-
Notifications
You must be signed in to change notification settings - Fork 227
/
Copy pathvisual_question_answering.lua
210 lines (169 loc) · 6.97 KB
/
visual_question_answering.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
require 'torch'
require 'nn'
require 'lfs'
require 'image'
require 'loadcaffe'
utils = require 'misc.utils'
cmd = torch.CmdLine()
cmd:text('Options')
-- Model parameters
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt')
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel')
cmd:option('-input_sz', 224, 'Input image dimensions (use 227 for AlexNet)')
cmd:option('-backend', 'nn')
-- Grad-CAM parameters
cmd:option('-layer_name', 'relu5_4', 'Layer to use for Grad-CAM (use relu5_3 for VGG-16 and relu5 for AlexNet)')
cmd:option('-input_image_path', 'images/cat_dog.jpg', 'Input image path')
cmd:option('-question', 'What animal?', 'Input question')
cmd:option('-answer', '', 'Optional answer (For eg. "cat") to generate Grad-CAM for ("" = use predicted answer).')
cmd:option('-save_as_heatmap', 1, 'Whether to save heatmap or raw Grad-CAM. 1 = save heatmap, 0 = save raw Grad-CAM.')
-- VQA model parameters
cmd:option('-model_path', 'VQA_LSTM_CNN/lstm.t7', 'Path to VQA model checkpoint')
cmd:option('-input_encoding_size', 200, 'Encoding size of each token in the vocabulary')
cmd:option('-rnn_size', 512, 'Size of the LSTM hidden state')
cmd:option('-rnn_layers', 2, 'Number of the LSTM layers')
cmd:option('-common_embedding_size', 1024, 'Size of the common embedding vector')
cmd:option('-num_output', 1000, 'Number of output answers')
-- Miscellaneous
cmd:option('-seed', 123, 'Torch manual random number generator seed')
cmd:option('-gpuid', -1, '0-indexed id of GPU to use. -1 = CPU')
cmd:option('-out_path', 'output/', 'Output path')
-- Parse command-line parameters
opt = cmd:parse(arg or {})
print(opt)
torch.manualSeed(opt.seed)
torch.setdefaulttensortype('torch.DoubleTensor')
lfs.mkdir(opt.out_path)
if opt.gpuid >= 0 then
require 'cunn'
require 'cutorch'
cutorch.setDevice(opt.gpuid + 1)
cutorch.manualSeed(opt.seed)
end
-- Load CNN
local cnn = loadcaffe.load(opt.proto_file, opt.model_file, opt.backend)
-- Set to evaluate and remove linear+softmax layer
cnn:evaluate()
cnn:remove()
cnn:remove()
cnn:add(nn.Normalize(2))
-- Clone & replace ReLUs for Guided Backprop
local cnn_gb = cnn:clone()
cnn_gb:replace(utils.guidedbackprop)
-- VQA-specific dependencies
-- https://github.com/VT-vision-lab/VQA_LSTM_CNN/blob/master/eval.lua
require 'VQA_LSTM_CNN/misc.netdef'
require 'VQA_LSTM_CNN/misc.RNNUtils'
LSTM = require 'VQA_LSTM_CNN/misc.LSTM'
cjson = require 'cjson'
-- Load vocabulary
local file = io.open('VQA_LSTM_CNN/data_prepro.json','r')
local text = file:read()
file:close()
local json_file = cjson.decode(text)
local vocabulary_size_q = 0
for i, w in pairs(json_file['ix_to_word']) do vocabulary_size_q = vocabulary_size_q + 1 end
-- VQA model definition
local embedding_net_q = nn.Sequential()
:add(nn.Linear(vocabulary_size_q, opt.input_encoding_size))
:add(nn.Dropout(0.5))
:add(nn.Tanh())
local encoder_net_q = LSTM.lstm_conventional(opt.input_encoding_size, opt.rnn_size, 1, opt.rnn_layers, 0.5)
local multimodal_net = nn.Sequential()
:add(netdef.AxB(2 * opt.rnn_size * opt.rnn_layers, 4096, opt.common_embedding_size, 0.5))
:add(nn.Dropout(0.5))
:add(nn.Linear(opt.common_embedding_size, opt.num_output))
local dummy_state_q = torch.Tensor(opt.rnn_size * opt.rnn_layers * 2):fill(0)
local dummy_output_q = torch.Tensor(1):fill(0)
-- Ship model to GPU
if opt.gpuid >= 0 then
embedding_net_q:cuda()
encoder_net_q:cuda()
multimodal_net:cuda()
dummy_state_q = dummy_state_q:cuda()
dummy_output_q = dummy_output_q:cuda()
end
-- Set to evaluate
embedding_net_q:evaluate()
encoder_net_q:evaluate()
multimodal_net:evaluate()
-- Zero gradients
embedding_net_q:zeroGradParameters()
encoder_net_q:zeroGradParameters()
multimodal_net:zeroGradParameters()
-- Load pretrained VQA model
embedding_w_q, embedding_dw_q = embedding_net_q:getParameters()
encoder_w_q, encoder_dw_q = encoder_net_q:getParameters()
multimodal_w, multimodal_dw = multimodal_net:getParameters()
model_param = torch.load(opt.model_path)
embedding_w_q:copy(model_param['embedding_w_q'])
encoder_w_q:copy(model_param['encoder_w_q'])
multimodal_w:copy(model_param['multimodal_w'])
local encoder_net_buffer_q = dupe_rnn(encoder_net_q, 26)
-- Load image
local img = utils.preprocess(opt.input_image_path, opt.input_sz, opt.input_sz)
-- Ship CNNs and image to GPU
if opt.gpuid >= 0 then
cnn:cuda()
cnn_gb:cuda()
img = img:cuda()
end
-- Forward pass
fv_im = cnn:forward(img)
fv_im_gb = cnn_gb:forward(img)
-- Tokenize question
local cmd = 'python misc/prepro_ques.py --question "'.. opt.question..'"'
os.execute(cmd)
file = io.open('ques_feat.json')
text = file:read()
file:close()
q_feats = cjson.decode(text)
question = right_align(torch.LongTensor{q_feats.ques}, torch.LongTensor{q_feats.ques_length})
fv_sorted_q = sort_encoding_onehot_right_align(question, torch.LongTensor{q_feats.ques_length}, vocabulary_size_q)
-- Ship question features to GPU
if opt.gpuid >= 0 then
fv_sorted_q[1] = fv_sorted_q[1]:cuda()
fv_sorted_q[3] = fv_sorted_q[3]:cuda()
fv_sorted_q[4] = fv_sorted_q[4]:cuda()
else
fv_sorted_q[1] = fv_sorted_q[1]:double()
end
local question_max_length = fv_sorted_q[2]:size(1)
-- Embedding forward
local word_embedding_q = split_vector(embedding_net_q:forward(fv_sorted_q[1]), fv_sorted_q[2])
-- Encoder forward
local states_q, _ = rnn_forward(encoder_net_buffer_q, torch.repeatTensor(dummy_state_q:fill(0), 1, 1), word_embedding_q, fv_sorted_q[2])
-- Multimodal forward
local tv_q = states_q[question_max_length + 1]:index(1, fv_sorted_q[4])
local scores = multimodal_net:forward({tv_q, fv_im})
-- Get predictions
_, pred = torch.max(scores:double(), 2)
answer = json_file['ix_to_ans'][tostring(pred[{1, 1}])]
local inv_vocab = utils.table_invert(json_file['ix_to_ans'])
-- Replace out of vocabulary answers with predicted answer
if opt.answer ~= '' and inv_vocab[opt.answer] ~= nil then answer_idx = inv_vocab[opt.answer] else opt.answer = answer answer_idx = inv_vocab[answer] end
print("Question: ", opt.question)
print("Predicted answer: ", answer)
print("Grad-CAM answer: ", opt.answer)
-- Set gradInput
local doutput = utils.create_grad_input(multimodal_net.modules[#multimodal_net.modules], answer_idx)
-- Multimodal backward
local tmp = multimodal_net:backward({tv_q, fv_im}, doutput:view(1,-1))
local dcnn = tmp[2]
-- Grad-CAM
local gcam = utils.grad_cam(cnn, opt.layer_name, dcnn)
gcam = image.scale(gcam:float(), opt.input_sz, opt.input_sz)
local hm = utils.to_heatmap(gcam)
if opt.save_as_heatmap == 1 then
image.save(opt.out_path .. 'vqa_gcam_hm_' .. opt.answer .. '.png', image.toDisplayTensor(hm))
else
image.save(opt.out_path .. 'vqa_gcam_' .. opt.answer .. '.png', image.toDisplayTensor(gcam))
end
-- Guided Backprop
local gb_viz = cnn_gb:backward(img, dcnn)
-- BGR to RGB
gb_viz = gb_viz:index(1, torch.LongTensor{3, 2, 1})
image.save(opt.out_path .. 'vqa_gb_' .. opt.answer .. '.png', image.toDisplayTensor(gb_viz))
-- Guided Grad-CAM
local gb_gcam = gb_viz:float():cmul(gcam:expandAs(gb_viz))
image.save(opt.out_path .. 'vqa_gb_gcam_' .. opt.answer .. '.png', image.toDisplayTensor(gb_gcam))