From 37d5d48a7b19031cfcbe512494dad521c12888da Mon Sep 17 00:00:00 2001 From: Bradley Dice Date: Mon, 4 Mar 2024 14:29:15 -0800 Subject: [PATCH 01/20] Update installation docs for CUDA 12. (#4207) Closes #3909. Authors: - Bradley Dice (https://github.com/bdice) Approvers: - Brad Rees (https://github.com/BradReesWork) URL: https://github.com/rapidsai/cugraph/pull/4207 --- .../source/installation/getting_cugraph.md | 20 ++++++++++++++----- 1 file changed, 15 insertions(+), 5 deletions(-) diff --git a/docs/cugraph/source/installation/getting_cugraph.md b/docs/cugraph/source/installation/getting_cugraph.md index 625f2c64c27..d9d3fa55c9a 100644 --- a/docs/cugraph/source/installation/getting_cugraph.md +++ b/docs/cugraph/source/installation/getting_cugraph.md @@ -15,7 +15,7 @@ There are 4 ways to get cuGraph packages:
## Docker -The RAPIDS Docker containers contain all RAPIDS packages, including all from cuGraph, as well as all required supporting packages. To download a container, please see the [Docker Repository](https://hub.docker.com/r/rapidsai/rapidsai/), choosing a tag based on the NVIDIA CUDA version you’re running. This provides a ready to run Docker container with example notebooks and data, showcasing how you can utilize all of the RAPIDS libraries: cuDF, cuML, and cuGraph. +The RAPIDS Docker containers contain all RAPIDS packages, including all from cuGraph, as well as all required supporting packages. To download a RAPIDS container, please see the [Docker Hub page for rapidsai/base](https://hub.docker.com/r/rapidsai/base), choosing a tag based on the NVIDIA CUDA version you're running. Also, the [rapidsai/notebooks](https://hub.docker.com/r/rapidsai/notebooks) container provides a ready to run Docker container with example notebooks and data, showcasing how you can utilize all of the RAPIDS libraries: cuDF, cuML, and cuGraph.
@@ -31,6 +31,8 @@ cuGraph Conda packages * cugraph-service-server * cugraph-dgl * cugraph-pyg + * cugraph-equivariant + * nx-cugraph Replace the package name in the example below to the one you want to install. @@ -38,10 +40,12 @@ Replace the package name in the example below to the one you want to install. Install and update cuGraph using the conda command: ```bash -conda install -c rapidsai -c conda-forge -c nvidia cugraph cudatoolkit=11.8 +conda install -c rapidsai -c conda-forge -c nvidia cugraph cuda-version=12.0 ``` -Note: This conda installation only applies to Linux and Python versions 3.8/3.10. +Alternatively, use `cuda-version=11.8` for packages supporting CUDA 11. + +Note: This conda installation only applies to Linux and Python versions 3.9/3.10.
@@ -49,10 +53,16 @@ Note: This conda installation only applies to Linux and Python versions 3.8/3.10 cuGraph, and all of RAPIDS, is available via pip. ``` -pip install cugraph-cu11 --extra-index-url=https://pypi.ngc.nvidia.com +pip install cugraph-cu12 --extra-index-url=https://pypi.ngc.nvidia.com ``` -pip packages for other packages are being worked and should be available in early 2023 +Replace `-cu12` with `-cu11` for packages supporting CUDA 11. + +Also available: + * cugraph-dgl-cu12 + * cugraph-pyg-cu12 + * cugraph-equivariant-cu12 + * nx-cugraph-cu12
From c17ba39111e3215cef15e58f6852f549b20f54b5 Mon Sep 17 00:00:00 2001 From: Don Acosta <97529984+acostadon@users.noreply.github.com> Date: Wed, 6 Mar 2024 09:08:53 -0500 Subject: [PATCH 02/20] Fix in Docs to address question asked in issue 4182 (#4204) Added compute comment and changed DiGraph to Graph(directed=True) Tested in a notebook. Addresses question in #4182 Authors: - Don Acosta (https://github.com/acostadon) Approvers: - Brad Rees (https://github.com/BradReesWork) URL: https://github.com/rapidsai/cugraph/pull/4204 --- docs/cugraph/source/api_docs/cugraph/dask-cugraph.rst | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/docs/cugraph/source/api_docs/cugraph/dask-cugraph.rst b/docs/cugraph/source/api_docs/cugraph/dask-cugraph.rst index 772d3abc45f..a2d49789053 100644 --- a/docs/cugraph/source/api_docs/cugraph/dask-cugraph.rst +++ b/docs/cugraph/source/api_docs/cugraph/dask-cugraph.rst @@ -60,12 +60,15 @@ Example ) # create graph from input data - G = cugraph.DiGraph() + G = cugraph.Graph(directed=True) G.from_dask_cudf_edgelist(e_list, source='src', destination='dst') # run PageRank pr_df = dask_cugraph.pagerank(G, tol=1e-4) + # need to call compute to generate results + pr_df.compute() + # cluster clean up Comms.destroy() client.close() From 5cfea53777ed2232ad274af5b74bf014bdec9ff8 Mon Sep 17 00:00:00 2001 From: Erik Welch Date: Wed, 6 Mar 2024 18:33:06 -0600 Subject: [PATCH 03/20] Fix `louvain_communities`, `PropertyGraph`, cudf `column.full`, dgl 2.1.0 CI failures (#4215) * Updates cudf usage in hypergraph to use `cudf.core.column.as_column` instead of the deprecated `cudf.core.column.full` API * Adds code to call louvain using a signature that's compatible with both pre and post NX 3.3 * Adds an upper bound to the DGL version pin to ensure a compatible version is used * Updates a PropertyGraph test to handle minor ordering changes in the result DataFrame * Test matrices starting 24.04 have changed, resulting in an "empty matrix" error when attempting to use the supported combination used for PyG (PyG wheel tests need pytorch with CUDA 12.2 on arm64), so the matrix was simplified to remove the CUDA 11.8 requirement. cc @tingyu66 Authors: - Erik Welch (https://github.com/eriknw) - Naim (https://github.com/naimnv) Approvers: - Rick Ratzel (https://github.com/rlratzel) - Ray Douglass (https://github.com/raydouglass) URL: https://github.com/rapidsai/cugraph/pull/4215 --- .github/workflows/pr.yaml | 2 +- .github/workflows/test.yaml | 2 +- ci/test_python.sh | 2 +- ci/test_wheel_cugraph-dgl.sh | 2 +- .../cugraph/cugraph/structure/hypergraph.py | 4 +- .../tests/data_store/test_property_graph.py | 6 +- python/nx-cugraph/_nx_cugraph/__init__.py | 1 + .../algorithms/community/louvain.py | 93 ++++++++++++++----- .../nx_cugraph/tests/test_match_api.py | 5 - 9 files changed, 80 insertions(+), 37 deletions(-) diff --git a/.github/workflows/pr.yaml b/.github/workflows/pr.yaml index 7753f52d799..7f0b95e3573 100644 --- a/.github/workflows/pr.yaml +++ b/.github/workflows/pr.yaml @@ -162,7 +162,7 @@ jobs: with: build_type: pull-request script: ci/test_wheel_cugraph-pyg.sh - matrix_filter: map(select(.ARCH == "amd64" and .CUDA_VER == "11.8.0")) + matrix_filter: map(select(.ARCH == "amd64")) wheel-build-cugraph-equivariant: secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/wheels-build.yaml@branch-24.04 diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml index f6a04fcc776..32fb2d62b29 100644 --- a/.github/workflows/test.yaml +++ b/.github/workflows/test.yaml @@ -76,7 +76,7 @@ jobs: date: ${{ inputs.date }} sha: ${{ inputs.sha }} script: ci/test_wheel_cugraph-pyg.sh - matrix_filter: map(select(.ARCH == "amd64" and .CUDA_VER == "11.8.0")) + matrix_filter: map(select(.ARCH == "amd64")) wheel-tests-cugraph-equivariant: secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/wheels-test.yaml@branch-24.04 diff --git a/ci/test_python.sh b/ci/test_python.sh index 9fa1de2e5e7..e05160239ab 100755 --- a/ci/test_python.sh +++ b/ci/test_python.sh @@ -166,7 +166,7 @@ if [[ "${RAPIDS_CUDA_VERSION}" == "11.8.0" ]]; then pylibcugraphops \ cugraph \ cugraph-dgl \ - 'dgl>=1.1.0.cu*' \ + 'dgl>=1.1.0.cu*,<=2.0.0.cu*' \ 'pytorch>=2.0' \ 'pytorch-cuda>=11.8' diff --git a/ci/test_wheel_cugraph-dgl.sh b/ci/test_wheel_cugraph-dgl.sh index 9ecaa75a86b..367b169bd13 100755 --- a/ci/test_wheel_cugraph-dgl.sh +++ b/ci/test_wheel_cugraph-dgl.sh @@ -34,6 +34,6 @@ DGL_URL="https://data.dgl.ai/wheels/cu${PYTORCH_CUDA_VER}/repo.html" rapids-logger "Installing PyTorch and DGL" rapids-retry python -m pip install torch --index-url ${PYTORCH_URL} -rapids-retry python -m pip install dgl --find-links ${DGL_URL} +rapids-retry python -m pip install dgl==2.0.0 --find-links ${DGL_URL} python -m pytest python/cugraph-dgl/tests diff --git a/python/cugraph/cugraph/structure/hypergraph.py b/python/cugraph/cugraph/structure/hypergraph.py index 4e9975e6b8a..4add74d6061 100644 --- a/python/cugraph/cugraph/structure/hypergraph.py +++ b/python/cugraph/cugraph/structure/hypergraph.py @@ -1,4 +1,4 @@ -# Copyright (c) 2020-2023, NVIDIA CORPORATION. +# Copyright (c) 2020-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -581,7 +581,7 @@ def _create_direct_edges( def _str_scalar_to_category(size, val): return cudf.core.column.build_categorical_column( categories=cudf.core.column.as_column([val], dtype="str"), - codes=cudf.core.column.column.full(size, 0, dtype=np.int32), + codes=cudf.core.column.as_column(0, length=size, dtype=np.int32), mask=None, size=size, offset=0, diff --git a/python/cugraph/cugraph/tests/data_store/test_property_graph.py b/python/cugraph/cugraph/tests/data_store/test_property_graph.py index a33d4f753db..da5608e0193 100644 --- a/python/cugraph/cugraph/tests/data_store/test_property_graph.py +++ b/python/cugraph/cugraph/tests/data_store/test_property_graph.py @@ -1,4 +1,4 @@ -# Copyright (c) 2021-2023, NVIDIA CORPORATION. +# Copyright (c) 2021-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -1424,6 +1424,10 @@ def test_extract_subgraph_graph_without_vert_props(as_pg_first): actual_edgelist = G.edgelist.edgelist_df assert G.is_directed() + expected_edgelist = expected_edgelist.sort_values( + by=["src", "dst"], ignore_index=True + ) + actual_edgelist = actual_edgelist.sort_values(by=["src", "dst"], ignore_index=True) assert_frame_equal(expected_edgelist, actual_edgelist, check_like=True) diff --git a/python/nx-cugraph/_nx_cugraph/__init__.py b/python/nx-cugraph/_nx_cugraph/__init__.py index c6c43110ac6..b2f13d25ff3 100644 --- a/python/nx-cugraph/_nx_cugraph/__init__.py +++ b/python/nx-cugraph/_nx_cugraph/__init__.py @@ -164,6 +164,7 @@ }, "louvain_communities": { "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", + "max_level : int, optional": "Upper limit of the number of macro-iterations (max: 500).", }, "pagerank": { "dtype : dtype or None, optional": "The data type (np.float32, np.float64, or None) to use for the edge weights in the algorithm. If None, then dtype is determined by the edge values.", diff --git a/python/nx-cugraph/nx_cugraph/algorithms/community/louvain.py b/python/nx-cugraph/nx_cugraph/algorithms/community/louvain.py index f7638f47aad..ea1318060e0 100644 --- a/python/nx-cugraph/nx_cugraph/algorithms/community/louvain.py +++ b/python/nx-cugraph/nx_cugraph/algorithms/community/louvain.py @@ -37,18 +37,23 @@ _max_level_param = {} -@not_implemented_for("directed") -@networkx_algorithm( - extra_params={ - **_max_level_param, - **_dtype_param, - }, - is_incomplete=True, # seed not supported; self-loops not supported - is_different=True, # RNG different - version_added="23.10", - _plc="louvain", -) -def louvain_communities( +def _louvain_communities_nx32( + G, + weight="weight", + resolution=1, + threshold=0.0000001, + seed=None, + *, + max_level=None, + dtype=None, +): + """`seed` parameter is currently ignored, and self-loops are not yet supported.""" + return _louvain_communities( + G, weight, resolution, threshold, max_level, seed, dtype=dtype + ) + + +def _louvain_communities( G, weight="weight", resolution=1, @@ -85,16 +90,54 @@ def louvain_communities( return [set(G._nodearray_to_list(ids)) for ids in groups.values()] -@louvain_communities._can_run -def _( - G, - weight="weight", - resolution=1, - threshold=0.0000001, - max_level=None, - seed=None, - *, - dtype=None, -): - # NetworkX allows both directed and undirected, but cugraph only allows undirected. - return not G.is_directed() +_louvain_decorator = networkx_algorithm( + extra_params={ + **_max_level_param, + **_dtype_param, + }, + is_incomplete=True, # seed not supported; self-loops not supported + is_different=True, # RNG different + version_added="23.10", + _plc="louvain", + name="louvain_communities", +) + +if _max_level_param: # networkx <= 3.2 + _louvain_communities_nx32.__name__ = "louvain_communities" + louvain_communities = not_implemented_for("directed")( + _louvain_decorator(_louvain_communities_nx32) + ) + + @louvain_communities._can_run + def _( + G, + weight="weight", + resolution=1, + threshold=0.0000001, + seed=None, + *, + max_level=None, + dtype=None, + ): + # NetworkX allows both directed and undirected, but cugraph only undirected. + return not G.is_directed() + +else: # networkx >= 3.3 + _louvain_communities.__name__ = "louvain_communities" + louvain_communities = not_implemented_for("directed")( + _louvain_decorator(_louvain_communities) + ) + + @louvain_communities._can_run + def _( + G, + weight="weight", + resolution=1, + threshold=0.0000001, + max_level=None, + seed=None, + *, + dtype=None, + ): + # NetworkX allows both directed and undirected, but cugraph only undirected. + return not G.is_directed() diff --git a/python/nx-cugraph/nx_cugraph/tests/test_match_api.py b/python/nx-cugraph/nx_cugraph/tests/test_match_api.py index 595f7819ac1..bd6f20e84f0 100644 --- a/python/nx-cugraph/nx_cugraph/tests/test_match_api.py +++ b/python/nx-cugraph/nx_cugraph/tests/test_match_api.py @@ -44,11 +44,6 @@ def test_match_signature_and_names(): else: orig_func = dispatchable_func.orig_func - if nxver.major == 3 and nxver.minor <= 2 and name == "louvain_communities": - # The signature of louvain_communities changed in NetworkX 3.3, and - # we updated to match, so we skip this check in older versions. - continue - # Matching signatures? orig_sig = inspect.signature(orig_func) func_sig = inspect.signature(func) From 4597e1f9bca589660c922594462a4ebc30b9fe56 Mon Sep 17 00:00:00 2001 From: jakirkham Date: Wed, 6 Mar 2024 21:03:08 -0800 Subject: [PATCH 04/20] Add Python 3.11 to Conda docs (#4213) xref: https://github.com/rapidsai/cugraph/pull/4207#discussion_r1511881073 Authors: - https://github.com/jakirkham Approvers: - Don Acosta (https://github.com/acostadon) - Brad Rees (https://github.com/BradReesWork) URL: https://github.com/rapidsai/cugraph/pull/4213 --- docs/cugraph/source/installation/getting_cugraph.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/cugraph/source/installation/getting_cugraph.md b/docs/cugraph/source/installation/getting_cugraph.md index d9d3fa55c9a..0695c690a3b 100644 --- a/docs/cugraph/source/installation/getting_cugraph.md +++ b/docs/cugraph/source/installation/getting_cugraph.md @@ -45,7 +45,7 @@ conda install -c rapidsai -c conda-forge -c nvidia cugraph cuda-version=12.0 Alternatively, use `cuda-version=11.8` for packages supporting CUDA 11. -Note: This conda installation only applies to Linux and Python versions 3.9/3.10. +Note: This conda installation only applies to Linux and Python versions 3.9/3.10/3.11.
From 7eee5883a38210390137dfdf4a5c6ce3286905e6 Mon Sep 17 00:00:00 2001 From: Naim <110031745+naimnv@users.noreply.github.com> Date: Thu, 7 Mar 2024 06:13:39 +0100 Subject: [PATCH 05/20] Remove CUGRAPH_EXPECTS(!(this->has_edge_mask()), unimplemented.) (#4214) Remove CUGRAPH_EXPECTS(!(this->has_edge_mask()), unimplemented.) Authors: - Naim (https://github.com/naimnv) Approvers: - Seunghwa Kang (https://github.com/seunghwak) - Chuck Hastings (https://github.com/ChuckHastings) URL: https://github.com/rapidsai/cugraph/pull/4214 --- cpp/src/structure/graph_view_impl.cuh | 20 -------------------- 1 file changed, 20 deletions(-) diff --git a/cpp/src/structure/graph_view_impl.cuh b/cpp/src/structure/graph_view_impl.cuh index 623e795d5be..4ee5ad5ca02 100644 --- a/cpp/src/structure/graph_view_impl.cuh +++ b/cpp/src/structure/graph_view_impl.cuh @@ -602,7 +602,6 @@ graph_view_tpartition_, this->edge_partition_segment_offsets_); } else { - CUGRAPH_EXPECTS(!(this->has_edge_mask()), "unimplemented."); return compute_minor_degrees(handle, *this); } } @@ -622,7 +621,6 @@ graph_view_tlocal_vertex_partition_range_size()); } else { - CUGRAPH_EXPECTS(!(this->has_edge_mask()), "unimplemented."); return compute_minor_degrees(handle, *this); } } @@ -633,7 +631,6 @@ graph_view_thas_edge_mask()), "unimplemented."); return compute_minor_degrees(handle, *this); } else { std::optional>> edge_partition_masks{ @@ -663,7 +660,6 @@ graph_view_thas_edge_mask()), "unimplemented."); return compute_minor_degrees(handle, *this); } else { return compute_major_degrees(handle, @@ -681,8 +677,6 @@ template >:: compute_max_in_degree(raft::handle_t const& handle) const { - CUGRAPH_EXPECTS(!(this->has_edge_mask()), "unimplemented."); - auto in_degrees = compute_in_degrees(handle); auto it = thrust::max_element(handle.get_thrust_policy(), in_degrees.begin(), in_degrees.end()); rmm::device_scalar ret(edge_t{0}, handle.get_stream()); @@ -699,8 +693,6 @@ template >:: compute_max_in_degree(raft::handle_t const& handle) const { - CUGRAPH_EXPECTS(!(this->has_edge_mask()), "unimplemented."); - auto in_degrees = compute_in_degrees(handle); auto it = thrust::max_element(handle.get_thrust_policy(), in_degrees.begin(), in_degrees.end()); edge_t ret{0}; @@ -713,8 +705,6 @@ template >:: compute_max_out_degree(raft::handle_t const& handle) const { - CUGRAPH_EXPECTS(!(this->has_edge_mask()), "unimplemented."); - auto out_degrees = compute_out_degrees(handle); auto it = thrust::max_element(handle.get_thrust_policy(), out_degrees.begin(), out_degrees.end()); rmm::device_scalar ret(edge_t{0}, handle.get_stream()); @@ -731,8 +721,6 @@ template >:: compute_max_out_degree(raft::handle_t const& handle) const { - CUGRAPH_EXPECTS(!(this->has_edge_mask()), "unimplemented."); - auto out_degrees = compute_out_degrees(handle); auto it = thrust::max_element(handle.get_thrust_policy(), out_degrees.begin(), out_degrees.end()); edge_t ret{0}; @@ -745,8 +733,6 @@ template >:: count_self_loops(raft::handle_t const& handle) const { - CUGRAPH_EXPECTS(!(this->has_edge_mask()), "unimplemented."); - return count_if_e( handle, *this, @@ -760,8 +746,6 @@ template >:: count_self_loops(raft::handle_t const& handle) const { - CUGRAPH_EXPECTS(!(this->has_edge_mask()), "unimplemented."); - return count_if_e( handle, *this, @@ -775,8 +759,6 @@ template >:: count_multi_edges(raft::handle_t const& handle) const { - CUGRAPH_EXPECTS(!(this->has_edge_mask()), "unimplemented."); - if (!this->is_multigraph()) { return edge_t{0}; } edge_t count{0}; @@ -795,8 +777,6 @@ template >:: count_multi_edges(raft::handle_t const& handle) const { - CUGRAPH_EXPECTS(!(this->has_edge_mask()), "unimplemented."); - if (!this->is_multigraph()) { return edge_t{0}; } return count_edge_partition_multi_edges( From 72401a06bb20d0a0a17426f42e09d9630499dee1 Mon Sep 17 00:00:00 2001 From: Naim <110031745+naimnv@users.noreply.github.com> Date: Thu, 7 Mar 2024 14:42:31 +0100 Subject: [PATCH 06/20] C API for MNMG ECG (#4194) C API for MNMG ECG Closes #3571 Closes #3572 Closes #3573 Closes #3575 Authors: - Naim (https://github.com/naimnv) Approvers: - Seunghwa Kang (https://github.com/seunghwak) - Joseph Nke (https://github.com/jnke2016) - Brad Rees (https://github.com/BradReesWork) URL: https://github.com/rapidsai/cugraph/pull/4194 --- cpp/CMakeLists.txt | 1 + cpp/include/cugraph_c/community_algorithms.h | 49 ++++- cpp/src/c_api/ecg.cpp | 154 ++++++++++++++ cpp/src/c_api/legacy_ecg.cpp | 29 +-- cpp/tests/CMakeLists.txt | 6 +- cpp/tests/c_api/ecg_test.c | 195 ++++++++++++++++++ cpp/tests/c_api/legacy_ecg_test.c | 23 +-- cpp/tests/c_api/mg_ecg_test.c | 181 ++++++++++++++++ .../{ecg_test.cpp => legacy_ecg_test.cpp} | 8 +- .../_cugraph_c/community_algorithms.pxd | 18 +- python/pylibcugraph/pylibcugraph/ecg.pyx | 5 +- 11 files changed, 624 insertions(+), 45 deletions(-) create mode 100644 cpp/src/c_api/ecg.cpp create mode 100644 cpp/tests/c_api/ecg_test.c create mode 100644 cpp/tests/c_api/mg_ecg_test.c rename cpp/tests/community/{ecg_test.cpp => legacy_ecg_test.cpp} (98%) diff --git a/cpp/CMakeLists.txt b/cpp/CMakeLists.txt index c812cd8e4b3..a3392627fb8 100644 --- a/cpp/CMakeLists.txt +++ b/cpp/CMakeLists.txt @@ -423,6 +423,7 @@ add_library(cugraph_c src/c_api/core_number.cpp src/c_api/core_result.cpp src/c_api/extract_ego.cpp + src/c_api/ecg.cpp src/c_api/k_core.cpp src/c_api/hierarchical_clustering_result.cpp src/c_api/induced_subgraph.cpp diff --git a/cpp/include/cugraph_c/community_algorithms.h b/cpp/include/cugraph_c/community_algorithms.h index e8a71a40162..cb3d6b6375a 100644 --- a/cpp/include/cugraph_c/community_algorithms.h +++ b/cpp/include/cugraph_c/community_algorithms.h @@ -177,6 +177,41 @@ double cugraph_hierarchical_clustering_result_get_modularity( */ void cugraph_hierarchical_clustering_result_free(cugraph_hierarchical_clustering_result_t* result); +/** + * @brief Compute ECG clustering + * + * @param [in] handle Handle for accessing resources + * @param [in/out] rng_state State of the random number generator, updated with each call + * @param [in] graph Pointer to graph. NOTE: Graph might be modified if the storage + * needs to be transposed + * @param [in] min_weight Minimum edge weight in final graph + * @param [in] ensemble_size The number of Louvain iterations to run + * @param [in] max_level Maximum level in hierarchy for final Louvain + * @param [in] threshold Threshold parameter, defines convergence at each level of hierarchy + * for final Louvain + * @param [in] resolution Resolution parameter (gamma) in modularity formula. + * This changes the size of the communities. Higher resolutions + * lead to more smaller communities, lower resolutions lead to + * fewer larger communities. + * @param [in] do_expensive_check + * A flag to run expensive checks for input arguments (if set to true) + * @param [out] result Output from the Louvain call + * @param [out] error Pointer to an error object storing details of any error. Will + * be populated if error code is not CUGRAPH_SUCCESS + * @return error code + */ +cugraph_error_code_t cugraph_ecg(const cugraph_resource_handle_t* handle, + cugraph_rng_state_t* rng_state, + cugraph_graph_t* graph, + double min_weight, + size_t ensemble_size, + size_t max_level, + double threshold, + double resolution, + bool_t do_expensive_check, + cugraph_hierarchical_clustering_result_t** result, + cugraph_error_t** error); + /** * @brief Compute ECG clustering of the given graph * @@ -200,13 +235,13 @@ void cugraph_hierarchical_clustering_result_free(cugraph_hierarchical_clustering * be populated if error code is not CUGRAPH_SUCCESS * @return error code */ -cugraph_error_code_t cugraph_ecg(const cugraph_resource_handle_t* handle, - cugraph_graph_t* graph, - double min_weight, - size_t ensemble_size, - bool_t do_expensive_check, - cugraph_hierarchical_clustering_result_t** result, - cugraph_error_t** error); +cugraph_error_code_t cugraph_legacy_ecg(const cugraph_resource_handle_t* handle, + cugraph_graph_t* graph, + double min_weight, + size_t ensemble_size, + bool_t do_expensive_check, + cugraph_hierarchical_clustering_result_t** result, + cugraph_error_t** error); /** * @brief Extract ego graphs diff --git a/cpp/src/c_api/ecg.cpp b/cpp/src/c_api/ecg.cpp new file mode 100644 index 00000000000..53e034916b7 --- /dev/null +++ b/cpp/src/c_api/ecg.cpp @@ -0,0 +1,154 @@ +/* + * Copyright (c) 2022-2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include + +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include + +#include + +namespace { + +struct ecg_functor : public cugraph::c_api::abstract_functor { + raft::handle_t const& handle_; + cugraph::c_api::cugraph_rng_state_t* rng_state_{nullptr}; + cugraph::c_api::cugraph_graph_t* graph_{nullptr}; + double min_weight_{0.1}; + size_t ensemble_size_{10}; + size_t max_level_{0}; + double threshold_{0.001}; + double resolution_{1}; + bool do_expensive_check_{false}; + cugraph::c_api::cugraph_hierarchical_clustering_result_t* result_{}; + + ecg_functor(::cugraph_resource_handle_t const* handle, + ::cugraph_rng_state_t* rng_state, + ::cugraph_graph_t* graph, + double min_weight, + size_t ensemble_size, + size_t max_level, + double threshold, + double resolution, + bool do_expensive_check) + : abstract_functor(), + handle_(*reinterpret_cast(handle)->handle_), + rng_state_(reinterpret_cast(rng_state)), + graph_(reinterpret_cast(graph)), + max_level_(max_level), + threshold_(threshold), + resolution_(resolution), + do_expensive_check_(do_expensive_check) + { + } + + template + void operator()() + { + if constexpr (!cugraph::is_candidate::value) { + unsupported(); + } else { + // ecg expects store_transposed == false + if constexpr (store_transposed) { + error_code_ = cugraph::c_api:: + transpose_storage( + handle_, graph_, error_.get()); + if (error_code_ != CUGRAPH_SUCCESS) return; + } + + auto graph = + reinterpret_cast*>(graph_->graph_); + + auto graph_view = graph->view(); + + auto edge_weights = reinterpret_cast< + cugraph::edge_property_t, + weight_t>*>(graph_->edge_weights_); + + auto number_map = reinterpret_cast*>(graph_->number_map_); + + rmm::device_uvector clusters(0, handle_.get_stream()); + + weight_t modularity; + + std::tie(clusters, std::ignore, modularity) = + cugraph::ecg(handle_, + rng_state_->rng_state_, + graph_view, + (edge_weights != nullptr) + ? std::make_optional(edge_weights->view()) + : std::make_optional(cugraph::c_api::create_constant_edge_property( + handle_, graph_view, weight_t{1}) + .view()), + static_cast(min_weight_), + ensemble_size_, + max_level_, + static_cast(threshold_), + static_cast(resolution_)); + + rmm::device_uvector vertices(graph_view.local_vertex_partition_range_size(), + handle_.get_stream()); + raft::copy(vertices.data(), number_map->data(), vertices.size(), handle_.get_stream()); + + result_ = new cugraph::c_api::cugraph_hierarchical_clustering_result_t{ + modularity, + new cugraph::c_api::cugraph_type_erased_device_array_t(vertices, graph_->vertex_type_), + new cugraph::c_api::cugraph_type_erased_device_array_t(clusters, graph_->vertex_type_)}; + } + } +}; + +} // namespace + +extern "C" cugraph_error_code_t cugraph_ecg(const cugraph_resource_handle_t* handle, + cugraph_rng_state_t* rng_state, + cugraph_graph_t* graph, + double min_weight, + size_t ensemble_size, + size_t max_level, + double threshold, + double resolution, + bool_t do_expensive_check, + cugraph_hierarchical_clustering_result_t** result, + cugraph_error_t** error) +{ + ecg_functor functor(handle, + rng_state, + graph, + min_weight, + ensemble_size, + max_level, + threshold, + resolution, + do_expensive_check); + + return cugraph::c_api::run_algorithm(graph, functor, result, error); +} \ No newline at end of file diff --git a/cpp/src/c_api/legacy_ecg.cpp b/cpp/src/c_api/legacy_ecg.cpp index 304d9272910..6fee219f303 100644 --- a/cpp/src/c_api/legacy_ecg.cpp +++ b/cpp/src/c_api/legacy_ecg.cpp @@ -31,7 +31,7 @@ namespace { -struct ecg_functor : public cugraph::c_api::abstract_functor { +struct legacy_ecg_functor : public cugraph::c_api::abstract_functor { raft::handle_t const& handle_; cugraph::c_api::cugraph_graph_t* graph_; double min_weight_; @@ -39,11 +39,11 @@ struct ecg_functor : public cugraph::c_api::abstract_functor { bool do_expensive_check_; cugraph::c_api::cugraph_hierarchical_clustering_result_t* result_{}; - ecg_functor(::cugraph_resource_handle_t const* handle, - ::cugraph_graph_t* graph, - double min_weight, - size_t ensemble_size, - bool do_expensive_check) + legacy_ecg_functor(::cugraph_resource_handle_t const* handle, + ::cugraph_graph_t* graph, + double min_weight, + size_t ensemble_size, + bool do_expensive_check) : abstract_functor(), handle_(*reinterpret_cast(handle)->handle_), graph_(reinterpret_cast(graph)), @@ -120,15 +120,16 @@ struct ecg_functor : public cugraph::c_api::abstract_functor { } // namespace -extern "C" cugraph_error_code_t cugraph_ecg(const cugraph_resource_handle_t* handle, - cugraph_graph_t* graph, - double min_weight, - size_t ensemble_size, - bool_t do_expensive_check, - cugraph_hierarchical_clustering_result_t** result, - cugraph_error_t** error) +extern "C" cugraph_error_code_t cugraph_legacy_ecg( + const cugraph_resource_handle_t* handle, + cugraph_graph_t* graph, + double min_weight, + size_t ensemble_size, + bool_t do_expensive_check, + cugraph_hierarchical_clustering_result_t** result, + cugraph_error_t** error) { - ecg_functor functor(handle, graph, min_weight, ensemble_size, do_expensive_check); + legacy_ecg_functor functor(handle, graph, min_weight, ensemble_size, do_expensive_check); return cugraph::c_api::run_algorithm(graph, functor, result, error); } diff --git a/cpp/tests/CMakeLists.txt b/cpp/tests/CMakeLists.txt index 1e5d0489b1f..cb57b96f955 100644 --- a/cpp/tests/CMakeLists.txt +++ b/cpp/tests/CMakeLists.txt @@ -248,8 +248,8 @@ ConfigureTest(LOUVAIN_TEST community/louvain_test.cpp) ConfigureTest(LEIDEN_TEST community/leiden_test.cpp) ################################################################################################### -# - ECG tests ------------------------------------------------------------------------------------- -ConfigureTest(ECG_TEST community/ecg_test.cpp) +# - Legacy ECG tests ------------------------------------------------------------------------------------- +ConfigureTest(LEGACY_ECG_TEST community/legacy_ecg_test.cpp) ################################################################################################### # - Balanced cut clustering tests ----------------------------------------------------------------- @@ -679,6 +679,7 @@ if(BUILD_CUGRAPH_MG_TESTS) ConfigureCTestMG(MG_CAPI_TRIANGLE_COUNT_TEST c_api/mg_triangle_count_test.c) ConfigureCTestMG(MG_CAPI_LOUVAIN_TEST c_api/mg_louvain_test.c) ConfigureCTestMG(MG_CAPI_LEIDEN_TEST c_api/mg_leiden_test.c) + ConfigureCTestMG(MG_CAPI_ECG_TEST c_api/mg_ecg_test.c) ConfigureCTestMG(MG_CAPI_CORE_NUMBER_TEST c_api/mg_core_number_test.c) ConfigureCTestMG(MG_CAPI_SIMILARITY_TEST c_api/mg_similarity_test.c) ConfigureCTestMG(MG_CAPI_K_CORE_TEST c_api/mg_k_core_test.c) @@ -737,6 +738,7 @@ ConfigureCTest(CAPI_RANDOM_WALKS_TEST c_api/sg_random_walks_test.c) ConfigureCTest(CAPI_TRIANGLE_COUNT_TEST c_api/triangle_count_test.c) ConfigureCTest(CAPI_LOUVAIN_TEST c_api/louvain_test.c) ConfigureCTest(CAPI_LEIDEN_TEST c_api/leiden_test.c) +ConfigureCTest(CAPI_ECG_TEST c_api/ecg_test.c) ############################################################################# # Skipping due to CUDA 12.2 failure that traces back to RAFT # # TODO: Uncomment this once the issue is fixed. # diff --git a/cpp/tests/c_api/ecg_test.c b/cpp/tests/c_api/ecg_test.c new file mode 100644 index 00000000000..bd759ecae74 --- /dev/null +++ b/cpp/tests/c_api/ecg_test.c @@ -0,0 +1,195 @@ +/* + * Copyright (c) 2022-2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "c_test_utils.h" /* RUN_TEST */ + +#include +#include + +#include + +typedef int32_t vertex_t; +typedef int32_t edge_t; +typedef float weight_t; + +int generic_ecg_test(vertex_t* h_src, + vertex_t* h_dst, + weight_t* h_wgt, + size_t num_vertices, + size_t num_edges, + double min_weight, + size_t ensemble_size, + size_t max_level, + double threshold, + double resolution, + bool_t store_transposed) +{ + int test_ret_value = 0; + + cugraph_error_code_t ret_code = CUGRAPH_SUCCESS; + cugraph_error_t* ret_error; + + cugraph_resource_handle_t* handle = NULL; + cugraph_graph_t* graph = NULL; + cugraph_hierarchical_clustering_result_t* result = NULL; + + data_type_id_t vertex_tid = INT32; + data_type_id_t edge_tid = INT32; + data_type_id_t weight_tid = FLOAT32; + data_type_id_t edge_id_tid = INT32; + data_type_id_t edge_type_tid = INT32; + + handle = cugraph_create_resource_handle(NULL); + TEST_ASSERT(test_ret_value, handle != NULL, "resource handle creation failed."); + + ret_code = create_sg_test_graph(handle, + vertex_tid, + edge_tid, + h_src, + h_dst, + weight_tid, + h_wgt, + edge_type_tid, + NULL, + edge_id_tid, + NULL, + num_edges, + store_transposed, + FALSE, + FALSE, + FALSE, + &graph, + &ret_error); + + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "create_test_graph failed."); + TEST_ALWAYS_ASSERT(ret_code == CUGRAPH_SUCCESS, cugraph_error_message(ret_error)); + + cugraph_rng_state_t* rng_state; + ret_code = cugraph_rng_state_create(handle, 0, &rng_state, &ret_error); + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "rng_state create failed."); + + ret_code = cugraph_ecg(handle, + rng_state, + graph, + min_weight, + ensemble_size, + max_level, + threshold, + resolution, + FALSE, + &result, + &ret_error); + + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, cugraph_error_message(ret_error)); + TEST_ALWAYS_ASSERT(ret_code == CUGRAPH_SUCCESS, "cugraph_ecg failed."); + + if (test_ret_value == 0) { + cugraph_type_erased_device_array_view_t* vertices; + cugraph_type_erased_device_array_view_t* clusters; + + vertices = cugraph_hierarchical_clustering_result_get_vertices(result); + clusters = cugraph_hierarchical_clustering_result_get_clusters(result); + double modularity = cugraph_hierarchical_clustering_result_get_modularity(result); + + vertex_t h_vertices[num_vertices]; + edge_t h_clusters[num_vertices]; + + ret_code = cugraph_type_erased_device_array_view_copy_to_host( + handle, (byte_t*)h_vertices, vertices, &ret_error); + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "copy_to_host failed."); + + ret_code = cugraph_type_erased_device_array_view_copy_to_host( + handle, (byte_t*)h_clusters, clusters, &ret_error); + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "copy_to_host failed."); + + // Louvain and permute_range are both tested, here we only make + // sure that function calls succeed as expected. + + cugraph_hierarchical_clustering_result_free(result); + } + + cugraph_sg_graph_free(graph); + cugraph_free_resource_handle(handle); + cugraph_error_free(ret_error); + + return test_ret_value; +} + +int test_ecg() +{ + size_t num_edges = 16; + size_t num_vertices = 6; + size_t max_level = 10; + weight_t threshold = 1e-7; + weight_t resolution = 1.0; + weight_t min_weight = 0.001; + size_t ensemble_size = 10; + + vertex_t h_src[] = {0, 1, 1, 2, 2, 2, 3, 4, 1, 3, 4, 0, 1, 3, 5, 5}; + vertex_t h_dst[] = {1, 3, 4, 0, 1, 3, 5, 5, 0, 1, 1, 2, 2, 2, 3, 4}; + weight_t h_wgt[] = { + 0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f, 0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f}; + + // Louvain wants store_transposed = FALSE + return generic_ecg_test(h_src, + h_dst, + h_wgt, + num_vertices, + num_edges, + min_weight, + ensemble_size, + max_level, + threshold, + resolution, + FALSE); +} + +int test_ecg_no_weight() +{ + size_t num_edges = 16; + size_t num_vertices = 6; + size_t max_level = 10; + weight_t threshold = 1e-7; + weight_t resolution = 1.0; + weight_t min_weight = 0.001; + size_t ensemble_size = 10; + + vertex_t h_src[] = {0, 1, 1, 2, 2, 2, 3, 4, 1, 3, 4, 0, 1, 3, 5, 5}; + vertex_t h_dst[] = {1, 3, 4, 0, 1, 3, 5, 5, 0, 1, 1, 2, 2, 2, 3, 4}; + + // Louvain wants store_transposed = FALSE + return generic_ecg_test(h_src, + h_dst, + NULL, + num_vertices, + num_edges, + min_weight, + ensemble_size, + max_level, + threshold, + resolution, + FALSE); +} + +/******************************************************************************/ + +int main(int argc, char** argv) +{ + int result = 0; + result |= RUN_TEST(test_ecg); + result |= RUN_TEST(test_ecg_no_weight); + return result; +} \ No newline at end of file diff --git a/cpp/tests/c_api/legacy_ecg_test.c b/cpp/tests/c_api/legacy_ecg_test.c index 5ea1ce79796..b702426b0aa 100644 --- a/cpp/tests/c_api/legacy_ecg_test.c +++ b/cpp/tests/c_api/legacy_ecg_test.c @@ -1,5 +1,5 @@ /* - * Copyright (c) 2022, NVIDIA CORPORATION. + * Copyright (c) 2022-2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -53,8 +53,8 @@ int generic_ecg_test(vertex_t* h_src, TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "create_test_graph failed."); TEST_ALWAYS_ASSERT(ret_code == CUGRAPH_SUCCESS, cugraph_error_message(ret_error)); - ret_code = - cugraph_ecg(p_handle, p_graph, minimum_weight, ensemble_size, FALSE, &p_result, &ret_error); + ret_code = cugraph_legacy_ecg( + p_handle, p_graph, minimum_weight, ensemble_size, FALSE, &p_result, &ret_error); TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, cugraph_error_message(ret_error)); TEST_ALWAYS_ASSERT(ret_code == CUGRAPH_SUCCESS, "cugraph_ecg failed."); @@ -63,8 +63,8 @@ int generic_ecg_test(vertex_t* h_src, cugraph_type_erased_device_array_view_t* vertices; cugraph_type_erased_device_array_view_t* clusters; - vertices = cugraph_hierarchical_clustering_result_get_vertices(p_result); - clusters = cugraph_hierarchical_clustering_result_get_clusters(p_result); + vertices = cugraph_hierarchical_clustering_result_get_vertices(p_result); + clusters = cugraph_hierarchical_clustering_result_get_clusters(p_result); vertex_t h_vertices[num_vertices]; edge_t h_clusters[num_vertices]; @@ -103,18 +103,11 @@ int test_ecg() vertex_t h_dst[] = {1, 3, 4, 0, 1, 3, 5, 5, 0, 1, 1, 2, 2, 2, 3, 4}; weight_t h_wgt[] = { 0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f, 0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f}; - vertex_t h_result[] = {0, 1, 0, 1, 1, 1}; + vertex_t h_result[] = {0, 1, 0, 1, 1, 1}; // Louvain wants store_transposed = FALSE - return generic_ecg_test(h_src, - h_dst, - h_wgt, - h_result, - num_vertices, - num_edges, - min_weight, - ensemble_size, - FALSE); + return generic_ecg_test( + h_src, h_dst, h_wgt, h_result, num_vertices, num_edges, min_weight, ensemble_size, FALSE); } /******************************************************************************/ diff --git a/cpp/tests/c_api/mg_ecg_test.c b/cpp/tests/c_api/mg_ecg_test.c new file mode 100644 index 00000000000..846be8125e0 --- /dev/null +++ b/cpp/tests/c_api/mg_ecg_test.c @@ -0,0 +1,181 @@ +/* + * Copyright (c) 2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "mg_test_utils.h" /* RUN_TEST */ + +#include +#include + +#include + +typedef int32_t vertex_t; +typedef int32_t edge_t; +typedef float weight_t; + +int generic_ecg_test(const cugraph_resource_handle_t* handle, + vertex_t* h_src, + vertex_t* h_dst, + weight_t* h_wgt, + size_t num_vertices, + size_t num_edges, + double min_weight, + size_t ensemble_size, + size_t max_level, + double threshold, + double resolution, + bool_t store_transposed) +{ + int test_ret_value = 0; + + cugraph_error_code_t ret_code = CUGRAPH_SUCCESS; + cugraph_error_t* ret_error; + + cugraph_graph_t* graph = NULL; + cugraph_hierarchical_clustering_result_t* result = NULL; + + int rank = cugraph_resource_handle_get_rank(handle); + + ret_code = create_mg_test_graph( + handle, h_src, h_dst, h_wgt, num_edges, store_transposed, FALSE, &graph, &ret_error); + + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "create_test_graph failed."); + TEST_ALWAYS_ASSERT(ret_code == CUGRAPH_SUCCESS, cugraph_error_message(ret_error)); + + cugraph_rng_state_t* rng_state; + ret_code = cugraph_rng_state_create(handle, rank, &rng_state, &ret_error); + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "rng_state create failed."); + + ret_code = cugraph_ecg(handle, + rng_state, + graph, + min_weight, + ensemble_size, + max_level, + threshold, + resolution, + FALSE, + &result, + &ret_error); + + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, cugraph_error_message(ret_error)); + TEST_ALWAYS_ASSERT(ret_code == CUGRAPH_SUCCESS, "cugraph_ecg failed."); + + if (test_ret_value == 0) { + cugraph_type_erased_device_array_view_t* vertices; + cugraph_type_erased_device_array_view_t* clusters; + + vertices = cugraph_hierarchical_clustering_result_get_vertices(result); + clusters = cugraph_hierarchical_clustering_result_get_clusters(result); + double modularity = cugraph_hierarchical_clustering_result_get_modularity(result); + + vertex_t h_vertices[num_vertices]; + edge_t h_clusters[num_vertices]; + + ret_code = cugraph_type_erased_device_array_view_copy_to_host( + handle, (byte_t*)h_vertices, vertices, &ret_error); + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "copy_to_host failed."); + + ret_code = cugraph_type_erased_device_array_view_copy_to_host( + handle, (byte_t*)h_clusters, clusters, &ret_error); + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "copy_to_host failed."); + + size_t num_local_vertices = cugraph_type_erased_device_array_view_size(vertices); + + // Louvain and permute_range are both tested, here we only make + // sure that function calls succeed as expected. + + cugraph_hierarchical_clustering_result_free(result); + } + + cugraph_mg_graph_free(graph); + cugraph_error_free(ret_error); + + return test_ret_value; +} + +int test_ecg(const cugraph_resource_handle_t* handle) +{ + size_t num_edges = 16; + size_t num_vertices = 6; + size_t max_level = 10; + weight_t threshold = 1e-7; + weight_t resolution = 1.0; + weight_t min_weight = 0.001; + size_t ensemble_size = 10; + + vertex_t h_src[] = {0, 1, 1, 2, 2, 2, 3, 4, 1, 3, 4, 0, 1, 3, 5, 5}; + vertex_t h_dst[] = {1, 3, 4, 0, 1, 3, 5, 5, 0, 1, 1, 2, 2, 2, 3, 4}; + weight_t h_wgt[] = { + 0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f, 0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f}; + + // Louvain wants store_transposed = FALSE + return generic_ecg_test(handle, + h_src, + h_dst, + h_wgt, + num_vertices, + num_edges, + min_weight, + ensemble_size, + max_level, + threshold, + resolution, + FALSE); +} + +int test_ecg_no_weight(const cugraph_resource_handle_t* handle) +{ + size_t num_edges = 16; + size_t num_vertices = 6; + size_t max_level = 10; + weight_t threshold = 1e-7; + weight_t resolution = 1.0; + weight_t min_weight = 0.001; + size_t ensemble_size = 10; + + vertex_t h_src[] = {0, 1, 1, 2, 2, 2, 3, 4, 1, 3, 4, 0, 1, 3, 5, 5}; + vertex_t h_dst[] = {1, 3, 4, 0, 1, 3, 5, 5, 0, 1, 1, 2, 2, 2, 3, 4}; + + // Louvain wants store_transposed = FALSE + return generic_ecg_test(handle, + h_src, + h_dst, + NULL, + num_vertices, + num_edges, + min_weight, + ensemble_size, + max_level, + threshold, + resolution, + FALSE); +} + +/******************************************************************************/ + +int main(int argc, char** argv) +{ + void* raft_handle = create_mg_raft_handle(argc, argv); + cugraph_resource_handle_t* handle = cugraph_create_resource_handle(raft_handle); + + int result = 0; + result |= RUN_MG_TEST(test_ecg, handle); + + cugraph_free_resource_handle(handle); + free_mg_raft_handle(raft_handle); + + return result; +} \ No newline at end of file diff --git a/cpp/tests/community/ecg_test.cpp b/cpp/tests/community/legacy_ecg_test.cpp similarity index 98% rename from cpp/tests/community/ecg_test.cpp rename to cpp/tests/community/legacy_ecg_test.cpp index 66950b97787..c061215415a 100644 --- a/cpp/tests/community/ecg_test.cpp +++ b/cpp/tests/community/legacy_ecg_test.cpp @@ -8,8 +8,6 @@ * license agreement from NVIDIA CORPORATION is strictly prohibited. * */ -#include "utilities/base_fixture.hpp" - #include #include @@ -17,12 +15,14 @@ #include +#include + // FIXME: Temporarily disable this test. Something is wrong with // ECG, or the expectation of this test. If I run ensemble size // of 24 this fails. It also fails with the SG Louvain change // for PR 1271 #if 0 -TEST(ecg, success) +TEST(legacy_ecg, success) { // FIXME: verify that this is the karate dataset std::vector off_h = {0, 16, 25, 35, 41, 44, 48, 52, 56, 61, 63, 66, @@ -77,7 +77,7 @@ TEST(ecg, success) } #endif -TEST(ecg, dolphin) +TEST(legacy_ecg, dolphin) { raft::handle_t handle; diff --git a/python/pylibcugraph/pylibcugraph/_cugraph_c/community_algorithms.pxd b/python/pylibcugraph/pylibcugraph/_cugraph_c/community_algorithms.pxd index 3c273b7d3fa..b7729bfba06 100644 --- a/python/pylibcugraph/pylibcugraph/_cugraph_c/community_algorithms.pxd +++ b/python/pylibcugraph/pylibcugraph/_cugraph_c/community_algorithms.pxd @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -153,13 +153,29 @@ cdef extern from "cugraph_c/community_algorithms.h": cugraph_error_t** error ) ########################################################################### + # Legacy ECG + cdef cugraph_error_code_t \ + cugraph_legacy_ecg( + const cugraph_resource_handle_t* handle, + cugraph_graph_t* graph, + double min_weight, + size_t ensemble_size, + bool_t do_expensive_check, + cugraph_hierarchical_clustering_result_t** result, + cugraph_error_t** error + ) + # ECG cdef cugraph_error_code_t \ cugraph_ecg( const cugraph_resource_handle_t* handle, + cugraph_rng_state_t* rng_state, cugraph_graph_t* graph, double min_weight, size_t ensemble_size, + size_t max_level, + double threshold, + double resolution, bool_t do_expensive_check, cugraph_hierarchical_clustering_result_t** result, cugraph_error_t** error diff --git a/python/pylibcugraph/pylibcugraph/ecg.pyx b/python/pylibcugraph/pylibcugraph/ecg.pyx index 4188aaa213e..9e414fccb0f 100644 --- a/python/pylibcugraph/pylibcugraph/ecg.pyx +++ b/python/pylibcugraph/pylibcugraph/ecg.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -31,6 +31,7 @@ from pylibcugraph._cugraph_c.graph cimport ( ) from pylibcugraph._cugraph_c.community_algorithms cimport ( cugraph_hierarchical_clustering_result_t, + cugraph_legacy_ecg, cugraph_ecg, cugraph_hierarchical_clustering_result_get_vertices, cugraph_hierarchical_clustering_result_get_clusters, @@ -124,7 +125,7 @@ def ecg(ResourceHandle resource_handle, cdef cugraph_error_code_t error_code cdef cugraph_error_t* error_ptr - error_code = cugraph_ecg(c_resource_handle_ptr, + error_code = cugraph_legacy_ecg(c_resource_handle_ptr, c_graph_ptr, min_weight, ensemble_size, From 92daf6e6189a51a0ed4c9ed741f37ec82cb0d4e2 Mon Sep 17 00:00:00 2001 From: Ralph Liu <137829296+nv-rliu@users.noreply.github.com> Date: Thu, 7 Mar 2024 08:42:53 -0500 Subject: [PATCH 07/20] Add `DeprecationWarning` to `batched_ego_graphs` (#4209) This PR addresses #4191 Since the plan is to add "batched" support to the regular `ego_graph` method, a `DeprecationWarning` has been added to `batched_ego_graphs`. -- Minor change: use proper indexing when accessing a pd.Series value. Authors: - Ralph Liu (https://github.com/nv-rliu) Approvers: - Rick Ratzel (https://github.com/rlratzel) URL: https://github.com/rapidsai/cugraph/pull/4209 --- python/cugraph/cugraph/community/egonet.py | 20 ++++++++++++++----- .../cugraph/cugraph/dask/community/egonet.py | 6 +++--- 2 files changed, 18 insertions(+), 8 deletions(-) diff --git a/python/cugraph/cugraph/community/egonet.py b/python/cugraph/cugraph/community/egonet.py index 01bbc41d8cd..b7341ca3bae 100644 --- a/python/cugraph/cugraph/community/egonet.py +++ b/python/cugraph/cugraph/community/egonet.py @@ -1,4 +1,4 @@ -# Copyright (c) 2021-2023, NVIDIA CORPORATION. +# Copyright (c) 2021-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -11,18 +11,18 @@ # See the License for the specific language governing permissions and # limitations under the License. + +import warnings + +import cudf from cugraph.utilities import ( ensure_cugraph_obj, is_nx_graph_type, ) from cugraph.utilities import cugraph_to_nx -import cudf - from pylibcugraph import ego_graph as pylibcugraph_ego_graph - from pylibcugraph import ResourceHandle -import warnings def _convert_graph_to_output_type(G, input_type): @@ -49,6 +49,7 @@ def _convert_df_series_to_output_type(df, offsets, input_type): return df, offsets +# TODO: add support for a 'batch-mode' option. def ego_graph(G, n, radius=1, center=True, undirected=None, distance=None): """ Compute the induced subgraph of neighbors centered at node n, @@ -118,6 +119,7 @@ def ego_graph(G, n, radius=1, center=True, undirected=None, distance=None): # Match the seed to the vertex dtype n_type = G.edgelist.edgelist_df["src"].dtype + # FIXME: 'n' should represent a single vertex, but is not being verified n = n.astype(n_type) do_expensive_check = False @@ -154,6 +156,11 @@ def ego_graph(G, n, radius=1, center=True, undirected=None, distance=None): def batched_ego_graphs(G, seeds, radius=1, center=True, undirected=None, distance=None): """ + This function is deprecated. + + Deprecated since 24.04. Batched support for multiple seeds will be added + to `ego_graph`. + Compute the induced subgraph of neighbors for each node in seeds within a given radius. @@ -196,6 +203,9 @@ def batched_ego_graphs(G, seeds, radius=1, center=True, undirected=None, distanc ... radius=2) """ + warning_msg = "This function is deprecated. Batched support for multiple vertices \ + will be added to `ego_graph`" + warnings.warn(warning_msg, DeprecationWarning) (G, input_type) = ensure_cugraph_obj(G, nx_weight_attr="weight") diff --git a/python/cugraph/cugraph/dask/community/egonet.py b/python/cugraph/cugraph/dask/community/egonet.py index e49d4777cef..e4282786653 100644 --- a/python/cugraph/cugraph/dask/community/egonet.py +++ b/python/cugraph/cugraph/dask/community/egonet.py @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -129,9 +129,9 @@ def ego_graph(input_graph, n, radius=1, center=True): # renumbered, the node ID must also be renumbered. if input_graph.renumbered: n = input_graph.lookup_internal_vertex_id(n) - n_type = input_graph.edgelist.edgelist_df.dtypes[0] + n_type = input_graph.edgelist.edgelist_df.dtypes.iloc[0] else: - n_type = input_graph.input_df.dtypes[0] + n_type = input_graph.input_df.dtypes.iloc[0] if isinstance(n, (cudf.Series, cudf.DataFrame)): n = dask_cudf.from_cudf(n, npartitions=min(input_graph._npartitions, len(n))) From ee988db7354f08535045d0a4bc5485c80b490339 Mon Sep 17 00:00:00 2001 From: Ralph Liu <137829296+nv-rliu@users.noreply.github.com> Date: Thu, 7 Mar 2024 12:23:21 -0500 Subject: [PATCH 08/20] Remove Usage of Experimental Datasets Package (#4220) This PR addresses one of the nightly benchmark algo failures that was calling the previous (experimental) version of the Datasets API. Relevant Logs: https://mg-test-results.s3.us-east-2.amazonaws.com/cugraph/20240306_101219_UTC/benchmarks/2-GPU/pytest-results.html Authors: - Ralph Liu (https://github.com/nv-rliu) Approvers: - Don Acosta (https://github.com/acostadon) URL: https://github.com/rapidsai/cugraph/pull/4220 --- .../pytest-based/bench_cugraph_uniform_neighbor_sample.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/benchmarks/cugraph/pytest-based/bench_cugraph_uniform_neighbor_sample.py b/benchmarks/cugraph/pytest-based/bench_cugraph_uniform_neighbor_sample.py index 157c64b0b20..face22c9283 100644 --- a/benchmarks/cugraph/pytest-based/bench_cugraph_uniform_neighbor_sample.py +++ b/benchmarks/cugraph/pytest-based/bench_cugraph_uniform_neighbor_sample.py @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -39,7 +39,7 @@ uniform_neighbor_sample, ) from cugraph.generators import rmat -from cugraph.experimental import datasets +from cugraph import datasets from cugraph.dask import uniform_neighbor_sample as uniform_neighbor_sample_mg from cugraph_benchmarking import params From 5b5061ef9ce6ab766c33513f8b5906b12539c512 Mon Sep 17 00:00:00 2001 From: Chuck Hastings <45364586+ChuckHastings@users.noreply.github.com> Date: Thu, 7 Mar 2024 12:32:29 -0500 Subject: [PATCH 09/20] Add new all-pairs similarity algorithm (#4158) Added a new entry point for similarity functionality that combines the functionality of k_hop_nbrs and similarity. This entry point allows us to compute similarity for all pairs of vertices in the graph in a single call. We also add the optional parameter topk which, if specified, will only return the vertices that have the highest scores. If topk is specified on an all pairs call, we compute the scores for pairs in batches and extract the topk as we go along to keep the memory footprint low. This PR also updates a FIXME in the C++ similarity test. The C++ similarity test had been written before we had a k_hop_nbrs call, so there was some inefficient test code to compute that. Now that we have a k_hop_nbrs call, the test code was refactored to use that call. Supersedes PR #4134 Authors: - Chuck Hastings (https://github.com/ChuckHastings) Approvers: - Seunghwa Kang (https://github.com/seunghwak) URL: https://github.com/rapidsai/cugraph/pull/4158 --- cpp/include/cugraph/algorithms.hpp | 166 ++++++ cpp/include/cugraph/utilities/misc_utils.cuh | 61 +-- cpp/include/cugraph_c/graph_functions.h | 2 +- cpp/include/cugraph_c/similarity_algorithms.h | 126 ++++- cpp/src/c_api/similarity.cpp | 217 +++++++- cpp/src/link_prediction/jaccard_impl.cuh | 22 + cpp/src/link_prediction/jaccard_mg.cu | 60 +++ cpp/src/link_prediction/jaccard_sg.cu | 60 +++ cpp/src/link_prediction/overlap_impl.cuh | 22 + cpp/src/link_prediction/overlap_mg.cu | 60 +++ cpp/src/link_prediction/overlap_sg.cu | 60 +++ cpp/src/link_prediction/similarity_impl.cuh | 388 ++++++++++++++ cpp/src/link_prediction/sorensen_impl.cuh | 22 + cpp/src/link_prediction/sorensen_mg.cu | 60 +++ cpp/src/link_prediction/sorensen_sg.cu | 60 +++ ...m_reduce_dst_key_aggregated_outgoing_e.cuh | 14 +- .../renumber_sampled_edgelist_impl.cuh | 14 +- .../sampling_post_processing_impl.cuh | 23 +- cpp/src/structure/detail/structure_utils.cuh | 16 +- cpp/tests/CMakeLists.txt | 2 +- cpp/tests/c_api/mg_two_hop_neighbors_test.c | 4 +- cpp/tests/c_api/similarity_test.c | 480 +++++++++++++++++- cpp/tests/c_api/two_hop_neighbors_test.c | 4 +- .../link_prediction/similarity_compare.hpp | 36 ++ cpp/tests/link_prediction/similarity_test.cu | 352 +++++++++++++ cpp/tests/mtmg/threaded_test_louvain.cu | 2 + 26 files changed, 2244 insertions(+), 89 deletions(-) create mode 100644 cpp/tests/link_prediction/similarity_test.cu diff --git a/cpp/include/cugraph/algorithms.hpp b/cpp/include/cugraph/algorithms.hpp index cd2dafc5217..5c29604a5a7 100644 --- a/cpp/include/cugraph/algorithms.hpp +++ b/cpp/include/cugraph/algorithms.hpp @@ -2135,6 +2135,172 @@ rmm::device_uvector overlap_coefficients( std::tuple, raft::device_span> vertex_pairs, bool do_expensive_check = false); +/** + * @brief Compute Jaccard all pairs similarity coefficient + * + * Similarity is computed for all pairs of vertices. Note that in a sparse + * graph, many of the vertex pairs will have a score of zero. We actually + * compute similarity only for vertices that are two hop neighbors within + * the graph, since vertices that are not two hop neighbors will have + * a score of 0. + * + * If @p vertices is specified we will compute similarity on two hop + * neighbors the @p vertices. If @p vertices is not specified it will + * compute similarity on all two hop neighbors in the graph. + * + * If @p topk is specified only the top @p topk scoring vertex pairs + * will be returned, if not specified then scores for all computed vertex pairs + * will be returned. + * + * Note the list of two hop neighbors in the entire graph might be a large + * number of vertex pairs. If the graph is dense enough it could be as large + * as the the number of vertices squared, which might run out of memory. + * + * @throws cugraph::logic_error when an error occurs. + * + * @tparam vertex_t Type of vertex identifiers. Needs to be an integral type. + * @tparam edge_t Type of edge identifiers. Needs to be an integral type. + * @tparam weight_t Type of edge weights. Needs to be a floating point type. + * @tparam multi_gpu Flag indicating whether template instantiation should target single-GPU (false) + * @param handle RAFT handle object to encapsulate resources (e.g. CUDA stream, communicator, and + * handles to various CUDA libraries) to run graph algorithms. + * @param graph_view Graph view object. + * @param edge_weight_view Optional view object holding edge weights for @p graph_view. If @p + * edge_weight_view.has_value() == true, use the weights associated with the graph. If false, assume + * a weight of 1 for all edges. + * @param vertices optional device span defining the seed vertices. In a multi-gpu context the + * vertices should be local to this GPU. + * @param topk optional specification of the how many of the top scoring vertex pairs should be + * returned + * @param do_expensive_check A flag to run expensive checks for input arguments (if set to `true`). + * @return tuple containing three device vectors (v1, v2, score) of the same length. Corresponding + * elements in the vectors identify a result, v1 identifying a vertex in the graph, v2 identifying + * one of v1's two hop neighors, and the score identifying the similarity score between v1 and v2. + * If @p topk was specified then the vectors will be no longer than @p topk elements. In a + * multi-gpu context, if @p topk is specified all results will return on GPU rank 0, otherwise they + * will be returned on the local GPU for vertex v1. + */ +template +std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check = false); + +/** + * @brief Compute Sorensen similarity coefficient + * + * Similarity is computed for all pairs of vertices. Note that in a sparse + * graph, many of the vertex pairs will have a score of zero. We actually + * compute similarity only for vertices that are two hop neighbors within + * the graph, since vertices that are not two hop neighbors will have + * a score of 0. + * + * If @p vertices is specified we will compute similarity on two hop + * neighbors the @p vertices. If @p vertices is not specified it will + * compute similarity on all two hop neighbors in the graph. + * + * If @p topk is specified only the top @p topk scoring vertex pairs + * will be returned, if not specified then scores for all computed vertex pairs + * will be returned. + * + * Note the list of two hop neighbors in the entire graph might be a large + * number of vertex pairs. If the graph is dense enough it could be as large + * as the the number of vertices squared, which might run out of memory. + * + * @throws cugraph::logic_error when an error occurs. + * + * @tparam vertex_t Type of vertex identifiers. Needs to be an integral type. + * @tparam edge_t Type of edge identifiers. Needs to be an integral type. + * @tparam weight_t Type of edge weights. Needs to be a floating point type. + * @tparam multi_gpu Flag indicating whether template instantiation should target single-GPU (false) + * @param handle RAFT handle object to encapsulate resources (e.g. CUDA stream, communicator, and + * handles to various CUDA libraries) to run graph algorithms. + * @param graph_view Graph view object. + * @param edge_weight_view Optional view object holding edge weights for @p graph_view. If @p + * edge_weight_view.has_value() == true, use the weights associated with the graph. If false, assume + * a weight of 1 for all edges. + * @param vertices optional device span defining the seed vertices. + * @param topk optional specification of the how many of the top scoring vertex pairs should be + * returned + * @param do_expensive_check A flag to run expensive checks for input arguments (if set to `true`). + * @return tuple containing three device vectors (v1, v2, score) of the same length. Corresponding + * elements in the vectors identify a result, v1 identifying a vertex in the graph, v2 identifying + * one of v1's two hop neighors, and the score identifying the similarity score between v1 and v2. + * If @p topk was specified then the vectors will be no longer than @p topk elements. In a + * multi-gpu context, if @p topk is specified all results will return on GPU rank 0, otherwise they + * will be returned on the local GPU for vertex v1. + */ +template +std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check = false); + +/** + * @brief Compute overlap similarity coefficient + * + * Similarity is computed for all pairs of vertices. Note that in a sparse + * graph, many of the vertex pairs will have a score of zero. We actually + * compute similarity only for vertices that are two hop neighbors within + * the graph, since vertices that are not two hop neighbors will have + * a score of 0. + * + * If @p vertices is specified we will compute similarity on two hop + * neighbors the @p vertices. If @p vertices is not specified it will + * compute similarity on all two hop neighbors in the graph. + * + * If @p topk is specified only the top @p topk scoring vertex pairs + * will be returned, if not specified then scores for all computed vertex pairs + * will be returned. + * + * Note the list of two hop neighbors in the entire graph might be a large + * number of vertex pairs. If the graph is dense enough it could be as large + * as the the number of vertices squared, which might run out of memory. + * + * @throws cugraph::logic_error when an error occurs. + * + * @tparam vertex_t Type of vertex identifiers. Needs to be an integral type. + * @tparam edge_t Type of edge identifiers. Needs to be an integral type. + * @tparam weight_t Type of edge weights. Needs to be a floating point type. + * @tparam multi_gpu Flag indicating whether template instantiation should target single-GPU (false) + * @param handle RAFT handle object to encapsulate resources (e.g. CUDA stream, communicator, and + * handles to various CUDA libraries) to run graph algorithms. + * @param graph_view Graph view object. + * @param edge_weight_view Optional view object holding edge weights for @p graph_view. If @p + * edge_weight_view.has_value() == true, use the weights associated with the graph. If false, assume + * a weight of 1 for all edges. + * @param vertices optional device span defining the seed vertices. + * @param topk optional specification of the how many of the top scoring vertex pairs should be + * returned + * @param do_expensive_check A flag to run expensive checks for input arguments (if set to `true`). + * @return tuple containing three device vectors (v1, v2, score) of the same length. Corresponding + * elements in the vectors identify a result, v1 identifying a vertex in the graph, v2 identifying + * one of v1's two hop neighors, and the score identifying the similarity score between v1 and v2. + * If @p topk was specified then the vectors will be no longer than @p topk elements. In a + * multi-gpu context, if @p topk is specified all results will return on GPU rank 0, otherwise they + * will be returned on the local GPU for vertex v1. + */ +template +std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check = false); + /* * @brief Enumerate K-hop neighbors * diff --git a/cpp/include/cugraph/utilities/misc_utils.cuh b/cpp/include/cugraph/utilities/misc_utils.cuh index 5b66d978b54..d3917a3e851 100644 --- a/cpp/include/cugraph/utilities/misc_utils.cuh +++ b/cpp/include/cugraph/utilities/misc_utils.cuh @@ -37,51 +37,52 @@ namespace cugraph { namespace detail { -template -std::tuple, std::vector> compute_offset_aligned_edge_chunks( +template +std::tuple, std::vector> compute_offset_aligned_element_chunks( raft::handle_t const& handle, - edge_t const* offsets, - vertex_t num_vertices, - edge_t num_edges, - size_t approx_edge_chunk_size) + raft::device_span offsets, + offset_t num_elements, + vertex_t approx_element_chunk_size) { auto search_offset_first = thrust::make_transform_iterator( thrust::make_counting_iterator(size_t{1}), cuda::proclaim_return_type( - [approx_edge_chunk_size] __device__(auto i) { return i * approx_edge_chunk_size; })); - auto num_chunks = (num_edges + approx_edge_chunk_size - 1) / approx_edge_chunk_size; + [approx_element_chunk_size] __device__(auto i) { return i * approx_element_chunk_size; })); + auto num_chunks = (num_elements + approx_element_chunk_size - 1) / approx_element_chunk_size; if (num_chunks > 1) { - rmm::device_uvector d_vertex_offsets(num_chunks - 1, handle.get_stream()); + rmm::device_uvector d_chunk_offsets(num_chunks - 1, handle.get_stream()); thrust::lower_bound(handle.get_thrust_policy(), - offsets, - offsets + num_vertices + 1, + offsets.begin(), + offsets.end(), search_offset_first, - search_offset_first + d_vertex_offsets.size(), - d_vertex_offsets.begin()); - rmm::device_uvector d_edge_offsets(d_vertex_offsets.size(), handle.get_stream()); + search_offset_first + d_chunk_offsets.size(), + d_chunk_offsets.begin()); + rmm::device_uvector d_element_offsets(d_chunk_offsets.size(), handle.get_stream()); thrust::gather(handle.get_thrust_policy(), - d_vertex_offsets.begin(), - d_vertex_offsets.end(), - offsets, - d_edge_offsets.begin()); - std::vector h_edge_offsets(num_chunks + 1, edge_t{0}); - h_edge_offsets.back() = num_edges; - raft::update_host( - h_edge_offsets.data() + 1, d_edge_offsets.data(), d_edge_offsets.size(), handle.get_stream()); - std::vector h_vertex_offsets(num_chunks + 1, vertex_t{0}); - h_vertex_offsets.back() = num_vertices; - raft::update_host(h_vertex_offsets.data() + 1, - d_vertex_offsets.data(), - d_vertex_offsets.size(), + d_chunk_offsets.begin(), + d_chunk_offsets.end(), + offsets.begin(), + d_element_offsets.begin()); + std::vector h_element_offsets(num_chunks + 1, offset_t{0}); + h_element_offsets.back() = num_elements; + raft::update_host(h_element_offsets.data() + 1, + d_element_offsets.data(), + d_element_offsets.size(), + handle.get_stream()); + std::vector h_chunk_offsets(num_chunks + 1, vertex_t{0}); + h_chunk_offsets.back() = offsets.size() - 1; + raft::update_host(h_chunk_offsets.data() + 1, + d_chunk_offsets.data(), + d_chunk_offsets.size(), handle.get_stream()); handle.sync_stream(); - return std::make_tuple(h_vertex_offsets, h_edge_offsets); + return std::make_tuple(h_chunk_offsets, h_element_offsets); } else { - return std::make_tuple(std::vector{{0, num_vertices}}, - std::vector{{0, num_edges}}); + return std::make_tuple(std::vector{{0, offsets.size() - 1}}, + std::vector{{0, num_elements}}); } } diff --git a/cpp/include/cugraph_c/graph_functions.h b/cpp/include/cugraph_c/graph_functions.h index 19b69922fa5..8fe1ea0b958 100644 --- a/cpp/include/cugraph_c/graph_functions.h +++ b/cpp/include/cugraph_c/graph_functions.h @@ -1,5 +1,5 @@ /* - * Copyright (c) 2022-2023, NVIDIA CORPORATION. + * Copyright (c) 2022-2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. diff --git a/cpp/include/cugraph_c/similarity_algorithms.h b/cpp/include/cugraph_c/similarity_algorithms.h index b8f61b46545..5b8462a1666 100644 --- a/cpp/include/cugraph_c/similarity_algorithms.h +++ b/cpp/include/cugraph_c/similarity_algorithms.h @@ -1,5 +1,5 @@ /* - * Copyright (c) 2022-2023, NVIDIA CORPORATION. + * Copyright (c) 2022-2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -36,6 +36,16 @@ typedef struct { int32_t align_; } cugraph_similarity_result_t; +/** + * @ingroup similarity + * @brief Get vertex pair from the similarity result. + * + * @param [in] result The result from a similarity algorithm + * @return vertex pairs + */ +cugraph_vertex_pairs_t* cugraph_similarity_result_get_vertex_pairs( + cugraph_similarity_result_t* result); + /** * @ingroup similarity * @brief Get the similarity coefficient array @@ -135,6 +145,120 @@ cugraph_error_code_t cugraph_overlap_coefficients(const cugraph_resource_handle_ cugraph_similarity_result_t** result, cugraph_error_t** error); +/** + * @brief Perform All-Pairs Jaccard similarity computation + * + * Compute the similarity for all vertex pairs derived from the two-hop neighbors + * of an optional specified vertex list. This function will identify the two-hop + * neighbors of the specified vertices (all vertices in the graph if not specified) + * and compute similarity for those vertices. + * + * If the topk parameter is specified then the result will only contain the top k + * highest scoring results. + * + * Note that Jaccard similarity must run on a symmetric graph. + * + * @param [in] handle Handle for accessing resources + * @param [in] graph Pointer to graph + * @param [in] vertices Vertex list for input. If null then compute based on + * all vertices in the graph. + * @param [in] use_weight If true consider the edge weight in the graph, if false use an + * edge weight of 1 + * @param [in] topk Specify how many answers to return. Specifying SIZE_MAX + * will return all values. + * @param [in] do_expensive_check A flag to run expensive checks for input arguments (if set to + * `true`). + * @param [out] result Opaque pointer to similarity results + * @param [out] error Pointer to an error object storing details of any error. Will + * be populated if error code is not CUGRAPH_SUCCESS + * @return error code + */ +cugraph_error_code_t cugraph_all_pairs_jaccard_coefficients( + const cugraph_resource_handle_t* handle, + cugraph_graph_t* graph, + const cugraph_type_erased_device_array_view_t* vertices, + bool_t use_weight, + size_t topk, + bool_t do_expensive_check, + cugraph_similarity_result_t** result, + cugraph_error_t** error); + +/** + * @brief Perform All Pairs Sorensen similarity computation + * + * Compute the similarity for all vertex pairs derived from the two-hop neighbors + * of an optional specified vertex list. This function will identify the two-hop + * neighbors of the specified vertices (all vertices in the graph if not specified) + * and compute similarity for those vertices. + * + * If the topk parameter is specified then the result will only contain the top k + * highest scoring results. + * + * Note that Sorensen similarity must run on a symmetric graph. + * + * @param [in] handle Handle for accessing resources + * @param [in] graph Pointer to graph + * @param [in] vertices Vertex list for input. If null then compute based on + * all vertices in the graph. + * @param [in] use_weight If true consider the edge weight in the graph, if false use an + * edge weight of 1 + * @param [in] topk Specify how many answers to return. Specifying SIZE_MAX + * will return all values. + * @param [in] do_expensive_check A flag to run expensive checks for input arguments (if set to + * `true`). + * @param [out] result Opaque pointer to similarity results + * @param [out] error Pointer to an error object storing details of any error. Will + * be populated if error code is not CUGRAPH_SUCCESS + * @return error code + */ +cugraph_error_code_t cugraph_all_pairs_sorensen_coefficients( + const cugraph_resource_handle_t* handle, + cugraph_graph_t* graph, + const cugraph_type_erased_device_array_view_t* vertices, + bool_t use_weight, + size_t topk, + bool_t do_expensive_check, + cugraph_similarity_result_t** result, + cugraph_error_t** error); + +/** + * @brief Perform All Pairs overlap similarity computation + * + * Compute the similarity for all vertex pairs derived from the two-hop neighbors + * of an optional specified vertex list. This function will identify the two-hop + * neighbors of the specified vertices (all vertices in the graph if not specified) + * and compute similarity for those vertices. + * + * If the topk parameter is specified then the result will only contain the top k + * highest scoring results. + * + * Note that overlap similarity must run on a symmetric graph. + * + * @param [in] handle Handle for accessing resources + * @param [in] graph Pointer to graph + * @param [in] vertices Vertex list for input. If null then compute based on + * all vertices in the graph. + * @param [in] use_weight If true consider the edge weight in the graph, if false use an + * edge weight of 1 + * @param [in] topk Specify how many answers to return. Specifying SIZE_MAX + * will return all values. + * @param [in] do_expensive_check A flag to run expensive checks for input arguments (if set to + * `true`). + * @param [out] result Opaque pointer to similarity results + * @param [out] error Pointer to an error object storing details of any error. Will + * be populated if error code is not CUGRAPH_SUCCESS + * @return error code + */ +cugraph_error_code_t cugraph_all_pairs_overlap_coefficients( + const cugraph_resource_handle_t* handle, + cugraph_graph_t* graph, + const cugraph_type_erased_device_array_view_t* vertices, + bool_t use_weight, + size_t topk, + bool_t do_expensive_check, + cugraph_similarity_result_t** result, + cugraph_error_t** error); + #ifdef __cplusplus } #endif diff --git a/cpp/src/c_api/similarity.cpp b/cpp/src/c_api/similarity.cpp index f456c957f8e..aa54fc6dee7 100644 --- a/cpp/src/c_api/similarity.cpp +++ b/cpp/src/c_api/similarity.cpp @@ -34,6 +34,7 @@ namespace c_api { struct cugraph_similarity_result_t { cugraph_type_erased_device_array_t* similarity_coefficients_; + cugraph_vertex_pairs_t* vertex_pairs_; }; } // namespace c_api @@ -131,12 +132,92 @@ struct similarity_functor : public cugraph::c_api::abstract_functor { graph_view, use_weight_ ? std::make_optional(edge_weights->view()) : std::nullopt, std::make_tuple(raft::device_span{v1.data(), v1.size()}, - raft::device_span{v2.data(), v2.size()}), - use_weight_); + raft::device_span{v2.data(), v2.size()})); result_ = new cugraph::c_api::cugraph_similarity_result_t{ new cugraph::c_api::cugraph_type_erased_device_array_t(similarity_coefficients, - graph_->weight_type_)}; + graph_->weight_type_), + nullptr}; + } + } +}; + +template +struct all_pairs_similarity_functor : public cugraph::c_api::abstract_functor { + raft::handle_t const& handle_; + cugraph::c_api::cugraph_graph_t* graph_; + cugraph::c_api::cugraph_type_erased_device_array_view_t const* vertices_; + call_similarity_functor_t call_similarity_; + bool use_weight_; + size_t topk_; + bool do_expensive_check_; + + cugraph::c_api::cugraph_similarity_result_t* result_{}; + + all_pairs_similarity_functor(::cugraph_resource_handle_t const* handle, + ::cugraph_graph_t* graph, + ::cugraph_type_erased_device_array_view_t const* vertices, + call_similarity_functor_t call_similarity, + bool use_weight, + size_t topk, + bool do_expensive_check) + : abstract_functor(), + handle_(*reinterpret_cast(handle)->handle_), + graph_(reinterpret_cast(graph)), + vertices_( + reinterpret_cast(vertices)), + call_similarity_(call_similarity), + use_weight_(use_weight), + topk_(topk), + do_expensive_check_(do_expensive_check) + { + } + + template + void operator()() + { + if constexpr (!cugraph::is_candidate::value) { + unsupported(); + } else { + // similarity algorithms expect store_transposed == false + if constexpr (store_transposed) { + error_code_ = cugraph::c_api:: + transpose_storage( + handle_, graph_, error_.get()); + if (error_code_ != CUGRAPH_SUCCESS) return; + } + + auto graph = + reinterpret_cast*>(graph_->graph_); + + auto graph_view = graph->view(); + + auto edge_weights = reinterpret_cast< + cugraph::edge_property_t, + weight_t>*>(graph_->edge_weights_); + + auto number_map = reinterpret_cast*>(graph_->number_map_); + + auto [v1, v2, similarity_coefficients] = + call_similarity_(handle_, + graph_view, + use_weight_ ? std::make_optional(edge_weights->view()) : std::nullopt, + vertices_ ? std::make_optional(raft::device_span{ + vertices_->as_type(), vertices_->size_}) + : std::nullopt, + topk_ != SIZE_MAX ? std::make_optional(topk_) : std::nullopt); + + result_ = new cugraph::c_api::cugraph_similarity_result_t{ + new cugraph::c_api::cugraph_type_erased_device_array_t(similarity_coefficients, + graph_->weight_type_), + new cugraph::c_api::cugraph_vertex_pairs_t{ + new cugraph::c_api::cugraph_type_erased_device_array_t(v1, graph_->vertex_type_), + new cugraph::c_api::cugraph_type_erased_device_array_t(v2, graph_->vertex_type_)}}; } } }; @@ -147,11 +228,24 @@ struct jaccard_functor { raft::handle_t const& handle, cugraph::graph_view_t const& graph_view, std::optional> edge_weight_view, - std::tuple, raft::device_span> vertex_pairs, - bool use_weights) + std::tuple, raft::device_span> vertex_pairs) { return cugraph::jaccard_coefficients(handle, graph_view, edge_weight_view, vertex_pairs); } + + template + std::tuple, + rmm::device_uvector, + rmm::device_uvector> + operator()(raft::handle_t const& handle, + cugraph::graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk) + { + return cugraph::jaccard_all_pairs_coefficients( + handle, graph_view, edge_weight_view, vertices, topk); + } }; struct sorensen_functor { @@ -160,11 +254,24 @@ struct sorensen_functor { raft::handle_t const& handle, cugraph::graph_view_t const& graph_view, std::optional> edge_weight_view, - std::tuple, raft::device_span> vertex_pairs, - bool use_weights) + std::tuple, raft::device_span> vertex_pairs) { return cugraph::sorensen_coefficients(handle, graph_view, edge_weight_view, vertex_pairs); } + + template + std::tuple, + rmm::device_uvector, + rmm::device_uvector> + operator()(raft::handle_t const& handle, + cugraph::graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk) + { + return cugraph::sorensen_all_pairs_coefficients( + handle, graph_view, edge_weight_view, vertices, topk); + } }; struct overlap_functor { @@ -173,11 +280,24 @@ struct overlap_functor { raft::handle_t const& handle, cugraph::graph_view_t const& graph_view, std::optional> edge_weight_view, - std::tuple, raft::device_span> vertex_pairs, - bool use_weights) + std::tuple, raft::device_span> vertex_pairs) { return cugraph::overlap_coefficients(handle, graph_view, edge_weight_view, vertex_pairs); } + + template + std::tuple, + rmm::device_uvector, + rmm::device_uvector> + operator()(raft::handle_t const& handle, + cugraph::graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk) + { + return cugraph::overlap_all_pairs_coefficients( + handle, graph_view, edge_weight_view, vertices, topk); + } }; } // namespace @@ -185,11 +305,19 @@ struct overlap_functor { extern "C" cugraph_type_erased_device_array_view_t* cugraph_similarity_result_get_similarity( cugraph_similarity_result_t* result) { - auto internal_pointer = reinterpret_cast(result); + auto internal_pointer = + reinterpret_cast(result); return reinterpret_cast( internal_pointer->similarity_coefficients_->view()); } +extern "C" cugraph_vertex_pairs_t* cugraph_similarity_result_get_vertex_pairs( + cugraph_similarity_result_t* result) +{ + auto internal_pointer = reinterpret_cast(result); + return reinterpret_cast(internal_pointer->vertex_pairs_); +} + extern "C" void cugraph_similarity_result_free(cugraph_similarity_result_t* result) { auto internal_pointer = reinterpret_cast(result); @@ -262,3 +390,72 @@ extern "C" cugraph_error_code_t cugraph_overlap_coefficients( return cugraph::c_api::run_algorithm(graph, functor, result, error); } + +extern "C" cugraph_error_code_t cugraph_all_pairs_jaccard_coefficients( + const cugraph_resource_handle_t* handle, + cugraph_graph_t* graph, + const cugraph_type_erased_device_array_view_t* vertices, + bool_t use_weight, + size_t topk, + bool_t do_expensive_check, + cugraph_similarity_result_t** result, + cugraph_error_t** error) +{ + if (use_weight) { + CAPI_EXPECTS( + reinterpret_cast(graph)->edge_weights_ != nullptr, + CUGRAPH_INVALID_INPUT, + "use_weight is true but edge weights are not provided.", + *error); + } + all_pairs_similarity_functor functor( + handle, graph, vertices, jaccard_functor{}, use_weight, topk, do_expensive_check); + + return cugraph::c_api::run_algorithm(graph, functor, result, error); +} + +extern "C" cugraph_error_code_t cugraph_all_pairs_sorensen_coefficients( + const cugraph_resource_handle_t* handle, + cugraph_graph_t* graph, + const cugraph_type_erased_device_array_view_t* vertices, + bool_t use_weight, + size_t topk, + bool_t do_expensive_check, + cugraph_similarity_result_t** result, + cugraph_error_t** error) +{ + if (use_weight) { + CAPI_EXPECTS( + reinterpret_cast(graph)->edge_weights_ != nullptr, + CUGRAPH_INVALID_INPUT, + "use_weight is true but edge weights are not provided.", + *error); + } + all_pairs_similarity_functor functor( + handle, graph, vertices, sorensen_functor{}, use_weight, topk, do_expensive_check); + + return cugraph::c_api::run_algorithm(graph, functor, result, error); +} + +extern "C" cugraph_error_code_t cugraph_all_pairs_overlap_coefficients( + const cugraph_resource_handle_t* handle, + cugraph_graph_t* graph, + const cugraph_type_erased_device_array_view_t* vertices, + bool_t use_weight, + size_t topk, + bool_t do_expensive_check, + cugraph_similarity_result_t** result, + cugraph_error_t** error) +{ + if (use_weight) { + CAPI_EXPECTS( + reinterpret_cast(graph)->edge_weights_ != nullptr, + CUGRAPH_INVALID_INPUT, + "use_weight is true but edge weights are not provided.", + *error); + } + all_pairs_similarity_functor functor( + handle, graph, vertices, overlap_functor{}, use_weight, topk, do_expensive_check); + + return cugraph::c_api::run_algorithm(graph, functor, result, error); +} diff --git a/cpp/src/link_prediction/jaccard_impl.cuh b/cpp/src/link_prediction/jaccard_impl.cuh index bdc80f4f6ac..d8cfcf19b4f 100644 --- a/cpp/src/link_prediction/jaccard_impl.cuh +++ b/cpp/src/link_prediction/jaccard_impl.cuh @@ -57,4 +57,26 @@ rmm::device_uvector jaccard_coefficients( do_expensive_check); } +template +std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check) +{ + CUGRAPH_EXPECTS(!graph_view.has_edge_mask(), "unimplemented."); + + return detail::all_pairs_similarity(handle, + graph_view, + edge_weight_view, + vertices, + topk, + detail::jaccard_functor_t{}, + do_expensive_check); +} + } // namespace cugraph diff --git a/cpp/src/link_prediction/jaccard_mg.cu b/cpp/src/link_prediction/jaccard_mg.cu index 8e91bb9f3e1..f53d173c6dd 100644 --- a/cpp/src/link_prediction/jaccard_mg.cu +++ b/cpp/src/link_prediction/jaccard_mg.cu @@ -59,4 +59,64 @@ template rmm::device_uvector jaccard_coefficients( std::tuple, raft::device_span> vertex_pairs, bool do_expensive_check); +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + } // namespace cugraph diff --git a/cpp/src/link_prediction/jaccard_sg.cu b/cpp/src/link_prediction/jaccard_sg.cu index e25d2d72d3b..6bb89a21368 100644 --- a/cpp/src/link_prediction/jaccard_sg.cu +++ b/cpp/src/link_prediction/jaccard_sg.cu @@ -59,4 +59,64 @@ template rmm::device_uvector jaccard_coefficients( std::tuple, raft::device_span> vertex_pairs, bool do_expensive_check); +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + jaccard_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + } // namespace cugraph diff --git a/cpp/src/link_prediction/overlap_impl.cuh b/cpp/src/link_prediction/overlap_impl.cuh index 95542a83ff5..38e654453ff 100644 --- a/cpp/src/link_prediction/overlap_impl.cuh +++ b/cpp/src/link_prediction/overlap_impl.cuh @@ -57,4 +57,26 @@ rmm::device_uvector overlap_coefficients( do_expensive_check); } +template +std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check) +{ + CUGRAPH_EXPECTS(!graph_view.has_edge_mask(), "unimplemented."); + + return detail::all_pairs_similarity(handle, + graph_view, + edge_weight_view, + vertices, + topk, + detail::overlap_functor_t{}, + do_expensive_check); +} + } // namespace cugraph diff --git a/cpp/src/link_prediction/overlap_mg.cu b/cpp/src/link_prediction/overlap_mg.cu index 54f7912aa14..a88159e682b 100644 --- a/cpp/src/link_prediction/overlap_mg.cu +++ b/cpp/src/link_prediction/overlap_mg.cu @@ -59,4 +59,64 @@ template rmm::device_uvector overlap_coefficients( std::tuple, raft::device_span> vertex_pairs, bool do_expensive_check); +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + } // namespace cugraph diff --git a/cpp/src/link_prediction/overlap_sg.cu b/cpp/src/link_prediction/overlap_sg.cu index 1b169570e57..17e4bafdcbe 100644 --- a/cpp/src/link_prediction/overlap_sg.cu +++ b/cpp/src/link_prediction/overlap_sg.cu @@ -59,4 +59,64 @@ template rmm::device_uvector overlap_coefficients( std::tuple, raft::device_span> vertex_pairs, bool do_expensive_check); +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + overlap_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + } // namespace cugraph diff --git a/cpp/src/link_prediction/similarity_impl.cuh b/cpp/src/link_prediction/similarity_impl.cuh index 4344262e453..c13259f0da7 100644 --- a/cpp/src/link_prediction/similarity_impl.cuh +++ b/cpp/src/link_prediction/similarity_impl.cuh @@ -17,6 +17,7 @@ #include "prims/count_if_e.cuh" #include "prims/per_v_pair_transform_dst_nbr_intersection.cuh" +#include "prims/per_v_transform_reduce_incoming_outgoing_e.cuh" #include "prims/update_edge_src_dst_property.cuh" #include "utilities/error_check_utils.cuh" @@ -162,5 +163,392 @@ rmm::device_uvector similarity( } } +template +std::tuple, + rmm::device_uvector, + rmm::device_uvector> +all_pairs_similarity(raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + functor_t functor, + bool do_expensive_check = false) +{ + using GraphViewType = graph_view_t; + + CUGRAPH_EXPECTS(graph_view.is_symmetric(), + "similarity algorithms require an undirected(symmetric) graph"); + + // FIXME: See https://github.com/rapidsai/cugraph/issues/4132 + // Once that issue is resolved we can drop this check + CUGRAPH_EXPECTS(!graph_view.is_multigraph() || !edge_weight_view, + "Weighted implementation currently fails on multi-graph"); + + if (do_expensive_check) { + if (vertices) { + auto vertex_partition = vertex_partition_device_view_t( + graph_view.local_vertex_partition_view()); + auto num_invalid_vertices = + thrust::count_if(handle.get_thrust_policy(), + vertices->begin(), + vertices->end(), + [vertex_partition] __device__(auto val) { + return !(vertex_partition.is_valid_vertex(val) && + vertex_partition.in_local_vertex_partition_range_nocheck(val)); + }); + + if constexpr (multi_gpu) { + num_invalid_vertices = cugraph::host_scalar_allreduce( + handle.get_comms(), num_invalid_vertices, raft::comms::op_t::SUM, handle.get_stream()); + } + + CUGRAPH_EXPECTS(num_invalid_vertices == 0, + "Invalid input arguments: there are invalid input vertices."); + } + + if (edge_weight_view) { + auto num_negative_edge_weights = + count_if_e(handle, + graph_view, + edge_src_dummy_property_t{}.view(), + edge_dst_dummy_property_t{}.view(), + *edge_weight_view, + [] __device__(vertex_t, vertex_t, auto, auto, weight_t w) { return w < 0.0; }); + + if constexpr (multi_gpu) { + num_negative_edge_weights = cugraph::host_scalar_allreduce(handle.get_comms(), + num_negative_edge_weights, + raft::comms::op_t::SUM, + handle.get_stream()); + } + + CUGRAPH_EXPECTS( + num_negative_edge_weights == 0, + "Invalid input argument: input edge weights should have non-negative values."); + } + } + + if (topk) { + rmm::device_uvector tmp_vertices(0, handle.get_stream()); + + if (vertices) { + tmp_vertices.resize(vertices->size(), handle.get_stream()); + thrust::copy( + handle.get_thrust_policy(), vertices->begin(), vertices->end(), tmp_vertices.begin()); + } else { + tmp_vertices.resize(graph_view.local_vertex_partition_range_size(), handle.get_stream()); + thrust::sequence(handle.get_thrust_policy(), + tmp_vertices.begin(), + tmp_vertices.end(), + graph_view.local_vertex_partition_range_first()); + } + + // We can reduce memory footprint by doing work in batches and + // computing/updating topk with each batch + + // FIXME: Experiment with this and adjust as necessary + // size_t const + // MAX_PAIRS_PER_BATCH{static_cast(handle.get_device_properties().multiProcessorCount) * + // (1 << 15)}; + size_t const MAX_PAIRS_PER_BATCH{100}; + + rmm::device_uvector degrees = graph_view.compute_out_degrees(handle); + rmm::device_uvector two_hop_degrees(degrees.size() + 1, handle.get_stream()); + + // Let's compute the maximum size of the 2-hop neighborhood of each vertex + // FIXME: If vertices is specified, this could be done on a subset of the vertices + // + edge_dst_property_t edge_dst_degrees(handle, graph_view); + update_edge_dst_property(handle, graph_view, degrees.begin(), edge_dst_degrees); + + per_v_transform_reduce_incoming_e( + handle, + graph_view, + edge_src_dummy_property_t{}.view(), + edge_dst_degrees.view(), + edge_dummy_property_t{}.view(), + [] __device__(vertex_t, vertex_t, auto, auto dst_degree, auto) { + return static_cast(dst_degree); + }, + size_t{0}, + reduce_op::plus{}, + two_hop_degrees.begin()); + + if (vertices) { + rmm::device_uvector gathered_two_hop_degrees(tmp_vertices.size() + 1, + handle.get_stream()); + + thrust::gather( + handle.get_thrust_policy(), + thrust::make_transform_iterator( + tmp_vertices.begin(), + cugraph::detail::shift_left_t{graph_view.local_vertex_partition_range_first()}), + thrust::make_transform_iterator( + tmp_vertices.end(), + cugraph::detail::shift_left_t{graph_view.local_vertex_partition_range_first()}), + two_hop_degrees.begin(), + gathered_two_hop_degrees.begin()); + + two_hop_degrees = std::move(gathered_two_hop_degrees); + } + + thrust::sort_by_key(handle.get_thrust_policy(), + two_hop_degrees.begin(), + two_hop_degrees.end() - 1, + tmp_vertices.begin(), + thrust::greater{}); + + thrust::exclusive_scan(handle.get_thrust_policy(), + two_hop_degrees.begin(), + two_hop_degrees.end(), + two_hop_degrees.begin()); + + auto two_hop_degree_offsets = std::move(two_hop_degrees); + + rmm::device_uvector top_v1(0, handle.get_stream()); + rmm::device_uvector top_v2(0, handle.get_stream()); + rmm::device_uvector top_score(0, handle.get_stream()); + + top_v1.reserve(*topk, handle.get_stream()); + top_v2.reserve(*topk, handle.get_stream()); + top_score.reserve(*topk, handle.get_stream()); + + size_t sum_two_hop_degrees{0}; + weight_t similarity_threshold{0}; + std::vector batch_offsets; + + raft::update_host(&sum_two_hop_degrees, + two_hop_degree_offsets.data() + two_hop_degree_offsets.size() - 1, + 1, + handle.get_stream()); + + std::tie(batch_offsets, std::ignore) = compute_offset_aligned_element_chunks( + handle, + raft::device_span{two_hop_degree_offsets.data(), two_hop_degree_offsets.size()}, + sum_two_hop_degrees, + MAX_PAIRS_PER_BATCH); + + for (size_t batch_number = 0; batch_number < (batch_offsets.size() - 1); ++batch_number) { + if (batch_offsets[batch_number + 1] > batch_offsets[batch_number]) { + auto [offsets, v2] = + k_hop_nbrs(handle, + graph_view, + raft::device_span{ + tmp_vertices.data() + batch_offsets[batch_number], + batch_offsets[batch_number + 1] - batch_offsets[batch_number]}, + 2, + do_expensive_check); + + auto v1 = cugraph::detail::expand_sparse_offsets( + raft::device_span{offsets.data(), offsets.size()}, + vertex_t{0}, + handle.get_stream()); + + cugraph::unrenumber_local_int_vertices( + handle, + v1.data(), + v1.size(), + tmp_vertices.data() + batch_offsets[batch_number], + vertex_t{0}, + static_cast(batch_offsets[batch_number + 1] - batch_offsets[batch_number]), + do_expensive_check); + + auto new_size = thrust::distance( + thrust::make_zip_iterator(v1.begin(), v2.begin()), + thrust::remove_if( + handle.get_thrust_policy(), + thrust::make_zip_iterator(v1.begin(), v2.begin()), + thrust::make_zip_iterator(v1.end(), v2.end()), + [] __device__(auto tuple) { return thrust::get<0>(tuple) == thrust::get<1>(tuple); })); + + v1.resize(new_size, handle.get_stream()); + v2.resize(new_size, handle.get_stream()); + + auto score = + similarity(handle, + graph_view, + edge_weight_view, + std::make_tuple(raft::device_span{v1.data(), v1.size()}, + raft::device_span{v2.data(), v2.size()}), + functor, + do_expensive_check); + + // Add a remove_if to remove items that are less than the last topk element + new_size = thrust::distance( + thrust::make_zip_iterator(score.begin(), v1.begin(), v2.begin()), + thrust::remove_if(handle.get_thrust_policy(), + thrust::make_zip_iterator(score.begin(), v1.begin(), v2.begin()), + thrust::make_zip_iterator(score.end(), v1.end(), v2.end()), + [similarity_threshold] __device__(auto tuple) { + return thrust::get<0>(tuple) < similarity_threshold; + })); + + score.resize(new_size, handle.get_stream()); + v1.resize(new_size, handle.get_stream()); + v2.resize(new_size, handle.get_stream()); + + thrust::sort_by_key(handle.get_thrust_policy(), + score.begin(), + score.end(), + thrust::make_zip_iterator(v1.begin(), v2.begin()), + thrust::greater{}); + + size_t v1_keep = std::min(*topk, v1.size()); + + if (score.size() < (top_v1.size() + v1_keep)) { + score.resize(top_v1.size() + v1_keep, handle.get_stream()); + v1.resize(score.size(), handle.get_stream()); + v2.resize(score.size(), handle.get_stream()); + } + + thrust::copy( + handle.get_thrust_policy(), top_v1.begin(), top_v1.end(), v1.begin() + v1_keep); + thrust::copy( + handle.get_thrust_policy(), top_v2.begin(), top_v2.end(), v2.begin() + v1_keep); + thrust::copy( + handle.get_thrust_policy(), top_score.begin(), top_score.end(), score.begin() + v1_keep); + + thrust::sort_by_key(handle.get_thrust_policy(), + score.begin(), + score.end(), + thrust::make_zip_iterator(v1.begin(), v2.begin()), + thrust::greater{}); + + if (top_v1.size() < std::min(*topk, v1.size())) { + top_v1.resize(std::min(*topk, v1.size()), handle.get_stream()); + top_v2.resize(top_v1.size(), handle.get_stream()); + top_score.resize(top_v1.size(), handle.get_stream()); + } + + thrust::copy( + handle.get_thrust_policy(), v1.begin(), v1.begin() + top_v1.size(), top_v1.begin()); + thrust::copy( + handle.get_thrust_policy(), v2.begin(), v2.begin() + top_v1.size(), top_v2.begin()); + thrust::copy(handle.get_thrust_policy(), + score.begin(), + score.begin() + top_v1.size(), + top_score.begin()); + + if constexpr (multi_gpu) { + bool is_root = handle.get_comms().get_rank() == int{0}; + auto rx_sizes = cugraph::host_scalar_gather( + handle.get_comms(), top_v1.size(), int{0}, handle.get_stream()); + std::vector rx_displs; + size_t gathered_size{0}; + + if (is_root) { + rx_displs.resize(handle.get_comms().get_size()); + rx_displs[0] = 0; + std::partial_sum(rx_sizes.begin(), rx_sizes.end() - 1, rx_displs.begin() + 1); + gathered_size = std::reduce(rx_sizes.begin(), rx_sizes.end()); + } + + rmm::device_uvector gathered_v1(gathered_size, handle.get_stream()); + rmm::device_uvector gathered_v2(gathered_size, handle.get_stream()); + rmm::device_uvector gathered_score(gathered_size, handle.get_stream()); + + cugraph::device_gatherv( + handle.get_comms(), + thrust::make_zip_iterator(top_v1.begin(), top_v2.begin(), top_score.begin()), + thrust::make_zip_iterator( + gathered_v1.begin(), gathered_v2.begin(), gathered_score.begin()), + + top_v1.size(), + rx_sizes, + rx_displs, + int{0}, + handle.get_stream()); + + if (is_root) { + thrust::sort_by_key(handle.get_thrust_policy(), + gathered_score.begin(), + gathered_score.end(), + thrust::make_zip_iterator(gathered_v1.begin(), gathered_v2.begin()), + thrust::greater{}); + + if (gathered_v1.size() > *topk) { + gathered_v1.resize(*topk, handle.get_stream()); + gathered_v2.resize(*topk, handle.get_stream()); + gathered_score.resize(*topk, handle.get_stream()); + } + + top_v1 = std::move(gathered_v1); + top_v2 = std::move(gathered_v2); + top_score = std::move(gathered_score); + } else { + top_v1.resize(0, handle.get_stream()); + top_v2.resize(0, handle.get_stream()); + top_score.resize(0, handle.get_stream()); + } + } + + if (top_score.size() == *topk) { + raft::update_host( + &similarity_threshold, top_score.data() + *topk - 1, 1, handle.get_stream()); + + if constexpr (multi_gpu) { + similarity_threshold = host_scalar_bcast( + handle.get_comms(), similarity_threshold, int{0}, handle.get_stream()); + } + } + } + } + + return std::make_tuple(std::move(top_v1), std::move(top_v2), std::move(top_score)); + } else { + rmm::device_uvector tmp_vertices(0, handle.get_stream()); + raft::device_span vertices_span{nullptr, size_t{0}}; + + if (vertices) { + vertices_span = raft::device_span{vertices->data(), vertices->size()}; + } else { + tmp_vertices.resize(graph_view.local_vertex_partition_range_size(), handle.get_stream()); + thrust::sequence(handle.get_thrust_policy(), + tmp_vertices.begin(), + tmp_vertices.end(), + graph_view.local_vertex_partition_range_first()); + vertices_span = raft::device_span{tmp_vertices.data(), tmp_vertices.size()}; + } + + auto [offsets, v2] = k_hop_nbrs(handle, graph_view, vertices_span, 2, do_expensive_check); + + auto v1 = cugraph::detail::expand_sparse_offsets( + raft::device_span{offsets.data(), offsets.size()}, + vertex_t{0}, + handle.get_stream()); + + cugraph::unrenumber_local_int_vertices(handle, + v1.data(), + v1.size(), + vertices_span.data(), + vertex_t{0}, + static_cast(vertices_span.size()), + do_expensive_check); + + auto new_size = thrust::distance( + thrust::make_zip_iterator(v1.begin(), v2.begin()), + thrust::remove_if( + handle.get_thrust_policy(), + thrust::make_zip_iterator(v1.begin(), v2.begin()), + thrust::make_zip_iterator(v1.end(), v2.end()), + [] __device__(auto tuple) { return thrust::get<0>(tuple) == thrust::get<1>(tuple); })); + + v1.resize(new_size, handle.get_stream()); + v2.resize(new_size, handle.get_stream()); + + auto score = + similarity(handle, + graph_view, + edge_weight_view, + std::make_tuple(raft::device_span{v1.data(), v1.size()}, + raft::device_span{v2.data(), v2.size()}), + functor, + do_expensive_check); + + return std::make_tuple(std::move(v1), std::move(v2), std::move(score)); + } +} + } // namespace detail } // namespace cugraph diff --git a/cpp/src/link_prediction/sorensen_impl.cuh b/cpp/src/link_prediction/sorensen_impl.cuh index 994d824b849..af99732a45e 100644 --- a/cpp/src/link_prediction/sorensen_impl.cuh +++ b/cpp/src/link_prediction/sorensen_impl.cuh @@ -57,4 +57,26 @@ rmm::device_uvector sorensen_coefficients( do_expensive_check); } +template +std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check) +{ + CUGRAPH_EXPECTS(!graph_view.has_edge_mask(), "unimplemented."); + + return detail::all_pairs_similarity(handle, + graph_view, + edge_weight_view, + vertices, + topk, + detail::sorensen_functor_t{}, + do_expensive_check); +} + } // namespace cugraph diff --git a/cpp/src/link_prediction/sorensen_mg.cu b/cpp/src/link_prediction/sorensen_mg.cu index 0a67a871b87..c3d010f8503 100644 --- a/cpp/src/link_prediction/sorensen_mg.cu +++ b/cpp/src/link_prediction/sorensen_mg.cu @@ -59,4 +59,64 @@ template rmm::device_uvector sorensen_coefficients( std::tuple, raft::device_span> vertex_pairs, bool do_expensive_check); +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + } // namespace cugraph diff --git a/cpp/src/link_prediction/sorensen_sg.cu b/cpp/src/link_prediction/sorensen_sg.cu index 2edfb92bb0f..c129cd40ca4 100644 --- a/cpp/src/link_prediction/sorensen_sg.cu +++ b/cpp/src/link_prediction/sorensen_sg.cu @@ -59,4 +59,64 @@ template rmm::device_uvector sorensen_coefficients( std::tuple, raft::device_span> vertex_pairs, bool do_expensive_check); +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + +template std:: + tuple, rmm::device_uvector, rmm::device_uvector> + sorensen_all_pairs_coefficients( + raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + std::optional topk, + bool do_expensive_check); + } // namespace cugraph diff --git a/cpp/src/prims/per_v_transform_reduce_dst_key_aggregated_outgoing_e.cuh b/cpp/src/prims/per_v_transform_reduce_dst_key_aggregated_outgoing_e.cuh index 8e627392555..3b25ae50773 100644 --- a/cpp/src/prims/per_v_transform_reduce_dst_key_aggregated_outgoing_e.cuh +++ b/cpp/src/prims/per_v_transform_reduce_dst_key_aggregated_outgoing_e.cuh @@ -355,13 +355,15 @@ void per_v_transform_reduce_dst_key_aggregated_outgoing_e( // to limit memory footprint ((1 << 20) is a tuning parameter) auto approx_edges_to_sort_per_iteration = static_cast(handle.get_device_properties().multiProcessorCount) * (1 << 20); - auto [h_vertex_offsets, h_edge_offsets] = detail::compute_offset_aligned_edge_chunks( + auto [h_vertex_offsets, h_edge_offsets] = detail::compute_offset_aligned_element_chunks( handle, - edge_partition.offsets(), - edge_partition.dcs_nzd_vertices() - ? (*segment_offsets)[detail::num_sparse_segments_per_vertex_partition] + - *(edge_partition.dcs_nzd_vertex_count()) - : edge_partition.major_range_size(), + raft::device_span{ + edge_partition.offsets(), + 1 + static_cast( + edge_partition.dcs_nzd_vertices() + ? (*segment_offsets)[detail::num_sparse_segments_per_vertex_partition] + + *(edge_partition.dcs_nzd_vertex_count()) + : edge_partition.major_range_size())}, edge_partition.number_of_edges(), approx_edges_to_sort_per_iteration); auto num_chunks = h_vertex_offsets.size() - 1; diff --git a/cpp/src/sampling/renumber_sampled_edgelist_impl.cuh b/cpp/src/sampling/renumber_sampled_edgelist_impl.cuh index 0f128eb8410..f5bc3ef6d2e 100644 --- a/cpp/src/sampling/renumber_sampled_edgelist_impl.cuh +++ b/cpp/src/sampling/renumber_sampled_edgelist_impl.cuh @@ -107,12 +107,8 @@ compute_min_hop_for_unique_label_vertex_pairs( rmm::device_uvector d_tmp_storage(0, handle.get_stream()); - auto [h_label_offsets, h_edge_offsets] = - detail::compute_offset_aligned_edge_chunks(handle, - (*label_offsets).data(), - num_labels, - vertices.size(), - approx_edges_to_sort_per_iteration); + auto [h_label_offsets, h_edge_offsets] = detail::compute_offset_aligned_element_chunks( + handle, *label_offsets, vertices.size(), approx_edges_to_sort_per_iteration); auto num_chunks = h_label_offsets.size() - 1; for (size_t i = 0; i < num_chunks; ++i) { @@ -599,10 +595,10 @@ renumber_sampled_edgelist( static_cast(handle.get_device_properties().multiProcessorCount) * (1 << 20) /* tuning parameter */; // for segmented sort - auto [h_label_offsets, h_edge_offsets] = detail::compute_offset_aligned_edge_chunks( + auto [h_label_offsets, h_edge_offsets] = detail::compute_offset_aligned_element_chunks( handle, - (*renumber_map_label_offsets).data(), - static_cast((*renumber_map_label_offsets).size() - 1), + raft::device_span{(*renumber_map_label_offsets).data(), + (*renumber_map_label_offsets).size()}, renumber_map.size(), approx_edges_to_sort_per_iteration); auto num_chunks = h_label_offsets.size() - 1; diff --git a/cpp/src/sampling/sampling_post_processing_impl.cuh b/cpp/src/sampling/sampling_post_processing_impl.cuh index f506e4bd04c..299aae13718 100644 --- a/cpp/src/sampling/sampling_post_processing_impl.cuh +++ b/cpp/src/sampling/sampling_post_processing_impl.cuh @@ -286,12 +286,8 @@ compute_min_hop_for_unique_label_vertex_pairs( rmm::device_uvector d_tmp_storage(0, handle.get_stream()); - auto [h_label_offsets, h_edge_offsets] = - detail::compute_offset_aligned_edge_chunks(handle, - (*label_offsets).data(), - num_labels, - vertices.size(), - approx_edges_to_sort_per_iteration); + auto [h_label_offsets, h_edge_offsets] = detail::compute_offset_aligned_element_chunks( + handle, *label_offsets, vertices.size(), approx_edges_to_sort_per_iteration); auto num_chunks = h_label_offsets.size() - 1; for (size_t i = 0; i < num_chunks; ++i) { @@ -741,10 +737,10 @@ renumber_sampled_edgelist( static_cast(handle.get_device_properties().multiProcessorCount) * (1 << 20) /* tuning parameter */; // for segmented sort - auto [h_label_offsets, h_edge_offsets] = detail::compute_offset_aligned_edge_chunks( + auto [h_label_offsets, h_edge_offsets] = detail::compute_offset_aligned_element_chunks( handle, - (*renumber_map_label_offsets).data(), - static_cast((*renumber_map_label_offsets).size() - 1), + raft::device_span{(*renumber_map_label_offsets).data(), + (*renumber_map_label_offsets).size()}, renumber_map.size(), approx_edges_to_sort_per_iteration); auto num_chunks = h_label_offsets.size() - 1; @@ -910,11 +906,10 @@ sort_sampled_edge_tuples( (1 << 20) /* tuning parameter */; // for sorts in chunks std::tie(h_label_offsets, h_edge_offsets) = - detail::compute_offset_aligned_edge_chunks(handle, - std::get<0>(*edgelist_label_offsets).data(), - std::get<1>(*edgelist_label_offsets), - edgelist_majors.size(), - approx_edges_to_sort_per_iteration); + detail::compute_offset_aligned_element_chunks(handle, + std::get<0>(*edgelist_label_offsets), + edgelist_majors.size(), + approx_edges_to_sort_per_iteration); } else { h_label_offsets = {0, 1}; h_edge_offsets = {0, edgelist_majors.size()}; diff --git a/cpp/src/structure/detail/structure_utils.cuh b/cpp/src/structure/detail/structure_utils.cuh index a96467ce06b..1ef975c1dec 100644 --- a/cpp/src/structure/detail/structure_utils.cuh +++ b/cpp/src/structure/detail/structure_utils.cuh @@ -316,12 +316,8 @@ void sort_adjacency_list(raft::handle_t const& handle, // to limit memory footprint ((1 << 20) is a tuning parameter) auto approx_edges_to_sort_per_iteration = static_cast(handle.get_device_properties().multiProcessorCount) * (1 << 20); - auto [h_vertex_offsets, h_edge_offsets] = - detail::compute_offset_aligned_edge_chunks(handle, - offsets.data(), - static_cast(offsets.size() - 1), - num_edges, - approx_edges_to_sort_per_iteration); + auto [h_vertex_offsets, h_edge_offsets] = detail::compute_offset_aligned_element_chunks( + handle, offsets, num_edges, approx_edges_to_sort_per_iteration); auto num_chunks = h_vertex_offsets.size() - 1; // 3. Segmented sort each vertex's neighbors @@ -451,12 +447,8 @@ void sort_adjacency_list(raft::handle_t const& handle, // to limit memory footprint ((1 << 20) is a tuning parameter) auto approx_edges_to_sort_per_iteration = static_cast(handle.get_device_properties().multiProcessorCount) * (1 << 20); - auto [h_vertex_offsets, h_edge_offsets] = - detail::compute_offset_aligned_edge_chunks(handle, - offsets.data(), - static_cast(offsets.size() - 1), - num_edges, - approx_edges_to_sort_per_iteration); + auto [h_vertex_offsets, h_edge_offsets] = detail::compute_offset_aligned_element_chunks( + handle, offsets, num_edges, approx_edges_to_sort_per_iteration); auto num_chunks = h_vertex_offsets.size() - 1; // 3. Segmented sort each vertex's neighbors diff --git a/cpp/tests/CMakeLists.txt b/cpp/tests/CMakeLists.txt index cb57b96f955..46a895536ef 100644 --- a/cpp/tests/CMakeLists.txt +++ b/cpp/tests/CMakeLists.txt @@ -374,7 +374,7 @@ ConfigureTest(WEAKLY_CONNECTED_COMPONENTS_TEST components/weakly_connected_compo ################################################################################################### # - SIMILARITY tests ------------------------------------------------------------------------------ -ConfigureTest(SIMILARITY_TEST link_prediction/similarity_test.cpp) +ConfigureTest(SIMILARITY_TEST link_prediction/similarity_test.cu) ################################################################################################### # - WEIGHTED_SIMILARITY tests ------------------------------------------------------------------------------ diff --git a/cpp/tests/c_api/mg_two_hop_neighbors_test.c b/cpp/tests/c_api/mg_two_hop_neighbors_test.c index 37ae191c6b2..056da2bcc45 100644 --- a/cpp/tests/c_api/mg_two_hop_neighbors_test.c +++ b/cpp/tests/c_api/mg_two_hop_neighbors_test.c @@ -76,8 +76,8 @@ int generic_two_hop_nbr_test(const cugraph_resource_handle_t* resource_handle, ret_code = cugraph_two_hop_neighbors( resource_handle, graph, start_vertices_view, FALSE, &result, &ret_error); - cugraph_type_erased_device_array_view_t* v1; - cugraph_type_erased_device_array_view_t* v2; + cugraph_type_erased_device_array_view_t const* v1; + cugraph_type_erased_device_array_view_t const* v2; v1 = cugraph_vertex_pairs_get_first(result); v2 = cugraph_vertex_pairs_get_second(result); diff --git a/cpp/tests/c_api/similarity_test.c b/cpp/tests/c_api/similarity_test.c index 52f849ccd28..5637a9d2b01 100644 --- a/cpp/tests/c_api/similarity_test.c +++ b/cpp/tests/c_api/similarity_test.c @@ -1,5 +1,5 @@ /* - * Copyright (c) 2022, NVIDIA CORPORATION. + * Copyright (c) 2022-2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -131,6 +131,112 @@ int generic_similarity_test(vertex_t* h_src, return test_ret_value; } +int generic_all_pairs_similarity_test(vertex_t* h_src, + vertex_t* h_dst, + weight_t* h_wgt, + vertex_t* h_first, + vertex_t* h_second, + weight_t* h_result, + size_t num_vertices, + size_t num_edges, + size_t num_pairs, + bool_t store_transposed, + bool_t use_weight, + size_t topk, + similarity_t test_type) +{ + int test_ret_value = 0; + data_type_id_t vertex_tid = INT32; + + cugraph_error_code_t ret_code = CUGRAPH_SUCCESS; + cugraph_error_t* ret_error; + + cugraph_resource_handle_t* handle = NULL; + cugraph_graph_t* graph = NULL; + cugraph_similarity_result_t* result = NULL; + cugraph_type_erased_device_array_t* vertices = NULL; + cugraph_type_erased_device_array_view_t* vertices_view = NULL; + + handle = cugraph_create_resource_handle(NULL); + TEST_ASSERT(test_ret_value, handle != NULL, "resource handle creation failed."); + + ret_code = create_test_graph( + handle, h_src, h_dst, h_wgt, num_edges, store_transposed, FALSE, TRUE, &graph, &ret_error); + + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "create_test_graph failed."); + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, cugraph_error_message(ret_error)); + + switch (test_type) { + case JACCARD: + ret_code = cugraph_all_pairs_jaccard_coefficients( + handle, graph, vertices_view, use_weight, topk, FALSE, &result, &ret_error); + break; + case SORENSEN: + ret_code = cugraph_all_pairs_sorensen_coefficients( + handle, graph, vertices_view, use_weight, topk, FALSE, &result, &ret_error); + break; + case OVERLAP: + ret_code = cugraph_all_pairs_overlap_coefficients( + handle, graph, vertices_view, use_weight, topk, FALSE, &result, &ret_error); + break; + } + + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, cugraph_error_message(ret_error)); + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "cugraph similarity failed."); + + cugraph_type_erased_device_array_view_t* similarity_coefficient; + + cugraph_vertex_pairs_t * vertex_pairs; + vertex_pairs = cugraph_similarity_result_get_vertex_pairs(result); + similarity_coefficient = cugraph_similarity_result_get_similarity(result); + + cugraph_type_erased_device_array_view_t *result_v1; + cugraph_type_erased_device_array_view_t *result_v2; + + result_v1 = cugraph_vertex_pairs_get_first(vertex_pairs); + result_v2 = cugraph_vertex_pairs_get_second(vertex_pairs); + size_t result_num_pairs = cugraph_type_erased_device_array_view_size(result_v1); + + TEST_ASSERT(test_ret_value, result_num_pairs == num_pairs, "Incorrect number of results"); + + vertex_t h_result_v1[result_num_pairs]; + vertex_t h_result_v2[result_num_pairs]; + weight_t h_similarity_coefficient[result_num_pairs]; + + ret_code = cugraph_type_erased_device_array_view_copy_to_host( + handle, (byte_t*)h_result_v1, result_v1, &ret_error); + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "copy_to_host failed."); + + ret_code = cugraph_type_erased_device_array_view_copy_to_host( + handle, (byte_t*)h_result_v2, result_v2, &ret_error); + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "copy_to_host failed."); + + ret_code = cugraph_type_erased_device_array_view_copy_to_host( + handle, (byte_t*)h_similarity_coefficient, similarity_coefficient, &ret_error); + TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "copy_to_host failed."); + + weight_t result_matrix[num_vertices][num_vertices]; + for (int i = 0 ; i < num_vertices ; ++i) + for (int j = 0 ; j < num_vertices ; ++j) + result_matrix[i][j] = 0; + + for (int i = 0 ; i < num_pairs ; ++i) + result_matrix[h_result_v1[i]][h_result_v2[i]] = h_similarity_coefficient[i]; + + for (int i = 0; (i < num_pairs) && (test_ret_value == 0); ++i) { + TEST_ASSERT(test_ret_value, + nearlyEqual(result_matrix[h_first[i]][h_second[i]], h_result[i], 0.001), + "similarity results don't match"); + } + + if (result != NULL) cugraph_similarity_result_free(result); + cugraph_sg_graph_free(graph); + cugraph_free_resource_handle(handle); + cugraph_error_free(ret_error); + + return test_ret_value; +} + int test_jaccard() { size_t num_edges = 16; @@ -296,6 +402,366 @@ int test_weighted_overlap() OVERLAP); } +int test_all_pairs_jaccard() +{ + size_t num_edges = 16; + size_t num_vertices = 6; + size_t num_pairs = 22; + + vertex_t h_src[] = {0, 1, 1, 2, 2, 2, 3, 4, 1, 3, 4, 0, 1, 3, 5, 5}; + vertex_t h_dst[] = {1, 3, 4, 0, 1, 3, 5, 5, 0, 1, 1, 2, 2, 2, 3, 4}; + weight_t h_wgt[] = {0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f}; + vertex_t h_first[] = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5}; + vertex_t h_second[] = {1, 2, 3, 4, 0, 2, 3, 5, 0, 1, 3, 4, 5, 0, 1, 2, 4, 0, 2, 3, 1, 2}; + weight_t h_result[] = {0.2,0.25,0.666667,0.333333,0.2,0.4,0.166667,0.5,0.25,0.4,0.2,0.25,0.25,0.666667,0.166667,0.2,0.666667,0.333333,0.25,0.666667,0.5,0.25}; + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + FALSE, + SIZE_MAX, + JACCARD); +} + +int test_weighted_all_pairs_jaccard() +{ + size_t num_edges = 16; + size_t num_vertices = 7; + size_t num_pairs = 16; + + vertex_t h_src[] = {0, 1, 2, 0, 1, 2, 3, 3, 3, 4, 4, 4, 0, 5, 2, 6}; + vertex_t h_dst[] = {3, 3, 3, 4, 4, 4, 0, 1, 2, 0, 1, 2, 5, 0, 6, 2}; + weight_t h_wgt[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0, 4.0}; + + vertex_t h_first[] = {0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6}; + vertex_t h_second[] = {1, 2, 0, 2, 0, 1, 4, 5, 6, 3, 5, 6, 3, 4, 3, 4}; + weight_t h_result[] = {0.357143, 0.208333, 0.357143, 0.411765, 0.208333, 0.411765, 0.4, 0.0833333, 0.272727, 0.4, 0.222222, 0.352941, 0.0833333, 0.222222, 0.272727, 0.352941}; + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + TRUE, + SIZE_MAX, + JACCARD); +} + +int test_all_pairs_sorensen() +{ + size_t num_edges = 16; + size_t num_vertices = 6; + size_t num_pairs = 22; + + vertex_t h_src[] = {0, 1, 1, 2, 2, 2, 3, 4, 1, 3, 4, 0, 1, 3, 5, 5}; + vertex_t h_dst[] = {1, 3, 4, 0, 1, 3, 5, 5, 0, 1, 1, 2, 2, 2, 3, 4}; + weight_t h_wgt[] = {0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f}; + vertex_t h_first[] = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5}; + vertex_t h_second[] = {1, 2, 3, 4, 0, 2, 3, 5, 0, 1, 3, 4, 5, 0, 1, 2, 4, 0, 2, 3, 1, 2}; + weight_t h_result[] = {0.333333, 0.4, 0.8, 0.5, 0.333333, 0.571429, 0.285714, 0.666667, 0.4, 0.571429, 0.333333, 0.4, 0.4, 0.8, 0.285714, 0.333333, 0.8, 0.5, 0.4, 0.8, 0.666667, 0.4}; + + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + FALSE, + SIZE_MAX, + SORENSEN); +} + +int test_weighted_all_pairs_sorensen() +{ + size_t num_edges = 16; + size_t num_vertices = 7; + size_t num_pairs = 16; + + vertex_t h_src[] = {0, 1, 2, 0, 1, 2, 3, 3, 3, 4, 4, 4, 0, 5, 2, 6}; + vertex_t h_dst[] = {3, 3, 3, 4, 4, 4, 0, 1, 2, 0, 1, 2, 5, 0, 6, 2}; + weight_t h_wgt[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0, 4.0}; + + vertex_t h_first[] = {0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6}; + vertex_t h_second[] = {1, 2, 0, 2, 0, 1, 4, 5, 6, 3, 5, 6, 3, 4, 3, 4}; + weight_t h_result[] = {0.526316, 0.344828, 0.526316, 0.583333, 0.344828, 0.583333, 0.571429, 0.153846, 0.428571, 0.571429, 0.363636, 0.521739, 0.153846, 0.363636, 0.428571, 0.521739}; + + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + TRUE, + SIZE_MAX, + SORENSEN); +} + +int test_all_pairs_overlap() +{ + size_t num_edges = 16; + size_t num_vertices = 6; + size_t num_pairs = 22; + + vertex_t h_src[] = {0, 1, 1, 2, 2, 2, 3, 4, 1, 3, 4, 0, 1, 3, 5, 5}; + vertex_t h_dst[] = {1, 3, 4, 0, 1, 3, 5, 5, 0, 1, 1, 2, 2, 2, 3, 4}; + weight_t h_wgt[] = {0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f}; + + vertex_t h_first[] = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5}; + vertex_t h_second[] = {1, 2, 3, 4, 0, 2, 3, 5, 0, 1, 3, 4, 5, 0, 1, 2, 4, 0, 2, 3, 1, 2}; + weight_t h_result[] = {0.5, 0.5, 1, 0.5, 0.5, 0.666667, 0.333333, 1, 0.5, 0.666667, 0.333333, 0.5, 0.5, 1, 0.333333, 0.333333, 1, 0.5, 0.5, 1, 1, 0.5}; + + + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + FALSE, + SIZE_MAX, + OVERLAP); +} + +int test_weighted_all_pairs_overlap() +{ + size_t num_edges = 16; + size_t num_vertices = 7; + size_t num_pairs = 16; + + vertex_t h_src[] = {0, 1, 2, 0, 1, 2, 3, 3, 3, 4, 4, 4, 0, 5, 2, 6}; + vertex_t h_dst[] = {3, 3, 3, 4, 4, 4, 0, 1, 2, 0, 1, 2, 5, 0, 6, 2}; + weight_t h_wgt[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0, 4.0}; + + vertex_t h_first[] = {0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6}; + vertex_t h_second[] = {1, 2, 0, 2, 0, 1, 4, 5, 6, 3, 5, 6, 3, 4, 3, 4}; + weight_t h_result[] = {0.714286, 0.416667, 0.714286, 1, 0.416667, 1, 1, 0.166667, 0.5, 1, 0.571429, 0.75, 0.166667, 0.571429, 0.5, 0.75}; + + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + TRUE, + SIZE_MAX, + OVERLAP); +} + +int test_all_pairs_jaccard_topk() +{ + size_t num_edges = 16; + size_t num_vertices = 6; + size_t topk = 6; + size_t num_pairs = 6; + + vertex_t h_src[] = {0, 1, 1, 2, 2, 2, 3, 4, 1, 3, 4, 0, 1, 3, 5, 5}; + vertex_t h_dst[] = {1, 3, 4, 0, 1, 3, 5, 5, 0, 1, 1, 2, 2, 2, 3, 4}; + weight_t h_wgt[] = {0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f}; + vertex_t h_first[] = {0, 1, 3, 3, 4, 5}; + vertex_t h_second[] = {3, 5, 0, 4, 3, 1}; + weight_t h_result[] = {0.666667, 0.5, 0.666667, 0.666667, 0.666667, 0.5}; + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + FALSE, + topk, + JACCARD); +} + +int test_weighted_all_pairs_jaccard_topk() +{ + size_t num_edges = 16; + size_t num_vertices = 7; + size_t num_pairs = 6; + size_t topk = 6; + + vertex_t h_src[] = {0, 1, 2, 0, 1, 2, 3, 3, 3, 4, 4, 4, 0, 5, 2, 6}; + vertex_t h_dst[] = {3, 3, 3, 4, 4, 4, 0, 1, 2, 0, 1, 2, 5, 0, 6, 2}; + weight_t h_wgt[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0, 4.0}; + + vertex_t h_first[] = {0, 1, 1, 2, 3, 4}; + vertex_t h_second[] = {1, 0, 2, 1, 4, 3}; + weight_t h_result[] = {0.357143, 0.357143, 0.411765, 0.411765, 0.4, 0.4}; + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + TRUE, + topk, + JACCARD); +} + +int test_all_pairs_sorensen_topk() +{ + size_t num_edges = 16; + size_t num_vertices = 6; + size_t num_pairs = 6; + size_t topk = 6; + + vertex_t h_src[] = {0, 1, 1, 2, 2, 2, 3, 4, 1, 3, 4, 0, 1, 3, 5, 5}; + vertex_t h_dst[] = {1, 3, 4, 0, 1, 3, 5, 5, 0, 1, 1, 2, 2, 2, 3, 4}; + weight_t h_wgt[] = {0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f}; + vertex_t h_first[] = {0, 1, 3, 3, 4, 5}; + vertex_t h_second[] = {3, 5, 0, 4, 3, 1}; + weight_t h_result[] = {0.8, 0.666667, 0.8, 0.8, 0.8, 0.666667}; + + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + FALSE, + topk, + SORENSEN); +} + +int test_weighted_all_pairs_sorensen_topk() +{ + size_t num_edges = 16; + size_t num_vertices = 7; + size_t num_pairs = 6; + size_t topk = 6; + + vertex_t h_src[] = {0, 1, 2, 0, 1, 2, 3, 3, 3, 4, 4, 4, 0, 5, 2, 6}; + vertex_t h_dst[] = {3, 3, 3, 4, 4, 4, 0, 1, 2, 0, 1, 2, 5, 0, 6, 2}; + weight_t h_wgt[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0, 4.0}; + + vertex_t h_first[] = {0, 1, 1, 2, 3, 4}; + vertex_t h_second[] = {1, 0, 2, 1, 4, 3}; + weight_t h_result[] = {0.526316, 0.526316, 0.583333, 0.583333, 0.571429, 0.571429}; + + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + TRUE, + topk, + SORENSEN); +} + +int test_all_pairs_overlap_topk() +{ + size_t num_edges = 16; + size_t num_vertices = 6; + size_t num_pairs = 6; + size_t topk = 6; + + vertex_t h_src[] = {0, 1, 1, 2, 2, 2, 3, 4, 1, 3, 4, 0, 1, 3, 5, 5}; + vertex_t h_dst[] = {1, 3, 4, 0, 1, 3, 5, 5, 0, 1, 1, 2, 2, 2, 3, 4}; + weight_t h_wgt[] = {0.1f, 2.1f, 1.1f, 5.1f, 3.1f, 4.1f, 7.2f, 3.2f}; + + vertex_t h_first[] = {0, 1, 3, 3, 4, 5}; + vertex_t h_second[] = {3, 5, 0, 4, 3, 1}; + weight_t h_result[] = {1, 1, 1, 1, 1, 1}; + + + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + FALSE, + topk, + OVERLAP); +} + +int test_weighted_all_pairs_overlap_topk() +{ + size_t num_edges = 16; + size_t num_vertices = 7; + size_t num_pairs = 6; + size_t topk = 6; + + vertex_t h_src[] = {0, 1, 2, 0, 1, 2, 3, 3, 3, 4, 4, 4, 0, 5, 2, 6}; + vertex_t h_dst[] = {3, 3, 3, 4, 4, 4, 0, 1, 2, 0, 1, 2, 5, 0, 6, 2}; + weight_t h_wgt[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0, 4.0}; + + vertex_t h_first[] = {1, 2, 3, 4, 4, 6}; + vertex_t h_second[] = {2, 1, 4, 3, 6, 4}; + weight_t h_result[] = {1, 1, 1, 1, 0.75, 0.75}; + + + return generic_all_pairs_similarity_test(h_src, + h_dst, + h_wgt, + h_first, + h_second, + h_result, + num_vertices, + num_edges, + num_pairs, + FALSE, + TRUE, + topk, + OVERLAP); +} + /******************************************************************************/ int main(int argc, char** argv) @@ -307,5 +773,17 @@ int main(int argc, char** argv) result |= RUN_TEST(test_weighted_jaccard); result |= RUN_TEST(test_weighted_sorensen); result |= RUN_TEST(test_weighted_overlap); + result |= RUN_TEST(test_all_pairs_jaccard); + result |= RUN_TEST(test_all_pairs_sorensen); + result |= RUN_TEST(test_all_pairs_overlap); + result |= RUN_TEST(test_weighted_all_pairs_jaccard); + result |= RUN_TEST(test_weighted_all_pairs_sorensen); + result |= RUN_TEST(test_weighted_all_pairs_overlap); + result |= RUN_TEST(test_all_pairs_jaccard_topk); + result |= RUN_TEST(test_all_pairs_sorensen_topk); + result |= RUN_TEST(test_all_pairs_overlap_topk); + result |= RUN_TEST(test_weighted_all_pairs_jaccard_topk); + result |= RUN_TEST(test_weighted_all_pairs_sorensen_topk); + result |= RUN_TEST(test_weighted_all_pairs_overlap_topk); return result; } diff --git a/cpp/tests/c_api/two_hop_neighbors_test.c b/cpp/tests/c_api/two_hop_neighbors_test.c index d47280276c5..bc95db3932b 100644 --- a/cpp/tests/c_api/two_hop_neighbors_test.c +++ b/cpp/tests/c_api/two_hop_neighbors_test.c @@ -81,8 +81,8 @@ int generic_two_hop_nbr_test(vertex_t* h_src, ret_code = cugraph_two_hop_neighbors( resource_handle, graph, start_vertices_view, FALSE, &result, &ret_error); - cugraph_type_erased_device_array_view_t* v1; - cugraph_type_erased_device_array_view_t* v2; + cugraph_type_erased_device_array_view_t const* v1; + cugraph_type_erased_device_array_view_t const* v2; v1 = cugraph_vertex_pairs_get_first(result); v2 = cugraph_vertex_pairs_get_second(result); diff --git a/cpp/tests/link_prediction/similarity_compare.hpp b/cpp/tests/link_prediction/similarity_compare.hpp index bbd942e2664..eed0a82fe7e 100644 --- a/cpp/tests/link_prediction/similarity_compare.hpp +++ b/cpp/tests/link_prediction/similarity_compare.hpp @@ -53,6 +53,18 @@ struct test_jaccard_t { { return cugraph::jaccard_coefficients(handle, graph_view, edge_weight_view, vertex_pairs, true); } + + template + auto run(raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + bool use_weights, + std::optional topk) const + { + return cugraph::jaccard_all_pairs_coefficients( + handle, graph_view, edge_weight_view, vertices, topk); + } }; struct test_sorensen_t { @@ -82,6 +94,18 @@ struct test_sorensen_t { { return cugraph::sorensen_coefficients(handle, graph_view, edge_weight_view, vertex_pairs, true); } + + template + auto run(raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + bool use_weights, + std::optional topk) const + { + return cugraph::sorensen_all_pairs_coefficients( + handle, graph_view, edge_weight_view, vertices, topk); + } }; struct test_overlap_t { @@ -111,6 +135,18 @@ struct test_overlap_t { { return cugraph::overlap_coefficients(handle, graph_view, edge_weight_view, vertex_pairs, true); } + + template + auto run(raft::handle_t const& handle, + graph_view_t const& graph_view, + std::optional> edge_weight_view, + std::optional> vertices, + bool use_weights, + std::optional topk) const + { + return cugraph::overlap_all_pairs_coefficients( + handle, graph_view, edge_weight_view, vertices, topk); + } }; template diff --git a/cpp/tests/link_prediction/similarity_test.cu b/cpp/tests/link_prediction/similarity_test.cu new file mode 100644 index 00000000000..f5c15c760e2 --- /dev/null +++ b/cpp/tests/link_prediction/similarity_test.cu @@ -0,0 +1,352 @@ +/* + * Copyright (c) 2022-2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governin_from_mtxg permissions and + * limitations under the License. + */ +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include + +struct Similarity_Usecase { + bool use_weights{false}; + bool check_correctness{true}; + bool all_pairs{false}; + std::optional max_seeds{std::nullopt}; + std::optional max_vertex_pairs_to_check{std::nullopt}; + std::optional topk{std::nullopt}; +}; + +template +class Tests_Similarity + : public ::testing::TestWithParam> { + public: + Tests_Similarity() {} + + static void SetUpTestCase() {} + static void TearDownTestCase() {} + + virtual void SetUp() {} + virtual void TearDown() {} + + template + void run_current_test(std::tuple const& param, + test_functor_t const& test_functor) + { + constexpr bool renumber = true; + auto [similarity_usecase, input_usecase] = param; + + // 1. initialize handle + + raft::handle_t handle{}; + HighResTimer hr_timer{}; + + // 2. create SG graph + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + hr_timer.start("Construct graph"); + } + + auto [graph, edge_weights, d_renumber_map_labels] = + cugraph::test::construct_graph( + handle, input_usecase, similarity_usecase.use_weights, renumber); + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + hr_timer.stop(); + hr_timer.display_and_clear(std::cout); + } + + // 3. run similarity + + auto graph_view = graph.view(); + auto edge_weight_view = + edge_weights ? std::make_optional((*edge_weights).view()) : std::nullopt; + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + hr_timer.start("Similarity test"); + } + + rmm::device_uvector v1(0, handle.get_stream()); + rmm::device_uvector v2(0, handle.get_stream()); + rmm::device_uvector result_score(0, handle.get_stream()); + + raft::random::RngState rng_state{0}; + + rmm::device_uvector sources(0, handle.get_stream()); + std::optional> sources_span{std::nullopt}; + + if (similarity_usecase.max_seeds) { + sources = cugraph::select_random_vertices( + handle, + graph_view, + std::optional>{std::nullopt}, + rng_state, + std::min(*similarity_usecase.max_seeds, + static_cast(graph_view.number_of_vertices())), + false, + false); + sources_span = raft::device_span{sources.data(), sources.size()}; + } + + if (similarity_usecase.all_pairs) { + std::tie(v1, v2, result_score) = test_functor.run(handle, + graph_view, + edge_weight_view, + sources_span, + similarity_usecase.use_weights, + similarity_usecase.topk); + } else { + if (!sources_span) { + sources.resize(graph_view.number_of_vertices(), handle.get_stream()); + thrust::sequence(handle.get_thrust_policy(), sources.begin(), sources.end(), vertex_t{0}); + sources_span = raft::device_span{sources.data(), sources.size()}; + } + + rmm::device_uvector offsets(0, handle.get_stream()); + + std::tie(offsets, v2) = k_hop_nbrs(handle, graph_view, *sources_span, 2, true); + + v1 = cugraph::detail::expand_sparse_offsets( + raft::device_span{offsets.data(), offsets.size()}, + vertex_t{0}, + handle.get_stream()); + + cugraph::unrenumber_local_int_vertices(handle, + v1.data(), + v1.size(), + sources.data(), + vertex_t{0}, + static_cast(sources.size()), + true); + + auto new_size = thrust::distance( + thrust::make_zip_iterator(v1.begin(), v2.begin()), + thrust::remove_if( + handle.get_thrust_policy(), + thrust::make_zip_iterator(v1.begin(), v2.begin()), + thrust::make_zip_iterator(v1.end(), v2.end()), + [] __device__(auto tuple) { return thrust::get<0>(tuple) == thrust::get<1>(tuple); })); + + v1.resize(new_size, handle.get_stream()); + v2.resize(new_size, handle.get_stream()); + + // FIXME: Need to add some tests that specify actual vertex pairs + std::tuple, raft::device_span> vertex_pairs{ + {v1.data(), v1.size()}, {v2.data(), v2.size()}}; + + result_score = test_functor.run( + handle, graph_view, edge_weight_view, vertex_pairs, similarity_usecase.use_weights); + } + + if (cugraph::test::g_perf) { + RAFT_CUDA_TRY(cudaDeviceSynchronize()); // for consistent performance measurement + hr_timer.stop(); + hr_timer.display_and_clear(std::cout); + } + + if (similarity_usecase.check_correctness) { + auto [src, dst, wgt] = cugraph::test::graph_to_host_coo(handle, graph_view, edge_weight_view); + + size_t check_size = similarity_usecase.max_vertex_pairs_to_check + ? std::min(v1.size(), *similarity_usecase.max_vertex_pairs_to_check) + : v1.size(); + + // + // FIXME: Need to reorder here. thrust::shuffle on the tuples (vertex_pairs_1, + // vertex_pairs_2, result_score) would + // be sufficient. + // + std::vector h_vertex_pair_1(check_size); + std::vector h_vertex_pair_2(check_size); + std::vector h_result_score(check_size); + + raft::update_host(h_vertex_pair_1.data(), v1.data(), check_size, handle.get_stream()); + raft::update_host(h_vertex_pair_2.data(), v2.data(), check_size, handle.get_stream()); + raft::update_host( + h_result_score.data(), result_score.data(), check_size, handle.get_stream()); + + if (similarity_usecase.use_weights) { + weighted_similarity_compare(graph_view.number_of_vertices(), + std::tie(src, dst, wgt), + std::tie(h_vertex_pair_1, h_vertex_pair_2), + h_result_score, + test_functor); + } else { + similarity_compare(graph_view.number_of_vertices(), + std::tie(src, dst, wgt), + std::tie(h_vertex_pair_1, h_vertex_pair_2), + h_result_score, + test_functor); + } + } + } +}; + +using Tests_Similarity_File = Tests_Similarity; +using Tests_Similarity_Rmat = Tests_Similarity; + +TEST_P(Tests_Similarity_File, CheckInt32Int32FloatJaccard) +{ + run_current_test( + override_File_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_jaccard_t{}); +} + +TEST_P(Tests_Similarity_Rmat, CheckInt32Int32FloatJaccard) +{ + run_current_test( + override_Rmat_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_jaccard_t{}); +} + +TEST_P(Tests_Similarity_Rmat, CheckInt32Int64FloatJaccard) +{ + run_current_test( + override_Rmat_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_jaccard_t{}); +} + +TEST_P(Tests_Similarity_Rmat, CheckInt64Int64FloatJaccard) +{ + run_current_test( + override_Rmat_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_jaccard_t{}); +} + +TEST_P(Tests_Similarity_File, CheckInt32Int32FloatSorensen) +{ + run_current_test( + override_File_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_sorensen_t{}); +} + +TEST_P(Tests_Similarity_Rmat, CheckInt32Int32FloatSorensen) +{ + run_current_test( + override_Rmat_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_sorensen_t{}); +} + +TEST_P(Tests_Similarity_Rmat, CheckInt32Int64FloatSorensen) +{ + run_current_test( + override_Rmat_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_sorensen_t{}); +} + +TEST_P(Tests_Similarity_Rmat, CheckInt64Int64FloatSorensen) +{ + run_current_test( + override_Rmat_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_sorensen_t{}); +} + +TEST_P(Tests_Similarity_File, CheckInt32Int32FloatOverlap) +{ + run_current_test( + override_File_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_overlap_t{}); +} + +TEST_P(Tests_Similarity_Rmat, CheckInt32Int32FloatOverlap) +{ + run_current_test( + override_Rmat_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_overlap_t{}); +} + +TEST_P(Tests_Similarity_Rmat, CheckInt32Int64FloatOverlap) +{ + run_current_test( + override_Rmat_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_overlap_t{}); +} + +TEST_P(Tests_Similarity_Rmat, CheckInt64Int64FloatOverlap) +{ + run_current_test( + override_Rmat_Usecase_with_cmd_line_arguments(GetParam()), cugraph::test::test_overlap_t{}); +} + +INSTANTIATE_TEST_SUITE_P( + file_test, + Tests_Similarity_File, + ::testing::Combine(::testing::Values(Similarity_Usecase{false, true, false, 20, 100}, + Similarity_Usecase{false, true, false, 20, 100}, + Similarity_Usecase{false, true, false, 20, 100, 10}, + Similarity_Usecase{false, true, true, 20, 100}, + Similarity_Usecase{false, true, true, 20, 100}, + Similarity_Usecase{false, true, true, 20, 100, 10}), +#if 0 + // FIXME: See Issue #4132... these tests don't work for multi-graph right now + Similarity_Usecase{true, true, false, 20, 100}, + Similarity_Usecase{true, true, false, 20, 100}, + Similarity_Usecase{true, true, false, 20, 100, 10}, + Similarity_Usecase{true, true, true, 20, 100}, + Similarity_Usecase{true, true, true, 20, 100}, + Similarity_Usecase{true, true, true, 20, 100, 10}), +#endif + ::testing::Values(cugraph::test::File_Usecase("test/datasets/karate.mtx"), + cugraph::test::File_Usecase("test/datasets/dolphins.mtx")))); + +INSTANTIATE_TEST_SUITE_P( + rmat_small_test, + Tests_Similarity_Rmat, + ::testing::Combine( + ::testing::Values(Similarity_Usecase{false, true, false, 20, 100}, + Similarity_Usecase{false, true, false, 20, 100}, + Similarity_Usecase{false, true, false, 1000, 100, 10}, + Similarity_Usecase{false, true, true, 20, 100}, + Similarity_Usecase{false, true, true, 20, 100}, + Similarity_Usecase{false, true, true, 10000, 10000, 10}, +#if 0 + // FIXME: See Issue #4132... these tests don't work for multi-graph right now + Similarity_Usecase{true, true, true, 20, 100}, + Similarity_Usecase{true, true, true, 20, 100}, + Similarity_Usecase{true, true, false, 20, 100, 10}, + Similarity_Usecase{true, true, false, 20, 100}, + Similarity_Usecase{true, true, false, 20, 100}, + Similarity_Usecase{true, true, true, 20, 100, 10}, +#endif + Similarity_Usecase{false, true, true, std::nullopt, std::nullopt, 100}, + Similarity_Usecase{false, true, true, std::nullopt, std::nullopt, 10}), + ::testing::Values(cugraph::test::Rmat_Usecase(10, 16, 0.57, 0.19, 0.19, 0, true, false)))); + +INSTANTIATE_TEST_SUITE_P( + file_benchmark_test, /* note that the test filename can be overridden in benchmarking (with + --gtest_filter to select only the file_benchmark_test with a specific + vertex & edge type combination) by command line arguments and do not + include more than one File_Usecase that differ only in filename + (to avoid running same benchmarks more than once) */ + Tests_Similarity_File, + ::testing::Combine( + // disable correctness checks + // Disable weighted computation testing in 22.10 + //::testing::Values(Similarity_Usecase{false, false}, Similarity_Usecase{true, false}), + ::testing::Values(Similarity_Usecase{false, false, false}), + ::testing::Values(cugraph::test::File_Usecase("test/datasets/karate.mtx")))); + +INSTANTIATE_TEST_SUITE_P( + rmat_benchmark_test, /* note that scale & edge factor can be overridden in benchmarking (with + --gtest_filter to select only the rmat_benchmark_test with a specific + vertex & edge type combination) by command line arguments and do not + include more than one Rmat_Usecase that differ only in scale or edge + factor (to avoid running same benchmarks more than once) */ + Tests_Similarity_Rmat, + ::testing::Combine( + // disable correctness checks for large graphs + //::testing::Values(Similarity_Usecase{false, false}, Similarity_Usecase{true, false}), + ::testing::Values(Similarity_Usecase{false, false, false}), + ::testing::Values(cugraph::test::Rmat_Usecase(10, 16, 0.57, 0.19, 0.19, 0, true, false)))); + +CUGRAPH_TEST_PROGRAM_MAIN() diff --git a/cpp/tests/mtmg/threaded_test_louvain.cu b/cpp/tests/mtmg/threaded_test_louvain.cu index d1e12057230..ff9641d59f8 100644 --- a/cpp/tests/mtmg/threaded_test_louvain.cu +++ b/cpp/tests/mtmg/threaded_test_louvain.cu @@ -276,6 +276,7 @@ class Tests_Multithreaded std::tie(std::ignore, modularity) = cugraph::louvain( thread_handle.raft_handle(), + std::nullopt, graph_view.get(thread_handle), edge_weights ? std::make_optional(edge_weights->get(thread_handle).view()) : std::nullopt, local_louvain_clusters.data(), @@ -405,6 +406,7 @@ class Tests_Multithreaded std::tie(std::ignore, modularity) = cugraph::louvain( handle, + std::nullopt, sg_graph.view(), sg_edge_weights ? std::make_optional(sg_edge_weights->view()) : std::nullopt, sg_clusters.data(), From 019027dfe54a97646c48316698bbb239bae46778 Mon Sep 17 00:00:00 2001 From: Hugo Linsenmaier Date: Thu, 7 Mar 2024 09:42:29 -0800 Subject: [PATCH 10/20] Fix pos_list api for force atlas (#4219) Closes: https://github.com/rapidsai/cugraph/issues/4155 Authors: - Hugo Linsenmaier (https://github.com/hlinsen) - Brad Rees (https://github.com/BradReesWork) - Ralph Liu (https://github.com/nv-rliu) Approvers: - Brad Rees (https://github.com/BradReesWork) URL: https://github.com/rapidsai/cugraph/pull/4219 --- python/cugraph/cugraph/layout/force_atlas2.py | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/python/cugraph/cugraph/layout/force_atlas2.py b/python/cugraph/cugraph/layout/force_atlas2.py index 0e15eee718f..639801c9b59 100644 --- a/python/cugraph/cugraph/layout/force_atlas2.py +++ b/python/cugraph/cugraph/layout/force_atlas2.py @@ -1,4 +1,4 @@ -# Copyright (c) 2020-2023, NVIDIA CORPORATION. +# Copyright (c) 2020-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -13,6 +13,7 @@ from cugraph.layout import force_atlas2_wrapper from cugraph.utilities import ensure_cugraph_obj_for_nx +import cudf def force_atlas2( @@ -55,8 +56,8 @@ def force_atlas2( Above 1000 iterations is discouraged. pos_list: cudf.DataFrame, optional (default=None) - Data frame with initial vertex positions containing two columns: - 'x' and 'y' positions. + Data frame with initial vertex positions containing three columns: + 'vertex', 'x' and 'y' positions. outbound_attraction_distribution: bool, optional (default=True) Distributes attraction along outbound edges. @@ -131,6 +132,10 @@ def on_train_end(self, positions): input_graph, isNx = ensure_cugraph_obj_for_nx(input_graph) if pos_list is not None: + if not isinstance(pos_list, cudf.DataFrame): + raise TypeError("pos_list should be a cudf.DataFrame") + if set(pos_list.columns) != set(["x", "y", "vertex"]): + raise ValueError("pos_list has wrong column names") if input_graph.renumbered is True: if input_graph.vertex_column_size() > 1: cols = pos_list.columns[:-2].to_list() From a9ec5036e2a9d3702063eb2aad6ca44aaf858238 Mon Sep 17 00:00:00 2001 From: Bradley Dice Date: Thu, 7 Mar 2024 12:30:04 -0600 Subject: [PATCH 11/20] Treat nx-cugraph, cugraph-pyg, cugraph-dgl, and cugraph-equivariant CI artifacts as pure wheels (#4216) This marks `nx-cugraph`, `cugraph-dgl`, `cugraph-pyg`, and `cugraph-equivariant` as pure wheels, meaning that the CI artifacts are not specific to a Python version or CPU architecture. This change depends on https://github.com/rapidsai/gha-tools/pull/96, and makes CI workflows more robust by allowing the test matrix to be separated from the build matrix. Authors: - Bradley Dice (https://github.com/bdice) Approvers: - Ray Douglass (https://github.com/raydouglass) URL: https://github.com/rapidsai/cugraph/pull/4216 --- ci/build_wheel.sh | 4 ++-- ci/test_wheel.sh | 7 ++++++- ci/test_wheel_cugraph-dgl.sh | 2 +- ci/test_wheel_cugraph-equivariant.sh | 2 +- ci/test_wheel_cugraph-pyg.sh | 2 +- 5 files changed, 11 insertions(+), 6 deletions(-) diff --git a/ci/build_wheel.sh b/ci/build_wheel.sh index 30a1c98c106..9de1750de81 100755 --- a/ci/build_wheel.sh +++ b/ci/build_wheel.sh @@ -54,12 +54,12 @@ cd "${package_dir}" python -m pip wheel . -w dist -vvv --no-deps --disable-pip-version-check -# pure-python packages should not have auditwheel run on them. +# pure-python packages should be marked as pure, and not have auditwheel run on them. if [[ ${package_name} == "nx-cugraph" ]] || \ [[ ${package_name} == "cugraph-dgl" ]] || \ [[ ${package_name} == "cugraph-pyg" ]] || \ [[ ${package_name} == "cugraph-equivariant" ]]; then - RAPIDS_PY_WHEEL_NAME="${package_name}_${RAPIDS_PY_CUDA_SUFFIX}" rapids-upload-wheels-to-s3 dist + RAPIDS_PY_WHEEL_NAME="${package_name}_${RAPIDS_PY_CUDA_SUFFIX}" RAPIDS_PY_WHEEL_PURE="1" rapids-upload-wheels-to-s3 dist else mkdir -p final_dist python -m auditwheel repair -w final_dist dist/* diff --git a/ci/test_wheel.sh b/ci/test_wheel.sh index 8c5832e412f..158704e08d1 100755 --- a/ci/test_wheel.sh +++ b/ci/test_wheel.sh @@ -11,8 +11,13 @@ python_package_name=$(echo ${package_name}|sed 's/-/_/g') mkdir -p ./dist RAPIDS_PY_CUDA_SUFFIX="$(rapids-wheel-ctk-name-gen ${RAPIDS_CUDA_VERSION})" +# nx-cugraph is a pure wheel, which is part of generating the download path +if [[ "${package_name}" == "nx-cugraph" ]]; then + RAPIDS_PY_WHEEL_NAME="${package_name}_${RAPIDS_PY_CUDA_SUFFIX}" RAPIDS_PY_WHEEL_PURE="1" rapids-download-wheels-from-s3 ./dist +else + RAPIDS_PY_WHEEL_NAME="${package_name}_${RAPIDS_PY_CUDA_SUFFIX}" rapids-download-wheels-from-s3 ./dist +fi # use 'ls' to expand wildcard before adding `[extra]` requires for pip -RAPIDS_PY_WHEEL_NAME="${package_name}_${RAPIDS_PY_CUDA_SUFFIX}" rapids-download-wheels-from-s3 ./dist # pip creates wheels using python package names python -m pip install $(ls ./dist/${python_package_name}*.whl)[test] diff --git a/ci/test_wheel_cugraph-dgl.sh b/ci/test_wheel_cugraph-dgl.sh index 367b169bd13..827ad487115 100755 --- a/ci/test_wheel_cugraph-dgl.sh +++ b/ci/test_wheel_cugraph-dgl.sh @@ -17,7 +17,7 @@ RAPIDS_PY_WHEEL_NAME="cugraph_${RAPIDS_PY_CUDA_SUFFIX}" rapids-download-wheels-f python -m pip install ./local-deps/*.whl # use 'ls' to expand wildcard before adding `[extra]` requires for pip -RAPIDS_PY_WHEEL_NAME="${package_name}_${RAPIDS_PY_CUDA_SUFFIX}" rapids-download-wheels-from-s3 ./dist +RAPIDS_PY_WHEEL_NAME="${package_name}_${RAPIDS_PY_CUDA_SUFFIX}" RAPIDS_PY_WHEEL_PURE="1" rapids-download-wheels-from-s3 ./dist # pip creates wheels using python package names python -m pip install $(ls ./dist/${python_package_name}*.whl)[test] diff --git a/ci/test_wheel_cugraph-equivariant.sh b/ci/test_wheel_cugraph-equivariant.sh index f054780b03a..cb952055f06 100755 --- a/ci/test_wheel_cugraph-equivariant.sh +++ b/ci/test_wheel_cugraph-equivariant.sh @@ -12,7 +12,7 @@ mkdir -p ./dist RAPIDS_PY_CUDA_SUFFIX="$(rapids-wheel-ctk-name-gen ${RAPIDS_CUDA_VERSION})" # use 'ls' to expand wildcard before adding `[extra]` requires for pip -RAPIDS_PY_WHEEL_NAME="${package_name}_${RAPIDS_PY_CUDA_SUFFIX}" rapids-download-wheels-from-s3 ./dist +RAPIDS_PY_WHEEL_NAME="${package_name}_${RAPIDS_PY_CUDA_SUFFIX}" RAPIDS_PY_WHEEL_PURE="1" rapids-download-wheels-from-s3 ./dist # pip creates wheels using python package names python -m pip install $(ls ./dist/${python_package_name}*.whl)[test] diff --git a/ci/test_wheel_cugraph-pyg.sh b/ci/test_wheel_cugraph-pyg.sh index 6e44e1ad958..50cbfb3e1fe 100755 --- a/ci/test_wheel_cugraph-pyg.sh +++ b/ci/test_wheel_cugraph-pyg.sh @@ -17,7 +17,7 @@ RAPIDS_PY_WHEEL_NAME="cugraph_${RAPIDS_PY_CUDA_SUFFIX}" rapids-download-wheels-f python -m pip install ./local-deps/*.whl # use 'ls' to expand wildcard before adding `[extra]` requires for pip -RAPIDS_PY_WHEEL_NAME="${package_name}_${RAPIDS_PY_CUDA_SUFFIX}" rapids-download-wheels-from-s3 ./dist +RAPIDS_PY_WHEEL_NAME="${package_name}_${RAPIDS_PY_CUDA_SUFFIX}" RAPIDS_PY_WHEEL_PURE="1" rapids-download-wheels-from-s3 ./dist # pip creates wheels using python package names python -m pip install $(ls ./dist/${python_package_name}*.whl)[test] From f202fa3924cd2c4617b074e6dfa9f0a158b8ccb7 Mon Sep 17 00:00:00 2001 From: Matthew Roeschke <10647082+mroeschke@users.noreply.github.com> Date: Thu, 7 Mar 2024 13:57:18 -1000 Subject: [PATCH 12/20] Use public pandas and cudf APIs where possible (#4218) Avoiding `core` imports here as they tend to be "private" Authors: - Matthew Roeschke (https://github.com/mroeschke) Approvers: - Rick Ratzel (https://github.com/rlratzel) URL: https://github.com/rapidsai/cugraph/pull/4218 --- python/cugraph/cugraph/structure/graph_classes.py | 6 +++--- python/cugraph/cugraph/structure/hypergraph.py | 6 ++---- python/cugraph/cugraph/tests/utils/test_dataset.py | 4 ++-- 3 files changed, 7 insertions(+), 9 deletions(-) diff --git a/python/cugraph/cugraph/structure/graph_classes.py b/python/cugraph/cugraph/structure/graph_classes.py index 03efcba0307..f48895c90b9 100644 --- a/python/cugraph/cugraph/structure/graph_classes.py +++ b/python/cugraph/cugraph/structure/graph_classes.py @@ -1,4 +1,4 @@ -# Copyright (c) 2021-2023, NVIDIA CORPORATION. +# Copyright (c) 2021-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -426,7 +426,7 @@ def from_pandas_edgelist( ... edge_attr='2', renumber=False) """ - if not isinstance(pdf, pd.core.frame.DataFrame): + if not isinstance(pdf, pd.DataFrame): raise TypeError("pdf input is not a Pandas DataFrame") gdf = cudf.DataFrame.from_pandas(pdf) @@ -450,7 +450,7 @@ def from_pandas_adjacency(self, pdf): pdf : pandas.DataFrame A DataFrame that contains adjacency information """ - if not isinstance(pdf, pd.core.frame.DataFrame): + if not isinstance(pdf, pd.DataFrame): raise TypeError("pdf input is not a Pandas DataFrame") np_array = pdf.to_numpy() diff --git a/python/cugraph/cugraph/structure/hypergraph.py b/python/cugraph/cugraph/structure/hypergraph.py index 4add74d6061..add68cb6dac 100644 --- a/python/cugraph/cugraph/structure/hypergraph.py +++ b/python/cugraph/cugraph/structure/hypergraph.py @@ -185,7 +185,7 @@ def hypergraph( events.reset_index(drop=True, inplace=True) if EVENTID not in events.columns: - events[EVENTID] = cudf.core.index.RangeIndex(len(events)) + events[EVENTID] = cudf.RangeIndex(len(events)) events[EVENTID] = _prepend_str(events[EVENTID], EVENTID + DELIM) events[NODETYPE] = ( @@ -596,6 +596,4 @@ def _prepend_str(col, val): # Make an empty categorical string dtype def _empty_cat_dt(): - return cudf.core.dtypes.CategoricalDtype( - categories=np.array([], dtype="str"), ordered=False - ) + return cudf.CategoricalDtype(categories=np.array([], dtype="str"), ordered=False) diff --git a/python/cugraph/cugraph/tests/utils/test_dataset.py b/python/cugraph/cugraph/tests/utils/test_dataset.py index 39f7ed8850b..9331cefcfda 100644 --- a/python/cugraph/cugraph/tests/utils/test_dataset.py +++ b/python/cugraph/cugraph/tests/utils/test_dataset.py @@ -171,14 +171,14 @@ def test_reader(dataset): E = dataset.get_edgelist(download=True) assert E is not None - assert isinstance(E, cudf.core.dataframe.DataFrame) + assert isinstance(E, cudf.DataFrame) dataset.unload() # using pandas E_pd = dataset.get_edgelist(download=True, reader="pandas") assert E_pd is not None - assert isinstance(E_pd, pandas.core.frame.DataFrame) + assert isinstance(E_pd, pandas.DataFrame) dataset.unload() with pytest.raises(ValueError): From ab9e4454231c2486e089374affcdd037264ec37e Mon Sep 17 00:00:00 2001 From: Seunghwa Kang <45857425+seunghwak@users.noreply.github.com> Date: Thu, 7 Mar 2024 16:07:33 -0800 Subject: [PATCH 13/20] transform_e bug fix in edge masking (#4221) Bug fix. Authors: - Seunghwa Kang (https://github.com/seunghwak) - Ralph Liu (https://github.com/nv-rliu) Approvers: - Chuck Hastings (https://github.com/ChuckHastings) - Naim (https://github.com/naimnv) URL: https://github.com/rapidsai/cugraph/pull/4221 --- cpp/src/prims/transform_e.cuh | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/cpp/src/prims/transform_e.cuh b/cpp/src/prims/transform_e.cuh index a34a5a04b49..2cb1a5358b0 100644 --- a/cpp/src/prims/transform_e.cuh +++ b/cpp/src/prims/transform_e.cuh @@ -85,7 +85,7 @@ __global__ void transform_e_packed_bool( if (local_edge_idx < num_edges) { bool compute_predicate = true; if constexpr (check_edge_mask) { - compute_predicate = (edge_mask & packed_bool_mask(lane_id) != packed_bool_empty_mask()); + compute_predicate = ((edge_mask & packed_bool_mask(lane_id)) != packed_bool_empty_mask()); } if (compute_predicate) { @@ -111,10 +111,10 @@ __global__ void transform_e_packed_bool( uint32_t new_val = __ballot_sync(raft::warp_full_mask(), predicate); if (lane_id == 0) { if constexpr (check_edge_mask) { - *(edge_partition_e_value_output.value_first() + idx) = new_val; - } else { auto old_val = *(edge_partition_e_value_output.value_first() + idx); *(edge_partition_e_value_output.value_first() + idx) = (old_val & ~edge_mask) | new_val; + } else { + *(edge_partition_e_value_output.value_first() + idx) = new_val; } } @@ -196,6 +196,9 @@ struct update_e_value_t { __device__ void operator()(typename GraphViewType::edge_type i) const { + if constexpr (check_edge_mask) { + if (!edge_partition_e_mask.get(i)) { return; } + } auto major_idx = edge_partition.major_idx_from_local_edge_idx_nocheck(i); auto major = edge_partition.major_from_major_idx_nocheck(major_idx); auto major_offset = edge_partition.major_offset_from_major_nocheck(major); From 47119c37d31b9464d83f984f401c03bf7b96957c Mon Sep 17 00:00:00 2001 From: Bradley Dice Date: Thu, 7 Mar 2024 21:03:36 -0600 Subject: [PATCH 14/20] Trim trailing whitespace (#4206) This PR trims trailing whitespace and normalizes file endings in all files, and adds pre-commit hooks to enforce this for future contributions. These pre-commit hooks already exist in most other RAPIDS repositories, so it would be good to standardize. Authors: - Bradley Dice (https://github.com/bdice) Approvers: - Brad Rees (https://github.com/BradReesWork) - Jake Awe (https://github.com/AyodeAwe) - Chuck Hastings (https://github.com/ChuckHastings) URL: https://github.com/rapidsai/cugraph/pull/4206 --- .dockerignore | 2 +- .github/workflows/add-to-project.yml | 2 +- .pre-commit-config.yaml | 4 +- benchmarks/cugraph-dgl/pytest-based/README.MD | 6 +- .../standalone/bulk_sampling/README.md | 16 +-- .../standalone/bulk_sampling/run_sampling.sh | 6 +- .../standalone/bulk_sampling/run_train_job.sh | 3 +- benchmarks/dgl/README.md | 2 +- benchmarks/shared/build_cugraph_ucx/README.MD | 10 +- .../shared/build_cugraph_ucx/build-ucx.sh | 4 +- .../build_cugraph_ucx/cugraph_ucx.dockerfile | 2 +- ci/test.sh | 4 +- cpp/cmake/thirdparty/get_nccl.cmake | 6 +- cpp/docs/DEVELOPER_GUIDE.md | 100 +++++++++--------- cpp/doxygen/main_page.md | 2 +- .../include/hash/concurrent_unordered_map.cuh | 4 +- cpp/src/c_api/ecg.cpp | 2 +- cpp/tests/c_api/ecg_test.c | 2 +- cpp/tests/c_api/generate_rmat_test.c | 6 +- cpp/tests/c_api/mg_create_graph_test.c | 4 +- cpp/tests/c_api/mg_ecg_test.c | 2 +- .../c_api/mg_uniform_neighbor_sample_test.c | 6 +- cpp/tests/c_api/similarity_test.c | 4 +- .../c_api/uniform_neighbor_sample_test.c | 4 +- datasets/README.md | 16 +-- datasets/dolphins.mtx | 36 +++---- datasets/karate.mtx | 12 +-- datasets/karate_mod.mtx | 2 +- datasets/karate_str.mtx | 2 +- datasets/netscience.mtx | 32 +++--- datasets/polbooks.mtx | 34 +++--- datasets/small_line.csv | 2 +- datasets/toy_graph.csv | 2 +- datasets/toy_graph_undirected.csv | 2 +- docs/cugraph/Makefile | 2 +- docs/cugraph/README.md | 2 +- docs/cugraph/source/_static/references.css | 2 +- .../api_docs/cugraph-ops/c_cpp/index.rst | 1 - .../source/api_docs/cugraph-ops/index.rst | 2 +- .../api_docs/cugraph-ops/python/index.rst | 2 +- .../api_docs/cugraph-pyg/cugraph_pyg.rst | 1 - .../source/api_docs/cugraph/components.rst | 1 - .../source/api_docs/cugraph/dask-cugraph.rst | 4 +- .../source/api_docs/cugraph/generators.rst | 1 - .../api_docs/cugraph/graph_implementation.rst | 2 +- .../api_docs/cugraph/helper_functions.rst | 1 - .../source/api_docs/cugraph/layout.rst | 1 - .../source/api_docs/cugraph/link_analysis.rst | 1 - docs/cugraph/source/api_docs/cugraph/tree.rst | 1 - .../source/api_docs/cugraph_c/centrality.rst | 1 - .../source/api_docs/cugraph_c/community.rst | 1 - .../source/api_docs/cugraph_c/labeling.rst | 2 +- .../source/api_docs/cugraph_c/similarity.rst | 2 +- .../source/api_docs/cugraph_c/traversal.rst | 2 +- docs/cugraph/source/api_docs/index.rst | 2 - .../cugraph/source/api_docs/service/index.rst | 2 +- .../source/basics/cugraph_cascading.md | 8 +- docs/cugraph/source/basics/cugraph_intro.md | 81 +++++++------- docs/cugraph/source/basics/nx_transition.rst | 27 +++-- docs/cugraph/source/dev_resources/API.rst | 2 +- docs/cugraph/source/dev_resources/index.rst | 2 +- .../source/graph_support/DGL_support.md | 12 +-- .../source/graph_support/PyG_support.md | 2 +- .../source/graph_support/algorithms.md | 2 +- .../graph_support/algorithms/Similarity.md | 6 +- .../algorithms/betweenness_centrality.md | 2 +- .../algorithms/degree_centrality.md | 4 +- .../algorithms/eigenvector_centrality.md | 5 +- .../algorithms/jaccard_similarity.md | 4 +- .../algorithms/katz_centrality.md | 2 +- .../algorithms/overlap_similarity.md | 4 +- .../algorithms/sorensen_coefficient.md | 4 +- .../source/graph_support/compatibility.rst | 2 +- .../source/graph_support/cugraph_service.rst | 4 +- .../graph_support/cugraphops_support.rst | 2 +- .../source/graph_support/datastores.rst | 1 - .../source/graph_support/feature_stores.md | 2 +- .../source/graph_support/gnn_support.rst | 4 +- .../source/graph_support/graph_algorithms.rst | 4 +- docs/cugraph/source/graph_support/index.rst | 2 +- .../source/graph_support/knowledge_stores.md | 2 +- .../source/graph_support/property_graph.md | 22 ++-- .../graph_support/wholegraph_support.md | 2 +- docs/cugraph/source/index.rst | 4 +- .../source/installation/getting_cugraph.md | 3 +- docs/cugraph/source/installation/index.rst | 2 +- docs/cugraph/source/references/cugraph_ref.md | 1 - docs/cugraph/source/references/datasets.md | 14 +-- docs/cugraph/source/references/index.rst | 2 +- docs/cugraph/source/references/licenses.md | 2 +- docs/cugraph/source/releases/index.rst | 2 +- .../source/tutorials/community_resources.md | 2 +- .../source/tutorials/cugraph_blogs.rst | 2 +- .../source/tutorials/cugraph_notebooks.md | 4 +- .../cugraph/source/tutorials/how_to_guides.md | 16 +-- .../wholememory_implementation_details.md | 2 +- docs/cugraph/source/wholegraph/index.rst | 1 - .../installation/getting_wholegraph.md | 2 +- notebooks/README.md | 5 +- notebooks/algorithms/README.md | 2 +- notebooks/algorithms/centrality/README.md | 2 +- notebooks/algorithms/community/README.md | 2 +- notebooks/algorithms/components/README.md | 2 +- notebooks/algorithms/cores/README.md | 2 +- notebooks/algorithms/link_analysis/README.md | 4 +- .../algorithms/link_prediction/README.md | 4 +- notebooks/algorithms/sampling/README.md | 2 +- notebooks/algorithms/structure/README.md | 2 +- notebooks/algorithms/traversal/README.md | 2 +- notebooks/modules/README.md | 2 +- print_env.sh | 15 +-- python/cugraph-dgl/README.md | 16 ++- .../cugraph/dask/structure/replication.pyx | 4 +- .../datasets/metadata/cit-patents.yaml | 4 +- .../datasets/metadata/dining_prefs.yaml | 2 +- .../cugraph/datasets/metadata/dolphins.yaml | 2 +- .../cugraph/datasets/metadata/europe_osm.yaml | 2 +- .../cugraph/datasets/metadata/hollywood.yaml | 2 +- .../datasets/metadata/soc-livejournal1.yaml | 4 +- .../datasets/metadata/soc-twitter-2010.yaml | 6 +- .../cugraph/structure/graph_utilities.pxd | 3 +- .../pylibcugraph/_cugraph_c/README.md | 2 +- .../pylibcugraph/_cugraph_c/algorithms.pxd | 40 +++---- .../_cugraph_c/centrality_algorithms.pxd | 12 +-- .../_cugraph_c/community_algorithms.pxd | 28 ++--- .../_cugraph_c/core_algorithms.pxd | 18 ++-- .../pylibcugraph/_cugraph_c/graph.pxd | 18 ++-- .../_cugraph_c/graph_functions.pxd | 36 +++---- .../_cugraph_c/labeling_algorithms.pxd | 9 +- .../_cugraph_c/resource_handle.pxd | 4 +- .../_cugraph_c/similarity_algorithms.pxd | 6 +- .../analyze_clustering_modularity.pyx | 4 +- .../pylibcugraph/balanced_cut_clustering.pyx | 4 +- .../pylibcugraph/betweenness_centrality.pyx | 10 +- python/pylibcugraph/pylibcugraph/bfs.pyx | 22 ++-- .../pylibcugraph/components/_connectivity.pyx | 3 +- .../pylibcugraph/pylibcugraph/core_number.pyx | 10 +- python/pylibcugraph/pylibcugraph/ecg.pyx | 4 +- .../edge_betweenness_centrality.pyx | 14 +-- python/pylibcugraph/pylibcugraph/egonet.pyx | 6 +- .../pylibcugraph/eigenvector_centrality.pyx | 4 +- .../pylibcugraph/generate_rmat_edgelist.pyx | 42 ++++---- .../pylibcugraph/generate_rmat_edgelists.pyx | 38 +++---- python/pylibcugraph/pylibcugraph/graphs.pxd | 7 +- python/pylibcugraph/pylibcugraph/hits.pyx | 20 ++-- .../pylibcugraph/induced_subgraph.pyx | 6 +- .../internal_types/sampling_result.pyx | 32 +++--- .../pylibcugraph/jaccard_coefficients.pyx | 10 +- python/pylibcugraph/pylibcugraph/k_core.pyx | 16 +-- .../pylibcugraph/k_truss_subgraph.pyx | 8 +- .../pylibcugraph/katz_centrality.pyx | 10 +- python/pylibcugraph/pylibcugraph/node2vec.pyx | 4 +- .../pylibcugraph/overlap_coefficients.pyx | 10 +- python/pylibcugraph/pylibcugraph/random.pyx | 12 +-- .../pylibcugraph/replicate_edgelist.pyx | 20 ++-- .../pylibcugraph/select_random_vertices.pyx | 10 +- .../pylibcugraph/sorensen_coefficients.pyx | 10 +- .../spectral_modularity_maximization.pyx | 4 +- .../pylibcugraph/testing/type_utils.pyx | 14 +-- .../pylibcugraph/triangle_count.pyx | 10 +- .../pylibcugraph/two_hop_neighbors.pyx | 10 +- .../pylibcugraph/uniform_neighbor_sample.pyx | 40 +++---- .../weakly_connected_components.pyx | 12 +-- readme_pages/PRTAGS.md | 4 +- readme_pages/TRANSITIONGUIDE.md | 34 +++--- readme_pages/cugraph_dgl.md | 13 ++- readme_pages/cugraph_ops.md | 2 +- readme_pages/cugraph_python.md | 6 +- readme_pages/cugraph_service.md | 4 +- readme_pages/data_types.md | 10 +- readme_pages/gnn_support.md | 3 +- readme_pages/news.md | 6 +- readme_pages/performance/performance.md | 2 +- readme_pages/property_graph.md | 20 ++-- 174 files changed, 706 insertions(+), 740 deletions(-) diff --git a/.dockerignore b/.dockerignore index 6d29c8e919e..c274b811f6c 100644 --- a/.dockerignore +++ b/.dockerignore @@ -1,2 +1,2 @@ # Ignore cmake builds from local machine that might have occured before attempting Docker build. Including these files will cause CMake cache conflict issues -/cpp/build \ No newline at end of file +/cpp/build diff --git a/.github/workflows/add-to-project.yml b/.github/workflows/add-to-project.yml index bd4d10bcb54..13ad5079cbc 100644 --- a/.github/workflows/add-to-project.yml +++ b/.github/workflows/add-to-project.yml @@ -4,7 +4,7 @@ on: issues: types: - opened - + pull_request_target: types: - opened diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 6b7ff14417c..3d893e0e562 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -5,11 +5,13 @@ exclude: '^thirdparty' repos: - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v4.4.0 + rev: v4.5.0 hooks: - id: check-added-large-files - id: debug-statements + - id: end-of-file-fixer - id: mixed-line-ending + - id: trailing-whitespace - repo: https://github.com/psf/black rev: 22.10.0 hooks: diff --git a/benchmarks/cugraph-dgl/pytest-based/README.MD b/benchmarks/cugraph-dgl/pytest-based/README.MD index 9e73d0b90c7..ff696ffcca3 100755 --- a/benchmarks/cugraph-dgl/pytest-based/README.MD +++ b/benchmarks/cugraph-dgl/pytest-based/README.MD @@ -1,10 +1,10 @@ -## Run Benchmarks +## Run Benchmarks -#### SG +#### SG ``` pytest bench_cugraph_dgl_uniform_neighbor_sample.py -k "SG and fanout_10_25 and rmat_24_4" --benchmark-save='1_rmat_24_4.json' ``` -#### MG +#### MG ``` DASK_NUM_WORKERS=2 pytest bench_cugraph_dgl_uniform_neighbor_sample.py -k "MG and fanout_10_25 and rmat_24_16" --benchmark-save='2_rmat_24_8.json' diff --git a/benchmarks/cugraph/standalone/bulk_sampling/README.md b/benchmarks/cugraph/standalone/bulk_sampling/README.md index bb01133c52f..2d09466fb2f 100644 --- a/benchmarks/cugraph/standalone/bulk_sampling/README.md +++ b/benchmarks/cugraph/standalone/bulk_sampling/README.md @@ -16,21 +16,21 @@ Required: the samples will be written to a new folder in /home/samples that contains information about the sampling run as well as the time of the run. - + --dataset_root The folder where datasets are stored. Uses the format described in the input format section. - + --datasets Comma-separated list of datasets; can specify ogb or rmat (i.e. ogb_papers100M[2],rmat_22_16). For ogb datasets, can provide replication factor using brackets. Will attempt to read from dataset_root/. - + Optional: --fanouts Comma-separated list of fanout values (i.e. [10, 25]). The default fanout is [10, 25]. - + --batch_sizes Comma-separated list of batch sizes (i.e. 500, 1000). Defaults to "512,1024" @@ -39,7 +39,7 @@ Optional: Comma-separated list of seeds per call. Controls the number of input seed vertices processed in a single sampling call. Defaults to 524288 - + --reverse_edges Whether to reverse the edges of the input edgelist. Should be set to False for PyG and True for DGL. Defaults to False (PyG). @@ -52,8 +52,8 @@ Optional: --random_seed Seed for random number generation. Defaults to '62' - - + + ### Input Format The script expects its input data in the following format: ``` @@ -159,4 +159,4 @@ GPUs per node is currently unsupported by this script but should be possible in ### Output The results of training will be outputted to the logs directory with an `output.txt` file for each worker. -These will be overwritten upon each run. Accuracy is only reported on rank 0. \ No newline at end of file +These will be overwritten upon each run. Accuracy is only reported on rank 0. diff --git a/benchmarks/cugraph/standalone/bulk_sampling/run_sampling.sh b/benchmarks/cugraph/standalone/bulk_sampling/run_sampling.sh index 41792c0b63a..1b3085dcc9a 100644 --- a/benchmarks/cugraph/standalone/bulk_sampling/run_sampling.sh +++ b/benchmarks/cugraph/standalone/bulk_sampling/run_sampling.sh @@ -67,7 +67,7 @@ handleTimeout 120 python ${MG_UTILS_DIR}/wait_for_workers.py \ DASK_STARTUP_ERRORCODE=$LAST_EXITCODE -echo $SLURM_NODEID +echo $SLURM_NODEID if [[ $SLURM_NODEID == 0 ]]; then echo "Launching Python Script" python ${SCRIPTS_DIR}/cugraph_bulk_sampling.py \ @@ -78,7 +78,7 @@ if [[ $SLURM_NODEID == 0 ]]; then --batch_sizes $BATCH_SIZE \ --seeds_per_call_opts "524288" \ --num_epochs $NUM_EPOCHS \ - --random_seed 42 + --random_seed 42 echo "DONE" > ${SAMPLES_DIR}/status.txt fi @@ -108,4 +108,4 @@ sleep 2 if [[ $SLURM_NODEID == 0 ]]; then rm ${SAMPLES_DIR}/status.txt -fi \ No newline at end of file +fi diff --git a/benchmarks/cugraph/standalone/bulk_sampling/run_train_job.sh b/benchmarks/cugraph/standalone/bulk_sampling/run_train_job.sh index 977745a9593..27ae0dc7788 100755 --- a/benchmarks/cugraph/standalone/bulk_sampling/run_train_job.sh +++ b/benchmarks/cugraph/standalone/bulk_sampling/run_train_job.sh @@ -16,7 +16,7 @@ #SBATCH -p luna #SBATCH -J datascience_rapids_cugraphgnn-papers:bulkSamplingPyG #SBATCH -N 1 -#SBATCH -t 00:25:00 +#SBATCH -t 00:25:00 CONTAINER_IMAGE=${CONTAINER_IMAGE:="please_specify_container"} SCRIPTS_DIR=$(pwd) @@ -81,4 +81,3 @@ srun \ --fanout $FANOUT \ --replication_factor $REPLICATION_FACTOR \ --num_epochs $NUM_EPOCHS - diff --git a/benchmarks/dgl/README.md b/benchmarks/dgl/README.md index c24e6a6df18..82762588ee8 100644 --- a/benchmarks/dgl/README.md +++ b/benchmarks/dgl/README.md @@ -13,4 +13,4 @@ pytest dgl_benchmark.py::bench_dgl_pure_gpu ## For UVA Benchmarks ``` pytest dgl_benchmark.py::bench_dgl_uva -``` \ No newline at end of file +``` diff --git a/benchmarks/shared/build_cugraph_ucx/README.MD b/benchmarks/shared/build_cugraph_ucx/README.MD index b18adfd3b03..06ab37a048d 100644 --- a/benchmarks/shared/build_cugraph_ucx/README.MD +++ b/benchmarks/shared/build_cugraph_ucx/README.MD @@ -6,10 +6,10 @@ docker build -f cugraph_ucx.dockerfile . -t cugraph_ucx docker run --privileged -it --gpus=all --net=host cugraph_ucx /bin/bash #### Client Bandwidth Test -python3 test_client_bandwidth.py +python3 test_client_bandwidth.py ```bash -(base) root@exp02:/home# python3 test_client_bandwidth.py +(base) root@exp02:/home# python3 test_client_bandwidth.py 2022-12-19 13:31:30,867 - distributed.preloading - INFO - Creating preload: dask_cuda.initialize 2022-12-19 13:31:30,867 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize 2022-12-19 13:31:30,891 - distributed.preloading - INFO - Creating preload: dask_cuda.initialize @@ -30,8 +30,8 @@ Bandwidth = 5.2037 gb/s #### Sampling Test python3 test_cugraph_sampling.py ```bash -test_client_bandwidth.py test_cugraph_sampling.py -(base) root@exp02:/home# python3 test_cugraph_sampling.py +test_client_bandwidth.py test_cugraph_sampling.py +(base) root@exp02:/home# python3 test_cugraph_sampling.py [1671456769.722931] [exp02:93 :0] parser.c:1989 UCX WARN unused environment variable: UCX_MEMTYPE_CACHE (maybe: UCX_MEMTYPE_CACHE?) [1671456769.722931] [exp02:93 :0] parser.c:1989 UCX WARN (set UCX_WARN_UNUSED_ENV_VARS=n to suppress this warning) 2022-12-19 13:32:56,228 - distributed.preloading - INFO - Creating preload: dask_cuda.initialize @@ -54,4 +54,4 @@ Sampling 1,000 took = 69.15879249572754 ms Sampling 10,000 took = 89.63620662689209 ms Sampling 100,000 took = 135.9888792037964 ms ----------------------------------------Completed Test---------------------------------------- -``` \ No newline at end of file +``` diff --git a/benchmarks/shared/build_cugraph_ucx/build-ucx.sh b/benchmarks/shared/build_cugraph_ucx/build-ucx.sh index 758f9b57231..df9290cdfe6 100644 --- a/benchmarks/shared/build_cugraph_ucx/build-ucx.sh +++ b/benchmarks/shared/build_cugraph_ucx/build-ucx.sh @@ -1,5 +1,5 @@ #!/bin/bash -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 set -ex @@ -16,4 +16,4 @@ mkdir build-linux && cd build-linux --enable-mt --enable-numa --with-gnu-ld --with-rdmacm --with-verbs \ --with-cuda=${CUDA_HOME} \ ${CONFIGURE_ARGS} -make -j install \ No newline at end of file +make -j install diff --git a/benchmarks/shared/build_cugraph_ucx/cugraph_ucx.dockerfile b/benchmarks/shared/build_cugraph_ucx/cugraph_ucx.dockerfile index 452801d9774..f51bee4c320 100644 --- a/benchmarks/shared/build_cugraph_ucx/cugraph_ucx.dockerfile +++ b/benchmarks/shared/build_cugraph_ucx/cugraph_ucx.dockerfile @@ -55,7 +55,7 @@ RUN gpuci_mamba_retry install -y -c pytorch -c rapidsai-nightly -c rapidsai -c c tqdm -# Build ucx from source with IB support +# Build ucx from source with IB support # on 1.14.x RUN conda remove --force -y ucx ucx-proc diff --git a/ci/test.sh b/ci/test.sh index b3adc80c593..f20fc40f85a 100755 --- a/ci/test.sh +++ b/ci/test.sh @@ -1,5 +1,5 @@ #!/bin/bash -# Copyright (c) 2019-2023, NVIDIA CORPORATION. +# Copyright (c) 2019-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -105,7 +105,7 @@ if hasArg "--run-python-tests"; then # rmat is not tested because of MG testing pytest --cache-clear --junitxml=${CUGRAPH_ROOT}/junit-cugraph-pytests.xml -v --cov-config=.coveragerc --cov=cugraph_pyg --cov-report=xml:${WORKSPACE}/python/cugraph_pyg/cugraph-coverage.xml --cov-report term --ignore=raft --ignore=tests/mg --ignore=tests/int --ignore=tests/generators --benchmark-disable echo "Ran Python pytest for cugraph_pyg : return code was: $?, test script exit code is now: $EXITCODE" - + echo "Python pytest for cugraph-service (single-GPU only)..." cd ${CUGRAPH_ROOT}/python/cugraph-service pytest -sv --cache-clear --junitxml=${CUGRAPH_ROOT}/junit-cugraph-service-pytests.xml --benchmark-disable -k "not mg" ./tests diff --git a/cpp/cmake/thirdparty/get_nccl.cmake b/cpp/cmake/thirdparty/get_nccl.cmake index 118ae377049..bb2500c67e2 100644 --- a/cpp/cmake/thirdparty/get_nccl.cmake +++ b/cpp/cmake/thirdparty/get_nccl.cmake @@ -1,5 +1,5 @@ #============================================================================= -# Copyright (c) 2021, NVIDIA CORPORATION. +# Copyright (c) 2021-2024, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -32,7 +32,3 @@ function(find_and_configure_nccl) endfunction() find_and_configure_nccl() - - - - diff --git a/cpp/docs/DEVELOPER_GUIDE.md b/cpp/docs/DEVELOPER_GUIDE.md index b369183a262..50d4bc63e9f 100644 --- a/cpp/docs/DEVELOPER_GUIDE.md +++ b/cpp/docs/DEVELOPER_GUIDE.md @@ -1,6 +1,6 @@ # cuGraph C++ Developer Guide -This document serves as a guide for contributors to cuGraph C++ code. Developers should also refer +This document serves as a guide for contributors to cuGraph C++ code. Developers should also refer to these additional files for further documentation of cuGraph best practices. * [Documentation Guide](TODO) for guidelines on documenting cuGraph code. @@ -9,7 +9,7 @@ to these additional files for further documentation of cuGraph best practices. # Overview -cuGraph includes a C++ library that provides GPU-accelerated graph algorithms for processing +cuGraph includes a C++ library that provides GPU-accelerated graph algorithms for processing sparse graphs. ## Lexicon @@ -27,12 +27,12 @@ and weight[i]. # Directory Structure and File Naming -External/public cuGraph APIs are grouped based on functionality into an appropriately titled -header file in `cugraph/cpp/include/`. For example, `cugraph/cpp/include/graph.hpp` -contains the definition of the (legacy) graph objects. Note the `.hpp` +External/public cuGraph APIs are grouped based on functionality into an appropriately titled +header file in `cugraph/cpp/include/`. For example, `cugraph/cpp/include/graph.hpp` +contains the definition of the (legacy) graph objects. Note the `.hpp` file extension used to indicate a C++ header file. -Header files should use the `#pragma once` include guard. +Header files should use the `#pragma once` include guard. ## File extensions @@ -50,8 +50,8 @@ algorithm APIs with a device execution policy (always `rmm::exec_policy` in cuGr ## Code and Documentation Style and Formatting -cuGraph code uses [snake_case](https://en.wikipedia.org/wiki/Snake_case) for all names except in a -few cases: unit tests and test case names may use Pascal case, aka +cuGraph code uses [snake_case](https://en.wikipedia.org/wiki/Snake_case) for all names except in a +few cases: unit tests and test case names may use Pascal case, aka [UpperCamelCase](https://en.wikipedia.org/wiki/Camel_case). We do not use [Hungarian notation](https://en.wikipedia.org/wiki/Hungarian_notation), except for the following examples: * device data variables should be prefaced by d_ if it makes the intent clearer @@ -67,7 +67,7 @@ void algorithm_function(graph_t const &g) } template -class utility_class +class utility_class { ... private: @@ -75,9 +75,9 @@ class utility_class } ``` -C++ formatting is enforced using `clang-format`. You should configure `clang-format` on your -machine to use the `cugraph/cpp/.clang-format` configuration file, and run `clang-format` on all -changed code before committing it. The easiest way to do this is to configure your editor to +C++ formatting is enforced using `clang-format`. You should configure `clang-format` on your +machine to use the `cugraph/cpp/.clang-format` configuration file, and run `clang-format` on all +changed code before committing it. The easiest way to do this is to configure your editor to "format on save". Aspects of code style not discussed in this document and not automatically enforceable are typically @@ -85,10 +85,10 @@ caught during code review, or not enforced. ### C++ Guidelines -In general, we recommend following -[C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines). We also -recommend watching Sean Parent's [C++ Seasoning talk](https://www.youtube.com/watch?v=W2tWOdzgXHA), -and we try to follow his rules: "No raw loops. No raw pointers. No raw synchronization primitives." +In general, we recommend following +[C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines). We also +recommend watching Sean Parent's [C++ Seasoning talk](https://www.youtube.com/watch?v=W2tWOdzgXHA), +and we try to follow his rules: "No raw loops. No raw pointers. No raw synchronization primitives." * Prefer algorithms from STL and Thrust to raw loops. * Prefer cugraph and RMM to raw pointers and raw memory allocation. @@ -99,18 +99,18 @@ Documentation is discussed in the [Documentation Guide](TODO). The following guidelines apply to organizing `#include` lines. - * Group includes by library (e.g. cuGraph, RMM, Thrust, STL). `clang-format` will respect the + * Group includes by library (e.g. cuGraph, RMM, Thrust, STL). `clang-format` will respect the groupings and sort the individual includes within a group lexicographically. * Separate groups by a blank line. - * Order the groups from "nearest" to "farthest". In other words, local includes, then includes - from other RAPIDS libraries, then includes from related libraries, like ``, then - includes from dependencies installed with cuGraph, and then standard headers (for example ``, + * Order the groups from "nearest" to "farthest". In other words, local includes, then includes + from other RAPIDS libraries, then includes from related libraries, like ``, then + includes from dependencies installed with cuGraph, and then standard headers (for example ``, ``). * Use <> instead of "" unless the header is in the same directory as the source file. * Tools like `clangd` often auto-insert includes when they can, but they usually get the grouping and brackets wrong. - * Always check that includes are only necessary for the file in which they are included. - Try to avoid excessive including especially in header files. Double check this when you remove + * Always check that includes are only necessary for the file in which they are included. + Try to avoid excessive including especially in header files. Double check this when you remove code. # cuGraph Data Structures @@ -120,14 +120,14 @@ data structures you will use when developing cuGraph code. ## Views and Ownership -Resource ownership is an essential concept in cuGraph. In short, an "owning" object owns a -resource (such as device memory). It acquires that resource during construction and releases the +Resource ownership is an essential concept in cuGraph. In short, an "owning" object owns a +resource (such as device memory). It acquires that resource during construction and releases the resource in destruction ([RAII](https://en.cppreference.com/w/cpp/language/raii)). A "non-owning" object does not own resources. Any class in cuGraph with the `*_view` suffix is non-owning. ## `rmm::device_memory_resource` -cuGraph allocates all device memory via RMM memory resources (MR). See the +cuGraph allocates all device memory via RMM memory resources (MR). See the [RMM documentation](https://github.com/rapidsai/rmm/blob/main/README.md) for details. ## Streams @@ -142,29 +142,29 @@ cuGraph code generally eschews raw pointers and direct memory allocation. Use RM use `device_memory_resource`(*)s for device memory allocation with automated lifetime management. #### `rmm::device_buffer` -Allocates a specified number of bytes of untyped, uninitialized device memory using a -`device_memory_resource`. If no resource is explicitly provided, uses -`rmm::mr::get_current_device_resource()`. +Allocates a specified number of bytes of untyped, uninitialized device memory using a +`device_memory_resource`. If no resource is explicitly provided, uses +`rmm::mr::get_current_device_resource()`. -`rmm::device_buffer` is movable and copyable on a stream. A copy performs a deep copy of the -`device_buffer`'s device memory on the specified stream, whereas a move moves ownership of the +`rmm::device_buffer` is movable and copyable on a stream. A copy performs a deep copy of the +`device_buffer`'s device memory on the specified stream, whereas a move moves ownership of the device memory from one `device_buffer` to another. ```c++ -// Allocates at least 100 bytes of uninitialized device memory +// Allocates at least 100 bytes of uninitialized device memory // using the specified resource and stream -rmm::device_buffer buff(100, stream, mr); +rmm::device_buffer buff(100, stream, mr); void * raw_data = buff.data(); // Raw pointer to underlying device memory // Deep copies `buff` into `copy` on `stream` -rmm::device_buffer copy(buff, stream); +rmm::device_buffer copy(buff, stream); // Moves contents of `buff` into `moved_to` -rmm::device_buffer moved_to(std::move(buff)); +rmm::device_buffer moved_to(std::move(buff)); custom_memory_resource *mr...; // Allocates 100 bytes from the custom_memory_resource -rmm::device_buffer custom_buff(100, mr, stream); +rmm::device_buffer custom_buff(100, mr, stream); ``` #### `rmm::device_uvector` @@ -173,7 +173,7 @@ Similar to a `rmm::device_vector`, allocates a contiguous set of elements in dev key differences: - As an optimization, elements are uninitialized and no synchronization occurs at construction. This limits the types `T` to trivially copyable types. -- All operations are stream ordered (i.e., they accept a `cuda_stream_view` specifying the stream +- All operations are stream ordered (i.e., they accept a `cuda_stream_view` specifying the stream on which the operation is performed). ## Namespaces @@ -188,12 +188,12 @@ namespace cugraph{ ### Internal -Many functions are not meant for public use, so place them in either the `detail` or an *anonymous* +Many functions are not meant for public use, so place them in either the `detail` or an *anonymous* namespace, depending on the situation. #### `detail` namespace -Functions or objects that will be used across *multiple* translation units (i.e., source files), +Functions or objects that will be used across *multiple* translation units (i.e., source files), should be exposed in an internal header file and placed in the `detail` namespace. Example: ```c++ @@ -207,7 +207,7 @@ void reusable_helper_function(...); #### Anonymous namespace -Functions or objects that will only be used in a *single* translation unit should be defined in an +Functions or objects that will only be used in a *single* translation unit should be defined in an *anonymous* namespace in the source file where it is used. Example: ```c++ @@ -217,12 +217,12 @@ void isolated_helper_function(...); } // anonymous namespace ``` -[**Anonymous namespaces should *never* be used in a header file.**](https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL59-CPP.+Do+not+define+an+unnamed+namespace+in+a+header+file) +[**Anonymous namespaces should *never* be used in a header file.**](https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL59-CPP.+Do+not+define+an+unnamed+namespace+in+a+header+file) # Error Handling -cuGraph follows conventions (and provides utilities) enforcing compile-time and run-time -conditions and detecting and handling CUDA errors. Communication of errors is always via C++ +cuGraph follows conventions (and provides utilities) enforcing compile-time and run-time +conditions and detecting and handling CUDA errors. Communication of errors is always via C++ exceptions. ## Runtime Conditions @@ -234,13 +234,13 @@ Example usage: CUGRAPH_EXPECTS(lhs.type() == rhs.type(), "Column type mismatch"); ``` -The first argument is the conditional expression expected to resolve to `true` under normal -conditions. If the conditional evaluates to `false`, then an error has occurred and an instance of `cugraph::logic_error` is thrown. The second argument to `CUGRAPH_EXPECTS` is a short description of the -error that has occurred and is used for the exception's `what()` message. +The first argument is the conditional expression expected to resolve to `true` under normal +conditions. If the conditional evaluates to `false`, then an error has occurred and an instance of `cugraph::logic_error` is thrown. The second argument to `CUGRAPH_EXPECTS` is a short description of the +error that has occurred and is used for the exception's `what()` message. -There are times where a particular code path, if reached, should indicate an error no matter what. -For example, often the `default` case of a `switch` statement represents an invalid alternative. -Use the `CUGRAPH_FAIL` macro for such errors. This is effectively the same as calling +There are times where a particular code path, if reached, should indicate an error no matter what. +For example, often the `default` case of a `switch` statement represents an invalid alternative. +Use the `CUGRAPH_FAIL` macro for such errors. This is effectively the same as calling `CUGRAPH_EXPECTS(false, reason)`. Example: @@ -250,8 +250,8 @@ CUGRAPH_FAIL("This code path should not be reached."); ### CUDA Error Checking -Use the `CUDA_TRY` macro to check for the successful completion of CUDA runtime API functions. This -macro throws a `cugraph::cuda_error` exception if the CUDA API return value is not `cudaSuccess`. The +Use the `CUDA_TRY` macro to check for the successful completion of CUDA runtime API functions. This +macro throws a `cugraph::cuda_error` exception if the CUDA API return value is not `cudaSuccess`. The thrown exception includes a description of the CUDA error code in it's `what()` message. Example: diff --git a/cpp/doxygen/main_page.md b/cpp/doxygen/main_page.md index 3ff51a5aa43..287b7650286 100644 --- a/cpp/doxygen/main_page.md +++ b/cpp/doxygen/main_page.md @@ -1,3 +1,3 @@ # libcugraph -libcugraph is a C++ GPU Accelerated Graph Algorithm library. +libcugraph is a C++ GPU Accelerated Graph Algorithm library. diff --git a/cpp/libcugraph_etl/include/hash/concurrent_unordered_map.cuh b/cpp/libcugraph_etl/include/hash/concurrent_unordered_map.cuh index ab14ff6c685..18e3a6669ad 100644 --- a/cpp/libcugraph_etl/include/hash/concurrent_unordered_map.cuh +++ b/cpp/libcugraph_etl/include/hash/concurrent_unordered_map.cuh @@ -1,5 +1,5 @@ /* - * Copyright (c) 2017-2023, NVIDIA CORPORATION. All rights reserved. + * Copyright (c) 2017-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -16,7 +16,7 @@ /* * FIXME: This file is copied from cudf because CuCollections doesnt support concurrent - * insert/find for 8 byte key-value pair size. The plan is to migrate to + * insert/find for 8 byte key-value pair size. The plan is to migrate to * using the cuco when the feature is supported. At that point this file can be deleted. */ #pragma once diff --git a/cpp/src/c_api/ecg.cpp b/cpp/src/c_api/ecg.cpp index 53e034916b7..f91b86a864f 100644 --- a/cpp/src/c_api/ecg.cpp +++ b/cpp/src/c_api/ecg.cpp @@ -151,4 +151,4 @@ extern "C" cugraph_error_code_t cugraph_ecg(const cugraph_resource_handle_t* han do_expensive_check); return cugraph::c_api::run_algorithm(graph, functor, result, error); -} \ No newline at end of file +} diff --git a/cpp/tests/c_api/ecg_test.c b/cpp/tests/c_api/ecg_test.c index bd759ecae74..4d4dd64572f 100644 --- a/cpp/tests/c_api/ecg_test.c +++ b/cpp/tests/c_api/ecg_test.c @@ -192,4 +192,4 @@ int main(int argc, char** argv) result |= RUN_TEST(test_ecg); result |= RUN_TEST(test_ecg_no_weight); return result; -} \ No newline at end of file +} diff --git a/cpp/tests/c_api/generate_rmat_test.c b/cpp/tests/c_api/generate_rmat_test.c index 442031ff054..f1963fc1aa1 100644 --- a/cpp/tests/c_api/generate_rmat_test.c +++ b/cpp/tests/c_api/generate_rmat_test.c @@ -32,7 +32,7 @@ int test_rmat_generation() typedef float weight_t; vertex_t expected_src[] = { 17, 18, 0, 16, 1, 24, 16, 1, 6, 4, 2, 1, 14, 2, 16, 2, 5, 23, 4, 10, 4, 3, 0, 4, 11, 0, 0, 2, 24, 0}; - vertex_t expected_dst[] = { 0, 10, 23, 0, 26, 0, 2, 1, 27, 8, 1, 0, 21, 21, 0, 4, 8, 14, 10, 17, 0, 16, 0, 16, 25, 5, 8, 8, 4, 19}; + vertex_t expected_dst[] = { 0, 10, 23, 0, 26, 0, 2, 1, 27, 8, 1, 0, 21, 21, 0, 4, 8, 14, 10, 17, 0, 16, 0, 16, 25, 5, 8, 8, 4, 19}; cugraph_error_code_t ret_code = CUGRAPH_SUCCESS; cugraph_error_t* ret_error; @@ -47,7 +47,7 @@ int test_rmat_generation() ret_code = cugraph_rng_state_create(handle, 0, &rng_state, &ret_error); TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "rng_state create failed."); TEST_ALWAYS_ASSERT(ret_code == CUGRAPH_SUCCESS, cugraph_error_message(ret_error)); - + ret_code = cugraph_generate_rmat_edgelist(handle, rng_state, 5, @@ -130,7 +130,7 @@ int test_rmat_list_generation() size_t num_lists = 3; vertex_t max_vertex_id[] = { 32, 16, 32 }; size_t expected_len[] = { 20, 16, 20 }; - + ret_code = cugraph_rng_state_create(handle, 0, &rng_state, &ret_error); TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "rng_state create failed."); TEST_ALWAYS_ASSERT(ret_code == CUGRAPH_SUCCESS, cugraph_error_message(ret_error)); diff --git a/cpp/tests/c_api/mg_create_graph_test.c b/cpp/tests/c_api/mg_create_graph_test.c index 7156647b025..12ae730216a 100644 --- a/cpp/tests/c_api/mg_create_graph_test.c +++ b/cpp/tests/c_api/mg_create_graph_test.c @@ -187,7 +187,7 @@ int test_create_mg_graph_multiple_edge_lists(const cugraph_resource_handle_t* ha size_t vertex_count = local_num_vertices / num_local_arrays; size_t vertex_start = i * vertex_count; vertex_count = (i != (num_local_arrays - 1)) ? vertex_count : (local_num_vertices - vertex_start); - + ret_code = cugraph_type_erased_device_array_create(handle, vertex_count, vertex_tid, vertices + i, &ret_error); TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "vertices create failed."); @@ -375,7 +375,7 @@ int test_create_mg_graph_multiple_edge_lists_multi_edge(const cugraph_resource_h size_t vertex_count = (local_num_vertices + num_local_arrays - 1) / num_local_arrays; size_t vertex_start = i * vertex_count; vertex_count = (i != (num_local_arrays - 1)) ? vertex_count : (local_num_vertices - vertex_start); - + ret_code = cugraph_type_erased_device_array_create(handle, vertex_count, vertex_tid, vertices + i, &ret_error); TEST_ASSERT(test_ret_value, ret_code == CUGRAPH_SUCCESS, "vertices create failed."); diff --git a/cpp/tests/c_api/mg_ecg_test.c b/cpp/tests/c_api/mg_ecg_test.c index 846be8125e0..b14ebda2959 100644 --- a/cpp/tests/c_api/mg_ecg_test.c +++ b/cpp/tests/c_api/mg_ecg_test.c @@ -178,4 +178,4 @@ int main(int argc, char** argv) free_mg_raft_handle(raft_handle); return result; -} \ No newline at end of file +} diff --git a/cpp/tests/c_api/mg_uniform_neighbor_sample_test.c b/cpp/tests/c_api/mg_uniform_neighbor_sample_test.c index 86a0a92eb01..f84ae9975fd 100644 --- a/cpp/tests/c_api/mg_uniform_neighbor_sample_test.c +++ b/cpp/tests/c_api/mg_uniform_neighbor_sample_test.c @@ -229,7 +229,7 @@ int generic_uniform_neighbor_sample_test(const cugraph_resource_handle_t* handle for (size_t i = 1 ; i < sz ; ++i) { tmp_result_offsets[i-1] = tmp_result_offsets[i] - tmp_result_offsets[i-1]; } - + cugraph_test_host_gatherv_fill(handle, tmp_result_offsets, sz-1, SIZE_T, h_result_offsets + 1); h_result_offsets[0] = 0; @@ -255,7 +255,7 @@ int generic_uniform_neighbor_sample_test(const cugraph_resource_handle_t* handle M_w[h_src[i]][h_dst[i]] = h_wgt[i]; else M_w[h_src[i]][h_dst[i]] = 1.0; - + if (h_edge_ids != NULL) M_edge_id[h_src[i]][h_dst[i]] = h_edge_ids[i]; if (h_edge_types != NULL) M_edge_type[h_src[i]][h_dst[i]] = h_edge_types[i]; } @@ -900,7 +900,7 @@ int test_uniform_neighbor_sample_alex_bug(const cugraph_resource_handle_t* handl TEST_ASSERT(test_ret_value, result_offsets_size == expected_size[rank], "incorrect number of results"); - + cugraph_sample_result_free(result); #endif diff --git a/cpp/tests/c_api/similarity_test.c b/cpp/tests/c_api/similarity_test.c index 5637a9d2b01..ac7c3b98917 100644 --- a/cpp/tests/c_api/similarity_test.c +++ b/cpp/tests/c_api/similarity_test.c @@ -415,7 +415,7 @@ int test_all_pairs_jaccard() vertex_t h_second[] = {1, 2, 3, 4, 0, 2, 3, 5, 0, 1, 3, 4, 5, 0, 1, 2, 4, 0, 2, 3, 1, 2}; weight_t h_result[] = {0.2,0.25,0.666667,0.333333,0.2,0.4,0.166667,0.5,0.25,0.4,0.2,0.25,0.25,0.666667,0.166667,0.2,0.666667,0.333333,0.25,0.666667,0.5,0.25}; - return generic_all_pairs_similarity_test(h_src, + return generic_all_pairs_similarity_test(h_src, h_dst, h_wgt, h_first, @@ -593,7 +593,7 @@ int test_all_pairs_jaccard_topk() vertex_t h_second[] = {3, 5, 0, 4, 3, 1}; weight_t h_result[] = {0.666667, 0.5, 0.666667, 0.666667, 0.666667, 0.5}; - return generic_all_pairs_similarity_test(h_src, + return generic_all_pairs_similarity_test(h_src, h_dst, h_wgt, h_first, diff --git a/cpp/tests/c_api/uniform_neighbor_sample_test.c b/cpp/tests/c_api/uniform_neighbor_sample_test.c index 92f3821e3cc..15b2e937661 100644 --- a/cpp/tests/c_api/uniform_neighbor_sample_test.c +++ b/cpp/tests/c_api/uniform_neighbor_sample_test.c @@ -333,7 +333,7 @@ int generic_uniform_neighbor_sample_test(const cugraph_resource_handle_t* handle if (renumber_results) { size_t num_vertex_ids = 2 * (h_result_offsets[label_id+1] - h_result_offsets[label_id]); vertex_t vertex_ids[num_vertex_ids]; - + for (size_t i = 0 ; (i < (h_result_offsets[label_id+1] - h_result_offsets[label_id])) && (test_ret_value == 0) ; ++i) { vertex_ids[2*i] = h_result_srcs[h_result_offsets[label_id] + i]; vertex_ids[2*i+1] = h_result_dsts[h_result_offsets[label_id] + i]; @@ -345,7 +345,7 @@ int generic_uniform_neighbor_sample_test(const cugraph_resource_handle_t* handle for (size_t i = 0 ; (i < num_vertex_ids) && (test_ret_value == 0) ; ++i) { if (vertex_ids[i] == current_v) ++current_v; - else + else TEST_ASSERT(test_ret_value, vertex_ids[i] == (current_v - 1), "vertices are not properly renumbered"); diff --git a/datasets/README.md b/datasets/README.md index a23dc644081..53f180dfdc1 100644 --- a/datasets/README.md +++ b/datasets/README.md @@ -18,11 +18,11 @@ This directory contains small public datasets in `mtx` and `csv` format used by -### Modified datasets +### Modified datasets The datasets below were added to provide input that contains self-loops, string vertex IDs, isolated vertices, and multiple edges. -| Graph | V | E | Directed | Weighted | self-loops | Isolated V | String V IDs | Multi-edges | +| Graph | V | E | Directed | Weighted | self-loops | Isolated V | String V IDs | Multi-edges | | ------------------- | ------- | ---------- | -------- | --------- | ---------- | ---------- | ------------ | ----------- | | karate_multi_edge | 34 | 160 | No | Yes | No | No | No | Yes | | dolphins_multi_edge | 62 | 325 | No | Yes | No | No | No | Yes | @@ -46,22 +46,22 @@ The datasets below were added to provide input that contains self-loops, string ### Additional datasets -Larger datasets containing self-loops can be downloaded by running the provided script from the `datasets` directory using the `--self_loops` -option: +Larger datasets containing self-loops can be downloaded by running the provided script from the `datasets` directory using the `--self_loops` +option: ``` cd /datasets ./get_test_data.sh --self_loops ``` ``` /datasets/self_loops - |-ca-AstroPh (5.3M) + |-ca-AstroPh (5.3M) |-ca-CondMat (2.8M) |-ca-GrQc (348K) |-ca-HepTh (763K) ``` These datasets are not currently used by any tests or benchmarks -| Graph | V | E | Directed | Weighted | self-loops | Isolated V | String V IDs | Multi-edges | +| Graph | V | E | Directed | Weighted | self-loops | Isolated V | String V IDs | Multi-edges | | ------------- | ------- | -------- | -------- | -------- | ---------- | ---------- | ------------ | ----------- | | ca-AstroPh | 18,772 | 198,110 | No | No | Yes | No | No | No | | ca-CondMat | 23,133 | 93,497 | No | Yes | Yes | No | No | No | @@ -77,7 +77,7 @@ These datasets are not currently used by any tests or benchmarks **ca-HepTh** : The graph "ca-HepTh" covers scientific collaborations between authors papers submitted to High Energy Physics - Theory category in the period from January 1993 to April 2003 (124 months), as described by J. Leskovec, J. Kleinberg and C. Faloutsos in 2007. -## Custom path to larger datasets directory +## Custom path to larger datasets directory Cugraph's C++ and Python analytics tests need larger datasets (>5GB uncompressed) and reference results (>125MB uncompressed). They can be downloaded by running the provided script from the `datasets` directory. ``` @@ -133,4 +133,4 @@ _NOTE: the benchmark datasets were converted to a CSV format from their original ## Reference The SuiteSparse Matrix Collection (formerly the University of Florida Sparse Matrix Collection) : https://sparse.tamu.edu/ -The Stanford Network Analysis Platform (SNAP) +The Stanford Network Analysis Platform (SNAP) diff --git a/datasets/dolphins.mtx b/datasets/dolphins.mtx index 581940502d3..4b5bc79a180 100644 --- a/datasets/dolphins.mtx +++ b/datasets/dolphins.mtx @@ -13,25 +13,25 @@ % kind: undirected graph %------------------------------------------------------------------------------- % notes: -% Network collection from M. Newman -% http://www-personal.umich.edu/~mejn/netdata/ -% -% The graph dolphins contains an undirected social network of frequent -% associations between 62 dolphins in a community living off Doubtful Sound, -% New Zealand, as compiled by Lusseau et al. (2003). Please cite -% -% D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and +% Network collection from M. Newman +% http://www-personal.umich.edu/~mejn/netdata/ +% +% The graph dolphins contains an undirected social network of frequent +% associations between 62 dolphins in a community living off Doubtful Sound, +% New Zealand, as compiled by Lusseau et al. (2003). Please cite +% +% D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and % S. M. Dawson, The bottlenose dolphin community of Doubtful Sound features -% a large proportion of long-lasting associations, Behavioral Ecology and -% Sociobiology 54, 396-405 (2003). -% -% Additional information on the network can be found in -% -% D. Lusseau, The emergent properties of a dolphin social network, -% Proc. R. Soc. London B (suppl.) 270, S186-S188 (2003). -% -% D. Lusseau, Evidence for social role in a dolphin social network, -% Preprint q-bio/0607048 (http://arxiv.org/abs/q-bio.PE/0607048) +% a large proportion of long-lasting associations, Behavioral Ecology and +% Sociobiology 54, 396-405 (2003). +% +% Additional information on the network can be found in +% +% D. Lusseau, The emergent properties of a dolphin social network, +% Proc. R. Soc. London B (suppl.) 270, S186-S188 (2003). +% +% D. Lusseau, Evidence for social role in a dolphin social network, +% Preprint q-bio/0607048 (http://arxiv.org/abs/q-bio.PE/0607048) %------------------------------------------------------------------------------- 62 62 159 11 1 diff --git a/datasets/karate.mtx b/datasets/karate.mtx index 59df7607443..9ecdff42d7e 100644 --- a/datasets/karate.mtx +++ b/datasets/karate.mtx @@ -12,14 +12,14 @@ % kind: undirected graph %------------------------------------------------------------------------------- % notes: -% Network collection from M. Newman -% http://www-personal.umich.edu/~mejn/netdata/ -% -% The graph "karate" contains the network of friendships between the 34 -% members of a karate club at a US university, as described by Wayne Zachary +% Network collection from M. Newman +% http://www-personal.umich.edu/~mejn/netdata/ +% +% The graph "karate" contains the network of friendships between the 34 +% members of a karate club at a US university, as described by Wayne Zachary % in 1977. If you use these data in your work, please cite W. W. Zachary, An % information flow model for conflict and fission in small groups, Journal of -% Anthropological Research 33, 452-473 (1977). +% Anthropological Research 33, 452-473 (1977). %------------------------------------------------------------------------------- 34 34 78 2 1 diff --git a/datasets/karate_mod.mtx b/datasets/karate_mod.mtx index 3a562406800..072d4d9185c 100644 --- a/datasets/karate_mod.mtx +++ b/datasets/karate_mod.mtx @@ -39,7 +39,7 @@ 11 6 17 6 17 7 -31 9 +31 9 33 9 34 9 34 10 diff --git a/datasets/karate_str.mtx b/datasets/karate_str.mtx index 0564d30f91d..3708a722643 100644 --- a/datasets/karate_str.mtx +++ b/datasets/karate_str.mtx @@ -11,7 +11,7 @@ cq a9 1 ca a9 1 gd a9 1 y4 a9 1 -kx a9 1 +kx a9 1 u3 a9 1 id a9 1 ts 9q 1 diff --git a/datasets/netscience.mtx b/datasets/netscience.mtx index 71a75131995..8e1c0c1077c 100644 --- a/datasets/netscience.mtx +++ b/datasets/netscience.mtx @@ -13,23 +13,23 @@ % kind: undirected weighted graph %------------------------------------------------------------------------------- % notes: -% Network collection from M. Newman -% http://www-personal.umich.edu/~mejn/netdata/ -% -% The graph netscience contains a coauthorship network of scientists -% working on network theory and experiment, as compiled by M. Newman in May -% 2006. The network was compiled from the bibliographies of two review -% articles on networks, M. E. J. Newman, SIAM Review 45, 167-256 (2003) and -% S. Boccaletti et al., Physics Reports 424, 175-308 (2006), with a few -% additional references added by hand. The version given here contains all +% Network collection from M. Newman +% http://www-personal.umich.edu/~mejn/netdata/ +% +% The graph netscience contains a coauthorship network of scientists +% working on network theory and experiment, as compiled by M. Newman in May +% 2006. The network was compiled from the bibliographies of two review +% articles on networks, M. E. J. Newman, SIAM Review 45, 167-256 (2003) and +% S. Boccaletti et al., Physics Reports 424, 175-308 (2006), with a few +% additional references added by hand. The version given here contains all % components of the network, for a total of 1589 scientists, and not just the -% largest component of 379 scientists previously published. The network is -% weighted, with weights assigned as described in M. E. J. Newman, -% Phys. Rev. E 64, 016132 (2001). -% -% If you make use of these data, please cite M. E. J. Newman, Finding -% community structure in networks using the eigenvectors of matrices, -% Preprint physics/0605087 (2006). +% largest component of 379 scientists previously published. The network is +% weighted, with weights assigned as described in M. E. J. Newman, +% Phys. Rev. E 64, 016132 (2001). +% +% If you make use of these data, please cite M. E. J. Newman, Finding +% community structure in networks using the eigenvectors of matrices, +% Preprint physics/0605087 (2006). %------------------------------------------------------------------------------- 1589 1589 2742 2 1 2.5 diff --git a/datasets/polbooks.mtx b/datasets/polbooks.mtx index 65266677b39..30479086d0a 100644 --- a/datasets/polbooks.mtx +++ b/datasets/polbooks.mtx @@ -13,24 +13,24 @@ % kind: undirected graph %------------------------------------------------------------------------------- % notes: -% Network collection from M. Newman -% http://www-personal.umich.edu/~mejn/netdata/ -% -% Books about US politics -% Compiled by Valdis Krebs -% -% Nodes represent books about US politics sold by the online bookseller -% Amazon.com. Edges represent frequent co-purchasing of books by the same -% buyers, as indicated by the "customers who bought this book also bought -% these other books" feature on Amazon. -% +% Network collection from M. Newman +% http://www-personal.umich.edu/~mejn/netdata/ +% +% Books about US politics +% Compiled by Valdis Krebs +% +% Nodes represent books about US politics sold by the online bookseller +% Amazon.com. Edges represent frequent co-purchasing of books by the same +% buyers, as indicated by the "customers who bought this book also bought +% these other books" feature on Amazon. +% % Nodes have been given values "l", "n", or "c" to indicate whether they are -% "liberal", "neutral", or "conservative". These alignments were assigned -% separately by Mark Newman based on a reading of the descriptions and -% reviews of the books posted on Amazon. -% -% These data should be cited as V. Krebs, unpublished, -% http://www.orgnet.com/. +% "liberal", "neutral", or "conservative". These alignments were assigned +% separately by Mark Newman based on a reading of the descriptions and +% reviews of the books posted on Amazon. +% +% These data should be cited as V. Krebs, unpublished, +% http://www.orgnet.com/. %------------------------------------------------------------------------------- 105 105 441 2 1 diff --git a/datasets/small_line.csv b/datasets/small_line.csv index 68751f432a2..55494314212 100644 --- a/datasets/small_line.csv +++ b/datasets/small_line.csv @@ -6,4 +6,4 @@ 5 6 1.0 6 7 1.0 7 8 1.0 -8 9 1.0 \ No newline at end of file +8 9 1.0 diff --git a/datasets/toy_graph.csv b/datasets/toy_graph.csv index 02069f5e153..cb07d7b1ff9 100644 --- a/datasets/toy_graph.csv +++ b/datasets/toy_graph.csv @@ -13,4 +13,4 @@ 1 2 3.1 3 2 4.1 5 3 7.2 -5 4 3.2 \ No newline at end of file +5 4 3.2 diff --git a/datasets/toy_graph_undirected.csv b/datasets/toy_graph_undirected.csv index dec4a956c85..cafd02ae285 100644 --- a/datasets/toy_graph_undirected.csv +++ b/datasets/toy_graph_undirected.csv @@ -5,4 +5,4 @@ 2 1 3.1 2 3 4.1 3 5 7.2 -4 5 3.2 \ No newline at end of file +4 5 3.2 diff --git a/docs/cugraph/Makefile b/docs/cugraph/Makefile index f92d0be6910..ac16367ef52 100644 --- a/docs/cugraph/Makefile +++ b/docs/cugraph/Makefile @@ -23,4 +23,4 @@ clean: # Catch-all target: route all unknown targets to Sphinx using the new # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). %: Makefile - @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) \ No newline at end of file + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/docs/cugraph/README.md b/docs/cugraph/README.md index 734867af965..970a03a040c 100644 --- a/docs/cugraph/README.md +++ b/docs/cugraph/README.md @@ -5,7 +5,7 @@ All prerequisite for building docs are in the cugraph development conda environm ## Steps to follow: -In order to build the docs, we need the conda dev environment from cugraph and we need to build cugraph from source. +In order to build the docs, we need the conda dev environment from cugraph and we need to build cugraph from source. 1. Create a conda env and build cugraph from source. The dependencies to build rapids from source are installed in that conda environment, and then rapids is built and installed into the same environment. diff --git a/docs/cugraph/source/_static/references.css b/docs/cugraph/source/_static/references.css index 225cf13ba94..d1f647233a8 100644 --- a/docs/cugraph/source/_static/references.css +++ b/docs/cugraph/source/_static/references.css @@ -20,4 +20,4 @@ dl.citation > dt.label > span::before { /* Add closing bracket */ dl.citation > dt.label > span::after { content: "]"; -} \ No newline at end of file +} diff --git a/docs/cugraph/source/api_docs/cugraph-ops/c_cpp/index.rst b/docs/cugraph/source/api_docs/cugraph-ops/c_cpp/index.rst index 5545bebe975..39dae955ef3 100644 --- a/docs/cugraph/source/api_docs/cugraph-ops/c_cpp/index.rst +++ b/docs/cugraph/source/api_docs/cugraph-ops/c_cpp/index.rst @@ -1,3 +1,2 @@ cugraph-ops C++ API Reference ============================= - diff --git a/docs/cugraph/source/api_docs/cugraph-ops/index.rst b/docs/cugraph/source/api_docs/cugraph-ops/index.rst index fdfd5baab96..0f6a6c937d3 100644 --- a/docs/cugraph/source/api_docs/cugraph-ops/index.rst +++ b/docs/cugraph/source/api_docs/cugraph-ops/index.rst @@ -8,4 +8,4 @@ This page provides a list of all publicly accessible modules, methods and classe :caption: API Documentation python/index - c_cpp/index \ No newline at end of file + c_cpp/index diff --git a/docs/cugraph/source/api_docs/cugraph-ops/python/index.rst b/docs/cugraph/source/api_docs/cugraph-ops/python/index.rst index 082c7741f23..fb25f2fa005 100644 --- a/docs/cugraph/source/api_docs/cugraph-ops/python/index.rst +++ b/docs/cugraph/source/api_docs/cugraph-ops/python/index.rst @@ -1,5 +1,5 @@ cugraph-ops Python API reference -================================ +================================ This page provides a list of all publicly accessible modules, methods and classes through `pylibcugraphops.*` namespace. diff --git a/docs/cugraph/source/api_docs/cugraph-pyg/cugraph_pyg.rst b/docs/cugraph/source/api_docs/cugraph-pyg/cugraph_pyg.rst index f7d7f5f2262..a150d4db9fe 100644 --- a/docs/cugraph/source/api_docs/cugraph-pyg/cugraph_pyg.rst +++ b/docs/cugraph/source/api_docs/cugraph-pyg/cugraph_pyg.rst @@ -11,4 +11,3 @@ cugraph-pyg .. cugraph_pyg.data.cugraph_store.EXPERIMENTAL__CuGraphStore .. cugraph_pyg.sampler.cugraph_sampler.EXPERIMENTAL__CuGraphSampler - diff --git a/docs/cugraph/source/api_docs/cugraph/components.rst b/docs/cugraph/source/api_docs/cugraph/components.rst index 560aa1f8ca0..e61291fccf0 100644 --- a/docs/cugraph/source/api_docs/cugraph/components.rst +++ b/docs/cugraph/source/api_docs/cugraph/components.rst @@ -20,4 +20,3 @@ Connected Components (MG) :toctree: ../api/cugraph/ cugraph.dask.components.connectivity.weakly_connected_components - diff --git a/docs/cugraph/source/api_docs/cugraph/dask-cugraph.rst b/docs/cugraph/source/api_docs/cugraph/dask-cugraph.rst index a2d49789053..d9ba3f3a792 100644 --- a/docs/cugraph/source/api_docs/cugraph/dask-cugraph.rst +++ b/docs/cugraph/source/api_docs/cugraph/dask-cugraph.rst @@ -48,12 +48,12 @@ Example ) input_data.to_csv(input_data_path, index=False) - # helper function to set the reader chunk size to automatically get one partition per GPU + # helper function to set the reader chunk size to automatically get one partition per GPU chunksize = dask_cugraph.get_chunksize(input_data_path) # multi-GPU CSV reader e_list = dask_cudf.read_csv( - input_data_path, + input_data_path, chunksize=chunksize, names=['src', 'dst'], dtype=['int32', 'int32'], diff --git a/docs/cugraph/source/api_docs/cugraph/generators.rst b/docs/cugraph/source/api_docs/cugraph/generators.rst index 4f93d943e6c..f5180a172cd 100644 --- a/docs/cugraph/source/api_docs/cugraph/generators.rst +++ b/docs/cugraph/source/api_docs/cugraph/generators.rst @@ -11,4 +11,3 @@ RMAT :toctree: ../api/cugraph/ cugraph.generators.rmat - diff --git a/docs/cugraph/source/api_docs/cugraph/graph_implementation.rst b/docs/cugraph/source/api_docs/cugraph/graph_implementation.rst index 91c16c24248..ae14306ce27 100644 --- a/docs/cugraph/source/api_docs/cugraph/graph_implementation.rst +++ b/docs/cugraph/source/api_docs/cugraph/graph_implementation.rst @@ -31,4 +31,4 @@ Graph Implementation edges nodes neighbors - vertex_column_size \ No newline at end of file + vertex_column_size diff --git a/docs/cugraph/source/api_docs/cugraph/helper_functions.rst b/docs/cugraph/source/api_docs/cugraph/helper_functions.rst index 02cb599ae55..e7091c50c44 100644 --- a/docs/cugraph/source/api_docs/cugraph/helper_functions.rst +++ b/docs/cugraph/source/api_docs/cugraph/helper_functions.rst @@ -20,4 +20,3 @@ Methods cugraph.dask.comms.comms.get_handle cugraph.dask.comms.comms.get_worker_id cugraph.dask.common.read_utils.get_chunksize - diff --git a/docs/cugraph/source/api_docs/cugraph/layout.rst b/docs/cugraph/source/api_docs/cugraph/layout.rst index ed97caf549f..d416676a62e 100644 --- a/docs/cugraph/source/api_docs/cugraph/layout.rst +++ b/docs/cugraph/source/api_docs/cugraph/layout.rst @@ -10,4 +10,3 @@ Force Atlas 2 :toctree: ../api/cugraph/ cugraph.force_atlas2 - diff --git a/docs/cugraph/source/api_docs/cugraph/link_analysis.rst b/docs/cugraph/source/api_docs/cugraph/link_analysis.rst index 48b5ec1176f..698880c1b9e 100644 --- a/docs/cugraph/source/api_docs/cugraph/link_analysis.rst +++ b/docs/cugraph/source/api_docs/cugraph/link_analysis.rst @@ -32,4 +32,3 @@ Pagerank (MG) :toctree: ../api/cugraph/ cugraph.dask.link_analysis.pagerank.pagerank - diff --git a/docs/cugraph/source/api_docs/cugraph/tree.rst b/docs/cugraph/source/api_docs/cugraph/tree.rst index 5ba2242ebb6..d8a89046aa3 100644 --- a/docs/cugraph/source/api_docs/cugraph/tree.rst +++ b/docs/cugraph/source/api_docs/cugraph/tree.rst @@ -18,4 +18,3 @@ Maximum Spanning Tree :toctree: ../api/cugraph/ cugraph.tree.minimum_spanning_tree.maximum_spanning_tree - diff --git a/docs/cugraph/source/api_docs/cugraph_c/centrality.rst b/docs/cugraph/source/api_docs/cugraph_c/centrality.rst index f34e26ad76e..3bea608fd5a 100644 --- a/docs/cugraph/source/api_docs/cugraph_c/centrality.rst +++ b/docs/cugraph/source/api_docs/cugraph_c/centrality.rst @@ -48,4 +48,3 @@ Centrality Support Functions :project: libcugraph :members: :content-only: - diff --git a/docs/cugraph/source/api_docs/cugraph_c/community.rst b/docs/cugraph/source/api_docs/cugraph_c/community.rst index d55325720c4..6b500a972a7 100644 --- a/docs/cugraph/source/api_docs/cugraph_c/community.rst +++ b/docs/cugraph/source/api_docs/cugraph_c/community.rst @@ -54,4 +54,3 @@ Community Support Functions :project: libcugraph :members: :content-only: - diff --git a/docs/cugraph/source/api_docs/cugraph_c/labeling.rst b/docs/cugraph/source/api_docs/cugraph_c/labeling.rst index 4ca598c0a06..2b709ebd343 100644 --- a/docs/cugraph/source/api_docs/cugraph_c/labeling.rst +++ b/docs/cugraph/source/api_docs/cugraph_c/labeling.rst @@ -17,4 +17,4 @@ Labeling Support Functions .. doxygengroup:: labeling :project: libcugraph :members: - :content-only: \ No newline at end of file + :content-only: diff --git a/docs/cugraph/source/api_docs/cugraph_c/similarity.rst b/docs/cugraph/source/api_docs/cugraph_c/similarity.rst index 200ba695781..75735925e4d 100644 --- a/docs/cugraph/source/api_docs/cugraph_c/similarity.rst +++ b/docs/cugraph/source/api_docs/cugraph_c/similarity.rst @@ -22,4 +22,4 @@ Similarty Support Functions .. doxygengroup:: similarity :project: libcugraph :members: - :content-only: \ No newline at end of file + :content-only: diff --git a/docs/cugraph/source/api_docs/cugraph_c/traversal.rst b/docs/cugraph/source/api_docs/cugraph_c/traversal.rst index 1578951e05f..bde30f4fa6e 100644 --- a/docs/cugraph/source/api_docs/cugraph_c/traversal.rst +++ b/docs/cugraph/source/api_docs/cugraph_c/traversal.rst @@ -27,4 +27,4 @@ Traversal Support Functions .. doxygengroup:: traversal :project: libcugraph :members: - :content-only: \ No newline at end of file + :content-only: diff --git a/docs/cugraph/source/api_docs/index.rst b/docs/cugraph/source/api_docs/index.rst index 74ca98bb98d..1b907165a39 100644 --- a/docs/cugraph/source/api_docs/index.rst +++ b/docs/cugraph/source/api_docs/index.rst @@ -35,5 +35,3 @@ Additional Graph Packages API Documentation :caption: Additional Graph Packages API Documentation service/index.rst - - diff --git a/docs/cugraph/source/api_docs/service/index.rst b/docs/cugraph/source/api_docs/service/index.rst index a58cf207456..ca251e475d4 100644 --- a/docs/cugraph/source/api_docs/service/index.rst +++ b/docs/cugraph/source/api_docs/service/index.rst @@ -7,4 +7,4 @@ cugraph-service API Reference :caption: cugraph-service API Documentation cugraph_service_client - cugraph_service_server \ No newline at end of file + cugraph_service_server diff --git a/docs/cugraph/source/basics/cugraph_cascading.md b/docs/cugraph/source/basics/cugraph_cascading.md index 7795e9e007a..bad3d7fa6a8 100644 --- a/docs/cugraph/source/basics/cugraph_cascading.md +++ b/docs/cugraph/source/basics/cugraph_cascading.md @@ -3,7 +3,7 @@ BLUF: cuGraph does not support method cascading -[Method Cascading](https://en.wikipedia.org/wiki/Method_cascading) is a popular, and useful, functional programming concept and is a great way to make code more readable. Python supports method cascading ... _for the most part_. There are a number of Python built-in classes that do not support cascading. +[Method Cascading](https://en.wikipedia.org/wiki/Method_cascading) is a popular, and useful, functional programming concept and is a great way to make code more readable. Python supports method cascading ... _for the most part_. There are a number of Python built-in classes that do not support cascading. An example, from cuDF, is a sequence of method calls for loading data and then finding the largest values from a subset of the data (yes there are other ways this could be done): @@ -11,13 +11,13 @@ An example, from cuDF, is a sequence of method calls for loading data and then gdf = cudf.from_pandas(df).query(‘val > 200’).nlargest(‘va’3) ``` -cuGraph does not support method cascading for two main reasons: (1) the object-oriented nature of the Graph data object leverages in-place methods, and (2) the fact that algorithms operate on graphs rather than graphs running algorithms. +cuGraph does not support method cascading for two main reasons: (1) the object-oriented nature of the Graph data object leverages in-place methods, and (2) the fact that algorithms operate on graphs rather than graphs running algorithms. ## Graph Data Objects -cuGraph follows an object-oriented design for the Graph objects. Users create a Graph and can then add data to object, but every add method call returns `None`. +cuGraph follows an object-oriented design for the Graph objects. Users create a Graph and can then add data to object, but every add method call returns `None`. _Why Inplace methods?_
-cuGraph focuses on the big graph problems where there are 10s of millions to trillions of edges (Giga bytes to Terabytes of data). At that scale, creating a copy of the data becomes memory inefficient. +cuGraph focuses on the big graph problems where there are 10s of millions to trillions of edges (Giga bytes to Terabytes of data). At that scale, creating a copy of the data becomes memory inefficient. _Why not return `self` rather than `None`?_
It would be simple to modify the methods to return `self` rather than `None`, however it opens the methods to misinterpretation. Consider the following code: diff --git a/docs/cugraph/source/basics/cugraph_intro.md b/docs/cugraph/source/basics/cugraph_intro.md index 10d14f8a0d7..7ad2825604a 100644 --- a/docs/cugraph/source/basics/cugraph_intro.md +++ b/docs/cugraph/source/basics/cugraph_intro.md @@ -1,51 +1,51 @@ # cuGraph Introduction -The Data Scientist has a collection of techniques within their -proverbial toolbox. Data engineering, statistical analysis, and -machine learning are among the most commonly known. However, there -are numerous cases where the focus of the analysis is on the -relationship between data elements. In those cases, the data is best -represented as a graph. Graph analysis, also called network analysis, -is a collection of algorithms for answering questions posed against +The Data Scientist has a collection of techniques within their +proverbial toolbox. Data engineering, statistical analysis, and +machine learning are among the most commonly known. However, there +are numerous cases where the focus of the analysis is on the +relationship between data elements. In those cases, the data is best +represented as a graph. Graph analysis, also called network analysis, +is a collection of algorithms for answering questions posed against graph data. Graph analysis is not new. -The first graph problem was posed by Euler in 1736, the [Seven Bridges of -Konigsberg](https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg), -and laid the foundation for the mathematical field of graph theory. -The application of graph analysis covers a wide variety of fields, including +The first graph problem was posed by Euler in 1736, the [Seven Bridges of +Konigsberg](https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg), +and laid the foundation for the mathematical field of graph theory. +The application of graph analysis covers a wide variety of fields, including marketing, biology, physics, computer science, sociology, and cyber to name a few. -RAPIDS cuGraph is a library of graph algorithms that seamlessly integrates -into the RAPIDS data science ecosystem and allows the data scientist to easily -call graph algorithms using data stored in a GPU DataFrame, NetworkX Graphs, or even -CuPy or SciPy sparse Matrix. +RAPIDS cuGraph is a library of graph algorithms that seamlessly integrates +into the RAPIDS data science ecosystem and allows the data scientist to easily +call graph algorithms using data stored in a GPU DataFrame, NetworkX Graphs, or even +CuPy or SciPy sparse Matrix. ## Vision -The vision of RAPIDS cuGraph is to ___make graph analysis ubiquitous to the -point that users just think in terms of analysis and not technologies or -frameworks___. This is a goal that many of us on the cuGraph team have been -working on for almost twenty years. Many of the early attempts focused on -solving one problem or using one technique. Those early attempts worked for -the initial goal but tended to break as the scope changed (e.g., shifting -to solving a dynamic graph problem with a static graph solution). The limiting -factors usually came down to compute power, ease-of-use, or choosing a data -structure that was not suited for all problems. NVIDIA GPUs, CUDA, and RAPIDS -have totally changed the paradigm and the goal of an accelerated unified graph +The vision of RAPIDS cuGraph is to ___make graph analysis ubiquitous to the +point that users just think in terms of analysis and not technologies or +frameworks___. This is a goal that many of us on the cuGraph team have been +working on for almost twenty years. Many of the early attempts focused on +solving one problem or using one technique. Those early attempts worked for +the initial goal but tended to break as the scope changed (e.g., shifting +to solving a dynamic graph problem with a static graph solution). The limiting +factors usually came down to compute power, ease-of-use, or choosing a data +structure that was not suited for all problems. NVIDIA GPUs, CUDA, and RAPIDS +have totally changed the paradigm and the goal of an accelerated unified graph analytic library is now possible. -The compute power of the latest NVIDIA GPUs (RAPIDS supports Pascal and later -GPU architectures) make graph analytics 1000x faster on average over NetworkX. -Moreover, the internal memory speed within a GPU allows cuGraph to rapidly -switch the data structure to best suit the needs of the analytic rather than -being restricted to a single data structure. cuGraph is working with several -frameworks for both static and dynamic graph data structures so that we always -have a solution to any graph problem. Since Python has emerged as the de facto -language for data science, allowing interactivity and the ability to run graph -analytics in Python makes cuGraph familiar and approachable. RAPIDS wraps all -the graph analytic goodness mentioned above with the ability to perform -high-speed ETL, statistics, and machine learning. To make things even better, -RAPIDS and DASK allows cuGraph to scale to multiple GPUs to support +The compute power of the latest NVIDIA GPUs (RAPIDS supports Pascal and later +GPU architectures) make graph analytics 1000x faster on average over NetworkX. +Moreover, the internal memory speed within a GPU allows cuGraph to rapidly +switch the data structure to best suit the needs of the analytic rather than +being restricted to a single data structure. cuGraph is working with several +frameworks for both static and dynamic graph data structures so that we always +have a solution to any graph problem. Since Python has emerged as the de facto +language for data science, allowing interactivity and the ability to run graph +analytics in Python makes cuGraph familiar and approachable. RAPIDS wraps all +the graph analytic goodness mentioned above with the ability to perform +high-speed ETL, statistics, and machine learning. To make things even better, +RAPIDS and DASK allows cuGraph to scale to multiple GPUs to support multi-billion edge graphs. @@ -65,9 +65,4 @@ possible. However, each field has its own argot (jargon) for describing the graph (or network). In our documentation, we try to be consistent. In Python documentation we will mostly use the terms __Node__ and __Edge__ to better match NetworkX preferred term use, as well as other Python-based tools. At -the CUDA/C layer, we favor the mathematical terms of __Vertex__ and __Edge__. - - - - - \ No newline at end of file +the CUDA/C layer, we favor the mathematical terms of __Vertex__ and __Edge__. diff --git a/docs/cugraph/source/basics/nx_transition.rst b/docs/cugraph/source/basics/nx_transition.rst index 3d116162c09..9849865814d 100644 --- a/docs/cugraph/source/basics/nx_transition.rst +++ b/docs/cugraph/source/basics/nx_transition.rst @@ -2,7 +2,7 @@ NetworkX Compatibility and Transition ************************************** -*Note: this is a work in progress and will be updatred and changed as we better flesh out +*Note: this is a work in progress and will be updatred and changed as we better flesh out compatibility issues* One of the goals of RAPIDS cuGraph is to mimic the NetworkX API to simplify @@ -13,7 +13,7 @@ and then the construction of a graph object; that is all before the execution of a graph algorithm. RAPIDS and cuGraph allow a portion or the complete analytic workflow to be accelerated. To achieve the maximum amount of acceleration, we encourage fully replacing existing code with cuGraph. -But sometimes it is easier to replace just a portion. +But sometimes it is easier to replace just a portion. Last Update ########### @@ -23,7 +23,7 @@ Release: 0.16 Information on `NetworkX `_ -This transition guide in an expansion of the Medium Blog on `NetworkX Compatibility +This transition guide in an expansion of the Medium Blog on `NetworkX Compatibility `_ @@ -33,7 +33,7 @@ Easy Path – Use NetworkX Graph Objects, Accelerated Algorithms Rather than updating all of your existing code, simply update the calls to graph algorithms by replacing the module name. This allows all the complicated ETL code to be unchanged while still seeing significate performance -improvements. +improvements. In the following example, the cuGraph module is being imported as “cnx”. While module can be assigned any name can be used, we picked cnx to reduce @@ -44,10 +44,10 @@ changes. :width: 600 It is that easy. All algorithms in cuGraph support a NetworkX graph object as -input and match the NetworkX API list of arguments. +input and match the NetworkX API list of arguments. Currently, cuGraph accepts both NetworkX Graph and DiGraph objects. We will be -adding support for Bipartite graph and Multigraph over the next few releases. +adding support for Bipartite graph and Multigraph over the next few releases. | @@ -58,7 +58,7 @@ Differences in Algorithms Since cuGraph currently does not support attribute rich graphs, those algorithms that return simple scores (centrality, clustering, etc.) best match the NetworkX process. Algorithms that return a subgraph will do so without -any additional attributes on the nodes or edges. +any additional attributes on the nodes or edges. Algorithms that exactly match ***************************** @@ -142,8 +142,8 @@ Algorithms where the results are different ****************************************** -For example, the NetworkX traversal algorithms typically return a generator -rather than a dictionary. +For example, the NetworkX traversal algorithms typically return a generator +rather than a dictionary. +----------------------------+-------------------------------------------------+ @@ -154,7 +154,7 @@ rather than a dictionary. | | (on roadmap to update) | +----------------------------+-------------------------------------------------+ | Jaccard coefficient | Currently we only do a 1-hop computation rather | -| | than an all-pairs. Fix is on roadmap | +| | than an all-pairs. Fix is on roadmap | +----------------------------+-------------------------------------------------+ | Breadth First Search (BFS) | Returns a Pandas DataFrame with: | | | [vertex][distance][predecessor] | @@ -185,14 +185,13 @@ code for building a NetworkX Graph:: ) -The code block is perfectly fine for NetworkX. However, the process of iterating over the dataframe and adding one node at a time is problematic for GPUs and something that we try and avoid. cuGraph stores data in columns (i.e. arrays). Resizing an array requires allocating a new array one element larger, copying the data, and adding the new value. That is not very efficient. +The code block is perfectly fine for NetworkX. However, the process of iterating over the dataframe and adding one node at a time is problematic for GPUs and something that we try and avoid. cuGraph stores data in columns (i.e. arrays). Resizing an array requires allocating a new array one element larger, copying the data, and adding the new value. That is not very efficient. -If your code follows the above model of inserting one element at a time, the we suggest either rewriting that code or using it as is within NetworkX and just accelerating the algorithms with cuGraph. +If your code follows the above model of inserting one element at a time, the we suggest either rewriting that code or using it as is within NetworkX and just accelerating the algorithms with cuGraph. Now, if your code bulk loads the data from Pandas, then RAPIDS can accelerate that process by orders of magnitude. .. image:: ../images/Nx_Cg_2.png :width: 600 -The above cuGraph code will create cuGraph.Graph object and not a NetworkX.Graph object. - +The above cuGraph code will create cuGraph.Graph object and not a NetworkX.Graph object. diff --git a/docs/cugraph/source/dev_resources/API.rst b/docs/cugraph/source/dev_resources/API.rst index 409e307fd9f..e32315d2fb9 100644 --- a/docs/cugraph/source/dev_resources/API.rst +++ b/docs/cugraph/source/dev_resources/API.rst @@ -2,4 +2,4 @@ API === -https://docs.rapids.ai/api/cugraph/nightly/api_docs/index.html \ No newline at end of file +https://docs.rapids.ai/api/cugraph/nightly/api_docs/index.html diff --git a/docs/cugraph/source/dev_resources/index.rst b/docs/cugraph/source/dev_resources/index.rst index 8568772b35c..fc2c4f4780f 100644 --- a/docs/cugraph/source/dev_resources/index.rst +++ b/docs/cugraph/source/dev_resources/index.rst @@ -7,4 +7,4 @@ Developer Resources :maxdepth: 3 https://docs.rapids.ai/maintainers - API.rst \ No newline at end of file + API.rst diff --git a/docs/cugraph/source/graph_support/DGL_support.md b/docs/cugraph/source/graph_support/DGL_support.md index fc1f1b45bde..dc4f66180ac 100644 --- a/docs/cugraph/source/graph_support/DGL_support.md +++ b/docs/cugraph/source/graph_support/DGL_support.md @@ -2,7 +2,7 @@ ## Description -[RAPIDS](https://rapids.ai) cugraph_dgl provides a duck-typed version of the [DGLGraph](https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph) class, which uses cugraph for storing graph structure and node/edge feature data. Using cugraph as the backend allows DGL users to access a collection of GPU accelerated algorithms for graph analytics, such as centrality computation and community detection. +[RAPIDS](https://rapids.ai) cugraph_dgl provides a duck-typed version of the [DGLGraph](https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph) class, which uses cugraph for storing graph structure and node/edge feature data. Using cugraph as the backend allows DGL users to access a collection of GPU accelerated algorithms for graph analytics, such as centrality computation and community detection. ## Conda @@ -22,7 +22,7 @@ mamba env create -n cugraph_dgl_dev --file conda/cugraph_dgl_dev_11.6.yml ### Install in editable mode ``` -pip install -e . +pip install -e . ``` ### Run tests @@ -43,12 +43,12 @@ sampler = dgl.dataloading.NeighborSampler( train_dataloader = dgl.dataloading.DataLoader( cugraph_g, -train_idx, -sampler, -device=device, +train_idx, +sampler, +device=device, batch_size=1024, shuffle=True, -drop_last=False, +drop_last=False, num_workers=0) ``` diff --git a/docs/cugraph/source/graph_support/PyG_support.md b/docs/cugraph/source/graph_support/PyG_support.md index 42d4d1c5506..b57ce7fcc6f 100644 --- a/docs/cugraph/source/graph_support/PyG_support.md +++ b/docs/cugraph/source/graph_support/PyG_support.md @@ -1,3 +1,3 @@ # cugraph_pyg -[RAPIDS](https://rapids.ai) cugraph_pyg enables the ability to use cugraph graph storage and sampling with PyTorch Geometric (PyG). PyG users will have access to cuGraph through the PyG GraphStore, FeatureStore, and Sampler interfaces. \ No newline at end of file +[RAPIDS](https://rapids.ai) cugraph_pyg enables the ability to use cugraph graph storage and sampling with PyTorch Geometric (PyG). PyG users will have access to cuGraph through the PyG GraphStore, FeatureStore, and Sampler interfaces. diff --git a/docs/cugraph/source/graph_support/algorithms.md b/docs/cugraph/source/graph_support/algorithms.md index a1b80e92751..8a5158f2f56 100644 --- a/docs/cugraph/source/graph_support/algorithms.md +++ b/docs/cugraph/source/graph_support/algorithms.md @@ -92,4 +92,4 @@ Copyright (c) 2019 - 2023, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -___ \ No newline at end of file +___ diff --git a/docs/cugraph/source/graph_support/algorithms/Similarity.md b/docs/cugraph/source/graph_support/algorithms/Similarity.md index 18c0a94d519..96adc25ea69 100644 --- a/docs/cugraph/source/graph_support/algorithms/Similarity.md +++ b/docs/cugraph/source/graph_support/algorithms/Similarity.md @@ -5,8 +5,8 @@ The RAPIDS cuGraph Similarity folder contain a collection of Jupyter Notebooks t Results of Similarity algorithms are often used to answer questions like: * Could two vertices be duplicates or aliases of the same actor? * Can we predict missing edges based of the similarity between two nodes? -* Are multiple similar communities within the graph? -* Can I create recommendations based on the similarity between vertices in the graph. +* Are multiple similar communities within the graph? +* Can I create recommendations based on the similarity between vertices in the graph. Manipulation of the data before or after the graph analytic is not covered here. Extended, more problem focused, notebooks are being created and available https://github.com/rapidsai/notebooks-extended @@ -35,4 +35,4 @@ Copyright (c) 2019 - 2023, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -___ \ No newline at end of file +___ diff --git a/docs/cugraph/source/graph_support/algorithms/betweenness_centrality.md b/docs/cugraph/source/graph_support/algorithms/betweenness_centrality.md index 7dc692684aa..89e5e0bdb92 100644 --- a/docs/cugraph/source/graph_support/algorithms/betweenness_centrality.md +++ b/docs/cugraph/source/graph_support/algorithms/betweenness_centrality.md @@ -39,4 +39,4 @@ Copyright (c) 2023, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -___ \ No newline at end of file +___ diff --git a/docs/cugraph/source/graph_support/algorithms/degree_centrality.md b/docs/cugraph/source/graph_support/algorithms/degree_centrality.md index 64fe694e4c1..9253c665fb0 100644 --- a/docs/cugraph/source/graph_support/algorithms/degree_centrality.md +++ b/docs/cugraph/source/graph_support/algorithms/degree_centrality.md @@ -11,7 +11,7 @@ Degree centrality of a vertex 𝑣 is the sum of the edges incident on that node * When you need a really quick identifcation of important nodes on very simply structured data. * In cases like collaboration networks where all links have equal importance. * In many biologic and transportation networks, shear number of connections is important to itentify critical nodes whether they be proteins or airports. -* In huge graphs, Degree centrality is a the quickest +* In huge graphs, Degree centrality is a the quickest ## When not to use Degree Centrality * When weights, edge direction or edge types matter @@ -29,4 +29,4 @@ Copyright (c) 2023, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -___ \ No newline at end of file +___ diff --git a/docs/cugraph/source/graph_support/algorithms/eigenvector_centrality.md b/docs/cugraph/source/graph_support/algorithms/eigenvector_centrality.md index 5217dc497db..8a9c7c7c767 100644 --- a/docs/cugraph/source/graph_support/algorithms/eigenvector_centrality.md +++ b/docs/cugraph/source/graph_support/algorithms/eigenvector_centrality.md @@ -18,11 +18,11 @@ Where M(v) is the adjacency list for the set of vertices(v) and λ is a constant ## When to use Eigenvector Centrality * When the quality and quantity of edges matters, in other words, connections to other high-degree nodes is important -* To calculate influence in nuanced networks like social and financial networks. +* To calculate influence in nuanced networks like social and financial networks. ## When not to use Eigenvector Centrality * in graphs with many disconnected groups -* in graphs containing many distinct and different communities +* in graphs containing many distinct and different communities * in networks with negative weights * in huge networks eigenvector centrality can become computationally infeasible in single threaded systems. @@ -39,4 +39,3 @@ Licensed under the Apache License, Version 2.0 (the "License"); you may not use Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ___ - diff --git a/docs/cugraph/source/graph_support/algorithms/jaccard_similarity.md b/docs/cugraph/source/graph_support/algorithms/jaccard_similarity.md index c9ffc76d182..dde98d71ea3 100644 --- a/docs/cugraph/source/graph_support/algorithms/jaccard_similarity.md +++ b/docs/cugraph/source/graph_support/algorithms/jaccard_similarity.md @@ -1,6 +1,6 @@ # Jaccard Similarity -The Jaccard similarity between two sets is defined as the ratio of the volume of their intersection divided by the volume of their union. +The Jaccard similarity between two sets is defined as the ratio of the volume of their intersection divided by the volume of their union. The Jaccard Similarity can then be defined as @@ -31,4 +31,4 @@ Copyright (c) 2023, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -___ \ No newline at end of file +___ diff --git a/docs/cugraph/source/graph_support/algorithms/katz_centrality.md b/docs/cugraph/source/graph_support/algorithms/katz_centrality.md index 3bfe4d40c05..69b5d6b27b9 100644 --- a/docs/cugraph/source/graph_support/algorithms/katz_centrality.md +++ b/docs/cugraph/source/graph_support/algorithms/katz_centrality.md @@ -25,4 +25,4 @@ Copyright (c) 2023, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -___ \ No newline at end of file +___ diff --git a/docs/cugraph/source/graph_support/algorithms/overlap_similarity.md b/docs/cugraph/source/graph_support/algorithms/overlap_similarity.md index 026d713fbd6..d9f9f681ea2 100644 --- a/docs/cugraph/source/graph_support/algorithms/overlap_similarity.md +++ b/docs/cugraph/source/graph_support/algorithms/overlap_similarity.md @@ -15,7 +15,7 @@ $overlap(A,B) = \frac{|A \cap B|}{min(|A|,|B|)}$ ## When not to use Overlap Similarity * You are trying to compare graphs of extremely different sizes * In overly sparse or dense graph can overlap similarity can miss relationships or give fals positives respectively. -* In directed graphs, there are better algorithms to use. +* In directed graphs, there are better algorithms to use. ## How computationally expensive is it? @@ -29,4 +29,4 @@ Copyright (c) 2023, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -___ \ No newline at end of file +___ diff --git a/docs/cugraph/source/graph_support/algorithms/sorensen_coefficient.md b/docs/cugraph/source/graph_support/algorithms/sorensen_coefficient.md index 01b6709de5b..67d981815cf 100644 --- a/docs/cugraph/source/graph_support/algorithms/sorensen_coefficient.md +++ b/docs/cugraph/source/graph_support/algorithms/sorensen_coefficient.md @@ -23,7 +23,7 @@ In graphs, the sets refer to the set of connected nodes or neighborhood of nodes ## How computationally expensive is it? While cuGraph's parallelism mitigates run cost, [Big O notation](https://en.wikipedia.org/wiki/Big_O_notation) is still the standard to compare algorithm execution time. -The cost to run O(n * m) where n is the number of nodes in the graph and m is the number of groups to test. +The cost to run O(n * m) where n is the number of nodes in the graph and m is the number of groups to test. ___ Copyright (c) 2023, NVIDIA CORPORATION. @@ -31,4 +31,4 @@ Copyright (c) 2023, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -___ \ No newline at end of file +___ diff --git a/docs/cugraph/source/graph_support/compatibility.rst b/docs/cugraph/source/graph_support/compatibility.rst index be0cc21c2dd..ddb3f1d5fe5 100644 --- a/docs/cugraph/source/graph_support/compatibility.rst +++ b/docs/cugraph/source/graph_support/compatibility.rst @@ -5,4 +5,4 @@ Compatibility .. toctree:: :maxdepth: 3 -Compatibility document coming soon \ No newline at end of file +Compatibility document coming soon diff --git a/docs/cugraph/source/graph_support/cugraph_service.rst b/docs/cugraph/source/graph_support/cugraph_service.rst index 620b22d1e0b..658f9e731df 100644 --- a/docs/cugraph/source/graph_support/cugraph_service.rst +++ b/docs/cugraph/source/graph_support/cugraph_service.rst @@ -5,5 +5,5 @@ CuGraph Service .. toctree:: :maxdepth: 3 - -Cugraph Service for remote access to a server-based cuGraph(https://github.com/rapidsai/cugraph/blob/branch-23.04/python/cugraph-service/README.md) \ No newline at end of file + +Cugraph Service for remote access to a server-based cuGraph(https://github.com/rapidsai/cugraph/blob/branch-23.04/python/cugraph-service/README.md) diff --git a/docs/cugraph/source/graph_support/cugraphops_support.rst b/docs/cugraph/source/graph_support/cugraphops_support.rst index 08ae3b218c7..fd79564f849 100644 --- a/docs/cugraph/source/graph_support/cugraphops_support.rst +++ b/docs/cugraph/source/graph_support/cugraphops_support.rst @@ -7,4 +7,4 @@ cugraph-ops aims to be a low-level, framework agnostic library providing commonl .. toctree:: :maxdepth: 3 - https://github.com/rapidsai/cugraph-ops/blob/branch-23.04/README.md \ No newline at end of file + https://github.com/rapidsai/cugraph-ops/blob/branch-23.04/README.md diff --git a/docs/cugraph/source/graph_support/datastores.rst b/docs/cugraph/source/graph_support/datastores.rst index f921100774c..50d8461e7fe 100644 --- a/docs/cugraph/source/graph_support/datastores.rst +++ b/docs/cugraph/source/graph_support/datastores.rst @@ -6,4 +6,3 @@ Data Stores property_graph.md knowledge_stores.md feature_stores.md - diff --git a/docs/cugraph/source/graph_support/feature_stores.md b/docs/cugraph/source/graph_support/feature_stores.md index f40cab72ee0..ef9358c4cf8 100644 --- a/docs/cugraph/source/graph_support/feature_stores.md +++ b/docs/cugraph/source/graph_support/feature_stores.md @@ -1,3 +1,3 @@ # Feature Store -Coming Soon \ No newline at end of file +Coming Soon diff --git a/docs/cugraph/source/graph_support/gnn_support.rst b/docs/cugraph/source/graph_support/gnn_support.rst index 3c92dc36098..639b657c64d 100644 --- a/docs/cugraph/source/graph_support/gnn_support.rst +++ b/docs/cugraph/source/graph_support/gnn_support.rst @@ -5,8 +5,8 @@ Graph Neural Network Support .. toctree:: :maxdepth: 2 - + PyG_support.md DGL_support.md cugraphops_support.rst - wholegraph_support.md \ No newline at end of file + wholegraph_support.md diff --git a/docs/cugraph/source/graph_support/graph_algorithms.rst b/docs/cugraph/source/graph_support/graph_algorithms.rst index a8ba01aa915..38dd8ccc25b 100644 --- a/docs/cugraph/source/graph_support/graph_algorithms.rst +++ b/docs/cugraph/source/graph_support/graph_algorithms.rst @@ -4,5 +4,5 @@ Algorithms .. toctree:: :maxdepth: 3 - - algorithms.md \ No newline at end of file + + algorithms.md diff --git a/docs/cugraph/source/graph_support/index.rst b/docs/cugraph/source/graph_support/index.rst index 9526fae7eb2..67aba74288b 100644 --- a/docs/cugraph/source/graph_support/index.rst +++ b/docs/cugraph/source/graph_support/index.rst @@ -10,4 +10,4 @@ Graph Support compatibility.rst gnn_support.rst datastores.rst - cugraph_service.rst \ No newline at end of file + cugraph_service.rst diff --git a/docs/cugraph/source/graph_support/knowledge_stores.md b/docs/cugraph/source/graph_support/knowledge_stores.md index 4d6028a598c..1749eb2b4c1 100644 --- a/docs/cugraph/source/graph_support/knowledge_stores.md +++ b/docs/cugraph/source/graph_support/knowledge_stores.md @@ -1,3 +1,3 @@ # Knowledge Store -Coming Soon \ No newline at end of file +Coming Soon diff --git a/docs/cugraph/source/graph_support/property_graph.md b/docs/cugraph/source/graph_support/property_graph.md index 614910b79bc..ef07be79ba0 100644 --- a/docs/cugraph/source/graph_support/property_graph.md +++ b/docs/cugraph/source/graph_support/property_graph.md @@ -16,8 +16,8 @@ Property Graph enables: This is an example of using the cuGraph Property Graph in a two stage analysis. ``` -import cudf -import cugraph +import cudf +import cugraph from cugraph.experimental import PropertyGraph # Import a built-in dataset @@ -29,22 +29,22 @@ graph = cugraph.Graph(directed=False) G = karate.get_graph(create_using=graph,fetch=True) df = G.edgelist.edgelist_df -pG = PropertyGraph() +pG = PropertyGraph() pG. add_edge_data(df, vertex_col_names=("src", "dst")) -# Run Louvain to get the partition number for each vertex. -# Set resolution accordingly to identify two primary partitions. +# Run Louvain to get the partition number for each vertex. +# Set resolution accordingly to identify two primary partitions. (partition_info, _) = cugraph.louvain(pG.extract_subgraph(create_using=graph), resolution=0.6) -# Add the partition numbers back to the Property Graph as vertex properties +# Add the partition numbers back to the Property Graph as vertex properties pG.add_vertex_data(partition_info, vertex_col_name="vertex") -# Use the partition properties to extract a Graph for each partition. +# Use the partition properties to extract a Graph for each partition. G0 = pG.extract_subgraph(selection=pG.select_vertices("partition == 0")) G1 = pG.extract_subgraph(selection=pG. select_vertices("partition == 1")) -# Run pagerank on each graph, print results. -pageranks0 = cugraph.pagerank(G0) -pageranks1 = cugraph.pagerank(G1) +# Run pagerank on each graph, print results. +pageranks0 = cugraph.pagerank(G0) +pageranks1 = cugraph.pagerank(G1) print(pageranks0.sort_values (by="pagerank", ascending=False).head(3)) print(pageranks1.sort_values (by="pagerank", ascending=False).head(3)) -``` \ No newline at end of file +``` diff --git a/docs/cugraph/source/graph_support/wholegraph_support.md b/docs/cugraph/source/graph_support/wholegraph_support.md index fa26700a648..d1c5eaf7254 100644 --- a/docs/cugraph/source/graph_support/wholegraph_support.md +++ b/docs/cugraph/source/graph_support/wholegraph_support.md @@ -1,4 +1,4 @@ # WholeGraph [RAPIDS](https://rapids.ai) [WholeGraph](https://github.com/rapidsai/wholegraph) is designed to help train large-scale Graph Neural Networks(GNN). -Please see [WholeGraph Introduction](https://github.com/rapidsai/wholegraph/blob/main/README.md) for more details \ No newline at end of file +Please see [WholeGraph Introduction](https://github.com/rapidsai/wholegraph/blob/main/README.md) for more details diff --git a/docs/cugraph/source/index.rst b/docs/cugraph/source/index.rst index 955eb6d54db..b18a79d3396 100644 --- a/docs/cugraph/source/index.rst +++ b/docs/cugraph/source/index.rst @@ -18,7 +18,7 @@ RAPIDS Graph documentation - :abbr:`cugraph-service (Graph-as-a-service provides both Client and Server packages)` * - :abbr:`pylibcugraph (light-weight Python wrapper with no guard rails)` - :abbr:`cugraph-dgl (Accelerated extensions for use with the DGL framework)` - - + - * - :abbr:`libcugraph (C++ API)` - :abbr:`cugraph-pyg (Accelerated extensions for use with the PyG framework)` - @@ -33,7 +33,7 @@ Introduction ~~~~~~~~~~~~ cuGraph is a library of graph algorithms that seamlessly integrates into the RAPIDS data science ecosystem and allows the data scientist to easily call -graph algorithms using data stored in GPU DataFrames, NetworkX Graphs, or +graph algorithms using data stored in GPU DataFrames, NetworkX Graphs, or even CuPy or SciPy sparse Matrices. Note: We are redoing all of our documents, please be patient as we update diff --git a/docs/cugraph/source/installation/getting_cugraph.md b/docs/cugraph/source/installation/getting_cugraph.md index 0695c690a3b..4d601bf3217 100644 --- a/docs/cugraph/source/installation/getting_cugraph.md +++ b/docs/cugraph/source/installation/getting_cugraph.md @@ -1,7 +1,7 @@ # Getting cuGraph Packages -Start by reading the [RAPIDS Instalation guide](https://docs.rapids.ai/install) +Start by reading the [RAPIDS Instalation guide](https://docs.rapids.ai/install) and checkout the [RAPIDS install selector](https://rapids.ai/start.html) for a pick list of install options. @@ -65,4 +65,3 @@ Also available: * nx-cugraph-cu12
- diff --git a/docs/cugraph/source/installation/index.rst b/docs/cugraph/source/installation/index.rst index 27858b77012..8ad12c5895b 100644 --- a/docs/cugraph/source/installation/index.rst +++ b/docs/cugraph/source/installation/index.rst @@ -5,6 +5,6 @@ Installation .. toctree:: :maxdepth: 3 - + getting_cugraph source_build diff --git a/docs/cugraph/source/references/cugraph_ref.md b/docs/cugraph/source/references/cugraph_ref.md index a646d6da243..845436a60f2 100644 --- a/docs/cugraph/source/references/cugraph_ref.md +++ b/docs/cugraph/source/references/cugraph_ref.md @@ -43,4 +43,3 @@

- diff --git a/docs/cugraph/source/references/datasets.md b/docs/cugraph/source/references/datasets.md index 3d45dec188a..35234de87c6 100644 --- a/docs/cugraph/source/references/datasets.md +++ b/docs/cugraph/source/references/datasets.md @@ -4,18 +4,18 @@ karate - W. W. Zachary, *An information flow model for conflict and fission in small groups*, Journal of Anthropological Research 33, 452-473 (1977). dolphins - D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, - *The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations*, + *The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations*, Behavioral Ecology and Sociobiology 54, 396-405 (2003). netscience - M. E. J. Newman, - *Finding community structure in networks using the eigenvectors of matrices*, + *Finding community structure in networks using the eigenvectors of matrices*, Preprint physics/0605087 (2006). email-Eu-core - Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. - *Local Higher-order Graph Clustering.* + *Local Higher-order Graph Clustering.* In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017. - - J. Leskovec, J. Kleinberg and C. Faloutsos. - *Graph Evolution: Densification and Shrinking Diameters*. - ACM Transactions on Knowledge Discovery from Data (ACM TKDD), 1(1), 2007. http://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf + - J. Leskovec, J. Kleinberg and C. Faloutsos. + *Graph Evolution: Densification and Shrinking Diameters*. + ACM Transactions on Knowledge Discovery from Data (ACM TKDD), 1(1), 2007. http://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf polbooks - - V. Krebs, unpublished, http://www.orgnet.com/. \ No newline at end of file + - V. Krebs, unpublished, http://www.orgnet.com/. diff --git a/docs/cugraph/source/references/index.rst b/docs/cugraph/source/references/index.rst index d7a173a8330..9ea51a08356 100644 --- a/docs/cugraph/source/references/index.rst +++ b/docs/cugraph/source/references/index.rst @@ -5,7 +5,7 @@ References .. toctree:: :maxdepth: 3 - + cugraph_ref.md datasets.md licenses.md diff --git a/docs/cugraph/source/references/licenses.md b/docs/cugraph/source/references/licenses.md index dfc950023cf..b95905d9f2f 100644 --- a/docs/cugraph/source/references/licenses.md +++ b/docs/cugraph/source/references/licenses.md @@ -1,7 +1,7 @@ # License Most of the Graph code is open-sourced and developed under the Apache 2.0 licnese. -The cugraph-ops code is closed sourced and developed under a NVIDIA copyright +The cugraph-ops code is closed sourced and developed under a NVIDIA copyright diff --git a/docs/cugraph/source/releases/index.rst b/docs/cugraph/source/releases/index.rst index 7bd4f6dfa31..cbd22324b9b 100644 --- a/docs/cugraph/source/releases/index.rst +++ b/docs/cugraph/source/releases/index.rst @@ -2,4 +2,4 @@ Releases ======== -https://github.com/rapidsai/cugraph/blob/main/CHANGELOG.md \ No newline at end of file +https://github.com/rapidsai/cugraph/blob/main/CHANGELOG.md diff --git a/docs/cugraph/source/tutorials/community_resources.md b/docs/cugraph/source/tutorials/community_resources.md index 572f85a015b..1c4362393d1 100644 --- a/docs/cugraph/source/tutorials/community_resources.md +++ b/docs/cugraph/source/tutorials/community_resources.md @@ -1,2 +1,2 @@ # Commmunity Resources -[Rapids Community Repository](https://github.com/rapidsai-community/notebooks-contrib) \ No newline at end of file +[Rapids Community Repository](https://github.com/rapidsai-community/notebooks-contrib) diff --git a/docs/cugraph/source/tutorials/cugraph_blogs.rst b/docs/cugraph/source/tutorials/cugraph_blogs.rst index 368dbcce4f8..373e846f6c3 100644 --- a/docs/cugraph/source/tutorials/cugraph_blogs.rst +++ b/docs/cugraph/source/tutorials/cugraph_blogs.rst @@ -3,7 +3,7 @@ cuGraph Blogs and Presentations ************************************************ The RAPIDS team blogs at https://medium.com/rapids-ai, and many of -these blog posts provide deeper dives into features from cuGraph. +these blog posts provide deeper dives into features from cuGraph. Here, we've selected just a few that are of particular interest to cuGraph users: diff --git a/docs/cugraph/source/tutorials/cugraph_notebooks.md b/docs/cugraph/source/tutorials/cugraph_notebooks.md index d4251d4c9b2..559ba36e97e 100644 --- a/docs/cugraph/source/tutorials/cugraph_notebooks.md +++ b/docs/cugraph/source/tutorials/cugraph_notebooks.md @@ -53,7 +53,7 @@ Running the example in these notebooks requires: * The latest version of RAPIDS with cuGraph. * Download via Docker, Conda (See [__Getting Started__](https://rapids.ai/start.html)) - + * cuGraph is dependent on the latest version of cuDF. Please install all components of RAPIDS * Python 3.8+ * A system with an NVIDIA GPU: Pascal architecture or better @@ -66,7 +66,7 @@ Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. diff --git a/docs/cugraph/source/tutorials/how_to_guides.md b/docs/cugraph/source/tutorials/how_to_guides.md index 42da6ed21ca..80be5b4ab5b 100644 --- a/docs/cugraph/source/tutorials/how_to_guides.md +++ b/docs/cugraph/source/tutorials/how_to_guides.md @@ -1,9 +1,9 @@ # How To Guides -- Basic use of cuGraph, on the page -- Property graph with analytic flow -- GNN – model building -- cuGraph Service – client/server setup and use (ucx) -- MNMG Graph – dask, rmm basics and examples -- Pylibcugraph – why and how -- Cugraph for C, C++ users -- Use of nvidia-smi with cugraph \ No newline at end of file +- Basic use of cuGraph, on the page +- Property graph with analytic flow +- GNN – model building +- cuGraph Service – client/server setup and use (ucx) +- MNMG Graph – dask, rmm basics and examples +- Pylibcugraph – why and how +- Cugraph for C, C++ users +- Use of nvidia-smi with cugraph diff --git a/docs/cugraph/source/wholegraph/basics/wholememory_implementation_details.md b/docs/cugraph/source/wholegraph/basics/wholememory_implementation_details.md index a5541109c4f..634539cd27e 100644 --- a/docs/cugraph/source/wholegraph/basics/wholememory_implementation_details.md +++ b/docs/cugraph/source/wholegraph/basics/wholememory_implementation_details.md @@ -18,7 +18,7 @@ partition data into these GPU devices. The partition method guarantees that each GPU can access one continuous part of the entire memory. Here "can access" means can directly access from CUDA kernels, but the memory doesn't have to be physically on that GPU. For example,it can be on host memory or other GPU's device memory that can be access using P2P. -In that case the stored data has its own granularity that shouldn't be split. Data granularity can be specified while +In that case the stored data has its own granularity that shouldn't be split. Data granularity can be specified while creating WholeMemory. Then each data granularity can be considered as a block of data. The follow figure shows the layout of 15 data block over 4 GPUs. diff --git a/docs/cugraph/source/wholegraph/index.rst b/docs/cugraph/source/wholegraph/index.rst index 2a69544b4c9..bb2281b1351 100644 --- a/docs/cugraph/source/wholegraph/index.rst +++ b/docs/cugraph/source/wholegraph/index.rst @@ -11,4 +11,3 @@ RAPIDS WholeGraph has following package: basics/index installation/index - diff --git a/docs/cugraph/source/wholegraph/installation/getting_wholegraph.md b/docs/cugraph/source/wholegraph/installation/getting_wholegraph.md index 5b2072b0523..57314dcd426 100644 --- a/docs/cugraph/source/wholegraph/installation/getting_wholegraph.md +++ b/docs/cugraph/source/wholegraph/installation/getting_wholegraph.md @@ -1,7 +1,7 @@ # Getting the WholeGraph Packages -Start by reading the [RAPIDS Instalation guide](https://docs.rapids.ai/install) +Start by reading the [RAPIDS Instalation guide](https://docs.rapids.ai/install) and checkout the [RAPIDS install selector](https://rapids.ai/start.html) for a pick list of install options. diff --git a/notebooks/README.md b/notebooks/README.md index 3f1cdbaf2a1..31660b21569 100644 --- a/notebooks/README.md +++ b/notebooks/README.md @@ -54,7 +54,7 @@ Running the example in these notebooks requires: * The latest version of RAPIDS with cuGraph. * Download via Docker, Conda (See [__Getting Started__](https://rapids.ai/start.html)) - + * cuGraph is dependent on the latest version of cuDF. Please install all components of RAPIDS * Python 3.8+ * A system with an NVIDIA GPU: Pascal architecture or better @@ -124,7 +124,7 @@ Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. @@ -133,4 +133,3 @@ Unless required by applicable law or agreed to in writing, software distributed ![RAPIDS](img/rapids_logo.png) - diff --git a/notebooks/algorithms/README.md b/notebooks/algorithms/README.md index 7965970c7d9..2aa35b52b0f 100644 --- a/notebooks/algorithms/README.md +++ b/notebooks/algorithms/README.md @@ -58,7 +58,7 @@ Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. diff --git a/notebooks/algorithms/centrality/README.md b/notebooks/algorithms/centrality/README.md index f15ed7bdc04..be838b1c76a 100644 --- a/notebooks/algorithms/centrality/README.md +++ b/notebooks/algorithms/centrality/README.md @@ -34,7 +34,7 @@ Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. diff --git a/notebooks/algorithms/community/README.md b/notebooks/algorithms/community/README.md index 748f27c0ffe..222dab4ffe3 100644 --- a/notebooks/algorithms/community/README.md +++ b/notebooks/algorithms/community/README.md @@ -36,7 +36,7 @@ Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. diff --git a/notebooks/algorithms/components/README.md b/notebooks/algorithms/components/README.md index e14e886a7e2..f3c6f925e36 100644 --- a/notebooks/algorithms/components/README.md +++ b/notebooks/algorithms/components/README.md @@ -27,7 +27,7 @@ Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. diff --git a/notebooks/algorithms/cores/README.md b/notebooks/algorithms/cores/README.md index e36677ffe32..0e2b1e56702 100644 --- a/notebooks/algorithms/cores/README.md +++ b/notebooks/algorithms/cores/README.md @@ -27,7 +27,7 @@ Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. diff --git a/notebooks/algorithms/link_analysis/README.md b/notebooks/algorithms/link_analysis/README.md index 17d4b8ab6d1..3ed23e02a62 100644 --- a/notebooks/algorithms/link_analysis/README.md +++ b/notebooks/algorithms/link_analysis/README.md @@ -4,7 +4,7 @@ cuGraph Link Analysis notebooks contain Jupyter Notebooks that demonstrate algorithms to rank the importance of individual vertices within the graph. A good comparison of the two algorithms can be found [here](https://www.ijert.org/research/comparative-analysis-of-pagerank-and-hits-algorithms-IJERTV1IS8530.pdf). -In general, Pagerank is more popular because it is more efficient and takes less query time. +In general, Pagerank is more popular because it is more efficient and takes less query time. Manipulation of the data before or after the graph analytic is not covered here. Extended, more problem focused, notebooks are being created and available https://github.com/rapidsai/notebooks-extended @@ -29,7 +29,7 @@ Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. diff --git a/notebooks/algorithms/link_prediction/README.md b/notebooks/algorithms/link_prediction/README.md index e3391e4d0cf..4030a2880f7 100644 --- a/notebooks/algorithms/link_prediction/README.md +++ b/notebooks/algorithms/link_prediction/README.md @@ -1,7 +1,7 @@ # Vertex Similarity ---- -In this folder we will explore and compare the various vertex similarity metrics available in cuGraph. [Vertex similarity](https://en.wikipedia.org/wiki/Similarity_(network_science)), as the name implies, is a measure how similar two vertices are. +In this folder we will explore and compare the various vertex similarity metrics available in cuGraph. [Vertex similarity](https://en.wikipedia.org/wiki/Similarity_(network_science)), as the name implies, is a measure how similar two vertices are. |Algorithm |Notebooks Containing |Description | | --------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | @@ -34,7 +34,7 @@ Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. diff --git a/notebooks/algorithms/sampling/README.md b/notebooks/algorithms/sampling/README.md index 9c60adcb9e3..6b7c5b82ba6 100644 --- a/notebooks/algorithms/sampling/README.md +++ b/notebooks/algorithms/sampling/README.md @@ -29,7 +29,7 @@ Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. diff --git a/notebooks/algorithms/structure/README.md b/notebooks/algorithms/structure/README.md index b209ddba71c..ea649037089 100644 --- a/notebooks/algorithms/structure/README.md +++ b/notebooks/algorithms/structure/README.md @@ -27,7 +27,7 @@ Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. diff --git a/notebooks/algorithms/traversal/README.md b/notebooks/algorithms/traversal/README.md index 4d4f37a0f8c..c8478831f66 100644 --- a/notebooks/algorithms/traversal/README.md +++ b/notebooks/algorithms/traversal/README.md @@ -25,7 +25,7 @@ Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. diff --git a/notebooks/modules/README.md b/notebooks/modules/README.md index 29cb47784c7..0cf7ccb61e7 100644 --- a/notebooks/modules/README.md +++ b/notebooks/modules/README.md @@ -1,3 +1,3 @@ # This folde contains partial notebooks -The code here is meant to be used to build other notebooks \ No newline at end of file +The code here is meant to be used to build other notebooks diff --git a/print_env.sh b/print_env.sh index 6f2d33b0eb8..43abd1c7ea7 100644 --- a/print_env.sh +++ b/print_env.sh @@ -1,7 +1,8 @@ #!/usr/bin/env bash +# Copyright (c) 2019-2024, NVIDIA CORPORATION. # Reports relevant environment information useful for diagnosing and # debugging cuGraph issues. -# Usage: +# Usage: # "./print_env.sh" - prints to stdout # "./print_env.sh > env.txt" - prints to file "env.txt" @@ -14,16 +15,16 @@ git submodule status --recursive else echo "Not inside a git repository" fi -echo +echo echo "***OS Information***" cat /etc/*-release uname -a -echo +echo echo "***GPU Information***" nvidia-smi -echo +echo echo "***CPU***" lscpu @@ -31,15 +32,15 @@ echo echo "***CMake***" which cmake && cmake --version -echo +echo echo "***g++***" which g++ && g++ --version -echo +echo echo "***nvcc***" which nvcc && nvcc --version -echo +echo echo "***Python***" which python && python -c "import sys; print('Python {0}.{1}.{2}'.format(sys.version_info[0], sys.version_info[1], sys.version_info[2]))" diff --git a/python/cugraph-dgl/README.md b/python/cugraph-dgl/README.md index 6de476ae500..ac4cb2f6253 100644 --- a/python/cugraph-dgl/README.md +++ b/python/cugraph-dgl/README.md @@ -2,7 +2,7 @@ ## Description -[RAPIDS](https://rapids.ai) cugraph_dgl provides a duck-typed version of the [DGLGraph](https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph) class, which uses cugraph for storing graph structure and node/edge feature data. Using cugraph as the backend allows DGL users to access a collection of GPU accelerated algorithms for graph analytics, such as centrality computation and community detection. +[RAPIDS](https://rapids.ai) cugraph_dgl provides a duck-typed version of the [DGLGraph](https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph) class, which uses cugraph for storing graph structure and node/edge feature data. Using cugraph as the backend allows DGL users to access a collection of GPU accelerated algorithms for graph analytics, such as centrality computation and community detection. ## Conda @@ -22,7 +22,7 @@ mamba env create -n cugraph_dgl_dev --file conda/cugraph_dgl_dev_11.6.yml ### Install in editable mode ``` -pip install -e . +pip install -e . ``` ### Run tests @@ -42,15 +42,13 @@ sampler = dgl.dataloading.NeighborSampler( [15, 10, 5], prefetch_node_feats=['feat'], prefetch_labels=['label']) train_dataloader = dgl.dataloading.DataLoader( -- dgl_g, +- dgl_g, + cugraph_g, -train_idx, -sampler, -device=device, +train_idx, +sampler, +device=device, batch_size=1024, shuffle=True, -drop_last=False, +drop_last=False, num_workers=0) ``` - - diff --git a/python/cugraph/cugraph/dask/structure/replication.pyx b/python/cugraph/cugraph/dask/structure/replication.pyx index 64f43663517..04e14cb012f 100644 --- a/python/cugraph/cugraph/dask/structure/replication.pyx +++ b/python/cugraph/cugraph/dask/structure/replication.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2020-2022, NVIDIA CORPORATION. +# Copyright (c) 2020-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -141,4 +141,4 @@ cdef comms_bcast(uintptr_t handle, elif dtype == np.float64: c_utils.comms_bcast(( handle)[0], value_ptr, count) else: - raise TypeError("Unsupported broadcast type") \ No newline at end of file + raise TypeError("Unsupported broadcast type") diff --git a/python/cugraph/cugraph/datasets/metadata/cit-patents.yaml b/python/cugraph/cugraph/datasets/metadata/cit-patents.yaml index d5c4cf195bd..37d288e6339 100644 --- a/python/cugraph/cugraph/datasets/metadata/cit-patents.yaml +++ b/python/cugraph/cugraph/datasets/metadata/cit-patents.yaml @@ -3,7 +3,7 @@ file_type: .csv description: A citation graph that includes all citations made by patents granted between 1975 and 1999, totaling 16,522,438 citations. author: NBER refs: - J. Leskovec, J. Kleinberg and C. Faloutsos. Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations. + J. Leskovec, J. Kleinberg and C. Faloutsos. Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2005. delim: " " header: None @@ -19,4 +19,4 @@ is_multigraph: false is_symmetric: false number_of_edges: 16518948 number_of_nodes: 3774768 -url: https://data.rapids.ai/cugraph/datasets/cit-Patents.csv \ No newline at end of file +url: https://data.rapids.ai/cugraph/datasets/cit-Patents.csv diff --git a/python/cugraph/cugraph/datasets/metadata/dining_prefs.yaml b/python/cugraph/cugraph/datasets/metadata/dining_prefs.yaml index e7ec85d7a1f..3f70a886b59 100644 --- a/python/cugraph/cugraph/datasets/metadata/dining_prefs.yaml +++ b/python/cugraph/cugraph/datasets/metadata/dining_prefs.yaml @@ -20,4 +20,4 @@ is_multigraph: false is_symmetric: true number_of_edges: 42 number_of_nodes: 26 -url: https://data.rapids.ai/cugraph/datasets/dining_prefs.csv \ No newline at end of file +url: https://data.rapids.ai/cugraph/datasets/dining_prefs.csv diff --git a/python/cugraph/cugraph/datasets/metadata/dolphins.yaml b/python/cugraph/cugraph/datasets/metadata/dolphins.yaml index bc7cb6cd486..70c178bc5a2 100644 --- a/python/cugraph/cugraph/datasets/metadata/dolphins.yaml +++ b/python/cugraph/cugraph/datasets/metadata/dolphins.yaml @@ -1,6 +1,6 @@ name: dolphins file_type: .csv -description: An undirected social network of frequent associations between 62 dolphins in a community living off Doubtful Sound, New Zealand, as compiled by Lusseau et al. (2003). +description: An undirected social network of frequent associations between 62 dolphins in a community living off Doubtful Sound, New Zealand, as compiled by Lusseau et al. (2003). author: - D. Lusseau - K. Schneider diff --git a/python/cugraph/cugraph/datasets/metadata/europe_osm.yaml b/python/cugraph/cugraph/datasets/metadata/europe_osm.yaml index fe0e42a4b86..1443f8d5cdd 100644 --- a/python/cugraph/cugraph/datasets/metadata/europe_osm.yaml +++ b/python/cugraph/cugraph/datasets/metadata/europe_osm.yaml @@ -18,4 +18,4 @@ is_multigraph: false is_symmetric: true number_of_edges: 54054660 number_of_nodes: 50912018 -url: https://data.rapids.ai/cugraph/datasets/europe_osm.csv \ No newline at end of file +url: https://data.rapids.ai/cugraph/datasets/europe_osm.csv diff --git a/python/cugraph/cugraph/datasets/metadata/hollywood.yaml b/python/cugraph/cugraph/datasets/metadata/hollywood.yaml index 2f09cf7679b..9a8ef56532b 100644 --- a/python/cugraph/cugraph/datasets/metadata/hollywood.yaml +++ b/python/cugraph/cugraph/datasets/metadata/hollywood.yaml @@ -23,4 +23,4 @@ is_multigraph: false is_symmetric: true number_of_edges: 57515616 number_of_nodes: 1139905 -url: https://data.rapids.ai/cugraph/datasets/hollywood.csv \ No newline at end of file +url: https://data.rapids.ai/cugraph/datasets/hollywood.csv diff --git a/python/cugraph/cugraph/datasets/metadata/soc-livejournal1.yaml b/python/cugraph/cugraph/datasets/metadata/soc-livejournal1.yaml index fafc68acb9b..af0cbd4f047 100644 --- a/python/cugraph/cugraph/datasets/metadata/soc-livejournal1.yaml +++ b/python/cugraph/cugraph/datasets/metadata/soc-livejournal1.yaml @@ -3,7 +3,7 @@ file_type: .csv description: A graph of the LiveJournal social network. author: L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan refs: - L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan. Group Formation in + L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan. Group Formation in Large Social Networks Membership, Growth, and Evolution. KDD, 2006. delim: " " header: None @@ -19,4 +19,4 @@ is_multigraph: false is_symmetric: false number_of_edges: 68993773 number_of_nodes: 4847571 -url: https://data.rapids.ai/cugraph/datasets/soc-LiveJournal1.csv \ No newline at end of file +url: https://data.rapids.ai/cugraph/datasets/soc-LiveJournal1.csv diff --git a/python/cugraph/cugraph/datasets/metadata/soc-twitter-2010.yaml b/python/cugraph/cugraph/datasets/metadata/soc-twitter-2010.yaml index df5df5735af..184d69a8da1 100644 --- a/python/cugraph/cugraph/datasets/metadata/soc-twitter-2010.yaml +++ b/python/cugraph/cugraph/datasets/metadata/soc-twitter-2010.yaml @@ -3,8 +3,8 @@ file_type: .csv description: A network of follower relationships from a snapshot of Twitter in 2010, where an edge from i to j indicates that j is a follower of i. author: H. Kwak, C. Lee, H. Park, S. Moon refs: - J. Yang, J. Leskovec. Temporal Variation in Online Media. ACM Intl. - Conf. on Web Search and Data Mining (WSDM '11), 2011. + J. Yang, J. Leskovec. Temporal Variation in Online Media. ACM Intl. + Conf. on Web Search and Data Mining (WSDM '11), 2011. delim: " " header: None col_names: @@ -19,4 +19,4 @@ is_multigraph: false is_symmetric: false number_of_edges: 530051354 number_of_nodes: 21297772 -url: https://data.rapids.ai/cugraph/datasets/soc-twitter-2010.csv \ No newline at end of file +url: https://data.rapids.ai/cugraph/datasets/soc-twitter-2010.csv diff --git a/python/cugraph/cugraph/structure/graph_utilities.pxd b/python/cugraph/cugraph/structure/graph_utilities.pxd index 5085aa42216..39e2cdbbff5 100644 --- a/python/cugraph/cugraph/structure/graph_utilities.pxd +++ b/python/cugraph/cugraph/structure/graph_utilities.pxd @@ -1,4 +1,4 @@ -# Copyright (c) 2019-2023, NVIDIA CORPORATION. +# Copyright (c) 2019-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -29,4 +29,3 @@ from pylibraft.common.handle cimport handle_t cdef extern from "" namespace "std" nogil: cdef device_buffer move(device_buffer) cdef unique_ptr[device_buffer] move(unique_ptr[device_buffer]) - diff --git a/python/pylibcugraph/pylibcugraph/_cugraph_c/README.md b/python/pylibcugraph/pylibcugraph/_cugraph_c/README.md index cb0c6edff2b..7aa1b2e5680 100644 --- a/python/pylibcugraph/pylibcugraph/_cugraph_c/README.md +++ b/python/pylibcugraph/pylibcugraph/_cugraph_c/README.md @@ -2,4 +2,4 @@ This directory contains cython `.pxd` files which describe the cugraph C library to cython. The contents here are simply a mapping of the cugraph_c C APIs to -cython for use in the cython code in the parent directory. \ No newline at end of file +cython for use in the cython code in the parent directory. diff --git a/python/pylibcugraph/pylibcugraph/_cugraph_c/algorithms.pxd b/python/pylibcugraph/pylibcugraph/_cugraph_c/algorithms.pxd index 29c6d79e08d..b0e7ffaf82d 100644 --- a/python/pylibcugraph/pylibcugraph/_cugraph_c/algorithms.pxd +++ b/python/pylibcugraph/pylibcugraph/_cugraph_c/algorithms.pxd @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -135,7 +135,7 @@ cdef extern from "cugraph_c/algorithms.h": cugraph_random_walk_result_get_path_sizes( cugraph_random_walk_result_t* result ) - + cdef size_t \ cugraph_random_walk_result_get_max_path_length( cugraph_random_walk_result_t* result @@ -187,17 +187,17 @@ cdef extern from "cugraph_c/algorithms.h": cugraph_sample_result_get_destinations( const cugraph_sample_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_sample_result_get_majors( const cugraph_sample_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_sample_result_get_minors( const cugraph_sample_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_sample_result_get_major_offsets( const cugraph_sample_result_t* result @@ -207,27 +207,27 @@ cdef extern from "cugraph_c/algorithms.h": cugraph_sample_result_get_index( const cugraph_sample_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_sample_result_get_edge_weight( const cugraph_sample_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_sample_result_get_edge_id( const cugraph_sample_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_sample_result_get_edge_type( const cugraph_sample_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_sample_result_get_hop( const cugraph_sample_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_sample_result_get_label_hop_offsets( const cugraph_sample_result_t* result @@ -237,7 +237,7 @@ cdef extern from "cugraph_c/algorithms.h": cugraph_sample_result_get_start_labels( const cugraph_sample_result_t* result ) - + # Deprecated cdef cugraph_type_erased_device_array_view_t* \ cugraph_sample_result_get_offsets( @@ -264,15 +264,15 @@ cdef extern from "cugraph_c/algorithms.h": cugraph_sample_result_t** result, cugraph_error_t** error ) - + ctypedef struct cugraph_sampling_options_t: pass - + ctypedef enum cugraph_prior_sources_behavior_t: DEFAULT=0 CARRY_OVER EXCLUDE - + ctypedef enum cugraph_compression_type_t: COO=0 CSR @@ -285,7 +285,7 @@ cdef extern from "cugraph_c/algorithms.h": cugraph_sampling_options_t** options, cugraph_error_t** error, ) - + cdef void \ cugraph_sampling_set_renumber_results( cugraph_sampling_options_t* options, @@ -297,7 +297,7 @@ cdef extern from "cugraph_c/algorithms.h": cugraph_sampling_options_t* options, bool_t value, ) - + cdef void \ cugraph_sampling_set_return_hops( cugraph_sampling_options_t* options, @@ -315,19 +315,19 @@ cdef extern from "cugraph_c/algorithms.h": cugraph_sampling_options_t* options, bool_t value, ) - + cdef void \ cugraph_sampling_set_compress_per_hop( cugraph_sampling_options_t* options, bool_t value, ) - + cdef void \ cugraph_sampling_set_compression_type( cugraph_sampling_options_t* options, cugraph_compression_type_t value, ) - + cdef void \ cugraph_sampling_options_free( cugraph_sampling_options_t* options, @@ -343,7 +343,7 @@ cdef extern from "cugraph_c/algorithms.h": cugraph_random_walk_result_t** result, cugraph_error_t** error ) - + # biased random walks cdef cugraph_error_code_t \ cugraph_based_random_walks( diff --git a/python/pylibcugraph/pylibcugraph/_cugraph_c/centrality_algorithms.pxd b/python/pylibcugraph/pylibcugraph/_cugraph_c/centrality_algorithms.pxd index 532df624c99..6e9a5432974 100644 --- a/python/pylibcugraph/pylibcugraph/_cugraph_c/centrality_algorithms.pxd +++ b/python/pylibcugraph/pylibcugraph/_cugraph_c/centrality_algorithms.pxd @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -212,7 +212,7 @@ cdef extern from "cugraph_c/centrality_algorithms.h": cugraph_centrality_result_t** result, cugraph_error_t** error ) - + ########################################################################### # edge betweenness centrality @@ -223,7 +223,7 @@ cdef extern from "cugraph_c/centrality_algorithms.h": cugraph_edge_centrality_result_get_src_vertices( cugraph_edge_centrality_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_edge_centrality_result_get_dst_vertices( cugraph_edge_centrality_result_t* result @@ -233,17 +233,17 @@ cdef extern from "cugraph_c/centrality_algorithms.h": cugraph_edge_centrality_result_get_edge_ids( cugraph_edge_centrality_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_edge_centrality_result_get_values( cugraph_edge_centrality_result_t* result ) - + cdef void \ cugraph_edge_centrality_result_free( cugraph_edge_centrality_result_t* result ) - + cdef cugraph_error_code_t \ cugraph_edge_betweenness_centrality( const cugraph_resource_handle_t* handle, diff --git a/python/pylibcugraph/pylibcugraph/_cugraph_c/community_algorithms.pxd b/python/pylibcugraph/pylibcugraph/_cugraph_c/community_algorithms.pxd index b7729bfba06..0e9529146cc 100644 --- a/python/pylibcugraph/pylibcugraph/_cugraph_c/community_algorithms.pxd +++ b/python/pylibcugraph/pylibcugraph/_cugraph_c/community_algorithms.pxd @@ -48,17 +48,17 @@ cdef extern from "cugraph_c/community_algorithms.h": cugraph_triangle_count_result_get_vertices( cugraph_triangle_count_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_triangle_count_result_get_counts( cugraph_triangle_count_result_t* result ) - + cdef void \ cugraph_triangle_count_result_free( cugraph_triangle_count_result_t* result ) - + cdef cugraph_error_code_t \ cugraph_triangle_count( const cugraph_resource_handle_t* handle, @@ -83,7 +83,7 @@ cdef extern from "cugraph_c/community_algorithms.h": cugraph_hierarchical_clustering_result_get_clusters( cugraph_hierarchical_clustering_result_t* result ) - + cdef double cugraph_hierarchical_clustering_result_get_modularity( cugraph_hierarchical_clustering_result_t* result ) @@ -104,7 +104,7 @@ cdef extern from "cugraph_c/community_algorithms.h": cugraph_hierarchical_clustering_result_t** result, cugraph_error_t** error ) - + # extract_ego cdef cugraph_error_code_t \ cugraph_extract_ego( @@ -116,7 +116,7 @@ cdef extern from "cugraph_c/community_algorithms.h": cugraph_induced_subgraph_result_t** result, cugraph_error_t** error ) - + # leiden ctypedef struct cugraph_hierarchical_clustering_result_t: pass @@ -130,7 +130,7 @@ cdef extern from "cugraph_c/community_algorithms.h": cugraph_hierarchical_clustering_result_get_clusters( cugraph_hierarchical_clustering_result_t* result ) - + cdef double cugraph_hierarchical_clustering_result_get_modularity( cugraph_hierarchical_clustering_result_t* result ) @@ -180,12 +180,12 @@ cdef extern from "cugraph_c/community_algorithms.h": cugraph_hierarchical_clustering_result_t** result, cugraph_error_t** error ) - + ########################################################################### # Clustering ctypedef struct cugraph_clustering_result_t: pass - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_clustering_result_get_vertices( cugraph_clustering_result_t* result @@ -195,7 +195,7 @@ cdef extern from "cugraph_c/community_algorithms.h": cugraph_clustering_result_get_clusters( cugraph_clustering_result_t* result ) - + cdef void \ cugraph_clustering_result_free( cugraph_clustering_result_t* result @@ -216,7 +216,7 @@ cdef extern from "cugraph_c/community_algorithms.h": cugraph_clustering_result_t** result, cugraph_error_t** error ) - + # Spectral modularity maximization cdef cugraph_error_code_t \ cugraph_spectral_modularity_maximization( @@ -232,7 +232,7 @@ cdef extern from "cugraph_c/community_algorithms.h": cugraph_clustering_result_t** result, cugraph_error_t** error ) - + # Analyze clustering modularity cdef cugraph_error_code_t \ cugraph_analyze_clustering_modularity( @@ -244,7 +244,7 @@ cdef extern from "cugraph_c/community_algorithms.h": double* score, cugraph_error_t** error ) - + # Analyze clustering edge cut cdef cugraph_error_code_t \ cugraph_analyze_clustering_edge_cut( @@ -256,7 +256,7 @@ cdef extern from "cugraph_c/community_algorithms.h": double* score, cugraph_error_t** error ) - + # Analyze clustering ratio cut cdef cugraph_error_code_t \ cugraph_analyze_clustering_ratio_cut( diff --git a/python/pylibcugraph/pylibcugraph/_cugraph_c/core_algorithms.pxd b/python/pylibcugraph/pylibcugraph/_cugraph_c/core_algorithms.pxd index 4d3509e8b7f..ed25faa33f4 100644 --- a/python/pylibcugraph/pylibcugraph/_cugraph_c/core_algorithms.pxd +++ b/python/pylibcugraph/pylibcugraph/_cugraph_c/core_algorithms.pxd @@ -1,4 +1,4 @@ -# Copyright (c) 2022, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -36,7 +36,7 @@ cdef extern from "cugraph_c/core_algorithms.h": # core number ctypedef struct cugraph_core_result_t: pass - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_core_result_get_vertices( cugraph_core_result_t* result @@ -46,7 +46,7 @@ cdef extern from "cugraph_c/core_algorithms.h": cugraph_core_result_get_core_numbers( cugraph_core_result_t* result ) - + cdef void \ cugraph_core_result_free( cugraph_core_result_t* result @@ -66,7 +66,7 @@ cdef extern from "cugraph_c/core_algorithms.h": cugraph_core_result_t** result, cugraph_error_t** error ) - + ########################################################################### # k-core ctypedef struct cugraph_k_core_result_t: @@ -76,22 +76,22 @@ cdef extern from "cugraph_c/core_algorithms.h": cugraph_k_core_result_get_src_vertices( cugraph_k_core_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_k_core_result_get_dst_vertices( cugraph_k_core_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_k_core_result_get_weights( cugraph_k_core_result_t* result ) - + cdef void \ cugraph_k_core_result_free( cugraph_k_core_result_t* result ) - + cdef cugraph_error_code_t \ cugraph_core_result_create( const cugraph_resource_handle_t* handle, @@ -100,7 +100,7 @@ cdef extern from "cugraph_c/core_algorithms.h": cugraph_core_result_t** core_result, cugraph_error_t** error ) - + cdef cugraph_error_code_t \ cugraph_k_core( const cugraph_resource_handle_t* handle, diff --git a/python/pylibcugraph/pylibcugraph/_cugraph_c/graph.pxd b/python/pylibcugraph/pylibcugraph/_cugraph_c/graph.pxd index 28a9f5a3be5..4247bcc1b2a 100644 --- a/python/pylibcugraph/pylibcugraph/_cugraph_c/graph.pxd +++ b/python/pylibcugraph/pylibcugraph/_cugraph_c/graph.pxd @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -51,7 +51,7 @@ cdef extern from "cugraph_c/graph.h": bool_t check, cugraph_graph_t** graph, cugraph_error_t** error) - + # Supports isolated vertices cdef cugraph_error_code_t \ cugraph_graph_create_sg( @@ -76,7 +76,7 @@ cdef extern from "cugraph_c/graph.h": cugraph_sg_graph_free( cugraph_graph_t* graph ) - + # FIXME: Might want to delete 'cugraph_sg_graph_free' and replace # 'cugraph_mg_graph_free' by 'cugraph_graph_free' cdef void \ @@ -105,7 +105,7 @@ cdef extern from "cugraph_c/graph.h": cugraph_mg_graph_free( cugraph_graph_t* graph ) - + cdef cugraph_error_code_t \ cugraph_sg_graph_create_from_csr( const cugraph_resource_handle_t* handle, @@ -121,7 +121,7 @@ cdef extern from "cugraph_c/graph.h": cugraph_graph_t** graph, cugraph_error_t** error ) - + cdef cugraph_error_code_t \ cugraph_graph_create_sg_from_csr( const cugraph_resource_handle_t* handle, @@ -137,12 +137,12 @@ cdef extern from "cugraph_c/graph.h": cugraph_graph_t** graph, cugraph_error_t** error ) - + cdef void \ cugraph_sg_graph_free( cugraph_graph_t* graph ) - + cdef cugraph_error_code_t \ cugraph_mg_graph_create( const cugraph_resource_handle_t* handle, @@ -158,7 +158,7 @@ cdef extern from "cugraph_c/graph.h": cugraph_graph_t** graph, cugraph_error_t** error ) - + cdef cugraph_error_code_t \ cugraph_graph_create_mg( const cugraph_resource_handle_t* handle, @@ -176,7 +176,7 @@ cdef extern from "cugraph_c/graph.h": bool_t do_expensive_check, cugraph_graph_t** graph, cugraph_error_t** error) - + cdef void \ cugraph_mg_graph_free( cugraph_graph_t* graph diff --git a/python/pylibcugraph/pylibcugraph/_cugraph_c/graph_functions.pxd b/python/pylibcugraph/pylibcugraph/_cugraph_c/graph_functions.pxd index 8b3a629956c..90bc041e5f0 100644 --- a/python/pylibcugraph/pylibcugraph/_cugraph_c/graph_functions.pxd +++ b/python/pylibcugraph/pylibcugraph/_cugraph_c/graph_functions.pxd @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -42,7 +42,7 @@ cdef extern from "cugraph_c/graph_functions.h": #""" ctypedef struct cugraph_vertex_pairs_t: pass - + from pylibcugraph._cugraph_c.error cimport ( cugraph_error_code_t, @@ -61,22 +61,22 @@ cdef extern from "cugraph_c/graph_functions.h": # vertex_pairs ctypedef struct cugraph_vertex_pairs_t: pass - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_vertex_pairs_get_first( cugraph_vertex_pairs_t* vertex_pairs ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_vertex_pairs_get_second( cugraph_vertex_pairs_t* vertex_pairs ) - + cdef void \ cugraph_vertex_pairs_free( cugraph_vertex_pairs_t* vertex_pairs ) - + cdef cugraph_error_code_t \ cugraph_create_vertex_pairs( const cugraph_resource_handle_t* handle, @@ -86,21 +86,21 @@ cdef extern from "cugraph_c/graph_functions.h": cugraph_vertex_pairs_t** vertex_pairs, cugraph_error_t** error ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_vertex_pairs_get_first( cugraph_vertex_pairs_t* vertex_pairs ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_vertex_pairs_get_second( cugraph_vertex_pairs_t* vertex_pairs ) - + cdef void cugraph_vertex_pairs_free( cugraph_vertex_pairs_t* vertex_pairs ) - + cdef cugraph_error_code_t cugraph_two_hop_neighbors( const cugraph_resource_handle_t* handle, const cugraph_graph_t* graph, @@ -117,7 +117,7 @@ cdef extern from "cugraph_c/graph_functions.h": cugraph_vertex_pairs_t** result, cugraph_error_t** error ) - + ########################################################################### # induced_subgraph ctypedef struct cugraph_induced_subgraph_result_t: @@ -127,37 +127,37 @@ cdef extern from "cugraph_c/graph_functions.h": cugraph_induced_subgraph_get_sources( cugraph_induced_subgraph_result_t* induced_subgraph ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_induced_subgraph_get_destinations( cugraph_induced_subgraph_result_t* induced_subgraph ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_induced_subgraph_get_edge_weights( cugraph_induced_subgraph_result_t* induced_subgraph ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_induced_subgraph_get_edge_ids( cugraph_induced_subgraph_result_t* induced_subgraph ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_induced_subgraph_get_edge_type_ids( cugraph_induced_subgraph_result_t* induced_subgraph ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_induced_subgraph_get_subgraph_offsets( cugraph_induced_subgraph_result_t* induced_subgraph ) - + cdef void \ cugraph_induced_subgraph_result_free( cugraph_induced_subgraph_result_t* induced_subgraph ) - + cdef cugraph_error_code_t \ cugraph_extract_induced_subgraph( const cugraph_resource_handle_t* handle, diff --git a/python/pylibcugraph/pylibcugraph/_cugraph_c/labeling_algorithms.pxd b/python/pylibcugraph/pylibcugraph/_cugraph_c/labeling_algorithms.pxd index 7c911235a54..53c4c382d58 100644 --- a/python/pylibcugraph/pylibcugraph/_cugraph_c/labeling_algorithms.pxd +++ b/python/pylibcugraph/pylibcugraph/_cugraph_c/labeling_algorithms.pxd @@ -1,4 +1,4 @@ -# Copyright (c) 2022, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -41,17 +41,17 @@ cdef extern from "cugraph_c/labeling_algorithms.h": cugraph_labeling_result_get_vertices( cugraph_labeling_result_t* result ) - + cdef cugraph_type_erased_device_array_view_t* \ cugraph_labeling_result_get_labels( cugraph_labeling_result_t* result ) - + cdef void \ cugraph_labeling_result_free( cugraph_labeling_result_t* result ) - + cdef cugraph_error_code_t \ cugraph_weakly_connected_components( const cugraph_resource_handle_t* handle, @@ -60,4 +60,3 @@ cdef extern from "cugraph_c/labeling_algorithms.h": cugraph_labeling_result_t** result, cugraph_error_t** error ) - \ No newline at end of file diff --git a/python/pylibcugraph/pylibcugraph/_cugraph_c/resource_handle.pxd b/python/pylibcugraph/pylibcugraph/_cugraph_c/resource_handle.pxd index e9e74723e06..f3f43d55dff 100644 --- a/python/pylibcugraph/pylibcugraph/_cugraph_c/resource_handle.pxd +++ b/python/pylibcugraph/pylibcugraph/_cugraph_c/resource_handle.pxd @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -29,7 +29,7 @@ cdef extern from "cugraph_c/resource_handle.h": FLOAT32 FLOAT64 SIZE_T - + ctypedef data_type_id_t cugraph_data_type_id_t ctypedef int8_t byte_t diff --git a/python/pylibcugraph/pylibcugraph/_cugraph_c/similarity_algorithms.pxd b/python/pylibcugraph/pylibcugraph/_cugraph_c/similarity_algorithms.pxd index 0d98bb8e14a..406094f18d5 100644 --- a/python/pylibcugraph/pylibcugraph/_cugraph_c/similarity_algorithms.pxd +++ b/python/pylibcugraph/pylibcugraph/_cugraph_c/similarity_algorithms.pxd @@ -1,4 +1,4 @@ -# Copyright (c) 2022, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -45,12 +45,12 @@ cdef extern from "cugraph_c/similarity_algorithms.h": cugraph_similarity_result_get_similarity( cugraph_similarity_result_t* result ) - + cdef void \ cugraph_similarity_result_free( cugraph_similarity_result_t* result ) - + ########################################################################### # jaccard coefficients cdef cugraph_error_code_t \ diff --git a/python/pylibcugraph/pylibcugraph/analyze_clustering_modularity.pyx b/python/pylibcugraph/pylibcugraph/analyze_clustering_modularity.pyx index 2e7c1d2f649..907d08bef67 100644 --- a/python/pylibcugraph/pylibcugraph/analyze_clustering_modularity.pyx +++ b/python/pylibcugraph/pylibcugraph/analyze_clustering_modularity.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -133,7 +133,7 @@ def analyze_clustering_modularity(ResourceHandle resource_handle, &score, &error_ptr) assert_success(error_code, error_ptr, "cugraph_analyze_clustering_modularity") - + if vertex is not None: cugraph_type_erased_device_array_view_free(vertex_view_ptr) if cluster is not None: diff --git a/python/pylibcugraph/pylibcugraph/balanced_cut_clustering.pyx b/python/pylibcugraph/pylibcugraph/balanced_cut_clustering.pyx index a1a5c8182eb..e0ec2f77233 100644 --- a/python/pylibcugraph/pylibcugraph/balanced_cut_clustering.pyx +++ b/python/pylibcugraph/pylibcugraph/balanced_cut_clustering.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -90,7 +90,7 @@ def balanced_cut_clustering(ResourceHandle resource_handle, kmean_max_iter: size_t Specifies the maximum number of iterations for the k-means solver. - + do_expensive_check : bool_t If True, performs more extensive tests on the inputs to ensure validitity, at the expense of increased run time. diff --git a/python/pylibcugraph/pylibcugraph/betweenness_centrality.pyx b/python/pylibcugraph/pylibcugraph/betweenness_centrality.pyx index 5087314c725..85df88b9001 100644 --- a/python/pylibcugraph/pylibcugraph/betweenness_centrality.pyx +++ b/python/pylibcugraph/pylibcugraph/betweenness_centrality.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -93,7 +93,7 @@ def betweenness_centrality(ResourceHandle resource_handle, Using None defaults to a hash of process id, time, and hostname If k is either None or list or cudf objects: random_state parameter is ignored. - + normalized : bool_t Normalization will ensure that values are in [0, 1]. @@ -102,7 +102,7 @@ def betweenness_centrality(ResourceHandle resource_handle, do_expensive_check : bool_t A flag to run expensive checks for input arguments if True. - + Returns ------- @@ -113,7 +113,7 @@ def betweenness_centrality(ResourceHandle resource_handle, if isinstance(k, int): # randomly select vertices - + #'select_random_vertices' internally creates a # 'pylibcugraph.random.CuGraphRandomState' vertex_list = select_random_vertices( @@ -150,7 +150,7 @@ def betweenness_centrality(ResourceHandle resource_handle, cugraph_centrality_result_get_vertices(result_ptr) cdef cugraph_type_erased_device_array_view_t* values_ptr = \ cugraph_centrality_result_get_values(result_ptr) - + cupy_vertices = copy_to_cupy_array(c_resource_handle_ptr, vertices_ptr) cupy_values = copy_to_cupy_array(c_resource_handle_ptr, values_ptr) diff --git a/python/pylibcugraph/pylibcugraph/bfs.pyx b/python/pylibcugraph/pylibcugraph/bfs.pyx index 3034dcc8cb1..e65e94a8020 100644 --- a/python/pylibcugraph/pylibcugraph/bfs.pyx +++ b/python/pylibcugraph/pylibcugraph/bfs.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -52,8 +52,8 @@ from pylibcugraph.graphs cimport ( _GPUGraph, ) -def bfs(ResourceHandle handle, _GPUGraph graph, - sources, bool_t direction_optimizing, int32_t depth_limit, +def bfs(ResourceHandle handle, _GPUGraph graph, + sources, bool_t direction_optimizing, int32_t depth_limit, bool_t compute_predecessors, bool_t do_expensive_check): """ Performs a Breadth-first search starting from the provided sources. @@ -110,10 +110,10 @@ def bfs(ResourceHandle handle, _GPUGraph graph, >>> weights = G.edgelist.edgelist_df['weights'] >>> >>> sg = SGGraph( - >>> resource_handle = handle, - >>> graph_properties = GraphProperties(is_multigraph=G.is_multigraph()), - >>> src_array = srcs, - >>> dst_array = dsts, + >>> resource_handle = handle, + >>> graph_properties = GraphProperties(is_multigraph=G.is_multigraph()), + >>> src_array = srcs, + >>> dst_array = dsts, >>> weight_array = weights, >>> store_transposed=False, >>> renumber=False, @@ -121,7 +121,7 @@ def bfs(ResourceHandle handle, _GPUGraph graph, >>> ) >>> >>> res = pylibcugraph_bfs( - >>> handle, + >>> handle, >>> sg, >>> cudf.Series([0], dtype='int32'), >>> False, @@ -164,7 +164,7 @@ def bfs(ResourceHandle handle, _GPUGraph graph, cai_sources_ptr, len(sources), get_c_type_from_numpy_type(sources.dtype)) - + cdef cugraph_paths_result_t* result_ptr error_code = cugraph_bfs( @@ -186,7 +186,7 @@ def bfs(ResourceHandle handle, _GPUGraph graph, cdef cugraph_type_erased_device_array_view_t* predecessors_ptr = \ cugraph_paths_result_get_predecessors(result_ptr) - + cdef cugraph_type_erased_device_array_view_t* vertices_ptr = \ cugraph_paths_result_get_vertices(result_ptr) @@ -194,7 +194,7 @@ def bfs(ResourceHandle handle, _GPUGraph graph, cupy_distances = copy_to_cupy_array(c_resource_handle_ptr, distances_ptr) cupy_predecessors = copy_to_cupy_array(c_resource_handle_ptr, predecessors_ptr) cupy_vertices = copy_to_cupy_array(c_resource_handle_ptr, vertices_ptr) - + # deallocate the no-longer needed result struct cugraph_paths_result_free(result_ptr) diff --git a/python/pylibcugraph/pylibcugraph/components/_connectivity.pyx b/python/pylibcugraph/pylibcugraph/components/_connectivity.pyx index 02e7549d1c5..9f5b84f260d 100644 --- a/python/pylibcugraph/pylibcugraph/components/_connectivity.pyx +++ b/python/pylibcugraph/pylibcugraph/components/_connectivity.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2021-2022, NVIDIA CORPORATION. +# Copyright (c) 2021-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -128,4 +128,3 @@ def strongly_connected_components(offsets, indices, weights, num_verts, num_edge cdef cugraph_cc_t connect_type=CUGRAPH_STRONG connected_components(g, connect_type, c_labels) - diff --git a/python/pylibcugraph/pylibcugraph/core_number.pyx b/python/pylibcugraph/pylibcugraph/core_number.pyx index 7d0c42f7dd0..50ce5bfe965 100644 --- a/python/pylibcugraph/pylibcugraph/core_number.pyx +++ b/python/pylibcugraph/pylibcugraph/core_number.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -31,7 +31,7 @@ from pylibcugraph._cugraph_c.array cimport ( from pylibcugraph._cugraph_c.graph cimport ( cugraph_graph_t, ) -from pylibcugraph._cugraph_c.core_algorithms cimport ( +from pylibcugraph._cugraph_c.core_algorithms cimport ( cugraph_core_result_t, cugraph_core_number, cugraph_k_core_degree_type_t, @@ -63,17 +63,17 @@ def core_number(ResourceHandle resource_handle, resource_handle: ResourceHandle Handle to the underlying device and host resource needed for referencing data and running algorithms. - + graph : SGGraph or MGGraph The input graph, for either Single or Multi-GPU operations. - + degree_type: str This option determines if the core number computation should be based on input, output, or both directed edges, with valid values being "incoming", "outgoing", and "bidirectional" respectively. This option is currently ignored in this release, and setting it will result in a warning. - + do_expensive_check: bool If True, performs more extensive tests on the inputs to ensure validity, at the expense of increased run time. diff --git a/python/pylibcugraph/pylibcugraph/ecg.pyx b/python/pylibcugraph/pylibcugraph/ecg.pyx index 9e414fccb0f..4e5407348e3 100644 --- a/python/pylibcugraph/pylibcugraph/ecg.pyx +++ b/python/pylibcugraph/pylibcugraph/ecg.pyx @@ -73,7 +73,7 @@ def ecg(ResourceHandle resource_handle, graph : SGGraph The input graph. - + min_weight : double, optional (default=0.5) The minimum value to assign as an edgeweight in the ECG algorithm. It should be a value in the range [0,1] usually left as the default @@ -83,7 +83,7 @@ def ecg(ResourceHandle resource_handle, The number of graph permutations to use for the ensemble. The default value is 16, larger values may produce higher quality partitions for some graphs. - + do_expensive_check : bool_t If True, performs more extensive tests on the inputs to ensure validitity, at the expense of increased run time. diff --git a/python/pylibcugraph/pylibcugraph/edge_betweenness_centrality.pyx b/python/pylibcugraph/pylibcugraph/edge_betweenness_centrality.pyx index e1dae1ff10a..75a950eaa34 100644 --- a/python/pylibcugraph/pylibcugraph/edge_betweenness_centrality.pyx +++ b/python/pylibcugraph/pylibcugraph/edge_betweenness_centrality.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -92,13 +92,13 @@ def edge_betweenness_centrality(ResourceHandle resource_handle, Using None defaults to a hash of process id, time, and hostname If k is either None or list or cudf objects: random_state parameter is ignored. - + normalized : bool_t Normalization will ensure that values are in [0, 1]. do_expensive_check : bool_t A flag to run expensive checks for input arguments if True. - + Returns ------- A tuple of device arrays corresponding to the sources, destinations, edge @@ -140,7 +140,7 @@ def edge_betweenness_centrality(ResourceHandle resource_handle, if isinstance(k, int): # randomly select vertices - + #'select_random_vertices' internally creates a # 'pylibcugraph.random.CuGraphRandomState' vertex_list = select_random_vertices( @@ -179,14 +179,14 @@ def edge_betweenness_centrality(ResourceHandle resource_handle, cugraph_edge_centrality_result_get_dst_vertices(result_ptr) cdef cugraph_type_erased_device_array_view_t* values_ptr = \ cugraph_edge_centrality_result_get_values(result_ptr) - + if graph.edge_id_view_ptr is NULL and graph.edge_id_view_ptr_ptr is NULL: cupy_edge_ids = None else: edge_ids_ptr = cugraph_edge_centrality_result_get_edge_ids(result_ptr) cupy_edge_ids = copy_to_cupy_array(c_resource_handle_ptr, edge_ids_ptr) - - + + cupy_src_vertices = copy_to_cupy_array(c_resource_handle_ptr, src_ptr) cupy_dst_vertices = copy_to_cupy_array(c_resource_handle_ptr, dst_ptr) cupy_values = copy_to_cupy_array(c_resource_handle_ptr, values_ptr) diff --git a/python/pylibcugraph/pylibcugraph/egonet.pyx b/python/pylibcugraph/pylibcugraph/egonet.pyx index e7237cc3ba4..070ea1fdd85 100644 --- a/python/pylibcugraph/pylibcugraph/egonet.pyx +++ b/python/pylibcugraph/pylibcugraph/egonet.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -153,10 +153,10 @@ def ego_graph(ResourceHandle resource_handle, # for perfomance improvement cupy_sources = copy_to_cupy_array( c_resource_handle_ptr, sources_ptr) - + cupy_destinations = copy_to_cupy_array( c_resource_handle_ptr, destinations_ptr) - + if edge_weights_ptr is not NULL: cupy_edge_weights = copy_to_cupy_array( c_resource_handle_ptr, edge_weights_ptr) diff --git a/python/pylibcugraph/pylibcugraph/eigenvector_centrality.pyx b/python/pylibcugraph/pylibcugraph/eigenvector_centrality.pyx index 568f072ee3d..baa69eb2e30 100644 --- a/python/pylibcugraph/pylibcugraph/eigenvector_centrality.pyx +++ b/python/pylibcugraph/pylibcugraph/eigenvector_centrality.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -127,7 +127,7 @@ def eigenvector_centrality(ResourceHandle resource_handle, cugraph_centrality_result_get_vertices(result_ptr) cdef cugraph_type_erased_device_array_view_t* values_ptr = \ cugraph_centrality_result_get_values(result_ptr) - + cupy_vertices = copy_to_cupy_array(c_resource_handle_ptr, vertices_ptr) cupy_values = copy_to_cupy_array(c_resource_handle_ptr, values_ptr) diff --git a/python/pylibcugraph/pylibcugraph/generate_rmat_edgelist.pyx b/python/pylibcugraph/pylibcugraph/generate_rmat_edgelist.pyx index d09d60ff15b..f38ad21d3b0 100644 --- a/python/pylibcugraph/pylibcugraph/generate_rmat_edgelist.pyx +++ b/python/pylibcugraph/pylibcugraph/generate_rmat_edgelist.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -82,19 +82,19 @@ def generate_rmat_edgelist(ResourceHandle resource_handle, resource_handle : ResourceHandle Handle to the underlying device resources needed for referencing data and running algorithms. - + random_state : int , optional Random state to use when generating samples. Optional argument, defaults to a hash of process id, time, and hostname. (See pylibcugraph.random.CuGraphRandomState) - + scale : size_t Scale factor to set the number of vertices in the graph Vertex IDs have values in [0, V), where V = 1 << 'scale' - + num_edges : size_t Number of edges to generate - + a : double Probability of the edge being in the first partition The Graph 500 spec sets this value to 0.57 @@ -106,39 +106,39 @@ def generate_rmat_edgelist(ResourceHandle resource_handle, c : double Probability of the edge being in the third partition The Graph 500 spec sets this value to 0.19 - + clip_and_flip : bool Flag controlling whether to generate edges only in the lower triangular part (including the diagonal) of the graph adjacency matrix (if set to 'true') or not (if set to 'false). - + scramble_vertex_ids : bool Flag controlling whether to scramble vertex ID bits (if set to `true`) or not (if set to `false`); scrambling vertex ID bits breaks correlation between vertex ID values and vertex degrees. - + include_edge_weights : bool Flag controlling whether to generate edges with weights (if set to 'true') or not (if set to 'false'). minimum_weight : double Minimum weight value to generate (if 'include_edge_weights' is 'true') - + maximum_weight : double Maximum weight value to generate (if 'include_edge_weights' is 'true') - + dtype : string The type of weight to generate ("FLOAT32" or "FLOAT64"), ignored unless include_weights is true - + include_edge_ids : bool Flag controlling whether to generate edges with ids (if set to 'true') or not (if set to 'false'). - + include_edge_types : bool Flag controlling whether to generate edges with types (if set to 'true') or not (if set to 'false'). - + min_edge_type_value : int Minimum edge type to generate if 'include_edge_types' is 'true' otherwise, this parameter is ignored. @@ -146,7 +146,7 @@ def generate_rmat_edgelist(ResourceHandle resource_handle, max_edge_type_value : int Maximum edge type to generate if 'include_edge_types' is 'true' otherwise, this paramter is ignored. - + multi_gpu : bool Flag if the COO is being created on multiple GPUs @@ -188,7 +188,7 @@ def generate_rmat_edgelist(ResourceHandle resource_handle, cdef cugraph_type_erased_device_array_view_t* \ destinations_view_ptr = cugraph_coo_get_destinations(result_coo_ptr) - + cdef cugraph_type_erased_device_array_view_t* edge_weights_view_ptr cupy_edge_weights = None @@ -209,13 +209,13 @@ def generate_rmat_edgelist(ResourceHandle resource_handle, edge_weights_view_ptr = cugraph_coo_get_edge_weights(result_coo_ptr) cupy_edge_weights = copy_to_cupy_array(c_resource_handle_ptr, edge_weights_view_ptr) - + if include_edge_ids: error_code = cugraph_generate_edge_ids(c_resource_handle_ptr, result_coo_ptr, multi_gpu, &error_ptr) - + assert_success(error_code, error_ptr, "generate_edge_ids") edge_ids_view_ptr = cugraph_coo_get_edge_id(result_coo_ptr) @@ -228,7 +228,7 @@ def generate_rmat_edgelist(ResourceHandle resource_handle, min_edge_type_value, max_edge_type_value, &error_ptr) - + assert_success(error_code, error_ptr, "generate_edge_types") edge_type_view_ptr = cugraph_coo_get_edge_type(result_coo_ptr) @@ -236,10 +236,10 @@ def generate_rmat_edgelist(ResourceHandle resource_handle, - - + + cupy_sources = copy_to_cupy_array(c_resource_handle_ptr, sources_view_ptr) - cupy_destinations = copy_to_cupy_array(c_resource_handle_ptr, destinations_view_ptr) + cupy_destinations = copy_to_cupy_array(c_resource_handle_ptr, destinations_view_ptr) cugraph_coo_free(result_coo_ptr) diff --git a/python/pylibcugraph/pylibcugraph/generate_rmat_edgelists.pyx b/python/pylibcugraph/pylibcugraph/generate_rmat_edgelists.pyx index d5a89f8a222..32af0c13fc0 100644 --- a/python/pylibcugraph/pylibcugraph/generate_rmat_edgelists.pyx +++ b/python/pylibcugraph/pylibcugraph/generate_rmat_edgelists.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -88,24 +88,24 @@ def generate_rmat_edgelists(ResourceHandle resource_handle, resource_handle : ResourceHandle Handle to the underlying device resources needed for referencing data and running algorithms. - + random_state : int , optional Random state to use when generating samples. Optional argument, defaults to a hash of process id, time, and hostname. (See pylibcugraph.random.CuGraphRandomState) - + n_edgelists : size_t Number of edge lists (graphs) to generate - + min_scale : size_t Scale factor to set the minimum number of vertices in the graph max_scale : size_t Scale factor to set the maximum number of vertices in the graph - + edge_factor : size_t Average number of edges per vertex to generate - + size_distribution : int Distribution of the graph sizes, impacts the scale parameter of the R-MAT generator. @@ -115,39 +115,39 @@ def generate_rmat_edgelists(ResourceHandle resource_handle, Edges distribution for each graph, impacts how R-MAT parameters a,b,c,d, are set. '0' for POWER_LAW distribution and '1' for UNIFORM distribution - + clip_and_flip : bool Flag controlling whether to generate edges only in the lower triangular part (including the diagonal) of the graph adjacency matrix (if set to 'true') or not (if set to 'false') - + scramble_vertex_ids : bool Flag controlling whether to scramble vertex ID bits (if set to `true`) or not (if set to `false`); scrambling vertex ID bits breaks correlation between vertex ID values and vertex degrees. - + include_edge_weights : bool Flag controlling whether to generate edges with weights (if set to 'true') or not (if set to 'false'). minimum_weight : double Minimum weight value to generate (if 'include_edge_weights' is 'true') - + maximum_weight : double Maximum weight value to generate (if 'include_edge_weights' is 'true') - + dtype : string The type of weight to generate ("FLOAT32" or "FLOAT64"), ignored unless include_weights is true - + include_edge_ids : bool Flag controlling whether to generate edges with ids (if set to 'true') or not (if set to 'false'). - + include_edge_types : bool Flag controlling whether to generate edges with types (if set to 'true') or not (if set to 'false'). - + min_edge_type_value : int Minimum edge type to generate if 'include_edge_types' is 'true' otherwise, this parameter is ignored. @@ -178,12 +178,12 @@ def generate_rmat_edgelists(ResourceHandle resource_handle, cdef cugraph_generator_distribution_t size_distribution_ cdef cugraph_generator_distribution_t edge_distribution_ - + if size_distribution == 0: size_distribution_ = cugraph_generator_distribution_t.POWER_LAW else: size_distribution_ = cugraph_generator_distribution_t.UNIFORM - + if edge_distribution == 0: edge_distribution_ = cugraph_generator_distribution_t.POWER_LAW else: @@ -237,7 +237,7 @@ def generate_rmat_edgelists(ResourceHandle resource_handle, edge_weights_view_ptr = cugraph_coo_get_edge_weights(result_coo_ptr) cupy_edge_weights = copy_to_cupy_array(c_resource_handle_ptr, edge_weights_view_ptr) - + if include_edge_ids: @@ -245,7 +245,7 @@ def generate_rmat_edgelists(ResourceHandle resource_handle, result_coo_ptr, multi_gpu, &error_ptr) - + assert_success(error_code, error_ptr, "generate_edge_ids") edge_ids_view_ptr = cugraph_coo_get_edge_id(result_coo_ptr) @@ -258,7 +258,7 @@ def generate_rmat_edgelists(ResourceHandle resource_handle, min_edge_type_value, max_edge_type_value, &error_ptr) - + assert_success(error_code, error_ptr, "generate_edge_types") edge_type_view_ptr = cugraph_coo_get_edge_type(result_coo_ptr) diff --git a/python/pylibcugraph/pylibcugraph/graphs.pxd b/python/pylibcugraph/pylibcugraph/graphs.pxd index dac69e0ad04..f9dd690e46f 100644 --- a/python/pylibcugraph/pylibcugraph/graphs.pxd +++ b/python/pylibcugraph/pylibcugraph/graphs.pxd @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -26,12 +26,11 @@ cdef class _GPUGraph: cdef cugraph_graph_t* c_graph_ptr cdef cugraph_type_erased_device_array_view_t* edge_id_view_ptr cdef cugraph_type_erased_device_array_view_t** edge_id_view_ptr_ptr - cdef cugraph_type_erased_device_array_view_t* weights_view_ptr - cdef cugraph_type_erased_device_array_view_t** weights_view_ptr_ptr + cdef cugraph_type_erased_device_array_view_t* weights_view_ptr + cdef cugraph_type_erased_device_array_view_t** weights_view_ptr_ptr cdef class SGGraph(_GPUGraph): pass cdef class MGGraph(_GPUGraph): pass - diff --git a/python/pylibcugraph/pylibcugraph/hits.pyx b/python/pylibcugraph/pylibcugraph/hits.pyx index 4524a4f70df..3204ac2ba57 100644 --- a/python/pylibcugraph/pylibcugraph/hits.pyx +++ b/python/pylibcugraph/pylibcugraph/hits.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -78,7 +78,7 @@ def hits(ResourceHandle resource_handle, graph : SGGraph or MGGraph The input graph, for either Single or Multi-GPU operations. - + tol : float, optional (default=1.0e-5) Set the tolerance the approximation, this parameter should be a small magnitude value. This parameter is not currently supported. @@ -104,7 +104,7 @@ def hits(ResourceHandle resource_handle, A tuple of device arrays, where the third item in the tuple is a device array containing the vertex identifiers, the first and second items are device arrays containing respectively the hubs and authorities values for the corresponding - vertices + vertices Examples -------- @@ -118,13 +118,13 @@ def hits(ResourceHandle resource_handle, cdef cugraph_type_erased_device_array_view_t* initial_hubs_guess_vertices_view_ptr = NULL cdef cugraph_type_erased_device_array_view_t* initial_hubs_guess_values_view_ptr = NULL - # FIXME: Add check ensuring that both initial_hubs_guess_vertices + # FIXME: Add check ensuring that both initial_hubs_guess_vertices # and initial_hubs_guess_values are passed when calling only pylibcugraph HITS. # This is already True for cugraph HITS - - if initial_hubs_guess_vertices is not None: + + if initial_hubs_guess_vertices is not None: assert_CAI_type(initial_hubs_guess_vertices, "initial_hubs_guess_vertices") - + cai_initial_hubs_guess_vertices_ptr = \ initial_hubs_guess_vertices.__cuda_array_interface__["data"][0] @@ -133,7 +133,7 @@ def hits(ResourceHandle resource_handle, cai_initial_hubs_guess_vertices_ptr, len(initial_hubs_guess_vertices), get_c_type_from_numpy_type(initial_hubs_guess_vertices.dtype)) - + if initial_hubs_guess_values is not None: assert_CAI_type(initial_hubs_guess_values, "initial_hubs_guess_values") @@ -179,13 +179,13 @@ def hits(ResourceHandle resource_handle, cupy_hubs = copy_to_cupy_array(c_resource_handle_ptr, hubs_ptr) cupy_authorities = copy_to_cupy_array(c_resource_handle_ptr, authorities_ptr) - + cugraph_hits_result_free(result_ptr) if initial_hubs_guess_vertices is not None: cugraph_type_erased_device_array_view_free( initial_hubs_guess_vertices_view_ptr) - + if initial_hubs_guess_values is not None: cugraph_type_erased_device_array_view_free( initial_hubs_guess_values_view_ptr) diff --git a/python/pylibcugraph/pylibcugraph/induced_subgraph.pyx b/python/pylibcugraph/pylibcugraph/induced_subgraph.pyx index 99b89ec2a58..6fd6d7b9af3 100644 --- a/python/pylibcugraph/pylibcugraph/induced_subgraph.pyx +++ b/python/pylibcugraph/pylibcugraph/induced_subgraph.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -69,10 +69,10 @@ def induced_subgraph(ResourceHandle resource_handle, graph : SGGraph or MGGraph The input graph. - + subgraph_vertices : cupy array array of vertices to include in extracted subgraph. - + subgraph_offsets : cupy array array of subgraph offsets into subgraph_vertices. diff --git a/python/pylibcugraph/pylibcugraph/internal_types/sampling_result.pyx b/python/pylibcugraph/pylibcugraph/internal_types/sampling_result.pyx index 9f98b4f37b0..f588237942b 100644 --- a/python/pylibcugraph/pylibcugraph/internal_types/sampling_result.pyx +++ b/python/pylibcugraph/pylibcugraph/internal_types/sampling_result.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -68,13 +68,13 @@ cdef class SamplingResult: if self.c_sample_result_ptr is NULL: raise ValueError("pointer not set, must call set_ptr() with a " "non-NULL value first.") - + cdef cugraph_type_erased_device_array_view_t* device_array_view_ptr = ( cugraph_sample_result_get_major_offsets(self.c_sample_result_ptr) ) if device_array_view_ptr is NULL: return None - + return create_cupy_array_view_for_device_ptr(device_array_view_ptr, self) @@ -87,7 +87,7 @@ cdef class SamplingResult: ) if device_array_view_ptr is NULL: return None - + return create_cupy_array_view_for_device_ptr(device_array_view_ptr, self) @@ -100,7 +100,7 @@ cdef class SamplingResult: ) if device_array_view_ptr is NULL: return None - + return create_cupy_array_view_for_device_ptr(device_array_view_ptr, self) @@ -114,7 +114,7 @@ cdef class SamplingResult: ) if device_array_view_ptr is NULL: return None - + return create_cupy_array_view_for_device_ptr(device_array_view_ptr, self) @@ -128,7 +128,7 @@ cdef class SamplingResult: ) if device_array_view_ptr is NULL: return None - + return create_cupy_array_view_for_device_ptr(device_array_view_ptr, self) @@ -149,7 +149,7 @@ cdef class SamplingResult: def get_indices(self): # Deprecated return self.get_edge_weights() - + def get_edge_ids(self): if self.c_sample_result_ptr is NULL: raise ValueError("pointer not set, must call set_ptr() with a " @@ -177,7 +177,7 @@ cdef class SamplingResult: return create_cupy_array_view_for_device_ptr(device_array_view_ptr, self) - + def get_batch_ids(self): if self.c_sample_result_ptr is NULL: raise ValueError("pointer not set, must call set_ptr() with a " @@ -187,7 +187,7 @@ cdef class SamplingResult: ) if device_array_view_ptr is NULL: return None - + return create_cupy_array_view_for_device_ptr(device_array_view_ptr, self) @@ -200,7 +200,7 @@ cdef class SamplingResult: ) if device_array_view_ptr is NULL: return None - + return create_cupy_array_view_for_device_ptr(device_array_view_ptr, self) @@ -214,7 +214,7 @@ cdef class SamplingResult: ) if device_array_view_ptr is NULL: return None - + return create_cupy_array_view_for_device_ptr(device_array_view_ptr, self) @@ -228,7 +228,7 @@ cdef class SamplingResult: ) if device_array_view_ptr is NULL: return None - + return create_cupy_array_view_for_device_ptr(device_array_view_ptr, self) @@ -241,7 +241,7 @@ cdef class SamplingResult: ) if device_array_view_ptr is NULL: return None - + return create_cupy_array_view_for_device_ptr(device_array_view_ptr, self) @@ -254,6 +254,6 @@ cdef class SamplingResult: ) if device_array_view_ptr is NULL: return None - + return create_cupy_array_view_for_device_ptr(device_array_view_ptr, - self) \ No newline at end of file + self) diff --git a/python/pylibcugraph/pylibcugraph/jaccard_coefficients.pyx b/python/pylibcugraph/pylibcugraph/jaccard_coefficients.pyx index 59e94aeb615..9611f2ad884 100644 --- a/python/pylibcugraph/pylibcugraph/jaccard_coefficients.pyx +++ b/python/pylibcugraph/pylibcugraph/jaccard_coefficients.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -67,7 +67,7 @@ def jaccard_coefficients(ResourceHandle resource_handle, bool_t do_expensive_check): """ Compute the Jaccard coefficients for the specified vertex_pairs. - + Note that Jaccard similarity must run on a symmetric graph. Parameters @@ -78,13 +78,13 @@ def jaccard_coefficients(ResourceHandle resource_handle, graph : SGGraph or MGGraph The input graph, for either Single or Multi-GPU operations. - + first : Source of the vertex pair. - + second : Destination of the vertex pair. - + use_weight : bool, optional If set to True, the compute weighted jaccard_coefficients( the input graph must be weighted in that case). diff --git a/python/pylibcugraph/pylibcugraph/k_core.pyx b/python/pylibcugraph/pylibcugraph/k_core.pyx index c47cfef7a7a..6e37ee778e9 100644 --- a/python/pylibcugraph/pylibcugraph/k_core.pyx +++ b/python/pylibcugraph/pylibcugraph/k_core.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -31,7 +31,7 @@ from pylibcugraph._cugraph_c.array cimport ( from pylibcugraph._cugraph_c.graph cimport ( cugraph_graph_t, ) -from pylibcugraph._cugraph_c.core_algorithms cimport ( +from pylibcugraph._cugraph_c.core_algorithms cimport ( cugraph_core_result_t, cugraph_k_core_result_t, cugraph_core_result_create, @@ -72,21 +72,21 @@ def k_core(ResourceHandle resource_handle, resource_handle: ResourceHandle Handle to the underlying device and host resource needed for referencing data and running algorithms. - + graph : SGGraph or MGGraph The input graph, for either Single or Multi-GPU operations. - + k : size_t (default=None) Order of the core. This value must not be negative. If set to None the main core is returned. - + degree_type: str This option determines if the core number computation should be based on input, output, or both directed edges, with valid values being "incoming", "outgoing", and "bidirectional" respectively. This option is currently ignored in this release, and setting it will result in a warning. - + core_result : device array type Precomputed core number of the nodes of the graph G If set to None, the core numbers of the nodes are calculated @@ -125,12 +125,12 @@ def k_core(ResourceHandle resource_handle, vertices_view_ptr = \ create_cugraph_type_erased_device_array_view_from_py_obj( core_result["vertex"]) - + cdef cugraph_type_erased_device_array_view_t* \ core_numbers_view_ptr = \ create_cugraph_type_erased_device_array_view_from_py_obj( core_result["values"]) - + # Create a core_number result error_code = cugraph_core_result_create(c_resource_handle_ptr, vertices_view_ptr, diff --git a/python/pylibcugraph/pylibcugraph/k_truss_subgraph.pyx b/python/pylibcugraph/pylibcugraph/k_truss_subgraph.pyx index 2c22c618249..6e4cd2e282a 100644 --- a/python/pylibcugraph/pylibcugraph/k_truss_subgraph.pyx +++ b/python/pylibcugraph/pylibcugraph/k_truss_subgraph.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -90,7 +90,7 @@ def k_truss_subgraph(ResourceHandle resource_handle, >>> weights = cupy.asarray( ... [0.1, 0.1, 2.1, 2.1, 1.1, 1.1, 7.2, 7.2, 2.1, 2.1, ... 1.1, 1.1, 7.2, 7.2, 3.2, 3.2, 6.1, 6.1] - ... ,dtype=numpy.float32) + ... ,dtype=numpy.float32) >>> k = 2 >>> resource_handle = pylibcugraph.ResourceHandle() >>> graph_props = pylibcugraph.GraphProperties( @@ -141,7 +141,7 @@ def k_truss_subgraph(ResourceHandle resource_handle, # for perfomance improvement cupy_sources = copy_to_cupy_array( c_resource_handle_ptr, sources_ptr) - + cupy_destinations = copy_to_cupy_array( c_resource_handle_ptr, destinations_ptr) @@ -150,7 +150,7 @@ def k_truss_subgraph(ResourceHandle resource_handle, c_resource_handle_ptr, edge_weights_ptr) else: cupy_edge_weights = None - + # FIXME: Should we keep the offsets array or just drop it from the final # solution? cupy_subgraph_offsets = copy_to_cupy_array( diff --git a/python/pylibcugraph/pylibcugraph/katz_centrality.pyx b/python/pylibcugraph/pylibcugraph/katz_centrality.pyx index fc78ca89e87..1716a4fc9bf 100644 --- a/python/pylibcugraph/pylibcugraph/katz_centrality.pyx +++ b/python/pylibcugraph/pylibcugraph/katz_centrality.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -95,7 +95,7 @@ def katz_centrality(ResourceHandle resource_handle, do_expensive_check : bool_t A flag to run expensive checks for input arguments if True. - + Returns ------- @@ -112,9 +112,9 @@ def katz_centrality(ResourceHandle resource_handle, cdef cugraph_error_code_t error_code cdef cugraph_error_t* error_ptr - cdef uintptr_t cai_betas_ptr + cdef uintptr_t cai_betas_ptr cdef cugraph_type_erased_device_array_view_t* betas_ptr - + if betas is not None: cai_betas_ptr = betas.__cuda_array_interface__["data"][0] betas_ptr = \ @@ -143,7 +143,7 @@ def katz_centrality(ResourceHandle resource_handle, cugraph_centrality_result_get_vertices(result_ptr) cdef cugraph_type_erased_device_array_view_t* values_ptr = \ cugraph_centrality_result_get_values(result_ptr) - + cupy_vertices = copy_to_cupy_array(c_resource_handle_ptr, vertices_ptr) cupy_values = copy_to_cupy_array(c_resource_handle_ptr, values_ptr) diff --git a/python/pylibcugraph/pylibcugraph/node2vec.pyx b/python/pylibcugraph/pylibcugraph/node2vec.pyx index 5d83fc46c3c..b2f2948affe 100644 --- a/python/pylibcugraph/pylibcugraph/node2vec.pyx +++ b/python/pylibcugraph/pylibcugraph/node2vec.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -172,7 +172,7 @@ def node2vec(ResourceHandle resource_handle, cupy_weights = copy_to_cupy_array(c_resource_handle_ptr, weights_ptr) cupy_path_sizes = copy_to_cupy_array(c_resource_handle_ptr, path_sizes_ptr) - + cugraph_random_walk_result_free(result_ptr) cugraph_type_erased_device_array_view_free(seed_view_ptr) diff --git a/python/pylibcugraph/pylibcugraph/overlap_coefficients.pyx b/python/pylibcugraph/pylibcugraph/overlap_coefficients.pyx index 28360121c64..36f414e71ad 100644 --- a/python/pylibcugraph/pylibcugraph/overlap_coefficients.pyx +++ b/python/pylibcugraph/pylibcugraph/overlap_coefficients.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -65,7 +65,7 @@ def overlap_coefficients(ResourceHandle resource_handle, bool_t do_expensive_check): """ Compute the Overlap coefficients for the specified vertex_pairs. - + Note that Overlap similarity must run on a symmetric graph. @@ -77,13 +77,13 @@ def overlap_coefficients(ResourceHandle resource_handle, graph : SGGraph or MGGraph The input graph, for either Single or Multi-GPU operations. - + first : Source of the vertex pair. - + second : Destination of the vertex pair. - + use_weight : bool, optional If set to True, the compute weighted jaccard_coefficients( the input graph must be weighted in that case). diff --git a/python/pylibcugraph/pylibcugraph/random.pyx b/python/pylibcugraph/pylibcugraph/random.pyx index 4e53d4aaa76..918f9924ea4 100644 --- a/python/pylibcugraph/pylibcugraph/random.pyx +++ b/python/pylibcugraph/pylibcugraph/random.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -72,12 +72,12 @@ cdef class CuGraphRandomState: cdef cugraph_resource_handle_t* c_resource_handle_ptr = \ resource_handle.c_resource_handle_ptr - + cdef cugraph_rng_state_t* new_rng_state_ptr if seed is None: seed = generate_default_seed() - + # reinterpret as unsigned seed &= (2**64 - 1) @@ -85,12 +85,12 @@ cdef class CuGraphRandomState: c_resource_handle_ptr, seed, &new_rng_state_ptr, - &error_ptr + &error_ptr ) assert_success(error_code, error_ptr, "cugraph_rng_state_create") - + self.rng_state_ptr = new_rng_state_ptr - + def __dealloc__(self): """ Destroys this CuGraphRandomState instance. Properly calls diff --git a/python/pylibcugraph/pylibcugraph/replicate_edgelist.pyx b/python/pylibcugraph/pylibcugraph/replicate_edgelist.pyx index 3763d4bc69d..8d4964a314f 100644 --- a/python/pylibcugraph/pylibcugraph/replicate_edgelist.pyx +++ b/python/pylibcugraph/pylibcugraph/replicate_edgelist.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -62,13 +62,13 @@ def replicate_edgelist(ResourceHandle resource_handle, resource_handle : ResourceHandle Handle to the underlying device resources needed for referencing data and running algorithms. - + src_array : device array type, optional Device array containing the vertex identifiers of the source of each directed edge. The order of the array corresponds to the ordering of the dst_array, where the ith item in src_array and the ith item in dst_array define the ith edge of the graph. - + dst_array : device array type, optional Device array containing the vertex identifiers of the destination of each directed edge. The order of the array corresponds to the ordering @@ -80,13 +80,13 @@ def replicate_edgelist(ResourceHandle resource_handle, order of the array corresponds to the ordering of the src_array and dst_array arrays, where the ith item in weight_array is the weight value of the ith edge of the graph. - + edge_id_array : device array type, optional Device array containing the edge id values of each directed edge. The order of the array corresponds to the ordering of the src_array and dst_array arrays, where the ith item in edge_id_array is the id value of the ith edge of the graph. - + edge_type_id_array : device array type, optional Device array containing the edge type id values of each directed edge. The order of the array corresponds to the ordering of the src_array and @@ -112,17 +112,17 @@ def replicate_edgelist(ResourceHandle resource_handle, cdef cugraph_type_erased_device_array_view_t* srcs_view_ptr = \ create_cugraph_type_erased_device_array_view_from_py_obj(src_array) - + cdef cugraph_type_erased_device_array_view_t* dsts_view_ptr = \ create_cugraph_type_erased_device_array_view_from_py_obj(dst_array) - + cdef cugraph_type_erased_device_array_view_t* weights_view_ptr = \ create_cugraph_type_erased_device_array_view_from_py_obj(weight_array) cdef cugraph_type_erased_device_array_view_t* edge_ids_view_ptr = \ create_cugraph_type_erased_device_array_view_from_py_obj(edge_id_array) - + cdef cugraph_type_erased_device_array_view_t* edge_type_ids_view_ptr = \ create_cugraph_type_erased_device_array_view_from_py_obj(edge_type_id_array) @@ -172,11 +172,11 @@ def replicate_edgelist(ResourceHandle resource_handle, if weight_array is not None: cupy_edge_weights = copy_to_cupy_array( c_resource_handle_ptr, edge_weights_ptr) - + if edge_id_array is not None: cupy_edge_ids = copy_to_cupy_array( c_resource_handle_ptr, edge_ids_ptr) - + if edge_type_id_array is not None: cupy_edge_type_ids = copy_to_cupy_array( c_resource_handle_ptr, edge_type_ids_ptr) diff --git a/python/pylibcugraph/pylibcugraph/select_random_vertices.pyx b/python/pylibcugraph/pylibcugraph/select_random_vertices.pyx index 7964f101058..9aa8ff4c01e 100644 --- a/python/pylibcugraph/pylibcugraph/select_random_vertices.pyx +++ b/python/pylibcugraph/pylibcugraph/select_random_vertices.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -76,12 +76,12 @@ def select_random_vertices(ResourceHandle resource_handle, graph : SGGraph or MGGraph The input graph, for either Single or Multi-GPU operations. - + random_state : int , optional Random state to use when generating samples. Optional argument, defaults to a hash of process id, time, and hostname. (See pylibcugraph.random.CuGraphRandomState) - + num_vertices : size_t , optional Number of vertices to sample. Optional argument, defaults to the total number of vertices. @@ -116,7 +116,7 @@ def select_random_vertices(ResourceHandle resource_handle, vertices_view_ptr = \ cugraph_type_erased_device_array_view( vertices_ptr) - - cupy_vertices = copy_to_cupy_array(c_resource_handle_ptr, vertices_view_ptr) + + cupy_vertices = copy_to_cupy_array(c_resource_handle_ptr, vertices_view_ptr) return cupy_vertices diff --git a/python/pylibcugraph/pylibcugraph/sorensen_coefficients.pyx b/python/pylibcugraph/pylibcugraph/sorensen_coefficients.pyx index 983a635012f..39814b8ad88 100644 --- a/python/pylibcugraph/pylibcugraph/sorensen_coefficients.pyx +++ b/python/pylibcugraph/pylibcugraph/sorensen_coefficients.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -65,7 +65,7 @@ def sorensen_coefficients(ResourceHandle resource_handle, bool_t do_expensive_check): """ Compute the Sorensen coefficients for the specified vertex_pairs. - + Note that Sorensen similarity must run on a symmetric graph. Parameters @@ -76,13 +76,13 @@ def sorensen_coefficients(ResourceHandle resource_handle, graph : SGGraph or MGGraph The input graph, for either Single or Multi-GPU operations. - + first : Source of the vertex pair. - + second : Destination of the vertex pair. - + use_weight : bool, optional If set to True, the compute weighted jaccard_coefficients( the input graph must be weighted in that case). diff --git a/python/pylibcugraph/pylibcugraph/spectral_modularity_maximization.pyx b/python/pylibcugraph/pylibcugraph/spectral_modularity_maximization.pyx index fa01714744d..a2c93e025a8 100644 --- a/python/pylibcugraph/pylibcugraph/spectral_modularity_maximization.pyx +++ b/python/pylibcugraph/pylibcugraph/spectral_modularity_maximization.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -90,7 +90,7 @@ def spectral_modularity_maximization(ResourceHandle resource_handle, kmean_max_iter: size_t Specifies the maximum number of iterations for the k-means solver. - + do_expensive_check : bool_t If True, performs more extensive tests on the inputs to ensure validitity, at the expense of increased run time. diff --git a/python/pylibcugraph/pylibcugraph/testing/type_utils.pyx b/python/pylibcugraph/pylibcugraph/testing/type_utils.pyx index 6defb4c6b43..a79893e8e9f 100644 --- a/python/pylibcugraph/pylibcugraph/testing/type_utils.pyx +++ b/python/pylibcugraph/pylibcugraph/testing/type_utils.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -90,7 +90,7 @@ def create_sampling_result(ResourceHandle resource_handle, device_sources.__cuda_array_interface__["data"][0] cdef uintptr_t cai_dsts_ptr = \ device_destinations.__cuda_array_interface__["data"][0] - + cdef uintptr_t cai_weights_ptr if device_weights is not None: cai_weights_ptr = device_weights.__cuda_array_interface__['data'][0] @@ -127,7 +127,7 @@ def create_sampling_result(ResourceHandle resource_handle, len(device_weights), get_c_type_from_numpy_type(device_weights.dtype) ) - ) + ) cdef cugraph_type_erased_device_array_view_t* c_edge_id_ptr = NULL if device_weights is not None: c_edge_id_ptr = ( @@ -136,7 +136,7 @@ def create_sampling_result(ResourceHandle resource_handle, len(device_edge_id), get_c_type_from_numpy_type(device_edge_id.dtype) ) - ) + ) cdef cugraph_type_erased_device_array_view_t* c_edge_type_ptr = NULL if device_weights is not None: c_edge_type_ptr = ( @@ -145,7 +145,7 @@ def create_sampling_result(ResourceHandle resource_handle, len(device_edge_type), get_c_type_from_numpy_type(device_edge_type.dtype) ) - ) + ) cdef cugraph_type_erased_device_array_view_t* c_hop_ptr = NULL if device_weights is not None: @@ -155,7 +155,7 @@ def create_sampling_result(ResourceHandle resource_handle, len(device_hop), get_c_type_from_numpy_type(device_hop.dtype) ) - ) + ) cdef cugraph_type_erased_device_array_view_t* c_label_ptr = NULL if device_weights is not None: @@ -165,7 +165,7 @@ def create_sampling_result(ResourceHandle resource_handle, len(device_batch_label), get_c_type_from_numpy_type(device_batch_label.dtype) ) - ) + ) error_code = cugraph_test_uniform_neighborhood_sample_result_create( diff --git a/python/pylibcugraph/pylibcugraph/triangle_count.pyx b/python/pylibcugraph/pylibcugraph/triangle_count.pyx index fd86181b581..0cbe9be7f19 100644 --- a/python/pylibcugraph/pylibcugraph/triangle_count.pyx +++ b/python/pylibcugraph/pylibcugraph/triangle_count.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -73,11 +73,11 @@ def triangle_count(ResourceHandle resource_handle, start_list: device array type Device array containing the list of vertices for triangle counting. If 'None' the entire set of vertices in the graph is processed - + do_expensive_check: bool If True, performs more extensive tests on the inputs to ensure validitity, at the expense of increased run time. - + Returns ------- A tuple of device arrays, where the first item in the tuple is a device @@ -111,7 +111,7 @@ def triangle_count(ResourceHandle resource_handle, get_c_type_from_numpy_type(start_list.dtype)) else: start_ptr = NULL - + error_code = cugraph_triangle_count(c_resource_handle_ptr, c_graph_ptr, start_ptr, @@ -132,5 +132,5 @@ def triangle_count(ResourceHandle resource_handle, if start_list is not None: cugraph_type_erased_device_array_view_free(start_ptr) - + return (cupy_vertices, cupy_counts) diff --git a/python/pylibcugraph/pylibcugraph/two_hop_neighbors.pyx b/python/pylibcugraph/pylibcugraph/two_hop_neighbors.pyx index 3989e45d48f..4b1a5b74a3f 100644 --- a/python/pylibcugraph/pylibcugraph/two_hop_neighbors.pyx +++ b/python/pylibcugraph/pylibcugraph/two_hop_neighbors.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -66,7 +66,7 @@ def get_two_hop_neighbors(ResourceHandle resource_handle, graph : SGGraph or MGGraph The input graph, for either Single or Multi-GPU operations. - + start_vertices : Optional array of starting vertices If None use all, if specified compute two-hop neighbors for these starting vertices @@ -102,16 +102,16 @@ def get_two_hop_neighbors(ResourceHandle resource_handle, cdef cugraph_type_erased_device_array_view_t* first_ptr = \ cugraph_vertex_pairs_get_first(result_ptr) - + cdef cugraph_type_erased_device_array_view_t* second_ptr = \ cugraph_vertex_pairs_get_second(result_ptr) - + cupy_first = copy_to_cupy_array(c_resource_handle_ptr, first_ptr) cupy_second = copy_to_cupy_array(c_resource_handle_ptr, second_ptr) # Free all pointers cugraph_vertex_pairs_free(result_ptr) if start_vertices is not None: - cugraph_type_erased_device_array_view_free(start_vertices_view_ptr) + cugraph_type_erased_device_array_view_free(start_vertices_view_ptr) return cupy_first, cupy_second diff --git a/python/pylibcugraph/pylibcugraph/uniform_neighbor_sample.pyx b/python/pylibcugraph/pylibcugraph/uniform_neighbor_sample.pyx index ce6493c38f5..b4145a80095 100644 --- a/python/pylibcugraph/pylibcugraph/uniform_neighbor_sample.pyx +++ b/python/pylibcugraph/pylibcugraph/uniform_neighbor_sample.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -124,25 +124,25 @@ def uniform_neighbor_sample(ResourceHandle resource_handle, do_expensive_check: bool If True, performs more extensive tests on the inputs to ensure validitity, at the expense of increased run time. - + with_edge_properties: bool If True, returns the edge properties of each edges along with the edges themselves. Will result in an error if the provided graph does not have edge properties. - + batch_id_list: list[int32] (Optional) List of int32 batch ids that is returned with each edge. Optional argument, defaults to NULL, returning nothing. - + label_list: list[int32] (Optional) List of unique int32 batch ids. Required if also passing the label_to_output_comm_rank flag. Default to NULL (does nothing) - + label_to_output_comm_rank: list[int32] (Optional) Maps the unique batch ids in label_list to the rank of the worker that should hold results for that batch id. Defaults to NULL (does nothing) - + prior_sources_behavior: str (Optional) Options are "carryover", and "exclude". Default will leave the source list as-is. @@ -150,7 +150,7 @@ def uniform_neighbor_sample(ResourceHandle resource_handle, current hop. Exclude will exclude sources from previous hops from reappearing as sources in future hops. - + deduplicate_sources: bool (Optional) If True, will deduplicate the source list before sampling. Defaults to False. @@ -159,11 +159,11 @@ def uniform_neighbor_sample(ResourceHandle resource_handle, If True, will renumber the sources and destinations on a per-batch basis and return the renumber map and batch offsets in additional to the standard returns. - + compression: str (Optional) Options: COO (default), CSR, CSC, DCSR, DCSR Sets the compression format for the returned samples. - + compress_per_hop: bool (Optional) If False (default), will create a compressed edgelist for the entire batch. @@ -174,7 +174,7 @@ def uniform_neighbor_sample(ResourceHandle resource_handle, Random state to use when generating samples. Optional argument, defaults to a hash of process id, time, and hostname. (See pylibcugraph.random.CuGraphRandomState) - + return_dict: bool (Optional) Whether to return a dictionary instead of a tuple. Optional argument, defaults to False, returning a tuple. @@ -188,11 +188,11 @@ def uniform_neighbor_sample(ResourceHandle resource_handle, walk respectively, the third item in the tuple is a device array containing the start labels, and the fourth item in the tuple is a device array containing the indices for reconstructing paths. - + If renumber was set to True, then the fifth item in the tuple is a device array containing the renumber map, and the sixth item in the tuple is a device array containing the renumber map offsets (which delineate where - the renumber map for each batch starts). + the renumber map for each batch starts). """ cdef cugraph_resource_handle_t* c_resource_handle_ptr = ( @@ -218,22 +218,22 @@ def uniform_neighbor_sample(ResourceHandle resource_handle, cdef uintptr_t cai_start_ptr = \ start_list.__cuda_array_interface__["data"][0] - + cdef uintptr_t cai_batch_id_ptr if batch_id_list is not None: cai_batch_id_ptr = \ batch_id_list.__cuda_array_interface__['data'][0] - + cdef uintptr_t cai_label_list_ptr if label_list is not None: cai_label_list_ptr = \ label_list.__cuda_array_interface__['data'][0] - + cdef uintptr_t cai_label_to_output_comm_rank_ptr if label_to_output_comm_rank is not None: cai_label_to_output_comm_rank_ptr = \ label_to_output_comm_rank.__cuda_array_interface__['data'][0] - + cdef uintptr_t ai_fan_out_ptr = \ h_fan_out.__array_interface__["data"][0] @@ -251,7 +251,7 @@ def uniform_neighbor_sample(ResourceHandle resource_handle, len(batch_id_list), get_c_type_from_numpy_type(batch_id_list.dtype) ) - + cdef cugraph_type_erased_device_array_view_t* label_list_ptr = NULL if label_list is not None: label_list_ptr = \ @@ -260,7 +260,7 @@ def uniform_neighbor_sample(ResourceHandle resource_handle, len(label_list), get_c_type_from_numpy_type(label_list.dtype) ) - + cdef cugraph_type_erased_device_array_view_t* label_to_output_comm_rank_ptr = NULL if label_to_output_comm_rank is not None: label_to_output_comm_rank_ptr = \ @@ -276,7 +276,7 @@ def uniform_neighbor_sample(ResourceHandle resource_handle, len(h_fan_out), get_c_type_from_numpy_type(h_fan_out.dtype)) - + cg_rng_state = CuGraphRandomState(resource_handle, random_state) cdef cugraph_rng_state_t* rng_state_ptr = \ @@ -294,7 +294,7 @@ def uniform_neighbor_sample(ResourceHandle resource_handle, f'Invalid option {prior_sources_behavior}' ' for prior sources behavior' ) - + cdef cugraph_compression_type_t compression_behavior_e if compression is None or compression == 'COO': compression_behavior_e = cugraph_compression_type_t.COO diff --git a/python/pylibcugraph/pylibcugraph/weakly_connected_components.pyx b/python/pylibcugraph/pylibcugraph/weakly_connected_components.pyx index 240c374353d..c9f62be389d 100644 --- a/python/pylibcugraph/pylibcugraph/weakly_connected_components.pyx +++ b/python/pylibcugraph/pylibcugraph/weakly_connected_components.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -61,8 +61,8 @@ def _ensure_args(graph, offsets, indices, weights): else: invalid_input = [i for p in [offsets, indices] if p is None] input_type = "csr_arrays" - - + + if len(invalid_input) != 0: raise TypeError("Invalid input combination: Must set either 'graph' or " "a combination of 'offsets', 'indices' and 'weights', not both") @@ -71,7 +71,7 @@ def _ensure_args(graph, offsets, indices, weights): assert_CAI_type(offsets, "offsets") assert_CAI_type(indices, "indices") assert_CAI_type(weights, "weights", True) - + return input_type @@ -95,7 +95,7 @@ def weakly_connected_components(ResourceHandle resource_handle, graph : SGGraph or MGGraph The input graph. - + offsets : object supporting a __cuda_array_interface__ interface Array containing the offsets values of a Compressed Sparse Row matrix that represents the graph. @@ -133,7 +133,7 @@ def weakly_connected_components(ResourceHandle resource_handle, ... store_transposed=False, renumber=True, do_expensive_check=False) >>> (vertices, labels) = weakly_connected_components( ... resource_handle, G, None, None, None, None, False) - + >>> vertices [0, 1, 2] >>> labels diff --git a/readme_pages/PRTAGS.md b/readme_pages/PRTAGS.md index 4fa02ff9590..6b16d0740dd 100644 --- a/readme_pages/PRTAGS.md +++ b/readme_pages/PRTAGS.md @@ -1,5 +1,5 @@ # Pull Request Tags -If you look at the list of current [Pull Request](https://github.com/rapidsai/cugraph/pulls) you will notice a set of bracketed tags in the subject line. Those tags help developers focus attention and know what is being asked. +If you look at the list of current [Pull Request](https://github.com/rapidsai/cugraph/pulls) you will notice a set of bracketed tags in the subject line. Those tags help developers focus attention and know what is being asked. PR = Pull Request @@ -11,4 +11,4 @@ PR = Pull Request | REVIEW | The code is ready for a full code review. Only code that has passed a code review is merged into the baseline | -Code must pass CI before it is merged \ No newline at end of file +Code must pass CI before it is merged diff --git a/readme_pages/TRANSITIONGUIDE.md b/readme_pages/TRANSITIONGUIDE.md index 73aa487aca1..f3c9dad207d 100644 --- a/readme_pages/TRANSITIONGUIDE.md +++ b/readme_pages/TRANSITIONGUIDE.md @@ -3,18 +3,18 @@ ## Python API ### Loading an edge list -Renumbering is now enabled by default in `from_cudf_edgelist`. -The renumbering feature allows us to hide the fact that we need vertices to be integers starting at 0. The auto-renumbering feature converts the data into the proper data type required by the underlying implementation. All algorithms accepting vertex identifiers (like the souce vertex for SSSP) now automatically accept user's notation too. On output, it will transparently un-renumber results, basically convert the internal IDs back. +Renumbering is now enabled by default in `from_cudf_edgelist`. +The renumbering feature allows us to hide the fact that we need vertices to be integers starting at 0. The auto-renumbering feature converts the data into the proper data type required by the underlying implementation. All algorithms accepting vertex identifiers (like the souce vertex for SSSP) now automatically accept user's notation too. On output, it will transparently un-renumber results, basically convert the internal IDs back. ## C++ API -Pagerank, BFS, and SSSP have dropped the `gdf_column` dependency in favor of basic types and templates +Pagerank, BFS, and SSSP have dropped the `gdf_column` dependency in favor of basic types and templates -Example : +Example : ``` -// 0.11 API -cugraph::pagerank(cugraph::Graph, gdf_column *pagerank, ...) -// 0.12 API -cugraph::pagerank(cugraph::Graph, float *pagerank ...) +// 0.11 API +cugraph::pagerank(cugraph::Graph, gdf_column *pagerank, ...) +// 0.12 API +cugraph::pagerank(cugraph::Graph, float *pagerank ...) ``` # 0.11 @@ -26,21 +26,21 @@ This release introduces new concepts in the API and improves user experience thr ### New graph types The Python API now has `Graph` (undirected) and `DiGraph` (directed) types. This is closer to NetworkX's API. -In the past, directed graphs were stored using the `Graph` type. +In the past, directed graphs were stored using the `Graph` type. Starting in 0.11, `DiGraph` should be used for directed graphs instead. `Graph` only refers to undirected graphs now. The `Multi(Di)Graph` types were added and more support for this new structure will be added in the next releases (more details in issue #604). ### Undirected graphs -cuGraph currently automatically "symmetrize" undirected inputs: each undirected edge (u,v) is stored as two directed edges (u,v) and (v,u). +cuGraph currently automatically "symmetrize" undirected inputs: each undirected edge (u,v) is stored as two directed edges (u,v) and (v,u). -When viewing the graph or requesting the number of edges, cuGraph will currently return this symmetrized view. -This is an implementation detail that will be hidden to the user in 0.12 (more details in issue #603). +When viewing the graph or requesting the number of edges, cuGraph will currently return this symmetrized view. +This is an implementation detail that will be hidden to the user in 0.12 (more details in issue #603). ### Loading an edge list Users are encouraged to use `from_cudf_edgelist` instead of `add_edge_list`. -This new API supports cuDF DataFrame. Users can now ask for an automatic renumbering of the edge list at the time it is loaded. +This new API supports cuDF DataFrame. Users can now ask for an automatic renumbering of the edge list at the time it is loaded. In this case, all analytics outputs are automatically un-renumbered before being returned. ## C++ API @@ -54,10 +54,10 @@ This release is the first step toward converting the former C-like API into a C+ Example : ```c -// < 0.11 API -gdf_error err = gdf_pagerank(, ...) -// >= 0.11 API -cugraph::pagerank(, ...) +// < 0.11 API +gdf_error err = gdf_pagerank(, ...) +// >= 0.11 API +cugraph::pagerank(, ...) ``` The C++ API provides functions that efficiently convert between data formats and access to the efficient CUDA algorithms. In 0.11, all automatic conversions and decision making were removed from the C++ layer. diff --git a/readme_pages/cugraph_dgl.md b/readme_pages/cugraph_dgl.md index 3c6ddd4026b..7b19787f4c6 100644 --- a/readme_pages/cugraph_dgl.md +++ b/readme_pages/cugraph_dgl.md @@ -3,7 +3,7 @@ [RAPIDS](https://rapids.ai) cugraph_dgl enables the ability to use cugraph Property Graphs with DGL. This cugraph backend allows DGL users access to a collection of GPU-accelerated algorithms for graph analytics, such as sampling, centrality computation, and community detection. -The goal of `cugraph_dgl` is to enable Multi-Node Multi-GPU cugraph accelerated graphs to help train large-scale Graph Neural Networks(GNN) on DGL by providing a duck-typed version of the [DGLGraph](https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph) which uses cugraph for storing graph structure and node/edge feature data. +The goal of `cugraph_dgl` is to enable Multi-Node Multi-GPU cugraph accelerated graphs to help train large-scale Graph Neural Networks(GNN) on DGL by providing a duck-typed version of the [DGLGraph](https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph) which uses cugraph for storing graph structure and node/edge feature data. ## Usage ```diff @@ -15,14 +15,13 @@ sampler = dgl.dataloading.NeighborSampler( [15, 10, 5], prefetch_node_feats=['feat'], prefetch_labels=['label']) train_dataloader = dgl.dataloading.DataLoader( -- dgl_g, +- dgl_g, + cugraph_g, -train_idx, -sampler, -device=device, +train_idx, +sampler, +device=device, batch_size=1024, shuffle=True, -drop_last=False, +drop_last=False, num_workers=0) ``` - diff --git a/readme_pages/cugraph_ops.md b/readme_pages/cugraph_ops.md index 87b0051a815..7bd4ac55185 100644 --- a/readme_pages/cugraph_ops.md +++ b/readme_pages/cugraph_ops.md @@ -7,7 +7,7 @@ CuGraphOps Cugraph-ops is a closed-source library that is composed of highly optimized and performant primitives associated with GNNs and related graph -operations, such as training, sampling and inference. +operations, such as training, sampling and inference. This is how cuGraphOps fits into the cuGraph ecosystem diff --git a/readme_pages/cugraph_python.md b/readme_pages/cugraph_python.md index 164c1212ed8..69d70f69fad 100644 --- a/readme_pages/cugraph_python.md +++ b/readme_pages/cugraph_python.md @@ -1,13 +1,13 @@ # cuGraph – Python -cuGraph is a Python package that encapsulate and hides the complexity of the lower layer C/CUDA code. Additionally, the software is focused on providing an easy and familiar API +cuGraph is a Python package that encapsulate and hides the complexity of the lower layer C/CUDA code. Additionally, the software is focused on providing an easy and familiar API ## cuGraph Notice -Vertex IDs are expected to be contiguous integers starting from 0. If your data doesn't match that restriction, we have a solution. cuGraph provides the renumber function, which is by default automatically called when data is added to a graph. Input vertex IDs for the renumber function can be any type, can be non-contiguous, can be multiple columns, and can start from an arbitrary number. The renumber function maps the provided input vertex IDs to either 32- or 64-bit contiguous integers starting from 0. +Vertex IDs are expected to be contiguous integers starting from 0. If your data doesn't match that restriction, we have a solution. cuGraph provides the renumber function, which is by default automatically called when data is added to a graph. Input vertex IDs for the renumber function can be any type, can be non-contiguous, can be multiple columns, and can start from an arbitrary number. The renumber function maps the provided input vertex IDs to either 32- or 64-bit contiguous integers starting from 0. Additionally, when using the auto-renumbering feature, vertices are automatically un-renumbered in results. @@ -21,4 +21,4 @@ The amount of memory required is dependent on the graph structure and the analyt | 500 million edges | 32 GB | | 250 million edges | 16 GB | -The use of managed memory for oversubscription can also be used to exceed the above memory limitations. See the recent blog on _Tackling Large Graphs with RAPIDS cuGraph and CUDA Unified Memory on GPUs_: https://medium.com/rapids-ai/tackling-large-graphs-with-rapids-cugraph-and-unified-virtual-memory-b5b69a065d4 \ No newline at end of file +The use of managed memory for oversubscription can also be used to exceed the above memory limitations. See the recent blog on _Tackling Large Graphs with RAPIDS cuGraph and CUDA Unified Memory on GPUs_: https://medium.com/rapids-ai/tackling-large-graphs-with-rapids-cugraph-and-unified-virtual-memory-b5b69a065d4 diff --git a/readme_pages/cugraph_service.md b/readme_pages/cugraph_service.md index 9c06cd9f71a..b1a95e62a95 100644 --- a/readme_pages/cugraph_service.md +++ b/readme_pages/cugraph_service.md @@ -4,7 +4,7 @@ The goal of cugraph_service is to wrap a cuGraph cluster and provide a Graph-as- Goals * Separate large graph management and analytic code from application code - * The application, like GNN code, should be isolated from the details of cuGraph graph management, dedicated multi-node/multi-GPU setup, feature storage and retrieval, etc. + * The application, like GNN code, should be isolated from the details of cuGraph graph management, dedicated multi-node/multi-GPU setup, feature storage and retrieval, etc. * Scaling from single GPU (SG), to multi-GPU (MG), to multi-node/multi-GPU (MNMG) should not require changes to the graph integration code * Support multiple concurrent clients/processes/threads sharing one or more graphs @@ -20,7 +20,7 @@ Goals # Picture -One option on a single DGX +One option on a single DGX graph_service_cluster diff --git a/readme_pages/data_types.md b/readme_pages/data_types.md index 37f2ee4daf6..936775742f1 100644 --- a/readme_pages/data_types.md +++ b/readme_pages/data_types.md @@ -1,5 +1,5 @@ # External Data Types -cuGraph Python strives to make getting data into and out of cuGraph simple. To that end, the Python interface accepts +cuGraph Python strives to make getting data into and out of cuGraph simple. To that end, the Python interface accepts @@ -15,7 +15,7 @@ cuGraph supports graph creation with Source and Destination being expressed as: cuGraph tries to match the return type based on the input type. So a NetworkX input will return the same data type that NetworkX would have. ## cuDF -The preferred data type is a cuDF object since it is already in the GPU. For loading data from disk into cuDF please see the cuDF documentation. +The preferred data type is a cuDF object since it is already in the GPU. For loading data from disk into cuDF please see the cuDF documentation. __Loading data__ * Graph.from_cudf_adjlist @@ -23,18 +23,18 @@ __Loading data__ __Results__
-Results which are not simple types (ints, floats) are typically cuDF Dataframes. +Results which are not simple types (ints, floats) are typically cuDF Dataframes. ## Pandas -The RAPIDS cuDF library can be thought of as accelerated Pandas +The RAPIDS cuDF library can be thought of as accelerated Pandas ## NetworkX Graph Objects -## +## diff --git a/readme_pages/gnn_support.md b/readme_pages/gnn_support.md index 1c52be1c013..924c2bf62af 100644 --- a/readme_pages/gnn_support.md +++ b/readme_pages/gnn_support.md @@ -27,7 +27,6 @@ An overview of GNN's and how they are used is found in this excellent [blog](htt RAPIDS GNN components improve other industy GNN specific projects. Due to the degree distribution of nodes, memory bottlenecks are the pain point for large scale graphs. To solve this problem, sampling operations form the backbone for Graph Neural Networks (GNN) training. However, current sampling methods provided by other libraries are not optimized enough for the whole process of GNN training. The main limit to performance is moving data between the hosts and devices. In cuGraph, we provide an end-to-end solution from data loading to training all on the GPUs. -CuGraph now supports compatibility with [Deep Graph Library](https://www.dgl.ai/) (DGL) and [PyTorch Geometric](https://pytorch-geometric.readthedocs.io/en/latest/) (PyG) by allowing conversion between a cuGraph object and a DGL or PyG object, making it possible for DGL and PyG users to access efficient data loader and graph operations (such as uniformed sampling) implementations in cuGraph, as well as keep their models unchanged in DGL or PyG. We have considerable speedup compared with the original implementation in DGL and PyG. +CuGraph now supports compatibility with [Deep Graph Library](https://www.dgl.ai/) (DGL) and [PyTorch Geometric](https://pytorch-geometric.readthedocs.io/en/latest/) (PyG) by allowing conversion between a cuGraph object and a DGL or PyG object, making it possible for DGL and PyG users to access efficient data loader and graph operations (such as uniformed sampling) implementations in cuGraph, as well as keep their models unchanged in DGL or PyG. We have considerable speedup compared with the original implementation in DGL and PyG. [](https://developer.nvidia.com/blog/optimizing-fraud-detection-in-financial-services-with-graph-neural-networks-and-nvidia-gpus/) - diff --git a/readme_pages/news.md b/readme_pages/news.md index f9ebe36b9dd..fa22fb8c318 100644 --- a/readme_pages/news.md +++ b/readme_pages/news.md @@ -1,13 +1,13 @@ # cuGraph News ### Scaling to 1 Trillion Edges -At GTC Spring '22 we presented results of running cuGraph on the [Selene](https://top500.org/system/179842/) supercomputer using 2,048 GPUs and processing a graph with `1.1 Trillion edges`. Synthetic data created with the RMAT generator found in cuGraph. +At GTC Spring '22 we presented results of running cuGraph on the [Selene](https://top500.org/system/179842/) supercomputer using 2,048 GPUs and processing a graph with `1.1 Trillion edges`. Synthetic data created with the RMAT generator found in cuGraph.
 
cuGraph Scaling


### cuGraph Software Stack -cuGraph has a new multi-layer software stack that allows users and system integrators to access cuGraph at different layers. +cuGraph has a new multi-layer software stack that allows users and system integrators to access cuGraph at different layers.
 
cuGraph Software Stack
-

\ No newline at end of file +

diff --git a/readme_pages/performance/performance.md b/readme_pages/performance/performance.md index 5700c59bba3..159b2334704 100644 --- a/readme_pages/performance/performance.md +++ b/readme_pages/performance/performance.md @@ -4,4 +4,4 @@ alt="RAPIDS" width="500"> We are working on a new nightly benchmarking system that will produce performance numbers. -This is a splash page for where the performance numbers will be posted in early 2023. \ No newline at end of file +This is a splash page for where the performance numbers will be posted in early 2023. diff --git a/readme_pages/property_graph.md b/readme_pages/property_graph.md index 19d6e23f718..bce090c2ad3 100644 --- a/readme_pages/property_graph.md +++ b/readme_pages/property_graph.md @@ -20,8 +20,8 @@ Property Graph enables: This is an example of using the cuGraph Property Graph in a two stage analysis. ``` -import cudf -import cugraph +import cudf +import cugraph from cugraph.experimental import PropertyGraph # Import a built-in dataset @@ -33,22 +33,22 @@ graph = cugraph.Graph(directed=False) G = karate.get_graph(create_using=graph,fetch=True) df = G.edgelist.edgelist_df -pG = PropertyGraph() +pG = PropertyGraph() pG. add_edge_data(df, vertex_col_names=("src", "dst")) -# Run Louvain to get the partition number for each vertex. -# Set resolution accordingly to identify two primary partitions. +# Run Louvain to get the partition number for each vertex. +# Set resolution accordingly to identify two primary partitions. (partition_info, _) = cugraph.louvain(pG.extract_subgraph(create_using=graph), resolution=0.6) -# Add the partition numbers back to the Property Graph as vertex properties +# Add the partition numbers back to the Property Graph as vertex properties pG.add_vertex_data(partition_info, vertex_col_name="vertex") -# Use the partition properties to extract a Graph for each partition. +# Use the partition properties to extract a Graph for each partition. G0 = pG.extract_subgraph(selection=pG.select_vertices("partition == 0")) G1 = pG.extract_subgraph(selection=pG. select_vertices("partition == 1")) -# Run pagerank on each graph, print results. -pageranks0 = cugraph.pagerank(G0) -pageranks1 = cugraph.pagerank(G1) +# Run pagerank on each graph, print results. +pageranks0 = cugraph.pagerank(G0) +pageranks1 = cugraph.pagerank(G1) print(pageranks0.sort_values (by="pagerank", ascending=False).head(3)) print(pageranks1.sort_values (by="pagerank", ascending=False).head(3)) ``` From e0d18c9882695e9c70a47a3de1b31abe1b9c3af2 Mon Sep 17 00:00:00 2001 From: Chuck Hastings <45364586+ChuckHastings@users.noreply.github.com> Date: Sun, 10 Mar 2024 20:32:54 -0400 Subject: [PATCH 15/20] remove NVTX calls in libcugraph_etl (#4229) NVTX calls are not necessary for this prototype capability. Authors: - Chuck Hastings (https://github.com/ChuckHastings) Approvers: - Naim (https://github.com/naimnv) - Bradley Dice (https://github.com/bdice) - Seunghwa Kang (https://github.com/seunghwak) URL: https://github.com/rapidsai/cugraph/pull/4229 --- cpp/libcugraph_etl/include/hash/concurrent_unordered_map.cuh | 2 -- 1 file changed, 2 deletions(-) diff --git a/cpp/libcugraph_etl/include/hash/concurrent_unordered_map.cuh b/cpp/libcugraph_etl/include/hash/concurrent_unordered_map.cuh index 18e3a6669ad..a1aab595f2f 100644 --- a/cpp/libcugraph_etl/include/hash/concurrent_unordered_map.cuh +++ b/cpp/libcugraph_etl/include/hash/concurrent_unordered_map.cuh @@ -25,7 +25,6 @@ #include #include -#include #include #include #include @@ -171,7 +170,6 @@ class concurrent_unordered_map { const Equality& equal = key_equal(), const allocator_type& allocator = allocator_type()) { - CUDF_FUNC_RANGE(); using Self = concurrent_unordered_map; // Note: need `(*p).destroy` instead of `p->destroy` here From 02109a662d6b6f3d0d8f78649b6e2bd94043f095 Mon Sep 17 00:00:00 2001 From: Alex Barghi <105237337+alexbarghi-nv@users.noreply.github.com> Date: Mon, 11 Mar 2024 12:35:19 -0400 Subject: [PATCH 16/20] Update cuGraph-PyG GraphSAGE Examples (#4224) Fixes failing tests of the examples. Updates the examples to use the cugraph-ops models within cugraph-pyg instead of the deprecated ones within pyg. Authors: - Alex Barghi (https://github.com/alexbarghi-nv) - Ralph Liu (https://github.com/nv-rliu) Approvers: - Don Acosta (https://github.com/acostadon) - Rick Ratzel (https://github.com/rlratzel) URL: https://github.com/rapidsai/cugraph/pull/4224 --- python/cugraph-pyg/cugraph_pyg/examples/graph_sage_mg.py | 4 ++-- python/cugraph-pyg/cugraph_pyg/examples/graph_sage_sg.py | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/python/cugraph-pyg/cugraph_pyg/examples/graph_sage_mg.py b/python/cugraph-pyg/cugraph_pyg/examples/graph_sage_mg.py index 9c0adaad879..4ca573504a1 100644 --- a/python/cugraph-pyg/cugraph_pyg/examples/graph_sage_mg.py +++ b/python/cugraph-pyg/cugraph_pyg/examples/graph_sage_mg.py @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -21,7 +21,7 @@ import torch import numpy as np -from torch_geometric.nn import CuGraphSAGEConv +from cugraph_pyg.nn import SAGEConv as CuGraphSAGEConv import torch.nn as nn import torch.nn.functional as F diff --git a/python/cugraph-pyg/cugraph_pyg/examples/graph_sage_sg.py b/python/cugraph-pyg/cugraph_pyg/examples/graph_sage_sg.py index 82f5e7ea67d..9c96a707e4d 100644 --- a/python/cugraph-pyg/cugraph_pyg/examples/graph_sage_sg.py +++ b/python/cugraph-pyg/cugraph_pyg/examples/graph_sage_sg.py @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -18,7 +18,7 @@ import torch -from torch_geometric.nn import CuGraphSAGEConv +from cugraph_pyg.nn import SAGEConv as CuGraphSAGEConv import torch.nn as nn import torch.nn.functional as F From 6c4f881d063f5079bea5e9e330e12871a3697c55 Mon Sep 17 00:00:00 2001 From: Tingyu Wang Date: Mon, 11 Mar 2024 12:37:45 -0400 Subject: [PATCH 17/20] Add additional `kwargs` to GATConv (#4210) Support deterministic/high-precision flags in mha primitives, introduced in https://github.com/rapidsai/cugraph-ops/pull/607 Authors: - Tingyu Wang (https://github.com/tingyu66) Approvers: - Maximilian Stadler (https://github.com/stadlmax) - Alex Barghi (https://github.com/alexbarghi-nv) URL: https://github.com/rapidsai/cugraph/pull/4210 --- .../cugraph_dgl/nn/conv/gatconv.py | 24 +++++++++++++++++ .../cugraph_dgl/nn/conv/gatv2conv.py | 12 +++++++++ .../cugraph_pyg/nn/conv/gat_conv.py | 26 ++++++++++++++++++- .../cugraph_pyg/nn/conv/gatv2_conv.py | 14 +++++++++- 4 files changed, 74 insertions(+), 2 deletions(-) diff --git a/python/cugraph-dgl/cugraph_dgl/nn/conv/gatconv.py b/python/cugraph-dgl/cugraph_dgl/nn/conv/gatconv.py index cc4ce474f2d..e8813271fd8 100644 --- a/python/cugraph-dgl/cugraph_dgl/nn/conv/gatconv.py +++ b/python/cugraph-dgl/cugraph_dgl/nn/conv/gatconv.py @@ -186,6 +186,10 @@ def forward( nfeat: Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]], efeat: Optional[torch.Tensor] = None, max_in_degree: Optional[int] = None, + deterministic_dgrad: bool = False, + deterministic_wgrad: bool = False, + high_precision_dgrad: bool = False, + high_precision_wgrad: bool = False, ) -> torch.Tensor: r"""Forward computation. @@ -204,6 +208,20 @@ def forward( from a neighbor sampler, the value should be set to the corresponding :attr:`fanout`. This option is used to invoke the MFG-variant of cugraph-ops kernel. + deterministic_dgrad : bool, default=False + Optional flag indicating whether the feature gradients + are computed deterministically using a dedicated workspace buffer. + deterministic_wgrad: bool, default=False + Optional flag indicating whether the weight gradients + are computed deterministically using a dedicated workspace buffer. + high_precision_dgrad: bool, default=False + Optional flag indicating whether gradients for inputs in half precision + are kept in single precision as long as possible and only casted to + the corresponding input type at the very end. + high_precision_wgrad: bool, default=False + Optional flag indicating whether gradients for weights in half precision + are kept in single precision as long as possible and only casted to + the corresponding input type at the very end. Returns ------- @@ -232,6 +250,8 @@ def forward( _graph = self.get_cugraph_ops_CSC( g, is_bipartite=bipartite, max_in_degree=max_in_degree ) + if deterministic_dgrad: + _graph.add_reverse_graph() if bipartite: nfeat = (self.feat_drop(nfeat[0]), self.feat_drop(nfeat[1])) @@ -273,6 +293,10 @@ def forward( negative_slope=self.negative_slope, concat_heads=self.concat, edge_feat=efeat, + deterministic_dgrad=deterministic_dgrad, + deterministic_wgrad=deterministic_wgrad, + high_precision_dgrad=high_precision_dgrad, + high_precision_wgrad=high_precision_wgrad, )[: g.num_dst_nodes()] if self.concat: diff --git a/python/cugraph-dgl/cugraph_dgl/nn/conv/gatv2conv.py b/python/cugraph-dgl/cugraph_dgl/nn/conv/gatv2conv.py index 6c78b4df0b8..4f47005f8ee 100644 --- a/python/cugraph-dgl/cugraph_dgl/nn/conv/gatv2conv.py +++ b/python/cugraph-dgl/cugraph_dgl/nn/conv/gatv2conv.py @@ -150,6 +150,8 @@ def forward( nfeat: Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]], efeat: Optional[torch.Tensor] = None, max_in_degree: Optional[int] = None, + deterministic_dgrad: bool = False, + deterministic_wgrad: bool = False, ) -> torch.Tensor: r"""Forward computation. @@ -166,6 +168,12 @@ def forward( from a neighbor sampler, the value should be set to the corresponding :attr:`fanout`. This option is used to invoke the MFG-variant of cugraph-ops kernel. + deterministic_dgrad : bool, default=False + Optional flag indicating whether the feature gradients + are computed deterministically using a dedicated workspace buffer. + deterministic_wgrad: bool, default=False + Optional flag indicating whether the weight gradients + are computed deterministically using a dedicated workspace buffer. Returns ------- @@ -196,6 +204,8 @@ def forward( _graph = self.get_cugraph_ops_CSC( g, is_bipartite=graph_bipartite, max_in_degree=max_in_degree ) + if deterministic_dgrad: + _graph.add_reverse_graph() if nfeat_bipartite: nfeat = (self.feat_drop(nfeat[0]), self.feat_drop(nfeat[1])) @@ -228,6 +238,8 @@ def forward( negative_slope=self.negative_slope, concat_heads=self.concat, edge_feat=efeat, + deterministic_dgrad=deterministic_dgrad, + deterministic_wgrad=deterministic_wgrad, )[: g.num_dst_nodes()] if self.concat: diff --git a/python/cugraph-pyg/cugraph_pyg/nn/conv/gat_conv.py b/python/cugraph-pyg/cugraph_pyg/nn/conv/gat_conv.py index 309bee4e228..d1785f2bef8 100644 --- a/python/cugraph-pyg/cugraph_pyg/nn/conv/gat_conv.py +++ b/python/cugraph-pyg/cugraph_pyg/nn/conv/gat_conv.py @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -162,6 +162,10 @@ def forward( csc: Tuple[torch.Tensor, torch.Tensor, int], edge_attr: Optional[torch.Tensor] = None, max_num_neighbors: Optional[int] = None, + deterministic_dgrad: bool = False, + deterministic_wgrad: bool = False, + high_precision_dgrad: bool = False, + high_precision_wgrad: bool = False, ) -> torch.Tensor: r"""Runs the forward pass of the module. @@ -178,11 +182,27 @@ def forward( of a destination node. When enabled, it allows models to use the message-flow-graph primitives in cugraph-ops. (default: :obj:`None`) + deterministic_dgrad : bool, default=False + Optional flag indicating whether the feature gradients + are computed deterministically using a dedicated workspace buffer. + deterministic_wgrad: bool, default=False + Optional flag indicating whether the weight gradients + are computed deterministically using a dedicated workspace buffer. + high_precision_dgrad: bool, default=False + Optional flag indicating whether gradients for inputs in half precision + are kept in single precision as long as possible and only casted to + the corresponding input type at the very end. + high_precision_wgrad: bool, default=False + Optional flag indicating whether gradients for weights in half precision + are kept in single precision as long as possible and only casted to + the corresponding input type at the very end. """ bipartite = not isinstance(x, torch.Tensor) graph = self.get_cugraph( csc, bipartite=bipartite, max_num_neighbors=max_num_neighbors ) + if deterministic_dgrad: + graph.add_reverse_graph() if edge_attr is not None: if self.lin_edge is None: @@ -220,6 +240,10 @@ def forward( negative_slope=self.negative_slope, concat_heads=self.concat, edge_feat=edge_attr, + deterministic_dgrad=deterministic_dgrad, + deterministic_wgrad=deterministic_wgrad, + high_precision_dgrad=high_precision_dgrad, + high_precision_wgrad=high_precision_wgrad, ) if self.bias is not None: diff --git a/python/cugraph-pyg/cugraph_pyg/nn/conv/gatv2_conv.py b/python/cugraph-pyg/cugraph_pyg/nn/conv/gatv2_conv.py index 32956dcb400..33865898816 100644 --- a/python/cugraph-pyg/cugraph_pyg/nn/conv/gatv2_conv.py +++ b/python/cugraph-pyg/cugraph_pyg/nn/conv/gatv2_conv.py @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -174,6 +174,8 @@ def forward( x: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], csc: Tuple[torch.Tensor, torch.Tensor, int], edge_attr: Optional[torch.Tensor] = None, + deterministic_dgrad: bool = False, + deterministic_wgrad: bool = False, ) -> torch.Tensor: r"""Runs the forward pass of the module. @@ -186,9 +188,17 @@ def forward( :meth:`to_csc` method to convert an :obj:`edge_index` representation to the desired format. edge_attr: (torch.Tensor, optional) The edge features. + deterministic_dgrad : bool, default=False + Optional flag indicating whether the feature gradients + are computed deterministically using a dedicated workspace buffer. + deterministic_wgrad: bool, default=False + Optional flag indicating whether the weight gradients + are computed deterministically using a dedicated workspace buffer. """ bipartite = not isinstance(x, torch.Tensor) or not self.share_weights graph = self.get_cugraph(csc, bipartite=bipartite) + if deterministic_dgrad: + graph.add_reverse_graph() if edge_attr is not None: if self.lin_edge is None: @@ -217,6 +227,8 @@ def forward( negative_slope=self.negative_slope, concat_heads=self.concat, edge_feat=edge_attr, + deterministic_dgrad=deterministic_dgrad, + deterministic_wgrad=deterministic_wgrad, ) if self.bias is not None: From 4f4be6ef78bdf5a874e3cad849b956465d1f6443 Mon Sep 17 00:00:00 2001 From: Alex Barghi <105237337+alexbarghi-nv@users.noreply.github.com> Date: Mon, 11 Mar 2024 12:58:37 -0400 Subject: [PATCH 18/20] cuGraph-DGL and WholeGraph Performance Testing with Feature Store Performance Improvements (#4081) Large-scale cuGraph-DGL performance testing scripts. Also changes the DGL and PyG scripts to evaluate on all ranks and reuse the test samples, and adds support for benchmarking cuGraph-DGL/cuGraph-PyG with WholeGraph. Updates `cuGraph.gnn.FeatureStore` and `cuGraph-PyG` for increased performance: * Supporting passing in a WG embedding directly to cugraph.gnn.FeatureStore * Simplifying how cuGraph-PyG handles filtering and using a cache to prevent repeatedly copying data between the device and host * Fix bug in cugraph.gnn.FeatureStore where indexing with a gpu tensor would raise an exception, especially with WG * Add a function to cugraph.gnn.FeatureStore to check where data is stored, which is used by cuGraph-PyG to prevent unnecessary d2h and h2d copies Merge after #3584 Authors: - Alex Barghi (https://github.com/alexbarghi-nv) - Seunghwa Kang (https://github.com/seunghwak) - Vibhu Jawa (https://github.com/VibhuJawa) - Brad Rees (https://github.com/BradReesWork) Approvers: - Vibhu Jawa (https://github.com/VibhuJawa) - Don Acosta (https://github.com/acostadon) - Brad Rees (https://github.com/BradReesWork) - Naim (https://github.com/naimnv) - Joseph Nke (https://github.com/jnke2016) URL: https://github.com/rapidsai/cugraph/pull/4081 --- .../standalone/bulk_sampling/README.md | 2 +- .../bulk_sampling/bench_cugraph_training.py | 75 +++- .../bulk_sampling/cugraph_bulk_sampling.py | 124 ++++-- .../bulk_sampling/datasets/ogbn_papers100M.py | 152 ++++++-- .../bulk_sampling/models/dgl/__init__.py | 15 + .../bulk_sampling/models/dgl/models_dgl.py | 69 ++++ .../models/pyg/models_cugraph_pyg.py | 2 +- .../standalone/bulk_sampling/run_train_job.sh | 41 +- .../{run_sampling.sh => train.sh} | 52 ++- .../bulk_sampling/trainers/dgl/__init__.py | 16 + .../trainers/dgl/trainers_cugraph_dgl.py | 315 +++++++++++++++ .../trainers/dgl/trainers_dgl.py | 361 ++++++++++++++++++ .../trainers/pyg/trainers_cugraph_pyg.py | 172 +++++++-- .../trainers/pyg/trainers_pyg.py | 215 ++++++----- .../cugraph_dgl/dataloading/dataset.py | 6 +- .../cugraph_pyg/data/cugraph_store.py | 77 +++- .../cugraph_pyg/loader/cugraph_node_loader.py | 36 +- .../cugraph_pyg/sampler/cugraph_sampler.py | 4 + .../gnn/feature_storage/feat_storage.py | 45 ++- 19 files changed, 1514 insertions(+), 265 deletions(-) create mode 100644 benchmarks/cugraph/standalone/bulk_sampling/models/dgl/__init__.py create mode 100644 benchmarks/cugraph/standalone/bulk_sampling/models/dgl/models_dgl.py rename benchmarks/cugraph/standalone/bulk_sampling/{run_sampling.sh => train.sh} (66%) create mode 100644 benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/__init__.py create mode 100644 benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/trainers_cugraph_dgl.py create mode 100644 benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/trainers_dgl.py diff --git a/benchmarks/cugraph/standalone/bulk_sampling/README.md b/benchmarks/cugraph/standalone/bulk_sampling/README.md index 2d09466fb2f..56e9f4f5f64 100644 --- a/benchmarks/cugraph/standalone/bulk_sampling/README.md +++ b/benchmarks/cugraph/standalone/bulk_sampling/README.md @@ -152,7 +152,7 @@ Next are standard GNN training arguments such as `FANOUT`, `BATCH_SIZE`, etc. Y the number of training epochs here. These are followed by the `REPLICATION_FACTOR` argument, which can be used to create replications of the dataset for scale testing purposes. -The final two arguments are `FRAMEWORK` which can be either "cuGraphPyG" or "PyG", and `GPUS_PER_NODE` +The final two arguments are `FRAMEWORK` which can be "cugraph_dgl_csr", "cugraph_pyg" or "pyg", and `GPUS_PER_NODE` which must be set to the correct value, even if this is provided by a SLURM argument. If `GPUS_PER_NODE` is not set to the correct number of GPUs, the script will hang indefinitely until it times out. Mismatched GPUs per node is currently unsupported by this script but should be possible in practice. diff --git a/benchmarks/cugraph/standalone/bulk_sampling/bench_cugraph_training.py b/benchmarks/cugraph/standalone/bulk_sampling/bench_cugraph_training.py index c9e347b261d..2604642b748 100644 --- a/benchmarks/cugraph/standalone/bulk_sampling/bench_cugraph_training.py +++ b/benchmarks/cugraph/standalone/bulk_sampling/bench_cugraph_training.py @@ -43,8 +43,9 @@ def init_pytorch_worker(rank: int, use_rmm_torch_allocator: bool = False) -> Non rmm.reinitialize( devices=[rank], - pool_allocator=True, - initial_pool_size=pool_size, + pool_allocator=False, + # pool_allocator=True, + # initial_pool_size=pool_size, ) if use_rmm_torch_allocator: @@ -119,10 +120,17 @@ def parse_args(): parser.add_argument( "--framework", type=str, - help="The framework to test (PyG, cuGraphPyG)", + help="The framework to test (PyG, cugraph_pyg, cugraph_dgl_csr)", required=True, ) + parser.add_argument( + "--use_wholegraph", + action="store_true", + help="Whether to use WholeGraph feature storage", + required=False, + ) + parser.add_argument( "--model", type=str, @@ -162,6 +170,13 @@ def parse_args(): required=False, ) + parser.add_argument( + "--skip_download", + action="store_true", + help="Whether to skip downloading", + required=False, + ) + return parser.parse_args() @@ -186,21 +201,43 @@ def main(args): world_size = int(os.environ["SLURM_JOB_NUM_NODES"]) * args.gpus_per_node + if args.use_wholegraph: + # TODO support WG without cuGraph + if args.framework.lower() not in ["cugraph_pyg", "cugraph_dgl_csr"]: + raise ValueError("WG feature store only supported with cuGraph backends") + from pylibwholegraph.torch.initialize import ( + get_global_communicator, + get_local_node_communicator, + init, + ) + + logger.info("initializing WG comms...") + init(global_rank, world_size, local_rank, args.gpus_per_node) + wm_comm = get_global_communicator() + get_local_node_communicator() + + wm_comm = wm_comm.wmb_comm + logger.info(f"rank {global_rank} successfully initialized WG comms") + wm_comm.barrier() + dataset = OGBNPapers100MDataset( replication_factor=args.replication_factor, dataset_dir=args.dataset_dir, train_split=args.train_split, val_split=args.val_split, - load_edge_index=(args.framework == "PyG"), + load_edge_index=(args.framework.lower() == "pyg"), + backend="wholegraph" if args.use_wholegraph else "torch", ) - if global_rank == 0: + # Note: this does not generate WG files + if global_rank == 0 and not args.skip_download: dataset.download() + dist.barrier() fanout = [int(f) for f in args.fanout.split("_")] - if args.framework == "PyG": + if args.framework.lower() == "pyg": from trainers.pyg import PyGNativeTrainer trainer = PyGNativeTrainer( @@ -215,7 +252,7 @@ def main(args): num_neighbors=fanout, batch_size=args.batch_size, ) - elif args.framework == "cuGraphPyG": + elif args.framework.lower() == "cugraph_pyg": sample_dir = os.path.join( args.sample_dir, f"ogbn_papers100M[{args.replication_factor}]_b{args.batch_size}_f{fanout}", @@ -229,11 +266,35 @@ def main(args): device=local_rank, rank=global_rank, world_size=world_size, + gpus_per_node=args.gpus_per_node, num_epochs=args.num_epochs, shuffle=True, replace=False, num_neighbors=fanout, batch_size=args.batch_size, + backend="wholegraph" if args.use_wholegraph else "torch", + ) + elif args.framework.lower() == "cugraph_dgl_csr": + sample_dir = os.path.join( + args.sample_dir, + f"ogbn_papers100M[{args.replication_factor}]_b{args.batch_size}_f{fanout}", + ) + from trainers.dgl import DGLCuGraphTrainer + + trainer = DGLCuGraphTrainer( + model=args.model, + dataset=dataset, + sample_dir=sample_dir, + device=local_rank, + rank=global_rank, + world_size=world_size, + gpus_per_node=args.gpus_per_node, + num_epochs=args.num_epochs, + shuffle=True, + replace=False, + num_neighbors=[int(f) for f in args.fanout.split("_")], + batch_size=args.batch_size, + backend="wholegraph" if args.use_wholegraph else "torch", ) else: raise ValueError("unsupported framework") diff --git a/benchmarks/cugraph/standalone/bulk_sampling/cugraph_bulk_sampling.py b/benchmarks/cugraph/standalone/bulk_sampling/cugraph_bulk_sampling.py index e3a5bba3162..95e1afcb28b 100644 --- a/benchmarks/cugraph/standalone/bulk_sampling/cugraph_bulk_sampling.py +++ b/benchmarks/cugraph/standalone/bulk_sampling/cugraph_bulk_sampling.py @@ -190,6 +190,10 @@ def sample_graph( val_perc=0.5, sampling_kwargs={}, ): + logger = logging.getLogger("__main__") + logger.info("Starting sampling phase...") + + logger.info("Calculating random splits...") cupy.random.seed(seed) train_df, test_df = label_df.random_split( [train_perc, 1 - train_perc], random_state=seed, shuffle=True @@ -197,24 +201,35 @@ def sample_graph( val_df, test_df = label_df.random_split( [val_perc, 1 - val_perc], random_state=seed, shuffle=True ) + logger.info("Calculated random splits") total_time = 0.0 for epoch in range(num_epochs): - steps = [("train", train_df), ("test", test_df)] + steps = [("train", train_df)] if epoch == num_epochs - 1: steps.append(("val", val_df)) + steps.append(("test", test_df)) for step, batch_df in steps: - batch_df = batch_df.sample(frac=1.0, random_state=seed) + logger.info("Shuffling batch dataframe...") + batch_df = batch_df.sample(frac=1.0, random_state=seed).persist() + logger.info("Shuffled and persisted batch dataframe...") - if step == "val": - output_sample_path = os.path.join(output_path, "val", "samples") - else: + if step == "train": output_sample_path = os.path.join( output_path, f"epoch={epoch}", f"{step}", "samples" ) - os.makedirs(output_sample_path) + else: + output_sample_path = os.path.join(output_path, step, "samples") + + client = default_client() + + def func(): + os.makedirs(output_sample_path, exist_ok=True) + + client.run(func) + logger.info("Creating bulk sampler...") sampler = BulkSampler( batch_size=batch_size, output_path=output_sample_path, @@ -227,6 +242,7 @@ def sample_graph( log_level=logging.INFO, **sampling_kwargs, ) + logger.info("Bulk sampler created and ready for input") n_workers = len(default_client().scheduler_info()["workers"]) @@ -244,13 +260,13 @@ def sample_graph( # should always persist the batch dataframe or performance may be suboptimal batch_df = batch_df.persist() - print("created batches") + logger.info("created and persisted batches") start_time = perf_counter() sampler.add_batches(batch_df, start_col_name="node", batch_col_name="batch") sampler.flush() end_time = perf_counter() - print("flushed all batches") + logger.info("flushed all batches") total_time += end_time - start_time return total_time @@ -356,23 +372,29 @@ def load_disk_dataset( path = Path(dataset_dir) / dataset parquet_path = path / "parquet" + logger = logging.getLogger("__main__") + + logger.info("getting n workers...") n_workers = get_n_workers() + logger.info(f"there are {n_workers} workers") with open(os.path.join(path, "meta.json")) as meta_file: meta = json.load(meta_file) + logger.info("assigning offsets...") node_offsets, node_offsets_replicated, total_num_nodes = assign_offsets_pyg( meta["num_nodes"], replication_factor=replication_factor ) + logger.info("offsets assigned") edge_index_dict = {} for edge_type in meta["num_edges"].keys(): - print(f"Loading edge index for edge type {edge_type}") + logger.info(f"Loading edge index for edge type {edge_type}") can_edge_type = tuple(edge_type.split("__")) edge_index_dict[can_edge_type] = dask_cudf.read_parquet( Path(parquet_path) / edge_type / "edge_index.parquet" - ).repartition(n_workers * 2) + ).repartition(npartitions=n_workers * 2) edge_index_dict[can_edge_type]["src"] += node_offsets_replicated[ can_edge_type[0] @@ -384,6 +406,7 @@ def load_disk_dataset( edge_index_dict[can_edge_type] = edge_index_dict[can_edge_type] if replication_factor > 1: + logger.info("processing replications") edge_index_dict[can_edge_type] = edge_index_dict[ can_edge_type ].map_partitions( @@ -400,6 +423,7 @@ def load_disk_dataset( } ), ) + logger.info("replications processed") gc.collect() @@ -407,48 +431,63 @@ def load_disk_dataset( edge_index_dict[can_edge_type] = edge_index_dict[can_edge_type].rename( columns={"src": "dst", "dst": "src"} ) + logger.info("edge index loaded") # Assign numeric edge type ids based on lexicographic order edge_offsets = {} edge_count = 0 - for num_edge_type, can_edge_type in enumerate(sorted(edge_index_dict.keys())): - if add_edge_types: - edge_index_dict[can_edge_type]["etp"] = cupy.int32(num_edge_type) - edge_offsets[can_edge_type] = edge_count - edge_count += len(edge_index_dict[can_edge_type]) + # for num_edge_type, can_edge_type in enumerate(sorted(edge_index_dict.keys())): + # if add_edge_types: + # edge_index_dict[can_edge_type]["etp"] = cupy.int32(num_edge_type) + # edge_offsets[can_edge_type] = edge_count + # edge_count += len(edge_index_dict[can_edge_type]) + + if len(edge_index_dict) != 1: + raise ValueError("should only be 1 edge index") + + logger.info("setting edge type") + + all_edges_df = list(edge_index_dict.values())[0] + if add_edge_types: + all_edges_df["etp"] = cupy.int32(0) - all_edges_df = dask_cudf.concat(list(edge_index_dict.values())) + # all_edges_df = dask_cudf.concat(list(edge_index_dict.values())) del edge_index_dict gc.collect() node_labels = {} for node_type, offset in node_offsets_replicated.items(): - print(f"Loading node labels for node type {node_type} (offset={offset})") + logger.info(f"Loading node labels for node type {node_type} (offset={offset})") node_label_path = os.path.join( os.path.join(parquet_path, node_type), "node_label.parquet" ) if os.path.exists(node_label_path): node_labels[node_type] = ( dask_cudf.read_parquet(node_label_path) - .repartition(n_workers) + .repartition(npartitions=n_workers) .drop("label", axis=1) .persist() ) + logger.info(f"Loaded and persisted initial labels") node_labels[node_type]["node"] += offset node_labels[node_type] = node_labels[node_type].persist() + logger.info(f"Set and persisted node offsets") if replication_factor > 1: + logger.info(f"Replicating labels...") node_labels[node_type] = node_labels[node_type].map_partitions( _replicate_df, replication_factor, {"node": meta["num_nodes"][node_type]}, meta=cudf.DataFrame({"node": cudf.Series(dtype="int64")}), ) + logger.info(f"Replicated labels (will likely evaluate later)") gc.collect() node_labels_df = dask_cudf.concat(list(node_labels.values())).reset_index(drop=True) + logger.info("Dataset successfully loaded") del node_labels gc.collect() @@ -459,6 +498,7 @@ def load_disk_dataset( node_offsets_replicated, edge_offsets, total_num_nodes, + sum(meta["num_edges"].values()) * replication_factor, ) @@ -540,6 +580,7 @@ def benchmark_cugraph_bulk_sampling( node_offsets, edge_offsets, total_num_nodes, + num_input_edges, ) = load_disk_dataset( dataset, dataset_dir=dataset_dir, @@ -548,7 +589,6 @@ def benchmark_cugraph_bulk_sampling( add_edge_types=add_edge_types, ) - num_input_edges = len(dask_edgelist_df) logger.info(f"Number of input edges = {num_input_edges:,}") G = construct_graph(dask_edgelist_df) @@ -562,7 +602,13 @@ def benchmark_cugraph_bulk_sampling( output_path, f"{dataset}[{replication_factor}]_b{batch_size}_f{fanout}", ) - os.makedirs(output_subdir) + + client = default_client() + + def func(): + os.makedirs(output_subdir, exist_ok=True) + + client.run(func) if sampling_target_framework == "cugraph_dgl_csr": sampling_kwargs = { @@ -574,8 +620,8 @@ def benchmark_cugraph_bulk_sampling( "use_legacy_names": False, "include_hop_column": False, } - else: - # FIXME: Update these arguments when CSC mode is fixed in cuGraph-PyG (release 24.02) + elif sampling_target_framework == "cugraph_pyg": + # FIXME: Update these arguments when CSC mode is fixed in cuGraph-PyG (release 24.04) sampling_kwargs = { "deduplicate_sources": True, "prior_sources_behavior": "exclude", @@ -585,8 +631,10 @@ def benchmark_cugraph_bulk_sampling( "use_legacy_names": False, "include_hop_column": True, } + else: + raise ValueError("Only cugraph_dgl_csr or cugraph_pyg are valid frameworks") - batches_per_partition = 600_000 // batch_size + batches_per_partition = 256 execution_time, allocation_counts = sample_graph( G=G, label_df=dask_label_df, @@ -761,9 +809,9 @@ def get_args(): logger.setLevel(logging.INFO) args = get_args() - if args.sampling_target_framework not in ["cugraph_dgl_csr", None]: + if args.sampling_target_framework not in ["cugraph_dgl_csr", "cugraph_pyg"]: raise ValueError( - "sampling_target_framework must be one of cugraph_dgl_csr or None", + "sampling_target_framework must be one of cugraph_dgl_csr or cugraph_pyg", "Other frameworks are not supported at this time.", ) @@ -775,12 +823,30 @@ def get_args(): seeds_per_call_opts = [int(s) for s in args.seeds_per_call_opts.split(",")] dask_worker_devices = [int(d) for d in args.dask_worker_devices.split(",")] - logger.info("starting dask client") - client, cluster = start_dask_client() + import time + + time_dask_start = time.localtime() + + logger.info(f"{time.asctime(time_dask_start)}: starting dask client") + from dask_cuda.initialize import initialize + from dask.distributed import Client + from cugraph.dask.comms import comms as Comms + import os, time + + client = Client(scheduler_file=os.environ["SCHEDULER_FILE"], timeout=360) + time.sleep(30) + cluster = Comms.initialize(p2p=True) + # client, cluster = start_dask_client() + time_dask_end = time.localtime() + logger.info(f"{time.asctime(time_dask_end)}: dask client started") + + logger.info("enabling spilling") enable_spilling() - stats_ls = [] client.run(enable_spilling) - logger.info("dask client started") + logger.info("enabled spilling") + + stats_ls = [] + for dataset in datasets: m = re.match(r"(\w+)\[([0-9]+)\]", dataset) if m: diff --git a/benchmarks/cugraph/standalone/bulk_sampling/datasets/ogbn_papers100M.py b/benchmarks/cugraph/standalone/bulk_sampling/datasets/ogbn_papers100M.py index a50e40f6d55..e3151e37a25 100644 --- a/benchmarks/cugraph/standalone/bulk_sampling/datasets/ogbn_papers100M.py +++ b/benchmarks/cugraph/standalone/bulk_sampling/datasets/ogbn_papers100M.py @@ -34,6 +34,7 @@ def __init__( train_split=0.8, val_split=0.5, load_edge_index=True, + backend="torch", ): self.__replication_factor = replication_factor self.__disk_x = None @@ -43,6 +44,7 @@ def __init__( self.__train_split = train_split self.__val_split = val_split self.__load_edge_index = load_edge_index + self.__backend = backend def download(self): import logging @@ -152,6 +154,27 @@ def download(self): ) ldf.to_parquet(node_label_file_path) + # WholeGraph + wg_bin_file_path = os.path.join(dataset_path, "wgb", "paper") + if self.__replication_factor == 1: + wg_bin_rep_path = os.path.join(wg_bin_file_path, "node_feat.d") + else: + wg_bin_rep_path = os.path.join( + wg_bin_file_path, f"node_feat_{self.__replication_factor}x.d" + ) + + if not os.path.exists(wg_bin_rep_path): + os.makedirs(wg_bin_rep_path) + if dataset is None: + from ogb.nodeproppred import NodePropPredDataset + + dataset = NodePropPredDataset( + name="ogbn-papers100M", root=self.__dataset_dir + ) + node_feat = dataset[0][0]["node_feat"] + for k in range(self.__replication_factor): + node_feat.tofile(os.path.join(wg_bin_rep_path, f"{k:04d}.bin")) + @property def edge_index_dict( self, @@ -224,45 +247,87 @@ def edge_index_dict( @property def x_dict(self) -> Dict[str, torch.Tensor]: + if self.__disk_x is None: + if self.__backend == "wholegraph": + self.__load_x_wg() + else: + self.__load_x_torch() + + return self.__disk_x + + def __load_x_torch(self) -> None: node_type_path = os.path.join( self.__dataset_dir, "ogbn_papers100M", "npy", "paper" ) + if self.__replication_factor == 1: + full_path = os.path.join(node_type_path, "node_feat.npy") + else: + full_path = os.path.join( + node_type_path, f"node_feat_{self.__replication_factor}x.npy" + ) - if self.__disk_x is None: - if self.__replication_factor == 1: - full_path = os.path.join(node_type_path, "node_feat.npy") - else: - full_path = os.path.join( - node_type_path, f"node_feat_{self.__replication_factor}x.npy" - ) + self.__disk_x = {"paper": torch.as_tensor(np.load(full_path, mmap_mode="r"))} - self.__disk_x = {"paper": np.load(full_path, mmap_mode="r")} + def __load_x_wg(self) -> None: + import logging - return self.__disk_x + logger = logging.getLogger("OGBNPapers100MDataset") + logger.info("Loading x into WG embedding...") + + import pylibwholegraph.torch as wgth + + node_type_path = os.path.join( + self.__dataset_dir, "ogbn_papers100M", "wgb", "paper" + ) + if self.__replication_factor == 1: + full_path = os.path.join(node_type_path, "node_feat.d") + else: + full_path = os.path.join( + node_type_path, f"node_feat_{self.__replication_factor}x.d" + ) + + file_list = [os.path.join(full_path, f) for f in os.listdir(full_path)] + + x = wgth.create_embedding_from_filelist( + wgth.get_global_communicator(), + "distributed", # TODO support other options + "cpu", # TODO support GPU + file_list, + torch.float32, + 128, + ) + from pylibwholegraph.torch.initialize import get_global_communicator + + wm_comm = get_global_communicator() + wm_comm.barrier() + + logger.info("created x wg embedding") + + self.__disk_x = {"paper": x} @property def y_dict(self) -> Dict[str, torch.Tensor]: if self.__y is None: - self.__get_labels() + self.__get_y() return self.__y @property def train_dict(self) -> Dict[str, torch.Tensor]: if self.__train is None: - self.__get_labels() + self.__get_split() return self.__train @property def test_dict(self) -> Dict[str, torch.Tensor]: if self.__test is None: - self.__get_labels() + self.__get_split() return self.__test @property def val_dict(self) -> Dict[str, torch.Tensor]: if self.__val is None: - self.__get_labels() + self.__get_split() return self.__val @property @@ -271,7 +336,7 @@ def num_input_features(self) -> int: @property def num_labels(self) -> int: - return int(self.y_dict["paper"].max()) + 1 + return 172 def num_nodes(self, node_type: str) -> int: if node_type != "paper": @@ -285,46 +350,49 @@ def num_edges(self, edge_type: Tuple[str, str, str]) -> int: return 1_615_685_872 * self.__replication_factor - def __get_labels(self): + def __get_y(self): label_path = os.path.join( self.__dataset_dir, "ogbn_papers100M", - "parquet", + "wgb", "paper", - "node_label.parquet", + "node_label.d", + "0.bin", ) - node_label = pandas.read_parquet(label_path) - - if self.__replication_factor > 1: - orig_num_nodes = self.num_nodes("paper") // self.__replication_factor - dfr = pandas.DataFrame( - { - "node": pandas.concat( - [ - node_label.node + (r * orig_num_nodes) - for r in range(1, self.__replication_factor) - ] - ), - "label": pandas.concat( - [node_label.label for r in range(1, self.__replication_factor)] - ), - } + if self.__backend == "wholegraph": + import pylibwholegraph.torch as wgth + + node_label = wgth.create_embedding_from_filelist( + wgth.get_global_communicator(), + "distributed", # TODO support other options + "cpu", # TODO support GPU + [label_path] * self.__replication_factor, + torch.int16, + 1, + ) + + else: + node_label_1x = torch.as_tensor( + np.fromfile(label_path, dtype="int16"), device="cpu" ) - node_label = pandas.concat([node_label, dfr]).reset_index(drop=True) + if self.__replication_factor > 1: + node_label = torch.concatenate( + [node_label_1x] * self.__replication_factor + ) + else: + node_label = node_label_1x + + self.__y = {"paper": node_label} + + def __get_split(self): num_nodes = self.num_nodes("paper") - node_label_tensor = torch.full( - (num_nodes,), -1, dtype=torch.float32, device="cpu" - ) - node_label_tensor[ - torch.as_tensor(node_label.node.values, device="cpu") - ] = torch.as_tensor(node_label.label.values, device="cpu") - self.__y = {"paper": node_label_tensor.contiguous()} + node = self.y_dict["paper"][self.y_dict["paper"] > 0] train_ix, test_val_ix = train_test_split( - torch.as_tensor(node_label.node.values), + node, train_size=self.__train_split, random_state=num_nodes, ) diff --git a/benchmarks/cugraph/standalone/bulk_sampling/models/dgl/__init__.py b/benchmarks/cugraph/standalone/bulk_sampling/models/dgl/__init__.py new file mode 100644 index 00000000000..610a7648801 --- /dev/null +++ b/benchmarks/cugraph/standalone/bulk_sampling/models/dgl/__init__.py @@ -0,0 +1,15 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from .models_dgl import GraphSAGE diff --git a/benchmarks/cugraph/standalone/bulk_sampling/models/dgl/models_dgl.py b/benchmarks/cugraph/standalone/bulk_sampling/models/dgl/models_dgl.py new file mode 100644 index 00000000000..2cfdda2d2e7 --- /dev/null +++ b/benchmarks/cugraph/standalone/bulk_sampling/models/dgl/models_dgl.py @@ -0,0 +1,69 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +import torch.nn.functional as F + + +class GraphSAGE(torch.nn.Module): + """ + GraphSAGE model implementation for DGL + supporting both native DGL and cuGraph-ops + backends. + """ + + def __init__( + self, + in_channels, + hidden_channels, + out_channels, + num_layers, + model_backend="dgl", + ): + if model_backend == "dgl": + from dgl.nn import SAGEConv + else: + from cugraph_dgl.nn import SAGEConv + + super(GraphSAGE, self).__init__() + self.convs = torch.nn.ModuleList() + for _ in range(num_layers - 1): + self.convs.append( + SAGEConv(in_channels, hidden_channels, aggregator_type="mean") + ) + in_channels = hidden_channels + self.convs.append( + SAGEConv(hidden_channels, out_channels, aggregator_type="mean") + ) + + def forward(self, blocks, x): + """ + Runs the model forward pass given a list of blocks + and feature tensor. + """ + + for i, conv in enumerate(self.convs): + x = conv(blocks[i], x) + if i != len(self.convs) - 1: + x = F.relu(x) + x = F.dropout(x, p=0.5) + return x + + +def create_model(feat_size, num_classes, num_layers, model_backend="dgl"): + model = GraphSAGE( + feat_size, 64, num_classes, num_layers, model_backend=model_backend + ) + model = model.to("cuda") + model.train() + return model diff --git a/benchmarks/cugraph/standalone/bulk_sampling/models/pyg/models_cugraph_pyg.py b/benchmarks/cugraph/standalone/bulk_sampling/models/pyg/models_cugraph_pyg.py index 1de791bf588..7ee400b004f 100644 --- a/benchmarks/cugraph/standalone/bulk_sampling/models/pyg/models_cugraph_pyg.py +++ b/benchmarks/cugraph/standalone/bulk_sampling/models/pyg/models_cugraph_pyg.py @@ -57,7 +57,7 @@ def forward(self, x, edge, num_sampled_nodes, num_sampled_edges): for i, conv in enumerate(self.convs): if i > 0: - new_num_edges = edge[1][-2] + new_num_edges = int(edge[1][-2]) edge[0] = edge[0].narrow( dim=0, start=0, diff --git a/benchmarks/cugraph/standalone/bulk_sampling/run_train_job.sh b/benchmarks/cugraph/standalone/bulk_sampling/run_train_job.sh index 27ae0dc7788..8136018c877 100755 --- a/benchmarks/cugraph/standalone/bulk_sampling/run_train_job.sh +++ b/benchmarks/cugraph/standalone/bulk_sampling/run_train_job.sh @@ -12,12 +12,6 @@ # See the License for the specific language governing permissions and # limitations under the License. -#SBATCH -A datascience_rapids_cugraphgnn -#SBATCH -p luna -#SBATCH -J datascience_rapids_cugraphgnn-papers:bulkSamplingPyG -#SBATCH -N 1 -#SBATCH -t 00:25:00 - CONTAINER_IMAGE=${CONTAINER_IMAGE:="please_specify_container"} SCRIPTS_DIR=$(pwd) LOGS_DIR=${LOGS_DIR:=$(pwd)"/logs"} @@ -31,10 +25,11 @@ mkdir -p $DATASETS_DIR BATCH_SIZE=512 FANOUT="10_10_10" NUM_EPOCHS=1 -REPLICATION_FACTOR=1 +REPLICATION_FACTOR=2 +JOB_ID=$RANDOM -# options: PyG or cuGraphPyG -FRAMEWORK="cuGraphPyG" +# options: PyG, cuGraphPyG, or cuGraphDGL +FRAMEWORK="cuGraphDGL" GPUS_PER_NODE=8 nodes=( $( scontrol show hostnames $SLURM_JOB_NODELIST ) ) @@ -52,6 +47,7 @@ echo Num GPUs Per Node: $gpus_per_node set -e + # First run without cuGraph to get data if [[ "$FRAMEWORK" == "cuGraphPyG" ]]; then @@ -59,25 +55,10 @@ if [[ "$FRAMEWORK" == "cuGraphPyG" ]]; then srun \ --container-image $CONTAINER_IMAGE \ --container-mounts=${LOGS_DIR}":/logs",${SAMPLES_DIR}":/samples",${SCRIPTS_DIR}":/scripts",${DATASETS_DIR}":/datasets" \ - bash /scripts/run_sampling.sh $BATCH_SIZE $FANOUT $REPLICATION_FACTOR "/scripts" $NUM_EPOCHS + bash /scripts/train.sh $BATCH_SIZE $FANOUT $REPLICATION_FACTOR "/scripts" $NUM_EPOCHS "cugraph_pyg" $nnodes $head_node_ip $JOB_ID +elif [[ "$FRAMEWORK" == "cuGraphDGL" ]]; then + srun \ + --container-image $CONTAINER_IMAGE \ + --container-mounts=${LOGS_DIR}":/logs",${SAMPLES_DIR}":/samples",${SCRIPTS_DIR}":/scripts",${DATASETS_DIR}":/datasets" \ + bash /scripts/train.sh $BATCH_SIZE $FANOUT $REPLICATION_FACTOR "/scripts" $NUM_EPOCHS "cugraph_dgl_csr" $nnodes $head_node_ip $JOB_ID fi - -# Train -srun \ - --container-image $CONTAINER_IMAGE \ - --container-mounts=${LOGS_DIR}":/logs",${SAMPLES_DIR}":/samples",${SCRIPTS_DIR}":/scripts",${DATASETS_DIR}":/datasets" \ - torchrun \ - --nnodes $nnodes \ - --nproc-per-node $gpus_per_node \ - --rdzv-id $RANDOM \ - --rdzv-backend c10d \ - --rdzv-endpoint $head_node_ip:29500 \ - /scripts/bench_cugraph_training.py \ - --output_file "/logs/output.txt" \ - --framework $FRAMEWORK \ - --dataset_dir "/datasets" \ - --sample_dir "/samples" \ - --batch_size $BATCH_SIZE \ - --fanout $FANOUT \ - --replication_factor $REPLICATION_FACTOR \ - --num_epochs $NUM_EPOCHS diff --git a/benchmarks/cugraph/standalone/bulk_sampling/run_sampling.sh b/benchmarks/cugraph/standalone/bulk_sampling/train.sh similarity index 66% rename from benchmarks/cugraph/standalone/bulk_sampling/run_sampling.sh rename to benchmarks/cugraph/standalone/bulk_sampling/train.sh index 1b3085dcc9a..a3b85e281f1 100644 --- a/benchmarks/cugraph/standalone/bulk_sampling/run_sampling.sh +++ b/benchmarks/cugraph/standalone/bulk_sampling/train.sh @@ -21,6 +21,10 @@ FANOUT=$2 REPLICATION_FACTOR=$3 SCRIPTS_DIR=$4 NUM_EPOCHS=$5 +SAMPLING_FRAMEWORK=$6 +N_NODES=$7 +HEAD_NODE_IP=$8 +JOB_ID=$9 SAMPLES_DIR=/samples DATASET_DIR=/datasets @@ -29,12 +33,19 @@ LOGS_DIR=/logs MG_UTILS_DIR=${SCRIPTS_DIR}/mg_utils SCHEDULER_FILE=${MG_UTILS_DIR}/dask_scheduler.json -export WORKER_RMM_POOL_SIZE=28G -export UCX_MAX_RNDV_RAILS=1 +echo $SAMPLES_DIR +ls $SAMPLES_DIR + +export WORKER_RMM_POOL_SIZE=75G +#export UCX_MAX_RNDV_RAILS=1 export RAPIDS_NO_INITIALIZE=1 export CUDF_SPILL=1 -export LIBCUDF_CUFILE_POLICY="OFF" +export LIBCUDF_CUFILE_POLICY="KVIKIO" +export KVIKIO_NTHREADS=64 export GPUS_PER_NODE=8 +#export NCCL_CUMEM_ENABLE=0 +#export NCCL_DEBUG="TRACE" +export NCCL_DEBUG_FILE=/logs/nccl_debug.%h.%p export SCHEDULER_FILE=$SCHEDULER_FILE export LOGS_DIR=$LOGS_DIR @@ -59,8 +70,9 @@ else fi echo "properly waiting for workers to connect" -NUM_GPUS=$(python -c "import os; print(int(os.environ['SLURM_JOB_NUM_NODES'])*int(os.environ['GPUS_PER_NODE']))") -handleTimeout 120 python ${MG_UTILS_DIR}/wait_for_workers.py \ +export NUM_GPUS=$(python -c "import os; print(int(os.environ['SLURM_JOB_NUM_NODES'])*int(os.environ['GPUS_PER_NODE']))") +SEEDS_PER_CALL=$(python -c "import os; print(int(os.environ['NUM_GPUS'])*65536)") +handleTimeout 630 python ${MG_UTILS_DIR}/wait_for_workers.py \ --num-expected-workers ${NUM_GPUS} \ --scheduler-file-path ${SCHEDULER_FILE} @@ -76,14 +88,15 @@ if [[ $SLURM_NODEID == 0 ]]; then --datasets "ogbn_papers100M["$REPLICATION_FACTOR"]" \ --fanouts $FANOUT \ --batch_sizes $BATCH_SIZE \ - --seeds_per_call_opts "524288" \ + --seeds_per_call_opts $SEEDS_PER_CALL \ --num_epochs $NUM_EPOCHS \ - --random_seed 42 + --random_seed 42 \ + --sampling_target_framework $SAMPLING_FRAMEWORK - echo "DONE" > ${SAMPLES_DIR}/status.txt + echo "DONE" > ${LOGS_DIR}/status.txt fi -while [ ! -f "${SAMPLES_DIR}"/status.txt ] +while [ ! -f "${LOGS_DIR}"/status.txt ] do sleep 1 done @@ -106,6 +119,25 @@ if [[ ${#python_processes[@]} -gt 1 || $dask_processes ]]; then fi sleep 2 +torchrun \ + --nnodes $N_NODES \ + --nproc-per-node $GPUS_PER_NODE \ + --rdzv-id $JOB_ID \ + --rdzv-backend c10d \ + --rdzv-endpoint $HEAD_NODE_IP:29500 \ + /scripts/bench_cugraph_training.py \ + --output_file "/logs/output.txt" \ + --framework $SAMPLING_FRAMEWORK \ + --dataset_dir "/datasets" \ + --sample_dir "/samples" \ + --batch_size $BATCH_SIZE \ + --fanout $FANOUT \ + --replication_factor $REPLICATION_FACTOR \ + --num_epochs $NUM_EPOCHS \ + --use_wholegraph \ + --skip_download + + if [[ $SLURM_NODEID == 0 ]]; then - rm ${SAMPLES_DIR}/status.txt + rm ${LOGS_DIR}/status.txt fi diff --git a/benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/__init__.py b/benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/__init__.py new file mode 100644 index 00000000000..03d2a51e538 --- /dev/null +++ b/benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/__init__.py @@ -0,0 +1,16 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from .trainers_dgl import DGLTrainer +from .trainers_cugraph_dgl import DGLCuGraphTrainer diff --git a/benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/trainers_cugraph_dgl.py b/benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/trainers_cugraph_dgl.py new file mode 100644 index 00000000000..37745e645fd --- /dev/null +++ b/benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/trainers_cugraph_dgl.py @@ -0,0 +1,315 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os +import time +import re + +from .trainers_dgl import DGLTrainer +from models.dgl import GraphSAGE +from datasets import Dataset + +import torch +import numpy as np +import warnings + +from torch.nn.parallel import DistributedDataParallel as ddp +from cugraph_dgl.dataloading import HomogenousBulkSamplerDataset +from cugraph.gnn import FeatureStore + +from typing import List + + +def get_dataloader( + input_file_paths: List[str], + total_num_nodes: int, + sparse_format: str, + return_type: str, +) -> torch.utils.data.DataLoader: + """ + Returns a dataloader that reads bulk samples from the given input paths. + + Parameters + ---------- + input_file_paths: List[str] + List of input parquet files containing samples. + total_num_nodes: int + Total number of nodes in the graph. + sparse_format: str + The sparse format to read (i.e. coo) + return_type: str + The type of object to be returned by the dataloader (i.e. dgl.Block) + + Returns + ------- + torch.utils.data.DataLoader + """ + + print("Creating dataloader", flush=True) + st = time.time() + if len(input_file_paths) > 0: + dataset = HomogenousBulkSamplerDataset( + total_num_nodes, + edge_dir="in", + sparse_format=sparse_format, + return_type=return_type, + ) + dataset.set_input_files(input_file_paths=input_file_paths) + dataloader = torch.utils.data.DataLoader( + dataset, + collate_fn=lambda x: x, + shuffle=False, + num_workers=0, + batch_size=None, + ) + et = time.time() + print(f"Time to create dataloader = {et - st:.2f} seconds", flush=True) + return dataloader + else: + return [] + + +class DGLCuGraphTrainer(DGLTrainer): + """ + Trainer implementation for cuGraph-DGL that supports + WholeGraph as a feature store. + """ + + def __init__( + self, + dataset: Dataset, + model: str = "GraphSAGE", + device: int = 0, + rank: int = 0, + world_size: int = 1, + gpus_per_node: int = 1, + num_epochs: int = 1, + sample_dir: str = ".", + backend: str = "torch", + **kwargs, + ): + """ + Parameters + ---------- + dataset: Dataset + The dataset to train on. + model: str + The model to use for training. + Currently only "GraphSAGE" is supported. + device: int, default=0 + The CUDA device to use. + rank: int, default=0 + The global rank of the worker this trainer is assigned to. + world_size: int, default=1 + The number of workers in the world. + num_epochs: int, default=1 + The number of training epochs to run. + sample_dir: str, default="." + The directory where samples generated by the bulk sampler + are stored. + backend: str, default="torch" + The feature store backend to be used by the cuGraph Feature Store. + Defaults to "torch". Options are "torch" and "wholegraph" + kwargs + Keyword arguments to pass to the loader + """ + self.__data = None + self.__device = device + self.__rank = rank + self.__world_size = world_size + self.__gpus_per_node = gpus_per_node + self.__num_epochs = num_epochs + self.__dataset = dataset + self.__sample_dir = sample_dir + self.__loader_kwargs = kwargs + self.__model = self.get_model(model) + self.__optimizer = None + self.__backend = backend + + @property + def rank(self): + return self.__rank + + @property + def model(self): + return self.__model + + @property + def dataset(self): + return self.__dataset + + @property + def optimizer(self): + if self.__optimizer is None: + self.__optimizer = torch.optim.Adam( + self.model.parameters(), lr=0.01, weight_decay=0.0005 + ) + return self.__optimizer + + @property + def num_epochs(self) -> int: + return self.__num_epochs + + def get_loader(self, epoch: int = 0, stage="train") -> int: + # TODO support online sampling + if stage == "train": + path = os.path.join(self.__sample_dir, f"epoch={epoch}", stage, "samples") + elif stage in ["test", "val"]: + path = os.path.join(self.__sample_dir, stage, "samples") + else: + raise ValueError(f"Invalid stage {stage}") + + input_file_paths, num_batches = self.get_input_files( + path, epoch=epoch, stage=stage + ) + + dataloader = get_dataloader( + input_file_paths=input_file_paths.tolist(), + total_num_nodes=None, + sparse_format="csc", + return_type="cugraph_dgl.nn.SparseGraph", + ) + return dataloader, num_batches + + @property + def data(self): + import logging + + logger = logging.getLogger("DGLCuGraphTrainer") + logger.info("getting data") + + if self.__data is None: + logger.info("using wholegraph backend") + if self.__backend == "wholegraph": + fs = FeatureStore( + backend="wholegraph", + wg_type="chunked", + wg_location="cpu", + ) + else: + fs = FeatureStore(backend=self.__backend) + num_nodes_dict = {} + + if self.__backend == "wholegraph": + from pylibwholegraph.torch.initialize import get_global_communicator + + wm_comm = get_global_communicator() + wm_comm.barrier() + + for node_type, x in self.__dataset.x_dict.items(): + logger.debug(f"getting x for {node_type}") + fs.add_data(x, node_type, "x") + num_nodes_dict[node_type] = self.__dataset.num_nodes(node_type) + if self.__backend == "wholegraph": + wm_comm.barrier() + + for node_type, y in self.__dataset.y_dict.items(): + logger.debug(f"getting y for {node_type}") + if self.__backend == "wholegraph": + logger.info("using wholegraph backend") + fs.add_data(y, node_type, "y") + wm_comm.barrier() + else: + y = y.cuda() + y = y.reshape((y.shape[0], 1)) + fs.add_data(y, node_type, "y") + + """ + for node_type, train in self.__dataset.train_dict.items(): + logger.debug(f"getting train for {node_type}") + train = train.reshape((train.shape[0], 1)) + if self.__backend != "wholegraph": + train = train.cuda() + fs.add_data(train, node_type, "train") + + for node_type, test in self.__dataset.test_dict.items(): + logger.debug(f"getting test for {node_type}") + test = test.reshape((test.shape[0], 1)) + if self.__backend != "wholegraph": + test = test.cuda() + fs.add_data(test, node_type, "test") + + for node_type, val in self.__dataset.val_dict.items(): + logger.debug(f"getting val for {node_type}") + val = val.reshape((val.shape[0], 1)) + if self.__backend != "wholegraph": + val = val.cuda() + fs.add_data(val, node_type, "val") + """ + + # # TODO support online sampling if the edge index is provided + # num_edges_dict = self.__dataset.edge_index_dict + # if not isinstance(list(num_edges_dict.values())[0], int): + # num_edges_dict = {k: len(v) for k, v in num_edges_dict} + + if self.__backend == "wholegraph": + wm_comm.barrier() + + self.__data = fs + return self.__data + + def get_model(self, name="GraphSAGE"): + if name != "GraphSAGE": + raise ValueError("only GraphSAGE is currently supported") + + num_input_features = self.__dataset.num_input_features + num_output_features = self.__dataset.num_labels + num_layers = len(self.__loader_kwargs["num_neighbors"]) + + with torch.cuda.device(self.__device): + model = ( + GraphSAGE( + in_channels=num_input_features, + hidden_channels=64, + out_channels=num_output_features, + num_layers=num_layers, + model_backend="cugraph_dgl", + ) + .to(torch.float32) + .to(self.__device) + ) + # TODO: Fix for distributed models + if torch.distributed.is_initialized(): + model = ddp(model, device_ids=[self.__device]) + else: + warnings.warn("Distributed training is not available") + print("done creating model") + + return model + + def get_input_files(self, path, epoch=0, stage="train"): + file_list = np.array([f.path for f in os.scandir(path)]) + file_list.sort() + np.random.seed(epoch) + np.random.shuffle(file_list) + + splits = np.array_split(file_list, self.__gpus_per_node) + + ex = re.compile(r"batch=([0-9]+)\-([0-9]+).parquet") + num_batches = min( + [ + sum( + [ + int(ex.match(fname.split("/")[-1])[2]) + - int(ex.match(fname.split("/")[-1])[1]) + for fname in s + ] + ) + for s in splits + ] + ) + if num_batches == 0: + raise ValueError( + f"Too few batches for training with world size {self.__world_size}" + ) + + return splits[self.__device], num_batches diff --git a/benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/trainers_dgl.py b/benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/trainers_dgl.py new file mode 100644 index 00000000000..fad986257b2 --- /dev/null +++ b/benchmarks/cugraph/standalone/bulk_sampling/trainers/dgl/trainers_dgl.py @@ -0,0 +1,361 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +import logging +import torch +import torch.distributed as td +import torch.nn.functional as F +from torchmetrics import Accuracy +from trainers import Trainer +import time + +from typing import TYPE_CHECKING + +if TYPE_CHECKING: + from cugraph.gnn import FeatureStore + + +def get_features(input_nodes, output_nodes, feature_store, key="paper"): + if isinstance(input_nodes, dict): + input_nodes = input_nodes[key] + if isinstance(output_nodes, dict): + output_nodes = output_nodes[key] + + # TODO: Fix below + # Adding based on assumption that cpu features + # and gpu index is not supported yet + + if feature_store.backend == "torch": + input_nodes = input_nodes.to("cpu") + output_nodes = output_nodes.to("cpu") + + x = feature_store.get_data(indices=input_nodes, type_name=key, feat_name="x") + y = feature_store.get_data(indices=output_nodes, type_name=key, feat_name="y") + y = y.reshape((y.shape[0],)) + return x, y + + +def log_batch( + logger: logging.Logger, + iter_i: int, + num_batches: int, + time_forward: int, + time_backward: int, + time_start: int, + loader_time_iter: int, + epoch: int, + rank: int, +): + """ + Logs the current performance of the trainer. + + Parameters + ---------- + logger: logging.Logger + The logger to use for logging the performance details. + iter_i: int + The current training iteration. + num_batches: int + The number of batches processed so far + time_forward: int + The total amount of time for the model forward pass so far + time_backward: int + The total amount of the for the model backwards pass so far + time_start: int + The time at which training was started + loader_time_iter: int + The time taken by the loader in the current iteraiton + epoch: int + The current training epoch + rank: int + The global rank of this worker + + Returns + ------- + None + """ + + time_forward_iter = time_forward / num_batches + time_backward_iter = time_backward / num_batches + total_time_iter = (time.perf_counter() - time_start) / num_batches + logger.info(f"epoch {epoch}, iteration {iter_i}, rank {rank}") + logger.info(f"time forward: {time_forward_iter}") + logger.info(f"time backward: {time_backward_iter}") + logger.info(f"loader time: {loader_time_iter}") + logger.info(f"total time: {total_time_iter}") + + +def train_epoch( + model, + optimizer, + loader, + feature_store, + epoch, + num_classes, + time_d, + logger, + rank, + max_num_batches, +): + """ + Train the model for one epoch. + model: The model to train. + optimizer: The optimizer to use. + loader: The loader to use. + data: cuGraph.gnn.FeatueStore + epoch: The epoch number. + num_classes: The number of classes. + time_d: A dictionary of times. + logger: The logger to use. + rank: Global rank + max_num_batches: Number of batches after which to quit (to avoid hang due to asymmetry) + """ + model = model.train() + time_feature_indexing = time_d["time_feature_indexing"] + time_feature_transfer = time_d["time_feature_transfer"] + time_forward = time_d["time_forward"] + time_backward = time_d["time_backward"] + time_loader = time_d["time_loader"] + + time_start = time.perf_counter() + end_time_backward = time.perf_counter() + + num_batches = 0 + + for iter_i, (input_nodes, output_nodes, blocks) in enumerate(loader): + loader_time_iter = time.perf_counter() - end_time_backward + time_loader += loader_time_iter + feature_indexing_time_start = time.perf_counter() + x, y_true = get_features(input_nodes, output_nodes, feature_store=feature_store) + additional_feature_time_end = time.perf_counter() + time_feature_indexing += ( + additional_feature_time_end - feature_indexing_time_start + ) + feature_trasfer_time_start = time.perf_counter() + x = x.to("cuda") + y_true = y_true.to("cuda") + time_feature_transfer += time.perf_counter() - feature_trasfer_time_start + num_batches += 1 + + start_time_forward = time.perf_counter() + y_pred = model( + blocks, + x, + ) + end_time_forward = time.perf_counter() + time_forward += end_time_forward - start_time_forward + + if y_pred.shape[0] > len(y_true): + raise ValueError(f"illegal shape: {y_pred.shape}; {y_true.shape}") + + y_true = y_true[: y_pred.shape[0]] + y_true = F.one_hot( + y_true.to(torch.int64), + num_classes=num_classes, + ).to(torch.float32) + + if y_true.shape != y_pred.shape: + raise ValueError( + f"y_true shape was {y_true.shape} " + f"but y_pred shape was {y_pred.shape} " + f"in iteration {iter_i} " + f"on rank {y_pred.device.index}" + ) + + start_time_backward = time.perf_counter() + loss = F.cross_entropy(y_pred, y_true) + optimizer.zero_grad() + loss.backward() + optimizer.step() + end_time_backward = time.perf_counter() + time_backward += end_time_backward - start_time_backward + + if iter_i % 50 == 0: + log_batch( + logger=logger, + iter_i=iter_i, + num_batches=num_batches, + time_forward=time_forward, + time_backward=time_backward, + time_start=time_start, + loader_time_iter=loader_time_iter, + epoch=epoch, + rank=rank, + ) + + if max_num_batches is not None and iter_i >= max_num_batches: + break + + time_d["time_loader"] += time_loader + time_d["time_feature_indexing"] += time_feature_indexing + time_d["time_feature_transfer"] += time_feature_transfer + time_d["time_forward"] += time_forward + time_d["time_backward"] += time_backward + + return num_batches + + +def get_accuracy( + model: torch.nn.Module, + loader: torch.utils.DataLoader, + feature_store: FeatureStore, + num_classes: int, + max_num_batches: int, +) -> float: + """ + Computes the accuracy given a loader that ouputs evaluation data, the model being evaluated, + the feature store where node features are stored, and the number of output classes. + + Parameters + ---------- + model: torch.nn.Module + The model being evaluated + loader: torch.utils.DataLoader + The loader over evaluation samples + feature_store: cugraph.gnn.FeatureStore + The feature store containing node features + num_classes: int + The number of output classes of the model + max_num_batches: int + The number of batches to iterate for, will quit after reaching this number. + Used to avoid hang due to asymmetric input. + + Returns + ------- + float + The calcuated accuracy, as a percentage. + + """ + + print("Computing accuracy...", flush=True) + acc = Accuracy(task="multiclass", num_classes=num_classes).cuda() + acc_sum = 0.0 + num_batches = 0 + with torch.no_grad(): + for iter_i, (input_nodes, output_nodes, blocks) in enumerate(loader): + x, y_true = get_features( + input_nodes, output_nodes, feature_store=feature_store + ) + x = x.to("cuda") + y_true = y_true.to("cuda") + + out = model(blocks, x) + batch_size = out.shape[0] + acc_sum += acc(out[:batch_size].softmax(dim=-1), y_true[:batch_size]) + num_batches += 1 + + if max_num_batches is not None and iter_i >= max_num_batches: + break + + num_batches = num_batches + + acc_sum = torch.tensor(float(acc_sum), dtype=torch.float32, device="cuda") + td.all_reduce(acc_sum, op=td.ReduceOp.SUM) + nb = torch.tensor(float(num_batches), dtype=torch.float32, device=acc_sum.device) + td.all_reduce(nb, op=td.ReduceOp.SUM) + + acc = acc_sum / nb + + print( + f"Accuracy: {acc * 100.0:.4f}%", + ) + return acc * 100.0 + + +class DGLTrainer(Trainer): + """ + Trainer implementation for node classification in DGL. + """ + + def train(self): + logger = logging.getLogger("DGLTrainer") + time_d = { + "time_loader": 0.0, + "time_feature_indexing": 0.0, + "time_feature_transfer": 0.0, + "time_forward": 0.0, + "time_backward": 0.0, + } + total_batches = 0 + for epoch in range(self.num_epochs): + start_time = time.perf_counter() + self.model.train() + with td.algorithms.join.Join( + [self.model], divide_by_initial_world_size=False + ): + loader, max_num_batches = self.get_loader(epoch=epoch, stage="train") + num_batches = train_epoch( + model=self.model, + optimizer=self.optimizer, + loader=loader, + feature_store=self.data, + num_classes=self.dataset.num_labels, + epoch=epoch, + time_d=time_d, + logger=logger, + rank=self.rank, + max_num_batches=max_num_batches, + ) + total_batches = total_batches + num_batches + end_time = time.perf_counter() + epoch_time_taken = end_time - start_time + print( + f"RANK: {self.rank} Total time taken for training epoch {epoch} = {epoch_time_taken}", + flush=True, + ) + print("---" * 30) + td.barrier() + self.model.eval() + with td.algorithms.join.Join( + [self.model], divide_by_initial_world_size=False + ): + # test + loader, max_num_batches = self.get_loader(epoch=epoch, stage="test") + test_acc = get_accuracy( + model=self.model.module, + loader=loader, + feature_store=self.data, + num_classes=self.dataset.num_labels, + max_num_batches=max_num_batches, + ) + print(f"Accuracy: {test_acc:.4f}%") + + # val: + self.model.eval() + with td.algorithms.join.Join([self.model], divide_by_initial_world_size=False): + loader, max_num_batches = self.get_loader(epoch=epoch, stage="val") + val_acc = get_accuracy( + model=self.model.module, + loader=loader, + feature_store=self.data, + num_classes=self.dataset.num_labels, + max_num_batches=max_num_batches, + ) + print(f"Validation Accuracy: {val_acc:.4f}%") + + val_acc = float(val_acc) + stats = { + "Accuracy": val_acc, + "# Batches": total_batches, + "Loader Time": time_d["time_loader"], + "Feature Time": time_d["time_feature_indexing"] + + time_d["time_feature_transfer"], + "Forward Time": time_d["time_forward"], + "Backward Time": time_d["time_backward"], + } + return stats + + +# For native DGL training, see benchmarks/cugraph-dgl/scale-benchmarks diff --git a/benchmarks/cugraph/standalone/bulk_sampling/trainers/pyg/trainers_cugraph_pyg.py b/benchmarks/cugraph/standalone/bulk_sampling/trainers/pyg/trainers_cugraph_pyg.py index 71151e9ba59..833322deffe 100644 --- a/benchmarks/cugraph/standalone/bulk_sampling/trainers/pyg/trainers_cugraph_pyg.py +++ b/benchmarks/cugraph/standalone/bulk_sampling/trainers/pyg/trainers_cugraph_pyg.py @@ -13,41 +13,84 @@ from .trainers_pyg import PyGTrainer from models.pyg import CuGraphSAGE +from datasets import Dataset import torch import numpy as np from torch.nn.parallel import DistributedDataParallel as ddp +from torch.distributed.optim import ZeroRedundancyOptimizer from cugraph.gnn import FeatureStore from cugraph_pyg.data import CuGraphStore from cugraph_pyg.loader import BulkSampleLoader import os +import re class PyGCuGraphTrainer(PyGTrainer): + """ + Trainer implementation for cuGraph-PyG that supports + WholeGraph as a feature store. + """ + def __init__( self, - dataset, - model="GraphSAGE", - device=0, - rank=0, - world_size=1, - num_epochs=1, - sample_dir=".", + dataset: Dataset, + model: str = "GraphSAGE", + device: int = 0, + rank: int = 0, + world_size: int = 1, + gpus_per_node: int = 1, + num_epochs: int = 1, + sample_dir: str = ".", + backend: str = "torch", **kwargs, ): + """ + Parameters + ---------- + dataset: Dataset + The dataset to train on. + model: str + The model to use for training. + Currently only "GraphSAGE" is supported. + device: int, default=0 + The CUDA device to use. + rank: int, default=0 + The global rank of the worker this trainer is assigned to. + world_size: int, default=1 + The number of workers in the world. + num_epochs: int, default=1 + The number of training epochs to run. + sample_dir: str, default="." + The directory where samples generated by the bulk sampler + are stored. + backend: str, default="torch" + The feature store backend to be used by the cuGraph Feature Store. + Defaults to "torch". Options are "torch" and "wholegraph" + kwargs + Keyword arguments to pass to the loader. + """ + + import logging + + logger = logging.getLogger("PyGCuGraphTrainer") + logger.info("creating trainer") self.__data = None self.__device = device self.__rank = rank self.__world_size = world_size + self.__gpus_per_node = gpus_per_node self.__num_epochs = num_epochs self.__dataset = dataset self.__sample_dir = sample_dir self.__loader_kwargs = kwargs self.__model = self.get_model(model) + self.__backend = backend self.__optimizer = None + logger.info("created trainer") @property def rank(self): @@ -64,8 +107,11 @@ def dataset(self): @property def optimizer(self): if self.__optimizer is None: - self.__optimizer = torch.optim.Adam( - self.model.parameters(), lr=0.01, weight_decay=0.0005 + self.__optimizer = ZeroRedundancyOptimizer( + self.model.parameters(), + lr=0.01, + weight_decay=0.0005, + optimizer_class=torch.optim.Adam, ) return self.__optimizer @@ -73,7 +119,7 @@ def optimizer(self): def num_epochs(self) -> int: return self.__num_epochs - def get_loader(self, epoch: int = 0, stage="train") -> int: + def get_loader(self, epoch: int = 0, stage="train"): import logging logger = logging.getLogger("PyGCuGraphTrainer") @@ -81,22 +127,25 @@ def get_loader(self, epoch: int = 0, stage="train") -> int: logger.info(f"getting loader for epoch {epoch}, {stage} stage") # TODO support online sampling - if stage == "val": - path = os.path.join(self.__sample_dir, "val", "samples") - else: + if stage == "train": path = os.path.join(self.__sample_dir, f"epoch={epoch}", stage, "samples") + elif stage in ["test", "val"]: + path = os.path.join(self.__sample_dir, stage, "samples") + else: + raise ValueError(f"invalid stage {stage}") + input_files, num_batches = self.get_input_files(path, epoch=epoch, stage=stage) loader = BulkSampleLoader( self.data, self.data, None, # FIXME get input nodes properly directory=path, - input_files=self.get_input_files(path, epoch=epoch, stage=stage), + input_files=input_files, **self.__loader_kwargs, ) logger.info(f"got loader successfully on rank {self.rank}") - return loader + return loader, num_batches @property def data(self): @@ -106,36 +155,73 @@ def data(self): logger.info("getting data") if self.__data is None: - # FIXME wholegraph - fs = FeatureStore(backend="torch") + if self.__backend == "wholegraph": + logger.info("using wholegraph backend") + fs = FeatureStore( + backend="wholegraph", + wg_type="chunked", + wg_location="cpu", + ) + else: + fs = FeatureStore(backend=self.__backend) num_nodes_dict = {} + if self.__backend == "wholegraph": + from pylibwholegraph.torch.initialize import get_global_communicator + + wm_comm = get_global_communicator() + wm_comm.barrier() + for node_type, x in self.__dataset.x_dict.items(): logger.debug(f"getting x for {node_type}") fs.add_data(x, node_type, "x") num_nodes_dict[node_type] = self.__dataset.num_nodes(node_type) + if self.__backend == "wholegraph": + wm_comm.barrier() for node_type, y in self.__dataset.y_dict.items(): logger.debug(f"getting y for {node_type}") - fs.add_data(y, node_type, "y") + if self.__backend == "wholegraph": + logger.info("using wholegraph backend") + fs.add_data(y, node_type, "y") + wm_comm.barrier() + else: + y = y.cuda() + y = y.reshape((y.shape[0], 1)) + fs.add_data(y, node_type, "y") + + """ for node_type, train in self.__dataset.train_dict.items(): logger.debug(f"getting train for {node_type}") + train = train.reshape((train.shape[0], 1)) + if self.__backend != "wholegraph": + train = train.cuda() fs.add_data(train, node_type, "train") for node_type, test in self.__dataset.test_dict.items(): logger.debug(f"getting test for {node_type}") + test = test.reshape((test.shape[0], 1)) + if self.__backend != "wholegraph": + test = test.cuda() fs.add_data(test, node_type, "test") for node_type, val in self.__dataset.val_dict.items(): logger.debug(f"getting val for {node_type}") + val = val.reshape((val.shape[0], 1)) + if self.__backend != "wholegraph": + val = val.cuda() fs.add_data(val, node_type, "val") + """ # TODO support online sampling if the edge index is provided num_edges_dict = self.__dataset.edge_index_dict if not isinstance(list(num_edges_dict.values())[0], int): num_edges_dict = {k: len(v) for k, v in num_edges_dict} + if self.__backend == "wholegraph": + wm_comm.barrier() + self.__data = CuGraphStore( fs, num_edges_dict, @@ -147,14 +233,28 @@ def data(self): return self.__data def get_model(self, name="GraphSAGE"): + import logging + + logger = logging.getLogger("PyGCuGraphTrainer") + + logger.info("Creating model...") + if name != "GraphSAGE": raise ValueError("only GraphSAGE is currently supported") + logger.info("getting input features...") num_input_features = self.__dataset.num_input_features + + logger.info("getting output features...") num_output_features = self.__dataset.num_labels + + logger.info("getting num neighbors...") num_layers = len(self.__loader_kwargs["num_neighbors"]) + logger.info("Got input features, output features, num neighbors") + with torch.cuda.device(self.__device): + logger.info("Constructing CuGraphSAGE model...") model = ( CuGraphSAGE( in_channels=num_input_features, @@ -166,8 +266,10 @@ def get_model(self, name="GraphSAGE"): .to(self.__device) ) + logger.info("Parallelizing model with ddp...") model = ddp(model, device_ids=[self.__device]) - print("done creating model") + + logger.info("done creating model") return model @@ -175,10 +277,28 @@ def get_input_files(self, path, epoch=0, stage="train"): file_list = np.array(os.listdir(path)) file_list.sort() - if stage == "train": - splits = np.array_split(file_list, self.__world_size) - np.random.seed(epoch) - np.random.shuffle(splits) - return splits[self.rank] - else: - return file_list + np.random.seed(epoch) + np.random.shuffle(file_list) + + splits = np.array_split(file_list, self.__gpus_per_node) + + import logging + + logger = logging.getLogger("PyGCuGraphTrainer") + + split = splits[self.__device] + logger.info(f"rank {self.__rank} input files: {str(split)}") + + ex = re.compile(r"batch=([0-9]+)\-([0-9]+).parquet") + num_batches = min( + [ + sum([int(ex.match(fname)[2]) - int(ex.match(fname)[1]) for fname in s]) + for s in splits + ] + ) + if num_batches == 0: + raise ValueError( + f"Too few batches for training with world size {self.__world_size}" + ) + + return split, num_batches diff --git a/benchmarks/cugraph/standalone/bulk_sampling/trainers/pyg/trainers_pyg.py b/benchmarks/cugraph/standalone/bulk_sampling/trainers/pyg/trainers_pyg.py index bddd6ae2644..d6205901b68 100644 --- a/benchmarks/cugraph/standalone/bulk_sampling/trainers/pyg/trainers_pyg.py +++ b/benchmarks/cugraph/standalone/bulk_sampling/trainers/pyg/trainers_pyg.py @@ -33,7 +33,12 @@ import time -def pyg_num_workers(world_size): +def pyg_num_workers(world_size: int) -> int: + """ + Calculates the number of workers for the + loader in PyG by calling sched_getaffinity. + """ + num_workers = None if hasattr(os, "sched_getaffinity"): try: @@ -45,14 +50,80 @@ def pyg_num_workers(world_size): return int(num_workers) +def calc_accuracy( + loader: NeighborLoader, + max_num_batches: int, + model: torch.nn.Module, + num_classes: int, +) -> float: + """ + Evaluates the accuracy of a model given a loader over evaluation samples. + + Parameters + ---------- + loader: NeighborLoader + The loader over evaluation samples. + model: torch.nn.Module + The model being evaluated. + num_classes: int + The number of output classes of the model. + + Returns + ------- + The calculated accuracy as a fraction. + """ + + from torchmetrics import Accuracy + + acc = Accuracy(task="multiclass", num_classes=num_classes).cuda() + + acc_sum = 0.0 + num_batches = 0 + with torch.no_grad(): + for i, batch in enumerate(loader): + num_sampled_nodes = sum( + [torch.as_tensor(n) for n in batch.num_sampled_nodes_dict.values()] + ) + num_sampled_edges = sum( + [torch.as_tensor(e) for e in batch.num_sampled_edges_dict.values()] + ) + batch_size = num_sampled_nodes[0] + + batch = batch.to_homogeneous().cuda() + + batch.y = batch.y.to(torch.long).reshape((batch.y.shape[0],)) + + out = model( + batch.x, + batch.edge_index, + num_sampled_nodes, + num_sampled_edges, + ) + acc_sum += acc(out[:batch_size].softmax(dim=-1), batch.y[:batch_size]) + num_batches += 1 + + if max_num_batches is not None and i >= max_num_batches: + break + + acc_sum = torch.tensor(float(acc_sum), dtype=torch.float32, device="cuda") + td.all_reduce(acc_sum, op=td.ReduceOp.SUM) + nb = torch.tensor(float(num_batches), dtype=torch.float32, device=acc_sum.device) + td.all_reduce(nb, op=td.ReduceOp.SUM) + + return acc_sum / nb + + class PyGTrainer(Trainer): + """ + Trainer implementation for node classification in PyG. + """ + def train(self): import logging logger = logging.getLogger("PyGTrainer") logger.info("Entered train loop") - total_loss = 0.0 num_batches = 0 time_forward = 0.0 @@ -62,19 +133,32 @@ def train(self): start_time = time.perf_counter() end_time_backward = start_time + num_layers = len(self.model.module.convs) + for epoch in range(self.num_epochs): with td.algorithms.join.Join( - [self.model], divide_by_initial_world_size=False + [self.model, self.optimizer], divide_by_initial_world_size=False ): self.model.train() - for iter_i, data in enumerate( - self.get_loader(epoch=epoch, stage="train") - ): + loader, max_num_batches = self.get_loader(epoch=epoch, stage="train") + + max_num_batches = torch.tensor([max_num_batches], device="cuda") + torch.distributed.all_reduce( + max_num_batches, op=torch.distributed.ReduceOp.MIN + ) + max_num_batches = int(max_num_batches[0]) + + for iter_i, data in enumerate(loader): loader_time_iter = time.perf_counter() - end_time_backward time_loader += loader_time_iter time_feature_transfer_start = time.perf_counter() + if len(data.edge_index_dict[("paper", "cites", "paper")][0]) < 3: + logger.error(f"Invalid edge index in iteration {iter_i}") + data = old_data + + old_data = data num_sampled_nodes = sum( [ torch.as_tensor(n) @@ -89,7 +173,6 @@ def train(self): ) # FIXME find a way to get around this and not have to call extend_tensor - num_layers = len(self.model.module.convs) num_sampled_nodes = extend_tensor(num_sampled_nodes, num_layers + 1) num_sampled_edges = extend_tensor(num_sampled_edges, num_layers) @@ -118,7 +201,12 @@ def train(self): ) logger.info(f"total time: {total_time_iter}") + # from pynvml.smi import nvidia_smi + # mem_info = nvidia_smi.getInstance().DeviceQuery('memory.free, memory.total')['gpu'][self.rank % 8]['fb_memory_usage'] + # logger.info(f"rank {self.rank} memory: {mem_info}") + y_true = data.y + y_true = y_true.reshape((y_true.shape[0],)) x = data.x.to(torch.float32) start_time_forward = time.perf_counter() @@ -160,101 +248,48 @@ def train(self): self.optimizer.zero_grad() loss.backward() self.optimizer.step() - total_loss += loss.item() end_time_backward = time.perf_counter() time_backward += end_time_backward - start_time_backward - end_time = time.perf_counter() - - # test - from torchmetrics import Accuracy + if max_num_batches is not None and iter_i >= max_num_batches: + break - acc = Accuracy( - task="multiclass", num_classes=self.dataset.num_labels - ).cuda() + end_time = time.perf_counter() + """ + logger.info("Entering test stage...") with td.algorithms.join.Join( [self.model], divide_by_initial_world_size=False ): self.model.eval() - if self.rank == 0: - acc_sum = 0.0 - with torch.no_grad(): - for i, batch in enumerate( - self.get_loader(epoch=epoch, stage="test") - ): - num_sampled_nodes = sum( - [ - torch.as_tensor(n) - for n in batch.num_sampled_nodes_dict.values() - ] - ) - num_sampled_edges = sum( - [ - torch.as_tensor(e) - for e in batch.num_sampled_edges_dict.values() - ] - ) - batch_size = num_sampled_nodes[0] - - batch = batch.to_homogeneous().cuda() - - batch.y = batch.y.to(torch.long) - out = self.model.module( - batch.x, - batch.edge_index, - num_sampled_nodes, - num_sampled_edges, - ) - acc_sum += acc( - out[:batch_size].softmax(dim=-1), batch.y[:batch_size] - ) - print( - f"Accuracy: {acc_sum/(i) * 100.0:.4f}%", - ) + loader, max_num_batches = self.get_loader(epoch=epoch, stage="test") + num_classes = self.dataset.num_labels - td.barrier() + acc = calc_accuracy( + loader, max_num_batches, self.model.module, num_classes + ) - with td.algorithms.join.Join([self.model], divide_by_initial_world_size=False): - self.model.eval() if self.rank == 0: - acc_sum = 0.0 - with torch.no_grad(): - for i, batch in enumerate( - self.get_loader(epoch=epoch, stage="val") - ): - num_sampled_nodes = sum( - [ - torch.as_tensor(n) - for n in batch.num_sampled_nodes_dict.values() - ] - ) - num_sampled_edges = sum( - [ - torch.as_tensor(e) - for e in batch.num_sampled_edges_dict.values() - ] - ) - batch_size = num_sampled_nodes[0] - - batch = batch.to_homogeneous().cuda() - - batch.y = batch.y.to(torch.long) - out = self.model.module( - batch.x, - batch.edge_index, - num_sampled_nodes, - num_sampled_edges, - ) - acc_sum += acc( - out[:batch_size].softmax(dim=-1), batch.y[:batch_size] - ) print( - f"Validation Accuracy: {acc_sum/(i) * 100.0:.4f}%", + f"Accuracy: {acc * 100.0:.4f}%", ) + """ + + """ + logger.info("Entering validation stage") + with td.algorithms.join.Join([self.model], divide_by_initial_world_size=False): + self.model.eval() + loader, max_num_batches = self.get_loader(epoch=epoch, stage="val") + num_classes = self.dataset.num_labels + acc = calc_accuracy(loader, max_num_batches, self.model.module, num_classes) + + if self.rank == 0: + print( + f"Validation Accuracy: {acc * 100.0:.4f}%", + ) + """ stats = { - "Accuracy": float(acc_sum / (i) * 100.0) if self.rank == 0 else 0.0, "# Batches": num_batches, "Loader Time": time_loader, "Feature Transfer Time": time_feature_transfer, @@ -265,6 +300,12 @@ def train(self): class PyGNativeTrainer(PyGTrainer): + """ + Trainer implementation for native PyG + training using HeteroData as the graph and feature + store and NeighborLoader as the loader. + """ + def __init__( self, dataset, @@ -403,7 +444,7 @@ def get_loader(self, epoch: int = 0, stage="train"): ) logger.info("done creating loader") - return loader + return loader, None def get_model(self, name="GraphSAGE"): if name != "GraphSAGE": diff --git a/python/cugraph-dgl/cugraph_dgl/dataloading/dataset.py b/python/cugraph-dgl/cugraph_dgl/dataloading/dataset.py index 815fd30d8eb..f6fe38fe9f8 100644 --- a/python/cugraph-dgl/cugraph_dgl/dataloading/dataset.py +++ b/python/cugraph-dgl/cugraph_dgl/dataloading/dataset.py @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -63,6 +63,10 @@ def __getitem__(self, idx: int): fn, batch_offset = self._batch_to_fn_d[idx] if fn != self._current_batch_fn: + # Remove current batches to free up memory + # before loading new batches + if hasattr(self, "_current_batches"): + del self._current_batches if self.sparse_format == "csc": df = _load_sampled_file(dataset_obj=self, fn=fn, skip_rename=True) self._current_batches = ( diff --git a/python/cugraph-pyg/cugraph_pyg/data/cugraph_store.py b/python/cugraph-pyg/cugraph_pyg/data/cugraph_store.py index 05d540b7c45..df16fc9fd6c 100644 --- a/python/cugraph-pyg/cugraph_pyg/data/cugraph_store.py +++ b/python/cugraph-pyg/cugraph_pyg/data/cugraph_store.py @@ -1,4 +1,4 @@ -# Copyright (c) 2019-2023, NVIDIA CORPORATION. +# Copyright (c) 2019-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -1083,13 +1083,12 @@ def _get_tensor(self, attr: CuGraphTensorAttr) -> TensorType: idx = attr.index if idx is not None: - if feature_backend == "torch": + if feature_backend in ["torch", "wholegraph"]: if not isinstance(idx, torch.Tensor): raise TypeError( f"Type {type(idx)} invalid" f" for feature store backend {feature_backend}" ) - idx = idx.cpu() elif feature_backend == "numpy": # allow feature indexing through cupy arrays if isinstance(idx, cupy.ndarray): @@ -1244,5 +1243,77 @@ def _infer_unspecified_attr(self, attr: CuGraphTensorAttr) -> CuGraphTensorAttr: return attr + def filter( + self, + format: str, + node_dict: Dict[str, torch.Tensor], + row_dict: Dict[str, torch.Tensor], + col_dict: Dict[str, torch.Tensor], + edge_dict: Dict[str, Tuple[torch.Tensor]], + ) -> torch_geometric.data.HeteroData: + """ + Parameters + ---------- + format: str + COO or CSC + node_dict: Dict[str, torch.Tensor] + IDs of nodes in original store being outputted + row_dict: Dict[str, torch.Tensor] + Renumbered output edge index row + col_dict: Dict[str, torch.Tensor] + Renumbered output edge index column + edge_dict: Dict[str, Tuple[torch.Tensor]] + Currently unused original edge mapping + """ + data = torch_geometric.data.HeteroData() + + # TODO use torch_geometric.EdgeIndex in release 24.04 (Issue #4051) + for attr in self.get_all_edge_attrs(): + key = attr.edge_type + if key in row_dict and key in col_dict: + if format == "CSC": + data.put_edge_index( + (row_dict[key], col_dict[key]), + edge_type=key, + layout="csc", + is_sorted=True, + ) + else: + data[key].edge_index = torch.stack( + [ + row_dict[key], + col_dict[key], + ], + dim=0, + ) + + required_attrs = [] + # To prevent copying multiple times, we use a cache; + # the original node_dict serves as the gpu cache if needed + node_dict_cpu = {} + for attr in self.get_all_tensor_attrs(): + if attr.group_name in node_dict: + device = self.__features.get_storage(attr.group_name, attr.attr_name) + attr.index = node_dict[attr.group_name] + if not isinstance(attr.index, torch.Tensor): + raise ValueError("Node index must be a tensor!") + if attr.index.is_cuda and device == "cpu": + if attr.group_name not in node_dict_cpu: + node_dict_cpu[attr.group_name] = attr.index.cpu() + attr.index = node_dict_cpu[attr.group_name] + elif attr.index.is_cpu and device == "cuda": + node_dict_cpu[attr.group_name] = attr.index + node_dict[attr.group_name] = attr.index.cuda() + attr.index = node_dict[attr.group_name] + + required_attrs.append(attr) + data[attr.group_name].num_nodes = attr.index.size(0) + + tensors = self.multi_get_tensor(required_attrs) + for i, attr in enumerate(required_attrs): + data[attr.group_name][attr.attr_name] = tensors[i] + + return data + def __len__(self): return len(self.get_all_tensor_attrs()) diff --git a/python/cugraph-pyg/cugraph_pyg/loader/cugraph_node_loader.py b/python/cugraph-pyg/cugraph_pyg/loader/cugraph_node_loader.py index bcfaf579820..55c9e9b3329 100644 --- a/python/cugraph-pyg/cugraph_pyg/loader/cugraph_node_loader.py +++ b/python/cugraph-pyg/cugraph_pyg/loader/cugraph_node_loader.py @@ -28,7 +28,6 @@ _sampler_output_from_sampling_results_heterogeneous, _sampler_output_from_sampling_results_homogeneous_csr, _sampler_output_from_sampling_results_homogeneous_coo, - filter_cugraph_store_csc, ) from typing import Union, Tuple, Sequence, List, Dict @@ -454,31 +453,20 @@ def __next__(self): start_time_feature = perf_counter() # Create a PyG HeteroData object, loading the required features - if self.__coo: - pyg_filter_fn = ( - torch_geometric.loader.utils.filter_custom_hetero_store - if hasattr(torch_geometric.loader.utils, "filter_custom_hetero_store") - else torch_geometric.loader.utils.filter_custom_store - ) - out = pyg_filter_fn( - self.__feature_store, - self.__graph_store, - sampler_output.node, - sampler_output.row, - sampler_output.col, - sampler_output.edge, - ) - else: - out = filter_cugraph_store_csc( - self.__feature_store, - self.__graph_store, - sampler_output.node, - sampler_output.row, - sampler_output.col, - sampler_output.edge, - ) + if self.__graph_store != self.__feature_store: + # TODO Possibly support this if there is an actual use case + raise ValueError("Separate graph and feature stores currently unsupported") + + out = self.__graph_store.filter( + "COO" if self.__coo else "CSC", + sampler_output.node, + sampler_output.row, + sampler_output.col, + sampler_output.edge, + ) # Account for CSR format in cuGraph vs. CSC format in PyG + # TODO deprecate and remove this functionality if self.__coo and self.__graph_store.order == "CSC": for edge_type in out.edge_index_dict: out[edge_type].edge_index = out[edge_type].edge_index.flip(dims=[0]) diff --git a/python/cugraph-pyg/cugraph_pyg/sampler/cugraph_sampler.py b/python/cugraph-pyg/cugraph_pyg/sampler/cugraph_sampler.py index 65cb63d25e0..ffab54efe08 100644 --- a/python/cugraph-pyg/cugraph_pyg/sampler/cugraph_sampler.py +++ b/python/cugraph-pyg/cugraph_pyg/sampler/cugraph_sampler.py @@ -411,6 +411,10 @@ def filter_cugraph_store_csc( col_dict: Dict[str, torch.Tensor], edge_dict: Dict[str, Tuple[torch.Tensor]], ) -> torch_geometric.data.HeteroData: + """ + Deprecated + """ + data = torch_geometric.data.HeteroData() for attr in graph_store.get_all_edge_attrs(): diff --git a/python/cugraph/cugraph/gnn/feature_storage/feat_storage.py b/python/cugraph/cugraph/gnn/feature_storage/feat_storage.py index 77a53882fc4..f0186220114 100644 --- a/python/cugraph/cugraph/gnn/feature_storage/feat_storage.py +++ b/python/cugraph/cugraph/gnn/feature_storage/feat_storage.py @@ -1,4 +1,4 @@ -# Copyright (c) 2023, NVIDIA CORPORATION. +# Copyright (c) 2023-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -168,19 +168,54 @@ def get_data( feat, wgth.WholeMemoryEmbedding ): indices_tensor = ( - indices + indices.cuda() if isinstance(indices, torch.Tensor) else torch.as_tensor(indices, device="cuda") ) return feat.gather(indices_tensor) - else: - return feat[indices] + elif not isinstance(torch, MissingModule) and isinstance(feat, torch.Tensor): + if indices is not None: + if not isinstance(indices, torch.Tensor): + indices = torch.as_tensor(indices) + + if feat.is_cpu and indices.is_cuda: + # TODO maybe add a warning here + indices = indices.cpu() + return feat[indices] def get_feature_list(self) -> list[str]: return {feat_name: feats.keys() for feat_name, feats in self.fd.items()} + def get_storage(self, type_name: str, feat_name: str) -> str: + """ + Returns where the data is stored (cuda, cpu). + Note: will return "cuda" for data managed by CUDA, even if + it is in host memory. + + Parameters + ---------- + type_name : str + The node-type/edge-type to store data + feat_name: + The feature name to retrieve data for + + Returns + ------- + "cuda" for data managed by CUDA, otherwise "CPU". + """ + feat = self.fd[feat_name][type_name] + if not isinstance(wgth, MissingModule) and isinstance( + feat, wgth.WholeMemoryEmbedding + ): + return "cuda" + elif isinstance(feat, torch.Tensor): + return "cpu" if feat.is_cpu else "cuda" + else: + return "cpu" + @staticmethod def _cast_feat_obj_to_backend(feat_obj, backend: str, **kwargs): + # TODO (Issue #4078) support casting WG tensors to numpy and torch if backend == "numpy": if isinstance(feat_obj, (cudf.DataFrame, pd.DataFrame)): return _cast_to_numpy_ar(feat_obj.values, **kwargs) @@ -192,6 +227,8 @@ def _cast_feat_obj_to_backend(feat_obj, backend: str, **kwargs): else: return _cast_to_torch_tensor(feat_obj, **kwargs) elif backend == "wholegraph": + if isinstance(feat_obj, wgth.WholeMemoryEmbedding): + return feat_obj return _get_wg_embedding(feat_obj, **kwargs) From c4a531d7b8daa26cec8bde715a8fd1347b764336 Mon Sep 17 00:00:00 2001 From: Robert Maynard Date: Mon, 11 Mar 2024 13:52:34 -0400 Subject: [PATCH 19/20] Mark kernels as internal (#4098) Downstream consumers of static built versions of RAPIDS C++ projects have encountered runtime issues due to multiple instances of the same kernel existing in different DSOs. To resolve this issue we need to ensure that all CUDA kernels in all RAPIDS libraries need to be have internal linkage ( static for projects using whole compilation, __attribute__((visibility("hidden"))) for header libraries / separable compilation ). This updates all cugraph kernels to have internal linkage, and adds a CI job to verify that no new kernels are added with external linkage. Authors: - Robert Maynard (https://github.com/robertmaynard) Approvers: - Brad Rees (https://github.com/BradReesWork) - Naim (https://github.com/naimnv) - Seunghwa Kang (https://github.com/seunghwak) - Jake Awe (https://github.com/AyodeAwe) URL: https://github.com/rapidsai/cugraph/pull/4098 --- .github/workflows/pr.yaml | 9 ++ .github/workflows/test.yaml | 10 ++ .../detail/decompress_edge_partition.cuh | 4 +- .../include/hash/helper_functions.cuh | 4 +- cpp/libcugraph_etl/src/renumbering.cu | 20 +-- cpp/src/community/legacy/ecg.cu | 2 +- cpp/src/components/legacy/weak_cc.cuh | 30 ++-- cpp/src/layout/legacy/bh_kernels.cuh | 136 +++++++++--------- cpp/src/layout/legacy/exact_repulsion.cuh | 16 +-- cpp/src/layout/legacy/fa2_kernels.cuh | 98 ++++++------- .../detail/extract_transform_v_frontier_e.cuh | 6 +- ...r_v_random_select_transform_outgoing_e.cuh | 4 +- ...v_transform_reduce_incoming_outgoing_e.cuh | 8 +- cpp/src/prims/transform_e.cuh | 2 +- cpp/src/prims/transform_reduce_e.cuh | 8 +- .../transform_reduce_e_by_src_dst_key.cuh | 8 +- cpp/src/structure/graph_view_impl.cuh | 4 +- .../traversal/od_shortest_distances_impl.cuh | 2 +- cpp/src/utilities/eidecl_graph_utils.hpp | 11 +- cpp/src/utilities/eidir_graph_utils.hpp | 17 +-- cpp/src/utilities/graph_utils.cuh | 49 ++++--- cpp/src/utilities/path_retrieval.cu | 14 +- 22 files changed, 243 insertions(+), 219 deletions(-) diff --git a/.github/workflows/pr.yaml b/.github/workflows/pr.yaml index 7f0b95e3573..7c8c9973462 100644 --- a/.github/workflows/pr.yaml +++ b/.github/workflows/pr.yaml @@ -15,6 +15,7 @@ jobs: - checks - conda-cpp-build - conda-cpp-tests + - conda-cpp-checks - conda-notebook-tests - conda-python-build - conda-python-tests @@ -52,6 +53,14 @@ jobs: uses: rapidsai/shared-workflows/.github/workflows/conda-cpp-tests.yaml@branch-24.04 with: build_type: pull-request + conda-cpp-checks: + needs: conda-cpp-build + secrets: inherit + uses: rapidsai/shared-workflows/.github/workflows/conda-cpp-post-build-checks.yaml@branch-24.04 + with: + build_type: pull-request + enable_check_symbols: true + symbol_exclusions: (cugraph::ops|hornet|void writeEdgeCountsKernel|void markUniqueOffsetsKernel) conda-python-build: needs: conda-cpp-build secrets: inherit diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml index 32fb2d62b29..0bd095bfa94 100644 --- a/.github/workflows/test.yaml +++ b/.github/workflows/test.yaml @@ -14,6 +14,16 @@ on: type: string jobs: + conda-cpp-checks: + secrets: inherit + uses: rapidsai/shared-workflows/.github/workflows/conda-cpp-post-build-checks.yaml@branch-24.04 + with: + build_type: nightly + branch: ${{ inputs.branch }} + date: ${{ inputs.date }} + sha: ${{ inputs.sha }} + enable_check_symbols: true + symbol_exclusions: (cugraph::ops|hornet|void writeEdgeCountsKernel|void markUniqueOffsetsKernel) conda-cpp-tests: secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/conda-cpp-tests.yaml@branch-24.04 diff --git a/cpp/include/cugraph/detail/decompress_edge_partition.cuh b/cpp/include/cugraph/detail/decompress_edge_partition.cuh index dad5ce77e45..6b974a326dd 100644 --- a/cpp/include/cugraph/detail/decompress_edge_partition.cuh +++ b/cpp/include/cugraph/detail/decompress_edge_partition.cuh @@ -44,7 +44,7 @@ namespace detail { int32_t constexpr decompress_edge_partition_block_size = 1024; template -__global__ void decompress_to_edgelist_mid_degree( +__global__ static void decompress_to_edgelist_mid_degree( edge_partition_device_view_t edge_partition, vertex_t major_range_first, vertex_t major_range_last, @@ -74,7 +74,7 @@ __global__ void decompress_to_edgelist_mid_degree( } template -__global__ void decompress_to_edgelist_high_degree( +__global__ static void decompress_to_edgelist_high_degree( edge_partition_device_view_t edge_partition, vertex_t major_range_first, vertex_t major_range_last, diff --git a/cpp/libcugraph_etl/include/hash/helper_functions.cuh b/cpp/libcugraph_etl/include/hash/helper_functions.cuh index db377f938d2..8a11867f7e2 100644 --- a/cpp/libcugraph_etl/include/hash/helper_functions.cuh +++ b/cpp/libcugraph_etl/include/hash/helper_functions.cuh @@ -1,5 +1,5 @@ /* - * Copyright (c) 2017-2022, NVIDIA CORPORATION. + * Copyright (c) 2017-2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -131,7 +131,7 @@ __forceinline__ __device__ void store_pair_vectorized(pair_type* __restrict__ co } template -__global__ void init_hashtbl(value_type* __restrict__ const hashtbl_values, +__global__ static void init_hashtbl(value_type* __restrict__ const hashtbl_values, const size_type n, const key_type key_val, const elem_type elem_val) diff --git a/cpp/libcugraph_etl/src/renumbering.cu b/cpp/libcugraph_etl/src/renumbering.cu index 08759702ab4..1cbeeeeea05 100644 --- a/cpp/libcugraph_etl/src/renumbering.cu +++ b/cpp/libcugraph_etl/src/renumbering.cu @@ -270,7 +270,7 @@ __device__ __inline__ int32_t validate_ht_col_insert(volatile int32_t* ptr_col) return col; } -__global__ void concat_and_create_histogram(int8_t* col_1, +__global__ static void concat_and_create_histogram(int8_t* col_1, int32_t* offset_1, int8_t* col_2, int32_t* offset_2, @@ -349,7 +349,7 @@ __global__ void concat_and_create_histogram(int8_t* col_1, } } -__global__ void concat_and_create_histogram_2(int8_t* col_1, +__global__ static void concat_and_create_histogram_2(int8_t* col_1, int32_t* offset_1, int8_t* col_2, int32_t* offset_2, @@ -452,7 +452,7 @@ __global__ void concat_and_create_histogram_2(int8_t* col_1, } template -__global__ void set_src_vertex_idx(int8_t* col_1, +__global__ static void set_src_vertex_idx(int8_t* col_1, int32_t* offset_1, int8_t* col_2, int32_t* offset_2, @@ -509,7 +509,7 @@ __global__ void set_src_vertex_idx(int8_t* col_1, } template -__global__ void set_dst_vertex_idx(int8_t* col_1, +__global__ static void set_dst_vertex_idx(int8_t* col_1, int32_t* offset_1, int8_t* col_2, int32_t* offset_2, @@ -585,7 +585,7 @@ __global__ void set_dst_vertex_idx(int8_t* col_1, } } -__global__ void create_mapping_histogram(uint32_t* hash_value, +__global__ static void create_mapping_histogram(uint32_t* hash_value, str_hash_value* payload, cudf_map_type hash_map, accum_type count) @@ -595,7 +595,7 @@ __global__ void create_mapping_histogram(uint32_t* hash_value, if (idx < count) { auto it = hash_map.insert(thrust::make_pair(hash_value[idx], payload[idx])); } } -__global__ void assign_histogram_idx(cudf_map_type cuda_map_obj, +__global__ static void assign_histogram_idx(cudf_map_type cuda_map_obj, size_t slot_count, str_hash_value* key, uint32_t* value, @@ -621,7 +621,7 @@ __global__ void assign_histogram_idx(cudf_map_type cuda_map_obj, } } -__global__ void set_vertex_indices(str_hash_value* ht_value_payload, accum_type count) +__global__ static void set_vertex_indices(str_hash_value* ht_value_payload, accum_type count) { accum_type tid = threadIdx.x + blockIdx.x * blockDim.x; // change count_ to renumber_idx @@ -630,7 +630,7 @@ __global__ void set_vertex_indices(str_hash_value* ht_value_payload, accum_type } } -__global__ void set_output_col_offsets(str_hash_value* row_col_pair, +__global__ static void set_output_col_offsets(str_hash_value* row_col_pair, int32_t* out_col1_offset, int32_t* out_col2_offset, int dst_pair_match, @@ -653,7 +653,7 @@ __global__ void set_output_col_offsets(str_hash_value* row_col_pair, } } -__global__ void offset_buffer_size_comp(int32_t* out_col1_length, +__global__ static void offset_buffer_size_comp(int32_t* out_col1_length, int32_t* out_col2_length, int32_t* out_col1_offsets, int32_t* out_col2_offsets, @@ -673,7 +673,7 @@ __global__ void offset_buffer_size_comp(int32_t* out_col1_length, } } -__global__ void select_unrenumber_string(str_hash_value* idx_to_col_row, +__global__ static void select_unrenumber_string(str_hash_value* idx_to_col_row, int32_t total_elements, int8_t* src_col1, int8_t* src_col2, diff --git a/cpp/src/community/legacy/ecg.cu b/cpp/src/community/legacy/ecg.cu index d93a4446faa..b2ad79204ed 100644 --- a/cpp/src/community/legacy/ecg.cu +++ b/cpp/src/community/legacy/ecg.cu @@ -52,7 +52,7 @@ binsearch_maxle(const IndexType* vec, const IndexType val, IndexType low, IndexT // FIXME: This shouldn't need to be a custom kernel, this // seems like it should just be a thrust::transform template -__global__ void match_check_kernel( +__global__ static void match_check_kernel( IdxT size, IdxT num_verts, IdxT* offsets, IdxT* indices, IdxT* parts, ValT* weights) { IdxT tid = blockIdx.x * blockDim.x + threadIdx.x; diff --git a/cpp/src/components/legacy/weak_cc.cuh b/cpp/src/components/legacy/weak_cc.cuh index ad9aa773590..f4254e2d55d 100644 --- a/cpp/src/components/legacy/weak_cc.cuh +++ b/cpp/src/components/legacy/weak_cc.cuh @@ -59,15 +59,15 @@ class WeakCCState { }; template -__global__ void weak_cc_label_device(vertex_t* labels, - edge_t const* offsets, - vertex_t const* indices, - edge_t nnz, - bool* fa, - bool* xa, - bool* m, - vertex_t startVertexId, - vertex_t batchSize) +__global__ static void weak_cc_label_device(vertex_t* labels, + edge_t const* offsets, + vertex_t const* indices, + edge_t nnz, + bool* fa, + bool* xa, + bool* m, + vertex_t startVertexId, + vertex_t batchSize) { vertex_t tid = threadIdx.x + blockIdx.x * TPB_X; if (tid < batchSize) { @@ -118,11 +118,11 @@ __global__ void weak_cc_label_device(vertex_t* labels, } template -__global__ void weak_cc_init_label_kernel(vertex_t* labels, - vertex_t startVertexId, - vertex_t batchSize, - vertex_t MAX_LABEL, - Lambda filter_op) +__global__ static void weak_cc_init_label_kernel(vertex_t* labels, + vertex_t startVertexId, + vertex_t batchSize, + vertex_t MAX_LABEL, + Lambda filter_op) { /** F1 and F2 in the paper correspond to fa and xa */ /** Cd in paper corresponds to db_cluster */ @@ -134,7 +134,7 @@ __global__ void weak_cc_init_label_kernel(vertex_t* labels, } template -__global__ void weak_cc_init_all_kernel( +__global__ static void weak_cc_init_all_kernel( vertex_t* labels, bool* fa, bool* xa, vertex_t N, vertex_t MAX_LABEL) { vertex_t tid = threadIdx.x + blockIdx.x * TPB_X; diff --git a/cpp/src/layout/legacy/bh_kernels.cuh b/cpp/src/layout/legacy/bh_kernels.cuh index 5b101363314..f6e163ab306 100644 --- a/cpp/src/layout/legacy/bh_kernels.cuh +++ b/cpp/src/layout/legacy/bh_kernels.cuh @@ -1,5 +1,5 @@ /* - * Copyright (c) 2020-2022, NVIDIA CORPORATION. + * Copyright (c) 2020-2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -42,9 +42,9 @@ namespace detail { /** * Intializes the states of objects. This speeds the overall kernel up. */ -__global__ void InitializationKernel(unsigned* restrict limiter, - int* restrict maxdepthd, - float* restrict radiusd) +__global__ static void InitializationKernel(unsigned* restrict limiter, + int* restrict maxdepthd, + float* restrict radiusd) { maxdepthd[0] = 1; limiter[0] = 0; @@ -54,10 +54,10 @@ __global__ void InitializationKernel(unsigned* restrict limiter, /** * Reset root. */ -__global__ void ResetKernel(float* restrict radiusd_squared, - int* restrict bottomd, - const int NNODES, - const float* restrict radiusd) +__global__ static void ResetKernel(float* restrict radiusd_squared, + int* restrict bottomd, + const int NNODES, + const float* restrict radiusd) { radiusd_squared[0] = radiusd[0] * radiusd[0]; // create root node @@ -67,20 +67,21 @@ __global__ void ResetKernel(float* restrict radiusd_squared, /** * Figures the bounding boxes for every point in the embedding. */ -__global__ __launch_bounds__(THREADS1, FACTOR1) void BoundingBoxKernel(int* restrict startd, - int* restrict childd, - int* restrict massd, - float* restrict posxd, - float* restrict posyd, - float* restrict maxxd, - float* restrict maxyd, - float* restrict minxd, - float* restrict minyd, - const int FOUR_NNODES, - const int NNODES, - const int N, - unsigned* restrict limiter, - float* restrict radiusd) +__global__ static __launch_bounds__(THREADS1, + FACTOR1) void BoundingBoxKernel(int* restrict startd, + int* restrict childd, + int* restrict massd, + float* restrict posxd, + float* restrict posyd, + float* restrict maxxd, + float* restrict maxyd, + float* restrict minxd, + float* restrict minyd, + const int FOUR_NNODES, + const int NNODES, + const int N, + unsigned* restrict limiter, + float* restrict radiusd) { float val, minx, maxx, miny, maxy; __shared__ float sminx[THREADS1], smaxx[THREADS1], sminy[THREADS1], smaxy[THREADS1]; @@ -158,9 +159,9 @@ __global__ __launch_bounds__(THREADS1, FACTOR1) void BoundingBoxKernel(int* rest /** * Clear some of the state vectors up. */ -__global__ __launch_bounds__(1024, 1) void ClearKernel1(int* restrict childd, - const int FOUR_NNODES, - const int FOUR_N) +__global__ static __launch_bounds__(1024, 1) void ClearKernel1(int* restrict childd, + const int FOUR_NNODES, + const int FOUR_N) { const int inc = blockDim.x * gridDim.x; int k = (FOUR_N & -32) + threadIdx.x + blockIdx.x * blockDim.x; @@ -175,15 +176,15 @@ __global__ __launch_bounds__(1024, 1) void ClearKernel1(int* restrict childd, /** * Build the actual KD Tree. */ -__global__ __launch_bounds__(THREADS2, - FACTOR2) void TreeBuildingKernel(int* restrict childd, - const float* restrict posxd, - const float* restrict posyd, - const int NNODES, - const int N, - int* restrict maxdepthd, - int* restrict bottomd, - const float* restrict radiusd) +__global__ static __launch_bounds__(THREADS2, + FACTOR2) void TreeBuildingKernel(int* restrict childd, + const float* restrict posxd, + const float* restrict posyd, + const int NNODES, + const int N, + int* restrict maxdepthd, + int* restrict bottomd, + const float* restrict radiusd) { int j, depth; float x, y, r; @@ -296,10 +297,10 @@ __global__ __launch_bounds__(THREADS2, /** * Clean more state vectors. */ -__global__ __launch_bounds__(1024, 1) void ClearKernel2(int* restrict startd, - int* restrict massd, - const int NNODES, - const int* restrict bottomd) +__global__ static __launch_bounds__(1024, 1) void ClearKernel2(int* restrict startd, + int* restrict massd, + const int NNODES, + const int* restrict bottomd) { const int bottom = bottomd[0]; const int inc = blockDim.x * gridDim.x; @@ -317,15 +318,15 @@ __global__ __launch_bounds__(1024, 1) void ClearKernel2(int* restrict startd, /** * Summarize the KD Tree via cell gathering */ -__global__ __launch_bounds__(THREADS3, - FACTOR3) void SummarizationKernel(int* restrict countd, - const int* restrict childd, - volatile int* restrict massd, - float* restrict posxd, - float* restrict posyd, - const int NNODES, - const int N, - const int* restrict bottomd) +__global__ static __launch_bounds__(THREADS3, + FACTOR3) void SummarizationKernel(int* restrict countd, + const int* restrict childd, + volatile int* restrict massd, + float* restrict posxd, + float* restrict posyd, + const int NNODES, + const int N, + const int* restrict bottomd) { bool flag = 0; float cm, px, py; @@ -453,13 +454,14 @@ __global__ __launch_bounds__(THREADS3, /** * Sort the cells */ -__global__ __launch_bounds__(THREADS4, FACTOR4) void SortKernel(int* restrict sortd, - const int* restrict countd, - volatile int* restrict startd, - int* restrict childd, - const int NNODES, - const int N, - const int* restrict bottomd) +__global__ static __launch_bounds__(THREADS4, + FACTOR4) void SortKernel(int* restrict sortd, + const int* restrict countd, + volatile int* restrict startd, + int* restrict childd, + const int NNODES, + const int N, + const int* restrict bottomd) { const int bottom = bottomd[0]; const int dec = blockDim.x * gridDim.x; @@ -502,7 +504,7 @@ __global__ __launch_bounds__(THREADS4, FACTOR4) void SortKernel(int* restrict so /** * Calculate the repulsive forces using the KD Tree */ -__global__ __launch_bounds__( +__global__ static __launch_bounds__( THREADS5, FACTOR5) void RepulsionKernel(/* int *restrict errd, */ const float scaling_ratio, const float theta, @@ -612,18 +614,18 @@ __global__ __launch_bounds__( } } -__global__ __launch_bounds__(THREADS6, - FACTOR6) void apply_forces_bh(float* restrict Y_x, - float* restrict Y_y, - const float* restrict attract_x, - const float* restrict attract_y, - const float* restrict repel_x, - const float* restrict repel_y, - float* restrict old_dx, - float* restrict old_dy, - const float* restrict swinging, - const float speed, - const int n) +__global__ static __launch_bounds__(THREADS6, + FACTOR6) void apply_forces_bh(float* restrict Y_x, + float* restrict Y_y, + const float* restrict attract_x, + const float* restrict attract_y, + const float* restrict repel_x, + const float* restrict repel_y, + float* restrict old_dx, + float* restrict old_dy, + const float* restrict swinging, + const float speed, + const int n) { // For evrery vertex for (int i = threadIdx.x + blockIdx.x * blockDim.x; i < n; i += gridDim.x * blockDim.x) { diff --git a/cpp/src/layout/legacy/exact_repulsion.cuh b/cpp/src/layout/legacy/exact_repulsion.cuh index fe895bae6a0..8530202afd5 100644 --- a/cpp/src/layout/legacy/exact_repulsion.cuh +++ b/cpp/src/layout/legacy/exact_repulsion.cuh @@ -1,5 +1,5 @@ /* - * Copyright (c) 2020-2022, NVIDIA CORPORATION. + * Copyright (c) 2020-2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -22,13 +22,13 @@ namespace cugraph { namespace detail { template -__global__ void repulsion_kernel(const float* restrict x_pos, - const float* restrict y_pos, - float* restrict repel_x, - float* restrict repel_y, - const int* restrict mass, - const float scaling_ratio, - const vertex_t n) +__global__ static void repulsion_kernel(const float* restrict x_pos, + const float* restrict y_pos, + float* restrict repel_x, + float* restrict repel_y, + const int* restrict mass, + const float scaling_ratio, + const vertex_t n) { int j = (blockIdx.x * blockDim.x) + threadIdx.x; // for every item in row int i = (blockIdx.y * blockDim.y) + threadIdx.y; // for every row diff --git a/cpp/src/layout/legacy/fa2_kernels.cuh b/cpp/src/layout/legacy/fa2_kernels.cuh index 4f1ce520387..33e7841a380 100644 --- a/cpp/src/layout/legacy/fa2_kernels.cuh +++ b/cpp/src/layout/legacy/fa2_kernels.cuh @@ -23,19 +23,19 @@ namespace cugraph { namespace detail { template -__global__ void attraction_kernel(const vertex_t* restrict row, - const vertex_t* restrict col, - const weight_t* restrict v, - const edge_t e, - const float* restrict x_pos, - const float* restrict y_pos, - float* restrict attract_x, - float* restrict attract_y, - const int* restrict mass, - bool outbound_attraction_distribution, - bool lin_log_mode, - const float edge_weight_influence, - const float coef) +__global__ static void attraction_kernel(const vertex_t* restrict row, + const vertex_t* restrict col, + const weight_t* restrict v, + const edge_t e, + const float* restrict x_pos, + const float* restrict y_pos, + float* restrict attract_x, + float* restrict attract_y, + const int* restrict mass, + bool outbound_attraction_distribution, + bool lin_log_mode, + const float edge_weight_influence, + const float coef) { vertex_t i, src, dst; weight_t weight = 1; @@ -116,13 +116,13 @@ void apply_attraction(const vertex_t* restrict row, } template -__global__ void linear_gravity_kernel(const float* restrict x_pos, - const float* restrict y_pos, - float* restrict attract_x, - float* restrict attract_y, - const int* restrict mass, - const float gravity, - const vertex_t n) +__global__ static void linear_gravity_kernel(const float* restrict x_pos, + const float* restrict y_pos, + float* restrict attract_x, + float* restrict attract_y, + const int* restrict mass, + const float gravity, + const vertex_t n) { // For every node. for (int i = threadIdx.x + blockIdx.x * blockDim.x; i < n; i += gridDim.x * blockDim.x) { @@ -136,14 +136,14 @@ __global__ void linear_gravity_kernel(const float* restrict x_pos, } template -__global__ void strong_gravity_kernel(const float* restrict x_pos, - const float* restrict y_pos, - float* restrict attract_x, - float* restrict attract_y, - const int* restrict mass, - const float gravity, - const float scaling_ratio, - const vertex_t n) +__global__ static void strong_gravity_kernel(const float* restrict x_pos, + const float* restrict y_pos, + float* restrict attract_x, + float* restrict attract_y, + const int* restrict mass, + const float gravity, + const float scaling_ratio, + const vertex_t n) { // For every node. for (int i = threadIdx.x + blockIdx.x * blockDim.x; i < n; i += gridDim.x * blockDim.x) { @@ -187,16 +187,16 @@ void apply_gravity(const float* restrict x_pos, } template -__global__ void local_speed_kernel(const float* restrict repel_x, - const float* restrict repel_y, - const float* restrict attract_x, - const float* restrict attract_y, - const float* restrict old_dx, - const float* restrict old_dy, - const int* restrict mass, - float* restrict swinging, - float* restrict traction, - const vertex_t n) +__global__ static void local_speed_kernel(const float* restrict repel_x, + const float* restrict repel_y, + const float* restrict attract_x, + const float* restrict attract_y, + const float* restrict old_dx, + const float* restrict old_dy, + const int* restrict mass, + float* restrict swinging, + float* restrict traction, + const vertex_t n) { // For every node. for (int i = threadIdx.x + blockIdx.x * blockDim.x; i < n; i += gridDim.x * blockDim.x) { @@ -272,17 +272,17 @@ void adapt_speed(const float jitter_tolerance, } template -__global__ void update_positions_kernel(float* restrict x_pos, - float* restrict y_pos, - const float* restrict repel_x, - const float* restrict repel_y, - const float* restrict attract_x, - const float* restrict attract_y, - float* restrict old_dx, - float* restrict old_dy, - const float* restrict swinging, - const float speed, - const vertex_t n) +__global__ static void update_positions_kernel(float* restrict x_pos, + float* restrict y_pos, + const float* restrict repel_x, + const float* restrict repel_y, + const float* restrict attract_x, + const float* restrict attract_y, + float* restrict old_dx, + float* restrict old_dy, + const float* restrict swinging, + const float speed, + const vertex_t n) { // For every node. for (int i = threadIdx.x + blockIdx.x * blockDim.x; i < n; i += gridDim.x * blockDim.x) { diff --git a/cpp/src/prims/detail/extract_transform_v_frontier_e.cuh b/cpp/src/prims/detail/extract_transform_v_frontier_e.cuh index fc3da3cac07..0b6447f50d9 100644 --- a/cpp/src/prims/detail/extract_transform_v_frontier_e.cuh +++ b/cpp/src/prims/detail/extract_transform_v_frontier_e.cuh @@ -127,7 +127,7 @@ template -__global__ void extract_transform_v_frontier_e_hypersparse_or_low_degree( +__global__ static void extract_transform_v_frontier_e_hypersparse_or_low_degree( edge_partition_device_view_t edge_partition, @@ -295,7 +295,7 @@ template -__global__ void extract_transform_v_frontier_e_mid_degree( +__global__ static void extract_transform_v_frontier_e_mid_degree( edge_partition_device_view_t edge_partition, @@ -396,7 +396,7 @@ template -__global__ void extract_transform_v_frontier_e_high_degree( +__global__ static void extract_transform_v_frontier_e_high_degree( edge_partition_device_view_t edge_partition, diff --git a/cpp/src/prims/per_v_random_select_transform_outgoing_e.cuh b/cpp/src/prims/per_v_random_select_transform_outgoing_e.cuh index 9cb3365116e..5240c49cb80 100644 --- a/cpp/src/prims/per_v_random_select_transform_outgoing_e.cuh +++ b/cpp/src/prims/per_v_random_select_transform_outgoing_e.cuh @@ -328,7 +328,7 @@ struct return_value_compute_offset_t { }; template -__global__ void compute_valid_local_nbr_inclusive_sums_mid_local_degree( +__global__ static void compute_valid_local_nbr_inclusive_sums_mid_local_degree( edge_partition_device_view_t edge_partition, edge_partition_edge_property_device_view_t edge_partition_e_mask, raft::device_span edge_partition_frontier_majors, @@ -382,7 +382,7 @@ __global__ void compute_valid_local_nbr_inclusive_sums_mid_local_degree( } template -__global__ void compute_valid_local_nbr_inclusive_sums_high_local_degree( +__global__ static void compute_valid_local_nbr_inclusive_sums_high_local_degree( edge_partition_device_view_t edge_partition, edge_partition_edge_property_device_view_t edge_partition_e_mask, raft::device_span edge_partition_frontier_majors, diff --git a/cpp/src/prims/per_v_transform_reduce_incoming_outgoing_e.cuh b/cpp/src/prims/per_v_transform_reduce_incoming_outgoing_e.cuh index 083487fa5b4..509ab56d3fe 100644 --- a/cpp/src/prims/per_v_transform_reduce_incoming_outgoing_e.cuh +++ b/cpp/src/prims/per_v_transform_reduce_incoming_outgoing_e.cuh @@ -149,7 +149,7 @@ template -__global__ void per_v_transform_reduce_e_hypersparse( +__global__ static void per_v_transform_reduce_e_hypersparse( edge_partition_device_view_t edge_partition, @@ -251,7 +251,7 @@ template -__global__ void per_v_transform_reduce_e_low_degree( +__global__ static void per_v_transform_reduce_e_low_degree( edge_partition_device_view_t edge_partition, @@ -350,7 +350,7 @@ template -__global__ void per_v_transform_reduce_e_mid_degree( +__global__ static void per_v_transform_reduce_e_mid_degree( edge_partition_device_view_t edge_partition, @@ -466,7 +466,7 @@ template -__global__ void per_v_transform_reduce_e_high_degree( +__global__ static void per_v_transform_reduce_e_high_degree( edge_partition_device_view_t edge_partition, diff --git a/cpp/src/prims/transform_e.cuh b/cpp/src/prims/transform_e.cuh index 2cb1a5358b0..9c7670f68d2 100644 --- a/cpp/src/prims/transform_e.cuh +++ b/cpp/src/prims/transform_e.cuh @@ -51,7 +51,7 @@ template -__global__ void transform_e_packed_bool( +__global__ static void transform_e_packed_bool( edge_partition_device_view_t edge_partition, diff --git a/cpp/src/prims/transform_reduce_e.cuh b/cpp/src/prims/transform_reduce_e.cuh index e5855b105ee..43722550c58 100644 --- a/cpp/src/prims/transform_reduce_e.cuh +++ b/cpp/src/prims/transform_reduce_e.cuh @@ -61,7 +61,7 @@ template -__global__ void transform_reduce_e_hypersparse( +__global__ static void transform_reduce_e_hypersparse( edge_partition_device_view_t edge_partition, @@ -153,7 +153,7 @@ template -__global__ void transform_reduce_e_low_degree( +__global__ static void transform_reduce_e_low_degree( edge_partition_device_view_t edge_partition, @@ -242,7 +242,7 @@ template -__global__ void transform_reduce_e_mid_degree( +__global__ static void transform_reduce_e_mid_degree( edge_partition_device_view_t edge_partition, @@ -320,7 +320,7 @@ template -__global__ void transform_reduce_e_high_degree( +__global__ static void transform_reduce_e_high_degree( edge_partition_device_view_t edge_partition, diff --git a/cpp/src/prims/transform_reduce_e_by_src_dst_key.cuh b/cpp/src/prims/transform_reduce_e_by_src_dst_key.cuh index 42203085077..eee0ed03d1c 100644 --- a/cpp/src/prims/transform_reduce_e_by_src_dst_key.cuh +++ b/cpp/src/prims/transform_reduce_e_by_src_dst_key.cuh @@ -97,7 +97,7 @@ template -__global__ void transform_reduce_by_src_dst_key_hypersparse( +__global__ static void transform_reduce_by_src_dst_key_hypersparse( edge_partition_device_view_t edge_partition, @@ -156,7 +156,7 @@ template -__global__ void transform_reduce_by_src_dst_key_low_degree( +__global__ static void transform_reduce_by_src_dst_key_low_degree( edge_partition_device_view_t edge_partition, @@ -214,7 +214,7 @@ template -__global__ void transform_reduce_by_src_dst_key_mid_degree( +__global__ static void transform_reduce_by_src_dst_key_mid_degree( edge_partition_device_view_t edge_partition, @@ -274,7 +274,7 @@ template -__global__ void transform_reduce_by_src_dst_key_high_degree( +__global__ static void transform_reduce_by_src_dst_key_high_degree( edge_partition_device_view_t edge_partition, diff --git a/cpp/src/structure/graph_view_impl.cuh b/cpp/src/structure/graph_view_impl.cuh index 4ee5ad5ca02..29dca6ef409 100644 --- a/cpp/src/structure/graph_view_impl.cuh +++ b/cpp/src/structure/graph_view_impl.cuh @@ -241,7 +241,7 @@ rmm::device_uvector compute_minor_degrees( int32_t constexpr count_edge_partition_multi_edges_block_size = 1024; template -__global__ void for_all_major_for_all_nbr_mid_degree( +__global__ static void for_all_major_for_all_nbr_mid_degree( edge_partition_device_view_t edge_partition, vertex_t major_range_first, vertex_t major_range_last, @@ -275,7 +275,7 @@ __global__ void for_all_major_for_all_nbr_mid_degree( } template -__global__ void for_all_major_for_all_nbr_high_degree( +__global__ static void for_all_major_for_all_nbr_high_degree( edge_partition_device_view_t edge_partition, vertex_t major_range_first, vertex_t major_range_last, diff --git a/cpp/src/traversal/od_shortest_distances_impl.cuh b/cpp/src/traversal/od_shortest_distances_impl.cuh index c2a3f1160ca..612eb0c48f2 100644 --- a/cpp/src/traversal/od_shortest_distances_impl.cuh +++ b/cpp/src/traversal/od_shortest_distances_impl.cuh @@ -215,7 +215,7 @@ template -__global__ void multi_partition_copy( +__global__ static void multi_partition_copy( InputIterator input_first, InputIterator input_last, raft::device_span output_buffer_ptrs, diff --git a/cpp/src/utilities/eidecl_graph_utils.hpp b/cpp/src/utilities/eidecl_graph_utils.hpp index 84240ba2845..abf026cbbfe 100644 --- a/cpp/src/utilities/eidecl_graph_utils.hpp +++ b/cpp/src/utilities/eidecl_graph_utils.hpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2020, NVIDIA CORPORATION. + * Copyright (c) 2020-2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -29,9 +29,12 @@ extern template void offsets_to_indices(int const*, int, int*); extern template void offsets_to_indices(long const*, int, int*); extern template void offsets_to_indices(long const*, long, long*); -extern template __global__ void offsets_to_indices_kernel(int const*, int, int*); -extern template __global__ void offsets_to_indices_kernel(long const*, int, int*); -extern template __global__ void offsets_to_indices_kernel(long const*, long, long*); +extern template __attribute__((visibility("hidden"))) __global__ void +offsets_to_indices_kernel(int const*, int, int*); +extern template __attribute__((visibility("hidden"))) __global__ void +offsets_to_indices_kernel(long const*, int, int*); +extern template __attribute__((visibility("hidden"))) __global__ void +offsets_to_indices_kernel(long const*, long, long*); } // namespace detail } // namespace cugraph diff --git a/cpp/src/utilities/eidir_graph_utils.hpp b/cpp/src/utilities/eidir_graph_utils.hpp index 033bb197ce8..ba06c6f56ea 100644 --- a/cpp/src/utilities/eidir_graph_utils.hpp +++ b/cpp/src/utilities/eidir_graph_utils.hpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2020-2023, NVIDIA CORPORATION. + * Copyright (c) 2020-2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -29,15 +29,12 @@ template void offsets_to_indices(int32_t const*, int32_t, int3 template void offsets_to_indices(int64_t const*, int32_t, int32_t*); template void offsets_to_indices(int64_t const*, int64_t, int64_t*); -template __global__ void offsets_to_indices_kernel(int32_t const*, - int32_t, - int32_t*); -template __global__ void offsets_to_indices_kernel(int64_t const*, - int32_t, - int32_t*); -template __global__ void offsets_to_indices_kernel(int64_t const*, - int64_t, - int64_t*); +template __global__ __attribute__((visibility("hidden"))) void +offsets_to_indices_kernel(int32_t const*, int32_t, int32_t*); +template __global__ __attribute__((visibility("hidden"))) void +offsets_to_indices_kernel(int64_t const*, int32_t, int32_t*); +template __global__ __attribute__((visibility("hidden"))) void +offsets_to_indices_kernel(int64_t const*, int64_t, int64_t*); } // namespace detail } // namespace cugraph diff --git a/cpp/src/utilities/graph_utils.cuh b/cpp/src/utilities/graph_utils.cuh index 2d542956531..0b257e7abde 100644 --- a/cpp/src/utilities/graph_utils.cuh +++ b/cpp/src/utilities/graph_utils.cuh @@ -247,34 +247,36 @@ void update_dangling_nodes(size_t n, T* dangling_nodes, T damping_factor) // google matrix kernels template -__global__ void degree_coo(const IndexType n, - const IndexType e, - const IndexType* ind, - ValueType* degree) +__global__ static void degree_coo(const IndexType n, + const IndexType e, + const IndexType* ind, + ValueType* degree) { for (int i = threadIdx.x + blockIdx.x * blockDim.x; i < e; i += gridDim.x * blockDim.x) atomicAdd(°ree[ind[i]], (ValueType)1.0); } template -__global__ void flag_leafs_kernel(const size_t n, const IndexType* degree, ValueType* bookmark) +__global__ static void flag_leafs_kernel(const size_t n, + const IndexType* degree, + ValueType* bookmark) { for (auto i = threadIdx.x + blockIdx.x * blockDim.x; i < n; i += gridDim.x * blockDim.x) if (degree[i] == 0) bookmark[i] = 1.0; } template -__global__ void degree_offsets(const IndexType n, - const IndexType e, - const IndexType* ind, - ValueType* degree) +__global__ static void degree_offsets(const IndexType n, + const IndexType e, + const IndexType* ind, + ValueType* degree) { for (int i = threadIdx.x + blockIdx.x * blockDim.x; i < n; i += gridDim.x * blockDim.x) degree[i] += ind[i + 1] - ind[i]; } template -__global__ void type_convert(FromType* array, int n) +__global__ static void type_convert(FromType* array, int n) { for (int i = threadIdx.x + blockIdx.x * blockDim.x; i < n; i += gridDim.x * blockDim.x) { ToType val = array[i]; @@ -284,12 +286,12 @@ __global__ void type_convert(FromType* array, int n) } template -__global__ void equi_prob3(const IndexType n, - const IndexType e, - const IndexType* csrPtr, - const IndexType* csrInd, - ValueType* val, - IndexType* degree) +__global__ static void equi_prob3(const IndexType n, + const IndexType e, + const IndexType* csrPtr, + const IndexType* csrInd, + ValueType* val, + IndexType* degree) { int j, row, col; for (row = threadIdx.z + blockIdx.z * blockDim.z; row < n; row += gridDim.z * blockDim.z) { @@ -303,12 +305,12 @@ __global__ void equi_prob3(const IndexType n, } template -__global__ void equi_prob2(const IndexType n, - const IndexType e, - const IndexType* csrPtr, - const IndexType* csrInd, - ValueType* val, - IndexType* degree) +__global__ static void equi_prob2(const IndexType n, + const IndexType e, + const IndexType* csrPtr, + const IndexType* csrInd, + ValueType* val, + IndexType* degree) { int row = blockIdx.x * blockDim.x + threadIdx.x; if (row < n) { @@ -372,7 +374,8 @@ void HT_matrix_csc_coo(const IndexType n, } template -__global__ void offsets_to_indices_kernel(const offsets_t* offsets, index_t v, index_t* indices) +__attribute__((visibility("hidden"))) __global__ void offsets_to_indices_kernel( + const offsets_t* offsets, index_t v, index_t* indices) { auto tid{threadIdx.x}; auto ctaStart{blockIdx.x}; diff --git a/cpp/src/utilities/path_retrieval.cu b/cpp/src/utilities/path_retrieval.cu index e37ce3a3ced..eda60941c23 100644 --- a/cpp/src/utilities/path_retrieval.cu +++ b/cpp/src/utilities/path_retrieval.cu @@ -29,13 +29,13 @@ namespace cugraph { namespace detail { template -__global__ void get_traversed_cost_kernel(vertex_t const* vertices, - vertex_t const* preds, - vertex_t const* vtx_map, - weight_t const* info_weights, - weight_t* out, - vertex_t stop_vertex, - vertex_t num_vertices) +__global__ static void get_traversed_cost_kernel(vertex_t const* vertices, + vertex_t const* preds, + vertex_t const* vtx_map, + weight_t const* info_weights, + weight_t* out, + vertex_t stop_vertex, + vertex_t num_vertices) { for (vertex_t i = threadIdx.x + blockIdx.x * blockDim.x; i < num_vertices; i += gridDim.x * blockDim.x) { From 69aef7fb4d1974cde83d3b0e9e7c88cc44b44b0c Mon Sep 17 00:00:00 2001 From: Kyle Edwards Date: Mon, 11 Mar 2024 17:00:45 -0400 Subject: [PATCH 20/20] Replace local copyright check with pre-commit-hooks verify-copyright (#4130) The local `copyright.py` script is bug-prone. Replace it with a more robust centralized script from `pre-commit-hooks`. Authors: - Kyle Edwards (https://github.com/KyleFromNVIDIA) - Brad Rees (https://github.com/BradReesWork) Approvers: - Rick Ratzel (https://github.com/rlratzel) - Brad Rees (https://github.com/BradReesWork) - Jake Awe (https://github.com/AyodeAwe) URL: https://github.com/rapidsai/cugraph/pull/4130 --- .pre-commit-config.yaml | 20 +-- ci/checks/copyright.py | 271 ---------------------------------------- 2 files changed, 12 insertions(+), 279 deletions(-) delete mode 100644 ci/checks/copyright.py diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 3d893e0e562..ddb84d8a0f0 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -46,16 +46,20 @@ repos: ) types_or: [c, c++, cuda] args: ["-fallback-style=none", "-style=file", "-i"] - - repo: local - hooks: - - id: copyright-check - name: copyright-check - entry: python ./ci/checks/copyright.py --git-modified-only --update-current-year - language: python - pass_filenames: false - additional_dependencies: [gitpython] - repo: https://github.com/rapidsai/dependency-file-generator rev: v1.8.0 hooks: - id: rapids-dependency-file-generator args: ["--clean"] + - repo: https://github.com/rapidsai/pre-commit-hooks + rev: v0.0.1 + hooks: + - id: verify-copyright + files: | + (?x) + [.](cmake|cpp|cu|cuh|h|hpp|sh|pxd|py|pyx)$| + CMakeLists[.]txt$| + CMakeLists_standalone[.]txt$| + [.]flake8[.]cython$| + meta[.]yaml$| + setup[.]cfg$ diff --git a/ci/checks/copyright.py b/ci/checks/copyright.py deleted file mode 100644 index ba8b73898e2..00000000000 --- a/ci/checks/copyright.py +++ /dev/null @@ -1,271 +0,0 @@ -# Copyright (c) 2019-2023, NVIDIA CORPORATION. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# - -import argparse -import datetime -import os -import re -import sys - -import git - -FilesToCheck = [ - re.compile(r"[.](cmake|cpp|cu|cuh|h|hpp|sh|pxd|py|pyx)$"), - re.compile(r"CMakeLists[.]txt$"), - re.compile(r"setup[.]cfg$"), - re.compile(r"[.]flake8[.]cython$"), - re.compile(r"meta[.]yaml$"), -] - -# this will break starting at year 10000, which is probably OK :) -CheckSimple = re.compile( - r"Copyright *(?:\(c\))? *(\d{4}),? *NVIDIA C(?:ORPORATION|orporation)" -) -CheckDouble = re.compile( - r"Copyright *(?:\(c\))? *(\d{4})-(\d{4}),? *NVIDIA C(?:ORPORATION|orporation)" # noqa: E501 -) - - -def checkThisFile(f): - if isinstance(f, git.Diff): - if f.deleted_file or f.b_blob.size == 0: - return False - f = f.b_path - elif not os.path.exists(f) or os.stat(f).st_size == 0: - # This check covers things like symlinks which point to files that DNE - return False - for checker in FilesToCheck: - if checker.search(f): - return True - return False - - -def modifiedFiles(): - """Get a set of all modified files, as Diff objects. - - The files returned have been modified in git since the merge base of HEAD - and the upstream of the target branch. We return the Diff objects so that - we can read only the staged changes. - """ - repo = git.Repo() - # Use the environment variable TARGET_BRANCH or RAPIDS_BASE_BRANCH (defined in CI) if possible - target_branch = os.environ.get("TARGET_BRANCH", os.environ.get("RAPIDS_BASE_BRANCH")) - if target_branch is None: - # Fall back to the closest branch if not on CI - target_branch = repo.git.describe( - all=True, tags=True, match="branch-*", abbrev=0 - ).lstrip("heads/") - - upstream_target_branch = None - if target_branch in repo.heads: - # Use the tracking branch of the local reference if it exists. This - # returns None if no tracking branch is set. - upstream_target_branch = repo.heads[target_branch].tracking_branch() - if upstream_target_branch is None: - # Fall back to the remote with the newest target_branch. This code - # path is used on CI because the only local branch reference is - # current-pr-branch, and thus target_branch is not in repo.heads. - # This also happens if no tracking branch is defined for the local - # target_branch. We use the remote with the latest commit if - # multiple remotes are defined. - candidate_branches = [ - remote.refs[target_branch] for remote in repo.remotes - if target_branch in remote.refs - ] - if len(candidate_branches) > 0: - upstream_target_branch = sorted( - candidate_branches, - key=lambda branch: branch.commit.committed_datetime, - )[-1] - else: - # If no remotes are defined, try to use the local version of the - # target_branch. If this fails, the repo configuration must be very - # strange and we can fix this script on a case-by-case basis. - upstream_target_branch = repo.heads[target_branch] - merge_base = repo.merge_base("HEAD", upstream_target_branch.commit)[0] - diff = merge_base.diff() - changed_files = {f for f in diff if f.b_path is not None} - return changed_files - - -def getCopyrightYears(line): - res = CheckSimple.search(line) - if res: - return int(res.group(1)), int(res.group(1)) - res = CheckDouble.search(line) - if res: - return int(res.group(1)), int(res.group(2)) - return None, None - - -def replaceCurrentYear(line, start, end): - # first turn a simple regex into double (if applicable). then update years - res = CheckSimple.sub(r"Copyright (c) \1-\1, NVIDIA CORPORATION", line) - res = CheckDouble.sub( - rf"Copyright (c) {start:04d}-{end:04d}, NVIDIA CORPORATION", - res, - ) - return res - - -def checkCopyright(f, update_current_year): - """Checks for copyright headers and their years.""" - errs = [] - thisYear = datetime.datetime.now().year - lineNum = 0 - crFound = False - yearMatched = False - - if isinstance(f, git.Diff): - path = f.b_path - lines = f.b_blob.data_stream.read().decode().splitlines(keepends=True) - else: - path = f - with open(f, encoding="utf-8") as fp: - lines = fp.readlines() - - for line in lines: - lineNum += 1 - start, end = getCopyrightYears(line) - if start is None: - continue - crFound = True - if start > end: - e = [ - path, - lineNum, - "First year after second year in the copyright " - "header (manual fix required)", - None, - ] - errs.append(e) - elif thisYear < start or thisYear > end: - e = [ - path, - lineNum, - "Current year not included in the copyright header", - None, - ] - if thisYear < start: - e[-1] = replaceCurrentYear(line, thisYear, end) - if thisYear > end: - e[-1] = replaceCurrentYear(line, start, thisYear) - errs.append(e) - else: - yearMatched = True - # copyright header itself not found - if not crFound: - e = [ - path, - 0, - "Copyright header missing or formatted incorrectly " - "(manual fix required)", - None, - ] - errs.append(e) - # even if the year matches a copyright header, make the check pass - if yearMatched: - errs = [] - - if update_current_year: - errs_update = [x for x in errs if x[-1] is not None] - if len(errs_update) > 0: - lines_changed = ", ".join(str(x[1]) for x in errs_update) - print(f"File: {path}. Changing line(s) {lines_changed}") - for _, lineNum, __, replacement in errs_update: - lines[lineNum - 1] = replacement - with open(path, "w", encoding="utf-8") as out_file: - out_file.writelines(lines) - - return errs - - -def getAllFilesUnderDir(root, pathFilter=None): - retList = [] - for dirpath, dirnames, filenames in os.walk(root): - for fn in filenames: - filePath = os.path.join(dirpath, fn) - if pathFilter(filePath): - retList.append(filePath) - return retList - - -def checkCopyright_main(): - """ - Checks for copyright headers in all the modified files. In case of local - repo, this script will just look for uncommitted files and in case of CI - it compares between branches "$PR_TARGET_BRANCH" and "current-pr-branch" - """ - retVal = 0 - - argparser = argparse.ArgumentParser( - "Checks for a consistent copyright header in git's modified files" - ) - argparser.add_argument( - "--update-current-year", - dest="update_current_year", - action="store_true", - required=False, - help="If set, " - "update the current year if a header is already " - "present and well formatted.", - ) - argparser.add_argument( - "--git-modified-only", - dest="git_modified_only", - action="store_true", - required=False, - help="If set, " - "only files seen as modified by git will be " - "processed.", - ) - - args, dirs = argparser.parse_known_args() - - if args.git_modified_only: - files = [f for f in modifiedFiles() if checkThisFile(f)] - else: - files = [] - for d in [os.path.abspath(d) for d in dirs]: - if not os.path.isdir(d): - raise ValueError(f"{d} is not a directory.") - files += getAllFilesUnderDir(d, pathFilter=checkThisFile) - - errors = [] - for f in files: - errors += checkCopyright(f, args.update_current_year) - - if len(errors) > 0: - if any(e[-1] is None for e in errors): - print("Copyright headers incomplete in some of the files!") - for e in errors: - print(" %s:%d Issue: %s" % (e[0], e[1], e[2])) - print("") - n_fixable = sum(1 for e in errors if e[-1] is not None) - path_parts = os.path.abspath(__file__).split(os.sep) - file_from_repo = os.sep.join(path_parts[path_parts.index("ci") :]) - if n_fixable > 0 and not args.update_current_year: - print( - f"You can run `python {file_from_repo} --git-modified-only " - "--update-current-year` and stage the results in git to " - f"fix {n_fixable} of these errors.\n" - ) - retVal = 1 - - return retVal - - -if __name__ == "__main__": - sys.exit(checkCopyright_main())