description |
---|
This guide shows you how to ingest a stream of records from an Apache Kafka topic into a Pinot table. |
Learn how to ingest data from Kafka, a stream processing platform. You should have a local cluster up and running, following the instructions in Set up a cluster.
Let's start by downloading Kafka to our local machine.
{% tabs %} {% tab title="Docker" %} To pull down the latest Docker image, run the following command:
docker pull wurstmeister/kafka:latest
{% endtab %}
{% tab title="Launcher Scripts" %} Download Kafka from kafka.apache.org/quickstart#quickstart_download and then extract it:
tar -xzf kafka_2.13-3.7.0.tgz
cd kafka_2.13-3.7.0
{% endtab %} {% endtabs %}
Next we'll spin up a Kafka broker:
{% tabs %} {% tab title="Docker" %}
docker run --network pinot-demo --name=kafka -e KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181/kafka -e KAFKA_BROKER_ID=0 -e KAFKA_ADVERTISED_HOST_NAME=kafka wurstmeister/kafka:latest
Note: The --network pinot-demo flag is optional and assumes that you have a Docker network named pinot-demo that you want to connect the Kafka container to. {% endtab %}
{% tab title="Launcher Scripts" %} On one terminal window run this command:
Start Zookeeper
bin/zookeeper-server-start.sh config/zookeeper.properties
And on another window, run this command:
Start Kafka Broker
bin/kafka-server-start.sh config/server.properties
{% endtab %} {% endtabs %}
We're going to generate some JSON messages from the terminal using the following script:
import datetime
import uuid
import random
import json
while True:
ts = int(datetime.datetime.now().timestamp()* 1000)
id = str(uuid.uuid4())
count = random.randint(0, 1000)
print(
json.dumps({"ts": ts, "uuid": id, "count": count})
)
datagen.py
If you run this script (python datagen.py
), you'll see the following output:
{"ts": 1644586485807, "uuid": "93633f7c01d54453a144", "count": 807}
{"ts": 1644586485836, "uuid": "87ebf97feead4e848a2e", "count": 41}
{"ts": 1644586485866, "uuid": "960d4ffa201a4425bb18", "count": 146}
Let's now pipe that stream of messages into Kafka, by running the following command:
{% tabs %} {% tab title="Docker" %}
python datagen.py | docker exec -i kafka /opt/kafka/bin/kafka-console-producer.sh --bootstrap-server localhost:9092 --topic events;
{% endtab %}
{% tab title="Launcher Scripts" %}
python datagen.py | bin/kafka-console-producer.sh --bootstrap-server localhost:9092 --topic events;
{% endtab %} {% endtabs %}
We can check how many messages have been ingested by running the following command:
{% tabs %} {% tab title="Docker" %}
docker exec -i kafka kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list localhost:9092 --topic events
{% endtab %}
{% tab title="Launcher Scripts" %}
kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list localhost:9092 --topic events
{% endtab %} {% endtabs %}
Output
events:0:11940
And we can print out the messages themselves by running the following command
{% tabs %} {% tab title="Docker" %}
docker exec -i kafka /opt/kafka/bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic events
{% endtab %}
{% tab title="Launcher Scripts" %}
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic events
{% endtab %} {% endtabs %}
Output
...
{"ts": 1644586485807, "uuid": "93633f7c01d54453a144", "count": 807}
{"ts": 1644586485836, "uuid": "87ebf97feead4e848a2e", "count": 41}
{"ts": 1644586485866, "uuid": "960d4ffa201a4425bb18", "count": 146}
...
A schema defines what fields are present in the table along with their data types in JSON format.
Create a file called /tmp/pinot/schema-stream.json
and add the following content to it.
{
"schemaName": "events",
"dimensionFieldSpecs": [
{
"name": "uuid",
"dataType": "STRING"
}
],
"metricFieldSpecs": [
{
"name": "count",
"dataType": "INT"
}
],
"dateTimeFieldSpecs": [{
"name": "ts",
"dataType": "TIMESTAMP",
"format" : "1:MILLISECONDS:EPOCH",
"granularity": "1:MILLISECONDS"
}]
}
A table is a logical abstraction that represents a collection of related data. It is composed of columns and rows (known as documents in Pinot). The table config defines the table's properties in JSON format.
Create a file called /tmp/pinot/table-config-stream.json
and add the following content to it.
{
"tableName": "events",
"tableType": "REALTIME",
"segmentsConfig": {
"timeColumnName": "ts",
"schemaName": "events",
"replicasPerPartition": "1"
},
"tenants": {},
"tableIndexConfig": {
"loadMode": "MMAP",
"streamConfigs": {
"streamType": "kafka",
"stream.kafka.consumer.type": "lowlevel",
"stream.kafka.topic.name": "events",
"stream.kafka.decoder.class.name": "org.apache.pinot.plugin.stream.kafka.KafkaJSONMessageDecoder",
"stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
"stream.kafka.broker.list": "kafka:9092",
"realtime.segment.flush.threshold.rows": "0",
"realtime.segment.flush.threshold.time": "24h",
"realtime.segment.flush.threshold.segment.size": "50M",
"stream.kafka.consumer.prop.auto.offset.reset": "smallest"
}
},
"metadata": {
"customConfigs": {}
}
}
Create the table and schema by running the appropriate command below:
{% tabs %} {% tab title="Docker" %}
docker run --rm -ti --network=pinot-demo -v /tmp/pinot:/tmp/pinot apachepinot/pinot:1.0.0 AddTable -schemaFile /tmp/pinot/schema-stream.json -tableConfigFile /tmp/pinot/table-config-stream.json -controllerHost pinot-controller -controllerPort 9000 -exec
{% endtab %}
{% tab title="Launcher Scripts" %}
bin/pinot-admin.sh AddTable -schemaFile /tmp/pinot/schema-stream.json -tableConfigFile /tmp/pinot/table-config-stream.json
{% endtab %} {% endtabs %}
Navigate to localhost:9000/#/query and click on the events
table to run a query that shows the first 10 rows in this table.
Pinot supports two versions of the Kafka library: kafka-0.9
and kafka-2.x
for low level consumers.
{% hint style="info" %}
Post release 0.10.0, we have started shading kafka packages inside Pinot. If you are using our latest
tagged docker images or master
build, you should replace org.apache.kafka
with shaded.org.apache.kafka
in your table config.
{% endhint %}
- Update table config for low level consumer:
stream.kafka.consumer.factory.class.name
fromorg.apache.pinot.core.realtime.impl.kafka.KafkaConsumerFactory
toorg.apache.pinot.core.realtime.impl.kafka2.KafkaConsumerFactory
.
{% hint style="info" %} Pinot does not support using high-level Kafka consumers (HLC). Pinot uses low-level consumers to ensure accurate results, supports operational complexity and scalability, and minimizes storage overhead. {% endhint %}
This connector is also suitable for Kafka lib version higher than 2.0.0
. In Kafka 2.0 connector pom.xml, change the kafka.lib.version
from 2.0.0
to 2.1.1
will make this Connector working with Kafka 2.1.1
.
Here is an example config which uses SSL based authentication to talk with kafka and schema-registry. Notice there are two sets of SSL options, ones starting with ssl.
are for kafka consumer and ones with stream.kafka.decoder.prop.schema.registry.
are for SchemaRegistryClient
used by KafkaConfluentSchemaRegistryAvroMessageDecoder
.
{
"tableName": "transcript",
"tableType": "REALTIME",
"segmentsConfig": {
"timeColumnName": "timestamp",
"timeType": "MILLISECONDS",
"schemaName": "transcript",
"replicasPerPartition": "1"
},
"tenants": {},
"tableIndexConfig": {
"loadMode": "MMAP",
"streamConfigs": {
"streamType": "kafka",
"stream.kafka.consumer.type": "LowLevel",
"stream.kafka.topic.name": "transcript-topic",
"stream.kafka.decoder.class.name": "org.apache.pinot.plugin.inputformat.avro.confluent.KafkaConfluentSchemaRegistryAvroMessageDecoder",
"stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
"stream.kafka.zk.broker.url": "pinot-zookeeper:2191/kafka",
"stream.kafka.broker.list": "localhost:9092",
"schema.registry.url": "",
"security.protocol": "SSL",
"ssl.truststore.location": "",
"ssl.keystore.location": "",
"ssl.truststore.password": "",
"ssl.keystore.password": "",
"ssl.key.password": "",
"stream.kafka.decoder.prop.schema.registry.rest.url": "",
"stream.kafka.decoder.prop.schema.registry.ssl.truststore.location": "",
"stream.kafka.decoder.prop.schema.registry.ssl.keystore.location": "",
"stream.kafka.decoder.prop.schema.registry.ssl.truststore.password": "",
"stream.kafka.decoder.prop.schema.registry.ssl.keystore.password": "",
"stream.kafka.decoder.prop.schema.registry.ssl.keystore.type": "",
"stream.kafka.decoder.prop.schema.registry.ssl.truststore.type": "",
"stream.kafka.decoder.prop.schema.registry.ssl.key.password": "",
"stream.kafka.decoder.prop.schema.registry.ssl.protocol": ""
}
},
"metadata": {
"customConfigs": {}
}
}
The connector with Kafka library 2.0+ supports Kafka transactions. The transaction support is controlled by config kafka.isolation.level
in Kafka stream config, which can be read_committed
or read_uncommitted
(default). Setting it to read_committed
will ingest transactionally committed messages in Kafka stream only.
For example,
{
"tableName": "transcript",
"tableType": "REALTIME",
"segmentsConfig": {
"timeColumnName": "timestamp",
"timeType": "MILLISECONDS",
"schemaName": "transcript",
"replicasPerPartition": "1"
},
"tenants": {},
"tableIndexConfig": {
"loadMode": "MMAP",
"streamConfigs": {
"streamType": "kafka",
"stream.kafka.consumer.type": "LowLevel",
"stream.kafka.topic.name": "transcript-topic",
"stream.kafka.decoder.class.name": "org.apache.pinot.plugin.inputformat.avro.confluent.KafkaConfluentSchemaRegistryAvroMessageDecoder",
"stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
"stream.kafka.zk.broker.url": "pinot-zookeeper:2191/kafka",
"stream.kafka.broker.list": "kafka:9092",
"stream.kafka.isolation.level": "read_committed"
}
},
"metadata": {
"customConfigs": {}
}
}
Note that the default value of this config read_uncommitted
to read all messages. Also, this config supports low-level consumer only.
Here is an example config which uses SASL_SSL based authentication to talk with kafka and schema-registry. Notice there are two sets of SSL options, some for kafka consumer and ones with stream.kafka.decoder.prop.schema.registry.
are for SchemaRegistryClient
used by KafkaConfluentSchemaRegistryAvroMessageDecoder
.
"streamConfigs": {
"streamType": "kafka",
"stream.kafka.consumer.type": "lowlevel",
"stream.kafka.topic.name": "mytopic",
"stream.kafka.consumer.prop.auto.offset.reset": "largest",
"stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
"stream.kafka.broker.list": "kafka:9092",
"stream.kafka.schema.registry.url": "https://xxx",
"stream.kafka.decoder.class.name": "org.apache.pinot.plugin.inputformat.avro.confluent.KafkaConfluentSchemaRegistryAvroMessageDecoder",
"stream.kafka.decoder.prop.schema.registry.rest.url": "https://xxx",
"stream.kafka.decoder.prop.basic.auth.credentials.source": "USER_INFO",
"stream.kafka.decoder.prop.schema.registry.basic.auth.user.info": "schema_registry_username:schema_registry_password",
"sasl.mechanism": "PLAIN" ,
"security.protocol": "SASL_SSL" ,
"sasl.jaas.config":"org.apache.kafka.common.security.scram.ScramLoginModule required username=\"kafkausername\" password=\"kafkapassword\";",
"realtime.segment.flush.threshold.rows": "0",
"realtime.segment.flush.threshold.time": "24h",
"realtime.segment.flush.autotune.initialRows": "3000000",
"realtime.segment.flush.threshold.segment.size": "500M"
},
Pinot's Kafka connector supports automatically extracting record headers and metadata into the Pinot table columns. The following table shows the mapping for record header/metadata to Pinot table column names:
Kafka Record | Pinot Table Column | Description |
---|---|---|
Record key: any type <K> | __key : String | For simplicity of design, we assume that the record key is always a UTF-8 encoded String |
Record Headers: Map<String, String> | Each header key is listed as a separate column:__header$HeaderKeyName : String | For simplicity of design, we directly map the string headers from kafka record to pinot table column |
Record metadata - offset : long | __metadata$offset : String | |
Record metadata - partition : int | __metadata$partition : String | |
Record metadata - recordTimestamp : long | __metadata$recordTimestamp : String |
In order to enable the metadata extraction in a Kafka table, you can set the stream config metadata.populate
to true
.
In addition to this, if you want to use any of these columns in your table, you have to list them explicitly in your table's schema.
For example, if you want to add only the offset and key as dimension columns in your Pinot table, it can listed in the schema as follows:
"dimensionFieldSpecs": [
{
"name": "__key",
"dataType": "STRING"
},
{
"name": "__metadata$offset",
"dataType": "STRING"
},
{
"name": "__metadata$partition",
"dataType": "STRING"
},
...
],
Once the schema is updated, these columns are similar to any other pinot column. You can apply ingestion transforms and / or define indexes on them.
{% hint style="info" %} Remember to follow the schema evolution guidelines when updating schema of an existing table! {% endhint %}
There is a standalone utility to generate the schema from an Avro file. See [infer the pinot schema from the avro schema and JSON data](https://docs.pinot.apache.org/basics/data-import/complex-type#infer-the-pinot-schema-from-the-avro-schema-and-json-data) for details.
To avoid errors like The Avro schema must be provided
, designate the location of the schema in your streamConfigs
section. For example, if your current section contains the following:
...
"streamConfigs": {
"streamType": "kafka",
"stream.kafka.consumer.type": "lowlevel",
"stream.kafka.topic.name": "",
"stream.kafka.decoder.class.name": "org.apache.pinot.plugin.inputformat.avro.SimpleAvroMessageDecoder",
"stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
"stream.kafka.broker.list": "",
"stream.kafka.consumer.prop.auto.offset.reset": "largest"
...
}
Then add this key: "stream.kafka.decoder.prop.schema"
followed by a value that denotes the location of your schema.