forked from olafSmits/MonteCarloMethodsInFinance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvan_der_pol_demo.py
109 lines (91 loc) · 2.49 KB
/
van_der_pol_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# -*- coding: utf-8 -*-
"""
@author: chanGimeno and olafSmits
using MATLAB demo code provided by iversity.org.
"""
import numpy as np
from numpy import *
from matplotlib.pylab import *
def eulerIntegrationVanDerPol(t0, x0, p0, mu, T, N):
"""
Van Der Pol oscillator solved via Euler integration
INPUT:
t0 : Initial time
x0 : Initial position
p0 : Initial momentum
mu : damping strength
T : Length of integration interval [t0, t0+T]
N : Number of time steps
OUTPUT:
t : Times at which the trajectory is monitored
t(n) = t0 + n Delta T
x : Values of the position along the trajectory
p : Values of the momentum along the trajectory
"""
# Size of integration step
deltaT = T/N
# initialize monitoring times
t = np.linspace(t0, t0 + T, N + 1)
# intialize x and p
x = np.zeros_like(t)
p = np.zeros_like(t)
## Euler integration
# initial conditions
x[0] = x0
p[0] = p0
for n in np.arange(N):
x[n+1] = x[n] + p[n] * deltaT
p[n+1] = p[n] + (mu * (1 - x[n] * x[n]) * p[n] - x[n]) * deltaT
return t, x, p
def demo_vanDerPol():
"""
demo_vanDerPol: numerical integration (Euler) of the Van der Pol oscillator
"""
# damping parameter
mu = 2
# initial conditions
t0 = 0.
x0 = 1e-5
p0 = 1e-5
# integration parameters
T = 100.
N = int(1e5)
[t,x,p] = eulerIntegrationVanDerPol(t0,x0,p0,mu,T,N)
# Plot p(t) as a function of x(t)
f1 = figure(1); clf()
h1, = plot(x0,p0,'k',linewidth=1.5)
h2, = plot(x0,p0,'ro',linewidth=2,markersize=6)
MIN_X = -2.2; MAX_X = 2.2
MIN_Y = -4; MAX_Y = 4
xlim(MIN_X, MAX_X)
ylim(MIN_Y, MAX_Y)
xlabel('x(t)')
ylabel('p(t)')
draw()
# Plot time series of x(t) and p(t)
f2 = figure(2); clf()
subplot(2,1,1)
h3, = plot(t0,x0)
xlim(t0, t0+T)
ylim(MIN_X, MAX_X)
xlabel('t'); ylabel('x(t)')
subplot(2,1,2)
h4, = plot(t0,p0,'m')
xlim(t0, t0+T)
ylim(MIN_Y, MAX_Y)
xlabel('t'); ylabel('p(t)')
draw()
pause(3)
# Update plots
frameLength = 500
for i in range(len(t)):
if(mod(i+1,frameLength) == 0):
h1.set_data(x[:i], p[:i])
h2.set_data(x[i], p[i])
f1.canvas.draw()
h3.set_data(t[:i], x[:i])
h4.set_data(t[:i], p[:i])
pause(0.1)
f2.canvas.draw()
if __name__ == '__main__':
demo_vanDerPol()