diff --git a/docs/cugraph/source/basics/nx_transition.rst b/docs/cugraph/source/basics/nx_transition.rst index 345c5a3783f..07c2ad26ffa 100644 --- a/docs/cugraph/source/basics/nx_transition.rst +++ b/docs/cugraph/source/basics/nx_transition.rst @@ -180,4 +180,4 @@ Now, if your code bulk loads the data from Pandas, then RAPIDS can accelerate th .. image:: ../images/Nx_Cg_2.png :width: 600 -The above cuGraph code will create cuGraph.Graph object and not a NetworkX.Graph object. \ No newline at end of file +The above cuGraph code will create cuGraph.Graph object and not a NetworkX.Graph object. diff --git a/docs/cugraph/source/nx_cugraph/nx_cugraph.md b/docs/cugraph/source/nx_cugraph/nx_cugraph.md index 1b39d5c481c..8d497e3a1d7 100644 --- a/docs/cugraph/source/nx_cugraph/nx_cugraph.md +++ b/docs/cugraph/source/nx_cugraph/nx_cugraph.md @@ -2,7 +2,7 @@ Whereas previous versions of cuGraph have included mechanisms to make it -trivial to plug in cuGraph algorithm calls. Beginning with version 24.02, nx-cuGraph +trivial to plug in cuGraph algorithm calls. Beginning with version 24.02, nx-cuGraph is now a [networkX backend](). The user now need only [install nx-cugraph]() to experience GPU speedups. @@ -162,4 +162,4 @@ social convert_matrix ├─ from_pandas_edgelist └─ from_scipy_sparse_array -``` \ No newline at end of file +``` diff --git a/docs/cugraph/source/tutorials/community_resources.md b/docs/cugraph/source/tutorials/community_resources.md index a9079905255..975f11965de 100644 --- a/docs/cugraph/source/tutorials/community_resources.md +++ b/docs/cugraph/source/tutorials/community_resources.md @@ -1,4 +1,4 @@ # Commmunity Resources [Rapids Community Repository](https://github.com/rapidsai-community/notebooks-contrib) [RAPIDS Containers on Docker Hub](https://catalog.ngc.nvidia.com/containers) -[RAPIDS PyTorch Container in Docker](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pyg) \ No newline at end of file +[RAPIDS PyTorch Container in Docker](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pyg)