diff --git a/ci/test_cudf_polars_polars_tests.sh b/ci/test_cudf_polars_polars_tests.sh index 55399d0371a..f5bcdc62604 100755 --- a/ci/test_cudf_polars_polars_tests.sh +++ b/ci/test_cudf_polars_polars_tests.sh @@ -24,14 +24,17 @@ rapids-logger "Download wheels" RAPIDS_PY_CUDA_SUFFIX="$(rapids-wheel-ctk-name-gen ${RAPIDS_CUDA_VERSION})" RAPIDS_PY_WHEEL_NAME="cudf_polars_${RAPIDS_PY_CUDA_SUFFIX}" RAPIDS_PY_WHEEL_PURE="1" rapids-download-wheels-from-s3 ./dist -# Download the pylibcudf built in the previous step -RAPIDS_PY_WHEEL_NAME="pylibcudf_${RAPIDS_PY_CUDA_SUFFIX}" rapids-download-wheels-from-s3 ./local-pylibcudf-dep +# Download libcudf and pylibcudf built in the previous step +RAPIDS_PY_WHEEL_NAME="libcudf_${RAPIDS_PY_CUDA_SUFFIX}" rapids-download-wheels-from-s3 cpp ./local-libcudf-dep +RAPIDS_PY_WHEEL_NAME="pylibcudf_${RAPIDS_PY_CUDA_SUFFIX}" rapids-download-wheels-from-s3 python ./local-pylibcudf-dep -rapids-logger "Install pylibcudf" -python -m pip install ./local-pylibcudf-dep/pylibcudf*.whl +rapids-logger "Install libcudf, pylibcudf and cudf_polars" +python -m pip install \ + -v \ + "$(echo ./dist/cudf_polars_${RAPIDS_PY_CUDA_SUFFIX}*.whl)[test]" \ + "$(echo ./local-libcudf-dep/libcudf_${RAPIDS_PY_CUDA_SUFFIX}*.whl)" \ + "$(echo ./local-pylibcudf-dep/pylibcudf_${RAPIDS_PY_CUDA_SUFFIX}*.whl)" -rapids-logger "Install cudf_polars" -python -m pip install $(echo ./dist/cudf_polars*.whl) TAG=$(python -c 'import polars; print(f"py-{polars.__version__}")') rapids-logger "Clone polars to ${TAG}" diff --git a/cpp/CMakeLists.txt b/cpp/CMakeLists.txt index 136f43ee706..f7a5dd2f2fb 100644 --- a/cpp/CMakeLists.txt +++ b/cpp/CMakeLists.txt @@ -52,6 +52,7 @@ option(JITIFY_USE_CACHE "Use a file cache for JIT compiled kernels" ON) option(CUDF_BUILD_TESTUTIL "Whether to build the test utilities contained in libcudf" ON) mark_as_advanced(CUDF_BUILD_TESTUTIL) option(CUDF_USE_PROPRIETARY_NVCOMP "Download and use NVCOMP with proprietary extensions" ON) +option(CUDF_EXPORT_NVCOMP "Export NVCOMP as a dependency" ON) option(CUDF_LARGE_STRINGS_DISABLED "Build with large string support disabled" OFF) mark_as_advanced(CUDF_LARGE_STRINGS_DISABLED) option( diff --git a/cpp/benchmarks/CMakeLists.txt b/cpp/benchmarks/CMakeLists.txt index 4113e38dcf4..b8a53cd8bd9 100644 --- a/cpp/benchmarks/CMakeLists.txt +++ b/cpp/benchmarks/CMakeLists.txt @@ -330,11 +330,11 @@ ConfigureNVBench(CSV_WRITER_NVBENCH io/csv/csv_writer.cpp) # ################################################################################################## # * ast benchmark --------------------------------------------------------------------------------- -ConfigureBench(AST_BENCH ast/transform.cpp) +ConfigureNVBench(AST_NVBENCH ast/transform.cpp) # ################################################################################################## # * binaryop benchmark ---------------------------------------------------------------------------- -ConfigureBench(BINARYOP_BENCH binaryop/binaryop.cpp binaryop/compiled_binaryop.cpp) +ConfigureNVBench(BINARYOP_NVBENCH binaryop/binaryop.cpp binaryop/compiled_binaryop.cpp) # ################################################################################################## # * nvtext benchmark ------------------------------------------------------------------- @@ -392,11 +392,6 @@ ConfigureNVBench(JSON_READER_NVBENCH io/json/nested_json.cpp io/json/json_reader ConfigureNVBench(JSON_READER_OPTION_NVBENCH io/json/json_reader_option.cpp) ConfigureNVBench(JSON_WRITER_NVBENCH io/json/json_writer.cpp) -# ################################################################################################## -# * multi buffer memset benchmark -# ---------------------------------------------------------------------- -ConfigureNVBench(BATCHED_MEMSET_BENCH io/utilities/batched_memset_bench.cpp) - # ################################################################################################## # * io benchmark --------------------------------------------------------------------- ConfigureNVBench(MULTIBYTE_SPLIT_NVBENCH io/text/multibyte_split.cpp) diff --git a/cpp/benchmarks/ast/transform.cpp b/cpp/benchmarks/ast/transform.cpp index 65a44532cf1..f44f26e4d2c 100644 --- a/cpp/benchmarks/ast/transform.cpp +++ b/cpp/benchmarks/ast/transform.cpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2020-2023, NVIDIA CORPORATION. + * Copyright (c) 2020-2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -15,14 +15,16 @@ */ #include -#include -#include #include #include +#include + #include +#include + #include #include #include @@ -35,13 +37,10 @@ enum class TreeType { }; template -class AST : public cudf::benchmark {}; - -template -static void BM_ast_transform(benchmark::State& state) +static void BM_ast_transform(nvbench::state& state) { - auto const table_size{static_cast(state.range(0))}; - auto const tree_levels{static_cast(state.range(1))}; + auto const table_size = static_cast(state.get_int64("table_size")); + auto const tree_levels = static_cast(state.get_int64("tree_levels")); // Create table data auto const n_cols = reuse_columns ? 1 : tree_levels + 1; @@ -86,38 +85,22 @@ static void BM_ast_transform(benchmark::State& state) auto const& expression_tree_root = expressions.back(); - // Execute benchmark - for (auto _ : state) { - cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 - cudf::compute_column(table, expression_tree_root); - } - // Use the number of bytes read from global memory - state.SetBytesProcessed(static_cast(state.iterations()) * state.range(0) * - (tree_levels + 1) * sizeof(key_type)); -} + state.add_global_memory_reads(table_size * (tree_levels + 1)); -static void CustomRanges(benchmark::internal::Benchmark* b) -{ - auto row_counts = std::vector{100'000, 1'000'000, 10'000'000, 100'000'000}; - auto operation_counts = std::vector{1, 5, 10}; - for (auto const& row_count : row_counts) { - for (auto const& operation_count : operation_counts) { - b->Args({row_count, operation_count}); - } - } + state.exec(nvbench::exec_tag::sync, + [&](nvbench::launch&) { cudf::compute_column(table, expression_tree_root); }); } #define AST_TRANSFORM_BENCHMARK_DEFINE(name, key_type, tree_type, reuse_columns, nullable) \ - BENCHMARK_TEMPLATE_DEFINE_F(AST, name, key_type, tree_type, reuse_columns, nullable) \ - (::benchmark::State & st) \ + static void name(::nvbench::state& st) \ { \ - BM_ast_transform(st); \ + ::BM_ast_transform(st); \ } \ - BENCHMARK_REGISTER_F(AST, name) \ - ->Apply(CustomRanges) \ - ->Unit(benchmark::kMillisecond) \ - ->UseManualTime(); + NVBENCH_BENCH(name) \ + .set_name(#name) \ + .add_int64_axis("tree_levels", {1, 5, 10}) \ + .add_int64_axis("table_size", {100'000, 1'000'000, 10'000'000, 100'000'000}) AST_TRANSFORM_BENCHMARK_DEFINE( ast_int32_imbalanced_unique, int32_t, TreeType::IMBALANCED_LEFT, false, false); diff --git a/cpp/benchmarks/binaryop/binaryop.cpp b/cpp/benchmarks/binaryop/binaryop.cpp index fa98d9e601a..7d267a88764 100644 --- a/cpp/benchmarks/binaryop/binaryop.cpp +++ b/cpp/benchmarks/binaryop/binaryop.cpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2020-2023, NVIDIA CORPORATION. + * Copyright (c) 2020-2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -15,15 +15,14 @@ */ #include -#include -#include #include #include #include +#include + #include -#include // This set of benchmarks is designed to be a comparison for the AST benchmarks @@ -33,13 +32,10 @@ enum class TreeType { }; template -class BINARYOP : public cudf::benchmark {}; - -template -static void BM_binaryop_transform(benchmark::State& state) +static void BM_binaryop_transform(nvbench::state& state) { - auto const table_size{static_cast(state.range(0))}; - auto const tree_levels{static_cast(state.range(1))}; + auto const table_size{static_cast(state.get_int64("table_size"))}; + auto const tree_levels{static_cast(state.get_int64("tree_levels"))}; // Create table data auto const n_cols = reuse_columns ? 1 : tree_levels + 1; @@ -47,9 +43,10 @@ static void BM_binaryop_transform(benchmark::State& state) cycle_dtypes({cudf::type_to_id()}, n_cols), row_count{table_size}); cudf::table_view table{*source_table}; - // Execute benchmark - for (auto _ : state) { - cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 + // Use the number of bytes read from global memory + state.add_global_memory_reads(table_size * (tree_levels + 1)); + + state.exec(nvbench::exec_tag::sync, [&](nvbench::launch&) { // Execute tree that chains additions like (((a + b) + c) + d) auto const op = cudf::binary_operator::ADD; auto const result_data_type = cudf::data_type(cudf::type_to_id()); @@ -64,16 +61,18 @@ static void BM_binaryop_transform(benchmark::State& state) result = cudf::binary_operation(result->view(), col, op, result_data_type); }); } - } - - // Use the number of bytes read from global memory - state.SetBytesProcessed(static_cast(state.iterations()) * state.range(0) * - (tree_levels + 1) * sizeof(key_type)); + }); } #define BINARYOP_TRANSFORM_BENCHMARK_DEFINE(name, key_type, tree_type, reuse_columns) \ - BENCHMARK_TEMPLATE_DEFINE_F(BINARYOP, name, key_type, tree_type, reuse_columns) \ - (::benchmark::State & st) { BM_binaryop_transform(st); } + \ + static void name(::nvbench::state& st) \ + { \ + BM_binaryop_transform(st); \ + } \ + NVBENCH_BENCH(name) \ + .add_int64_axis("tree_levels", {1, 2, 5, 10}) \ + .add_int64_axis("table_size", {100'000, 1'000'000, 10'000'000, 100'000'000}) BINARYOP_TRANSFORM_BENCHMARK_DEFINE(binaryop_int32_imbalanced_unique, int32_t, @@ -87,29 +86,3 @@ BINARYOP_TRANSFORM_BENCHMARK_DEFINE(binaryop_double_imbalanced_unique, double, TreeType::IMBALANCED_LEFT, false); - -static void CustomRanges(benchmark::internal::Benchmark* b) -{ - auto row_counts = std::vector{100'000, 1'000'000, 10'000'000, 100'000'000}; - auto operation_counts = std::vector{1, 2, 5, 10}; - for (auto const& row_count : row_counts) { - for (auto const& operation_count : operation_counts) { - b->Args({row_count, operation_count}); - } - } -} - -BENCHMARK_REGISTER_F(BINARYOP, binaryop_int32_imbalanced_unique) - ->Apply(CustomRanges) - ->Unit(benchmark::kMillisecond) - ->UseManualTime(); - -BENCHMARK_REGISTER_F(BINARYOP, binaryop_int32_imbalanced_reuse) - ->Apply(CustomRanges) - ->Unit(benchmark::kMillisecond) - ->UseManualTime(); - -BENCHMARK_REGISTER_F(BINARYOP, binaryop_double_imbalanced_unique) - ->Apply(CustomRanges) - ->Unit(benchmark::kMillisecond) - ->UseManualTime(); diff --git a/cpp/benchmarks/binaryop/compiled_binaryop.cpp b/cpp/benchmarks/binaryop/compiled_binaryop.cpp index 7086a61c7c5..bc0ff69bce9 100644 --- a/cpp/benchmarks/binaryop/compiled_binaryop.cpp +++ b/cpp/benchmarks/binaryop/compiled_binaryop.cpp @@ -15,20 +15,18 @@ */ #include -#include -#include #include -class COMPILED_BINARYOP : public cudf::benchmark {}; +#include template -void BM_compiled_binaryop(benchmark::State& state, cudf::binary_operator binop) +void BM_compiled_binaryop(nvbench::state& state, cudf::binary_operator binop) { - auto const column_size{static_cast(state.range(0))}; + auto const table_size = static_cast(state.get_int64("table_size")); auto const source_table = create_random_table( - {cudf::type_to_id(), cudf::type_to_id()}, row_count{column_size}); + {cudf::type_to_id(), cudf::type_to_id()}, row_count{table_size}); auto lhs = cudf::column_view(source_table->get_column(0)); auto rhs = cudf::column_view(source_table->get_column(1)); @@ -38,31 +36,26 @@ void BM_compiled_binaryop(benchmark::State& state, cudf::binary_operator binop) // Call once for hot cache. cudf::binary_operation(lhs, rhs, binop, output_dtype); - for (auto _ : state) { - cuda_event_timer timer(state, true); - cudf::binary_operation(lhs, rhs, binop, output_dtype); - } - // use number of bytes read and written to global memory - state.SetBytesProcessed(static_cast(state.iterations()) * column_size * - (sizeof(TypeLhs) + sizeof(TypeRhs) + sizeof(TypeOut))); + state.add_global_memory_reads(table_size); + state.add_global_memory_reads(table_size); + state.add_global_memory_reads(table_size); + + state.exec(nvbench::exec_tag::sync, + [&](nvbench::launch&) { cudf::binary_operation(lhs, rhs, binop, output_dtype); }); } +#define BM_STRINGIFY(a) #a + // TODO tparam boolean for null. -#define BM_BINARYOP_BENCHMARK_DEFINE(name, lhs, rhs, bop, tout) \ - BENCHMARK_DEFINE_F(COMPILED_BINARYOP, name) \ - (::benchmark::State & st) \ - { \ - BM_compiled_binaryop(st, cudf::binary_operator::bop); \ - } \ - BENCHMARK_REGISTER_F(COMPILED_BINARYOP, name) \ - ->Unit(benchmark::kMicrosecond) \ - ->UseManualTime() \ - ->Arg(10000) /* 10k */ \ - ->Arg(100000) /* 100k */ \ - ->Arg(1000000) /* 1M */ \ - ->Arg(10000000) /* 10M */ \ - ->Arg(100000000); /* 100M */ +#define BM_BINARYOP_BENCHMARK_DEFINE(name, lhs, rhs, bop, tout) \ + static void name(::nvbench::state& st) \ + { \ + ::BM_compiled_binaryop(st, ::cudf::binary_operator::bop); \ + } \ + NVBENCH_BENCH(name) \ + .set_name("compiled_binary_op_" BM_STRINGIFY(name)) \ + .add_int64_axis("table_size", {10'000, 100'000, 1'000'000, 10'000'000, 100'000'000}) #define build_name(a, b, c, d) a##_##b##_##c##_##d diff --git a/cpp/benchmarks/io/utilities/batched_memset_bench.cpp b/cpp/benchmarks/io/utilities/batched_memset_bench.cpp deleted file mode 100644 index 2905895a63b..00000000000 --- a/cpp/benchmarks/io/utilities/batched_memset_bench.cpp +++ /dev/null @@ -1,101 +0,0 @@ -/* - * Copyright (c) 2024, NVIDIA CORPORATION. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include -#include -#include -#include - -#include -#include - -#include - -// Size of the data in the benchmark dataframe; chosen to be low enough to allow benchmarks to -// run on most GPUs, but large enough to allow highest throughput -constexpr size_t data_size = 512 << 20; - -void parquet_read_common(cudf::size_type num_rows_to_read, - cudf::size_type num_cols_to_read, - cuio_source_sink_pair& source_sink, - nvbench::state& state) -{ - cudf::io::parquet_reader_options read_opts = - cudf::io::parquet_reader_options::builder(source_sink.make_source_info()); - - auto mem_stats_logger = cudf::memory_stats_logger(); - state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); - state.exec( - nvbench::exec_tag::sync | nvbench::exec_tag::timer, [&](nvbench::launch& launch, auto& timer) { - try_drop_l3_cache(); - - timer.start(); - auto const result = cudf::io::read_parquet(read_opts); - timer.stop(); - - CUDF_EXPECTS(result.tbl->num_columns() == num_cols_to_read, "Unexpected number of columns"); - CUDF_EXPECTS(result.tbl->num_rows() == num_rows_to_read, "Unexpected number of rows"); - }); - - auto const time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value"); - state.add_element_count(static_cast(data_size) / time, "bytes_per_second"); - state.add_buffer_size( - mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage"); - state.add_buffer_size(source_sink.size(), "encoded_file_size", "encoded_file_size"); -} - -template -void bench_batched_memset(nvbench::state& state, nvbench::type_list>) -{ - auto const d_type = get_type_or_group(static_cast(DataType)); - auto const num_cols = static_cast(state.get_int64("num_cols")); - auto const cardinality = static_cast(state.get_int64("cardinality")); - auto const run_length = static_cast(state.get_int64("run_length")); - auto const source_type = retrieve_io_type_enum(state.get_string("io_type")); - auto const compression = cudf::io::compression_type::NONE; - cuio_source_sink_pair source_sink(source_type); - auto const tbl = - create_random_table(cycle_dtypes(d_type, num_cols), - table_size_bytes{data_size}, - data_profile_builder().cardinality(cardinality).avg_run_length(run_length)); - auto const view = tbl->view(); - - cudf::io::parquet_writer_options write_opts = - cudf::io::parquet_writer_options::builder(source_sink.make_sink_info(), view) - .compression(compression); - cudf::io::write_parquet(write_opts); - auto const num_rows = view.num_rows(); - - parquet_read_common(num_rows, num_cols, source_sink, state); -} - -using d_type_list = nvbench::enum_type_list; - -NVBENCH_BENCH_TYPES(bench_batched_memset, NVBENCH_TYPE_AXES(d_type_list)) - .set_name("batched_memset") - .set_type_axes_names({"data_type"}) - .add_int64_axis("num_cols", {1000}) - .add_string_axis("io_type", {"DEVICE_BUFFER"}) - .set_min_samples(4) - .add_int64_axis("cardinality", {0, 1000}) - .add_int64_axis("run_length", {1, 32}); diff --git a/cpp/cmake/thirdparty/get_nvcomp.cmake b/cpp/cmake/thirdparty/get_nvcomp.cmake index 1b6a1730161..33b1b45fb44 100644 --- a/cpp/cmake/thirdparty/get_nvcomp.cmake +++ b/cpp/cmake/thirdparty/get_nvcomp.cmake @@ -16,7 +16,11 @@ function(find_and_configure_nvcomp) include(${rapids-cmake-dir}/cpm/nvcomp.cmake) - rapids_cpm_nvcomp(USE_PROPRIETARY_BINARY ${CUDF_USE_PROPRIETARY_NVCOMP}) + set(export_args) + if(CUDF_EXPORT_NVCOMP) + set(export_args BUILD_EXPORT_SET cudf-exports INSTALL_EXPORT_SET cudf-exports) + endif() + rapids_cpm_nvcomp(${export_args} USE_PROPRIETARY_BINARY ${CUDF_USE_PROPRIETARY_NVCOMP}) # Per-thread default stream if(TARGET nvcomp AND CUDF_USE_PER_THREAD_DEFAULT_STREAM) diff --git a/cpp/doxygen/regex.md b/cpp/doxygen/regex.md index 6d1c91a5752..6902b1948bd 100644 --- a/cpp/doxygen/regex.md +++ b/cpp/doxygen/regex.md @@ -8,6 +8,7 @@ This page specifies which regular expression (regex) features are currently supp - cudf::strings::extract() - cudf::strings::extract_all_record() - cudf::strings::findall() +- cudf::strings::find_re() - cudf::strings::replace_re() - cudf::strings::replace_with_backrefs() - cudf::strings::split_re() diff --git a/cpp/include/cudf/detail/utilities/batched_memcpy.hpp b/cpp/include/cudf/detail/utilities/batched_memcpy.hpp new file mode 100644 index 00000000000..ed0ab9e6e5b --- /dev/null +++ b/cpp/include/cudf/detail/utilities/batched_memcpy.hpp @@ -0,0 +1,67 @@ +/* + * Copyright (c) 2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include + +#include +#include + +#include +#include +#include + +namespace CUDF_EXPORT cudf { +namespace detail { + +/** + * @brief A helper function that copies a vector of vectors from source to destination addresses in + * a batched manner. + * + * @tparam SrcIterator **[inferred]** The type of device-accessible source addresses iterator + * @tparam DstIterator **[inferred]** The type of device-accessible destination address iterator + * @tparam SizeIterator **[inferred]** The type of device-accessible buffer size iterator + * + * @param src_iter Device-accessible iterator to source addresses + * @param dst_iter Device-accessible iterator to destination addresses + * @param size_iter Device-accessible iterator to the buffer sizes (in bytes) + * @param num_buffs Number of buffers to be copied + * @param stream CUDA stream to use + */ +template +void batched_memcpy_async(SrcIterator src_iter, + DstIterator dst_iter, + SizeIterator size_iter, + size_t num_buffs, + rmm::cuda_stream_view stream) +{ + size_t temp_storage_bytes = 0; + cub::DeviceMemcpy::Batched( + nullptr, temp_storage_bytes, src_iter, dst_iter, size_iter, num_buffs, stream.value()); + + rmm::device_buffer d_temp_storage{temp_storage_bytes, stream.value()}; + + cub::DeviceMemcpy::Batched(d_temp_storage.data(), + temp_storage_bytes, + src_iter, + dst_iter, + size_iter, + num_buffs, + stream.value()); +} + +} // namespace detail +} // namespace CUDF_EXPORT cudf diff --git a/cpp/include/cudf/io/detail/batched_memset.hpp b/cpp/include/cudf/detail/utilities/batched_memset.hpp similarity index 98% rename from cpp/include/cudf/io/detail/batched_memset.hpp rename to cpp/include/cudf/detail/utilities/batched_memset.hpp index 1c74be4a9fe..75f738f7529 100644 --- a/cpp/include/cudf/io/detail/batched_memset.hpp +++ b/cpp/include/cudf/detail/utilities/batched_memset.hpp @@ -28,7 +28,7 @@ #include namespace CUDF_EXPORT cudf { -namespace io::detail { +namespace detail { /** * @brief A helper function that takes in a vector of device spans and memsets them to the @@ -78,5 +78,5 @@ void batched_memset(std::vector> const& bufs, d_temp_storage.data(), temp_storage_bytes, iter_in, iter_out, sizes, num_bufs, stream); } -} // namespace io::detail +} // namespace detail } // namespace CUDF_EXPORT cudf diff --git a/cpp/include/cudf/io/datasource.hpp b/cpp/include/cudf/io/datasource.hpp index b12fbe39a57..dc14802adc1 100644 --- a/cpp/include/cudf/io/datasource.hpp +++ b/cpp/include/cudf/io/datasource.hpp @@ -86,14 +86,28 @@ class datasource { /** * @brief Creates a source from a file path. * + * @note Parameters `offset`, `max_size_estimate` and `min_size_estimate` are hints to the + * `datasource` implementation about the expected range of the data that will be read. The + * implementation may use these hints to optimize the read operation. These parameters are usually + * based on the byte range option. In this case, `min_size_estimate` should be no greater than the + * byte range to avoid potential issues when reading adjacent ranges. `max_size_estimate` can + * include padding after the byte range, to include additional data that may be needed for + * processing. + * + @throws cudf::logic_error if the minimum size estimate is greater than the maximum size estimate + * * @param[in] filepath Path to the file to use - * @param[in] offset Bytes from the start of the file (the default is zero) - * @param[in] size Bytes from the offset; use zero for entire file (the default is zero) + * @param[in] offset Starting byte offset from which data will be read (the default is zero) + * @param[in] max_size_estimate Upper estimate of the data range that will be read (the default is + * zero, which means the whole file after `offset`) + * @param[in] min_size_estimate Lower estimate of the data range that will be read (the default is + * zero, which means the whole file after `offset`) * @return Constructed datasource object */ static std::unique_ptr create(std::string const& filepath, - size_t offset = 0, - size_t size = 0); + size_t offset = 0, + size_t max_size_estimate = 0, + size_t min_size_estimate = 0); /** * @brief Creates a source from a host memory buffer. diff --git a/cpp/include/cudf/strings/findall.hpp b/cpp/include/cudf/strings/findall.hpp index c6b9bc7e58a..867764b6d9a 100644 --- a/cpp/include/cudf/strings/findall.hpp +++ b/cpp/include/cudf/strings/findall.hpp @@ -66,6 +66,35 @@ std::unique_ptr findall( rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref()); +/** + * @brief Returns the starting character index of the first match for the given pattern + * in each row of the input column + * + * @code{.pseudo} + * Example: + * s = ["bunny", "rabbit", "hare", "dog"] + * p = regex_program::create("[be]") + * r = find_re(s, p) + * r is now [0, 2, 3, -1] + * @endcode + * + * A null output row occurs if the corresponding input row is null. + * A -1 is returned for rows that do not contain a match. + * + * See the @ref md_regex "Regex Features" page for details on patterns supported by this API. + * + * @param input Strings instance for this operation + * @param prog Regex program instance + * @param stream CUDA stream used for device memory operations and kernel launches + * @param mr Device memory resource used to allocate the returned column's device memory + * @return New column of integers + */ +std::unique_ptr find_re( + strings_column_view const& input, + regex_program const& prog, + rmm::cuda_stream_view stream = cudf::get_default_stream(), + rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref()); + /** @} */ // end of doxygen group } // namespace strings } // namespace CUDF_EXPORT cudf diff --git a/cpp/include/nvtext/edit_distance.hpp b/cpp/include/nvtext/edit_distance.hpp index 723ba310a1e..dca590baebf 100644 --- a/cpp/include/nvtext/edit_distance.hpp +++ b/cpp/include/nvtext/edit_distance.hpp @@ -57,7 +57,7 @@ namespace CUDF_EXPORT nvtext { * @param targets Strings to compute edit distance against `input` * @param stream CUDA stream used for device memory operations and kernel launches * @param mr Device memory resource used to allocate the returned column's device memory - * @return New strings columns of with replaced strings + * @return New lists column of edit distance values */ std::unique_ptr edit_distance( cudf::strings_column_view const& input, diff --git a/cpp/src/io/functions.cpp b/cpp/src/io/functions.cpp index de8eea9e99b..5a060902eb2 100644 --- a/cpp/src/io/functions.cpp +++ b/cpp/src/io/functions.cpp @@ -122,14 +122,16 @@ chunked_parquet_writer_options_builder chunked_parquet_writer_options::builder( namespace { std::vector> make_datasources(source_info const& info, - size_t range_offset = 0, - size_t range_size = 0) + size_t offset = 0, + size_t max_size_estimate = 0, + size_t min_size_estimate = 0) { switch (info.type()) { case io_type::FILEPATH: { auto sources = std::vector>(); for (auto const& filepath : info.filepaths()) { - sources.emplace_back(cudf::io::datasource::create(filepath, range_offset, range_size)); + sources.emplace_back( + cudf::io::datasource::create(filepath, offset, max_size_estimate, min_size_estimate)); } return sources; } @@ -211,7 +213,8 @@ table_with_metadata read_json(json_reader_options options, auto datasources = make_datasources(options.get_source(), options.get_byte_range_offset(), - options.get_byte_range_size_with_padding()); + options.get_byte_range_size_with_padding(), + options.get_byte_range_size()); return json::detail::read_json(datasources, options, stream, mr); } @@ -238,7 +241,8 @@ table_with_metadata read_csv(csv_reader_options options, auto datasources = make_datasources(options.get_source(), options.get_byte_range_offset(), - options.get_byte_range_size_with_padding()); + options.get_byte_range_size_with_padding(), + options.get_byte_range_size()); CUDF_EXPECTS(datasources.size() == 1, "Only a single source is currently supported."); diff --git a/cpp/src/io/orc/stripe_enc.cu b/cpp/src/io/orc/stripe_enc.cu index 5c70e35fd2e..ed0b6969154 100644 --- a/cpp/src/io/orc/stripe_enc.cu +++ b/cpp/src/io/orc/stripe_enc.cu @@ -20,6 +20,8 @@ #include "orc_gpu.hpp" #include +#include +#include #include #include #include @@ -1087,37 +1089,42 @@ CUDF_KERNEL void __launch_bounds__(block_size) /** * @brief Merge chunked column data into a single contiguous stream * - * @param[in,out] strm_desc StripeStream device array [stripe][stream] - * @param[in,out] streams List of encoder chunk streams [column][rowgroup] + * @param[in] strm_desc StripeStream device array [stripe][stream] + * @param[in] streams List of encoder chunk streams [column][rowgroup] + * @param[out] srcs List of source encoder chunk stream data addresses + * @param[out] dsts List of destination StripeStream data addresses + * @param[out] sizes List of stream sizes in bytes */ // blockDim {compact_streams_block_size,1,1} CUDF_KERNEL void __launch_bounds__(compact_streams_block_size) - gpuCompactOrcDataStreams(device_2dspan strm_desc, - device_2dspan streams) + gpuInitBatchedMemcpy(device_2dspan strm_desc, + device_2dspan streams, + device_span srcs, + device_span dsts, + device_span sizes) { - __shared__ __align__(16) StripeStream ss; - - auto const stripe_id = blockIdx.x; + auto const stripe_id = cudf::detail::grid_1d::global_thread_id(); auto const stream_id = blockIdx.y; - auto const t = threadIdx.x; + if (stripe_id >= strm_desc.size().first) { return; } - if (t == 0) { ss = strm_desc[stripe_id][stream_id]; } - __syncthreads(); + auto const out_id = stream_id * strm_desc.size().first + stripe_id; + StripeStream ss = strm_desc[stripe_id][stream_id]; if (ss.data_ptr == nullptr) { return; } auto const cid = ss.stream_type; auto dst_ptr = ss.data_ptr; for (auto group = ss.first_chunk_id; group < ss.first_chunk_id + ss.num_chunks; ++group) { + auto const out_id = stream_id * streams.size().second + group; + srcs[out_id] = streams[ss.column_id][group].data_ptrs[cid]; + dsts[out_id] = dst_ptr; + + // Also update the stream here, data will be copied in a separate kernel + streams[ss.column_id][group].data_ptrs[cid] = dst_ptr; + auto const len = streams[ss.column_id][group].lengths[cid]; - if (len > 0) { - auto const src_ptr = streams[ss.column_id][group].data_ptrs[cid]; - for (uint32_t i = t; i < len; i += blockDim.x) { - dst_ptr[i] = src_ptr[i]; - } - __syncthreads(); - } - if (t == 0) { streams[ss.column_id][group].data_ptrs[cid] = dst_ptr; } + // len is the size (in bytes) of the current stream. + sizes[out_id] = len; dst_ptr += len; } } @@ -1325,9 +1332,26 @@ void CompactOrcDataStreams(device_2dspan strm_desc, device_2dspan enc_streams, rmm::cuda_stream_view stream) { + auto const num_rowgroups = enc_streams.size().second; + auto const num_streams = strm_desc.size().second; + auto const num_stripes = strm_desc.size().first; + auto const num_chunks = num_rowgroups * num_streams; + auto srcs = cudf::detail::make_zeroed_device_uvector_async( + num_chunks, stream, rmm::mr::get_current_device_resource()); + auto dsts = cudf::detail::make_zeroed_device_uvector_async( + num_chunks, stream, rmm::mr::get_current_device_resource()); + auto lengths = cudf::detail::make_zeroed_device_uvector_async( + num_chunks, stream, rmm::mr::get_current_device_resource()); + dim3 dim_block(compact_streams_block_size, 1); - dim3 dim_grid(strm_desc.size().first, strm_desc.size().second); - gpuCompactOrcDataStreams<<>>(strm_desc, enc_streams); + dim3 dim_grid(cudf::util::div_rounding_up_unsafe(num_stripes, compact_streams_block_size), + strm_desc.size().second); + gpuInitBatchedMemcpy<<>>( + strm_desc, enc_streams, srcs, dsts, lengths); + + // Copy streams in a batched manner. + cudf::detail::batched_memcpy_async( + srcs.begin(), dsts.begin(), lengths.begin(), lengths.size(), stream); } std::optional CompressOrcDataStreams( diff --git a/cpp/src/io/parquet/page_data.cu b/cpp/src/io/parquet/page_data.cu index e0d50d7ccf9..b3276c81c1f 100644 --- a/cpp/src/io/parquet/page_data.cu +++ b/cpp/src/io/parquet/page_data.cu @@ -17,6 +17,8 @@ #include "page_data.cuh" #include "page_decode.cuh" +#include + #include #include @@ -466,4 +468,28 @@ void __host__ DecodeSplitPageData(cudf::detail::hostdevice_span pages, } } +void WriteFinalOffsets(host_span offsets, + host_span buff_addrs, + rmm::cuda_stream_view stream) +{ + // Copy offsets to device and create an iterator + auto d_src_data = cudf::detail::make_device_uvector_async( + offsets, stream, cudf::get_current_device_resource_ref()); + // Iterator for the source (scalar) data + auto src_iter = cudf::detail::make_counting_transform_iterator( + static_cast(0), + cuda::proclaim_return_type( + [src = d_src_data.begin()] __device__(std::size_t i) { return src + i; })); + + // Copy buffer addresses to device and create an iterator + auto d_dst_addrs = cudf::detail::make_device_uvector_async( + buff_addrs, stream, cudf::get_current_device_resource_ref()); + // size_iter is simply a constant iterator of sizeof(size_type) bytes. + auto size_iter = thrust::make_constant_iterator(sizeof(size_type)); + + // Copy offsets to buffers in batched manner. + cudf::detail::batched_memcpy_async( + src_iter, d_dst_addrs.begin(), size_iter, offsets.size(), stream); +} + } // namespace cudf::io::parquet::detail diff --git a/cpp/src/io/parquet/parquet_gpu.hpp b/cpp/src/io/parquet/parquet_gpu.hpp index e631e12119d..a8ba3a969ce 100644 --- a/cpp/src/io/parquet/parquet_gpu.hpp +++ b/cpp/src/io/parquet/parquet_gpu.hpp @@ -797,6 +797,18 @@ void DecodeSplitPageData(cudf::detail::hostdevice_span pages, kernel_error::pointer error_code, rmm::cuda_stream_view stream); +/** + * @brief Writes the final offsets to the corresponding list and string buffer end addresses in a + * batched manner. + * + * @param offsets Host span of final offsets + * @param buff_addrs Host span of corresponding output col buffer end addresses + * @param stream CUDA stream to use + */ +void WriteFinalOffsets(host_span offsets, + host_span buff_addrs, + rmm::cuda_stream_view stream); + /** * @brief Launches kernel for reading the string column data stored in the pages * diff --git a/cpp/src/io/parquet/reader_impl.cpp b/cpp/src/io/parquet/reader_impl.cpp index 7d817bde7af..1b69ccb7742 100644 --- a/cpp/src/io/parquet/reader_impl.cpp +++ b/cpp/src/io/parquet/reader_impl.cpp @@ -371,13 +371,15 @@ void reader::impl::decode_page_data(read_mode mode, size_t skip_rows, size_t num CUDF_FAIL("Parquet data decode failed with code(s) " + kernel_error::to_string(error)); } - // for list columns, add the final offset to every offset buffer. - // TODO : make this happen in more efficiently. Maybe use thrust::for_each - // on each buffer. + // For list and string columns, add the final offset to every offset buffer. // Note : the reason we are doing this here instead of in the decode kernel is // that it is difficult/impossible for a given page to know that it is writing the very // last value that should then be followed by a terminator (because rows can span // page boundaries). + std::vector out_buffers; + std::vector final_offsets; + out_buffers.reserve(_input_columns.size()); + final_offsets.reserve(_input_columns.size()); for (size_t idx = 0; idx < _input_columns.size(); idx++) { input_column_info const& input_col = _input_columns[idx]; @@ -393,25 +395,21 @@ void reader::impl::decode_page_data(read_mode mode, size_t skip_rows, size_t num // the final offset for a list at level N is the size of it's child size_type const offset = child.type.id() == type_id::LIST ? child.size - 1 : child.size; - CUDF_CUDA_TRY(cudaMemcpyAsync(static_cast(out_buf.data()) + (out_buf.size - 1), - &offset, - sizeof(size_type), - cudaMemcpyDefault, - _stream.value())); + out_buffers.emplace_back(static_cast(out_buf.data()) + (out_buf.size - 1)); + final_offsets.emplace_back(offset); out_buf.user_data |= PARQUET_COLUMN_BUFFER_FLAG_LIST_TERMINATED; } else if (out_buf.type.id() == type_id::STRING) { // need to cap off the string offsets column auto const sz = static_cast(col_string_sizes[idx]); if (sz <= strings::detail::get_offset64_threshold()) { - CUDF_CUDA_TRY(cudaMemcpyAsync(static_cast(out_buf.data()) + out_buf.size, - &sz, - sizeof(size_type), - cudaMemcpyDefault, - _stream.value())); + out_buffers.emplace_back(static_cast(out_buf.data()) + out_buf.size); + final_offsets.emplace_back(sz); } } } } + // Write the final offsets for list and string columns in a batched manner + WriteFinalOffsets(final_offsets, out_buffers, _stream); // update null counts in the final column buffers for (size_t idx = 0; idx < subpass.pages.size(); idx++) { diff --git a/cpp/src/io/parquet/reader_impl_preprocess.cu b/cpp/src/io/parquet/reader_impl_preprocess.cu index 3763c2e8e6d..8cab68ea721 100644 --- a/cpp/src/io/parquet/reader_impl_preprocess.cu +++ b/cpp/src/io/parquet/reader_impl_preprocess.cu @@ -19,9 +19,9 @@ #include #include +#include #include #include -#include #include #include @@ -1656,9 +1656,9 @@ void reader::impl::allocate_columns(read_mode mode, size_t skip_rows, size_t num } } - cudf::io::detail::batched_memset(memset_bufs, static_cast(0), _stream); + cudf::detail::batched_memset(memset_bufs, static_cast(0), _stream); // Need to set null mask bufs to all high bits - cudf::io::detail::batched_memset( + cudf::detail::batched_memset( nullmask_bufs, std::numeric_limits::max(), _stream); } diff --git a/cpp/src/io/utilities/datasource.cpp b/cpp/src/io/utilities/datasource.cpp index e4313eba454..0be976b6144 100644 --- a/cpp/src/io/utilities/datasource.cpp +++ b/cpp/src/io/utilities/datasource.cpp @@ -32,6 +32,7 @@ #include #include +#include namespace cudf { namespace io { @@ -54,6 +55,30 @@ class file_source : public datasource { } } + std::unique_ptr host_read(size_t offset, size_t size) override + { + lseek(_file.desc(), offset, SEEK_SET); + + // Clamp length to available data + ssize_t const read_size = std::min(size, _file.size() - offset); + + std::vector v(read_size); + CUDF_EXPECTS(read(_file.desc(), v.data(), read_size) == read_size, "read failed"); + return buffer::create(std::move(v)); + } + + size_t host_read(size_t offset, size_t size, uint8_t* dst) override + { + lseek(_file.desc(), offset, SEEK_SET); + + // Clamp length to available data + auto const read_size = std::min(size, _file.size() - offset); + + CUDF_EXPECTS(read(_file.desc(), dst, read_size) == static_cast(read_size), + "read failed"); + return read_size; + } + ~file_source() override = default; [[nodiscard]] bool supports_device_read() const override @@ -138,40 +163,63 @@ class file_source : public datasource { */ class memory_mapped_source : public file_source { public: - explicit memory_mapped_source(char const* filepath, size_t offset, size_t size) + explicit memory_mapped_source(char const* filepath, + size_t offset, + size_t max_size_estimate, + size_t min_size_estimate) : file_source(filepath) { if (_file.size() != 0) { - map(_file.desc(), offset, size); - register_mmap_buffer(); + // Memory mapping is not exclusive, so we can include the whole region we expect to read + map(_file.desc(), offset, max_size_estimate); + // Buffer registration is exclusive (can't overlap with other registered buffers) so we + // register the lower estimate; this avoids issues when reading adjacent ranges from the same + // file from multiple threads + register_mmap_buffer(offset, min_size_estimate); } } ~memory_mapped_source() override { if (_map_addr != nullptr) { - munmap(_map_addr, _map_size); + unmap(); unregister_mmap_buffer(); } } std::unique_ptr host_read(size_t offset, size_t size) override { - CUDF_EXPECTS(offset >= _map_offset, "Requested offset is outside mapping"); + // Clamp length to available data + auto const read_size = std::min(size, +_file.size() - offset); + + // If the requested range is outside of the mapped region, read from the file + if (offset < _map_offset or offset + read_size > (_map_offset + _map_size)) { + return file_source::host_read(offset, read_size); + } - // Clamp length to available data in the mapped region - auto const read_size = std::min(size, _map_size - (offset - _map_offset)); + // If the requested range is only partially within the registered region, copy to a new + // host buffer to make the data safe to copy to the device + if (_reg_addr != nullptr and + (offset < _reg_offset or offset + read_size > (_reg_offset + _reg_size))) { + auto const src = static_cast(_map_addr) + (offset - _map_offset); + + return std::make_unique>>( + std::vector(src, src + read_size)); + } return std::make_unique( - static_cast(_map_addr) + (offset - _map_offset), read_size); + static_cast(_map_addr) + offset - _map_offset, read_size); } size_t host_read(size_t offset, size_t size, uint8_t* dst) override { - CUDF_EXPECTS(offset >= _map_offset, "Requested offset is outside mapping"); + // Clamp length to available data + auto const read_size = std::min(size, +_file.size() - offset); - // Clamp length to available data in the mapped region - auto const read_size = std::min(size, _map_size - (offset - _map_offset)); + // If the requested range is outside of the mapped region, read from the file + if (offset < _map_offset or offset + read_size > (_map_offset + _map_size)) { + return file_source::host_read(offset, read_size, dst); + } auto const src = static_cast(_map_addr) + (offset - _map_offset); std::memcpy(dst, src, read_size); @@ -184,16 +232,18 @@ class memory_mapped_source : public file_source { * * Fixes nvbugs/4215160 */ - void register_mmap_buffer() + void register_mmap_buffer(size_t offset, size_t size) { - if (_map_addr == nullptr or _map_size == 0 or not pageableMemoryAccessUsesHostPageTables()) { - return; - } + if (_map_addr == nullptr or not pageableMemoryAccessUsesHostPageTables()) { return; } - auto const result = cudaHostRegister(_map_addr, _map_size, cudaHostRegisterDefault); - if (result == cudaSuccess) { - _is_map_registered = true; - } else { + // Registered region must be within the mapped region + _reg_offset = std::max(offset, _map_offset); + _reg_size = std::min(size != 0 ? size : _map_size, (_map_offset + _map_size) - _reg_offset); + + _reg_addr = static_cast(_map_addr) - _map_offset + _reg_offset; + auto const result = cudaHostRegister(_reg_addr, _reg_size, cudaHostRegisterReadOnly); + if (result != cudaSuccess) { + _reg_addr = nullptr; CUDF_LOG_WARN("cudaHostRegister failed with {} ({})", static_cast(result), cudaGetErrorString(result)); @@ -205,10 +255,12 @@ class memory_mapped_source : public file_source { */ void unregister_mmap_buffer() { - if (not _is_map_registered) { return; } + if (_reg_addr == nullptr) { return; } - auto const result = cudaHostUnregister(_map_addr); - if (result != cudaSuccess) { + auto const result = cudaHostUnregister(_reg_addr); + if (result == cudaSuccess) { + _reg_addr = nullptr; + } else { CUDF_LOG_WARN("cudaHostUnregister failed with {} ({})", static_cast(result), cudaGetErrorString(result)); @@ -226,52 +278,30 @@ class memory_mapped_source : public file_source { // Size for `mmap()` needs to include the page padding _map_size = size + (offset - _map_offset); + if (_map_size == 0) { return; } // Check if accessing a region within already mapped area _map_addr = mmap(nullptr, _map_size, PROT_READ, MAP_PRIVATE, fd, _map_offset); CUDF_EXPECTS(_map_addr != MAP_FAILED, "Cannot create memory mapping"); } - private: - size_t _map_size = 0; - size_t _map_offset = 0; - void* _map_addr = nullptr; - bool _is_map_registered = false; -}; - -/** - * @brief Implementation class for reading from a file using `read` calls - * - * Potentially faster than `memory_mapped_source` when only a small portion of the file is read - * through the host. - */ -class direct_read_source : public file_source { - public: - explicit direct_read_source(char const* filepath) : file_source(filepath) {} - - std::unique_ptr host_read(size_t offset, size_t size) override + void unmap() { - lseek(_file.desc(), offset, SEEK_SET); - - // Clamp length to available data - ssize_t const read_size = std::min(size, _file.size() - offset); - - std::vector v(read_size); - CUDF_EXPECTS(read(_file.desc(), v.data(), read_size) == read_size, "read failed"); - return buffer::create(std::move(v)); + if (_map_addr != nullptr) { + auto const result = munmap(_map_addr, _map_size); + if (result != 0) { CUDF_LOG_WARN("munmap failed with {}", result); } + _map_addr = nullptr; + } } - size_t host_read(size_t offset, size_t size, uint8_t* dst) override - { - lseek(_file.desc(), offset, SEEK_SET); - - // Clamp length to available data - auto const read_size = std::min(size, _file.size() - offset); + private: + size_t _map_offset = 0; + size_t _map_size = 0; + void* _map_addr = nullptr; - CUDF_EXPECTS(read(_file.desc(), dst, read_size) == static_cast(read_size), - "read failed"); - return read_size; - } + size_t _reg_offset = 0; + size_t _reg_size = 0; + void* _reg_addr = nullptr; }; /** @@ -431,16 +461,21 @@ class user_datasource_wrapper : public datasource { std::unique_ptr datasource::create(std::string const& filepath, size_t offset, - size_t size) + size_t max_size_estimate, + size_t min_size_estimate) { + CUDF_EXPECTS(max_size_estimate == 0 or min_size_estimate <= max_size_estimate, + "Invalid min/max size estimates for datasource creation"); + #ifdef CUFILE_FOUND if (cufile_integration::is_always_enabled()) { // avoid mmap as GDS is expected to be used for most reads - return std::make_unique(filepath.c_str()); + return std::make_unique(filepath.c_str()); } #endif // Use our own memory mapping implementation for direct file reads - return std::make_unique(filepath.c_str(), offset, size); + return std::make_unique( + filepath.c_str(), offset, max_size_estimate, min_size_estimate); } std::unique_ptr datasource::create(host_buffer const& buffer) diff --git a/cpp/src/strings/search/findall.cu b/cpp/src/strings/search/findall.cu index d8c1b50a94b..21708e48a25 100644 --- a/cpp/src/strings/search/findall.cu +++ b/cpp/src/strings/search/findall.cu @@ -126,6 +126,43 @@ std::unique_ptr findall(strings_column_view const& input, mr); } +namespace { +struct find_re_fn { + column_device_view d_strings; + + __device__ size_type operator()(size_type const idx, + reprog_device const prog, + int32_t const thread_idx) const + { + if (d_strings.is_null(idx)) { return 0; } + auto const d_str = d_strings.element(idx); + + auto const result = prog.find(thread_idx, d_str, d_str.begin()); + return result.has_value() ? result.value().first : -1; + } +}; +} // namespace + +std::unique_ptr find_re(strings_column_view const& input, + regex_program const& prog, + rmm::cuda_stream_view stream, + rmm::device_async_resource_ref mr) +{ + auto results = make_numeric_column(data_type{type_to_id()}, + input.size(), + cudf::detail::copy_bitmask(input.parent(), stream, mr), + input.null_count(), + stream, + mr); + if (input.is_empty()) { return results; } + + auto d_results = results->mutable_view().data(); + auto d_prog = regex_device_builder::create_prog_device(prog, stream); + auto const d_strings = column_device_view::create(input.parent(), stream); + launch_transform_kernel(find_re_fn{*d_strings}, *d_prog, d_results, input.size(), stream); + + return results; +} } // namespace detail // external API @@ -139,5 +176,14 @@ std::unique_ptr findall(strings_column_view const& input, return detail::findall(input, prog, stream, mr); } +std::unique_ptr find_re(strings_column_view const& input, + regex_program const& prog, + rmm::cuda_stream_view stream, + rmm::device_async_resource_ref mr) +{ + CUDF_FUNC_RANGE(); + return detail::find_re(input, prog, stream, mr); +} + } // namespace strings } // namespace cudf diff --git a/cpp/src/text/generate_ngrams.cu b/cpp/src/text/generate_ngrams.cu index a87ecb81b9d..997b0278fe2 100644 --- a/cpp/src/text/generate_ngrams.cu +++ b/cpp/src/text/generate_ngrams.cu @@ -22,6 +22,7 @@ #include #include #include +#include #include #include #include @@ -48,6 +49,9 @@ namespace nvtext { namespace detail { namespace { +// long strings threshold found with benchmarking +constexpr cudf::size_type AVG_CHAR_BYTES_THRESHOLD = 64; + /** * @brief Generate ngrams from strings column. * @@ -173,33 +177,39 @@ constexpr cudf::thread_index_type bytes_per_thread = 4; /** * @brief Counts the number of ngrams in each row of the given strings column * - * Each warp processes a single string. + * Each warp/thread processes a single string. * Formula is `count = max(0,str.length() - ngrams + 1)` * If a string has less than ngrams characters, its count is 0. */ CUDF_KERNEL void count_char_ngrams_kernel(cudf::column_device_view const d_strings, cudf::size_type ngrams, + cudf::size_type tile_size, cudf::size_type* d_counts) { auto const idx = cudf::detail::grid_1d::global_thread_id(); - auto const str_idx = idx / cudf::detail::warp_size; + auto const str_idx = idx / tile_size; if (str_idx >= d_strings.size()) { return; } if (d_strings.is_null(str_idx)) { d_counts[str_idx] = 0; return; } + auto const d_str = d_strings.element(str_idx); + if (tile_size == 1) { + d_counts[str_idx] = cuda::std::max(0, (d_str.length() + 1 - ngrams)); + return; + } + namespace cg = cooperative_groups; auto const warp = cg::tiled_partition(cg::this_thread_block()); - auto const d_str = d_strings.element(str_idx); - auto const end = d_str.data() + d_str.size_bytes(); + auto const end = d_str.data() + d_str.size_bytes(); auto const lane_idx = warp.thread_rank(); cudf::size_type count = 0; for (auto itr = d_str.data() + (lane_idx * bytes_per_thread); itr < end; - itr += cudf::detail::warp_size * bytes_per_thread) { + itr += tile_size * bytes_per_thread) { for (auto s = itr; (s < (itr + bytes_per_thread)) && (s < end); ++s) { count += static_cast(cudf::strings::detail::is_begin_utf8_char(*s)); } @@ -256,19 +266,27 @@ std::unique_ptr generate_character_ngrams(cudf::strings_column_vie "Parameter ngrams should be an integer value of 2 or greater", std::invalid_argument); - auto const strings_count = input.size(); - if (strings_count == 0) { // if no strings, return an empty column - return cudf::make_empty_column(cudf::data_type{cudf::type_id::STRING}); + if (input.is_empty()) { // if no strings, return an empty column + return cudf::lists::detail::make_empty_lists_column( + cudf::data_type{cudf::type_id::STRING}, stream, mr); + } + if (input.size() == input.null_count()) { + return cudf::lists::detail::make_all_nulls_lists_column( + input.size(), cudf::data_type{cudf::type_id::STRING}, stream, mr); } auto const d_strings = cudf::column_device_view::create(input.parent(), stream); auto [offsets, total_ngrams] = [&] { - auto counts = rmm::device_uvector(input.size(), stream); - auto const num_blocks = cudf::util::div_rounding_up_safe( - static_cast(input.size()) * cudf::detail::warp_size, block_size); - count_char_ngrams_kernel<<>>( - *d_strings, ngrams, counts.data()); + auto counts = rmm::device_uvector(input.size(), stream); + auto const avg_char_bytes = (input.chars_size(stream) / (input.size() - input.null_count())); + auto const tile_size = (avg_char_bytes < AVG_CHAR_BYTES_THRESHOLD) + ? 1 // thread per row + : cudf::detail::warp_size; // warp per row + auto const grid = cudf::detail::grid_1d( + static_cast(input.size()) * tile_size, block_size); + count_char_ngrams_kernel<<>>( + *d_strings, ngrams, tile_size, counts.data()); return cudf::detail::make_offsets_child_column(counts.begin(), counts.end(), stream, mr); }(); auto d_offsets = offsets->view().data(); @@ -277,8 +295,8 @@ std::unique_ptr generate_character_ngrams(cudf::strings_column_vie "Insufficient number of characters in each string to generate ngrams"); character_ngram_generator_fn generator{*d_strings, ngrams, d_offsets}; - auto [offsets_column, chars] = cudf::strings::detail::make_strings_children( - generator, strings_count, total_ngrams, stream, mr); + auto [offsets_column, chars] = + cudf::strings::detail::make_strings_children(generator, input.size(), total_ngrams, stream, mr); auto output = cudf::make_strings_column( total_ngrams, std::move(offsets_column), chars.release(), 0, rmm::device_buffer{}); @@ -368,7 +386,7 @@ std::unique_ptr hash_character_ngrams(cudf::strings_column_view co auto [offsets, total_ngrams] = [&] { auto counts = rmm::device_uvector(input.size(), stream); count_char_ngrams_kernel<<>>( - *d_strings, ngrams, counts.data()); + *d_strings, ngrams, cudf::detail::warp_size, counts.data()); return cudf::detail::make_offsets_child_column(counts.begin(), counts.end(), stream, mr); }(); auto d_offsets = offsets->view().data(); diff --git a/cpp/tests/CMakeLists.txt b/cpp/tests/CMakeLists.txt index b67d922d377..4596ec65ce7 100644 --- a/cpp/tests/CMakeLists.txt +++ b/cpp/tests/CMakeLists.txt @@ -385,6 +385,8 @@ ConfigureTest( # * utilities tests ------------------------------------------------------------------------------- ConfigureTest( UTILITIES_TEST + utilities_tests/batched_memcpy_tests.cu + utilities_tests/batched_memset_tests.cu utilities_tests/column_debug_tests.cpp utilities_tests/column_utilities_tests.cpp utilities_tests/column_wrapper_tests.cpp @@ -395,7 +397,6 @@ ConfigureTest( utilities_tests/pinned_memory_tests.cpp utilities_tests/type_check_tests.cpp utilities_tests/type_list_tests.cpp - utilities_tests/batched_memset_tests.cu ) # ################################################################################################## diff --git a/cpp/tests/io/csv_test.cpp b/cpp/tests/io/csv_test.cpp index dc14824d834..0028dd946e3 100644 --- a/cpp/tests/io/csv_test.cpp +++ b/cpp/tests/io/csv_test.cpp @@ -2516,4 +2516,39 @@ TEST_F(CsvReaderTest, UTF8BOM) CUDF_TEST_EXPECT_TABLES_EQUIVALENT(result_view, expected); } +void expect_buffers_equal(cudf::io::datasource::buffer* lhs, cudf::io::datasource::buffer* rhs) +{ + ASSERT_EQ(lhs->size(), rhs->size()); + EXPECT_EQ(0, std::memcmp(lhs->data(), rhs->data(), lhs->size())); +} + +TEST_F(CsvReaderTest, OutOfMapBoundsReads) +{ + // write a lot of data into a file + auto filepath = temp_env->get_temp_dir() + "OutOfMapBoundsReads.csv"; + auto const num_rows = 1 << 20; + auto const row = std::string{"0,1,2,3,4,5,6,7,8,9\n"}; + auto const file_size = num_rows * row.size(); + { + std::ofstream outfile(filepath, std::ofstream::out); + for (size_t i = 0; i < num_rows; ++i) { + outfile << row; + } + } + + // Only memory map the middle of the file + auto source = cudf::io::datasource::create(filepath, file_size / 2, file_size / 4); + auto full_source = cudf::io::datasource::create(filepath); + auto const all_data = source->host_read(0, file_size); + auto ref_data = full_source->host_read(0, file_size); + expect_buffers_equal(ref_data.get(), all_data.get()); + + auto const start_data = source->host_read(file_size / 2, file_size / 2); + expect_buffers_equal(full_source->host_read(file_size / 2, file_size / 2).get(), + start_data.get()); + + auto const end_data = source->host_read(0, file_size / 2 + 512); + expect_buffers_equal(full_source->host_read(0, file_size / 2 + 512).get(), end_data.get()); +} + CUDF_TEST_PROGRAM_MAIN() diff --git a/cpp/tests/streams/strings/find_test.cpp b/cpp/tests/streams/strings/find_test.cpp index 52839c6fc9f..e5a1ee0988c 100644 --- a/cpp/tests/streams/strings/find_test.cpp +++ b/cpp/tests/streams/strings/find_test.cpp @@ -46,4 +46,5 @@ TEST_F(StringsFindTest, Find) auto const pattern = std::string("[a-z]"); auto const prog = cudf::strings::regex_program::create(pattern); cudf::strings::findall(view, *prog, cudf::test::get_default_stream()); + cudf::strings::find_re(view, *prog, cudf::test::get_default_stream()); } diff --git a/cpp/tests/strings/findall_tests.cpp b/cpp/tests/strings/findall_tests.cpp index 73da4d081e2..4821a7fa999 100644 --- a/cpp/tests/strings/findall_tests.cpp +++ b/cpp/tests/strings/findall_tests.cpp @@ -19,6 +19,7 @@ #include #include #include +#include #include #include @@ -149,6 +150,22 @@ TEST_F(StringsFindallTests, LargeRegex) CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), expected); } +TEST_F(StringsFindallTests, FindTest) +{ + auto const valids = cudf::test::iterators::null_at(5); + cudf::test::strings_column_wrapper input( + {"3A", "May4", "Jan2021", "March", "A9BC", "", "", "abcdef ghijklm 12345"}, valids); + auto sv = cudf::strings_column_view(input); + + auto pattern = std::string("\\d+"); + + auto prog = cudf::strings::regex_program::create(pattern); + auto results = cudf::strings::find_re(sv, *prog); + auto expected = + cudf::test::fixed_width_column_wrapper({0, 3, 3, -1, 1, 0, -1, 15}, valids); + CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), expected); +} + TEST_F(StringsFindallTests, NoMatches) { cudf::test::strings_column_wrapper input({"abc\nfff\nabc", "fff\nabc\nlll", "abc", "", "abc\n"}); @@ -169,10 +186,16 @@ TEST_F(StringsFindallTests, EmptyTest) auto prog = cudf::strings::regex_program::create(pattern); cudf::test::strings_column_wrapper input; - auto sv = cudf::strings_column_view(input); - auto results = cudf::strings::findall(sv, *prog); - - using LCW = cudf::test::lists_column_wrapper; - LCW expected; - CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), expected); + auto sv = cudf::strings_column_view(input); + { + auto results = cudf::strings::findall(sv, *prog); + using LCW = cudf::test::lists_column_wrapper; + LCW expected; + CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), expected); + } + { + auto results = cudf::strings::find_re(sv, *prog); + auto expected = cudf::test::fixed_width_column_wrapper{}; + CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(results->view(), expected); + } } diff --git a/cpp/tests/utilities_tests/batched_memcpy_tests.cu b/cpp/tests/utilities_tests/batched_memcpy_tests.cu new file mode 100644 index 00000000000..98657f8e224 --- /dev/null +++ b/cpp/tests/utilities_tests/batched_memcpy_tests.cu @@ -0,0 +1,139 @@ +/* + * Copyright (c) 2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include +#include + +#include +#include +#include +#include +#include + +#include +#include + +#include +#include +#include + +#include +#include +#include +#include + +template +struct BatchedMemcpyTest : public cudf::test::BaseFixture {}; + +TEST(BatchedMemcpyTest, BasicTest) +{ + using T1 = int64_t; + + // Device init + auto stream = cudf::get_default_stream(); + auto mr = cudf::get_current_device_resource_ref(); + + // Buffer lengths (in number of elements) + std::vector const h_lens{ + 50000, 4, 1000, 0, 250000, 1, 100, 8000, 0, 1, 100, 1000, 10000, 100000, 0, 1, 100000}; + + // Total number of buffers + auto const num_buffs = h_lens.size(); + + // Exclusive sum of buffer lengths for pointers + std::vector h_lens_excl_sum(num_buffs); + std::exclusive_scan(h_lens.begin(), h_lens.end(), h_lens_excl_sum.begin(), 0); + + // Corresponding buffer sizes (in bytes) + std::vector h_sizes_bytes; + h_sizes_bytes.reserve(num_buffs); + std::transform( + h_lens.cbegin(), h_lens.cend(), std::back_inserter(h_sizes_bytes), [&](auto& size) { + return size * sizeof(T1); + }); + + // Initialize random engine + auto constexpr seed = 0xcead; + std::mt19937 engine{seed}; + using uniform_distribution = + typename std::conditional_t, + std::bernoulli_distribution, + std::conditional_t, + std::uniform_real_distribution, + std::uniform_int_distribution>>; + uniform_distribution dist{}; + + // Generate a src vector of random data vectors + std::vector> h_sources; + h_sources.reserve(num_buffs); + std::transform(h_lens.begin(), h_lens.end(), std::back_inserter(h_sources), [&](auto size) { + std::vector data(size); + std::generate_n(data.begin(), size, [&]() { return T1{dist(engine)}; }); + return data; + }); + // Copy the vectors to device + std::vector> h_device_vecs; + h_device_vecs.reserve(h_sources.size()); + std::transform( + h_sources.begin(), h_sources.end(), std::back_inserter(h_device_vecs), [stream, mr](auto& vec) { + return cudf::detail::make_device_uvector_async(vec, stream, mr); + }); + // Pointers to the source vectors + std::vector h_src_ptrs; + h_src_ptrs.reserve(h_sources.size()); + std::transform( + h_device_vecs.begin(), h_device_vecs.end(), std::back_inserter(h_src_ptrs), [](auto& vec) { + return static_cast(vec.data()); + }); + // Copy the source data pointers to device + auto d_src_ptrs = cudf::detail::make_device_uvector_async(h_src_ptrs, stream, mr); + + // Total number of elements in all buffers + auto const total_buff_len = std::accumulate(h_lens.cbegin(), h_lens.cend(), 0); + + // Create one giant buffer for destination + auto d_dst_data = cudf::detail::make_zeroed_device_uvector_async(total_buff_len, stream, mr); + // Pointers to destination buffers within the giant destination buffer + std::vector h_dst_ptrs(num_buffs); + std::for_each(thrust::make_counting_iterator(static_cast(0)), + thrust::make_counting_iterator(num_buffs), + [&](auto i) { return h_dst_ptrs[i] = d_dst_data.data() + h_lens_excl_sum[i]; }); + // Copy destination data pointers to device + auto d_dst_ptrs = cudf::detail::make_device_uvector_async(h_dst_ptrs, stream, mr); + + // Copy buffer size iterators (in bytes) to device + auto d_sizes_bytes = cudf::detail::make_device_uvector_async(h_sizes_bytes, stream, mr); + + // Run the batched memcpy + cudf::detail::batched_memcpy_async( + d_src_ptrs.begin(), d_dst_ptrs.begin(), d_sizes_bytes.begin(), num_buffs, stream); + + // Expected giant destination buffer after the memcpy + std::vector expected_buffer; + expected_buffer.reserve(total_buff_len); + std::for_each(h_sources.cbegin(), h_sources.cend(), [&expected_buffer](auto& source) { + expected_buffer.insert(expected_buffer.end(), source.begin(), source.end()); + }); + + // Copy over the result destination buffer to host and synchronize the stream + auto result_dst_buffer = + cudf::detail::make_std_vector_sync(cudf::device_span(d_dst_data), stream); + + // Check if both vectors are equal + EXPECT_TRUE( + std::equal(expected_buffer.begin(), expected_buffer.end(), result_dst_buffer.begin())); +} diff --git a/cpp/tests/utilities_tests/batched_memset_tests.cu b/cpp/tests/utilities_tests/batched_memset_tests.cu index bed0f40d70e..0eeb7b95318 100644 --- a/cpp/tests/utilities_tests/batched_memset_tests.cu +++ b/cpp/tests/utilities_tests/batched_memset_tests.cu @@ -18,8 +18,8 @@ #include #include +#include #include -#include #include #include #include @@ -78,7 +78,7 @@ TEST(MultiBufferTestIntegral, BasicTest1) }); // Function Call - cudf::io::detail::batched_memset(memset_bufs, uint64_t{0}, stream); + cudf::detail::batched_memset(memset_bufs, uint64_t{0}, stream); // Set all buffer regions to 0 for expected comparison std::for_each( diff --git a/docs/cudf/source/user_guide/api_docs/pylibcudf/index.rst b/docs/cudf/source/user_guide/api_docs/pylibcudf/index.rst index e21536e2e97..052479d6720 100644 --- a/docs/cudf/source/user_guide/api_docs/pylibcudf/index.rst +++ b/docs/cudf/source/user_guide/api_docs/pylibcudf/index.rst @@ -49,3 +49,4 @@ This page provides API documentation for pylibcudf. io/index.rst strings/index.rst + nvtext/index.rst diff --git a/docs/cudf/source/user_guide/api_docs/pylibcudf/nvtext/edit_distance.rst b/docs/cudf/source/user_guide/api_docs/pylibcudf/nvtext/edit_distance.rst new file mode 100644 index 00000000000..abb45e426a8 --- /dev/null +++ b/docs/cudf/source/user_guide/api_docs/pylibcudf/nvtext/edit_distance.rst @@ -0,0 +1,6 @@ +============= +edit_distance +============= + +.. automodule:: pylibcudf.nvtext.edit_distance + :members: diff --git a/docs/cudf/source/user_guide/api_docs/pylibcudf/nvtext/index.rst b/docs/cudf/source/user_guide/api_docs/pylibcudf/nvtext/index.rst new file mode 100644 index 00000000000..b5cd5ee42c3 --- /dev/null +++ b/docs/cudf/source/user_guide/api_docs/pylibcudf/nvtext/index.rst @@ -0,0 +1,7 @@ +nvtext +====== + +.. toctree:: + :maxdepth: 1 + + edit_distance diff --git a/python/cudf/cudf/_lib/nvtext/edit_distance.pyx b/python/cudf/cudf/_lib/nvtext/edit_distance.pyx index e3c2273345a..3dd99c42d76 100644 --- a/python/cudf/cudf/_lib/nvtext/edit_distance.pyx +++ b/python/cudf/cudf/_lib/nvtext/edit_distance.pyx @@ -2,37 +2,23 @@ from cudf.core.buffer import acquire_spill_lock -from libcpp.memory cimport unique_ptr -from libcpp.utility cimport move - -from pylibcudf.libcudf.column.column cimport column -from pylibcudf.libcudf.column.column_view cimport column_view -from pylibcudf.libcudf.nvtext.edit_distance cimport ( - edit_distance as cpp_edit_distance, - edit_distance_matrix as cpp_edit_distance_matrix, -) +from pylibcudf cimport nvtext from cudf._lib.column cimport Column @acquire_spill_lock() def edit_distance(Column strings, Column targets): - cdef column_view c_strings = strings.view() - cdef column_view c_targets = targets.view() - cdef unique_ptr[column] c_result - - with nogil: - c_result = move(cpp_edit_distance(c_strings, c_targets)) - - return Column.from_unique_ptr(move(c_result)) + result = nvtext.edit_distance.edit_distance( + strings.to_pylibcudf(mode="read"), + targets.to_pylibcudf(mode="read") + ) + return Column.from_pylibcudf(result) @acquire_spill_lock() def edit_distance_matrix(Column strings): - cdef column_view c_strings = strings.view() - cdef unique_ptr[column] c_result - - with nogil: - c_result = move(cpp_edit_distance_matrix(c_strings)) - - return Column.from_unique_ptr(move(c_result)) + result = nvtext.edit_distance.edit_distance_matrix( + strings.to_pylibcudf(mode="read") + ) + return Column.from_pylibcudf(result) diff --git a/python/cudf/cudf/_lib/string_casting.pyx b/python/cudf/cudf/_lib/string_casting.pyx index 60a6795a402..55ff38f472d 100644 --- a/python/cudf/cudf/_lib/string_casting.pyx +++ b/python/cudf/cudf/_lib/string_casting.pyx @@ -3,9 +3,6 @@ from cudf._lib.column cimport Column from cudf._lib.scalar import as_device_scalar - -from cudf._lib.scalar cimport DeviceScalar - from cudf._lib.types import SUPPORTED_NUMPY_TO_LIBCUDF_TYPES from libcpp.memory cimport unique_ptr @@ -14,14 +11,6 @@ from libcpp.utility cimport move from pylibcudf.libcudf.column.column cimport column from pylibcudf.libcudf.column.column_view cimport column_view -from pylibcudf.libcudf.scalar.scalar cimport string_scalar -from pylibcudf.libcudf.strings.convert.convert_booleans cimport ( - from_booleans as cpp_from_booleans, - to_booleans as cpp_to_booleans, -) -from pylibcudf.libcudf.strings.convert.convert_datetime cimport ( - is_timestamp as cpp_is_timestamp, -) from pylibcudf.libcudf.strings.convert.convert_floats cimport ( from_floats as cpp_from_floats, to_floats as cpp_to_floats, @@ -427,77 +416,21 @@ def stoul(Column input_col): return string_to_integer(input_col, cudf.dtype("uint64")) -def _to_booleans(Column input_col, object string_true="True"): - """ - Converting/Casting input column of type string to boolean column - - Parameters - ---------- - input_col : input column of type string - string_true : string that represents True - - Returns - ------- - A Column with string values cast to boolean - """ - - cdef DeviceScalar str_true = as_device_scalar(string_true) - cdef column_view input_column_view = input_col.view() - cdef const string_scalar* string_scalar_true = ( - str_true.get_raw_ptr()) - cdef unique_ptr[column] c_result - with nogil: - c_result = move( - cpp_to_booleans( - input_column_view, - string_scalar_true[0])) - - return Column.from_unique_ptr(move(c_result)) - - def to_booleans(Column input_col): - - return _to_booleans(input_col) - - -def _from_booleans( - Column input_col, - object string_true="True", - object string_false="False"): - """ - Converting/Casting input column of type boolean to string column - - Parameters - ---------- - input_col : input column of type boolean - string_true : string that represents True - string_false : string that represents False - - Returns - ------- - A Column with boolean values cast to string - """ - - cdef DeviceScalar str_true = as_device_scalar(string_true) - cdef DeviceScalar str_false = as_device_scalar(string_false) - cdef column_view input_column_view = input_col.view() - cdef const string_scalar* string_scalar_true = ( - str_true.get_raw_ptr()) - cdef const string_scalar* string_scalar_false = ( - str_false.get_raw_ptr()) - cdef unique_ptr[column] c_result - with nogil: - c_result = move( - cpp_from_booleans( - input_column_view, - string_scalar_true[0], - string_scalar_false[0])) - - return Column.from_unique_ptr(move(c_result)) + plc_column = plc.strings.convert.convert_booleans.to_booleans( + input_col.to_pylibcudf(mode="read"), + as_device_scalar("True").c_value, + ) + return Column.from_pylibcudf(plc_column) def from_booleans(Column input_col): - return _from_booleans(input_col) + plc_column = plc.strings.convert.convert_booleans.from_booleans( + input_col.to_pylibcudf(mode="read"), + as_device_scalar("True").c_value, + as_device_scalar("False").c_value, + ) + return Column.from_pylibcudf(plc_column) def int2timestamp( @@ -520,11 +453,10 @@ def int2timestamp( A Column with date-time represented in string format """ - cdef string c_timestamp_format = format.encode("UTF-8") return Column.from_pylibcudf( plc.strings.convert.convert_datetime.from_timestamps( input_col.to_pylibcudf(mode="read"), - c_timestamp_format, + format, names.to_pylibcudf(mode="read") ) ) @@ -545,12 +477,11 @@ def timestamp2int(Column input_col, dtype, format): """ dtype = dtype_to_pylibcudf_type(dtype) - cdef string c_timestamp_format = format.encode('UTF-8') return Column.from_pylibcudf( plc.strings.convert.convert_datetime.to_timestamps( input_col.to_pylibcudf(mode="read"), dtype, - c_timestamp_format + format ) ) @@ -572,16 +503,11 @@ def istimestamp(Column input_col, str format): """ if input_col.size == 0: return cudf.core.column.column_empty(0, dtype=cudf.dtype("bool")) - cdef column_view input_column_view = input_col.view() - cdef string c_timestamp_format = str(format).encode('UTF-8') - cdef unique_ptr[column] c_result - with nogil: - c_result = move( - cpp_is_timestamp( - input_column_view, - c_timestamp_format)) - - return Column.from_unique_ptr(move(c_result)) + plc_column = plc.strings.convert.convert_datetime.is_timestamp( + input_col.to_pylibcudf(mode="read"), + format + ) + return Column.from_pylibcudf(plc_column) def timedelta2int(Column input_col, dtype, format): diff --git a/python/cudf/cudf/_lib/strings/__init__.py b/python/cudf/cudf/_lib/strings/__init__.py index 049dbab4851..e712937f816 100644 --- a/python/cudf/cudf/_lib/strings/__init__.py +++ b/python/cudf/cudf/_lib/strings/__init__.py @@ -71,7 +71,7 @@ startswith_multiple, ) from cudf._lib.strings.find_multiple import find_multiple -from cudf._lib.strings.findall import findall +from cudf._lib.strings.findall import find_re, findall from cudf._lib.strings.json import GetJsonObjectOptions, get_json_object from cudf._lib.strings.padding import center, ljust, pad, rjust, zfill from cudf._lib.strings.repeat import repeat_scalar, repeat_sequence diff --git a/python/cudf/cudf/_lib/strings/findall.pyx b/python/cudf/cudf/_lib/strings/findall.pyx index 0e758d5b322..3e7a504d535 100644 --- a/python/cudf/cudf/_lib/strings/findall.pyx +++ b/python/cudf/cudf/_lib/strings/findall.pyx @@ -23,3 +23,19 @@ def findall(Column source_strings, object pattern, uint32_t flags): prog, ) return Column.from_pylibcudf(plc_result) + + +@acquire_spill_lock() +def find_re(Column source_strings, object pattern, uint32_t flags): + """ + Returns character positions where the pattern first matches + the elements in source_strings. + """ + prog = plc.strings.regex_program.RegexProgram.create( + str(pattern), flags + ) + plc_result = plc.strings.findall.find_re( + source_strings.to_pylibcudf(mode="read"), + prog, + ) + return Column.from_pylibcudf(plc_result) diff --git a/python/cudf/cudf/core/column/datetime.py b/python/cudf/cudf/core/column/datetime.py index d0ea4612a1b..2c9b0baa9b6 100644 --- a/python/cudf/cudf/core/column/datetime.py +++ b/python/cudf/cudf/core/column/datetime.py @@ -480,6 +480,11 @@ def normalize_binop_value(self, other: DatetimeLikeScalar) -> ScalarLike: def as_datetime_column(self, dtype: Dtype) -> DatetimeColumn: if dtype == self.dtype: return self + elif isinstance(dtype, pd.DatetimeTZDtype): + raise TypeError( + "Cannot use .astype to convert from timezone-naive dtype to timezone-aware dtype. " + "Use tz_localize instead." + ) return libcudf.unary.cast(self, dtype=dtype) def as_timedelta_column(self, dtype: Dtype) -> None: # type: ignore[override] @@ -940,6 +945,16 @@ def strftime(self, format: str) -> cudf.core.column.StringColumn: def as_string_column(self) -> cudf.core.column.StringColumn: return self._local_time.as_string_column() + def as_datetime_column(self, dtype: Dtype) -> DatetimeColumn: + if isinstance(dtype, pd.DatetimeTZDtype) and dtype != self.dtype: + if dtype.unit != self.time_unit: + # TODO: Doesn't check that new unit is valid. + casted = self._with_type_metadata(dtype) + else: + casted = self + return casted.tz_convert(str(dtype.tz)) + return super().as_datetime_column(dtype) + def get_dt_field(self, field: str) -> ColumnBase: return libcudf.datetime.extract_datetime_component( self._local_time, field diff --git a/python/cudf/cudf/core/column/string.py b/python/cudf/cudf/core/column/string.py index 88df57b1b3b..b50e23bd52e 100644 --- a/python/cudf/cudf/core/column/string.py +++ b/python/cudf/cudf/core/column/string.py @@ -3626,6 +3626,46 @@ def findall(self, pat: str, flags: int = 0) -> SeriesOrIndex: data = libstrings.findall(self._column, pat, flags) return self._return_or_inplace(data) + def find_re(self, pat: str, flags: int = 0) -> SeriesOrIndex: + """ + Find first occurrence of pattern or regular expression in the + Series/Index. + + Parameters + ---------- + pat : str + Pattern or regular expression. + flags : int, default 0 (no flags) + Flags to pass through to the regex engine (e.g. re.MULTILINE) + + Returns + ------- + Series + A Series of position values where the pattern first matches + each string. + + Examples + -------- + >>> import cudf + >>> s = cudf.Series(['Lion', 'Monkey', 'Rabbit', 'Cat']) + >>> s.str.find_re('[ti]') + 0 1 + 1 -1 + 2 4 + 3 2 + dtype: int32 + """ + if isinstance(pat, re.Pattern): + flags = pat.flags & ~re.U + pat = pat.pattern + if not _is_supported_regex_flags(flags): + raise NotImplementedError( + "Unsupported value for `flags` parameter" + ) + + data = libstrings.find_re(self._column, pat, flags) + return self._return_or_inplace(data) + def find_multiple(self, patterns: SeriesOrIndex) -> cudf.Series: """ Find all first occurrences of patterns in the Series/Index. diff --git a/python/cudf/cudf/core/reshape.py b/python/cudf/cudf/core/reshape.py index 6e5abb2b82b..3d132c92d54 100644 --- a/python/cudf/cudf/core/reshape.py +++ b/python/cudf/cudf/core/reshape.py @@ -681,7 +681,7 @@ def _tile(A, reps): nval = len(value_vars) dtype = min_unsigned_type(nval) - if not var_name: + if var_name is None: var_name = "variable" if not value_vars: diff --git a/python/cudf/cudf/tests/series/test_datetimelike.py b/python/cudf/cudf/tests/series/test_datetimelike.py index cea86a5499e..691da224f44 100644 --- a/python/cudf/cudf/tests/series/test_datetimelike.py +++ b/python/cudf/cudf/tests/series/test_datetimelike.py @@ -266,3 +266,25 @@ def test_pandas_compatible_non_zoneinfo_raises(klass): with cudf.option_context("mode.pandas_compatible", True): with pytest.raises(NotImplementedError): cudf.from_pandas(pandas_obj) + + +def test_astype_naive_to_aware_raises(): + ser = cudf.Series([datetime.datetime(2020, 1, 1)]) + with pytest.raises(TypeError): + ser.astype("datetime64[ns, UTC]") + with pytest.raises(TypeError): + ser.to_pandas().astype("datetime64[ns, UTC]") + + +@pytest.mark.parametrize("unit", ["ns", "us"]) +def test_astype_aware_to_aware(unit): + ser = cudf.Series( + [datetime.datetime(2020, 1, 1, tzinfo=datetime.timezone.utc)] + ) + result = ser.astype(f"datetime64[{unit}, US/Pacific]") + expected = ser.to_pandas().astype(f"datetime64[{unit}, US/Pacific]") + zoneinfo_type = pd.DatetimeTZDtype( + expected.dtype.unit, zoneinfo.ZoneInfo(str(expected.dtype.tz)) + ) + expected = ser.astype(zoneinfo_type) + assert_eq(result, expected) diff --git a/python/cudf/cudf/tests/test_reshape.py b/python/cudf/cudf/tests/test_reshape.py index 4235affd4d1..3adbe1d2a74 100644 --- a/python/cudf/cudf/tests/test_reshape.py +++ b/python/cudf/cudf/tests/test_reshape.py @@ -119,6 +119,15 @@ def test_melt_str_scalar_id_var(): assert_eq(result, expected) +def test_melt_falsy_var_name(): + df = cudf.DataFrame({"A": ["a", "b", "c"], "B": [1, 3, 5], "C": [2, 4, 6]}) + result = cudf.melt(df, id_vars=["A"], value_vars=["B"], var_name="") + expected = pd.melt( + df.to_pandas(), id_vars=["A"], value_vars=["B"], var_name="" + ) + assert_eq(result, expected) + + @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 1000]) @pytest.mark.parametrize( diff --git a/python/cudf/cudf/tests/test_string.py b/python/cudf/cudf/tests/test_string.py index cc88cc79769..45143211a11 100644 --- a/python/cudf/cudf/tests/test_string.py +++ b/python/cudf/cudf/tests/test_string.py @@ -1899,6 +1899,26 @@ def test_string_findall(pat, flags): assert_eq(expected, actual) +@pytest.mark.parametrize( + "pat, flags, pos", + [ + ("Monkey", 0, [-1, 0, -1, -1]), + ("on", 0, [2, 1, -1, 1]), + ("bit", 0, [-1, -1, 3, -1]), + ("on$", 0, [2, -1, -1, -1]), + ("on$", re.MULTILINE, [2, -1, -1, 1]), + ("o.*k", re.DOTALL, [-1, 1, -1, 1]), + ], +) +def test_string_find_re(pat, flags, pos): + test_data = ["Lion", "Monkey", "Rabbit", "Don\nkey"] + gs = cudf.Series(test_data) + + expected = pd.Series(pos, dtype=np.int32) + actual = gs.str.find_re(pat, flags) + assert_eq(expected, actual) + + def test_string_replace_multi(): ps = pd.Series(["hello", "goodbye"]) gs = cudf.Series(["hello", "goodbye"]) diff --git a/python/cudf_polars/cudf_polars/dsl/expr.py b/python/cudf_polars/cudf_polars/dsl/expr.py index c401e5a2f17..54476b7fedc 100644 --- a/python/cudf_polars/cudf_polars/dsl/expr.py +++ b/python/cudf_polars/cudf_polars/dsl/expr.py @@ -914,7 +914,7 @@ def do_evaluate( col = self.children[0].evaluate(df, context=context, mapping=mapping) is_timestamps = plc.strings.convert.convert_datetime.is_timestamp( - col.obj, format.encode() + col.obj, format ) if strict: @@ -937,7 +937,7 @@ def do_evaluate( ) return Column( plc.strings.convert.convert_datetime.to_timestamps( - res.columns()[0], self.dtype, format.encode() + res.columns()[0], self.dtype, format ) ) elif self.name == pl_expr.StringFunction.Replace: diff --git a/python/libcudf/CMakeLists.txt b/python/libcudf/CMakeLists.txt index 2b208e2e021..5f9a04d3cee 100644 --- a/python/libcudf/CMakeLists.txt +++ b/python/libcudf/CMakeLists.txt @@ -41,6 +41,9 @@ set(BUILD_TESTS OFF) set(BUILD_BENCHMARKS OFF) set(CUDF_BUILD_TESTUTIL OFF) set(CUDF_BUILD_STREAMS_TEST_UTIL OFF) +if(USE_NVCOMP_RUNTIME_WHEEL) + set(CUDF_EXPORT_NVCOMP OFF) +endif() set(CUDA_STATIC_RUNTIME ON) set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/lib) diff --git a/python/pylibcudf/pylibcudf/CMakeLists.txt b/python/pylibcudf/pylibcudf/CMakeLists.txt index a7cb66d7b16..1d72eacac12 100644 --- a/python/pylibcudf/pylibcudf/CMakeLists.txt +++ b/python/pylibcudf/pylibcudf/CMakeLists.txt @@ -66,3 +66,4 @@ target_link_libraries(pylibcudf_interop PUBLIC nanoarrow) add_subdirectory(libcudf) add_subdirectory(strings) add_subdirectory(io) +add_subdirectory(nvtext) diff --git a/python/pylibcudf/pylibcudf/__init__.pxd b/python/pylibcudf/pylibcudf/__init__.pxd index a384edd456d..b98b37fe0fd 100644 --- a/python/pylibcudf/pylibcudf/__init__.pxd +++ b/python/pylibcudf/pylibcudf/__init__.pxd @@ -17,6 +17,7 @@ from . cimport ( lists, merge, null_mask, + nvtext, partitioning, quantiles, reduce, @@ -78,4 +79,5 @@ __all__ = [ "transpose", "types", "unary", + "nvtext", ] diff --git a/python/pylibcudf/pylibcudf/__init__.py b/python/pylibcudf/pylibcudf/__init__.py index 2a5365e8fad..304f27be340 100644 --- a/python/pylibcudf/pylibcudf/__init__.py +++ b/python/pylibcudf/pylibcudf/__init__.py @@ -28,6 +28,7 @@ lists, merge, null_mask, + nvtext, partitioning, quantiles, reduce, @@ -92,4 +93,5 @@ "transpose", "types", "unary", + "nvtext", ] diff --git a/python/pylibcudf/pylibcudf/libcudf/strings/convert/convert_booleans.pxd b/python/pylibcudf/pylibcudf/libcudf/strings/convert/convert_booleans.pxd index 83a9573baad..e6688cfff81 100644 --- a/python/pylibcudf/pylibcudf/libcudf/strings/convert/convert_booleans.pxd +++ b/python/pylibcudf/pylibcudf/libcudf/strings/convert/convert_booleans.pxd @@ -8,10 +8,10 @@ from pylibcudf.libcudf.scalar.scalar cimport string_scalar cdef extern from "cudf/strings/convert/convert_booleans.hpp" namespace \ "cudf::strings" nogil: cdef unique_ptr[column] to_booleans( - column_view input_col, + column_view input, string_scalar true_string) except + cdef unique_ptr[column] from_booleans( - column_view input_col, + column_view booleans, string_scalar true_string, string_scalar false_string) except + diff --git a/python/pylibcudf/pylibcudf/libcudf/strings/convert/convert_datetime.pxd b/python/pylibcudf/pylibcudf/libcudf/strings/convert/convert_datetime.pxd index fa8975c4df9..fceddd58df0 100644 --- a/python/pylibcudf/pylibcudf/libcudf/strings/convert/convert_datetime.pxd +++ b/python/pylibcudf/pylibcudf/libcudf/strings/convert/convert_datetime.pxd @@ -10,14 +10,14 @@ from pylibcudf.libcudf.types cimport data_type cdef extern from "cudf/strings/convert/convert_datetime.hpp" namespace \ "cudf::strings" nogil: cdef unique_ptr[column] to_timestamps( - column_view input_col, + column_view input, data_type timestamp_type, string format) except + cdef unique_ptr[column] from_timestamps( - column_view input_col, + column_view timestamps, string format, - column_view input_strings_names) except + + column_view names) except + cdef unique_ptr[column] is_timestamp( column_view input_col, diff --git a/python/pylibcudf/pylibcudf/libcudf/strings/findall.pxd b/python/pylibcudf/pylibcudf/libcudf/strings/findall.pxd index e0a8b776465..0d286c36446 100644 --- a/python/pylibcudf/pylibcudf/libcudf/strings/findall.pxd +++ b/python/pylibcudf/pylibcudf/libcudf/strings/findall.pxd @@ -11,3 +11,7 @@ cdef extern from "cudf/strings/findall.hpp" namespace "cudf::strings" nogil: cdef unique_ptr[column] findall( column_view input, regex_program prog) except + + + cdef unique_ptr[column] find_re( + column_view input, + regex_program prog) except + diff --git a/python/pylibcudf/pylibcudf/nvtext/CMakeLists.txt b/python/pylibcudf/pylibcudf/nvtext/CMakeLists.txt new file mode 100644 index 00000000000..ebe1fda1f12 --- /dev/null +++ b/python/pylibcudf/pylibcudf/nvtext/CMakeLists.txt @@ -0,0 +1,22 @@ +# ============================================================================= +# Copyright (c) 2024, NVIDIA CORPORATION. +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except +# in compliance with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software distributed under the License +# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express +# or implied. See the License for the specific language governing permissions and limitations under +# the License. +# ============================================================================= + +set(cython_sources edit_distance.pyx) + +set(linked_libraries cudf::cudf) +rapids_cython_create_modules( + CXX + SOURCE_FILES "${cython_sources}" + LINKED_LIBRARIES "${linked_libraries}" MODULE_PREFIX pylibcudf_nvtext_ ASSOCIATED_TARGETS cudf +) diff --git a/python/pylibcudf/pylibcudf/nvtext/__init__.pxd b/python/pylibcudf/pylibcudf/nvtext/__init__.pxd new file mode 100644 index 00000000000..82f7c425b1d --- /dev/null +++ b/python/pylibcudf/pylibcudf/nvtext/__init__.pxd @@ -0,0 +1,7 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. + +from . cimport edit_distance + +__all__ = [ + "edit_distance", +] diff --git a/python/pylibcudf/pylibcudf/nvtext/__init__.py b/python/pylibcudf/pylibcudf/nvtext/__init__.py new file mode 100644 index 00000000000..986652a241f --- /dev/null +++ b/python/pylibcudf/pylibcudf/nvtext/__init__.py @@ -0,0 +1,7 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. + +from . import edit_distance + +__all__ = [ + "edit_distance", +] diff --git a/python/pylibcudf/pylibcudf/nvtext/edit_distance.pxd b/python/pylibcudf/pylibcudf/nvtext/edit_distance.pxd new file mode 100644 index 00000000000..446b95afabb --- /dev/null +++ b/python/pylibcudf/pylibcudf/nvtext/edit_distance.pxd @@ -0,0 +1,8 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. + +from pylibcudf.column cimport Column + + +cpdef Column edit_distance(Column input, Column targets) + +cpdef Column edit_distance_matrix(Column input) diff --git a/python/pylibcudf/pylibcudf/nvtext/edit_distance.pyx b/python/pylibcudf/pylibcudf/nvtext/edit_distance.pyx new file mode 100644 index 00000000000..fc98ccbc50c --- /dev/null +++ b/python/pylibcudf/pylibcudf/nvtext/edit_distance.pyx @@ -0,0 +1,63 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. + +from libcpp.memory cimport unique_ptr +from libcpp.utility cimport move +from pylibcudf.libcudf.column.column cimport column +from pylibcudf.libcudf.column.column_view cimport column_view +from pylibcudf.libcudf.nvtext.edit_distance cimport ( + edit_distance as cpp_edit_distance, + edit_distance_matrix as cpp_edit_distance_matrix, +) + + +cpdef Column edit_distance(Column input, Column targets): + """ + Returns the edit distance between individual strings in two strings columns + + For details, see :cpp:func:`edit_distance` + + Parameters + ---------- + input : Column + Input strings + targets : Column + Strings to compute edit distance against + + Returns + ------- + Column + New column of edit distance values + """ + cdef column_view c_strings = input.view() + cdef column_view c_targets = targets.view() + cdef unique_ptr[column] c_result + + with nogil: + c_result = move(cpp_edit_distance(c_strings, c_targets)) + + return Column.from_libcudf(move(c_result)) + + +cpdef Column edit_distance_matrix(Column input): + """ + Returns the edit distance between all strings in the input strings column + + For details, see :cpp:func:`edit_distance_matrix` + + Parameters + ---------- + input : Column + Input strings + + Returns + ------- + Column + New column of edit distance values + """ + cdef column_view c_strings = input.view() + cdef unique_ptr[column] c_result + + with nogil: + c_result = move(cpp_edit_distance_matrix(c_strings)) + + return Column.from_libcudf(move(c_result)) diff --git a/python/pylibcudf/pylibcudf/strings/convert/CMakeLists.txt b/python/pylibcudf/pylibcudf/strings/convert/CMakeLists.txt index b611dc71bfc..fe8da975566 100644 --- a/python/pylibcudf/pylibcudf/strings/convert/CMakeLists.txt +++ b/python/pylibcudf/pylibcudf/strings/convert/CMakeLists.txt @@ -12,7 +12,9 @@ # the License. # ============================================================================= -set(cython_sources convert_durations.pyx convert_datetime.pyx convert_fixed_point.pyx) +set(cython_sources convert_booleans.pyx convert_datetime.pyx convert_durations.pyx + convert_fixed_point.pyx +) set(linked_libraries cudf::cudf) rapids_cython_create_modules( diff --git a/python/pylibcudf/pylibcudf/strings/convert/__init__.pxd b/python/pylibcudf/pylibcudf/strings/convert/__init__.pxd index 05324cb49df..5525bca46d6 100644 --- a/python/pylibcudf/pylibcudf/strings/convert/__init__.pxd +++ b/python/pylibcudf/pylibcudf/strings/convert/__init__.pxd @@ -1,2 +1,2 @@ # Copyright (c) 2024, NVIDIA CORPORATION. -from . cimport convert_datetime, convert_durations +from . cimport convert_booleans, convert_datetime, convert_durations diff --git a/python/pylibcudf/pylibcudf/strings/convert/__init__.py b/python/pylibcudf/pylibcudf/strings/convert/__init__.py index bc353c53142..c0be4093836 100644 --- a/python/pylibcudf/pylibcudf/strings/convert/__init__.py +++ b/python/pylibcudf/pylibcudf/strings/convert/__init__.py @@ -1,2 +1,7 @@ # Copyright (c) 2024, NVIDIA CORPORATION. -from . import convert_datetime, convert_durations, convert_fixed_point +from . import ( + convert_booleans, + convert_datetime, + convert_durations, + convert_fixed_point, +) diff --git a/python/pylibcudf/pylibcudf/strings/convert/convert_booleans.pxd b/python/pylibcudf/pylibcudf/strings/convert/convert_booleans.pxd new file mode 100644 index 00000000000..312ac3c0ca0 --- /dev/null +++ b/python/pylibcudf/pylibcudf/strings/convert/convert_booleans.pxd @@ -0,0 +1,9 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. + +from pylibcudf.column cimport Column +from pylibcudf.scalar cimport Scalar + + +cpdef Column to_booleans(Column input, Scalar true_string) + +cpdef Column from_booleans(Column booleans, Scalar true_string, Scalar false_string) diff --git a/python/pylibcudf/pylibcudf/strings/convert/convert_booleans.pyx b/python/pylibcudf/pylibcudf/strings/convert/convert_booleans.pyx new file mode 100644 index 00000000000..0c10f821ab6 --- /dev/null +++ b/python/pylibcudf/pylibcudf/strings/convert/convert_booleans.pyx @@ -0,0 +1,91 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. + +from libcpp.memory cimport unique_ptr +from libcpp.utility cimport move +from pylibcudf.column cimport Column +from pylibcudf.libcudf.column.column cimport column +from pylibcudf.libcudf.scalar.scalar cimport string_scalar +from pylibcudf.libcudf.strings.convert cimport ( + convert_booleans as cpp_convert_booleans, +) +from pylibcudf.scalar cimport Scalar + +from cython.operator import dereference + + +cpdef Column to_booleans(Column input, Scalar true_string): + """ + Returns a new bool column by parsing boolean values from the strings + in the provided strings column. + + For details, see :cpp:func:`cudf::strings::to_booleans`. + + Parameters + ---------- + input : Column + Strings instance for this operation + + true_string : Scalar + String to expect for true. Non-matching strings are false + + Returns + ------- + Column + New bool column converted from strings. + """ + cdef unique_ptr[column] c_result + cdef const string_scalar* c_true_string = ( + true_string.c_obj.get() + ) + + with nogil: + c_result = move( + cpp_convert_booleans.to_booleans( + input.view(), + dereference(c_true_string) + ) + ) + + return Column.from_libcudf(move(c_result)) + +cpdef Column from_booleans(Column booleans, Scalar true_string, Scalar false_string): + """ + Returns a new strings column converting the boolean values from the + provided column into strings. + + For details, see :cpp:func:`cudf::strings::from_booleans`. + + Parameters + ---------- + booleans : Column + Boolean column to convert. + + true_string : Scalar + String to use for true in the output column. + + false_string : Scalar + String to use for false in the output column. + + Returns + ------- + Column + New strings column. + """ + cdef unique_ptr[column] c_result + cdef const string_scalar* c_true_string = ( + true_string.c_obj.get() + ) + cdef const string_scalar* c_false_string = ( + false_string.c_obj.get() + ) + + with nogil: + c_result = move( + cpp_convert_booleans.from_booleans( + booleans.view(), + dereference(c_true_string), + dereference(c_false_string), + ) + ) + + return Column.from_libcudf(move(c_result)) diff --git a/python/pylibcudf/pylibcudf/strings/convert/convert_datetime.pxd b/python/pylibcudf/pylibcudf/strings/convert/convert_datetime.pxd index 07c84d263d6..80ec168644b 100644 --- a/python/pylibcudf/pylibcudf/strings/convert/convert_datetime.pxd +++ b/python/pylibcudf/pylibcudf/strings/convert/convert_datetime.pxd @@ -8,11 +8,16 @@ from pylibcudf.types cimport DataType cpdef Column to_timestamps( Column input, DataType timestamp_type, - const string& format + str format ) cpdef Column from_timestamps( - Column input, - const string& format, + Column timestamps, + str format, Column input_strings_names ) + +cpdef Column is_timestamp( + Column input, + str format, +) diff --git a/python/pylibcudf/pylibcudf/strings/convert/convert_datetime.pyx b/python/pylibcudf/pylibcudf/strings/convert/convert_datetime.pyx index fcacb096f87..0ee60812e00 100644 --- a/python/pylibcudf/pylibcudf/strings/convert/convert_datetime.pyx +++ b/python/pylibcudf/pylibcudf/strings/convert/convert_datetime.pyx @@ -15,28 +15,74 @@ from pylibcudf.types import DataType cpdef Column to_timestamps( Column input, DataType timestamp_type, - const string& format + str format ): + """ + Returns a new timestamp column converting a strings column into + timestamps using the provided format pattern. + + For details, see cpp:`cudf::strings::to_timestamps`. + + Parameters + ---------- + input : Column + Strings instance for this operation. + + timestamp_type : DataType + The timestamp type used for creating the output column. + + format : str + String specifying the timestamp format in strings. + + Returns + ------- + Column + New datetime column + """ cdef unique_ptr[column] c_result + cdef string c_format = format.encode() with nogil: c_result = cpp_convert_datetime.to_timestamps( input.view(), timestamp_type.c_obj, - format + c_format ) return Column.from_libcudf(move(c_result)) cpdef Column from_timestamps( - Column input, - const string& format, + Column timestamps, + str format, Column input_strings_names ): + """ + Returns a new strings column converting a timestamp column into + strings using the provided format pattern. + + For details, see cpp:`cudf::strings::from_timestamps`. + + Parameters + ---------- + timestamps : Column + Timestamp values to convert + + format : str + The string specifying output format. + + input_strings_names : Column + The string names to use for weekdays ("%a", "%A") and months ("%b", "%B"). + + Returns + ------- + Column + New strings column with formatted timestamps. + """ cdef unique_ptr[column] c_result + cdef string c_format = format.encode() with nogil: c_result = cpp_convert_datetime.from_timestamps( - input.view(), - format, + timestamps.view(), + c_format, input_strings_names.view() ) @@ -44,13 +90,33 @@ cpdef Column from_timestamps( cpdef Column is_timestamp( Column input, - const string& format + str format ): + """ + Verifies the given strings column can be parsed to timestamps + using the provided format pattern. + + For details, see cpp:`cudf::strings::is_timestamp`. + + Parameters + ---------- + input : Column + Strings instance for this operation. + + format : str + String specifying the timestamp format in strings. + + Returns + ------- + Column + New bool column. + """ cdef unique_ptr[column] c_result + cdef string c_format = format.encode() with nogil: c_result = cpp_convert_datetime.is_timestamp( input.view(), - format + c_format ) return Column.from_libcudf(move(c_result)) diff --git a/python/pylibcudf/pylibcudf/strings/findall.pxd b/python/pylibcudf/pylibcudf/strings/findall.pxd index 54afa088141..3c35a9c9aa9 100644 --- a/python/pylibcudf/pylibcudf/strings/findall.pxd +++ b/python/pylibcudf/pylibcudf/strings/findall.pxd @@ -4,4 +4,5 @@ from pylibcudf.column cimport Column from pylibcudf.strings.regex_program cimport RegexProgram +cpdef Column find_re(Column input, RegexProgram pattern) cpdef Column findall(Column input, RegexProgram pattern) diff --git a/python/pylibcudf/pylibcudf/strings/findall.pyx b/python/pylibcudf/pylibcudf/strings/findall.pyx index 3a6b87504b3..5212dc4594d 100644 --- a/python/pylibcudf/pylibcudf/strings/findall.pyx +++ b/python/pylibcudf/pylibcudf/strings/findall.pyx @@ -38,3 +38,35 @@ cpdef Column findall(Column input, RegexProgram pattern): ) return Column.from_libcudf(move(c_result)) + + +cpdef Column find_re(Column input, RegexProgram pattern): + """ + Returns character positions where the pattern first matches + the elements in input strings. + + For details, see :cpp:func:`cudf::strings::find_re` + + Parameters + ---------- + input : Column + Strings instance for this operation + pattern : RegexProgram + Regex pattern + + Returns + ------- + Column + New column of integers + """ + cdef unique_ptr[column] c_result + + with nogil: + c_result = move( + cpp_findall.find_re( + input.view(), + pattern.c_obj.get()[0] + ) + ) + + return Column.from_libcudf(move(c_result)) diff --git a/python/pylibcudf/pylibcudf/tests/test_nvtext_edit_distance.py b/python/pylibcudf/pylibcudf/tests/test_nvtext_edit_distance.py new file mode 100644 index 00000000000..7d93c471cc4 --- /dev/null +++ b/python/pylibcudf/pylibcudf/tests/test_nvtext_edit_distance.py @@ -0,0 +1,34 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. + +import pyarrow as pa +import pylibcudf as plc +import pytest +from utils import assert_column_eq + + +@pytest.fixture(scope="module") +def edit_distance_data(): + arr1 = ["hallo", "goodbye", "world"] + arr2 = ["hello", "", "world"] + return pa.array(arr1), pa.array(arr2) + + +def test_edit_distance(edit_distance_data): + input_col, targets = edit_distance_data + result = plc.nvtext.edit_distance.edit_distance( + plc.interop.from_arrow(input_col), + plc.interop.from_arrow(targets), + ) + expected = pa.array([1, 7, 0], type=pa.int32()) + assert_column_eq(result, expected) + + +def test_edit_distance_matrix(edit_distance_data): + input_col, _ = edit_distance_data + result = plc.nvtext.edit_distance.edit_distance_matrix( + plc.interop.from_arrow(input_col) + ) + expected = pa.array( + [[0, 7, 4], [7, 0, 6], [4, 6, 0]], type=pa.list_(pa.int32()) + ) + assert_column_eq(expected, result) diff --git a/python/pylibcudf/pylibcudf/tests/test_string_convert.py b/python/pylibcudf/pylibcudf/tests/test_string_convert.py index e9e95459d0e..22bb4971cb1 100644 --- a/python/pylibcudf/pylibcudf/tests/test_string_convert.py +++ b/python/pylibcudf/pylibcudf/tests/test_string_convert.py @@ -62,7 +62,7 @@ def test_to_datetime( got = plc.strings.convert.convert_datetime.to_timestamps( plc_timestamp_col, plc.interop.from_arrow(timestamp_type), - format.encode(), + format, ) assert_column_eq(expect, got) diff --git a/python/pylibcudf/pylibcudf/tests/test_string_convert_booleans.py b/python/pylibcudf/pylibcudf/tests/test_string_convert_booleans.py new file mode 100644 index 00000000000..117c59ff1b8 --- /dev/null +++ b/python/pylibcudf/pylibcudf/tests/test_string_convert_booleans.py @@ -0,0 +1,26 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. + +import pyarrow as pa +import pylibcudf as plc +from utils import assert_column_eq + + +def test_to_booleans(): + pa_array = pa.array(["true", None, "True"]) + result = plc.strings.convert.convert_booleans.to_booleans( + plc.interop.from_arrow(pa_array), + plc.interop.from_arrow(pa.scalar("True")), + ) + expected = pa.array([False, None, True]) + assert_column_eq(result, expected) + + +def test_from_booleans(): + pa_array = pa.array([True, None, False]) + result = plc.strings.convert.convert_booleans.from_booleans( + plc.interop.from_arrow(pa_array), + plc.interop.from_arrow(pa.scalar("A")), + plc.interop.from_arrow(pa.scalar("B")), + ) + expected = pa.array(["A", None, "B"]) + assert_column_eq(result, expected) diff --git a/python/pylibcudf/pylibcudf/tests/test_string_convert_datetime.py b/python/pylibcudf/pylibcudf/tests/test_string_convert_datetime.py new file mode 100644 index 00000000000..f3e84286a36 --- /dev/null +++ b/python/pylibcudf/pylibcudf/tests/test_string_convert_datetime.py @@ -0,0 +1,46 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. +import datetime + +import pyarrow as pa +import pyarrow.compute as pc +import pylibcudf as plc +import pytest +from utils import assert_column_eq + + +@pytest.fixture +def fmt(): + return "%Y-%m-%dT%H:%M:%S" + + +def test_to_timestamp(fmt): + arr = pa.array(["2020-01-01T01:01:01", None]) + result = plc.strings.convert.convert_datetime.to_timestamps( + plc.interop.from_arrow(arr), + plc.DataType(plc.TypeId.TIMESTAMP_SECONDS), + fmt, + ) + expected = pc.strptime(arr, fmt, "s") + assert_column_eq(result, expected) + + +def test_from_timestamp(fmt): + arr = pa.array([datetime.datetime(2020, 1, 1, 1, 1, 1), None]) + result = plc.strings.convert.convert_datetime.from_timestamps( + plc.interop.from_arrow(arr), + fmt, + plc.interop.from_arrow(pa.array([], type=pa.string())), + ) + # pc.strftime will add the extra %f + expected = pa.array(["2020-01-01T01:01:01", None]) + assert_column_eq(result, expected) + + +def test_is_timestamp(fmt): + arr = pa.array(["2020-01-01T01:01:01", None, "2020-01-01"]) + result = plc.strings.convert.convert_datetime.is_timestamp( + plc.interop.from_arrow(arr), + fmt, + ) + expected = pa.array([True, None, False]) + assert_column_eq(result, expected) diff --git a/python/pylibcudf/pylibcudf/tests/test_string_findall.py b/python/pylibcudf/pylibcudf/tests/test_string_findall.py index 994552fa276..debfad92d00 100644 --- a/python/pylibcudf/pylibcudf/tests/test_string_findall.py +++ b/python/pylibcudf/pylibcudf/tests/test_string_findall.py @@ -21,3 +21,20 @@ def test_findall(): type=pa_result.type, ) assert_column_eq(result, expected) + + +def test_find_re(): + arr = pa.array(["bunny", "rabbit", "hare", "dog"]) + pattern = "[eb]" + result = plc.strings.findall.find_re( + plc.interop.from_arrow(arr), + plc.strings.regex_program.RegexProgram.create( + pattern, plc.strings.regex_flags.RegexFlags.DEFAULT + ), + ) + pa_result = plc.interop.to_arrow(result) + expected = pa.array( + [0, 2, 3, -1], + type=pa_result.type, + ) + assert_column_eq(result, expected) diff --git a/python/pylibcudf/pylibcudf/tests/test_string_wrap.py b/python/pylibcudf/pylibcudf/tests/test_string_wrap.py index 85abd3a2bae..a1c820cd586 100644 --- a/python/pylibcudf/pylibcudf/tests/test_string_wrap.py +++ b/python/pylibcudf/pylibcudf/tests/test_string_wrap.py @@ -7,6 +7,7 @@ def test_wrap(): + width = 12 pa_array = pa.array( [ "the quick brown fox jumped over the lazy brown dog", @@ -14,10 +15,10 @@ def test_wrap(): None, ] ) - result = plc.strings.wrap.wrap(plc.interop.from_arrow(pa_array), 12) + result = plc.strings.wrap.wrap(plc.interop.from_arrow(pa_array), width) expected = pa.array( [ - textwrap.fill(val, 12) if isinstance(val, str) else val + textwrap.fill(val, width) if isinstance(val, str) else val for val in pa_array.to_pylist() ] )