-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathe2e_cli.py
161 lines (136 loc) · 5.57 KB
/
e2e_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import numpy as np
from argparse import ArgumentParser
import json
import pickle
from models.e2e_entity_linking import E2E_entity_linker
from utils.args import get_args
from utils.entity_cand_gen import get_candidates
from utils.get_wikidata_mapping import get_wikidata_mapping, fetch_entity
from utils.util import load_model
import re
import warnings
warnings.filterwarnings("ignore")
def generate_ngrams(s, n=[1, 2, 3, 4]):
words_list = s.split()
ngrams_list = []
for num in range(0, len(words_list)):
for l in n:
ngram = ' '.join(words_list[num:num + l])
ngrams_list.append(ngram)
ngrams_list.sort(key=lambda x: len(x),reverse=True)
return ngrams_list
def get_w2id(word,stoi):
# get word2ids
try:
return int(stoi[word])
except KeyError:
return int(stoi['<unk>'])
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", "", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def infer(text, model, e2id,e_1hop, stoi, top_k_ent=1):
"""
Infer for single text
"""
text_w = torch.LongTensor([get_w2id(w,stoi) for w in text.split()]).resize(1, len(text.split()))
text_m = torch.ones(1, len(text.split())).long()
pred_ent, pred_rel, e_label_pred = model.infer(text.split(), text_w, text_m, get_w2id, e2id, 100, e_1hop, get_candidates)
if e_label_pred:
pred_ent_id = [p[0] for p in pred_ent[0]][:top_k_ent] # sorted entities based on scores
# print(pred_ent_id)
pred_fb_ent = pred_ent_id[0].replace('fb:', '').replace('.', '/')
wikidata_ent_pred = get_wikidata_mapping(pred_fb_ent)
# print(wikidata_ent_pred)
if wikidata_ent_pred: # check in wikidata fb mapping
wikidata_ent_pred = wikidata_ent_pred.split('/')[-1]
else: # check as wikidata
wikidata_ent_pred,wikiid,e_label_pred = fetch_entity(e_label_pred)
if wikidata_ent_pred:
wikidata_ent_pred = wikidata_ent_pred.split('/')[-1]
else:
ngrams = generate_ngrams(e_label_pred)
found = False
for agram in ngrams:
result = fetch_entity(agram)
if result:
wikidata_ent_pred, wikiid, e_label_pred = result.split('/')[-1]
found = True
break
if not found:
wikidata_ent_pred = 'Not found'
return wikidata_ent_pred, e_label_pred, pred_fb_ent
else:
return 'Not found', 'Not found', 'Not found'
def interact(model, e2id=None, e_1hop=None, stoi=None):
question = input("Please type your question (type q to quit): ")
question = clean_str(question)
if question!="q":
if question!="":
wikiid,elabel,predfb = infer(question,model, e2id=e2id, e_1hop=e_1hop, stoi=stoi)
return wikiid, elabel
else:
print("Please ask something !!")
return "",""
else:
return "q",""
if __name__=="__main__":
# Set random seed
np.random.seed(args.randseed)
torch.manual_seed(args.randseed)
if args.gpu:
torch.cuda.manual_seed(args.randseed)
model_name = 'E2E_SQA_graph'
# load dataset
print("Loading model... ")
# loading vectors and variables
with open(args.rel2id_f, 'rb') as f:
r2id = json.load(f)
with open(args.entity2id_f, 'rb') as f:
e2id = json.load(f)
with open(args.entity_fb2w_map, 'rb') as f:
fb2w = pickle.load(f)
stoi, vectors, dim = torch.load(args.vector_cache)
stoi['<unk>'] = len(stoi)
stoi['<pad>'] = 0 # add padding index and remove comma to another index
stoi[','] = len(stoi)
e_1hop = np.load(args.entity_1hop, allow_pickle=True).item()
vectors = torch.cat([vectors, torch.FloatTensor(dim).uniform_(-0.25, 0.25).unsqueeze(0)], 0)
vectors = torch.cat([vectors, vectors[0].unsqueeze(0)], 0)
vectors = torch.cat([vectors, vectors[0].unsqueeze(0)], 0)
vectors[0] = torch.zeros(dim)
n_words = len(vectors)
n_rel = len(r2id)
rel_emb = torch.from_numpy(np.loadtxt(args.rel_kg_vec))
ent_cand_s = 100
model = E2E_entity_linker(num_words=n_words, emb_dim=dim, hidden_size=args.hidden_size, num_layers=args.num_layer,
emb_dropout=args.emb_drop, pretrained_emb=vectors, train_embed=False, kg_emb_dim=50,
rel_size=n_rel, ent_cand_size=ent_cand_s, pretrained_rel=rel_emb, dropout=args.rnn_dropout,
use_cuda=args.gpu)
model = load_model(model, model_name, gpu=args.gpu)
model.eval()
print("Done !!")
while True:
wiki_id, ent_label = interact(model, e2id=e2id, e_1hop=e_1hop, stoi=stoi)
if wiki_id=="q":
exit()
elif wiki_id=="":
continue
else:
print(f"Wiki entity ID: {wiki_id}\nWiki entity label: {ent_label}\n")