diff --git a/README.md b/README.md index 857406075e0..c8fc07d5ae2 100644 --- a/README.md +++ b/README.md @@ -64,7 +64,6 @@ That's it. NetworkX now leverages cuGraph for accelerated graph algorithms. - [libcugraph (C/C++/CUDA)](./readme_pages/libcugraph.md) - [nx-cugraph](https://rapids.ai/nx-cugraph/) - [cugraph-service](./readme_pages/cugraph_service.md) - - [cugraph-ops](./readme_pages/cugraph_ops.md) - API Docs - Python - [Python Nightly](https://docs.rapids.ai/api/cugraph/nightly/) diff --git a/build.sh b/build.sh index 756045461dd..645a2459e73 100755 --- a/build.sh +++ b/build.sh @@ -331,7 +331,7 @@ if hasArg docs || hasArg all; then ${CMAKE_VERBOSE_OPTION} fi - for PROJECT in libcugraphops libwholegraph; do + for PROJECT in libwholegraph; do XML_DIR="${REPODIR}/docs/cugraph/${PROJECT}" rm -rf "${XML_DIR}" mkdir -p "${XML_DIR}" diff --git a/ci/build_docs.sh b/ci/build_docs.sh index 2d7e90da8d0..1c90f5b243f 100755 --- a/ci/build_docs.sh +++ b/ci/build_docs.sh @@ -46,14 +46,13 @@ rapids-mamba-retry install \ "cugraph-service-server=${RAPIDS_VERSION_MAJOR_MINOR}.*" \ "cugraph-service-client=${RAPIDS_VERSION_MAJOR_MINOR}.*" \ "libcugraph_etl=${RAPIDS_VERSION_MAJOR_MINOR}.*" \ - "pylibcugraphops=${RAPIDS_VERSION_MAJOR_MINOR}.*" \ "pylibwholegraph=${RAPIDS_VERSION_MAJOR_MINOR}.*" \ 'pytorch>=2.3' \ "cuda-version=${CONDA_CUDA_VERSION}" export RAPIDS_DOCS_DIR="$(mktemp -d)" -for PROJECT in libcugraphops libwholegraph; do +for PROJECT in libwholegraph; do rapids-logger "Download ${PROJECT} xml_tar" TMP_DIR=$(mktemp -d) export XML_DIR_${PROJECT^^}="$TMP_DIR" diff --git a/ci/release/update-version.sh b/ci/release/update-version.sh index 9aff2ec2711..a73745f2c0e 100755 --- a/ci/release/update-version.sh +++ b/ci/release/update-version.sh @@ -57,12 +57,10 @@ DEPENDENCIES=( dask-cuda dask-cudf libcudf - libcugraphops libraft libraft-headers librmm pylibcugraph - pylibcugraphops pylibwholegraph pylibraft pyraft diff --git a/conda/environments/all_cuda-118_arch-x86_64.yaml b/conda/environments/all_cuda-118_arch-x86_64.yaml index 9fdba6e5970..e9f6842e8b8 100644 --- a/conda/environments/all_cuda-118_arch-x86_64.yaml +++ b/conda/environments/all_cuda-118_arch-x86_64.yaml @@ -44,7 +44,6 @@ dependencies: - pre-commit - pydantic - pydata-sphinx-theme -- pylibcugraphops==25.2.*,>=0.0.0a0 - pylibraft==25.2.*,>=0.0.0a0 - pylibwholegraph==25.2.*,>=0.0.0a0 - pytest diff --git a/conda/environments/all_cuda-125_arch-x86_64.yaml b/conda/environments/all_cuda-125_arch-x86_64.yaml index a64e0f481d5..13e102862ab 100644 --- a/conda/environments/all_cuda-125_arch-x86_64.yaml +++ b/conda/environments/all_cuda-125_arch-x86_64.yaml @@ -49,7 +49,6 @@ dependencies: - pre-commit - pydantic - pydata-sphinx-theme -- pylibcugraphops==25.2.*,>=0.0.0a0 - pylibraft==25.2.*,>=0.0.0a0 - pylibwholegraph==25.2.*,>=0.0.0a0 - pytest diff --git a/dependencies.yaml b/dependencies.yaml index 821ed7a6a84..93983a1a29b 100644 --- a/dependencies.yaml +++ b/dependencies.yaml @@ -333,7 +333,6 @@ dependencies: - nbsphinx - numpydoc - pydata-sphinx-theme - - pylibcugraphops==25.2.*,>=0.0.0a0 - recommonmark - sphinx-copybutton - sphinx-markdown-tables diff --git a/docs/cugraph/source/api_docs/cugraph-ops/c_cpp/index.rst b/docs/cugraph/source/api_docs/cugraph-ops/c_cpp/index.rst deleted file mode 100644 index 39dae955ef3..00000000000 --- a/docs/cugraph/source/api_docs/cugraph-ops/c_cpp/index.rst +++ /dev/null @@ -1,2 +0,0 @@ -cugraph-ops C++ API Reference -============================= diff --git a/docs/cugraph/source/api_docs/cugraph-ops/index.rst b/docs/cugraph/source/api_docs/cugraph-ops/index.rst deleted file mode 100644 index 0f6a6c937d3..00000000000 --- a/docs/cugraph/source/api_docs/cugraph-ops/index.rst +++ /dev/null @@ -1,11 +0,0 @@ -cugraph-ops API reference -========================= - -This page provides a list of all publicly accessible modules, methods and classes through `pylibcugraphops.*` namespace. - -.. toctree:: - :maxdepth: 2 - :caption: API Documentation - - python/index - c_cpp/index diff --git a/docs/cugraph/source/api_docs/cugraph-ops/python/dimenet.rst b/docs/cugraph/source/api_docs/cugraph-ops/python/dimenet.rst deleted file mode 100644 index 6fadcc57b22..00000000000 --- a/docs/cugraph/source/api_docs/cugraph-ops/python/dimenet.rst +++ /dev/null @@ -1,24 +0,0 @@ -================= -Dimenet operators -================= - -.. currentmodule:: pylibcugraphops - -Radial Basis Functions ----------------------- -.. autosummary:: - :toctree: ../../api/ops - - dimenet.radial_basis_fwd - dimenet.radial_basis_bwd - dimenet.radial_basis_bwd_bwd - -Edge-to-Edge Aggregation -------------------------- -.. autosummary:: - :toctree: ../../api/ops - - dimenet.agg_edge_to_edge_fwd - dimenet.agg_edge_to_edge_bwd - dimenet.agg_edge_to_edge_bwd2_grad - dimenet.agg_edge_to_edge_bwd2_main diff --git a/docs/cugraph/source/api_docs/cugraph-ops/python/graph_types.rst b/docs/cugraph/source/api_docs/cugraph-ops/python/graph_types.rst deleted file mode 100644 index 141d40393a5..00000000000 --- a/docs/cugraph/source/api_docs/cugraph-ops/python/graph_types.rst +++ /dev/null @@ -1,34 +0,0 @@ -=========== -Graph types -=========== - -.. currentmodule:: pylibcugraphops - - -CSC Graph ------------------ -.. autosummary:: - :toctree: ../../api/ops - - make_csc - -Heterogenous CSC Graph ----------------------- -.. autosummary:: - :toctree: ../../api/ops - - make_csc_hg - -Bipartite Graph ------------------ -.. autosummary:: - :toctree: ../../api/ops - - make_bipartite_csc - -Heterogenous Bipartite Graph ----------------------------- -.. autosummary:: - :toctree: ../../api/ops - - make_bipartite_csc_hg diff --git a/docs/cugraph/source/api_docs/cugraph-ops/python/index.rst b/docs/cugraph/source/api_docs/cugraph-ops/python/index.rst deleted file mode 100644 index fb25f2fa005..00000000000 --- a/docs/cugraph/source/api_docs/cugraph-ops/python/index.rst +++ /dev/null @@ -1,13 +0,0 @@ -cugraph-ops Python API reference -================================ - -This page provides a list of all publicly accessible modules, methods and classes through `pylibcugraphops.*` namespace. - -.. toctree:: - :maxdepth: 2 - :caption: API Documentation - - graph_types - operators - dimenet - pytorch diff --git a/docs/cugraph/source/api_docs/cugraph-ops/python/operators.rst b/docs/cugraph/source/api_docs/cugraph-ops/python/operators.rst deleted file mode 100644 index 8b5efd7aa36..00000000000 --- a/docs/cugraph/source/api_docs/cugraph-ops/python/operators.rst +++ /dev/null @@ -1,109 +0,0 @@ -============================= -Operators for Message-Passing -============================= - -.. currentmodule:: pylibcugraphops - -Simple Neighborhood Aggregator (SAGEConv) ------------------------------------------ -.. autosummary:: - :toctree: ../../api/ops - - operators.agg_simple_n2n_fwd - operators.agg_simple_n2n_bwd - operators.agg_simple_e2n_fwd - operators.agg_simple_e2n_bwd - operators.agg_simple_n2n_e2n_fwd - operators.agg_simple_n2n_e2n_bwd - - operators.agg_concat_n2n_fwd - operators.agg_concat_n2n_bwd - operators.agg_concat_e2n_fwd - operators.agg_concat_e2n_bwd - operators.agg_concat_n2n_e2n_fwd - operators.agg_concat_n2n_e2n_bwd - - -Weighted Neighborhood Aggregation ---------------------------------- -.. autosummary:: - :toctree: ../../api/ops - - operators.agg_weighted_n2n_fwd - operators.agg_weighted_n2n_bwd - operators.agg_concat_weighted_n2n_fwd - operators.agg_concat_weighted_n2n_bwd - -Heterogenous Aggregator using Basis Decomposition (RGCNConv) ------------------------------------------------------------- -.. autosummary:: - :toctree: ../../api/ops - - operators.agg_hg_basis_n2n_post_fwd - operators.agg_hg_basis_n2n_post_bwd - -Graph Attention (GATConv/GATv2Conv) ------------------------------------ -.. autosummary:: - :toctree: ../../api/ops - - operators.mha_gat_n2n_fwd_bf16_fp32 - operators.mha_gat_n2n_fwd_fp16_fp32 - operators.mha_gat_n2n_fwd_fp32_fp32 - operators.mha_gat_n2n_bwd_bf16_bf16_bf16_fp32 - operators.mha_gat_n2n_bwd_bf16_bf16_fp32_fp32 - operators.mha_gat_n2n_bwd_bf16_fp32_fp32_fp32 - operators.mha_gat_n2n_bwd_fp16_fp16_fp16_fp32 - operators.mha_gat_n2n_bwd_fp16_fp16_fp32_fp32 - operators.mha_gat_n2n_bwd_fp16_fp32_fp32_fp32 - operators.mha_gat_n2n_bwd_fp32_fp32_fp32_fp32 - operators.mha_gat_n2n_efeat_fwd_bf16_fp32 - operators.mha_gat_n2n_efeat_fwd_fp16_fp32 - operators.mha_gat_n2n_efeat_fwd_fp32_fp32 - operators.mha_gat_n2n_efeat_bwd_bf16_bf16_bf16_fp32 - operators.mha_gat_n2n_efeat_bwd_bf16_bf16_fp32_fp32 - operators.mha_gat_n2n_efeat_bwd_bf16_fp32_fp32_fp32 - operators.mha_gat_n2n_efeat_bwd_fp16_fp16_fp16_fp32 - operators.mha_gat_n2n_efeat_bwd_fp16_fp16_fp32_fp32 - operators.mha_gat_n2n_efeat_bwd_fp16_fp32_fp32_fp32 - operators.mha_gat_n2n_efeat_bwd_fp32_fp32_fp32_fp32 - - operators.mha_gat_v2_n2n_fwd - operators.mha_gat_v2_n2n_bwd - operators.mha_gat_v2_n2n_efeat_fwd - operators.mha_gat_v2_n2n_efeat_bwd - -Transformer-like Graph Attention (TransformerConv) --------------------------------------------------- -.. autosummary:: - :toctree: ../../api/ops - - operators.mha_gat_v2_n2n_fwd - operators.mha_gat_v2_n2n_bwd - operators.mha_gat_v2_n2n_efeat_fwd - operators.mha_gat_v2_n2n_efeat_bwd - -Directional Message-Passing (DMPNN) ------------------------------------ -.. autosummary:: - :toctree: ../../api/ops - - operators.agg_dmpnn_e2e_fwd - operators.agg_dmpnn_e2e_bwd - -Update Edges: Concatenation or Sum of Edge and Node Features ------------------------------------------------------------- -.. autosummary:: - :toctree: ../../api/ops - - operators.update_efeat_e2e_concat_fwd - operators.update_efeat_e2e_concat_bwd - - operators.update_efeat_e2e_sum_fwd - operators.update_efeat_e2e_sum_bwd - - operators.update_efeat_e2e_concat_fwd - operators.update_efeat_e2e_concat_bwd - - operators.update_efeat_e2e_sum_fwd - operators.update_efeat_e2e_sum_bwd diff --git a/docs/cugraph/source/api_docs/cugraph-ops/python/pytorch.rst b/docs/cugraph/source/api_docs/cugraph-ops/python/pytorch.rst deleted file mode 100644 index d2074df15b0..00000000000 --- a/docs/cugraph/source/api_docs/cugraph-ops/python/pytorch.rst +++ /dev/null @@ -1,36 +0,0 @@ -========================== -PyTorch Autograd Wrappers -========================== - -.. currentmodule:: pylibcugraphops.pytorch - -Simple Neighborhood Aggregator (SAGEConv) ------------------------------------------ -.. autosummary:: - :toctree: ../../api/ops - - operators.agg_concat_n2n - -Graph Attention (GATConv/GATv2Conv) ------------------------------------ -.. autosummary:: - :toctree: ../../api/ops - - operators.mha_gat_n2n - operators.mha_gat_v2_n2n - -Heterogenous Aggregator using Basis Decomposition (RGCNConv) ------------------------------------------------------------- -.. autosummary:: - :toctree: ../../api/ops - - operators.agg_hg_basis_n2n_post - - -Update Edges: Concatenation or Sum of Edge and Node Features ------------------------------------------------------------- -.. autosummary:: - :toctree: ../../api/ops - - operators.update_efeat_e2e - operators.update_efeat_e2e diff --git a/docs/cugraph/source/api_docs/index.rst b/docs/cugraph/source/api_docs/index.rst index c4b90b5794d..a3cae3468e5 100644 --- a/docs/cugraph/source/api_docs/index.rst +++ b/docs/cugraph/source/api_docs/index.rst @@ -24,7 +24,6 @@ Graph Neural Networks API Documentation cugraph-dgl/cugraph_dgl.rst cugraph-pyg/cugraph_pyg.rst - cugraph-ops/index.rst wholegraph/index.rst Additional Graph Packages API Documentation diff --git a/docs/cugraph/source/conf.py b/docs/cugraph/source/conf.py index 66bc3137fba..5c1b812435b 100644 --- a/docs/cugraph/source/conf.py +++ b/docs/cugraph/source/conf.py @@ -222,7 +222,6 @@ def setup(app): breathe_projects = { 'libcugraph': os.environ['XML_DIR_LIBCUGRAPH'], - 'libcugraphops': os.environ['XML_DIR_LIBCUGRAPHOPS'], 'libwholegraph': os.environ['XML_DIR_LIBWHOLEGRAPH'] } diff --git a/docs/cugraph/source/graph_support/cugraphops_support.rst b/docs/cugraph/source/graph_support/cugraphops_support.rst deleted file mode 100644 index 96b13f62a9c..00000000000 --- a/docs/cugraph/source/graph_support/cugraphops_support.rst +++ /dev/null @@ -1,10 +0,0 @@ -================== -cugraphops Support -================== - -cugraph-ops aims to be a low-level, framework agnostic library providing commonly used computational primitives for GNNs and other graph operations. - -.. toctree:: - :maxdepth: 3 - - https://github.com/rapidsai/cugraph/blob/branch-24.06/readme_pages/cugraph_ops.md diff --git a/docs/cugraph/source/graph_support/gnn_support.rst b/docs/cugraph/source/graph_support/gnn_support.rst index 639b657c64d..71586621608 100644 --- a/docs/cugraph/source/graph_support/gnn_support.rst +++ b/docs/cugraph/source/graph_support/gnn_support.rst @@ -8,5 +8,4 @@ Graph Neural Network Support PyG_support.md DGL_support.md - cugraphops_support.rst wholegraph_support.md diff --git a/docs/cugraph/source/wholegraph/installation/container.md b/docs/cugraph/source/wholegraph/installation/container.md index 6aac53cf88f..4068ead27b2 100644 --- a/docs/cugraph/source/wholegraph/installation/container.md +++ b/docs/cugraph/source/wholegraph/installation/container.md @@ -21,7 +21,7 @@ RUN pip3 install -U py RUN pip3 install Cython setuputils3 scikit-build nanobind pytest-forked pytest ``` -To run GNN applications, you may also need cuGraphOps, DGL and/or PyG libraries to run the GNN layers. +To run GNN applications, you may also need DGL and/or PyG libraries to run the GNN layers. You may refer to [DGL](https://www.dgl.ai/pages/start.html) or [PyG](https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html) For example, to install DGL, you may need to add: diff --git a/python/cugraph/cugraph/tests/sampling/test_random_walks.py b/python/cugraph/cugraph/tests/sampling/test_random_walks.py index 9c94e036683..76ceb478518 100644 --- a/python/cugraph/cugraph/tests/sampling/test_random_walks.py +++ b/python/cugraph/cugraph/tests/sampling/test_random_walks.py @@ -1,4 +1,4 @@ -# Copyright (c) 2020-2023, NVIDIA CORPORATION.: +# Copyright (c) 2020-2024, NVIDIA CORPORATION.: # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -222,7 +222,6 @@ def test_random_walks_invalid_max_dept(graph_file, directed, max_depth): @pytest.mark.sg -@pytest.mark.cugraph_ops @pytest.mark.parametrize("graph_file", SMALL_DATASETS) @pytest.mark.parametrize("directed", DIRECTED_GRAPH_OPTIONS) def test_random_walks_coalesced(graph_file, directed): @@ -246,7 +245,6 @@ def test_random_walks_coalesced(graph_file, directed): @pytest.mark.sg -@pytest.mark.cugraph_ops @pytest.mark.parametrize("graph_file", SMALL_DATASETS) @pytest.mark.parametrize("directed", DIRECTED_GRAPH_OPTIONS) def test_random_walks_padded_0(graph_file, directed): @@ -271,7 +269,6 @@ def test_random_walks_padded_0(graph_file, directed): @pytest.mark.sg -@pytest.mark.cugraph_ops def test_random_walks_padded_1(): max_depth = random.randint(2, 10) @@ -294,7 +291,6 @@ def test_random_walks_padded_1(): @pytest.mark.sg -@pytest.mark.cugraph_ops @pytest.mark.parametrize("graph_file", SMALL_DATASETS) def test_random_walks_nx(graph_file): G = graph_file.get_graph(create_using=cugraph.Graph(directed=True)) diff --git a/python/cugraph/cugraph/tests/sampling/test_random_walks_mg.py b/python/cugraph/cugraph/tests/sampling/test_random_walks_mg.py index 34eeb2902f8..96b34c638b5 100644 --- a/python/cugraph/cugraph/tests/sampling/test_random_walks_mg.py +++ b/python/cugraph/cugraph/tests/sampling/test_random_walks_mg.py @@ -203,7 +203,6 @@ def input_graph(request): @pytest.mark.mg -@pytest.mark.cugraph_ops def test_dask_mg_random_walks(dask_client, input_graph): path_data, seeds, max_depth = calc_random_walks(input_graph) df_G = input_graph.input_df.compute().reset_index(drop=True) diff --git a/python/cugraph/cugraph/tests/sampling/test_uniform_neighbor_sample.py b/python/cugraph/cugraph/tests/sampling/test_uniform_neighbor_sample.py index ad0dbe77f7d..65687a1a227 100644 --- a/python/cugraph/cugraph/tests/sampling/test_uniform_neighbor_sample.py +++ b/python/cugraph/cugraph/tests/sampling/test_uniform_neighbor_sample.py @@ -130,7 +130,6 @@ def simple_unweighted_input_expected_output(request): # Tests # ============================================================================= @pytest.mark.sg -@pytest.mark.cugraph_ops def test_uniform_neighbor_sample_simple(input_combo): G = input_combo["Graph"] @@ -229,7 +228,6 @@ def test_uniform_neighbor_sample_simple(input_combo): @pytest.mark.sg -@pytest.mark.cugraph_ops @pytest.mark.parametrize("directed", IS_DIRECTED) def test_uniform_neighbor_sample_tree(directed): @@ -301,7 +299,6 @@ def test_uniform_neighbor_sample_tree(directed): @pytest.mark.sg -@pytest.mark.cugraph_ops def test_uniform_neighbor_sample_unweighted(simple_unweighted_input_expected_output): test_data = simple_unweighted_input_expected_output @@ -322,7 +319,6 @@ def test_uniform_neighbor_sample_unweighted(simple_unweighted_input_expected_out @pytest.mark.sg -@pytest.mark.cugraph_ops @pytest.mark.parametrize("return_offsets", [True, False]) @pytest.mark.parametrize("include_hop_column", [True, False]) def test_uniform_neighbor_sample_edge_properties(return_offsets, include_hop_column): diff --git a/python/cugraph/cugraph/tests/sampling/test_uniform_neighbor_sample_mg.py b/python/cugraph/cugraph/tests/sampling/test_uniform_neighbor_sample_mg.py index 4a85b49a66e..6343b0ff9f3 100644 --- a/python/cugraph/cugraph/tests/sampling/test_uniform_neighbor_sample_mg.py +++ b/python/cugraph/cugraph/tests/sampling/test_uniform_neighbor_sample_mg.py @@ -131,7 +131,6 @@ def input_combo(request): # Tests # ============================================================================= @pytest.mark.mg -@pytest.mark.cugraph_ops def test_mg_uniform_neighbor_sample_simple(dask_client, input_combo): dg = input_combo["MGGraph"] @@ -220,7 +219,6 @@ def test_mg_uniform_neighbor_sample_simple(dask_client, input_combo): @pytest.mark.mg -@pytest.mark.cugraph_ops @pytest.mark.parametrize("directed", IS_DIRECTED) def test_mg_uniform_neighbor_sample_tree(dask_client, directed): @@ -286,7 +284,6 @@ def test_mg_uniform_neighbor_sample_tree(dask_client, directed): @pytest.mark.mg @pytest.mark.skipif(is_single_gpu(), reason="FIXME: MG test fails on single-GPU") -@pytest.mark.cugraph_ops def test_mg_uniform_neighbor_sample_unweighted(dask_client): df = cudf.DataFrame( { @@ -321,7 +318,6 @@ def test_mg_uniform_neighbor_sample_unweighted(dask_client): @pytest.mark.mg @pytest.mark.skipif(is_single_gpu(), reason="FIXME: MG test fails on single-GPU") -@pytest.mark.cugraph_ops def test_mg_uniform_neighbor_sample_ensure_no_duplicates(dask_client): # See issue #2760 # This ensures that the starts are properly distributed @@ -347,7 +343,6 @@ def test_mg_uniform_neighbor_sample_ensure_no_duplicates(dask_client): @pytest.mark.mg -@pytest.mark.cugraph_ops @pytest.mark.parametrize("return_offsets", [True, False]) def test_uniform_neighbor_sample_edge_properties(dask_client, return_offsets): n_workers = len(dask_client.scheduler_info()["workers"]) diff --git a/python/pylibcugraph/pylibcugraph/tests/test_uniform_neighbor_sample.py b/python/pylibcugraph/pylibcugraph/tests/test_uniform_neighbor_sample.py index ffa90731483..4dafeb19032 100644 --- a/python/pylibcugraph/pylibcugraph/tests/test_uniform_neighbor_sample.py +++ b/python/pylibcugraph/pylibcugraph/tests/test_uniform_neighbor_sample.py @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -183,7 +183,6 @@ def test_neighborhood_sampling_cudf( ) -@pytest.mark.cugraph_ops def test_neighborhood_sampling_large_sg_graph(gpubenchmark): """ Use a large SG graph and set input args accordingly to test/benchmark diff --git a/python/pylibcugraph/pytest.ini b/python/pylibcugraph/pytest.ini index d5ade9f4836..8ca4e198441 100644 --- a/python/pylibcugraph/pytest.ini +++ b/python/pylibcugraph/pytest.ini @@ -12,7 +12,4 @@ # limitations under the License. [pytest] -markers = - cugraph_ops: Tests requiring cugraph-ops - addopts = --tb=native diff --git a/readme_pages/CONTRIBUTING.md b/readme_pages/CONTRIBUTING.md index ffe1ef1831b..01d5f263624 100644 --- a/readme_pages/CONTRIBUTING.md +++ b/readme_pages/CONTRIBUTING.md @@ -1,5 +1,5 @@ # Contributing to cuGraph -cuGraph, for the most part, is an open-source project where we encourage community involvement. The cugraph-ops package is the expection being a closed-source package. +cuGraph, for the most part, is an open-source project where we encourage community involvement. There are multiple ways to be involved and contribute to the cuGraph community, the top paths are listed below: diff --git a/readme_pages/cugraph_ops.md b/readme_pages/cugraph_ops.md deleted file mode 100644 index 7bd4ac55185..00000000000 --- a/readme_pages/cugraph_ops.md +++ /dev/null @@ -1,17 +0,0 @@ -

-
- cuGraph -

-

-CuGraphOps -

-Cugraph-ops is a closed-source library that is composed of highly optimized and -performant primitives associated with GNNs and related graph -operations, such as training, sampling and inference. - - -This is how cuGraphOps fits into the cuGraph ecosystem -

-
- cuGraph -