rest, p)