diff --git a/python/cugraph/cugraph/structure/graph_implementation/simpleDistributedGraph.py b/python/cugraph/cugraph/structure/graph_implementation/simpleDistributedGraph.py index 01885c2d1c3..29e0cc3019c 100644 --- a/python/cugraph/cugraph/structure/graph_implementation/simpleDistributedGraph.py +++ b/python/cugraph/cugraph/structure/graph_implementation/simpleDistributedGraph.py @@ -14,7 +14,6 @@ import gc from typing import Union import warnings -import random import cudf import cupy as cp @@ -183,9 +182,7 @@ def __from_edgelist( # Repartition to 2 partitions per GPU for memory efficient process input_ddf = input_ddf.repartition(npartitions=len(workers) * 2) # FIXME: Make a copy of the input ddf before implicitly altering it. - input_ddf = input_ddf.map_partitions( - lambda df: df.copy(), token="custom-" + str(random.random()) - ) + input_ddf = input_ddf.map_partitions(lambda df: df.copy()) # The dataframe will be symmetrized iff the graph is undirected # otherwise, the inital dataframe will be returned if edge_attr is not None: @@ -337,7 +334,7 @@ def __from_edgelist( ) for w, edata in ddf.items() } - del ddf + # FIXME: For now, don't delete the copied dataframe to avoid crash self._plc_graph = { w: _client.compute(delayed_task, workers=w, allow_other_workers=False) for w, delayed_task in delayed_tasks_d.items()