diff --git a/python/cugraph/cugraph/structure/__init__.py b/python/cugraph/cugraph/structure/__init__.py index 94f34fd23f3..5e4971cc8fb 100644 --- a/python/cugraph/cugraph/structure/__init__.py +++ b/python/cugraph/cugraph/structure/__init__.py @@ -30,6 +30,7 @@ replicate_cudf_dataframe, replicate_cudf_series, ) +from cugraph.structure.decompress_to_edgelist import decompress_to_edgelist from cugraph.structure.convert_matrix import ( from_edgelist, from_cudf_edgelist, diff --git a/python/cugraph/cugraph/structure/decompress_to_edgelist.py b/python/cugraph/cugraph/structure/decompress_to_edgelist.py new file mode 100644 index 00000000000..cf34493424c --- /dev/null +++ b/python/cugraph/cugraph/structure/decompress_to_edgelist.py @@ -0,0 +1,87 @@ +# Copyright (c) 2019-2024, NVIDIA CORPORATION. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import cudf +from pylibcugraph import ResourceHandle +from pylibcugraph import decompress_to_edgelist as pylibcugraph_decompress_to_edgelist + +from cugraph.structure import Graph + + +def decompress_to_edgelist( + G: Graph, + do_expensive_check: bool +) -> cudf.DataFrame: + """ + Compute a subgraph of the existing graph including only the specified + vertices. This algorithm works with both directed and undirected graphs + and does not actually traverse the edges, but instead simply pulls out any + edges that are incident on vertices that are both contained in the vertices + list. + + If no subgraph can be extracted from the vertices provided, a 'None' value + will be returned. + + Parameters + ---------- + G : cugraph.Graph or networkx.Graph + The current implementation only supports weighted graphs. + + do_expensive_check: bool + + Returns + ------- + edge_lists : cudf.DataFrame + Distributed GPU data frame containing all sources identifiers, + destination identifiers and if applicable edge weights, edge ids and + edge types + + Examples + -------- + >>> from cugraph.datasets import karate + >>> G = karate.get_graph(download=True) + >>> verts = np.zeros(3, dtype=np.int32) + >>> verts[0] = 0 + >>> verts[1] = 1 + >>> verts[2] = 2 + >>> sverts = cudf.Series(verts) + >>> edgelist = cugraph.decompress_to_edgelist(G, False) + + """ + + + do_expensive_check = False + source, destination, weight, edge_ids, edge_type_ids = pylibcugraph_decompress_to_edgelist( + resource_handle=ResourceHandle(), + graph=G._plc_graph, + do_expensive_check=do_expensive_check + ) + + print("source = ", source) + print("detaination = ", destination) + + df = cudf.DataFrame() + df["src"] = source + df["dst"] = destination + if weight is not None: + df["weight"] = weight + if edge_ids is not None: + df["edge_ids"] = edge_ids + if edge_type_ids is not None: + df["edge_type_ids"] = edge_type_ids + + if G.renumbered: + df, _ = G.unrenumber(df, "src", get_column_names=True) + df, _ = G.unrenumber(df, "dst", get_column_names=True) + + return df