forked from synxlin/deep-gradient-compression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
413 lines (354 loc) · 15.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import argparse
import math
import os
import random
import shutil
import numpy as np
import horovod.torch as hvd
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.multiprocessing as mp
from tqdm import tqdm
from torchpack.mtpack.utils.config import Config, configs
from dgc.horovod.optimizer import DistributedOptimizer
from dgc.compression import DGCCompressor
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--configs', nargs='+')
parser.add_argument('--devices', default='gpu')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--suffix', default='')
args, opts = parser.parse_known_args()
##################
# Update configs #
##################
printr(f'==> loading configs from {args.configs}')
Config.update_from_modules(*args.configs)
Config.update_from_arguments(*opts)
if args.devices is not None and args.devices != 'cpu':
configs.device = 'cuda'
# Horovod: pin GPU to local rank.
torch.cuda.set_device(hvd.local_rank())
cudnn.benchmark = True
else:
configs.device = 'cpu'
if 'seed' in configs and configs.seed is not None:
random.seed(configs.seed)
np.random.seed(configs.seed)
torch.manual_seed(configs.seed)
if configs.device == 'cuda' and configs.get('deterministic', True):
cudnn.deterministic = True
cudnn.benchmark = False
configs.train.num_batches_per_step = \
configs.train.get('num_batches_per_step', 1)
configs.train.save_path = get_save_path(*args.configs) \
+ f'{args.suffix}.np{hvd.size()}'
printr(f'[train.save_path] = {configs.train.save_path}')
checkpoint_path = os.path.join(configs.train.save_path, 'checkpoints')
configs.train.checkpoint_path = os.path.join(
checkpoint_path, f'e{"{epoch}"}-r{hvd.rank()}.pth'
)
configs.train.latest_pth_path = os.path.join(
checkpoint_path, f'latest-r{hvd.rank()}.pth'
)
configs.train.best_pth_path = os.path.join(
checkpoint_path, f'best-r{hvd.rank()}.pth'
)
os.makedirs(checkpoint_path, exist_ok=True)
if args.evaluate:
configs.train.latest_pth_path = configs.train.best_pth_path
printr(configs)
#####################################################################
# Initialize DataLoaders, Model, Criterion, LRScheduler & Optimizer #
#####################################################################
printr(f'\n==> creating dataset "{configs.dataset}"')
dataset = configs.dataset()
# Horovod: limit # of CPU threads to be used per worker.
torch.set_num_threads(configs.data.num_threads_per_worker)
loader_kwargs = {'num_workers': configs.data.num_threads_per_worker,
'pin_memory': True} if configs.device == 'cuda' else {}
# When supported, use 'forkserver' to spawn dataloader workers
# instead of 'fork' to prevent issues with Infiniband implementations
# that are not fork-safe
if (loader_kwargs.get('num_workers', 0) > 0 and
hasattr(mp, '_supports_context') and
mp._supports_context and
'forkserver' in mp.get_all_start_methods()):
loader_kwargs['multiprocessing_context'] = 'forkserver'
printr(f'\n==> loading dataset "{loader_kwargs}""')
samplers, loaders = {}, {}
for split in dataset:
# Horovod: use DistributedSampler to partition data among workers.
# Manually specify `num_replicas=hvd.size()` and `rank=hvd.rank()`.
samplers[split] = torch.utils.data.distributed.DistributedSampler(
dataset[split], num_replicas=hvd.size(), rank=hvd.rank())
loaders[split] = torch.utils.data.DataLoader(
dataset[split], batch_size=configs.train.batch_size * (
configs.train.num_batches_per_step if split == 'train' else 1),
sampler=samplers[split],
drop_last=(configs.train.num_batches_per_step > 1
and split == 'train'),
**loader_kwargs
)
printr(f'\n==> creating model "{configs.model}"')
model = configs.model()
model = model.cuda()
criterion = configs.train.criterion().to(configs.device)
# Horovod: scale learning rate by the number of GPUs.
configs.train.base_lr = configs.train.optimizer.lr
configs.train.optimizer.lr *= (configs.train.num_batches_per_step
* hvd.size())
printr(f'\n==> creating optimizer "{configs.train.optimizer}"')
if configs.train.optimize_bn_separately:
optimizer = configs.train.optimizer([
dict(params=get_common_parameters(model)),
dict(params=get_bn_parameters(model), weight_decay=0)
])
else:
optimizer = configs.train.optimizer(model.parameters())
# Horovod: (optional) compression algorithm.
printr(f'\n==> creating compression "{configs.train.compression}"')
if configs.train.dgc:
printr(f'\n==> initializing dgc compression')
configs.train.compression.memory = configs.train.compression.memory()
compression = configs.train.compression()
compression.memory.initialize(model.named_parameters())
cpr_parameters = {}
for name, param in model.named_parameters():
if param.dim() > 1:
cpr_parameters[name] = param
compression.initialize(cpr_parameters.items())
else:
compression = configs.train.compression()
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = DistributedOptimizer(
optimizer, named_parameters=model.named_parameters(),
compression=compression,
backward_passes_per_step=configs.train.num_batches_per_step,
op=hvd.Average
)
# resume from checkpoint
last_epoch, best_metric = -1, None
if os.path.exists(configs.train.latest_pth_path):
printr(f'\n[resume_path] = {configs.train.latest_pth_path}')
checkpoint = torch.load(configs.train.latest_pth_path)
if 'model' in checkpoint:
model.load_state_dict(checkpoint.pop('model'))
if 'optimizer' in checkpoint:
optimizer.load_state_dict(checkpoint.pop('optimizer'))
if configs.train.dgc and 'compression' in checkpoint:
compression.memory.load_state_dict(checkpoint.pop('compression'))
last_epoch = checkpoint.get('epoch', last_epoch)
best_metric = checkpoint.get('meters', {}).get(
f'{configs.train.metric}_best', best_metric)
# Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
else:
printr('\n==> train from scratch')
# Horovod: broadcast parameters & optimizer state.
printr('\n==> broadcasting paramters and optimizer state')
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
num_steps_per_epoch = len(loaders['train'])
if 'scheduler' in configs.train and configs.train.scheduler is not None:
if configs.train.schedule_lr_per_epoch:
last = max(last_epoch - configs.train.warmup_lr_epochs - 1, -1)
else:
last = max((last_epoch - configs.train.warmup_lr_epochs + 1)
* num_steps_per_epoch - 2, -1)
scheduler = configs.train.scheduler(optimizer, last_epoch=last)
else:
scheduler = None
############
# Training #
############
meters = evaluate(model, device=configs.device, meters=configs.train.meters,
loader=loaders['test'], split='test')
for k, meter in meters.items():
printr(f'[{k}] = {meter:2f}')
if args.evaluate or last_epoch >= configs.train.num_epochs:
return
if hvd.rank() == 0:
from tensorboardX import SummaryWriter
writer = SummaryWriter(configs.train.save_path)
else:
writer = None
for current_epoch in range(last_epoch + 1, configs.train.num_epochs):
printr(f'\n==> training epoch {current_epoch}'
f'/{configs.train.num_epochs}')
if configs.train.dgc:
compression.warmup_compress_ratio(current_epoch)
train(model=model, loader=loaders['train'],
device=configs.device, epoch=current_epoch,
sampler=samplers['train'], criterion=criterion,
optimizer=optimizer, scheduler=scheduler,
batch_size=configs.train.batch_size,
num_batches_per_step=configs.train.num_batches_per_step,
num_steps_per_epoch=num_steps_per_epoch,
warmup_lr_epochs=configs.train.warmup_lr_epochs,
schedule_lr_per_epoch=configs.train.schedule_lr_per_epoch,
writer=writer, quiet=hvd.rank() != 0)
meters = dict()
for split, loader in loaders.items():
if split != 'train':
meters.update(evaluate(model, loader=loader,
device=configs.device,
meters=configs.train.meters,
split=split, quiet=hvd.rank() != 0))
best = False
if 'metric' in configs.train and configs.train.metric is not None:
if best_metric is None or best_metric < meters[configs.train.metric]:
best_metric, best = meters[configs.train.metric], True
meters[configs.train.metric + '_best'] = best_metric
if writer is not None:
num_inputs = ((current_epoch + 1) * num_steps_per_epoch
* configs.train.num_batches_per_step
* configs.train.batch_size * hvd.size())
print('')
for k, meter in meters.items():
print(f'[{k}] = {meter:2f}')
writer.add_scalar(k, meter, num_inputs)
checkpoint = {
'epoch': current_epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'meters': meters,
'compression': compression.memory.state_dict() \
if configs.train.dgc else None
}
# save checkpoint
checkpoint_path = \
configs.train.checkpoint_path.format(epoch=current_epoch)
torch.save(checkpoint, checkpoint_path)
shutil.copyfile(checkpoint_path, configs.train.latest_pth_path)
if best:
shutil.copyfile(checkpoint_path, configs.train.best_pth_path)
if current_epoch >= 3:
os.remove(
configs.train.checkpoint_path.format(epoch=current_epoch - 3)
)
printr(f'[save_path] = {checkpoint_path}')
def train(model, loader, device, epoch, sampler, criterion, optimizer,
scheduler, batch_size, num_batches_per_step, num_steps_per_epoch, warmup_lr_epochs, schedule_lr_per_epoch, writer=None, quiet=True):
step_size = num_batches_per_step * batch_size
num_inputs = epoch * num_steps_per_epoch * step_size * hvd.size()
_r_num_batches_per_step = 1.0 / num_batches_per_step
sampler.set_epoch(epoch)
model.train()
for step, (inputs, targets) in enumerate(tqdm(
loader, desc='train', ncols=0, disable=quiet)):
adjust_learning_rate(scheduler, epoch=epoch, step=step,
num_steps_per_epoch=num_steps_per_epoch,
warmup_lr_epochs=warmup_lr_epochs,
schedule_lr_per_epoch=schedule_lr_per_epoch)
inputs = inputs.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
optimizer.zero_grad()
loss = torch.tensor([0.0])
for b in range(0, step_size, batch_size):
_inputs = inputs[b:b+batch_size]
_targets = targets[b:b+batch_size]
_outputs = model(_inputs)
_loss = criterion(_outputs, _targets)
_loss.mul_(_r_num_batches_per_step)
_loss.backward()
loss += _loss.item()
optimizer.step()
# write train loss log
loss = hvd.allreduce(loss, name='loss').item()
if writer is not None:
num_inputs += step_size * hvd.size()
writer.add_scalar('loss/train', loss, num_inputs)
def evaluate(model, loader, device, meters, split='test', quiet=True):
_meters = {}
for k, meter in meters.items():
_meters[k.format(split)] = meter()
meters = _meters
model.eval()
with torch.no_grad():
for inputs, targets in tqdm(loader, desc=split, ncols=0, disable=quiet):
inputs = inputs.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
outputs = model(inputs)
for meter in meters.values():
meter.update(outputs, targets)
for k, meter in meters.items():
data = meter.data()
for dk, d in data.items():
data[dk] = \
hvd.allreduce(torch.tensor([d]), name=dk, op=hvd.Sum).item()
meter.set(data)
meters[k] = meter.compute()
return meters
# Horovod: using `lr = base_lr * hvd.size()` from the very beginning
# leads to worse final accuracy.
# Scale the learning rate `lr = base_lr` ---> `lr = base_lr * hvd.size()`
# during the first five epochs. See https://arxiv.org/abs/1706.02677.
def adjust_learning_rate(scheduler, epoch, step, num_steps_per_epoch,
warmup_lr_epochs=0, schedule_lr_per_epoch=False):
if epoch < warmup_lr_epochs:
size = hvd.size()
epoch += step / num_steps_per_epoch
factor = (epoch * (size - 1) / warmup_lr_epochs + 1) / size
for param_group, base_lr in zip(scheduler.optimizer.param_groups,
scheduler.base_lrs):
param_group['lr'] = base_lr * factor
elif schedule_lr_per_epoch and (step > 0 or epoch == 0):
return
elif epoch == warmup_lr_epochs and step == 0:
for param_group, base_lr in zip(scheduler.optimizer.param_groups,
scheduler.base_lrs):
param_group['lr'] = base_lr
return
else:
scheduler.step()
def get_bn_parameters(module):
def get_members_fn(m):
if isinstance(m, nn.BatchNorm2d):
return m._parameters.items()
else:
return dict()
gen = module._named_members(get_members_fn=get_members_fn)
for _, elem in gen:
yield elem
def get_common_parameters(module):
def get_members_fn(m):
if isinstance(m, nn.BatchNorm2d):
return dict()
else:
for n, p in m._parameters.items():
yield n, p
gen = module._named_members(get_members_fn=get_members_fn)
for _, elem in gen:
yield elem
def get_save_path(*configs, prefix='runs'):
memo = dict()
for c in configs:
cmemo = memo
c = c.replace('configs/', '').replace('.py', '').split('/')
for m in c:
if m not in cmemo:
cmemo[m] = dict()
cmemo = cmemo[m]
def get_str(m, p):
n = len(m)
if n > 1:
p += '['
for i, (k, v) in enumerate(m.items()):
p += k
if len(v) > 0:
p += '.'
p = get_str(v, p)
if n > 1 and i < n - 1:
p += '+'
if n > 1:
p += ']'
return p
return os.path.join(prefix, get_str(memo, ''))
def printr(*args, **kwargs):
if hvd.rank() == 0:
print(*args, **kwargs)
if __name__ == '__main__':
hvd.init()
main()