diff --git a/benchmarks/nx-cugraph/pytest-based/bench_algos.py b/benchmarks/nx-cugraph/pytest-based/bench_algos.py index 97eb32e2aaa..3b085a9bfdb 100644 --- a/benchmarks/nx-cugraph/pytest-based/bench_algos.py +++ b/benchmarks/nx-cugraph/pytest-based/bench_algos.py @@ -242,6 +242,28 @@ def get_highest_degree_node(graph_obj): return max(degrees, key=lambda t: t[1])[0] +def build_personalization_dict(pagerank_dict): + """ + Returns a dictionary that can be used as the personalization value for a + call to nx.pagerank(). The pagerank_dict passed in is used as the initial + source of values for each node, and this function simply treats the list of + dict values as two halves (halves A and B) and swaps them so (most if not + all) nodes/keys are assigned a different value from the dictionary. + """ + num_half = len(pagerank_dict) // 2 + A_half_items = list(pagerank_dict.items())[:num_half] + B_half_items = list(pagerank_dict.items())[num_half:] + + # Support an odd number of items by initializing with B_half_items, which + # will always be one bigger if the number of items is odd. This will leave + # the one remainder (in the case of an odd number) unchanged. + pers_dict = dict(B_half_items) + pers_dict.update({A_half_items[i][0]: B_half_items[i][1] for i in range(num_half)}) + pers_dict.update({B_half_items[i][0]: A_half_items[i][1] for i in range(num_half)}) + + return pers_dict + + ################################################################################ # Benchmarks def bench_from_networkx(benchmark, graph_obj): @@ -431,6 +453,26 @@ def bench_pagerank(benchmark, graph_obj, backend_wrapper): assert type(result) is dict +def bench_pagerank_personalized(benchmark, graph_obj, backend_wrapper): + G = get_graph_obj_for_benchmark(graph_obj, backend_wrapper) + + # FIXME: This will run for every combination of inputs, even if the + # graph/dataset does not change. Ideally this is run once per + # graph/dataset. + pagerank_dict = nx.pagerank(G) + personalization_dict = build_personalization_dict(pagerank_dict) + + result = benchmark.pedantic( + target=backend_wrapper(nx.pagerank), + args=(G,), + kwargs={"personalization": personalization_dict}, + rounds=rounds, + iterations=iterations, + warmup_rounds=warmup_rounds, + ) + assert type(result) is dict + + def bench_single_source_shortest_path_length(benchmark, graph_obj, backend_wrapper): G = get_graph_obj_for_benchmark(graph_obj, backend_wrapper) node = get_highest_degree_node(graph_obj) @@ -804,3 +846,73 @@ def bench_weakly_connected_components(benchmark, graph_obj, backend_wrapper): warmup_rounds=warmup_rounds, ) assert type(result) is list + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_complete_bipartite_graph(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_connected_components(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_connected(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_node_connected_component(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_number_connected_components(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_isolate(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_isolates(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_number_of_isolates(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_complement(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_reverse(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_arborescence(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_branching(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_forest(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_tree(benchmark, graph_obj, backend_wrapper): + pass diff --git a/build.sh b/build.sh index 5cfd2b5af1c..bd716943216 100755 --- a/build.sh +++ b/build.sh @@ -18,7 +18,7 @@ ARGS=$* # script, and that this script resides in the repo dir! REPODIR=$(cd $(dirname $0); pwd) -RAPIDS_VERSION=24.04 +RAPIDS_VERSION="$(sed -E -e 's/^([0-9]{2})\.([0-9]{2})\.([0-9]{2}).*$/\1.\2/' VERSION)" # Valid args to this script (all possible targets and options) - only one per line VALIDARGS=" diff --git a/ci/build_docs.sh b/ci/build_docs.sh index 298a8b68791..8e7cfc2c4b8 100755 --- a/ci/build_docs.sh +++ b/ci/build_docs.sh @@ -39,7 +39,9 @@ rapids-mamba-retry install \ rapids-logger "Install cugraph-dgl" rapids-mamba-retry install "${PYTHON_CHANNEL}/linux-64/cugraph-dgl-*.tar.bz2" -export RAPIDS_VERSION_NUMBER="24.04" +export RAPIDS_VERSION="$(rapids-version)" +export RAPIDS_VERSION_MAJOR_MINOR="$(rapids-version-major-minor)" +export RAPIDS_VERSION_NUMBER="$RAPIDS_VERSION_MAJOR_MINOR" export RAPIDS_DOCS_DIR="$(mktemp -d)" for PROJECT in libcugraphops libwholegraph; do diff --git a/ci/build_python.sh b/ci/build_python.sh index 07a4f59396b..62154fdeced 100755 --- a/ci/build_python.sh +++ b/ci/build_python.sh @@ -23,10 +23,11 @@ echo "${version}" > VERSION rapids-logger "Begin py build" package_dir="python" -for package_name in pylibcugraph cugraph nx-cugraph cugraph-pyg cugraph-dgl; do +for package_name in pylibcugraph cugraph cugraph-pyg cugraph-dgl; do underscore_package_name=$(echo "${package_name}" | tr "-" "_") sed -i "/^__git_commit__/ s/= .*/= \"${git_commit}\"/g" "${package_dir}/${package_name}/${underscore_package_name}/_version.py" done +sed -i "/^__git_commit__/ s/= .*/= \"${git_commit}\"/g" "${package_dir}/nx-cugraph/_nx_cugraph/_version.py" # TODO: Remove `--no-test` flags once importing on a CPU # node works correctly diff --git a/ci/build_wheel.sh b/ci/build_wheel.sh index 9de1750de81..587c5fb38e7 100755 --- a/ci/build_wheel.sh +++ b/ci/build_wheel.sh @@ -20,8 +20,12 @@ RAPIDS_PY_CUDA_SUFFIX="$(rapids-wheel-ctk-name-gen ${RAPIDS_CUDA_VERSION})" PACKAGE_CUDA_SUFFIX="-${RAPIDS_PY_CUDA_SUFFIX}" # Patch project metadata files to include the CUDA version suffix and version override. +version_package_name="$underscore_package_name" +if [[ "${version_package_name}" = "nx_cugraph" ]]; then + version_package_name="_nx_cugraph" +fi pyproject_file="${package_dir}/pyproject.toml" -version_file="${package_dir}/${underscore_package_name}/_version.py" +version_file="${package_dir}/${version_package_name}/_version.py" sed -i "s/name = \"${package_name}\"/name = \"${package_name}${PACKAGE_CUDA_SUFFIX}\"/g" ${pyproject_file} echo "${version}" > VERSION diff --git a/ci/release/update-version.sh b/ci/release/update-version.sh index 9e284f49b5b..ce2c14a01fc 100755 --- a/ci/release/update-version.sh +++ b/ci/release/update-version.sh @@ -39,33 +39,11 @@ function sed_runner() { sed -i.bak ''"$1"'' $2 && rm -f ${2}.bak } -# rapids-cmake version -sed_runner 's/'"branch-.*\/RAPIDS.cmake"'/'"branch-${NEXT_SHORT_TAG}\/RAPIDS.cmake"'/g' fetch_rapids.cmake - -# CMakeLists update -sed_runner 's/'"CUGRAPH VERSION .* LANGUAGES C CXX CUDA)"'/'"CUGRAPH VERSION ${NEXT_FULL_TAG} LANGUAGES C CXX CUDA)"'/g' cpp/CMakeLists.txt -sed_runner 's|'"branch-.*/RAPIDS.cmake"'|'"branch-${NEXT_SHORT_TAG}/RAPIDS.cmake"'|g' cpp/CMakeLists.txt -sed_runner 's/'"CUGRAPH_ETL VERSION .* LANGUAGES C CXX CUDA)"'/'"CUGRAPH_ETL VERSION ${NEXT_FULL_TAG} LANGUAGES C CXX CUDA)"'/g' cpp/libcugraph_etl/CMakeLists.txt -sed_runner 's|'"branch-.*/RAPIDS.cmake"'|'"branch-${NEXT_SHORT_TAG}/RAPIDS.cmake"'|g' cpp/libcugraph_etl/CMakeLists.txt -sed_runner "s/set(pylibcugraph_version .*)/set(pylibcugraph_version ${NEXT_FULL_TAG})/g" python/pylibcugraph/CMakeLists.txt -sed_runner "s/set(cugraph_version .*)/set(cugraph_version ${NEXT_FULL_TAG})/g" python/cugraph/CMakeLists.txt - -# RTD update -sed_runner 's/version = .*/version = '"'${NEXT_SHORT_TAG}'"'/g' docs/cugraph/source/conf.py -sed_runner 's/release = .*/release = '"'${NEXT_FULL_TAG}'"'/g' docs/cugraph/source/conf.py - - -# build.sh script -sed_runner 's/RAPIDS_VERSION=.*/RAPIDS_VERSION='${NEXT_SHORT_TAG}'/g' build.sh - # Centralized version file update # NOTE: Any script that runs in CI will need to use gha-tool `rapids-generate-version` # and echo it to `VERSION` file to get an alpha spec of the current version echo "${NEXT_FULL_TAG}" > VERSION -# Wheel testing script -sed_runner "s/branch-.*/branch-${NEXT_SHORT_TAG}/g" ci/test_wheel_cugraph.sh - # Need to distutils-normalize the original version NEXT_SHORT_TAG_PEP440=$(python -c "from setuptools.extern import packaging; print(packaging.version.Version('${NEXT_SHORT_TAG}'))") @@ -105,19 +83,11 @@ for DEP in "${DEPENDENCIES[@]}"; do done done -# Doxyfile update -sed_runner "s|PROJECT_NUMBER[[:space:]]*=.*|PROJECT_NUMBER=${NEXT_SHORT_TAG}|" cpp/doxygen/Doxyfile - # ucx-py version sed_runner "/^ucx_py_version:$/ {n;s/.*/ - \"${NEXT_UCX_PY_VERSION}.*\"/}" conda/recipes/cugraph/conda_build_config.yaml sed_runner "/^ucx_py_version:$/ {n;s/.*/ - \"${NEXT_UCX_PY_VERSION}.*\"/}" conda/recipes/cugraph-service/conda_build_config.yaml sed_runner "/^ucx_py_version:$/ {n;s/.*/ - \"${NEXT_UCX_PY_VERSION}.*\"/}" conda/recipes/pylibcugraph/conda_build_config.yaml -# nx-cugraph NetworkX entry-point meta-data -sed_runner "s@branch-[0-9][0-9].[0-9][0-9]@branch-${NEXT_SHORT_TAG}@g" python/nx-cugraph/_nx_cugraph/__init__.py -# FIXME: can this use the standard VERSION file and update mechanism? -sed_runner "s/__version__ = .*/__version__ = \"${NEXT_FULL_TAG}\"/g" python/nx-cugraph/_nx_cugraph/__init__.py - # CI files for FILE in .github/workflows/*.yaml; do sed_runner "/shared-workflows/ s/@.*/@branch-${NEXT_SHORT_TAG}/g" "${FILE}" @@ -126,7 +96,6 @@ for FILE in .github/workflows/*.yaml; do # Wheel builds install dask-cuda from source, update its branch sed_runner "s/dask-cuda.git@branch-[0-9][0-9].[0-9][0-9]/dask-cuda.git@branch-${NEXT_SHORT_TAG}/g" "${FILE}" done -sed_runner "s/RAPIDS_VERSION_NUMBER=\".*/RAPIDS_VERSION_NUMBER=\"${NEXT_SHORT_TAG}\"/g" ci/build_docs.sh sed_runner "s/branch-.*/branch-${NEXT_SHORT_TAG}/g" python/nx-cugraph/README.md diff --git a/conda/environments/all_cuda-118_arch-x86_64.yaml b/conda/environments/all_cuda-118_arch-x86_64.yaml index 6aed308c498..f0eff82e1ae 100644 --- a/conda/environments/all_cuda-118_arch-x86_64.yaml +++ b/conda/environments/all_cuda-118_arch-x86_64.yaml @@ -42,7 +42,7 @@ dependencies: - ninja - notebook>=0.5.0 - numba>=0.57 -- numpy>=1.23 +- numpy>=1.23,<2.0a0 - numpydoc - nvcc_linux-64=11.8 - openmpi diff --git a/conda/environments/all_cuda-122_arch-x86_64.yaml b/conda/environments/all_cuda-122_arch-x86_64.yaml index 4a095058219..93972f40d8b 100644 --- a/conda/environments/all_cuda-122_arch-x86_64.yaml +++ b/conda/environments/all_cuda-122_arch-x86_64.yaml @@ -48,7 +48,7 @@ dependencies: - ninja - notebook>=0.5.0 - numba>=0.57 -- numpy>=1.23 +- numpy>=1.23,<2.0a0 - numpydoc - openmpi - packaging>=21 diff --git a/conda/recipes/cugraph-dgl/meta.yaml b/conda/recipes/cugraph-dgl/meta.yaml index 09322a9c7d3..5e28e69a0d7 100644 --- a/conda/recipes/cugraph-dgl/meta.yaml +++ b/conda/recipes/cugraph-dgl/meta.yaml @@ -25,7 +25,7 @@ requirements: - cugraph ={{ version }} - dgl >=1.1.0.cu* - numba >=0.57 - - numpy >=1.23 + - numpy >=1.23,<2.0a0 - pylibcugraphops ={{ minor_version }} - python - pytorch diff --git a/conda/recipes/cugraph-pyg/meta.yaml b/conda/recipes/cugraph-pyg/meta.yaml index 624f5753fd2..4ada5e31211 100644 --- a/conda/recipes/cugraph-pyg/meta.yaml +++ b/conda/recipes/cugraph-pyg/meta.yaml @@ -28,7 +28,7 @@ requirements: run: - rapids-dask-dependency ={{ minor_version }} - numba >=0.57 - - numpy >=1.23 + - numpy >=1.23,<2.0a0 - python - pytorch >=2.0 - cupy >=12.0.0 diff --git a/conda/recipes/cugraph-service/meta.yaml b/conda/recipes/cugraph-service/meta.yaml index c04c1a7c7fa..8698d4f6985 100644 --- a/conda/recipes/cugraph-service/meta.yaml +++ b/conda/recipes/cugraph-service/meta.yaml @@ -60,7 +60,7 @@ outputs: - dask-cuda ={{ minor_version }} - dask-cudf ={{ minor_version }} - numba >=0.57 - - numpy >=1.23 + - numpy >=1.23,<2.0a0 - python - rapids-dask-dependency ={{ minor_version }} - thriftpy2 >=0.4.15 diff --git a/cpp/CMakeLists.txt b/cpp/CMakeLists.txt index 88908ef70ce..6070621134d 100644 --- a/cpp/CMakeLists.txt +++ b/cpp/CMakeLists.txt @@ -16,7 +16,7 @@ cmake_minimum_required(VERSION 3.26.4 FATAL_ERROR) -include(../fetch_rapids.cmake) +include(../rapids_config.cmake) include(rapids-cmake) include(rapids-cpm) include(rapids-cuda) @@ -25,7 +25,7 @@ include(rapids-find) rapids_cuda_init_architectures(CUGRAPH) -project(CUGRAPH VERSION 24.04.00 LANGUAGES C CXX CUDA) +project(CUGRAPH VERSION "${RAPIDS_VERSION}" LANGUAGES C CXX CUDA) if(CMAKE_CUDA_COMPILER_ID STREQUAL "NVIDIA" AND CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 11.0) @@ -590,7 +590,7 @@ find_package(Doxygen 1.8.11) if(Doxygen_FOUND) add_custom_command(OUTPUT CUGRAPH_DOXYGEN WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/doxygen - COMMAND doxygen Doxyfile + COMMAND ${CMAKE_COMMAND} -E env "RAPIDS_VERSION_MAJOR_MINOR=${RAPIDS_VERSION_MAJOR_MINOR}" doxygen Doxyfile VERBATIM) add_custom_target(docs_cugraph DEPENDS CUGRAPH_DOXYGEN) diff --git a/cpp/doxygen/Doxyfile b/cpp/doxygen/Doxyfile index d4652a79f91..5b0f2ec0a5e 100644 --- a/cpp/doxygen/Doxyfile +++ b/cpp/doxygen/Doxyfile @@ -48,7 +48,7 @@ PROJECT_NAME = libcugraph # could be handy for archiving the generated documentation or if some version # control system is used. -PROJECT_NUMBER=24.04 +PROJECT_NUMBER=$(RAPIDS_VERSION_MAJOR_MINOR) # Using the PROJECT_BRIEF tag one can provide an optional one line description # for a project that appears at the top of each page and should give viewer a diff --git a/cpp/include/cugraph/graph_view.hpp b/cpp/include/cugraph/graph_view.hpp index 3f3514179bf..cbb52ef3b1e 100644 --- a/cpp/include/cugraph/graph_view.hpp +++ b/cpp/include/cugraph/graph_view.hpp @@ -613,7 +613,7 @@ class graph_view_tnumber_of_vertices()); } - // FIXME: deprecated, replaced with copmute_number_of_edges (which works with or without edge + // FIXME: deprecated, replaced with compute_number_of_edges (which works with or without edge // masking) edge_t number_of_edges() const { diff --git a/cpp/include/cugraph/utilities/misc_utils.cuh b/cpp/include/cugraph/utilities/misc_utils.cuh index d3917a3e851..633dabe5b40 100644 --- a/cpp/include/cugraph/utilities/misc_utils.cuh +++ b/cpp/include/cugraph/utilities/misc_utils.cuh @@ -94,6 +94,14 @@ thrust::optional to_thrust_optional(std::optional val) return ret; } +template +std::optional to_std_optional(thrust::optional val) +{ + std::optional ret{std::nullopt}; + if (val) { ret = *val; } + return ret; +} + template rmm::device_uvector expand_sparse_offsets(raft::device_span offsets, idx_t base_idx, diff --git a/cpp/libcugraph_etl/CMakeLists.txt b/cpp/libcugraph_etl/CMakeLists.txt index c1b526fb121..6b258afdf96 100644 --- a/cpp/libcugraph_etl/CMakeLists.txt +++ b/cpp/libcugraph_etl/CMakeLists.txt @@ -15,7 +15,7 @@ #============================================================================= cmake_minimum_required(VERSION 3.26.4 FATAL_ERROR) -include(../../fetch_rapids.cmake) +include(../../rapids_config.cmake) include(rapids-cmake) include(rapids-cpm) @@ -25,7 +25,7 @@ include(rapids-find) rapids_cuda_init_architectures(CUGRAPH_ETL) -project(CUGRAPH_ETL VERSION 24.04.00 LANGUAGES C CXX CUDA) +project(CUGRAPH_ETL VERSION "${RAPIDS_VERSION}" LANGUAGES C CXX CUDA) if(CMAKE_CUDA_COMPILER_ID STREQUAL "NVIDIA" AND CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 11.0) diff --git a/cpp/src/prims/detail/nbr_intersection.cuh b/cpp/src/prims/detail/nbr_intersection.cuh index e0a04eb59da..847c1db6937 100644 --- a/cpp/src/prims/detail/nbr_intersection.cuh +++ b/cpp/src/prims/detail/nbr_intersection.cuh @@ -50,6 +50,7 @@ #include #include #include +#include #include #include #include @@ -1232,9 +1233,11 @@ nbr_intersection(raft::handle_t const& handle, rx_v_pair_nbr_intersection_sizes.size() + 1, handle.get_stream()); rx_v_pair_nbr_intersection_offsets.set_element_to_zero_async(size_t{0}, handle.get_stream()); + auto size_first = thrust::make_transform_iterator( + rx_v_pair_nbr_intersection_sizes.begin(), cugraph::detail::typecast_t{}); thrust::inclusive_scan(handle.get_thrust_policy(), - rx_v_pair_nbr_intersection_sizes.begin(), - rx_v_pair_nbr_intersection_sizes.end(), + size_first, + size_first + rx_v_pair_nbr_intersection_sizes.size(), rx_v_pair_nbr_intersection_offsets.begin() + 1); rx_v_pair_nbr_intersection_indices.resize( @@ -1344,8 +1347,8 @@ nbr_intersection(raft::handle_t const& handle, } thrust::inclusive_scan(handle.get_thrust_policy(), - rx_v_pair_nbr_intersection_sizes.begin(), - rx_v_pair_nbr_intersection_sizes.end(), + size_first, + size_first + rx_v_pair_nbr_intersection_sizes.size(), rx_v_pair_nbr_intersection_offsets.begin() + 1); std::vector h_rx_v_pair_lasts(rx_v_pair_counts.size()); diff --git a/cpp/src/prims/per_v_transform_reduce_dst_key_aggregated_outgoing_e.cuh b/cpp/src/prims/per_v_transform_reduce_dst_key_aggregated_outgoing_e.cuh index 3b25ae50773..5e4cd81513e 100644 --- a/cpp/src/prims/per_v_transform_reduce_dst_key_aggregated_outgoing_e.cuh +++ b/cpp/src/prims/per_v_transform_reduce_dst_key_aggregated_outgoing_e.cuh @@ -16,6 +16,7 @@ #pragma once #include "detail/graph_partition_utils.cuh" +#include "prims/detail/optional_dataframe_buffer.hpp" #include "prims/kv_store.cuh" #include "utilities/collect_comm.cuh" @@ -83,15 +84,23 @@ struct rebase_offset_t { // a workaround for cudaErrorInvalidDeviceFunction error when device lambda is used template -struct triplet_to_minor_comm_rank_t { +struct tuple_to_minor_comm_rank_t { compute_vertex_partition_id_from_ext_vertex_t key_func{}; int minor_comm_size{}; - __device__ int operator()( + template + __device__ std::enable_if_t, int> operator()( thrust::tuple val /* major, minor key, edge value */) const { return key_func(thrust::get<1>(val)) % minor_comm_size; } + + template + __device__ std::enable_if_t, int> operator()( + thrust::tuple val /* major, minor key */) const + { + return key_func(thrust::get<1>(val)) % minor_comm_size; + } }; // a workaround for cudaErrorInvalidDeviceFunction error when device lambda is used @@ -106,6 +115,7 @@ struct pair_to_binary_partition_id_t { // a workaround for cudaErrorInvalidDeviceFunction error when device lambda is used template - val /* major, minor key, aggregated edge value */) const + template + __device__ std::enable_if_t, e_op_result_t> + operator()(thrust::tuple + val /* major, minor key, aggregated edge value */) const { auto major = thrust::get<0>(val); auto minor_key = thrust::get<1>(val); @@ -131,6 +143,20 @@ struct call_key_aggregated_e_op_t { return key_aggregated_e_op( major, minor_key, major_val, edge_minor_key_value_map.find(minor_key), aggregated_edge_value); } + + template + __device__ std::enable_if_t, e_op_result_t> + operator()(thrust::tuple val /* major, minor key */) const + { + auto major = thrust::get<0>(val); + auto minor_key = thrust::get<1>(val); + auto major_val = edge_major_value_map + ? (*edge_major_value_map).find(major) + : edge_partition_major_value_input.get( + edge_partition.major_offset_from_major_nocheck(major)); + return key_aggregated_e_op( + major, minor_key, major_val, edge_minor_key_value_map.find(minor_key), thrust::nullopt); + } }; // a workaround for cudaErrorInvalidDeviceFunction error when device lambda is used @@ -182,9 +208,8 @@ struct reduce_with_init_t { * @tparam EdgeSrcValueInputWrapper Type of the wrapper for edge source property values. * @tparam EdgeValueInputWrapper Type of the wrapper for edge property values. * @tparam EdgeDstKeyInputWrapper Type of the wrapper for edge destination key values. - * @tparam VertexIterator Type of the iterator for keys in (key, value) pairs (key type should - * coincide with vertex type). - * @tparam ValueIterator Type of the iterator for values in (key, value) pairs. + * @tparam KVStoreViewType Type of the (key, value) store. Key type should coincide with vertex + * type. * @tparam KeyAggregatedEdgeOp Type of the quinary key-aggregated edge operator. * @tparam ReduceOp Type of the binary reduction operator. * @tparam T Type of the initial value for per-vertex reduction. @@ -204,15 +229,10 @@ struct reduce_with_init_t { * @param edge_dst_key_input Wrapper used to access destination input key values (for the edge * destinations assigned to this process in multi-GPU). Use cugraph::edge_dst_property_t::view(). * Use update_edge_dst_property to fill the wrapper. - * @param map_unique_key_first Iterator pointing to the first (inclusive) key in (key, value) pairs - * (assigned to this process in multi-GPU, `cugraph::detail::compute_gpu_id_from_ext_vertex_t` is - * used to map keys to processes). (Key, value) pairs may be provided by - * transform_reduce_by_src_key_e() or transform_reduce_by_dst_key_e(). - * @param map_unique_key_last Iterator pointing to the last (exclusive) key in (key, value) pairs - * (assigned to this process in multi-GPU). - * @param map_value_first Iterator pointing to the first (inclusive) value in (key, value) pairs - * (assigned to this process in multi-GPU). `map_value_last` (exclusive) is deduced as @p - * map_value_first + thrust::distance(@p map_unique_key_first, @p map_unique_key_last). + * @param kv_store_view view object of the (key, value) store (for the keys assigned to this process + * in multi-GPU). `cugraph::detail::compute_gpu_id_from_ext_vertex_t` is used to map keys to + * processes). (Key, value) pairs may be provided by transform_reduce_e_by_src_key() or + * transform_reduce_e_by_dst_key(). * @param key_aggregated_e_op Quinary operator takes 1) edge source, 2) key, 3) *(@p * edge_partition_src_value_input_first + i), 4) value for the key stored in the input (key, value) * pairs provided by @p map_unique_key_first, @p map_unique_key_last, and @p map_value_first @@ -263,8 +283,11 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( using edge_src_value_t = typename EdgeSrcValueInputWrapper::value_type; using edge_value_t = typename EdgeValueInputWrapper::value_type; using kv_pair_value_t = typename KVStoreViewType::value_type; + using optional_edge_value_buffer_value_type = + std::conditional_t, edge_value_t, void>; + static_assert( - std::is_arithmetic_v, + std::is_same_v || std::is_arithmetic_v, "Currently only scalar values are supported, should be extended to support thrust::tuple of " "arithmetic types and void (for dummy property values) to be consistent with other " "primitives."); // this will also require a custom edge value aggregation op. @@ -284,16 +307,15 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( detail::edge_partition_edge_dummy_property_device_view_t, detail::edge_partition_edge_property_device_view_t< edge_t, - typename EdgeValueInputWrapper::value_iterator>>; - - CUGRAPH_EXPECTS(!graph_view.has_edge_mask(), "unimplemented."); + typename EdgeValueInputWrapper::value_iterator, + typename EdgeValueInputWrapper::value_type>>; if (do_expensive_check) { /* currently, nothing to do */ } auto total_global_mem = handle.get_device_properties().totalGlobalMem; size_t element_size = sizeof(vertex_t) * 2; // major + minor keys - if constexpr (!std::is_same_v) { + if constexpr (!std::is_same_v) { static_assert(is_arithmetic_or_thrust_tuple_of_arithmetic::value); if constexpr (is_thrust_tuple_of_arithmetic::value) { element_size += sum_thrust_tuple_element_sizes(); @@ -317,24 +339,78 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( // 1. aggregate each vertex out-going edges based on keys and transform-reduce. + auto edge_mask_view = graph_view.edge_mask_view(); + rmm::device_uvector majors(0, handle.get_stream()); auto e_op_result_buffer = allocate_dataframe_buffer(0, handle.get_stream()); for (size_t i = 0; i < graph_view.number_of_local_edge_partitions(); ++i) { auto edge_partition = edge_partition_device_view_t( graph_view.local_edge_partition_view(i)); + auto edge_partition_e_mask = + edge_mask_view + ? thrust::make_optional< + detail::edge_partition_edge_property_device_view_t>( + *edge_mask_view, i) + : thrust::nullopt; auto edge_partition_src_value_input = edge_partition_src_input_device_view_t(edge_src_value_input, i); auto edge_partition_e_value_input = edge_partition_e_input_device_view_t(edge_value_input, i); - rmm::device_uvector tmp_majors(edge_partition.number_of_edges(), handle.get_stream()); + std::optional> offsets_with_mask{std::nullopt}; + if (edge_partition_e_mask) { + rmm::device_uvector degrees_with_mask(0, handle.get_stream()); + if (edge_partition.dcs_nzd_vertices()) { + auto segment_offsets = graph_view.local_edge_partition_segment_offsets(i); + + auto major_sparse_range_size = + (*segment_offsets)[detail::num_sparse_segments_per_vertex_partition]; + degrees_with_mask = rmm::device_uvector( + major_sparse_range_size + *(edge_partition.dcs_nzd_vertex_count()), handle.get_stream()); + auto major_first = thrust::make_transform_iterator( + thrust::make_counting_iterator(vertex_t{0}), + cuda::proclaim_return_type( + [major_sparse_range_size, + major_range_first = edge_partition.major_range_first(), + dcs_nzd_vertices = *(edge_partition.dcs_nzd_vertices())] __device__(vertex_t i) { + if (i < major_sparse_range_size) { // sparse + return major_range_first + i; + } else { // hypersparse + return *(dcs_nzd_vertices + (i - major_sparse_range_size)); + } + })); + degrees_with_mask = + edge_partition.compute_local_degrees_with_mask((*edge_partition_e_mask).value_first(), + major_first, + major_first + degrees_with_mask.size(), + handle.get_stream()); + } else { + degrees_with_mask = edge_partition.compute_local_degrees_with_mask( + (*edge_partition_e_mask).value_first(), + thrust::make_counting_iterator(edge_partition.major_range_first()), + thrust::make_counting_iterator(edge_partition.major_range_last()), + handle.get_stream()); + } + offsets_with_mask = + rmm::device_uvector(degrees_with_mask.size() + 1, handle.get_stream()); + (*offsets_with_mask).set_element_to_zero_async(0, handle.get_stream()); + thrust::inclusive_scan(handle.get_thrust_policy(), + degrees_with_mask.begin(), + degrees_with_mask.end(), + (*offsets_with_mask).begin() + 1); + } + + rmm::device_uvector tmp_majors( + edge_partition_e_mask ? (*offsets_with_mask).back_element(handle.get_stream()) + : edge_partition.number_of_edges(), + handle.get_stream()); rmm::device_uvector tmp_minor_keys(tmp_majors.size(), handle.get_stream()); - // FIXME: this doesn't work if edge_value_t is thrust::tuple or void - rmm::device_uvector tmp_key_aggregated_edge_values(tmp_majors.size(), - handle.get_stream()); + auto tmp_key_aggregated_edge_values = + detail::allocate_optional_dataframe_buffer( + tmp_majors.size(), handle.get_stream()); - if (edge_partition.number_of_edges() > 0) { + if (tmp_majors.size() > 0) { auto segment_offsets = graph_view.local_edge_partition_segment_offsets(i); detail::decompress_edge_partition_to_fill_edgelist_majors( handle, edge_partition, - std::nullopt, + detail::to_std_optional(edge_partition_e_mask), raft::device_span(tmp_majors.data(), tmp_majors.size()), segment_offsets); @@ -357,14 +433,14 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( static_cast(handle.get_device_properties().multiProcessorCount) * (1 << 20); auto [h_vertex_offsets, h_edge_offsets] = detail::compute_offset_aligned_element_chunks( handle, - raft::device_span{ - edge_partition.offsets(), - 1 + static_cast( - edge_partition.dcs_nzd_vertices() - ? (*segment_offsets)[detail::num_sparse_segments_per_vertex_partition] + - *(edge_partition.dcs_nzd_vertex_count()) - : edge_partition.major_range_size())}, - edge_partition.number_of_edges(), + raft::device_span( + offsets_with_mask ? (*offsets_with_mask).data() : edge_partition.offsets(), + (edge_partition.dcs_nzd_vertices() + ? (*segment_offsets)[detail::num_sparse_segments_per_vertex_partition] + + *(edge_partition.dcs_nzd_vertex_count()) + : edge_partition.major_range_size()) + + 1), + static_cast(tmp_majors.size()), approx_edges_to_sort_per_iteration); auto num_chunks = h_vertex_offsets.size() - 1; @@ -376,30 +452,69 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( rmm::device_uvector unreduced_majors(max_chunk_size, handle.get_stream()); rmm::device_uvector unreduced_minor_keys(unreduced_majors.size(), handle.get_stream()); - // FIXME: this doesn't work if edge_value_t is thrust::tuple or void - rmm::device_uvector unreduced_key_aggregated_edge_values( - unreduced_majors.size(), handle.get_stream()); + auto unreduced_key_aggregated_edge_values = + detail::allocate_optional_dataframe_buffer( + unreduced_majors.size(), handle.get_stream()); rmm::device_uvector d_tmp_storage(0, handle.get_stream()); size_t reduced_size{0}; for (size_t j = 0; j < num_chunks; ++j) { - thrust::copy(handle.get_thrust_policy(), - minor_key_first + h_edge_offsets[j], - minor_key_first + h_edge_offsets[j + 1], - tmp_minor_keys.begin() + h_edge_offsets[j]); + if (edge_partition_e_mask) { + std::array unmasked_ranges{}; + raft::update_host(unmasked_ranges.data(), + edge_partition.offsets() + h_vertex_offsets[j], + 1, + handle.get_stream()); + raft::update_host(unmasked_ranges.data() + 1, + edge_partition.offsets() + h_vertex_offsets[j + 1], + 1, + handle.get_stream()); + handle.sync_stream(); + if constexpr (!std::is_same_v) { + detail::copy_if_mask_set( + handle, + thrust::make_zip_iterator(minor_key_first, + edge_partition_e_value_input.value_first()) + + unmasked_ranges[0], + thrust::make_zip_iterator(minor_key_first, + edge_partition_e_value_input.value_first()) + + unmasked_ranges[1], + (*edge_partition_e_mask).value_first() + unmasked_ranges[0], + thrust::make_zip_iterator(tmp_minor_keys.begin(), + detail::get_optional_dataframe_buffer_begin( + tmp_key_aggregated_edge_values)) + + h_edge_offsets[j]); + } else { + detail::copy_if_mask_set(handle, + minor_key_first + unmasked_ranges[0], + minor_key_first + unmasked_ranges[1], + (*edge_partition_e_mask).value_first() + unmasked_ranges[0], + tmp_minor_keys.begin() + h_edge_offsets[j]); + } + } else { + thrust::copy(handle.get_thrust_policy(), + minor_key_first + h_edge_offsets[j], + minor_key_first + h_edge_offsets[j + 1], + tmp_minor_keys.begin() + h_edge_offsets[j]); + } size_t tmp_storage_bytes{0}; - auto offset_first = - thrust::make_transform_iterator(edge_partition.offsets() + h_vertex_offsets[j], - detail::rebase_offset_t{h_edge_offsets[j]}); - if constexpr (!std::is_same_v) { + auto offset_first = thrust::make_transform_iterator( + (offsets_with_mask ? (*offsets_with_mask).data() : edge_partition.offsets()) + + h_vertex_offsets[j], + detail::rebase_offset_t{h_edge_offsets[j]}); + if constexpr (!std::is_same_v) { cub::DeviceSegmentedSort::SortPairs( static_cast(nullptr), tmp_storage_bytes, tmp_minor_keys.begin() + h_edge_offsets[j], unreduced_minor_keys.begin(), - edge_partition_e_value_input.value_first() + h_edge_offsets[j], - unreduced_key_aggregated_edge_values.begin(), + (edge_partition_e_mask ? detail::get_optional_dataframe_buffer_begin( + tmp_key_aggregated_edge_values) + : edge_partition_e_value_input.value_first()) + + h_edge_offsets[j], + detail::get_optional_dataframe_buffer_begin( + unreduced_key_aggregated_edge_values), h_edge_offsets[j + 1] - h_edge_offsets[j], h_vertex_offsets[j + 1] - h_vertex_offsets[j], offset_first, @@ -419,14 +534,18 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( if (tmp_storage_bytes > d_tmp_storage.size()) { d_tmp_storage = rmm::device_uvector(tmp_storage_bytes, handle.get_stream()); } - if constexpr (!std::is_same_v) { + if constexpr (!std::is_same_v) { cub::DeviceSegmentedSort::SortPairs( d_tmp_storage.data(), tmp_storage_bytes, tmp_minor_keys.begin() + h_edge_offsets[j], unreduced_minor_keys.begin(), - edge_partition_e_value_input.value_first() + h_edge_offsets[j], - unreduced_key_aggregated_edge_values.begin(), + (edge_partition_e_mask ? detail::get_optional_dataframe_buffer_begin( + tmp_key_aggregated_edge_values) + : edge_partition_e_value_input.value_first()) + + h_edge_offsets[j], + detail::get_optional_dataframe_buffer_begin( + unreduced_key_aggregated_edge_values), h_edge_offsets[j + 1] - h_edge_offsets[j], h_vertex_offsets[j + 1] - h_vertex_offsets[j], offset_first, @@ -448,39 +567,44 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( tmp_majors.begin() + h_edge_offsets[j], tmp_majors.begin() + h_edge_offsets[j + 1], unreduced_majors.begin()); - auto input_key_first = thrust::make_zip_iterator( - thrust::make_tuple(unreduced_majors.begin(), unreduced_minor_keys.begin())); + auto input_key_first = + thrust::make_zip_iterator(unreduced_majors.begin(), unreduced_minor_keys.begin()); auto output_key_first = - thrust::make_zip_iterator(thrust::make_tuple(tmp_majors.begin(), tmp_minor_keys.begin())); - if constexpr (!std::is_same_v) { + thrust::make_zip_iterator(tmp_majors.begin(), tmp_minor_keys.begin()); + if constexpr (!std::is_same_v) { reduced_size += thrust::distance(output_key_first + reduced_size, thrust::get<0>(thrust::reduce_by_key( handle.get_thrust_policy(), input_key_first, input_key_first + (h_edge_offsets[j + 1] - h_edge_offsets[j]), - unreduced_key_aggregated_edge_values.begin(), + detail::get_optional_dataframe_buffer_begin( + unreduced_key_aggregated_edge_values), output_key_first + reduced_size, - tmp_key_aggregated_edge_values.begin() + reduced_size))); + detail::get_optional_dataframe_buffer_begin( + tmp_key_aggregated_edge_values) + + reduced_size))); } else { - reduced_size += - thrust::distance(output_key_first + reduced_size, - thrust::get<0>(thrust::unique( - handle.get_thrust_policy(), - input_key_first, - input_key_first + (h_edge_offsets[j + 1] - h_edge_offsets[j]), - output_key_first + reduced_size))); + reduced_size += thrust::distance( + output_key_first + reduced_size, + thrust::copy_if( + handle.get_thrust_policy(), + input_key_first, + input_key_first + (h_edge_offsets[j + 1] - h_edge_offsets[j]), + thrust::make_counting_iterator(size_t{0}), + output_key_first + reduced_size, + cugraph::detail::is_first_in_run_t{input_key_first})); } } tmp_majors.resize(reduced_size, handle.get_stream()); tmp_minor_keys.resize(tmp_majors.size(), handle.get_stream()); - // FIXME: this doesn't work if edge_value_t is thrust::tuple or void - tmp_key_aggregated_edge_values.resize(tmp_majors.size(), handle.get_stream()); + detail::resize_optional_dataframe_buffer( + tmp_key_aggregated_edge_values, tmp_majors.size(), handle.get_stream()); } tmp_majors.shrink_to_fit(handle.get_stream()); tmp_minor_keys.shrink_to_fit(handle.get_stream()); - // FIXME: this doesn't work if edge_value_t is thrust::tuple or void - tmp_key_aggregated_edge_values.shrink_to_fit(handle.get_stream()); + detail::shrink_to_fit_optional_dataframe_buffer( + tmp_key_aggregated_edge_values, handle.get_stream()); std::unique_ptr< kv_store_t{ - detail::compute_vertex_partition_id_from_ext_vertex_t{comm_size}, - minor_comm_size}, - minor_comm_size, - mem_frugal_threshold, - handle.get_stream()); + rmm::device_uvector d_tx_value_counts(0, handle.get_stream()); + if constexpr (!std::is_same_v) { + auto triplet_first = + thrust::make_zip_iterator(tmp_majors.begin(), + tmp_minor_keys.begin(), + detail::get_optional_dataframe_buffer_begin( + tmp_key_aggregated_edge_values)); + d_tx_value_counts = cugraph::groupby_and_count( + triplet_first, + triplet_first + tmp_majors.size(), + detail::tuple_to_minor_comm_rank_t{ + detail::compute_vertex_partition_id_from_ext_vertex_t{comm_size}, + minor_comm_size}, + minor_comm_size, + mem_frugal_threshold, + handle.get_stream()); + } else { + auto pair_first = thrust::make_zip_iterator(tmp_majors.begin(), tmp_minor_keys.begin()); + d_tx_value_counts = cugraph::groupby_and_count( + pair_first, + pair_first + tmp_majors.size(), + detail::tuple_to_minor_comm_rank_t{ + detail::compute_vertex_partition_id_from_ext_vertex_t{comm_size}, + minor_comm_size}, + minor_comm_size, + mem_frugal_threshold, + handle.get_stream()); + } std::vector h_tx_value_counts(d_tx_value_counts.size()); raft::update_host(h_tx_value_counts.data(), @@ -544,8 +684,7 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( thrust::copy( handle.get_thrust_policy(), tmp_majors.begin(), tmp_majors.end(), majors.begin()); - auto pair_first = - thrust::make_zip_iterator(thrust::make_tuple(minor_comm_ranks.begin(), majors.begin())); + auto pair_first = thrust::make_zip_iterator(minor_comm_ranks.begin(), majors.begin()); thrust::sort( handle.get_thrust_policy(), pair_first, pair_first + minor_comm_ranks.size()); auto unique_pair_last = thrust::unique( @@ -622,7 +761,9 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( rmm::device_uvector rx_majors(0, handle.get_stream()); rmm::device_uvector rx_minor_keys(0, handle.get_stream()); - rmm::device_uvector rx_key_aggregated_edge_values(0, handle.get_stream()); + auto rx_key_aggregated_edge_values = + detail::allocate_optional_dataframe_buffer( + 0, handle.get_stream()); auto mem_frugal_flag = host_scalar_allreduce(minor_comm, tmp_majors.size() > mem_frugal_threshold ? int{1} : int{0}, @@ -639,66 +780,120 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( tmp_minor_keys.resize(0, handle.get_stream()); tmp_minor_keys.shrink_to_fit(handle.get_stream()); - std::tie(rx_key_aggregated_edge_values, std::ignore) = - shuffle_values(minor_comm, - tmp_key_aggregated_edge_values.begin(), - h_tx_value_counts, - handle.get_stream()); - tmp_key_aggregated_edge_values.resize(0, handle.get_stream()); - tmp_key_aggregated_edge_values.shrink_to_fit(handle.get_stream()); + if constexpr (!std::is_same_v) { + std::tie(rx_key_aggregated_edge_values, std::ignore) = + shuffle_values(minor_comm, + detail::get_optional_dataframe_buffer_begin( + tmp_key_aggregated_edge_values), + h_tx_value_counts, + handle.get_stream()); + } + detail::resize_optional_dataframe_buffer( + tmp_key_aggregated_edge_values, 0, handle.get_stream()); + detail::shrink_to_fit_optional_dataframe_buffer( + tmp_key_aggregated_edge_values, handle.get_stream()); } else { - std::forward_as_tuple(std::tie(rx_majors, rx_minor_keys, rx_key_aggregated_edge_values), - std::ignore) = - shuffle_values(minor_comm, triplet_first, h_tx_value_counts, handle.get_stream()); + if constexpr (!std::is_same_v) { + auto triplet_first = + thrust::make_zip_iterator(tmp_majors.begin(), + tmp_minor_keys.begin(), + detail::get_optional_dataframe_buffer_begin( + tmp_key_aggregated_edge_values)); + std::forward_as_tuple(std::tie(rx_majors, rx_minor_keys, rx_key_aggregated_edge_values), + std::ignore) = + shuffle_values(minor_comm, triplet_first, h_tx_value_counts, handle.get_stream()); + } else { + auto pair_first = thrust::make_zip_iterator(tmp_majors.begin(), tmp_minor_keys.begin()); + std::forward_as_tuple(std::tie(rx_majors, rx_minor_keys), std::ignore) = + shuffle_values(minor_comm, pair_first, h_tx_value_counts, handle.get_stream()); + } tmp_majors.resize(0, handle.get_stream()); tmp_majors.shrink_to_fit(handle.get_stream()); tmp_minor_keys.resize(0, handle.get_stream()); tmp_minor_keys.shrink_to_fit(handle.get_stream()); - tmp_key_aggregated_edge_values.resize(0, handle.get_stream()); - tmp_key_aggregated_edge_values.shrink_to_fit(handle.get_stream()); + detail::resize_optional_dataframe_buffer( + tmp_key_aggregated_edge_values, 0, handle.get_stream()); + detail::shrink_to_fit_optional_dataframe_buffer( + tmp_key_aggregated_edge_values, handle.get_stream()); } - auto key_pair_first = - thrust::make_zip_iterator(thrust::make_tuple(rx_majors.begin(), rx_minor_keys.begin())); - if (rx_majors.size() > mem_frugal_threshold) { // trade-off parallelism to lower peak memory - auto second_first = - detail::mem_frugal_partition(key_pair_first, - key_pair_first + rx_majors.size(), - rx_key_aggregated_edge_values.begin(), - detail::pair_to_binary_partition_id_t{}, - int{1}, - handle.get_stream()); - - thrust::sort_by_key(handle.get_thrust_policy(), - key_pair_first, - std::get<0>(second_first), - rx_key_aggregated_edge_values.begin()); - - thrust::sort_by_key(handle.get_thrust_policy(), - std::get<0>(second_first), - key_pair_first + rx_majors.size(), - std::get<1>(second_first)); + auto key_pair_first = thrust::make_zip_iterator(rx_majors.begin(), rx_minor_keys.begin()); + if constexpr (!std::is_same_v) { + if (rx_majors.size() > + mem_frugal_threshold) { // trade-off parallelism to lower peak memory + auto second_first = + detail::mem_frugal_partition(key_pair_first, + key_pair_first + rx_majors.size(), + detail::get_optional_dataframe_buffer_begin( + rx_key_aggregated_edge_values), + detail::pair_to_binary_partition_id_t{}, + int{1}, + handle.get_stream()); + + thrust::sort_by_key(handle.get_thrust_policy(), + key_pair_first, + std::get<0>(second_first), + detail::get_optional_dataframe_buffer_begin( + rx_key_aggregated_edge_values)); + + thrust::sort_by_key(handle.get_thrust_policy(), + std::get<0>(second_first), + key_pair_first + rx_majors.size(), + std::get<1>(second_first)); + } else { + thrust::sort_by_key(handle.get_thrust_policy(), + key_pair_first, + key_pair_first + rx_majors.size(), + detail::get_optional_dataframe_buffer_begin( + rx_key_aggregated_edge_values)); + } + + auto num_uniques = + thrust::count_if(handle.get_thrust_policy(), + thrust::make_counting_iterator(size_t{0}), + thrust::make_counting_iterator(rx_majors.size()), + detail::is_first_in_run_t{key_pair_first}); + tmp_majors.resize(num_uniques, handle.get_stream()); + tmp_minor_keys.resize(tmp_majors.size(), handle.get_stream()); + detail::resize_optional_dataframe_buffer( + tmp_key_aggregated_edge_values, tmp_majors.size(), handle.get_stream()); + thrust::reduce_by_key( + handle.get_thrust_policy(), + key_pair_first, + key_pair_first + rx_majors.size(), + detail::get_optional_dataframe_buffer_begin(rx_key_aggregated_edge_values), + thrust::make_zip_iterator(tmp_majors.begin(), tmp_minor_keys.begin()), + detail::get_optional_dataframe_buffer_begin( + tmp_key_aggregated_edge_values)); } else { - thrust::sort_by_key(handle.get_thrust_policy(), - key_pair_first, - key_pair_first + rx_majors.size(), - rx_key_aggregated_edge_values.begin()); + if (rx_majors.size() > + mem_frugal_threshold) { // trade-off parallelism to lower peak memory + auto second_first = + detail::mem_frugal_partition(key_pair_first, + key_pair_first + rx_majors.size(), + detail::pair_to_binary_partition_id_t{}, + int{1}, + handle.get_stream()); + + thrust::sort(handle.get_thrust_policy(), key_pair_first, second_first); + + thrust::sort(handle.get_thrust_policy(), second_first, key_pair_first + rx_majors.size()); + } else { + thrust::sort( + handle.get_thrust_policy(), key_pair_first, key_pair_first + rx_majors.size()); + } + + auto num_uniques = thrust::distance( + key_pair_first, + thrust::unique( + handle.get_thrust_policy(), key_pair_first, key_pair_first + rx_majors.size())); + tmp_majors.resize(num_uniques, handle.get_stream()); + tmp_minor_keys.resize(tmp_majors.size(), handle.get_stream()); + thrust::copy(handle.get_thrust_policy(), + key_pair_first, + key_pair_first + num_uniques, + thrust::make_zip_iterator(tmp_majors.begin(), tmp_minor_keys.begin())); } - auto num_uniques = - thrust::count_if(handle.get_thrust_policy(), - thrust::make_counting_iterator(size_t{0}), - thrust::make_counting_iterator(rx_majors.size()), - detail::is_first_in_run_t{key_pair_first}); - tmp_majors.resize(num_uniques, handle.get_stream()); - tmp_minor_keys.resize(tmp_majors.size(), handle.get_stream()); - tmp_key_aggregated_edge_values.resize(tmp_majors.size(), handle.get_stream()); - thrust::reduce_by_key( - handle.get_thrust_policy(), - key_pair_first, - key_pair_first + rx_majors.size(), - rx_key_aggregated_edge_values.begin(), - thrust::make_zip_iterator(thrust::make_tuple(tmp_majors.begin(), tmp_minor_keys.begin())), - tmp_key_aggregated_edge_values.begin()); } std::unique_ptr> @@ -756,8 +951,6 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( auto tmp_e_op_result_buffer = allocate_dataframe_buffer(tmp_majors.size(), handle.get_stream()); - auto triplet_first = thrust::make_zip_iterator(thrust::make_tuple( - tmp_majors.begin(), tmp_minor_keys.begin(), tmp_key_aggregated_edge_values.begin())); auto major_value_map_device_view = (GraphViewType::is_multi_gpu && edge_src_value_input.keys()) ? thrust::make_optional> dst_key_value_map_device_view( GraphViewType::is_multi_gpu ? multi_gpu_minor_key_value_map_ptr->view() : kv_store_view); - thrust::transform(handle.get_thrust_policy(), - triplet_first, - triplet_first + tmp_majors.size(), - get_dataframe_buffer_begin(tmp_e_op_result_buffer), - detail::call_key_aggregated_e_op_t< - vertex_t, - edge_value_t, - decltype(edge_partition), - std::remove_reference_t, - edge_partition_src_input_device_view_t, - decltype(dst_key_value_map_device_view), - KeyAggregatedEdgeOp>{edge_partition, - major_value_map_device_view, - edge_partition_src_value_input, - dst_key_value_map_device_view, - key_aggregated_e_op}); + if constexpr (!std::is_same_v) { + auto triplet_first = thrust::make_zip_iterator( + tmp_majors.begin(), + tmp_minor_keys.begin(), + detail::get_optional_dataframe_buffer_begin(tmp_key_aggregated_edge_values)); + thrust::transform(handle.get_thrust_policy(), + triplet_first, + triplet_first + tmp_majors.size(), + get_dataframe_buffer_begin(tmp_e_op_result_buffer), + detail::call_key_aggregated_e_op_t< + vertex_t, + edge_value_t, + T, + decltype(edge_partition), + std::remove_reference_t, + edge_partition_src_input_device_view_t, + decltype(dst_key_value_map_device_view), + KeyAggregatedEdgeOp>{edge_partition, + major_value_map_device_view, + edge_partition_src_value_input, + dst_key_value_map_device_view, + key_aggregated_e_op}); + } else { + auto pair_first = thrust::make_zip_iterator(tmp_majors.begin(), tmp_minor_keys.begin()); + thrust::transform(handle.get_thrust_policy(), + pair_first, + pair_first + tmp_majors.size(), + get_dataframe_buffer_begin(tmp_e_op_result_buffer), + detail::call_key_aggregated_e_op_t< + vertex_t, + edge_value_t, + T, + decltype(edge_partition), + std::remove_reference_t, + edge_partition_src_input_device_view_t, + decltype(dst_key_value_map_device_view), + KeyAggregatedEdgeOp>{edge_partition, + major_value_map_device_view, + edge_partition_src_value_input, + dst_key_value_map_device_view, + key_aggregated_e_op}); + } if constexpr (GraphViewType::is_multi_gpu) { multi_gpu_minor_key_value_map_ptr.reset(); } tmp_minor_keys.resize(0, handle.get_stream()); tmp_minor_keys.shrink_to_fit(handle.get_stream()); - tmp_key_aggregated_edge_values.resize(0, handle.get_stream()); - tmp_key_aggregated_edge_values.shrink_to_fit(handle.get_stream()); + detail::resize_optional_dataframe_buffer( + tmp_key_aggregated_edge_values, 0, handle.get_stream()); + detail::shrink_to_fit_optional_dataframe_buffer( + tmp_key_aggregated_edge_values, handle.get_stream()); { auto num_uniques = diff --git a/cpp/src/prims/transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v.cuh b/cpp/src/prims/transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v.cuh index b63b014ed05..244586e6d9e 100644 --- a/cpp/src/prims/transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v.cuh +++ b/cpp/src/prims/transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v.cuh @@ -19,6 +19,7 @@ #include "prims/detail/nbr_intersection.cuh" #include "prims/property_op_utils.cuh" +#include #include #include #include @@ -130,7 +131,9 @@ std::tuple, ValueBuffer> sort_and_reduce_by_vertic vertices.end(), get_dataframe_buffer_begin(value_buffer), reduced_vertices.begin(), - get_dataframe_buffer_begin(reduced_value_buffer)); + get_dataframe_buffer_begin(reduced_value_buffer), + thrust::equal_to{}, + property_op{}); vertices.resize(size_t{0}, handle.get_stream()); resize_dataframe_buffer(value_buffer, size_t{0}, handle.get_stream()); @@ -201,14 +204,14 @@ struct accumulate_vertex_property_t { * @param graph_view Non-owning graph object. * @param edge_src_value_input Wrapper used to access source input property values (for the edge * sources assigned to this process in multi-GPU). Use either cugraph::edge_src_property_t::view() - * (if @p e_op needs to access source property values) or cugraph::edge_src_dummy_property_t::view() - * (if @p e_op does not access source property values). Use update_edge_src_property to fill the - * wrapper. + * (if @p intersection_op needs to access source property values) or + * cugraph::edge_src_dummy_property_t::view() (if @p intersection_op does not access source property + * values). Use update_edge_src_property to fill the wrapper. * @param edge_dst_value_input Wrapper used to access destination input property values (for the * edge destinations assigned to this process in multi-GPU). Use either - * cugraph::edge_dst_property_t::view() (if @p e_op needs to access destination property values) or - * cugraph::edge_dst_dummy_property_t::view() (if @p e_op does not access destination property - * values). Use update_edge_dst_property to fill the wrapper. + * cugraph::edge_dst_property_t::view() (if @p intersection_op needs to access destination property + * values) or cugraph::edge_dst_dummy_property_t::view() (if @p intersection_op does not access + * destination property values). Use update_edge_dst_property to fill the wrapper. * @param intersection_op quinary operator takes edge source, edge destination, property values for * the source, property values for the destination, and a list of vertices in the intersection of * edge source & destination vertices' destination neighbors and returns a thrust::tuple of three @@ -260,8 +263,6 @@ void transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v( typename EdgeDstValueInputWrapper::value_iterator, typename EdgeDstValueInputWrapper::value_type>>; - CUGRAPH_EXPECTS(!graph_view.has_edge_mask(), "unimplemented."); - if (do_expensive_check) { // currently, nothing to do. } @@ -272,6 +273,7 @@ void transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v( init); auto edge_mask_view = graph_view.edge_mask_view(); + for (size_t i = 0; i < graph_view.number_of_local_edge_partitions(); ++i) { auto edge_partition = edge_partition_device_view_t( @@ -484,7 +486,9 @@ void transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v( merged_vertices.end(), get_dataframe_buffer_begin(merged_value_buffer), reduced_vertices.begin(), - get_dataframe_buffer_begin(reduced_value_buffer)); + get_dataframe_buffer_begin(reduced_value_buffer), + thrust::equal_to{}, + property_op{}); merged_vertices.resize(size_t{0}, handle.get_stream()); merged_vertices.shrink_to_fit(handle.get_stream()); resize_dataframe_buffer(merged_value_buffer, size_t{0}, handle.get_stream()); diff --git a/cpp/src/prims/transform_reduce_e_by_src_dst_key.cuh b/cpp/src/prims/transform_reduce_e_by_src_dst_key.cuh index eee0ed03d1c..00876012906 100644 --- a/cpp/src/prims/transform_reduce_e_by_src_dst_key.cuh +++ b/cpp/src/prims/transform_reduce_e_by_src_dst_key.cuh @@ -95,6 +95,7 @@ template __global__ static void transform_reduce_by_src_dst_key_hypersparse( @@ -105,6 +106,9 @@ __global__ static void transform_reduce_by_src_dst_key_hypersparse( EdgePartitionDstValueInputWrapper edge_partition_dst_value_input, EdgePartitionEdgeValueInputWrapper edge_partition_e_value_input, EdgePartitionSrcDstKeyInputWrapper edge_partition_src_dst_key_input, + EdgePartitionEdgeMaskWrapper edge_partition_e_mask, + thrust::optional> + edge_offsets_with_mask, EdgeOp e_op, typename GraphViewType::vertex_type* keys, ValueIterator value_iter) @@ -129,19 +133,42 @@ __global__ static void transform_reduce_by_src_dst_key_hypersparse( edge_t local_degree{}; thrust::tie(indices, edge_offset, local_degree) = edge_partition.local_edges(static_cast(major_idx)); - auto local_offset = edge_partition.local_offset(major_idx); - for (edge_t i = 0; i < local_degree; ++i) { - update_buffer_element(edge_partition, - major, - indices[i], - edge_offset + i, - edge_partition_src_value_input, - edge_partition_dst_value_input, - edge_partition_e_value_input, - edge_partition_src_dst_key_input, - e_op, - keys + local_offset + i, - value_iter + local_offset + i); + if (edge_partition_e_mask) { + auto major_offset = edge_partition.major_offset_from_major_nocheck(major); + auto edge_offset_with_mask = (*edge_offsets_with_mask)[major_offset]; + edge_t counter{0}; + for (edge_t i = 0; i < local_degree; ++i) { + if ((*edge_partition_e_mask).get(edge_offset + i)) { + update_buffer_element( + edge_partition, + major, + indices[i], + edge_offset + i, + edge_partition_src_value_input, + edge_partition_dst_value_input, + edge_partition_e_value_input, + edge_partition_src_dst_key_input, + e_op, + keys + edge_offset_with_mask + counter, + value_iter + edge_offset_with_mask + counter); + ++counter; + } + } + } else { + for (edge_t i = 0; i < local_degree; ++i) { + update_buffer_element( + edge_partition, + major, + indices[i], + edge_offset + i, + edge_partition_src_value_input, + edge_partition_dst_value_input, + edge_partition_e_value_input, + edge_partition_src_dst_key_input, + e_op, + keys + edge_offset + i, + value_iter + edge_offset + i); + } } idx += gridDim.x * blockDim.x; @@ -154,6 +181,7 @@ template __global__ static void transform_reduce_by_src_dst_key_low_degree( @@ -166,6 +194,9 @@ __global__ static void transform_reduce_by_src_dst_key_low_degree( EdgePartitionDstValueInputWrapper edge_partition_dst_value_input, EdgePartitionEdgeValueInputWrapper edge_partition_e_value_input, EdgePartitionSrcDstKeyInputWrapper edge_partition_src_dst_key_input, + EdgePartitionEdgeMaskWrapper edge_partition_e_mask, + thrust::optional> + edge_offsets_with_mask, EdgeOp e_op, typename GraphViewType::vertex_type* keys, ValueIterator value_iter) @@ -187,19 +218,41 @@ __global__ static void transform_reduce_by_src_dst_key_low_degree( edge_t local_degree{}; thrust::tie(indices, edge_offset, local_degree) = edge_partition.local_edges(static_cast(major_offset)); - auto local_offset = edge_partition.local_offset(major_offset); - for (edge_t i = 0; i < local_degree; ++i) { - update_buffer_element(edge_partition, - major, - indices[i], - edge_offset + i, - edge_partition_src_value_input, - edge_partition_dst_value_input, - edge_partition_e_value_input, - edge_partition_src_dst_key_input, - e_op, - keys + local_offset + i, - value_iter + local_offset + i); + if (edge_partition_e_mask) { + auto edge_offset_with_mask = (*edge_offsets_with_mask)[major_offset]; + edge_t counter{0}; + for (edge_t i = 0; i < local_degree; ++i) { + if ((*edge_partition_e_mask).get(edge_offset + i)) { + update_buffer_element( + edge_partition, + major, + indices[i], + edge_offset + i, + edge_partition_src_value_input, + edge_partition_dst_value_input, + edge_partition_e_value_input, + edge_partition_src_dst_key_input, + e_op, + keys + edge_offset_with_mask + counter, + value_iter + edge_offset_with_mask + counter); + ++counter; + } + } + } else { + for (edge_t i = 0; i < local_degree; ++i) { + update_buffer_element( + edge_partition, + major, + indices[i], + edge_offset + i, + edge_partition_src_value_input, + edge_partition_dst_value_input, + edge_partition_e_value_input, + edge_partition_src_dst_key_input, + e_op, + keys + edge_offset + i, + value_iter + edge_offset + i); + } } idx += gridDim.x * blockDim.x; @@ -212,6 +265,7 @@ template __global__ static void transform_reduce_by_src_dst_key_mid_degree( @@ -224,6 +278,9 @@ __global__ static void transform_reduce_by_src_dst_key_mid_degree( EdgePartitionDstValueInputWrapper edge_partition_dst_value_input, EdgePartitionEdgeValueInputWrapper edge_partition_e_value_input, EdgePartitionSrcDstKeyInputWrapper edge_partition_src_dst_key_input, + EdgePartitionEdgeMaskWrapper edge_partition_e_mask, + thrust::optional> + edge_offsets_with_mask, EdgeOp e_op, typename GraphViewType::vertex_type* keys, ValueIterator value_iter) @@ -238,6 +295,9 @@ __global__ static void transform_reduce_by_src_dst_key_mid_degree( static_cast(major_range_first - edge_partition.major_range_first()); size_t idx = static_cast(tid / raft::warp_size()); + using WarpScan = cub::WarpScan; + __shared__ typename WarpScan::TempStorage temp_storage; + while (idx < static_cast(major_range_last - major_range_first)) { auto major_offset = major_start_offset + idx; auto major = @@ -247,19 +307,49 @@ __global__ static void transform_reduce_by_src_dst_key_mid_degree( edge_t local_degree{}; thrust::tie(indices, edge_offset, local_degree) = edge_partition.local_edges(static_cast(major_offset)); - auto local_offset = edge_partition.local_offset(major_offset); - for (edge_t i = lane_id; i < local_degree; i += raft::warp_size()) { - update_buffer_element(edge_partition, - major, - indices[i], - edge_offset + i, - edge_partition_src_value_input, - edge_partition_dst_value_input, - edge_partition_e_value_input, - edge_partition_src_dst_key_input, - e_op, - keys + local_offset + i, - value_iter + local_offset + i); + if (edge_partition_e_mask) { + // FIXME: it might be faster to update in warp-sync way + auto edge_offset_with_mask = (*edge_offsets_with_mask)[major_offset]; + edge_t counter{0}; + for (edge_t i = lane_id; i < local_degree; i += raft::warp_size()) { + if ((*edge_partition_e_mask).get(edge_offset + i)) { ++counter; } + } + edge_t offset_within_warp{}; + WarpScan(temp_storage).ExclusiveSum(counter, offset_within_warp); + edge_offset_with_mask += offset_within_warp; + counter = 0; + for (edge_t i = lane_id; i < local_degree; i += raft::warp_size()) { + if ((*edge_partition_e_mask).get(edge_offset + i)) { + update_buffer_element( + edge_partition, + major, + indices[i], + edge_offset + i, + edge_partition_src_value_input, + edge_partition_dst_value_input, + edge_partition_e_value_input, + edge_partition_src_dst_key_input, + e_op, + keys + edge_offset_with_mask + counter, + value_iter + edge_offset_with_mask + counter); + ++counter; + } + } + } else { + for (edge_t i = lane_id; i < local_degree; i += raft::warp_size()) { + update_buffer_element( + edge_partition, + major, + indices[i], + edge_offset + i, + edge_partition_src_value_input, + edge_partition_dst_value_input, + edge_partition_e_value_input, + edge_partition_src_dst_key_input, + e_op, + keys + edge_offset + i, + value_iter + edge_offset + i); + } } idx += gridDim.x * (blockDim.x / raft::warp_size()); @@ -272,6 +362,7 @@ template __global__ static void transform_reduce_by_src_dst_key_high_degree( @@ -284,6 +375,9 @@ __global__ static void transform_reduce_by_src_dst_key_high_degree( EdgePartitionDstValueInputWrapper edge_partition_dst_value_input, EdgePartitionEdgeValueInputWrapper edge_partition_e_value_input, EdgePartitionSrcDstKeyInputWrapper edge_partition_src_dst_key_input, + EdgePartitionEdgeMaskWrapper edge_partition_e_mask, + thrust::optional> + edge_offsets_with_mask, EdgeOp e_op, typename GraphViewType::vertex_type* keys, ValueIterator value_iter) @@ -295,6 +389,9 @@ __global__ static void transform_reduce_by_src_dst_key_high_degree( static_cast(major_range_first - edge_partition.major_range_first()); auto idx = static_cast(blockIdx.x); + using BlockScan = cub::BlockScan; + __shared__ typename BlockScan::TempStorage temp_storage; + while (idx < static_cast(major_range_last - major_range_first)) { auto major_offset = major_start_offset + idx; auto major = @@ -304,19 +401,49 @@ __global__ static void transform_reduce_by_src_dst_key_high_degree( edge_t local_degree{}; thrust::tie(indices, edge_offset, local_degree) = edge_partition.local_edges(static_cast(major_offset)); - auto local_offset = edge_partition.local_offset(major_offset); - for (edge_t i = threadIdx.x; i < local_degree; i += blockDim.x) { - update_buffer_element(edge_partition, - major, - indices[i], - edge_offset + i, - edge_partition_src_value_input, - edge_partition_dst_value_input, - edge_partition_e_value_input, - edge_partition_src_dst_key_input, - e_op, - keys + local_offset + i, - value_iter + local_offset + i); + if (edge_partition_e_mask) { + // FIXME: it might be faster to update in block-sync way + auto edge_offset_with_mask = (*edge_offsets_with_mask)[major_offset]; + edge_t counter{0}; + for (edge_t i = threadIdx.x; i < local_degree; i += blockDim.x) { + if ((*edge_partition_e_mask).get(edge_offset + i)) { ++counter; } + } + edge_t offset_within_block{}; + BlockScan(temp_storage).ExclusiveSum(counter, offset_within_block); + edge_offset_with_mask += offset_within_block; + counter = 0; + for (edge_t i = threadIdx.x; i < local_degree; i += blockDim.x) { + if ((*edge_partition_e_mask).get(edge_offset + i)) { + update_buffer_element( + edge_partition, + major, + indices[i], + edge_offset + i, + edge_partition_src_value_input, + edge_partition_dst_value_input, + edge_partition_e_value_input, + edge_partition_src_dst_key_input, + e_op, + keys + edge_offset_with_mask + counter, + value_iter + edge_offset_with_mask + counter); + ++counter; + } + } + } else { + for (edge_t i = threadIdx.x; i < local_degree; i += blockDim.x) { + update_buffer_element( + edge_partition, + major, + indices[i], + edge_offset + i, + edge_partition_src_value_input, + edge_partition_dst_value_input, + edge_partition_e_value_input, + edge_partition_src_dst_key_input, + e_op, + keys + edge_offset + i, + value_iter + edge_offset + i); + } } idx += gridDim.x; @@ -410,19 +537,41 @@ transform_reduce_e_by_src_dst_key(raft::handle_t const& handle, typename EdgeSrcDstKeyInputWrapper::value_iterator, typename EdgeSrcDstKeyInputWrapper::value_type>; + auto edge_mask_view = graph_view.edge_mask_view(); + rmm::device_uvector keys(0, handle.get_stream()); auto value_buffer = allocate_dataframe_buffer(0, handle.get_stream()); for (size_t i = 0; i < graph_view.number_of_local_edge_partitions(); ++i) { auto edge_partition = edge_partition_device_view_t( graph_view.local_edge_partition_view(i)); - - auto num_edges = edge_partition.number_of_edges(); - - rmm::device_uvector tmp_keys(num_edges, handle.get_stream()); + auto edge_partition_e_mask = + edge_mask_view + ? thrust::make_optional< + detail::edge_partition_edge_property_device_view_t>( + *edge_mask_view, i) + : thrust::nullopt; + + rmm::device_uvector tmp_keys(0, handle.get_stream()); + std::optional> edge_offsets_with_mask{std::nullopt}; + if (edge_partition_e_mask) { + auto local_degrees = edge_partition.compute_local_degrees_with_mask( + (*edge_partition_e_mask).value_first(), handle.get_stream()); + edge_offsets_with_mask = + rmm::device_uvector(edge_partition.major_range_size() + 1, handle.get_stream()); + (*edge_offsets_with_mask).set_element_to_zero_async(0, handle.get_stream()); + thrust::inclusive_scan(handle.get_thrust_policy(), + local_degrees.begin(), + local_degrees.end(), + (*edge_offsets_with_mask).begin() + 1); + tmp_keys.resize((*edge_offsets_with_mask).back_element(handle.get_stream()), + handle.get_stream()); + } else { + tmp_keys.resize(edge_partition.number_of_edges(), handle.get_stream()); + } auto tmp_value_buffer = allocate_dataframe_buffer(tmp_keys.size(), handle.get_stream()); - if (num_edges > 0) { + if (tmp_keys.size() > 0) { edge_partition_src_input_device_view_t edge_partition_src_value_input{}; edge_partition_dst_input_device_view_t edge_partition_dst_value_input{}; if constexpr (GraphViewType::is_storage_transposed) { @@ -467,6 +616,11 @@ transform_reduce_e_by_src_dst_key(raft::handle_t const& handle, edge_partition_dst_value_input, edge_partition_e_value_input, edge_partition_src_dst_key_input, + edge_partition_e_mask, + edge_offsets_with_mask + ? thrust::make_optional>( + (*edge_offsets_with_mask).data(), (*edge_offsets_with_mask).size()) + : thrust::nullopt, e_op, tmp_keys.data(), get_dataframe_buffer_begin(tmp_value_buffer)); @@ -485,6 +639,11 @@ transform_reduce_e_by_src_dst_key(raft::handle_t const& handle, edge_partition_dst_value_input, edge_partition_e_value_input, edge_partition_src_dst_key_input, + edge_partition_e_mask, + edge_offsets_with_mask + ? thrust::make_optional>( + (*edge_offsets_with_mask).data(), (*edge_offsets_with_mask).size()) + : thrust::nullopt, e_op, tmp_keys.data(), get_dataframe_buffer_begin(tmp_value_buffer)); @@ -503,6 +662,11 @@ transform_reduce_e_by_src_dst_key(raft::handle_t const& handle, edge_partition_dst_value_input, edge_partition_e_value_input, edge_partition_src_dst_key_input, + edge_partition_e_mask, + edge_offsets_with_mask + ? thrust::make_optional>( + (*edge_offsets_with_mask).data(), (*edge_offsets_with_mask).size()) + : thrust::nullopt, e_op, tmp_keys.data(), get_dataframe_buffer_begin(tmp_value_buffer)); @@ -520,6 +684,11 @@ transform_reduce_e_by_src_dst_key(raft::handle_t const& handle, edge_partition_dst_value_input, edge_partition_e_value_input, edge_partition_src_dst_key_input, + edge_partition_e_mask, + edge_offsets_with_mask + ? thrust::make_optional>( + (*edge_offsets_with_mask).data(), (*edge_offsets_with_mask).size()) + : thrust::nullopt, e_op, tmp_keys.data(), get_dataframe_buffer_begin(tmp_value_buffer)); @@ -539,6 +708,11 @@ transform_reduce_e_by_src_dst_key(raft::handle_t const& handle, edge_partition_dst_value_input, edge_partition_e_value_input, edge_partition_src_dst_key_input, + edge_partition_e_mask, + edge_offsets_with_mask + ? thrust::make_optional>( + (*edge_offsets_with_mask).data(), (*edge_offsets_with_mask).size()) + : thrust::nullopt, e_op, tmp_keys.data(), get_dataframe_buffer_begin(tmp_value_buffer)); @@ -682,8 +856,6 @@ auto transform_reduce_e_by_src_key(raft::handle_t const& handle, typename GraphViewType::vertex_type>::value); static_assert(ReduceOp::pure_function, "ReduceOp should be a pure function."); - CUGRAPH_EXPECTS(!graph_view.has_edge_mask(), "unimplemented."); - if (do_expensive_check) { // currently, nothing to do } @@ -772,8 +944,6 @@ auto transform_reduce_e_by_dst_key(raft::handle_t const& handle, typename GraphViewType::vertex_type>::value); static_assert(ReduceOp::pure_function, "ReduceOp should be a pure function."); - CUGRAPH_EXPECTS(!graph_view.has_edge_mask(), "unimplemented."); - if (do_expensive_check) { // currently, nothing to do } diff --git a/cpp/tests/CMakeLists.txt b/cpp/tests/CMakeLists.txt index c84711e1a69..4d37c93326d 100644 --- a/cpp/tests/CMakeLists.txt +++ b/cpp/tests/CMakeLists.txt @@ -396,12 +396,10 @@ ConfigureTest(RANDOM_WALKS_TEST sampling/sg_random_walks_test.cpp) ################################################################################################### # - NBR SAMPLING tests ---------------------------------------------------------------------------- ConfigureTest(UNIFORM_NEIGHBOR_SAMPLING_TEST sampling/sg_uniform_neighbor_sampling.cu) -target_link_libraries(UNIFORM_NEIGHBOR_SAMPLING_TEST PRIVATE cuco::cuco) ################################################################################################### # - SAMPLING_POST_PROCESSING tests ---------------------------------------------------------------- ConfigureTest(SAMPLING_POST_PROCESSING_TEST sampling/sampling_post_processing_test.cu) -target_link_libraries(SAMPLING_POST_PROCESSING_TEST PRIVATE cuco::cuco) ################################################################################################### # - Renumber tests -------------------------------------------------------------------------------- @@ -583,78 +581,79 @@ if(BUILD_CUGRAPH_MG_TESTS) ############################################################################################### # - MG PRIMS COUNT_IF_V tests ----------------------------------------------------------------- ConfigureTestMG(MG_COUNT_IF_V_TEST prims/mg_count_if_v.cu) - target_link_libraries(MG_COUNT_IF_V_TEST PRIVATE cuco::cuco) ############################################################################################### # - MG PRIMS TRANSFORM_REDUCE_V_FRONTIER_OUTGOING_E_BY_DST tests ------------------------------ ConfigureTestMG(MG_TRANSFORM_REDUCE_V_FRONTIER_OUTGOING_E_BY_DST_TEST prims/mg_transform_reduce_v_frontier_outgoing_e_by_dst.cu) - target_link_libraries(MG_TRANSFORM_REDUCE_V_FRONTIER_OUTGOING_E_BY_DST_TEST PRIVATE cuco::cuco) ############################################################################################### # - MG PRIMS REDUCE_V tests ------------------------------------------------------------------- ConfigureTestMG(MG_REDUCE_V_TEST prims/mg_reduce_v.cu) - target_link_libraries(MG_REDUCE_V_TEST PRIVATE cuco::cuco) ############################################################################################### # - MG PRIMS TRANSFORM_REDUCE_V tests --------------------------------------------------------- ConfigureTestMG(MG_TRANSFORM_REDUCE_V_TEST prims/mg_transform_reduce_v.cu) - target_link_libraries(MG_TRANSFORM_REDUCE_V_TEST PRIVATE cuco::cuco) ############################################################################################### # - MG PRIMS TRANSFORM_REDUCE_E tests --------------------------------------------------------- ConfigureTestMG(MG_TRANSFORM_REDUCE_E_TEST prims/mg_transform_reduce_e.cu) - target_link_libraries(MG_TRANSFORM_REDUCE_E_TEST PRIVATE cuco::cuco) + + ############################################################################################### + # - MG PRIMS TRANSFORM_REDUCE_E _BY_SRC_DST_KEY tests ----------------------------------------- + ConfigureTestMG(MG_TRANSFORM_REDUCE_E_BY_SRC_DST_KEY_TEST + prims/mg_transform_reduce_e_by_src_dst_key.cu) ############################################################################################### # - MG PRIMS TRANSFORM_E tests ---------------------------------------------------------------- ConfigureTestMG(MG_TRANSFORM_E_TEST prims/mg_transform_e.cu) - target_link_libraries(MG_TRANSFORM_E_TEST PRIVATE cuco::cuco) ############################################################################################### # - MG PRIMS COUNT_IF_E tests ----------------------------------------------------------------- ConfigureTestMG(MG_COUNT_IF_E_TEST prims/mg_count_if_e.cu) - target_link_libraries(MG_COUNT_IF_E_TEST PRIVATE cuco::cuco) ############################################################################################### # - MG PRIMS PER_V_TRANSFORM_REDUCE_INCOMING_OUTGOING_E tests --------------------------------- ConfigureTestMG(MG_PER_V_TRANSFORM_REDUCE_INCOMING_OUTGOING_E_TEST prims/mg_per_v_transform_reduce_incoming_outgoing_e.cu) - target_link_libraries(MG_PER_V_TRANSFORM_REDUCE_INCOMING_OUTGOING_E_TEST PRIVATE cuco::cuco) + + ############################################################################################### + # - MG PRIMS PER_V_TRANSFORM_REDUCE_DST_KEY_AGGREGATED_OUTGOING_E tests ----------------------- + ConfigureTestMG(MG_PER_V_TRANSFORM_REDUCE_DST_KEY_AGGREGATED_OUTGOING_E_TEST + prims/mg_per_v_transform_reduce_dst_key_aggregated_outgoing_e.cu) ############################################################################################### # - MG PRIMS EXTRACT_TRANSFORM_E tests -------------------------------------------------------- ConfigureTestMG(MG_EXTRACT_TRANSFORM_E_TEST prims/mg_extract_transform_e.cu) - target_link_libraries(MG_EXTRACT_TRANSFORM_E_TEST PRIVATE cuco::cuco) ############################################################################################### # - MG PRIMS EXTRACT_TRANSFORM_V_FRONTIER_OUTGOING_E tests ------------------------------------ ConfigureTestMG(MG_EXTRACT_TRANSFORM_V_FRONTIER_OUTGOING_E_TEST prims/mg_extract_transform_v_frontier_outgoing_e.cu) - target_link_libraries(MG_EXTRACT_TRANSFORM_V_FRONTIER_OUTGOING_E_TEST PRIVATE cuco::cuco) ############################################################################################### # - MG PRIMS PER_V_RANDOM_SELECT_TRANSFORM_OUTGOING_E tests ----------------------------------- ConfigureTestMG(MG_PER_V_RANDOM_SELECT_TRANSFORM_OUTGOING_E_TEST prims/mg_per_v_random_select_transform_outgoing_e.cu) - target_link_libraries(MG_PER_V_RANDOM_SELECT_TRANSFORM_OUTGOING_E_TEST PRIVATE cuco::cuco) ############################################################################################### # - MG PRIMS PER_V_PAIR_TRANSFORM_DST_NBR_INTERSECTION tests ---------------------------------- ConfigureTestMG(MG_PER_V_PAIR_TRANSFORM_DST_NBR_INTERSECTION_TEST prims/mg_per_v_pair_transform_dst_nbr_intersection.cu) - target_link_libraries(MG_PER_V_PAIR_TRANSFORM_DST_NBR_INTERSECTION_TEST PRIVATE cuco::cuco) + + ############################################################################################### + # - MG PRIMS TRANSFORM_REDUCE_DST_NBR_INTERSECTION OF_E_ENDPOINTS_BY_V tests ------------------ + ConfigureTestMG(MG_TRANSFORM_REDUCE_DST_NBR_INTERSECTION_BY_E_ENDPOINTS_BY_V_TEST + prims/mg_transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v.cu) ############################################################################################### # - MG PRIMS PER_V_PAIR_TRANSFORM_DST_NBR_WEIGHTED_INTERSECTION tests ------------------------- ConfigureTestMG(MG_PER_V_PAIR_TRANSFORM_DST_NBR_WEIGHTED_INTERSECTION_TEST - prims/mg_per_v_pair_transform_dst_nbr_weighted_intersection.cu) - target_link_libraries(MG_PER_V_PAIR_TRANSFORM_DST_NBR_WEIGHTED_INTERSECTION_TEST PRIVATE cuco::cuco) + prims/mg_per_v_pair_transform_dst_nbr_weighted_intersection.cu) ############################################################################################### # - MG NBR SAMPLING tests --------------------------------------------------------------------- ConfigureTestMG(MG_UNIFORM_NEIGHBOR_SAMPLING_TEST sampling/mg_uniform_neighbor_sampling.cu) - target_link_libraries(MG_UNIFORM_NEIGHBOR_SAMPLING_TEST PRIVATE cuco::cuco) ############################################################################################### # - MG RANDOM_WALKS tests --------------------------------------------------------------------- diff --git a/cpp/tests/prims/mg_per_v_transform_reduce_dst_key_aggregated_outgoing_e.cu b/cpp/tests/prims/mg_per_v_transform_reduce_dst_key_aggregated_outgoing_e.cu new file mode 100644 index 00000000000..af56807746a --- /dev/null +++ b/cpp/tests/prims/mg_per_v_transform_reduce_dst_key_aggregated_outgoing_e.cu @@ -0,0 +1,599 @@ +/* + * Copyright (c) 2021-2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "prims/per_v_transform_reduce_dst_key_aggregated_outgoing_e.cuh" +#include "prims/reduce_op.cuh" +#include "prims/update_edge_src_dst_property.cuh" +#include "property_generator.cuh" +#include "result_compare.cuh" +#include "utilities/base_fixture.hpp" +#include "utilities/device_comm_wrapper.hpp" +#include "utilities/mg_utilities.hpp" +#include "utilities/test_graphs.hpp" +#include "utilities/test_utilities.hpp" +#include "utilities/thrust_wrapper.hpp" + +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +#include + +#include +#include + +template +struct key_aggregated_e_op_t { + __device__ result_t operator()(vertex_t src, + vertex_t key, + result_t src_property, + result_t key_property, + edge_value_t edge_property) const + { + if (src_property < key_property) { + return src_property; + } else { + return key_property; + } + } +}; + +struct Prims_Usecase { + bool test_weighted{false}; + bool edge_masking{false}; + bool check_correctness{true}; +}; + +template +class Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE + : public ::testing::TestWithParam> { + public: + Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE() {} + + static void SetUpTestCase() { handle_ = cugraph::test::initialize_mg_handle(); } + + static void TearDownTestCase() { handle_.reset(); } + + virtual void SetUp() {} + virtual void TearDown() {} + + // Compare the results of per_v_transform_reduce_incoming|outgoing_e primitive + template + void run_current_test(Prims_Usecase const& prims_usecase, input_usecase_t const& input_usecase) + { + HighResTimer hr_timer{}; + + auto const comm_rank = handle_->get_comms().get_rank(); + + // 1. create MG graph + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.start("MG Construct graph"); + } + + auto [mg_graph, mg_edge_weights, mg_renumber_map] = + cugraph::test::construct_graph( + *handle_, input_usecase, prims_usecase.test_weighted, true); + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.stop(); + hr_timer.display_and_clear(std::cout); + } + + auto mg_graph_view = mg_graph.view(); + auto mg_edge_weight_view = + mg_edge_weights ? std::make_optional((*mg_edge_weights).view()) : std::nullopt; + + std::optional> edge_mask{std::nullopt}; + if (prims_usecase.edge_masking) { + edge_mask = + cugraph::test::generate::edge_property(*handle_, mg_graph_view, 2); + mg_graph_view.attach_edge_mask((*edge_mask).view()); + } + + // 2. run MG per_v_transform_reduce_dst_key_aggregated_outgoing_e + + const int vertex_prop_hash_bin_count = 5; + const int key_hash_bin_count = 10; + const int key_prop_hash_bin_count = 20; + const int initial_value = 4; + + auto property_initial_value = + cugraph::test::generate::initial_value(initial_value); + + auto mg_vertex_prop = cugraph::test::generate::vertex_property( + *handle_, *mg_renumber_map, vertex_prop_hash_bin_count); + auto mg_src_prop = cugraph::test::generate::src_property( + *handle_, mg_graph_view, mg_vertex_prop); + + auto mg_vertex_key = cugraph::test::generate::vertex_property( + *handle_, *mg_renumber_map, key_hash_bin_count); + auto mg_dst_key = cugraph::test::generate::dst_property( + *handle_, mg_graph_view, mg_vertex_key); + + rmm::device_uvector mg_kv_store_keys(comm_rank == 0 ? key_hash_bin_count : int{0}, + handle_->get_stream()); + thrust::sequence( + handle_->get_thrust_policy(), mg_kv_store_keys.begin(), mg_kv_store_keys.end(), vertex_t{0}); + mg_kv_store_keys = cugraph::detail::shuffle_ext_vertices_to_local_gpu_by_vertex_partitioning( + *handle_, std::move(mg_kv_store_keys)); + auto mg_kv_store_values = cugraph::test::generate::vertex_property( + *handle_, mg_kv_store_keys, key_prop_hash_bin_count); + + static_assert(std::is_same_v || + std::is_same_v>); + result_t invalid_value{}; + if constexpr (std::is_same_v) { + invalid_value = std::numeric_limits::max(); + } else { + invalid_value = + thrust::make_tuple(std::numeric_limits::max(), std::numeric_limits::max()); + } + cugraph::kv_store_t mg_kv_store( + mg_kv_store_keys.begin(), + mg_kv_store_keys.end(), + cugraph::get_dataframe_buffer_begin(mg_kv_store_values), + cugraph::invalid_vertex_id::value, + invalid_value, + handle_->get_stream()); + + enum class reduction_type_t { PLUS, ELEMWISE_MIN, ELEMWISE_MAX }; + std::array reduction_types = { + reduction_type_t::PLUS, reduction_type_t::ELEMWISE_MIN, reduction_type_t::ELEMWISE_MAX}; + + std::vector(0, rmm::cuda_stream_view{}))> + mg_results{}; + mg_results.reserve(reduction_types.size()); + + for (size_t i = 0; i < reduction_types.size(); ++i) { + mg_results.push_back(cugraph::allocate_dataframe_buffer( + mg_graph_view.local_vertex_partition_range_size(), handle_->get_stream())); + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.start("MG per_v_transform_reduce_outgoing_e"); + } + + switch (reduction_types[i]) { + case reduction_type_t::PLUS: + if (mg_edge_weight_view) { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + mg_graph_view, + mg_src_prop.view(), + *mg_edge_weight_view, + mg_dst_key.view(), + mg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::plus{}, + cugraph::get_dataframe_buffer_begin(mg_results[i])); + } else { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + mg_graph_view, + mg_src_prop.view(), + cugraph::edge_dummy_property_t{}.view(), + mg_dst_key.view(), + mg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::plus{}, + cugraph::get_dataframe_buffer_begin(mg_results[i])); + } + break; + case reduction_type_t::ELEMWISE_MIN: + if (mg_edge_weight_view) { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + mg_graph_view, + mg_src_prop.view(), + *mg_edge_weight_view, + mg_dst_key.view(), + mg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::elementwise_minimum{}, + cugraph::get_dataframe_buffer_begin(mg_results[i])); + } else { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + mg_graph_view, + mg_src_prop.view(), + cugraph::edge_dummy_property_t{}.view(), + mg_dst_key.view(), + mg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::elementwise_minimum{}, + cugraph::get_dataframe_buffer_begin(mg_results[i])); + } + break; + case reduction_type_t::ELEMWISE_MAX: + if (mg_edge_weight_view) { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + mg_graph_view, + mg_src_prop.view(), + *mg_edge_weight_view, + mg_dst_key.view(), + mg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::elementwise_maximum{}, + cugraph::get_dataframe_buffer_begin(mg_results[i])); + } else { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + mg_graph_view, + mg_src_prop.view(), + cugraph::edge_dummy_property_t{}.view(), + mg_dst_key.view(), + mg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::elementwise_maximum{}, + cugraph::get_dataframe_buffer_begin(mg_results[i])); + } + break; + default: FAIL() << "should not be reached."; + } + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.stop(); + hr_timer.display_and_clear(std::cout); + } + } + + // 3. compare SG & MG results + + if (prims_usecase.check_correctness) { + cugraph::graph_t sg_graph(*handle_); + std::optional< + cugraph::edge_property_t, weight_t>> + sg_edge_weights{std::nullopt}; + std::tie(sg_graph, sg_edge_weights, std::ignore) = cugraph::test::mg_graph_to_sg_graph( + *handle_, + mg_graph_view, + std::optional>{std::nullopt}, + std::make_optional>((*mg_renumber_map).data(), + (*mg_renumber_map).size()), + false); + + for (size_t i = 0; i < reduction_types.size(); ++i) { + auto mg_aggregate_results = + cugraph::allocate_dataframe_buffer(0, handle_->get_stream()); + + static_assert(cugraph::is_arithmetic_or_thrust_tuple_of_arithmetic::value); + if constexpr (std::is_arithmetic_v) { + std::tie(std::ignore, mg_aggregate_results) = + cugraph::test::mg_vertex_property_values_to_sg_vertex_property_values( + *handle_, + std::make_optional>((*mg_renumber_map).data(), + (*mg_renumber_map).size()), + mg_graph_view.local_vertex_partition_range(), + std::optional>{std::nullopt}, + std::optional>{std::nullopt}, + raft::device_span(mg_results[i].data(), mg_results[i].size())); + } else { + std::tie(std::ignore, std::get<0>(mg_aggregate_results)) = + cugraph::test::mg_vertex_property_values_to_sg_vertex_property_values( + *handle_, + std::make_optional>((*mg_renumber_map).data(), + (*mg_renumber_map).size()), + mg_graph_view.local_vertex_partition_range(), + std::optional>{std::nullopt}, + std::optional>{std::nullopt}, + raft::device_span::type const>( + std::get<0>(mg_results[i]).data(), std::get<0>(mg_results[i]).size())); + + std::tie(std::ignore, std::get<1>(mg_aggregate_results)) = + cugraph::test::mg_vertex_property_values_to_sg_vertex_property_values( + *handle_, + std::make_optional>((*mg_renumber_map).data(), + (*mg_renumber_map).size()), + mg_graph_view.local_vertex_partition_range(), + std::optional>{std::nullopt}, + std::optional>{std::nullopt}, + raft::device_span::type const>( + std::get<1>(mg_results[i]).data(), std::get<1>(mg_results[i]).size())); + } + + if (handle_->get_comms().get_rank() == int{0}) { + auto sg_graph_view = sg_graph.view(); + auto sg_edge_weight_view = + sg_edge_weights ? std::make_optional((*sg_edge_weights).view()) : std::nullopt; + + auto sg_vertex_prop = cugraph::test::generate::vertex_property( + *handle_, + thrust::make_counting_iterator(sg_graph_view.local_vertex_partition_range_first()), + thrust::make_counting_iterator(sg_graph_view.local_vertex_partition_range_last()), + vertex_prop_hash_bin_count); + auto sg_src_prop = cugraph::test::generate::src_property( + *handle_, sg_graph_view, sg_vertex_prop); + + auto sg_vertex_key = cugraph::test::generate::vertex_property( + *handle_, + thrust::make_counting_iterator(sg_graph_view.local_vertex_partition_range_first()), + thrust::make_counting_iterator(sg_graph_view.local_vertex_partition_range_last()), + key_hash_bin_count); + auto sg_dst_key = cugraph::test::generate::dst_property( + *handle_, sg_graph_view, sg_vertex_key); + + rmm::device_uvector sg_kv_store_keys(key_hash_bin_count, handle_->get_stream()); + thrust::sequence(handle_->get_thrust_policy(), + sg_kv_store_keys.begin(), + sg_kv_store_keys.end(), + vertex_t{0}); + auto sg_kv_store_values = cugraph::test::generate::vertex_property( + *handle_, sg_kv_store_keys, key_prop_hash_bin_count); + + cugraph::kv_store_t sg_kv_store( + sg_kv_store_keys.begin(), + sg_kv_store_keys.end(), + cugraph::get_dataframe_buffer_begin(sg_kv_store_values), + cugraph::invalid_vertex_id::value, + invalid_value, + handle_->get_stream()); + + cugraph::test::vector_result_compare compare{*handle_}; + + auto global_result = cugraph::allocate_dataframe_buffer( + sg_graph_view.local_vertex_partition_range_size(), handle_->get_stream()); + + switch (reduction_types[i]) { + case reduction_type_t::PLUS: + if (sg_edge_weight_view) { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + sg_graph_view, + sg_src_prop.view(), + *sg_edge_weight_view, + sg_dst_key.view(), + sg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::plus{}, + cugraph::get_dataframe_buffer_begin(global_result)); + } else { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + sg_graph_view, + sg_src_prop.view(), + cugraph::edge_dummy_property_t{}.view(), + sg_dst_key.view(), + sg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::plus{}, + cugraph::get_dataframe_buffer_begin(global_result)); + } + break; + case reduction_type_t::ELEMWISE_MIN: + if (sg_edge_weight_view) { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + sg_graph_view, + sg_src_prop.view(), + *sg_edge_weight_view, + sg_dst_key.view(), + sg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::elementwise_minimum{}, + cugraph::get_dataframe_buffer_begin(global_result)); + } else { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + sg_graph_view, + sg_src_prop.view(), + cugraph::edge_dummy_property_t{}.view(), + sg_dst_key.view(), + sg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::elementwise_minimum{}, + cugraph::get_dataframe_buffer_begin(global_result)); + } + break; + case reduction_type_t::ELEMWISE_MAX: + if (sg_edge_weight_view) { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + sg_graph_view, + sg_src_prop.view(), + *sg_edge_weight_view, + sg_dst_key.view(), + sg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::elementwise_maximum{}, + cugraph::get_dataframe_buffer_begin(global_result)); + } else { + per_v_transform_reduce_dst_key_aggregated_outgoing_e( + *handle_, + sg_graph_view, + sg_src_prop.view(), + cugraph::edge_dummy_property_t{}.view(), + sg_dst_key.view(), + sg_kv_store.view(), + key_aggregated_e_op_t{}, + property_initial_value, + cugraph::reduce_op::elementwise_maximum{}, + cugraph::get_dataframe_buffer_begin(global_result)); + } + break; + default: FAIL() << "should not be reached."; + } + + ASSERT_TRUE(compare(mg_aggregate_results, global_result)); + } + } + } + } + + private: + static std::unique_ptr handle_; +}; + +template +std::unique_ptr + Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE::handle_ = nullptr; + +using Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_File = + Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE; +using Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_Rmat = + Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE; + +// FIXME: this tests do not build as cugrpah::kv_store_t has a build error when use_binary_search = +// false and value_t is thrust::tuple, this will be fixed in a separate PR +#if 0 +TEST_P(Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_File, + CheckInt32Int32FloatTupleIntFloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test>(std::get<0>(param), + std::get<1>(param)); +} + +TEST_P(Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_Rmat, + CheckInt32Int32FloatTupleIntFloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test>( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_Rmat, + CheckInt32Int64FloatTupleIntFloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test>( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_Rmat, + CheckInt64Int64FloatTupleIntFloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test>( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} +#endif + +TEST_P(Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_File, + CheckInt32Int32FloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test(std::get<0>(param), std::get<1>(param)); +} + +TEST_P(Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_Rmat, + CheckInt32Int32FloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_Rmat, + CheckInt32Int64FloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_Rmat, + CheckInt64Int64FloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +INSTANTIATE_TEST_SUITE_P( + file_test, + Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_File, + ::testing::Combine( + ::testing::Values(Prims_Usecase{false, false, true}, + Prims_Usecase{false, true, true}, + Prims_Usecase{true, false, true}, + Prims_Usecase{true, true, true}), + ::testing::Values(cugraph::test::File_Usecase("test/datasets/karate.mtx"), + cugraph::test::File_Usecase("test/datasets/web-Google.mtx"), + cugraph::test::File_Usecase("test/datasets/ljournal-2008.mtx"), + cugraph::test::File_Usecase("test/datasets/webbase-1M.mtx")))); + +INSTANTIATE_TEST_SUITE_P(rmat_small_test, + Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_Rmat, + ::testing::Combine(::testing::Values(Prims_Usecase{false, false, true}, + Prims_Usecase{false, true, true}, + Prims_Usecase{true, false, true}, + Prims_Usecase{true, true, true}), + ::testing::Values(cugraph::test::Rmat_Usecase( + 10, 16, 0.57, 0.19, 0.19, 0, false, false)))); + +INSTANTIATE_TEST_SUITE_P( + rmat_benchmark_test, /* note that scale & edge factor can be overridden in benchmarking (with + --gtest_filter to select only the rmat_benchmark_test with a specific + vertex & edge type combination) by command line arguments and do not + include more than one Rmat_Usecase that differ only in scale or edge + factor (to avoid running same benchmarks more than once) */ + Tests_MGPerVTransformReduceDstKeyAggregatedOutgoingE_Rmat, + ::testing::Combine( + ::testing::Values(Prims_Usecase{false, false, false}, + Prims_Usecase{false, true, false}, + Prims_Usecase{true, false, false}, + Prims_Usecase{true, true, false}), + ::testing::Values(cugraph::test::Rmat_Usecase(20, 32, 0.57, 0.19, 0.19, 0, false, false)))); + +CUGRAPH_MG_TEST_PROGRAM_MAIN() diff --git a/cpp/tests/prims/mg_per_v_transform_reduce_incoming_outgoing_e.cu b/cpp/tests/prims/mg_per_v_transform_reduce_incoming_outgoing_e.cu index efab53f89e6..a459a677569 100644 --- a/cpp/tests/prims/mg_per_v_transform_reduce_incoming_outgoing_e.cu +++ b/cpp/tests/prims/mg_per_v_transform_reduce_incoming_outgoing_e.cu @@ -18,6 +18,7 @@ #include "prims/reduce_op.cuh" #include "prims/update_edge_src_dst_property.cuh" #include "property_generator.cuh" +#include "result_compare.cuh" #include "utilities/base_fixture.hpp" #include "utilities/device_comm_wrapper.hpp" #include "utilities/mg_utilities.hpp" @@ -72,83 +73,6 @@ struct e_op_t { } }; -template -__host__ __device__ bool compare_scalar(T val0, T val1, thrust::optional threshold_ratio) -{ - if (threshold_ratio) { - return std::abs(val0 - val1) <= (std::max(std::abs(val0), std::abs(val1)) * *threshold_ratio); - } else { - return val0 == val1; - } -} - -template -struct comparator { - static constexpr double threshold_ratio{1e-2}; - - __host__ __device__ bool operator()(T t0, T t1) const - { - static_assert(cugraph::is_arithmetic_or_thrust_tuple_of_arithmetic::value); - if constexpr (std::is_arithmetic_v) { - return compare_scalar( - t0, - t1, - std::is_floating_point_v ? thrust::optional{threshold_ratio} : thrust::nullopt); - } else { - auto val0 = thrust::get<0>(t0); - auto val1 = thrust::get<0>(t1); - auto passed = compare_scalar(val0, - val1, - std::is_floating_point_v - ? thrust::optional{threshold_ratio} - : thrust::nullopt); - if (!passed) return false; - - if constexpr (thrust::tuple_size::value >= 2) { - auto val0 = thrust::get<1>(t0); - auto val1 = thrust::get<1>(t1); - auto passed = compare_scalar(val0, - val1, - std::is_floating_point_v - ? thrust::optional{threshold_ratio} - : thrust::nullopt); - if (!passed) return false; - } - if constexpr (thrust::tuple_size::value >= 3) { - assert(false); // should not be reached. - } - return true; - } - } -}; - -struct result_compare { - const raft::handle_t& handle_; - result_compare(raft::handle_t const& handle) : handle_(handle) {} - - template - auto operator()(const std::tuple...>& t1, - const std::tuple...>& t2) - { - using type = thrust::tuple; - return equality_impl(t1, t2, std::make_index_sequence::value>()); - } - - template - auto operator()(const rmm::device_uvector& t1, const rmm::device_uvector& t2) - { - return thrust::equal( - handle_.get_thrust_policy(), t1.begin(), t1.end(), t2.begin(), comparator()); - } - - private: - template - auto equality_impl(T& t1, T& t2, std::index_sequence) - { - return (... && (result_compare::operator()(std::get(t1), std::get(t2)))); - } -}; - struct Prims_Usecase { bool test_weighted{false}; bool edge_masking{false}; @@ -440,7 +364,7 @@ class Tests_MGPerVTransformReduceIncomingOutgoingE *handle_, sg_graph_view, sg_vertex_prop); auto sg_dst_prop = cugraph::test::generate::dst_property( *handle_, sg_graph_view, sg_vertex_prop); - result_compare comp{*handle_}; + cugraph::test::vector_result_compare compare{*handle_}; auto global_in_result = cugraph::allocate_dataframe_buffer( sg_graph_view.local_vertex_partition_range_size(), handle_->get_stream()); @@ -528,8 +452,8 @@ class Tests_MGPerVTransformReduceIncomingOutgoingE default: FAIL() << "should not be reached."; } - ASSERT_TRUE(comp(mg_aggregate_in_results, global_in_result)); - ASSERT_TRUE(comp(mg_aggregate_out_results, global_out_result)); + ASSERT_TRUE(compare(mg_aggregate_in_results, global_in_result)); + ASSERT_TRUE(compare(mg_aggregate_out_results, global_out_result)); } } } diff --git a/cpp/tests/prims/mg_reduce_v.cu b/cpp/tests/prims/mg_reduce_v.cu index da3354b77d9..783e17b6d8f 100644 --- a/cpp/tests/prims/mg_reduce_v.cu +++ b/cpp/tests/prims/mg_reduce_v.cu @@ -17,6 +17,7 @@ #include "prims/property_op_utils.cuh" #include "prims/reduce_v.cuh" #include "property_generator.cuh" +#include "result_compare.cuh" #include "utilities/base_fixture.hpp" #include "utilities/device_comm_wrapper.hpp" #include "utilities/mg_utilities.hpp" @@ -49,50 +50,6 @@ #include -template -struct result_compare { - static constexpr double threshold_ratio{1e-2}; - constexpr auto operator()(const T& t1, const T& t2) - { - if constexpr (std::is_floating_point_v) { - bool passed = (t1 == t2) // when t1 == t2 == 0 - || - (std::abs(t1 - t2) < (std::max(std::abs(t1), std::abs(t2)) * threshold_ratio)); - return passed; - } - return t1 == t2; - } -}; - -template -struct result_compare> { - static constexpr double threshold_ratio{1e-3}; - - using Type = thrust::tuple; - constexpr auto operator()(const Type& t1, const Type& t2) - { - return equality_impl(t1, t2, std::make_index_sequence::value>()); - } - - private: - template - constexpr bool equal(T t1, T t2) - { - if constexpr (std::is_floating_point_v) { - bool passed = (t1 == t2) // when t1 == t2 == 0 - || - (std::abs(t1 - t2) < (std::max(std::abs(t1), std::abs(t2)) * threshold_ratio)); - return passed; - } - return t1 == t2; - } - template - constexpr auto equality_impl(T& t1, T& t2, std::index_sequence) - { - return (... && (equal(thrust::get(t1), thrust::get(t2)))); - } -}; - struct Prims_Usecase { bool check_correctness{true}; }; @@ -249,7 +206,7 @@ class Tests_MGReduceV break; default: FAIL() << "should not be reached."; } - result_compare compare{}; + cugraph::test::scalar_result_compare compare{}; ASSERT_TRUE(compare(expected_result, results[reduction_type])); } } diff --git a/cpp/tests/prims/mg_transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v.cu b/cpp/tests/prims/mg_transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v.cu new file mode 100644 index 00000000000..5fa37250e21 --- /dev/null +++ b/cpp/tests/prims/mg_transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v.cu @@ -0,0 +1,289 @@ +/* + * Copyright (c) 2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "property_generator.cuh" + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +template +struct intersection_op_t { + __device__ thrust::tuple operator()( + vertex_t v0, + vertex_t v1, + edge_t v0_prop, + edge_t v1_prop, + raft::device_span intersection) const + { + return thrust::make_tuple( + v0_prop + v1_prop, v0_prop + v1_prop, static_cast(intersection.size())); + } +}; + +struct Prims_Usecase { + bool edge_masking{false}; + bool check_correctness{true}; +}; + +template +class Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV + : public ::testing::TestWithParam> { + public: + Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV() {} + + static void SetUpTestCase() { handle_ = cugraph::test::initialize_mg_handle(); } + + static void TearDownTestCase() { handle_.reset(); } + + virtual void SetUp() {} + virtual void TearDown() {} + + // Verify the results of transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v primitive + template + void run_current_test(Prims_Usecase const& prims_usecase, input_usecase_t const& input_usecase) + { + HighResTimer hr_timer{}; + + auto const comm_rank = handle_->get_comms().get_rank(); + auto const comm_size = handle_->get_comms().get_size(); + + // 1. create MG graph + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.start("MG Construct graph"); + } + + cugraph::graph_t mg_graph(*handle_); + std::optional> mg_renumber_map{std::nullopt}; + std::tie(mg_graph, std::ignore, mg_renumber_map) = + cugraph::test::construct_graph( + *handle_, input_usecase, false, true); + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.stop(); + hr_timer.display_and_clear(std::cout); + } + + auto mg_graph_view = mg_graph.view(); + + std::optional> edge_mask{std::nullopt}; + if (prims_usecase.edge_masking) { + edge_mask = + cugraph::test::generate::edge_property(*handle_, mg_graph_view, 2); + mg_graph_view.attach_edge_mask((*edge_mask).view()); + } + + // 2. run MG transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v primitive + + const int hash_bin_count = 5; + const int initial_value = 4; + + auto property_initial_value = + cugraph::test::generate::initial_value(initial_value); + + auto mg_vertex_prop = cugraph::test::generate::vertex_property( + *handle_, *mg_renumber_map, hash_bin_count); + auto mg_src_prop = cugraph::test::generate::src_property( + *handle_, mg_graph_view, mg_vertex_prop); + auto mg_dst_prop = cugraph::test::generate::dst_property( + *handle_, mg_graph_view, mg_vertex_prop); + + auto mg_result_buffer = rmm::device_uvector( + mg_graph_view.local_vertex_partition_range_size(), handle_->get_stream()); + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.start("MG transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v"); + } + + cugraph::transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v( + *handle_, + mg_graph_view, + mg_src_prop.view(), + mg_dst_prop.view(), + intersection_op_t{}, + property_initial_value, + mg_result_buffer.begin()); + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.stop(); + hr_timer.display_and_clear(std::cout); + } + + // 3. validate MG results + + if (prims_usecase.check_correctness) { + rmm::device_uvector mg_aggregate_result_buffer(0, handle_->get_stream()); + std::tie(std::ignore, mg_aggregate_result_buffer) = + cugraph::test::mg_vertex_property_values_to_sg_vertex_property_values( + *handle_, + std::make_optional>((*mg_renumber_map).data(), + (*mg_renumber_map).size()), + mg_graph_view.local_vertex_partition_range(), + std::optional>{std::nullopt}, + std::optional>{std::nullopt}, + raft::device_span(mg_result_buffer.data(), mg_result_buffer.size())); + + cugraph::graph_t sg_graph(*handle_); + std::tie(sg_graph, std::ignore, std::ignore) = cugraph::test::mg_graph_to_sg_graph( + *handle_, + mg_graph_view, + std::optional>{std::nullopt}, + std::make_optional>((*mg_renumber_map).data(), + (*mg_renumber_map).size()), + false); + + if (handle_->get_comms().get_rank() == 0) { + auto sg_graph_view = sg_graph.view(); + + auto sg_vertex_prop = cugraph::test::generate::vertex_property( + *handle_, + thrust::make_counting_iterator(sg_graph_view.local_vertex_partition_range_first()), + thrust::make_counting_iterator(sg_graph_view.local_vertex_partition_range_last()), + hash_bin_count); + auto sg_src_prop = cugraph::test::generate::src_property( + *handle_, sg_graph_view, sg_vertex_prop); + auto sg_dst_prop = cugraph::test::generate::dst_property( + *handle_, sg_graph_view, sg_vertex_prop); + + auto sg_result_buffer = cugraph::allocate_dataframe_buffer( + sg_graph_view.number_of_vertices(), handle_->get_stream()); + + cugraph::transform_reduce_dst_nbr_intersection_of_e_endpoints_by_v( + *handle_, + sg_graph_view, + sg_src_prop.view(), + sg_dst_prop.view(), + intersection_op_t{}, + property_initial_value, + sg_result_buffer.begin()); + + bool valid = thrust::equal(handle_->get_thrust_policy(), + mg_aggregate_result_buffer.begin(), + mg_aggregate_result_buffer.end(), + sg_result_buffer.begin()); + + ASSERT_TRUE(valid); + } + } + } + + private: + static std::unique_ptr handle_; +}; + +template +std::unique_ptr + Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV::handle_ = nullptr; + +using Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV_File = + Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV; +using Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV_Rmat = + Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV; + +TEST_P(Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV_File, CheckInt32Int32Float) +{ + auto param = GetParam(); + run_current_test(std::get<0>(param), std::get<1>(param)); +} + +TEST_P(Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV_Rmat, CheckInt32Int32Float) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV_Rmat, CheckInt32Int64Float) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV_Rmat, CheckInt64Int64Float) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +INSTANTIATE_TEST_SUITE_P( + file_test, + Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV_File, + ::testing::Combine( + ::testing::Values(Prims_Usecase{false, true}, Prims_Usecase{true, true}), + ::testing::Values(cugraph::test::File_Usecase("test/datasets/karate.mtx"), + cugraph::test::File_Usecase("test/datasets/netscience.mtx")))); + +INSTANTIATE_TEST_SUITE_P(rmat_small_test, + Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV_Rmat, + ::testing::Combine(::testing::Values(Prims_Usecase{false, true}, + Prims_Usecase{true, true}), + ::testing::Values(cugraph::test::Rmat_Usecase( + 10, 16, 0.57, 0.19, 0.19, 0, false, false)))); + +INSTANTIATE_TEST_SUITE_P( + rmat_benchmark_test, /* note that scale & edge factor can be overridden in benchmarking (with + --gtest_filter to select only the rmat_benchmark_test with a specific + vertex & edge type combination) by command line arguments and do not + include more than one Rmat_Usecase that differ only in scale or edge + factor (to avoid running same benchmarks more than once) */ + Tests_MGTransformReduceDstNbrIntersectionOfEEndpointsByV_Rmat, + ::testing::Combine( + ::testing::Values(Prims_Usecase{false, false}, Prims_Usecase{true, false}), + ::testing::Values(cugraph::test::Rmat_Usecase(20, 32, 0.57, 0.19, 0.19, 0, false, false)))); + +CUGRAPH_MG_TEST_PROGRAM_MAIN() diff --git a/cpp/tests/prims/mg_transform_reduce_e.cu b/cpp/tests/prims/mg_transform_reduce_e.cu index c8ce9fc3a47..53f37e83b30 100644 --- a/cpp/tests/prims/mg_transform_reduce_e.cu +++ b/cpp/tests/prims/mg_transform_reduce_e.cu @@ -17,6 +17,7 @@ #include "prims/transform_reduce_e.cuh" #include "prims/update_edge_src_dst_property.cuh" #include "property_generator.cuh" +#include "result_compare.cuh" #include "utilities/base_fixture.hpp" #include "utilities/device_comm_wrapper.hpp" #include "utilities/mg_utilities.hpp" @@ -52,44 +53,6 @@ #include -template -struct result_compare { - static constexpr double threshold_ratio{1e-3}; - constexpr auto operator()(const T& t1, const T& t2) - { - if constexpr (std::is_floating_point_v) { - return std::abs(t1 - t2) < (std::max(t1, t2) * threshold_ratio); - } - return t1 == t2; - } -}; - -template -struct result_compare> { - static constexpr double threshold_ratio{1e-3}; - - using type = thrust::tuple; - constexpr auto operator()(const type& t1, const type& t2) - { - return equality_impl(t1, t2, std::make_index_sequence::value>()); - } - - private: - template - constexpr bool equal(T t1, T t2) - { - if constexpr (std::is_floating_point_v) { - return std::abs(t1 - t2) < (std::max(t1, t2) * threshold_ratio); - } - return t1 == t2; - } - template - constexpr auto equality_impl(T& t1, T& t2, std::index_sequence) - { - return (... && (equal(thrust::get(t1), thrust::get(t2)))); - } -}; - struct Prims_Usecase { bool test_weighted{false}; bool edge_masking{false}; @@ -231,7 +194,7 @@ class Tests_MGTransformReduceE } }, property_initial_value); - result_compare compare{}; + cugraph::test::scalar_result_compare compare{}; ASSERT_TRUE(compare(expected_result, result)); } } diff --git a/cpp/tests/prims/mg_transform_reduce_e_by_src_dst_key.cu b/cpp/tests/prims/mg_transform_reduce_e_by_src_dst_key.cu new file mode 100644 index 00000000000..457e6b5ab93 --- /dev/null +++ b/cpp/tests/prims/mg_transform_reduce_e_by_src_dst_key.cu @@ -0,0 +1,495 @@ +/* + * Copyright (c) 2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "property_generator.cuh" +#include "result_compare.cuh" + +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +#include +#include + +#include +#include +#include +#include +#include +#include +#include + +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +struct Prims_Usecase { + bool test_weighted{false}; + bool edge_masking{false}; + bool check_correctness{true}; +}; + +template +class Tests_MGTransformReduceEBySrcDstKey + : public ::testing::TestWithParam> { + public: + Tests_MGTransformReduceEBySrcDstKey() {} + + static void SetUpTestCase() { handle_ = cugraph::test::initialize_mg_handle(); } + + static void TearDownTestCase() { handle_.reset(); } + + virtual void SetUp() {} + virtual void TearDown() {} + + // Compare the results of transform_reduce_e_by_src|dst_key primitive + template + void run_current_test(Prims_Usecase const& prims_usecase, input_usecase_t const& input_usecase) + { + HighResTimer hr_timer{}; + + // 1. create MG graph + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.start("MG Construct graph"); + } + + cugraph::graph_t mg_graph(*handle_); + std::optional> mg_renumber_map{std::nullopt}; + std::tie(mg_graph, std::ignore, mg_renumber_map) = + cugraph::test::construct_graph( + *handle_, input_usecase, prims_usecase.test_weighted, true); + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.stop(); + hr_timer.display_and_clear(std::cout); + } + + auto mg_graph_view = mg_graph.view(); + + std::optional> edge_mask{std::nullopt}; + if (prims_usecase.edge_masking) { + edge_mask = + cugraph::test::generate::edge_property(*handle_, mg_graph_view, 2); + mg_graph_view.attach_edge_mask((*edge_mask).view()); + } + + // 2. run MG transform reduce + + const int hash_bin_count = 5; + const int initial_value = 4; + + auto property_initial_value = + cugraph::test::generate::initial_value(initial_value); + + auto mg_vertex_prop = cugraph::test::generate::vertex_property( + *handle_, *mg_renumber_map, hash_bin_count); + auto mg_src_prop = cugraph::test::generate::src_property( + *handle_, mg_graph_view, mg_vertex_prop); + auto mg_dst_prop = cugraph::test::generate::dst_property( + *handle_, mg_graph_view, mg_vertex_prop); + + auto mg_vertex_key = cugraph::test::generate::vertex_property( + *handle_, *mg_renumber_map, hash_bin_count); + auto mg_src_key = cugraph::test::generate::src_property( + *handle_, mg_graph_view, mg_vertex_key); + auto mg_dst_key = cugraph::test::generate::dst_property( + *handle_, mg_graph_view, mg_vertex_key); + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.start("MG transform_reduce_e_by_src_key"); + } + + auto [by_src_keys, by_src_values] = transform_reduce_e_by_src_key( + *handle_, + mg_graph_view, + mg_src_prop.view(), + mg_dst_prop.view(), + cugraph::edge_dummy_property_t{}.view(), + mg_src_key.view(), + [] __device__(auto src, auto dst, auto src_property, auto dst_property, thrust::nullopt_t) { + if (src_property < dst_property) { + return src_property; + } else { + return dst_property; + } + }, + property_initial_value, + cugraph::reduce_op::plus{}); + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.stop(); + hr_timer.display_and_clear(std::cout); + } + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.start("MG transform_reduce_e_by_dst_key"); + } + + auto [by_dst_keys, by_dst_values] = transform_reduce_e_by_dst_key( + *handle_, + mg_graph_view, + mg_src_prop.view(), + mg_dst_prop.view(), + cugraph::edge_dummy_property_t{}.view(), + mg_dst_key.view(), + [] __device__(auto src, auto dst, auto src_property, auto dst_property, thrust::nullopt_t) { + if (src_property < dst_property) { + return src_property; + } else { + return dst_property; + } + }, + property_initial_value, + cugraph::reduce_op::plus{}); + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + handle_->get_comms().barrier(); + hr_timer.stop(); + hr_timer.display_and_clear(std::cout); + } + + // 3. compare SG & MG results + + if (prims_usecase.check_correctness) { + auto mg_aggregate_by_src_keys = + cugraph::test::device_gatherv(*handle_, by_src_keys.data(), by_src_keys.size()); + auto mg_aggregate_by_src_values = + cugraph::allocate_dataframe_buffer(0, handle_->get_stream()); + if constexpr (std::is_arithmetic_v) { + mg_aggregate_by_src_values = + cugraph::test::device_gatherv(*handle_, by_src_values.data(), by_src_values.size()); + } else { + std::get<0>(mg_aggregate_by_src_values) = cugraph::test::device_gatherv( + *handle_, std::get<0>(by_src_values).data(), std::get<0>(by_src_values).size()); + std::get<1>(mg_aggregate_by_src_values) = cugraph::test::device_gatherv( + *handle_, std::get<1>(by_src_values).data(), std::get<1>(by_src_values).size()); + } + thrust::sort_by_key(handle_->get_thrust_policy(), + mg_aggregate_by_src_keys.begin(), + mg_aggregate_by_src_keys.end(), + cugraph::get_dataframe_buffer_begin(mg_aggregate_by_src_values)); + + auto mg_aggregate_by_dst_keys = + cugraph::test::device_gatherv(*handle_, by_dst_keys.data(), by_dst_keys.size()); + auto mg_aggregate_by_dst_values = + cugraph::allocate_dataframe_buffer(0, handle_->get_stream()); + if constexpr (std::is_arithmetic_v) { + mg_aggregate_by_dst_values = + cugraph::test::device_gatherv(*handle_, by_dst_values.data(), by_dst_values.size()); + } else { + std::get<0>(mg_aggregate_by_dst_values) = cugraph::test::device_gatherv( + *handle_, std::get<0>(by_dst_values).data(), std::get<0>(by_dst_values).size()); + std::get<1>(mg_aggregate_by_dst_values) = cugraph::test::device_gatherv( + *handle_, std::get<1>(by_dst_values).data(), std::get<1>(by_dst_values).size()); + } + thrust::sort_by_key(handle_->get_thrust_policy(), + mg_aggregate_by_dst_keys.begin(), + mg_aggregate_by_dst_keys.end(), + cugraph::get_dataframe_buffer_begin(mg_aggregate_by_dst_values)); + + cugraph::graph_t sg_graph(*handle_); + std::tie(sg_graph, std::ignore, std::ignore) = cugraph::test::mg_graph_to_sg_graph( + *handle_, + mg_graph_view, + std::optional>{std::nullopt}, + std::make_optional>((*mg_renumber_map).data(), + (*mg_renumber_map).size()), + false); + + if (handle_->get_comms().get_rank() == 0) { + auto sg_graph_view = sg_graph.view(); + + auto sg_vertex_prop = cugraph::test::generate::vertex_property( + *handle_, + thrust::make_counting_iterator(sg_graph_view.local_vertex_partition_range_first()), + thrust::make_counting_iterator(sg_graph_view.local_vertex_partition_range_last()), + hash_bin_count); + auto sg_src_prop = cugraph::test::generate::src_property( + *handle_, sg_graph_view, sg_vertex_prop); + auto sg_dst_prop = cugraph::test::generate::dst_property( + *handle_, sg_graph_view, sg_vertex_prop); + + auto sg_vertex_key = cugraph::test::generate::vertex_property( + *handle_, + thrust::make_counting_iterator(sg_graph_view.local_vertex_partition_range_first()), + thrust::make_counting_iterator(sg_graph_view.local_vertex_partition_range_last()), + hash_bin_count); + auto sg_src_key = cugraph::test::generate::src_property( + *handle_, sg_graph_view, sg_vertex_key); + auto sg_dst_key = cugraph::test::generate::dst_property( + *handle_, sg_graph_view, sg_vertex_key); + + auto [sg_by_src_keys, sg_by_src_values] = transform_reduce_e_by_src_key( + *handle_, + sg_graph_view, + sg_src_prop.view(), + sg_dst_prop.view(), + cugraph::edge_dummy_property_t{}.view(), + sg_src_key.view(), + [] __device__( + auto src, auto dst, auto src_property, auto dst_property, thrust::nullopt_t) { + if (src_property < dst_property) { + return src_property; + } else { + return dst_property; + } + }, + property_initial_value, + cugraph::reduce_op::plus{}); + thrust::sort_by_key(handle_->get_thrust_policy(), + sg_by_src_keys.begin(), + sg_by_src_keys.end(), + cugraph::get_dataframe_buffer_begin(sg_by_src_values)); + + auto [sg_by_dst_keys, sg_by_dst_values] = transform_reduce_e_by_dst_key( + *handle_, + sg_graph_view, + sg_src_prop.view(), + sg_dst_prop.view(), + cugraph::edge_dummy_property_t{}.view(), + sg_dst_key.view(), + [] __device__( + auto src, auto dst, auto src_property, auto dst_property, thrust::nullopt_t) { + if (src_property < dst_property) { + return src_property; + } else { + return dst_property; + } + }, + property_initial_value, + cugraph::reduce_op::plus{}); + thrust::sort_by_key(handle_->get_thrust_policy(), + sg_by_dst_keys.begin(), + sg_by_dst_keys.end(), + cugraph::get_dataframe_buffer_begin(sg_by_dst_values)); + + cugraph::test::vector_result_compare compare{*handle_}; + + ASSERT_TRUE(compare(sg_by_src_keys, mg_aggregate_by_src_keys)); + ASSERT_TRUE(compare(sg_by_src_values, mg_aggregate_by_src_values)); + + ASSERT_TRUE(compare(sg_by_dst_keys, mg_aggregate_by_dst_keys)); + ASSERT_TRUE(compare(sg_by_dst_values, mg_aggregate_by_dst_values)); + } + } + } + + private: + static std::unique_ptr handle_; +}; + +template +std::unique_ptr Tests_MGTransformReduceEBySrcDstKey::handle_ = + nullptr; + +using Tests_MGTransformReduceEBySrcDstKey_File = + Tests_MGTransformReduceEBySrcDstKey; +using Tests_MGTransformReduceEBySrcDstKey_Rmat = + Tests_MGTransformReduceEBySrcDstKey; + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_File, CheckInt32Int32FloatTupleIntFloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test, false>(std::get<0>(param), + std::get<1>(param)); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt32Int32FloatTupleIntFloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test, false>( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt32Int64FloatTupleIntFloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test, false>( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt64Int64FloatTupleIntFloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test, false>( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_File, CheckInt32Int32FloatTupleIntFloatTransposeTrue) +{ + auto param = GetParam(); + run_current_test, true>(std::get<0>(param), + std::get<1>(param)); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt32Int32FloatTupleIntFloatTransposeTrue) +{ + auto param = GetParam(); + run_current_test, true>( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt32Int64FloatTupleIntFloatTransposeTrue) +{ + auto param = GetParam(); + run_current_test, true>( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt64Int64FloatTupleIntFloatTransposeTrue) +{ + auto param = GetParam(); + run_current_test, true>( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_File, CheckInt32Int32FloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test(std::get<0>(param), std::get<1>(param)); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt32Int32FloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt32Int64FloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt64Int64FloatTransposeFalse) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_File, CheckInt32Int32FloatTransposeTrue) +{ + auto param = GetParam(); + run_current_test(std::get<0>(param), std::get<1>(param)); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt32Int32FloatTransposeTrue) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt32Int64FloatTransposeTrue) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +TEST_P(Tests_MGTransformReduceEBySrcDstKey_Rmat, CheckInt64Int64FloatTransposeTrue) +{ + auto param = GetParam(); + run_current_test( + std::get<0>(param), + cugraph::test::override_Rmat_Usecase_with_cmd_line_arguments(std::get<1>(param))); +} + +INSTANTIATE_TEST_SUITE_P( + file_test, + Tests_MGTransformReduceEBySrcDstKey_File, + ::testing::Combine( + ::testing::Values(Prims_Usecase{false, false, true}, + Prims_Usecase{false, true, true}, + Prims_Usecase{true, false, true}, + Prims_Usecase{true, true, true}), + ::testing::Values(cugraph::test::File_Usecase("test/datasets/karate.mtx"), + cugraph::test::File_Usecase("test/datasets/web-Google.mtx"), + cugraph::test::File_Usecase("test/datasets/ljournal-2008.mtx"), + cugraph::test::File_Usecase("test/datasets/webbase-1M.mtx")))); + +INSTANTIATE_TEST_SUITE_P(rmat_small_test, + Tests_MGTransformReduceEBySrcDstKey_Rmat, + ::testing::Combine(::testing::Values(Prims_Usecase{false, false, true}, + Prims_Usecase{false, true, true}, + Prims_Usecase{true, false, true}, + Prims_Usecase{true, true, true}), + ::testing::Values(cugraph::test::Rmat_Usecase( + 10, 16, 0.57, 0.19, 0.19, 0, false, false)))); + +INSTANTIATE_TEST_SUITE_P( + rmat_benchmark_test, /* note that scale & edge factor can be overridden in benchmarking (with + --gtest_filter to select only the rmat_benchmark_test with a specific + vertex & edge type combination) by command line arguments and do not + include more than one Rmat_Usecase that differ only in scale or edge + factor (to avoid running same benchmarks more than once) */ + Tests_MGTransformReduceEBySrcDstKey_Rmat, + ::testing::Combine( + ::testing::Values(Prims_Usecase{false, false, false}, + Prims_Usecase{false, true, false}, + Prims_Usecase{true, false, false}, + Prims_Usecase{true, true, false}), + ::testing::Values(cugraph::test::Rmat_Usecase(20, 32, 0.57, 0.19, 0.19, 0, false, false)))); + +CUGRAPH_MG_TEST_PROGRAM_MAIN() diff --git a/cpp/tests/prims/mg_transform_reduce_v.cu b/cpp/tests/prims/mg_transform_reduce_v.cu index c0d44bc94f1..c954f31d0f9 100644 --- a/cpp/tests/prims/mg_transform_reduce_v.cu +++ b/cpp/tests/prims/mg_transform_reduce_v.cu @@ -16,6 +16,7 @@ #include "prims/transform_reduce_v.cuh" #include "property_generator.cuh" +#include "result_compare.cuh" #include "utilities/base_fixture.hpp" #include "utilities/device_comm_wrapper.hpp" #include "utilities/mg_utilities.hpp" @@ -56,50 +57,6 @@ struct v_op_t { } }; -template -struct result_compare { - static constexpr double threshold_ratio{1e-3}; - constexpr auto operator()(const T& t1, const T& t2) - { - if constexpr (std::is_floating_point_v) { - bool passed = (t1 == t2) // when t1 == t2 == 0 - || - (std::abs(t1 - t2) < (std::max(std::abs(t1), std::abs(t2)) * threshold_ratio)); - return passed; - } - return t1 == t2; - } -}; - -template -struct result_compare> { - static constexpr double threshold_ratio{1e-3}; - - using Type = thrust::tuple; - constexpr auto operator()(const Type& t1, const Type& t2) - { - return equality_impl(t1, t2, std::make_index_sequence::value>()); - } - - private: - template - constexpr bool equal(T t1, T t2) - { - if constexpr (std::is_floating_point_v) { - bool passed = (t1 == t2) // when t1 == t2 == 0 - || - (std::abs(t1 - t2) < (std::max(std::abs(t1), std::abs(t2)) * threshold_ratio)); - return passed; - } - return t1 == t2; - } - template - constexpr auto equality_impl(T& t1, T& t2, std::index_sequence) - { - return (... && (equal(thrust::get(t1), thrust::get(t2)))); - } -}; - struct Prims_Usecase { bool check_correctness{true}; }; @@ -254,7 +211,7 @@ class Tests_MGTransformReduceV break; default: FAIL() << "should not be reached."; } - result_compare compare{}; + cugraph::test::scalar_result_compare compare{}; ASSERT_TRUE(compare(expected_result, results[reduction_type])); } } diff --git a/cpp/tests/prims/result_compare.cuh b/cpp/tests/prims/result_compare.cuh new file mode 100644 index 00000000000..5a1abb90e3c --- /dev/null +++ b/cpp/tests/prims/result_compare.cuh @@ -0,0 +1,143 @@ +/* + * Copyright (c) 2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#pragma once +#include + +#include + +#include +#include +#include + +#include +#include +#include +#include + +namespace cugraph { +namespace test { + +namespace detail { + +template +__host__ __device__ bool compare_arithmetic_scalar(T val0, + T val1, + thrust::optional threshold_ratio) +{ + if (threshold_ratio) { + return std::abs(val0 - val1) <= (std::max(std::abs(val0), std::abs(val1)) * *threshold_ratio); + } else { + return val0 == val1; + } +} + +} // namespace detail + +template +struct comparator { + static constexpr double threshold_ratio{1e-2}; + + __host__ __device__ bool operator()(T t0, T t1) const + { + static_assert(cugraph::is_arithmetic_or_thrust_tuple_of_arithmetic::value); + if constexpr (std::is_arithmetic_v) { + return detail::compare_arithmetic_scalar( + t0, + t1, + std::is_floating_point_v ? thrust::optional{threshold_ratio} : thrust::nullopt); + } else { + auto val0 = thrust::get<0>(t0); + auto val1 = thrust::get<0>(t1); + auto passed = detail::compare_arithmetic_scalar( + val0, + val1, + std::is_floating_point_v ? thrust::optional{threshold_ratio} + : thrust::nullopt); + if (!passed) return false; + + if constexpr (thrust::tuple_size::value >= 2) { + auto val0 = thrust::get<1>(t0); + auto val1 = thrust::get<1>(t1); + auto passed = + detail::compare_arithmetic_scalar(val0, + val1, + std::is_floating_point_v + ? thrust::optional{threshold_ratio} + : thrust::nullopt); + if (!passed) return false; + } + if constexpr (thrust::tuple_size::value >= 3) { + assert(false); // should not be reached. + } + return true; + } + } +}; + +struct scalar_result_compare { + template + auto operator()(thrust::tuple t1, thrust::tuple t2) + { + using type = thrust::tuple; + return equality_impl(t1, t2, std::make_index_sequence::value>()); + } + + template + auto operator()(T t1, T t2) + { + comparator comp{}; + return comp(t1, t2); + } + + private: + template + auto equality_impl(T t1, T t2, std::index_sequence) + { + return (... && (scalar_result_compare::operator()(thrust::get(t1), thrust::get(t2)))); + } +}; + +struct vector_result_compare { + const raft::handle_t& handle_; + + vector_result_compare(raft::handle_t const& handle) : handle_(handle) {} + + template + auto operator()(std::tuple...> const& t1, + std::tuple...> const& t2) + { + using type = thrust::tuple; + return equality_impl(t1, t2, std::make_index_sequence::value>()); + } + + template + auto operator()(rmm::device_uvector const& t1, rmm::device_uvector const& t2) + { + return thrust::equal( + handle_.get_thrust_policy(), t1.begin(), t1.end(), t2.begin(), comparator()); + } + + private: + template + auto equality_impl(T& t1, T& t2, std::index_sequence) + { + return (... && (vector_result_compare::operator()(std::get(t1), std::get(t2)))); + } +}; + +} // namespace test +} // namespace cugraph diff --git a/dependencies.yaml b/dependencies.yaml index e6cf6c9e93c..d8be5352c7d 100644 --- a/dependencies.yaml +++ b/dependencies.yaml @@ -449,7 +449,7 @@ dependencies: - &dask rapids-dask-dependency==24.4.* - &dask_cuda dask-cuda==24.4.* - &numba numba>=0.57 - - &numpy numpy>=1.23 + - &numpy numpy>=1.23,<2.0a0 - &ucx_py ucx-py==0.37.* - output_types: conda packages: diff --git a/docs/cugraph/source/conf.py b/docs/cugraph/source/conf.py index 719f94d4838..952b962aca2 100644 --- a/docs/cugraph/source/conf.py +++ b/docs/cugraph/source/conf.py @@ -19,6 +19,10 @@ import os import sys +from packaging.version import Version + +import cugraph + # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it @@ -76,10 +80,11 @@ # |version| and |release|, also used in various other places throughout the # built documents. # +CUGRAPH_VERSION = Version(cugraph.__version__) # The short X.Y version. -version = '24.04' +version = f"{CUGRAPH_VERSION.major:02}.{CUGRAPH_VERSION.minor:02}" # The full version, including alpha/beta/rc tags. -release = '24.04.00' +release = f"{CUGRAPH_VERSION.major:02}.{CUGRAPH_VERSION.minor:02}.{CUGRAPH_VERSION.micro:02}" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. diff --git a/fetch_rapids.cmake b/fetch_rapids.cmake deleted file mode 100644 index 596908d01cd..00000000000 --- a/fetch_rapids.cmake +++ /dev/null @@ -1,19 +0,0 @@ -# ============================================================================= -# Copyright (c) 2022-2024, NVIDIA CORPORATION. -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except -# in compliance with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software distributed under the License -# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express -# or implied. See the License for the specific language governing permissions and limitations under -# the License. -# ============================================================================= -if(NOT EXISTS ${CMAKE_CURRENT_BINARY_DIR}/CUGRAPH_RAPIDS.cmake) - file(DOWNLOAD https://raw.githubusercontent.com/rapidsai/rapids-cmake/branch-24.04/RAPIDS.cmake - ${CMAKE_CURRENT_BINARY_DIR}/CUGRAPH_RAPIDS.cmake - ) -endif() -include(${CMAKE_CURRENT_BINARY_DIR}/CUGRAPH_RAPIDS.cmake) diff --git a/python/cugraph-dgl/pyproject.toml b/python/cugraph-dgl/pyproject.toml index c6f76325761..f17292c5e70 100644 --- a/python/cugraph-dgl/pyproject.toml +++ b/python/cugraph-dgl/pyproject.toml @@ -25,7 +25,7 @@ classifiers = [ dependencies = [ "cugraph==24.4.*", "numba>=0.57", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pylibcugraphops==24.4.*", ] # This list was generated by `rapids-dependency-file-generator`. To make changes, edit ../../dependencies.yaml and run `rapids-dependency-file-generator`. diff --git a/python/cugraph-pyg/pyproject.toml b/python/cugraph-pyg/pyproject.toml index cbee5ed4b58..150ecbf506b 100644 --- a/python/cugraph-pyg/pyproject.toml +++ b/python/cugraph-pyg/pyproject.toml @@ -29,7 +29,7 @@ classifiers = [ dependencies = [ "cugraph==24.4.*", "numba>=0.57", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pylibcugraphops==24.4.*", ] # This list was generated by `rapids-dependency-file-generator`. To make changes, edit ../../dependencies.yaml and run `rapids-dependency-file-generator`. diff --git a/python/cugraph-service/server/pyproject.toml b/python/cugraph-service/server/pyproject.toml index a32b18a9551..d6cf48432cb 100644 --- a/python/cugraph-service/server/pyproject.toml +++ b/python/cugraph-service/server/pyproject.toml @@ -26,7 +26,7 @@ dependencies = [ "dask-cuda==24.4.*", "dask-cudf==24.4.*", "numba>=0.57", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "rapids-dask-dependency==24.4.*", "rmm==24.4.*", "thriftpy2", @@ -46,7 +46,7 @@ cugraph-service-server = "cugraph_service_server.__main__:main" [project.optional-dependencies] test = [ "networkx>=2.5.1", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pandas", "pytest", "pytest-benchmark", diff --git a/python/cugraph/CMakeLists.txt b/python/cugraph/CMakeLists.txt index 79510f9bf8d..dfccf02d042 100644 --- a/python/cugraph/CMakeLists.txt +++ b/python/cugraph/CMakeLists.txt @@ -14,9 +14,7 @@ cmake_minimum_required(VERSION 3.26.4 FATAL_ERROR) -set(cugraph_version 24.04.00) - -include(../../fetch_rapids.cmake) +include(../../rapids_config.cmake) # We always need CUDA for cuML because the raft dependency brings in a # header-only cuco dependency that enables CUDA unconditionally. @@ -25,7 +23,7 @@ rapids_cuda_init_architectures(cugraph-python) project( cugraph-python - VERSION ${cugraph_version} + VERSION "${RAPIDS_VERSION}" LANGUAGES CXX CUDA ) @@ -43,7 +41,7 @@ endif() # If the user requested it, we attempt to find CUGRAPH. if(FIND_CUGRAPH_CPP) - find_package(cugraph ${cugraph_version} REQUIRED) + find_package(cugraph "${RAPIDS_VERSION}" REQUIRED) else() set(cugraph_FOUND OFF) endif() diff --git a/python/cugraph/pyproject.toml b/python/cugraph/pyproject.toml index 113c316ccbf..a6d3d841298 100644 --- a/python/cugraph/pyproject.toml +++ b/python/cugraph/pyproject.toml @@ -35,7 +35,7 @@ dependencies = [ "dask-cudf==24.4.*", "fsspec[http]>=0.6.0", "numba>=0.57", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pylibcugraph==24.4.*", "raft-dask==24.4.*", "rapids-dask-dependency==24.4.*", @@ -53,7 +53,7 @@ classifiers = [ [project.optional-dependencies] test = [ "networkx>=2.5.1", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pandas", "pytest", "pytest-benchmark", diff --git a/python/nx-cugraph/README.md b/python/nx-cugraph/README.md index 8201dc34eb2..1bf310c8c88 100644 --- a/python/nx-cugraph/README.md +++ b/python/nx-cugraph/README.md @@ -95,8 +95,6 @@ Below is the list of algorithms that are currently supported in nx-cugraph.
 bipartite
- ├─ basic
- │   └─ is_bipartite
  └─ generators
      └─ complete_bipartite_graph
 centrality
@@ -152,9 +150,26 @@ Below is the list of algorithms that are currently supported in nx-cugraph.
  ├─ overall_reciprocity
  └─ reciprocity
 shortest_paths
- └─ unweighted
-     ├─ single_source_shortest_path_length
-     └─ single_target_shortest_path_length
+ ├─ generic
+ │   ├─ has_path
+ │   ├─ shortest_path
+ │   └─ shortest_path_length
+ ├─ unweighted
+ │   ├─ all_pairs_shortest_path
+ │   ├─ all_pairs_shortest_path_length
+ │   ├─ bidirectional_shortest_path
+ │   ├─ single_source_shortest_path
+ │   ├─ single_source_shortest_path_length
+ │   ├─ single_target_shortest_path
+ │   └─ single_target_shortest_path_length
+ └─ weighted
+     ├─ all_pairs_bellman_ford_path
+     ├─ all_pairs_bellman_ford_path_length
+     ├─ bellman_ford_path
+     ├─ bellman_ford_path_length
+     ├─ single_source_bellman_ford
+     ├─ single_source_bellman_ford_path
+     └─ single_source_bellman_ford_path_length
 traversal
  └─ breadth_first_search
      ├─ bfs_edges
diff --git a/python/nx-cugraph/nx_cugraph/VERSION b/python/nx-cugraph/_nx_cugraph/VERSION
similarity index 100%
rename from python/nx-cugraph/nx_cugraph/VERSION
rename to python/nx-cugraph/_nx_cugraph/VERSION
diff --git a/python/nx-cugraph/_nx_cugraph/__init__.py b/python/nx-cugraph/_nx_cugraph/__init__.py
index b2f13d25ff3..8c6a6504675 100644
--- a/python/nx-cugraph/_nx_cugraph/__init__.py
+++ b/python/nx-cugraph/_nx_cugraph/__init__.py
@@ -23,25 +23,38 @@
 $ python _nx_cugraph/__init__.py
 """
 
+from packaging.version import Version
+
+from _nx_cugraph._version import __version__
+
+_nx_cugraph_version = Version(__version__)
+
 # Entries between BEGIN and END are automatically generated
 _info = {
     "backend_name": "cugraph",
     "project": "nx-cugraph",
     "package": "nx_cugraph",
-    "url": "https://github.com/rapidsai/cugraph/tree/branch-24.04/python/nx-cugraph",
+    "url": f"https://github.com/rapidsai/cugraph/tree/branch-{_nx_cugraph_version.major:02}.{_nx_cugraph_version.minor:02}/python/nx-cugraph",
     "short_summary": "GPU-accelerated backend.",
     # "description": "TODO",
     "functions": {
         # BEGIN: functions
+        "all_pairs_bellman_ford_path",
+        "all_pairs_bellman_ford_path_length",
+        "all_pairs_shortest_path",
+        "all_pairs_shortest_path_length",
         "ancestors",
         "average_clustering",
         "barbell_graph",
+        "bellman_ford_path",
+        "bellman_ford_path_length",
         "betweenness_centrality",
         "bfs_edges",
         "bfs_layers",
         "bfs_predecessors",
         "bfs_successors",
         "bfs_tree",
+        "bidirectional_shortest_path",
         "bull_graph",
         "caveman_graph",
         "chvatal_graph",
@@ -70,6 +83,7 @@
         "from_scipy_sparse_array",
         "frucht_graph",
         "generic_bfs_edges",
+        "has_path",
         "heawood_graph",
         "hits",
         "house_graph",
@@ -77,7 +91,6 @@
         "icosahedral_graph",
         "in_degree_centrality",
         "is_arborescence",
-        "is_bipartite",
         "is_branching",
         "is_connected",
         "is_forest",
@@ -110,7 +123,14 @@
         "reciprocity",
         "reverse",
         "sedgewick_maze_graph",
+        "shortest_path",
+        "shortest_path_length",
+        "single_source_bellman_ford",
+        "single_source_bellman_ford_path",
+        "single_source_bellman_ford_path_length",
+        "single_source_shortest_path",
         "single_source_shortest_path_length",
+        "single_target_shortest_path",
         "single_target_shortest_path_length",
         "star_graph",
         "tadpole_graph",
@@ -128,7 +148,11 @@
     },
     "additional_docs": {
         # BEGIN: additional_docs
+        "all_pairs_bellman_ford_path": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
+        "all_pairs_bellman_ford_path_length": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
         "average_clustering": "Directed graphs and `weight` parameter are not yet supported.",
+        "bellman_ford_path": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
+        "bellman_ford_path_length": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
         "betweenness_centrality": "`weight` parameter is not yet supported, and RNG with seed may be different.",
         "bfs_edges": "`sort_neighbors` parameter is not yet supported.",
         "bfs_predecessors": "`sort_neighbors` parameter is not yet supported.",
@@ -147,11 +171,28 @@
         "katz_centrality": "`nstart` isn't used (but is checked), and `normalized=False` is not supported.",
         "louvain_communities": "`seed` parameter is currently ignored, and self-loops are not yet supported.",
         "pagerank": "`dangling` parameter is not supported, but it is checked for validity.",
+        "shortest_path": "Negative weights are not yet supported, and method is ununsed.",
+        "shortest_path_length": "Negative weights are not yet supported, and method is ununsed.",
+        "single_source_bellman_ford": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
+        "single_source_bellman_ford_path": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
+        "single_source_bellman_ford_path_length": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.",
         "transitivity": "Directed graphs are not yet supported.",
         # END: additional_docs
     },
     "additional_parameters": {
         # BEGIN: additional_parameters
+        "all_pairs_bellman_ford_path": {
+            "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
+        },
+        "all_pairs_bellman_ford_path_length": {
+            "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
+        },
+        "bellman_ford_path": {
+            "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
+        },
+        "bellman_ford_path_length": {
+            "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
+        },
         "eigenvector_centrality": {
             "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
         },
@@ -169,6 +210,21 @@
         "pagerank": {
             "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
         },
+        "shortest_path": {
+            "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
+        },
+        "shortest_path_length": {
+            "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
+        },
+        "single_source_bellman_ford": {
+            "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
+        },
+        "single_source_bellman_ford_path": {
+            "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
+        },
+        "single_source_bellman_ford_path_length": {
+            "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.",
+        },
         # END: additional_parameters
     },
 }
@@ -202,9 +258,6 @@ def get_info():
     return d
 
 
-# FIXME: can this use the standard VERSION file and update mechanism?
-__version__ = "24.04.00"
-
 if __name__ == "__main__":
     from pathlib import Path
 
diff --git a/python/nx-cugraph/nx_cugraph/_version.py b/python/nx-cugraph/_nx_cugraph/_version.py
similarity index 91%
rename from python/nx-cugraph/nx_cugraph/_version.py
rename to python/nx-cugraph/_nx_cugraph/_version.py
index a528a3bfe1b..dc2d2a3a3c0 100644
--- a/python/nx-cugraph/nx_cugraph/_version.py
+++ b/python/nx-cugraph/_nx_cugraph/_version.py
@@ -19,6 +19,6 @@
 # to update version info (including commit hashes) without modifying
 # source files.
 __version__ = (
-    importlib.resources.files("nx_cugraph").joinpath("VERSION").read_text().strip()
+    importlib.resources.files("_nx_cugraph").joinpath("VERSION").read_text().strip()
 )
 __git_commit__ = ""
diff --git a/python/nx-cugraph/lint.yaml b/python/nx-cugraph/lint.yaml
index fdd24861da7..3239fa151d9 100644
--- a/python/nx-cugraph/lint.yaml
+++ b/python/nx-cugraph/lint.yaml
@@ -50,7 +50,7 @@ repos:
       - id: black
       # - id: black-jupyter
   - repo: https://github.com/astral-sh/ruff-pre-commit
-    rev: v0.2.2
+    rev: v0.3.2
     hooks:
       - id: ruff
         args: [--fix-only, --show-fixes]  # --unsafe-fixes]
@@ -77,7 +77,7 @@ repos:
         additional_dependencies: [tomli]
         files: ^(nx_cugraph|docs)/
   - repo: https://github.com/astral-sh/ruff-pre-commit
-    rev: v0.2.2
+    rev: v0.3.2
     hooks:
       - id: ruff
   - repo: https://github.com/pre-commit/pre-commit-hooks
diff --git a/python/nx-cugraph/nx_cugraph/__init__.py b/python/nx-cugraph/nx_cugraph/__init__.py
index 3a8f0996e9c..2c54da87898 100644
--- a/python/nx-cugraph/nx_cugraph/__init__.py
+++ b/python/nx-cugraph/nx_cugraph/__init__.py
@@ -1,4 +1,4 @@
-# Copyright (c) 2023, NVIDIA CORPORATION.
+# Copyright (c) 2023-2024, NVIDIA CORPORATION.
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at
@@ -29,4 +29,4 @@
 from . import algorithms
 from .algorithms import *
 
-from nx_cugraph._version import __git_commit__, __version__
+from _nx_cugraph._version import __git_commit__, __version__
diff --git a/python/nx-cugraph/nx_cugraph/algorithms/__init__.py b/python/nx-cugraph/nx_cugraph/algorithms/__init__.py
index 7aafa85f5b7..b4a10bcf0a1 100644
--- a/python/nx-cugraph/nx_cugraph/algorithms/__init__.py
+++ b/python/nx-cugraph/nx_cugraph/algorithms/__init__.py
@@ -22,7 +22,7 @@
     traversal,
     tree,
 )
-from .bipartite import complete_bipartite_graph, is_bipartite
+from .bipartite import complete_bipartite_graph
 from .centrality import *
 from .cluster import *
 from .components import *
diff --git a/python/nx-cugraph/nx_cugraph/algorithms/bipartite/__init__.py b/python/nx-cugraph/nx_cugraph/algorithms/bipartite/__init__.py
index e028299c675..bfc7f1d4d42 100644
--- a/python/nx-cugraph/nx_cugraph/algorithms/bipartite/__init__.py
+++ b/python/nx-cugraph/nx_cugraph/algorithms/bipartite/__init__.py
@@ -10,5 +10,4 @@
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
-from .basic import *
 from .generators import *
diff --git a/python/nx-cugraph/nx_cugraph/algorithms/bipartite/basic.py b/python/nx-cugraph/nx_cugraph/algorithms/bipartite/basic.py
deleted file mode 100644
index 46c6b54075b..00000000000
--- a/python/nx-cugraph/nx_cugraph/algorithms/bipartite/basic.py
+++ /dev/null
@@ -1,31 +0,0 @@
-# Copyright (c) 2024, NVIDIA CORPORATION.
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-import cupy as cp
-
-from nx_cugraph.algorithms.cluster import _triangles
-from nx_cugraph.convert import _to_graph
-from nx_cugraph.utils import networkx_algorithm
-
-__all__ = [
-    "is_bipartite",
-]
-
-
-@networkx_algorithm(version_added="24.02", _plc="triangle_count")
-def is_bipartite(G):
-    G = _to_graph(G)
-    # Counting triangles may not be the fastest way to do this, but it is simple.
-    node_ids, triangles, is_single_node = _triangles(
-        G, None, symmetrize="union" if G.is_directed() else None
-    )
-    return int(cp.count_nonzero(triangles)) == 0
diff --git a/python/nx-cugraph/nx_cugraph/algorithms/centrality/eigenvector.py b/python/nx-cugraph/nx_cugraph/algorithms/centrality/eigenvector.py
index 65a8633667a..c32b6fbb708 100644
--- a/python/nx-cugraph/nx_cugraph/algorithms/centrality/eigenvector.py
+++ b/python/nx-cugraph/nx_cugraph/algorithms/centrality/eigenvector.py
@@ -36,17 +36,12 @@ def eigenvector_centrality(
     G, max_iter=100, tol=1.0e-6, nstart=None, weight=None, *, dtype=None
 ):
     """`nstart` parameter is not used, but it is checked for validity."""
-    G = _to_graph(G, weight, np.float32)
+    G = _to_graph(G, weight, 1, np.float32)
     if len(G) == 0:
         raise nx.NetworkXPointlessConcept(
             "cannot compute centrality for the null graph"
         )
-    if dtype is not None:
-        dtype = _get_float_dtype(dtype)
-    elif weight in G.edge_values:
-        dtype = _get_float_dtype(G.edge_values[weight].dtype)
-    else:
-        dtype = np.float32
+    dtype = _get_float_dtype(dtype, graph=G, weight=weight)
     if nstart is not None:
         # Check if given nstart is valid even though we don't use it
         nstart = G._dict_to_nodearray(nstart, dtype=dtype)
diff --git a/python/nx-cugraph/nx_cugraph/algorithms/centrality/katz.py b/python/nx-cugraph/nx_cugraph/algorithms/centrality/katz.py
index 4a0684f72ee..1c6ed61703d 100644
--- a/python/nx-cugraph/nx_cugraph/algorithms/centrality/katz.py
+++ b/python/nx-cugraph/nx_cugraph/algorithms/centrality/katz.py
@@ -49,15 +49,10 @@ def katz_centrality(
         # Redundant with the `_can_run` check below when being dispatched by NetworkX,
         # but we raise here in case this funcion is called directly.
         raise NotImplementedError("normalized=False is not supported.")
-    G = _to_graph(G, weight, np.float32)
+    G = _to_graph(G, weight, 1, np.float32)
     if (N := len(G)) == 0:
         return {}
-    if dtype is not None:
-        dtype = _get_float_dtype(dtype)
-    elif weight in G.edge_values:
-        dtype = _get_float_dtype(G.edge_values[weight].dtype)
-    else:
-        dtype = np.float32
+    dtype = _get_float_dtype(dtype, graph=G, weight=weight)
     if nstart is not None:
         # Check if given nstart is valid even though we don't use it
         nstart = G._dict_to_nodearray(nstart, 0, dtype)
diff --git a/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/hits_alg.py b/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/hits_alg.py
index e61a931c069..e529b83ab1a 100644
--- a/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/hits_alg.py
+++ b/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/hits_alg.py
@@ -46,15 +46,10 @@ def hits(
     weight="weight",
     dtype=None,
 ):
-    G = _to_graph(G, weight, np.float32)
+    G = _to_graph(G, weight, 1, np.float32)
     if (N := len(G)) == 0:
         return {}, {}
-    if dtype is not None:
-        dtype = _get_float_dtype(dtype)
-    elif weight in G.edge_values:
-        dtype = _get_float_dtype(G.edge_values[weight].dtype)
-    else:
-        dtype = np.float32
+    dtype = _get_float_dtype(dtype, graph=G, weight=weight)
     if nstart is not None:
         nstart = G._dict_to_nodearray(nstart, 0, dtype)
     if max_iter <= 0:
diff --git a/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/pagerank_alg.py b/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/pagerank_alg.py
index 40224e91d57..41203a2bc22 100644
--- a/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/pagerank_alg.py
+++ b/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/pagerank_alg.py
@@ -48,12 +48,7 @@ def pagerank(
     G = _to_graph(G, weight, 1, np.float32)
     if (N := len(G)) == 0:
         return {}
-    if dtype is not None:
-        dtype = _get_float_dtype(dtype)
-    elif weight in G.edge_values:
-        dtype = _get_float_dtype(G.edge_values[weight].dtype)
-    else:
-        dtype = np.float32
+    dtype = _get_float_dtype(dtype, graph=G, weight=weight)
     if nstart is not None:
         nstart = G._dict_to_nodearray(nstart, 0, dtype=dtype)
         if (total := nstart.sum()) == 0:
diff --git a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/__init__.py b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/__init__.py
index b7d6b742176..9d87389a98e 100644
--- a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/__init__.py
+++ b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/__init__.py
@@ -1,4 +1,4 @@
-# Copyright (c) 2023, NVIDIA CORPORATION.
+# Copyright (c) 2023-2024, NVIDIA CORPORATION.
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at
@@ -10,4 +10,6 @@
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
+from .generic import *
 from .unweighted import *
+from .weighted import *
diff --git a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/generic.py b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/generic.py
new file mode 100644
index 00000000000..68dbbace93d
--- /dev/null
+++ b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/generic.py
@@ -0,0 +1,165 @@
+# Copyright (c) 2024, NVIDIA CORPORATION.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import networkx as nx
+import numpy as np
+
+import nx_cugraph as nxcg
+from nx_cugraph.convert import _to_graph
+from nx_cugraph.utils import _dtype_param, _get_float_dtype, networkx_algorithm
+
+from .unweighted import _bfs
+from .weighted import _sssp
+
+__all__ = [
+    "shortest_path",
+    "shortest_path_length",
+    "has_path",
+]
+
+
+@networkx_algorithm(version_added="24.04", _plc="bfs")
+def has_path(G, source, target):
+    # TODO PERF: make faster in core
+    try:
+        nxcg.bidirectional_shortest_path(G, source, target)
+    except nx.NetworkXNoPath:
+        return False
+    return True
+
+
+@networkx_algorithm(
+    extra_params=_dtype_param, version_added="24.04", _plc={"bfs", "sssp"}
+)
+def shortest_path(
+    G, source=None, target=None, weight=None, method="dijkstra", *, dtype=None
+):
+    """Negative weights are not yet supported, and method is ununsed."""
+    if method not in {"dijkstra", "bellman-ford"}:
+        raise ValueError(f"method not supported: {method}")
+    if weight is None:
+        method = "unweighted"
+    if source is None:
+        if target is None:
+            # All pairs
+            if method == "unweighted":
+                paths = nxcg.all_pairs_shortest_path(G)
+            else:
+                # method == "dijkstra":
+                # method == 'bellman-ford':
+                paths = nxcg.all_pairs_bellman_ford_path(G, weight=weight, dtype=dtype)
+            if nx.__version__[:3] <= "3.4":
+                paths = dict(paths)
+        # To target
+        elif method == "unweighted":
+            paths = nxcg.single_target_shortest_path(G, target)
+        else:
+            # method == "dijkstra":
+            # method == 'bellman-ford':
+            # XXX: it seems weird that `reverse_path=True` is necessary here
+            G = _to_graph(G, weight, 1, np.float32)
+            dtype = _get_float_dtype(dtype, graph=G, weight=weight)
+            paths = _sssp(
+                G, target, weight, return_type="path", dtype=dtype, reverse_path=True
+            )
+    elif target is None:
+        # From source
+        if method == "unweighted":
+            paths = nxcg.single_source_shortest_path(G, source)
+        else:
+            # method == "dijkstra":
+            # method == 'bellman-ford':
+            paths = nxcg.single_source_bellman_ford_path(
+                G, source, weight=weight, dtype=dtype
+            )
+    # From source to target
+    elif method == "unweighted":
+        paths = nxcg.bidirectional_shortest_path(G, source, target)
+    else:
+        # method == "dijkstra":
+        # method == 'bellman-ford':
+        paths = nxcg.bellman_ford_path(G, source, target, weight, dtype=dtype)
+    return paths
+
+
+@shortest_path._can_run
+def _(G, source=None, target=None, weight=None, method="dijkstra", *, dtype=None):
+    return (
+        weight is None
+        or not callable(weight)
+        and not nx.is_negatively_weighted(G, weight=weight)
+    )
+
+
+@networkx_algorithm(
+    extra_params=_dtype_param, version_added="24.04", _plc={"bfs", "sssp"}
+)
+def shortest_path_length(
+    G, source=None, target=None, weight=None, method="dijkstra", *, dtype=None
+):
+    """Negative weights are not yet supported, and method is ununsed."""
+    if method not in {"dijkstra", "bellman-ford"}:
+        raise ValueError(f"method not supported: {method}")
+    if weight is None:
+        method = "unweighted"
+    if source is None:
+        if target is None:
+            # All pairs
+            if method == "unweighted":
+                lengths = nxcg.all_pairs_shortest_path_length(G)
+            else:
+                # method == "dijkstra":
+                # method == 'bellman-ford':
+                lengths = nxcg.all_pairs_bellman_ford_path_length(
+                    G, weight=weight, dtype=dtype
+                )
+        # To target
+        elif method == "unweighted":
+            lengths = nxcg.single_target_shortest_path_length(G, target)
+            if nx.__version__[:3] <= "3.4":
+                lengths = dict(lengths)
+        else:
+            # method == "dijkstra":
+            # method == 'bellman-ford':
+            lengths = nxcg.single_source_bellman_ford_path_length(
+                G, target, weight=weight, dtype=dtype
+            )
+    elif target is None:
+        # From source
+        if method == "unweighted":
+            lengths = nxcg.single_source_shortest_path_length(G, source)
+        else:
+            # method == "dijkstra":
+            # method == 'bellman-ford':
+            lengths = dict(
+                nxcg.single_source_bellman_ford_path_length(
+                    G, source, weight=weight, dtype=dtype
+                )
+            )
+    # From source to target
+    elif method == "unweighted":
+        G = _to_graph(G)
+        lengths = _bfs(G, source, None, "Source", return_type="length", target=target)
+    else:
+        # method == "dijkstra":
+        # method == 'bellman-ford':
+        lengths = nxcg.bellman_ford_path_length(G, source, target, weight, dtype=dtype)
+    return lengths
+
+
+@shortest_path_length._can_run
+def _(G, source=None, target=None, weight=None, method="dijkstra", *, dtype=None):
+    return (
+        weight is None
+        or not callable(weight)
+        and not nx.is_negatively_weighted(G, weight=weight)
+    )
diff --git a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/unweighted.py b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/unweighted.py
index 2012495953e..714289c5b4b 100644
--- a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/unweighted.py
+++ b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/unweighted.py
@@ -10,33 +10,127 @@
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
+import itertools
+
 import cupy as cp
 import networkx as nx
 import numpy as np
 import pylibcugraph as plc
 
 from nx_cugraph.convert import _to_graph
-from nx_cugraph.utils import index_dtype, networkx_algorithm
+from nx_cugraph.utils import _groupby, index_dtype, networkx_algorithm
+
+__all__ = [
+    "bidirectional_shortest_path",
+    "single_source_shortest_path",
+    "single_source_shortest_path_length",
+    "single_target_shortest_path",
+    "single_target_shortest_path_length",
+    "all_pairs_shortest_path",
+    "all_pairs_shortest_path_length",
+]
 
-__all__ = ["single_source_shortest_path_length", "single_target_shortest_path_length"]
+concat = itertools.chain.from_iterable
 
 
 @networkx_algorithm(version_added="23.12", _plc="bfs")
 def single_source_shortest_path_length(G, source, cutoff=None):
-    return _single_shortest_path_length(G, source, cutoff, "Source")
+    G = _to_graph(G)
+    return _bfs(G, source, cutoff, "Source", return_type="length")
 
 
 @networkx_algorithm(version_added="23.12", _plc="bfs")
 def single_target_shortest_path_length(G, target, cutoff=None):
-    return _single_shortest_path_length(G, target, cutoff, "Target")
+    G = _to_graph(G)
+    rv = _bfs(G, target, cutoff, "Target", return_type="length")
+    if nx.__version__[:3] <= "3.4":
+        return iter(rv.items())
+    return rv
+
+
+@networkx_algorithm(version_added="24.04", _plc="bfs")
+def all_pairs_shortest_path_length(G, cutoff=None):
+    # TODO PERF: batched bfs to compute many at once
+    G = _to_graph(G)
+    for n in G:
+        yield (n, _bfs(G, n, cutoff, "Source", return_type="length"))
 
 
-def _single_shortest_path_length(G, source, cutoff, kind):
+@networkx_algorithm(version_added="24.04", _plc="bfs")
+def bidirectional_shortest_path(G, source, target):
+    # TODO PERF: do bidirectional traversal in core
     G = _to_graph(G)
+    if source not in G or target not in G:
+        raise nx.NodeNotFound(f"Either source {source} or target {target} is not in G")
+    return _bfs(G, source, None, "Source", return_type="path", target=target)
+
+
+@networkx_algorithm(version_added="24.04", _plc="bfs")
+def single_source_shortest_path(G, source, cutoff=None):
+    G = _to_graph(G)
+    return _bfs(G, source, cutoff, "Source", return_type="path")
+
+
+@networkx_algorithm(version_added="24.04", _plc="bfs")
+def single_target_shortest_path(G, target, cutoff=None):
+    G = _to_graph(G)
+    return _bfs(G, target, cutoff, "Target", return_type="path", reverse_path=True)
+
+
+@networkx_algorithm(version_added="24.04", _plc="bfs")
+def all_pairs_shortest_path(G, cutoff=None):
+    # TODO PERF: batched bfs to compute many at once
+    G = _to_graph(G)
+    for n in G:
+        yield (n, _bfs(G, n, cutoff, "Source", return_type="path"))
+
+
+def _bfs(
+    G, source, cutoff, kind, *, return_type, reverse_path=False, target=None, scale=None
+):
+    """BFS for unweighted shortest path algorithms.
+
+    Parameters
+    ----------
+    source: node label
+
+    cutoff: int, optional
+
+    kind: {"Source", "Target"}
+
+    return_type: {"length", "path", "length-path"}
+
+    reverse_path: bool
+
+    target: node label
+
+    scale: int or float, optional
+        The amount to scale the lengths
+    """
+    # DRY: _sssp in weighted.py has similar code
     if source not in G:
-        raise nx.NodeNotFound(f"{kind} {source} is not in G")
-    if G.src_indices.size == 0:
-        return {source: 0}
+        # Different message to pass networkx tests
+        if return_type == "length":
+            raise nx.NodeNotFound(f"{kind} {source} is not in G")
+        raise nx.NodeNotFound(f"{kind} {source} not in G")
+    if target is not None:
+        if source == target or cutoff is not None and cutoff <= 0:
+            if return_type == "path":
+                return [source]
+            if return_type == "length":
+                return 0
+            # return_type == "length-path"
+            return 0, [source]
+        if target not in G or G.src_indices.size == 0:
+            raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}")
+    elif G.src_indices.size == 0 or cutoff is not None and cutoff <= 0:
+        if return_type == "path":
+            return {source: [source]}
+        if return_type == "length":
+            return {source: 0}
+        # return_type == "length-path"
+        return {source: 0}, {source: [source]}
+
     if cutoff is None:
         cutoff = -1
     src_index = source if G.key_to_id is None else G.key_to_id[source]
@@ -46,8 +140,68 @@ def _single_shortest_path_length(G, source, cutoff, kind):
         sources=cp.array([src_index], index_dtype),
         direction_optimizing=False,  # True for undirected only; what's recommended?
         depth_limit=cutoff,
-        compute_predecessors=False,
+        compute_predecessors=return_type != "length",
         do_expensive_check=False,
     )
     mask = distances != np.iinfo(distances.dtype).max
-    return G._nodearrays_to_dict(node_ids[mask], distances[mask])
+    node_ids = node_ids[mask]
+    if return_type != "path":
+        lengths = distances = distances[mask]
+        if scale is not None:
+            lengths = scale * lengths
+        lengths = G._nodearrays_to_dict(node_ids, lengths)
+        if target is not None:
+            if target not in lengths:
+                raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}")
+            lengths = lengths[target]
+    if return_type != "length":
+        if target is not None:
+            d = dict(zip(node_ids.tolist(), predecessors[mask].tolist()))
+            dst_index = target if G.key_to_id is None else G.key_to_id[target]
+            if dst_index not in d:
+                raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}")
+            cur = dst_index
+            paths = [dst_index]
+            while cur != src_index:
+                cur = d[cur]
+                paths.append(cur)
+            if (id_to_key := G.id_to_key) is not None:
+                if reverse_path:
+                    paths = [id_to_key[cur] for cur in paths]
+                else:
+                    paths = [id_to_key[cur] for cur in reversed(paths)]
+            elif not reverse_path:
+                paths.reverse()
+        else:
+            if return_type == "path":
+                distances = distances[mask]
+            groups = _groupby(distances, [predecessors[mask], node_ids])
+
+            # `pred_node_iter` does the equivalent as these nested for loops:
+            # for length in range(1, len(groups)):
+            #     preds, nodes = groups[length]
+            #     for pred, node in zip(preds.tolist(), nodes.tolist()):
+            if G.key_to_id is None:
+                pred_node_iter = concat(
+                    zip(*(x.tolist() for x in groups[length]))
+                    for length in range(1, len(groups))
+                )
+            else:
+                pred_node_iter = concat(
+                    zip(*(G._nodeiter_to_iter(x.tolist()) for x in groups[length]))
+                    for length in range(1, len(groups))
+                )
+            # Consider making utility functions for creating paths
+            paths = {source: [source]}
+            if reverse_path:
+                for pred, node in pred_node_iter:
+                    paths[node] = [node, *paths[pred]]
+            else:
+                for pred, node in pred_node_iter:
+                    paths[node] = [*paths[pred], node]
+    if return_type == "path":
+        return paths
+    if return_type == "length":
+        return lengths
+    # return_type == "length-path"
+    return lengths, paths
diff --git a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/weighted.py b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/weighted.py
new file mode 100644
index 00000000000..32323dd45f3
--- /dev/null
+++ b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/weighted.py
@@ -0,0 +1,286 @@
+# Copyright (c) 2024, NVIDIA CORPORATION.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import networkx as nx
+import numpy as np
+import pylibcugraph as plc
+
+from nx_cugraph.convert import _to_graph
+from nx_cugraph.utils import (
+    _dtype_param,
+    _get_float_dtype,
+    _groupby,
+    networkx_algorithm,
+)
+
+from .unweighted import _bfs
+
+__all__ = [
+    "bellman_ford_path",
+    "bellman_ford_path_length",
+    "single_source_bellman_ford",
+    "single_source_bellman_ford_path",
+    "single_source_bellman_ford_path_length",
+    "all_pairs_bellman_ford_path",
+    "all_pairs_bellman_ford_path_length",
+]
+
+
+def _add_doc(func):
+    func.__doc__ = (
+        "Negative cycles are not yet supported. ``NotImplementedError`` will be raised "
+        "if there are negative edge weights. We plan to support negative edge weights "
+        "soon. Also, callable ``weight`` argument is not supported."
+    )
+    return func
+
+
+@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp")
+@_add_doc
+def bellman_ford_path(G, source, target, weight="weight", *, dtype=None):
+    G = _to_graph(G, weight, 1, np.float32)
+    dtype = _get_float_dtype(dtype, graph=G, weight=weight)
+    return _sssp(G, source, weight, target, return_type="path", dtype=dtype)
+
+
+@bellman_ford_path._can_run
+def _(G, source, target, weight="weight", *, dtype=None):
+    return (
+        weight is None
+        or not callable(weight)
+        and not nx.is_negatively_weighted(G, weight=weight)
+    )
+
+
+@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp")
+@_add_doc
+def bellman_ford_path_length(G, source, target, weight="weight", *, dtype=None):
+    G = _to_graph(G, weight, 1, np.float32)
+    dtype = _get_float_dtype(dtype, graph=G, weight=weight)
+    return _sssp(G, source, weight, target, return_type="length", dtype=dtype)
+
+
+@bellman_ford_path_length._can_run
+def _(G, source, target, weight="weight", *, dtype=None):
+    return (
+        weight is None
+        or not callable(weight)
+        and not nx.is_negatively_weighted(G, weight=weight)
+    )
+
+
+@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp")
+@_add_doc
+def single_source_bellman_ford_path(G, source, weight="weight", *, dtype=None):
+    G = _to_graph(G, weight, 1, np.float32)
+    dtype = _get_float_dtype(dtype, graph=G, weight=weight)
+    return _sssp(G, source, weight, return_type="path", dtype=dtype)
+
+
+@single_source_bellman_ford_path._can_run
+def _(G, source, weight="weight", *, dtype=None):
+    return (
+        weight is None
+        or not callable(weight)
+        and not nx.is_negatively_weighted(G, weight=weight)
+    )
+
+
+@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp")
+@_add_doc
+def single_source_bellman_ford_path_length(G, source, weight="weight", *, dtype=None):
+    G = _to_graph(G, weight, 1, np.float32)
+    dtype = _get_float_dtype(dtype, graph=G, weight=weight)
+    return _sssp(G, source, weight, return_type="length", dtype=dtype)
+
+
+@single_source_bellman_ford_path_length._can_run
+def _(G, source, weight="weight", *, dtype=None):
+    return (
+        weight is None
+        or not callable(weight)
+        and not nx.is_negatively_weighted(G, weight=weight)
+    )
+
+
+@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp")
+@_add_doc
+def single_source_bellman_ford(G, source, target=None, weight="weight", *, dtype=None):
+    G = _to_graph(G, weight, 1, np.float32)
+    dtype = _get_float_dtype(dtype, graph=G, weight=weight)
+    return _sssp(G, source, weight, target, return_type="length-path", dtype=dtype)
+
+
+@single_source_bellman_ford._can_run
+def _(G, source, target=None, weight="weight", *, dtype=None):
+    return (
+        weight is None
+        or not callable(weight)
+        and not nx.is_negatively_weighted(G, weight=weight)
+    )
+
+
+@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp")
+@_add_doc
+def all_pairs_bellman_ford_path_length(G, weight="weight", *, dtype=None):
+    # TODO PERF: batched bfs to compute many at once
+    G = _to_graph(G, weight, 1, np.float32)
+    dtype = _get_float_dtype(dtype, graph=G, weight=weight)
+    for n in G:
+        yield (n, _sssp(G, n, weight, return_type="length", dtype=dtype))
+
+
+@all_pairs_bellman_ford_path_length._can_run
+def _(G, weight="weight", *, dtype=None):
+    return (
+        weight is None
+        or not callable(weight)
+        and not nx.is_negatively_weighted(G, weight=weight)
+    )
+
+
+@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp")
+@_add_doc
+def all_pairs_bellman_ford_path(G, weight="weight", *, dtype=None):
+    # TODO PERF: batched bfs to compute many at once
+    G = _to_graph(G, weight, 1, np.float32)
+    dtype = _get_float_dtype(dtype, graph=G, weight=weight)
+    for n in G:
+        yield (n, _sssp(G, n, weight, return_type="path", dtype=dtype))
+
+
+@all_pairs_bellman_ford_path._can_run
+def _(G, weight="weight", *, dtype=None):
+    return (
+        weight is None
+        or not callable(weight)
+        and not nx.is_negatively_weighted(G, weight=weight)
+    )
+
+
+def _sssp(G, source, weight, target=None, *, return_type, dtype, reverse_path=False):
+    """SSSP for weighted shortest paths.
+
+    Parameters
+    ----------
+    return_type : {"length", "path", "length-path"}
+
+    """
+    # DRY: _bfs in unweighted.py has similar code
+    if source not in G:
+        raise nx.NodeNotFound(f"Node {source} not found in graph")
+    if target is not None:
+        if source == target:
+            if return_type == "path":
+                return [source]
+            if return_type == "length":
+                return 0
+            # return_type == "length-path"
+            return 0, [source]
+        if target not in G or G.src_indices.size == 0:
+            raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}")
+    elif G.src_indices.size == 0:
+        if return_type == "path":
+            return {source: [source]}
+        if return_type == "length":
+            return {source: 0}
+        # return_type == "length-path"
+        return {source: 0}, {source: [source]}
+
+    if callable(weight):
+        raise NotImplementedError("callable `weight` argument is not supported")
+
+    if weight not in G.edge_values:
+        # No edge values, so use BFS instead
+        return _bfs(G, source, None, "Source", return_type=return_type, target=target)
+
+    # Check for negative values since we don't support negative cycles
+    edge_vals = G.edge_values[weight]
+    if weight in G.edge_masks:
+        edge_vals = edge_vals[G.edge_masks[weight]]
+    if (edge_vals < 0).any():
+        raise NotImplementedError("Negative edge weights not yet supported")
+    edge_val = edge_vals[0]
+    if (edge_vals == edge_val).all() and (
+        edge_vals.size == G.src_indices.size or edge_val == 1
+    ):
+        # Edge values are all the same, so use scaled BFS instead
+        return _bfs(
+            G,
+            source,
+            None,
+            "Source",
+            return_type=return_type,
+            target=target,
+            scale=edge_val,
+            reverse_path=reverse_path,
+        )
+
+    src_index = source if G.key_to_id is None else G.key_to_id[source]
+    node_ids, distances, predecessors = plc.sssp(
+        resource_handle=plc.ResourceHandle(),
+        graph=G._get_plc_graph(weight, 1, dtype),
+        source=src_index,
+        cutoff=np.inf,
+        compute_predecessors=True,  # TODO: False is not yet supported
+        # compute_predecessors=return_type != "length",
+        do_expensive_check=False,
+    )
+    mask = distances != np.finfo(distances.dtype).max
+    node_ids = node_ids[mask]
+    if return_type != "path":
+        lengths = G._nodearrays_to_dict(node_ids, distances[mask])
+        if target is not None:
+            if target not in lengths:
+                raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}")
+            lengths = lengths[target]
+    if return_type != "length":
+        if target is not None:
+            d = dict(zip(node_ids.tolist(), predecessors[mask].tolist()))
+            dst_index = target if G.key_to_id is None else G.key_to_id[target]
+            if dst_index not in d:
+                raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}")
+            cur = dst_index
+            paths = [dst_index]
+            while cur != src_index:
+                cur = d[cur]
+                paths.append(cur)
+            if (id_to_key := G.id_to_key) is not None:
+                if reverse_path:
+                    paths = [id_to_key[cur] for cur in paths]
+                else:
+                    paths = [id_to_key[cur] for cur in reversed(paths)]
+            elif not reverse_path:
+                paths.reverse()
+        else:
+            groups = _groupby(predecessors[mask], node_ids)
+            if (id_to_key := G.id_to_key) is not None:
+                groups = {id_to_key[k]: v for k, v in groups.items() if k >= 0}
+            paths = {source: [source]}
+            preds = [source]
+            while preds:
+                pred = preds.pop()
+                pred_path = paths[pred]
+                nodes = G._nodearray_to_list(groups[pred])
+                if reverse_path:
+                    for node in nodes:
+                        paths[node] = [node, *pred_path]
+                else:
+                    for node in nodes:
+                        paths[node] = [*pred_path, node]
+                preds.extend(nodes & groups.keys())
+    if return_type == "path":
+        return paths
+    if return_type == "length":
+        return lengths
+    # return_type == "length-path"
+    return lengths, paths
diff --git a/python/nx-cugraph/nx_cugraph/interface.py b/python/nx-cugraph/nx_cugraph/interface.py
index d044ba6960d..0d893ac286b 100644
--- a/python/nx-cugraph/nx_cugraph/interface.py
+++ b/python/nx-cugraph/nx_cugraph/interface.py
@@ -67,6 +67,7 @@ def key(testpath):
         no_multigraph = "multigraphs not currently supported"
         louvain_different = "Louvain may be different due to RNG"
         no_string_dtype = "string edge values not currently supported"
+        sssp_path_different = "sssp may choose a different valid path"
 
         xfail = {
             # This is removed while strongly_connected_components() is not
@@ -77,6 +78,19 @@ def key(testpath):
             #     "test_strongly_connected.py:"
             #     "TestStronglyConnected.test_condensation_mapping_and_members"
             # ): "Strongly connected groups in different iteration order",
+            key(
+                "test_cycles.py:TestMinimumCycleBasis.test_unweighted_diamond"
+            ): sssp_path_different,
+            key(
+                "test_cycles.py:TestMinimumCycleBasis.test_weighted_diamond"
+            ): sssp_path_different,
+            key(
+                "test_cycles.py:TestMinimumCycleBasis.test_petersen_graph"
+            ): sssp_path_different,
+            key(
+                "test_cycles.py:TestMinimumCycleBasis."
+                "test_gh6787_and_edge_attribute_names"
+            ): sssp_path_different,
         }
 
         from packaging.version import parse
diff --git a/python/nx-cugraph/nx_cugraph/utils/misc.py b/python/nx-cugraph/nx_cugraph/utils/misc.py
index aa06d7fd29b..eab4b42c2cc 100644
--- a/python/nx-cugraph/nx_cugraph/utils/misc.py
+++ b/python/nx-cugraph/nx_cugraph/utils/misc.py
@@ -1,4 +1,4 @@
-# Copyright (c) 2023, NVIDIA CORPORATION.
+# Copyright (c) 2023-2024, NVIDIA CORPORATION.
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at
@@ -22,7 +22,9 @@
 import numpy as np
 
 if TYPE_CHECKING:
-    from ..typing import Dtype
+    import nx_cugraph as nxcg
+
+    from ..typing import Dtype, EdgeKey
 
 try:
     from itertools import pairwise  # Python >=3.10
@@ -190,10 +192,14 @@ def _get_int_dtype(
         raise ValueError("Value is too large to store as integer: {val}") from exc
 
 
-def _get_float_dtype(dtype: Dtype):
+def _get_float_dtype(
+    dtype: Dtype, *, graph: nxcg.Graph | None = None, weight: EdgeKey | None = None
+):
     """Promote dtype to float32 or float64 as appropriate."""
     if dtype is None:
-        return np.dtype(np.float32)
+        if graph is None or weight not in graph.edge_values:
+            return np.dtype(np.float32)
+        dtype = graph.edge_values[weight].dtype
     rv = np.promote_types(dtype, np.float32)
     if np.float32 != rv != np.float64:
         raise TypeError(
diff --git a/python/nx-cugraph/pyproject.toml b/python/nx-cugraph/pyproject.toml
index 07ec0eab264..2ff53c1a3f6 100644
--- a/python/nx-cugraph/pyproject.toml
+++ b/python/nx-cugraph/pyproject.toml
@@ -33,7 +33,7 @@ classifiers = [
 dependencies = [
     "cupy-cuda11x>=12.0.0",
     "networkx>=3.0",
-    "numpy>=1.23",
+    "numpy>=1.23,<2.0a0",
     "pylibcugraph==24.4.*",
 ] # This list was generated by `rapids-dependency-file-generator`. To make changes, edit ../../dependencies.yaml and run `rapids-dependency-file-generator`.
 
@@ -71,7 +71,7 @@ cugraph = "_nx_cugraph:get_info"
 license-files = ["LICENSE"]
 
 [tool.setuptools.dynamic]
-version = {file = "nx_cugraph/VERSION"}
+version = {file = "_nx_cugraph/VERSION"}
 
 [tool.setuptools.packages.find]
 include = [
diff --git a/python/nx-cugraph/scripts/update_readme.py b/python/nx-cugraph/scripts/update_readme.py
old mode 100644
new mode 100755
diff --git a/python/pylibcugraph/CMakeLists.txt b/python/pylibcugraph/CMakeLists.txt
index cc76ab5ba2b..f43b7db1279 100644
--- a/python/pylibcugraph/CMakeLists.txt
+++ b/python/pylibcugraph/CMakeLists.txt
@@ -14,9 +14,7 @@
 
 cmake_minimum_required(VERSION 3.26.4 FATAL_ERROR)
 
-set(pylibcugraph_version 24.04.00)
-
-include(../../fetch_rapids.cmake)
+include(../../rapids_config.cmake)
 
 # We always need CUDA for cuML because the raft dependency brings in a
 # header-only cuco dependency that enables CUDA unconditionally.
@@ -25,7 +23,7 @@ rapids_cuda_init_architectures(pylibcugraph-python)
 
 project(
   pylibcugraph-python
-  VERSION ${pylibcugraph_version}
+  VERSION "${RAPIDS_VERSION}"
   LANGUAGES CXX CUDA
 )
 
@@ -43,7 +41,7 @@ endif()
 
 # If the user requested it we attempt to find CUGRAPH.
 if(FIND_CUGRAPH_CPP)
-  find_package(cugraph ${pylibcugraph_version} REQUIRED)
+  find_package(cugraph "${RAPIDS_VERSION}" REQUIRED)
 else()
   set(cugraph_FOUND OFF)
 endif()
diff --git a/python/pylibcugraph/pyproject.toml b/python/pylibcugraph/pyproject.toml
index eb7323d19e5..d5f568a7a90 100644
--- a/python/pylibcugraph/pyproject.toml
+++ b/python/pylibcugraph/pyproject.toml
@@ -42,7 +42,7 @@ classifiers = [
 [project.optional-dependencies]
 test = [
     "cudf==24.4.*",
-    "numpy>=1.23",
+    "numpy>=1.23,<2.0a0",
     "pandas",
     "pytest",
     "pytest-benchmark",
diff --git a/rapids_config.cmake b/rapids_config.cmake
new file mode 100644
index 00000000000..50b1054b7b9
--- /dev/null
+++ b/rapids_config.cmake
@@ -0,0 +1,34 @@
+# =============================================================================
+# Copyright (c) 2018-2024, NVIDIA CORPORATION.
+#
+# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
+# in compliance with the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software distributed under the License
+# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
+# or implied. See the License for the specific language governing permissions and limitations under
+# the License.
+# =============================================================================
+file(READ "${CMAKE_CURRENT_LIST_DIR}/VERSION" _rapids_version)
+if(_rapids_version MATCHES [[^([0-9][0-9])\.([0-9][0-9])\.([0-9][0-9])]])
+  set(RAPIDS_VERSION_MAJOR "${CMAKE_MATCH_1}")
+  set(RAPIDS_VERSION_MINOR "${CMAKE_MATCH_2}")
+  set(RAPIDS_VERSION_PATCH "${CMAKE_MATCH_3}")
+  set(RAPIDS_VERSION_MAJOR_MINOR "${RAPIDS_VERSION_MAJOR}.${RAPIDS_VERSION_MINOR}")
+  set(RAPIDS_VERSION "${RAPIDS_VERSION_MAJOR}.${RAPIDS_VERSION_MINOR}.${RAPIDS_VERSION_PATCH}")
+else()
+  string(REPLACE "\n" "\n  " _rapids_version_formatted "  ${_rapids_version}")
+  message(
+    FATAL_ERROR
+      "Could not determine RAPIDS version. Contents of VERSION file:\n${_rapids_version_formatted}")
+endif()
+
+if(NOT EXISTS "${CMAKE_CURRENT_BINARY_DIR}/CUGRAPH_RAPIDS-${RAPIDS_VERSION_MAJOR_MINOR}.cmake")
+  file(
+    DOWNLOAD
+    "https://raw.githubusercontent.com/rapidsai/rapids-cmake/branch-${RAPIDS_VERSION_MAJOR_MINOR}/RAPIDS.cmake"
+    "${CMAKE_CURRENT_BINARY_DIR}/CUGRAPH_RAPIDS-${RAPIDS_VERSION_MAJOR_MINOR}.cmake")
+endif()
+include("${CMAKE_CURRENT_BINARY_DIR}/CUGRAPH_RAPIDS-${RAPIDS_VERSION_MAJOR_MINOR}.cmake")