diff --git a/Kidney Stone Prediction/Dataset/README.md b/Kidney Stone Prediction/Dataset/README.md
new file mode 100644
index 000000000..cbabdc231
--- /dev/null
+++ b/Kidney Stone Prediction/Dataset/README.md
@@ -0,0 +1 @@
+The dataset which is used here, is collected from Kaggle website. Here is the link of the dataset : https://www.kaggle.com/utkarshxy/kidney-stone-data. I have uploaded the same here, you can access that too!
diff --git a/Kidney Stone Prediction/Dataset/kidney_stone_data.csv b/Kidney Stone Prediction/Dataset/kidney_stone_data.csv
new file mode 100644
index 000000000..6406fcab1
--- /dev/null
+++ b/Kidney Stone Prediction/Dataset/kidney_stone_data.csv
@@ -0,0 +1,701 @@
+treatment,stone_size,success
+B,large,1
+A,large,1
+A,large,0
+A,large,1
+A,large,1
+B,large,1
+A,small,1
+B,large,1
+B,small,1
+A,large,1
+A,large,1
+B,small,1
+A,large,0
+B,large,0
+B,small,1
+A,large,0
+B,small,1
+B,small,1
+A,small,1
+A,large,1
+A,small,1
+B,large,1
+A,large,1
+A,large,0
+A,small,1
+B,small,1
+A,large,0
+B,small,1
+A,small,1
+B,small,1
+B,small,1
+A,large,0
+B,small,1
+B,small,1
+B,small,1
+A,large,0
+A,large,1
+B,small,1
+A,small,1
+B,small,1
+A,large,0
+A,large,1
+A,large,0
+A,small,1
+B,small,1
+A,large,1
+B,small,0
+A,small,1
+A,small,1
+A,large,0
+B,small,1
+B,small,0
+B,small,1
+B,small,1
+B,large,1
+A,small,1
+A,small,1
+B,small,1
+A,large,1
+B,large,1
+A,large,1
+B,small,1
+B,large,1
+A,small,1
+A,large,1
+B,large,1
+A,small,1
+A,large,1
+B,large,0
+B,small,1
+A,small,1
+B,large,1
+B,small,1
+A,small,1
+B,small,1
+A,large,1
+B,small,1
+A,large,1
+B,small,1
+B,large,1
+B,large,1
+A,large,1
+B,small,1
+B,small,1
+A,small,1
+A,large,1
+B,small,1
+A,large,1
+A,large,0
+B,small,1
+B,large,0
+A,large,1
+B,large,1
+A,small,1
+A,large,1
+A,large,0
+A,small,1
+B,large,0
+B,small,1
+A,small,1
+A,large,1
+A,large,1
+B,small,1
+B,large,1
+A,large,1
+A,large,1
+B,small,1
+B,large,1
+A,large,1
+B,small,1
+B,small,1
+B,small,0
+B,small,1
+B,large,0
+B,small,1
+B,small,1
+B,small,0
+A,large,0
+B,large,0
+A,small,1
+A,small,1
+A,large,0
+B,small,1
+A,large,1
+A,large,0
+B,small,1
+B,small,1
+A,large,1
+A,small,1
+B,small,1
+B,small,1
+B,small,1
+A,large,1
+A,small,1
+A,large,1
+A,large,0
+A,large,0
+B,small,1
+B,small,1
+A,large,1
+A,large,0
+B,small,1
+B,small,1
+A,large,1
+B,small,1
+A,small,1
+B,large,0
+B,small,1
+A,large,1
+A,small,1
+A,large,1
+A,large,1
+B,large,1
+B,small,1
+B,small,1
+B,large,0
+A,large,1
+B,small,0
+A,large,1
+A,large,0
+B,small,1
+B,small,1
+A,large,0
+A,small,1
+B,large,0
+B,small,1
+A,large,1
+A,large,1
+B,small,0
+A,large,0
+A,large,0
+B,small,1
+B,small,1
+A,large,1
+A,large,1
+A,small,1
+B,small,0
+B,large,1
+A,large,1
+B,small,1
+A,large,1
+A,large,1
+B,small,1
+A,large,1
+A,large,1
+A,large,0
+A,large,0
+A,large,1
+A,large,1
+A,large,1
+B,large,1
+B,small,1
+B,small,1
+A,large,1
+A,large,0
+A,large,1
+A,large,1
+A,large,1
+B,small,1
+A,small,1
+B,small,1
+A,large,1
+B,small,1
+B,small,1
+A,large,1
+B,small,0
+A,large,1
+B,small,1
+A,large,0
+A,large,1
+B,small,1
+B,small,1
+B,small,1
+B,large,0
+A,small,1
+B,small,1
+B,large,1
+A,large,1
+A,small,1
+A,large,1
+B,large,0
+A,large,0
+A,large,0
+B,small,1
+B,small,0
+A,small,1
+A,large,0
+A,small,1
+A,large,1
+B,large,1
+A,large,1
+B,small,1
+B,small,1
+A,large,1
+B,small,1
+A,small,1
+A,small,1
+B,small,1
+B,small,1
+B,large,1
+B,small,1
+B,small,1
+A,large,1
+B,small,1
+B,small,1
+B,small,1
+A,small,1
+A,small,0
+B,small,1
+A,small,1
+B,large,1
+A,large,1
+B,small,1
+A,large,1
+A,large,1
+A,large,0
+B,large,0
+B,small,1
+A,large,1
+B,large,1
+A,large,1
+A,large,1
+A,large,1
+B,small,1
+A,large,1
+A,large,0
+B,small,1
+A,large,1
+A,large,1
+A,large,1
+A,small,1
+B,small,1
+B,large,1
+A,small,1
+A,large,0
+A,large,1
+A,small,1
+B,small,1
+B,small,0
+A,small,1
+A,small,1
+A,large,0
+B,small,1
+B,large,1
+A,large,0
+B,small,1
+B,small,1
+B,small,1
+B,small,1
+B,small,1
+A,large,1
+B,small,1
+A,small,1
+B,small,1
+A,large,1
+B,small,1
+A,large,0
+A,small,1
+A,large,1
+B,small,1
+A,large,1
+B,small,1
+B,small,1
+A,large,1
+B,small,0
+A,small,1
+B,small,0
+B,large,1
+A,large,0
+B,large,1
+B,large,1
+B,large,1
+B,large,1
+B,small,1
+B,small,1
+B,small,1
+A,large,0
+B,small,1
+A,large,1
+B,large,1
+B,large,1
+B,small,0
+B,small,1
+B,small,1
+A,large,0
+A,large,1
+A,large,1
+A,small,1
+A,large,1
+B,small,1
+A,small,1
+B,small,1
+B,small,1
+B,small,1
+B,large,1
+A,large,1
+B,large,1
+B,small,1
+B,large,0
+A,large,1
+A,small,1
+A,large,1
+B,small,1
+B,small,1
+B,small,1
+A,small,1
+A,large,1
+B,small,1
+B,small,1
+B,small,1
+A,large,1
+A,small,1
+A,large,1
+B,small,0
+B,small,1
+A,small,1
+A,large,1
+A,large,1
+B,small,1
+B,large,1
+A,large,1
+A,small,0
+A,large,1
+B,large,0
+B,small,1
+B,small,1
+B,small,1
+A,small,1
+A,large,1
+B,small,1
+B,small,0
+B,small,1
+A,large,1
+A,large,0
+A,large,1
+A,large,1
+B,small,1
+B,small,1
+A,small,1
+A,small,1
+B,large,1
+A,large,1
+B,small,1
+A,large,0
+A,large,1
+B,small,1
+B,small,1
+B,small,1
+B,small,1
+B,small,1
+B,small,1
+B,large,1
+B,small,1
+A,large,1
+B,small,1
+A,large,1
+B,small,1
+A,small,1
+A,large,1
+A,large,1
+B,large,1
+A,large,1
+A,large,1
+B,small,1
+B,small,1
+A,small,1
+B,small,1
+A,large,1
+B,small,1
+A,large,0
+A,large,0
+A,large,1
+A,large,1
+A,large,0
+A,large,1
+A,large,0
+B,small,1
+A,large,1
+B,small,1
+A,large,0
+A,large,1
+B,small,1
+B,small,1
+A,large,1
+A,large,1
+B,small,1
+A,large,0
+B,small,1
+A,large,1
+B,small,1
+A,small,1
+A,large,1
+B,large,1
+B,large,1
+A,small,1
+B,small,0
+B,small,1
+B,small,0
+A,large,1
+B,small,1
+A,large,0
+B,small,1
+A,large,0
+B,large,0
+A,large,1
+A,large,1
+A,large,1
+A,large,1
+A,large,1
+B,large,1
+B,small,0
+A,large,0
+B,small,1
+B,large,1
+B,large,1
+B,small,1
+B,small,0
+B,small,1
+B,small,1
+B,small,1
+A,large,0
+A,large,0
+A,large,0
+B,large,1
+B,small,1
+A,large,1
+B,small,1
+A,large,0
+A,large,1
+A,large,1
+A,large,1
+A,large,0
+B,small,1
+B,small,1
+A,large,1
+B,small,1
+A,small,1
+B,small,1
+B,small,0
+A,large,0
+A,large,1
+B,small,0
+A,large,1
+B,large,1
+B,small,1
+B,small,1
+A,small,1
+B,large,0
+B,small,1
+B,small,1
+B,large,0
+A,large,1
+A,large,1
+A,small,1
+A,large,0
+B,small,1
+A,large,1
+B,small,1
+A,large,0
+B,large,1
+B,small,1
+B,small,1
+B,small,1
+A,large,1
+B,small,1
+A,small,1
+A,large,0
+A,small,1
+B,small,1
+A,small,1
+B,small,1
+A,large,1
+B,small,1
+B,small,1
+B,small,1
+A,large,1
+B,small,1
+A,small,0
+A,large,1
+A,large,1
+B,large,1
+A,large,1
+A,small,1
+B,large,0
+B,small,1
+A,small,1
+B,small,1
+A,large,1
+A,small,1
+A,large,1
+A,small,1
+A,large,1
+A,small,1
+A,large,0
+A,small,1
+B,small,1
+B,small,1
+A,small,1
+B,small,1
+A,large,1
+B,small,1
+A,large,1
+B,small,0
+A,large,0
+A,large,1
+A,small,1
+A,large,1
+B,small,1
+A,small,0
+A,small,1
+B,large,1
+A,large,1
+B,small,1
+B,small,1
+A,large,0
+A,large,1
+A,large,1
+B,large,0
+B,small,1
+A,large,1
+A,large,1
+B,large,0
+A,large,1
+B,small,1
+B,large,0
+A,small,1
+B,small,1
+B,small,1
+B,small,1
+A,large,1
+B,large,1
+B,small,1
+A,large,1
+A,large,1
+A,large,1
+A,large,1
+A,large,1
+B,small,0
+B,small,1
+B,small,1
+A,small,1
+A,large,1
+A,small,1
+A,large,1
+B,small,1
+A,large,1
+B,small,1
+B,small,1
+A,large,1
+A,large,1
+B,small,1
+B,small,1
+A,large,0
+A,small,0
+B,small,1
+A,large,0
+A,small,1
+A,large,0
+A,large,1
+A,large,1
+B,large,1
+B,small,0
+A,large,1
+A,large,1
+B,small,1
+B,small,1
+B,small,1
+B,small,1
+B,small,0
+B,small,1
+A,large,1
+B,small,1
+A,large,1
+B,small,1
+A,large,1
+B,small,1
+B,large,1
+A,small,1
+A,large,1
+A,large,1
+A,large,0
+B,large,0
+B,small,1
+B,large,1
+B,large,0
+B,large,1
+A,large,0
+A,small,0
+A,large,1
+A,large,1
+B,small,0
+B,small,0
+B,large,1
+A,large,1
+B,large,0
+A,large,0
+A,large,1
+B,large,1
+B,small,1
+A,large,0
+B,small,1
+B,small,1
+B,small,1
+A,small,1
+B,small,1
+B,small,1
+B,small,1
+A,large,0
+B,small,1
+B,small,1
+B,small,1
+A,large,1
+B,small,0
+B,small,1
+A,large,1
+A,large,1
+B,small,1
+B,small,1
+B,small,1
+B,small,1
+B,small,0
+A,large,1
+A,large,1
+A,large,0
+B,large,1
+A,large,1
+B,small,0
+B,small,0
+B,small,1
+A,large,1
+A,large,1
+B,small,1
+B,small,1
+B,small,0
+A,large,1
+A,large,0
+A,large,1
+A,large,1
+A,small,1
+B,small,0
+B,small,1
+B,small,1
+A,large,1
+B,small,1
+B,small,0
+A,large,1
+A,large,1
+B,small,1
+B,small,0
+B,small,1
+B,small,1
+A,small,1
+A,large,1
+A,large,1
+B,large,0
+B,small,0
+B,small,1
+B,small,1
+A,large,1
+A,small,1
diff --git a/Kidney Stone Prediction/Images/kid1.jpg b/Kidney Stone Prediction/Images/kid1.jpg
new file mode 100644
index 000000000..2769cdf08
Binary files /dev/null and b/Kidney Stone Prediction/Images/kid1.jpg differ
diff --git a/Kidney Stone Prediction/Images/kid2.png b/Kidney Stone Prediction/Images/kid2.png
new file mode 100644
index 000000000..1a10419ba
Binary files /dev/null and b/Kidney Stone Prediction/Images/kid2.png differ
diff --git a/Kidney Stone Prediction/Model/Kidney_Stone_Prediction.ipynb b/Kidney Stone Prediction/Model/Kidney_Stone_Prediction.ipynb
new file mode 100644
index 000000000..b6d31f9b1
--- /dev/null
+++ b/Kidney Stone Prediction/Model/Kidney_Stone_Prediction.ipynb
@@ -0,0 +1,1610 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Kidney Stone Prediction\n",
+ "\n",
+ "![](https://wallpaperaccess.com/full/5793661.jpg)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Contents\n",
+ "1. Abstract\n",
+ "2. Dataset\n",
+ "3. Goal\n",
+ "4. Importing libraries and Dataset\n",
+ "5. Data Cleaning\n",
+ "6. Data Visualization\n",
+ "7. Prediction Models\n",
+ " - KNN Algorithm\n",
+ " - Logistic Regression\n",
+ " - Random Forest Classifier\n",
+ " - Decision Tree Classifier\n",
+ " - Support Vector Machine Classifier\n",
+ " - AdaBoost Classifier\n",
+ " - Gradient Boosting Classifier\n",
+ " - Gaussian Naive Bayes Classifier\n",
+ " - MLP Classifier\n",
+ "8. Model comparison\n",
+ "9. Conclusion\n",
+ "\n",
+ "********************"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Abstract\n",
+ "A small, hard deposit that forms in the kidneys and is often painful when passed.\n",
+ "\n",
+ "Kidney stones are hard deposits of minerals and acid salts that stick together in concentrated urine. They can be painful when passing through the urinary tract, but usually don't cause permanent damage.\n",
+ "\n",
+ "The most common symptom is severe pain, usually in the side of the abdomen, that's often associated with nausea.\n",
+ "Treatment includes pain relievers and drinking lots of water to help pass the stone. Medical procedures may be required to remove or break up larger stones.\n",
+ "\n",
+ "The most common symptom is severe pain, usually in the side of the abdomen, that's often associated with nausea.\n",
+ "\n",
+ "Treatment includes pain relievers and drinking lots of water to help pass the stone. Medical procedures may be required to remove or break up larger stones.\n",
+ "\n",
+ "\n",
+ "### Dataset\n",
+ "The dataset which is used here, is collected from Kaggle website. Here is the link of the dataset : https://www.kaggle.com/utkarshxy/kidney-stone-data.\n",
+ "\n",
+ "### Goal\n",
+ "The goal of this project is to create a prediction model which will predict the success rate of kidney stone operation based on the stone's size and type of treatment.\n",
+ "************************************************************"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Importing all the required libraries and Dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
+ "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
+ "execution": {
+ "iopub.execute_input": "2021-02-27T08:07:10.032292Z",
+ "iopub.status.busy": "2021-02-27T08:07:10.031675Z",
+ "iopub.status.idle": "2021-02-27T08:07:11.397239Z",
+ "shell.execute_reply": "2021-02-27T08:07:11.396432Z"
+ },
+ "papermill": {
+ "duration": 1.379825,
+ "end_time": "2021-02-27T08:07:11.397439",
+ "exception": false,
+ "start_time": "2021-02-27T08:07:10.017614",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "#Import Library Files\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "from sklearn.neighbors import KNeighborsClassifier\n",
+ "from sklearn.metrics import roc_curve\n",
+ "from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier\n",
+ "from sklearn.neural_network import MLPClassifier"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-27T08:07:11.418498Z",
+ "iopub.status.busy": "2021-02-27T08:07:11.417905Z",
+ "iopub.status.idle": "2021-02-27T08:07:11.470784Z",
+ "shell.execute_reply": "2021-02-27T08:07:11.471194Z"
+ },
+ "papermill": {
+ "duration": 0.065289,
+ "end_time": "2021-02-27T08:07:11.471372",
+ "exception": false,
+ "start_time": "2021-02-27T08:07:11.406083",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " treatment | \n",
+ " stone_size | \n",
+ " success | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " B | \n",
+ " large | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " A | \n",
+ " large | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " A | \n",
+ " large | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " A | \n",
+ " large | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " A | \n",
+ " large | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " treatment stone_size success\n",
+ "0 B large 1\n",
+ "1 A large 1\n",
+ "2 A large 0\n",
+ "3 A large 1\n",
+ "4 A large 1"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Read CSV File\n",
+ "\n",
+ "data = pd.read_csv('kidney_stone_data.csv')\n",
+ "\n",
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-27T08:07:11.504485Z",
+ "iopub.status.busy": "2021-02-27T08:07:11.503835Z",
+ "iopub.status.idle": "2021-02-27T08:07:11.508313Z",
+ "shell.execute_reply": "2021-02-27T08:07:11.507816Z"
+ },
+ "papermill": {
+ "duration": 0.028853,
+ "end_time": "2021-02-27T08:07:11.508460",
+ "exception": false,
+ "start_time": "2021-02-27T08:07:11.479607",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 700 entries, 0 to 699\n",
+ "Data columns (total 3 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 treatment 700 non-null object\n",
+ " 1 stone_size 700 non-null object\n",
+ " 2 success 700 non-null int64 \n",
+ "dtypes: int64(1), object(2)\n",
+ "memory usage: 16.5+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "data.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.008718,
+ "end_time": "2021-02-27T08:07:11.525762",
+ "exception": false,
+ "start_time": "2021-02-27T08:07:11.517044",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### Cleaning Data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-27T08:07:11.545834Z",
+ "iopub.status.busy": "2021-02-27T08:07:11.544975Z",
+ "iopub.status.idle": "2021-02-27T08:07:11.552100Z",
+ "shell.execute_reply": "2021-02-27T08:07:11.552503Z"
+ },
+ "papermill": {
+ "duration": 0.018632,
+ "end_time": "2021-02-27T08:07:11.552699",
+ "exception": false,
+ "start_time": "2021-02-27T08:07:11.534067",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "treatment 0\n",
+ "stone_size 0\n",
+ "success 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Check null value\n",
+ "data.isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-27T08:07:11.573186Z",
+ "iopub.status.busy": "2021-02-27T08:07:11.572313Z",
+ "iopub.status.idle": "2021-02-27T08:07:11.578950Z",
+ "shell.execute_reply": "2021-02-27T08:07:11.578265Z"
+ },
+ "papermill": {
+ "duration": 0.017914,
+ "end_time": "2021-02-27T08:07:11.579098",
+ "exception": false,
+ "start_time": "2021-02-27T08:07:11.561184",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(700, 3)"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Data Visualization"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-27T08:07:11.607827Z",
+ "iopub.status.busy": "2021-02-27T08:07:11.604477Z",
+ "iopub.status.idle": "2021-02-27T08:07:11.740062Z",
+ "shell.execute_reply": "2021-02-27T08:07:11.739453Z"
+ },
+ "papermill": {
+ "duration": 0.152112,
+ "end_time": "2021-02-27T08:07:11.740196",
+ "exception": false,
+ "start_time": "2021-02-27T08:07:11.588084",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPWklEQVR4nO3df6zdd13H8edrLW7ID2nTu1n6g1ZtjJ3AkOskEBUZsvJDujCHxUwbaVI1EyExSosR/JEqBDRMZH9UGRT5MRtgrmLimMW5GJHSwmRrx1xD53bT0paBDCJOW97+cb/9cNre252t+95z2/t8JDfnnM/5fr/3XTL67Pece743VYUkSQAXjHoASdLsYRQkSY1RkCQ1RkGS1BgFSVIzf9QDnI1FixbVihUrRj2GJJ1T9uzZ89WqGpvquXM6CitWrGD37t2jHkOSzilJ/nO653z5SJLUGAVJUmMUJEmNUZAkNUZBktQYBUlSYxQkSY1RkCQ1RkGS1JzTn2iWzmcP/OGzRz2CZqHlb72r1+N7piBJaoyCJKkxCpKkxihIkhqjIElqjIIkqTEKkqTGKEiSGqMgSWqMgiSpMQqSpMYoSJIaoyBJaoyCJKkxCpKkxihIkhqjIElqjIIkqek1CknuT3JXkjuT7O7WFia5Lcl93e2Cge03J9mf5N4kV/Y5myTpdDNxpvAzVXVZVY13jzcBO6tqFbCze0yS1cA64FJgDXBDknkzMJ8kqTOKl4/WAtu6+9uAqwbWb6qqR6rqALAfuHzmx5OkuavvKBTwqSR7kmzs1i6pqkMA3e3F3foS4MGBfSe6NUnSDJnf8/FfVFUHk1wM3JbkS2fYNlOs1WkbTcZlI8Dy5cufmCklSUDPZwpVdbC7PQLczOTLQYeTLAbobo90m08AywZ2XwocnOKYW6tqvKrGx8bG+hxfkuac3qKQ5ClJnnbiPvAy4G5gB7C+22w9cEt3fwewLsmFSVYCq4Bdfc0nSTpdny8fXQLcnOTE9/lIVf1Dks8B25NsAB4ArgGoqr1JtgP7gGPAdVV1vMf5JEmn6C0KVfVl4LlTrD8EXDHNPluALX3NJEk6Mz/RLElqjIIkqTEKkqTGKEiSGqMgSWqMgiSpMQqSpMYoSJIaoyBJaoyCJKkxCpKkxihIkhqjIElqjIIkqTEKkqTGKEiSGqMgSWqMgiSpMQqSpMYoSJIaoyBJaoyCJKkxCpKkxihIkhqjIElqjIIkqTEKkqTGKEiSmt6jkGReki8k+WT3eGGS25Lc190uGNh2c5L9Se5NcmXfs0mSTjYTZwpvBO4ZeLwJ2FlVq4Cd3WOSrAbWAZcCa4AbksybgfkkSZ1eo5BkKfBK4K8GltcC27r724CrBtZvqqpHquoAsB+4vM/5JEkn6/tM4d3A7wDfGVi7pKoOAXS3F3frS4AHB7ab6NZOkmRjkt1Jdh89erSXoSVpruotCkleBRypqj3D7jLFWp22ULW1qsaranxsbOysZpQknWx+j8d+EfDqJK8ALgKenuRDwOEki6vqUJLFwJFu+wlg2cD+S4GDPc4nSTpFb2cKVbW5qpZW1Qom30D+dFVdC+wA1nebrQdu6e7vANYluTDJSmAVsKuv+SRJp+vzTGE6bwe2J9kAPABcA1BVe5NsB/YBx4Drqur4COaTpDlrRqJQVbcDt3f3HwKumGa7LcCWmZhJknQ6P9EsSWqMgiSpMQqSpMYoSJIaoyBJaoyCJKkxCpKkxihIkhqjIElqjIIkqTEKkqTGKEiSGqMgSWqMgiSpMQqSpMYoSJIaoyBJaoyCJKkxCpKkxihIkhqjIElqjIIkqRkqCkl2DrMmSTq3zT/Tk0kuAr4XWJRkAZDuqacDz+x5NknSDDtjFIBfBd7EZAD28N0oPAy8t7+xJEmjcMYoVNX1wPVJ3lBV75mhmSRJI/JoZwoAVNV7krwQWDG4T1V9sKe5JEkjMFQUkvw18IPAncDxbrkAoyBJ55GhogCMA6urqoY9cPcm9R3Ahd33+VhVvS3JQuBvmDzruB94bVV9vdtnM7CByfD8ZlXdOuz3kySdvWE/p3A38P2P8diPAC+pqucClwFrkrwA2ATsrKpVwM7uMUlWA+uAS4E1wA1J5j3G7ylJOgvDniksAvYl2cXkX/YAVNWrp9uhO6v4VvfwSd1XAWuBF3fr24DbgTd36zdV1SPAgST7gcuBzww5oyTpLA0bhd9/PAfv/qW/B/gh4L1V9dkkl1TVIYCqOpTk4m7zJcC/Dew+0a2desyNwEaA5cuXP56xJEnTGPanj/758Ry8qo4DlyV5BnBzkh89w+aZYu209zCqaiuwFWB8fHzo9zgkSY9u2MtcfDPJw93X/yQ5nuThYb9JVf0Xky8TrQEOJ1ncHXcxcKTbbAJYNrDbUuDgsN9DknT2hopCVT2tqp7efV0EXA38xZn2STLWnSGQ5MnAS4EvATuA9d1m64Fbuvs7gHVJLkyyElgF7HqMfx5J0lkY9j2Fk1TV3ybZ9CibLQa2de8rXABsr6pPJvkMsD3JBuAB4JrumHuTbAf2AceA67qXnyRJM2TYD6+9ZuDhBUx+buGMr+dX1ReB502x/hBwxTT7bAG2DDOTJOmJN+yZws8N3D/G5IfO1j7h00iSRmrYnz76lb4HkSSN3rA/fbQ0yc1JjiQ5nOTjSZb2PZwkaWYNe5mL9zP500HPZPIDZX/XrUmSziPDRmGsqt5fVce6rw8AYz3OJUkagWGj8NUk1yaZ131dCzzU52CSpJk3bBReD7wW+ApwCPh5wDefJek8M+yPpP4RsH7g9x4sBN7FZCwkSeeJYc8UnnMiCABV9TWm+GCaJOncNmwULkiy4MSD7kzhcV0iQ5I0ew37F/ufAv+a5GNMXt7itXg5Ckk67wz7ieYPJtkNvITJ33vwmqra1+tkkqQZN/RLQF0EDIEknceGfU9BkjQHGAVJUmMUJEmNUZAkNUZBktQYBUlSYxQkSY1RkCQ1RkGS1BgFSVJjFCRJjVGQJDVGQZLUGAVJUmMUJElNb1FIsizJPyW5J8neJG/s1hcmuS3Jfd3t4K/53Jxkf5J7k1zZ12ySpKn1eaZwDPitqvoR4AXAdUlWA5uAnVW1CtjZPaZ7bh1wKbAGuCHJvB7nkySdorcoVNWhqvp8d/+bwD3AEmAtsK3bbBtwVXd/LXBTVT1SVQeA/cDlfc0nSTrdjLynkGQF8Dzgs8AlVXUIJsMBXNxttgR4cGC3iW7t1GNtTLI7ye6jR4/2OrckzTW9RyHJU4GPA2+qqofPtOkUa3XaQtXWqhqvqvGxsbEnakxJEj1HIcmTmAzCh6vqE93y4SSLu+cXA0e69Qlg2cDuS4GDfc4nSTpZnz99FOB9wD1V9WcDT+0A1nf31wO3DKyvS3JhkpXAKmBXX/NJkk43v8djvwj4JeCuJHd2a28B3g5sT7IBeAC4BqCq9ibZDuxj8ieXrquq4z3OJ0k6RW9RqKp/Yer3CQCumGafLcCWvmaSJJ2Zn2iWJDVGQZLUGAVJUmMUJEmNUZAkNUZBktQYBUlSYxQkSY1RkCQ1RkGS1BgFSVJjFCRJjVGQJDVGQZLUGAVJUmMUJEmNUZAkNX3+Os5zwvN/+4OjHkGz0J53/vKoR5BGwjMFSVJjFCRJjVGQJDVGQZLUGAVJUmMUJEmNUZAkNUZBktQYBUlSYxQkSU1vUUhyY5IjSe4eWFuY5LYk93W3Cwae25xkf5J7k1zZ11ySpOn1eabwAWDNKWubgJ1VtQrY2T0myWpgHXBpt88NSeb1OJskaQq9RaGq7gC+dsryWmBbd38bcNXA+k1V9UhVHQD2A5f3NZskaWoz/Z7CJVV1CKC7vbhbXwI8OLDdRLd2miQbk+xOsvvo0aO9DitJc81seaM5U6zVVBtW1daqGq+q8bGxsZ7HkqS5ZaajcDjJYoDu9ki3PgEsG9huKXBwhmeTpDlvpqOwA1jf3V8P3DKwvi7JhUlWAquAXTM8myTNeb395rUkHwVeDCxKMgG8DXg7sD3JBuAB4BqAqtqbZDuwDzgGXFdVx/uaTZI0td6iUFWvm+apK6bZfguwpa95JEmPbra80SxJmgWMgiSpMQqSpMYoSJIaoyBJaoyCJKkxCpKkxihIkhqjIElqjIIkqTEKkqTGKEiSGqMgSWqMgiSpMQqSpMYoSJIaoyBJaoyCJKkxCpKkxihIkhqjIElqjIIkqTEKkqTGKEiSGqMgSWqMgiSpMQqSpMYoSJKaWReFJGuS3Jtkf5JNo55HkuaSWRWFJPOA9wIvB1YDr0uyerRTSdLcMauiAFwO7K+qL1fV/wI3AWtHPJMkzRnzRz3AKZYADw48ngB+YnCDJBuBjd3DbyW5d4ZmmwsWAV8d9RCzQd61ftQj6GT+t3nC2/JEHOVZ0z0x26Iw1Z+2TnpQtRXYOjPjzC1JdlfV+KjnkE7lf5szZ7a9fDQBLBt4vBQ4OKJZJGnOmW1R+BywKsnKJN8DrAN2jHgmSZozZtXLR1V1LMlvALcC84Abq2rviMeaS3xZTrOV/23OkFTVo28lSZoTZtvLR5KkETIKkqTGKMhLi2jWSnJjkiNJ7h71LHOFUZjjvLSIZrkPAGtGPcRcYhTkpUU0a1XVHcDXRj3HXGIUNNWlRZaMaBZJI2YU9KiXFpE0dxgFeWkRSY1RkJcWkdQYhTmuqo4BJy4tcg+w3UuLaLZI8lHgM8APJ5lIsmHUM53vvMyFJKnxTEGS1BgFSVJjFCRJjVGQJDVGQZLUGAVJUmMUJEmNUZAGJHlKkr9P8u9J7k7yC0nuT7Koe348ye3d/acmeX+Su5J8McnV3fqaJJ/vjrFz4Lg3Jvlcki8kWdutX5pkV5I7u2OsmmqGEf3PoTlo/qgHkGaZNcDBqnolQJLvA94xzba/B3yjqp7dbbsgyRjwl8BPVdWBJAu7bX8X+HRVvT7JM4BdSf4R+DXg+qr6cHeZkXnAK6aYQZoRnilIJ7sLeGmSdyT5yar6xhm2fSmTv6AIgKr6OvAC4I6qOtCtnfhdAC8DNiW5E7gduAhYzuQlHN6S5M3As6rq249xBukJZRSkAVX1H8DzmfyL+U+SvBU4xnf/v3LRwObh9MuMT7V2Yv3qqrqs+1peVfdU1UeAVwPfBm5N8pJpZpBmhFGQBiR5JvDfVfUh4F3AjwH3M/mXNMDVA5t/ismLCZ7YdwGT//L/6SQru7UTLx/dCrwhSbr153W3PwB8uar+nMmr0z5nmhmkGeEF8aQBSa4E3gl8B/g/4NeBJwPvAw4DnwXGq+rFSZ7K5MtHzweOA39QVZ9I8nLgj5n8R9eRqvrZJE8G3g28kMmzhvur6lVJNgPXdt/rK8AvAj9+6gxVtXsm/vySUZAkNb58JElqjIIkqTEKkqTGKEiSGqMgSWqMgiSpMQqSpOb/AdvY3FRZaU+PAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "