-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
71 lines (49 loc) · 2.17 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import tensorflow as tf
import sys
import os
import csv
def classify_image(filename, headers):
f = open('sample_submit.csv','w')
writer = csv.DictWriter(f, fieldnames = headers)
writer.writeheader()
label_lines = [line.rstrip() for line
in tf.gfile.GFile("retrained_labels.txt")]
#obtained the pretrained graph
with tf.gfile.FastGFile("retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
image_path=os.getcwd()
files=[1]
with tf.Session() as sess:
for file in files:
# Read the image_data
image_data = tf.gfile.FastGFile(image_path+'/'+filename, 'rb').read()
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
records = []
row_dict = {}
row_dict['id'] = filename.split('.')[0]
for node_id in top_k[:1]:
# print("node_id=", node_id)
human_string = label_lines[node_id]
human_string = human_string.replace(" ","_")
score = predictions[0][node_id]
print('Prediction: %s (score = %.5f)' % (human_string, score))
row_dict[human_string] = score
records.append(row_dict.copy())
writer.writerows(records)
f.close()
def main():
filename=sys.argv[1]
template_file = open('sample_submission.csv','r')
d_reader = csv.DictReader(template_file)
headers = d_reader.fieldnames
template_file.close()
classify_image(filename, headers)
if __name__ == '__main__':
main()