-
Notifications
You must be signed in to change notification settings - Fork 310
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'branch-24.10' of https://github.com/rapidsai/cugraph in…
…to enh_mem_footprint
- Loading branch information
Showing
28 changed files
with
5,429 additions
and
1,873 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
## `nx-cugraph` Benchmarks | ||
|
||
### Overview | ||
|
||
This directory contains a set of scripts designed to benchmark NetworkX with the `nx-cugraph` backend and deliver a report that summarizes the speed-up and runtime deltas over default NetworkX. | ||
|
||
Our current benchmarks provide the following datasets: | ||
|
||
| Dataset | Nodes | Edges | Directed | | ||
| -------- | ------- | ------- | ------- | | ||
| netscience | 1,461 | 5,484 | Yes | | ||
| email-Eu-core | 1,005 | 25,571 | Yes | | ||
| cit-Patents | 3,774,768 | 16,518,948 | Yes | | ||
| hollywood | 1,139,905 | 57,515,616 | No | | ||
| soc-LiveJournal1 | 4,847,571 | 68,993,773 | Yes | | ||
|
||
|
||
|
||
### Scripts | ||
|
||
#### 1. `run-main-benchmarks.sh` | ||
This script allows users to run selected algorithms across multiple datasets and backends. All results are stored inside a sub-directory (`logs/`) and output files are named based on the combination of parameters for that benchmark. | ||
|
||
NOTE: If running with all algorithms, datasets, and backends, this script may take a few hours to finish running. | ||
|
||
**Usage:** | ||
```bash | ||
bash run-main-benchmarks.sh # edit this script directly | ||
``` | ||
|
||
#### 2. `get_graph_bench_dataset.py` | ||
This script downloads the specified dataset using `cugraph.datasets`. | ||
|
||
**Usage:** | ||
```bash | ||
python get_graph_bench_dataset.py [dataset] | ||
``` | ||
|
||
#### 3. `create_results_summary_page.py` | ||
This script is designed to be run after `run-gap-benchmarks.sh` in order to generate an HTML page displaying a results table comparing default NetworkX to nx-cugraph. The script also provides information about the current system. | ||
|
||
**Usage:** | ||
```bash | ||
python create_results_summary_page.py > report.html | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
291 changes: 291 additions & 0 deletions
291
benchmarks/nx-cugraph/pytest-based/create_results_summary_page.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,291 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import re | ||
import pathlib | ||
import json | ||
import platform | ||
import psutil | ||
import socket | ||
import subprocess | ||
|
||
|
||
def get_formatted_time_value(time): | ||
res = "" | ||
if time < 1: | ||
if time < 0.001: | ||
units = "us" | ||
time *= 1e6 | ||
else: | ||
units = "ms" | ||
time *= 1e3 | ||
else: | ||
units = "s" | ||
return f"{time:.3f}{units}" | ||
|
||
|
||
def get_all_benchmark_info(): | ||
benchmarks = {} | ||
# Populate benchmarks dir from .json files | ||
for json_file in logs_dir.glob("*.json"): | ||
try: | ||
data = json.loads(open(json_file).read()) | ||
except json.decoder.JSONDecodeError: | ||
continue | ||
|
||
for benchmark_run in data["benchmarks"]: | ||
# example name: "bench_triangles[ds=netscience-backend=cugraph-preconverted]" | ||
name = benchmark_run["name"] | ||
|
||
algo_name = name.split("[")[0] | ||
if algo_name.startswith("bench_"): | ||
algo_name = algo_name[6:] | ||
# special case for betweenness_centrality | ||
match = k_patt.match(name) | ||
if match is not None: | ||
algo_name += f", k={match.group(1)}" | ||
|
||
match = dataset_patt.match(name) | ||
if match is None: | ||
raise RuntimeError( | ||
f"benchmark name {name} in file {json_file} has an unexpected format" | ||
) | ||
dataset = match.group(1) | ||
if dataset.endswith("-backend"): | ||
dataset = dataset[:-8] | ||
|
||
match = backend_patt.match(name) | ||
if match is None: | ||
raise RuntimeError( | ||
f"benchmark name {name} in file {json_file} has an unexpected format" | ||
) | ||
backend = match.group(1) | ||
if backend == "None": | ||
backend = "networkx" | ||
|
||
runtime = benchmark_run["stats"]["mean"] | ||
benchmarks.setdefault(algo_name, {}).setdefault(backend, {})[ | ||
dataset | ||
] = runtime | ||
return benchmarks | ||
|
||
|
||
def compute_perf_vals(cugraph_runtime, networkx_runtime): | ||
speedup_string = f"{networkx_runtime / cugraph_runtime:.3f}X" | ||
delta = networkx_runtime - cugraph_runtime | ||
if abs(delta) < 1: | ||
if abs(delta) < 0.001: | ||
units = "us" | ||
delta *= 1e6 | ||
else: | ||
units = "ms" | ||
delta *= 1e3 | ||
else: | ||
units = "s" | ||
delta_string = f"{delta:.3f}{units}" | ||
|
||
return (speedup_string, delta_string) | ||
|
||
|
||
def get_mem_info(): | ||
return round(psutil.virtual_memory().total / (1024**3), 2) | ||
|
||
|
||
def get_cuda_version(): | ||
output = subprocess.check_output("nvidia-smi", shell=True).decode() | ||
try: | ||
return next( | ||
line.split("CUDA Version: ")[1].split()[0] | ||
for line in output.splitlines() | ||
if "CUDA Version" in line | ||
) | ||
except subprocess.CalledProcessError: | ||
return "Failed to get CUDA version." | ||
|
||
|
||
def get_first_gpu_info(): | ||
try: | ||
gpu_info = ( | ||
subprocess.check_output( | ||
"nvidia-smi --query-gpu=name,memory.total,memory.free,memory.used --format=csv,noheader", | ||
shell=True, | ||
) | ||
.decode() | ||
.strip() | ||
) | ||
if gpu_info: | ||
gpus = gpu_info.split("\n") | ||
num_gpus = len(gpus) | ||
first_gpu = gpus[0] # Get the information for the first GPU | ||
gpu_name, mem_total, _, _ = first_gpu.split(",") | ||
return f"{num_gpus} x {gpu_name.strip()} ({round(int(mem_total.strip().split()[0]) / (1024), 2)} GB)" | ||
else: | ||
print("No GPU found or unable to query GPU details.") | ||
except subprocess.CalledProcessError: | ||
print("Failed to execute nvidia-smi. No GPU information available.") | ||
|
||
|
||
def get_system_info(): | ||
print('<div class="box2">') | ||
print(f"<p>Hostname: {socket.gethostname()}</p>") | ||
print( | ||
f'<p class="indent"">Operating System: {platform.system()} {platform.release()}</p>' | ||
) | ||
print(f'<p class="indent">Kernel Version : {platform.version()}</p>') | ||
with open("/proc/cpuinfo") as f: | ||
print( | ||
f'<p>CPU: {next(line.strip().split(": ")[1] for line in f if "model name" in line)} ({psutil.cpu_count(logical=False)} cores)</p>' | ||
) | ||
print(f'<p class="indent">Memory: {get_mem_info()} GB</p>') | ||
print(f"<p>GPU: {get_first_gpu_info()}</p>") | ||
print(f"<p>CUDA Version: {get_cuda_version()}</p>") | ||
|
||
|
||
if __name__ == "__main__": | ||
logs_dir = pathlib.Path("logs") | ||
|
||
dataset_patt = re.compile(".*ds=([\w-]+).*") | ||
backend_patt = re.compile(".*backend=(\w+).*") | ||
k_patt = re.compile(".*k=(10*).*") | ||
|
||
# Organize all benchmark runs by the following hierarchy: algo -> backend -> dataset | ||
benchmarks = get_all_benchmark_info() | ||
|
||
# dump HTML table | ||
ordered_datasets = [ | ||
"netscience", | ||
"email_Eu_core", | ||
"cit-patents", | ||
"hollywood", | ||
"soc-livejournal1", | ||
] | ||
# dataset, # Node, # Edge, Directed info | ||
dataset_meta = { | ||
"netscience": ["1,461", "5,484", "Yes"], | ||
"email_Eu_core": ["1,005", "25,571", "Yes"], | ||
"cit-patents": ["3,774,768", "16,518,948", "Yes"], | ||
"hollywood": ["1,139,905", "57,515,616", "No"], | ||
"soc-livejournal1": ["4,847,571", "68,993,773", "Yes"], | ||
} | ||
|
||
print( | ||
""" | ||
<html> | ||
<head> | ||
<style> | ||
table { | ||
table-layout: fixed; | ||
width: 100%; | ||
border-collapse: collapse; | ||
} | ||
tbody tr:nth-child(odd) { | ||
background-color: #ffffff; | ||
} | ||
tbody tr:nth-child(even) { | ||
background-color: #d3d3d3; | ||
} | ||
tbody td { | ||
text-align: center; | ||
color: black; | ||
} | ||
th, | ||
td { | ||
padding: 12px; | ||
} | ||
.footer-main { | ||
background-color: #d1d1d1; | ||
padding: 20px; | ||
padding-top: 0px; | ||
font-size: 12px; | ||
color: black; | ||
width: 100%; | ||
display: flex; | ||
} | ||
.box1{ | ||
flex: 1; | ||
padding-right: 30px; | ||
} | ||
.box2{ | ||
flex: 4; | ||
} | ||
.indent { | ||
text-indent: 20px; | ||
} | ||
</style> | ||
</head> | ||
<table> | ||
<thead> | ||
<tr> | ||
<th>Dataset<br>Nodes<br>Edges<Br>Directed</th>""" | ||
) | ||
for ds in ordered_datasets: | ||
print( | ||
f" <th>{ds}<br>{dataset_meta[ds][0]}<br>{dataset_meta[ds][1]}<br>{dataset_meta[ds][2]}<br></th>" | ||
) | ||
print( | ||
""" </tr> | ||
</thead> | ||
<tbody> | ||
""" | ||
) | ||
for algo_name in sorted(benchmarks): | ||
algo_runs = benchmarks[algo_name] | ||
print(" <tr>") | ||
print(f" <td>{algo_name}</td>") | ||
# Proceed only if any results are present for both cugraph and NX | ||
if "cugraph" in algo_runs and "networkx" in algo_runs: | ||
cugraph_algo_runs = algo_runs["cugraph"] | ||
networkx_algo_runs = algo_runs["networkx"] | ||
datasets_in_both = set(cugraph_algo_runs).intersection(networkx_algo_runs) | ||
|
||
# populate the table with speedup results for each dataset in the order | ||
# specified in ordered_datasets. If results for a run using a dataset | ||
# are not present for both cugraph and NX, output an empty cell. | ||
for dataset in ordered_datasets: | ||
if dataset in datasets_in_both: | ||
cugraph_runtime = cugraph_algo_runs[dataset] | ||
networkx_runtime = networkx_algo_runs[dataset] | ||
(speedup, runtime_delta) = compute_perf_vals( | ||
cugraph_runtime=cugraph_runtime, | ||
networkx_runtime=networkx_runtime, | ||
) | ||
nx_formatted = get_formatted_time_value(networkx_runtime) | ||
cg_formatted = get_formatted_time_value(cugraph_runtime) | ||
print( | ||
f" <td>{nx_formatted} / {cg_formatted}<br>{speedup}<br>{runtime_delta}</td>" | ||
) | ||
else: | ||
print(f" <td></td>") | ||
|
||
# If a comparison between cugraph and NX cannot be made, output empty cells | ||
# for each dataset | ||
else: | ||
for _ in range(len(ordered_datasets)): | ||
print(" <td></td>") | ||
print(" </tr>") | ||
print( | ||
""" | ||
</tbody>\n</table> | ||
<div class="footer-main"> | ||
<div class="box1"> | ||
<h4>Table Format:</h4> | ||
<ul> | ||
<li><strong>NetworkX time / nx-cugraph time</strong></li> | ||
<li><strong>Speed-up of using nx-cugraph</strong></li> | ||
<li><strong>Time-delta</strong></li> | ||
</ul> | ||
</div>""" | ||
) | ||
get_system_info() | ||
print("""</div>\n</div>\n</html>""") |
Oops, something went wrong.