-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEM_Algorithm_utils.py
64 lines (51 loc) · 2.68 KB
/
EM_Algorithm_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
import scipy.stats as stats
SINGULARITY_EPSILON = 1e-4
def initialize_parameters(data, dims, K, type='random'):
N = data.shape[0]
seed_mean = np.mean(data, axis=0)
seed_stdev = np.std(data, axis=0)
means = seed_mean + np.random.randn(K, dims) * seed_stdev
# Initializing covariance matrices is non-trivial. These matrices must be positive semi definite.
# The method below tries to achieve that. However, more systematic methods can be explored.
A = np.random.rand(dims, dims)
variances = np.dot(A, A.T)
# variances = np.random.chisquare(df=N, size=(K, dims, dims))
# variances = np.random.rand(K, dims, dims)
for k in range(1, K):
A = np.random.rand(dims, dims)
variance = np.dot(A, A.T)
avoid_singularity(variance)
variances = np.dstack((variances, variance))
# variances = variances.reshape(K, dims, dims)
variances = variances.T
alphas = np.ones(K)
weights = np.random.dirichlet(alpha=alphas, size=1).T
return means, variances, weights
def avoid_singularity(matrix, threshold=SINGULARITY_EPSILON):
sing_diag = np.diagonal(matrix) < threshold # This is N * 1
sing_diag = np.diag(sing_diag) # This is a boolean N * N matrix that has True only on diagonal and only when
# the diagonal element of the matrix is less than threshold
if sing_diag.any():
matrix[sing_diag] = threshold
def get_comp_distributions(D, means, covars):
# D: N * d matrix
# means: K * d matrix
# covars: K * d * d matrix
N = D.shape[0]
mv_gaussian_pdf_matrix = np.empty(shape=(N, 0))
for kth_mean, kth_covar in zip(means, covars): # Loop through the K parameter matrices
try:
avoid_singularity(kth_covar)
prob_from_kth_component = stats.multivariate_normal.pdf(D, kth_mean, kth_covar) # This is a N * 1 vector
# This may not always give reasonable probabilities owing to bad initializations of covar as mentioned in
# the corresponding function
except (ValueError, np.linalg.linalg.LinAlgError) as e:
prob_from_kth_component = np.zeros(shape=(N,))
prob_from_kth_component = np.expand_dims(prob_from_kth_component, axis=1)
mv_gaussian_pdf_matrix = np.hstack((mv_gaussian_pdf_matrix, prob_from_kth_component))
return mv_gaussian_pdf_matrix # This needs to be a N(observations) * K(components) matrix
def get_mixture_model(D, alphas, means, covars, probabilities_matrix=None):
if probabilities_matrix is None:
probabilities_matrix = get_comp_distributions(D, means=means, covars=covars)
return np.dot(probabilities_matrix, alphas) # This should be a N * 1 vector of probabilities