diff --git a/.github/workflows/pr.yaml b/.github/workflows/pr.yaml index 2e2a8b6b9bc..35c7e3d95b6 100644 --- a/.github/workflows/pr.yaml +++ b/.github/workflows/pr.yaml @@ -12,6 +12,7 @@ concurrency: jobs: pr-builder: needs: + - changed-files - checks - conda-cpp-build - conda-cpp-checks @@ -37,6 +38,63 @@ jobs: - pandas-tests-diff secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/pr-builder.yaml@branch-24.10 + if: always() + with: + needs: ${{ toJSON(needs) }} + changed-files: + runs-on: ubuntu-latest + name: "Check changed files" + outputs: + test_cpp: ${{ steps.changed-files.outputs.cpp_any_changed == 'true' }} + test_java: ${{ steps.changed-files.outputs.java_any_changed == 'true' }} + test_notebooks: ${{ steps.changed-files.outputs.notebooks_any_changed == 'true' }} + test_python: ${{ steps.changed-files.outputs.python_any_changed == 'true' }} + steps: + - name: Get PR info + id: get-pr-info + uses: rapidsai/shared-actions/get-pr-info@main + - name: Checkout code repo + uses: actions/checkout@v4 + with: + ref: ${{ inputs.sha }} + fetch-depth: ${{ fromJSON(steps.get-pr-info.outputs.pr-info).commits }} + persist-credentials: false + - name: Get changed files + id: changed-files + uses: tj-actions/changed-files@v45 + with: + base_sha: ${{ fromJSON(steps.get-pr-info.outputs.pr-info).base.sha }} + files_yaml: | + cpp: + - '**' + - '!CONTRIBUTING.md' + - '!README.md' + - '!docs/**' + - '!img/**' + - '!java/**' + - '!notebooks/**' + - '!python/**' + java: + - '**' + - '!CONTRIBUTING.md' + - '!README.md' + - '!docs/**' + - '!img/**' + - '!notebooks/**' + - '!python/**' + notebooks: + - '**' + - '!CONTRIBUTING.md' + - '!README.md' + - '!java/**' + python: + - '**' + - '!CONTRIBUTING.md' + - '!README.md' + - '!docs/**' + - '!img/**' + - '!java/**' + - '!notebooks/**' checks: secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/checks.yaml@branch-24.10 @@ -56,9 +114,10 @@ jobs: build_type: pull-request enable_check_symbols: true conda-cpp-tests: - needs: conda-cpp-build + needs: [conda-cpp-build, changed-files] secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/conda-cpp-tests.yaml@branch-24.10 + if: needs.changed-files.outputs.test_cpp == 'true' with: build_type: pull-request conda-python-build: @@ -68,24 +127,27 @@ jobs: with: build_type: pull-request conda-python-cudf-tests: - needs: conda-python-build + needs: [conda-python-build, changed-files] secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/conda-python-tests.yaml@branch-24.10 + if: needs.changed-files.outputs.test_python == 'true' with: build_type: pull-request script: "ci/test_python_cudf.sh" conda-python-other-tests: # Tests for dask_cudf, custreamz, cudf_kafka are separated for CI parallelism - needs: conda-python-build + needs: [conda-python-build, changed-files] secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/conda-python-tests.yaml@branch-24.10 + if: needs.changed-files.outputs.test_python == 'true' with: build_type: pull-request script: "ci/test_python_other.sh" conda-java-tests: - needs: conda-cpp-build + needs: [conda-cpp-build, changed-files] secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/custom-job.yaml@branch-24.10 + if: needs.changed-files.outputs.test_java == 'true' with: build_type: pull-request node_type: "gpu-v100-latest-1" @@ -103,9 +165,10 @@ jobs: container_image: "rapidsai/ci-wheel:latest" run_script: "ci/configure_cpp_static.sh" conda-notebook-tests: - needs: conda-python-build + needs: [conda-python-build, changed-files] secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/custom-job.yaml@branch-24.10 + if: needs.changed-files.outputs.test_notebooks == 'true' with: build_type: pull-request node_type: "gpu-v100-latest-1" @@ -145,9 +208,10 @@ jobs: build_type: pull-request script: "ci/build_wheel_cudf.sh" wheel-tests-cudf: - needs: wheel-build-cudf + needs: [wheel-build-cudf, changed-files] secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/wheels-test.yaml@branch-24.10 + if: needs.changed-files.outputs.test_python == 'true' with: build_type: pull-request script: ci/test_wheel_cudf.sh @@ -161,9 +225,10 @@ jobs: build_type: pull-request script: "ci/build_wheel_cudf_polars.sh" wheel-tests-cudf-polars: - needs: wheel-build-cudf-polars + needs: [wheel-build-cudf-polars, changed-files] secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/wheels-test.yaml@branch-24.10 + if: needs.changed-files.outputs.test_python == 'true' with: # This selects "ARCH=amd64 + the latest supported Python + CUDA". matrix_filter: map(select(.ARCH == "amd64")) | group_by(.CUDA_VER|split(".")|map(tonumber)|.[0]) | map(max_by([(.PY_VER|split(".")|map(tonumber)), (.CUDA_VER|split(".")|map(tonumber))])) @@ -181,9 +246,10 @@ jobs: build_type: pull-request script: "ci/build_wheel_dask_cudf.sh" wheel-tests-dask-cudf: - needs: wheel-build-dask-cudf + needs: [wheel-build-dask-cudf, changed-files] secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/wheels-test.yaml@branch-24.10 + if: needs.changed-files.outputs.test_python == 'true' with: # This selects "ARCH=amd64 + the latest supported Python + CUDA". matrix_filter: map(select(.ARCH == "amd64")) | group_by(.CUDA_VER|split(".")|map(tonumber)|.[0]) | map(max_by([(.PY_VER|split(".")|map(tonumber)), (.CUDA_VER|split(".")|map(tonumber))])) @@ -200,9 +266,10 @@ jobs: build-all -DBUILD_BENCHMARKS=ON --verbose; sccache -s; unit-tests-cudf-pandas: - needs: wheel-build-cudf + needs: [wheel-build-cudf, changed-files] secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/wheels-test.yaml@branch-24.10 + if: needs.changed-files.outputs.test_python == 'true' with: # This selects "ARCH=amd64 + the latest supported Python + CUDA". matrix_filter: map(select(.ARCH == "amd64")) | group_by(.CUDA_VER|split(".")|map(tonumber)|.[0]) | map(max_by([(.PY_VER|split(".")|map(tonumber)), (.CUDA_VER|split(".")|map(tonumber))])) @@ -210,9 +277,10 @@ jobs: script: ci/cudf_pandas_scripts/run_tests.sh pandas-tests: # run the Pandas unit tests using PR branch - needs: wheel-build-cudf + needs: [wheel-build-cudf, changed-files] secrets: inherit uses: rapidsai/shared-workflows/.github/workflows/wheels-test.yaml@branch-24.10 + if: needs.changed-files.outputs.test_python == 'true' with: # This selects "ARCH=amd64 + the latest supported Python + CUDA". matrix_filter: map(select(.ARCH == "amd64")) | group_by(.CUDA_VER|split(".")|map(tonumber)|.[0]) | map(max_by([(.PY_VER|split(".")|map(tonumber)), (.CUDA_VER|split(".")|map(tonumber))])) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 1b17eae0842..f861fb57916 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -144,7 +144,7 @@ repos: - id: ruff-format files: python/.*$ - repo: https://github.com/rapidsai/pre-commit-hooks - rev: v0.3.1 + rev: v0.4.0 hooks: - id: verify-copyright exclude: | diff --git a/README.md b/README.md index fd8b0365807..f1b010394d6 100644 --- a/README.md +++ b/README.md @@ -89,7 +89,7 @@ conda install -c rapidsai -c conda-forge -c nvidia \ We also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD of our latest development branch. -Note: cuDF is supported only on Linux, and with Python versions 3.9 and later. +Note: cuDF is supported only on Linux, and with Python versions 3.10 and later. See the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info. diff --git a/conda/environments/all_cuda-118_arch-x86_64.yaml b/conda/environments/all_cuda-118_arch-x86_64.yaml index 5cf7508ba51..fcd6e27a7f6 100644 --- a/conda/environments/all_cuda-118_arch-x86_64.yaml +++ b/conda/environments/all_cuda-118_arch-x86_64.yaml @@ -76,7 +76,7 @@ dependencies: - pytest-xdist - pytest<8 - python-confluent-kafka>=1.9.0,<1.10.0a0 -- python>=3.9,<3.12 +- python>=3.10,<3.12 - pytorch>=2.1.0 - rapids-build-backend>=0.3.0,<0.4.0.dev0 - rapids-dask-dependency==24.10.*,>=0.0.0a0 diff --git a/conda/environments/all_cuda-125_arch-x86_64.yaml b/conda/environments/all_cuda-125_arch-x86_64.yaml index 28b927254f7..bedc3a90885 100644 --- a/conda/environments/all_cuda-125_arch-x86_64.yaml +++ b/conda/environments/all_cuda-125_arch-x86_64.yaml @@ -74,7 +74,7 @@ dependencies: - pytest-xdist - pytest<8 - python-confluent-kafka>=1.9.0,<1.10.0a0 -- python>=3.9,<3.12 +- python>=3.10,<3.12 - pytorch>=2.1.0 - rapids-build-backend>=0.3.0,<0.4.0.dev0 - rapids-dask-dependency==24.10.*,>=0.0.0a0 diff --git a/cpp/CMakeLists.txt b/cpp/CMakeLists.txt index a6f72ed6b75..4080c5d02da 100644 --- a/cpp/CMakeLists.txt +++ b/cpp/CMakeLists.txt @@ -666,6 +666,7 @@ add_library( src/unary/math_ops.cu src/unary/nan_ops.cu src/unary/null_ops.cu + src/utilities/cuda.cpp src/utilities/cuda_memcpy.cu src/utilities/default_stream.cpp src/utilities/host_memory.cpp diff --git a/cpp/benchmarks/join/generate_input_tables.cuh b/cpp/benchmarks/join/generate_input_tables.cuh index f7984b29d6b..75bbe8174d3 100644 --- a/cpp/benchmarks/join/generate_input_tables.cuh +++ b/cpp/benchmarks/join/generate_input_tables.cuh @@ -17,6 +17,7 @@ #pragma once #include +#include #include #include #include @@ -150,13 +151,8 @@ void generate_input_tables(key_type* const build_tbl, CUDF_CUDA_TRY(cudaOccupancyMaxActiveBlocksPerMultiprocessor( &num_blocks_init_probe_tbl, init_probe_tbl, block_size, 0)); - int dev_id{-1}; - CUDF_CUDA_TRY(cudaGetDevice(&dev_id)); - - int num_sms{-1}; - CUDF_CUDA_TRY(cudaDeviceGetAttribute(&num_sms, cudaDevAttrMultiProcessorCount, dev_id)); - - int const num_states = + auto const num_sms = cudf::detail::num_multiprocessors(); + auto const num_states = num_sms * std::max(num_blocks_init_build_tbl, num_blocks_init_probe_tbl) * block_size; rmm::device_uvector devStates(num_states, cudf::get_default_stream()); diff --git a/cpp/benchmarks/reduction/minmax.cpp b/cpp/benchmarks/reduction/minmax.cpp index c89e22d3f44..636de303cc4 100644 --- a/cpp/benchmarks/reduction/minmax.cpp +++ b/cpp/benchmarks/reduction/minmax.cpp @@ -47,6 +47,8 @@ static void reduction_minmax(nvbench::state& state, nvbench::type_list set_throughputs(state); } +NVBENCH_DECLARE_TYPE_STRINGS(cudf::timestamp_ms, "cudf::timestamp_ms", "cudf::timestamp_ms"); + using Types = nvbench::type_list; NVBENCH_BENCH_TYPES(reduction_minmax, NVBENCH_TYPE_AXES(Types)) diff --git a/cpp/benchmarks/reduction/reduce.cpp b/cpp/benchmarks/reduction/reduce.cpp index 14bf90c4943..a30c27c519c 100644 --- a/cpp/benchmarks/reduction/reduce.cpp +++ b/cpp/benchmarks/reduction/reduce.cpp @@ -81,6 +81,8 @@ static void reduction(nvbench::state& state, nvbench::type_list; using AggKinds = nvbench::enum_type_list #include #include +#include #include #include #include diff --git a/cpp/include/cudf/detail/indexalator.cuh b/cpp/include/cudf/detail/indexalator.cuh index ec7b1c3e6b6..f0510c86c3a 100644 --- a/cpp/include/cudf/detail/indexalator.cuh +++ b/cpp/include/cudf/detail/indexalator.cuh @@ -93,7 +93,7 @@ struct input_indexalator : base_normalator { */ __device__ inline cudf::size_type operator[](size_type idx) const { - void const* tp = p_ + (idx * this->width_); + void const* tp = p_ + (static_cast(idx) * this->width_); return type_dispatcher(this->dtype_, normalize_type{}, tp); } @@ -109,7 +109,7 @@ struct input_indexalator : base_normalator { CUDF_HOST_DEVICE input_indexalator(void const* data, data_type dtype, cudf::size_type offset = 0) : base_normalator(dtype), p_{static_cast(data)} { - p_ += offset * this->width_; + p_ += static_cast(offset) * this->width_; } protected: @@ -165,7 +165,7 @@ struct output_indexalator : base_normalator __device__ inline output_indexalator const operator[](size_type idx) const { output_indexalator tmp{*this}; - tmp.p_ += (idx * this->width_); + tmp.p_ += static_cast(idx) * this->width_; return tmp; } diff --git a/cpp/include/cudf/detail/utilities/cuda.cuh b/cpp/include/cudf/detail/utilities/cuda.cuh index 5007af7f9f1..d31ca3d92d1 100644 --- a/cpp/include/cudf/detail/utilities/cuda.cuh +++ b/cpp/include/cudf/detail/utilities/cuda.cuh @@ -189,35 +189,6 @@ __device__ T single_lane_block_sum_reduce(T lane_value) return result; } -/** - * @brief Get the number of elements that can be processed per thread. - * - * @param[in] kernel The kernel for which the elements per thread needs to be assessed - * @param[in] total_size Number of elements - * @param[in] block_size Expected block size - * - * @return cudf::size_type Elements per thread that can be processed for given specification. - */ -template -cudf::size_type elements_per_thread(Kernel kernel, - cudf::size_type total_size, - cudf::size_type block_size, - cudf::size_type max_per_thread = 32) -{ - CUDF_FUNC_RANGE(); - - // calculate theoretical occupancy - int max_blocks = 0; - CUDF_CUDA_TRY(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks, kernel, block_size, 0)); - - int device = 0; - CUDF_CUDA_TRY(cudaGetDevice(&device)); - int num_sms = 0; - CUDF_CUDA_TRY(cudaDeviceGetAttribute(&num_sms, cudaDevAttrMultiProcessorCount, device)); - int per_thread = total_size / (max_blocks * num_sms * block_size); - return std::clamp(per_thread, 1, max_per_thread); -} - /** * @brief Finds the smallest value not less than `number_to_round` and modulo `modulus` is * zero. Expects modulus to be a power of 2. diff --git a/cpp/include/cudf/detail/utilities/cuda.hpp b/cpp/include/cudf/detail/utilities/cuda.hpp new file mode 100644 index 00000000000..58c7ae8ed6a --- /dev/null +++ b/cpp/include/cudf/detail/utilities/cuda.hpp @@ -0,0 +1,59 @@ +/* + * Copyright (c) 2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#pragma once + +#include +#include +#include + +#include + +namespace CUDF_EXPORT cudf { +namespace detail { + +/** + * @brief Get the number of multiprocessors on the device + */ +cudf::size_type num_multiprocessors(); + +/** + * @brief Get the number of elements that can be processed per thread. + * + * @param[in] kernel The kernel for which the elements per thread needs to be assessed + * @param[in] total_size Number of elements + * @param[in] block_size Expected block size + * + * @return cudf::size_type Elements per thread that can be processed for given specification. + */ +template +cudf::size_type elements_per_thread(Kernel kernel, + cudf::size_type total_size, + cudf::size_type block_size, + cudf::size_type max_per_thread = 32) +{ + CUDF_FUNC_RANGE(); + + // calculate theoretical occupancy + int max_blocks = 0; + CUDF_CUDA_TRY(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks, kernel, block_size, 0)); + + int per_thread = total_size / (max_blocks * num_multiprocessors() * block_size); + return std::clamp(per_thread, 1, max_per_thread); +} + +} // namespace detail +} // namespace CUDF_EXPORT cudf diff --git a/cpp/src/io/comp/debrotli.cu b/cpp/src/io/comp/debrotli.cu index 861820f47e7..72649dbe427 100644 --- a/cpp/src/io/comp/debrotli.cu +++ b/cpp/src/io/comp/debrotli.cu @@ -58,6 +58,7 @@ THE SOFTWARE. #include "gpuinflate.hpp" #include "io/utilities/block_utils.cuh" +#include #include #include @@ -2047,19 +2048,14 @@ CUDF_KERNEL void __launch_bounds__(block_size, 2) */ size_t __host__ get_gpu_debrotli_scratch_size(int max_num_inputs) { - int sm_count = 0; - int dev = 0; uint32_t max_fb_size, min_fb_size, fb_size; - CUDF_CUDA_TRY(cudaGetDevice(&dev)); - if (cudaSuccess == cudaDeviceGetAttribute(&sm_count, cudaDevAttrMultiProcessorCount, dev)) { - // printf("%d SMs on device %d\n", sm_count, dev); - max_num_inputs = - min(max_num_inputs, sm_count * 3); // no more than 3 blocks/sm at most due to 32KB smem use - if (max_num_inputs <= 0) { - max_num_inputs = sm_count * 2; // Target 2 blocks/SM by default for scratch mem computation - } + auto const sm_count = cudf::detail::num_multiprocessors(); + // no more than 3 blocks/sm at most due to 32KB smem use + max_num_inputs = std::min(max_num_inputs, sm_count * 3); + if (max_num_inputs <= 0) { + max_num_inputs = sm_count * 2; // Target 2 blocks/SM by default for scratch mem computation } - max_num_inputs = min(max(max_num_inputs, 1), 512); + max_num_inputs = std::min(std::max(max_num_inputs, 1), 512); // Max fb size per block occurs if all huffman tables for all 3 group types fail local_alloc() // with num_htrees=256 (See HuffmanTreeGroupAlloc) max_fb_size = 256 * (630 + 1080 + 920) * 2; // 1.3MB diff --git a/cpp/src/utilities/cuda.cpp b/cpp/src/utilities/cuda.cpp new file mode 100644 index 00000000000..53ca0608170 --- /dev/null +++ b/cpp/src/utilities/cuda.cpp @@ -0,0 +1,34 @@ +/* + * Copyright (c) 2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include +#include + +#include + +namespace cudf::detail { + +cudf::size_type num_multiprocessors() +{ + int device = 0; + CUDF_CUDA_TRY(cudaGetDevice(&device)); + int num_sms = 0; + CUDF_CUDA_TRY(cudaDeviceGetAttribute(&num_sms, cudaDevAttrMultiProcessorCount, device)); + return num_sms; +} + +} // namespace cudf::detail diff --git a/dependencies.yaml b/dependencies.yaml index 194577817db..04b5940c9fb 100644 --- a/dependencies.yaml +++ b/dependencies.yaml @@ -584,10 +584,6 @@ dependencies: specific: - output_types: conda matrices: - - matrix: - py: "3.9" - packages: - - python=3.9 - matrix: py: "3.10" packages: @@ -598,7 +594,7 @@ dependencies: - python=3.11 - matrix: packages: - - python>=3.9,<3.12 + - python>=3.10,<3.12 run_common: common: - output_types: [conda, requirements, pyproject] diff --git a/python/cudf/pyproject.toml b/python/cudf/pyproject.toml index e7bac17f8ba..a6d26d17d46 100644 --- a/python/cudf/pyproject.toml +++ b/python/cudf/pyproject.toml @@ -16,7 +16,7 @@ authors = [ { name = "NVIDIA Corporation" }, ] license = { text = "Apache 2.0" } -requires-python = ">=3.9" +requires-python = ">=3.10" dependencies = [ "cachetools", "cubinlinker", @@ -42,7 +42,6 @@ classifiers = [ "Topic :: Scientific/Engineering", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", - "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", ] diff --git a/python/cudf_kafka/pyproject.toml b/python/cudf_kafka/pyproject.toml index 2d0222a3fe9..01e7299a33a 100644 --- a/python/cudf_kafka/pyproject.toml +++ b/python/cudf_kafka/pyproject.toml @@ -16,7 +16,7 @@ authors = [ { name = "NVIDIA Corporation" }, ] license = { text = "Apache 2.0" } -requires-python = ">=3.9" +requires-python = ">=3.10" dependencies = [ "cudf==24.10.*,>=0.0.0a0", ] # This list was generated by `rapids-dependency-file-generator`. To make changes, edit ../../dependencies.yaml and run `rapids-dependency-file-generator`. diff --git a/python/cudf_polars/cudf_polars/containers/dataframe.py b/python/cudf_polars/cudf_polars/containers/dataframe.py index 7c28e7b9a6c..a5c99e2bc11 100644 --- a/python/cudf_polars/cudf_polars/containers/dataframe.py +++ b/python/cudf_polars/cudf_polars/containers/dataframe.py @@ -105,7 +105,9 @@ def from_polars(cls, df: pl.DataFrame) -> Self: return cls( [ NamedColumn(column, h_col.name).copy_metadata(h_col) - for column, h_col in zip(d_table.columns(), df.iter_columns()) + for column, h_col in zip( + d_table.columns(), df.iter_columns(), strict=True + ) ] ) @@ -134,8 +136,10 @@ def from_table(cls, table: plc.Table, names: Sequence[str]) -> Self: if table.num_columns() != len(names): raise ValueError("Mismatching name and table length.") return cls( - # TODO: strict=True when we drop py39 - [NamedColumn(c, name) for c, name in zip(table.columns(), names)] + [ + NamedColumn(c, name) + for c, name in zip(table.columns(), names, strict=True) + ] ) def sorted_like( @@ -165,8 +169,7 @@ def sorted_like( subset = self.column_names_set if subset is None else subset self.columns = [ c.sorted_like(other) if c.name in subset else c - # TODO: strict=True when we drop py39 - for c, other in zip(self.columns, like.columns) + for c, other in zip(self.columns, like.columns, strict=True) ] return self diff --git a/python/cudf_polars/cudf_polars/dsl/ir.py b/python/cudf_polars/cudf_polars/dsl/ir.py index 019f00f4fca..ebc7dee6bfb 100644 --- a/python/cudf_polars/cudf_polars/dsl/ir.py +++ b/python/cudf_polars/cudf_polars/dsl/ir.py @@ -310,7 +310,8 @@ def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: *( (piece.tbl, piece.column_names(include_children=False)) for piece in pieces - ) + ), + strict=True, ) df = DataFrame.from_table( plc.concatenate.concatenate(list(tables)), @@ -426,7 +427,8 @@ def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: pdf = pdf.select(self.projection) df = DataFrame.from_polars(pdf) assert all( - c.obj.type() == dtype for c, dtype in zip(df.columns, self.schema.values()) + c.obj.type() == dtype + for c, dtype in zip(df.columns, self.schema.values(), strict=True) ) if self.predicate is not None: (mask,) = broadcast(self.predicate.evaluate(df), target_length=df.num_rows) @@ -600,9 +602,10 @@ def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: for i, table in enumerate(raw_tables): (column,) = table.columns() raw_columns.append(NamedColumn(column, f"tmp{i}")) - mapping = dict(zip(replacements, raw_columns)) + mapping = dict(zip(replacements, raw_columns, strict=True)) result_keys = [ - NamedColumn(gk, k.name) for gk, k in zip(group_keys.columns(), keys) + NamedColumn(gk, k.name) + for gk, k in zip(group_keys.columns(), keys, strict=True) ] result_subs = DataFrame(raw_columns) results = [ @@ -752,7 +755,9 @@ def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: columns = plc.join.cross_join(left.table, right.table).columns() left_cols = [ NamedColumn(new, old.name).sorted_like(old) - for new, old in zip(columns[: left.num_columns], left.columns) + for new, old in zip( + columns[: left.num_columns], left.columns, strict=True + ) ] right_cols = [ NamedColumn( @@ -761,7 +766,9 @@ def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: if old.name not in left.column_names_set else f"{old.name}{suffix}", ) - for new, old in zip(columns[left.num_columns :], right.columns) + for new, old in zip( + columns[left.num_columns :], right.columns, strict=True + ) ] return DataFrame([*left_cols, *right_cols]) # TODO: Waiting on clarity based on https://github.com/pola-rs/polars/issues/17184 @@ -803,6 +810,7 @@ def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: for left_col, right_col in zip( left.select_columns(left_on.column_names_set), right.select_columns(right_on.column_names_set), + strict=True, ) ) ) @@ -909,7 +917,7 @@ def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: result = DataFrame( [ NamedColumn(c, old.name).sorted_like(old) - for c, old in zip(table.columns(), df.columns) + for c, old in zip(table.columns(), df.columns, strict=True) ] ) if keys_sorted or self.stable: @@ -974,7 +982,8 @@ def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: self.null_order, ) columns = [ - NamedColumn(c, old.name) for c, old in zip(table.columns(), df.columns) + NamedColumn(c, old.name) + for c, old in zip(table.columns(), df.columns, strict=True) ] # If a sort key is in the result table, set the sortedness property for k, i in enumerate(keys_in_result): @@ -1089,7 +1098,7 @@ def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: # final tag is "swapping" which is useful for the # optimiser (it blocks some pushdown operations) old, new, _ = self.options - return df.rename_columns(dict(zip(old, new))) + return df.rename_columns(dict(zip(old, new, strict=True))) elif self.name == "explode": df = self.df.evaluate(cache=cache) ((to_explode,),) = self.options diff --git a/python/cudf_polars/cudf_polars/typing/__init__.py b/python/cudf_polars/cudf_polars/typing/__init__.py index 02440e67fde..5276073e62a 100644 --- a/python/cudf_polars/cudf_polars/typing/__init__.py +++ b/python/cudf_polars/cudf_polars/typing/__init__.py @@ -13,9 +13,7 @@ from polars.polars import _expr_nodes as pl_expr, _ir_nodes as pl_ir if TYPE_CHECKING: - from typing import Callable - - from typing_extensions import TypeAlias + from typing import Callable, TypeAlias import polars as pl diff --git a/python/cudf_polars/cudf_polars/utils/sorting.py b/python/cudf_polars/cudf_polars/utils/sorting.py index 17ea44e5b1b..6ce216cbf8f 100644 --- a/python/cudf_polars/cudf_polars/utils/sorting.py +++ b/python/cudf_polars/cudf_polars/utils/sorting.py @@ -45,7 +45,7 @@ def sort_order( null_precedence = [] if len(descending) != len(nulls_last) or len(descending) != num_keys: raise ValueError("Mismatching length of arguments in sort_order") - for asc, null_last in zip(column_order, nulls_last): + for asc, null_last in zip(column_order, nulls_last, strict=True): if (asc == plc.types.Order.ASCENDING) ^ (not null_last): null_precedence.append(plc.types.NullOrder.AFTER) elif (asc == plc.types.Order.ASCENDING) ^ null_last: diff --git a/python/cudf_polars/pyproject.toml b/python/cudf_polars/pyproject.toml index c380853035d..0382e3ce6a2 100644 --- a/python/cudf_polars/pyproject.toml +++ b/python/cudf_polars/pyproject.toml @@ -17,7 +17,7 @@ authors = [ { name = "NVIDIA Corporation" }, ] license = { text = "Apache 2.0" } -requires-python = ">=3.9" +requires-python = ">=3.10" dependencies = [ "polars>=1.0,<1.3", "pylibcudf==24.10.*,>=0.0.0a0", @@ -28,7 +28,6 @@ classifiers = [ "Topic :: Scientific/Engineering", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", - "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", ] @@ -62,7 +61,7 @@ exclude_also = [ [tool.ruff] line-length = 88 indent-width = 4 -target-version = "py39" +target-version = "py310" fix = true [tool.ruff.lint] @@ -115,6 +114,9 @@ ignore = [ "TD003", # Missing issue link on the line following this TODO # tryceratops "TRY003", # Avoid specifying long messages outside the exception class + # pyupgrade + "UP035", # Import from `collections.abc` instead: `Callable` + "UP038", # Use `X | Y` in `isinstance` call instead of `(X, Y)` # Lints below are turned off because of conflicts with the ruff # formatter # See https://docs.astral.sh/ruff/formatter/#conflicting-lint-rules @@ -137,6 +139,10 @@ fixable = ["ALL"] [tool.ruff.lint.per-file-ignores] "**/tests/**/*.py" = ["D"] +"**/cudf_polars/typing/__init__.py" = [ + # pyupgrade + "UP007", # Use `X | Y` for type annotations +] [tool.ruff.lint.flake8-pytest-style] # https://docs.astral.sh/ruff/settings/#lintflake8-pytest-style diff --git a/python/custreamz/pyproject.toml b/python/custreamz/pyproject.toml index d6b88167262..be5331236a5 100644 --- a/python/custreamz/pyproject.toml +++ b/python/custreamz/pyproject.toml @@ -17,7 +17,7 @@ authors = [ { name = "NVIDIA Corporation" }, ] license = { text = "Apache 2.0" } -requires-python = ">=3.9" +requires-python = ">=3.10" dependencies = [ "confluent-kafka>=1.9.0,<1.10.0a0", "cudf==24.10.*,>=0.0.0a0", @@ -31,7 +31,6 @@ classifiers = [ "Topic :: Apache Kafka", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", - "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", ] diff --git a/python/dask_cudf/pyproject.toml b/python/dask_cudf/pyproject.toml index d5da7030a75..93bf532d67f 100644 --- a/python/dask_cudf/pyproject.toml +++ b/python/dask_cudf/pyproject.toml @@ -17,7 +17,7 @@ authors = [ { name = "NVIDIA Corporation" }, ] license = { text = "Apache 2.0" } -requires-python = ">=3.9" +requires-python = ">=3.10" dependencies = [ "cudf==24.10.*,>=0.0.0a0", "cupy-cuda11x>=12.0.0", @@ -32,7 +32,6 @@ classifiers = [ "Topic :: Scientific/Engineering", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", - "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", ] diff --git a/python/pylibcudf/pyproject.toml b/python/pylibcudf/pyproject.toml index 5f5594b462b..0d673ea4cc3 100644 --- a/python/pylibcudf/pyproject.toml +++ b/python/pylibcudf/pyproject.toml @@ -16,7 +16,7 @@ authors = [ { name = "NVIDIA Corporation" }, ] license = { text = "Apache 2.0" } -requires-python = ">=3.9" +requires-python = ">=3.10" dependencies = [ "cuda-python>=11.7.1,<12.0a0", "libcudf==24.10.*,>=0.0.0a0", @@ -32,7 +32,6 @@ classifiers = [ "Topic :: Scientific/Engineering", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", - "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", ]