-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharg_scope.py
191 lines (165 loc) · 6.88 KB
/
arg_scope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the arg_scope used for scoping layers arguments.
Allows one to define models much more compactly by eliminating boilerplate
code. This is accomplished through the use of argument scoping (arg_scope).
Example of how to use tf.contrib.framework.arg_scope:
```
from third_party.tensorflow.contrib.layers.python import layers
arg_scope = tf.contrib.framework.arg_scope
with arg_scope([layers.conv2d], padding='SAME',
initializer=layers.variance_scaling_initializer(),
regularizer=layers.l2_regularizer(0.05)):
net = layers.conv2d(inputs, 64, [11, 11], 4, padding='VALID', scope='conv1')
net = layers.conv2d(net, 256, [5, 5], scope='conv2')
```
The first call to conv2d will behave as follows:
layers.conv2d(inputs, 64, [11, 11], 4, padding='VALID',
initializer=layers.variance_scaling_initializer(),
regularizer=layers.l2_regularizer(0.05), scope='conv1')
The second call to conv2d will also use the arg_scope's default for padding:
layers.conv2d(inputs, 256, [5, 5], padding='SAME',
initializer=layers.variance_scaling_initializer(),
regularizer=layers.l2_regularizer(0.05), scope='conv2')
Example of how to reuse an arg_scope:
```
with arg_scope([layers.conv2d], padding='SAME',
initializer=layers.variance_scaling_initializer(),
regularizer=layers.l2_regularizer(0.05)) as sc:
net = layers.conv2d(net, 256, [5, 5], scope='conv1')
....
with arg_scope(sc):
net = layers.conv2d(net, 256, [5, 5], scope='conv2')
```
Example of how to use tf.contrib.framework.add_arg_scope to enable your
function to be called within an arg_scope later:
@tf.contrib.framework.add_arg_scope
def conv2d(*args, **kwargs)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.util import tf_contextlib
from tensorflow.python.util import tf_decorator
__all__ = [
'arg_scope', 'add_arg_scope', 'current_arg_scope', 'has_arg_scope',
'arg_scoped_arguments', 'arg_scope_func_key'
]
_ARGSTACK = [{}]
_DECORATED_OPS = {}
def _get_arg_stack():
if _ARGSTACK:
return _ARGSTACK
else:
_ARGSTACK.append({})
return _ARGSTACK
def current_arg_scope():
stack = _get_arg_stack()
return stack[-1]
def arg_scope_func_key(op):
return getattr(op, '_key_op', str(op))
def _name_op(op):
return (op.__module__, op.__name__)
def _kwarg_names(func):
kwargs_length = len(func.__defaults__) if func.__defaults__ else 0
return func.__code__.co_varnames[-kwargs_length:func.__code__.co_argcount]
def _add_op(op):
key_op = arg_scope_func_key(op)
_DECORATED_OPS[key_op] = _kwarg_names(op)
@tf_contextlib.contextmanager
def arg_scope(list_ops_or_scope, **kwargs):
"""Stores the default arguments for the given set of list_ops.
For usage, please see examples at top of the file.
Args:
list_ops_or_scope: List or tuple of operations to set argument scope for or
a dictionary containing the current scope. When list_ops_or_scope is a
dict, kwargs must be empty. When list_ops_or_scope is a list or tuple,
then every op in it need to be decorated with @add_arg_scope to work.
**kwargs: keyword=value that will define the defaults for each op in
list_ops. All the ops need to accept the given set of arguments.
Yields:
the current_scope, which is a dictionary of {op: {arg: value}}
Raises:
TypeError: if list_ops is not a list or a tuple.
ValueError: if any op in list_ops has not be decorated with @add_arg_scope.
"""
if isinstance(list_ops_or_scope, dict):
# Assumes that list_ops_or_scope is a scope that is being reused.
if kwargs:
raise ValueError('When attempting to re-use a scope by suppling a'
'dictionary, kwargs must be empty.')
current_scope = list_ops_or_scope.copy()
try:
_get_arg_stack().append(current_scope)
yield current_scope
finally:
_get_arg_stack().pop()
else:
# Assumes that list_ops_or_scope is a list/tuple of ops with kwargs.
if not isinstance(list_ops_or_scope, (list, tuple)):
raise TypeError('list_ops_or_scope must either be a list/tuple or reused '
'scope (i.e. dict)')
try:
current_scope = current_arg_scope().copy()
for op in list_ops_or_scope:
key = arg_scope_func_key(op)
if not has_arg_scope(op):
raise ValueError('%s is not decorated with @add_arg_scope',
_name_op(op))
if key in current_scope:
current_kwargs = current_scope[key].copy()
current_kwargs.update(kwargs)
current_scope[key] = current_kwargs
else:
current_scope[key] = kwargs.copy()
_get_arg_stack().append(current_scope)
yield current_scope
finally:
_get_arg_stack().pop()
def add_arg_scope(func):
"""Decorates a function with args so it can be used within an arg_scope.
Args:
func: function to decorate.
Returns:
A tuple with the decorated function func_with_args().
"""
def func_with_args(*args, **kwargs):
current_scope = current_arg_scope()
current_args = kwargs
key_func = arg_scope_func_key(func)
if key_func in current_scope:
current_args = current_scope[key_func].copy()
current_args.update(kwargs)
return func(*args, **current_args)
_add_op(func)
setattr(func_with_args, '_key_op', arg_scope_func_key(func))
return tf_decorator.make_decorator(func, func_with_args)
def has_arg_scope(func):
"""Checks whether a func has been decorated with @add_arg_scope or not.
Args:
func: function to check.
Returns:
a boolean.
"""
return arg_scope_func_key(func) in _DECORATED_OPS
def arg_scoped_arguments(func):
"""Returns the list kwargs that arg_scope can set for a func.
Args:
func: function which has been decorated with @add_arg_scope.
Returns:
a list of kwargs names.
"""
assert has_arg_scope(func)
return _DECORATED_OPS[arg_scope_func_key(func)]