diff --git a/benchmarks/nx-cugraph/pytest-based/bench_algos.py b/benchmarks/nx-cugraph/pytest-based/bench_algos.py index 97eb32e2aaa..3b085a9bfdb 100644 --- a/benchmarks/nx-cugraph/pytest-based/bench_algos.py +++ b/benchmarks/nx-cugraph/pytest-based/bench_algos.py @@ -242,6 +242,28 @@ def get_highest_degree_node(graph_obj): return max(degrees, key=lambda t: t[1])[0] +def build_personalization_dict(pagerank_dict): + """ + Returns a dictionary that can be used as the personalization value for a + call to nx.pagerank(). The pagerank_dict passed in is used as the initial + source of values for each node, and this function simply treats the list of + dict values as two halves (halves A and B) and swaps them so (most if not + all) nodes/keys are assigned a different value from the dictionary. + """ + num_half = len(pagerank_dict) // 2 + A_half_items = list(pagerank_dict.items())[:num_half] + B_half_items = list(pagerank_dict.items())[num_half:] + + # Support an odd number of items by initializing with B_half_items, which + # will always be one bigger if the number of items is odd. This will leave + # the one remainder (in the case of an odd number) unchanged. + pers_dict = dict(B_half_items) + pers_dict.update({A_half_items[i][0]: B_half_items[i][1] for i in range(num_half)}) + pers_dict.update({B_half_items[i][0]: A_half_items[i][1] for i in range(num_half)}) + + return pers_dict + + ################################################################################ # Benchmarks def bench_from_networkx(benchmark, graph_obj): @@ -431,6 +453,26 @@ def bench_pagerank(benchmark, graph_obj, backend_wrapper): assert type(result) is dict +def bench_pagerank_personalized(benchmark, graph_obj, backend_wrapper): + G = get_graph_obj_for_benchmark(graph_obj, backend_wrapper) + + # FIXME: This will run for every combination of inputs, even if the + # graph/dataset does not change. Ideally this is run once per + # graph/dataset. + pagerank_dict = nx.pagerank(G) + personalization_dict = build_personalization_dict(pagerank_dict) + + result = benchmark.pedantic( + target=backend_wrapper(nx.pagerank), + args=(G,), + kwargs={"personalization": personalization_dict}, + rounds=rounds, + iterations=iterations, + warmup_rounds=warmup_rounds, + ) + assert type(result) is dict + + def bench_single_source_shortest_path_length(benchmark, graph_obj, backend_wrapper): G = get_graph_obj_for_benchmark(graph_obj, backend_wrapper) node = get_highest_degree_node(graph_obj) @@ -804,3 +846,73 @@ def bench_weakly_connected_components(benchmark, graph_obj, backend_wrapper): warmup_rounds=warmup_rounds, ) assert type(result) is list + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_complete_bipartite_graph(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_connected_components(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_connected(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_node_connected_component(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_number_connected_components(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_isolate(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_isolates(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_number_of_isolates(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_complement(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_reverse(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_arborescence(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_branching(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_forest(benchmark, graph_obj, backend_wrapper): + pass + + +@pytest.mark.skip(reason="benchmark not implemented") +def bench_is_tree(benchmark, graph_obj, backend_wrapper): + pass diff --git a/conda/environments/all_cuda-118_arch-x86_64.yaml b/conda/environments/all_cuda-118_arch-x86_64.yaml index 6aed308c498..f0eff82e1ae 100644 --- a/conda/environments/all_cuda-118_arch-x86_64.yaml +++ b/conda/environments/all_cuda-118_arch-x86_64.yaml @@ -42,7 +42,7 @@ dependencies: - ninja - notebook>=0.5.0 - numba>=0.57 -- numpy>=1.23 +- numpy>=1.23,<2.0a0 - numpydoc - nvcc_linux-64=11.8 - openmpi diff --git a/conda/environments/all_cuda-122_arch-x86_64.yaml b/conda/environments/all_cuda-122_arch-x86_64.yaml index 4a095058219..93972f40d8b 100644 --- a/conda/environments/all_cuda-122_arch-x86_64.yaml +++ b/conda/environments/all_cuda-122_arch-x86_64.yaml @@ -48,7 +48,7 @@ dependencies: - ninja - notebook>=0.5.0 - numba>=0.57 -- numpy>=1.23 +- numpy>=1.23,<2.0a0 - numpydoc - openmpi - packaging>=21 diff --git a/conda/recipes/cugraph-dgl/meta.yaml b/conda/recipes/cugraph-dgl/meta.yaml index 09322a9c7d3..5e28e69a0d7 100644 --- a/conda/recipes/cugraph-dgl/meta.yaml +++ b/conda/recipes/cugraph-dgl/meta.yaml @@ -25,7 +25,7 @@ requirements: - cugraph ={{ version }} - dgl >=1.1.0.cu* - numba >=0.57 - - numpy >=1.23 + - numpy >=1.23,<2.0a0 - pylibcugraphops ={{ minor_version }} - python - pytorch diff --git a/conda/recipes/cugraph-pyg/meta.yaml b/conda/recipes/cugraph-pyg/meta.yaml index 624f5753fd2..4ada5e31211 100644 --- a/conda/recipes/cugraph-pyg/meta.yaml +++ b/conda/recipes/cugraph-pyg/meta.yaml @@ -28,7 +28,7 @@ requirements: run: - rapids-dask-dependency ={{ minor_version }} - numba >=0.57 - - numpy >=1.23 + - numpy >=1.23,<2.0a0 - python - pytorch >=2.0 - cupy >=12.0.0 diff --git a/conda/recipes/cugraph-service/meta.yaml b/conda/recipes/cugraph-service/meta.yaml index c04c1a7c7fa..8698d4f6985 100644 --- a/conda/recipes/cugraph-service/meta.yaml +++ b/conda/recipes/cugraph-service/meta.yaml @@ -60,7 +60,7 @@ outputs: - dask-cuda ={{ minor_version }} - dask-cudf ={{ minor_version }} - numba >=0.57 - - numpy >=1.23 + - numpy >=1.23,<2.0a0 - python - rapids-dask-dependency ={{ minor_version }} - thriftpy2 >=0.4.15 diff --git a/dependencies.yaml b/dependencies.yaml index e6cf6c9e93c..d8be5352c7d 100644 --- a/dependencies.yaml +++ b/dependencies.yaml @@ -449,7 +449,7 @@ dependencies: - &dask rapids-dask-dependency==24.4.* - &dask_cuda dask-cuda==24.4.* - &numba numba>=0.57 - - &numpy numpy>=1.23 + - &numpy numpy>=1.23,<2.0a0 - &ucx_py ucx-py==0.37.* - output_types: conda packages: diff --git a/python/cugraph-dgl/pyproject.toml b/python/cugraph-dgl/pyproject.toml index c6f76325761..f17292c5e70 100644 --- a/python/cugraph-dgl/pyproject.toml +++ b/python/cugraph-dgl/pyproject.toml @@ -25,7 +25,7 @@ classifiers = [ dependencies = [ "cugraph==24.4.*", "numba>=0.57", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pylibcugraphops==24.4.*", ] # This list was generated by `rapids-dependency-file-generator`. To make changes, edit ../../dependencies.yaml and run `rapids-dependency-file-generator`. diff --git a/python/cugraph-pyg/pyproject.toml b/python/cugraph-pyg/pyproject.toml index cbee5ed4b58..150ecbf506b 100644 --- a/python/cugraph-pyg/pyproject.toml +++ b/python/cugraph-pyg/pyproject.toml @@ -29,7 +29,7 @@ classifiers = [ dependencies = [ "cugraph==24.4.*", "numba>=0.57", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pylibcugraphops==24.4.*", ] # This list was generated by `rapids-dependency-file-generator`. To make changes, edit ../../dependencies.yaml and run `rapids-dependency-file-generator`. diff --git a/python/cugraph-service/server/pyproject.toml b/python/cugraph-service/server/pyproject.toml index a32b18a9551..d6cf48432cb 100644 --- a/python/cugraph-service/server/pyproject.toml +++ b/python/cugraph-service/server/pyproject.toml @@ -26,7 +26,7 @@ dependencies = [ "dask-cuda==24.4.*", "dask-cudf==24.4.*", "numba>=0.57", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "rapids-dask-dependency==24.4.*", "rmm==24.4.*", "thriftpy2", @@ -46,7 +46,7 @@ cugraph-service-server = "cugraph_service_server.__main__:main" [project.optional-dependencies] test = [ "networkx>=2.5.1", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pandas", "pytest", "pytest-benchmark", diff --git a/python/cugraph/pyproject.toml b/python/cugraph/pyproject.toml index 113c316ccbf..a6d3d841298 100644 --- a/python/cugraph/pyproject.toml +++ b/python/cugraph/pyproject.toml @@ -35,7 +35,7 @@ dependencies = [ "dask-cudf==24.4.*", "fsspec[http]>=0.6.0", "numba>=0.57", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pylibcugraph==24.4.*", "raft-dask==24.4.*", "rapids-dask-dependency==24.4.*", @@ -53,7 +53,7 @@ classifiers = [ [project.optional-dependencies] test = [ "networkx>=2.5.1", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pandas", "pytest", "pytest-benchmark", diff --git a/python/nx-cugraph/README.md b/python/nx-cugraph/README.md index 8201dc34eb2..1bf310c8c88 100644 --- a/python/nx-cugraph/README.md +++ b/python/nx-cugraph/README.md @@ -95,8 +95,6 @@ Below is the list of algorithms that are currently supported in nx-cugraph.
bipartite - ├─ basic - │ └─ is_bipartite └─ generators └─ complete_bipartite_graph centrality @@ -152,9 +150,26 @@ Below is the list of algorithms that are currently supported in nx-cugraph. ├─ overall_reciprocity └─ reciprocity shortest_paths - └─ unweighted - ├─ single_source_shortest_path_length - └─ single_target_shortest_path_length + ├─ generic + │ ├─ has_path + │ ├─ shortest_path + │ └─ shortest_path_length + ├─ unweighted + │ ├─ all_pairs_shortest_path + │ ├─ all_pairs_shortest_path_length + │ ├─ bidirectional_shortest_path + │ ├─ single_source_shortest_path + │ ├─ single_source_shortest_path_length + │ ├─ single_target_shortest_path + │ └─ single_target_shortest_path_length + └─ weighted + ├─ all_pairs_bellman_ford_path + ├─ all_pairs_bellman_ford_path_length + ├─ bellman_ford_path + ├─ bellman_ford_path_length + ├─ single_source_bellman_ford + ├─ single_source_bellman_ford_path + └─ single_source_bellman_ford_path_length traversal └─ breadth_first_search ├─ bfs_edges diff --git a/python/nx-cugraph/_nx_cugraph/__init__.py b/python/nx-cugraph/_nx_cugraph/__init__.py index b2f13d25ff3..bc7f63fcd49 100644 --- a/python/nx-cugraph/_nx_cugraph/__init__.py +++ b/python/nx-cugraph/_nx_cugraph/__init__.py @@ -33,15 +33,22 @@ # "description": "TODO", "functions": { # BEGIN: functions + "all_pairs_bellman_ford_path", + "all_pairs_bellman_ford_path_length", + "all_pairs_shortest_path", + "all_pairs_shortest_path_length", "ancestors", "average_clustering", "barbell_graph", + "bellman_ford_path", + "bellman_ford_path_length", "betweenness_centrality", "bfs_edges", "bfs_layers", "bfs_predecessors", "bfs_successors", "bfs_tree", + "bidirectional_shortest_path", "bull_graph", "caveman_graph", "chvatal_graph", @@ -70,6 +77,7 @@ "from_scipy_sparse_array", "frucht_graph", "generic_bfs_edges", + "has_path", "heawood_graph", "hits", "house_graph", @@ -77,7 +85,6 @@ "icosahedral_graph", "in_degree_centrality", "is_arborescence", - "is_bipartite", "is_branching", "is_connected", "is_forest", @@ -110,7 +117,14 @@ "reciprocity", "reverse", "sedgewick_maze_graph", + "shortest_path", + "shortest_path_length", + "single_source_bellman_ford", + "single_source_bellman_ford_path", + "single_source_bellman_ford_path_length", + "single_source_shortest_path", "single_source_shortest_path_length", + "single_target_shortest_path", "single_target_shortest_path_length", "star_graph", "tadpole_graph", @@ -128,7 +142,11 @@ }, "additional_docs": { # BEGIN: additional_docs + "all_pairs_bellman_ford_path": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.", + "all_pairs_bellman_ford_path_length": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.", "average_clustering": "Directed graphs and `weight` parameter are not yet supported.", + "bellman_ford_path": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.", + "bellman_ford_path_length": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.", "betweenness_centrality": "`weight` parameter is not yet supported, and RNG with seed may be different.", "bfs_edges": "`sort_neighbors` parameter is not yet supported.", "bfs_predecessors": "`sort_neighbors` parameter is not yet supported.", @@ -147,11 +165,28 @@ "katz_centrality": "`nstart` isn't used (but is checked), and `normalized=False` is not supported.", "louvain_communities": "`seed` parameter is currently ignored, and self-loops are not yet supported.", "pagerank": "`dangling` parameter is not supported, but it is checked for validity.", + "shortest_path": "Negative weights are not yet supported, and method is ununsed.", + "shortest_path_length": "Negative weights are not yet supported, and method is ununsed.", + "single_source_bellman_ford": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.", + "single_source_bellman_ford_path": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.", + "single_source_bellman_ford_path_length": "Negative cycles are not yet supported. ``NotImplementedError`` will be raised if there are negative edge weights. We plan to support negative edge weights soon. Also, callable ``weight`` argument is not supported.", "transitivity": "Directed graphs are not yet supported.", # END: additional_docs }, "additional_parameters": { # BEGIN: additional_parameters + "all_pairs_bellman_ford_path": { + "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", + }, + "all_pairs_bellman_ford_path_length": { + "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", + }, + "bellman_ford_path": { + "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", + }, + "bellman_ford_path_length": { + "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", + }, "eigenvector_centrality": { "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", }, @@ -169,6 +204,21 @@ "pagerank": { "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", }, + "shortest_path": { + "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", + }, + "shortest_path_length": { + "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", + }, + "single_source_bellman_ford": { + "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", + }, + "single_source_bellman_ford_path": { + "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", + }, + "single_source_bellman_ford_path_length": { + "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", + }, # END: additional_parameters }, } diff --git a/python/nx-cugraph/lint.yaml b/python/nx-cugraph/lint.yaml index fdd24861da7..3239fa151d9 100644 --- a/python/nx-cugraph/lint.yaml +++ b/python/nx-cugraph/lint.yaml @@ -50,7 +50,7 @@ repos: - id: black # - id: black-jupyter - repo: https://github.com/astral-sh/ruff-pre-commit - rev: v0.2.2 + rev: v0.3.2 hooks: - id: ruff args: [--fix-only, --show-fixes] # --unsafe-fixes] @@ -77,7 +77,7 @@ repos: additional_dependencies: [tomli] files: ^(nx_cugraph|docs)/ - repo: https://github.com/astral-sh/ruff-pre-commit - rev: v0.2.2 + rev: v0.3.2 hooks: - id: ruff - repo: https://github.com/pre-commit/pre-commit-hooks diff --git a/python/nx-cugraph/nx_cugraph/algorithms/__init__.py b/python/nx-cugraph/nx_cugraph/algorithms/__init__.py index 7aafa85f5b7..b4a10bcf0a1 100644 --- a/python/nx-cugraph/nx_cugraph/algorithms/__init__.py +++ b/python/nx-cugraph/nx_cugraph/algorithms/__init__.py @@ -22,7 +22,7 @@ traversal, tree, ) -from .bipartite import complete_bipartite_graph, is_bipartite +from .bipartite import complete_bipartite_graph from .centrality import * from .cluster import * from .components import * diff --git a/python/nx-cugraph/nx_cugraph/algorithms/bipartite/__init__.py b/python/nx-cugraph/nx_cugraph/algorithms/bipartite/__init__.py index e028299c675..bfc7f1d4d42 100644 --- a/python/nx-cugraph/nx_cugraph/algorithms/bipartite/__init__.py +++ b/python/nx-cugraph/nx_cugraph/algorithms/bipartite/__init__.py @@ -10,5 +10,4 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -from .basic import * from .generators import * diff --git a/python/nx-cugraph/nx_cugraph/algorithms/bipartite/basic.py b/python/nx-cugraph/nx_cugraph/algorithms/bipartite/basic.py deleted file mode 100644 index 46c6b54075b..00000000000 --- a/python/nx-cugraph/nx_cugraph/algorithms/bipartite/basic.py +++ /dev/null @@ -1,31 +0,0 @@ -# Copyright (c) 2024, NVIDIA CORPORATION. -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import cupy as cp - -from nx_cugraph.algorithms.cluster import _triangles -from nx_cugraph.convert import _to_graph -from nx_cugraph.utils import networkx_algorithm - -__all__ = [ - "is_bipartite", -] - - -@networkx_algorithm(version_added="24.02", _plc="triangle_count") -def is_bipartite(G): - G = _to_graph(G) - # Counting triangles may not be the fastest way to do this, but it is simple. - node_ids, triangles, is_single_node = _triangles( - G, None, symmetrize="union" if G.is_directed() else None - ) - return int(cp.count_nonzero(triangles)) == 0 diff --git a/python/nx-cugraph/nx_cugraph/algorithms/centrality/eigenvector.py b/python/nx-cugraph/nx_cugraph/algorithms/centrality/eigenvector.py index 65a8633667a..c32b6fbb708 100644 --- a/python/nx-cugraph/nx_cugraph/algorithms/centrality/eigenvector.py +++ b/python/nx-cugraph/nx_cugraph/algorithms/centrality/eigenvector.py @@ -36,17 +36,12 @@ def eigenvector_centrality( G, max_iter=100, tol=1.0e-6, nstart=None, weight=None, *, dtype=None ): """`nstart` parameter is not used, but it is checked for validity.""" - G = _to_graph(G, weight, np.float32) + G = _to_graph(G, weight, 1, np.float32) if len(G) == 0: raise nx.NetworkXPointlessConcept( "cannot compute centrality for the null graph" ) - if dtype is not None: - dtype = _get_float_dtype(dtype) - elif weight in G.edge_values: - dtype = _get_float_dtype(G.edge_values[weight].dtype) - else: - dtype = np.float32 + dtype = _get_float_dtype(dtype, graph=G, weight=weight) if nstart is not None: # Check if given nstart is valid even though we don't use it nstart = G._dict_to_nodearray(nstart, dtype=dtype) diff --git a/python/nx-cugraph/nx_cugraph/algorithms/centrality/katz.py b/python/nx-cugraph/nx_cugraph/algorithms/centrality/katz.py index 4a0684f72ee..1c6ed61703d 100644 --- a/python/nx-cugraph/nx_cugraph/algorithms/centrality/katz.py +++ b/python/nx-cugraph/nx_cugraph/algorithms/centrality/katz.py @@ -49,15 +49,10 @@ def katz_centrality( # Redundant with the `_can_run` check below when being dispatched by NetworkX, # but we raise here in case this funcion is called directly. raise NotImplementedError("normalized=False is not supported.") - G = _to_graph(G, weight, np.float32) + G = _to_graph(G, weight, 1, np.float32) if (N := len(G)) == 0: return {} - if dtype is not None: - dtype = _get_float_dtype(dtype) - elif weight in G.edge_values: - dtype = _get_float_dtype(G.edge_values[weight].dtype) - else: - dtype = np.float32 + dtype = _get_float_dtype(dtype, graph=G, weight=weight) if nstart is not None: # Check if given nstart is valid even though we don't use it nstart = G._dict_to_nodearray(nstart, 0, dtype) diff --git a/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/hits_alg.py b/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/hits_alg.py index e61a931c069..e529b83ab1a 100644 --- a/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/hits_alg.py +++ b/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/hits_alg.py @@ -46,15 +46,10 @@ def hits( weight="weight", dtype=None, ): - G = _to_graph(G, weight, np.float32) + G = _to_graph(G, weight, 1, np.float32) if (N := len(G)) == 0: return {}, {} - if dtype is not None: - dtype = _get_float_dtype(dtype) - elif weight in G.edge_values: - dtype = _get_float_dtype(G.edge_values[weight].dtype) - else: - dtype = np.float32 + dtype = _get_float_dtype(dtype, graph=G, weight=weight) if nstart is not None: nstart = G._dict_to_nodearray(nstart, 0, dtype) if max_iter <= 0: diff --git a/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/pagerank_alg.py b/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/pagerank_alg.py index 40224e91d57..41203a2bc22 100644 --- a/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/pagerank_alg.py +++ b/python/nx-cugraph/nx_cugraph/algorithms/link_analysis/pagerank_alg.py @@ -48,12 +48,7 @@ def pagerank( G = _to_graph(G, weight, 1, np.float32) if (N := len(G)) == 0: return {} - if dtype is not None: - dtype = _get_float_dtype(dtype) - elif weight in G.edge_values: - dtype = _get_float_dtype(G.edge_values[weight].dtype) - else: - dtype = np.float32 + dtype = _get_float_dtype(dtype, graph=G, weight=weight) if nstart is not None: nstart = G._dict_to_nodearray(nstart, 0, dtype=dtype) if (total := nstart.sum()) == 0: diff --git a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/__init__.py b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/__init__.py index b7d6b742176..9d87389a98e 100644 --- a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/__init__.py +++ b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/__init__.py @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -10,4 +10,6 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +from .generic import * from .unweighted import * +from .weighted import * diff --git a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/generic.py b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/generic.py new file mode 100644 index 00000000000..68dbbace93d --- /dev/null +++ b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/generic.py @@ -0,0 +1,165 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import networkx as nx +import numpy as np + +import nx_cugraph as nxcg +from nx_cugraph.convert import _to_graph +from nx_cugraph.utils import _dtype_param, _get_float_dtype, networkx_algorithm + +from .unweighted import _bfs +from .weighted import _sssp + +__all__ = [ + "shortest_path", + "shortest_path_length", + "has_path", +] + + +@networkx_algorithm(version_added="24.04", _plc="bfs") +def has_path(G, source, target): + # TODO PERF: make faster in core + try: + nxcg.bidirectional_shortest_path(G, source, target) + except nx.NetworkXNoPath: + return False + return True + + +@networkx_algorithm( + extra_params=_dtype_param, version_added="24.04", _plc={"bfs", "sssp"} +) +def shortest_path( + G, source=None, target=None, weight=None, method="dijkstra", *, dtype=None +): + """Negative weights are not yet supported, and method is ununsed.""" + if method not in {"dijkstra", "bellman-ford"}: + raise ValueError(f"method not supported: {method}") + if weight is None: + method = "unweighted" + if source is None: + if target is None: + # All pairs + if method == "unweighted": + paths = nxcg.all_pairs_shortest_path(G) + else: + # method == "dijkstra": + # method == 'bellman-ford': + paths = nxcg.all_pairs_bellman_ford_path(G, weight=weight, dtype=dtype) + if nx.__version__[:3] <= "3.4": + paths = dict(paths) + # To target + elif method == "unweighted": + paths = nxcg.single_target_shortest_path(G, target) + else: + # method == "dijkstra": + # method == 'bellman-ford': + # XXX: it seems weird that `reverse_path=True` is necessary here + G = _to_graph(G, weight, 1, np.float32) + dtype = _get_float_dtype(dtype, graph=G, weight=weight) + paths = _sssp( + G, target, weight, return_type="path", dtype=dtype, reverse_path=True + ) + elif target is None: + # From source + if method == "unweighted": + paths = nxcg.single_source_shortest_path(G, source) + else: + # method == "dijkstra": + # method == 'bellman-ford': + paths = nxcg.single_source_bellman_ford_path( + G, source, weight=weight, dtype=dtype + ) + # From source to target + elif method == "unweighted": + paths = nxcg.bidirectional_shortest_path(G, source, target) + else: + # method == "dijkstra": + # method == 'bellman-ford': + paths = nxcg.bellman_ford_path(G, source, target, weight, dtype=dtype) + return paths + + +@shortest_path._can_run +def _(G, source=None, target=None, weight=None, method="dijkstra", *, dtype=None): + return ( + weight is None + or not callable(weight) + and not nx.is_negatively_weighted(G, weight=weight) + ) + + +@networkx_algorithm( + extra_params=_dtype_param, version_added="24.04", _plc={"bfs", "sssp"} +) +def shortest_path_length( + G, source=None, target=None, weight=None, method="dijkstra", *, dtype=None +): + """Negative weights are not yet supported, and method is ununsed.""" + if method not in {"dijkstra", "bellman-ford"}: + raise ValueError(f"method not supported: {method}") + if weight is None: + method = "unweighted" + if source is None: + if target is None: + # All pairs + if method == "unweighted": + lengths = nxcg.all_pairs_shortest_path_length(G) + else: + # method == "dijkstra": + # method == 'bellman-ford': + lengths = nxcg.all_pairs_bellman_ford_path_length( + G, weight=weight, dtype=dtype + ) + # To target + elif method == "unweighted": + lengths = nxcg.single_target_shortest_path_length(G, target) + if nx.__version__[:3] <= "3.4": + lengths = dict(lengths) + else: + # method == "dijkstra": + # method == 'bellman-ford': + lengths = nxcg.single_source_bellman_ford_path_length( + G, target, weight=weight, dtype=dtype + ) + elif target is None: + # From source + if method == "unweighted": + lengths = nxcg.single_source_shortest_path_length(G, source) + else: + # method == "dijkstra": + # method == 'bellman-ford': + lengths = dict( + nxcg.single_source_bellman_ford_path_length( + G, source, weight=weight, dtype=dtype + ) + ) + # From source to target + elif method == "unweighted": + G = _to_graph(G) + lengths = _bfs(G, source, None, "Source", return_type="length", target=target) + else: + # method == "dijkstra": + # method == 'bellman-ford': + lengths = nxcg.bellman_ford_path_length(G, source, target, weight, dtype=dtype) + return lengths + + +@shortest_path_length._can_run +def _(G, source=None, target=None, weight=None, method="dijkstra", *, dtype=None): + return ( + weight is None + or not callable(weight) + and not nx.is_negatively_weighted(G, weight=weight) + ) diff --git a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/unweighted.py b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/unweighted.py index 2012495953e..714289c5b4b 100644 --- a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/unweighted.py +++ b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/unweighted.py @@ -10,33 +10,127 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +import itertools + import cupy as cp import networkx as nx import numpy as np import pylibcugraph as plc from nx_cugraph.convert import _to_graph -from nx_cugraph.utils import index_dtype, networkx_algorithm +from nx_cugraph.utils import _groupby, index_dtype, networkx_algorithm + +__all__ = [ + "bidirectional_shortest_path", + "single_source_shortest_path", + "single_source_shortest_path_length", + "single_target_shortest_path", + "single_target_shortest_path_length", + "all_pairs_shortest_path", + "all_pairs_shortest_path_length", +] -__all__ = ["single_source_shortest_path_length", "single_target_shortest_path_length"] +concat = itertools.chain.from_iterable @networkx_algorithm(version_added="23.12", _plc="bfs") def single_source_shortest_path_length(G, source, cutoff=None): - return _single_shortest_path_length(G, source, cutoff, "Source") + G = _to_graph(G) + return _bfs(G, source, cutoff, "Source", return_type="length") @networkx_algorithm(version_added="23.12", _plc="bfs") def single_target_shortest_path_length(G, target, cutoff=None): - return _single_shortest_path_length(G, target, cutoff, "Target") + G = _to_graph(G) + rv = _bfs(G, target, cutoff, "Target", return_type="length") + if nx.__version__[:3] <= "3.4": + return iter(rv.items()) + return rv + + +@networkx_algorithm(version_added="24.04", _plc="bfs") +def all_pairs_shortest_path_length(G, cutoff=None): + # TODO PERF: batched bfs to compute many at once + G = _to_graph(G) + for n in G: + yield (n, _bfs(G, n, cutoff, "Source", return_type="length")) -def _single_shortest_path_length(G, source, cutoff, kind): +@networkx_algorithm(version_added="24.04", _plc="bfs") +def bidirectional_shortest_path(G, source, target): + # TODO PERF: do bidirectional traversal in core G = _to_graph(G) + if source not in G or target not in G: + raise nx.NodeNotFound(f"Either source {source} or target {target} is not in G") + return _bfs(G, source, None, "Source", return_type="path", target=target) + + +@networkx_algorithm(version_added="24.04", _plc="bfs") +def single_source_shortest_path(G, source, cutoff=None): + G = _to_graph(G) + return _bfs(G, source, cutoff, "Source", return_type="path") + + +@networkx_algorithm(version_added="24.04", _plc="bfs") +def single_target_shortest_path(G, target, cutoff=None): + G = _to_graph(G) + return _bfs(G, target, cutoff, "Target", return_type="path", reverse_path=True) + + +@networkx_algorithm(version_added="24.04", _plc="bfs") +def all_pairs_shortest_path(G, cutoff=None): + # TODO PERF: batched bfs to compute many at once + G = _to_graph(G) + for n in G: + yield (n, _bfs(G, n, cutoff, "Source", return_type="path")) + + +def _bfs( + G, source, cutoff, kind, *, return_type, reverse_path=False, target=None, scale=None +): + """BFS for unweighted shortest path algorithms. + + Parameters + ---------- + source: node label + + cutoff: int, optional + + kind: {"Source", "Target"} + + return_type: {"length", "path", "length-path"} + + reverse_path: bool + + target: node label + + scale: int or float, optional + The amount to scale the lengths + """ + # DRY: _sssp in weighted.py has similar code if source not in G: - raise nx.NodeNotFound(f"{kind} {source} is not in G") - if G.src_indices.size == 0: - return {source: 0} + # Different message to pass networkx tests + if return_type == "length": + raise nx.NodeNotFound(f"{kind} {source} is not in G") + raise nx.NodeNotFound(f"{kind} {source} not in G") + if target is not None: + if source == target or cutoff is not None and cutoff <= 0: + if return_type == "path": + return [source] + if return_type == "length": + return 0 + # return_type == "length-path" + return 0, [source] + if target not in G or G.src_indices.size == 0: + raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}") + elif G.src_indices.size == 0 or cutoff is not None and cutoff <= 0: + if return_type == "path": + return {source: [source]} + if return_type == "length": + return {source: 0} + # return_type == "length-path" + return {source: 0}, {source: [source]} + if cutoff is None: cutoff = -1 src_index = source if G.key_to_id is None else G.key_to_id[source] @@ -46,8 +140,68 @@ def _single_shortest_path_length(G, source, cutoff, kind): sources=cp.array([src_index], index_dtype), direction_optimizing=False, # True for undirected only; what's recommended? depth_limit=cutoff, - compute_predecessors=False, + compute_predecessors=return_type != "length", do_expensive_check=False, ) mask = distances != np.iinfo(distances.dtype).max - return G._nodearrays_to_dict(node_ids[mask], distances[mask]) + node_ids = node_ids[mask] + if return_type != "path": + lengths = distances = distances[mask] + if scale is not None: + lengths = scale * lengths + lengths = G._nodearrays_to_dict(node_ids, lengths) + if target is not None: + if target not in lengths: + raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}") + lengths = lengths[target] + if return_type != "length": + if target is not None: + d = dict(zip(node_ids.tolist(), predecessors[mask].tolist())) + dst_index = target if G.key_to_id is None else G.key_to_id[target] + if dst_index not in d: + raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}") + cur = dst_index + paths = [dst_index] + while cur != src_index: + cur = d[cur] + paths.append(cur) + if (id_to_key := G.id_to_key) is not None: + if reverse_path: + paths = [id_to_key[cur] for cur in paths] + else: + paths = [id_to_key[cur] for cur in reversed(paths)] + elif not reverse_path: + paths.reverse() + else: + if return_type == "path": + distances = distances[mask] + groups = _groupby(distances, [predecessors[mask], node_ids]) + + # `pred_node_iter` does the equivalent as these nested for loops: + # for length in range(1, len(groups)): + # preds, nodes = groups[length] + # for pred, node in zip(preds.tolist(), nodes.tolist()): + if G.key_to_id is None: + pred_node_iter = concat( + zip(*(x.tolist() for x in groups[length])) + for length in range(1, len(groups)) + ) + else: + pred_node_iter = concat( + zip(*(G._nodeiter_to_iter(x.tolist()) for x in groups[length])) + for length in range(1, len(groups)) + ) + # Consider making utility functions for creating paths + paths = {source: [source]} + if reverse_path: + for pred, node in pred_node_iter: + paths[node] = [node, *paths[pred]] + else: + for pred, node in pred_node_iter: + paths[node] = [*paths[pred], node] + if return_type == "path": + return paths + if return_type == "length": + return lengths + # return_type == "length-path" + return lengths, paths diff --git a/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/weighted.py b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/weighted.py new file mode 100644 index 00000000000..32323dd45f3 --- /dev/null +++ b/python/nx-cugraph/nx_cugraph/algorithms/shortest_paths/weighted.py @@ -0,0 +1,286 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import networkx as nx +import numpy as np +import pylibcugraph as plc + +from nx_cugraph.convert import _to_graph +from nx_cugraph.utils import ( + _dtype_param, + _get_float_dtype, + _groupby, + networkx_algorithm, +) + +from .unweighted import _bfs + +__all__ = [ + "bellman_ford_path", + "bellman_ford_path_length", + "single_source_bellman_ford", + "single_source_bellman_ford_path", + "single_source_bellman_ford_path_length", + "all_pairs_bellman_ford_path", + "all_pairs_bellman_ford_path_length", +] + + +def _add_doc(func): + func.__doc__ = ( + "Negative cycles are not yet supported. ``NotImplementedError`` will be raised " + "if there are negative edge weights. We plan to support negative edge weights " + "soon. Also, callable ``weight`` argument is not supported." + ) + return func + + +@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp") +@_add_doc +def bellman_ford_path(G, source, target, weight="weight", *, dtype=None): + G = _to_graph(G, weight, 1, np.float32) + dtype = _get_float_dtype(dtype, graph=G, weight=weight) + return _sssp(G, source, weight, target, return_type="path", dtype=dtype) + + +@bellman_ford_path._can_run +def _(G, source, target, weight="weight", *, dtype=None): + return ( + weight is None + or not callable(weight) + and not nx.is_negatively_weighted(G, weight=weight) + ) + + +@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp") +@_add_doc +def bellman_ford_path_length(G, source, target, weight="weight", *, dtype=None): + G = _to_graph(G, weight, 1, np.float32) + dtype = _get_float_dtype(dtype, graph=G, weight=weight) + return _sssp(G, source, weight, target, return_type="length", dtype=dtype) + + +@bellman_ford_path_length._can_run +def _(G, source, target, weight="weight", *, dtype=None): + return ( + weight is None + or not callable(weight) + and not nx.is_negatively_weighted(G, weight=weight) + ) + + +@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp") +@_add_doc +def single_source_bellman_ford_path(G, source, weight="weight", *, dtype=None): + G = _to_graph(G, weight, 1, np.float32) + dtype = _get_float_dtype(dtype, graph=G, weight=weight) + return _sssp(G, source, weight, return_type="path", dtype=dtype) + + +@single_source_bellman_ford_path._can_run +def _(G, source, weight="weight", *, dtype=None): + return ( + weight is None + or not callable(weight) + and not nx.is_negatively_weighted(G, weight=weight) + ) + + +@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp") +@_add_doc +def single_source_bellman_ford_path_length(G, source, weight="weight", *, dtype=None): + G = _to_graph(G, weight, 1, np.float32) + dtype = _get_float_dtype(dtype, graph=G, weight=weight) + return _sssp(G, source, weight, return_type="length", dtype=dtype) + + +@single_source_bellman_ford_path_length._can_run +def _(G, source, weight="weight", *, dtype=None): + return ( + weight is None + or not callable(weight) + and not nx.is_negatively_weighted(G, weight=weight) + ) + + +@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp") +@_add_doc +def single_source_bellman_ford(G, source, target=None, weight="weight", *, dtype=None): + G = _to_graph(G, weight, 1, np.float32) + dtype = _get_float_dtype(dtype, graph=G, weight=weight) + return _sssp(G, source, weight, target, return_type="length-path", dtype=dtype) + + +@single_source_bellman_ford._can_run +def _(G, source, target=None, weight="weight", *, dtype=None): + return ( + weight is None + or not callable(weight) + and not nx.is_negatively_weighted(G, weight=weight) + ) + + +@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp") +@_add_doc +def all_pairs_bellman_ford_path_length(G, weight="weight", *, dtype=None): + # TODO PERF: batched bfs to compute many at once + G = _to_graph(G, weight, 1, np.float32) + dtype = _get_float_dtype(dtype, graph=G, weight=weight) + for n in G: + yield (n, _sssp(G, n, weight, return_type="length", dtype=dtype)) + + +@all_pairs_bellman_ford_path_length._can_run +def _(G, weight="weight", *, dtype=None): + return ( + weight is None + or not callable(weight) + and not nx.is_negatively_weighted(G, weight=weight) + ) + + +@networkx_algorithm(extra_params=_dtype_param, version_added="24.04", _plc="sssp") +@_add_doc +def all_pairs_bellman_ford_path(G, weight="weight", *, dtype=None): + # TODO PERF: batched bfs to compute many at once + G = _to_graph(G, weight, 1, np.float32) + dtype = _get_float_dtype(dtype, graph=G, weight=weight) + for n in G: + yield (n, _sssp(G, n, weight, return_type="path", dtype=dtype)) + + +@all_pairs_bellman_ford_path._can_run +def _(G, weight="weight", *, dtype=None): + return ( + weight is None + or not callable(weight) + and not nx.is_negatively_weighted(G, weight=weight) + ) + + +def _sssp(G, source, weight, target=None, *, return_type, dtype, reverse_path=False): + """SSSP for weighted shortest paths. + + Parameters + ---------- + return_type : {"length", "path", "length-path"} + + """ + # DRY: _bfs in unweighted.py has similar code + if source not in G: + raise nx.NodeNotFound(f"Node {source} not found in graph") + if target is not None: + if source == target: + if return_type == "path": + return [source] + if return_type == "length": + return 0 + # return_type == "length-path" + return 0, [source] + if target not in G or G.src_indices.size == 0: + raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}") + elif G.src_indices.size == 0: + if return_type == "path": + return {source: [source]} + if return_type == "length": + return {source: 0} + # return_type == "length-path" + return {source: 0}, {source: [source]} + + if callable(weight): + raise NotImplementedError("callable `weight` argument is not supported") + + if weight not in G.edge_values: + # No edge values, so use BFS instead + return _bfs(G, source, None, "Source", return_type=return_type, target=target) + + # Check for negative values since we don't support negative cycles + edge_vals = G.edge_values[weight] + if weight in G.edge_masks: + edge_vals = edge_vals[G.edge_masks[weight]] + if (edge_vals < 0).any(): + raise NotImplementedError("Negative edge weights not yet supported") + edge_val = edge_vals[0] + if (edge_vals == edge_val).all() and ( + edge_vals.size == G.src_indices.size or edge_val == 1 + ): + # Edge values are all the same, so use scaled BFS instead + return _bfs( + G, + source, + None, + "Source", + return_type=return_type, + target=target, + scale=edge_val, + reverse_path=reverse_path, + ) + + src_index = source if G.key_to_id is None else G.key_to_id[source] + node_ids, distances, predecessors = plc.sssp( + resource_handle=plc.ResourceHandle(), + graph=G._get_plc_graph(weight, 1, dtype), + source=src_index, + cutoff=np.inf, + compute_predecessors=True, # TODO: False is not yet supported + # compute_predecessors=return_type != "length", + do_expensive_check=False, + ) + mask = distances != np.finfo(distances.dtype).max + node_ids = node_ids[mask] + if return_type != "path": + lengths = G._nodearrays_to_dict(node_ids, distances[mask]) + if target is not None: + if target not in lengths: + raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}") + lengths = lengths[target] + if return_type != "length": + if target is not None: + d = dict(zip(node_ids.tolist(), predecessors[mask].tolist())) + dst_index = target if G.key_to_id is None else G.key_to_id[target] + if dst_index not in d: + raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}") + cur = dst_index + paths = [dst_index] + while cur != src_index: + cur = d[cur] + paths.append(cur) + if (id_to_key := G.id_to_key) is not None: + if reverse_path: + paths = [id_to_key[cur] for cur in paths] + else: + paths = [id_to_key[cur] for cur in reversed(paths)] + elif not reverse_path: + paths.reverse() + else: + groups = _groupby(predecessors[mask], node_ids) + if (id_to_key := G.id_to_key) is not None: + groups = {id_to_key[k]: v for k, v in groups.items() if k >= 0} + paths = {source: [source]} + preds = [source] + while preds: + pred = preds.pop() + pred_path = paths[pred] + nodes = G._nodearray_to_list(groups[pred]) + if reverse_path: + for node in nodes: + paths[node] = [node, *pred_path] + else: + for node in nodes: + paths[node] = [*pred_path, node] + preds.extend(nodes & groups.keys()) + if return_type == "path": + return paths + if return_type == "length": + return lengths + # return_type == "length-path" + return lengths, paths diff --git a/python/nx-cugraph/nx_cugraph/interface.py b/python/nx-cugraph/nx_cugraph/interface.py index d044ba6960d..0d893ac286b 100644 --- a/python/nx-cugraph/nx_cugraph/interface.py +++ b/python/nx-cugraph/nx_cugraph/interface.py @@ -67,6 +67,7 @@ def key(testpath): no_multigraph = "multigraphs not currently supported" louvain_different = "Louvain may be different due to RNG" no_string_dtype = "string edge values not currently supported" + sssp_path_different = "sssp may choose a different valid path" xfail = { # This is removed while strongly_connected_components() is not @@ -77,6 +78,19 @@ def key(testpath): # "test_strongly_connected.py:" # "TestStronglyConnected.test_condensation_mapping_and_members" # ): "Strongly connected groups in different iteration order", + key( + "test_cycles.py:TestMinimumCycleBasis.test_unweighted_diamond" + ): sssp_path_different, + key( + "test_cycles.py:TestMinimumCycleBasis.test_weighted_diamond" + ): sssp_path_different, + key( + "test_cycles.py:TestMinimumCycleBasis.test_petersen_graph" + ): sssp_path_different, + key( + "test_cycles.py:TestMinimumCycleBasis." + "test_gh6787_and_edge_attribute_names" + ): sssp_path_different, } from packaging.version import parse diff --git a/python/nx-cugraph/nx_cugraph/utils/misc.py b/python/nx-cugraph/nx_cugraph/utils/misc.py index aa06d7fd29b..eab4b42c2cc 100644 --- a/python/nx-cugraph/nx_cugraph/utils/misc.py +++ b/python/nx-cugraph/nx_cugraph/utils/misc.py @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -22,7 +22,9 @@ import numpy as np if TYPE_CHECKING: - from ..typing import Dtype + import nx_cugraph as nxcg + + from ..typing import Dtype, EdgeKey try: from itertools import pairwise # Python >=3.10 @@ -190,10 +192,14 @@ def _get_int_dtype( raise ValueError("Value is too large to store as integer: {val}") from exc -def _get_float_dtype(dtype: Dtype): +def _get_float_dtype( + dtype: Dtype, *, graph: nxcg.Graph | None = None, weight: EdgeKey | None = None +): """Promote dtype to float32 or float64 as appropriate.""" if dtype is None: - return np.dtype(np.float32) + if graph is None or weight not in graph.edge_values: + return np.dtype(np.float32) + dtype = graph.edge_values[weight].dtype rv = np.promote_types(dtype, np.float32) if np.float32 != rv != np.float64: raise TypeError( diff --git a/python/nx-cugraph/pyproject.toml b/python/nx-cugraph/pyproject.toml index 07ec0eab264..dbdc8dd19e1 100644 --- a/python/nx-cugraph/pyproject.toml +++ b/python/nx-cugraph/pyproject.toml @@ -33,7 +33,7 @@ classifiers = [ dependencies = [ "cupy-cuda11x>=12.0.0", "networkx>=3.0", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pylibcugraph==24.4.*", ] # This list was generated by `rapids-dependency-file-generator`. To make changes, edit ../../dependencies.yaml and run `rapids-dependency-file-generator`. diff --git a/python/nx-cugraph/scripts/update_readme.py b/python/nx-cugraph/scripts/update_readme.py old mode 100644 new mode 100755 diff --git a/python/pylibcugraph/pyproject.toml b/python/pylibcugraph/pyproject.toml index eb7323d19e5..d5f568a7a90 100644 --- a/python/pylibcugraph/pyproject.toml +++ b/python/pylibcugraph/pyproject.toml @@ -42,7 +42,7 @@ classifiers = [ [project.optional-dependencies] test = [ "cudf==24.4.*", - "numpy>=1.23", + "numpy>=1.23,<2.0a0", "pandas", "pytest", "pytest-benchmark",