diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/.vscode/launch.json b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/.vscode/launch.json new file mode 100644 index 000000000..17e15f27e --- /dev/null +++ b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/.vscode/launch.json @@ -0,0 +1,15 @@ +{ + // Use IntelliSense to learn about possible attributes. + // Hover to view descriptions of existing attributes. + // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387 + "version": "0.2.0", + "configurations": [ + { + "name": "Python: Current File", + "type": "python", + "request": "launch", + "program": "${file}", + "console": "integratedTerminal" + } + ] +} \ No newline at end of file diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/__pycache__/model.cpython-38.pyc b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/__pycache__/model.cpython-38.pyc new file mode 100644 index 000000000..c6bd884da Binary files /dev/null and b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/__pycache__/model.cpython-38.pyc differ diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/__pycache__/nltk_utils.cpython-38.pyc b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/__pycache__/nltk_utils.cpython-38.pyc new file mode 100644 index 000000000..4587b395d Binary files /dev/null and b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/__pycache__/nltk_utils.cpython-38.pyc differ diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/chat.py b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/chat.py new file mode 100644 index 000000000..831bf15a7 --- /dev/null +++ b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/chat.py @@ -0,0 +1,64 @@ +import nltk +from nltk.stem import WordNetLemmatizer +lemmatizer = WordNetLemmatizer() +import pickle +import numpy as np + +from keras.models import load_model +model = load_model('chatbot_model.h5') +import json +import random +intents = json.loads(open('intents.json').read()) +words = pickle.load(open('words.pkl','rb')) +classes = pickle.load(open('classes.pkl','rb')) + + +def clean_up_sentence(sentence): + sentence_words = nltk.word_tokenize(sentence) + sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words] + return sentence_words + +# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence + +def bow(sentence, words, show_details=True): + # tokenize the pattern + sentence_words = clean_up_sentence(sentence) + # bag of words - matrix of N words, vocabulary matrix + bag = [0]*len(words) + for s in sentence_words: + for i,w in enumerate(words): + if w == s: + # assign 1 if current word is in the vocabulary position + bag[i] = 1 + if show_details: + print ("found in bag: %s" % w) + return(np.array(bag)) + +def predict_class(sentence, model): + # filter out predictions below a threshold + p = bow(sentence, words,show_details=False) + res = model.predict(np.array([p]))[0] + ERROR_THRESHOLD = 0.25 + results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD] + # sort by strength of probability + results.sort(key=lambda x: x[1], reverse=True) + return_list = [] + for r in results: + return_list.append({"intent": classes[r[0]], "probability": str(r[1])}) + return return_list + +def getResponse(ints, intents_json): + tag = ints[0]['intent'] + list_of_intents = intents_json['intents'] + for i in list_of_intents: + if(i['tag']== tag): + result = random.choice(i['responses']) + break + return result + +def chatbot_response(msg): + ints = predict_class(msg, model) + res = getResponse(ints, intents) + return res + +print(chatbot_response('do i suck at everything')) \ No newline at end of file diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/chatbot_model.h5 b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/chatbot_model.h5 new file mode 100644 index 000000000..20367d59d Binary files /dev/null and b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/chatbot_model.h5 differ diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/classes.pkl b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/classes.pkl new file mode 100644 index 000000000..2087a2ed9 Binary files /dev/null and b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/classes.pkl differ diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/intents.json b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/intents.json new file mode 100644 index 000000000..143a47c18 --- /dev/null +++ b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/intents.json @@ -0,0 +1,79 @@ +{"intents": [ + {"tag": "greeting", + "patterns": ["Hi there", "How are you", "Is anyone there?","Hey","Hola", "Hello", "Good day"], + "responses": ["Hello, thanks for asking", "Good to see you again", "Hi there, how can I help?"], + "context": [""] + }, + {"tag": "goodbye", + "patterns": ["Bye", "See you later", "Goodbye", "Nice chatting to you, bye", "Till next time"], + "responses": ["See you!", "Have a nice day", "Bye! Come back again soon."], + "context": [""] + }, + {"tag": "thanks", + "patterns": ["Thanks", "Thank you", "That's helpful", "Awesome, thanks", "Thanks for helping me"], + "responses": ["Happy to help!", "Anytime!", "My pleasure"], + "context": [""] + }, + {"tag": "noanswer", + "patterns": [], + "responses": ["Sorry, can't understand you", "Please give me more info", "Not sure I understand"], + "context": [""] + }, + {"tag": "options", + "patterns": ["How you could help me?", "What you can do?", "What help you provide?", "How you can be helpful?", "What support is offered"], + "responses": ["I can guide you through Adverse drug reaction list, Blood pressure tracking, Hospitals and Pharmacies", "Offering support for Adverse drug reaction, Blood pressure, Hospitals and Pharmacies"], + "context": [""] + }, + {"tag": "adverse_drug", + "patterns": ["How to check Adverse drug reaction?", "Open adverse drugs module", "Give me a list of drugs causing adverse behavior", "List all drugs suitable for patient with adverse reaction", "Which drugs dont have adverse reaction?" ], + "responses": ["Navigating to Adverse drug reaction module"], + "context": [""] + }, + {"tag": "blood_pressure", + "patterns": ["Open blood pressure module", "Task related to blood pressure", "Blood pressure data entry", "I want to log blood pressure results", "Blood pressure data management" ], + "responses": ["Navigating to Blood Pressure module"], + "context": [""] + }, + {"tag": "blood_pressure_search", + "patterns": ["I want to search for blood pressure result history", "Blood pressure for patient", "Load patient blood pressure result", "Show blood pressure results for patient", "Find blood pressure results by ID" ], + "responses": ["Please provide Patient ID", "Patient ID?"], + "context": ["search_blood_pressure_by_patient_id"] + }, + {"tag": "search_blood_pressure_by_patient_id", + "patterns": [], + "responses": ["Loading Blood pressure result for Patient"], + "context": [""] + }, + {"tag": "pharmacy_search", + "patterns": ["Find me a pharmacy", "Find pharmacy", "List of pharmacies nearby", "Locate pharmacy", "Search pharmacy" ], + "responses": ["Please provide pharmacy name"], + "context": ["search_pharmacy_by_name"] + }, + {"tag": "search_pharmacy_by_name", + "patterns": [], + "responses": ["Loading pharmacy details"], + "context": [""] + }, + {"tag": "hospital_search", + "patterns": ["Lookup for hospital", "Searching for hospital to transfer patient", "I want to search hospital data", "Hospital lookup for patient", "Looking up hospital details" ], + "responses": ["Please provide hospital name or location"], + "context": ["search_hospital_by_params"] + }, + {"tag": "search_hospital_by_params", + "patterns": [], + "responses": ["Please provide hospital type"], + "context": ["search_hospital_by_type"] + }, + {"tag": "search_hospital_by_type", + "patterns": [], + "responses": ["Loading hospital details"], + "context": [""] + }, + { + "tag" : "Anxiety", + "patterns":["I am feeling left out","I fucking suck at everything.","I dont have any confidence left in myself anymore","Why i dont get what i want"], + "responses":["Hey! I am here to listen you out. Please feel free to share everything with me. Everything is gonna be great in you life from now onwards! :)","No, You dont suck at everything. I believe in you! :)","I understand. Everything will be perfectly fine. Just recollect memories where you felt proud of yourselves. :)","Because god thinks that this is not right for you!! The more you will think about it the more you will lose yourself, hence Calm down and take a deep breathe. Everything is gonna be Nice soon!"], + "context":[""] + } + ] +} diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/model.py b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/model.py new file mode 100644 index 000000000..8c9fffb51 --- /dev/null +++ b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/model.py @@ -0,0 +1,19 @@ +import torch +import torch.nn as nn + +class NeuralNetModels(nn.Module) : + def __init__(self, input_size,hidden_size,num_classes): + super(NeuralNetModels,self).__init__() + self.l1 = nn.Linear(input_size,hidden_size) #1st Layer with input size and output as hidden size + self.l2 = nn.Linear(hidden_size,hidden_size) #2nd layer with hidden size as input and hidden size as output + self.l3 = nn.Linear(hidden_size,num_classes) #3rd layer with hidden size as input and num of classes as output + self.relu = nn.ReLU() #Activation + + def forward(self, x): + out = self.l1(x) + out = self.relu(out) + out = self.l2(out) + out = self.relu(out) + out = self.l3(out) + out = self.relu(out) + return out \ No newline at end of file diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/nltk_utils.py b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/nltk_utils.py new file mode 100644 index 000000000..f9323048a --- /dev/null +++ b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/nltk_utils.py @@ -0,0 +1,42 @@ +''' +Preprocessing strategy : +1. Tokenization +2. Lowering and stem +3. Punctuation Removal +4. Bag Of Words +''' +import enum +import numpy as np +import nltk + +#nltk.download('punkt') +from nltk.stem.porter import PorterStemmer + +stemmer=PorterStemmer() +def tokenize(sentence): + return nltk.word_tokenize(sentence) #Tokenization happens here. for e,g, I am girl tokenized to I, am , girl + + +def stem(word): + return stemmer.stem(word.lower()) + +def bag_of_words(tokenized_sentence,all_words): + ''' + tokenized_Sentence=['I','am','saylee'] + words=['I','am','saylee','hello','code'] + bag=[1,1,1,0,0] + + ''' + tokenized_sentence=[stem(w) for w in tokenized_sentence] + bag = np.zeros(len(all_words),dtype=np.float32) + for index,w in enumerate(all_words): + if w in tokenized_sentence: + bag[index]=1.0 + + + return bag + +tokenized_Sentence=["I","am","Saylee","you"] +words=["hi","hello","am","I","Saylee","thank","cool"] +bag=bag_of_words(tokenized_Sentence,words) +print(bag) \ No newline at end of file diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/train.py b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/train.py new file mode 100644 index 000000000..dd5393f21 --- /dev/null +++ b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/train.py @@ -0,0 +1,103 @@ +import json + +from torch._C import device +from torch.nn.modules import loss +from nltk_utils import stem,bag_of_words,tokenize +import numpy as np +import torch +import torch.nn as nn +from torch.utils.data import Dataset, DataLoader +from model import NeuralNetModels + + + +with open('intents.json','r') as f: + intents=json.load(f) + +#print(intents) +all_words=[] +tags=[] +tag_pattern_words=[] + +for intent in intents['intents']: + tag=intent['tag'] + tags.append(tag) + for pattern in intent['patterns']: + w=tokenize(pattern) + all_words.extend(w) #didnt use append cuz w is array itself and we dont want array of array in all_words + tag_pattern_words.append((w,tag)) + +ignore_words=['?,','.',',','!'] +all_words=[stem(w) for w in all_words if w not in ignore_words] +all_words=sorted(set(all_words)) #using set to remove duplicate words +tags=sorted(set(tags)) +#print(tags) + +X_train=[] +Y_train=[] + +for pattern,tag in tag_pattern_words: + bag=bag_of_words(pattern,all_words) + X_train.append(bag) + + label=tags.index(tag) + Y_train.append(label) #CrossEntropy Loss + +X_train=np.array(X_train) +Y_train=np.array(Y_train) + +class ChatDataset(Dataset): + def __init__(self): + self.n_samples = len(X_train) + self.x_data = X_train + self.y_data = Y_train + + def __getitem__(self, idx) : + return self.x_data[idx], self.y_data[idx] + + def __len__(self): + return self.n_samples + +#Hyperparameters +batch_size = 32 +hidden_size = 8 +output_size = len(tags) +input_size = len(X_train[0]) #or you can say len(all_words) +learning_rate = 0.001 +num_epochs = 100000 +#print(input_size,len(all_words)) +#print(output_size,tags) + + +dataset = ChatDataset() +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') +train_loader = DataLoader(dataset=dataset,batch_size=batch_size,shuffle=True, num_workers=0) +model = NeuralNetModels(input_size,hidden_size,output_size).to(device) +#loss and optimizer +criterion = nn.CrossEntropyLoss() +optimizer = torch.optim.Adam(model.parameters(),lr=learning_rate) + + + + +for epoch in range(num_epochs) : + for (words, labels)in train_loader: + words = words.to(device) + + labels = labels.to(dtype=torch.long) + labels = labels.to(device) + #call fwd pass + outputs = model(words) + loss = criterion(outputs, labels) + + #backward and optimizer step + + optimizer.zero_grad() + loss.backward() #to call backward pro + optimizer.step() + + if (epoch+1)%100 == 0: + print(f'epoch {epoch+1}/{num_epochs},loss={loss.item():.4f}') + + +print(f'final loss, loss={loss.item():.4f}') diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/train_keras.py b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/train_keras.py new file mode 100644 index 000000000..70d2a067b --- /dev/null +++ b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/train_keras.py @@ -0,0 +1,103 @@ + +import numpy as np +from keras.models import Sequential +from keras.layers import Dense, Activation, Dropout +from keras.optimizers import SGD +import random + +import nltk +nltk.download('punkt') +nltk.download('wordnet') +from nltk.stem import WordNetLemmatizer +lemmatizer = WordNetLemmatizer() +import json +import pickle + +import numpy as np +from keras.models import Sequential +from keras.layers import Dense, Activation, Dropout +from keras.optimizers import SGD +import random + +words=[] +classes = [] +documents = [] +ignore_words = ['.',',','?', '!'] +data_file = open('intents.json').read() +intents = json.loads(data_file) + + +for intent in intents['intents']: + for pattern in intent['patterns']: + + # take each word and tokenize it + w = nltk.word_tokenize(pattern) + words.extend(w) + # adding documents + documents.append((w, intent['tag'])) + + # adding classes to our class list + if intent['tag'] not in classes: + classes.append(intent['tag']) + +words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_words] +words = sorted(list(set(words))) + +classes = sorted(list(set(classes))) + +print (len(documents), "documents") + +print (len(classes), "classes", classes) + +print (len(words), "unique lemmatized words", words) + + +pickle.dump(words,open('words.pkl','wb')) +pickle.dump(classes,open('classes.pkl','wb')) + +# initializing training data +training = [] +output_empty = [0] * len(classes) +for doc in documents: + # initializing bag of words + bag = [] + # list of tokenized words for the pattern + pattern_words = doc[0] + # lemmatize each word - create base word, in attempt to represent related words + pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words] + # create our bag of words array with 1, if word match found in current pattern + for w in words: + bag.append(1) if w in pattern_words else bag.append(0) + + # output is a '0' for each tag and '1' for current tag (for each pattern) + output_row = list(output_empty) + output_row[classes.index(doc[1])] = 1 + + training.append([bag, output_row]) +# shuffle our features and turn into np.array +#random.shuffle(training) +training = np.array(training) +# create train and test lists. X - patterns, Y - intents +train_x = list(training[:,0]) +train_y = list(training[:,1]) +print("Training data created") + + +# Create model - 3 layers. First layer 128 neurons, second layer 64 neurons and 3rd output layer contains number of neurons +# equal to number of intents to predict output intent with softmax +model = Sequential() +model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu')) +model.add(Dropout(0.5)) +model.add(Dense(64, activation='relu')) +model.add(Dropout(0.5)) +model.add(Dense(len(train_y[0]), activation='softmax')) + +# Compile model. Stochastic gradient descent with Nesterov accelerated gradient gives good results for this model +sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) +model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) + +#fitting and saving the model +hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1) +model.save('chatbot_model.h5', hist) + +print("model created") diff --git a/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/words.pkl b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/words.pkl new file mode 100644 index 000000000..8b57a9b5d Binary files /dev/null and b/Medical_Assistance_Chatbot/Chatbot-main/Chatbot-main/words.pkl differ