forked from huggingface/nanotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_nanoset.yaml
110 lines (110 loc) · 2.55 KB
/
config_nanoset.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
checkpoints:
checkpoint_interval: 1000
checkpoints_path: checkpoints/
checkpoints_path_is_shared_file_system: false
resume_checkpoint_path: null
save_initial_state: false
data_stages:
- data:
dataset:
dataset_path: datasets/testing_alpaca_small_input_ids.npy
num_loading_workers: 1
seed: 42
name: General purpose training (Single dataset)
start_training_step: 1
- data:
dataset:
dataset_path:
- datasets/yelp_review_full_input_ids.npy
- datasets/testing_alpaca_small_input_ids.npy
num_loading_workers: 1
seed: 42
name: Second purpose training (> 1 dataset)
start_training_step: 15
- data:
dataset:
dataset_path:
datasets/testing_alpaca_small_input_ids.npy: 0.8
datasets/yelp_review_full_input_ids.npy: 0.2
num_loading_workers: 1
seed: 42
name: Third purpose training (Blended dataset)
start_training_step: 25
general:
benchmark_csv_path: null
consumed_train_samples: null
ignore_sanity_checks: true
project: Nanoset
run: llama
seed: 42
step: null
lighteval: null
logging:
iteration_step_info_interval: 1
log_level: info
log_level_replica: info
model:
ddp_bucket_cap_mb: 25
dtype: bfloat16
init_method:
std: 0.025
make_vocab_size_divisible_by: 1
model_config:
bos_token_id: 1
eos_token_id: 2
hidden_act: silu
hidden_size: 16
initializer_range: 0.02
intermediate_size: 64
is_llama_config: true
max_position_embeddings: 256
num_attention_heads: 4
num_hidden_layers: 2
num_key_value_heads: 4
pad_token_id: null
pretraining_tp: 1
rms_norm_eps: 1.0e-05
rope_scaling: null
tie_word_embeddings: true
use_cache: true
vocab_size: 32000
optimizer:
accumulate_grad_in_fp32: true
clip_grad: 1.0
learning_rate_scheduler:
learning_rate: 0.0003
lr_decay_starting_step: null
lr_decay_steps: 98
lr_decay_style: cosine
lr_warmup_steps: 2
lr_warmup_style: linear
min_decay_lr: 1.0e-05
optimizer_factory:
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 1.0e-08
name: adamW
torch_adam_is_fused: true
weight_decay: 0.01
zero_stage: 0
parallelism:
dp: 2
expert_parallel_size: 1
pp: 1
pp_engine: 1f1b
tp: 2
tp_linear_async_communication: true
tp_mode: REDUCE_SCATTER
profiler: null
tokenizer:
tokenizer_max_length: null
tokenizer_name_or_path: gpt2
tokenizer_revision: null
tokens:
batch_accumulation_per_replica: 1
limit_test_batches: 0
limit_val_batches: 0
micro_batch_size: 2
sequence_length: 128
train_steps: 200
val_check_interval: -1