diff --git a/.github/workflows/pr.yaml b/.github/workflows/pr.yaml index 7b267d7edf3..ffd8b18a56f 100644 --- a/.github/workflows/pr.yaml +++ b/.github/workflows/pr.yaml @@ -130,8 +130,9 @@ jobs: secrets: inherit uses: rapidsai/shared-action-workflows/.github/workflows/build-in-devcontainer.yaml@branch-23.10 with: + node_type: cpu32 extra-repo-deploy-key: CUGRAPH_OPS_SSH_PRIVATE_DEPLOY_KEY build_command: | sccache -z; - build-all --verbose; + build-all --verbose -j$(nproc --ignore=1); sccache -s; diff --git a/ci/test_wheel_nx-cugraph.sh b/ci/test_wheel_nx-cugraph.sh index 53d40960fc3..a1cc4c42900 100755 --- a/ci/test_wheel_nx-cugraph.sh +++ b/ci/test_wheel_nx-cugraph.sh @@ -3,4 +3,9 @@ set -eoxu pipefail +# Download the pylibcugraph built in the previous step +RAPIDS_PY_CUDA_SUFFIX="$(rapids-wheel-ctk-name-gen ${RAPIDS_CUDA_VERSION})" +RAPIDS_PY_WHEEL_NAME="pylibcugraph_${RAPIDS_PY_CUDA_SUFFIX}" rapids-download-wheels-from-s3 ./local-pylibcugraph-dep +python -m pip install --no-deps ./local-pylibcugraph-dep/pylibcugraph*.whl + ./ci/test_wheel.sh nx-cugraph python/nx-cugraph diff --git a/python/cugraph/cugraph/structure/property_graph.py b/python/cugraph/cugraph/structure/property_graph.py index 36ce5baa212..513798f35f9 100644 --- a/python/cugraph/cugraph/structure/property_graph.py +++ b/python/cugraph/cugraph/structure/property_graph.py @@ -800,15 +800,9 @@ def add_vertex_data( tmp_df.index = tmp_df.index.rename(self.vertex_col_name) # FIXME: handle case of a type_name column already being in tmp_df - if self.__series_type is cudf.Series: - # cudf does not yet support initialization with a scalar - tmp_df[TCN] = cudf.Series( - cudf.Series([type_name], dtype=cat_dtype).repeat(len(tmp_df)), - index=tmp_df.index, - ) - else: - # pandas is oddly slow if dtype is passed to the constructor here - tmp_df[TCN] = pd.Series(type_name, index=tmp_df.index).astype(cat_dtype) + tmp_df[TCN] = self.__series_type(type_name, index=tmp_df.index).astype( + cat_dtype + ) if property_columns: # all columns @@ -1207,15 +1201,9 @@ def add_edge_data( tmp_df[self.src_col_name] = tmp_df[vertex_col_names[0]] tmp_df[self.dst_col_name] = tmp_df[vertex_col_names[1]] - if self.__series_type is cudf.Series: - # cudf does not yet support initialization with a scalar - tmp_df[TCN] = cudf.Series( - cudf.Series([type_name], dtype=cat_dtype).repeat(len(tmp_df)), - index=tmp_df.index, - ) - else: - # pandas is oddly slow if dtype is passed to the constructor here - tmp_df[TCN] = pd.Series(type_name, index=tmp_df.index).astype(cat_dtype) + tmp_df[TCN] = self.__series_type(type_name, index=tmp_df.index).astype( + cat_dtype + ) # Add unique edge IDs to the new rows. This is just a count for each # row starting from the last edge ID value, with initial edge ID 0.