forked from bnsreenu/python_for_image_processing_APEER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tutorial63_dealing with null data_in_Pandas.py
38 lines (27 loc) · 1.52 KB
/
tutorial63_dealing with null data_in_Pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#Video Playlist: https://www.youtube.com/playlist?list=PLHae9ggVvqPgyRQQOtENr6hK0m1UquGaG
#Dealing with null data
import pandas as pd
df = pd.read_csv('data/manual_vs_auto.csv')
print(df.isnull())#Shows whether a cell is null or not, not that helpful.
#Drop the entire column, if it makes sense
df = df.drop("Manual2", axis=1)
print(df.isnull().sum()) #Shows number of nulls in each column.
#If we only have handful of rows of null we can afford to drop these rows.
df2 = df.dropna() #Drops all rows with at least one null value.
#We can overwrite original df by equating it to df instead of df2.
#Or adding inplace=True inside
print(df2.head(25)) #See if null rows are gone.e.g. row 12
#If we have a lot of missing data then removing rows or columns
#may not be preferable.
#In such cases data scientists use Imputation technique.
#Just a fancy way of saying, fill it with whatever value
#A good guess would be filling missing values by the mean of the dataset.
print(df['Manual'].describe()) #Mean value of this column is 100.
df['Manual'].fillna(100, inplace=True)
print(df.head(25)) #Notice last entry in MinIntensity filled with 159.8
#In this example a better way to fill NaN is by filling with average of all auto columns from same row
import pandas as pd
import numpy as np
df = pd.read_csv('data/manual_vs_auto.csv')
df['Manual'] = df.apply(lambda row: (round((row['Auto_th_2']+row['Auto_th_3']+row['Auto_th_3'])/3)) if np.isnan(row['Manual']) else row['Manual'], axis=1)
print(df.head(25))