diff --git a/python/cudf/cudf/_lib/scalar.pyx b/python/cudf/cudf/_lib/scalar.pyx index c54db8793e9..2717c361b98 100644 --- a/python/cudf/cudf/_lib/scalar.pyx +++ b/python/cudf/cudf/_lib/scalar.pyx @@ -338,17 +338,5 @@ def _create_proxy_nat_scalar(dtype): elif dtype.type == np.timedelta64: _set_timedelta64_from_np_scalar(result.c_value.c_obj, nat, dtype, True) return result - - # TODO: It should be able to reimplement the above with pylibcudf. - # Currently this doesn't quite seem to work, though, apparently because - # we need a way to create NaT _valid_ scalars but ingesting from - # pyarrow automatically sets them to invalid. Merely setting to valid - # after the fact is insufficient because the underlying memory appears - # to not be initialized. - # nat = pa.scalar(dtype.type('NaT').astype(dtype)) - # result.c_value = pylibcudf.Scalar.from_pyarrow_scalar(nat) - # result.c_value.c_obj.get().set_valid_async(True) - # result._dtype = dtype - # return result else: raise TypeError('NAT only valid for datetime and timedelta')