forked from hmcezar/dicetools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimate_variance_timeseries.py
executable file
·57 lines (45 loc) · 1.9 KB
/
estimate_variance_timeseries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python3
"""
Receives a .dat file contaning a temporal series and calculate the probability
of getting values in a interval for each window of the whole set.
Based on this probabilities, a variance is estimated.
Author: Henrique Musseli Cezar
Date: MAR/2018
"""
import argparse
import numpy as np
import sys
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Receives a file with a temporal series, the number of window and interval to consider a value of the category.")
parser.add_argument("filename", help="the .dat with the temporal series")
parser.add_argument("nwindows", help="the number windows")
parser.add_argument("min", help="minimal value to classify as in the category")
parser.add_argument("max", help="maximal value to classify as in the category")
parser.add_argument("min2", nargs='?', help="minimal value to classify as in the category")
parser.add_argument("max2", nargs='?', help="maximal value to classify as in the category")
args = parser.parse_args()
if args.min2 and not args.max2:
print("You should provide either none or both minimum and maximum of the second interval")
sys.exit(0)
twoints = False
if args.min2:
twoints = True
min2 = float(args.min2)
max2 = float(args.max2)
min1 = float(args.min)
max1 = float(args.max)
series = np.loadtxt(args.filename)
nwin = int(args.nwindows)
size_win = len(series)/nwin
nconf_window = []
for i in range(nwin):
beg = int(i*size_win)
end = int(beg+size_win-1)
array = np.array(series[beg:end])
total_classified = 0
total_classified = np.sum(np.logical_and(array>=min1, array<=max1))
if twoints:
total_classified += np.sum(np.logical_and(array>=min2, array<=max2))
nconf_window.append(total_classified)
probs = [x/size_win for x in nconf_window]
print("Average of averages: %f and variance: %f" % (np.average(probs), np.var(probs)))