From 028f2720d12a3a19a30e689347e98c5eb07631eb Mon Sep 17 00:00:00 2001 From: Douglas Thor Date: Tue, 2 Jul 2024 14:27:41 -0700 Subject: [PATCH 01/17] Add .bazelversion (#790) This repo is already using `bazelisk` but does not currently pin a Bazel version. Add `.bazelversion` to pin Bazel based on the version used in a recent CI run (https://github.com/quantumlib/Stim/actions/runs/9657364117/job/26636504001). Related to https://github.com/qh-lab/pyle/pull/46833#issuecomment-2204296035 /cc @Strilanc --- .bazelversion | 1 + 1 file changed, 1 insertion(+) create mode 100644 .bazelversion diff --git a/.bazelversion b/.bazelversion new file mode 100644 index 00000000..0ee843cc --- /dev/null +++ b/.bazelversion @@ -0,0 +1 @@ +7.2.0 From cfcf16352901ba53901ba6586695800bff285f78 Mon Sep 17 00:00:00 2001 From: Douglas Thor Date: Tue, 2 Jul 2024 14:57:12 -0700 Subject: [PATCH 02/17] bazelbuild/setup-bazelisk is deprecated; use bazel-contib/setup-bazel instead (#791) [bazelbuild/setup-bazelisk](https://github.com/bazelbuild/setup-bazelisk) is deprecated; use [bazel-contib/setup-bazel](https://github.com/bazel-contrib/setup-bazel) instead. --- .github/workflows/ci.yml | 42 ++++++++++++++++++++++++++++++++++------ 1 file changed, 36 insertions(+), 6 deletions(-) diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index a7dbd443..3c6709c6 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -215,7 +215,12 @@ jobs: runs-on: ubuntu-latest steps: - uses: actions/checkout@v1 - - uses: bazelbuild/setup-bazelisk@v1 + - uses: bazel-contrib/setup-bazel@0.8.5 + with: + bazelisk-cache: true + disk-cache: ${{ github.workflow }} + repository-cache: true + bazelisk-version: 1.x - run: bazel build :all - run: bazel test :stim_test build_clang: @@ -310,7 +315,12 @@ jobs: steps: - uses: actions/checkout@v3 - uses: actions/setup-python@v3 - - uses: bazelbuild/setup-bazelisk@v1 + - uses: bazel-contrib/setup-bazel@0.8.5 + with: + bazelisk-cache: true + disk-cache: ${{ github.workflow }} + repository-cache: true + bazelisk-version: 1.x - uses: actions/setup-node@v1 with: node-version: 16.x @@ -342,7 +352,12 @@ jobs: steps: - uses: actions/checkout@v3 - uses: actions/setup-python@v3 - - uses: bazelbuild/setup-bazelisk@v1 + - uses: bazel-contrib/setup-bazel@0.8.5 + with: + bazelisk-cache: true + disk-cache: ${{ github.workflow }} + repository-cache: true + bazelisk-version: 1.x - run: bazel build :stim_dev_wheel - run: pip install bazel-bin/stim-0.0.dev0-py3-none-any.whl - run: pip install pytest @@ -353,7 +368,12 @@ jobs: steps: - uses: actions/checkout@v3 - uses: actions/setup-python@v3 - - uses: bazelbuild/setup-bazelisk@v1 + - uses: bazel-contrib/setup-bazel@0.8.5 + with: + bazelisk-cache: true + disk-cache: ${{ github.workflow }} + repository-cache: true + bazelisk-version: 1.x - run: bazel build :stim_dev_wheel - run: pip install bazel-bin/stim-0.0.dev0-py3-none-any.whl - run: pip install -e glue/cirq @@ -365,7 +385,12 @@ jobs: steps: - uses: actions/checkout@v3 - uses: actions/setup-python@v3 - - uses: bazelbuild/setup-bazelisk@v1 + - uses: bazel-contrib/setup-bazel@0.8.5 + with: + bazelisk-cache: true + disk-cache: ${{ github.workflow }} + repository-cache: true + bazelisk-version: 1.x - run: bazel build :stim_dev_wheel - run: pip install bazel-bin/stim-0.0.dev0-py3-none-any.whl - run: pip install -e glue/sample @@ -378,7 +403,12 @@ jobs: steps: - uses: actions/checkout@v3 - uses: actions/setup-python@v3 - - uses: bazelbuild/setup-bazelisk@v1 + - uses: bazel-contrib/setup-bazel@0.8.5 + with: + bazelisk-cache: true + disk-cache: ${{ github.workflow }} + repository-cache: true + bazelisk-version: 1.x - run: bazel build :stim_dev_wheel - run: pip install bazel-bin/stim-0.0.dev0-py3-none-any.whl - run: pip install -e glue/zx From e0d99ebe9f0c29b9ad5559efff9c9ab4952c89da Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Tue, 2 Jul 2024 20:49:18 -0700 Subject: [PATCH 03/17] Fix PauliString.before reset not working (#792) - Also switch `circuit.insert` to doing auto-fusion of operations --- doc/python_api_reference_vDev.md | 10 +- doc/stim.pyi | 10 +- glue/python/src/stim/__init__.pyi | 10 +- src/stim/circuit/circuit.cc | 32 +++- src/stim/circuit/circuit.h | 1 + src/stim/circuit/circuit.pybind.cc | 10 +- src/stim/circuit/circuit.test.cc | 139 ++++++++++++++++++ .../stabilizers/pauli_string_pybind_test.py | 27 ++++ src/stim/stabilizers/pauli_string_ref.h | 1 + src/stim/stabilizers/pauli_string_ref.inl | 39 ++++- 10 files changed, 247 insertions(+), 32 deletions(-) diff --git a/doc/python_api_reference_vDev.md b/doc/python_api_reference_vDev.md index d05fb9dc..8846c0ac 100644 --- a/doc/python_api_reference_vDev.md +++ b/doc/python_api_reference_vDev.md @@ -2236,9 +2236,8 @@ def insert( ) -> None: """Inserts an operation at the given index, pushing existing operations forward. - Note that, unlike when appending operations or parsing stim circuit files, - inserted operations aren't automatically fused into the preceding operation. - This is to avoid creating complicated situations where it's difficult to reason + Beware that inserted operations are automatically fused with the preceding + and following operations, if possible. This can make it complex to reason about how the indices of operations change in response to insertions. Args: @@ -2249,7 +2248,7 @@ def insert( indices relative to the end of the circuit instead of the start. Instructions before the index are not shifted. Instructions that - were at or after the index are shifted forwards. + were at or after the index are shifted forwards as needed. operation: The object to insert. This can be a single stim.CircuitInstruction or an entire stim.Circuit. @@ -2273,8 +2272,7 @@ def insert( stim.Circuit(''' H 0 Y 3 4 5 - S 1 - S 999 + S 1 999 CX 0 1 CZ 2 3 X 2 diff --git a/doc/stim.pyi b/doc/stim.pyi index 8d603dd7..9e15ce30 100644 --- a/doc/stim.pyi +++ b/doc/stim.pyi @@ -1607,9 +1607,8 @@ class Circuit: ) -> None: """Inserts an operation at the given index, pushing existing operations forward. - Note that, unlike when appending operations or parsing stim circuit files, - inserted operations aren't automatically fused into the preceding operation. - This is to avoid creating complicated situations where it's difficult to reason + Beware that inserted operations are automatically fused with the preceding + and following operations, if possible. This can make it complex to reason about how the indices of operations change in response to insertions. Args: @@ -1620,7 +1619,7 @@ class Circuit: indices relative to the end of the circuit instead of the start. Instructions before the index are not shifted. Instructions that - were at or after the index are shifted forwards. + were at or after the index are shifted forwards as needed. operation: The object to insert. This can be a single stim.CircuitInstruction or an entire stim.Circuit. @@ -1644,8 +1643,7 @@ class Circuit: stim.Circuit(''' H 0 Y 3 4 5 - S 1 - S 999 + S 1 999 CX 0 1 CZ 2 3 X 2 diff --git a/glue/python/src/stim/__init__.pyi b/glue/python/src/stim/__init__.pyi index 8d603dd7..9e15ce30 100644 --- a/glue/python/src/stim/__init__.pyi +++ b/glue/python/src/stim/__init__.pyi @@ -1607,9 +1607,8 @@ class Circuit: ) -> None: """Inserts an operation at the given index, pushing existing operations forward. - Note that, unlike when appending operations or parsing stim circuit files, - inserted operations aren't automatically fused into the preceding operation. - This is to avoid creating complicated situations where it's difficult to reason + Beware that inserted operations are automatically fused with the preceding + and following operations, if possible. This can make it complex to reason about how the indices of operations change in response to insertions. Args: @@ -1620,7 +1619,7 @@ class Circuit: indices relative to the end of the circuit instead of the start. Instructions before the index are not shifted. Instructions that - were at or after the index are shifted forwards. + were at or after the index are shifted forwards as needed. operation: The object to insert. This can be a single stim.CircuitInstruction or an entire stim.Circuit. @@ -1644,8 +1643,7 @@ class Circuit: stim.Circuit(''' H 0 Y 3 4 5 - S 1 - S 999 + S 1 999 CX 0 1 CZ 2 3 X 2 diff --git a/src/stim/circuit/circuit.cc b/src/stim/circuit/circuit.cc index 615a20e3..86b762f7 100644 --- a/src/stim/circuit/circuit.cc +++ b/src/stim/circuit/circuit.cc @@ -225,13 +225,21 @@ void circuit_read_single_operation(Circuit &circuit, char lead_char, SOURCE read } void Circuit::try_fuse_last_two_ops() { - auto &ops = operations; - size_t n = ops.size(); - if (n > 1 && ops[n - 2].can_fuse(ops[n - 1])) { - fuse_data(ops[n - 2].targets, ops[n - 1].targets, target_buf); - ops.pop_back(); + if (operations.size() >= 2) { + try_fuse_after(operations.size() - 2); } } + +void Circuit::try_fuse_after(size_t index) { + if (index + 1 >= operations.size()) { + return; + } + if (operations[index].can_fuse(operations[index + 1])) { + fuse_data(operations[index].targets, operations[index + 1].targets, target_buf); + operations.erase(operations.begin() + index + 1); + } +} + template void circuit_read_operations(Circuit &circuit, SOURCE read_char, READ_CONDITION read_condition) { auto &ops = circuit.operations; @@ -358,6 +366,12 @@ void Circuit::safe_insert(size_t index, const CircuitInstruction &instruction) { copy.args = arg_buf.take_copy(copy.args); copy.targets = target_buf.take_copy(copy.targets); operations.insert(operations.begin() + index, copy); + + // Fuse at boundaries. + try_fuse_after(index); + if (index > 0) { + try_fuse_after(index - 1); + } } void Circuit::safe_insert(size_t index, const Circuit &circuit) { @@ -381,6 +395,14 @@ void Circuit::safe_insert(size_t index, const Circuit &circuit) { operations[k].args = arg_buf.take_copy(operations[k].args); } } + + // Fuse at boundaries. + if (!circuit.operations.empty()) { + try_fuse_after(index + circuit.operations.size() - 1); + if (index > 0) { + try_fuse_after(index - 1); + } + } } void Circuit::safe_insert_repeat_block(size_t index, uint64_t repeat_count, const Circuit &block) { diff --git a/src/stim/circuit/circuit.h b/src/stim/circuit/circuit.h index e8670e83..f8268dea 100644 --- a/src/stim/circuit/circuit.h +++ b/src/stim/circuit/circuit.h @@ -280,6 +280,7 @@ struct Circuit { std::string describe_instruction_location(size_t instruction_offset) const; void try_fuse_last_two_ops(); + void try_fuse_after(size_t index); }; void vec_pad_add_mul(std::vector &target, SpanRef offset, uint64_t mul = 1); diff --git a/src/stim/circuit/circuit.pybind.cc b/src/stim/circuit/circuit.pybind.cc index 608b60bf..f364cc4e 100644 --- a/src/stim/circuit/circuit.pybind.cc +++ b/src/stim/circuit/circuit.pybind.cc @@ -1134,9 +1134,8 @@ void stim_pybind::pybind_circuit_methods(pybind11::module &, pybind11::class_ None: - Note that, unlike when appending operations or parsing stim circuit files, - inserted operations aren't automatically fused into the preceding operation. - This is to avoid creating complicated situations where it's difficult to reason + Beware that inserted operations are automatically fused with the preceding + and following operations, if possible. This can make it complex to reason about how the indices of operations change in response to insertions. Args: @@ -1147,7 +1146,7 @@ void stim_pybind::pybind_circuit_methods(pybind11::module &, pybind11::class_::do_circuit(const Circuit &circuit) { }); } +template +void PauliStringRef::undo_reset_xyz(const CircuitInstruction &inst) { + bool x_dep, z_dep; + if (inst.gate_type == GateType::R || inst.gate_type == GateType::MR) { + x_dep = true; + z_dep = false; + } else if (inst.gate_type == GateType::RX || inst.gate_type == GateType::MRX) { + x_dep = false; + z_dep = true; + } else if (inst.gate_type == GateType::RY || inst.gate_type == GateType::MRY) { + x_dep = true; + z_dep = true; + } else { + throw std::invalid_argument("Unrecognized measurement type: " + inst.str()); + } + for (const auto &t : inst.targets) { + assert(t.is_qubit_target()); + auto q = t.qubit_value(); + if (q < num_qubits && ((xs[q] & x_dep) ^ (zs[q] & z_dep))) { + std::stringstream ss; + ss << "The pauli observable '" << *this; + ss << "' doesn't have a well specified value before '" << inst; + ss << "' because it anticommutes with the reset."; + throw std::invalid_argument(ss.str()); + } + } + for (const auto &t : inst.targets) { + auto q = t.qubit_value(); + xs[q] = false; + zs[q] = false; + } +} + template void PauliStringRef::check_avoids_measurement(const CircuitInstruction &inst) { bool x_dep, z_dep; @@ -193,7 +226,7 @@ void PauliStringRef::check_avoids_measurement(const CircuitInstruction &inst) if (q < num_qubits && ((xs[q] & x_dep) ^ (zs[q] & z_dep))) { std::stringstream ss; ss << "The pauli observable '" << *this; - ss << "' doesn't have a well specified value after '" << inst; + ss << "' doesn't have a well specified value across '" << inst; ss << "' because it anticommutes with the measurement."; throw std::invalid_argument(ss.str()); } @@ -238,7 +271,7 @@ void PauliStringRef::check_avoids_MPP(const CircuitInstruction &inst) { if (anticommutes) { std::stringstream ss; ss << "The pauli observable '" << *this; - ss << "' doesn't have a well specified value after '" << inst; + ss << "' doesn't have a well specified value across '" << inst; ss << "' because it anticommutes with the measurement."; throw std::invalid_argument(ss.str()); } @@ -552,7 +585,7 @@ void PauliStringRef::undo_instruction(const CircuitInstruction &inst) { case GateType::MR: case GateType::MRX: case GateType::MRY: - check_avoids_reset(inst); + undo_reset_xyz(inst); break; case GateType::M: From 0685b5a2e784c24b8898ceb1a01e01db34ab47fd Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Sat, 13 Jul 2024 02:12:29 -0700 Subject: [PATCH 04/17] Add `stim.Circuit.flow_generators` (#794) - Fix `MPAD` targets counting towards `circuit.num_qubits` - Fix `stim::PauliString` move constructor not clearing `num_qubits` - Fix `stim.has_flow` not ignoring noise - Add `stim.CircuitInstruction.num_measurements` - Add `stim::PauliString::operator<` - Fix `SPP` and `SPP_DAG` not being supported by `stim.PauliString.after/before` --- doc/python_api_reference_vDev.md | 100 ++++ doc/stim.pyi | 84 +++ file_lists/test_files | 1 + glue/python/src/stim/__init__.pyi | 84 +++ src/stim.h | 1 + src/stim/circuit/circuit.pybind.cc | 76 ++- src/stim/circuit/circuit_instruction.cc | 6 +- .../circuit/circuit_instruction.pybind.cc | 25 + .../circuit_instruction_pybind_test.py | 7 + src/stim/mem/sparse_xor_vec.h | 35 +- .../py/compiled_detector_sampler.pybind.cc | 14 +- src/stim/py/numpy.pybind.cc | 21 +- src/stim/simulators/dem_sampler.pybind.cc | 6 +- src/stim/simulators/frame_simulator.pybind.cc | 3 +- ...measurements_to_detection_events.pybind.cc | 3 +- src/stim/stabilizers/flow.h | 1 + src/stim/stabilizers/flow.inl | 20 + src/stim/stabilizers/flow.test.cc | 32 +- src/stim/stabilizers/pauli_string.h | 16 +- src/stim/stabilizers/pauli_string.inl | 61 ++- src/stim/stabilizers/pauli_string_ref.h | 1 + src/stim/stabilizers/pauli_string_ref.inl | 42 ++ src/stim/util_top/circuit_flow_generators.h | 51 ++ src/stim/util_top/circuit_flow_generators.inl | 515 ++++++++++++++++++ .../util_top/circuit_flow_generators.test.cc | 266 +++++++++ src/stim/util_top/circuit_inverse_qec.test.cc | 2 +- src/stim/util_top/export_qasm.test.cc | 2 +- src/stim/util_top/has_flow.inl | 5 +- src/stim/util_top/reference_sample_tree.cc | 34 +- src/stim/util_top/reference_sample_tree.h | 12 +- src/stim/util_top/reference_sample_tree.inl | 13 +- .../util_top/reference_sample_tree.perf.cc | 6 +- .../util_top/reference_sample_tree.test.cc | 198 ++++--- src/stim/util_top/stabilizers_to_tableau.inl | 2 +- 34 files changed, 1551 insertions(+), 194 deletions(-) create mode 100644 src/stim/util_top/circuit_flow_generators.h create mode 100644 src/stim/util_top/circuit_flow_generators.inl create mode 100644 src/stim/util_top/circuit_flow_generators.test.cc diff --git a/doc/python_api_reference_vDev.md b/doc/python_api_reference_vDev.md index 8846c0ac..49dd374d 100644 --- a/doc/python_api_reference_vDev.md +++ b/doc/python_api_reference_vDev.md @@ -33,6 +33,7 @@ API references for stable versions are kept on the [stim github wiki](https://gi - [`stim.Circuit.diagram`](#stim.Circuit.diagram) - [`stim.Circuit.explain_detector_error_model_errors`](#stim.Circuit.explain_detector_error_model_errors) - [`stim.Circuit.flattened`](#stim.Circuit.flattened) + - [`stim.Circuit.flow_generators`](#stim.Circuit.flow_generators) - [`stim.Circuit.from_file`](#stim.Circuit.from_file) - [`stim.Circuit.generated`](#stim.Circuit.generated) - [`stim.Circuit.get_detector_coordinates`](#stim.Circuit.get_detector_coordinates) @@ -80,6 +81,7 @@ API references for stable versions are kept on the [stim github wiki](https://gi - [`stim.CircuitInstruction.__str__`](#stim.CircuitInstruction.__str__) - [`stim.CircuitInstruction.gate_args_copy`](#stim.CircuitInstruction.gate_args_copy) - [`stim.CircuitInstruction.name`](#stim.CircuitInstruction.name) + - [`stim.CircuitInstruction.num_measurements`](#stim.CircuitInstruction.num_measurements) - [`stim.CircuitInstruction.targets_copy`](#stim.CircuitInstruction.targets_copy) - [`stim.CircuitRepeatBlock`](#stim.CircuitRepeatBlock) - [`stim.CircuitRepeatBlock.__eq__`](#stim.CircuitRepeatBlock.__eq__) @@ -1825,6 +1827,64 @@ def flattened( """ ``` + +```python +# stim.Circuit.flow_generators + +# (in class stim.Circuit) +def flow_generators( + self, +) -> List[stim.Flow]: + """Returns a list of flows that generate all of the circuit's flows. + + Every stabilizer flow that the circuit implements is a product of some + subset of the returned generators. Every returned flow will be a flow + of the circuit. + + Returns: + A list of flow generators for the circuit. + + Examples: + >>> import stim + + >>> stim.Circuit("H 0").flow_generators() + [stim.Flow("X -> Z"), stim.Flow("Z -> X")] + + >>> stim.Circuit("M 0").flow_generators() + [stim.Flow("1 -> Z xor rec[0]"), stim.Flow("Z -> rec[0]")] + + >>> stim.Circuit("RX 0").flow_generators() + [stim.Flow("1 -> X")] + + >>> for flow in stim.Circuit("MXX 0 1").flow_generators(): + ... print(flow) + 1 -> XX xor rec[0] + _X -> _X + X_ -> _X xor rec[0] + ZZ -> ZZ + + >>> for flow in stim.Circuit.generated( + ... "repetition_code:memory", + ... rounds=2, + ... distance=3, + ... after_clifford_depolarization=1e-3, + ... ).flow_generators(): + ... print(flow) + 1 -> rec[0] + 1 -> rec[1] + 1 -> rec[2] + 1 -> rec[3] + 1 -> rec[4] + 1 -> rec[5] + 1 -> rec[6] + 1 -> ____Z + 1 -> ___Z_ + 1 -> __Z__ + 1 -> _Z___ + 1 -> Z____ + """ +``` + ```python # stim.Circuit.from_file @@ -2064,6 +2124,8 @@ def has_all_flows( because, behind the scenes, the circuit can be iterated once instead of once per flow. + This method ignores any noise in the circuit. + Args: flows: An iterable of `stim.Flow` instances representing the flows to check. unsigned: Defaults to False. When False, the flows must be correct including @@ -2131,6 +2193,8 @@ def has_flow( A flow like P -> 1 means the circuit measures P. A flow like 1 -> 1 means the circuit contains a check (could be a DETECTOR). + This method ignores any noise in the circuit. + Args: flow: The flow to check for. unsigned: Defaults to False. When False, the flows must be correct including @@ -2171,6 +2235,14 @@ def has_flow( ... )) True + >>> stim.Circuit(''' + ... RY 0 + ... X_ERROR(0.1) 0 + ... ''').has_flow(stim.Flow( + ... output=stim.PauliString("Y"), + ... )) + True + >>> stim.Circuit(''' ... RY 0 ... ''').has_flow(stim.Flow( @@ -3727,6 +3799,34 @@ def name( """ ``` + +```python +# stim.CircuitInstruction.num_measurements + +# (in class stim.CircuitInstruction) +@property +def num_measurements( + self, +) -> int: + """Returns the number of bits produced when running this instruction. + + Examples: + >>> import stim + >>> stim.CircuitInstruction('H', [0]).num_measurements + 0 + >>> stim.CircuitInstruction('M', [0]).num_measurements + 1 + >>> stim.CircuitInstruction('M', [2, 3, 5, 7, 11]).num_measurements + 5 + >>> stim.CircuitInstruction('MXX', [0, 1, 4, 5, 11, 13]).num_measurements + 3 + >>> stim.Circuit('MPP X0*X1 X0*Z1*Y2')[0].num_measurements + 2 + >>> stim.CircuitInstruction('HERALDED_ERASE', [0]).num_measurements + 1 + """ +``` + ```python # stim.CircuitInstruction.targets_copy diff --git a/doc/stim.pyi b/doc/stim.pyi index 9e15ce30..cd0d0258 100644 --- a/doc/stim.pyi +++ b/doc/stim.pyi @@ -1243,6 +1243,57 @@ class Circuit: ... ''').flattened_operations() [('H', [6], 0), ('H', [6], 0)] """ + def flow_generators( + self, + ) -> List[stim.Flow]: + """Returns a list of flows that generate all of the circuit's flows. + + Every stabilizer flow that the circuit implements is a product of some + subset of the returned generators. Every returned flow will be a flow + of the circuit. + + Returns: + A list of flow generators for the circuit. + + Examples: + >>> import stim + + >>> stim.Circuit("H 0").flow_generators() + [stim.Flow("X -> Z"), stim.Flow("Z -> X")] + + >>> stim.Circuit("M 0").flow_generators() + [stim.Flow("1 -> Z xor rec[0]"), stim.Flow("Z -> rec[0]")] + + >>> stim.Circuit("RX 0").flow_generators() + [stim.Flow("1 -> X")] + + >>> for flow in stim.Circuit("MXX 0 1").flow_generators(): + ... print(flow) + 1 -> XX xor rec[0] + _X -> _X + X_ -> _X xor rec[0] + ZZ -> ZZ + + >>> for flow in stim.Circuit.generated( + ... "repetition_code:memory", + ... rounds=2, + ... distance=3, + ... after_clifford_depolarization=1e-3, + ... ).flow_generators(): + ... print(flow) + 1 -> rec[0] + 1 -> rec[1] + 1 -> rec[2] + 1 -> rec[3] + 1 -> rec[4] + 1 -> rec[5] + 1 -> rec[6] + 1 -> ____Z + 1 -> ___Z_ + 1 -> __Z__ + 1 -> _Z___ + 1 -> Z____ + """ @staticmethod def from_file( file: Union[io.TextIOBase, str, pathlib.Path], @@ -1449,6 +1500,8 @@ class Circuit: because, behind the scenes, the circuit can be iterated once instead of once per flow. + This method ignores any noise in the circuit. + Args: flows: An iterable of `stim.Flow` instances representing the flows to check. unsigned: Defaults to False. When False, the flows must be correct including @@ -1509,6 +1562,8 @@ class Circuit: A flow like P -> 1 means the circuit measures P. A flow like 1 -> 1 means the circuit contains a check (could be a DETECTOR). + This method ignores any noise in the circuit. + Args: flow: The flow to check for. unsigned: Defaults to False. When False, the flows must be correct including @@ -1549,6 +1604,14 @@ class Circuit: ... )) True + >>> stim.Circuit(''' + ... RY 0 + ... X_ERROR(0.1) 0 + ... ''').has_flow(stim.Flow( + ... output=stim.PauliString("Y"), + ... )) + True + >>> stim.Circuit(''' ... RY 0 ... ''').has_flow(stim.Flow( @@ -2816,6 +2879,27 @@ class CircuitInstruction: ) -> str: """The name of the instruction (e.g. `H` or `X_ERROR` or `DETECTOR`). """ + @property + def num_measurements( + self, + ) -> int: + """Returns the number of bits produced when running this instruction. + + Examples: + >>> import stim + >>> stim.CircuitInstruction('H', [0]).num_measurements + 0 + >>> stim.CircuitInstruction('M', [0]).num_measurements + 1 + >>> stim.CircuitInstruction('M', [2, 3, 5, 7, 11]).num_measurements + 5 + >>> stim.CircuitInstruction('MXX', [0, 1, 4, 5, 11, 13]).num_measurements + 3 + >>> stim.Circuit('MPP X0*X1 X0*Z1*Y2')[0].num_measurements + 2 + >>> stim.CircuitInstruction('HERALDED_ERASE', [0]).num_measurements + 1 + """ def targets_copy( self, ) -> List[stim.GateTarget]: diff --git a/file_lists/test_files b/file_lists/test_files index efab5d9b..9de5d724 100644 --- a/file_lists/test_files +++ b/file_lists/test_files @@ -79,6 +79,7 @@ src/stim/util_bot/probability_util.test.cc src/stim/util_bot/str_util.test.cc src/stim/util_bot/test_util.test.cc src/stim/util_bot/twiddle.test.cc +src/stim/util_top/circuit_flow_generators.test.cc src/stim/util_top/circuit_inverse_qec.test.cc src/stim/util_top/circuit_inverse_unitary.test.cc src/stim/util_top/circuit_to_detecting_regions.test.cc diff --git a/glue/python/src/stim/__init__.pyi b/glue/python/src/stim/__init__.pyi index 9e15ce30..cd0d0258 100644 --- a/glue/python/src/stim/__init__.pyi +++ b/glue/python/src/stim/__init__.pyi @@ -1243,6 +1243,57 @@ class Circuit: ... ''').flattened_operations() [('H', [6], 0), ('H', [6], 0)] """ + def flow_generators( + self, + ) -> List[stim.Flow]: + """Returns a list of flows that generate all of the circuit's flows. + + Every stabilizer flow that the circuit implements is a product of some + subset of the returned generators. Every returned flow will be a flow + of the circuit. + + Returns: + A list of flow generators for the circuit. + + Examples: + >>> import stim + + >>> stim.Circuit("H 0").flow_generators() + [stim.Flow("X -> Z"), stim.Flow("Z -> X")] + + >>> stim.Circuit("M 0").flow_generators() + [stim.Flow("1 -> Z xor rec[0]"), stim.Flow("Z -> rec[0]")] + + >>> stim.Circuit("RX 0").flow_generators() + [stim.Flow("1 -> X")] + + >>> for flow in stim.Circuit("MXX 0 1").flow_generators(): + ... print(flow) + 1 -> XX xor rec[0] + _X -> _X + X_ -> _X xor rec[0] + ZZ -> ZZ + + >>> for flow in stim.Circuit.generated( + ... "repetition_code:memory", + ... rounds=2, + ... distance=3, + ... after_clifford_depolarization=1e-3, + ... ).flow_generators(): + ... print(flow) + 1 -> rec[0] + 1 -> rec[1] + 1 -> rec[2] + 1 -> rec[3] + 1 -> rec[4] + 1 -> rec[5] + 1 -> rec[6] + 1 -> ____Z + 1 -> ___Z_ + 1 -> __Z__ + 1 -> _Z___ + 1 -> Z____ + """ @staticmethod def from_file( file: Union[io.TextIOBase, str, pathlib.Path], @@ -1449,6 +1500,8 @@ class Circuit: because, behind the scenes, the circuit can be iterated once instead of once per flow. + This method ignores any noise in the circuit. + Args: flows: An iterable of `stim.Flow` instances representing the flows to check. unsigned: Defaults to False. When False, the flows must be correct including @@ -1509,6 +1562,8 @@ class Circuit: A flow like P -> 1 means the circuit measures P. A flow like 1 -> 1 means the circuit contains a check (could be a DETECTOR). + This method ignores any noise in the circuit. + Args: flow: The flow to check for. unsigned: Defaults to False. When False, the flows must be correct including @@ -1549,6 +1604,14 @@ class Circuit: ... )) True + >>> stim.Circuit(''' + ... RY 0 + ... X_ERROR(0.1) 0 + ... ''').has_flow(stim.Flow( + ... output=stim.PauliString("Y"), + ... )) + True + >>> stim.Circuit(''' ... RY 0 ... ''').has_flow(stim.Flow( @@ -2816,6 +2879,27 @@ class CircuitInstruction: ) -> str: """The name of the instruction (e.g. `H` or `X_ERROR` or `DETECTOR`). """ + @property + def num_measurements( + self, + ) -> int: + """Returns the number of bits produced when running this instruction. + + Examples: + >>> import stim + >>> stim.CircuitInstruction('H', [0]).num_measurements + 0 + >>> stim.CircuitInstruction('M', [0]).num_measurements + 1 + >>> stim.CircuitInstruction('M', [2, 3, 5, 7, 11]).num_measurements + 5 + >>> stim.CircuitInstruction('MXX', [0, 1, 4, 5, 11, 13]).num_measurements + 3 + >>> stim.Circuit('MPP X0*X1 X0*Z1*Y2')[0].num_measurements + 2 + >>> stim.CircuitInstruction('HERALDED_ERASE', [0]).num_measurements + 1 + """ def targets_copy( self, ) -> List[stim.GateTarget]: diff --git a/src/stim.h b/src/stim.h index d1f55e3a..adc845a5 100644 --- a/src/stim.h +++ b/src/stim.h @@ -105,6 +105,7 @@ #include "stim/util_bot/probability_util.h" #include "stim/util_bot/str_util.h" #include "stim/util_bot/twiddle.h" +#include "stim/util_top/circuit_flow_generators.h" #include "stim/util_top/circuit_inverse_qec.h" #include "stim/util_top/circuit_inverse_unitary.h" #include "stim/util_top/circuit_to_detecting_regions.h" diff --git a/src/stim/circuit/circuit.pybind.cc b/src/stim/circuit/circuit.pybind.cc index f364cc4e..454b6f91 100644 --- a/src/stim/circuit/circuit.pybind.cc +++ b/src/stim/circuit/circuit.pybind.cc @@ -37,6 +37,7 @@ #include "stim/simulators/measurements_to_detection_events.pybind.h" #include "stim/simulators/tableau_simulator.h" #include "stim/stabilizers/flow.h" +#include "stim/util_top/circuit_flow_generators.h" #include "stim/util_top/circuit_inverse_qec.h" #include "stim/util_top/circuit_to_detecting_regions.h" #include "stim/util_top/circuit_vs_tableau.h" @@ -178,11 +179,7 @@ std::string py_likeliest_error_sat_problem(const Circuit &self, int quantization return stim::likeliest_error_sat_problem(dem, quantization, format); } -void circuit_insert( - Circuit &self, - pybind11::ssize_t &index, - pybind11::object &operation) { - +void circuit_insert(Circuit &self, pybind11::ssize_t &index, pybind11::object &operation) { if (index < 0) { index += self.operations.size(); } @@ -1176,7 +1173,7 @@ void stim_pybind::pybind_circuit_methods(pybind11::module &, pybind11::class_ 1 means the circuit measures P. A flow like 1 -> 1 means the circuit contains a check (could be a DETECTOR). + This method ignores any noise in the circuit. + Args: flow: The flow to check for. unsigned: Defaults to False. When False, the flows must be correct including @@ -2860,6 +2859,14 @@ void stim_pybind::pybind_circuit_methods(pybind11::module &, pybind11::class_>> stim.Circuit(''' + ... RY 0 + ... X_ERROR(0.1) 0 + ... ''').has_flow(stim.Flow( + ... output=stim.PauliString("Y"), + ... )) + True + >>> stim.Circuit(''' ... RY 0 ... ''').has_flow(stim.Flow( @@ -2941,6 +2948,8 @@ void stim_pybind::pybind_circuit_methods(pybind11::module &, pybind11::class_, + clean_doc_string(R"DOC( + @signature def flow_generators(self) -> List[stim.Flow]: + Returns a list of flows that generate all of the circuit's flows. + + Every stabilizer flow that the circuit implements is a product of some + subset of the returned generators. Every returned flow will be a flow + of the circuit. + + Returns: + A list of flow generators for the circuit. + + Examples: + >>> import stim + + >>> stim.Circuit("H 0").flow_generators() + [stim.Flow("X -> Z"), stim.Flow("Z -> X")] + + >>> stim.Circuit("M 0").flow_generators() + [stim.Flow("1 -> Z xor rec[0]"), stim.Flow("Z -> rec[0]")] + + >>> stim.Circuit("RX 0").flow_generators() + [stim.Flow("1 -> X")] + + >>> for flow in stim.Circuit("MXX 0 1").flow_generators(): + ... print(flow) + 1 -> XX xor rec[0] + _X -> _X + X_ -> _X xor rec[0] + ZZ -> ZZ + + >>> for flow in stim.Circuit.generated( + ... "repetition_code:memory", + ... rounds=2, + ... distance=3, + ... after_clifford_depolarization=1e-3, + ... ).flow_generators(): + ... print(flow) + 1 -> rec[0] + 1 -> rec[1] + 1 -> rec[2] + 1 -> rec[3] + 1 -> rec[4] + 1 -> rec[5] + 1 -> rec[6] + 1 -> ____Z + 1 -> ___Z_ + 1 -> __Z__ + 1 -> _Z___ + 1 -> Z____ + )DOC") + .data()); + c.def( "time_reversed_for_flows", [](const Circuit &self, diff --git a/src/stim/circuit/circuit_instruction.cc b/src/stim/circuit/circuit_instruction.cc index c2f397c8..840c5f93 100644 --- a/src/stim/circuit/circuit_instruction.cc +++ b/src/stim/circuit/circuit_instruction.cc @@ -62,8 +62,10 @@ void CircuitInstruction::add_stats_to(CircuitStats &out, const Circuit *host) co for (auto t : targets) { auto v = t.data & TARGET_VALUE_MASK; // Qubit counting. - if (!(t.data & (TARGET_RECORD_BIT | TARGET_SWEEP_BIT))) { - out.num_qubits = std::max(out.num_qubits, v + 1); + if (gate_type != GateType::MPAD) { + if (!(t.data & (TARGET_RECORD_BIT | TARGET_SWEEP_BIT))) { + out.num_qubits = std::max(out.num_qubits, v + 1); + } } // Lookback counting. if (t.data & TARGET_RECORD_BIT) { diff --git a/src/stim/circuit/circuit_instruction.pybind.cc b/src/stim/circuit/circuit_instruction.pybind.cc index 3cae0347..adef47c2 100644 --- a/src/stim/circuit/circuit_instruction.pybind.cc +++ b/src/stim/circuit/circuit_instruction.pybind.cc @@ -162,6 +162,31 @@ void stim_pybind::pybind_circuit_instruction_methods(pybind11::module &m, pybind )DOC") .data()); + c.def_property_readonly( + "num_measurements", + [](const PyCircuitInstruction &self) -> uint64_t { + return self.as_operation_ref().count_measurement_results(); + }, + clean_doc_string(R"DOC( + Returns the number of bits produced when running this instruction. + + Examples: + >>> import stim + >>> stim.CircuitInstruction('H', [0]).num_measurements + 0 + >>> stim.CircuitInstruction('M', [0]).num_measurements + 1 + >>> stim.CircuitInstruction('M', [2, 3, 5, 7, 11]).num_measurements + 5 + >>> stim.CircuitInstruction('MXX', [0, 1, 4, 5, 11, 13]).num_measurements + 3 + >>> stim.Circuit('MPP X0*X1 X0*Z1*Y2')[0].num_measurements + 2 + >>> stim.CircuitInstruction('HERALDED_ERASE', [0]).num_measurements + 1 + )DOC") + .data()); + c.def(pybind11::self == pybind11::self, "Determines if two `stim.CircuitInstruction`s are identical."); c.def(pybind11::self != pybind11::self, "Determines if two `stim.CircuitInstruction`s are different."); c.def( diff --git a/src/stim/circuit/circuit_instruction_pybind_test.py b/src/stim/circuit/circuit_instruction_pybind_test.py index 9703e622..d0592713 100644 --- a/src/stim/circuit/circuit_instruction_pybind_test.py +++ b/src/stim/circuit/circuit_instruction_pybind_test.py @@ -50,3 +50,10 @@ def test_hashable(): c = stim.CircuitInstruction("X_ERROR", [stim.GateTarget(5)], [0.5]) assert hash(a) == hash(c) assert len({a, b, c}) == 2 + + +def test_num_measurements(): + assert stim.CircuitInstruction("X", [1, 2, 3]).num_measurements == 0 + assert stim.CircuitInstruction("MXX", [1, 2]).num_measurements == 1 + assert stim.CircuitInstruction("M", [1, 2]).num_measurements == 2 + assert stim.CircuitInstruction("MPAD", [0, 1, 0]).num_measurements == 3 diff --git a/src/stim/mem/sparse_xor_vec.h b/src/stim/mem/sparse_xor_vec.h index 777f1368..787bef07 100644 --- a/src/stim/mem/sparse_xor_vec.h +++ b/src/stim/mem/sparse_xor_vec.h @@ -120,6 +120,25 @@ struct SparseXorVec; template std::ostream &operator<<(std::ostream &out, const SparseXorVec &v); +template +inline void xor_item_into_sorted_vec(const T &item, std::vector &sorted_items) { + // Just do a linear scan to find the insertion point, instead of a binary search. + // This is faster at small sizes, and complexity is linear anyways due to the shifting of later items. + for (size_t k = 0; k < sorted_items.size(); k++) { + const auto &v = sorted_items[k]; + if (v < item) { + continue; + } else if (v == item) { + sorted_items.erase(sorted_items.begin() + k); + return; + } else { + sorted_items.insert(sorted_items.begin() + k, item); + return; + } + } + sorted_items.push_back(item); +} + /// A sparse set of integers that supports efficient xoring (computing the symmetric difference). template struct SparseXorVec { @@ -161,21 +180,7 @@ struct SparseXorVec { } void xor_item(const T &item) { - // Just do a linear scan to find the insertion point, instead of a binary search. - // This is faster at small sizes, and complexity is linear anyways due to the shifting of later items. - for (size_t k = 0; k < sorted_items.size(); k++) { - const auto &v = sorted_items[k]; - if (v < item) { - continue; - } else if (v == item) { - sorted_items.erase(sorted_items.begin() + k); - return; - } else { - sorted_items.insert(sorted_items.begin() + k, item); - return; - } - } - sorted_items.push_back(item); + xor_item_into_sorted_vec(item, sorted_items); } SparseXorVec &operator^=(const SparseXorVec &other) { diff --git a/src/stim/py/compiled_detector_sampler.pybind.cc b/src/stim/py/compiled_detector_sampler.pybind.cc index 1733f5e4..27cbd52e 100644 --- a/src/stim/py/compiled_detector_sampler.pybind.cc +++ b/src/stim/py/compiled_detector_sampler.pybind.cc @@ -32,7 +32,13 @@ CompiledDetectorSampler::CompiledDetectorSampler(Circuit init_circuit, std::mt19 } pybind11::object CompiledDetectorSampler::sample_to_numpy( - size_t num_shots, bool prepend_observables, bool append_observables, bool separate_observables, bool bit_packed, pybind11::object dets_out, pybind11::object obs_out) { + size_t num_shots, + bool prepend_observables, + bool append_observables, + bool separate_observables, + bool bit_packed, + pybind11::object dets_out, + pybind11::object obs_out) { if (separate_observables && (append_observables || prepend_observables)) { throw std::invalid_argument( "Can't specify separate_observables=True with append_observables=True or prepend_observables=True"); @@ -50,7 +56,8 @@ pybind11::object CompiledDetectorSampler::sample_to_numpy( pybind11::object py_obs_data = pybind11::none(); if (separate_observables || !obs_out.is_none()) { - py_obs_data = simd_bit_table_to_numpy(obs_data, circuit_stats.num_observables, num_shots, bit_packed, true, obs_out); + py_obs_data = + simd_bit_table_to_numpy(obs_data, circuit_stats.num_observables, num_shots, bit_packed, true, obs_out); } pybind11::object py_det_data = pybind11::none(); @@ -67,7 +74,8 @@ pybind11::object CompiledDetectorSampler::sample_to_numpy( } py_det_data = simd_bit_table_to_numpy(concat_data, num_concat, num_shots, bit_packed, true, dets_out); } else { - py_det_data = simd_bit_table_to_numpy(det_data, circuit_stats.num_detectors, num_shots, bit_packed, true, dets_out); + py_det_data = + simd_bit_table_to_numpy(det_data, circuit_stats.num_detectors, num_shots, bit_packed, true, dets_out); } if (separate_observables) { diff --git a/src/stim/py/numpy.pybind.cc b/src/stim/py/numpy.pybind.cc index c03448ae..1aaecbe4 100644 --- a/src/stim/py/numpy.pybind.cc +++ b/src/stim/py/numpy.pybind.cc @@ -18,8 +18,10 @@ using namespace stim; using namespace stim_pybind; static pybind11::object transposed_simd_bit_table_to_numpy_uint8( - const simd_bit_table &table, size_t num_major_in, size_t num_minor_in, pybind11::object out_buffer) { - + const simd_bit_table &table, + size_t num_major_in, + size_t num_minor_in, + pybind11::object out_buffer) { size_t num_major_bytes_in = (num_major_in + 7) / 8; if (out_buffer.is_none()) { @@ -61,8 +63,10 @@ static pybind11::object transposed_simd_bit_table_to_numpy_uint8( } static pybind11::object transposed_simd_bit_table_to_numpy_bool8( - const simd_bit_table &table, size_t num_major_in, size_t num_minor_in, pybind11::object out_buffer) { - + const simd_bit_table &table, + size_t num_major_in, + size_t num_minor_in, + pybind11::object out_buffer) { if (out_buffer.is_none()) { auto numpy = pybind11::module::import("numpy"); out_buffer = numpy.attr("empty")(pybind11::make_tuple(num_minor_in, num_major_in), numpy.attr("bool_")); @@ -99,7 +103,6 @@ static pybind11::object transposed_simd_bit_table_to_numpy_bool8( static pybind11::object simd_bit_table_to_numpy_uint8( const simd_bit_table &table, size_t num_major, size_t num_minor, pybind11::object out_buffer) { - size_t num_minor_bytes = (num_minor + 7) / 8; if (out_buffer.is_none()) { auto numpy = pybind11::module::import("numpy"); @@ -144,7 +147,6 @@ static pybind11::object simd_bit_table_to_numpy_uint8( static pybind11::object simd_bit_table_to_numpy_bool8( const simd_bit_table &table, size_t num_major, size_t num_minor, pybind11::object out_buffer) { - if (out_buffer.is_none()) { auto numpy = pybind11::module::import("numpy"); out_buffer = numpy.attr("empty")(pybind11::make_tuple(num_major, num_minor), numpy.attr("bool_")); @@ -179,7 +181,12 @@ static pybind11::object simd_bit_table_to_numpy_bool8( } pybind11::object stim_pybind::simd_bit_table_to_numpy( - const simd_bit_table &table, size_t num_major, size_t num_minor, bool bit_pack_result, bool transposed, pybind11::object out_buffer) { + const simd_bit_table &table, + size_t num_major, + size_t num_minor, + bool bit_pack_result, + bool transposed, + pybind11::object out_buffer) { if (transposed) { if (bit_pack_result) { return transposed_simd_bit_table_to_numpy_uint8(table, num_major, num_minor, out_buffer); diff --git a/src/stim/simulators/dem_sampler.pybind.cc b/src/stim/simulators/dem_sampler.pybind.cc index 699a1245..3b89a66d 100644 --- a/src/stim/simulators/dem_sampler.pybind.cc +++ b/src/stim/simulators/dem_sampler.pybind.cc @@ -72,8 +72,10 @@ pybind11::object dem_sampler_py_sample( if (return_errors) { err_out = simd_bit_table_to_numpy(self.err_buffer, self.num_errors, shots, bit_packed, true, pybind11::none()); } - pybind11::object det_out = simd_bit_table_to_numpy(self.det_buffer, self.num_detectors, shots, bit_packed, true, pybind11::none()); - pybind11::object obs_out = simd_bit_table_to_numpy(self.obs_buffer, self.num_observables, shots, bit_packed, true, pybind11::none()); + pybind11::object det_out = + simd_bit_table_to_numpy(self.det_buffer, self.num_detectors, shots, bit_packed, true, pybind11::none()); + pybind11::object obs_out = + simd_bit_table_to_numpy(self.obs_buffer, self.num_observables, shots, bit_packed, true, pybind11::none()); return pybind11::make_tuple(det_out, obs_out, err_out); } diff --git a/src/stim/simulators/frame_simulator.pybind.cc b/src/stim/simulators/frame_simulator.pybind.cc index 51282577..05386a4c 100644 --- a/src/stim/simulators/frame_simulator.pybind.cc +++ b/src/stim/simulators/frame_simulator.pybind.cc @@ -138,7 +138,8 @@ pybind11::object sliced_table_to_numpy( auto data = table.read_across_majors_at_minor_index(0, num_major_exact, *minor_index); return simd_bits_to_numpy(data, num_major_exact, bit_packed); } else { - return simd_bit_table_to_numpy(table, num_major_exact, num_minor_exact, bit_packed, false, pybind11::none()); + return simd_bit_table_to_numpy( + table, num_major_exact, num_minor_exact, bit_packed, false, pybind11::none()); } } } diff --git a/src/stim/simulators/measurements_to_detection_events.pybind.cc b/src/stim/simulators/measurements_to_detection_events.pybind.cc index fa45886b..cdfd6495 100644 --- a/src/stim/simulators/measurements_to_detection_events.pybind.cc +++ b/src/stim/simulators/measurements_to_detection_events.pybind.cc @@ -129,7 +129,8 @@ pybind11::object CompiledMeasurementsToDetectionEventsConverter::convert( obs_slice.clear(); } } - obs_data = simd_bit_table_to_numpy(obs_table, circuit_stats.num_observables, num_shots, bit_pack_result, true, pybind11::none()); + obs_data = simd_bit_table_to_numpy( + obs_table, circuit_stats.num_observables, num_shots, bit_pack_result, true, pybind11::none()); } // Caution: only do this after extracting the observable data, lest it leak into the packed bytes. diff --git a/src/stim/stabilizers/flow.h b/src/stim/stabilizers/flow.h index 15052c98..8146d5b8 100644 --- a/src/stim/stabilizers/flow.h +++ b/src/stim/stabilizers/flow.h @@ -32,6 +32,7 @@ struct Flow { std::vector measurements; static Flow from_str(std::string_view text); + bool operator<(const Flow &other) const; bool operator==(const Flow &other) const; bool operator!=(const Flow &other) const; std::string str() const; diff --git a/src/stim/stabilizers/flow.inl b/src/stim/stabilizers/flow.inl index ce612563..019747ee 100644 --- a/src/stim/stabilizers/flow.inl +++ b/src/stim/stabilizers/flow.inl @@ -75,6 +75,11 @@ Flow Flow::from_str(std::string_view text) { } PauliString out(0); std::vector measurements; + bool flip_out = false; + if (parts[k].starts_with('-')) { + flip_out = true; + parts[k] = parts[k].substr(1); + } if (!parts[k].empty() && parts[k][0] != 'r') { out = parse_non_empty_pauli_string_allowing_i(parts[k], &imag_out); } else { @@ -84,6 +89,7 @@ Flow Flow::from_str(std::string_view text) { } measurements.push_back(rec); } + out.sign ^= flip_out; k++; while (k < parts.size()) { if (parts[k] != "xor" || k + 1 == parts.size()) { @@ -113,6 +119,20 @@ bool Flow::operator==(const Flow &other) const { return input == other.input && output == other.output && measurements == other.measurements; } +template +bool Flow::operator<(const Flow &other) const { + if (input != other.input) { + return input < other.input; + } + if (output != other.output) { + return output < other.output; + } + if (measurements != other.measurements) { + return SpanRef(measurements) < SpanRef(other.measurements); + } + return false; +} + template bool Flow::operator!=(const Flow &other) const { return !(*this == other); diff --git a/src/stim/stabilizers/flow.test.cc b/src/stim/stabilizers/flow.test.cc index f43e5cf2..b0f20c43 100644 --- a/src/stim/stabilizers/flow.test.cc +++ b/src/stim/stabilizers/flow.test.cc @@ -1,24 +1,9 @@ -// Copyright 2021 Google LLC -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - #include "stim/stabilizers/flow.h" #include "gtest/gtest.h" #include "stim/circuit/circuit.h" #include "stim/mem/simd_word.test.h" -#include "stim/util_bot/test_util.test.h" using namespace stim; @@ -44,6 +29,13 @@ TEST_EACH_WORD_SIZE_W(stabilizer_flow, from_str, { .output = PauliString::from_str(""), .measurements = {}, })); + ASSERT_EQ( + Flow::from_str("1 -> -rec[0]"), + (Flow{ + .input = PauliString::from_str(""), + .output = PauliString::from_str("-"), + .measurements = {0}, + })); ASSERT_EQ( Flow::from_str("i -> -i"), (Flow{ @@ -151,3 +143,13 @@ TEST_EACH_WORD_SIZE_W(stabilizer_flow, str_and_from_str, { Flow::from_str("-1 -> -X xor rec[-1] xor rec[-3]"), (Flow{PauliString::from_str("-"), PauliString::from_str("-X"), {-1, -3}})); }) + +TEST_EACH_WORD_SIZE_W(stabilizer_flow, ordering, { + ASSERT_FALSE(Flow::from_str("1 -> 1") < Flow::from_str("1 -> 1")); + ASSERT_FALSE(Flow::from_str("X -> 1") < Flow::from_str("1 -> 1")); + ASSERT_FALSE(Flow::from_str("1 -> X") < Flow::from_str("1 -> 1")); + ASSERT_FALSE(Flow::from_str("1 -> rec[-1]") < Flow::from_str("1 -> 1")); + ASSERT_TRUE(Flow::from_str("1 -> 1") < Flow::from_str("X -> 1")); + ASSERT_TRUE(Flow::from_str("1 -> 1") < Flow::from_str("1 -> X")); + ASSERT_TRUE(Flow::from_str("1 -> 1") < Flow::from_str("1 -> rec[-1]")); +}) diff --git a/src/stim/stabilizers/pauli_string.h b/src/stim/stabilizers/pauli_string.h index 697f622b..53edd696 100644 --- a/src/stim/stabilizers/pauli_string.h +++ b/src/stim/stabilizers/pauli_string.h @@ -78,8 +78,15 @@ struct PauliString { /// Paulis are xz-encoded (P=xz: I=00, X=10, Y=11, Z=01) pairwise across the two bit vectors. simd_bits xs, zs; - /// Identity constructor. + /// Standard constructors. explicit PauliString(size_t num_qubits); + PauliString(const PauliStringRef &other); // NOLINT(google-explicit-constructor) + PauliString(const PauliString &other); + PauliString(PauliString &&other) noexcept; + PauliString &operator=(const PauliStringRef &other); + PauliString &operator=(const PauliString &other); + PauliString &operator=(PauliString &&other); + /// Parse constructor. explicit PauliString(std::string_view text); /// Factory method for creating a PauliString whose Pauli entries are returned by a function. @@ -89,17 +96,14 @@ struct PauliString { /// Factory method for creating a PauliString with uniformly random sign and Pauli entries. static PauliString random(size_t num_qubits, std::mt19937_64 &rng); - /// Copy constructor. - PauliString(const PauliStringRef &other); // NOLINT(google-explicit-constructor) - /// Overwrite assignment. - PauliString &operator=(const PauliStringRef &other) noexcept; - /// Equality. bool operator==(const PauliStringRef &other) const; bool operator==(const PauliString &other) const; /// Inequality. bool operator!=(const PauliStringRef &other) const; bool operator!=(const PauliString &other) const; + bool operator<(const PauliStringRef &other) const; + bool operator<(const PauliString &other) const; /// Implicit conversion to a reference. operator PauliStringRef(); diff --git a/src/stim/stabilizers/pauli_string.inl b/src/stim/stabilizers/pauli_string.inl index 9e7ea851..67ff6af4 100644 --- a/src/stim/stabilizers/pauli_string.inl +++ b/src/stim/stabilizers/pauli_string.inl @@ -45,6 +45,50 @@ PauliString::PauliString(const PauliStringRef &other) : num_qubits(other.num_qubits), sign((bool)other.sign), xs(other.xs), zs(other.zs) { } +template +PauliString::PauliString(const PauliString &other) + : num_qubits(other.num_qubits), sign((bool)other.sign), xs(other.xs), zs(other.zs) { +} + +template +PauliString::PauliString(PauliString &&other) noexcept + : num_qubits(other.num_qubits), sign((bool)other.sign), xs(std::move(other.xs)), zs(std::move(other.zs)) { + other.num_qubits = 0; + other.sign = false; +} + +template +PauliString &PauliString::operator=(const PauliStringRef &other) { + xs = other.xs; + zs = other.zs; + num_qubits = other.num_qubits; + sign = other.sign; + return *this; +} + +template +PauliString &PauliString::operator=(const PauliString &other) { + xs = other.xs; + zs = other.zs; + num_qubits = other.num_qubits; + sign = other.sign; + return *this; +} + +template +PauliString &PauliString::operator=(PauliString &&other) { + if (&other == this) { + return *this; + } + xs = std::move(other.xs); + zs = std::move(other.zs); + num_qubits = other.num_qubits; + sign = other.sign; + other.num_qubits = 0; + other.sign = false; + return *this; +} + template const PauliStringRef PauliString::ref() const { size_t nw = (num_qubits + W - 1) / W; @@ -67,13 +111,6 @@ std::string PauliString::str() const { return ref().str(); } -template -PauliString &PauliString::operator=(const PauliStringRef &other) noexcept { - (*this).~PauliString(); - new (this) PauliString(other); - return *this; -} - template PauliString PauliString::from_func(bool sign, size_t num_qubits, const std::function &func) { PauliString result(num_qubits); @@ -144,6 +181,16 @@ bool PauliString::operator!=(const PauliString &other) const { return ref() != other.ref(); } +template +bool PauliString::operator<(const PauliString &other) const { + return ref() < other.ref(); +} + +template +bool PauliString::operator<(const PauliStringRef &other) const { + return ref() < other; +} + template void PauliString::ensure_num_qubits(size_t min_num_qubits, double resize_pad_factor) { assert(resize_pad_factor >= 1); diff --git a/src/stim/stabilizers/pauli_string_ref.h b/src/stim/stabilizers/pauli_string_ref.h index b87599b3..1b35421c 100644 --- a/src/stim/stabilizers/pauli_string_ref.h +++ b/src/stim/stabilizers/pauli_string_ref.h @@ -60,6 +60,7 @@ struct PauliStringRef { bool operator==(const PauliStringRef &other) const; /// Inequality. bool operator!=(const PauliStringRef &other) const; + bool operator<(const PauliStringRef &other) const; /// Overwrite assignment. PauliStringRef &operator=(const PauliStringRef &other); diff --git a/src/stim/stabilizers/pauli_string_ref.inl b/src/stim/stabilizers/pauli_string_ref.inl index 73c5e546..1be812e7 100644 --- a/src/stim/stabilizers/pauli_string_ref.inl +++ b/src/stim/stabilizers/pauli_string_ref.inl @@ -16,6 +16,7 @@ #include #include "stim/circuit/circuit.h" +#include "stim/circuit/gate_decomposition.h" #include "stim/mem/simd_util.h" #include "stim/stabilizers/pauli_string.h" #include "stim/stabilizers/tableau.h" @@ -84,6 +85,25 @@ bool PauliStringRef::operator!=(const PauliStringRef &other) const { return !(*this == other); } +template +bool PauliStringRef::operator<(const PauliStringRef &other) const { + size_t n = std::min(num_qubits, other.num_qubits); + for (size_t q = 0; q < n; q++) { + uint8_t p1 = (xs[q] ^ zs[q]) + zs[q] * 2; + uint8_t p2 = (other.xs[q] ^ other.zs[q]) + other.zs[q] * 2; + if (p1 != p2) { + return p1 < p2; + } + } + if (num_qubits != other.num_qubits) { + return num_qubits < other.num_qubits; + } + if (sign != other.sign) { + return sign < other.sign; + } + return false; +} + template PauliStringRef &PauliStringRef::operator*=(const PauliStringRef &rhs) { uint8_t log_i = inplace_right_mul_returning_log_i_scalar(rhs); @@ -429,6 +449,13 @@ void PauliStringRef::do_instruction(const CircuitInstruction &inst) { check_avoids_MPP(inst); break; + case GateType::SPP: + case GateType::SPP_DAG: + decompose_spp_or_spp_dag_operation(inst, num_qubits, false, [&](CircuitInstruction sub_inst) { + do_instruction(sub_inst); + }); + break; + case GateType::X_ERROR: case GateType::Y_ERROR: case GateType::Z_ERROR: @@ -569,6 +596,21 @@ void PauliStringRef::undo_instruction(const CircuitInstruction &inst) { do_YCZ(inst); break; + case GateType::SPP: + case GateType::SPP_DAG: { + std::vector buf_targets; + buf_targets.insert(buf_targets.end(), inst.targets.begin(), inst.targets.end()); + std::reverse(buf_targets.begin(), buf_targets.end()); + decompose_spp_or_spp_dag_operation( + CircuitInstruction{inst.gate_type, {}, buf_targets}, + num_qubits, + false, + [&](CircuitInstruction sub_inst) { + undo_instruction(sub_inst); + }); + break; + } + case GateType::DETECTOR: case GateType::OBSERVABLE_INCLUDE: case GateType::TICK: diff --git a/src/stim/util_top/circuit_flow_generators.h b/src/stim/util_top/circuit_flow_generators.h new file mode 100644 index 00000000..329c8961 --- /dev/null +++ b/src/stim/util_top/circuit_flow_generators.h @@ -0,0 +1,51 @@ +#ifndef _STIM_UTIL_TOP_CIRCUIT_FLOW_GENERATORS_H +#define _STIM_UTIL_TOP_CIRCUIT_FLOW_GENERATORS_H + +#include "stim/circuit/circuit.h" + +namespace stim { + +/// Finds a basis of flows for the circuit. +template +std::vector> circuit_flow_generators(const Circuit &circuit); + +template +struct CircuitFlowGeneratorSolver { + std::vector> table; + size_t num_qubits; + size_t num_measurements; + size_t num_measurements_in_past; + std::vector> measurements_only_table; + std::vector buf_for_rows_with; + std::vector buf_for_xor_merge; + std::vector buf_targets; + + CircuitFlowGeneratorSolver(CircuitStats stats); + Flow &add_row(); + void add_1q_measure_terms(CircuitInstruction inst, bool x, bool z); + void add_2q_measure_terms(CircuitInstruction inst, bool x, bool z); + void remove_single_qubit_reset_terms(CircuitInstruction inst); + void handle_anticommutations(std::span anticommutation_set); + void check_for_2q_anticommutations(CircuitInstruction inst, bool x, bool z); + void check_for_1q_anticommutations(CircuitInstruction inst, bool x, bool z); + void mult_row_into(size_t src_row, size_t dst_row); + void undo_mrb(CircuitInstruction inst, bool x, bool z); + void undo_mb(CircuitInstruction inst, bool x, bool z); + void undo_rb(CircuitInstruction inst, bool x, bool z); + void undo_2q_m(CircuitInstruction inst, bool x, bool z); + void undo_instruction(CircuitInstruction inst); + void elimination_step(std::span elimination_set, size_t &num_eliminated); + void canonicalize_over_qubits(); + void final_canonicalize_into_table(); + void undo_feedback_capable_instruction(CircuitInstruction inst, bool x, bool z); + std::span rows_anticommuting_with(uint32_t q, bool x, bool z); + + template + std::span rows_with(PREDICATE predicate); +}; + +} // namespace stim + +#include "stim/util_top/circuit_flow_generators.inl" + +#endif diff --git a/src/stim/util_top/circuit_flow_generators.inl b/src/stim/util_top/circuit_flow_generators.inl new file mode 100644 index 00000000..de8b45df --- /dev/null +++ b/src/stim/util_top/circuit_flow_generators.inl @@ -0,0 +1,515 @@ +#include "stim/util_top/circuit_inverse_qec.h" + +namespace stim { + +template +CircuitFlowGeneratorSolver::CircuitFlowGeneratorSolver(CircuitStats stats) + : table(), + num_qubits(stats.num_qubits), + num_measurements(stats.num_measurements), + num_measurements_in_past(stats.num_measurements), + measurements_only_table(), + buf_for_rows_with(), + buf_for_xor_merge() { + if (num_measurements_in_past > INT32_MAX) { + throw std::invalid_argument("Circuit is too large. Max flow measurement index is " + std::to_string(INT32_MAX)); + } +} + +template +Flow &CircuitFlowGeneratorSolver::add_row() { + table.push_back(Flow{ + .input = PauliString(num_qubits), + .output = PauliString(num_qubits), + .measurements = {}, + }); + return table.back(); +} + +template +void CircuitFlowGeneratorSolver::add_1q_measure_terms(CircuitInstruction inst, bool x, bool z) { + for (size_t k = inst.targets.size(); k--;) { + num_measurements_in_past--; + + auto t = inst.targets[k]; + if (!t.is_qubit_target()) { + throw std::invalid_argument("Bad target in " + inst.str()); + } + uint32_t q = t.qubit_value(); + auto &row = add_row(); + row.measurements.push_back(num_measurements_in_past); + row.input.xs[q] = x; + row.input.zs[q] = z; + row.input.sign ^= t.is_inverted_result_target(); + } +} + +template +void CircuitFlowGeneratorSolver::add_2q_measure_terms(CircuitInstruction inst, bool x, bool z) { + size_t k = inst.targets.size(); + while (k > 0) { + k -= 2; + num_measurements_in_past--; + + auto t1 = inst.targets[k]; + auto t2 = inst.targets[k + 1]; + if (!t1.is_qubit_target() || !t2.is_qubit_target()) { + throw std::invalid_argument("Bad target in " + inst.str()); + } + uint32_t q1 = t1.qubit_value(); + uint32_t q2 = t2.qubit_value(); + auto &row = add_row(); + row.measurements.push_back(num_measurements_in_past); + row.input.xs[q1] = x; + row.input.zs[q1] = z; + row.input.xs[q2] = x; + row.input.zs[q2] = z; + row.input.sign ^= t1.is_inverted_result_target(); + row.input.sign ^= t2.is_inverted_result_target(); + } +} + +template +void CircuitFlowGeneratorSolver::remove_single_qubit_reset_terms(CircuitInstruction inst) { + for (auto t : inst.targets) { + if (!t.is_qubit_target()) { + throw std::invalid_argument("Bad target in " + inst.str()); + } + uint32_t q = t.qubit_value(); + for (auto &row : table) { + row.input.xs[q] = 0; + row.input.zs[q] = 0; + } + } +} + +template +void CircuitFlowGeneratorSolver::handle_anticommutations(std::span anticommutation_set) { + if (anticommutation_set.empty()) { + return; + } + + // Sacrifice the first anticommutation to save the others. + for (size_t k = 1; k < buf_for_rows_with.size(); k++) { + mult_row_into(anticommutation_set[0], anticommutation_set[k]); + } + table.erase(table.begin() + anticommutation_set[0]); +} + +template +void CircuitFlowGeneratorSolver::check_for_2q_anticommutations(CircuitInstruction inst, bool x, bool z) { + size_t k = inst.targets.size(); + while (k > 0) { + k -= 2; + + auto t1 = inst.targets[k]; + auto t2 = inst.targets[k + 1]; + if (!t1.is_qubit_target() || !t2.is_qubit_target()) { + throw std::invalid_argument("Bad target in " + inst.str()); + } + uint32_t q1 = t1.qubit_value(); + uint32_t q2 = t2.qubit_value(); + + auto anticommutations = rows_with([&](const Flow &flow) { + bool anticommutes = false; + anticommutes ^= flow.input.xs[q1] & z; + anticommutes ^= flow.input.zs[q1] & x; + anticommutes ^= flow.input.xs[q2] & z; + anticommutes ^= flow.input.zs[q2] & x; + return anticommutes; + }); + + handle_anticommutations(anticommutations); + } +} + +template +void CircuitFlowGeneratorSolver::check_for_1q_anticommutations(CircuitInstruction inst, bool x, bool z) { + for (auto t : inst.targets) { + if (!t.is_qubit_target()) { + throw std::invalid_argument("Bad target in " + inst.str()); + } + uint32_t q = t.qubit_value(); + + handle_anticommutations(rows_anticommuting_with(q, x, z)); + } +} + +template +void CircuitFlowGeneratorSolver::mult_row_into(size_t src_row, size_t dst_row) { + auto &src = table[src_row]; + auto &dst = table[dst_row]; + + // Combine the pauli strings. + uint8_t log_i = 0; + log_i += dst.input.ref().inplace_right_mul_returning_log_i_scalar(src.input); + log_i -= dst.output.ref().inplace_right_mul_returning_log_i_scalar(src.output); + if (log_i & 1) { + throw std::invalid_argument("Unexpected anticommutation while solving for flow generators."); + } + if (log_i & 2) { + dst.input.sign ^= 1; + } + + // Xor-merge-sort the measurement indices. + buf_for_xor_merge.resize(std::max(buf_for_xor_merge.size(), dst.measurements.size() + src.measurements.size() + 1)); + const int32_t *end = xor_merge_sort( + SpanRef(dst.measurements), SpanRef(src.measurements), buf_for_xor_merge.data()); + size_t n = end - buf_for_xor_merge.data(); + dst.measurements.resize(n); + if (n > 0) { + memcpy(dst.measurements.data(), buf_for_xor_merge.data(), n * sizeof(int32_t)); + } +} + +template +void CircuitFlowGeneratorSolver::undo_mrb(CircuitInstruction inst, bool x, bool z) { + check_for_1q_anticommutations(inst, x, z); + remove_single_qubit_reset_terms(inst); + add_1q_measure_terms(inst, x, z); +} +template +void CircuitFlowGeneratorSolver::undo_mb(CircuitInstruction inst, bool x, bool z) { + check_for_1q_anticommutations(inst, x, z); + add_1q_measure_terms(inst, x, z); +} +template +void CircuitFlowGeneratorSolver::undo_rb(CircuitInstruction inst, bool x, bool z) { + check_for_1q_anticommutations(inst, x, z); + remove_single_qubit_reset_terms(inst); +} +template +void CircuitFlowGeneratorSolver::undo_2q_m(CircuitInstruction inst, bool x, bool z) { + check_for_2q_anticommutations(inst, x, z); + add_2q_measure_terms(inst, x, z); +} + +template +void CircuitFlowGeneratorSolver::undo_feedback_capable_instruction(CircuitInstruction inst, bool x, bool z) { + size_t k = inst.targets.size(); + while (k > 0) { + k -= 2; + + auto t1 = inst.targets[k]; + auto t2 = inst.targets[k + 1]; + bool m1 = t1.is_measurement_record_target(); + bool m2 = t2.is_measurement_record_target(); + bool f1 = t1.is_qubit_target(); + bool f2 = t2.is_qubit_target(); + if ((m1 && f2) || (m2 && f1)) { + uint32_t q = f1 ? t1.qubit_value() : t2.qubit_value(); + int32_t t = (m1 ? t1.value() : t2.value()) + num_measurements_in_past; + if (t < 0) { + throw std::invalid_argument("Referred to measurement before start of time in " + inst.str()); + } + for (auto r : rows_anticommuting_with(q, x, z)) { + xor_item_into_sorted_vec(t, table[r].measurements); + } + } else if (f1 && f2) { + CircuitInstruction sub_inst = CircuitInstruction{inst.gate_type, {}, inst.targets.sub(k, k + 2)}; + for (auto &row : table) { + row.input.ref().undo_instruction(sub_inst); + } + } + } +} + +template +void CircuitFlowGeneratorSolver::undo_instruction(CircuitInstruction inst) { + if (table.size() > num_qubits * 3) { + canonicalize_over_qubits(); + } + + switch (inst.gate_type) { + case GateType::MRX: + case GateType::MRY: + case GateType::MR: + undo_mrb(inst, inst.gate_type != GateType::MR, inst.gate_type != GateType::MRX); + break; + + case GateType::MX: + case GateType::MY: + case GateType::M: + undo_mb(inst, inst.gate_type != GateType::M, inst.gate_type != GateType::MX); + break; + + case GateType::RX: + case GateType::RY: + case GateType::R: + undo_rb(inst, inst.gate_type != GateType::R, inst.gate_type != GateType::RX); + break; + + case GateType::MXX: + case GateType::MYY: + case GateType::MZZ: + undo_2q_m(inst, inst.gate_type != GateType::MZZ, inst.gate_type != GateType::MXX); + break; + + case GateType::DETECTOR: + case GateType::OBSERVABLE_INCLUDE: + case GateType::TICK: + case GateType::QUBIT_COORDS: + case GateType::SHIFT_COORDS: + case GateType::DEPOLARIZE1: + case GateType::DEPOLARIZE2: + case GateType::X_ERROR: + case GateType::Y_ERROR: + case GateType::Z_ERROR: + case GateType::PAULI_CHANNEL_1: + case GateType::PAULI_CHANNEL_2: + case GateType::E: + case GateType::ELSE_CORRELATED_ERROR: + // Ignored. + break; + + case GateType::HERALDED_ERASE: + case GateType::HERALDED_PAULI_CHANNEL_1: + // Heralds. + for (auto t : inst.targets) { + num_measurements_in_past--; + if (!t.is_qubit_target()) { + throw std::invalid_argument("Bad target in " + inst.str()); + } + auto &row = add_row(); + row.measurements.push_back(num_measurements_in_past); + } + break; + + case GateType::MPAD: + // Pads. + for (auto t : inst.targets) { + num_measurements_in_past--; + if (!t.is_qubit_target()) { + throw std::invalid_argument("Bad target in " + inst.str()); + } + auto &row = add_row(); + row.measurements.push_back(num_measurements_in_past); + if (t.qubit_value()) { + row.output.sign = 1; + } + } + break; + + case GateType::CX: + case GateType::XCZ: + undo_feedback_capable_instruction(inst, true, false); + break; + + case GateType::YCZ: + case GateType::CY: + undo_feedback_capable_instruction(inst, true, true); + break; + + case GateType::CZ: + undo_feedback_capable_instruction(inst, false, true); + break; + + case GateType::XCX: + case GateType::XCY: + case GateType::YCX: + case GateType::YCY: + case GateType::H: + case GateType::H_XY: + case GateType::H_YZ: + case GateType::I: + case GateType::X: + case GateType::Y: + case GateType::Z: + case GateType::C_XYZ: + case GateType::C_ZYX: + case GateType::SQRT_X: + case GateType::SQRT_X_DAG: + case GateType::SQRT_Y: + case GateType::SQRT_Y_DAG: + case GateType::S: + case GateType::S_DAG: + case GateType::SQRT_XX: + case GateType::SQRT_XX_DAG: + case GateType::SQRT_YY: + case GateType::SQRT_YY_DAG: + case GateType::SQRT_ZZ: + case GateType::SQRT_ZZ_DAG: + case GateType::SPP: + case GateType::SPP_DAG: + case GateType::SWAP: + case GateType::ISWAP: + case GateType::CXSWAP: + case GateType::SWAPCX: + case GateType::CZSWAP: + case GateType::ISWAP_DAG: + for (auto &row : table) { + row.input.ref().undo_instruction(inst); + } + break; + + case GateType::MPP: + buf_targets.clear(); + buf_targets.insert(buf_targets.end(), inst.targets.begin(), inst.targets.end()); + std::reverse(buf_targets.begin(), buf_targets.end()); + decompose_mpp_operation( + CircuitInstruction{inst.gate_type, {}, buf_targets}, num_qubits, [&](CircuitInstruction sub_inst) { + undo_instruction(sub_inst); + }); + break; + + default: + throw std::invalid_argument("Not handled by circuit flow generators method: " + inst.str()); + } +} + +template +std::span CircuitFlowGeneratorSolver::rows_anticommuting_with(uint32_t q, bool x, bool z) { + return rows_with([&](const Flow &flow) { + bool anticommutes = false; + anticommutes ^= flow.input.xs[q] & z; + anticommutes ^= flow.input.zs[q] & x; + return anticommutes; + }); +} + +template +template +std::span CircuitFlowGeneratorSolver::rows_with(PREDICATE predicate) { + buf_for_rows_with.clear(); + for (size_t r = 0; r < table.size(); r++) { + if (predicate(table[r])) { + buf_for_rows_with.push_back(r); + } + } + return buf_for_rows_with; +} + +template +void CircuitFlowGeneratorSolver::elimination_step(std::span elimination_set, size_t &num_eliminated) { + size_t pivot = SIZE_MAX; + for (auto p : elimination_set) { + if (p >= num_eliminated) { + pivot = p; + break; + } + } + if (pivot == SIZE_MAX) { + return; + } + + for (auto p : elimination_set) { + if (p != pivot) { + mult_row_into(pivot, p); + } + } + std::swap(table[pivot], table[num_eliminated]); + num_eliminated++; +} + +template +void CircuitFlowGeneratorSolver::canonicalize_over_qubits() { + size_t num_eliminated = 0; + for (size_t q = 0; q < num_qubits; q++) { + elimination_step( + rows_with([&](const Flow &flow) { + return flow.input.xs[q]; + }), + num_eliminated); + elimination_step( + rows_with([&](const Flow &flow) { + return flow.input.zs[q]; + }), + num_eliminated); + elimination_step( + rows_with([&](const Flow &flow) { + return flow.output.xs[q]; + }), + num_eliminated); + elimination_step( + rows_with([&](const Flow &flow) { + return flow.output.zs[q]; + }), + num_eliminated); + } + + for (size_t r = 0; r < table.size(); r++) { + if (table[r].input.ref().has_no_pauli_terms() && table[r].output.ref().has_no_pauli_terms()) { + measurements_only_table.push_back(std::move(table[r])); + std::swap(table[r], table.back()); + table.pop_back(); + r--; + } + } +} + +template +void CircuitFlowGeneratorSolver::final_canonicalize_into_table() { + for (auto &row : measurements_only_table) { + table.push_back(std::move(row)); + } + + size_t num_eliminated = 0; + for (size_t q = 0; q < num_qubits; q++) { + elimination_step( + rows_with([&](const Flow &flow) { + return flow.input.xs[q]; + }), + num_eliminated); + elimination_step( + rows_with([&](const Flow &flow) { + return flow.input.zs[q]; + }), + num_eliminated); + } + for (size_t q = 0; q < num_qubits; q++) { + elimination_step( + rows_with([&](const Flow &flow) { + return flow.output.xs[q]; + }), + num_eliminated); + elimination_step( + rows_with([&](const Flow &flow) { + return flow.output.zs[q]; + }), + num_eliminated); + } + for (size_t m = 0; m < num_measurements; m++) { + elimination_step( + rows_with([&](const Flow &flow) { + return std::find(flow.measurements.begin(), flow.measurements.end(), (int32_t)m) != + flow.measurements.end(); + }), + num_eliminated); + } + for (auto &row : table) { + row.output.sign ^= row.input.sign; + row.input.sign = 0; + if (row.input.ref().has_no_pauli_terms()) { + row.input.xs.destructive_resize(0); + row.input.zs.destructive_resize(0); + row.input.num_qubits = 0; + } + if (row.output.ref().has_no_pauli_terms()) { + row.output.xs.destructive_resize(0); + row.output.zs.destructive_resize(0); + row.output.num_qubits = 0; + } + } + + std::sort(table.begin(), table.end()); +} + +template +std::vector> circuit_flow_generators(const Circuit &circuit) { + CircuitFlowGeneratorSolver solver(circuit.compute_stats()); + for (size_t q = 0; q < solver.num_qubits; q++) { + auto &x = solver.add_row(); + x.output.xs[q] = 1; + x.input.xs[q] = 1; + auto &z = solver.add_row(); + z.output.zs[q] = 1; + z.input.zs[q] = 1; + } + circuit.for_each_operation_reverse([&](CircuitInstruction inst) { + solver.undo_instruction(inst); + }); + solver.final_canonicalize_into_table(); + return solver.table; +} + +} // namespace stim diff --git a/src/stim/util_top/circuit_flow_generators.test.cc b/src/stim/util_top/circuit_flow_generators.test.cc new file mode 100644 index 00000000..8075a74b --- /dev/null +++ b/src/stim/util_top/circuit_flow_generators.test.cc @@ -0,0 +1,266 @@ +#include "stim/util_top/circuit_flow_generators.h" + +#include "gtest/gtest.h" + +#include "stim/circuit/circuit.test.h" +#include "stim/gen/gen_surface_code.h" +#include "stim/mem/simd_word.test.h" +#include "stim/util_top/circuit_inverse_qec.h" +#include "stim/util_top/has_flow.h" + +using namespace stim; + +TEST_EACH_WORD_SIZE_W(circuit_flow_generators, various, { + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + )CIRCUIT")), + (std::vector>{})); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + X 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("X -> X"), + Flow::from_str("Z -> -Z"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + H 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("X -> Z"), + Flow::from_str("Z -> X"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + M 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> Z xor rec[0]"), + Flow::from_str("Z -> rec[0]"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + M 0 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> rec[0] xor rec[1]"), + Flow::from_str("1 -> Z xor rec[1]"), + Flow::from_str("Z -> rec[1]"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + MXX 2 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> X_X xor rec[0]"), + Flow::from_str("__X -> __X"), + Flow::from_str("_X_ -> _X_"), + Flow::from_str("_Z_ -> _Z_"), + Flow::from_str("X__ -> __X xor rec[0]"), + Flow::from_str("Z_Z -> Z_Z"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + MYY 3 1 2 3 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> __YY xor rec[1]"), + Flow::from_str("1 -> _Y_Y xor rec[0]"), + Flow::from_str("___Y -> ___Y"), + Flow::from_str("__Y_ -> ___Y xor rec[1]"), + Flow::from_str("_XZZ -> _ZZX xor rec[0]"), + Flow::from_str("_ZZZ -> _ZZZ"), + Flow::from_str("X___ -> X___"), + Flow::from_str("Z___ -> Z___"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + MZZ 3 1 2 3 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> __ZZ xor rec[1]"), + Flow::from_str("1 -> _Z_Z xor rec[0]"), + Flow::from_str("___Z -> ___Z"), + Flow::from_str("__Z_ -> ___Z xor rec[1]"), + Flow::from_str("_XXX -> _XXX"), + Flow::from_str("_Z__ -> ___Z xor rec[0]"), + Flow::from_str("X___ -> X___"), + Flow::from_str("Z___ -> Z___"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + ISWAP 3 1 2 3 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("___X -> _YZ_"), + Flow::from_str("___Z -> _Z__"), + Flow::from_str("__X_ -> __ZY"), + Flow::from_str("__Z_ -> ___Z"), + Flow::from_str("_X__ -> -_ZXZ"), + Flow::from_str("_Z__ -> __Z_"), + Flow::from_str("X___ -> X___"), + Flow::from_str("Z___ -> Z___"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + S 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("X -> Y"), + Flow::from_str("Z -> Z"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + S_DAG 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("X -> -Y"), + Flow::from_str("Z -> Z"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + SPP Z0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("X -> Y"), + Flow::from_str("Z -> Z"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + SQRT_X 0 + S 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("X -> Y"), + Flow::from_str("Z -> X"), + })); + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + SPP X0 Z0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("X -> Y"), + Flow::from_str("Z -> X"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + SPP X0*X1 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("_X -> _X"), + Flow::from_str("_Z -> -XY"), + Flow::from_str("X_ -> X_"), + Flow::from_str("Z_ -> -YX"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + SPP_DAG Z0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("X -> -Y"), + Flow::from_str("Z -> Z"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + M 0 + CX rec[-1] 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> Z"), + Flow::from_str("Z -> rec[0]"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + R 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> Z"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + MR 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> Z"), + Flow::from_str("Z -> rec[0]"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + M 0 + XCZ 0 rec[-1] + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> Z"), + Flow::from_str("Z -> rec[0]"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + MPAD 0 1 1 0 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> rec[0]"), + Flow::from_str("1 -> rec[3]"), + Flow::from_str("1 -> -rec[1]"), + Flow::from_str("1 -> -rec[2]"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + M 0 + CY rec[-1] 1 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> Z_ xor rec[0]"), + Flow::from_str("_X -> _X xor rec[0]"), + Flow::from_str("_Z -> _Z xor rec[0]"), + Flow::from_str("Z_ -> rec[0]"), + })); + + EXPECT_EQ( + circuit_flow_generators(Circuit(R"CIRCUIT( + HERALDED_ERASE(0.04) 1 + HERALDED_PAULI_CHANNEL_1(0.01, 0.02, 0.03, 0.04) 1 + TICK + MPP X0*Y1*Z2 Z0*Z1 + )CIRCUIT")), + (std::vector>{ + Flow::from_str("1 -> rec[0]"), + Flow::from_str("1 -> rec[1]"), + Flow::from_str("1 -> XYZ xor rec[2]"), + Flow::from_str("1 -> ZZ_ xor rec[3]"), + Flow::from_str("__Z -> __Z"), + Flow::from_str("_ZX -> _ZX"), + Flow::from_str("XXX -> _ZY xor rec[2]"), + Flow::from_str("Z_X -> _ZX xor rec[3]"), + })); +}) + +TEST_EACH_WORD_SIZE_W(circuit_flow_generators, all_operations, { + auto circuit = generate_test_circuit_with_all_operations(); + auto generators = circuit_flow_generators(circuit); + auto rng = externally_seeded_rng(); + auto passes = sample_if_circuit_has_stabilizer_flows(256, rng, circuit, generators); + for (size_t k = 0; k < passes.size(); k++) { + EXPECT_TRUE(passes[k]) << k << ": " << generators[k]; + } +}) diff --git a/src/stim/util_top/circuit_inverse_qec.test.cc b/src/stim/util_top/circuit_inverse_qec.test.cc index 135a1166..9438dd41 100644 --- a/src/stim/util_top/circuit_inverse_qec.test.cc +++ b/src/stim/util_top/circuit_inverse_qec.test.cc @@ -2,9 +2,9 @@ #include "gtest/gtest.h" -#include "circuit_to_detecting_regions.h" #include "stim/gen/gen_surface_code.h" #include "stim/mem/simd_word.test.h" +#include "stim/util_top/circuit_to_detecting_regions.h" using namespace stim; diff --git a/src/stim/util_top/export_qasm.test.cc b/src/stim/util_top/export_qasm.test.cc index 75377cd2..34a7d89b 100644 --- a/src/stim/util_top/export_qasm.test.cc +++ b/src/stim/util_top/export_qasm.test.cc @@ -196,7 +196,7 @@ TEST(export_qasm, export_open_qasm_mpad) { ASSERT_EQ(out.str(), R"QASM(OPENQASM 3.0; include "stdgates.inc"; -qreg q[2]; +qreg q[1]; creg rec[4]; h q[0]; diff --git a/src/stim/util_top/has_flow.inl b/src/stim/util_top/has_flow.inl index 7451e034..b106bdd5 100644 --- a/src/stim/util_top/has_flow.inl +++ b/src/stim/util_top/has_flow.inl @@ -38,7 +38,7 @@ static GateTarget measurement_index_to_target(int32_t m, uint64_t num_measuremen } template -bool _sample_if_circuit_has_stabilizer_flow( +bool _sample_if_noiseless_circuit_has_stabilizer_flow( size_t num_samples, std::mt19937_64 &rng, const Circuit &circuit, const Flow &flow) { uint32_t num_qubits = (uint32_t)circuit.count_qubits(); uint64_t num_measurements = circuit.count_measurements(); @@ -76,9 +76,10 @@ bool _sample_if_circuit_has_stabilizer_flow( template std::vector sample_if_circuit_has_stabilizer_flows( size_t num_samples, std::mt19937_64 &rng, const Circuit &circuit, std::span> flows) { + const auto &noiseless = circuit.aliased_noiseless_circuit(); std::vector result; for (const auto &flow : flows) { - result.push_back(_sample_if_circuit_has_stabilizer_flow(num_samples, rng, circuit, flow)); + result.push_back(_sample_if_noiseless_circuit_has_stabilizer_flow(num_samples, rng, noiseless, flow)); } return result; } diff --git a/src/stim/util_top/reference_sample_tree.cc b/src/stim/util_top/reference_sample_tree.cc index bb8764aa..457a417f 100644 --- a/src/stim/util_top/reference_sample_tree.cc +++ b/src/stim/util_top/reference_sample_tree.cc @@ -9,7 +9,7 @@ bool ReferenceSampleTree::empty() const { if (!prefix_bits.empty()) { return false; } - for (const auto &child: suffix_children) { + for (const auto &child : suffix_children) { if (!child.empty()) { return false; } @@ -48,7 +48,7 @@ void ReferenceSampleTree::flatten_and_simplify_into(std::vector &output) const { for (uint64_t k = 0; k < repetitions; k++) { output.insert(output.end(), prefix_bits.begin(), prefix_bits.end()); - for (const auto &child: suffix_children) { + for (const auto &child : suffix_children) { child.decompress_into(output); } } @@ -166,12 +167,8 @@ void ReferenceSampleTree::decompress_into(std::vector &output) const { ReferenceSampleTree ReferenceSampleTree::from_circuit_reference_sample(const Circuit &circuit) { auto stats = circuit.compute_stats(); std::mt19937_64 irrelevant_rng{0}; - CompressedReferenceSampleHelper helper( - TableauSimulator( - std::move(irrelevant_rng), - stats.num_qubits, - +1, - MeasureRecord(stats.max_lookback))); + CompressedReferenceSampleHelper helper(TableauSimulator( + std::move(irrelevant_rng), stats.num_qubits, +1, MeasureRecord(stats.max_lookback))); return helper.do_loop_with_tortoise_hare_folding(circuit, 1).simplified(); } @@ -182,8 +179,7 @@ std::string ReferenceSampleTree::str() const { } bool ReferenceSampleTree::operator==(const ReferenceSampleTree &other) const { - return repetitions == other.repetitions && - prefix_bits == other.prefix_bits && + return repetitions == other.repetitions && prefix_bits == other.prefix_bits && suffix_children == other.suffix_children; } bool ReferenceSampleTree::operator!=(const ReferenceSampleTree &other) const { diff --git a/src/stim/util_top/reference_sample_tree.h b/src/stim/util_top/reference_sample_tree.h index 2b439b61..4b6f677f 100644 --- a/src/stim/util_top/reference_sample_tree.h +++ b/src/stim/util_top/reference_sample_tree.h @@ -60,21 +60,15 @@ struct CompressedReferenceSampleHelper { /// /// Loops containing within the body of this loop (or circuit body) may /// still be compressed. Only the top-level loop is not folded. - ReferenceSampleTree do_loop_with_no_folding( - const Circuit &loop, - uint64_t reps); + ReferenceSampleTree do_loop_with_no_folding(const Circuit &loop, uint64_t reps); /// Runs tortoise-and-hare analysis of the loop while simulating its /// reference sample, in order to attempt to return a compressed /// representation. - ReferenceSampleTree do_loop_with_tortoise_hare_folding( - const Circuit &loop, - uint64_t reps); + ReferenceSampleTree do_loop_with_tortoise_hare_folding(const Circuit &loop, uint64_t reps); bool in_same_recent_state_as( - const CompressedReferenceSampleHelper &other, - uint64_t max_record_lookback, - bool allow_false_negative) const; + const CompressedReferenceSampleHelper &other, uint64_t max_record_lookback, bool allow_false_negative) const; }; uint64_t max_feedback_lookback_in_loop(const Circuit &loop); diff --git a/src/stim/util_top/reference_sample_tree.inl b/src/stim/util_top/reference_sample_tree.inl index 746920dc..94c52e27 100644 --- a/src/stim/util_top/reference_sample_tree.inl +++ b/src/stim/util_top/reference_sample_tree.inl @@ -26,7 +26,7 @@ ReferenceSampleTree CompressedReferenceSampleHelper::do_loop_with_no_folding( for (const auto &inst : loop.operations) { if (inst.gate_type == GateType::REPEAT) { uint64_t repeats = inst.repeat_block_rep_count(); - const auto& block = inst.repeat_block_body(loop); + const auto &block = inst.repeat_block_body(loop); flush_recorded_into_result(); result.suffix_children.push_back(do_loop_with_tortoise_hare_folding(block, repeats)); start_size = sim.measurement_record.storage.size(); @@ -41,7 +41,8 @@ ReferenceSampleTree CompressedReferenceSampleHelper::do_loop_with_no_folding( } template -ReferenceSampleTree CompressedReferenceSampleHelper::do_loop_with_tortoise_hare_folding(const Circuit &loop, uint64_t reps) { +ReferenceSampleTree CompressedReferenceSampleHelper::do_loop_with_tortoise_hare_folding( + const Circuit &loop, uint64_t reps) { if (reps < 10) { // Probably not worth the overhead of tortoise-and-hare. Just run it raw. return do_loop_with_no_folding(loop, reps); @@ -99,7 +100,9 @@ ReferenceSampleTree CompressedReferenceSampleHelper::do_loop_with_tortoise_ha // Add skipped iterations' measurement data into the sim's measurement record. loop_contents.repetitions = 1; sim.measurement_record.discard_results_past_max_lookback(); - for (size_t k = 0; k < period_steps_left && sim.measurement_record.storage.size() < sim.measurement_record.max_lookback * 2; k++) { + for (size_t k = 0; + k < period_steps_left && sim.measurement_record.storage.size() < sim.measurement_record.max_lookback * 2; + k++) { loop_contents.decompress_into(sim.measurement_record.storage); } sim.measurement_record.discard_results_past_max_lookback(); @@ -116,9 +119,7 @@ ReferenceSampleTree CompressedReferenceSampleHelper::do_loop_with_tortoise_ha template bool CompressedReferenceSampleHelper::in_same_recent_state_as( - const CompressedReferenceSampleHelper &other, - uint64_t max_record_lookback, - bool allow_false_negative) const { + const CompressedReferenceSampleHelper &other, uint64_t max_record_lookback, bool allow_false_negative) const { const auto &s1 = sim.measurement_record.storage; const auto &s2 = other.sim.measurement_record.storage; diff --git a/src/stim/util_top/reference_sample_tree.perf.cc b/src/stim/util_top/reference_sample_tree.perf.cc index c245f157..8d655202 100644 --- a/src/stim/util_top/reference_sample_tree.perf.cc +++ b/src/stim/util_top/reference_sample_tree.perf.cc @@ -14,8 +14,7 @@ BENCHMARK(reference_sample_tree_surface_code_d31_r1000000000) { benchmark_go([&]() { auto result = ReferenceSampleTree::from_circuit_reference_sample(circuit); total += result.empty(); - }) - .goal_millis(25); + }).goal_millis(25); if (total) { std::cerr << "data dependence"; } @@ -44,8 +43,7 @@ BENCHMARK(reference_sample_tree_nested_circuit) { benchmark_go([&]() { auto result = ReferenceSampleTree::from_circuit_reference_sample(circuit); total += result.empty(); - }) - .goal_micros(230); + }).goal_micros(230); if (total) { std::cerr << "data dependence"; } diff --git a/src/stim/util_top/reference_sample_tree.test.cc b/src/stim/util_top/reference_sample_tree.test.cc index 858a8e66..3d09171b 100644 --- a/src/stim/util_top/reference_sample_tree.test.cc +++ b/src/stim/util_top/reference_sample_tree.test.cc @@ -19,72 +19,83 @@ void expect_tree_matches_normal_reference_sample_of(const ReferenceSampleTree &t TEST(ReferenceSampleTree, equality) { ReferenceSampleTree empty1{ - .prefix_bits={}, - .suffix_children={}, - .repetitions=0, + .prefix_bits = {}, + .suffix_children = {}, + .repetitions = 0, }; ReferenceSampleTree empty2; ASSERT_EQ(empty1, empty2); ASSERT_FALSE(empty1 != empty2); - ASSERT_NE(empty1, (ReferenceSampleTree{.prefix_bits={},.suffix_children{},.repetitions=1})); - ASSERT_NE(empty1, (ReferenceSampleTree{.prefix_bits={0},.suffix_children{},.repetitions=0})); - ASSERT_NE(empty1, (ReferenceSampleTree{.prefix_bits={},.suffix_children{{}},.repetitions=0})); + ASSERT_NE(empty1, (ReferenceSampleTree{.prefix_bits = {}, .suffix_children{}, .repetitions = 1})); + ASSERT_NE(empty1, (ReferenceSampleTree{.prefix_bits = {0}, .suffix_children{}, .repetitions = 0})); + ASSERT_NE(empty1, (ReferenceSampleTree{.prefix_bits = {}, .suffix_children{{}}, .repetitions = 0})); } TEST(ReferenceSampleTree, str) { - ASSERT_EQ((ReferenceSampleTree{ - .prefix_bits={}, - .suffix_children={}, - .repetitions=0, - }.str()), "0*('')"); + ASSERT_EQ( + (ReferenceSampleTree{ + .prefix_bits = {}, + .suffix_children = {}, + .repetitions = 0, + } + .str()), + "0*('')"); - ASSERT_EQ((ReferenceSampleTree{ - .prefix_bits={1, 1, 0, 1}, - .suffix_children={}, - .repetitions=0, - }.str()), "0*('1101')"); + ASSERT_EQ( + (ReferenceSampleTree{ + .prefix_bits = {1, 1, 0, 1}, + .suffix_children = {}, + .repetitions = 0, + } + .str()), + "0*('1101')"); - ASSERT_EQ((ReferenceSampleTree{ - .prefix_bits={1, 1, 0, 1}, - .suffix_children={}, - .repetitions=2, - }.str()), "2*('1101')"); + ASSERT_EQ( + (ReferenceSampleTree{ + .prefix_bits = {1, 1, 0, 1}, + .suffix_children = {}, + .repetitions = 2, + } + .str()), + "2*('1101')"); - ASSERT_EQ((ReferenceSampleTree{ - .prefix_bits={1, 1, 0, 1}, - .suffix_children={ - ReferenceSampleTree{ - .prefix_bits={1}, - .suffix_children={}, - .repetitions=5, - } - }, - .repetitions=2, - }.str()), "2*('1101'+5*('1'))"); + ASSERT_EQ( + (ReferenceSampleTree{ + .prefix_bits = {1, 1, 0, 1}, + .suffix_children = {ReferenceSampleTree{ + .prefix_bits = {1}, + .suffix_children = {}, + .repetitions = 5, + }}, + .repetitions = 2, + } + .str()), + "2*('1101'+5*('1'))"); } TEST(ReferenceSampleTree, simplified) { ReferenceSampleTree raw{ - .prefix_bits={}, - .suffix_children={ - ReferenceSampleTree{ - .prefix_bits={}, - .suffix_children={}, - .repetitions=1, - }, - ReferenceSampleTree{ - .prefix_bits={1, 0, 1}, - .suffix_children={{}}, - .repetitions=0, + .prefix_bits = {}, + .suffix_children = + { + ReferenceSampleTree{ + .prefix_bits = {}, + .suffix_children = {}, + .repetitions = 1, + }, + ReferenceSampleTree{ + .prefix_bits = {1, 0, 1}, + .suffix_children = {{}}, + .repetitions = 0, + }, + ReferenceSampleTree{ + .prefix_bits = {1, 1, 1}, + .suffix_children = {}, + .repetitions = 2, + }, }, - ReferenceSampleTree{ - .prefix_bits={1, 1, 1}, - .suffix_children={}, - .repetitions=2, - }, - }, - .repetitions=3, + .repetitions = 3, }; ASSERT_EQ(raw.simplified().str(), "6*('111')"); } @@ -92,36 +103,38 @@ TEST(ReferenceSampleTree, simplified) { TEST(ReferenceSampleTree, decompress_into) { std::vector result; ReferenceSampleTree{ - .prefix_bits={1, 1, 0, 1}, - .suffix_children={ - ReferenceSampleTree{ - .prefix_bits={1}, - .suffix_children={}, - .repetitions=5, - } - }, - .repetitions=2, - }.decompress_into(result); + .prefix_bits = {1, 1, 0, 1}, + .suffix_children = {ReferenceSampleTree{ + .prefix_bits = {1}, + .suffix_children = {}, + .repetitions = 5, + }}, + .repetitions = 2, + } + .decompress_into(result); ASSERT_EQ(result, (std::vector{1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1})); result.clear(); ReferenceSampleTree{ - .prefix_bits={1, 1, 0, 1}, - .suffix_children={ - ReferenceSampleTree{ - .prefix_bits={1, 0, 1}, - .suffix_children={}, - .repetitions=8, + .prefix_bits = {1, 1, 0, 1}, + .suffix_children = + { + ReferenceSampleTree{ + .prefix_bits = {1, 0, 1}, + .suffix_children = {}, + .repetitions = 8, + }, + ReferenceSampleTree{ + .prefix_bits = {0, 0}, + .suffix_children = {}, + .repetitions = 1, + }, }, - ReferenceSampleTree{ - .prefix_bits={0, 0}, - .suffix_children={}, - .repetitions=1, - }, - }, - .repetitions=1, - }.decompress_into(result); - ASSERT_EQ(result, (std::vector{1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0})); + .repetitions = 1, + } + .decompress_into(result); + ASSERT_EQ(result, (std::vector{1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, + 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0})); } TEST(ReferenceSampleTree, simple_circuit) { @@ -186,7 +199,8 @@ TEST(ReferenceSampleTree, feedback) { TEST(max_feedback_lookback_in_loop, simple) { ASSERT_EQ(max_feedback_lookback_in_loop(Circuit()), 0); - ASSERT_EQ(max_feedback_lookback_in_loop(Circuit(R"CIRCUIT( + ASSERT_EQ( + max_feedback_lookback_in_loop(Circuit(R"CIRCUIT( REPEAT 100 { REPEAT 100 { M 0 @@ -200,27 +214,36 @@ TEST(max_feedback_lookback_in_loop, simple) { X 1 CX 1 0 } - )CIRCUIT")), 0); + )CIRCUIT")), + 0); - ASSERT_EQ(max_feedback_lookback_in_loop(Circuit(R"CIRCUIT( + ASSERT_EQ( + max_feedback_lookback_in_loop(Circuit(R"CIRCUIT( CX rec[-1] 0 - )CIRCUIT")), 1); + )CIRCUIT")), + 1); - ASSERT_EQ(max_feedback_lookback_in_loop(Circuit(R"CIRCUIT( + ASSERT_EQ( + max_feedback_lookback_in_loop(Circuit(R"CIRCUIT( CZ 0 rec[-2] - )CIRCUIT")), 2); + )CIRCUIT")), + 2); - ASSERT_EQ(max_feedback_lookback_in_loop(Circuit(R"CIRCUIT( + ASSERT_EQ( + max_feedback_lookback_in_loop(Circuit(R"CIRCUIT( CZ 0 rec[-2] CY 0 rec[-3] - )CIRCUIT")), 3); + )CIRCUIT")), + 3); - ASSERT_EQ(max_feedback_lookback_in_loop(Circuit(R"CIRCUIT( + ASSERT_EQ( + max_feedback_lookback_in_loop(Circuit(R"CIRCUIT( CZ 0 rec[-2] REPEAT 100 { CX rec[-5] 0 } - )CIRCUIT")), 5); + )CIRCUIT")), + 5); } TEST(ReferenceSampleTree, nested_loops) { @@ -240,7 +263,10 @@ TEST(ReferenceSampleTree, nested_loops) { )CIRCUIT"); auto ref = ReferenceSampleTree::from_circuit_reference_sample(circuit); expect_tree_matches_normal_reference_sample_of(ref, circuit); - ASSERT_EQ(ref.str(), "1*(''+50*('0110')+200*('0')+50*('1001')+200*('1')+50*('1001')+200*('1')+50*('0110')+200*('0')+24*(''+50*('0110')+200*('0')+50*('1001')+200*('1')+50*('1001')+200*('1')+50*('0110')+200*('0')))"); + ASSERT_EQ( + ref.str(), + "1*(''+50*('0110')+200*('0')+50*('1001')+200*('1')+50*('1001')+200*('1')+50*('0110')+200*('0')+24*(''+50*('" + "0110')+200*('0')+50*('1001')+200*('1')+50*('1001')+200*('1')+50*('0110')+200*('0')))"); } TEST(ReferenceSampleTree, surface_code) { diff --git a/src/stim/util_top/stabilizers_to_tableau.inl b/src/stim/util_top/stabilizers_to_tableau.inl index 881c846d..c1751c2e 100644 --- a/src/stim/util_top/stabilizers_to_tableau.inl +++ b/src/stim/util_top/stabilizers_to_tableau.inl @@ -97,7 +97,7 @@ Tableau stabilizers_to_tableau( if (!allow_redundant) { std::stringstream ss; ss << "Some of the given stabilizers are redundant."; - ss<< "\nTo allow redundant stabilizers, pass the argument allow_redundant=True."; + ss << "\nTo allow redundant stabilizers, pass the argument allow_redundant=True."; ss << "\n"; ss << "\nFor example:"; ss << "\n stabilizers[" << k << "] = " << stabilizers[k]; From 3f9082ef8ad17b30ade0f5bdbfa35167e72fdd97 Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Sat, 13 Jul 2024 23:21:40 -0700 Subject: [PATCH 05/17] Add `stim.GateData.{is_symmetric_gate,hadamard_conjugated}` (#796) - Add some missing example sections to docstrings - Add a warning about missing example sections when running documentation tests - Add `stim.GateData.is_symmetric_gate` - Add `stim.GateData.hadamard_conjugated(unsigned=False)` - Add `stim.DemTarget.__init__` with support for parsing strings Fixes https://github.com/quantumlib/Stim/issues/795 --- dev/doctest_proper.py | 9 + doc/python_api_reference_vDev.md | 347 +++++++++++++++++- doc/stim.pyi | 323 +++++++++++++++- glue/python/src/stim/__init__.pyi | 323 +++++++++++++++- src/stim/circuit/circuit.pybind.cc | 4 +- src/stim/dem/dem_instruction.cc | 10 +- src/stim/dem/dem_instruction.h | 3 + .../dem/detector_error_model_pybind_test.py | 2 +- ...etector_error_model_repeat_block.pybind.cc | 12 + .../dem/detector_error_model_target.pybind.cc | 74 +++- ...detector_error_model_target_pybind_test.py | 20 + src/stim/gates/gates.cc | 142 +++++++ src/stim/gates/gates.h | 3 + src/stim/gates/gates.pybind.cc | 121 ++++++ src/stim/gates/gates.test.cc | 75 ++++ src/stim/gates/gates_test.py | 17 + src/stim/simulators/matched_error.pybind.cc | 184 +++++++++- 17 files changed, 1594 insertions(+), 75 deletions(-) diff --git a/dev/doctest_proper.py b/dev/doctest_proper.py index 59311966..881efac7 100755 --- a/dev/doctest_proper.py +++ b/dev/doctest_proper.py @@ -89,6 +89,15 @@ def main(): module = __import__(module_name) out = {} gen(obj=module, fullname=module_name, out=out) + for k, v in out.items(): + if v.__doc__ is None: + continue + v = v.__doc__.lower() + if '\n' in v.strip() and 'examples:' not in v and 'example:' not in v and '[deprecated]' not in v: + if k.split('.')[-1] not in ['__next__', '__iter__', '__init_subclass__', '__module__', '__eq__', '__ne__', '__str__', '__repr__']: + if all(not (e.startswith('_') and not e.startswith('__')) for e in k.split('.')): + print(f" Warning: Missing 'examples:' section in docstring of {k!r}", file=sys.stderr) + module.__test__ = {k: v for k, v in out.items()} if doctest.testmod(module, globs=globs).failed: any_failed = True diff --git a/doc/python_api_reference_vDev.md b/doc/python_api_reference_vDev.md index 49dd374d..145d04ac 100644 --- a/doc/python_api_reference_vDev.md +++ b/doc/python_api_reference_vDev.md @@ -135,6 +135,7 @@ API references for stable versions are kept on the [stim github wiki](https://gi - [`stim.DemRepeatBlock.type`](#stim.DemRepeatBlock.type) - [`stim.DemTarget`](#stim.DemTarget) - [`stim.DemTarget.__eq__`](#stim.DemTarget.__eq__) + - [`stim.DemTarget.__init__`](#stim.DemTarget.__init__) - [`stim.DemTarget.__ne__`](#stim.DemTarget.__ne__) - [`stim.DemTarget.__repr__`](#stim.DemTarget.__repr__) - [`stim.DemTarget.__str__`](#stim.DemTarget.__str__) @@ -217,10 +218,12 @@ API references for stable versions are kept on the [stim github wiki](https://gi - [`stim.GateData.aliases`](#stim.GateData.aliases) - [`stim.GateData.flows`](#stim.GateData.flows) - [`stim.GateData.generalized_inverse`](#stim.GateData.generalized_inverse) + - [`stim.GateData.hadamard_conjugated`](#stim.GateData.hadamard_conjugated) - [`stim.GateData.inverse`](#stim.GateData.inverse) - [`stim.GateData.is_noisy_gate`](#stim.GateData.is_noisy_gate) - [`stim.GateData.is_reset`](#stim.GateData.is_reset) - [`stim.GateData.is_single_qubit_gate`](#stim.GateData.is_single_qubit_gate) + - [`stim.GateData.is_symmetric_gate`](#stim.GateData.is_symmetric_gate) - [`stim.GateData.is_two_qubit_gate`](#stim.GateData.is_two_qubit_gate) - [`stim.GateData.is_unitary`](#stim.GateData.is_unitary) - [`stim.GateData.name`](#stim.GateData.name) @@ -2702,8 +2705,8 @@ def reference_sample( Examples: >>> import stim >>> stim.Circuit(''' - ... X 1 - ... M 0 1 + ... X 1 + ... M 0 1 ... ''').reference_sample() array([False, True]) """ @@ -3502,6 +3505,26 @@ def without_noise( # (at top-level in the stim module) class CircuitErrorLocation: """Describes the location of an error mechanism from a stim circuit. + + Examples: + >>> import stim + >>> circuit = stim.Circuit.generated( + ... "repetition_code:memory", + ... distance=5, + ... rounds=5, + ... before_round_data_depolarization=1e-3, + ... ) + >>> logical_error = circuit.shortest_graphlike_error() + >>> error_location = logical_error[0].circuit_error_locations[0] + >>> print(error_location) + CircuitErrorLocation { + flipped_pauli_product: X0 + Circuit location stack trace: + (after 1 TICKs) + at instruction #3 (DEPOLARIZE1) in the circuit + at target #1 of the instruction + resolving to DEPOLARIZE1(0.001) 0 + } """ ``` @@ -3520,6 +3543,48 @@ def __init__( stack_frames: List[stim.CircuitErrorLocationStackFrame], ) -> None: """Creates a stim.CircuitErrorLocation. + + Examples: + >>> import stim + >>> err = stim.CircuitErrorLocation( + ... tick_offset=1, + ... flipped_pauli_product=( + ... stim.GateTargetWithCoords( + ... gate_target=stim.target_x(0), + ... coords=[], + ... ), + ... ), + ... flipped_measurement=stim.FlippedMeasurement( + ... record_index=None, + ... observable=(), + ... ), + ... instruction_targets=stim.CircuitTargetsInsideInstruction( + ... gate='DEPOLARIZE1', + ... args=[0.001], + ... target_range_start=0, + ... target_range_end=1, + ... targets_in_range=(stim.GateTargetWithCoords( + ... gate_target=0, + ... coords=[], + ... ),) + ... ), + ... stack_frames=( + ... stim.CircuitErrorLocationStackFrame( + ... instruction_offset=2, + ... iteration_index=0, + ... instruction_repetitions_arg=0, + ... ), + ... ), + ... ) + >>> print(err) + CircuitErrorLocation { + flipped_pauli_product: X0 + Circuit location stack trace: + (after 1 TICKs) + at instruction #3 (DEPOLARIZE1) in the circuit + at target #1 of the instruction + resolving to DEPOLARIZE1(0.001) 0 + } """ ``` @@ -3533,7 +3598,21 @@ def flipped_measurement( self, ) -> Optional[stim.FlippedMeasurement]: """The measurement that was flipped by the error mechanism. + If the error isn't a measurement error, this will be None. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... M(0.125) 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].flipped_measurement + stim.FlippedMeasurement( + record_index=0, + observable=(stim.GateTargetWithCoords(stim.target_z(0), []),), + ) """ ``` @@ -3547,7 +3626,19 @@ def flipped_pauli_product( self, ) -> List[stim.GateTargetWithCoords]: """The Pauli errors that the error mechanism applied to qubits. + When the error is a measurement error, this will be an empty list. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].flipped_pauli_product + [stim.GateTargetWithCoords(stim.target_y(0), [])] """ ``` @@ -3575,8 +3666,26 @@ def instruction_targets( def stack_frames( self, ) -> List[stim.CircuitErrorLocationStackFrame]: - """Where in the circuit's execution does the error mechanism occur, - accounting for things like nested loops that iterate multiple times. + """Describes where in the circuit's execution the error happened. + + Multiple frames are needed because the error may occur within a loop, + or a loop nested inside a loop, or etc. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].stack_frames + [stim.CircuitErrorLocationStackFrame( + instruction_offset=2, + iteration_index=0, + instruction_repetitions_arg=0, + )] """ ``` @@ -3589,8 +3698,23 @@ def stack_frames( def tick_offset( self, ) -> int: - """The number of TICKs that executed before the error mechanism being discussed, - including TICKs that occurred multiple times during loops. + """The number of TICKs that executed before the error happened. + + This counts TICKs occurring multiple times during loops. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... TICK + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].tick_offset + 3 """ ``` @@ -5310,6 +5434,18 @@ def body_copy( self, ) -> stim.DetectorErrorModel: """Returns a copy of the block's body, as a stim.DetectorErrorModel. + + Examples: + >>> import stim + >>> body = stim.DetectorErrorModel(''' + ... error(0.125) D0 D1 + ... shift_detectors 1 + ... ''') + >>> repeat_block = stim.DemRepeatBlock(100, body) + >>> repeat_block.body_copy() == body + True + >>> repeat_block.body_copy() is repeat_block.body_copy() + False """ ``` @@ -5379,6 +5515,33 @@ def __eq__( """ ``` + +```python +# stim.DemTarget.__init__ + +# (in class stim.DemTarget) +def __init__( + self, + arg: object, + /, +) -> None: + """Creates a stim.DemTarget from the given object. + + Args: + arg: A string to parse as a stim.DemTarget, or some other object to + convert into a stim.DemTarget. + + Examples: + >>> import stim + >>> stim.DemTarget("D5") == stim.target_relative_detector_id(5) + True + >>> stim.DemTarget("L2") == stim.target_logical_observable_id(2) + True + >>> stim.DemTarget("^") == stim.target_separator() + True + """ +``` + ```python # stim.DemTarget.__ne__ @@ -5428,6 +5591,15 @@ def is_logical_observable_id( In a detector error model file, observable targets are prefixed by `L`. For example, in `error(0.25) D0 L1` the `L1` is an observable target. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_logical_observable_id() + True + >>> stim.DemTarget("D3").is_logical_observable_id() + False + >>> stim.DemTarget("^").is_logical_observable_id() + False """ ``` @@ -5443,6 +5615,15 @@ def is_relative_detector_id( In a detector error model file, detectors are prefixed by `D`. For example, in `error(0.25) D0 L1` the `D0` is a relative detector target. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_relative_detector_id() + False + >>> stim.DemTarget("D3").is_relative_detector_id() + True + >>> stim.DemTarget("^").is_relative_detector_id() + False """ ``` @@ -5458,6 +5639,15 @@ def is_separator( Separates separate the components of a suggested decompositions within an error. For example, the `^` in `error(0.25) D1 D2 ^ D3 D4` is the separator. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_separator() + False + >>> stim.DemTarget("D3").is_separator() + False + >>> stim.DemTarget("^").is_separator() + True """ ``` @@ -5558,11 +5748,10 @@ def val( """Returns the target's integer value. Example: - >>> import stim - >>> stim.target_relative_detector_id(5).val + >>> stim.DemTarget("D5").val 5 - >>> stim.target_logical_observable_id(6).val + >>> stim.DemTarget("L6").val 6 """ ``` @@ -7480,11 +7669,21 @@ class FlippedMeasurement: # (in class stim.FlippedMeasurement) def __init__( self, - *, - record_index: int, - observable: object, -) -> None: + measurement_record_index: Optional[int], + measured_observable: Iterable[stim.GateTargetWithCoords], +): """Creates a stim.FlippedMeasurement. + + Examples: + >>> import stim + >>> print(stim.FlippedMeasurement( + ... record_index=5, + ... observable=[], + ... )) + stim.FlippedMeasurement( + record_index=5, + observable=(), + ) """ ``` @@ -7944,6 +8143,67 @@ def generalized_inverse( """ ``` + +```python +# stim.GateData.hadamard_conjugated + +# (in class stim.GateData) +def hadamard_conjugated( + self, + *, + unsigned: bool = False, +) -> Optional[stim.GateData]: + """Returns a stim gate equivalent to this gate conjugated by Hadamard gates. + + The Hadamard conjugate can be thought of as the XZ dual of the gate; the gate + you get by exchanging the X and Z bases. For example, a SQRT_X will become a + SQRT_Z and a CX gate will switch directions into an XCZ. + + If stim doesn't define a gate equivalent to conjugating this gate by Hadamards, + the value `None` is returned. + + Args: + unsigned: Defaults to False. When False, the returned gate must be *exactly* + the Hadamard conjugation of this gate. When True, the returned gate must + have the same flows but the sign of the flows can be different (i.e. + the returned gate must be the Hadamard conjugate up to Pauli gate + differences). + + Returns: + A stim.GateData instance of the Hadamard conjugate, if it exists in stim. + + None, if stim doesn't define a gate equal to the Hadamard conjugate. + + Examples: + >>> import stim + + >>> stim.gate_data('X').hadamard_conjugated() + stim.gate_data('Z') + >>> stim.gate_data('CX').hadamard_conjugated() + stim.gate_data('XCZ') + >>> stim.gate_data('RY').hadamard_conjugated() is None + True + >>> stim.gate_data('RY').hadamard_conjugated(unsigned=True) + stim.gate_data('RY') + >>> stim.gate_data('ISWAP').hadamard_conjugated(unsigned=True) is None + True + >>> stim.gate_data('SWAP').hadamard_conjugated() + stim.gate_data('SWAP') + >>> stim.gate_data('CXSWAP').hadamard_conjugated() + stim.gate_data('SWAPCX') + >>> stim.gate_data('MXX').hadamard_conjugated() + stim.gate_data('MZZ') + >>> stim.gate_data('DEPOLARIZE1').hadamard_conjugated() + stim.gate_data('DEPOLARIZE1') + >>> stim.gate_data('X_ERROR').hadamard_conjugated() + stim.gate_data('Z_ERROR') + >>> stim.gate_data('H_XY').hadamard_conjugated(unsigned=True) + stim.gate_data('H_YZ') + >>> stim.gate_data('DETECTOR').hadamard_conjugated(unsigned=True) + stim.gate_data('DETECTOR') + """ +``` + ```python # stim.GateData.inverse @@ -8120,6 +8380,62 @@ def is_single_qubit_gate( """ ``` + +```python +# stim.GateData.is_symmetric_gate + +# (in class stim.GateData) +@property +def is_symmetric_gate( + self, +) -> bool: + """Returns whether or not the gate is the same when its targets are swapped. + + A two qubit gate is symmetric if it doesn't matter if you swap its targets. It + is unaffected when conjugated by the SWAP gate. + + Single qubit gates are vacuously symmetric. A multi-qubit gate is symmetric if + swapping any two of its targets has no effect. + + Note that this method is for symmetry *without broadcasting*. For example, SWAP + is symmetric even though SWAP 1 2 3 4 isn't equal to SWAP 1 3 2 4. + + Returns: + True if the gate is symmetric. + False if the gate isn't symmetric. + + Examples: + >>> import stim + + >>> stim.gate_data('CX').is_symmetric_gate + False + >>> stim.gate_data('CZ').is_symmetric_gate + True + >>> stim.gate_data('ISWAP').is_symmetric_gate + True + >>> stim.gate_data('CXSWAP').is_symmetric_gate + False + >>> stim.gate_data('MXX').is_symmetric_gate + True + >>> stim.gate_data('DEPOLARIZE2').is_symmetric_gate + True + >>> stim.gate_data('PAULI_CHANNEL_2').is_symmetric_gate + False + >>> stim.gate_data('H').is_symmetric_gate + True + >>> stim.gate_data('R').is_symmetric_gate + True + >>> stim.gate_data('X_ERROR').is_symmetric_gate + True + >>> stim.gate_data('CORRELATED_ERROR').is_symmetric_gate + False + >>> stim.gate_data('MPP').is_symmetric_gate + False + >>> stim.gate_data('DETECTOR').is_symmetric_gate + False + """ +``` + ```python # stim.GateData.is_two_qubit_gate @@ -8136,6 +8452,10 @@ def is_two_qubit_gate( Variable-qubit gates like CORRELATED_ERROR and MPP are not considered two qubit gates. + Returns: + True if the gate is a two qubit gate. + False if the gate isn't a two qubit gate. + Examples: >>> import stim @@ -8883,7 +9203,6 @@ class GateTargetWithCoords: # (in class stim.GateTargetWithCoords) def __init__( self, - *, gate_target: object, coords: List[float], ) -> None: diff --git a/doc/stim.pyi b/doc/stim.pyi index cd0d0258..bbd39402 100644 --- a/doc/stim.pyi +++ b/doc/stim.pyi @@ -2001,8 +2001,8 @@ class Circuit: Examples: >>> import stim >>> stim.Circuit(''' - ... X 1 - ... M 0 1 + ... X 1 + ... M 0 1 ... ''').reference_sample() array([False, True]) """ @@ -2717,6 +2717,26 @@ class Circuit: """ class CircuitErrorLocation: """Describes the location of an error mechanism from a stim circuit. + + Examples: + >>> import stim + >>> circuit = stim.Circuit.generated( + ... "repetition_code:memory", + ... distance=5, + ... rounds=5, + ... before_round_data_depolarization=1e-3, + ... ) + >>> logical_error = circuit.shortest_graphlike_error() + >>> error_location = logical_error[0].circuit_error_locations[0] + >>> print(error_location) + CircuitErrorLocation { + flipped_pauli_product: X0 + Circuit location stack trace: + (after 1 TICKs) + at instruction #3 (DEPOLARIZE1) in the circuit + at target #1 of the instruction + resolving to DEPOLARIZE1(0.001) 0 + } """ def __init__( self, @@ -2728,20 +2748,88 @@ class CircuitErrorLocation: stack_frames: List[stim.CircuitErrorLocationStackFrame], ) -> None: """Creates a stim.CircuitErrorLocation. + + Examples: + >>> import stim + >>> err = stim.CircuitErrorLocation( + ... tick_offset=1, + ... flipped_pauli_product=( + ... stim.GateTargetWithCoords( + ... gate_target=stim.target_x(0), + ... coords=[], + ... ), + ... ), + ... flipped_measurement=stim.FlippedMeasurement( + ... record_index=None, + ... observable=(), + ... ), + ... instruction_targets=stim.CircuitTargetsInsideInstruction( + ... gate='DEPOLARIZE1', + ... args=[0.001], + ... target_range_start=0, + ... target_range_end=1, + ... targets_in_range=(stim.GateTargetWithCoords( + ... gate_target=0, + ... coords=[], + ... ),) + ... ), + ... stack_frames=( + ... stim.CircuitErrorLocationStackFrame( + ... instruction_offset=2, + ... iteration_index=0, + ... instruction_repetitions_arg=0, + ... ), + ... ), + ... ) + >>> print(err) + CircuitErrorLocation { + flipped_pauli_product: X0 + Circuit location stack trace: + (after 1 TICKs) + at instruction #3 (DEPOLARIZE1) in the circuit + at target #1 of the instruction + resolving to DEPOLARIZE1(0.001) 0 + } """ @property def flipped_measurement( self, ) -> Optional[stim.FlippedMeasurement]: """The measurement that was flipped by the error mechanism. + If the error isn't a measurement error, this will be None. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... M(0.125) 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].flipped_measurement + stim.FlippedMeasurement( + record_index=0, + observable=(stim.GateTargetWithCoords(stim.target_z(0), []),), + ) """ @property def flipped_pauli_product( self, ) -> List[stim.GateTargetWithCoords]: """The Pauli errors that the error mechanism applied to qubits. + When the error is a measurement error, this will be an empty list. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].flipped_pauli_product + [stim.GateTargetWithCoords(stim.target_y(0), [])] """ @property def instruction_targets( @@ -2755,15 +2843,48 @@ class CircuitErrorLocation: def stack_frames( self, ) -> List[stim.CircuitErrorLocationStackFrame]: - """Where in the circuit's execution does the error mechanism occur, - accounting for things like nested loops that iterate multiple times. + """Describes where in the circuit's execution the error happened. + + Multiple frames are needed because the error may occur within a loop, + or a loop nested inside a loop, or etc. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].stack_frames + [stim.CircuitErrorLocationStackFrame( + instruction_offset=2, + iteration_index=0, + instruction_repetitions_arg=0, + )] """ @property def tick_offset( self, ) -> int: - """The number of TICKs that executed before the error mechanism being discussed, - including TICKs that occurred multiple times during loops. + """The number of TICKs that executed before the error happened. + + This counts TICKs occurring multiple times during loops. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... TICK + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].tick_offset + 3 """ class CircuitErrorLocationStackFrame: """Describes the location of an instruction being executed within a @@ -4098,6 +4219,18 @@ class DemRepeatBlock: self, ) -> stim.DetectorErrorModel: """Returns a copy of the block's body, as a stim.DetectorErrorModel. + + Examples: + >>> import stim + >>> body = stim.DetectorErrorModel(''' + ... error(0.125) D0 D1 + ... shift_detectors 1 + ... ''') + >>> repeat_block = stim.DemRepeatBlock(100, body) + >>> repeat_block.body_copy() == body + True + >>> repeat_block.body_copy() is repeat_block.body_copy() + False """ @property def repeat_count( @@ -4137,6 +4270,26 @@ class DemTarget: ) -> bool: """Determines if two `stim.DemTarget`s are identical. """ + def __init__( + self, + arg: object, + /, + ) -> None: + """Creates a stim.DemTarget from the given object. + + Args: + arg: A string to parse as a stim.DemTarget, or some other object to + convert into a stim.DemTarget. + + Examples: + >>> import stim + >>> stim.DemTarget("D5") == stim.target_relative_detector_id(5) + True + >>> stim.DemTarget("L2") == stim.target_logical_observable_id(2) + True + >>> stim.DemTarget("^") == stim.target_separator() + True + """ def __ne__( self, arg0: stim.DemTarget, @@ -4160,6 +4313,15 @@ class DemTarget: In a detector error model file, observable targets are prefixed by `L`. For example, in `error(0.25) D0 L1` the `L1` is an observable target. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_logical_observable_id() + True + >>> stim.DemTarget("D3").is_logical_observable_id() + False + >>> stim.DemTarget("^").is_logical_observable_id() + False """ def is_relative_detector_id( self, @@ -4168,6 +4330,15 @@ class DemTarget: In a detector error model file, detectors are prefixed by `D`. For example, in `error(0.25) D0 L1` the `D0` is a relative detector target. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_relative_detector_id() + False + >>> stim.DemTarget("D3").is_relative_detector_id() + True + >>> stim.DemTarget("^").is_relative_detector_id() + False """ def is_separator( self, @@ -4176,6 +4347,15 @@ class DemTarget: Separates separate the components of a suggested decompositions within an error. For example, the `^` in `error(0.25) D1 D2 ^ D3 D4` is the separator. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_separator() + False + >>> stim.DemTarget("D3").is_separator() + False + >>> stim.DemTarget("^").is_separator() + True """ @staticmethod def logical_observable_id( @@ -4248,11 +4428,10 @@ class DemTarget: """Returns the target's integer value. Example: - >>> import stim - >>> stim.target_relative_detector_id(5).val + >>> stim.DemTarget("D5").val 5 - >>> stim.target_logical_observable_id(6).val + >>> stim.DemTarget("L6").val 6 """ class DemTargetWithCoords: @@ -5806,11 +5985,21 @@ class FlippedMeasurement: """ def __init__( self, - *, - record_index: int, - observable: object, - ) -> None: + measurement_record_index: Optional[int], + measured_observable: Iterable[stim.GateTargetWithCoords], + ): """Creates a stim.FlippedMeasurement. + + Examples: + >>> import stim + >>> print(stim.FlippedMeasurement( + ... record_index=5, + ... observable=[], + ... )) + stim.FlippedMeasurement( + record_index=5, + observable=(), + ) """ @property def observable( @@ -6128,6 +6317,60 @@ class GateData: >>> stim.gate_data('TICK').generalized_inverse stim.gate_data('TICK') """ + def hadamard_conjugated( + self, + *, + unsigned: bool = False, + ) -> Optional[stim.GateData]: + """Returns a stim gate equivalent to this gate conjugated by Hadamard gates. + + The Hadamard conjugate can be thought of as the XZ dual of the gate; the gate + you get by exchanging the X and Z bases. For example, a SQRT_X will become a + SQRT_Z and a CX gate will switch directions into an XCZ. + + If stim doesn't define a gate equivalent to conjugating this gate by Hadamards, + the value `None` is returned. + + Args: + unsigned: Defaults to False. When False, the returned gate must be *exactly* + the Hadamard conjugation of this gate. When True, the returned gate must + have the same flows but the sign of the flows can be different (i.e. + the returned gate must be the Hadamard conjugate up to Pauli gate + differences). + + Returns: + A stim.GateData instance of the Hadamard conjugate, if it exists in stim. + + None, if stim doesn't define a gate equal to the Hadamard conjugate. + + Examples: + >>> import stim + + >>> stim.gate_data('X').hadamard_conjugated() + stim.gate_data('Z') + >>> stim.gate_data('CX').hadamard_conjugated() + stim.gate_data('XCZ') + >>> stim.gate_data('RY').hadamard_conjugated() is None + True + >>> stim.gate_data('RY').hadamard_conjugated(unsigned=True) + stim.gate_data('RY') + >>> stim.gate_data('ISWAP').hadamard_conjugated(unsigned=True) is None + True + >>> stim.gate_data('SWAP').hadamard_conjugated() + stim.gate_data('SWAP') + >>> stim.gate_data('CXSWAP').hadamard_conjugated() + stim.gate_data('SWAPCX') + >>> stim.gate_data('MXX').hadamard_conjugated() + stim.gate_data('MZZ') + >>> stim.gate_data('DEPOLARIZE1').hadamard_conjugated() + stim.gate_data('DEPOLARIZE1') + >>> stim.gate_data('X_ERROR').hadamard_conjugated() + stim.gate_data('Z_ERROR') + >>> stim.gate_data('H_XY').hadamard_conjugated(unsigned=True) + stim.gate_data('H_YZ') + >>> stim.gate_data('DETECTOR').hadamard_conjugated(unsigned=True) + stim.gate_data('DETECTOR') + """ @property def inverse( self, @@ -6277,6 +6520,55 @@ class GateData: False """ @property + def is_symmetric_gate( + self, + ) -> bool: + """Returns whether or not the gate is the same when its targets are swapped. + + A two qubit gate is symmetric if it doesn't matter if you swap its targets. It + is unaffected when conjugated by the SWAP gate. + + Single qubit gates are vacuously symmetric. A multi-qubit gate is symmetric if + swapping any two of its targets has no effect. + + Note that this method is for symmetry *without broadcasting*. For example, SWAP + is symmetric even though SWAP 1 2 3 4 isn't equal to SWAP 1 3 2 4. + + Returns: + True if the gate is symmetric. + False if the gate isn't symmetric. + + Examples: + >>> import stim + + >>> stim.gate_data('CX').is_symmetric_gate + False + >>> stim.gate_data('CZ').is_symmetric_gate + True + >>> stim.gate_data('ISWAP').is_symmetric_gate + True + >>> stim.gate_data('CXSWAP').is_symmetric_gate + False + >>> stim.gate_data('MXX').is_symmetric_gate + True + >>> stim.gate_data('DEPOLARIZE2').is_symmetric_gate + True + >>> stim.gate_data('PAULI_CHANNEL_2').is_symmetric_gate + False + >>> stim.gate_data('H').is_symmetric_gate + True + >>> stim.gate_data('R').is_symmetric_gate + True + >>> stim.gate_data('X_ERROR').is_symmetric_gate + True + >>> stim.gate_data('CORRELATED_ERROR').is_symmetric_gate + False + >>> stim.gate_data('MPP').is_symmetric_gate + False + >>> stim.gate_data('DETECTOR').is_symmetric_gate + False + """ + @property def is_two_qubit_gate( self, ) -> bool: @@ -6287,6 +6579,10 @@ class GateData: Variable-qubit gates like CORRELATED_ERROR and MPP are not considered two qubit gates. + Returns: + True if the gate is a two qubit gate. + False if the gate isn't a two qubit gate. + Examples: >>> import stim @@ -6852,7 +7148,6 @@ class GateTargetWithCoords: """ def __init__( self, - *, gate_target: object, coords: List[float], ) -> None: diff --git a/glue/python/src/stim/__init__.pyi b/glue/python/src/stim/__init__.pyi index cd0d0258..bbd39402 100644 --- a/glue/python/src/stim/__init__.pyi +++ b/glue/python/src/stim/__init__.pyi @@ -2001,8 +2001,8 @@ class Circuit: Examples: >>> import stim >>> stim.Circuit(''' - ... X 1 - ... M 0 1 + ... X 1 + ... M 0 1 ... ''').reference_sample() array([False, True]) """ @@ -2717,6 +2717,26 @@ class Circuit: """ class CircuitErrorLocation: """Describes the location of an error mechanism from a stim circuit. + + Examples: + >>> import stim + >>> circuit = stim.Circuit.generated( + ... "repetition_code:memory", + ... distance=5, + ... rounds=5, + ... before_round_data_depolarization=1e-3, + ... ) + >>> logical_error = circuit.shortest_graphlike_error() + >>> error_location = logical_error[0].circuit_error_locations[0] + >>> print(error_location) + CircuitErrorLocation { + flipped_pauli_product: X0 + Circuit location stack trace: + (after 1 TICKs) + at instruction #3 (DEPOLARIZE1) in the circuit + at target #1 of the instruction + resolving to DEPOLARIZE1(0.001) 0 + } """ def __init__( self, @@ -2728,20 +2748,88 @@ class CircuitErrorLocation: stack_frames: List[stim.CircuitErrorLocationStackFrame], ) -> None: """Creates a stim.CircuitErrorLocation. + + Examples: + >>> import stim + >>> err = stim.CircuitErrorLocation( + ... tick_offset=1, + ... flipped_pauli_product=( + ... stim.GateTargetWithCoords( + ... gate_target=stim.target_x(0), + ... coords=[], + ... ), + ... ), + ... flipped_measurement=stim.FlippedMeasurement( + ... record_index=None, + ... observable=(), + ... ), + ... instruction_targets=stim.CircuitTargetsInsideInstruction( + ... gate='DEPOLARIZE1', + ... args=[0.001], + ... target_range_start=0, + ... target_range_end=1, + ... targets_in_range=(stim.GateTargetWithCoords( + ... gate_target=0, + ... coords=[], + ... ),) + ... ), + ... stack_frames=( + ... stim.CircuitErrorLocationStackFrame( + ... instruction_offset=2, + ... iteration_index=0, + ... instruction_repetitions_arg=0, + ... ), + ... ), + ... ) + >>> print(err) + CircuitErrorLocation { + flipped_pauli_product: X0 + Circuit location stack trace: + (after 1 TICKs) + at instruction #3 (DEPOLARIZE1) in the circuit + at target #1 of the instruction + resolving to DEPOLARIZE1(0.001) 0 + } """ @property def flipped_measurement( self, ) -> Optional[stim.FlippedMeasurement]: """The measurement that was flipped by the error mechanism. + If the error isn't a measurement error, this will be None. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... M(0.125) 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].flipped_measurement + stim.FlippedMeasurement( + record_index=0, + observable=(stim.GateTargetWithCoords(stim.target_z(0), []),), + ) """ @property def flipped_pauli_product( self, ) -> List[stim.GateTargetWithCoords]: """The Pauli errors that the error mechanism applied to qubits. + When the error is a measurement error, this will be an empty list. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].flipped_pauli_product + [stim.GateTargetWithCoords(stim.target_y(0), [])] """ @property def instruction_targets( @@ -2755,15 +2843,48 @@ class CircuitErrorLocation: def stack_frames( self, ) -> List[stim.CircuitErrorLocationStackFrame]: - """Where in the circuit's execution does the error mechanism occur, - accounting for things like nested loops that iterate multiple times. + """Describes where in the circuit's execution the error happened. + + Multiple frames are needed because the error may occur within a loop, + or a loop nested inside a loop, or etc. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].stack_frames + [stim.CircuitErrorLocationStackFrame( + instruction_offset=2, + iteration_index=0, + instruction_repetitions_arg=0, + )] """ @property def tick_offset( self, ) -> int: - """The number of TICKs that executed before the error mechanism being discussed, - including TICKs that occurred multiple times during loops. + """The number of TICKs that executed before the error happened. + + This counts TICKs occurring multiple times during loops. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... TICK + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].tick_offset + 3 """ class CircuitErrorLocationStackFrame: """Describes the location of an instruction being executed within a @@ -4098,6 +4219,18 @@ class DemRepeatBlock: self, ) -> stim.DetectorErrorModel: """Returns a copy of the block's body, as a stim.DetectorErrorModel. + + Examples: + >>> import stim + >>> body = stim.DetectorErrorModel(''' + ... error(0.125) D0 D1 + ... shift_detectors 1 + ... ''') + >>> repeat_block = stim.DemRepeatBlock(100, body) + >>> repeat_block.body_copy() == body + True + >>> repeat_block.body_copy() is repeat_block.body_copy() + False """ @property def repeat_count( @@ -4137,6 +4270,26 @@ class DemTarget: ) -> bool: """Determines if two `stim.DemTarget`s are identical. """ + def __init__( + self, + arg: object, + /, + ) -> None: + """Creates a stim.DemTarget from the given object. + + Args: + arg: A string to parse as a stim.DemTarget, or some other object to + convert into a stim.DemTarget. + + Examples: + >>> import stim + >>> stim.DemTarget("D5") == stim.target_relative_detector_id(5) + True + >>> stim.DemTarget("L2") == stim.target_logical_observable_id(2) + True + >>> stim.DemTarget("^") == stim.target_separator() + True + """ def __ne__( self, arg0: stim.DemTarget, @@ -4160,6 +4313,15 @@ class DemTarget: In a detector error model file, observable targets are prefixed by `L`. For example, in `error(0.25) D0 L1` the `L1` is an observable target. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_logical_observable_id() + True + >>> stim.DemTarget("D3").is_logical_observable_id() + False + >>> stim.DemTarget("^").is_logical_observable_id() + False """ def is_relative_detector_id( self, @@ -4168,6 +4330,15 @@ class DemTarget: In a detector error model file, detectors are prefixed by `D`. For example, in `error(0.25) D0 L1` the `D0` is a relative detector target. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_relative_detector_id() + False + >>> stim.DemTarget("D3").is_relative_detector_id() + True + >>> stim.DemTarget("^").is_relative_detector_id() + False """ def is_separator( self, @@ -4176,6 +4347,15 @@ class DemTarget: Separates separate the components of a suggested decompositions within an error. For example, the `^` in `error(0.25) D1 D2 ^ D3 D4` is the separator. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_separator() + False + >>> stim.DemTarget("D3").is_separator() + False + >>> stim.DemTarget("^").is_separator() + True """ @staticmethod def logical_observable_id( @@ -4248,11 +4428,10 @@ class DemTarget: """Returns the target's integer value. Example: - >>> import stim - >>> stim.target_relative_detector_id(5).val + >>> stim.DemTarget("D5").val 5 - >>> stim.target_logical_observable_id(6).val + >>> stim.DemTarget("L6").val 6 """ class DemTargetWithCoords: @@ -5806,11 +5985,21 @@ class FlippedMeasurement: """ def __init__( self, - *, - record_index: int, - observable: object, - ) -> None: + measurement_record_index: Optional[int], + measured_observable: Iterable[stim.GateTargetWithCoords], + ): """Creates a stim.FlippedMeasurement. + + Examples: + >>> import stim + >>> print(stim.FlippedMeasurement( + ... record_index=5, + ... observable=[], + ... )) + stim.FlippedMeasurement( + record_index=5, + observable=(), + ) """ @property def observable( @@ -6128,6 +6317,60 @@ class GateData: >>> stim.gate_data('TICK').generalized_inverse stim.gate_data('TICK') """ + def hadamard_conjugated( + self, + *, + unsigned: bool = False, + ) -> Optional[stim.GateData]: + """Returns a stim gate equivalent to this gate conjugated by Hadamard gates. + + The Hadamard conjugate can be thought of as the XZ dual of the gate; the gate + you get by exchanging the X and Z bases. For example, a SQRT_X will become a + SQRT_Z and a CX gate will switch directions into an XCZ. + + If stim doesn't define a gate equivalent to conjugating this gate by Hadamards, + the value `None` is returned. + + Args: + unsigned: Defaults to False. When False, the returned gate must be *exactly* + the Hadamard conjugation of this gate. When True, the returned gate must + have the same flows but the sign of the flows can be different (i.e. + the returned gate must be the Hadamard conjugate up to Pauli gate + differences). + + Returns: + A stim.GateData instance of the Hadamard conjugate, if it exists in stim. + + None, if stim doesn't define a gate equal to the Hadamard conjugate. + + Examples: + >>> import stim + + >>> stim.gate_data('X').hadamard_conjugated() + stim.gate_data('Z') + >>> stim.gate_data('CX').hadamard_conjugated() + stim.gate_data('XCZ') + >>> stim.gate_data('RY').hadamard_conjugated() is None + True + >>> stim.gate_data('RY').hadamard_conjugated(unsigned=True) + stim.gate_data('RY') + >>> stim.gate_data('ISWAP').hadamard_conjugated(unsigned=True) is None + True + >>> stim.gate_data('SWAP').hadamard_conjugated() + stim.gate_data('SWAP') + >>> stim.gate_data('CXSWAP').hadamard_conjugated() + stim.gate_data('SWAPCX') + >>> stim.gate_data('MXX').hadamard_conjugated() + stim.gate_data('MZZ') + >>> stim.gate_data('DEPOLARIZE1').hadamard_conjugated() + stim.gate_data('DEPOLARIZE1') + >>> stim.gate_data('X_ERROR').hadamard_conjugated() + stim.gate_data('Z_ERROR') + >>> stim.gate_data('H_XY').hadamard_conjugated(unsigned=True) + stim.gate_data('H_YZ') + >>> stim.gate_data('DETECTOR').hadamard_conjugated(unsigned=True) + stim.gate_data('DETECTOR') + """ @property def inverse( self, @@ -6277,6 +6520,55 @@ class GateData: False """ @property + def is_symmetric_gate( + self, + ) -> bool: + """Returns whether or not the gate is the same when its targets are swapped. + + A two qubit gate is symmetric if it doesn't matter if you swap its targets. It + is unaffected when conjugated by the SWAP gate. + + Single qubit gates are vacuously symmetric. A multi-qubit gate is symmetric if + swapping any two of its targets has no effect. + + Note that this method is for symmetry *without broadcasting*. For example, SWAP + is symmetric even though SWAP 1 2 3 4 isn't equal to SWAP 1 3 2 4. + + Returns: + True if the gate is symmetric. + False if the gate isn't symmetric. + + Examples: + >>> import stim + + >>> stim.gate_data('CX').is_symmetric_gate + False + >>> stim.gate_data('CZ').is_symmetric_gate + True + >>> stim.gate_data('ISWAP').is_symmetric_gate + True + >>> stim.gate_data('CXSWAP').is_symmetric_gate + False + >>> stim.gate_data('MXX').is_symmetric_gate + True + >>> stim.gate_data('DEPOLARIZE2').is_symmetric_gate + True + >>> stim.gate_data('PAULI_CHANNEL_2').is_symmetric_gate + False + >>> stim.gate_data('H').is_symmetric_gate + True + >>> stim.gate_data('R').is_symmetric_gate + True + >>> stim.gate_data('X_ERROR').is_symmetric_gate + True + >>> stim.gate_data('CORRELATED_ERROR').is_symmetric_gate + False + >>> stim.gate_data('MPP').is_symmetric_gate + False + >>> stim.gate_data('DETECTOR').is_symmetric_gate + False + """ + @property def is_two_qubit_gate( self, ) -> bool: @@ -6287,6 +6579,10 @@ class GateData: Variable-qubit gates like CORRELATED_ERROR and MPP are not considered two qubit gates. + Returns: + True if the gate is a two qubit gate. + False if the gate isn't a two qubit gate. + Examples: >>> import stim @@ -6852,7 +7148,6 @@ class GateTargetWithCoords: """ def __init__( self, - *, gate_target: object, coords: List[float], ) -> None: diff --git a/src/stim/circuit/circuit.pybind.cc b/src/stim/circuit/circuit.pybind.cc index 454b6f91..4c870e61 100644 --- a/src/stim/circuit/circuit.pybind.cc +++ b/src/stim/circuit/circuit.pybind.cc @@ -721,8 +721,8 @@ void stim_pybind::pybind_circuit_methods(pybind11::module &, pybind11::class_>> import stim >>> stim.Circuit(''' - ... X 1 - ... M 0 1 + ... X 1 + ... M 0 1 ... ''').reference_sample() array([False, True]) )DOC") diff --git a/src/stim/dem/dem_instruction.cc b/src/stim/dem/dem_instruction.cc index b15c47b8..fd3452c5 100644 --- a/src/stim/dem/dem_instruction.cc +++ b/src/stim/dem/dem_instruction.cc @@ -11,9 +11,6 @@ using namespace stim; constexpr uint64_t OBSERVABLE_BIT = uint64_t{1} << 63; constexpr uint64_t SEPARATOR_SYGIL = UINT64_MAX; -constexpr uint64_t MAX_OBS = 0xFFFFFFFF; -constexpr uint64_t MAX_DET = (uint64_t{1} << 62) - 1; - DemTarget DemTarget::observable_id(uint64_t id) { if (id > MAX_OBS) { throw std::invalid_argument("id > 0xFFFFFFFF"); @@ -79,6 +76,9 @@ void DemTarget::shift_if_detector_id(int64_t offset) { } } DemTarget DemTarget::from_text(std::string_view text) { + if (text == "^") { + return DemTarget::separator(); + } if (!text.empty()) { bool is_det = text[0] == 'D'; bool is_obs = text[0] == 'L'; @@ -86,9 +86,9 @@ DemTarget DemTarget::from_text(std::string_view text) { int64_t parsed = 0; if (parse_int64(text.substr(1), &parsed)) { if (parsed >= 0) { - if (is_det && parsed <= (int64_t)MAX_DET) { + if (is_det && (uint64_t)parsed <= MAX_DET) { return DemTarget::relative_detector_id(parsed); - } else if (is_obs && parsed <= (int64_t)MAX_OBS) { + } else if (is_obs && (uint64_t)parsed <= MAX_OBS) { return DemTarget::observable_id(parsed); } } diff --git a/src/stim/dem/dem_instruction.h b/src/stim/dem/dem_instruction.h index d75c4f34..42361112 100644 --- a/src/stim/dem/dem_instruction.h +++ b/src/stim/dem/dem_instruction.h @@ -10,6 +10,9 @@ namespace stim { +constexpr uint64_t MAX_OBS = 0xFFFFFFFF; +constexpr uint64_t MAX_DET = (uint64_t{1} << 62) - 1; + enum class DemInstructionType : uint8_t { DEM_ERROR, DEM_SHIFT_DETECTORS, diff --git a/src/stim/dem/detector_error_model_pybind_test.py b/src/stim/dem/detector_error_model_pybind_test.py index cd479aa9..955937b8 100644 --- a/src/stim/dem/detector_error_model_pybind_test.py +++ b/src/stim/dem/detector_error_model_pybind_test.py @@ -155,7 +155,7 @@ def test_append_bad(): m.append("shift_detectors", [], [5]) m += m * 3 - with pytest.raises(ValueError, match=r"Bad target 'stim.target_relative_detector_id\(0\)' for instruction 'shift_detectors'"): + with pytest.raises(ValueError, match=r"Bad target 'stim.DemTarget\('D0'\)' for instruction 'shift_detectors'"): m.append("shift_detectors", [0.125, 0.25], [stim.target_relative_detector_id(0)]) with pytest.raises(ValueError, match="takes 1 argument"): m.append("error", [0.125, 0.25], [stim.target_relative_detector_id(0)]) diff --git a/src/stim/dem/detector_error_model_repeat_block.pybind.cc b/src/stim/dem/detector_error_model_repeat_block.pybind.cc index cc6f37ca..91b2ed98 100644 --- a/src/stim/dem/detector_error_model_repeat_block.pybind.cc +++ b/src/stim/dem/detector_error_model_repeat_block.pybind.cc @@ -78,6 +78,18 @@ void stim_pybind::pybind_detector_error_model_repeat_block_methods( &ExposedDemRepeatBlock::body_copy, clean_doc_string(R"DOC( Returns a copy of the block's body, as a stim.DetectorErrorModel. + + Examples: + >>> import stim + >>> body = stim.DetectorErrorModel(''' + ... error(0.125) D0 D1 + ... shift_detectors 1 + ... ''') + >>> repeat_block = stim.DemRepeatBlock(100, body) + >>> repeat_block.body_copy() == body + True + >>> repeat_block.body_copy() is repeat_block.body_copy() + False )DOC") .data()); c.def_property_readonly( diff --git a/src/stim/dem/detector_error_model_target.pybind.cc b/src/stim/dem/detector_error_model_target.pybind.cc index cedc4d41..43b442e6 100644 --- a/src/stim/dem/detector_error_model_target.pybind.cc +++ b/src/stim/dem/detector_error_model_target.pybind.cc @@ -16,6 +16,7 @@ #include "stim/dem/detector_error_model.pybind.h" #include "stim/py/base.pybind.h" +#include "stim/util_bot/arg_parse.h" using namespace stim; using namespace stim_pybind; @@ -27,6 +28,42 @@ pybind11::class_ stim_pybind::pybind_detector_error_model_targ void stim_pybind::pybind_detector_error_model_target_methods( pybind11::module &m, pybind11::class_ &c) { + + c.def( + pybind11::init([](const pybind11::object &arg) -> ExposedDemTarget { + if (pybind11::isinstance(arg)) { + return pybind11::cast(arg); + } + if (pybind11::isinstance(arg)) { + std::string_view contents = pybind11::cast(arg); + return DemTarget::from_text(contents); + } + + std::stringstream ss; + ss << "Don't know how to convert this into a stim.DemTarget: "; + ss << pybind11::repr(arg); + throw pybind11::type_error(ss.str()); + }), + pybind11::arg("arg"), + pybind11::pos_only(), + clean_doc_string(R"DOC( + Creates a stim.DemTarget from the given object. + + Args: + arg: A string to parse as a stim.DemTarget, or some other object to + convert into a stim.DemTarget. + + Examples: + >>> import stim + >>> stim.DemTarget("D5") == stim.target_relative_detector_id(5) + True + >>> stim.DemTarget("L2") == stim.target_logical_observable_id(2) + True + >>> stim.DemTarget("^") == stim.target_separator() + True + )DOC") + .data()); + m.def( "target_relative_detector_id", &ExposedDemTarget::relative_detector_id, @@ -52,6 +89,7 @@ void stim_pybind::pybind_detector_error_model_target_methods( ''') )DOC") .data()); + m.def( "target_logical_observable_id", &ExposedDemTarget::observable_id, @@ -188,6 +226,15 @@ void stim_pybind::pybind_detector_error_model_target_methods( In a detector error model file, detectors are prefixed by `D`. For example, in `error(0.25) D0 L1` the `D0` is a relative detector target. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_relative_detector_id() + False + >>> stim.DemTarget("D3").is_relative_detector_id() + True + >>> stim.DemTarget("^").is_relative_detector_id() + False )DOC") .data()); @@ -199,6 +246,15 @@ void stim_pybind::pybind_detector_error_model_target_methods( In a detector error model file, observable targets are prefixed by `L`. For example, in `error(0.25) D0 L1` the `L1` is an observable target. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_logical_observable_id() + True + >>> stim.DemTarget("D3").is_logical_observable_id() + False + >>> stim.DemTarget("^").is_logical_observable_id() + False )DOC") .data()); @@ -209,11 +265,10 @@ void stim_pybind::pybind_detector_error_model_target_methods( Returns the target's integer value. Example: - >>> import stim - >>> stim.target_relative_detector_id(5).val + >>> stim.DemTarget("D5").val 5 - >>> stim.target_logical_observable_id(6).val + >>> stim.DemTarget("L6").val 6 )DOC") .data()); @@ -226,6 +281,15 @@ void stim_pybind::pybind_detector_error_model_target_methods( Separates separate the components of a suggested decompositions within an error. For example, the `^` in `error(0.25) D1 D2 ^ D3 D4` is the separator. + + Examples: + >>> import stim + >>> stim.DemTarget("L2").is_separator() + False + >>> stim.DemTarget("D3").is_separator() + False + >>> stim.DemTarget("^").is_separator() + True )DOC") .data()); @@ -237,11 +301,11 @@ void stim_pybind::pybind_detector_error_model_target_methods( std::string ExposedDemTarget::repr() const { std::stringstream out; if (is_relative_detector_id()) { - out << "stim.target_relative_detector_id(" << raw_id() << ")"; + out << "stim.DemTarget('D" << raw_id() << "')"; } else if (is_separator()) { out << "stim.target_separator()"; } else { - out << "stim.target_logical_observable_id(" << raw_id() << ")"; + out << "stim.DemTarget('L" << raw_id() << "')"; } return out.str(); } diff --git a/src/stim/dem/detector_error_model_target_pybind_test.py b/src/stim/dem/detector_error_model_target_pybind_test.py index 1119c74d..743a07f3 100644 --- a/src/stim/dem/detector_error_model_target_pybind_test.py +++ b/src/stim/dem/detector_error_model_target_pybind_test.py @@ -75,3 +75,23 @@ def test_hashable(): c = stim.DemTarget.relative_detector_id(3) assert hash(a) == hash(c) assert len({a, b, c}) == 2 + + +def test_init(): + assert stim.DemTarget("D0") == stim.target_relative_detector_id(0) + assert stim.DemTarget("D5") == stim.target_relative_detector_id(5) + assert stim.DemTarget("L0") == stim.target_logical_observable_id(0) + assert stim.DemTarget("L5") == stim.target_logical_observable_id(5) + assert stim.DemTarget("^") == stim.target_separator() + assert stim.DemTarget(f"D{2**62 - 1}") == stim.target_relative_detector_id(2**62 - 1) + assert stim.DemTarget(f"L{0xFFFFFFFF}") == stim.target_logical_observable_id(0xFFFFFFFF) + with pytest.raises(ValueError, match="Failed to parse"): + _ = stim.DemTarget(f"D{2**62}") + with pytest.raises(ValueError, match="Failed to parse"): + _ = stim.DemTarget(f"L{0x100000000}") + with pytest.raises(ValueError, match="Failed to parse"): + _ = stim.DemTarget(f"L-1") + with pytest.raises(ValueError, match="Failed to parse"): + _ = stim.DemTarget(f"X5") + with pytest.raises(ValueError, match="Failed to parse"): + _ = stim.DemTarget(f"5") diff --git a/src/stim/gates/gates.cc b/src/stim/gates/gates.cc index e374d05f..09f46adf 100644 --- a/src/stim/gates/gates.cc +++ b/src/stim/gates/gates.cc @@ -45,6 +45,148 @@ GateDataMap::GateDataMap() { } } +GateType Gate::hadamard_conjugated(bool ignoring_sign) const { + switch (id) { + case GateType::DETECTOR: + case GateType::OBSERVABLE_INCLUDE: + case GateType::TICK: + case GateType::QUBIT_COORDS: + case GateType::SHIFT_COORDS: + case GateType::MPAD: + case GateType::H: + case GateType::DEPOLARIZE1: + case GateType::DEPOLARIZE2: + case GateType::Y_ERROR: + case GateType::I: + case GateType::Y: + case GateType::SQRT_YY: + case GateType::SQRT_YY_DAG: + case GateType::MYY: + case GateType::SWAP: + return id; + + case GateType::MY: + case GateType::MRY: + case GateType::RY: + case GateType::YCY: + return ignoring_sign ? id : GateType::NOT_A_GATE; + + case GateType::ISWAP: + case GateType::CZSWAP: + case GateType::ISWAP_DAG: + return GateType::NOT_A_GATE; + + case GateType::XCY: + return ignoring_sign ? GateType::CY : GateType::NOT_A_GATE; + case GateType::CY: + return ignoring_sign ? GateType::XCY : GateType::NOT_A_GATE; + case GateType::YCX: + return ignoring_sign ? GateType::YCZ : GateType::NOT_A_GATE; + case GateType::YCZ: + return ignoring_sign ? GateType::YCX : GateType::NOT_A_GATE; + case GateType::C_XYZ: + return ignoring_sign ? GateType::C_ZYX : GateType::NOT_A_GATE; + case GateType::C_ZYX: + return ignoring_sign ? GateType::C_XYZ : GateType::NOT_A_GATE; + case GateType::H_XY: + return ignoring_sign ? GateType::H_YZ : GateType::NOT_A_GATE; + case GateType::H_YZ: + return ignoring_sign ? GateType::H_XY : GateType::NOT_A_GATE; + + case GateType::X: + return GateType::Z; + case GateType::Z: + return GateType::X; + case GateType::SQRT_Y: + return GateType::SQRT_Y_DAG; + case GateType::SQRT_Y_DAG: + return GateType::SQRT_Y; + case GateType::MX: + return GateType::M; + case GateType::M: + return GateType::MX; + case GateType::MRX: + return GateType::MR; + case GateType::MR: + return GateType::MRX; + case GateType::RX: + return GateType::R; + case GateType::R: + return GateType::RX; + case GateType::XCX: + return GateType::CZ; + case GateType::XCZ: + return GateType::CX; + case GateType::CX: + return GateType::XCZ; + case GateType::CZ: + return GateType::XCX; + case GateType::X_ERROR: + return GateType::Z_ERROR; + case GateType::Z_ERROR: + return GateType::X_ERROR; + case GateType::SQRT_X: + return GateType::S; + case GateType::SQRT_X_DAG: + return GateType::S_DAG; + case GateType::S: + return GateType::SQRT_X; + case GateType::S_DAG: + return GateType::SQRT_X_DAG; + case GateType::SQRT_XX: + return GateType::SQRT_ZZ; + case GateType::SQRT_XX_DAG: + return GateType::SQRT_ZZ_DAG; + case GateType::SQRT_ZZ: + return GateType::SQRT_XX; + case GateType::SQRT_ZZ_DAG: + return GateType::SQRT_XX_DAG; + case GateType::CXSWAP: + return GateType::SWAPCX; + case GateType::SWAPCX: + return GateType::CXSWAP; + case GateType::MXX: + return GateType::MZZ; + case GateType::MZZ: + return GateType::MXX; + default: + return GateType::NOT_A_GATE; + } +} + +bool Gate::is_symmetric() const { + if (flags & GATE_IS_SINGLE_QUBIT_GATE) { + return true; + } + + if (flags & GATE_TARGETS_PAIRS) { + switch (id) { + case GateType::XCX: + case GateType::YCY: + case GateType::CZ: + case GateType::DEPOLARIZE2: + case GateType::SWAP: + case GateType::ISWAP: + case GateType::CZSWAP: + case GateType::ISWAP_DAG: + case GateType::MXX: + case GateType::MYY: + case GateType::MZZ: + case GateType::SQRT_XX: + case GateType::SQRT_YY: + case GateType::SQRT_ZZ: + case GateType::SQRT_XX_DAG: + case GateType::SQRT_YY_DAG: + case GateType::SQRT_ZZ_DAG: + return true; + default: + return false; + } + } + + return false; +} + std::array Gate::to_euler_angles() const { if (unitary_data.size() != 2) { throw std::out_of_range(std::string(name) + " doesn't have 1q unitary data."); diff --git a/src/stim/gates/gates.h b/src/stim/gates/gates.h index 291dbd99..32fba97b 100644 --- a/src/stim/gates/gates.h +++ b/src/stim/gates/gates.h @@ -282,6 +282,9 @@ struct Gate { std::vector>> unitary() const; + bool is_symmetric() const; + GateType hadamard_conjugated(bool ignoring_sign) const; + /// Converts a single qubit unitary gate into an euler-angles rotation. /// /// Returns: diff --git a/src/stim/gates/gates.pybind.cc b/src/stim/gates/gates.pybind.cc index ceca99ed..df54e498 100644 --- a/src/stim/gates/gates.pybind.cc +++ b/src/stim/gates/gates.pybind.cc @@ -495,6 +495,123 @@ void stim_pybind::pybind_gate_data_methods(pybind11::module &m, pybind11::class_ )DOC") .data()); + c.def_property_readonly( + "is_symmetric_gate", + [](const Gate &self) -> bool { + return self.is_symmetric(); + }, + clean_doc_string(R"DOC( + Returns whether or not the gate is the same when its targets are swapped. + + A two qubit gate is symmetric if it doesn't matter if you swap its targets. It + is unaffected when conjugated by the SWAP gate. + + Single qubit gates are vacuously symmetric. A multi-qubit gate is symmetric if + swapping any two of its targets has no effect. + + Note that this method is for symmetry *without broadcasting*. For example, SWAP + is symmetric even though SWAP 1 2 3 4 isn't equal to SWAP 1 3 2 4. + + Returns: + True if the gate is symmetric. + False if the gate isn't symmetric. + + Examples: + >>> import stim + + >>> stim.gate_data('CX').is_symmetric_gate + False + >>> stim.gate_data('CZ').is_symmetric_gate + True + >>> stim.gate_data('ISWAP').is_symmetric_gate + True + >>> stim.gate_data('CXSWAP').is_symmetric_gate + False + >>> stim.gate_data('MXX').is_symmetric_gate + True + >>> stim.gate_data('DEPOLARIZE2').is_symmetric_gate + True + >>> stim.gate_data('PAULI_CHANNEL_2').is_symmetric_gate + False + >>> stim.gate_data('H').is_symmetric_gate + True + >>> stim.gate_data('R').is_symmetric_gate + True + >>> stim.gate_data('X_ERROR').is_symmetric_gate + True + >>> stim.gate_data('CORRELATED_ERROR').is_symmetric_gate + False + >>> stim.gate_data('MPP').is_symmetric_gate + False + >>> stim.gate_data('DETECTOR').is_symmetric_gate + False + )DOC") + .data()); + + c.def( + "hadamard_conjugated", + [](const Gate &self, bool ignoring_sign) -> pybind11::object { + GateType g = self.hadamard_conjugated(ignoring_sign); + if (g == GateType::NOT_A_GATE) { + return pybind11::none(); + } + return pybind11::cast(GATE_DATA[g]); + }, + pybind11::kw_only(), + pybind11::arg("unsigned") = false, + clean_doc_string(R"DOC( + @signature def hadamard_conjugated(self, *, unsigned: bool = False) -> Optional[stim.GateData]: + Returns a stim gate equivalent to this gate conjugated by Hadamard gates. + + The Hadamard conjugate can be thought of as the XZ dual of the gate; the gate + you get by exchanging the X and Z bases. For example, a SQRT_X will become a + SQRT_Z and a CX gate will switch directions into an XCZ. + + If stim doesn't define a gate equivalent to conjugating this gate by Hadamards, + the value `None` is returned. + + Args: + unsigned: Defaults to False. When False, the returned gate must be *exactly* + the Hadamard conjugation of this gate. When True, the returned gate must + have the same flows but the sign of the flows can be different (i.e. + the returned gate must be the Hadamard conjugate up to Pauli gate + differences). + + Returns: + A stim.GateData instance of the Hadamard conjugate, if it exists in stim. + + None, if stim doesn't define a gate equal to the Hadamard conjugate. + + Examples: + >>> import stim + + >>> stim.gate_data('X').hadamard_conjugated() + stim.gate_data('Z') + >>> stim.gate_data('CX').hadamard_conjugated() + stim.gate_data('XCZ') + >>> stim.gate_data('RY').hadamard_conjugated() is None + True + >>> stim.gate_data('RY').hadamard_conjugated(unsigned=True) + stim.gate_data('RY') + >>> stim.gate_data('ISWAP').hadamard_conjugated(unsigned=True) is None + True + >>> stim.gate_data('SWAP').hadamard_conjugated() + stim.gate_data('SWAP') + >>> stim.gate_data('CXSWAP').hadamard_conjugated() + stim.gate_data('SWAPCX') + >>> stim.gate_data('MXX').hadamard_conjugated() + stim.gate_data('MZZ') + >>> stim.gate_data('DEPOLARIZE1').hadamard_conjugated() + stim.gate_data('DEPOLARIZE1') + >>> stim.gate_data('X_ERROR').hadamard_conjugated() + stim.gate_data('Z_ERROR') + >>> stim.gate_data('H_XY').hadamard_conjugated(unsigned=True) + stim.gate_data('H_YZ') + >>> stim.gate_data('DETECTOR').hadamard_conjugated(unsigned=True) + stim.gate_data('DETECTOR') + )DOC") + .data()); + c.def_property_readonly( "is_two_qubit_gate", [](const Gate &self) -> bool { @@ -508,6 +625,10 @@ void stim_pybind::pybind_gate_data_methods(pybind11::module &m, pybind11::class_ Variable-qubit gates like CORRELATED_ERROR and MPP are not considered two qubit gates. + Returns: + True if the gate is a two qubit gate. + False if the gate isn't a two qubit gate. + Examples: >>> import stim diff --git a/src/stim/gates/gates.test.cc b/src/stim/gates/gates.test.cc index 8dad3d48..edafb88f 100644 --- a/src/stim/gates/gates.test.cc +++ b/src/stim/gates/gates.test.cc @@ -23,6 +23,7 @@ #include "stim/util_bot/str_util.h" #include "stim/util_bot/test_util.test.h" #include "stim/util_top/has_flow.h" +#include "stim/util_top/circuit_flow_generators.h" using namespace stim; @@ -305,3 +306,77 @@ TEST(gate_data, to_euler_angles_axis_reference) { } } } + +TEST(gate_data, is_symmetric_vs_flow_generators_of_two_qubit_gates) { + for (const auto &g : GATE_DATA.items) { + if ((g.flags & stim::GATE_IS_NOISY) && !(g.flags & stim::GATE_PRODUCES_RESULTS)) { + continue; + } + if (g.flags & GATE_TARGETS_PAIRS) { + Circuit c1; + Circuit c2; + c1.safe_append_u(g.name, {0, 1}, {}); + c2.safe_append_u(g.name, {1, 0}, {}); + auto f1 = circuit_flow_generators<64>(c1); + auto f2 = circuit_flow_generators<64>(c2); + EXPECT_EQ(g.is_symmetric(), f1 == f2) << g.name; + } + } +} + +TEST(gate_data, hadamard_conjugated_vs_flow_generators_of_two_qubit_gates) { + auto flow_key = [](const Circuit &circuit, bool ignore_sign) { + auto f = circuit_flow_generators<64>(circuit); + if (ignore_sign) { + for (auto &e : f) { + e.input.sign = false; + e.output.sign = false; + } + } + std::stringstream ss; + ss << comma_sep(f); + return ss.str(); + }; + std::map known_flows_s; + std::map> known_flows_u; + + for (const auto &g : GATE_DATA.items) { + if (g.arg_count != 0 && g.arg_count != ARG_COUNT_SYGIL_ZERO_OR_ONE && g.arg_count != ARG_COUNT_SYGIL_ANY) { + continue; + } + if ((g.flags & GATE_TARGETS_PAIRS) || (g.flags & GATE_IS_SINGLE_QUBIT_GATE)) { + Circuit c; + c.safe_append_u(g.name, {0, 1}, {}); + auto key_s = flow_key(c, false); + auto key_u = flow_key(c, true); + ASSERT_EQ(known_flows_s.find(key_s), known_flows_s.end()); + known_flows_s[key_s] = g.id; + known_flows_u[key_u].push_back(g.id); + } + } + for (const auto &g : GATE_DATA.items) { + if (g.arg_count != 0 && g.arg_count != ARG_COUNT_SYGIL_ZERO_OR_ONE && g.arg_count != ARG_COUNT_SYGIL_ANY) { + continue; + } + if ((g.flags & GATE_TARGETS_PAIRS) || (g.flags & GATE_IS_SINGLE_QUBIT_GATE)) { + Circuit c; + c.safe_append_u("H", {0, 1}, {}); + c.safe_append_u(g.name, {0, 1}, {}); + c.safe_append_u("H", {0, 1}, {}); + auto key_s = flow_key(c, false); + auto key_u = flow_key(c, true); + auto other_s = known_flows_s.find(key_s); + auto &other_us = known_flows_u[key_u]; + if (other_us.empty()) { + other_us.push_back(GateType::NOT_A_GATE); + } + + GateType expected_s = other_s == known_flows_s.end() ? GateType::NOT_A_GATE : other_s->second; + GateType actual_s = g.hadamard_conjugated(false); + GateType actual_u = g.hadamard_conjugated(true); + bool found = std::find(other_us.begin(), other_us.end(), actual_u) != other_us.end(); + EXPECT_EQ(actual_s, expected_s) << "signed " << g.name << " -> " << GATE_DATA[actual_s].name << " != " << GATE_DATA[expected_s].name; + EXPECT_TRUE(found) << "unsigned " << g.name << " -> " << GATE_DATA[actual_u].name << " not in " << GATE_DATA[other_us[0]].name; + } + } +} diff --git a/src/stim/gates/gates_test.py b/src/stim/gates/gates_test.py index b1cae79b..aae2b00c 100644 --- a/src/stim/gates/gates_test.py +++ b/src/stim/gates/gates_test.py @@ -81,3 +81,20 @@ def test_gate_data_flows(): stim.Flow("X -> Z"), stim.Flow("Z -> X"), ] + + +def test_gate_is_symmetric(): + assert stim.GateData('SWAP').is_symmetric_gate + assert stim.GateData('H').is_symmetric_gate + assert stim.GateData('MYY').is_symmetric_gate + assert stim.GateData('DEPOLARIZE2').is_symmetric_gate + assert not stim.GateData('PAULI_CHANNEL_2').is_symmetric_gate + assert not stim.GateData('DETECTOR').is_symmetric_gate + assert not stim.GateData('TICK').is_symmetric_gate + + +def test_gate_hadamard_conjugated(): + assert stim.GateData('CZSWAP').hadamard_conjugated(unsigned=True) is None + assert stim.GateData('TICK').hadamard_conjugated() == stim.GateData('TICK') + assert stim.GateData('MYY').hadamard_conjugated() == stim.GateData('MYY') + assert stim.GateData('XCZ').hadamard_conjugated() == stim.GateData('CX') diff --git a/src/stim/simulators/matched_error.pybind.cc b/src/stim/simulators/matched_error.pybind.cc index c177283f..984c74c4 100644 --- a/src/stim/simulators/matched_error.pybind.cc +++ b/src/stim/simulators/matched_error.pybind.cc @@ -27,11 +27,11 @@ using namespace stim_pybind; std::string CircuitErrorLocationStackFrame_repr(const CircuitErrorLocationStackFrame &self) { std::stringstream out; - out << "stim.CircuitErrorLocationStackFrame"; - out << "(instruction_offset=" << self.instruction_offset; - out << ", iteration_index=" << self.iteration_index; - out << ", instruction_repetitions_arg=" << self.instruction_repetitions_arg; - out << ")"; + out << "stim.CircuitErrorLocationStackFrame("; + out << "\n instruction_offset=" << self.instruction_offset << ","; + out << "\n iteration_index=" << self.iteration_index << ","; + out << "\n instruction_repetitions_arg=" << self.instruction_repetitions_arg << ","; + out << "\n)"; return out.str(); } @@ -57,21 +57,26 @@ pybind11::ssize_t CircuitTargetsInsideInstruction_hash(const CircuitTargetsInsid std::string GateTargetWithCoords_repr(const GateTargetWithCoords &self) { std::stringstream out; out << "stim.GateTargetWithCoords"; - out << "(gate_target=" << self.gate_target; - out << ", coords=[" << comma_sep(self.coords) << "]"; + out << "(" << self.gate_target; + out << ", [" << comma_sep(self.coords) << "]"; out << ")"; return out.str(); } std::string FlippedMeasurement_repr(const FlippedMeasurement &self) { std::stringstream out; - out << "stim.FlippedMeasurement"; - out << "(record_index=" << self.measurement_record_index; - out << ", observable=("; + out << "stim.FlippedMeasurement("; + out << "\n record_index="; + if (self.measurement_record_index == UINT64_MAX) { + out << "None"; + } else { + out << self.measurement_record_index; + } + out << ",\n observable=("; for (const auto &e : self.measured_observable) { out << GateTargetWithCoords_repr(e) << ","; } - out << "))"; + out << "),\n)"; return out.str(); } @@ -260,7 +265,6 @@ void stim_pybind::pybind_gate_target_with_coords_methods( [](const pybind11::object &gate_target, const std::vector &coords) -> GateTargetWithCoords { return GateTargetWithCoords{obj_to_gate_target(gate_target), coords}; }), - pybind11::kw_only(), pybind11::arg("gate_target"), pybind11::arg("coords"), clean_doc_string(R"DOC( @@ -379,8 +383,14 @@ void stim_pybind::pybind_flipped_measurement_methods( }); c.def( pybind11::init( - [](uint64_t measurement_record_index, const pybind11::object &measured_observable) -> FlippedMeasurement { - FlippedMeasurement result{measurement_record_index, {}}; + [](const pybind11::object &measurement_record_index, const pybind11::object &measured_observable) -> FlippedMeasurement { + uint64_t u; + if (measurement_record_index.is_none()) { + u = UINT64_MAX; + } else { + u = pybind11::cast(measurement_record_index); + } + FlippedMeasurement result{u, {}}; for (const auto &e : measured_observable) { result.measured_observable.push_back(pybind11::cast(e)); } @@ -390,7 +400,19 @@ void stim_pybind::pybind_flipped_measurement_methods( pybind11::arg("record_index"), pybind11::arg("observable"), clean_doc_string(R"DOC( + @signature def __init__(self, measurement_record_index: Optional[int], measured_observable: Iterable[stim.GateTargetWithCoords]): Creates a stim.FlippedMeasurement. + + Examples: + >>> import stim + >>> print(stim.FlippedMeasurement( + ... record_index=5, + ... observable=[], + ... )) + stim.FlippedMeasurement( + record_index=5, + observable=(), + ) )DOC") .data()); c.def("__repr__", &FlippedMeasurement_repr); @@ -494,7 +516,27 @@ pybind11::class_ stim_pybind::pybind_circuit_error_locatio "CircuitErrorLocation", clean_doc_string(R"DOC( Describes the location of an error mechanism from a stim circuit. - )DOC") + + Examples: + >>> import stim + >>> circuit = stim.Circuit.generated( + ... "repetition_code:memory", + ... distance=5, + ... rounds=5, + ... before_round_data_depolarization=1e-3, + ... ) + >>> logical_error = circuit.shortest_graphlike_error() + >>> error_location = logical_error[0].circuit_error_locations[0] + >>> print(error_location) + CircuitErrorLocation { + flipped_pauli_product: X0 + Circuit location stack trace: + (after 1 TICKs) + at instruction #3 (DEPOLARIZE1) in the circuit + at target #1 of the instruction + resolving to DEPOLARIZE1(0.001) 0 + } + )DOC") .data()); } void stim_pybind::pybind_circuit_error_location_methods( @@ -503,8 +545,23 @@ void stim_pybind::pybind_circuit_error_location_methods( "tick_offset", &CircuitErrorLocation::tick_offset, clean_doc_string(R"DOC( - The number of TICKs that executed before the error mechanism being discussed, - including TICKs that occurred multiple times during loops. + The number of TICKs that executed before the error happened. + + This counts TICKs occurring multiple times during loops. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... TICK + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].tick_offset + 3 )DOC") .data()); @@ -513,7 +570,19 @@ void stim_pybind::pybind_circuit_error_location_methods( &CircuitErrorLocation::flipped_pauli_product, clean_doc_string(R"DOC( The Pauli errors that the error mechanism applied to qubits. + When the error is a measurement error, this will be an empty list. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].flipped_pauli_product + [stim.GateTargetWithCoords(stim.target_y(0), [])] )DOC") .data()); @@ -526,9 +595,24 @@ void stim_pybind::pybind_circuit_error_location_methods( return pybind11::cast(self.flipped_measurement); }, clean_doc_string(R"DOC( + @signature def flipped_measurement(self) -> Optional[stim.FlippedMeasurement]: The measurement that was flipped by the error mechanism. + If the error isn't a measurement error, this will be None. - @signature def flipped_measurement(self) -> Optional[stim.FlippedMeasurement]: + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... M(0.125) 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].flipped_measurement + stim.FlippedMeasurement( + record_index=0, + observable=(stim.GateTargetWithCoords(stim.target_z(0), []),), + ) + )DOC") .data()); @@ -546,8 +630,26 @@ void stim_pybind::pybind_circuit_error_location_methods( "stack_frames", &CircuitErrorLocation::stack_frames, clean_doc_string(R"DOC( - Where in the circuit's execution does the error mechanism occur, - accounting for things like nested loops that iterate multiple times. + Describes where in the circuit's execution the error happened. + + Multiple frames are needed because the error may occur within a loop, + or a loop nested inside a loop, or etc. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> err[0].circuit_error_locations[0].stack_frames + [stim.CircuitErrorLocationStackFrame( + instruction_offset=2, + iteration_index=0, + instruction_repetitions_arg=0, + )] )DOC") .data()); @@ -584,6 +686,48 @@ void stim_pybind::pybind_circuit_error_location_methods( pybind11::arg("stack_frames"), clean_doc_string(R"DOC( Creates a stim.CircuitErrorLocation. + + Examples: + >>> import stim + >>> err = stim.CircuitErrorLocation( + ... tick_offset=1, + ... flipped_pauli_product=( + ... stim.GateTargetWithCoords( + ... gate_target=stim.target_x(0), + ... coords=[], + ... ), + ... ), + ... flipped_measurement=stim.FlippedMeasurement( + ... record_index=None, + ... observable=(), + ... ), + ... instruction_targets=stim.CircuitTargetsInsideInstruction( + ... gate='DEPOLARIZE1', + ... args=[0.001], + ... target_range_start=0, + ... target_range_end=1, + ... targets_in_range=(stim.GateTargetWithCoords( + ... gate_target=0, + ... coords=[], + ... ),) + ... ), + ... stack_frames=( + ... stim.CircuitErrorLocationStackFrame( + ... instruction_offset=2, + ... iteration_index=0, + ... instruction_repetitions_arg=0, + ... ), + ... ), + ... ) + >>> print(err) + CircuitErrorLocation { + flipped_pauli_product: X0 + Circuit location stack trace: + (after 1 TICKs) + at instruction #3 (DEPOLARIZE1) in the circuit + at target #1 of the instruction + resolving to DEPOLARIZE1(0.001) 0 + } )DOC") .data()); c.def("__repr__", &CircuitErrorLocation_repr); From fd8c95520941627d82b6453d9654d9c4dfb06020 Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Tue, 23 Jul 2024 16:31:18 -0700 Subject: [PATCH 06/17] Add some `stim.FlipSimulator` methods and diagram niceties (#799) - Add "rows" argument to `stim.Circuit.diagram` to control layout of multi-row diagrams - Add "tick" labels to timeslice diagrams - Add stim.FlipSimulator.copy - Add stim.FlipSimulator.reset Fixes https://github.com/quantumlib/Stim/issues/672 --- doc/python_api_reference_vDev.md | 178 +++++++++++++++++- doc/stim.pyi | 162 +++++++++++++++- glue/python/src/stim/__init__.pyi | 162 +++++++++++++++- src/stim/circuit/circuit.pybind.cc | 19 +- src/stim/cmd/command_diagram.pybind.cc | 13 +- src/stim/cmd/command_diagram.pybind.h | 1 + ...detector_error_model_instruction.pybind.cc | 42 ++++- .../detector_slice/detector_slice_set.cc | 29 +-- .../detector_slice/detector_slice_set.h | 2 +- .../diagram/timeline/timeline_svg_drawer.cc | 39 +++- .../diagram/timeline/timeline_svg_drawer.h | 3 +- src/stim/mem/bitword_128_sse.h | 2 + src/stim/mem/bitword_256_avx.h | 2 + src/stim/mem/bitword_64.h | 2 + src/stim/mem/simd_word.test.cc | 10 + src/stim/simulators/frame_simulator.pybind.cc | 114 +++++++++++ src/stim/stabilizers/pauli_string.pybind.cc | 7 + src/stim/stabilizers/tableau.pybind.cc | 11 +- src/stim/util_top/circuit_vs_amplitudes.cc | 2 +- testdata/anticommuting_detslice.svg | 10 +- testdata/bezier_time_slice.svg | 4 +- testdata/circuit_all_ops_detslice.svg | 40 ++-- testdata/circuit_all_ops_timeslice.svg | 40 ++-- ...uit_diagram_timeline_svg_chained_loops.svg | 31 ++- testdata/detslice-with-ops_surface_code.svg | 40 ++-- testdata/observable_slices.svg | 37 ++-- .../surface_code_full_time_detector_slice.svg | 106 +++++++---- testdata/surface_code_time_detector_slice.svg | 31 ++- testdata/surface_code_time_slice.svg | 31 ++- 29 files changed, 988 insertions(+), 182 deletions(-) diff --git a/doc/python_api_reference_vDev.md b/doc/python_api_reference_vDev.md index 145d04ac..4ba62593 100644 --- a/doc/python_api_reference_vDev.md +++ b/doc/python_api_reference_vDev.md @@ -186,6 +186,7 @@ API references for stable versions are kept on the [stim github wiki](https://gi - [`stim.FlipSimulator.__init__`](#stim.FlipSimulator.__init__) - [`stim.FlipSimulator.batch_size`](#stim.FlipSimulator.batch_size) - [`stim.FlipSimulator.broadcast_pauli_errors`](#stim.FlipSimulator.broadcast_pauli_errors) + - [`stim.FlipSimulator.copy`](#stim.FlipSimulator.copy) - [`stim.FlipSimulator.do`](#stim.FlipSimulator.do) - [`stim.FlipSimulator.get_detector_flips`](#stim.FlipSimulator.get_detector_flips) - [`stim.FlipSimulator.get_measurement_flips`](#stim.FlipSimulator.get_measurement_flips) @@ -195,6 +196,7 @@ API references for stable versions are kept on the [stim github wiki](https://gi - [`stim.FlipSimulator.num_observables`](#stim.FlipSimulator.num_observables) - [`stim.FlipSimulator.num_qubits`](#stim.FlipSimulator.num_qubits) - [`stim.FlipSimulator.peek_pauli_flips`](#stim.FlipSimulator.peek_pauli_flips) + - [`stim.FlipSimulator.reset`](#stim.FlipSimulator.reset) - [`stim.FlipSimulator.set_pauli_flip`](#stim.FlipSimulator.set_pauli_flip) - [`stim.FlippedMeasurement`](#stim.FlippedMeasurement) - [`stim.FlippedMeasurement.__init__`](#stim.FlippedMeasurement.__init__) @@ -1680,11 +1682,19 @@ def diagram( Passing `range(A, B)` for a time slice will show the operations between tick A and tick B. - filter_coords: A set of acceptable coordinate prefixes, or - desired stim.DemTargets. For detector slice diagrams, only - detectors match one of the filters are included. If no filter - is specified, all detectors are included (but no observables). - To include an observable, add it as one of the filters. + rows: In diagrams that have multiple separate pieces, such as timeslice + diagrams and detslice diagrams, this controls how many rows of + pieces there will be. If not specified, a number of rows that creates + a roughly square layout will be chosen. + filter_coords: A list of things to include in the diagram. Different + effects depending on the diagram. + + For detslice diagrams, the filter defaults to showing all detectors + and no observables. When specified, each list entry can be a collection + of floats (detectors whose coordinates start with the same numbers will + be included), a stim.DemTarget (specifying a detector or observable + to include), a string like "D5" or "L0" specifying a detector or + observable to include. Returns: An object whose `__str__` method returns the diagram, so that @@ -5304,7 +5314,24 @@ def __str__( def args_copy( self, ) -> List[float]: - """Returns a copy of the list of numbers parameterizing the instruction (e.g. the probability of an error). + """Returns a copy of the list of numbers parameterizing the instruction. + + For example, this would be coordinates of a detector instruction or the + probability of an error instruction. The result is a copy, meaning that + editing it won't change the instruction's targets or future copies. + + Examples: + >>> import stim + >>> instruction = stim.DetectorErrorModel(''' + ... error(0.125) D0 + ... ''')[0] + >>> instruction.args_copy() + [0.125] + + >>> instruction.args_copy() == instruction.args_copy() + True + >>> instruction.args_copy() is instruction.args_copy() + False """ ``` @@ -5318,8 +5345,21 @@ def targets_copy( ) -> List[Union[int, stim.DemTarget]]: """Returns a copy of the instruction's targets. - (Making a copy is enforced to make it clear that editing the result won't change - the instruction's targets.) + The result is a copy, meaning that editing it won't change the instruction's + targets or future copies. + + Examples: + >>> import stim + >>> instruction = stim.DetectorErrorModel(''' + ... error(0.125) D0 L2 + ... ''')[0] + >>> instruction.targets_copy() + [stim.DemTarget('D0'), stim.DemTarget('L2')] + + >>> instruction.targets_copy() == instruction.targets_copy() + True + >>> instruction.targets_copy() is instruction.targets_copy() + False """ ``` @@ -7177,6 +7217,83 @@ def broadcast_pauli_errors( """ ``` + +```python +# stim.FlipSimulator.copy + +# (in class stim.FlipSimulator) +def copy( + self, + *, + copy_rng: bool = False, + seed: Optional[int] = None, +) -> stim.FlipSimulator: + """Returns a simulator with the same internal state, except perhaps its prng. + + Args: + copy_rng: Defaults to False. When False, the copy's pseudo random number + generator is reinitialized with a random seed instead of being a copy + of the original simulator's pseudo random number generator. This + causes the copy and the original to sample independent randomness, + instead of identical randomness, for future random operations. When set + to true, the copy will have the exact same pseudo random number + generator state as the original, and so will produce identical results + if told to do the same noisy operations. This argument is incompatible + with the `seed` argument. + + seed: PARTIALLY determines simulation results by deterministically seeding + the random number generator. + + Must be None or an integer in range(2**64). + + Defaults to None. When None, the prng state is either copied from the + original simulator or reseeded from system entropy, depending on the + copy_rng argument. + + When set to an integer, making the exact same series calls on the exact + same machine with the exact same version of Stim will produce the exact + same simulation results. + + CAUTION: simulation results *WILL NOT* be consistent between versions of + Stim. This restriction is present to make it possible to have future + optimizations to the random sampling, and is enforced by introducing + intentional differences in the seeding strategy from version to version. + + CAUTION: simulation results *MAY NOT* be consistent across machines that + differ in the width of supported SIMD instructions. For example, using + the same seed on a machine that supports AVX instructions and one that + only supports SSE instructions may produce different simulation results. + + CAUTION: simulation results *MAY NOT* be consistent if you vary how the + circuit is executed. For example, reordering whether a reset on one + qubit happens before or after a reset on another qubit can result in + different measurement results being observed starting from the same + seed. + + Returns: + The copy of the simulator. + + Examples: + >>> import stim + >>> import numpy as np + + >>> s1 = stim.FlipSimulator(batch_size=256) + >>> s1.set_pauli_flip('X', qubit_index=2, instance_index=3) + >>> s2 = s1.copy() + >>> s2 is s1 + False + >>> s2.peek_pauli_flips() == s1.peek_pauli_flips() + True + + >>> s1 = stim.FlipSimulator(batch_size=256) + >>> s2 = s1.copy(copy_rng=True) + >>> s1.do(stim.Circuit("X_ERROR(0.25) 0 \n M 0")) + >>> s2.do(stim.Circuit("X_ERROR(0.25) 0 \n M 0")) + >>> np.array_equal(s1.get_measurement_flips(), s2.get_measurement_flips()) + True + """ +``` + ```python # stim.FlipSimulator.do @@ -7613,6 +7730,38 @@ def peek_pauli_flips( """ ``` + +```python +# stim.FlipSimulator.reset + +# (in class stim.FlipSimulator) +def reset( + self, +) -> None: + """Resets the simulator's state, so it can be reused for another simulation. + + This empties the measurement flip history, empties the detector flip history, + and zeroes the observable flip state. It also resets all qubits to |0>. If + stabilizer randomization is disabled, this zeros all pauli flips data. Otherwise + it randomizes all pauli flips to be I or Z with equal probability. + + Examples: + >>> import stim + >>> sim = stim.FlipSimulator(batch_size=256) + >>> sim.do(stim.Circuit("M(0.1) 9")) + >>> sim.num_qubits + 10 + >>> sim.get_measurement_flips().shape + (1, 256) + + >>> sim.reset() + >>> sim.num_qubits + 10 + >>> sim.get_measurement_flips().shape + (0, 256) + """ +``` + ```python # stim.FlipSimulator.set_pauli_flip @@ -9533,6 +9682,13 @@ def __len__( self, ) -> int: """Returns the length the pauli string; the number of qubits it operates on. + + Examples: + >>> import stim + >>> len(stim.PauliString("XY_ZZ")) + 5 + >>> len(stim.PauliString("X0*Z99")) + 100 """ ``` @@ -10663,6 +10819,12 @@ def __len__( self, ) -> int: """Returns the number of qubits operated on by the tableau. + + Examples: + >>> import stim + >>> t = stim.Tableau.from_named_gate("CNOT") + >>> len(t) + 2 """ ``` diff --git a/doc/stim.pyi b/doc/stim.pyi index bbd39402..cd232b6a 100644 --- a/doc/stim.pyi +++ b/doc/stim.pyi @@ -1084,11 +1084,19 @@ class Circuit: Passing `range(A, B)` for a time slice will show the operations between tick A and tick B. - filter_coords: A set of acceptable coordinate prefixes, or - desired stim.DemTargets. For detector slice diagrams, only - detectors match one of the filters are included. If no filter - is specified, all detectors are included (but no observables). - To include an observable, add it as one of the filters. + rows: In diagrams that have multiple separate pieces, such as timeslice + diagrams and detslice diagrams, this controls how many rows of + pieces there will be. If not specified, a number of rows that creates + a roughly square layout will be chosen. + filter_coords: A list of things to include in the diagram. Different + effects depending on the diagram. + + For detslice diagrams, the filter defaults to showing all detectors + and no observables. When specified, each list entry can be a collection + of floats (detectors whose coordinates start with the same numbers will + be included), a stim.DemTarget (specifying a detector or observable + to include), a string like "D5" or "L0" specifying a detector or + observable to include. Returns: An object whose `__str__` method returns the diagram, so that @@ -4145,15 +4153,45 @@ class DemInstruction: def args_copy( self, ) -> List[float]: - """Returns a copy of the list of numbers parameterizing the instruction (e.g. the probability of an error). + """Returns a copy of the list of numbers parameterizing the instruction. + + For example, this would be coordinates of a detector instruction or the + probability of an error instruction. The result is a copy, meaning that + editing it won't change the instruction's targets or future copies. + + Examples: + >>> import stim + >>> instruction = stim.DetectorErrorModel(''' + ... error(0.125) D0 + ... ''')[0] + >>> instruction.args_copy() + [0.125] + + >>> instruction.args_copy() == instruction.args_copy() + True + >>> instruction.args_copy() is instruction.args_copy() + False """ def targets_copy( self, ) -> List[Union[int, stim.DemTarget]]: """Returns a copy of the instruction's targets. - (Making a copy is enforced to make it clear that editing the result won't change - the instruction's targets.) + The result is a copy, meaning that editing it won't change the instruction's + targets or future copies. + + Examples: + >>> import stim + >>> instruction = stim.DetectorErrorModel(''' + ... error(0.125) D0 L2 + ... ''')[0] + >>> instruction.targets_copy() + [stim.DemTarget('D0'), stim.DemTarget('L2')] + + >>> instruction.targets_copy() == instruction.targets_copy() + True + >>> instruction.targets_copy() is instruction.targets_copy() + False """ @property def type( @@ -5575,6 +5613,76 @@ class FlipSimulator: >>> sim.peek_pauli_flips() [stim.PauliString("+X_Y"), stim.PauliString("+Z_Y")] """ + def copy( + self, + *, + copy_rng: bool = False, + seed: Optional[int] = None, + ) -> stim.FlipSimulator: + """Returns a simulator with the same internal state, except perhaps its prng. + + Args: + copy_rng: Defaults to False. When False, the copy's pseudo random number + generator is reinitialized with a random seed instead of being a copy + of the original simulator's pseudo random number generator. This + causes the copy and the original to sample independent randomness, + instead of identical randomness, for future random operations. When set + to true, the copy will have the exact same pseudo random number + generator state as the original, and so will produce identical results + if told to do the same noisy operations. This argument is incompatible + with the `seed` argument. + + seed: PARTIALLY determines simulation results by deterministically seeding + the random number generator. + + Must be None or an integer in range(2**64). + + Defaults to None. When None, the prng state is either copied from the + original simulator or reseeded from system entropy, depending on the + copy_rng argument. + + When set to an integer, making the exact same series calls on the exact + same machine with the exact same version of Stim will produce the exact + same simulation results. + + CAUTION: simulation results *WILL NOT* be consistent between versions of + Stim. This restriction is present to make it possible to have future + optimizations to the random sampling, and is enforced by introducing + intentional differences in the seeding strategy from version to version. + + CAUTION: simulation results *MAY NOT* be consistent across machines that + differ in the width of supported SIMD instructions. For example, using + the same seed on a machine that supports AVX instructions and one that + only supports SSE instructions may produce different simulation results. + + CAUTION: simulation results *MAY NOT* be consistent if you vary how the + circuit is executed. For example, reordering whether a reset on one + qubit happens before or after a reset on another qubit can result in + different measurement results being observed starting from the same + seed. + + Returns: + The copy of the simulator. + + Examples: + >>> import stim + >>> import numpy as np + + >>> s1 = stim.FlipSimulator(batch_size=256) + >>> s1.set_pauli_flip('X', qubit_index=2, instance_index=3) + >>> s2 = s1.copy() + >>> s2 is s1 + False + >>> s2.peek_pauli_flips() == s1.peek_pauli_flips() + True + + >>> s1 = stim.FlipSimulator(batch_size=256) + >>> s2 = s1.copy(copy_rng=True) + >>> s1.do(stim.Circuit("X_ERROR(0.25) 0 \n M 0")) + >>> s2.do(stim.Circuit("X_ERROR(0.25) 0 \n M 0")) + >>> np.array_equal(s1.get_measurement_flips(), s2.get_measurement_flips()) + True + """ def do( self, obj: Union[stim.Circuit, stim.CircuitInstruction, stim.CircuitRepeatBlock], @@ -5948,6 +6056,31 @@ class FlipSimulator: >>> sorted(set(str(flips))) # Should have Zs from stabilizer randomization ['+', 'Z', '_'] """ + def reset( + self, + ) -> None: + """Resets the simulator's state, so it can be reused for another simulation. + + This empties the measurement flip history, empties the detector flip history, + and zeroes the observable flip state. It also resets all qubits to |0>. If + stabilizer randomization is disabled, this zeros all pauli flips data. Otherwise + it randomizes all pauli flips to be I or Z with equal probability. + + Examples: + >>> import stim + >>> sim = stim.FlipSimulator(batch_size=256) + >>> sim.do(stim.Circuit("M(0.1) 9")) + >>> sim.num_qubits + 10 + >>> sim.get_measurement_flips().shape + (1, 256) + + >>> sim.reset() + >>> sim.num_qubits + 10 + >>> sim.get_measurement_flips().shape + (0, 256) + """ def set_pauli_flip( self, pauli: Union[str, int], @@ -7401,6 +7534,13 @@ class PauliString: self, ) -> int: """Returns the length the pauli string; the number of qubits it operates on. + + Examples: + >>> import stim + >>> len(stim.PauliString("XY_ZZ")) + 5 + >>> len(stim.PauliString("X0*Z99")) + 100 """ def __mul__( self, @@ -8306,6 +8446,12 @@ class Tableau: self, ) -> int: """Returns the number of qubits operated on by the tableau. + + Examples: + >>> import stim + >>> t = stim.Tableau.from_named_gate("CNOT") + >>> len(t) + 2 """ def __mul__( self, diff --git a/glue/python/src/stim/__init__.pyi b/glue/python/src/stim/__init__.pyi index bbd39402..cd232b6a 100644 --- a/glue/python/src/stim/__init__.pyi +++ b/glue/python/src/stim/__init__.pyi @@ -1084,11 +1084,19 @@ class Circuit: Passing `range(A, B)` for a time slice will show the operations between tick A and tick B. - filter_coords: A set of acceptable coordinate prefixes, or - desired stim.DemTargets. For detector slice diagrams, only - detectors match one of the filters are included. If no filter - is specified, all detectors are included (but no observables). - To include an observable, add it as one of the filters. + rows: In diagrams that have multiple separate pieces, such as timeslice + diagrams and detslice diagrams, this controls how many rows of + pieces there will be. If not specified, a number of rows that creates + a roughly square layout will be chosen. + filter_coords: A list of things to include in the diagram. Different + effects depending on the diagram. + + For detslice diagrams, the filter defaults to showing all detectors + and no observables. When specified, each list entry can be a collection + of floats (detectors whose coordinates start with the same numbers will + be included), a stim.DemTarget (specifying a detector or observable + to include), a string like "D5" or "L0" specifying a detector or + observable to include. Returns: An object whose `__str__` method returns the diagram, so that @@ -4145,15 +4153,45 @@ class DemInstruction: def args_copy( self, ) -> List[float]: - """Returns a copy of the list of numbers parameterizing the instruction (e.g. the probability of an error). + """Returns a copy of the list of numbers parameterizing the instruction. + + For example, this would be coordinates of a detector instruction or the + probability of an error instruction. The result is a copy, meaning that + editing it won't change the instruction's targets or future copies. + + Examples: + >>> import stim + >>> instruction = stim.DetectorErrorModel(''' + ... error(0.125) D0 + ... ''')[0] + >>> instruction.args_copy() + [0.125] + + >>> instruction.args_copy() == instruction.args_copy() + True + >>> instruction.args_copy() is instruction.args_copy() + False """ def targets_copy( self, ) -> List[Union[int, stim.DemTarget]]: """Returns a copy of the instruction's targets. - (Making a copy is enforced to make it clear that editing the result won't change - the instruction's targets.) + The result is a copy, meaning that editing it won't change the instruction's + targets or future copies. + + Examples: + >>> import stim + >>> instruction = stim.DetectorErrorModel(''' + ... error(0.125) D0 L2 + ... ''')[0] + >>> instruction.targets_copy() + [stim.DemTarget('D0'), stim.DemTarget('L2')] + + >>> instruction.targets_copy() == instruction.targets_copy() + True + >>> instruction.targets_copy() is instruction.targets_copy() + False """ @property def type( @@ -5575,6 +5613,76 @@ class FlipSimulator: >>> sim.peek_pauli_flips() [stim.PauliString("+X_Y"), stim.PauliString("+Z_Y")] """ + def copy( + self, + *, + copy_rng: bool = False, + seed: Optional[int] = None, + ) -> stim.FlipSimulator: + """Returns a simulator with the same internal state, except perhaps its prng. + + Args: + copy_rng: Defaults to False. When False, the copy's pseudo random number + generator is reinitialized with a random seed instead of being a copy + of the original simulator's pseudo random number generator. This + causes the copy and the original to sample independent randomness, + instead of identical randomness, for future random operations. When set + to true, the copy will have the exact same pseudo random number + generator state as the original, and so will produce identical results + if told to do the same noisy operations. This argument is incompatible + with the `seed` argument. + + seed: PARTIALLY determines simulation results by deterministically seeding + the random number generator. + + Must be None or an integer in range(2**64). + + Defaults to None. When None, the prng state is either copied from the + original simulator or reseeded from system entropy, depending on the + copy_rng argument. + + When set to an integer, making the exact same series calls on the exact + same machine with the exact same version of Stim will produce the exact + same simulation results. + + CAUTION: simulation results *WILL NOT* be consistent between versions of + Stim. This restriction is present to make it possible to have future + optimizations to the random sampling, and is enforced by introducing + intentional differences in the seeding strategy from version to version. + + CAUTION: simulation results *MAY NOT* be consistent across machines that + differ in the width of supported SIMD instructions. For example, using + the same seed on a machine that supports AVX instructions and one that + only supports SSE instructions may produce different simulation results. + + CAUTION: simulation results *MAY NOT* be consistent if you vary how the + circuit is executed. For example, reordering whether a reset on one + qubit happens before or after a reset on another qubit can result in + different measurement results being observed starting from the same + seed. + + Returns: + The copy of the simulator. + + Examples: + >>> import stim + >>> import numpy as np + + >>> s1 = stim.FlipSimulator(batch_size=256) + >>> s1.set_pauli_flip('X', qubit_index=2, instance_index=3) + >>> s2 = s1.copy() + >>> s2 is s1 + False + >>> s2.peek_pauli_flips() == s1.peek_pauli_flips() + True + + >>> s1 = stim.FlipSimulator(batch_size=256) + >>> s2 = s1.copy(copy_rng=True) + >>> s1.do(stim.Circuit("X_ERROR(0.25) 0 \n M 0")) + >>> s2.do(stim.Circuit("X_ERROR(0.25) 0 \n M 0")) + >>> np.array_equal(s1.get_measurement_flips(), s2.get_measurement_flips()) + True + """ def do( self, obj: Union[stim.Circuit, stim.CircuitInstruction, stim.CircuitRepeatBlock], @@ -5948,6 +6056,31 @@ class FlipSimulator: >>> sorted(set(str(flips))) # Should have Zs from stabilizer randomization ['+', 'Z', '_'] """ + def reset( + self, + ) -> None: + """Resets the simulator's state, so it can be reused for another simulation. + + This empties the measurement flip history, empties the detector flip history, + and zeroes the observable flip state. It also resets all qubits to |0>. If + stabilizer randomization is disabled, this zeros all pauli flips data. Otherwise + it randomizes all pauli flips to be I or Z with equal probability. + + Examples: + >>> import stim + >>> sim = stim.FlipSimulator(batch_size=256) + >>> sim.do(stim.Circuit("M(0.1) 9")) + >>> sim.num_qubits + 10 + >>> sim.get_measurement_flips().shape + (1, 256) + + >>> sim.reset() + >>> sim.num_qubits + 10 + >>> sim.get_measurement_flips().shape + (0, 256) + """ def set_pauli_flip( self, pauli: Union[str, int], @@ -7401,6 +7534,13 @@ class PauliString: self, ) -> int: """Returns the length the pauli string; the number of qubits it operates on. + + Examples: + >>> import stim + >>> len(stim.PauliString("XY_ZZ")) + 5 + >>> len(stim.PauliString("X0*Z99")) + 100 """ def __mul__( self, @@ -8306,6 +8446,12 @@ class Tableau: self, ) -> int: """Returns the number of qubits operated on by the tableau. + + Examples: + >>> import stim + >>> t = stim.Tableau.from_named_gate("CNOT") + >>> len(t) + 2 """ def __mul__( self, diff --git a/src/stim/circuit/circuit.pybind.cc b/src/stim/circuit/circuit.pybind.cc index 4c870e61..8c801e5c 100644 --- a/src/stim/circuit/circuit.pybind.cc +++ b/src/stim/circuit/circuit.pybind.cc @@ -3267,6 +3267,7 @@ void stim_pybind::pybind_circuit_methods(pybind11::module &, pybind11::class_ 'stim._DiagramHelper': @@ -3343,11 +3344,19 @@ void stim_pybind::pybind_circuit_methods(pybind11::module &, pybind11::class_ filter_coords; try { @@ -221,6 +222,11 @@ DiagramHelper stim_pybind::circuit_diagram( throw std::invalid_argument("filter_coords wasn't an Iterable[stim.DemTarget | Iterable[float]]."); } + size_t num_rows = 0; + if (!rows.is_none()) { + num_rows = pybind11::cast(rows); + } + uint64_t tick_min; uint64_t num_ticks; if (tick.is_none()) { @@ -262,7 +268,7 @@ DiagramHelper stim_pybind::circuit_diagram( type == "timeslice" || type == "time-slice") { std::stringstream out; DiagramTimelineSvgDrawer::make_diagram_write_to( - circuit, out, tick_min, num_ticks, DiagramTimelineSvgDrawerMode::SVG_MODE_TIME_SLICE, filter_coords); + circuit, out, tick_min, num_ticks, DiagramTimelineSvgDrawerMode::SVG_MODE_TIME_SLICE, filter_coords, num_rows); DiagramType d_type = type.find("html") != std::string::npos ? DiagramType::DIAGRAM_TYPE_SVG_HTML : DiagramType::DIAGRAM_TYPE_SVG; return DiagramHelper{d_type, out.str()}; @@ -270,7 +276,7 @@ DiagramHelper stim_pybind::circuit_diagram( type == "detslice-svg" || type == "detslice" || type == "detslice-html" || type == "detslice-svg-html" || type == "detector-slice-svg" || type == "detector-slice") { std::stringstream out; - DetectorSliceSet::from_circuit_ticks(circuit, tick_min, num_ticks, filter_coords).write_svg_diagram_to(out); + DetectorSliceSet::from_circuit_ticks(circuit, tick_min, num_ticks, filter_coords).write_svg_diagram_to(out, num_rows); DiagramType d_type = type.find("html") != std::string::npos ? DiagramType::DIAGRAM_TYPE_SVG_HTML : DiagramType::DIAGRAM_TYPE_SVG; return DiagramHelper{d_type, out.str()}; @@ -284,7 +290,8 @@ DiagramHelper stim_pybind::circuit_diagram( tick_min, num_ticks, DiagramTimelineSvgDrawerMode::SVG_MODE_TIME_DETECTOR_SLICE, - filter_coords); + filter_coords, + num_rows); DiagramType d_type = type.find("html") != std::string::npos ? DiagramType::DIAGRAM_TYPE_SVG_HTML : DiagramType::DIAGRAM_TYPE_SVG; return DiagramHelper{d_type, out.str()}; diff --git a/src/stim/cmd/command_diagram.pybind.h b/src/stim/cmd/command_diagram.pybind.h index 9e38276f..7c25a628 100644 --- a/src/stim/cmd/command_diagram.pybind.h +++ b/src/stim/cmd/command_diagram.pybind.h @@ -42,6 +42,7 @@ DiagramHelper circuit_diagram( const stim::Circuit &circuit, std::string_view type, const pybind11::object &tick, + const pybind11::object &rows, const pybind11::object &filter_coords_obj); } // namespace stim_pybind diff --git a/src/stim/dem/detector_error_model_instruction.pybind.cc b/src/stim/dem/detector_error_model_instruction.pybind.cc index dfd98350..a9f0a5ca 100644 --- a/src/stim/dem/detector_error_model_instruction.pybind.cc +++ b/src/stim/dem/detector_error_model_instruction.pybind.cc @@ -14,7 +14,6 @@ #include "stim/dem/detector_error_model_instruction.pybind.h" -#include "stim/dem/detector_error_model.pybind.h" #include "stim/dem/detector_error_model_target.pybind.h" #include "stim/py/base.pybind.h" #include "stim/util_bot/str_util.h" @@ -183,7 +182,29 @@ void stim_pybind::pybind_detector_error_model_instruction_methods( c.def( "args_copy", &ExposedDemInstruction::args_copy, - "Returns a copy of the list of numbers parameterizing the instruction (e.g. the probability of an error)."); + clean_doc_string(R"DOC( + @signature def args_copy(self) -> List[float]: + Returns a copy of the list of numbers parameterizing the instruction. + + For example, this would be coordinates of a detector instruction or the + probability of an error instruction. The result is a copy, meaning that + editing it won't change the instruction's targets or future copies. + + Examples: + >>> import stim + >>> instruction = stim.DetectorErrorModel(''' + ... error(0.125) D0 + ... ''')[0] + >>> instruction.args_copy() + [0.125] + + >>> instruction.args_copy() == instruction.args_copy() + True + >>> instruction.args_copy() is instruction.args_copy() + False + )DOC") + .data()); + c.def( "targets_copy", &ExposedDemInstruction::targets_copy, @@ -191,8 +212,21 @@ void stim_pybind::pybind_detector_error_model_instruction_methods( @signature def targets_copy(self) -> List[Union[int, stim.DemTarget]]: Returns a copy of the instruction's targets. - (Making a copy is enforced to make it clear that editing the result won't change - the instruction's targets.) + The result is a copy, meaning that editing it won't change the instruction's + targets or future copies. + + Examples: + >>> import stim + >>> instruction = stim.DetectorErrorModel(''' + ... error(0.125) D0 L2 + ... ''')[0] + >>> instruction.targets_copy() + [stim.DemTarget('D0'), stim.DemTarget('L2')] + + >>> instruction.targets_copy() == instruction.targets_copy() + True + >>> instruction.targets_copy() is instruction.targets_copy() + False )DOC") .data()); c.def_property_readonly( diff --git a/src/stim/diagram/detector_slice/detector_slice_set.cc b/src/stim/diagram/detector_slice/detector_slice_set.cc index abf26b06..ad90760c 100644 --- a/src/stim/diagram/detector_slice/detector_slice_set.cc +++ b/src/stim/diagram/detector_slice/detector_slice_set.cc @@ -741,8 +741,7 @@ void _start_two_body_svg_path( std::ostream &out, const std::function(uint64_t tick, uint32_t qubit)> &coords, uint64_t tick, - SpanRef terms, - std::vector> &pts_workspace) { + SpanRef terms) { auto a = coords(tick, terms[0].qubit_value()); auto b = coords(tick, terms[1].qubit_value()); auto dif = b - a; @@ -774,7 +773,6 @@ void _start_one_body_svg_path( const std::function(uint64_t tick, uint32_t qubit)> &coords, uint64_t tick, SpanRef terms, - std::vector> &pts_workspace, size_t scale) { auto c = coords(tick, terms[0].qubit_value()); out << " 2) { _start_many_body_svg_path(out, coords, tick, terms, pts_workspace); } else if (terms.size() == 2) { - _start_two_body_svg_path(out, coords, tick, terms, pts_workspace); + _start_two_body_svg_path(out, coords, tick, terms); } else if (terms.size() == 1) { - _start_one_body_svg_path(out, coords, tick, terms, pts_workspace, scale); + _start_one_body_svg_path(out, coords, tick, terms, scale); } } -void DetectorSliceSet::write_svg_diagram_to(std::ostream &out) const { - size_t num_cols = (uint64_t)ceil(sqrt((double)num_ticks)); - size_t num_rows = num_ticks / num_cols; - while (num_cols * num_rows < num_ticks) { - num_rows++; - } - while (num_cols * num_rows >= num_ticks + num_rows) { - num_cols--; +void DetectorSliceSet::write_svg_diagram_to(std::ostream &out, size_t num_rows) const { + size_t num_cols; + if (num_rows == 0) { + num_cols = (uint64_t)ceil(sqrt((double)num_ticks)); + num_rows = num_ticks / num_cols; + while (num_cols * num_rows < num_ticks) { + num_rows++; + } + while (num_cols * num_rows >= num_ticks + num_rows) { + num_cols--; + } + } else { + num_cols = (num_ticks + num_rows - 1) / num_rows; } auto coordsys = FlattenedCoords::from(*this, 32); diff --git a/src/stim/diagram/detector_slice/detector_slice_set.h b/src/stim/diagram/detector_slice/detector_slice_set.h index 76314eba..1fdeffa9 100644 --- a/src/stim/diagram/detector_slice/detector_slice_set.h +++ b/src/stim/diagram/detector_slice/detector_slice_set.h @@ -65,7 +65,7 @@ struct DetectorSliceSet { std::string str() const; void write_text_diagram_to(std::ostream &out) const; - void write_svg_diagram_to(std::ostream &out) const; + void write_svg_diagram_to(std::ostream &out, size_t num_rows = 0) const; void write_svg_contents_to( std::ostream &out, const std::function(uint32_t qubit)> &unscaled_coords, diff --git a/src/stim/diagram/timeline/timeline_svg_drawer.cc b/src/stim/diagram/timeline/timeline_svg_drawer.cc index 59a3ab02..67621fa4 100644 --- a/src/stim/diagram/timeline/timeline_svg_drawer.cc +++ b/src/stim/diagram/timeline/timeline_svg_drawer.cc @@ -808,7 +808,8 @@ void DiagramTimelineSvgDrawer::make_diagram_write_to( uint64_t tick_slice_start, uint64_t tick_slice_num, DiagramTimelineSvgDrawerMode mode, - SpanRef filter) { + SpanRef filter, + size_t num_rows) { uint64_t circuit_num_ticks = circuit.count_ticks(); auto circuit_has_ticks = circuit_num_ticks > 0; auto num_qubits = circuit.count_qubits(); @@ -825,8 +826,13 @@ void DiagramTimelineSvgDrawer::make_diagram_write_to( obj.coord_sys = FlattenedCoords::from(obj.detector_slice_set, GATE_PITCH); obj.coord_sys.size.xyz[0] += TIME_SLICE_PADDING * 2; obj.coord_sys.size.xyz[1] += TIME_SLICE_PADDING * 2; - obj.num_cols = (uint64_t)ceil(sqrt((double)tick_slice_num)); - obj.num_rows = tick_slice_num / obj.num_cols; + if (num_rows == 0) { + obj.num_cols = (uint64_t)ceil(sqrt((double)tick_slice_num)); + obj.num_rows = tick_slice_num / obj.num_cols; + } else { + obj.num_rows = num_rows; + obj.num_cols = (tick_slice_num + num_rows - 1) / num_rows; + } while (obj.num_cols * obj.num_rows < tick_slice_num) { obj.num_rows++; } @@ -855,9 +861,9 @@ void DiagramTimelineSvgDrawer::make_diagram_write_to( auto w = obj.m2x(obj.cur_moment) - GATE_PITCH * 0.5f; svg_out << R"SVG( 1) { auto k = 0; svg_out << "\n"; - for (uint64_t col = 0; col < obj.num_cols; col++) { - for (uint64_t row = 0; row < obj.num_rows && row * obj.num_cols + col < tick_slice_num; row++) { + for (uint64_t row = 0; row < obj.num_rows; row++) { + for (uint64_t col = 0; col < obj.num_cols && row * obj.num_cols + col < tick_slice_num; col++) { auto sw = obj.coord_sys.size.xyz[0]; auto sh = obj.coord_sys.size.xyz[1]; std::stringstream id_ss; + auto tick = k + tick_slice_start; // the absolute tick id_ss << "tick_border:" << k; id_ss << ":" << row << "_" << col; - id_ss << ":" << k + tick_slice_start; // the absolute tick + id_ss << ":" << tick; + + svg_out << ""; + svg_out << "Tick " << tick; + svg_out << "\n"; svg_out << "\n"; + + k++; } } svg_out << "\n"; diff --git a/src/stim/diagram/timeline/timeline_svg_drawer.h b/src/stim/diagram/timeline/timeline_svg_drawer.h index 5d0bef1c..cbc35bbe 100644 --- a/src/stim/diagram/timeline/timeline_svg_drawer.h +++ b/src/stim/diagram/timeline/timeline_svg_drawer.h @@ -64,7 +64,8 @@ struct DiagramTimelineSvgDrawer { uint64_t tick_slice_start, uint64_t tick_slice_num, DiagramTimelineSvgDrawerMode mode, - stim::SpanRef det_coord_filter); + stim::SpanRef det_coord_filter, + size_t num_rows = 0); void do_start_repeat(const CircuitTimelineLoopData &loop_data); void do_end_repeat(const CircuitTimelineLoopData &loop_data); diff --git a/src/stim/mem/bitword_128_sse.h b/src/stim/mem/bitword_128_sse.h index 05aafde8..a84e9875 100644 --- a/src/stim/mem/bitword_128_sse.h +++ b/src/stim/mem/bitword_128_sse.h @@ -53,6 +53,8 @@ struct bitword<128> { } inline bitword<128>(__m128i val) : val(val) { } + inline bitword<128>(std::array val) : val{_mm_set_epi64x(val[1], val[0])} { + } inline bitword<128>(uint64_t val) : val{_mm_set_epi64x(0, val)} { } inline bitword<128>(int64_t val) : val{_mm_set_epi64x(-(val < 0), val)} { diff --git a/src/stim/mem/bitword_256_avx.h b/src/stim/mem/bitword_256_avx.h index 6c35833c..4b5959f9 100644 --- a/src/stim/mem/bitword_256_avx.h +++ b/src/stim/mem/bitword_256_avx.h @@ -52,6 +52,8 @@ struct bitword<256> { } inline bitword<256>(__m256i val) : val(val) { } + inline bitword<256>(std::array val) : val{_mm256_set_epi64x(val[3], val[2], val[1], val[0])} { + } inline bitword<256>(uint64_t val) : val{_mm256_set_epi64x(0, 0, 0, val)} { } inline bitword<256>(int64_t val) : val{_mm256_set_epi64x(-(val < 0), -(val < 0), -(val < 0), val)} { diff --git a/src/stim/mem/bitword_64.h b/src/stim/mem/bitword_64.h index 3f8d588a..4a4a16ec 100644 --- a/src/stim/mem/bitword_64.h +++ b/src/stim/mem/bitword_64.h @@ -47,6 +47,8 @@ struct bitword<64> { inline constexpr bitword<64>() : val{} { } + inline bitword<64>(std::array val) : val{val[0]} { + } inline constexpr bitword<64>(uint64_t v) : val{v} { } inline constexpr bitword<64>(int64_t v) : val{(uint64_t)v} { diff --git a/src/stim/mem/simd_word.test.cc b/src/stim/mem/simd_word.test.cc index 3ab23583..b0777b4c 100644 --- a/src/stim/mem/simd_word.test.cc +++ b/src/stim/mem/simd_word.test.cc @@ -149,3 +149,13 @@ TEST_EACH_WORD_SIZE_W(simd_word, ordering, { ASSERT_TRUE(!(simd_word(2) < simd_word(2))); ASSERT_TRUE(!(simd_word(3) < simd_word(2))); }) + +TEST_EACH_WORD_SIZE_W(simd_word, from_u64_array, { + std::array expected; + for (size_t k = 0; k < expected.size(); k++) { + expected[k] = k * 3 + 1; + } + simd_word w(expected); + std::array actual = w.to_u64_array(); + ASSERT_EQ(actual, expected); +}) diff --git a/src/stim/simulators/frame_simulator.pybind.cc b/src/stim/simulators/frame_simulator.pybind.cc index 05386a4c..ff1a072c 100644 --- a/src/stim/simulators/frame_simulator.pybind.cc +++ b/src/stim/simulators/frame_simulator.pybind.cc @@ -870,4 +870,118 @@ void stim_pybind::pybind_frame_simulator_methods( )DOC") .data()); + + c.def( + "copy", + [](const FrameSimulator &self, bool copy_rng, pybind11::object &seed) { + if (copy_rng && !seed.is_none()) { + throw std::invalid_argument("seed and copy_rng are incompatible"); + } + + FrameSimulator copy = self; + if (!copy_rng || !seed.is_none()) { + copy.rng = make_py_seeded_rng(seed); + } + return copy; + }, + pybind11::kw_only(), + pybind11::arg("copy_rng") = false, + pybind11::arg("seed") = pybind11::none(), + clean_doc_string(R"DOC( + @signature def copy(self, *, copy_rng: bool = False, seed: Optional[int] = None) -> stim.FlipSimulator: + Returns a simulator with the same internal state, except perhaps its prng. + + Args: + copy_rng: Defaults to False. When False, the copy's pseudo random number + generator is reinitialized with a random seed instead of being a copy + of the original simulator's pseudo random number generator. This + causes the copy and the original to sample independent randomness, + instead of identical randomness, for future random operations. When set + to true, the copy will have the exact same pseudo random number + generator state as the original, and so will produce identical results + if told to do the same noisy operations. This argument is incompatible + with the `seed` argument. + + seed: PARTIALLY determines simulation results by deterministically seeding + the random number generator. + + Must be None or an integer in range(2**64). + + Defaults to None. When None, the prng state is either copied from the + original simulator or reseeded from system entropy, depending on the + copy_rng argument. + + When set to an integer, making the exact same series calls on the exact + same machine with the exact same version of Stim will produce the exact + same simulation results. + + CAUTION: simulation results *WILL NOT* be consistent between versions of + Stim. This restriction is present to make it possible to have future + optimizations to the random sampling, and is enforced by introducing + intentional differences in the seeding strategy from version to version. + + CAUTION: simulation results *MAY NOT* be consistent across machines that + differ in the width of supported SIMD instructions. For example, using + the same seed on a machine that supports AVX instructions and one that + only supports SSE instructions may produce different simulation results. + + CAUTION: simulation results *MAY NOT* be consistent if you vary how the + circuit is executed. For example, reordering whether a reset on one + qubit happens before or after a reset on another qubit can result in + different measurement results being observed starting from the same + seed. + + Returns: + The copy of the simulator. + + Examples: + >>> import stim + >>> import numpy as np + + >>> s1 = stim.FlipSimulator(batch_size=256) + >>> s1.set_pauli_flip('X', qubit_index=2, instance_index=3) + >>> s2 = s1.copy() + >>> s2 is s1 + False + >>> s2.peek_pauli_flips() == s1.peek_pauli_flips() + True + + >>> s1 = stim.FlipSimulator(batch_size=256) + >>> s2 = s1.copy(copy_rng=True) + >>> s1.do(stim.Circuit("X_ERROR(0.25) 0 \n M 0")) + >>> s2.do(stim.Circuit("X_ERROR(0.25) 0 \n M 0")) + >>> np.array_equal(s1.get_measurement_flips(), s2.get_measurement_flips()) + True + )DOC") + .data()); + + c.def( + "reset", + [](FrameSimulator &self) { + self.reset_all(); + }, + clean_doc_string(R"DOC( + Resets the simulator's state, so it can be reused for another simulation. + + This empties the measurement flip history, empties the detector flip history, + and zeroes the observable flip state. It also resets all qubits to |0>. If + stabilizer randomization is disabled, this zeros all pauli flips data. Otherwise + it randomizes all pauli flips to be I or Z with equal probability. + + Examples: + >>> import stim + >>> sim = stim.FlipSimulator(batch_size=256) + >>> sim.do(stim.Circuit("M(0.1) 9")) + >>> sim.num_qubits + 10 + >>> sim.get_measurement_flips().shape + (1, 256) + + >>> sim.reset() + >>> sim.num_qubits + 10 + >>> sim.get_measurement_flips().shape + (0, 256) + )DOC") + .data()); } diff --git a/src/stim/stabilizers/pauli_string.pybind.cc b/src/stim/stabilizers/pauli_string.pybind.cc index 8fd808a3..bcc68ac7 100644 --- a/src/stim/stabilizers/pauli_string.pybind.cc +++ b/src/stim/stabilizers/pauli_string.pybind.cc @@ -826,6 +826,13 @@ void stim_pybind::pybind_pauli_string_methods(pybind11::module &m, pybind11::cla }, clean_doc_string(R"DOC( Returns the length the pauli string; the number of qubits it operates on. + + Examples: + >>> import stim + >>> len(stim.PauliString("XY_ZZ")) + 5 + >>> len(stim.PauliString("X0*Z99")) + 100 )DOC") .data()); diff --git a/src/stim/stabilizers/tableau.pybind.cc b/src/stim/stabilizers/tableau.pybind.cc index 7e9a3ba9..6d9849b6 100644 --- a/src/stim/stabilizers/tableau.pybind.cc +++ b/src/stim/stabilizers/tableau.pybind.cc @@ -838,7 +838,16 @@ void stim_pybind::pybind_tableau_methods(pybind11::module &m, pybind11::class_ &self) { return self.num_qubits; }, - "Returns the number of qubits operated on by the tableau."); + clean_doc_string(R"DOC( + Returns the number of qubits operated on by the tableau. + + Examples: + >>> import stim + >>> t = stim.Tableau.from_named_gate("CNOT") + >>> len(t) + 2 + )DOC") + .data()); c.def("__str__", &Tableau::str, "Returns a text description."); diff --git a/src/stim/util_top/circuit_vs_amplitudes.cc b/src/stim/util_top/circuit_vs_amplitudes.cc index 154eabe5..6a56219b 100644 --- a/src/stim/util_top/circuit_vs_amplitudes.cc +++ b/src/stim/util_top/circuit_vs_amplitudes.cc @@ -1,6 +1,6 @@ #include "stim/util_top/circuit_vs_amplitudes.h" -#include "circuit_inverse_unitary.h" +#include "stim/util_top/circuit_inverse_unitary.h" #include "stim/simulators/tableau_simulator.h" #include "stim/simulators/vector_simulator.h" #include "stim/util_bot/twiddle.h" diff --git a/testdata/anticommuting_detslice.svg b/testdata/anticommuting_detslice.svg index 76e9814f..e4502e15 100644 --- a/testdata/anticommuting_detslice.svg +++ b/testdata/anticommuting_detslice.svg @@ -42,9 +42,13 @@ M +Tick 0 - - - +Tick 1 + +Tick 2 + +Tick 3 + \ No newline at end of file diff --git a/testdata/bezier_time_slice.svg b/testdata/bezier_time_slice.svg index 1f132c86..47291d78 100644 --- a/testdata/bezier_time_slice.svg +++ b/testdata/bezier_time_slice.svg @@ -26,7 +26,9 @@ +Tick 0 - +Tick 1 + \ No newline at end of file diff --git a/testdata/circuit_all_ops_detslice.svg b/testdata/circuit_all_ops_detslice.svg index a917974c..6a654cdf 100644 --- a/testdata/circuit_all_ops_detslice.svg +++ b/testdata/circuit_all_ops_detslice.svg @@ -561,19 +561,33 @@ Zrec +Tick 0 - - - - - - - - - - - - - +Tick 1 + +Tick 2 + +Tick 3 + +Tick 4 + +Tick 5 + +Tick 6 + +Tick 7 + +Tick 8 + +Tick 9 + +Tick 10 + +Tick 11 + +Tick 12 + +Tick 13 + \ No newline at end of file diff --git a/testdata/circuit_all_ops_timeslice.svg b/testdata/circuit_all_ops_timeslice.svg index a917974c..6a654cdf 100644 --- a/testdata/circuit_all_ops_timeslice.svg +++ b/testdata/circuit_all_ops_timeslice.svg @@ -561,19 +561,33 @@ Zrec +Tick 0 - - - - - - - - - - - - - +Tick 1 + +Tick 2 + +Tick 3 + +Tick 4 + +Tick 5 + +Tick 6 + +Tick 7 + +Tick 8 + +Tick 9 + +Tick 10 + +Tick 11 + +Tick 12 + +Tick 13 + \ No newline at end of file diff --git a/testdata/circuit_diagram_timeline_svg_chained_loops.svg b/testdata/circuit_diagram_timeline_svg_chained_loops.svg index cd3bbbd0..3ef5e37f 100644 --- a/testdata/circuit_diagram_timeline_svg_chained_loops.svg +++ b/testdata/circuit_diagram_timeline_svg_chained_loops.svg @@ -46,16 +46,27 @@ Z +Tick 0 - - - - - - - - - - +Tick 1 + +Tick 2 + +Tick 3 + +Tick 4 + +Tick 5 + +Tick 6 + +Tick 7 + +Tick 8 + +Tick 9 + +Tick 10 + \ No newline at end of file diff --git a/testdata/detslice-with-ops_surface_code.svg b/testdata/detslice-with-ops_surface_code.svg index e79153bd..6463895f 100644 --- a/testdata/detslice-with-ops_surface_code.svg +++ b/testdata/detslice-with-ops_surface_code.svg @@ -1271,19 +1271,33 @@ H +Tick 0 - - - - - - - - - - - - - +Tick 1 + +Tick 2 + +Tick 3 + +Tick 4 + +Tick 5 + +Tick 6 + +Tick 7 + +Tick 8 + +Tick 9 + +Tick 10 + +Tick 11 + +Tick 12 + +Tick 13 + \ No newline at end of file diff --git a/testdata/observable_slices.svg b/testdata/observable_slices.svg index 6bff67cb..6d4aa7be 100644 --- a/testdata/observable_slices.svg +++ b/testdata/observable_slices.svg @@ -145,18 +145,31 @@ M +Tick 0 - - - - - - - - - - - - +Tick 1 + +Tick 2 + +Tick 3 + +Tick 4 + +Tick 5 + +Tick 6 + +Tick 7 + +Tick 8 + +Tick 9 + +Tick 10 + +Tick 11 + +Tick 12 + \ No newline at end of file diff --git a/testdata/surface_code_full_time_detector_slice.svg b/testdata/surface_code_full_time_detector_slice.svg index ace2226d..7e7fdae6 100644 --- a/testdata/surface_code_full_time_detector_slice.svg +++ b/testdata/surface_code_full_time_detector_slice.svg @@ -2823,41 +2823,77 @@ M +Tick 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +Tick 1 + +Tick 2 + +Tick 3 + +Tick 4 + +Tick 5 + +Tick 6 + +Tick 7 + +Tick 8 + +Tick 9 + +Tick 10 + +Tick 11 + +Tick 12 + +Tick 13 + +Tick 14 + +Tick 15 + +Tick 16 + +Tick 17 + +Tick 18 + +Tick 19 + +Tick 20 + +Tick 21 + +Tick 22 + +Tick 23 + +Tick 24 + +Tick 25 + +Tick 26 + +Tick 27 + +Tick 28 + +Tick 29 + +Tick 30 + +Tick 31 + +Tick 32 + +Tick 33 + +Tick 34 + +Tick 35 + \ No newline at end of file diff --git a/testdata/surface_code_time_detector_slice.svg b/testdata/surface_code_time_detector_slice.svg index 01fbf938..3bf551e1 100644 --- a/testdata/surface_code_time_detector_slice.svg +++ b/testdata/surface_code_time_detector_slice.svg @@ -749,16 +749,27 @@ H +Tick 5 - - - - - - - - - - +Tick 6 + +Tick 7 + +Tick 8 + +Tick 9 + +Tick 10 + +Tick 11 + +Tick 12 + +Tick 13 + +Tick 14 + +Tick 15 + \ No newline at end of file diff --git a/testdata/surface_code_time_slice.svg b/testdata/surface_code_time_slice.svg index 38ede396..1606fe7f 100644 --- a/testdata/surface_code_time_slice.svg +++ b/testdata/surface_code_time_slice.svg @@ -373,16 +373,27 @@ H +Tick 5 - - - - - - - - - - +Tick 6 + +Tick 7 + +Tick 8 + +Tick 9 + +Tick 10 + +Tick 11 + +Tick 12 + +Tick 13 + +Tick 14 + +Tick 15 + \ No newline at end of file From c0627e2c90dd9598c6ebaf13212786e27c339962 Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Fri, 26 Jul 2024 18:03:01 -0700 Subject: [PATCH 07/17] Add lassynth to glue directory (#803) Supporting code for https://arxiv.org/abs/2404.18369 Author: Daniel Tan --- glue/lattice_surgery/README.md | 39 + glue/lattice_surgery/docs/demo.ipynb | 645 ++++ glue/lattice_surgery/lassynth/__init__.py | 2 + .../lassynth/lattice_surgery_synthesis.py | 590 ++++ .../lassynth/rewrite_passes/__init__.py | 0 .../lassynth/rewrite_passes/attach_fixups.py | 86 + .../lassynth/rewrite_passes/color_z.py | 210 ++ .../rewrite_passes/remove_unconnected.py | 152 + .../lassynth/sat_synthesis/__init__.py | 0 .../sat_synthesis/lattice_surgery_sat.py | 1842 ++++++++++++ .../lassynth/tools/__init__.py | 0 .../lassynth/tools/verify_stabilizers.py | 38 + .../lassynth/translators/__init__.py | 1 + .../lassynth/translators/gltf_generator.py | 2622 +++++++++++++++++ .../translators/networkx_generator.py | 53 + .../lassynth/translators/textfig_generator.py | 217 ++ .../lassynth/translators/zx_grid_graph.py | 292 ++ glue/lattice_surgery/setup.py | 28 + glue/lattice_surgery/stimzx/__init__.py | 14 + .../stimzx/_external_stabilizer.py | 90 + .../stimzx/_external_stabilizer_test.py | 7 + .../stimzx/_text_diagram_parsing.py | 178 ++ .../stimzx/_text_diagram_parsing_test.py | 149 + .../stimzx/_zx_graph_solver.py | 196 ++ .../stimzx/_zx_graph_solver_test.py | 137 + 25 files changed, 7588 insertions(+) create mode 100644 glue/lattice_surgery/README.md create mode 100644 glue/lattice_surgery/docs/demo.ipynb create mode 100644 glue/lattice_surgery/lassynth/__init__.py create mode 100644 glue/lattice_surgery/lassynth/lattice_surgery_synthesis.py create mode 100644 glue/lattice_surgery/lassynth/rewrite_passes/__init__.py create mode 100644 glue/lattice_surgery/lassynth/rewrite_passes/attach_fixups.py create mode 100644 glue/lattice_surgery/lassynth/rewrite_passes/color_z.py create mode 100644 glue/lattice_surgery/lassynth/rewrite_passes/remove_unconnected.py create mode 100644 glue/lattice_surgery/lassynth/sat_synthesis/__init__.py create mode 100644 glue/lattice_surgery/lassynth/sat_synthesis/lattice_surgery_sat.py create mode 100644 glue/lattice_surgery/lassynth/tools/__init__.py create mode 100644 glue/lattice_surgery/lassynth/tools/verify_stabilizers.py create mode 100644 glue/lattice_surgery/lassynth/translators/__init__.py create mode 100644 glue/lattice_surgery/lassynth/translators/gltf_generator.py create mode 100644 glue/lattice_surgery/lassynth/translators/networkx_generator.py create mode 100644 glue/lattice_surgery/lassynth/translators/textfig_generator.py create mode 100644 glue/lattice_surgery/lassynth/translators/zx_grid_graph.py create mode 100644 glue/lattice_surgery/setup.py create mode 100644 glue/lattice_surgery/stimzx/__init__.py create mode 100644 glue/lattice_surgery/stimzx/_external_stabilizer.py create mode 100644 glue/lattice_surgery/stimzx/_external_stabilizer_test.py create mode 100644 glue/lattice_surgery/stimzx/_text_diagram_parsing.py create mode 100644 glue/lattice_surgery/stimzx/_text_diagram_parsing_test.py create mode 100644 glue/lattice_surgery/stimzx/_zx_graph_solver.py create mode 100644 glue/lattice_surgery/stimzx/_zx_graph_solver_test.py diff --git a/glue/lattice_surgery/README.md b/glue/lattice_surgery/README.md new file mode 100644 index 00000000..61367480 --- /dev/null +++ b/glue/lattice_surgery/README.md @@ -0,0 +1,39 @@ +# Lattice Surgery Subroutine Synthesizer (LaSsynth) +A lattice surgery subroutine (LaS) is a confined volume with a set of ports. +Within this volume, lattice surgery merges and splits are performed. +The function of a LaS is characterized by a set of stabilizers on these ports. + +The lattice surgery subroutine synthesizer (LaSsynth) uses SAT/SMT solvers to synthesize LaS given the volume, the ports, and the stabilizers. +LaSsynth outputs a textual representation of LaS (LaSRe) which is a JSON file with filename extension `.lasre`. +LaSsynth can also generate 3D modelling files in the [GLTF](https://www.khronos.org/gltf/) format from LaSRe files. + +The main ideas of this project is provided in the paper [A SAT Scalpel for Lattice Surgery](http://arxiv.org/abs/2404.18369) by Tan, Niu, and Gidney. +For files specific to the paper, please refer to [its Zenodo archive](https://zenodo.org/doi/10.5281/zenodo.11051465). + +## Installation +It is recommended to create a virtual Python environment. Once inside the environment, in this directory, `pip install .` +Apart from LaSsynth, this will install a few packages that we need: + - `z3-solver` version `4.12.1.0`, from pip + - `networkx` default version, from pip + - `stim` default version, from pip + - `stimzx` from files included in sirectory `./stimzx/`. We copied these files from [here](https://github.com/quantumlib/Stim/tree/0fdddef863cfe777f3f2086a092ba99785725c07/glue/zx). + - `ipykernel` default version, from pip, to view the demo Jupyter notebook. + +We have a dependency [kissat](https://github.com/arminbiere/kissat) which is a SAT solver, not a Python package. +It is recommended to install it and find out the directory of the executable `kissat` because we will need it later. +LaSsynth can be used without Kissat, in which case it just uses `z3-solver`, but on certain cases Kissat can offer big runtime improvements. + +## How to use +See the [demo notebook in the docs directory](docs/demo.ipynb) + +## Cite this work +```bibtex +@inproceedings{tan-niu-gidney_lattice_surgery, + author = {Tan, Daniel Bochen and Niu, Murphy Yuezhen and Gidney, Craig}, + title = {A {SAT} Scalpel for Lattice Surgery: Representation and Synthesis of Subroutines for Surface-Code Fault-Tolerant Quantum Computing}, + shorttitle = {A {SAT} Scalpel for Lattice Surgery}, + booktitle = {2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture ({ISCA})}, + year = {2024}, + url = {http://arxiv.org/abs/2404.18369}, +} +``` \ No newline at end of file diff --git a/glue/lattice_surgery/docs/demo.ipynb b/glue/lattice_surgery/docs/demo.ipynb new file mode 100644 index 00000000..36dfe218 --- /dev/null +++ b/glue/lattice_surgery/docs/demo.ipynb @@ -0,0 +1,645 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Introduction to the LaSSynth, Lattice Surgery Subroutine Synthesizer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "This Jupyter notebook aims at giving a minimal demo on how to use this software.\n", + "The reader needs to know how lattice surgery works to fully understand this notebook.\n", + "The most direct reference is [our paper](http://arxiv.org/abs/2404.18369) which, in itself, also provides more pointers to background knowledge references.\n", + "There are two we would like to mention here.\n", + "- [arXiv:1704.08670](https://arxiv.org/abs/1704.08670) links merging and spliting operations in lattice surgery to ZX calculus.\n", + "We leverage this connection a lot in our software.\n", + "- [arXiv:1808.02892](https://arxiv.org/abs/1808.02892) is helpful because it works through some examples of composing lattice surgery operations to perform quantum computation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "In what follows, we are assuming a surface code quantum memory with nearest-neighbor connectivity among the qubits (in both the physical and the logical sense).\n", + "We perform fault-tolerant quantum computing with lattice surgery between patches of physical qubits.\n", + "Some of these patches correspond to logical qubits whereas others can be temporary ancilla during computation.\n", + "\n", + "Since the logical qubits are in a 2D grid, and there is the time dimension, the compilation problem is laying out operations in a 3D grid to realize certain computation.\n", + "We consider only a bounded spacetime and what *can* be realized within the bounds is called a *lattice surgery subroutine* (LaS), because it should be considered as a subroutine in the whole quantum algorithm.\n", + "\n", + "Because of the connection between lattice surgery and ZX calculus, a LaS can be seen as a ZX diagram with nodes at points in a 3D grid and edges only between nearest neighbors, as seen in the figure below.\n", + "If you have worked with ZX calculus, you would know that this ZX diagram is a CNOT.\n", + "However, it seems that there are two \"unnecessary\" identity nodes in the middle.\n", + "This is because there are other constraints when it comes to realizing the CNOT in a surface code memory.\n", + "Our representation of a LaS, the \"pipe diagram\" below, does account for these extra constraints." + ] + }, + { + "attachments": { + "e1d30228-b8e9-4608-942a-e09fe765c155.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAElCAYAAAD0sRkBAAAABHNCSVQICAgIfAhkiAAAABl0RVh0U29mdHdhcmUAZ25vbWUtc2NyZWVuc2hvdO8Dvz4AACAASURBVHic7d15XJTl3gbwaxaGVUBkEQVEQlFTY0nDJcpKs9SW11crPbnl1tHydE69ptVrlh0z85xjWSeXk5WVb2qWmp7StFwzAVcEFXADN0D2ZYCZud8/cOYwzgAzMMPMPFzfz4cP8Ky/2a65n3vu5xmZEEKAiIhcntzRBRARkW0w0ImIJIKBTkQkEQx0IiKJYKATEUkEA52ISCIY6EREEsFAJyKSCAY6EZFEMNCJiCSCgU5EJBFKSxcUQkCn07V4h0Kr1W8QQghApwNuXU6mRrhBJpdDLgdkMkCplLV4fyR9MpkMcjnbJkQWB3ptbS1OnTre5HLl6enQ1dRCV1WFirNnUXb8BACg4uw5aKuqjANdpwN0OuivD/ZXsQT58k6Qy2WQy/8T6CNG+CAoSIlevdwREeGGjh3drL2dJGGdOoUhNLSTo8sgcjiLA10vf/sOFO3dj5q8GwCAmrw8AICmtAw6tbrRdZu6rKMWgEZXf8m63998U2qybECAAp06KaFQAB06KBESokRYmBsCAxXw9JQjPFyJ8HCV5TeM7KoqJwcAoK2oRG1hIWoKC6GtqAQAnC7qjMrQvggKUtx63PiGTdQcVge6TKlE4Z49Vu/I1tfoLSzUorDwVmsf1fXm/KebJiUlysZ7bXuEVovaomIAgLaqLoB1NbUQGg0AoDwjw7BseXoGdLW1qMzKqluuthaVWdlN7uMgnsAPCDP87+4uQ1SUEj17uuOuu1SIjlbBy0sGT085PDxk8PFh9wqROVYHOrUtVzdswuWVqwAAupoaAKgLcxt8ntKQ6mqBjIxaZGTUYvNmAJBBpQJUKhnc3GTw8JChTx8VIiKUGDnSB53Y20IEgIFOTdBWVkBbXu7oMlBTA9TUCOiP9a5dqwIADB/u7cCqiJwLj12JiCSCgU5EJBEMdCIiiWCgExE1Q05ODvJuDdt2Fgx0IiIrFRcXIyIiAs8884yjSzHSKoFu6zHoRHq+vmyTEOlJ8NXAtw9XI9D8a/YEBChsWAmRa5NgoJOryUeoo0sgkgSnCnQ31Dq6BHJKPOoisoTVgX4N4faoAwDgjiq7bZuISOqsDvQ77uAVDImInJFTdbkQEVHzMdCJiCSCgU5EJBEMdGpUZXbTX1BBRM6BgU5EJBEMdCIiiWCgExFJBAOdiEgiGOjksu64g1+JS1QfA52ISCIY6ESEd955B8HBwdizZ4+jS6EWsDrQ3QLa26MOu1CrdY4ugcglVFRUID8/HzU1NY4uhVqgGYEeYI867EKt5mVXXUEpXKeRQOTM2OVCRCQRDHQiIolwqkD3RrmjSyAicllOFehERNR8dg90x3wsyQ9DiajtYQudiEgiGOhERBLBQCeX5e3Npy9RfXxFkMvq2FHh6BKInAoDnYhIIhjoREQS0axA9wgPt3UdRETUQs1rocvZsCcicjZMZiIiiWCgExFJBAOdHK4Mfo4ugUgSGOjUKF01v8GGyFUw0KlR6txcR5dARBZioBMRSYRTBboSGkeXQETkspwq0INxzdElEBG5LKcKdCJr+Pnx4lxE9THQyWUFBjLQiepjoBMRSUSzAl3p423rOuyipobfLUpEbUezAt0tMNDWddhFZaXO0SUQEbUadrkQEUkEA52ISCIY6EREEsFAJyKSCAY6EZFEMNCJiCRC6egCpCZn9b+gKS1pcL4AIK9SQ1la1qL9ZKEnTqJ/i7ZhTj58UQ03w/8lBROhQcO3p2Eyi5fMQ2gztk9Et2Og21je1m2ovtbwRcZsdarTQbjjOyTZYEu3B2/trR+9njbaLhHZG7tcyGVFRLA9QlQfA51clptb08sQtSXNCnS5SmXrOoiIqIWaFejunTrZug4AQCBu2GW71NrYf07kCE7V5eJm9GEcERFZw6kCXRIU/NIFInIMBrqNuYcEO7oEImqjGOhERBLBQCcikggGOhGRRDDQWxkH9BGRvdg90BlgREStgy10IiKJYKATEUkEA51ckkIB+PvzJC6i+poV6CXwt3UdRETUQs0K9I6Rfrauwy5qa231dRJERM5P0l0uFRU6R5dARNRqJB3oRERtCQOdiEginCrQg3HV0SWQU+LpaUSWcKpAV0Dr6BKIiBpUXl6Od999F9HR0QCAPXv2YPDgwfjhhx8cXFkdpwp0IiJnde7cOfTu3Rvz5s3DzZs3DdMPHjyIUaNGYfz48dBoNA6skIFORNSkGzduYNCgQbh06VKDy3z99dd48803W68oMxjobRr7pokssWTJEhQUFFi03OXLl1uhIvMY6ERETdiyZYtFy2k0Gnz55Zd2rqZhSoftmYjIiVVVVeEf//gHDh8+jAsXLli83okTJ+xYVeMY6GRjjXfjuEENL1QAAPxR98HSJXS3ei91F+fiASbZnkajwZo1a/DWW2/h2rVrkMlkUCqVqK2ttWh9Dw8PO1fYsGYFuluHDraug1yI/NbwUjl0AMSt33XDTpXQIBzZAIAoZNz6fRZyaBGJTLPb+xM22r9ooibodDps3LgRb7zxBjIz656rjz76KBYtWoQXX3wRBw4csGg7iYmJ9iyzUWyhk4nu3VUAgE6dFKj89d/ojIsAYPjtiUoAgDsqIYeA560Wt346kavZunUrXnvtNaSlpQEA7r//fixevNgQzpYGekBAACZMmGDXWhvDQG/jund3w1//GgQAiIx0M5l/4O6P7br/8+hh1+0TNebw4cN46aWXcPjwYQB1revFixfj/vvvN1puzJgxGDZsGHbu3Nno9latWgVvb297ldskdkK2cZGRboYforbi2LFjGDlyJAYMGIDDhw8jPj4e27dvx2+//WYS5npbtmzB//zP/5idFxYWhl27dmH06NF2rLppDHQiajOysrIwZswYJCQkYPv27bjzzjvx7bffIiUlBY8++mij63p4eGDJkiVITU3F66+/DgDo3Lkz1qxZg1OnTuGhhx5qjZvQKIl2uTj3CTMyAPzqDSLLHTt2DFu3boUQAj4+Ppg8eTI6WDE44/Lly1i0aBHWrl0LjUaDbt264c0338TTTz8Nudy6dm18fDyioqKwaNEixMTE4LnnnrP25thNqwQ6A4yImuPKlSt47rnn8NNPPxlNf+ONNzBnzhy88847UCga/m7ZgoICvPXWW1i5ciVqamrQpUsX/O///i8mTJgApVJ67Vnp3SKymbw8x15oiNq2zMxMJCUl4fr16ybz1Go1lixZguzsbGzcaDrstby8HEuXLsXf/vY3lJeXIzQ0FK+99hqmTZsGlUrVGuU7BPvQqUHepQ1fiKj1OHf3GdnP008/bTbM69u0aRP+7//+z/C//uzOqKgovPXWW/Dw8MD777+P7OxszJo1S9JhDjDQicgJHTlyBEePHrVo2XfeeQcajQaffPIJoqOj8dJLL6G2thaLFi3ChQsX8Je//AWenp52rtg5OFWXiy+KHV0CETkBS8/KBIC0tDR069YNFy9ehLe3N+bOnYtXX30V/v7+dqzQOTlVoPug3NElEJETqKiosGr5vn37YvTo0Xj11VcRGBhop6qcn1MFOhERUHeijjXWrl2LgIAAO1XjOprVh67w9rJ6HX60ZYz3R8soFDJebVHCRo4cafGwwmHDhjHMb2nWK0Lu4RofMGj5ndNELikoKAgvv/xyk8vJZDK8++67rVCRa5B0E6esTOfoEoiomRYuXIjHHnuswfmenp5YtWoV4uLiWrEq5ybpQJeyAnR0dAlEdqVSqbBlyxZ8/vnn6Nq1q2G6m5sbHnjgAZw+fRpTp051YIXOh4FORE5twoQJOH/+PN5++210794dv/76K3bv3m0U8lSHgU4OlYtIR5dALqK4uBjnzp2DWq12dClOi4FODlUDd0eXQCQZDHQiIolgoBMRSQQDvc3iqU1EUsNAb+N692YfNpFUMNAdiG1kIrKl5p36785WHTmWTAaoVHxLJKqveRfn8vFp1s748iNbkcsBLy8eYBLV53SvCD/cbOEW+LZBRG2T0wW6FyodXQIRkUtyukAnIqLmYaCTE2P3GZE1GOhERBLBQG+TLG/5so1M5DoY6NSggpv8Dj8iV8JAdzBnbgF7FV+0+z5q4GH3fRC1FRILdGeORzInF/zWGSJbafVAZ+S6Hj5mRK5BYi10IqK2i4HuBNgCJiJbaFagqwI72LoOIqvExvKKn0S3k3QLPTu7xtElEBG1GocEOrsYiIhsT9ItdCKitoSBThbhURWR82OgExFJhNMFuicqHF2CQ7AFTEQt5XSB7o9CR5dAROSSnC7QierwmIXIWgz0NodBSSRVEgp0BhURtW0OC3TGr+vhY0bk3Jod6AofH1vWQW3UBfRwdAlEktHsQPeO6W7LOois0quXytElEDkdCfWhuz5X6NJwlhpVzHMiEwx0ckLO8rZB5FoY6EREEsFAdzKt3Tbt04dfFEEkFUpH7lwGQNh0azLU3SQ5gA5ISwvG6tXuiIioQZ8+FVCpBFQqHWQy3PpbQMajeyKSCIcGesu5A2gHIAJAAOqC3P3WbwX27wf27//P0p6eWnh61gW6p6fO8HfPnpWIilLDw0OHnj2r0KVLNby9dQ64PUREzecCge4BwA11we1x63cIAE8ACqu2VFWlQFWV6TrnznmaTPPx0SIgoBadO9fA21uHgAANwsKq4e6ug7+/FsHBtXBz06F9ey1CQmqtv1kuzLZHVkRkK04X6D5QwxdK1KIbBNpBg0Bo4NHqdZSXK1BersDly5btu3fvCsTEVCE2RwU/O9fWWi5mqx1dAhFZweGBfntrbwzWYCQ2oBLtoYMC1fBBFfxRCw+cwOPQQIUr6Is8dEctTFvWzdPy9mZamhfS0rzQCW5OHOjWfWAQjKvItVMlRGR7Dg90czxRCk+UmkzvhZ1G/1fCD6XoiEJEoAp+KEMwbiISxQhDEToBAErQGSXoBOFCA3rYpUFEzeGUgW4pL5TACyXoiLNNLpuHaOQhGldxJ26iK/IRjVzcBS2U0N26G3T1/iYicjXNTq+rCIMPjtqyFrsKRhaCkYXe+NFoejk6oBwdDH9XIBA3EYkihKMUIShEBIoQjhJ0tmg/ZfC1ee3OiEcRRM6n2YHeIyEYuam2LMUxfHATPrgJgbqxM425ju7IQ91FyW4gBjcQgzIEQw1f1MAL5QiEjDHXKgICrBvhROYdOnQI+/fvx/fffw8A2LhxI/z9/ZGYmOjgyqg52L9wiyUtzo44h444d+u/H+xcka3Z/gwqR7bSIyLcHLRnaSgrK8Pzzz+Pr776ymj6p59+ik8//RSTJk3C8uXL4evbNo44pcJ1PikkyVHDEzo+BVtdaWkp+vbti6+++gojR45ESkoKiouLUVhYiJSUFDzyyCP47LPPEBcXh9JS08EJ5Lyc4tXEs+9NtYX7RAMlhMktbQu33LFmzpyJixcv4qWXXsK2bduQkJAAPz8/tG/fHgkJCdi+fTtmz56N8+fPY/bs2Y4ul6zgFIFORK3j8uXLWL9+PQYPHoxly5aZXUYmk2H58uVITEzEunXrcP369VaukpqLgU7Uhvz0008AgLlz50LWyJXp5HI5XnnlFaN1yPk5TaDzQNuUK9wnrlAj/cfPP/8MAIiNjW1yWf0yM2fOxIgRI7BgwQJs27at1Vvs33//PcaNG4fPPvsMMpkML7zwAmbNmoXMzMxWrcMVcJQLURtSXV0NANDpLL+aqBACO3bswI4dOwzTQkNDcffdd+Puu+9Gv379cM899yAgIMCmtRYXF2PGjBnYsGEDlEolIiIi0K1bN1y8eBEff/wx/vWvf2HJkiV48cUXGz3aaEsY6PXwZBmSutjYWGzZsgUnT55EREREo8seP34cAPDGG29g4sSJSElJMfrZtm0btm3bZlg+MjLSEPL6Hz+/5l3ZSKfT4aGHHkJqairuu+8+bN682egNIzU1FU888QT+9Kc/oby8HK+99lqz9iM1DHSiNkTfjbJ06VKMGDGiwZatTqfDe++9BwCIi4tDWFgYwsLC8MQTTxiWuXjxIlJTUw0Bn5qaik2bNmHTpk2GZe644w6jgE9ISEC7du2arHPp0qVITU3F2LFjsX79esjlxr3DCQkJOHr0KOLj47Fw4UKMGjUKffv2tfr+kBoGOlEb8sgjj+Duu+/Gvn37MGfOHLz//vtQqVRGy9TU1OCll17C77//jgEDBmDo0KFmtxUZGYnIyEiMHj3aMO3cuXNGrfhjx47hm2++wTfffAOgbgRNt27djEI+Pj4e3t7eRtt+//330blzZ6xZs8YkzPWCgoKwbt06DBkyBB9++CFWr17dkrtGEpod6DcRZMs6qAGu0A3kCjVSHXd3d2zZsgWJiYn48MMPsWvXLrz00ksYNmwYNBoNfv75ZyxduhTnz59H165dsWXLFri5WX5Wbvfu3dG9e3eMGzcOQF1L/+zZs0Yhf/z4cZw7dw5ff/01gLoRNT169DAEfGBgIAoKCvDcc8812Zq///774e/vjwMHDjT/TpGQZgd614QIpNuyEjAYiFpDp06dkJaWhlmzZuHLL7/EjBkzTJaZOHEiPvzwQ4u6Rxojl8vRs2dP9OzZE88++ywAQKvVIj093ai75sSJE0hPT8cXX3xhWLd3794W7SM+Ph579uxBaWlpm79UAbtcbiPNNxWOACBjvr6+WLduHZ5//nns378fn3/+OTIyMjBlyhRMmzbNrhfnUigU6NOnD/r06YNJkyYBADQaDU6dOoWUlBRs3rwZP/74I/Lz8y3aXn5+Ptzc3ODj42O3ml0FA51swjZvhJa/8cTGurd4bwQMHDgQAwcORElJCTIyMjBmzBiHXGlRqVQiLi4OcXFxeOyxx9CxY0ccO3asyfWqqqqQnp6O+Pj4Bvva2xLeA0TkVEJCQvDII4/g3//+N7Zv397osnPmzIFWq8Xzzz/fStU5Nwa6Gc7WQeFs9RDZ26pVq+Dh4YFnn30WGzZsMJmvVqsxd+5crF69GklJSZg8ebIDqnQ+7HIhIqcTFhaG1atXY8qUKXjqqaewfPlyjBw5Er169cK+ffvw7bff4tKlSwgPD8eaNWscXa7TcLpAl+aHki3nCveLtTVWoB2vh04N+sMf/oCEhAQ89dRTOHToEA4dOmQ0f/LkyVi+fHmLR+JIidMFOhGRXs+ePXHixAlkZmbi2LFjyMnJQe/evZGQkICgIJ4LczsGOjkJflJA5slkMsMJS9Q4pzzedYaXtjPU4GjZ2TWOLoGIrOCUgU7OIRQ5Vq/DN0Iix2Ggu5D6YVkNS0+saTxi+/ThCTpEUsFAd1GlaO/oEojIyTT7Q1HfhHhb1mGQg0j8iofRDenwRTFikAa50w/Yo/pcYYglkRQ53SiXQnTA77gPv+M+wzQ/FCIGpwAAvXASfiiEH4oghw5eqIAnquxSC4OJiFyJ0wW6OSUIwJFbAa//rYQGgIACWsihQxx+QxCuoyuycAfOOrBasrf27dlTSGSOSwS6KRk0qLvovubWlEN4yGgJf9zEHR1KsGhOLTTFJVDn5qAqJxfVV65Afdn60RvOwrqjBseNObHn0Q0vqkdknosGetOK0QHF/h0R9Gi42fmlR4+h8sJ51OQXoGjffujU1dBWlEPoBDQlJcCtb0VntwsRuQrJBnpTfOPj4BsfBwCImDkDupoa6KqrASGgraxETV4+CnbtgvrSZRQd+s3B1RqT3lhv6d0iIkdwwUC3z4tfrlJBfuvLcpW+vnDv2BHt+vYxzFdfvYbawkJoSopRfjodtcXFqMw+DwCoOHMG2opKu9Rla76+cgQFKZCU5InERE9Hl0NENuR0gS6HDnWdHM7VavPoFAqPTqEAgPaDBpnM11RU4ObuPRC1NSg9ehyVFy5AU1IKUVMDrVoNXZVtR+JYc+8EBioQFqbEgw96Ydgwb3TooLBpLQ1hdxVR63K6QPdCBeTQQYfWCR1bUXp7I+SxUQCAjqNHAwBqS0oMga7OvYLqq9dQcfYsin87jOpr1+xaT2ioEr16uWPSJF+EhCgREOBa9ycRWc/pAl1K3Pz8DH97hpt+OFt67Di0VVVQ5+RCnZsDde4V1BYVQVNeDvXFS1btKzhYgYgIN/Tt645Ro3wQEKCAt7fjh4M01kqvhQqCJysT2QwD3YF842IbnV9+5ixKjx5FWVoaKjOzoa2ogLayEqK2FiohQ4d2CsTEqDBtmr9LXpOlBh4MdCIbYqA7MZ8eMfDpEWP4X1ddjZqbN6GtrMJCbXv4d/aHjw8DkYjqtCjQ5R4e0KnVtqqFmiB3d4dHp04AAG8H10JEzqdFzTuFt5et6rCQc418IcvwUSNqHTxeJyKSCAY6uZzWGkdP5GpcKNB54O7K+OgR2Z8LBToRkXNQKBS488470aVLF0eXYoTDFqnV8FIAJBXt2rVDWlqao8swwRY6EZFEMNCJiCSCgU6tih+OEtkPA52ISCJcJNDZrmttQqNBbXGJXbbNR5PIPlwk0ImIqClOF+j6L7ggIiLrtCjQ3Tp0sFUdBjLDV9CR1FWgnct9MxWRM3O6FrotVVfzjcFZsR+dyPYkHei5uRpHl0BE1GokHegkTbzaIpF5LhDoPDgnIrKECwQ6ERFZgoFORCQRLQp0+3eGsLuFiMhSbKETEUkEA52ISCIY6EREEsFAJyKSiBZfy4UfWxIROQcnbqHzrYKIyBpOHOhERGQNmwS67dvSbJ0TEVnL6Vro3ijnF1y0ETcQ1qz1AgKc7mlL5BSc7pUh45dbtBm6Zj79ZDyAIzLL6QKdiIiax2aBbrtGE5tfRETNwRY6EZFEKB1dAJGlZDIgOFiB+Hh3R5dC5JQY6OQSAgLk+NOf/DFokAf8/PgVdETm2DTQZQDHqEiETKnEHfPmovrGdZSfTkd5egZqi4pQnp4BiNZ5lH18ZBg2zAtjx7ZDdLRbq+yTyJWxhU4N8o6+A97RdyBg0CCj6SWpR1F+9izytv4ATUkJtFVVELW10FVXt3ifCgXg4yNHXJwKr7zSHiEhfIq2hqSkJGi1WkRFRTm6FGqBFr1alL6+JtPYSpc+v4R4+CXEo/O4Z6BVq1FbWAhtZSUqsy+g6LffoL50CWWn0qzebteuSrz4oj969HBDUBCDvDUNHz4cw4cPd3QZ1EItetXI3Jz3MDg4WIHBg70cXYbkKTw8oOjUCQDgHR2NoIeHGuZVXriI6mvXUHH2LMrSM1CTnw/1pcvQlJUZbWP4cC8MHuyBhx7yglLJYatEzdWyQJc7z6hHmQzw8JAhOlqFhQuDEBGhcnRJbZ5X10h4dY1E+4EDTObd2LoNMm03LHgsDAoFQ5zIFloU6J2nT4X/fUko2rsPNVevojQl1VZ1WUypBMaP98N993kjKsoNPj4cAeEKQh4bhRBHF0EkMS0KdPeOHeHesSMC7ksCAGjVapSmpKDyzFlUZp9H1aVLUOfkQldVZZNi9Tp1UqJLFzc8/ng79OjhjrAw5+36ISJqLTb95Enh4YH2gwej/eDBRtNLjiSjPD0dVz/7ArqaGkCrhdBqLd6uTFY3+iE+3gPTp7dHbKynLcsmIpKEVhlK4Ne/H/z690PnSRNRdfEiNOXlqLpwESW//YayYydQk59vdj0PDxk6d1ZiypT2CA9XokcPd8jl7G8lIjKn1ceGeUZGAgDa9e6N4FEjAQCa0jIU//Ybig8eAi4Woq/SE33v9sPjj7dD587sTiEisoRMCMtO+9NqtSgoyLN3PURW8/FpB29vH0eXQeRwFgc6ERE5N+cZSE5ERC3CQCcikggGOhGRRDDQiYgkgoFORCQRDHQiIolgoBMRSQQDnYhIIhjoREQSwUAnIpIIBjoRkUQw0ImIJMIhX61eVVWFgwcPmp0nl8vh7u6OoKAgREVFQak0LfHKlSvIyMhAYGAgYmNj7V2uTeXk5ODs2bMICQlBnz59AACVlZU4dOgQFAoFhgwZ4uAKichlCQfIzMwUAJr88fX1FdOmTRP5+flG6//zn/8UAMTDDz/siPJb5O9//7sAIEaPHm2YlpGRIQAId3d3B1ZGRK7OIS30+mJjY+Hu7m40rbq6Grm5uSgoKMDq1auxb98+JCcno127dg6qkojI+Tk80Ddu3Ijo6GiT6UIIrF27FtOnT8fZs2exZMkSLFq0CADw1FNPYfDgwZIJ+KioKJw6dQpyOT/SIOsIIbB7926r1unTpw+CgoLw66+/QqfTISgoCHfddVej69TvJu3duzc6duzY7JoBdj3ajSMOC+p3uWRmZja67OTJkwUAERUV1UrV2Ze5Lhei5qqtrbWo+7L+z/r164UQQrz44ouGrr6TJ082up/nnntOABA9e/YU5eXlLa6bXY/24fAWelOSkpKwdu1aXLx4ETqdDnK5HCkpKfjhhx8QHR2NP/zhDwCAgoICrFixAhEREZgyZQrWr1+Pb7/9Fjdv3kSXLl0wduxYPProow3up7CwEJ9++ikOHDiAoqIiBAUFYciQIZg8eTK8vLysrjsvLw8rV65EcnIyKisr0a9fP7z44otml9XXrlQq8frrr5vMT01NxebNm3Hq1CkUFxfD09MT3bp1w5NPPokHH3zQ7Dbz8/OxcuVKpKSkoLS0FL1798bMmTMRHByMFStWoFOnTpg+fbph+XfffRcajQavv/46VqxYge+++w6hoaGYMmUKHnjgAQB1rcHt27fjxx9/RHZ2NsrLy+Hn54e77roLzz77LHr06GFUg/5xeuCBBzBgwACsXbsW//73v1FSUoI77rgDzz//POLj4wEAx44dwyeffIJz587Bx8cHw4cPx/Tp0+Hmxu+UbYxMJsM999zT5HJXrlxBbm4uAEClUgEA3nvvPfzyyy84deoUxo0bh+TkZHh4eJisu27dOvzrX/+Cp6cnNmzYAG9vb9veCLIdR7yLWNNCX7p0qQAgPD09DdPMfSiqf3cfMGCAePrppwUA4eHhIYKCggz7evLJJ4VarTbZx86dO0X79u0NyymVSsPf4eHh4vjxvLyHOAAAEM1JREFU41bdvl9++UX4+voatiGXywUA0b59ezF+/HiLWyYajUZMmzbNqHWl35b+Z8aMGRbvX6VSiddff10AEAkJCUbr+Pn5CXd3d/H+++8bbX/ChAlCCCHy8vLEPffcYzRPJpMZ/lYoFOLLL7802qb+cXrllVdE//79TVqKKpVK7Ny5U6xcudLoPtf/jBo1yqr7nczLzs4WISEhAoAYMmSIqK2tNcw7deqU8PDwEADEnDlzTNY9ffq08Pb2FgDE6tWrbVaTuRZ6dXW1OHXqlDh9+rTN9tPWOHWg19TUiLi4OMMTUa+xQNeHzIIFC0RVVZUQQohDhw6JiIgIs0/akydPGp7QEyZMEJmZmUKn04lLly6JCRMmCAAiNDRU5OXlWXTbrl27Jtq1aycAiClTpogrV64IrVYr9u/fL3r06GG43ZYE+vLlywUA4efnJzZs2CBKS0uFRqMR2dnZYsaMGYZtpaamGtbJzc0VPj4+htuTk5MjtFqtOHz4sIiNjTWsYy7Q5XK58PT0FEOGDBHLli0T06ZNE/v27RNCCPHkk08KAKJv377i4MGDQq1WC7VaLY4cOSKSkpIEABEQECBqampMHieVSiX8/f3FZ599Jq5duyZOnDghBg4caLhvFQqFmD59ujh58qS4fv26ePfddw11HjhwwKL7ncwrLi4WPXv2FABEZGSkyYgxIYT44IMPDK+dn376yTC9oqJC9OrVSwAQ48aNs2ld7Hq0D4cH+okTJ0RZWZnRz9WrV8WPP/4ohg4dalhu69athvUbC3QA4oUXXjDZ57Fjx4RMJhNKpVJcuXLFMP2RRx4RAMQzzzxjtlb9/Jdfftmi2zZnzhwBQDzyyCMm83Jzcw1hb0mgx8TECABi1apVJtvS6XSG+R9//LFhuj7oH3vsMZN1CgsLRWhoaIOBDkAMHDhQaDQao3lXr14VMplMyGQycebMGZPtXr161XDfp6enG6brHycA4scffzRaJzU11TBv4sSJJtvUv0m89957JvPIMjqdTowYMUIAEF5eXo0eaeqf56GhoeLmzZtCCCGmTJkiAIhu3bqJ0tLSZtVw48YN8dZbb4lRo0aJBx98ULz66qvi6tWrZgM9Pz9fLFiwQLz99ttmt5WSkiLmz58vRo0aJe69914xbNgwMWvWLPHzzz83uP+8vDzx9ttvi8cff1wMGTJEvPDCC+L06dOGfa1cudJo+cWLFxv2/+GHH4oHHnhAjB8/XuzevduwjE6nE9u2bROzZs0Sw4cPF4MHDxYjRowQ8+fPFxkZGSY1JCcniwULFoi9e/eKmpoasXLlSvHEE0+IIUOGiKlTpxo1yI4ePSqmT58u7r//fjFy5EixYsUKo0ZSUxwe6Jb8zJ0712j9pgI9NzfX7H71IaF/EIuKigwt+rS0NLPr7NixQwAQXbp0sei2RUZGCgBix44dZudPnz7d4kDPzs4WO3fubPBDqMcff9wo9LRarQgODhYAxP79+82us3DhwkYDfcWKFSbr1NTUiLS0NLFnz54Gb7d+/SNHjhim6R+njh07miyvVqsNj9euXbtM5k+dOlUAEPPmzWtwn9Q4ffcaAPHNN980uuz169cNz51x48aJzZs3G56Tx44da9b+2fVYpzW7Hh0e6AqFwujHzc1N+Pv7i549e4qJEyeKvXv3mqzfWKB37dq1wf3++c9/FgDErFmzhBBC7N692/BAL1myRCxdutTkZ968eYZai4qKGr1dRUVFhmVv3Lhhdpm1a9da/ESur7S0VBw9elRs3LhRLFy4UIwYMUJ4enoKAGLx4sVCCCFycnIM+zf3WYEQQvz000+NBvovv/zS6G0Uoq7VdfDgQfH555+LV155RQwcONDwpP7tt98My+kfp3vvvdfsdhQKhQBgttU/a9Yss2/mZJnNmzcbHpP58+dbtM727dsNzx/9kWT9oz9rsOvRMV2PDg/0pj4UNaexQL/nnnsaXO/tt98WAMTYsWOFEEJs2LDBqiOFrKwsi2/X7d0WevoXjaWB/tVXX4n4+HijVgBQ9yFxQECAUaAfPXpUAHUfBjckOTm50UA/evSo2fXKysrEX//6VxEWFmZyvwQHBws3N7cGA/3RRx81u019oJt7DjDQm+/06dOGMB0xYoTQarUWrzt79mzD4/rkk082uwZ2PTqm69Hphy1aS6PRNDivqqoKAODr6wsAhuvEBAQE4PPPP29y26GhoY3Orz+8sbq62uxwR51O1+R+9ObMmYMPPvgAABAXF4f+/fujV69eiI2NRf/+/TFu3Dh89913huX1Q86qq6uh1WqhUChMtllZWdnoPmUymcm06upqPPDAA0hOToabmxuGDBmCuLg49OrVCwkJCejbty8CAwNRVFRk8TbJPkpKSvDkk0+irKwMMTEx+Oqrr6w6Ya3+6+fChQuoqakxDHO0xpYtWwAAL7zwgsm8zp0745lnnsGqVass2taOHTuQnZ2NgQMHmsyTyWTo0aMHzp49i/LycgB1rzH96+KVV14xWad9+/aYOXMmFixY0OA+x40bZ/L6CQwMxKlTp5CXl4eYmBiTdUJDQ+Hn54eSkhJDLfV17NgRDz/8sNG0O++80/C3fgh2fd27d8e+ffsafG3dTnKBfuHChQbnZWZmAgAiIyMBAGFhYQCAoqIi3HvvvfDz82vRvkNCQuDu7o7q6mpkZmaaPfvu0qVLFm0rMzPTEOZr1qzBc889Z7LM7Q9yVFQUVCoVampqkJ6ebjgDr7709HSL9l/fF198geTkZPj5+WH37t1ISEgwmq/ValFaWmr1dsm2dDodxo8fj3PnzsHX1xdbtmyx6jm9ceNGfPLJJ3B3d4dMJsPx48cxb948LFu2zKo6iouLcfHiRQAwea7oDRgwwOJAj4qKQlRUFACgrKwMWVlZyM7ORnp6Oo4cOYI9e/YAqHseAsDVq1eRl5cHAOjXr5/ZbSYmJja6z/pBq+fm5oY777zTMC8vLw9ZWVnIyspCWloaDh48aHgd6Gupr1u3bibT3N3doVAooNVqER4ebnY+YHlDUHLnmhcWFpq9kmN5eTl27twJABgxYgSAuuvI+Pn5QQiB9evXm93eunXr0K5dOyQlJTV5pyoUCgwdOhQAsGnTJrPLbNu2zaLbkZqaCqCuVWAuzEtLS5GSkgLgP60qd3d3DBs2DEBdCN9OCGHRkUhDtQwdOtTsC3Tv3r2GJ3BjR0hkXwsWLMD27dshl8vx9ddfm21FNuTChQuYNm0aAGD+/PlYuHAhAODvf/+74XVjqYKCAsPfHTp0MLtMcHCwVdv8+uuvkZCQAD8/P8THx2PMmDFYsGAB9uzZA09PT6Nl8/PzAdQdsd5+nSi9gICARvfX0BtheXk5Fi9ejPDwcISEhGDQoEGYOHEili5diqysLLNXh9Vr6lIl5o6orSW5QAeA2bNno7i42PC/VqvFzJkzUVJSgqSkJMMld93c3PDHP/4RQN2T+PbW6+XLlzFv3jyUl5cjMTHRokPXOXPmAACWLVuGw4cPG81bt24dfvrpJ4tug/4Jd/PmTcORhZ5arcakSZMMh3Vqtdowb/78+ZDJZPjHP/6BtWvXGq0ze/Zsk5qsqeX48eOorq42mnf58mU8//zzRvuh1vfdd9/hnXfeAQAsWrTI0GixRG1tLZ566imUlJTg7rvvxrx58/Dyyy9j8ODBEEJg0qRJRiHdlNu7Hs2xtutx/PjxOHr0KGJjYzFjxgwsX74ce/fuRWFhIe677z6j5W/vejSnJV2P8+fPx40bNzBkyBD8+c9/xpo1a3Ds2DFcu3YNPj4+Vm3T1iTX5aJQKJCRkYHevXtj/Pjx8PDwwPfff4+TJ08iJCQEq1evNlp+wYIF2Lt3Lw4dOoSEhASMHTsWMTExuHz5MtavX4/S0lIkJiY22t9W30MPPYTZs2djxYoVuO+++zBu3Dh069YNycnJ+P777xEVFYXz5883uZ37778f0dHRyMrKQlJSEqZNm4bOnTvj0qVLWL9+Pa5cuYLExEQcPnwY165dM6w3YMAALF68GK+++iqmTJmCBQsWICwsDBkZGSguLka/fv2QnJxsVWtgwoQJWLZsGbKyspCYmIhx48bB29sbJ0+exPr16+Hh4YGYmBicPXvWqBZqHenp6Zg4cSKEEBg7dizmzZtn1fpz585FcnIyfHx8sH79esPlFtatW4e77roL165dw5QpU7B161aLtseuRwey6KNTG7PnKBdvb2+xZ88ew3hw3BonOnLkSHHhwgWz26uqqhJz5841GrOKW5+2T506tcnhiuYsW7ZMBAYGGg3PnDx5sti4caPFn+5nZWWJhx9+2GTM69ChQ0Vqaqo4fPiwACA6d+5scvLBjh07xEMPPST8/PyEh4eH6N+/v9i0aZP47LPPBACRlJRktLz+0/2Gxhz//PPPRsPNcGs0zdSpU42GWI0ZM8awjv5xGjFihNltcpRLyxUXF4tu3boJAOKuu+4SFRUVVq2/bds2w+P5+eefm8xft26dYf5HH31k8XZHjhwpAIjXX3/d7Hz987qp18H69esFABEYGGh2OyUlJYbhifVPSNLv39wJgTqdTiQmJjY6ysXc60A/cua///u/zdaiHwYNGJ8H0pqvA4cEuj3UD3Qh6k6yOXr0qNi3b5+4fv26Rduora0Vx48fFz///LP4/fffW3xVObVaLY4fPy727t1rcQ3mXL9+XRw8eFAcOHBAFBQUtKgm/Zje5pxyrdVqxYULF8Svv/4qjhw5IiorK1tUC7Wc/kzQ4OBgce7cOVFVVdXkj/7NPycnR3To0EEAjZ/a/9RTTxmGylp6nZVdu3YZ1qk/lFUIIb744guLx6Hrz5uQyWTi3LlzRtupqqoyjAsHIF577TXDvEOHDhnODP/000+N1vnjH//Y6Dj0hgJdf05KdHS0yXkely5dEt27dzdst/7Jcgz0Zrg90Nuqxx57TAwcONDsCVlC/Kfl8uabb7ZyZWRrzbl0Lm6Nd9ZoNGLw4MECqDsZr6SkpMH9FBUVifDwcAHUnVDT0Elrt9OPaVepVGLSpEninXfeEU888YQA6i6HbUmgV1dXi+joaAHUnXH8xhtviE8++UTMmzdPREZGCjc3N0Nre8qUKUb7r39iTnh4uBgwYIDw9/cXAES/fv0EANG/f3+jdRoL9IyMDKFSqQQAERsbK9577z3x0UcfiRkzZghfX18RHBxsGBP/xRdfGNZjoDcDA72O/kU0aNAgwzU5hKg7zPzoo4+ETCYTKpXK7IkR5FpaEujz588XQN2VRW9vQZvzyy+/GE6dN3dVxoaw67F1A10mhBCQgDNnzqBnz57w9vY2O6i/rcjJyUH//v1x/fp1eHt7Iy4uDp6enjhz5gxycnKgUCjw8ccfG10LncieqqurcebMGZSUlCAmJgYhISHN2s6NGzeQnZ0NIQR69OjR4JBIS3zwwQeYM2cORo8e3eAQ44bodDpcvnwZly5dgpeXF3r37m0ydNJRJDPKxdPTEwkJCc36MgopCQ8Px/Hjx/G3v/0NGzZswOHDh6HRaODn54f/+q//wl/+8hezZ9wR2Yu7u3uTX3FniZCQEIvfDB5//HEUFBRg8eLFSEpKMpm/a9cuADA7AqYpcrkckZGRhhMUnYlkWuhknlarbfAyBERS9cILL2DFihUYNGgQtm7dajiXQgiBf/7zn5g9ezbc3Nxw8uRJq07AcnYMdCKSnLba9chAJyJJunHjhqHrMTc319D1+OCDD0q26/H/AYEHeXU+MtCYAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Screenshot from 2023-09-14 05-14-00.png](attachment:e1d30228-b8e9-4608-942a-e09fe765c155.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pipe diagrams" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "We use a 3D coordinate system with basis I, J, and K.\n", + "We avoid using X, Y, and Z because these letters are also used in ZX calculus for different purposes.\n", + "K is the time dimension while I and J are the space dimensions.\n", + "\n", + "If we want the pipe diagram to look like exactly what happens on chip, we need to draw them in scale, e.g, shown on the right below.\n", + "There are four patches of surface codes, and only three are used in the computation.\n", + "These three are identified by their coordinates in the I-J plane: (1,0), (1,1), and (0,1) from left to right in the picture.\n", + "Between the patches, there are some \"gaps\" which are lines on physical qubits.\n", + "We can perform merging and splitting of patches with these gaps.\n", + "Since the gap is very narrow compared to the patches, but what happens there are really what decides the computation.\n", + "Thus, to see these merging and splitting more clearly, we often stretch the gaps in the pipe diagram, resulting in something like the picture on the left below.\n", + "\n", + "The unit in all three dimension is the code distance.\n", + "So, a patch going through a full QEC cycle will become a cube.\n", + "These cubes are sitting at integer points in the I-J-K grid.\n", + "Nontrivial logical operations are done by connecting these cubes with pipes.\n", + "For example, two cubes connected in the I-J plane correspond to performing merging and splitting of two patches; a cube that has a vertical connection below but not above is a logical measurement; etc.\n", + "At this point, we see that the problem of compiling LaS is laying out these cubes and pipes in a limited spacetime." + ] + }, + { + "attachments": { + "dac9ce3a-5960-445f-a5d9-f13e0ac44c80.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAEYCAYAAABBZ79wAAAABHNCSVQICAgIfAhkiAAAABl0RVh0U29mdHdhcmUAZ25vbWUtc2NyZWVuc2hvdO8Dvz4AACAASURBVHic7L15sGxZXef7WXvM4cz3nHvuPNRAFUUBhYIggzxF4KGioGgj0hIGor7QCIfnM+xnq9D9+o+OtsXQFvspFNgvfGr3i3akKEpRoKqYCxkKaqRu3fnWufeMOece1vtj7czcmbl35t45nXur9vdERubZ67eGzNy5vuv3W7/1+wkppSRDhgwZMmTI8KyBtt8DyJAhQ4YMGTJMFhm5Z8iQIUOGDM8yGOF/qtUKOzs7+zWWDBkmjpWVA+Ryuf0exnWFCxcu7/cQMmTIEIPV1RVyOXvsdrrIvVKpcPnyxbEbzZDhekGhUMzIvQdvecvP7vcQMmTIEIM/+IP38p3f+W1jt5OZ5TNkyJAhQ4ZnGTJyz5AhQ4YMGZ5lyMj9OkK1WuXMmTP7PYwMGTJkyHCDIyP36wif+MQ/8dGPfmy/h5EhQ4YMU4OU6kEWYmWqMIaLZJgV7rnnY5w7d46f//n/DSFEojr33/8Af/u3f8fW1ja2bfGGN7yeH/qhH0QIwYc+dDef+czn0DTBi170In78x9/O6uqBKb+LDBkyZIiG7ws8V2fOabCkVWhqOq7Q8TQNVwi84HWG8ZGR+3WCZ57Z4Itf/BIAX/nKV3nJS+5KVO81r3k1Dz30Zf75nz/Je9/7W/zAD3x/u2xtbY1yucT73vfb3H777VMZd4YMGTIMg+dpNJsmlWoBZy/HqyoP8T3+w2xbebatPFXDpmTalMwcO1YeT2jUDBNX06nrJg3NwBMCEio9GTJynxqklIm1b4B77rkn9Ppjickd4MKFC9i2zete9z3ta3/913/D17/+MH/6px/OjoJlyJBhX+D7gkbDplLNUyrNU6/bFPwmc7KOLj1WG2VWG2WgY6Wv6waOZrBlF6gaFjtWnj0zT003aeoGdd2gath4QqNqmDianpF+BDJynzC+/vWH+Z3f+V0ee+wxVldXeec738Hb3/6vhta7557OXvs//uMn+LVf+1VM0xxaz3VdvvSlh/iO73gZ+XyeWq3G+9//e9x+++385m/+xljvJUOGDBlGge8L6nWbSqVAuVKkXs8hpTK3CyQ5nOBV/757znOxPZc5p9513REadd2kaljsWXlcoVEyc1QNi4ppUzYs6oZJTTepmjYNffj8+WxGRu4TxLlz5/jgBz/ET/7kO2k2m3zwg3fzO7/zuxw4cIDXv/57Y+s98sgjnDnzdPv/UqnEAw88yHd/9/8ytM+vfOUrlMtlvuu7XsOTT36LD3zgv/JzP/czPO95t07gHWXIkCFDckgJ9brN3t48lWqBRsNqkzpIQCCQ2LLZT+tCiUS52UnAkD5zboM5t8HBeql93UNQN0zquklTM2joBg3dpGTaNDWDXTtP2bDZtQuUzBzN54imn5H7BPHII4/yn//zf8Iw1Md6550v4K1vfRuf+9znB5L73//9PX3XPvaxexOR+4MPfgYhBNvbO3zgA/+Vf//v30uxWBz5PWTIkCHDKGg0LLa3FylXCjiOGSL1buhIFmSVMI3H+c0nua4jKbpNim6zq8wTAh+Nhq7jajoNzcDR1R5+xcixYxcomTZ7Vp5tu0jNMPHFs8eZLyP3CeKNb3xD1//Hjx+nWCwO1KI9z+syybfw6U/fT7VapVAoDOzzgQce5MiRI/zP//lXGIaBruujDT5DhgwZRkCzabK9s0ipNIfjGLGkriABiY4fTdxi8Am5NIsAXUo0PAzX67ruA57QcDUdV2iBp74y+W/l5iibNjt2MSD9AmXzxvRZysh9ijh79hynT5/ih3/4rbEyDzzwIKVSqe+667rcd98/8Ja3/FBs3YsXL3HmzNO84x0/zstf/jJ+8Rd/hT/6o/+bX/7lX5zA6DNkuLHg+4LSboHbKpu8XD/Lxdw85/MLXLMLeM8ijex6geMYbG8vsrO7iOvqKLv6MEhcSpylSgOoA3PAAcBmPA0+aZlAmfgNz++SlcCh6i5SgEQghcBH4AnBtj3H1cI8W3aRq/kFSmaOkpnDv46P7WXkPiVcuXKF3/zN3+I97/npgY5xUVp7Cx/72L0Dyf2BBx4E1HG4l73spbzxjW/gL/7iL3nDG17PC15wx+iDz5DhOkcrEIqUgmo1x85ukb29Ar6n8Xw2eaU415LEQ7Bj5XiquMxVq8jZwhI7Vo6qZuILgUQEzzwn9mJHRUujdl2Dnd15trYWcV1TUbqAaDoVSOkHZecQLGGQ4zgmh1Bm9DJwEfCCRxU4BFjAYkSLUXQ6CfIXBC5+MigNCeSr2xyubnfVaugGJSvP1dx8oOXPcTU3T8W0cTW9b5Ew63srI/cp4BOf+CfuvvsjPPbYY/zyL//v/Pqv/xpve9uP9MmVSiU+9alPx7bz5S//C888s8H6+sHI8gcffJBisdg+Nverv/orfO5zn+ff/bv/iz/7s//W3vvPkOHZgBaZu65Go2FRKhUol23qDYuw1uig49MiAYGOZKVZY6VZ68gIjW0rz8XcPNfsIpdz82ybORxNpxk8XKHhCQ2ZET6+L2g6JuVSke2dBZpNCyBE7P2Q0gNcYAeoAUdBWCBLKBpXmAseYbL1glpXguuN1jiAI7SIWH3Hre9ap0P807MAiPYVy3M5UCtxoNZteW1qBntWnrJpsx2Y97cC0g9vBzR1Q1mUpnR/ZbP/FPC6130Pr3vd9/DAAw/yb//tb/F7v/f7vP7138viYvc69L77/hHXdWPbkVJy77338q53/WRfWa1W46GHvsyrX/2qNokvLy/zK7/yS/z2b7+Pu+/+MD/zM++Z7BvLkGEf4PvgujqNhhl4Yuep1Wx8P6TDhebHGiYlbBbalNAPU/qsNSqsNSqdfhDsmDbP5ObZsIvsGTZ7Zo4906amGTQ1naphqXPVzxF4nkajaVGpFNjZmW+T+iAoTb2B0sHrwBJCrIclgusxpCpAk7ASUVRFLRc2ATN4OCgis4NnD0X4Okr7H8XcP6hs2HXTdzlQL3GgXuJk6Vq7zEdQMXPsWAUu2ms8tXSQrbkCfkbuNx5e/epX8Z73/DTvf//v8eSTT/Lt3/7tXeXhwDVx+OhH74kk909/+n4ajQbf9m3deX+/7/vexO///h/woQ99mJe97GWpguFkyHC9QEpF6PW6SaNhUqtZlMt5HKc1ZcVPiGUsdsl3kXuSKOYakmWnzrJT5/bSVUBp+Jt2gW0zT9mwuGoXKRsWNU0dtaropjp6pRnPKg3f81TwmWo1z+7eHPV6MqcyKWsoem0AJkIsE2VI7+i/PfUHtQ3kg9fzPdebwC5qydBEkXuL/Fsj90LyRaLJLxnZd48+6QJBQ1J06pS8IufdY9TyOnrRx59SipeM3KeMV73qO3n/+38Py7K7rl+8eImvfvVrQ+s/9dQZnnjiCW69VXnc7+7u8vGP38eHP/ynANx3330sLS3yxje+Acdx+MhH/hs7O7t4nscv/dKv8BM/8eO86U3/K8ePH5/8m8uQYcLwPEG9blGt2tRq6rnZjPJZCU+b3aTawKCKGTsZR7UQB1P6rNfLrNfLnTEiqBgW21aeXSNHVTfZM222LHWeumaYbJt5GvqNN726rka5UqBWy1Gt5kLn1OM/b4UmUjYCOT2W1EGiAYWuKxEYcOY9qo4FrEWU11DLDHUeXj07qAWAhyJAA2UNMFGLh967bVIm/jom3zRu5vPGnTyun2TdvEhR24mRHh833t13g2F3d48DB1a4/fbbuq5/9KMfTdzGxz52b5vcFxcX+bEf+1F+7Md+tE/ONE3e85538573vHu8QWfIMENISZvIazWLet2i0TC7ze6DWwieFelU0NjtIZak+ceSyOlI5t0G807LMiBxhEbFsKgFcdBLpk1VN9gzc2zk5ti28pR1m4phXZcavu8L9kpFSntzVGs2rmsQbx0Jf0pOoK3nUKSeY1iyUYHEJD05jlKWp6O5t+DS0fA1FAkKlLa/FbxuoBYBuaCNpb5++heMg8a2LeZ40LiLL5l3sKktU6CKobnIKZ7iyMh9gvj0p+/Hti1e/vKXA9BsNvnQhz7Mr/3a/9HnMf/Rjw43ybdw77338Qu/8PNo1/GxiwwZ0sLzBDs7RSqVHLWahevq+L6GlKOQn0TKJrBJBYfH0SkKNcHpqOcTXdJpWh4OU/osOnUWnc5eskQ5V9V0FTXNETp7ps2l/CK7ps2uleeZ3Dy1fQ6TurM7x/a2cpJLfqRNOcpJXJRPu4kQ3Y6Ng5DIJD5Ee4+sk6DMQJnle0N9eXT25/MosjdQC4ErqHfcCJUtISgMuTskcFFb42+t13JGP0pdqKVG3qhj6fE+IZNARu4TxN13f5iHH/4Gt956C7feeiuNRoN3vOPtvOIVL++S+8pXvsrFi5cSt7uxscGXv/xlXvrSl056yBkyzBQq5rjJzk6RcjmH4/QS+ijEvgOyivK5XsGnzgJ5ToRa20XwREjn0lDa2HJPS6k0fNH3ogsCsH0X23eVGgi4NcGpyhauUIFTmppKhLKRm+NSfpGrdpHL+QXcGTjtlUoFNjeXaKQidQ8p94AyQiwCCyhib9WNOmDWf2WYV/s0yobV0ejX8kGZ/Fsm/ZZnfgPJLnABtSCw6RD/fKidh/Tbudd6JVe1ZXyh0wrB62sCqYmR7vakyMh9grj77g9y9uxZGo0ma2urHDgQnTv9rrtezJe+9Pm+629+81solUp88pOfmPZQM2SYGaRsBTwpsrNTDAg9jsyH7e224AFlJDvAAQSHEMFZYg8PDa1rX9eme0/WB54BWieXN1CT8guixj/8LQ6U6w2VmvfcrusSOFrd5cXiEn5wJnrPynG2uMK2leeqXeRiYWliGn61arOxcYBqzQ4WVa3HYEi5C1xF6axHAC1B5svuLROQSGrJCTi0bpo0oSetpweP1lWJ2pcvAq1Dyq1hNoBrwFWR5wvmq3jSuIM6NogwkUsaujp9YRN/WmpcZOQ+QWiaxunTp/d7GBky7Cta59GlhN3dInt7efb2BodRjmmp57VEyhKwG+ztLiNY7OOlMh3SbiFMX8rlS52XbuE0yux6DnW+ui7V5D2HWhRYoXbCz+EeojKc9b6LuOsaEk3KdqCYtXqZtZATn5Swa+a4kp/nUn6Bp+cPcM0q4ggdV+gk2brVHIn5DHi7GiY+Ni4eGj4qBruMOrQuJZIqcAlYQIhbQu84DQJilBJkNR1R9xhGpqG1D7oaVR51HwjARtDUjvBZ85U8oR/HFcoi0r73pLqPdX8LXZbo3FmTR0bu+4A/+ZMP8Rd/8RcsLS2zvLzE8rJ6rtfrwytnyHAdQkp1JtrzNOp1i729AuWyheOMo20qH2cpfYTYBYyA1E8MqafT8nlOpHXLTq1jwaN1uYLSxFq7owuBnB08t3jHpNuNLA3JJJVVe/o1nre3QfOZp9mmwGfsW/jG6iE44Ee2Eca8U+e7q49zh3eZKhabzPGUOMhV5jkj1tmmQAOTBgYuGg0ETXYAgRCt/BiS0bZOOu9Kyuh5bpYm+uiy4cfbBl2vYfOofop/MF/BBf1gT6kIiL0JlLHkNUzZQGbk/uxCPp9jeXmF7e1tzp8/j++rH+bc3By2Pb0vO0OGSUJKtYfuODr1ukW5nKNSUUfXup3ihu/DhmWlbB1W0hDCQVFrlAtUuO1wmyYSK34iTmhnFzG9bqH2Wosogq+j9lhzCLSgVy1UbxJHqWSwiqhjcoUFvimO8mlxG+fdFe5qPE0jBeEqh7Emx9jimNxS16Q64neNea6wxLawuITNFXGEKkXqXKVEjjJ5mqKXNtKQvYfvPz7wvUaWpdDeB5WPQujDynxgQ6zwBfMFfMr4Npqifw5XxF5B2YcsfGMRX9/K9tyfbXjnO3+Cd77zJwDwfZ+dnR22t3f42Z/9ub7z8BkyXG9oRYyr1y3qdZNq1aZSsfG8sBNY0qmyNb15KEJv7Vw2Ue5JCwn2daPa1CJGEBc6ZfiIw1im2xGvjtq/r9E5VuWgpnGdti9dbOCUuL7D15roXBLLfIMjPCRO8bhYx8VAx4uoGY/ejY4wdCQH2eMge213/xqPs0eeXVHgAitcEUuURJ4yOcoiRw2bPQrUsIJIawn24GVp4nvk6ctkzPV0bbronNEOc7/5Er5u3IIX+Q237u0qQiyqbHW6h68bTNNtMiP3fYamaaysrLCysoLrpvuhZhgOmVRNyzAUzaZOrW5Rrdg0mga1qh2KGBewQWooxzhFCkqrEaJIvx97DGK4pHWOuVeHGuDcHokkYjngZI9sORiDGYyjhZamX6Hl2z+4TxeN86zwVXGcr3KCp8Qajb4wK+mQeGtAQE465GhyUO5yK5ch0PB3KLAj5iiRY0vMUyZHSeTZEItsiTnK5CmLHE4PxejALT3dzE57H19LD5fVsHjQfDEPGbdzUVvvkWjdmA0kOwjmEGIF0LHlFkVRQYjpnojo+uSziTDDsw2O4wwXyhALzxPUahaVSo5qVQWXaTTVtKGmr1EJ3UXKHYQo0PFHztEfH2w0nEd5wB9NKJ/mXQyWVQzUa85v7ba2oqLZgeQWsBeUW7RsFarsC9zEOXGAhznGebFCbQr7s8mIXr2n1nUNyQoVVqSKy9+ijTomO6LIHnlqWOyKAlfFItdYYEfM8YxYoobBnTH9DhpT0nI54L9BddOO55y2zoPGi/kX4zbqIsraKkGWAR9EDkSx7a3gCw90OfW4JZnmniFDhj40Gibb2wVqNUXojqPFJmpJjpbO6qMOni2gpqB04WWT4DIquUiY3GW7rWRUnnbZMow4WtScR4V98VGE35qENZRp/284xTfEC7jCEhVhU2/XjPIvSD++NE59aeRzOKzLHdZRIVV9KahjBk56JlVh4aKzSrmvbmJCj/j6RtXQRymvYfGYfpJPmy/hjHYEL077ltuopdwCIrQok4DUBZ4x/SiFGblnyJABUHHFq1Wbzc0ijYYVEHqyM9DxaHlH7yFEKxiohQpVmja8LInH4nIQl2Uk29ECCaKfJRlNWpned9IKgOIDj3KYv+VFPCHWqFAckAp0NAurkC7C7/ZUHzrOUKCeuKN+ce0IJHma5FsbEz2f9+S09+Qa+jh91zH5rPlC7jdezLZYaBN717ckHdSmjAnMQ5v8ZVvSFC450WRSVqo4ZOSeIcNzGK1ELTs7BXZ387iuFgpsEoPEXF9Cyg3UzvJaqOJ4i4VkAymgaLO/Vtpe0st31MthJFLF4usc45PcziMcpikMJCLxR+Tjc9XZZiFy9z4YjZTcVm/yq41neN5SHk9abDsOG40GJdflahAjP63JOq0FYNQ2+8rbH+8wik/Z7oCyTbHIX1mv5Zv6aVz0noVXq7aHSkprAYWIxZkieF1zMXU3pStkemTkniHDcxS+D8e2K5y+cpmH5UG+6R+kiomHwA2CmyRjGdn21xGiBNSQsoEQJxFinv6pczyTe6dq3JSsUpNIaeBHNh+wQyIT73CkJRUPgYPBQ+Ikf8NLOM8KqT4H2TrTfhWBS9GJsIBIiSV9nLrPb1U3eJO3iR+8Z1toFO0cR+1OsNWy53Kt2aTiuey6LluOQ1P6SCkRAvwIK8ek9q/TynTK02f7S0vyHhpP6Mf5G+M1XGydXe+L8yNRZyI2EGKN8KKyT176OJqgoWlTJ9+M3DNkeI5C02DdLPFm/VHeyjdpoHNZzvOov8o35EHOyUV2ZJ46JjUMGgRaZRsSKZVznNot9lFay2rgCZxmKp/kHqSkSecIWlyP6VsdT66Jzg4FHuYo94k7OcuBAbUiPg/poT7jMurdrQX/b3Rq+T7znsvRWpkfrFzjFlFFBy4KwSUpMSTcJAR2YGSXBKFUdYNivkMHjvTZdV3KrkvF89h2HKqeiyslnvRxpcSV3Yb6sbTxMWQmva/ewh4Fvmrcyt+br6ImeqPOB5YZ6SKoAU2EOBYpE/4udRxyWgPM6R95nji5u9Uq9aefpn72HNXHH6f2raeoX7hAebPK/8kfYJpw5IjJgQM6hw6ZrK8brK8bHD5ssLZmcPRoFsTluYzG1Ws0Nzepb2xwsbKKeeImbr7ZJJfLMuJNA5tankvGPCfcXSw8ToodTurbvIEncKTGebnIWbnEWbnMObnEJgXKWOwiKEsdRS5VhFhivFCaCcgtBepImgN3iUfP8Z5GXnnJGzzDAo9wmAfErXyLgz2LpCEty5brXev0/By0AqUEWrzwfRbcJs9rVPiu2g5vklUWdYkIxc07IQQ1KSlLuIKkGRgv8kKQDywvDsrhL4/ggGlxwOx8p56UlFyXiuey4zqUXZem79OQPg3fx/UV4btDPpWJaO9DkvYMa2NQmYPOee0g9xt38ZDx/AGN1FBOoi5CHIyXC+236zQpijKaNn29OlEPztY21Scep3HhIvUzT1M9c4bGuXNI10M2m0jPQzoOvusiveidBAOooG7EnZ3Bqe50HXRdtJ8No/W/wLIEa2s6Bw+qxcDBgyZra2qhsLqqc/jw/qZPfK6i8cwGjc1rNC5dprm1RWPjKs7uDo2r13C2t2luboHvIz1X3TdSqnvF99X903qE2ryHn+Cf+REATBNMU2CaYFkC0xTceafJyZMmd95pcuqUydGjmSEqLeqaQUUzQp7Unb1iQ/icZptTYhs4Qw2Ti3KBy3Kecwgu+HlK4hhbMs8mkioyMOVPAuOZ7htoNJPkdE/gPD8a4Qua6Gwwz6Mc5ouc4nFxKN0ZdSnpWERcIAdivltGwBwuL6ps89L6Ht/rVTiu+ZEfWZvIBawh2g5u21JyTcp2nvN5wBYC3/dVatNg73heCBZNk0XT4Ag5JOD6PiXPY891qHs+Nd+j4nk0fB8nIP5m0E6yzy1F+YSi1oXLy+R5TD/BP5jfwRVxgDAxdwRbi609BCsIkeQ7bf2ufDytiablE9QZD4lmw8sfupuNv/zvI5uzQH08S2yyQ3SmtDA8DzyvM9304sKFlsEt+kf/G7+xxlvfujjaQDPEQnoen/2+H0A6ahHnNxoqdK6f5KebHiWW2q8dBxyn+564dMlDTUfBqliHXE5g24Lv/E6b970vYSCU5zA8XeAaGjT7tdxek2uOJjeJa9wkrvEqoCl0NjnHM3KOiyywIee4wjxXmeOKnKcUmUBzFIxC9BYSo+c9pfP2Hoa4Oh6Cr3KMb3KU82KFb7FGtXcfdhAEIEuhCzqIpR4hiRBVfti+yJutHV5RaXBS82CIgSucPKflt7eMYFl0ohY0pcq11zrMNRfUO+/7ivyFsgcIYEloLJsay6YiOF9Kmr5P1VekXvU8yp5Lw1fafcXzqHoujhxkVQmNMZHMaNp7VPnD+k3cZ76cLbGA7Etj2wq0VAmuLYEwImTi4WvgGtNP5wsJyd06tD5cKMCghfAS24nIfVzs7GSR3qYB6bo4m1ud/6fcXz0ylng8PA8qFUmlIrHt6Z8jfTagpFls6nl6l9Lt55iUm0qz91inxEFR4oVcpiF1dsizQ54tqZ4fl2tsMMcFucQuk9BWglFEZTDrgo5iuuEkMqSnxGiR+me5mafEGpcJE3JS34Iy6jiVpWRFfzY9TVR5rXWFH7M3+G5zk1Naa3HdS0bxCM/TQtAORCMASwgOAgdDhA+K1jSpUp1owJaUbAG6BA9JCbhZCBZ1HVvvJEn1gv15x/ep+T5138PxJRXPZc91qfoeFTcZ4fe9uwjz/DiLhsvaATa1VhihXrgob3hQSx4jQrEf/D0bwqNoNJhmNrh2X4mEFiejBc9RGi40AWxvZ+Q+DfjN5nChMdD7oyuR5L6L/hHNzWXkngQN3aBmqGlgmOY+SEYClvA4SJk1yiAU2b3UP0cNk5KwucYcF+QiT8g1zrLCDvkEe8+DMEij16gj2vHdB9ZOEY62t1dQ7/NhjvJJbuMMq2yIhcgRDRqzypVeAzGPoABYfUephKjxausSP2Vf4TuMEjdpTbS0Yfcjem/xUy8thf+XwEEBCNG+nqeTLc9HsAJclJIrwQJgGxWl76QQ2JqGrWmdZDpS4vqSppS40qfpS+rSY9dxqXpe22vfkf7UHOZ6ZeqY1EQrdmAvGkAJReqt5U2SXkXXAkAXPrbenPoxOEhI7uba2kQ6WwgiF00b9fq0dcrnJnzXnWl/FRZGrru+PhvT140OoUk8XeCgYeD3kXg3wXeHIR0sq7S8ZVFjiRqHgJvY5EUY1IRJHYNNinxDHuIMqzwlD4xpxu8nzQrKQSytK2bS2aOCxZc4xWe4mUsssSPyeKlSgUikrKHSzsyj4gEY9Cdnd3i+eZlfyp3nteYeh4WDnVhJT67Fx5F6+7Xsvp5DtL+xllwxJL+G2jTblJIdX+3pA6wJWBUCQxMYCFpJfnxpsGZa+IFTXtOXlAPtvuJ57LoOJVe56w3T3pO8897yhrACn4ieZY6sAQ0Qi3RSA/V+UkN6kWoPxNc0HN1IfU+OglSae8oFbh+W2RyjdhQinB2Acnk6e8DPdcgZk3udfpNkUiwvZ971yeDzZWlgS4NDokkeRTHh0+mDNPjI55AZP1xXx6cgmhSC7G+H2eH5XMZHwxEaWxR5WB7hCdZ4WB5mb2Qzvur1s8C30539PXb+Sji5SdSRti9xio9zJ2fFCi76CBYIiZRPovTf44AIRezrfJorxhX+XeFJ/pW5Rx6fdFFLk8/Wg4i81VIS7b4gOtdzwJxUr9dD169Iyb9ISV1KPBTRHxVCBWoVAinUSfGCJlnUDY5YBOSvFpY7rsOu67LpNNlxHKq+10/4I3wau6LIrujOCKAsKk0Eq8QvE6N5qFdG+D4mNTzDun7I3Tp8aCKdzUXEFJ4GtrZmS0KThGVdv0cBZSgJyyxsI1XmhwvFYGUl09yTQAiNvGZwUmicRmla54BrEnZR2tciarJVU1j03maL1BORv+oZgcQQPuBjAUWaHBfbvAlw0HiGeZ6UB3lErvOIPMweOTwEXsIAOy7zeJhInLHuV4kyOzvofEUc5694CRf6IsJ1Ww76R9YK9OMDZwGJELf2dyYkJj5F/Srv1OwgmQAAIABJREFUzp/jF+xdDmv1EX9w6dQxEfWPjKeuRNeF+jS00EiOCcGxkCzAE77PF3yfNSFYEIIdKblDCMLBWzWhPtc1y2LVsrg5WPw70mfPVUF4dl23fVxPSmVn8om4VyPgo+G3/DSkBC4gxCq0twcHkXhvq/1yOjUW/AvoxvQ95SEhuetzcyrixZhe0cUZ7bmXyzemWb7ZbGLb1y+5T3vPPYwSC/hjhGFYWso096QQJmBIcBWJ30pnqqqgkrC0fvk2Khlri1p1lEMVJCf2JL9OA5+j7HJU7PJa8QQegitykUdZ51uscVEuskeOGibNIMCO36cPHQL5JFLEZwaMNu924KCzR45HOcR94g6+RRLn4u5GOoF+tlF7t6cj4up75LQm6/oWP2Rf5uftbU7qoTjwI5tNR6sYtnSL0Pc7XHtvLWxkpHzctVs1jVuCFYDa/4YzUhFzI5CbI3Dyk53FZQ4whcaKabESnMmXQNP3g8A7Hnuey47j0PS9wLkPXNl9PE8CFXJUhYWUVVSgoHX6os0lMsVHy0nAMQRF7TryltdME2NpCXdra7jwAOSoDxeaACqVG9Ms35wheY4C35mdRaTG3Fj1Fxczck+KDa3AtshxKnCPkqHJvACcpvP/DirbmocyUlpSRTjTgoeNmlTCRD5Ua5IDygJoSI6wwxF2+B4ewxeCDeZ5mhU2mOe8XGaTIiVy7JGngoWkQP9xuOGQqJjvl1nkPCt8ntM8xqG+3OTDWlGkrqKXKYpaQYgc3cTgk9eq3GRs8QrrMm+zr/GdmkcuKmlMcmf4iIqjETyo7eJwv0P35oNXrVQzUcOOI/3WPzkheH6Pt/4l3+eKlMGmjno+JARzwRl9F3UvzgGWprFu2+26npQ0fJ+S61ILCL/meTSlT8PzcaSPq+k0cFB397Dz6yOQvKYhZ2iZTXy32keOjE3u+fYxgulidzfzlp8G4gIUTaTtnv/3BiTCGAYhMs09DaqGTV23oDlc216kY6T0pdJFt+kQug3tM9AmHQeraK09Oen0Gz0l6+yxHmRDb+3ZX2KJ83KZyywCEgt3YDu9cNB5ijW+wRG+xjEus6jOqKfc65ZyD0USDaCIEP2hZg1R5WZzi1dbV3izdY1X6E4QMCams5E09/GtmEkd7gjJ9RJ8r0xU/WHkfyTIf9667kjJNSRl1Nn8GsqP3RcCR0oaUmILQR61WCjoOvngiF7bQuB77Lkul1ydXXeJujAQYhnaGwlDvniRZL9ddagJn6Ix/WxwLSQmd3NtdezOZqW57+3dmJr79Q45Q8tCJZHmHv2jWl7WMM3sKFxSGIbE0TvHxuK07c5zZ+pdhvZp7gbKmFlHTY0uat/eRH1T+eAx6U0zicDA5yAlDlLiLnEeB51dcixQT9Sfi8ZjrPM1jvEwRzkXG/d9sGe0lNuItsHXRIjDkXI3m5d5o32J15ubvEJvBkFkRMSHM+anNXL1+GXYINP8MPneOlGOfIPM9+HXphC0vcGCI3r1gOSbKJuJDJ6bwZayKQQm6p61EVhCZ89Y4hPyJJ/zV2lIG9G1vZOEvJNp8ZrwyGkl/JTxO0ZFYnK3Dg6KnZsMeSpjt5EU1apPoZBpb5OE78xyz3306HLZMbh00HWdiyJPSeosio51ZjDB9z9b0P7WJEpv3aZzzrwMXIPg8JNy1uudgCZF/CYeq1T6Fiq98BA8ymE+J2/iKVY5PzTIVjRNSbmNopQcYCBE1DFOyZq+zZvtS/yI9QwvMaqsiE7ZSEhdbfRPOM6jPlzWS9zh151n2Vcnbl8+biEQN6acUMfzlgEpBL6UVIGSUEsuHXXPbUhJBckZb5H/4byYL3prlGSSVEPdBC4i5aJJXgqBY5qpDkuOg5lq7oUZkruc1CyRoQ2vMpttFRjPUz4j93QQQmdbt2kIDRVrLNqMnoTgw88a0IrOLVFnzls7zi33sl0EBSQFGBiyaPLavkINk/vkHXyV4xEOecPgI2UJZZ9YCB65CGc5yYq2x5tz53i7tckdepV17ca0LiY5Dhf9WiYi89i+ZNQiYXC/ABqCIv3bQztIPuQs85nmIs+wjpfUDJ9IS4+QkT4GZXyrcP2Ru7E8+h5oCzkGJ4yZJGo1n2Ix09wniebmeD4XaVCiN5Z2cpw8mZF7Gggh0E0fNNlJFc4wgg/vpg4nelDm+VaIEIki+CKgCahLuIBaAOgompwneQCaUclfAnvkUhK7RMoGKvhMAWWDMIM0t61WFc0URI3X5c7y0/Yz3KXXWBUeevic2FijJ5oVh1YYr88uRzuZjGiT7KmH6XJQG/EEH20R6NX+y9LgA83D3OPcSdm/jKZpwffZQIhixGiikIbkQeCz6l9B02eX2CyFWX4yUeqK7FJJFFZ0PNRqN+bK+HqGV5ud5p5Fp5strlgL1DQL6SsHtEEkPUibT1q35XDXmoDCznegzPcbqH18EzgCI5+fGERjWrBMGThZd13ykfIplOvgMUBEaOpg0OC1uaf4pfxFXqU3sJEhUo/qYEyCJ20TY/bZaiHoe9BxuRblhn3fB2nfvf+3+5FJCL77de+1j3kaf9g8zTfd5+NgI0TLD8ylO55hEvIOv5MhEJKmKbFndAwO0mjuS6NrUmEc4NqEyT36w63VMrv8pNEc87REGjTGSDKyvJyRe1ps6fPUNTOxyR3UhBs+NkeUzID6XTICtFDhweDRwkXgPGr6bQVqbelYyjt/NLLS8RGxow+utIPPXAB8hLgl8l0op8Emd9jneG/hDK83nRRDitJbUyJ1E+P3GTZCSDokHwU1U4u2ib6/bHhnrT6i5UM+EISIXUr2EHzcK/JHjbv4ln8oZKlpzTMOUlZ7TjW0Rtbbfu+/URsKva0IHF1DRB1xnBJSkPtkCPkAm5zj5om0NQid9KAZJgVnZza5AWC80LPF4ux+QM8WGIaDL/rjxodfJyL8BPV6X8dpkeErR4IHKG/8bZRRvIHaqz+Aol+NbotAXHsttGLdRUlL6YFo+fw3gGOB6b3b2CvwWRYNXmju8bOFR/gRsxrf4eCCMcWnOOclaDqpFj3IJJ/EdC9Fh+Cj5TpH8HwJ56XBn7mr/HnzeWzLNbo3e7ygthWY5AehW5uPn2X6FwSakCxYNZhYGuThmOmeO8D8jJLHZOQ+eczSoa4yhkNdFlc+PQxD55KW44QsYYuO6bSFWGIPzayjEXvoegLlW6IM4uGA2CVUFD0PgYEkh9oJl6j9+wLBdB7RtobEbE/wwc6t9FGpPZsgGyCWEKI3Mp0i9QNahRebm7zZusqP2lusioSBnga+zwnOXTNeGIxD8K3X7dHI0duQKE/5r/kF/sQ5yr3O82hEKgyt78ugc1Az6X57eMTDZCUFvU58rMTJIzG56zkbrVDAqw6f4Af9RpeZjWm3Ws323CcNt6xyA8xi2RT9Q0yG+fmM3NPCMCzO6wXuEjoWbkINvvNLH0Tew4h92P00rHyezn68h4qitwd4Uk1w4Z1Ujf69+znqaAQxyOUetIKeit7gMy34zIka32Fu8r32Fd5mbXNSS0DqzxF9o8uBLULD7jzLSHLu/X8Ugt+T8EmvwJ87t/GgexSXXI9kFKLu+kntuUPVNGcUvkYhVfBu+9hRao8/MdY9mqV9vXHR3Jx0Vj+FqG9qHIe6hYWM3EeBa+r4CTVxIsqiXseXxfw+g/5HJXydzvE7UDSt8np1/q+hSF5HGUkPUEKXm8FxKFDn1KOTZRmizOutq7zOusYbzC1u06/zJFWJXRHGd7CLazGq5WEm+l5T/VA52Xl9UWr8v+5B7nZOsO0fhb7DZ+GWWnvurfj/vYghb9Er03exCzm5h2fmrl9ytw4epPb4E2N1OD+j5DGNRkbuk4ZXmU2cgjLzyBGTIhpGRu6jYsPM0dQ0pDec2LuuRRDyYO29/7eZ5NeajPC7qUSjO7COi0qGI4JHBbDZQ+MYneAz/ZO0Liq8wrzGu3OXeamxOxqppyLazjsaG/tJ8IHTZTSZdzvXDdPIBy0SWq8/5/t8xDnJJ9zb2JPDFITtnn322A2jUA+DEK/xH/AuYlmzyQbXQipyN9eTZEQa0gaziXJWr2dm+UnD3ZvNwmyc6HRHjmSe8qPimjlPU3Q+v0EauXqWQ8qjyvrN+IMwOdJXMOhO4Knc5Tw8MYdoZwDr1NBFnZeYG7zLvsqrzV3u0McMoT15/pxwvxNeWJCM4KOGmMYcX0fyGa/IHzafx+e9wzTbXhcD3N7kDkIsBnItV8xB6IwuKqlvtKySc3WHvDY7ZzpIa5afALnPKnlMuXxjkvv1nM/dLc2K3Ec/dnloLbPYjArNku3jRsOInd5rPdr7qMQebmugzEAEhDGgndZlA3Cpx24TGHKLQ9432XHKbGkmG0LnoDamZSgxf05Bg0/c3GRXISLiGFscwUM/qYdf9z43pORv3WU+0LyVJ/3DNLtoLV6bVt4Zp1CbNa08h4MXBP3tJiP5km2P4SI8GtKZ5Q9H70OlgT2jKHU3WtrXRkN9Lrbdmz/4+oBXm03SH4C9RJp79I/q6InZro6fTdB1jTMUWZc1tODjHbZnPsx8P0g+TjYKabTztDJrbGPg0ZfzUICFxzG3yqpb4ss1wf2GhtB0jlg2zzdNbtF1lscl+6GYsLq/T1r8YO1bdN0hSR3qLviC/+Ss83fO7VTkSmDkH+Yw1ypXrpVSNoE9hFjrkQvLxiHZYmDRqKCyL8wOqchdnx9/7WFNxSzf/wHv7NxYaV+v/1zusxvfOOleM7P86LCsAk9oc7yUTczQBBe3X96npUc44w1aBMT9D0QSULqFQNBADJGFL+lDWhYonW4ByYKrMoc3mw3uBXY0jbxhcsQ0eZll8TzdwA4ClZiAHhe0ZGCXEyDTVE3MztoV1uBjJAaOpzXTuxK+JS1+vXGSz7g34dK7dz6IcIM7RKwErx2kLCNEVHK03rGIiKajxtuz527sUR9ju3EUpCJ3Y2F0D+YWcjMyy2cOdZPFNHO596I8RgTDjNzHg5HzCRvXEhN7l1w30pj4ezEpzX6QzAlcTGSMTdEg7G3dOv6no4LPHvN9aDbwmw3+uqIC69xu2xiazktMk5sMA1NoWEIwJ0Q63W3aC4CxxzBaI8O08kFyAtiS8Gkvz/sap3jauxUhBoUsGkTyrW9cB5JaTNOZ41uyVSs3oovw6EhH7ivjrzymo7n3Y2/3Oj+icoPBr8/OLD/OMbilpcxTfhxsm/k2gY1L7LKvjejXxF1PsGc+CHKI9t5qZxHRn6mrPXe7tDLlxfejxG8OHjQaNIF/rEFDCJZNk3Xd4PmmyZqmk9c08kJQFKKt5Scj0SkS+oz7H0TwDCi74MOfuov8f80X8LSfZJt4EBm36E9HiAL9S4v4sScnedCp0bDyYwTUHg3pyH1+fM1dx2eB7YT7qqNjZzfT3CcJvzHDjH4MCwMZjywT4Hi4YCziCRFKmRxN0LHEHnEsLlIu4vUgjKaZR9fqvZpDQ3RFqevAw8SLSNI5bDwmylULKZHNJlWa3FcDNI11w2RR01g1DOY1nSVNY1nTWdEEZiJnrmcH2kQesf4K78C3jiw+7lt8wDnI3zs3UZWrpCHYaOJ2Qv/3p+lN1vZwuQX3WzM/BgdpyX1xoXOuYQwssDt1cs+ywk0WvjM7S0hzjPjLc3PPnclxGhC2FpppUxJ7CrlhM0i7PLHn/OAWB4W2dWmFm+1XXlxyeCFjeuJxhyBQwXKOAvg+stngKvA04AiNFV0npxvM6xoLusFBXecmLcpRb/LH1Lqa3id9aNgxt6bU+EevwAedE3zWPY3Tt7mRTOPul08yz/STdzSdx49BFzV0fbb77ZCS3EF5zDcvXR56Hwy6V1bZ4IJa104Ntd3aVNt/rmGWZvnqyMk9M7P8uLBtg6fJcTuVxKQcpb3L4MUgc35U/WGIjWw3QpstGR0PFbB2nd6J2cXC63IvhN7ZbZjJvhcCFRctLwHp4/k+O47DFcDSNCxN5wFdo6DprBkGLzRN1jWNuXZq2Skx8dC1w5QWF6L/iFzLe/6KhP/uLvPnzk085q3jYhL+jvqpPI02bwXyEnUcbhCiST66l27ZRn7Wh+AURiD3IzQvXR6r01WeGat+EuzVZxno79kP6c1Ocx/HLG/bmeY+Dgzd4hFtmdv8TjTCpBp4kgVAWpN82NQ/qMY45n2V073RKQ3dQj4mfsQ0OYoG377eU6g88QO7ge/j+j5VV2W+q2qCpzUNV9M5YpqcMEyO6wZHNA1TTJHkBzY7hX4DJ/SWUdiTkq9JnT9xDnOvcytX5Tz9YWQZwOHDSH4DIVZDMgaD6LrTXxorgZJdMMowRuyOUZGa3PM3naL80ENjdbrA3lj1k2B3NzPLTxJefXZ77s0RXU9sG/L5THMfB0IIfMsFN+SQxmjEntSMH/X/MExyr14D1miwEykfZ3yNJ7jYxY0cLgeKwuYDCelLHN8HXLadJptC8JCuo2k6nq7zXbbNcU1nbdJn7RMRPMOE0ncrwJeSz/g6/6F5in9xb6ZKge7vIQEJd8m2W+9clXuho28tcg/LTy6QTf5GIXfr8OGxO11ie+w2kqBa9SkUssl+ErgRHOqOH099O2eIQMUykaETq8O07T7ylpPZd4/qYyy5iHP4oMjdohpbW8aWDO8zzj1p2PaGghqwSRAYVUo0KZG+j8RBA+6tVbkILBgmBcPg2w2T77IsikIg+gjxxsD/cHP8VuOlXPZX8NGIJs+0++zhOgJQ24xSesAuQvTuiU+I5AVIc3+ijqaeDe2JkPts0r76/o1zQ1/vmNWee4U5Rk0ac/PN2VbMJPC4fQg4H0xZUcfiop+jSb1f+09rmu/IJjcHD9w27im0gKMs8wgCL3Iu7z78NKixuN2DZGQeVdb/+Qk6NLIkpdIJnSY4TT4L/D9AUde5w7S407R4lWkiBOgIDEATwyOjJxvs5OZXT0rqaPyus8D7Gy+gwWqoNFpT73dxiy7thwzFlPcCLT4ucFaatiNk/TqN3NwYCaxHR2py14uj74d2Op3N/m2lIpkb3TcrQwhuZTbBh8YKPXs0C2AzCUjbxKc3IChdr5MQe1ebEWWptOE2x0UT/LhWgB2c2DY8lLtV9F3X7TSY1PSe5noa2UPBA88Dr8Yn6zX+CrB0nTtNi9tMk1O6gSkEVnDWPhcXRS+MyI99Mqb5poQv+wb/wVnnk86L8SMDyqTRpJPIz4XkWscgE7TfWr21xQbLr3mXMfX9mZdSk7uxNP7egc2MtMCKxwhvMUMEnO3ZWFt2u1bs6XDwYEbuk4BheGxKi1XRiNTekxJ70j33RNQQz59pqsaiwSaKwnvNwIKr5KihUwiizydpb7Kknsw7P+r6keCB51HxatxXr1EVgmXdYNUwuN00OaTp2JpgXmgsBqQfiVjDyegOdtsSPu8V+UPnMPe7t+APjeEXIuFEPB9nvm/5ZOkIsZRAvr9Z9TENXhRIrYph7E++i9TMpxXGNzCY7eAB00WzmZnlJwWvOhvNfXeMuPInTmTkPglYVp5vijyvCcJzDiTiRMSe7Ehc1MXoX3A6Z7ZB1Vvyi5TbloreCX5DmNSkRr4/tUxfg5Mg9ejrPRaCEdowUIf9kBJch7Lr8E/1GiUhOGCYHNR1jukGS7rGoqazrmksC4ERJvuBBD9oNN3wpOSKNPhLd4k/cU5w3j+ExCK9Zh7uO3md7lHG0WAaa0H0eFzTQDLCNsgEkN4sP6fM8uMchphVTvdKJSP3ScEtlWfSzzjkPjeXOU9OApqms2dZ0ByibY+hsUdp/WkxSQ1+iXqI3LuxgU0txg8kfvtgeJ/jmuDTtBF1LYeKqL4mJdJpsunAU4CuaSxpOou6zhHDwNY0bjFMloVQgXXGPAnnSck3pMHdzmE+6tzMZbmI7FscpKHDUYjeA9laLvlDaqVtv/MeLEuSZNdjGkhvlk+RGS7uHpiVWd5xbrzjcNdrPne3PJtc7uNkhMvnszPuk8KuZSFDa/BBjnHJiL2jeY5C7FGa7LDaA0t7qq/ETvCCKjZuV/KY4Q1OR4MfzUKQ5JoAisED38f1fK44DlcFaELjW7pOXteZ13VWDYOjus66pjPXp5UO/l5cCZ/0c/xu4yRf9I5Tpcgo3vDxv/RkiwPRPm4rISb08MD2xfA+QFIw6oiewDuzQnqzvG2jz83hlUfX5MwZOtTdKGg01Ex6vZJ7c2s2xxdLY4Qlzs64Tw5PW6vABSCGvHvM2l1lEe0l0djH+bWmqRsle4L+6OK9dYZRd/tqBL+lJfW4sllp9gao3IxSgvSo+B4lBzaE4KzQ+IwmMHWdvG5wVDe40zA5pesBocSb6D/oHuCPmyd53FtHiqRz3Xgm+P46NcLfdidt0OgaehyaOvtE7SN6m+VOnaTy8DdG7lTHo0CJKtMNy1cu3ziae7M5u3Pko8ArV4YLTQD1MQ6NZHHlJweZU5NfN3kHjnUJiV3GyMTJDx1TCtlE9UIkbKMPmIBNohg7yXjSknfc9bAFZFQLQSrZntMJrfhtSImUHpoPrutSFk3OCMHnhaCE4LRls67rvMI0Oa3rbdo84/v8R2eZe5ovYlMWUKF6kmrLEaNNZevuJm0p94BlhCCwO6T3zo8LbRQuMWQNadkpxzo5jETu1tGjY5E7wCEu8RS3jdXGMHjejaO5X+/wZnTO3UmcV7kfmVl+cjAtjW1MlnqOiCXSyiPk1P/RjnVx7Q1HMqIbhFadJj6SbQKXsx44tLyrR99GmOz1tHVGkg0RfPh7E3Sisiuyl6ygYrD5NZezwOeFwA9C5i6bRT7u3c6n3FM0sWlRavQIEv6GW6nk0tZDovIItDzkNyMC2PTKp+mjIz/n72Ab++fkOxK520ePjt3xCps8NXYrg5FlhpscnO3ZmOWHa+7RP7BDhzR0PSP3SUGYOb4mC7xG7AI9e+dBlo9BpB73HLn3HoFRCT51/XZ1H5VYNH48wxY5ve0OS545OtHPSHvvutgfzCgMjY6hOweckhI8F+m53NuwuN84TFPk2i3F82RUDzHCsuefPrG4Tlpe+RIpa0GM+eEm9vhPL0a7FyV0XSBuJM29cMstY3d8kPGSzyRBqZSR+6Tg7u7OpJ/miJr7gQPZMbhJQtMMHF0HP4a8A35JYmofVD9KPikmVk+AKV0E0Zkk6yziYSFJfhx02pr4JI7GDboetTBJWr/3fw9t5O8qusXx9t2FmKOzFOld0CXoq+9S9MKgYdr4mhuV7mYmGInczYOjBxppYRbx5ev1zCw/CfjN2RxdBCJyNSfD7bdnoWcnCSnUvntUjHnZo8UN2lcfRv7DfqHJfsFjnnsPWrBxIs/x+OjIAYSSZE9/OmSfzA9gXFJP027UtU2KOBOluCRadlwd6HZxW5xgX92LCdPw0MT+cdBI7sV6XplOxzE2HOLSGLV7ET2Svb24oBMZ0sCrRWs008CoDnVZAJvJwkdwzlaL+DBJJ9HKB8l1yYjOtbhHUoxavyVnCTgioo97OhTxQnpQ0j6GyQy6Hkeco9RJ2vdwYo/fKR8MvV030QmyxBj/bhEi6XwTqpNQvqg30MX+WY9H0ty1wmgpOcOYhebeaGSa+yQgne6IgmPGsIhFiYXI3NlJcOJEFmZ4ohCCumFPRCvvfpax8nGY1L02qB0dWIpNNSwgNsTNkH7GDGoz6Tqx1xOa4eOS9wwaoy9a3vGTQTIbygAp6aKIvbfeZKPjSUMgR0nSMyGMRu655OQeRwT6DM66Z3vuk4FXm42n/Dhn3A8dysh90tBMnxo6ebwI0o4PahN1rSXZJ5PA8SwpxmlGgyC96OT7HIWck5eNZ5pHjmdyT3JdYiTWd0dG7D54VGH4ew4rLr3vZPSz7rps4hnGvpL7aGb5uRsjM1xmlp8MvPpszPJbHBy5rm1nnvKThmcVeErmugi681oqYg6V0fN6KLGTnJAHme7TGUvjHzsMjsKYxuzfJZPE2TuibpqyQWOKbEuqRVVvWTIDd7x5PmocmrCCw2/7ZUntHpUQdkIP9ohPY6CXf+cx718lr7v75ikPI2vu42e50WOTMEwOmVl+MvCd2ST6SZbuNRoZuU8WQgh83aRq5sGt9BDzBDT2mPqTwKjtHeDqWG0OlIk4XZCmfjzZx9eKJfXUfURdS07WGnnaemTbwWy/fq+7KIe6FpLsuSczw4fh0Aje8v7NSyNp7kIIrDHPumtM32Seae6TgZyyt3zr9t9UmagTSPYjI/fJQwqJq7uDiV2Ey7qfu2tEy6Ql4mHae+L2Wppr6GHIuEWs4Co2bnD/xfWfZMyTKlOfa1xJRJ0YTT1cJ1E7seMZ9BmIvgj0yT65qJbGg5T1zjaQqAWadfIxiITfumdaSF3fV8195GDcuRPHx+p4FnvutVqmuU8CXnU2ZvkyS8OFYmCPHtguQwwcobNpLdAikhadhIk5/tEtP4gQpRjWFin6DT0iCLz96HmvEliLbUlwSeRxYhYPScYc9z4HtRO+2v83rF5QNuD9Ro4xph0irwtkiO6i2tgBykj8gQSadJkUg1T8WQZcQCD9y3RCzw779uIQXc+09j+o1sjknr9VBbIZdfizMMvfSLHlr2fMyiy/zdrIdTPNffLwNJ2Sme8iVUKv2//37b3Lfhl6ZbrbSfMYjOj7IEmbBwa0fjlQR9KOp09ODCkPlfQupuLaTlOW9npc2aB2+v+XwXmDpBiD6IciR8dzfy/dWBKfWZfMiRKmmF18kCiMrrkfPzFmx5JciohP8Yi/ZXwfGo2M4MeF35hNUptR48qfPq2jaRm5TxpCgGaAI7sjjEVP4NFEHifTN3WLXunhj/i/QEKko4jDsce1NLaZJ0mssaTE31/e+77S1B1eNqxO2ra6IWKuKx15PBtt53OZxC9ciAJCtFzNRnEMT/INO7i2ia/vb2CtmZjl476UNa6M2n1i3Gimefs6tC/PitxdRvsxnDqVRaebBoSAqm5xMVh0haezvucBe+9xz+GgRzWEAAAgAElEQVQ2J6/BR2NQe8q7INm9nnZMXXKi/+qwNpKW90GkrzPaAiF6lq8ANTTkRPaeI0aQutlQQB2RLitpvE0oDBeNOpZloen7ezx3ZHI3VjqezaN+bUeCfNHTRLV6Y2juzeb1m8/d2bm+48qfOpWdcZ8GhNBomjabuh6plQ/SxpMSe3eHfS+GYugioGefezBckDsxZXqqhcVQ0k8wrtEsAMPLRtXiR+nfQcNvWTwmHpluXExKKWiNxwEqzGkOti73LdVrCyPPitoENMxVNsZuYxhulEA2jcb+7s8MgleZTS73JqMdsbzllozcpwWpCaRptBXaNKSdVGY/bGtRfSo/oLh7PX6UacffkR8to92o5cMWCWnKouX7k9nUsXHb59xHx3CteZTocim+uSHNS+kB2whRxNB9dM1PMabpYGTNfRJn3ZfYGruNYajXbwxyv57hNfoj1E3jth1slo/v8dixjNynhbpmsWOovcmhpN02AYuBslFkPy7SaO9x/epAPiYzHIG/d9Qj7diGyUy6XA4wzbfqDmozjXwvPKExteh0sX4ag2AAIlCqJ3UH+qhzATkgT9OwcffZJA/jaO7W+Jr7ZJPHRGO/AtlIKff1jOMkMSuzfGNEzf3AgZHXqBmGwNFUIJs4Qu7Sg2T3tZE097YyO7uIZq1edGBB1CLpvc4iEp3ucKWD20smN15Gu8RafEQ3kzLNd5d1dzSPiS1mTXSSeGVAD5Ul3wIdPJPvIoSNCogjMDUHXex/jJWRZ0Vhj783fHgG5D7rPfcvfOGL/Ot//S5e+crX8P3f/4N84AN/1N5Pv1Hh7iU5MjIeahSCyTM9TPPZsYi6HqHpPpqhJqpeQu76v4/YRV8d6JWJaHBEPh+ouROtvfd2ZwFHYyZ8GSKFYX0lHWOcj0GadtKWJymLa3NQX3HQsdEw98FC3f9OpdxC+e63aG8Se+4l1J1TDNp1cP0tPDm7TJpxGN0sb5qYB5PHAo/6bsUMotTNcs/90Ucf5b3vfR8vf/nLec97fppiscDdd3+Ef/NvfmNmY5gGvPr0E8dscnjkupaVkfu0oGk6u8YcF6QdSegyuBhNdP3xvPoesXUT1g+NiYSyg9voT4olgDpLePSbmNO331OvvegYHAxmaDtJyiMOmydtN0mdTlk4uE1rF37032hkzVTNtUbbBDyEACnPI0SyBGiRBlgpQZaDH0DrSJ0HVDFEg32OXwOMYZYHyJ8+hbOhnOJGMaJpqWukxyzJ/e/+7qN85CN3czBY9LzjHW/nXe/6KT71qU/z5JNPcsstt8xsLJOEH0PukzSc7o4RV97MTsJNDUJo1PUcJS0HshE50fe+jpPpk5XxJBEawVCJSeKK3I0hDqUHjTKSoXVCbzFJ++PKzK5MsEWVKs2QxH6yngeBQillHTFynHuJpAI4CBbb16CKkD6eNo8n6qNrzhPCWP3nTp0aq/NZaO6zxOtf/7o2sQPkcjne9rYfAeDq1Wv7NayxIJpNOHtu6v1c48gItSrAWXx/+qGMn8sQukQzuwOI9oY0jSPwyOtBwbQoO1Z7ThDm1qTbvyT9tD9Y6x0sPzhT+bD2hsm0yyK6SdL2wDYTI+knozDZpUCB6H32NO9CImUDdXxkHoQW1G0AOpbUmdNq6DeyQx3AF7e32QIWgdMj1J988phd4BpqX6UBHObJJ2swRszyNLjrrrv6ri0vK4309OlTMxnDOMg98QTL//wplv75k5jXrqHV62i1Gt+GWu96oYcDXAkel4EtYBzj/bWhZnkXeAJlWrsZ9SO1gDV0fXaa3XMRdd2goncmxd78670EPlBzl/3Xhn97E9TehzS1yi5nY8rSE1l0G5GIcCScqhaf0FowiNST1Klj4MbqkGHJ6Wv0yunNCF6vJBtP7zaGbKJmuvlQpLsKim8OoHEVS2uiaeOfJhsXY5H7+q23cPK+fwA6E3s5eAAswEBja4ocTgE84CKdgIZN4CTKAOGjVmY3Ef5Gdndnc0Y7Do8++hivfOUrOXRoWMaz2UHf3WXx/gdZfPAB8t96CmN7B71SRmvGewJrwSNsAV8Cbg/976JI3wlel1BLrY3gMch20Z/u9XJQYyV4ADw/ouYZLOvmAS1nGBd1PUfFKCDZ7CKE1Jp7BLHTIz8Iaab/UUl4qT3qaC+hzvPwHtKOIbnuOL7MqOXJ6nWkKtg0E9HMrM32w8akxhM+n6+IvQEUEKK12C0H15QC6eomDcNK4Yc/PYxF7nMnT7VpNof6OGzgQHCtAVRRX9cmasLPAy3DdTS5l1EEngtqLEFX5LKjdAL/D78R9jP8bL1e5957P85/+S+/vy/9i2aT4le/ysLnvkDhkUewL13G2N3FKJWm0p8RPFpuKiuopVcLLeNVM/S8BVzCYosG6nufQy0j1qCtzcd/z8eP86w5cni9QmggNNlHzi0M1ty7A5tEyU6S1BJhADcfaSe06jeS72CyPMFx9LUTcwxwaqTf8zmMsyCIszX4wkCm2v2dJsl7dHaikx5VC96ZdFDcFCb2OoqjFmlxkqb56Pr1sd08FrmfOH2KpwaUhyn5WPDsoz6iJmAggQeAF4SGYgC3jTOsLtTr+0fuf/zHH+Td7/4pTp06OVx4TJiXrzD/0EPMf+khck+fxdrYwNzcRHj7f96yBQHoaHyWF/JJXsD93MF5VjnPGpJrMEJWuJtu2v+9rWc7NE2wo9vsorNA51hcas19iOwkkN6A3y29HHscU3CBPKfYTj2mROOJ2eqYRNsDZYIPbBTTvCobNoIcjHTOPby4mk7IrMQjkS5KDZkPiL2lpngoZaTz/izNJac3UVbk/cVYM6Nd7H4DSX5YAvVx0JbdZbDxfjzsF7k/+OCDuK7LW9/6lr6yZ57ZoFTaY2lpmZWVZTQt+cpWK5UoPPoYc1/7GoVHH8e+eAH7wkX06iQy7E0ej3OYT/BC/okX8gSH+QbHcbtuu9YPdy6q+lDcdlvmKj9tCKGxrRfYEyYL0kupuYeuR+zz/v/svXmwJMl93/fJOvo+Xr9zzp2ZndnZxZ4QwGMJUCJoQCFZoiCLNE0rZEsUbSsUcpiXSJOggqYYDusI27IYlGWGqCAlWVKIFBkIOcKSeIIgCZMglyBx7wAL7Dn3O+ad3a+PSv+RVa+vqq6sq1/PTH0jeuZ1V1ZmVlVWfvP3y9+hL7mnrAoPqE558HSZNrwyuCVM33MizzBaRJ4suI1OuZPjAU0Fnx9O6cPj3oZeEkzshcfmeouh1jfKvLED1BCipNo/0UnXRupzYRgII168jrSRiNxFQh8kATS4o5VVNy5Og/NeffVVPv7x3+QjH/lh3+O/+Iu/yM/8zD8DwDAM6vU61ep4+kHR61F8+20qX/gilVdfpfTGW5TeepPirdtZdz829ijxCZ7hYzzPZ7jMH/AkmyeuItng2rWc3LOGEALDFghTIF2BJ4jQpyX3aYVtlpJ7dIwzW58+0EZMkbvgHZaQvK1X7YwLenj34qOQuoIpqhgUtJXg4Yirtu+7/upuRjjNaJhS7jJO7H2QB0B5RCMxtNFwTJuBVUhGrCkhUR+MFByMN7idKbnv78/XTeq1177Cz/3cv+Vv/a2PjO0Ff/GLX+T69euYpslzzz3Ht33bt7Kzs8P29jZb9+6xs+3G2f/DP+LyX/kuWjduYPQX18XLQfB7XOP3uManucxv8S6+whmck1W6zss3Wibe9H7hgn4gpRzxcWQU6BjWifStR+5y+neBb5ja8SVA0NhJ2efdZ4/bpgdyB8TkonQYmGUmInQvvOj09Ua5+khkP9aU/n5/eBsGcUTt8DP8Wp511iFSghAlpNwCaiFtSGDfVcMrKyIpJXCEoAhiUu0usZ0jluQ9hLEI5nQpkHuPZEH81rnNl5N0IgTd7vyMG27c+BI/9EMf4du+7S/wi7/4UQAcZ8Dt23e4efMmP/R930Pp9Td4+eYtvnF3l9Lrb3Dh9ddZRtkhvAKcuXmT9s2b7KDua5ehgZoBsbzB08BbrPBpVxr/VV7kD7hKJ1Wb0FkTejDOnt1IsQ85gnBol+hYBeiFE/ukrB627z5dfvh35qaSPgRvCekraWoZhkU0UpsF6VdhaPl0ysXdgx/FALWznapWZuaAmFDfT/XGQwflyxUEB+Xr45yUk9IB2oDlQ+we+iDamObp77dDQnI3LZtNiBQ4dHKorrPLqFojWk3haLcFg8EA08x2H+T111/nr//1v8H+/j4/8RM/OXX8f7Ft/tOP/2bg+TXgAyFtHAGvjnwvonZ8Cih7Tb1giuE4oMgXOc8XuMiv8CIf51neYdU9uliW6eYixHl8HGAK+oaKTDH6Dk//P07qvuWmjLiCJcV5q+stJC3ZZtN3WNl6/YmhYIh7nakSekjSnqiLggPgEEdDmZ8FJrVAIwsz2QUR1CeJ6rnnqeUR+yFKtR+8zSgNAyeFhGppIRm5mwa98+fg5jABTNRxrUzpHKYME1JDiYODA5rN9Pd+e70ee3fuUr17l7WbN/n5r/0a1j//BS7fvctUiIReeDapMFQY9ysfxdso00TPTnMV5W9eZNRRw+caMHibFd5gg1/hRX6N5/lDnqSf2fPwg5d8IToyXrPlcGGaBjtGiY40KAknQDU/vb8+fpyp46lM+7MENh2MkJot3UWybz3HMSofR7zrVR2cy159DHe8NKT8yS6kB+leycj8IuoEG/l1UFJ+EyG8yaUNdBGiNeM8wBAI67SDzg6ReN+/cvXqGLlHhYpsl+XKrkC73U5M7kf7+1ibm8j7m9z+rd9m4zOf5eznP8/LKfUyKS66Hz98AUX6XeA+grOs80We4qN8LR/l63HmSuR+uAU8FevMCI4GORLAMCy2zQptYVGiG0rsoXvyI3vvOtAumnAqsYRBWVR9j/Wpzk0GnW4nXGxKbT9ewz1Opz0VzyJ6qLJAxGV9AUhvopCuMZ3fxNFFSey1k+hzUipfdiWxz55sbDGgaqogN4uAxORevHoVfvO3Yp+vAt5kuS9us7d3SNIAcf/nt/0XtLa3eRH440CdeQW1jQcH2ESwRZlfpc6/4Sq/w/uBF4E3gesxatV9u+K8hXFY+gGGke+5zwNCCBwbpCGRrm5+aBjnT+xMfA+T2E9DeTsJiWRP7vsO4V7Kk3bS603buG66XHz1PCg9h0fuQ4o/rW20ydHnfbz+HKOk9ioeLUrZBnoI4ePy5gdDsBDp4FwkJnfjXPxUnR7GY1ilj+Pj5JLpC/U6je1t+sCvu7/dAj6DinT+QeBllBq8DJqOFunhEDjA4lXK/DNW+Xn+OEd8HcN4gIsGHUv52S+Kad7ENJ9NrUc5ZmOvVOW2aVF3epiMG8JpS+yjSMn4XaZUj1sbVoD/zvGEEZaO9JtOj+JVmoj8Y8S6nzx+RJHOiQvZZKn5kOCwlaEAKV0zP3HSny6whzKe84j9CLX3vowWsUsHU3TpW4VUssSngcTkfvWFF7gT8ZzJISpwIr4H0QZGKmlffZo8x9B6/S33A/Bp1K7NU8C3okKwWijr9zSG9AC1zryDxc9h89O8j9f5IGqZMaPDC4t4fb169bS3Ex4vtO0WBaPIW7SRqGmvSXRiT3Mhn75QIKnhHxzDoRCtvYgEP09JXqv8iXZm9oUEHRkIkwGmfz70xIYSmjipelQzOJw3vOhzSu1uq34Jz5e9MZIcZjYMHKpyD7EA2eA8JO7J2pmNKXKPumg1cDJVzO/tJa/dGtmzD7u+l0b+/hW37CbwOZQc/eeBPxOx/S7wH4D/g0t8nD+F0hXEwYBF2RNKiuvXF8Of9HGBVRBUDME6akwfA68hWHbNlSpoSuyjEICcrbuLQ3pJiLIeGJpUn4Sy00TGM66DpAZ28eqK3mLAPU7I/2KE6lSAIq/CTYb5S9zf5AFq2aovgwsG2MYBpumXbe50kFwtn4JFk2ALtdeRDY6PTz+Q/ypDV7cbKCM3gUqVcht4FkX473XLfA745yzxL/gge3yAY5rIsfCJcTEgPae508VTTy3OKvlxgGHAnlVmjQcYSEqoHIxtBJtIbuEl4VUTi9/MEEwKCaPCa54eVkQASziBJSOTWop+74GVxqxX+xwBUmPvY/JonQo1UWU7gj2Nv/ldPGb3zlLZ3LoIUUHKA8BytQm7CNFguIkqgQdAaSQ5jN6WoSMEh6ZJZYGSWCWfHVMh95vAE4nrCUIa8eWtxqygB9EwGm35EsPMab8O/Brw9/hBdngeTlaYacYA6DFuCrgIgzGeJ8P16zm5zxtvF1Z5Qtyj6Mahlaip8YL79y5KFjp2f/OcXGc9qVm8EUcNnuRtF8CZGcljYtW9APvv4+fGKO9qWKIsKoKXSBEx5pMeYb46KdpDGcvVUPvodZD7IGyGWkwvcI3p5n0Pw7jtgDCgWFysbcLEs6NIwdHYYCtxHbOwt5c8srFIsIjRfQ29tWKXKuM59dJGnGeWpqX8ZJk4qqwB7373S+HFcqQKp2AghUA6k6p3NcqbDPfht1EewhWGY7vArEknhWhsCRYKnv20g9qLnd5vdTjGoBhnEzHk0qKTYPgZqe/BA1HMn9s4dFLfcI1jkNdHBa4BZAdwkKKKOCF2iSJ/EKJKNM8d1R8DSd1arHDhicVuYZjsJqyjQXw/eR3s7ycn90Eh39+dL2a/vEKAnUJugxzRcGhadNDbU19GGZyWURL9jvv/Lira4pRkOIF57rWPXk+fHvga1Rm86fq6p/0Z74n+GXp1zr5u3fJSRLu/XTr0pH7gn2g6xNk9H6/LAlGgQJ8qFqYQjOcmPXb/13R5C2rQzM7SIg4Sk7thCLZK045fYQ9q9PgS2xFajK5GbreTq56Llen0tg8/Ht6ryIPXnA7uC5s9BA9Qknln7OjQuWj0lxJDzxIbpSTtjZzf9qljFrSM9GJCACY9hOj6HDV4S0tlO6PyE6RD81EQ53z/stM32K/uPiZ9MY8X1aeXYvRPC0GRq84tLss2Nq2R6HMdlLlyaeS36O2bdOnZiyUAJpfchaBw5XKiOjYyltz7/YeLxJzkj2UGFvFeRF/x5jHlTweOpSRxz7RzB7iLMkOaBYkaeQ2UcWkdpaI3GO7T3xUnytHke7UJhofBwDXCmj7yFrVkUrqII81HRxqSvO85YvhHWN1tbI6Ten1Hfo5+PRJccrb4+t5nKMvuSETOHlLuoZaf8beXBQ415z6GtThx5SEFcgeoPJsskMgG2yQfzsE4PExeh72ULHxttB2i0RciTWM6yPI+x0f0mdgwcnI/DZimwZYoU0ERdAulzBSooE63EehkUTDc8+2ROorAjlDxIvw9zWcjqUreQ1EOqEu/SUPQTi08VbLxm9bCIJYkf6Ken30NDoa2oJL+2zy8qhW5x9f3P8vK4D7H2AxO+rSNMi5OKnFLimIPc4F83CENa3mg8lS8uOAeVPKYASl1ZwqHh4tl6PDwIUtjukPivFymuQWcj3xejmSw7SJfoc4VuYcllDucRBmhlVCRue8wzKnV0qjTk3c8X3kHFbb0bSRVxs0tIxH4iBFblPOKQlLD4WBGmURL5FQj6ukjrcUPMNP/3XvDHVHBOW23W9mj4bzDmcEmAkkfCxWbbgdojbi8JYAQdOwCtQVyg4OU2HTluWc5IJ6MKfFSxvY1uhPv5vV6yW96oVqbCm1xSu/oI4bbjEfWA53nXKtFsdPIkRaEMDBKEjnyMqh96mH64aL7ZuyhshUOUARdD6nbcM+XAgoSqggGSF5DqevXCA6mHPgexnhJbSwqohZwNCWyymjySKNK7ToCAhANvxnK8vXkl4jzcMJpW8oByDuYVLCRdLE4FhZS3EdtEA2JPSkvi8LiGQGlQu6XL1/is0w/C93xq1bm2QWaScPP3XjkLLMXZZXZJU5f3vWuR+15PDxoF4tK4TLxWnlf1e6loIVkCWU8dxe4h5Lmlxg+8cknf0IDQhkfmwiuufSxD3wZFe6qyZBmQzeiIrjHCaDPgB3ZCai4HTqn6c828xMP0tjDD/5BBJXS6IVIfSYSAFIi2MIWLRrO59kDhLDpyS2kvOb6svv3J3p7kjVrH4f0YqGkgVTIvVwuK/NlJzpBCzzDmn5m9N5uJ6/ZtJPfqlzSTwuC8+fzrZbTwp3CMg5vomRyBf9xrUa8jQpo4+VEeBulim+gpHWLgIlo4oWpu58ByoDPy7y95P7vGejpIvhddDDxN9RxUt86TDYrZDWfzCbzoHPGr8UQNUxRCQzmO12x8P0zOgbAAYglSk6Xy84OALewaYs1hKiMNTAutQf0JwhujLFj216YhDEe0hupMcndg8kgM3I/PExec7HqHx43W8JO25juUYHkxRfzVK+nhphaLBO1p34ZtQnn+ch4xnQCZWA3bbc8/paZeKmiFcnvo3J6tdx6TIZRwaV/FTNh0afBAZs+xzqszjx3VhNTx076dLrL/jhEHlbMQU8XOz5jRVPf+9+1AZIDVzIvIDimRI8GcBsHlc9Qdwmo1x+Bg7TnnQc0HOmSe5LTCQs0E5+4ut3k5C4XzFgiPqI+pyyN6aKiAxwhxB0++MEPJawrR1wUi4IHwmZDqnc2Di2ZwEX37y6cRLrwpPgy7o5oCO8tuYdbKKI/GKnD87GPOuINwA6gpn7akSPnwOuB1UdsN0rxHmoDw5EypjubhzBiHT3DQS3zLPySbh9gcBxrDprdn8bgHkZh8cg9NSuAt22bLvganenATDUEbQ81ZdwEPsPSUgpZ4UqPRrKVLG0b0sHkiOmjPKE/635fxrafm2+XcozBtku8aiyFlgsig8nfC8AZlDRuMYwEfg9F1rra0RbKh76GUsz2UYR/F6aiaM4iKhPperNPo5uR9bec8BtP8zPRkLbfWzz3OvWw1P2XU8Z2M04J+O7fg+lTHJQhiGCYhEwyoMeh65zZFnV6ojRxXlSM9Mc9uSjvLZwbHKRI7s+cP08BdXs/j1KVDdAbFAKwYpO75GSPhVdR2dQd1JRxHniRw8MgG9v54/Tl/3gGbNnBT83poKb3V1DhTZrAC3ircdtepP4/fhDCoGMr5Xn4+633rCSK2JuoEVFiqFp/R8I9hO8uuF/7Xj1eoBzb7cVNAVsQsJs+hI1gxbffuzPPjqSSH4WY+mNu0F4URKpD0AeXUoOvSQR+0Wlp8ogX5raO8KLiSQkcgBsC1xBljMmd8US3XPWlUygM21wgpLbcqL34PO0vfekkcYSHz7nfL4Scb7ATscWvMnSQWUOt15/xLZnGnrtZCV6xZ6NZy2q/fdEM0VYmvn8OpWy9AHyNT3mBtXiL5McO/aIxGTd2BoZviO57UnA/3purrNiV77uNGiFhilDBeARxEzAFHEu4j+e2N16PxDPyHZ2sHSQ7QAWRQfTItLbdtU6fUzs9BG0M18gupD+jf2v3TY78dYwS8CoTIWR3sSmyzDE9YCAKEDvEbDDM0mJOSKn1qvzkk76/P496QXsoaf4BSp6e3Lkqc2tGCMsOKm6VAK64NV5GV/HQ6+U26kPEif2VNV5BTcNXgecIW6jkkvvp435pDcnbgcejSn5BMKRSskqG+rgOao/+GBUjw28X3M/FzavHFlCS6vwDVNCdFUYXAhLHjXovMVHvTBkogej6dji21D7ZyQm/vUxmLk0STdL2iUFdxjbB8iQ7QX184SVvASsIHEwkfaHGzaiYl9YssmweEjdtdZZIjdxLVy4HHvOsYJfdjzKLUntqJdR+2xI73D454xZK/dVEOcwI4OnYfevpxMMMwyMjLkZ5ZbMzpnuCG3wL/5yf4kdweO/I8fC6cnI/ffRKlfBCY9BPFTqKUXtlFShHUETSYJiB+3VUcBudxMGCYbAcG0X4LVS8Mk+4OAsIuq60bqEU/KUMPLJn9TJ7gSTtFkafVYcihzPSp6ZxJ6XsINlEiLOK2JWDO9J5CyHWQRROOnUE7AqTAUY6uyAj58qitVAbnR7Sk9yfuh54bHKoemqwyyiJ/gC4xj5fVKEGgA3GHWKS37qdnT6tVvzLNQrz82LsLZzHZDpocp8/yS/wDJ9i6cTGokwUYgd4+ulHZaH18MIwehxSoMp0ghU/0lC/RSMtGVBUuPWYDIPiHANfQFHJGYbR8Fw35Om+CfeY+4Nn+TFAch/YZIAi9JElg1D/3KbM2ZE9iSRSuwz8orcYik3QmnFn4tQ/uveu1YeIUE9/AGIXgzOccIWUwKFL7CWQEsONTLBPkY6okZaZ2UnXpUPbsvB3lD5dpDZL2kvNWL7utvu5jg0ZRvjZ33do6QS6joko01Z42cUzzoiLCnu8j//Ii3ySDd7CnLDWdyK94ars2lr6+2Y5oqFYLHODEu+ZIHc9A7tkOmG/hUIReNb9ZR+laveS05j4q+6n65UYKNHiKgU+TXUipS2AwW1KY+QeF8HEng18m8hISWAjKJ7MY6MyfXJRTboG1OLEvwKUHucIMMFNyytwWBm8rRzjhEVJFBFJwuF6GDltqf82xWJQqOLTRaoikFEo4HSmXwcdnAlM+5qOwmN/P5lRnVmOqoacJ6Lco+yJ0aTHe/hN3stvcpUvuG4q0+hGjimmcO1aLrmfNgzDYtsuQW8vtKzU/hb+uw68SHaHKKLvoFTtfZQ6fmz0BJBbgT4VjulMLAuEaHLLOM8LbtSzWTq25Jw5m3kjaQXiNxOrDUsUKIhRrdxoaZFgWu8DhwgqDJ+kRD3lPkov7C0iJA25jY1KRHSMEdyfCBgtXWYXy1ocb6xRpDpLigT70jUOMBiM5NpNF0dHi+7fPS+EBQvyEH2//Tp/xNfx6zzHKxROXFOCJ4B7MbO6XbmSk/siQJYEo/ldUxMAY7LS5GlVhh7PB6g9dS98rYGKlme71UxuARToU6XDtqdNFALDuIJtv8zOYI1O93N0URoBh2GO+1gI9ZM7XYPgOK07yBkxR0drjEKsPdSSrczoskq6EVYEVRCjT0EipdIsHTLgKHDu8zO/1MN+wWIx5fa0yX1GWEqdIWpmSO6J3c/vdwUAACAASURBVOGK6UamSu+VPV1Tjit8gffwm7zE71CdmSRzGvc5N/JN/zquX380bRIeNtwtrIK4q6FC1/kW/rv/Mb03qYYi8x7KeM5k6LHuhcU1RuoycDC9SB3CxLJewrb/FKZ5lYLzearueV2UzNhjmP0u/Rks+myRmlQfq0XBsezTljqWzLrEOgC5h/JYGGZzk/TBW2aJ4HmhTYUjMdS+zp5t9Bcfi5gNzsPcyF0HNl16Y7m90yOuBw+Skbthhj/E019jhyGd+7nMXV7kd3iZX2WNO1qt+t2X+6HRD6ZhWVCrLe4L9Tih50Vt9JF8p6H5ZqSsHh49rvzX1Z66RBnh9XG9dwT0pHKJKwEWA0p0EWIJ234/tv0+hFgDwKCBgZIfy6iFQRcv5KoKddNCMzlsRtcbGVMvaTzPBuH+NWBA30dSFif/zKrFr9ARSlovn3gtKGLfB2oIH2IXQM2V3KXwnlZA9Zr9mYxCvlqItw09D6RK7vZyi969e7HPt0jDZ80Pgm432etgLGB4wXmiwj7P8Cnexy9zhRup1Hn7JLq4DtRbVSgsotPJ4wnTkhxgUQ0NjDT97qUjtXuIvqwWDL12iihidgQcShUTsUyPJWOFYuEvYFl/zM0k5hKYMb7H6hkFg1oseCP0dZT6XyeX/STiaiji1R3ehG7LXrmOMDlKRC8jLcoOKjd8+cSXXUoHyV2EWPUldlB77iuuMn4gCghR8C0XuT8jKwNhL66gkSpjla9d4+jV4Ik/bHha2vvB0bG7m6xukYEr3KJL+gXaXOFV3scv8TyvpF7/g5AMW34olXJyXxSYhRKvUeEl9tIZzKf0MoymnC0iqCLZpU9Z3uIF+Spvyyc5dMldgJtxbHZdDsolD5T6fxu1iFhBLQTiXareTU50G7W0MOEYYNGfoSbXhvT0K5WJOAP3EWIJQTBhC6Auu652xsFxbQCSzyDDG9SxSwvpBgcpk3vp8uVE59tjbjXpTuJJ99wNw8Ah3LZ7voSdPtFZFly5UuDDH65y6V9/L/3b76RyPX735e6J5K5/HSmbPuRIAMMscGAUAnMRyZF/p38PKh/9WBii1GuhAuU0GPCs8/vUO3/EvvEPuWl+I58qfi87xtMcUw3tj0ApgSWK1Fsolf3dkTLnY11UvGBAupCqCSYj5UWvx0L6EW+UKUseoZZGyyCGbnWSXRBNBMVpPfkEDFRw2geY9DE1tgWCMdlUtX8Xy06iDcgW6ZL7E1HUrNMwM4l7rp5I0j33UqnEAel74s9vMeCNzOnBKAScOWPyJ/9khb/6VxvU68ok6JP/qneiZky7jw4iVoatXC2/OBACCqXBMKLxSGCUWMQec6AN/d6nW4i8YDgJbiMwGWAxoOV8iZbzJZ7v/Qw7xnVesb6FQ4bpZCdH5KQC1ztecz8SZbm/iZLoV1GBeLyySWIFpOseN31P9dXzBeSEhkN/m1si6YDcQRgqSI26YomyaCgrYg/s0dAVDqCLwYEoITxyTwk15w4Fey3FGtNFquReff75RETQYptbPJFml07Q6+WucApD7UitJvj6ry/xgz/YYnV1eij0D8LyZ0XD6NgIjV41daZCuZyT+6LAQXC3sAxHUZM+zYDPBHIa2nr1Nkx3puV8iW/s/gMOUMTcQlnHqxzw4Zo9r7alkf/3UBJ9DU4iP5j4k+GwN3MQCyaaiN5a3He1j+AAjJHoc0jXWl4MreUDq1c9rcpNLJQWoSBKSvpPSWoHaBdr1JhfUOKoSJXcC+vhq5hZQ3KJ7ZFS6SJpfPlKpaItuS/uXnof2y5z8aLFj/7oMi+8MDuv1uAgmmtbFMiYUfieeSZ3g1sYCEGnMG0qNtTozvZDD/w9wgs0y/AsrppfoozrnBnGZavu/3uoHBlFhu52A/Qi4oGagJcZWu/fZ8T/3v0/uK50Z5ogTUYcFb0QFgaF6FZUsgccgfCWTd5VenvvS9p02hrcxga6mDgUSTvypywWQrcFThOpm4CLYgF5PB1vWgeNGXnhYvbm5K92O7nkHu+qwhHvFY06qPYpFrf4xCf+hFbpwUSkwbSmEa+eIblHu44nnni8vRYWDaY1oIfAnhwdKQ2YLA3P9KqZrqs/cthLcS1RxGygAuY0URb4o3HUwpoqoTJmSuA2w+A4bbcOL9lNEDLzbY9B8AILIayTc7QIWXaBQxANRqMFSHpA391n148iUHB2sIEOA/bpnajpvR4mRd3YR9BKpa4skLodv1EMy7IcjA0Nn+m4ODpK/rI//973cAx8mXHDmDShgnmmZaTRBb6I8uStUCr5p+X1g3N8HF4oAZyYQ++JJ/K48osEaZe4PZIRPY6xnC90uCDDYyd75T4WWH5dE6jMdDWUdm+AksT3UPvr/ZB2J9s+hyJ6b5HQdevy9umHEvGciCVCM16Kbzlmdi+ZeQfkMcp4rsh4GKAuanlTRIwukyL0pyMs9kVp4pyQ/mjAWGA3OMiC3Mul2MNtnbtkNVg7neSSuymUGcdTKLVcF7XCfh39oK56SHIPOihC33HreRdq/R+NFPt74THDk0B/z3283Pp6Tu6LAiEEA7PAtqEWo77qdb/fNSFnDBE9o7P4EExOjuKk3aBJ0+tTBUXyXkAcE2UG9g6KnE9mopAuCpTEvoYi+SpKcndQb/c74KavSdO5K6xHs+uQqIXMEXLaql+Mlho9puLFK2IfGtlK2XH32QvjxK6J4XZGASmCcoP49Wei2z6XLWWfQaH0eKnlDQ1fpSAFz3DPPX30eunugpvu56z7vYtaod8FLqNe8Pnuu7/OUG54Br8XsVjUH4h9n/32dFXzo3bE+shDzy4YDJCWmLFnNXvUZPGOzDI6i9LeCYlPVKM7ar349RK15FZudnATtc/eBVpu3WH9MlALhRKKCnso/d4xahuggKCR9X3WVM9LxoWd4Pvl1iOPUFczSpZ9BG2Uf3txZi1BaLpuHIYoYInwUEvT1xXcZtXZxTQXl9jhlMg9CC12EAyQqURnHr/xSSPUgYrAF4QCaqW+ghvOEpV2sgmjGaEDEXVHS63f32QYLuMyYS9AlEVmf39fv3AMvM21yOcUi2BZi/1CPW4YCJOjYhXZ9beXGbqpRXv/TkqfkvW8gVKDS1zLdgHSJbaos5O3n15y6zPB3QtWkvyxgFWpvxnnBcopo0h0gJoF7rl/e4FyMnlTNAhebSEIvXTOso26Ix6xeyudIxAVVJCaeFdy3jlwA9QKBrHqGN0oGUeBXQrWYgsaqZN78cIF2l9+Lfb5Nn26GaRe6HTmJ0d7O5BXwM08rNRnPZSKLdmQeMut7ZzbQhiGAzOK5C77/hsNaUnvu6xEPqdSWew9rscRA8PkwJ4Ro2vGgInmc61XNK71vN9ZQ/vs0aoEBpIjlFQe3K7/MY/oQbnR4bbzwD22RLT5wdMgKgt+da23UdsANeAC6ey9jl2fD8FP7q4PYFya8Jt65CFqVmxOSB4PgBIi4Uxp0TuZf/sxFwjiZCvh5Bf1b8kGw3Dzwy8m0if3S8pPPex9DDpepENX25FEH2lYy1v1RiRyE6gXzwteAZz4A3QYRq4KxxZKF9BEmdnEe2yRJPeM99y32NAoNd7hSmVxX6THFUKoGPMzozeekAGk4aYW/ZgILeF3VJHCxDEBAwlfBZ7XqjUY3v0qASWh6nlHKo1BHfWmez2fNfK99g235HngvPvrDVSinA5KsPBsBhK/SZ6hoRztgcIAg45QqnQfe0TX0K6j1O5ihbHnI11bITFqmO23d693BX0Eu6KMI6yUNBnuJkvFziL9X6pIndwr16KrW0eRTvKY6ceY1M8dQFjJn+bSyN9tlPuM8sVkQpZ9gHrNR81zkiFKXPbebjC5pyG934kRrCgPYLN4EEJwaJa4I8ucE+2xY9PSns/vEwg8Jkgl5nmUdg38FywOggPNNyCKe5oALo5opr+CssA/ZhhfwwroUxCeZrgVsIPKobbE0NDPIiHR+0jxDqYroE3XrIjdtYwXE25ksg04IFY1+jR7f1zInmvVY2CI6AbFwRgAXWpGHwszgmHw/JG+5J4wBG0hI2/yNPbcjXL0cKmzMJGEkG2UzajBHg7r4EuA8QeTEWFWyNoVLk8a82hACIOuVeaBsDnHkNxnS9H+R5O8oeEkGr12b0978kwpoOMSWibrDQFCwjXUXrpAqdn7KJI3GUay072TnvawgdJI3EOJDVW3/lk726H31ofgDWEE1NcD9hFimTHClV7SXB0LpbBeCmrOHdfGwcAQFdfnPikc1N2zMEwbxGJHPc2A3IeEFEfCK5I0P24wAWxv91lejn/JHrlHVc3rll12Pybn3YhKSTF+L6LEZR8cpRt6dhJ3uBT5nOVmdlkDc8SHYUoMWxKqdDuRvmMa2MVWGUVTx3sIkpKH++bJPAFmHnerFgyJuYda/Hfcv/soUh538prdqo3aCmxxIj+fOIJ1UQuaWNL8CMFbmJQ9yX1UMJfHQNeH2D0T5AbDBDFJIFlz7mGhXPI2U9EGO6g7b6rIe9YxUmSVojwdpG6hZNVqCE2Leb8BlF1Odzg4SJgZrrC4GYB0YBgRyP1wNrknkaEdBP1Q2+DpFp64kq7mJEc66Bo2h9bwnQ8lLR9EMq6LhPjSdZlJ4lQwgLqIuc6IgMn6bZRK3dug82TdTRQ1HkXsUZGhQCHdujqorcItt/5INbrPxsCgMGGvL10CF6LKWPQ5eYTkEKiCMEermdlGGIryASbQx+CAInGe1piNkhygQuOWKNgSw5QL7eMOGZA7gBlBfT15e2pk54K1v5NMK2BVa+GFMkWywRRJcu+Eq+Xj9mYQU2F04cKCW7A8pugbNsd2UJCQIcan1wRjedJAS7PFqCU8v3S/5osn/fC/jqyJv44ylKszzA9/jCLlHYZ+5rragzLDoDtemFvP6mdW9BE/74SekByMeZWrjOpqqTRCOfLY/b2KSgaTHll6IqIjTDrC8+aQI58IkA5q+VTCMAwqtS5WYbFV8pARuRuVIblHfVxLJMkwNbu1/XZ6uxBRrut01nfTrUbZcw+T3JNgENO45dKlPK78IkIYAsMN6BE0bU4Z1438kUh9HXJWFvv4BkPvlyiW25GhUa2B8qEpI6mhSNpAEfx9RqLhacLTDjRQCwfPLO4IeBsvPPbsPjsMOKbr9r+PlAcMlw0uZB/oIqgiRLwgNbNQlj23Oxa24ZfuKwrRtwEbRIFq9Zh6/RjDmJ9rdVxkMlsmiS+/wv0UezKO3d1ke7azgtikiawsMKNI7o6me0GcbVAnJrmfP59L7osIwxDsm0W2sWhpxAEDkrtcjFiVTyM9S/YgK/pmUIfSxoxqR73MPct+LzytZwh4hIqa2URJ5lFmlrJbh0cSKyiaexul0Vhllk++WlYodXwBKA59wqWD2u23oknsETq/JDs4qGA64ZpCHz/2k7a6QAdEi2KxT7PRwbYHi66RBzIid7M2I6hFCNLPDDfEzs7DYZDlvx+dfDRF8RMfHB0lbi8I/dDgFP79PHcul9wXEUIY7JlVHsgiLTFN7rMpL4FRmu+p/oFVosLzBw+qQ0x+iarpjVJ4Zv3TBzyi94j5Mkpl/wZKGi+gl7rag7ekLqPk7yWU2nvH/X8FxhzfjrHYETWkPHR7Uh4J9uL6iSNQavpsWPKi3AW8WAVR7vY40Ut5D8E5DAPqtWNKpd5DQeyQEblbzel17SyMjt1V7sVsNfyOOwm3SYQ1fruysppPDv97ESVCXRS1fNRriyO5N5sPyRv1GEIIgWVJTNthUnD3HRca/u5hx0+OnQw+6X88Sd0z0GMiz7qnnpfhJnw69U+VEeMHdM0EBYqcK6h4lq4cypsosm4xDGoz+Yb5eZJ7ZUyG13+IymyxhNqucBCukVwPIZrjNXtSu1gL7G+0A/4wULqDbQwGwo6+jSolkjsIoYJtVcpdms32Q0PskBG5Fy5eGPseZfJfi03u4XjwIJnkPknuMG/SToblZX1SdbrZeS3ESfea+7gvNnqWTd8sQL8dXngK029REsk2rT18P8IbPRbcl2SzQhrzSVAdBYaS+xHKAA+UxbzD0P0vyttWBbxk0m8Am8IA0fIhdi9fuz+xpw9B32gSmeYEIA8Q1AGLYqHH6urBQ7HPPopMyL104UJ4oQA02I1xlt5Q3N5+ONTyiwDZyyaYEMBdoo+PWi2PK7/IaFtl2lYJjofvbzSpfUiI8cg5nWX2aA0GSp0tGd9b9lT2+n3TPx6Kk1gBySAZD6K1536aqGv1VPtRdWyXgSIlbLE2lqxFyjawdyIJ+yGt5bslOyeOeGVRiB7ARnqCTRkhJK3WEba9+Nbxk8hkxixeOB/5HDHyv0020dF2dxP6uZeSBZaJP3jTGfbNpv7j7ke0lo/Swwczo1D511Sr5ZL7QkOAYxizrbM11fEaVWR2fBQGSrIdtQLyzg8cjQmJV+v0DCz0G6gkMxZKzX6AUt/vud8nEeU+S9lBygcQIyolEPlSlwdvUUBpIjYj+gsIeqirL4MQNBodqtXsBJ0skQm5l65Ox5ePZqUZRbWnX3Onk83qa7FoJ7g3ZoRl+KAdR72qh3tED1EcZWGSY/4wTYMDo0DblfXicZyIz40i3MskTt0qptpUU74T57hEPd2XVJW6GfnYe/7uSiGtTCiOUAucA3Rd64Rrvw9SdoFjhFhFpBJ9LhwVuUMBdR8eyChtOpzE6RMm1WqXleXDSC7Ei4RMul1YW43mVD2BYiRy10dSgzqjFN/Fz8NpLgSaTX12HxxGt5bXvba9GPGjNzZyN7hFhmGYbFsV9rBiG9GpY8GjKJS0MpBoR/fdJx2mwuW5aH2JbGgX81J12rEYRrBbYhiS9gDlP+9tVwTVL4VH7F3Ai+0e3OE0n5qUA7cfBkdGlIRbXbcnBQr2gOXWEab5cO2zjyITchemiVmN7g7nPeCitlo+2pCYZ0739JDesI+03kq6EpqBu4GSe/C1rqw8pMvnxwRCCKQF0vR5hvNUxycgeL82vGhtkxjAmOlv8D64XqCe+Bi/1iyM8WyUFXwFRfgVlL/7tvuZdH6UCBw5cEuZocQ+EwmmP4HA8g1g4wN5jMpKZyMMwdJSm0JBM2bDgiKzGdOsT4dq1X1OyZPH+COpWt6wg/2zF0M1P7sXy8t6j7u3Ez/WgM592ORM5HovnnsYF2aPF9pWga4xYbyk+djGi6X/NsXdiy8yDO/qQaAILbuIHP7w7WPExUzSuEEeuXsZ5uoMfeiHix0HSXvkjPnNjgJoucFnO4AQOtpWlcYVUQRh0Wy2qdWOHyq3Nz9kR+4J4rDrkXv0O9/vJySIKJvWM3BaY8a29VruHySL7z+rFQeDHtG3Ny5cSr4lkiNbHNlNji3/vBLR/coTEFaK6vmJoKknGKD2oiHcel0n4mSimSmD7YgwWKhFj40i+4uo/fq3gS36rh9+zQ1eI0c+00ji2+5XZEWqJ6M87XWWdR0QA6BMpdKjUe9gGPKhJ/fMQn6ZjXqs8wRQ9bXPTI5uQqNHMXfLinRHl647WVRL+SjohWaD88fZs/me+6LDMCXCUNPl6MiNT1wifkAY1988aUCZWQplgQ6xj5b2bzFWUBufzkg3iE5Q6TTa8TvuBcrxot+9ho0UNYTvnQtrQX/OExP/e1+WXHK/h0GXsAA2ymRQiDVM06Fe61AoPBzhZcOQGVtZDf+9Dp17VgtPTxAL3W4yyd2wZxNT5ChIqSK8RsvSa3VwkJzcg1oKDj0b3DfLihaAJ8fpwDRh17DpjkwrMmTIhb+R8Q3sZIhEqzMbeP7ek7CBVqzpJPqbH4mUT0GKn8QgBkEP4Ur4IljSD29fYc9YQsWun1VyH8EyQkjq9Q61WveRIHbIkNzt9fXY54ZHqYt393u9xQ9E0A2Nux4fjYam5H6wn9n00I+hLFpayo3pHgaYps0do8ahZuiTLEPEpmVg58xoK2xUBvdRaJRJgAyt6MMwQLArvNx0aUBOfGZAgJD9oWG2KCNE8FhUvvcVEAblco9mo/PQRaGbhcxmzdKlS7HPbWZkqpLUWt4oh+/7JiXFDl5e7PTpVXfPPY4bnB/8WvNPijMbuouSHKcLIQywjJMHP06w0ZCqgZ0PwScNdmNKCM9gf4oQ0a5XBzp1CARC6Ako8ZdcMjAiQsnZw3Zd4ZTlVhC5e3NcEdse0Gy0KRQerQim2Unuq8G+zGEPtTkzBG38F72/YJ4N6dG3Xk31uqbkvrsbodZo8JfcZ7eUS+4PD/oFC8f0eV4TjzgVqXwOx4PirJuM5HSP0YZuwJ5EZU5BvywQlGdaKmhVoolJqV5SdTYpuYr5ezJIU+sF1lnBNCTNZodK5eGMQjcLmc2axXPRQ9B6aLGZYk+G6HYljhN/Daubpz753nv6u/czvPimMOikF/53snc9oofwLZcfkU2wxwD7Vp2esGOTd5gpWGzintQmaMJvz12ieDO7DbQUoUnwaSmjDQSVVNXymnAvsyj3Kbhx9HZMvwQ1Xsw9tTSr149d6/i59HKuyE5yPxOcICAMK2wRbJeZDI9r8hhdYzqA/t7QoDFtWt2NEZ0uN6Z7eCAtKzhakohDIikQ+8nx6C5pBooOJmcN6fNb2shcss8AEuhq2FxktVwfXXAJscTkfr2UB0hpAxaWNWBpqf1QR6GbhezIfWkJo+zv8wrhDzerQDZHRwmM6jIakfOQSysV/Ufde5CuzcPo9d3n7Iyj/mcnsM3MMWdYFhwKKzgG+YzHLae+6U+6WiVjGNcJVLhVbzaSkwdjQjcfeyqYo3p+gMOePJhbe5PwtlHagCnGo6QqAzrAjbOxsX6AbT+6wl6myoggdzgdTIegTWOAikSSuxkhtvx8XqdsWrl/NG5Ql86dd+vmXMQzX+f4+Ksp9CDHPGBZBW4Uqtz1mVr01fHxfMGTIkhXqIKh+B/zeznC+3oakuL8CN7JWKcxdSUjP9RkGwNHPTMxamR17BasIIRgbfWQSuXRcXvzQ8bkHi+QDUCFbFZ/W1vZpJNddJRK+o9abm3hAG8CN1Puxz6tkW+z3qxtVEDLS2xsLLRdco4RCCEoltapCZObqPEzYEKFLRh79OOK9+jErnN8zHJfjHcgTEfQQfV/tMxYDe6X2fUM1cOnom73ue4o0G3LAY5C2ph5NCHZrss2JpK7QOfEeFc5NQo3t3ul0qPR6DzSxA4Zk/sXHWemcn3Wva0wKj0mfQol4L3Ah/nIRz7At3zLs3ziE/EWHnarFV4oBrIeZ1EG8qDdxgAuAWdRtqVfAW4n7QOwi06Wpi+j4l2tAwYbG4+gtcujjJKBbQjOAy3U2LmLGkc9RtKGnozJYFrMzDLeFbt1SKuJv/HcVBS+qXds2j973jL7VHsx3AKjtWdwKII1tknnuVlSu4IaXQ9EGSEqSOkg5SFq9JWwbYflVvuR8mcPQmbhZwEuVGsMgFuotIFR5K909tyvAE8BVTx/R8eBO3eKfM/3XGV9vceHP7zFX/trd7StJUUElhRk+TJHs6iPYnHudDonJjEGKqTkNdRr00HJ0wZwIUIPPEzvuY/iNRShP+V+V30+c+ahsEvO4WLPruK470kZ9TQ7qEQrAjWegmK2jyJzlzeNF1Ti7w4n3N8dn2NBrevOBZkbyQn0Lj4GlAd6prSihbKoIYR5kk8eljAMh9ZSm2Kp/8hL7ZCx5C6WWxSAc25DX4WpqPFB97h0ktM96lOoAu8D/hxKWm/gH8hAcO9egX/6T8/yzd/8Aj/4g5c5PAy/HVazkZmUneV4izKYe23/hZWBmpSfAM6jjFZuAu9o1tvH4hjPyGW0Q7sovcAV1PMaRZu1tfhJiHLMH13LnrJML6GWbVXUHLDt/t/JKJqa/vHgDnhlSvjPIF2YDpQdUN1pyIkz24yguYjWdwMpYr6vCSdAQ/YxcRBAVxQAgRAdhGgABo36MbXaMeZjILVDxpK7XFo6kV5LwJPAPkryK6MUr0GoRt5zfxqVm6hJ1FFyeGjxsY+1+MQnmrzrXUd8z/fc5MUX/aO0iSgO42QtvesjiuRuOOEGMQL1DM+jVK0PUNKZDYGK956vcvN14AzquU3DNA9ZW7sS2p8ciwPTlLzT3OD8/j2q3fbYsYr7OUTtYztAF4GDZGmk3NyC3ARIsaPfKkxPlJ5F9i4+I3eiuijv/1zniswk+GzElDCVfFnuUZE9BLAlu0i5ixAFwKZU6lGvHz+ybm9+yJTcrfXpIAJ19/MAlQP4Mv4EWOOA8EHSAJ5B6QaSX0q3a/DpT9f4ru96mmvXjvhLf+keH/rQA8rlYe+SpLJND9GD3ETJVjs4agce83tWNpxMzD3UAq7nlh21UOieBLCRKJm/yHAE+Pe71cr32x9G3Fi9zN3qMmcOtjh7cJ/aCMlLhlt0Dookj4E7qLkhiflkrKl7guQm6zDxD2TTg9DNwyyIPVV6SpngBQYGlWBXyAxRd7Y54FhphgxPQ1jBsgY0Gx1Kj4k63kOm5F48d+7EAWFy6Cy5n21UkIhlxlVfLbYCarVR6tuLjFNHUoz38LXXyvz4j1/iH/2jc3zrt27x7d++yfJyH6OkCCrK6xCl7NHMoJbxUSxG23OfhVnX4+V4BqW29NSvdaBPEbWs66O7Y7+ykgeweRjRNW3u1VbYLdW4U1th/XCbMwdb1I8Px5TBBlARUJCCY/f3++7vS0yrw5NSUBypf9Lcz/vbYUYgGyGQYflgI/QrKiKp22e80FHV9hKBIaJHoQyTV/Rmry5Vd1nhmGcQooEQUKt1H6lsb7rIlNzFarhltBevbBv1sjRQ5FAbU8sLt+STKFLwm/CzUbdsbdn89E+f4Wd/dp0/+2d3+OZNK9ObNsiodsPQG9ntdhsRYVKahQLqqS2jiP4L9FHTtl9YSH/kceUfbhxbRe5VC+yUG7yxdI61w22efPAO9c4RhvvOCsAWYEmlnrdQe9lvoAjem0UyM7DTYTkfFAmOL6+s5wWhCd8jtZi1gW7y2tuA/uEaMgAAIABJREFUEzDVpMqtPpU5uNs+QmCIVcCgUOjTeoSj0M1CpuReO3eeA81GllFDawf1kKpsonZ1L6Ak9dEd+vk/qH7f4N/9uxXqXOFlfhvITnoPryl6WV3JfX9/XytvW9TrKQAGBaYN5oJqV2g0Fj9Nb44QCEHPtOkZFoeFMjcbG5zbv8fTm29S7Sl1vedKZsjhorCFUnvfQRHpUkD1J+fHgcbe+Ki1vJz4PVTMmEHwUfucqdo+JfX8ASDlIO40lQgF6SBcU85jUUYIWF05wrIezzkkU7HozJmNE2913efXQq3US7zBh3iVCheYbXp3unhYND2W5jJub29POylr1GvfoRj5rKWlBUvllyM+hEAKg65V4I3WBX7pqffzuxde5E5tlYEwhtIu4oQ4q8AGitw/j/KpcBjPs64jsU+VGflx/Hi49bwHy+3XzHbAN3hMVGk9bWL37ydjfY1jST/s67iPf5J5UvfcGl1sHCTQFxYrK0dUq73HTh3vIVNyLxQKOLV4e8glBvznfIS/zYt8A/+CIvsp9y4ejgKsuueD+MvhQkHv3MHhpLNilFZmYydGRrj19ej533M8PLjVWOd3Lr7I7158iZuNDdpWEceYJpgy8Cxqmb+Dstw4QG33RLasj2jJbjIdoQ7U9qGXPSO0npEX5bTV8Hp9jceIBzDlBjlO9BOtp0S8QkgqloW0ChyJMsXqgNZSsGHw44DMNzQLS7OUaeMYfc411P5Ng/v8Ff47/g5P8Rz/EZPTzbvbRz++/CROcwFZqei13ttJN2nMKPYJTiQ0xHg/19Zyg7pHHVIY3Kut8Klz7+IzZ5/mdn2N/WKFvjDHqECg5oUVFKk+ADZRqnu/oNLxiH3aJU4AW0wbz1luP7QJWOj5lc/uX3rlZ9alQfB+7bUBOSEqT9cySfbBPfftwdSPDuVSn6Mzq7x15ir3GutsrB8+thK7h+xDCS234B0V5iTKjk4NtUL36KDKDv8Df54Dlvkn/Gte4/042grk9OBn8LYovuyzoC25h1jK+0H3+u8SPb3b2lpuUPe4YGBY3Kqvc6e6wnJ7l439LVaOdmh29jHl+L5pCWWNc4DKzi0Y+s3XiEPswb8YKAv+JcYnTOm2qbv8zMrILkr5SPV6BB/BwLYjom+9KUy2oVuHgW0PaDR2GdQtbooLmM0+lvl47rOPInNyL0aQ3GGcKPyGVI1tvo8/zTEVfoJ/z5t8Lc4cwx0easVGD0b8hUAyC5WlJb0pqJ9yutdR7EZ2XZScP3/6oSxzzBeOYbJZXWarskSzs8/6wTZrh1s0O/sUBv2x96fmfgYokvc+VYL95adl87AyahExSRex98JDCH7h1PaaCxKAA1HFVyHsZ5E4c0qbVO77FzZNaDYGVKsOQqh2B2Y+Z8AcyN2YIPeoFuZBKHLE/8gHAPi7/DZv8x6k9ho6PmTATsbDIL3roLu9E+u8sOuXwCEbGrWMYodGI04E+xyPAqQweFBusluqc6e+SrOzz8bBFquH2xT749tzJorkiygiHqBU6QYjAainOErfir3GOGUlJuAAwsxyDklU90R/g+qa1KWmpxmXExUqXU25tEej0cc0cw3fJDInd+vs2Yyz+8JH+EYA/j4f5w1ezrSt/Riq5UlEXwgkf0V0/cUH7fhGKLOuSyn7z0Sqr1YzaDR0XOdyPMqQwmCvVGe/WGW7skSzvc6Z/Xts7G9ScMa9KWyUx42nLj9CxUKs47rSnQzSaO5po8pmr8y0Dbx+fUnLZl13XNTE5DJoAmmxvZRYlkOr1XV92B/zDXYfZE7u9upKZHIPI7+g4z/EN3GfK/wsP8PrvC9iq8mxGNJ7skHutDuZvCY9YLan8jTq9cfb2jXHOKQwOCxUOLJLbFWXeGfpHGf27nFp5+ZUChQTpZYvoKRuB7VvXiY48MwsNAlKPzWjvxHqXxRin1lWQz1vYePdlTEhOyLCThGGw+rqPqUSkTJ1Pk7IXJdhr01HI8vyUazxOj/AB/mfeJE1Xku9/gNWU6ln3sOx2dR71P2d7UTtBF2XktzD1PLjOHMmvmdCjkcXUhhu5LtlPnfmOr/89J/gxtqTdM3pxEQWyviuhLKyN4GvCuUvP1XvjDYNnzKC4AlUi1CFvj/5aL2nKkCEWPxHTfcVre3hn/XaLvX64LG3iJ+F7Ml9Pb4aO669o4HDWW7wY7zID/ENnOXzsfswibB9/fTHWjo16r4EZrebycKjS4HZdsXTrS4v5/toOWZACBzD5NgqcGPtSX792vv48uoV5Ss/QkKe0tZASe5XgJIQvC4Et1HuW35+7KOoMz1CBUojNemGF8XITgqh9XJGJfVwJ7ME9c/o865UNjuZSe1SYlkGa2vdXGIPQeazZ3NtjTjKVc+1ZdbxMJgMuMSn+BG+lr/JN3GBP3SP+PlZ6n2cFG+Z3zUcaIVnjVKjQrOpaWwYwxVOpxfdGAFslpdzH/ccmhCCrlXgi+tX+f+ufA031p5ku9Lk2LR9naxaKJJvCcFdVIjbDt720Tg8l7epJlG+9jsTZeP2PwhZ+7tHV9u786FPl9OcH8fgtmWaPS6c38LMLeJDkTm5t1pLtEvT6lUdck5rXWYy4Cq/yw/zfr6XD3GJV2LXNfDNSR4fk9foZGTxX9AMCWA7Sl+S9N5Pnt/WCmAzjtzHPUdkCMFhocKX157klYsvcWP9KlvVFsfm9AsgUYZyl1D78PdQ6Yq77scrM/r/JPzK6iDQgl6nXNR6Uyw/dcZElw9EKZHUPgtCOKysbGLbWZtoPxqYy+xpLy+HF4qBqAsEgwHX+S1+kD/Bd/OnucwnT61f6dc0u2y1qveonY5frK/kOJpJ7v59X1nxk6Ny5NDDsVXkjeWLfOr8C9xYf5KbjQ0OCpUxlT0AQtBAkXwTpabfR0nknh4r6O3pu59UjdZ0ykWtN3F5iQw6Y+T1bcfQ0Om2X6+3qdfzcNS6mAu5Wyv+5J4GCcapw8DhGX6DH+AD/Lf8RTZ4VfvcXoLws0GYx86RbuKYjmmw5/6dpvS+E+m+HQD3eOmlywl7kCMHHNtF3ly+yKfPP8cXNq7z1eUn2C3VcUYlZfdvE+UXX0FJ5Eeo9LOH+JNhAbR1edr72jH2krMjdtXr0PJul6UICh2UAEJQLndoLbUxjNw6XhdzIXfZPM1kK8EkZSB5Dx/lx3g3f5n/hiXeybzNbGoIL6srua+ZFgZqD/JBxF74wTt/N1Byn2xhEzWtrlOr5ftqOdLDwDC5W1/ly2tP8rmzz/Da6hX2ijUcbwyOkEYJWEep600Uxd0Q17krxoMq2eiRe2TyjfDipU/s4+Z4+oZ2II3Kyd9x4HeabfdZah5j2zmxR8FcyH3lmafZDTg261GVQCtNTBqP+2X+FX+Ha3w738sybwaWS5I4ZhayHrK6+dydTocaKtzMEopqN1GSSxIcBgYD9dAHXkcpRpcxDFhdzQ3qcqQMIeibFjvlJq+vPMFnz72LVzeusVltjaWR9VBAhbJV70KNXxYv8XHxbu6wgkQRf9gSNJ6rm977mp4bnb99fdSFQ9rzmDAktdoxlcoAw8iJPQrmIhqtX7jAJnALWGU6RGEQKqi9rzR2WXQDzHyAn+ID/BQf42/wMb6bLS5n3qb/memWrVQ099y748spz6u/A7yFUllGC0WDm1XLzyXS6/sWityvnBxZX8+N6XJkCCHomTY7lSX2SnVuNTZodva5svUWK4fTsR5sQMget0WDTSp8xTzP0+VNLvTeonXs5zWvkGgvPmQCSS+QTbRofbNgssQgNaldUi53aTY6GEYehS4q5kLu9uoqVdQK+B7K17Q+cjxoDFuoKf80Ir99M/+Yb+Yf8zH+Br/Od7PtkryDkVl/shq6ulI7gNPzN2IrAU+gYg/cRql8quhH+zokaGvmFkoBOj4UNzZyqT3HfDAwTAaFMh27xFZ1mZWjba7ef4PW0XgSpTVX/9g3TJyWzYP1BnvOMzS3Kzy5+SYrTn8qa5wu/MsGzzSLEv1uEkKk994Wi8cst/awbSNXx8fAXMh91KBuHUXYb6MUsGFe3bqPNC3CnazHI/nf4K/zS/wwg4h6hKj9ijaE9UobxjGDwQDTDH/xnBA/dwM46/69h4rb3UQRfVBvJPBgSnJvo3b2r/ieubqaS+455gxXZX+3vs7d2hqNzj6Xt99iY+8+1qBPnSNAsrzc4cyGSjTrGDY761f5ZOs8xZ0OT+3c42L/bQw50NrzDDdU8yzVNIza4tSvGkHLaC4E+8QPPDY+A0hMc0CzeUSlki/y42I+kvvyeJpUC7iIGgjvoPZ3LWYPxDTIO0kdH+CneD8/yyf5Do5QWwanH0c+DA6wRbt9D9O8qnWGHPQDj03evwbDxdkN4BzKb3hy+aOWC54yX6Ks4fvAk4Ft5fvtOU4VQrBXbvCZc8+x1Nrl0vY7GEddVpoesY/DsksM1kt8tlXltZ0znNv9HJf6XYqDHtNhdBT05g/XqC3i5BVdWtdowC8a0AgOAScw1l8UscWiUlHZ3mZHtcwxC/Mh95VlhBDIiaQDBnABJcN1UIQ5OQSCqWYaWUnvHmyOeQ//AhP4LPAMejcwGzV+2MvSQxmoXSeK3WSYn3vQtTzt/n+IUtufQ72WBp5RZAMV5+vzwIuE9T8PYJNjISAEDypL7Jab1I/2OVOdJvZR2LZNf93mzZWv487uXS7sbbLWOaDWP6IQU0F+cpbmRBJfDT+jAb+fJ36bHVomZGUwgmLRZm2tj2HkxJ4Ec5tB7bXghCtepqY3GAaN8JD26iONnZsi8ALq5n2FsEGdXrt6cFBy9ABF7PrGdADOcbIgNlVUMBAb9Tzvg+s3X0bpacKJHfLQszkWC1II9qr6oaGFaXHcOseXLrzEJzee40vNM9wu1jgQFQ1/9xluaCGvTvL9dZ8GNCvdI0r42aF1vhi5XsPosLb2Ve24HDmCMbdbaK+u0bt3f+Y4eRL1iO/ByQ7t6FDTWbhmLb2PwgSuueW+DDyVQrvJsI3SdTw98pv+smJwNFsqGa1R5x57SvebrMLJRw+6+edz5FhUCCEUSbWWeL1e4XZnn8bhMSsHu6y3d6mfhIsCvzcq8B0LeAHTM5wbaSBCpZ0YfRhrVQharSPK5TwKXRqY2wxauHBeu+wayjhjE/9EDkmRhRT9FEpW/krCevYCrcpH4XcFf4gybZt2OatW9a54cJRV/vSoGbQFrVZuHZvj0YFlFejXVthcW+e1s1f5zJkn+WztSXYML0ROREy8HulbxEd//3aFF/JHH8NW+jQaBywtydwyPiXMT3KfoZafhEC5ypWAL9OiQYdKrNxyyeC3QPazBvXKmcBVVEzqe4zLz0H1JYOnM7gIvJugF1L3XelubWq37FWpcz1HY+Su15m1tVwtn+PRg2FYyArsllbYr7XY61RoPHjA+aMHLDv7J+X0wtSqgtm5xQkQ+g10RClW6FyAQqFLs5n7s6eJOe65rwHhj230uA1UafIj/CT/L/+Z1vm6ZeJC54a1UOr6XZgR6y4uvKvzdrOvo/az/a5a/Vap6N2R3oOgOILJcBwjqt/SUv6C53h0YRgmlCz2mme4df4ar5z/Y/x+4wqbhqVlw+MhyzC1CkJ7Qo0bVd606iwvmxSLudSeJuYnubdasc6rcEibKv8P38Hv8X6+k/+Ly3w1cX90pei45UyUkrzGMP7aRoT6gnGM0gusgSZp2rbeGm5wqLfnPgqd6+lQjVRjtSoolfI99xyPOoTyIrJtnEaBrfo1NnvnKW4fc337Dufl2zPPjmJFn2zO0ZPgmywRRV70vOuXlu5Qq2WTjfJxxtxmUGuE3KNI79WRqOZ3uMDf53/mn/A9HITs4y7K+s8EVlCmZHvA3US1vY4yW7lIOLEP70BRMwvj4PAgVq/C7vXBiTe83lPJA9jkeLwglDbbMBDFKt2zy3zqqSf5tdbXccO4QF8YJ9uBUxHgw03vY8Wfn/xoSfBCoPuOC7e1em2feu0wz/aWAeYmuVurK+GFfFDhCJM+A7erEoNP8TKv8jzfxK/w5/n52H3KWnofhZdKsoYi+Q5+pm9B8GT/S8QJ6mCaei9Nd2srct062I8Yjf7cuXy/PcfjjUKhRP98kdfP1rm10+Dyg1usddsUBz0snIz93YOOCYQItqLfkVE0fxK70KfRkBQKud9bFpibiGTW9X1EYXz9V/fJKXdEjf/AX+Bv87/ymuvPPasOnXZ0YKNSocaFgVLXr6EM7+4z66U6RgV4raCU+rqkN35VpZLeVfZ34++5z2phh7VItWxs5JJ7jhwgEIZFd+UiN554iVdWn+Xtyhke2CW6rnd4ELKKJ+95pfu98Afoq9YNAxr1NtVqFv5QOWCee+4j8eUh2t5znT0e4C/53+EC/xs/zvv5db6FX6DFTrKOBiBtKd9AGd6Bom8DRd9DbLq/ei6E8VVWhYLeuU67ncgmIOjcQxpE6X+eNCZHjnEIu8TxWokvLDUoH+1yZv8ezaMereNDKoxLzNknivEIXiJGTu5pCh8CqFb7NJsdhMil9qwwtztrFAoY1SrOoX5mcI8sltjh7ZF0oH74BP8Jf8DLfJif55v4FUx3lyrtwDcGRFif6rXr0fcWcI89VCS3s8SLqzxNoratd2Z3azrVZZzWJ+/ljlbwmmG/c7V8jhz+sO0S/WaJN2srmEcDVva3aB5ts9a+SZN5EPsoBNI1tBPArtCxl5cUCge0WgOsPAxdppir/rN06Ymx77qyXAU9Q68OFX6e7+Tv8nf4Ms9E7F04BIpuZ+dNiyZjj5ZdAbpsoyLumwGlosO29SL09/f2UmhtGgdE85RoNHK1fI4cs2CaFtSL3NtY5yvnnuKLZ57mS7UVDiKkXE0n5oYytJPAMeFShBCSlZUOxWIUh78ccTDXpZO1vDz1m47UvBRJ1S54h8v87/xt3s+v8WH+LU0epCq9P2zDslDQe+Flb7gISEs9P8CkHTFCnW5EvRw5HneYpgUVi93SRQ7rK9w7PKa1d4dzh3doBKSdzSSJlZA4Rnh0zdWVfarVPD/7PDBXcrfX9e3DPQjG3eGi4BN8kFd4H3+Zn+Ilfv9EVZ8EnvSuU073JZpdNq4eYIhaTa8nTrc7VVtSgj/SIvbxfi/Vkz+nHDkeJwjDZFCqc1Co0643uNc7R2v7HdZ3JWflnZNy6RP7SQ9AzHbPrVb3WVrqYxg5sc8DcyX30hMXfX8PI5HaWIKFWZgeNMeU+Wm+jzO8w3/P32eV+zPPTnPwx6lPznenZLztQbo6CQF0KEc+r7msaSSQI0eOMRgGyEKBrt3iXrnJnbUOX7p3gUu7b3MpYZSNMIgZ77ppmKyvHWMY+ZbbvDDXO22t6seXH0VZK6787NXgHS7wo/wk/4bvpJ9wTZPFutOr82AscUxyqR3097DlhOQetQd+OCLMBXK6hXzPPUeOZBBCgGFilKp0n1jhxrvexcdWnuC2XaYnTJwQV7o4sIw6fiFwBA3OntvTjpSZIx3Ml9wb0XzdPZRSTBrzcf4038s/40blZd/jaRN3OvQ8H0yq5T0k6VcnYsTpVsvAtk/7TuTI8WjBsIoMzr2Lz175Gn5n9TluFVY5NszU7IccQEq/5YJkqfUapeJR3JwyOWJiruRuziD3Wc+9zv6Mo9ExwOI3rv8Q7/7l/5BqvYsKbck9ZbU8hKnlp5/62bP56j5HjqxgFCt0z5zljy49xStrV3mrusyO1eCYZDnUD4DBlE2TpFQ8ol4zcnX8KWDO5F6Pdd5syV0/nvEoDg8l9vIyX/O7n+CJv/n9arNqpMYwZL8Inb/MLwfBLnNxW9gNCD4UhPPncx/3HDmyRqlUp7N+hS9dejd/cObdvNa4wt3iKgfEsztSsT9Gz3QoFI5ZXu5TKuXW8aeBuZK77eMKN4qgx19LWXIHODhwg9xYFht/8Tt49y/9e1b+3LdEqkN3uGY7rMNrr9c1I9Qd+6vl9VuaRjtSRji4fDkPbJEjx7xgmja0ytw8f4Evnn2WL61e4p1ykyNhRiL5LjAYmSFMY0CzcUS12s/V8aeEuZK7UalgFKKrf4Il9/ijZlIDbbdaPPljP8qz/+r/prCxkTpxR+tpum9Dsaiplu+lH+d53EBwFP7X2Grl6rscOeYNw7Lo18tsbTzFV849w2c3nudGaZVD9Ej+AHBcOhECqlVJvU6ujj9FzPXOC8PA3tiYXcbnNwNJk8nQqMkI0Alwpa4+fZ0XPvoLPPED34+hmyv11KB3D8plvXI6e+5R73rUjHBnzuRq+Rw5TgvCMOlXlniwfIab56/zmXNPc6O+xmbI9tohroW+lNh2n1arQx5d9nQx92VV8cKFWOdFi1IXBsFgELweNQoFNv7L7+DFj/4CK3/2z0wdn6TAxVDPB8OyNMm9rxemNsp1+JN7cA21Wq7Dy5HjtGGaICt19lvnuHn+WT57+Sn+oP4cW8Kf5A9FHTAwTIfl1jbF4iDfZz9lzJ3c7XXd9J/jaIylfU0+aIIk91EU1te5+uM/xvWf/AnKV6+e/L4YsqX+PahUwsse3wsO7pMEB6F+7uNoNPIJIUeORYFhmEi7RL/WYPviWV658iy/vfwC90x7wnzOBAS1aptGw8r32RcAc1ecFJ+4GBq5ze948ySLetJRo86P4vW19A0v0/ia93L33/wcN//JP4X2tA1A2ilh00OPUil8OdLfjZal3nsKYddyRDQPiWo136PLkWPRIIQA08SsVuhUK/zRapPy5i7X926xPNihgsC2DtnY6CIiJK/JkR3mPpMWzp2LdV6LrRRaHy4MHCcaxRq2zdn/+r/ixY/+Aq2Xvz6lXmRbQ7N5yN/7ewbXrj0RWnZwFC9Q0KyeOBgcTKnlZ/ddR8uQI0eO04VRrHJ8/hyfvPS1/P7yNY5KTc6dO8QwcmJfFMyd3L0odWFT+OTxKgcaZ+lDRy3vh8LqKh/4h/+A4g98P7ul8UQJi0RL733vPv/yX67yoQ9d0irf3dxMvQ+HEaX2/7+98wyI4uoa8AMsZSnSxd5QQYrEFrsSYsSu0WCPLVE/e8HeNRqV2Es0EhUrBgtGDShKogIqKhaEiBqxYkWpAoKw3w/eHVnZhV1AMWaeXzJz586dueOee849BcQ9dxGRfxOGhjLSKlQnq6YdBgYFF44R+bB8cOGubaxZ3LOc4se6KwqNghzqCkMikeDSuxdf/HWC7NatyMyzwVRc57r0QtO1FnwHXd3XfP99POvX16J8efUTyLxJLLrDoqoR5U89W/DYy5XTRkdHFO4iIiIixeWD77nrmLzV5jTZezcgo0THUVTNPS8SXV2aLv+Ju9eucW/eAgzu3S+29v6mGGkgbWwSWb26LDVr2hbe+N37JqeWWA13OZpmp6tUSYyd+RAcOuRd2kMQERFRgYWFZuHDqvjwwt1IUXNXV6AYFrGm+9u7KFKSadSrOTtTbf9eLvruIW3DRgzS0t+Tc52qpcMbWrR4xrJl9ZEUMbj0zavUIo7pLe9eq2iWL3zZU6mSuF/3IahQoeBcEyIiIv9+SkG4G2vUXi4wiq65qxYqycnZlClTcgLF6etu+CQlUe7CRWyiotFWMylM0TcIZOjpZbFmTTYNG35e5F4Asl6+TRJUUh79hW8xKGJrK2ruIiIiIiXBh99zN9BHYqmZuRZA73+lCUqS1NSSC0o7c+YsPXr05Ndft3DTzg4b719IsbRUW4PXvJWMMmV24eOTTcOGtTQe77tkxb+bAbBo5B1lfk/5gq8UNXcRERGRkqFUgor1K1VU+Fsdz/kyaBaHrU7Pz56pl5GtIOLjXzBjxizGjh3P8+fP6dWrJyNHjqBGXWfaHAtAf+7sYm0oKCeL7t3DSE72p3//ASxc+CMvXxZPOGfGKyaxKY7vgPzat9np1OvNzEyMcRcREREpCUrl11TvHeGuDgbvQXN/8qTowj0nJwc/v718801PgoKOY29vz/btW5k82RPjPBEB9Tp3omXoKZ40b1ZgfwWLv7dnjYxecPSoFePGdWbAgP5IJBIOHvydr7/uwbZtO8jMLLiymyYU1zlQ04pw1taicBcREREpCUpJc6+c75g62rsxyRrcpXDR9OpV0czyMTExDBgwGC+vZQBMmTKJ7du3Ym9vr7S9roEBnVcup8qObTw3K7onZLt2zzl61B4rKxOMjIwYO3YMfn57aNfOnbS0dNauXYeHR2/+/PMvjfuuNX8uekVMDawMLdTfc5dKtQgKshSLxoiIiIiUEKUk3ItWPMaSZ2q2VE/nfPNGM+GemvoKL69lDBgwmJiYGNzd27Jvnx89e3oUWtpQW1ub8nXsaRd4BNP5c5QuU5SPWguJJJU1a96wYIELUqlipbpKlSqycOECtm79FScnR+Li4pgyZRrDh4/g5s1baj+bUa1a1D90EEfvX9CzKVvImNQjBfNCe7C01CYw0AoLC1Gwi4iIiJQUpSLcDWordwArTJBYlEgK2twsaBs22NCrl/pFTY4dC6JHDw/8/PZibW3Nhg3rWbToB6ysNHMOlOjqYt+xI43+OESSe9tC27u4PMHfvwLNmlUrcAHh5OTE1q2bWbBgHjY2ZYmIuKTxfry2RIJpvc+of/AAdl5L0JZKgaILeNW13HNp2lSPQ4esMDYWzfEiIiIiJYmWTCYT1Ndnz57y4MG9D3LjjHv3uPXdMLITFR3lCtKldzGYk7gX0rNqUaStDQMHmjJgQBlMTNTTFB8+fMiiRYu5cOEiOjo69O/fj6FDvyuRVIsymYynUdFcnDIN6+e5Dm2rcOUWo4E0RozIon9/O/T1dTXqNyMjg23btrNjxy4yMjIwMjJkyJAh9OnTCz099ZPkvElJJT4oiHur15KdlqZxeNwMdvBKhYDv1MmAefMKFv4lQeXK1ShbtmzhDUVEREQ+IUpNuAPkZGRw/4dFJB4LUjiuSogE0BV/+hTQo2rB7uysz9SpFtjb66tsk5fMzEx8fLbj47ONzMxMXFzK7zGBAAAgAElEQVTqMnPmDGrUqK7W9ZqQlZXFLf+DxK9ey4bXTUm09mDp0krUrVuuWP0+ffqMTZu8OXz4CDk5OVSsWJFx48bg5vaFZuNLSuKx7x4e/LpFo+vGcUjp8b59pUycqFkp2KIiCncREZH/IqUq3OU83/Mbj1atQfYm13tdlXAPoxU+jCygp/zCvUwZbTw9LXB3N0IiUc/AfOHCRRYtWszDhw8xNTVl3LgxdO7cKbfs4Xvk+cOH/HXiMu17fImJiWYJYAri5s1bLF++goiISwA0aFAfT8+J1FaxPaKK10+fErdzF499fyu0bQKWzGOrwjEdHRg71ph+/YpWX6AoiMJdRETkv8hHIdwBXl27xt3ps8h68gRQLuAjqcdapqroIb/g7dTJmNGjzbGyUs8EHx//ghUrVhIUdBwtLS26dOnMmDGjMTN7/+bjD0Fw8J+sWbOOuLg4tLW16dKlM7NmzdC4n9fPn3N70WISQsNUtnlEFZayTvhbRwemTTPh669LbtGiDqJwFxER+S+iM2/evHnyP169ekVyclKpDETPxgbLLp3JuB3L6/v3lbZJwJKztFZyRlGw29rqsmiRBd2762NqWvgec05ODnv37mPy5Klcvx5DpUqVWLlyOT17enxSZQxr1KhOnz690Nc3ICrqGteuRfHHH4FYW1tRvXp1pZYJT8/JXL8eQ8OGDQSHPomREdbt3DFv1ozXz56R8TAu33WPqMoF3IBcB8Y5c8rQqdOHFewApqZmGBl9OEuBiIiIyMfAR+WmrGNsTI2Vyyk/aiRaOvm1banSXG9vBZK+vhZDh5qyZEk2K1YMZ82adUraKxIbe4ehQ4fj5bWMzMxMhg0bip+fLy4udYvzKB81Awd+i7//fjp27EBcXBzTps1g8ODviIqKUmh3+PARTp06ze3bt5UWpDFxcsRxzSoc1qzEqHZthXNJWABgZqbF2rVmuLtL398DiSgwc+ZMJBLJJ7UwLSlevXqFRCJBIpEQFBRU+AWlSFhYmDDWp0+flvZwio27uzsSiYRx48YpPT5q1KhSGtmnyUcl3OXYDB5IzQ3rkZibKxzXz5el7q1gb9pUysGDFRk+3BwbGyuSk5PYu3cfly5dVnqPjIwM1qxZR58+/bh6NZJGjRri5+fLsGHfa+RR/m/FwsKC+fPncvDgAdzcviAqKprBg79nzpx5vHz5klevXrF69Vr09PSYMGF8gX2ZN23KZ7t3UHvRD0ir5zocpmOMpaU2v/xijrPzp/8+Pyays7PJzs7mzZvip1f+1JDJZML7ySmJus/vkbxjzbN7+q9F/izZ7xTUUnVcpHh8tGW4jOvXw+Hgfv4ZMZq0v/8GlBePKVtWh7lzrWjc+K1maGhoyPTp05gwwZOFCxfx22++6Oq+DScLCQllyRIvnj59iqWlJRMnjsddjZjzT5FKlSri5bWEiIhLLF68lICAQE6dOk2tWjVJTExk4MABakcIWLu3xdq9LXE7dhJzIge/NZaYmn6U60cRkY8eCwsLOnbsCPBJW2GaNGmCgYEBdet+utbS0uCjFe6QW/vdbvtWHixbQbzfXqQ56cI5iUSLbt1MmDZNeRKZli1b0KlTR44c+YONGzcxZswonjx5ytKlXoSEhKKtrU3Pnh6MHDlCIRf8f5UGDeqzZ88u9u/3Z9OmTVy5chU9PT0cHR3Uuv7kyVN89pkLZmZmVPy2P999+54HLCLyiePg4MCRI0dKexjvnYULF5b2ED5J/hVqVeVJE6mx/CcMDHKHW6WKLn/+WUWlYJczfvw4LCws2LlzF+vXb8DDoxchIaFCkZcpUyaJgj0PEomEXr08OHBgH7179yI7O5spU6Yxdux47t69q/K6tLQ0Fi5cxJgx43j9uuQL/Ii8f9LT0wtvpCHZ2dlF7jc9PV1jU3RWVhYZGRlFup8yZDLZe3kvkPtusrKySrTPzMzMIpnvs7Oz38v/2/fRZ1HnOCcnp8jvW53rcnJySEtLK1L/QKHPlJGRofHc/iuEO4BpyxbU/cOfxfNNOHCgEoaGhQ/dzMyU3r17YW1txdatPujo6DB5csFFXj51ZDJZoR+JqakpkyZN5LffdtOgQX3OnDlLr159Wb58BUlJ+aMpvL1/JTExievXY5g7d/4nsT/4qeLq6oqrqysvX74kIiKCrl27YmxsjKGhISYmJnTv3p3Ll5X7qahDamoqCxcuxMnJCT09PQwNDTE0NKR169Zs3ry5wH3VI0eO0LFjRywsLDA0NERfX5+mTZuyc+dOpe2zs7PZtWsX7du3x9zcHD09PaRSKcbGxri5ubF7926Nx//mzRs2btxIkyZN0NfXx9DQEGNjYzp27Miff/6pcX/w9p0/efKEI0eO0LhxY/T19ZFKpdSsWZMFCxaQnJy/2sS1a9cU5kvOlStXcHV1pXfv3uTk5LB8+XJsbW0xMDDA0NCQhg0b4uPjU6BPQUJCAjNmzKB27dro6elhYGBAuXLlGDJkCP/880+RnhPg0qVLeHh4YGlpiYGBAZaWlowcObLAFNienp64urqyYsWKfOeKM8fp6emsXLkSR0dHpFIp+vr6ODo6sn79enJycujatSuurq78/b9tX4Dz58/j6urK999/T1paGh4euRFTZcqUYeDAgaSmpgptQ0ND6du3L5UqVUJXVxcjIyN0dXWpV68eixcvVirsx48fj6urK6dOneLhw4cMGTIEc3NzpFIppqamDBgwgMePHwO5zp+TJ0+mfPnySKVSpFIp7dq149q1a2rNxUcT517SJCYmsWbNWg4fPoJMJqNt26+YOHGCxrngPxWys7M5evQYW7b4sHTpYmrWtFX72pMnT7Fy5Wri4uIwNS3D8OHD+OabHmhra3Pv3n169eqj4Lw1ZMggRo4c8T4eQ2P+i3Hu06ZNY+nSpejo6ORzqpOHO27YsIGxY8eSlZWFlpYWWlpagjDQ19fn+PHjtGzZUqP7pqWl0bJlSy5dyk2WZGxsjJmZGU+fPhW0ny5dunDw4EGFsMusrCxGjBjB5s2bgVwLUrly5RSu+/bbb9m+fbvCvbp27cqJEycA0NHRwcrKisTERAWN0dPTk2XLlgl/p6amYmJiAkBgYCDt2rUTziUkJNClSxdCQ0MBkEqlWFlZ8eTJE2Ec06dP58cff9TovcifdcqUKXh5eaGtrY2TkxPp6encupVb3MnJyYmgoCDKly8vXBcaGirMwePHjylXLjdj5cmTJ/niiy+oUqUKzZs3x9fXF0NDQ+rUqUNcXBxP/pcrpHfv3mzfvl3B3wjg6tWrdOjQgUePHgFgZmaGoaEhjx8/RiaTIZVK2b17N926ddPoOXfv3s2gQYOEb6ps2bLCfNSoUQNjY2MiIyMZNWoU69a9jWRq06YNwcHBDB8+nI0bNwrHizrHAImJiXTq1ImwsNxcHPLFqzzqoGfPnhw/fpyEhATOnj1LkyZNADh69Cjt27fHxcUFBwcHfH19hT6rVKnC3bt30dLSYubMmQrfgaWlJVlZWQqLtCZNmhASEqIQaSQX7PPnz2fNmjW8ePECbW1tBaXL1taW06dP4+7uLkQw6ejoCAtjU1NTrly5QrVq1Qqcj3+N5q4uMpmMQ4cO06OHB4cOHaZixYps2LCeH39cqFSwf+wesyVBamoqv/22l61bt3HvnuaLN1fX1uzdu4exY8fw5k02Xl7L6N9/ABERl/Dy+imfANmyxYejR4+V1PBF3gNjxoyhVq1aBAYGkpKSQlpaGtu2bcPIyIjXr18zefJkjftcsWIFly5dwsbGhlOnTpGSksKDBw9ISkpi1qxZABw6dIj9+/crXLd06VJBsM+YMYMXL14I102ZMgWAHTt2sGXL2/THCxcu5MSJE0gkEjZt2kRaWhpPnjwhPT2d8+fP06BBA2FMDx8+LHTsMpmMPn36EBoairGxMT4+PiQlJXH//n1evHjBnDlz0NLSYvHixXh7e2v8bgC8vLxwdnbm77//5urVq9y8eZO//voLS0tLoqKiGDRokEb93b9/H19fXzw8PIiLi+PixYvExcWxdu1atLW12bNnTz6hFx8fT8eOHXn06BG1a9fm9OnTJCQkEBcXx927d+nWrRvp6en06dNHbQ0R4MaNG4Jgb9OmDbGxsTx58oTExESWL1/OvXv3iIyM1Oj5ijPHo0aNIiwsDKlUyubNm0lMTOTJkyfcvHmTL774Aj8/PxISEgp8Hl9fX9q2bYu3tzdz585l4sSJaGlpERQUJAj2UaNGER8fT3x8vPC99O3bF4Bz587h5+entP8FCxagpaWFn58faWlpJCcnC74Ht2/fxsXFhXv37vHLL7/w8uVLMjIy8PHxQSKRkJSUxKpVqwp9f5+UcI+NvcP33w9jwYKFpKenCzHrjRo1zNc2NTWVzZu34OHRqxRG+mExNjamb9/eeHj0KHIfenp6DBjQH3//fXTr1pWbN28xfPgIwsPP52urpaXFvHkLiIxU/8fhfaGjJF+CCFhZWREaGkq7du0wMjJCX1+fAQMGMG3aNADCw8NJfKeoU2EEBwcDMHToUFq1aiUcl0ql/PDDDzRv3hypVCpo9pCrLct/1KZMmcKiRYsoU6aMcN3SpUsFDXL16tVArhVKLmA9PT0ZOnSoEL6qpaVFo0aN2Lo1N/WxTCbj4sWLhY79jz/+4Nix3AXp5s2bGThwoKDxmpiYMH/+fCZNmgTk5hEoyr6vmZkZx44dw87OTjjm6urKnj17AAgKCuLkyZMa9dmsWTN8fX0xMzMDcktLjx49munTpwPw448/kpKSIrRfsmQJcXFxGBsbExgYqGCdqVKlCvv376dJkyZkZGQwc+ZMtccxZ84csrKysLe358iRI4JWaWBgwMSJE1m8eLFGz1WcOb5y5Ypgrt+6dStDhgwR5lK+oHV2di7w/hkZGbi5uREYGMj333/PvHnzhPj8DRs2ALma+bp167C0fKs0Vq5cGR8fH8HKcv58/t9H+fP5+/vj4eGBvr4+xsbGzJw5E0dHRyB3EbZ9+3aGDRuGubk5EomEgQMH8s033wBw5syZQt+hgnB/37nTNSU7O5upU6fz6pWy5DVv0TRm/e7de/z2mx/bt+8gMbF0MvKVBgYGxU8kY2FhwaxZM9i+3UdlPgCZTMabN28YN24C91VkG/xQiMJdOb1798b8nTwSkCts5Dz/X6VCdZGHawUGBirdYw0KCuLVq1cK5syAgABev36NRCIRtPR3mT59OlOnTmXChAnIZDJycnLYs2cPv/zyC6NHj1Z6jYODgzD3efdJVSE3+derV4+ePXsqbSO3Zjx//pzjx48X2ue7DB8+XMHsLqdNmzZ89tlnAPmsGoUxe/Zspd/4hAkTkEgkpKamKiTr2bFjB5C7AKtRo0a+67S1tfH09ARyFzzKfGzeJTMzk4CAAADGjRuHvn7+4lxjx44VFiDqUJw53rdvH5AryHv1yq+86evrq7VwGTZsmNIy2zNnzmT79u1KfQQAdHV1hQWcqm/PwcGBFi1a5Dsu/w6srKzo2rVrvvNOTk4AvHhRePnzjzoUbu3a9QQH/4mNTVkmTpygtM2FCxeZN2+BRjHr1apV5bvvhnDjxk2hmMp/AW3tklu8RUREkJmZWWCblJQURo0ay65d2wVtTOTjQJXmklfgy/eZZTJZgQtsY2NjIHcf8+jRo0RERFC1alXatWuHu7s77u7uVK5cGUPD/OmHw8PDgdwfu7waUF4+//xzPv/8c+FvXV1dvvzyS7788kuFdm/evCE2NparV68SFhYm7GGqkxzl3LlzAFSrVq1ATb9s2bI8e/aMCxcu0Llz50L7zUubNm1UnmvevDlXrlzh7Nmzaveno6ND69bK0nHn7gHb2dkRHR3N2bNn6dGjB7GxsTx79kw4r+o55XvEOTk5RERE4ObmVuA4oqKiBCHWvHlzpW3kzpGBgYFqPVtx5liu1RbkM1LYMwHUr19f6fGGDRvSsKGiNVgmkxEXF0dUVBTnzp0jJiYm37jyour/n3wBVLNmTaXKtjyVtjrfdJGE+6lTpzh6NIhnz54jkejw5ZdudOnSuUQTLZw4EczOnbsA8PX9jU6dOilUMctb5KWoMeufcmKI90lCQgLe3pvR0tIq1DP+8ePHjB8/kU2bNipNYStSOsidyt4lrxYo90e5ceMGderUUdmX/BsYPHgwkZGRrF69mtTUVPbt2ydoUc7Oznh4eDBs2DBsbGyEa+UOThUqVND4GVJSUtiyZQvHjh0jJiaG+/fvK/3RUyd6Q+6E5u/vj7+/f6Hti5IOtmrVqirPyc24mvRrY2ODVKraGleuXDmio6OFPuVe2ACzZs0S/CAKQp3xyN8dFDyPBT2/Kooyx/LnlL9TZVhbW6Orq1tgmJuVlZXKczk5ORw4cAA/Pz+io6OJjY1VulWj6tszNS24GJky64emFOnXtnXr1ty9e4/jx08webInPXt6FHsgebl9O5a5c+cLf8tkMhYtWsy2bVvIyclh3779/PzzRlJTU7G3t2fWrOlFCm1TZnIRKZx1637WKKYzMvIaCxf+yLx5czS6T3Z2Nnv2+BESEkJW1htMTU1p1aoF3brlN1eJaMb72oJbuXIlQ4YMYefOnRw+fJjr168DuWFd165d46effuLAgQOCFiuPI9d0++TYsWP07t1bwS/A1NQUJycnGjdujLu7O126dFEr1jpvzLmjoyOVKlUq9JqaNWtqNF4gn9d6XoryW1RQf8r6zPsuWrZsqdSS8i4WFhaFtskrIAuaR00FVlHnWD6ewrTbwhZ9qt7vnTt36Nixo/BtQ66i6OLiQsOGDXFzc2Pjxo2EhIRo3HdJUmRVKjb2Djo6OnTo0L4kx0NqaioTJ07KN2HR0dFs2LCRsLCzxMTEYGxszOTJk/Dw6CEK6Q/I9evX+f33Qxpfd+TIH1SpUoUhQwapfY2Ojg79+vUhKiqK48dPsHmz9ydd0OdjpXLlyhw+fFjt9s7OzixdupSlS5fy6NEjjh8/jr+/P4cPHyYlJYVBgwZx584ddHV1hW2AguKg3+Xp06f07NmT5ORkbG1tmTdvHq1bt6Zy5cpCm+zs7EK3jeTo6OhQpkwZkpOT6devn+CMVtK8fPlSZfiSXEMuSNtU1l9BvNtn3i2XpUuX0rRpU7XvVRB5LTHPnz9XubeuiYNmcea4XLly3L59Wwj1U8azZ8+KXHuhd+/eXL9+HWNjY2bPnk3nzp2pXbu2wsImb0hfaVEk4S6TyQgPP89nn7moNO8Vtd8pU6YTF5e/hCjA5s253pFt236Fp+cElXt0Iu8PPT19Ro0awT//3Ob27Vju3LmjdsGHn3/eQNWqVfjyy8L3u/Jy8+YtqlWrJgr2UsLIyIhOnToV2CYrK4tLly4RExND+/bthdwCFSpUYODAgQwcOJD169czevRo4uLiuHHjBk5OTsLeY1RUFFlZWUo1msjISJo2bUr16tU5dOgQAQEBQjxxQEAAtd+pSAi5YWJyzUwds3zdunUJDQ0lJCSkQOG+e/duypcvj5OTE9bW1oX2m5dLly6p3MeV+x68u5dbECkpKfzzzz9KrQjJycnCvq+8T3t7e/T09MjMzCQkJESlcH/+/DknTpz43/85l0I1/Dp16ggm7vDwcGrVqqW0nSbJkfbu3VvkOW7atClhYWGEhIQgk8mUWqlOnz6t9ljyEhUVJXjAr1ixgqFDhyptJ3ckLs2EXkVSeW/cuEF8fDzNmjUr0cF4e29WGTogp2nTpvz440JRsJcStrY1GDx4EIsW/cCePbsICzvN7t07WbToB4YMGUyrVi2VegTLmT17LtHRf6s8/y5xcY+4d+8erVrl9ywV+XjIyMigRYsWDBo0SGVsr4uLi/BveaRFhw4dgFxBpcpTfP/+/UKMc5UqVYQ9VV1dXWxtlSdjyhsTr0760C5dugC5pmBV8diHDx+mX79+uLm5ceHChUL7fJdff/1V6Y/9xYsXBeHevXt3jfrctGmTyuOZmZkYGBgI71gqlQrbIT///LNKJ8klS5bQt29f3Nzc1Eq/a2pqqtCvsmcMDw/XKM69OHM8YMAAAO7evStEB+QlKytL49C8d8cFqNwKDg4OFvKJlHSKYU0oknAPC8v1RmzevOSEe3j4eby9fy203dmzZ7l6VbNkCCLvD4lEQu3atXB3b8vIkf/HihXLOHz4IKGhp9i6dTOzZs2gb98+NGrUEDMzMzIzMxk/fqKCE05BhIbmZpgqyW9NpOQxMTERQndmz56dT/jJ09JCboiSXNt0cHAQ4tjHjBkjeK3LCQoKYsmSJcL53O8tV4vLyspS+uPt7e0tXCO/d2EMGzaM8uXLk5OTQ7du3fIJooiICIYMGQLkaqrt22u+HRkeHs748eMVzME3b94UQu9at27NV199pVGfK1euzJeC9dChQ8yePRuAqVOnKlhX5aFz9+7do3v37sTHxytc6+PjIyRIGThwoNpK1Pz589HW1ubs2bOMHj1awVx+69YtIbGLuhRnjp2dnQUBP2zYMNavXy/4CMXExNChQweFXAuakNcqsWXLlnwLmTNnztC/f3+l4/rQFMksf+bMWWxsbDRKYVoQDx8+ZMqUaWqbMObP/4G9e/eIMcwakpmZu4rMylJvL7I4GBgY4OzshLOzk8LxpKQkbt68RWzsHbX2F8PCwjAyMlLQ+kQ+Tn766SdOnTpFfHw8jRs3pkmTJtSoUYOkpCTOnDnDy5cv0dPTY+PGjQp+Mps2beLGjRtcv36d5s2b07x5c6pWrcqtW7cEjbZ169ZCgh0PDw8WLFhAbGwsgwcPxtfXFycnJ1JSUjh58iS3bt2ifv36vHnzhsjISGJjYwsdu6mpKfv27aNDhw7cuXOH+vXrC+O4e/cuoaGhyGQyypYty++//14kh8SyZcuyZs0afv/9d1q0aMHLly8JDg4mMzOTatWqKWii6mJhYUG/fv1YsWIFDg4O3Lp1S1ggffXVV/m2GJo0acKqVasYO3YsQUFBVK9eHVdXV0xMTIiMjCQ6OhrIDWlTFcetjEaNGuHl5cWkSZP4+eefOXz4MC1btiQxMZHg4GCys7Np0KABERERavVX3Dlev349t2/fJiwsjNGjRzNu3DikUqkgbLt3786BAwcANIriqVatGr1792bPnj34+Phw+fJlIeTu8uXLhIWFYW1tTYcOHQgICFDr23tfaKy5JyUlERUVTfPmJeOMkZGRgafn5EIT1eTl/v377NnzW4nc/7+APCWvv/9BALy9twjWlw+NqakpjRo1pFmzwr+fjIwMIiIu0bjx52IY3b+A6tWrExYWRvv27dHS0uLs2bPs2rWLI0eOkJCQQKtWrQgJCckXY2xtbU1YWBgjRoxAX1+fkJAQdu7cSXh4OIaGhkyePJmjR48K3taGhoYEBwcL/QQFBbFixQq8vb1JSUlhyZIlnDlzRjBxHzp0SC3nqWbNmnH+/Hm+/vprtLS0OH36NDt27CAkJAQtLS06depEaGioyj3lwli+fDnDhw8nLi6OXbt2ERgYiEwm49tvv+XcuXNKk8oURmBgIG5ubkRERLBjxw7OnTuHubk5c+bMISAgQKmH+ujRozl27BiNGjUiNTWVI0eO4OvrS3R0NEZGRowePZqAgAC1vOnz4unpyb59+7Czs+PBgwfs3r2bgIAArKysOHjwoJC/XR2KO8fGxsb89ddfrFq1igYNGiCVSpHJZDRv3px9+/bxww8/CG01DYnesmULw4YNQ1dXl6tXr7Ju3TrWrVvH5cuXGT58OJGRkUJCpujoaG7cuKFR/yWFQuGY58+fcf/+3QIvOHYsiJkzZ7N8uZfKBAqaMGPGLIKCCs/29G5MtYGBAf7++zR2ann33qGhYZw+/VeR+xB5f4SGhjF+/ETmzJlFly6aJQyRY2tbW6PMWCIlQ0JCAtHR0SQlJVGmTBns7OzUKuCTnp7O1atXefHiBebm5tSrV6/AWO4HDx4QExNDdnY2lSpVwtHRsUTC/JKTk7l27RqJiYmYmJjg7OysNKOfOsjHs3fvXr755hueP39OZGQk+vr6ODg4qBVulhd54RjIdX6zsrLi9u3b/PPPP1hbW+Pg4KC2wIqLi+PmzZukpaVhbW1N3bp1i53/Iycnhxs3bnD//n0sLCyoX79+says72OOz507JzgUPn36tEjFpRITE7l69SqpqalYW1vj4uJSIvHpJYXG6lBY2Bl0dXVp1KhRsW++a5evUsGuLDmKjo4Odna1cXR0xM6uNnXq1NH4P4WcFy9eEBz8J+Hh50lLS2PNmnW4u7fFzi6/R6ZI6XHmzFm0tbVL3HFT5P1jbm6uNL1mYUilUo00vMqVKyuER5UUZcqUUZltrbhYW1vny7xWXGxtbVU6nhVExYoVqVixYomORVtbmzp16hSY+EgTNJ3j/fv3s2nTJlxcXPDy8lLaRl75z8LCoshVI83MzEpEwX1faCTcs7OzOXv2HPXqfaaxyeZdIiIusWrVaqXntLW1sbWtgYODgyDQa9euVWKmWUtLS3r29Cjx5DsiJUtYWBguLnX/s2V6RURENMfc3JygoCCCgoLo2LFjPgF8584doVre119/XRpD/CBoJC3Dw8+TkJDAZ58Vz7np6dNnTJ06XYhBtLW1xd7eDnt7OxwdHbG3t/sgGXxEPh7WrFlHdnY2EybkVl46f/4CcXGPPpq68CIiIv8OWrduTd26dYmMjKRdu3Z8++23NGjQAC0tLaKjo9m2bRtJSUnY2NgoFDH61FBLuMfHxxMc/Cc+PrmVk06fDqVcuXJF3gcNCgpi8OCBODo6YG9vL+Z4/4/z7Nkztm/fQa1aueFRGRkZLFu2nFatWtK2rWahQSIiIv9tdHR0CAwMpF+/fpw8eRJvb2+hfKycFi1asGPHjiKb5P8NaOxQJyJS0uTk5DB8+AhMTExwc/uCvXv34eTkxPjxY4ttwREd6kRKmxMnTgC5WfBKQpgkJCQIIVv6LlsAAABzSURBVGWtW7cWrZwFcPnyZU6ePMnDhw/R09OjQoUKuLq6FlrP/VNAQbinpb3SKP+viEhJkZOTw5UrV8nMfI2dnV2RPZPfxcLCUrQMiYiI/OdQEO4iIiIiIiIi/37EcmoiIiIiIiKfGKJwFxERERER+cT4fxeKdIIBJ86YAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Screenshot from 2023-09-14 05-55-57.png](attachment:dac9ce3a-5960-445f-a5d9-f13e0ac44c80.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## LaS Specification" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are some constraints in the construction of these diagrams, e.g., matching colors at intersection of two pipes, but we are not going to introduce them here.\n", + "After all, the purpose of a synthesizer is to let a computer consider those constraints instead of humans.\n", + "The reader can refer to our paper, or even to the code in this repo for these constraints later on.\n", + "What we are going to detail now is how to specify a problem to the compiler, so that the reader can start using the software." + ] + }, + { + "attachments": { + "4fef384b-1f6b-4712-8dcf-8e3f7b973a2f.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAENCAYAAAAomu7aAAAABHNCSVQICAgIfAhkiAAAABl0RVh0U29mdHdhcmUAZ25vbWUtc2NyZWVuc2hvdO8Dvz4AACAASURBVHic7N15XJTl+vjxzwwM+yqLIKKIokQaejQXcEPE3MqFVHAJ9ZhLR7E0S+249cPMY6VmVu65ZKZgrpngvuZSiimCGyggIiAIyDYw8/uD7zw5Acq+6P1+vXgFM/fzPNeMzcw193LdMrVarUYQBEEQBKEOkJfnIJHrCMKLS7y+BUGozcqVuBw6dIjp06fz+PHjyo5HEIQqsmnTJrp06ULnzp0ZM2ZMie1iYmKYMGECUVFR1RidIAhC6cjKO1R06NAhJk2aRFhYGE5OTpUcliAIVaFly5Zcu3YNd3d3Ll++XGK7+Ph4unbtyrfffssbb7xRjREKgiA8W7l6XAB69uyJp6cnffr0ITMzszJjEgShihgYGJSqnYODA3PmzGHQoEFcuXKliqMSBEEovecmLtnZ2SXeN378eCIjI5k9e3alBiUIQvVQq9Xk5eUVe5+fnx8KhYJ33nkHlUpVzZEJgiAUr9jE5erVqwwfPhw/Pz9cXV2xtLRk3rx5RSbtderUCQsLC7777jvi4uKqJWBBECpOrVbz+eefY2VlhaGhId7e3ty9e1erjYGBAV5eXoSHh7Njx44ailQQBEFbkcTlzp07dOrUifT0dLZt28aZM2dIS0vj008/Zc2aNVptZTIZLVq0ID8/nx9//LHaghYEoWJu3LhB48aNuXXrFt27d+fIkSP4+PiQm5ur1c7V1RWAH374oQaiFARBKKpI4nLo0CEyMzPZv38/9+7do0GDBtJ958+fL3KC+vXrA3Dy5MkqDFMQhMrUokUL/P39qVevHlOmTAHg5s2bhISEaLXTvL7PnDkjhosEQagVdP95w5AhQ/jjjz+wtLSkQYMG/PLLL9J9//w2BmBiYgLA7du3qzBMQRCqirOzs/T777//zvDhw6W/Na/v9PR0kpKSpERGEAShphTpcbG0tGTVqlV06dKFDh068ODBA+m+4lZO6+oW5j5iZZEg1E2GhobS7/+cjK95fYN4jQuCUDsUSVzUajVjxoyhf//+vP/++7z33nvPPIFSqQTAzMysaiIUBKFKPb2qqFGjRlr3aV7fIF7jgiDUDkUSl3Xr1vHDDz+go6PDiBEjnnuC9PR04O9JfIIg1H5Pz1dJTk6Wfn/rrbe02mle31ZWVtjY2FRPcIIgCM9QZI7LH3/8AUBBQQFjx45FLpejo6NDQUEBDx8+JDw8HHd3d6l9QkICAD169KimkAVBqKjExERUKhVyuZzTp08DMHz4cK3XNvz9+vby8qr2GAVBEIpTJHEZOXIkW7duJT09nfj4eFauXElBQQGbNm3i0qVLpKWlSW0LCgqIiorC2NgYf3//ag1cEISyk8lk/Pvf/+bhw4cMHz6ctm3b8tVXXzF69Gi+++67Iu2vXbsGwLhx46o7VEEQhGIVu1dRTk4O2dnZWFpaSrc9fPgQCwsL9PT0pNuOHDmCt7c3QUFBfPLJJ9UTsSAI5RYTEyPtLXbv3j3i4uJo1qwZtra2RdpmZmZSv359PDw8CAsLq+ZIBUEQilfuTRYBBg4cyOPHjwkLC9NaffAiUqvVFBQU1HQYwlM00zTk5d5xq+7Q0dFBJpNV6zWXLVvG4sWLuXjxIg4ODtV6bUEQhJKUO9tYtWoVWVlZ7Nmz54VPWqBwWCw8/M+aDkN4SkxMPrm5alq0UNR0KFXutddao1DoPb9hJblw4QIbNmzg6NGjImkRBKFWKVfGcejQIXR0dDh48GC1fwsUBKFqxcTEcPDgQU6dOoWpqWlNhyMIgqClQkNFL5P8/HzR41LLiB4XQRCEl8+LP8YjCAIAv/zyC4MHD67pMARBqEUCAwNZvnx5TYdRJi/BtEZBEAAuXrxY0yEIglDLfP3117z77rs1HUaZiB4XQXjJ7Nu3j379+tV0GIIg1LCkpCS6du3K2rVrUalUrF27tk7MWxU9LoIgCILwErKxseHEiRO4urqyfv16xo0bV+xmyrWN6HERXiixsfrs2WNDcHB9cnML8/Ju3VLp3TuZbt0Kqz7/9psVn33WhPx8Gbq6atq1S2fEiATats2oydAFQRCqnSZ56dq1K+vXrweo9T0vInERXiiOjrn85z9x3LhhxOnTFnTtmsaiRbe02nTv/oilSxvh7JzNzJkxNG6cU0PRCoIg1Ly6lryIxEV4IT14oA/AgAEPtW5PS9Nl1qxmDByYxIQJcS9F1V1BEITnKS55WbduXQ1HVTzxti28cB490uXOHUP09dV06JAu3X71qjFTprRg5MgEJk0SSYsgCMLT/jnn5b333qvpkIpV7h4XpVLJpUuXuHjxInFxcWRmZpKRkUFubm5lxlcnGRsbY2hoiKmpCc7Ozri4NMPY2Kimw3ppnD5tgVoN7ds/xsCgcEOjrVvtOH7ckiVLbmJnl1fDEQqCINROmuTFw8ND2jH+22+/reGotJU5cUlKSiI4OJjff/8dpVIp3W5mZoa1tTVGRi/3B3R+fj6PHz8mPT2d5ORkoqNjOHz4CA0bOtC5sycODg1qOsQX3qlTFgB07ZpKRoYOn37qjL19LitXRqKrW/tnzAuCINQkGxsbTp48SZcuXWpl8lLqxCUjI4Pt27dz+PBhAJydnWnVqhWvvPIKjo6OVRZgXfbo0SMiIyO5fv06f/75J9u2badx40Z0794Va2vrmg7vhZSfD+fOmSOTgZWVkgkTXuHdd+Px8kqt6dAEQRDqDDs7u1qbvJQqcYmJiWHJkiWkpqZibW3N22+/TatWrao6tjqvXr16eHh44OHhwZtvvslPP/3EjRs32LLlJ7y9vWjVqmVNh/jCCQ83JTNTB2trJbNmuaCjo8bV9UlNhyUIglDn1Nbk5bnTE48cOcLs2bNJTU2lS5cuLFiwQCQt5WBra8vUqVMJCAigoKCA0NBD/PbbwZoO64WjGSby9n7EoEEPycqS89lnTWo4KqEy5ebmkpycXNNh1GlxcXFER0ejUqlqOhShltMkL82aNeO7776rFRN2n5m4nD9/XlrL/fbbb+Pn51ddcb2w2rdvz4cffoihoSHXrl3n119/q+mQXiinTxcmLl26pPHee7HY2+dx9qw5+/eLobkXxejRo2ncuDE5OVVff2f37t3IZLJifywtLSt07pSUFLKysiop0tI5c+YMbm5uODo64uzsTKNGjQgJCanWGIS6p7YlLyUmLtHR0axcuRKAd955By8vr2oL6kXXpEkTZsyYgb6+PtevR/Lnn5dqOqQXwv37ety5Y4iRkYq2bdMxMlIxa1Y0AF991YhHj0TZohfBuHHjmD9/PgYGBlV+rddff53g4GCCg4MZOnQoABs3biQ4OJiNGzdW6Nx2dnbMmzevMsIslfv379OnTx+cnZ25fPkyUVFR9O/fn6FDh3L+/Plqi0Oom2pT8lJs4pKfn8/XX3+NUqnkjTfeoH379tUd1wuvfv36TJw4EZlMxrFjJ0hNTavpkOo8zTBRhw6PUSgKVw95eDymT58UHj/W5X//c6rB6Gq/goICsrOzpb+f/r041d1boOHt7c2MGTOe206pVLJjxw7u3LlT7ms1aNAAX19ffH19cXNzA2DAgAH4+vry1ltvlXicWq2uttIQpd1bZvXq1SiVSjZu3Ii7uzvNmzdn5cqVODk5sXTp0iqOUngR1JbkpdjE5eDBgyQmJtKyZUvefPPN6o7ppdG8eXP8/f1Rq9UcPnykpsOp8zTDRJ07ayeB06ffxcIin0OH6nH8uEVNhFar2dnZMWnSJOzs7DA2NiYwMJCePXtiZGSEq6sr8fHxUtvMzEymTZuGra0txsbGmJubM27cOFJT/161FRERgYODQ5HkYs+ePdjY2LB69eoyxzhz5kxsbGykHzs7u+ces3r1aoYOHcrAgQPLfL2ySk9Px8bGhp9//pmpU6diamqKkZER7dq1488//5Ta7d27V3oM+fn5rFy5Uvq7adOm5br2wIEDmTNnjta/U3HOnj1L8+bNsbKykm5Tq9U4ODhw5syZcl1bePnUhuSlSOKSmZlJSEgICoWCgICAWrtXwYvC09OTpk2bcvfuPaKjo2s6nDorO1vOxYvmAHTqpJ24WFjkM2lSHACLFjUhLU0MGT0tJSWFa9eusX37dnr37s2KFSvo0aMHv/zyC3fv3tUq+z1+/Hg2bdrE8uXLuXLlCkuXLmXbtm2MGzdOauPm5sZHH33El19+SWhoKFA4TDF27Fjat2/Pu+++W+YY+/fvT1BQEEFBQbRu3ZqUlJTnHuPu7o6joyPe3t5lvl5ZqdVqkpOTmTx5Mmq1ml27drF582YSExPx8/MjPz8fgA4dOrBt2za2bduGXC6nf//+0t+aMutl1apVK5YvX46TkxN+fn6cPn262HbJyclaZRji4+Pp3r07J0+eFJOdhTKp6eSlyDv40aNHycnJwdvb+6UvJlddevfuzcqVK7l48RJNmogVMOVx8KAVubkyTE0LsLVVFrm/TZvCnZ+TkxXMnt2MZcui0NMTxeg0+vXrh5eXF5GRkRw4cIDAwEBMTAorP9+9e1dq5+joyJo1axg0aBBQ+KEZERHB0qVLycvLQ09PD4CpU6dy7NgxRo8eTXh4OKNGjcLQ0JBNmzaV68tQ586d6dy5MwC3bt3i2LFjpTrm3r17Zb5WRQwbNoyvv/5a+jsjI4OJEydy69YtXF1dsbW1lRIpuVxO48aNK5xYBQUFMXv2bHbu3MmmTZvo2rUrrVu3ZsqUKfj5+UlzgVQqlfTcHzlyBH9/fzp06EBAQAA///xzhWIQXj41uVS6SI/LxYsXgcKeAKF6uLm5YW5uTmxsrNgyoYwiIsz56qtGfPllYwAyMnT46CMXrVVER49aMmfO393w58+b4efXipUrG4rel3+Q/98GTpoPOLlcrrVkdvHixfTr14/jx4+zefNmVq1aRUxMDCqVqsicmA0bNqCvr0+bNm04ceIE27Zt0xqmeBH984uHi4sLALGxsVV6XSMjI0aOHEloaCj37t2jefPmjBkzhsWLF2u1U6lUfPbZZ/Tt25fp06eze/fuCq+OEl5eNdXzovWunZaWxs2bN6lXrx7169evlgCEQu7u7pw4cYJbt27z6qtuNR1OneHm9phBg7KYNq3kb9ZeXqmicm4lCQ0N5Z133gGgZcuWWFhYcOPGjWLbWlhYMG/ePMaMGYOfn99L+WVIR0cHoFrqpSQlJbFlyxY2bNhAREQEgwcPZvDgwdL9crmco0ePcv36dcLCwujSpYsUm1zsOCqUkyZ56dSpU7X1vGj933r79m0A2rRpU6UXFYrSFPV78CCxhiOpPqVcDCHUEhkZGQwZMoRevXoRGxvLoUOHCA4OJiAgoNj2qampzJ8/n4YNGxIcHMzJkyerOeKXQ1hYGIMGDcLBwYGgoCD69OnD7du3CQkJ0SoWamVlhb29PZcvX5aSFoDExESxBYlQIZrkxcnJie+++44PPvigSq+nlbg8evQIgEaNGpV4QExMjDScVFskJiZy4MCBmg6jQjT7PWVmZtZwJFVv3z5rBgxwp2PH1/Hza8XFi6Y1HZJQCtHR0aSnp+Pj44NCoZBuT0hIKNJWrVYTEBBAdnY2Fy5coE+fPvj5+ZGUlFSdIRMbG0teXu3cDdzc3JzHjx9X+Dxz587l9u3brFy5kri4OBYvXkzjxo2LtOvYsSMpKSnSPCQo/He6fPkyHTt2rHAcwsutYcOGUvKybNmyKk1eik1cTE2LfpDcuXOHSZMm0a5dO3bu3FllAZXHwoULGTFiBH/99VdNh1JuJiYmQOG32hdZaGg9/vzTlBkz7jJ1aiwJCXpMnepKQoLe8w8WapSLiwuWlpYsWbKEI0eOcP78eT766COpBsjTdV2++OIL9u3bx8aNG7Gzs5NWzIwYMaJcwyZXrlxh9+7d7N69m5s3b6JSqaS/Dx4sfuuMHTt20KhRI/r27VuOR1vowYMH0nUiIyMB2L9/P7t37+bXX38t93mhsIp2SEgIBw8e5MaNGxw8eLBctXHWr1/PlStXePfddzE0NCyx3YQJE9DX18ff358rV65w8+ZNJk+ezM2bN6v8G7Lwcqiu5KXIHBcAMzOzIg2dnZ1ZsGBBjc8+VyqVREdH07x5c+m29957D1dXV6lAVF0kk8kwMzN74XtclEoZc+f+vezbyKiAoKAmXLpkir3985e4CjXH0NCQkJAQxowZI62E8fT0ZM6cOSxYsICrV69ib2/P6dOnmT17NtOmTaN3794AWFtbs2nTJnr16kVQUBBz584t07XXrFnDN998o3Wbpj5Lw4YNi538qkmQKlLS4dy5c0XqwIwYMQIonMPzdP2aslq6dCkDBw6UniNTU1POnTvHK6+8UqbzlLa9g4MDBw4cYOzYsbi7uwOFhTC3bdsmelyESqNJXrp06cKyZcsAKr3AoVbiolQWXUb6NBsbm0q9eHns3LkTmUymlbi4urri6upag1FVDl1d3Rd+VVG/ftrJiWbnZheXmqnCKmi/7idMmMCECROkv//Zi+nl5UVMTAxxcXEoFAppEv/8+fOlNp6ensW+l3h7e1NQUKB1m6GhYYl7Dk2ePJkVK1YAsGLFCun30ho2bBidO3fG1ta2TMc9bcCAAaWqTGtubl5su27dupV4fIsWLYiIiCA2NpaCggIaNWokTeatKh4eHkRGRhIbG4tSqcTJyUlMzBUqXVUnL2VaC1rTxehu377NrFmz+Pzzz2s0DqHyREQYM3z4A1xcnl1eXqhdGjZsWCnnCQ0NLXHoyMHBocLnr4xzVCWZTPbMOYVVRTOnThCqSlUmL5VWxGLz5s388ccfUgXGSZMmFVn+GBkZyapVq8jJySEhIQFfX19GjRol3R8TE8OyZcswNDQkKiqKZs2aMXv2bCwsLDh79izvvvsuaWlpbNy4kePHjzNq1CheffVVgoOD2bp1Kzt27MDC4u+S7tHR0axatYrs7Gzu3LmDh4cHgYGBGBsbA3D16lU2btyIubk57733HgsWLOD8+fN06tSJzz//XJrEplar8ff3x8zMrFzlyoXiXbpkyk8/2bFsWfHLaYUX39OrWwRBeLFUVfJSbOJS1q7D999/Hz09PSmw5cuXM2DAANauXSuND//+++8EBgaya9cuGjRowI8//siUKVNQKpWMHTuWJ0+e0K9fP/7zn//w3nvvkZSUROvWrcnLy2PZsmW8/vrrrF+/nt69ezN8+HB8fX1RKBSEhISwfv16rl27ptUNff36dfz8/Ni1axdNmjQhISGB/v37c+jQIX799VcSEhLYv38/69atw8fHhwULFtCtWzcsLCxYsWIFLi4uTJo0CSjsSj937pyU8NRmGRkZqNVgZlZ7V+rk58v48Uc7tm61IyVFwfDhLVm5MpKWLZ/UdGiCIAhCJaqK5EUrQynPUNCxY8fYtGkT06dPl26bMmUKzs7OzJw5k8zMTFQqFZMnT2bs2LE0aNAAKBzvrl+/vrQ8MjExkYSEBGmuio2NDS4uLtJMfl1dXWkJpkKhwMDAAB0dHYYOHSpNbnvatGnT6Nmzp1TJ0t7eno8//phLly6xevVqnJyc+Pjjj9HX10epVLJ06VIGDx7M/PnzsbKy4uzZs9K59PT0OH/+fLXUoSjvcFx2djZHjhxj9ep1bNiwkby8Z89Xqkm6umoCAhLYv/8SU6bE8uSJDl98UXT5pkZIiC39+rUu8jNhQlt27RJd3oIgCLVZZa820kpcSrs9+tO2bt2KmZmZVqVduVyOr68vDx8+5NSpU4SHh3Pnzh1pJjsUFqy5fv06H3/8MVC4aunatWv06NGD1NRUvv/+ex4+fPjcCcOAVl0CKJwLc+7cOZo1a6Z1++DBg9HV1dVazq2np0fDhg21Sp3Xr1+/yOoeGxubaimNXdZ/g/z8fH7//Rxr1qzj0qXLAOjr66Onp3jOkTVPVxcCAhLo2jWN69dN+L996IooKJCRmysv8pOXJy/xGEEQBKH2qMzkRWuoqDzf9m/evCntfPo0zYSzu3fvSsnH8wpBGRsbM2vWLJRKJe+++y67d+8u1Sqbf8Z98+ZNgCJx6erq0qBBA61N44p7zHK5vFxJXGUoy79BePgVzpz5Xar9oClo1ayZc1WFVyU8PdM4d86MkhZUDB2ayNChRSsKx8Tkk5urBmp/kiYIgvCy0yQvnTp1qtCwUbE9LmUpEGVpaUlWVlaRegb16tUDwNbWVtpl+sqVK0WOj4uLAwr32ejevTsuLi588cUXtGjRogwPo2hMULht+z/Vq1evQssjq1ppEqaoqBusW/cDhw4dISsrC1dXV2bNmoWTkxNAkZ6m2u7xY108PB5Tw4vWhDrk0aNHRTZ1FEovLi6O6OjoatlDSRCepkleGjZsWO6elwov4O/UqRNAkeqVSUlJ6Ovr4+XlxWuvvYaOjg7r1q3TerPJy8sjODgYgI0bNxITE8Pbb7+tdZ6nP8g1vRHP+3B/9dVXMTMzIzQ0tMh9SUlJxc6JqQtiY+PYsmUr+/b9SlpaGg4ODrz//vtMmTIFW1tbrl69ip6eHo0alX3eh1qtpqCggLy8PLKzs8nMzOTGjVvcunUbpVJZKT1QBQWwa5cNt2//Xd0zKUlBaKgVgYElb5IoCP/k6urKyJEjq/w6u3fvRiaTFftT0aHjlJSUclXKrYgzZ87g5uaGo6Mjzs7ONGrUiJCQkGqNQRCcnJwqlLyUaTm0Ztjm6SGfCRMmsG7dOr777jsGDx4szTfZv38/gYGB0vJkf39/tmzZwrBhw5g6dSr5+fmsWrWKTz75pDAQ3cJQ9uzZg7+/PyEhIURHR6Onp0dkZCR6enpSWfyoqChSUlK4dOkSPXv2lOLR/NfExIQPPviABQsWsGvXLmll06VLl8jKymLy5MlA4Yd1bm5ukSGl/Px8rSEqtVrN+PHjsbKyqpEaMsnJyRw7dlIa4rK2tmbAgAG0adNGSuYiIiIoKCjAxaVZqVaF5ebmkZGRTmbmE9LSUklOTiM5OYvY2HRiY9O4ezeD7GxdLA0j6NO3LYP8/DE3N6/Q40hNVbB8eSMyM3V4/fV0rK2VgJr//e8Gjo4vduE9oXLNmTMHFxeXKr/O66+/Ln252r59O9u3b2fjxo0YGxtr7ddUHnZ2drz//vssWbKkMkJ9rvv379OnTx+6dOnCTz/9hKGhIV999RVDhw7l7NmztG/fvlriEAT4O3nRrDYyMDBg0aJFpTq21InLw4cP+frrrwE4cOAA//rXvxg+fDhmZmbs2LGDcePG0b9/fwYOHMjFixdp0aKFNPEWYPHixWRkZLB7925OnTqFubk5X331FW3btgUKy2hv2bKFwMBAvvjiCxYtWkSvXr3YsmULGzduZNGiRajVary9vVm2bBkXLlzgxx9/5ODBg/zyyy8ALFq0iA8++IAmTZoQGBhISkoKU6dO5c8//8TExIRTp06xe/durK2tSUpK4rvvviM3N5dDhw6xefNm+vXrx08//cSNGzfQ09NjzZo1jB49GqVSya+//oq5uXm1Ji7p6emcOnWa69ejgMKS4H379sXT07NIhc3w8HAAXFyKDhPl5+eTkpJCfPx9kpKSuXfvLikpuaSnG5GVZURamjmZmZbIZA7o6TVAoahP/fqOyGU6GN3vT8Kv21iXmsa4994rdjuI0rK2VnLgwCXu3TNAJlNjb5+HiUnB8w8UqoWmx02z3012dvYz977JysqShoGr25QpU57bRqlUsmvXLtq2bYuzc/nmfTVo0ABfX1+gsO4TFFbTfV4Sr1arycvLQ19fv1zXLQu1Wl2quXGrV69GqVSyceNGrKysAFi5ciVhYWEsXbqUn376qapDFQQtTycvms/W0iQvMvVTYwDffPMNZ86c4b///S/29vZlCkCtVhMREUFWVhbNmzcv8YUdHR1NSkoKbm5uRd708vPzSUhIwMHBAblcTl5eHsnJydISao3k5ORSb8P+6NEjbt68iYWFRYXmzcTExKCnp1cklso0Z84csrKeMHbsaM6ePUd4+BVUKhX6+vr4+Pjg7e1dZAUVFM5JmjFjBnl5eUye/B4KRWE+mpyczJo167hzJ5aMDANksqbI5W7IZK+go9MIHR1TZDIDdHRMkcuNkMm0e2rUqixsE/vjo3eUYxk6PHL1YP78ORXueaksmsm5LVq8+JNzX3utNQpFxTai/OSTT/jss8/Yt28f/fr1k263s7Nj0KBBBAcHk5KSwuTJk4mIiODw4cO0aNGCw4cPSxVoMzMzmTt3Llu2bCEpKQkzMzOGDBnCkiVLpKGTiIgIfHx8GD58uFZvwp49e/j3v//NwoULGT9+fJnj7927N3/88Yf0d48ePZ65d9rKlSuZPHkyrVq1KnZ+XVktWLCA+fPnk5aWVuQ1kJ6eTtOmTaX3UM2weJs2bVi9ejX/+te/ANi7dy9jx44FCl+fhoaGUn0oMzMzbt++Xea4BgwYwGuvvcbEiROfWSn4jTfeIDExkcuXL0u35efn06NHD+7evau1aEEQqlNMTAxdunQhLi6OmTNnPjd5KbaOS3n2rpDJZLz66qu8/vrrz/xga9KkCe3atSv2m5quri6Ojo7S9UtKFEqbtEDhZNwOHTpUKGmBwsywKpMWjZycXNasWc+lS5dRqVR069aNTz/9lD59+hSbtADcunWLnJwcnJ2bSEkLwNq169i/5xQZGbOxsDiKhcUGzMxmYGraHyOj19DXb4Kenj06OiZFkpanGepAH4sCLCJOseTzxaSmptbYqiuh8qWkpHDt2jW2b99O7969WbFiBT169OCXX37h7t27rFu3Tmo7fvx4Nm3axPLly7ly5QpLly5l27ZtjBs3Tmrj5ubGRx99xJdffinNM7t//z5jx46lffv2vPvuu+WKc8KECQQFBREUFISBgQHp6enPbO/u7o6jo6O0IWRVUqvVJCcnM3nyZNRqNbt27WLz5s0kJibi5+cnDUd36NCBbdu2sW3bNuRyOf3795f+1uygXVatWrVi/O4ooAAAIABJREFU+fLlODk54efnx+nTp4tt988vfPHx8XTv3p2TJ09KFc8FoSY8Pefl888/Z9asWc9srzVUJD6MapYmYVMqlbRr14633npL6tJ9lkuXLgHQrFnTIvf1NH3IneT/ki7Twcy8LzJZ+Tdx622p5sTVE/zwrREjx0+oFZtuCpWjX79+eHl5ERkZyYEDBwgMDMTExARnZ2etb+KOjo6sWbOGQYMGAYUfmhERESxdupS8vDwpuZ46dSrHjh1j9OjRhIeHM2rUKAwNDdm0aVO5iyxqrgnw/fffP7d9586duXeveid9Dxs2TBpSh8JK1hMnTuTWrVu4urpia2srJVJyuZzGjRtXOLEKCgpi9uzZ7Ny5k02bNtG1a1dat27NlClT8PPzw8DAACjsmdU890eOHMHf358OHToQEBDwzJ4rQagOZRk2EtuC1iLdu3endevWfPLJJ4wZM6ZUSQsgdf02bVo0cWmoD/1MrqHz8EPS0vZWKD4dGXQyUqL3+37Wfr2MmJiYCp1PqH2eLsSo+fvpJbOLFy+mX79+HD9+nM2bN7Nq1SpiYmJQqVRFlidv2LABfX192rRpw4kTJ9i2bVup/5+uqzSVujU0E4hjY2Or9LpGRkaMHDmS0NBQ7t27R/PmzRkzZgyLFy/WaqdSqfjss8/o27cv06dPZ/fu3dVSWFMQSqO0PS/FTs4Va/trhpeXF15eXmU65s6dO6Snp+Po2BADg6ITAWVAEwMYJr/B6rgACgq+xdp6RLniU6shuwAUahXXTxxm1q27fP/9t5ibl3/CrlC3hIaG8s477wDQsmVLLCwsuHGj+E0yLSwsmDdvHmPGjMHPz6/IpqsvA80k+up4T01KSmLLli1s2LCBiIgIBg8ezODBg6X75XI5R48e5fr164SFhUkbXKpUqnJNDxCEquDk5MSxY8fo3r07n3/+ORYWFloLfUD0uNR5z1pNpCGXgZ0+zGiQjuLhf0hN/gGVqujyY7U6n4KCJ+Tnp5KXl0Bubgz3czL55ZE53yfaMDfekaAkD3apAnli/T1ZWfakpj6qsscm1C4ZGRkMGTKEXr16ERsby6FDhwgODiYgIKDY9qmpqcyfP5+GDRsSHBxcLXt9vYzCwsIYNGgQDg4OBAUF0adPH27fvk1ISAitWrWS2llZWWFvb8/ly5e1duVOTEws07xBQahqTZs25fDhw0BhLaV/KlMdF6H2+fPPPwFKVdPCUAfG2DzmQPpc4vJTMK03goKCVJTKh+TnJ5KX9wC1OoeCgkwKCtLIz3+EgUFfMgw/Qk+vEQ76TVEo/u7qT0ws+j+U8OKKjo4mPT0dHx8frRomCQkJRdqq1WoCAgLIzs4mPDyc8ePH4+fnx+XLl6t1blRsbCz169cvcWJ7TdJs0VFRc+fO5cmTJ6xcuZKRI0eWuIS9Y8eOnDhxQuu5UKvVXL58mY4dO1Y4DkGoTJptg4rrrRSJSx2WkJDAo0ePqF/fFhMT41IdY6mA3qax/PZ4ARHZUSgUNsjlRujoWKJQWKNQOKCrWw+Foj46OhbI5bXvDV+oGS4uLlhaWrJkyRIcHBwwMTEhODhY2mskKytLWlH4xRdfsG/fPn799Vfs7OxYv3497u7ujBgxgt9++61ahiZ27NjB0KFD8fb25tChQ+U6x4MHDzh37hyAtFP9/v37pQJ0ffv2LXd87du3JyQkBF9fX5o0aUJ0dDRdunQpc22c9evX88orrzy33YQJE1i+fDn+/v4sXrwYQ0NDli1bxs2bN/nhhx/K+SgEofqJxKUO00zKfdYwUXHqKaCTcQbx+r0xM+uGTKaPXG6ATCb+dxBKZmhoSEhICGPGjJFWwnh6ejJnzhwWLFjA1atXsbe35/Tp08yePZtp06ZJ22tYW1uzadMmevXqRVBQEHPnzq3yeDXf1Mq7igng3LlzUuVtjREjCueIWVhYFNmjrSyWLl3KwIEDpefI1NSUc+fOlSoJeVpp2zs4OHDgwAHGjh2Lu7s7APXr12fbtm2ix0WoU2rsk0qlUpGRkSH9LZPJSqzKWt7JY6WtKFna4/7ZrWtmZlahN8WKKs38lpLoykBXtx66ui/2Kg/h+TS7t0Pht/IJEyZIf//1119abb28vIiJiSEuLg6FQkH9+vUBmD9/vtTG09NT65wa3t7eFBRoV0o2NDQkJyen2LgmT57MihUrir0vJSXluR/Yw4YNo3PnzhXaVHXAgAGlKhNhbm5ebLtu3bqVeHyLFi2IiIggNjaWgoICGjVqVKQidmXz8PAgMjKS2NhYlEolTk5OYmKuUOfUWOISFRWFp6cnHTp0wMrKCoVCwYYNG7TanD17liVLltC3b1+tAlfPs3z5cs6cOYOJiQnGxsYsXLgQU1PTZx6Tn5/Pp59+ytatW8nOzqZTp04sXboUR8fCDQtzcnL4z3/+AxROZvvjjz+4fv269MZd3R4/fkxsbCyWlpbSTtyCUF0aNmxYKecJDQ0tccVNSVVgT58+TWxsrFSN9lmeVUm2NpDJZNJYfnXSvK8JQl1U42MDn3zyCZ07dy5y+08//cTOnTs5duwYffr0KfX5goKCOH36NPv370culzNv3jwCAgIICQl5Zu/IvHnzsLS05LvvvuPYsWN8//33DBs2jNOnTyOTyTAwMGDLli1A4Rj3qFGjyv5gK5Gm9LmLS9HaLYJQVzy9uuVZNJsb5uTkcPLkSdzd3aUvEoIgvFxqPHEpib+/P+7u7tKSqNKIiopi+fLlbNy4Uer+nDhxIq+++qo0Ua84ycnJ9OjRQxq39/HxITk5mR07dnD//v1a+a1NM0zUrFnZh4kEoa6xtbXF2dkZfX19AgIC8Pf3r/DuzIIg1E21NnEByjy7fvPmzRQUFNCpUyfpNnt7exwdHdmwYUOJiYu1tXWRstvu7u4cP368QuPjVSUzM5Nbt25hbGyEvb1dTYfzQlCpVOTm5pKbm0tOTg7p6RkkJaVy924i9+/H06ljK9q93q5advsViurevTvdu3ev6TAEQagFanXiUtZJY0ePHsXAwKBICeumTZty+vRpcnNzS/3BEx4ezpIlS2rlt7q/J+U+v3aLULycnBxSUlJISkomISGBtLQMkpLySU2F5GQ19+9DXp4Z+vrO5GY94v7ZRSQNH8MbffuWWCdDEARBqHq1OnEpK81k1X8yNTVFqVQSHx+Ps7PzM8+hVqtZv349Dx8+LHP5/epSkdVEL6uEhAdERkYSH3+fe/fukZSUTW6uFXl5DcnKqo9a/SpyuTW6uubo6NTD2toWubxwc7rHSdl0yP+Ws1vWkJuXxzB//xp+NIIgCC+vFyZxycvLIzMzs9jZ8ppKkVlZWc88R0JCAsuWLePHH38kKysLHx8f9u/fX6tW7eTl5REZGYmenh4NG9a+uTe1TWpqKtOmfUhcnC6Ghu0wNGyPoeFoFIomyGQ66OjoYmamC+iUOHlbBtgowIdUNq9eSYEahg8XyYsgCEJNeGEW8Ovq6iKTyYpdWpmXlwdQYp0YDXt7exYvXsxff/3FwIEDiYqKKrGORE25evUqBQUFNGvWVNRfKIVbt26RdOcmBup61Ks3DUvLf2No2Pr/elZMpMJ7panHY6ELo62VHF+/km1bt/LkyZNqeAQCFK4+XLhwYU2H8cKIi4sjOjpabKgr1EkvzCefXC7H3t6+2L0/Hj9+jI6OTqk3EtMsi7axseHixYuVHWqFlLda7svMxQh66R/nyf0PyM6+WqqCYiUx1YUR9ZREbV9P8JbNFaqcKpReaGgox44dq/br7t69G5lMVuxPccPSZZGSkvLcXuDKdubMGdzc3HB0dMTZ2ZlGjRoREhJSrTEIQkW9MIkLFO79kZKSUqQSZ1xcHG3atCnTKiV9fX06d+5cq1aR5Ofnc+XKFXR1dWnSxKmGo6lb2pkU4KV3mMz7H5CXd69C5zLSAS+9DFIO/sy3y5aVWPlVqPtef/11goODCQ4OllYlbty4keDgYDZu3Fihc9vZ2TFv3rzKCLNU7t+/T58+fXB2duby5ctERUXRv39/hg4dyvnz56stDkGoqBcqcfHz80OpVGr1kqSlpRETE4Ovr2+Zz5eWloaPj09lhlghUVFRKJVKmjRxqvLS4C8ahRzameTT3/AotyI9ycm5Wa7zPM6H39Nhbwqce5jF/gMH+f333ys52ppRUFBAdna29PfTvxenunsLykqpVLJjxw7u3LlT7nM0aNAAX19ffH19cXNzAwq3AfD19eWtt94q8Ti1Wk1ubm65r1sWpe1BXL16NUqlko0bN+Lu7k7z5s1ZuXIlTk5O0kaZglAX1OrERfPC18xReVpkZCRdu3ZlxowZ0m29evXCy8uLPXv2SLf99NNPuLi4MGbMGKDwzVbzRvTo0SMAHj58yA8//EBycrJ03PHjx8nMzGT06NFV8dDKRTNM1KyZqJZbHnIZtDJWM6tBPLl3e/M49RdUqsL/t9RqNSpVDkplEjk5t3jy5A/S04+QlLSORxnnWZf6KvMTO/J52mAOKRYTa7MHw2bXsWu4nPv3E2r4kVWMnZ0dkyZNws7ODmNjYwIDA+nZsydGRka4uroSHx8vtc3MzGTatGnY2tpibGyMubk548aN0xoyi4iIwMHBQeu1CbBnzx5sbGxYvXp1hWPOycmhf//+tGjRgtu3bxfbZvXq1QwdOrTIJolVIT09HRsbG37++WemTp2KqakpRkZGtGvXjj///FNqt3fvXmxsbLCxsSE/P5+VK1dKfzdtWr7X9cCBA5kzZ47Wv1Nxzp49S/PmzbGy+nt/MrVajYODA2fOnCnXtQWhJtTaVUWHDx9m69atAPz444+YmZkxYsQIaULqhQsXuHr1KlevXsXX11fa3XTt2rWMGzeOoKAgFAoFFy5cYOfOndLKooSEBI4ePQoUbgf/4YcfcvnyZWbMmMGcOXPw9vZGoVBgY2NDcHBwrRkqUqvVhIeHI5PJaNr02Uu6Xx4qcnKyUalMyzRR2UYBwyzucPDRhyQpE9FR2JGTc4OCgnRph2yVKge53ACFogGWVv4o9D7GXtEAHR1TZLK/r5WRcayyH1S1S0lJ4dq1a2zfvp0lS5awYsUKFi5cyOTJk/H392fdunXSbs7jx48nNDSUFStW0LJlSy5cuEBgYCCpqanSXAk3Nzc++ugjPvjgA3x8fOjVqxf3799n7NixdOjQgXfffbdC8ebk5DBgwADOnz/P4cOHS/zAd3d3x9HRsUhxyaqgVqtJTk6WnrNdu3bx8OFDPv74Y/z8/IiIiEBXV5cOHTqwbds2oPCLVv/+/aVNLXV1y/d23KpVK5YvX87nn3+Or68vU6ZMwdPTs0i75ORkrXl+8fHx0rYmZS32KQg1qdYmLt7e3nh7e7Nu3bpi7x8+fDhubm789ttvWnMMLC0tCQkJITo6Grlczscff6x1XNOmTTl58iR3797l0qVLQOEbSGRkJHFxcRgaGuLk5CQlOrXF7du3efLkCY0bN6o1yVR1y8rK5tatW9y+fZv4+PtERcWQnp7JK684MXXqlDIVhmugB31N7/Bj+npyTIZjYOD2f7tlm6OjY45cbvx/SUqtfYlUqn79+uHl5UVkZCQHDhwgMDAQExMTnJ2duXv3rtTO0dGRNWvWMGjQIKDwQzMiIoKlS5eSl5cnvW6mTp3KsWPHGD16NOHh4YwaNQpDQ0M2bdpUoR3Vc3JyGDhwIGfPniUsLOyZGy127tyZe/cqNp+prIYNG8bXX38t/Z2RkcHEiRO5desWrq6u2NraSomUXC6ncePGFU6sgoKCmD17Njt37mTTpk107dqV1q1bM2XKFPz8/DAwKKxHpFKppOf+yJEj+Pv706FDBwICAvj5558rFIMgVKc6+66so6ODu7s733zzDdOnTy9yf5MmTUo89tVXX2X79u34P1VIzMrKSqsLtbZ5GVcT3bhxk+vXrxMRcZ1Tp07z6NEjnJyccHFxwd7eDi8vL5KTH/HXX+f58MOPCAr6tNQrPWQysNMDa2M38u3er+JHUndoeq40H3ByuVxryezixYvJy8vj+PHj3Lt3j6ysLGJiYlCpVGRnZ2sl/Bs2bKBNmza0adOGxMREjh07VqHXmFKpZOjQoYSFhXHs2DE6dOhQ7nNVlX++72iqW8fGxuLq6lpl1zUyMmLkyJGMHDmS+Ph4PvzwQ8aMGcPdu3e1JgCrVCo+++wzPv30Uz799FNmzJjBtGnTqiwuQagKdTZxuX37NsHBwcybN0/6RlEa6enpbN68mW7dulXpG0ll01TLbd78xSjzn5ubR2ZmBpmZT8jMzCQtLY2kpGTi4+OJj48nLi4eAwN9GjRwwNbWhnHj/o25ubnWFgzZ2WqSkx/h4eFJeHg4X321jPHj36VhQ4cKfasXShYaGso777wDQMuWLbGwsODGjRvFtrWwsGDevHmMGTMGPz+/YocvyuLEiRPo6uqiUqk4c+ZMqXeWrkmaSfTVUS8lKSmJLVu2sGHDBiIiIhg8eDCDBw+W7pfL5Rw9epTr168TFhYmPX8qlUrUhBLqlBpLXPT19XF1dWXRokXo6emhUCjYvn17qY+3s7MrMgxUGnp6ekycOLHMq3JycnKkHprc3FxcXV2rbR+juLg4Hj16RIMG9nVynxylUklycjIPHiTy4MEDUlJSSE/PIDs7m6ysLPLz85HJZBgbm2BpaUnbtm3p2bNnmZ5fd/fXuHr1Gj/8sJFx4/4tNp+sAhkZGQwZMoQBAwawbt066d/nyy+/5MMPPyzSPjU1lfnz59OwYUOCg4N57733KpRsmJiYcODAAdasWcPs2bNp06YNvXr1Kvf5XhRhYWF8++237N+/H1NTU8aNG8fevXtp3LixVjsrKyvs7e25dOmS1uaxiYmJpa5xJQi1QY0lLs7OzhWayW5sbFyu48rSO/PP43755ZdyHVtRmt6WurKaKCMjk2vXrnHnzh1iY+O4f/8+KpWKevWsMDY2wtzcHFNTU2xsbNDX18fIyKjC83Z0dXVxc3uFW7du8cUXXzJ9+jQaNLCvpEckAERHR5Oeno6Pj49WUpmQUHRVlVqtJiAggOzsbMLDwxk/fjx+fn5cvnwZGxubcl2/Q4cOeHp60rZtW65cuYK/vz8XLlx45v5jsbGx1K9fv9bNWQMwNzcvtmBmWc2dO5cnT56wcuVKRo4cWeKXm44dO3LixAmt50KtVnP58mVpcYMg1AV1dqjoZaKZ39KiRfMajqSorKws/vzzEjdv3uLKlStcu3aNjIxMmjZtSpMmTjRo0IB27dpVyweHnp4ebm5u3LkTzYcfzuDLL7+o8mu+TFxcXLC0tGTJkiU4ODhgYmJCcHCwVAMkKysLc3NzAL744gv27dvHr7/+ip2dHevXr8fd3Z0RI0bw22+/VWhowsDAgJ07d9K2bVsGDRrE2bNni10Vs2PHDoYOHYq3tzeHDh0q17UePHjAuXPngMISDAD79+/H2NgYhUJB3759y/042rdvT0hICL6+vjRp0oTo6Gi6dOlS5hU+69ev55VXXnluuwkTJrB8+XL8/f1ZvHgxhoaGLFu2jJs3b/LDDz+U81EIQvUTiUstl5KSwv3797G2tn7uXkvVLS3tMXPmzKN+fTvs7e1xdnamY8eOmJqa1miBPGfnJujr67Nw4We0adMatar8Jf6FvxkaGhISEsKYMWOklTCenp7MmTOHBQsWcPXqVezt7Tl9+jSzZ89m2rRp9O7dGwBra2s2bdpEr169CAoKkpZXl5eTkxNbt26lb9++jB07Vlpi/DTNvJKKzHc6d+5ckTowI0aMAArn8FRky4elS5cycOBA6TkyNTXl3LlzpUpCnlba9g4ODhw4cICxY8fi7u4OQP369dm2bZvocRHqFJG41HKaJdsuLrVvmMjIyJBhw4Zhb1/7hmQaNLBHLpdx9OhxzPOVNR1OraZU/v38TJgwQaorAvDXX39ptfXy8iImJoa4uDgUCgX169cHYP78+VIbT09PrXNqeHt7U1BQoHWboaFhiVsmTJ48Wdrk9MKFC0Xuf+ONN4qc72nDhg2jc+fOWvM5ymrAgAGlqkxrbm5ebLtu3bqVeHyLFi2IiIggNjaWgoICGjVqVOUJv4eHB5GRkcTGxqJUKnFychITc4U6RyQutdzf1XJr4zJoWa1905PJZNSvX58WLZrzMPEmUPIHnFB2DRs2rJTzhIaGlrjixsHBocLnr4xzVCWZTEajRo2q/bqOjo7Vfk1BqCwicanFMjMziY6OxtTUFFvb8k1ofJnJ5XIMDQ2RIZZG11Z1YUmzIAi1S+38uiwATw8Tlb+3JUkJeVVfQkIQBEEQqoVIXGoxzTLoiiQuvyuNOJ9RO5OXUm5qKwiCIAgSMVRUS2VnZxMZGYmBgQEODg3KfZ4W7Tpy8fZNMtJi6WUJOjU8aqJWw+nT7hw92pa0NFNsbNLo2fMc7dpF1mxggiAIQp0gEpda6q+//kKtVuPi0qxCyzkLJ6i2YPfuPeSnxNPHCnQrmLwUrpJQAWXvMjl5sjW//96KTp3+IidHn7NnW/Hjj3148sSQbt0uVSwwQXiJzZo1S5rM7+/vL23NUNfExcVp7SC+efNmUdlX0CKGimqpK1euAJVTLdfOzo4BA94iyqoZu1LkZJZxgY1KlYdSmUhOzi0yM38nM3MvT578gIWFskwVb9VquHvXnunTf6Rnzwv073+KqVN/QqHIJyysoxg6El4YqampZGVlVes1L168yI0bN2jZsmWFloDXNH19fVq2bIlCoeC3334jNze3pkMSahmRuNRC+fn5XL16FV1dXRo3rpylknZ2dgwZ8jZ5r3QgLF1RYvKiVhegVCaTmXmO5OQtJCQsICXlA1Sq/2JltRQXl/W0a7eTLl3OM3BgRywsLEodw5MnBrzxxu/o6Pw94cbWNo1XX73DkycG5OfXXNE6oWalp6dXSvn7ynb37l1kMhmrVq0q03Fubm68+eablRJDWZ4bNzc3lixZIhW1e9rKlSuRyWTSj76+Pu7u7nz55ZfVkhzk5+eTkpJSbI2fp9nY2LBkyRICAgKqPCahbhJDRbXQtWvXUCqVtGjRvFILUhkaGtK5e3dOAaFXzoMpqFS5ZGVd4smTS2RlXUKtvk69emoaNrTBwcEWGxsLTEys0NNToKurQFdXBx0dnXINX5mY5GBiUrTYmLFxNlZWj1EoRK2Vl5Wvry9paWnFFpqri+bOnUuDBuWfm/a0yn5udu7cSb169cjJyeHUqVPMnTuXc+fOlWmT2/I4d+4cnTt3Zt++ffTr169KryW82ETiUgtVxmqikhgYGNC5e3d+y8klKurfGBsX4OLSkLZtnbCxscXWtm+5N6Isr7g4Wzw8rlTrNYWSPXnyBENDw+cWF8zIyMDExKTUSWxWVha6uroV3rcqLy8PuVyOru6z376USiW7du2ibdu2z9yIsSpMmjSpVO2ys7MxMDCo0Dy2svLw8JAqHr/xxhs4ODgwadIkjh8/Trdu3bTa5uXloVKpyvSekJGRgZGRUY1u+yG82MRQUS2jUqkIDw9HLpdX2ZutgYEB/fr1w9u7JY0b29KhQwfatGlDo0aONZC02JCVZUjXrn9W63WFv+3duxcbGxvWrl2Li4sLJiYmWFhY8N///rdIufqCggIWLFiAjY0NZmZmWFpa8v7775OdnV3kvD179iQgIIDQ0FBeffVVjI2NMTQ05OjRowA8evQIGxsbbGxsOH78uLRztObn6tWrWuc7ePAg//rXvzAyMsLQ0JDXX3+dsLCwEh/X6tWrGTp0aJG9hqpKly5dtOL39fUtse2yZcto1KgRRkZGmJiYMGDAAG7duiXdX9bnpiI0+05dv35dui08PBwvLy8MDAyk5/r48eNFjn3y5Ak2NjasWrWKr776Cjs7O8zMzDAxMZG2cpg5cyY2NjZSL8vw4cOlx1FXJxALNatSelxOnz5N06ZNsbOzAwqz9F9//RUfHx+MjY0r4xLldvjwYZo3b15nSlzfvHmTnJwcmjRxQqGoug4xhUKXdu3aEhUVxcmTJ+nc2bPaS4+rVDL27u1KQMBedHVLLjRz9WpT/vjDtcjtBQVqrK0v8K9/Xa7KMF94eXl5JCcn8//+3//js88+w97enu+//56FCxdiZ2fH5MmTpbYzZ87kq6++IigoiF69enH+/HmmTZtGQkICP//8s9Z5Hz9+zLVr19i9ezdDhgwhICCAtLQ0XFxcgMJNBTWbI86YMYMnT57w7bffSsc7OTlJv4eHh/Pmm2/y9ttvs2LFCrKzs1m0aBH9+/fnwoULvPbaa0Uel7u7O46OjtIHc1WbMmWKtOniZ599Rnp6erHtvv32W6ZNm0ZQUBA9e/YkJiaGmTNn0qtXLyIiIjAwMCjTc1NRmoRFM7SVkJBAt27daNasGWFhYejp6fHpp5/i4+PDhQsXpA0aNZKTk1m4cCEqlYp33nkHGxsbHj9+LH0JGjNmDD4+Pvz111988MEHfPTRR9KmjjY2oiK4UHYV+mQMDQ1l0aJFhIeHs2fPHilx2bVrFxMnTmThwoWl7jKtCvHx8QwZMoS+ffuyZcuWGoujLKpymKg4zZo1Q61Ws2/ffoYP9y/TZNuKOnDAAw+PcBwckp/Z7uFDSy5fbl7sfa+9Fg+IxKUyrF27Fh8fH6BwM8V79+6xZMkSKXGJiYlh+fLlzJw5k1mzZgHQtm1b5HI5EydOZNq0aXTo0EHrnElJSZw5c4b27dsXuZ5CoZCSCisrK3R0dEpMMo4ePYpSqeSbb76hXr16ALRr145Ro0Zx8+bNYhOXzp07c+/evXI+G2U3dOhQ6fe1a9eW2C40NJSWLVsye/ZsANq3b4+9vT3/+9//uHfvHs2bNy/Tc1NWmqQiNzeXM2fOMGXKFNq2bStN6J03bx4FBQWEhoZKz/X+/ftxcXFh5syZHDhwoMg55XI5ly5dwsrKqsh9LVq0oEWLFlIi07p162pLJoXt8GrbAAAgAElEQVQXU4USl169enHv3j3pw1bjjTfeYM6cOc/sKq0KERERuLm5SX87ODjwv//9j7Zt21ZrHBWhKfNfGcugS0NHRwdXV1fkcjmrV69m5MiR2NnZVfnmiWfPtsTCIgN391vPbdup01+89lrRdjk5apKSnn+8UDqaDyko3Pxv2LBhTJs2jZSUFKysrDh48CBKpZJRo0ZpHTdixAgmTpzIvn37iiQuHTt2LDZpKasuXbqgp6fHqFGjCAwMxNPTEwsLC/bu3Vvhc1e3nj17EhgYyLRp0xg6dCjt2rWjS5cu1bZvU4sWLaTf5XI5vr6+LFu2TJp7tHfvXvr166f1/4Oenh5Dhgxh+fLl5ObmFimDMHLkyGKTFkGoChX+dNJM8nqaubk5H3zwQbXWEsjPz2fBggVFbh83bhxt2rSptjgqIiYmhvT0dBo2dMDQ0LBar928eXP69u3LkSNHiIqKIj8/v8qu9ccfrmRnG+DpqT0h9+5du2LbGxrmYm2dVuTHyioNA4MnVRbny06zA/T9+/cBePjwIVB0x2UTExMsLS1JSkoqcg6FQlEpsbRt25ajR4+Sl5fHm2++Sb169fDx8SE0NLRSzl+dJk+ezA8//MChQ4fo1KkT1tbWjBo1iqioqGq5/qFDh7h8+TLXrl0jMzOT7du3a62AevjwYbG7ajdq1Ij8/HxpOOxplfXvLAilUeHEpaq/mZfW7NmztSa31UWanqvq6m35p8aNG+Ph4cG1a9ekAniV7cKFVzh8+HUUinxOnmzNyZOtOXbsX/z4Y2+iohpXyTWF8klMTAT+/nKi+QauSWA08vLyePz4MZaWllUaj4eHB2FhYTx69IidO3eiUCjo3bs3Bw8erNLrVoV33nmHK1eucP/+fZYvX84ff/yBp6cnDx48qPJrt2zZEnd3d9zc3Ir9glSvXr0i/8ZQOOwnl8sxNzev8hgF4VmKzTqelYzExsYSGBjIlClTGDNmDCdOnNC6v6CggAMHDjBs2DAOHToEFC6D3Lp1K3369CEuLo7//ve/dOnShXPnzgGQm5vLV199xfjx4+nVqxfTp08vktVHRkbywQcfMGnSJAYOHMjmzZuBwp6WwMBA1q5dS3JyMv/5z3+YM2cOUDjsMnXqVBYvXqx1rszMTD7//HOmT5/OwIEDCQwM1BoLz8rKYsuWLfTu3ZvExET27t3LG2+8gY+PDydPntQ6l+Zbk+axVERERARQffNbimNtbY2Hhwdnz/7OsWNFVxFUxB9/uPLTT71JSLBm504v6Wf37m5cvPgKbduK/Ypq0j+LkO3duxd7e3up57RHjx7I5XJCQkK02u3ZsweVSkXPnj3LfW1zc/NnFlkLDAxk9OjRQGEPT//+/dm3bx8mJibs27evxONiY2PJy8srd1yVLT8/nx49erBs2TIA7O3tCQgIYOPGjaSkpHD69OkixzzvualsPXv25LfffitS+XfXrl14eHiUuzdYk/DUxkKDQt1Spjkud+/epXfv3nz//fd069aNzMxM+vTpo9Xm9OnTbN++nbCwMIYPHw78f/bOOyyqa+vD7zTKUEURqQYBBbsCYiMWUBM7FmxEo/EmMSqxRMWo8SbXaOzdGE2uRk2isUSj2HuMDY0lFqJGRRQVkI6UGWa+P7icz5Ghd3Le55lH5px99llnOzNnnb3X+q3sYLQNGzZw+fJlvv76a5RKJY8fP+b+/ft4e3szfPhwxowZw6RJk3j8+DFdu3blwoULnDhxAoVCwfnz5wkODmb37t3Y2dnxww8/MH78eFQqFaNGjWLBggU8e/aMe/fusXjxYiQSCXfv3iU0NJTNmzczevRowb6XL1/SvXt3Jk2aREhICJmZmYwcOZLOnTtz8OBBXF1dOXToEP/973+5evUq69atw8jIiDFjxvDll1/y3nvvcePGDWE9+NatW/z111/cuXMn1/p+UXn58iWGhoaYm5uXqJ+SIJFIMDMzo1+/AHbu3IVMJsXHx6fE2hsAnp7hFeKcVMLC2JWS4OBgVq1ahZ2dHWvWrOHw4cMsXLhQ2O/h4cF7773Hv//9b2rWrEmnTp34448/+PDDD+natWuJAi5btWrFzp07Wb16NV27duXZs2c4OjoK2TONGjXiww8/xMHBgZEjR6LVatm+fTvJycl5fu+2b99OYGAgfn5+wkNUcbl+/TqhoaG5tvv4+Ah1dI4fP05ycjKQLfmfmZnJnj17gOxlN09PT+RyOTY2Nnz22WfCGMbFxbFo0SKMjIxyZewUZmxKmzlz5rB7924CAgKYO3cuBgYGLFiwgFu3buV6UC0Kbm5uWFpasmzZMiFY99mzZ2KgrkiR0eu4aDT6f+qnTJlCq1atBJEiU1NTgoKChAwDgDfffBONRiN8YQH69u1LVFQUly9fxtvbm759+/Lpp58ikUjYuXMnCoWCjh07Atlf8CFDhrB06VIOHjxIjx49GDduHKNHjxbWYf38/LCxsRHW1I2MjJBKpUgkEiFyPScCfsmSJTrXsHTpUjIzMwVtBwMDA+bNm4eXlxczZsxg27ZtBAQEEBERwdWrV/H396dNmzZA9lTptGnTuHv3Lo0aNQKyUyC7d++Oq2vFzZKUBaampgQE9OW3384QFnYJb2+vUnFeyhszMzNiMeRxhhqHwpdV+kfi5eVF9+7diY+PRyaTMXHiRCZNmqTTZs2aNZibm/PRRx+RmZmJTCYjKCiI1atXl+jcwcHBnDp1SshgksvlrF+/Xphl+eCDD8jMzOTLL7/kyy+/BLKzbRYtWkRQUJDePnN+x0pD3G3NmjU66cg5HD16VLjxfvzxx7n0VXJ+Z4KCgoRZ4m+//ZaQkBA++OADQf/G3d2dX375Re/vSEFjU9q4uLhw5swZgoKC8PLyArJ/lw8ePEi7du2K3a+hoSEbN25k5MiRQr+urq7cvXu3VOwW+edQ6BmXyMhIjh49yr///W+d7TkBfK+ir/BeTvBWy5Ytgf//MTl06BCPHz8WlncA0tPTGTJkCEZGRly7do379+/rPInUqVNHRywpL+Ryea5lrx9//DFXsK6TkxOtW7fmyJEjJCUlYW5uLtykX9U2yUn3TklJEbZJJJJq57TkYGZmRrt2bQkLu8TJkyfp2rVrRZtUZKysrGjo25k9pw/TyywDp/LV16tS/Otf/2LFihVERkZiZWWlN2ZFLpezaNEiPv/8c548eYKNjU2eMQ9Fkag3MjIiNDSUmJgY4uPjcXJyyiWGOH78eMaPH8+zZ89Qq9XY2dnlu6w9aNAg2rdvX6Ikgbp16+YS4cuLP//8s1DtTExMWLlyJcuXLycyMhITE5N8qx8XZmwKw9ixYxk7dmyh2np6enL79m0iIyNRq9XUrVtX71ibmJgUenwA+vTpw/Pnz4mIiECpVJZaWQSRfxaFdlxyAkcLo/NRlCecJ0+e4OzszH/+8x+9+3PSHYu7Tv2qLcnJyTx9+pTGjRvnapfjoERGRtKoUSO915DzxS3KF7UqI5FIsLCwoFOnjpw8eYqtW7fRr19AlZt5cXd3x8DAgAMnD9JXmopN1TK/XDEwMMDFpeDgcBMTE+rX16+tUxJyFFXzI+cBojDoy46pLEilUurWLXxAemHGJiwsjICAAAYOHCgs1ZeEshDuVCgU+T7sPXnyhHHjxvHkyZNSP7dI9aDQKUE50645qZGlhZGREVeuXNGbfhsdHY1SqQTQm+Xy+PHjIp3LxMQEQ0NDvV+InKdLUclRF4lEglwux9/fD1NTU3bv3kNCQkKVct4kEgnOzs7Ubd+FPZlWPM0ETQnM12q1aDRpqNUvUKtzp4aKiFQEffr0YeDAgTg4OFRonFxJkcvlODg44OPjw7hx4ypcfV2k8lHoGZccYbfQ0FCmTZuWa0Yir7iYgmjevDknTpxg/fr1Oiq7YWFhxMbG4uXlhUwm47vvvmP06NFCRHtmZiY7duxgwoQJQPbNqaCbqVSaHWj622+/ERkZqfM0ERsbi6enZ7lqz1Q12rdvx+XLlzl27Bh+fv5YWladtEipVEqDBvUxNjZm79mTeKU8pZlp4Y7VaNJRq2PJzIxCpXqCSvUUuTwGI6NEpNLzQMmCsiua5s2bs2rVqnIv+SBSurxamqEqY2Njw8qVKyvaDJFKTKFnXFxdXfHz8+PmzZssWrQIyH7yPHfuHJCdcZQTaJaTVqlSqYTjs7KyAN34EIB3330XU1NTZs2axbRp0zh06BDffPMN8+bNw9/fH2tra4YMGcKjR48YNGgQx44d49ChQwwePFhHadLU1JTo6Gji4+PZtWsXKpUKtVpNVlaWzjJTTlDwihUrhG0pKSmcOnWKmTNnCttyCoS9OhOU8/eraaOnTp3irbfeKjPdk8qETCajWbNmgmJpamrVE39zcnKkhf/bXDJ7g/NJkKXH11WpoklKOkl09NdERATz6NEQVKqp1Kq1isaN9/Lmm2F07fqMt9+W0rhx1XHe8sLFxYWxY8eKs40iIiJVgiKlQ69du5YRI0Ywb948fvzxR6ytrfHx8UEqlXLw4EEaNGiAoaEhX3/9NQDfffcdDg4OJCQksGnTJgBmzpzJtGnThBRGR0dHfvjhBz788EPWr1/P+vXrcXNz48cffxQCeufPn09ycjJ79uzhzJkzWFhYsGTJEh0p/+HDhxMaGkqzZs1YvHgxsbGxQhbAoUOH2LVrF/369aNVq1Z88803fPLJJyQkJNC0aVNOnjzJf/7zHyFb6tixY/z888/CuT/66CMSEhJYt24dAKtXr8bCwoLmzZtz/vx5Ll68yJUrV/TWS6luGBoa0qpVK/744w+++WYdI0e+W+bCY6VNrVq1aNO1O8cPHOBFQgo1kk6SnHyGlJQzvHx5DTOzDBo2bIijowOOjo7Y2uYtxf7w4cPyM1xEREREBIn2lfWVVatWcfbsWWbOnImtrW2eB4WHh5OcnEzTpk1JTk4mPT1db3ZRUVCpVFy/fh2pVErTpk2RyWS52jx48IAXL17QsGFDIfblVV6+fIlWqy3Ummh6ejo3btxAoVDg7u6uNxOqKHa3bNmyxGmXs2bNIjU1lXHjSqcw5VdfzcfAwBB399yVlUuDGzdu8PjxY9q0aVNghkdZkJam5eHDCMzMFMjluT8vGo2GzMxMMjIyyMjIID09nbS0NFJTU0lOTiExMRGNRoOjoyNWVlbY2tpSq1bNIq2pnz17FicnR4YOHVKal5aLpk2bo1CULKp4xowZzJ07l3379tGjR49SskxERESk9ElPT8fY2BgfHx/Onz+vs69YRRZfvREW94b/OgqFosBiiM7Ozjg7O+e5X58zkxdGRkaClkBJKIzd1ZUcB/LMmd9p0aK5TvG28kar1ZKenk5ycjKJiUkkJyeTkZGOVpu9TyaTYWRkhFJpjL29AzVqWGJpaYmJiUmlKVshIiIiIlIwJaoOLfLPJiedU6Ew4MSJE6SlpdO8eW7lz7JAq9Xy4kU09+7dIS0tgfj4eNTqLGrWtMLc3AIrqxrUqGGFiYkSAwMDjI2NMTY21juTJ1L6WFtbExsbK7yvU6cObdq04bPPPqN58+Zlfv60tDRevnwpViwWEamGiI6LSImQyWQ4OjrQs2dPNm/egkwmpUmTJqV+ntjYWCIiInj8+AkPHjwgOvo5Vla1sbe3p359F+rVq1cojSGR8qN3795MmjQJrVZLVFQUa9asoXXr1pw9e1YQoiwrlixZwsyZM0lJSRHTaUVEqhmi4yJSKlhYWDBw4MD/FYmT0KhRw0IvwajVatLT08nMzCQtLY3k5GTS0tKIi4snPj6e+Pg45HIF9vb2uLq60rFjB6ysrNBqDXn8+AnW1qbI5eJHubJhZ2cnBLwD9OvXDw8PDyZPnsyJEydytU9NTcXQ0LDQ/5cajYbU1FTMzMxKbOuxY8dQKpVCeQ8REZHKi/hrL1Jq1K5tTZs2bbh+/TpZWWq9SwIajYa0tDRiY2NJSkoiLi7ulfRyCVKpBIlEioWFOfXqOWNh0RxLS0u9N6e0tKojgieSHVfWtm1bjh07prN9x44dzJgxgzt37iCXy+nZsyfLli3LpSp7+PBhhg0bxr59+9iwYQObNm0iLS2Njh07Co6Qr68v4eHhQmXjunXrCkHzc+bM4YMPPshl182bN/H390cmkxEVFSVqOYmIVHJEx0Wk1JBIJNSpY4NS6cOpU6d5+vQZHTq8yfPnz3nyJIq4uBfExsb+zzGxoHbt2lhbW2NpaYlSqcTQ0BClUikUzRSpfoSHh+vUp9m3bx+BgYEMHTqUTZs2ER0dTXBwMB06dOD27duC4CRkZ/DFxsYycOBAbGxsmDp1KkZGRjp1fhYuXEhqaipbtmxh48aNbNy4UegjrxIFtra2NGnSBEtLy1x1l06fPs3s2bPzvJ7Dhw8Lsg0iIiLlg+i4iJQqOfWNevfuxYEDB5g/fwFvvFGXevXq0bx5C5ycHMWYg38IGRkZJCYmotVqefbsGUuXLuWPP/5g+/btQHaA9eTJk2nbti1btmwRjnN1daVRo0asWLGCadOm5eq3RYsW/PLLL3qd29atWwMI6ZOdOnUq8PNmZWWVp4Ckubm53tpmOZRG5WkREZGiITouImVGhw4d8Pb2zveHX6T6smHDBjZs2CC8t7Oz4/vvv2fAgAEA3Llzhzt37jBx4kSd4zw8PGjZsiX79u3T67iMHz++3GbkmjdvLsrPi4hUMkTHRUREpEwYMGCAUEajVq1auSo1R0dHA/orODs5OXHr1i29/Zbn0syTJ09yiV+9SkBAgLisKSJSzlRbxyUqKooffviB48ePA9lPTu+88w4NGzbk3r17hISEkJqaio2NDf369aN3794VbLGISPWiVq1aNGuWt66PlZUV8P8OzKvExMRUilIS58+fF2aI9JGenl5qIpwiIiKFo9o+KtjZ2TFmzBguXLjAixcv+OKLL4QK1w4ODjx58oQOHTqwdu1a0WkREakA3N3dcXBwYOfOnTrbo6KiuHjxIv7+/sXuOyfINjExsVDtY2Nj9bbt378/Wq02z5fotIiIlD/V1nGB/y+AFxAQIEwvP3v2jPfff5+vvvqKkJAQjIyMKtBCEZF/LjKZjPnz53PgwAGmTJnCX3/9xZkzZ+jVqxeWlpZ88sknxe67VatWQHZR1/DwcC5fvszly5f1tn306BGOjo44OzuTlJRU7HOKiIiUD9XacclZJnr77bcBOHnyJNOnT2f+/Pk6wlgiIiIVw9ChQ9m8eTPfffcd7u7u+Pr6YmhoyLlz53KlJheFVq1aMWvWLDZt2oSHhwdeXl5C1frXyakzK2YIiYhUDaptjAtkayzY2dnRuHFj5s+fj0ql4ttvvxXr1YiIlDExMTGFbhsUFMTgwYOJiIjAxMSEOnXq6G3Xo0cPXilmXyBffPEFU6dO5cmTJ9SuXTvPmJm6devy5MkTFApFqajwioiIlC3V1nFJSkri4sWLdOvWjYEDBzJmzBi6du1a0WaJiIjoQS6X4+LiUur9mpqaFqpqeU6gsIiISOWn2i4VHT9+HLVaTWJiIqdOnSIqKqqiTRIREREREREpIVXWcVGpVKSnp+u8Xp1GPnz4MDKZjA0bNuDl5cXs2bNF50VERERERKSKU2UdlyFDhmBnZ6fzunv3LpBdyO/YsWO0atWKmjVrsmLFCtLT00uUpSAiIiIiIiJS8VTZGJcxY8bQp08fnW05QX1//PEHMTExjB07FsjWi5gwYQILFy5k586d9O/fv9ztFRERERERESk5VdZx8fPzy3PfkSNHAHSCcSdPnsyePXuYPn06HTp00KkoKyIiIiJSPG7evKkzmx0aGiqWQaiGDB06lPj4eACmTJlC586dK8yWavnp2rNnDzVr1sTd3V3YZmBgwPvvv09sbCxjx44lKyurAi0UEREpChcuXGDIkCE6r7/++quizSox8fHxvHz5sqLNKBEJCQkcPHiQWrVqiQVVqzHu7u7Uq1ePgwcP8vTp0wq1pVo5Lr/99htjxozhzp07JCYmMn/+fCIiIgAICwtj69atQPaMzIABA9ixY0dFmisiIlJItFotarUatVpNZGQkW7duJTY2tqLN0suLFy8K7Yw0bNiQXr16lbFF5UPOcvzrsy2JiYlIJJI8X9euXSv2OZOSkgpd1iE/Jk6cmKd9AQEBxe5XrVbz4sULVCpVieyrDGP42Wef8cUXXxT7PKVJlV0q0oevry++vr56FTK9vb05fPhwBVglIiJSUlq3bs327duB7KWInj17VrBFeVOnTh3hJl4Qn332GXZ2duVgVcWhVCqFh8SbN28ye/Zspk6dKpRleOONN4rdd//+/UlISCAsLKxENr777ru0b98egNmzZ5OamsqiRYsASvT/c+HCBdq3b8++ffvo0aNHsfupCmNYnlQrx0VEREQkh8zMTDQaTYH1yLRaLS9fvsTExKTAdunp6RgbG5eajWPGjClUu9TUVAwNDZHLC/7JTktLK9BGlUrF7t278fT0pF69eoWyobgoFAohISIntrBt27a5kiteR6vVkpmZWS6FLJs1ayZUMl+1apWOzflRmLEuDarCGJYn1WqpSEREROTatWt06tQJIyMjjI2N8fb25tSpU7naqdVqpk6dioWFBaamptjZ2fHFF1+QmZmp0+7+/fv069cPc3NzlEolDg4OzJ07V6fN3r17sba2xtraGrVazerVq4X3rysC+/r6Cvusra3zvUHu2LGDBg0aYGpqirGxMQEBAcLydw6dOnVi2rRprF27Fnt7e5RKJU5OTvz000959rtu3ToCAwPp27dvnm3Km6SkJKytrdm2bRsff/wxZmZmKJVKvLy8+OOPP4R2cXFxwtidOnWKq1ev6oznjRs3yszGmTNn0r59e06dOkWLFi1QKpVYWFgQEhKioyMWEhKCtbW1MMsydOhQwb7hw4eXmX1VYQxLA3HGpZKhQVPRJoiIVFmePn1Khw4dcHV15ciRIxgYGPDFF1/QpUsXwsLChKdqgGHDhrF3716WLVtGixYtOH36NDNmzCAhIYElS5YAkJ6eTpcuXbC0tGTXrl3CTWHGjBmYmZkxfvx4AHx8fIQYuq5du9KzZ08++OADgFyzJOPHjxeyM+bOnZtnRep9+/YRGBjI0KFD2bRpE9HR0QQHB9OhQwdu374tPOknJCTw3Xff4enpydq1a5HJZMybN48RI0bg7e2Nq6trrr6bNWuGo6NjvtmZ5Y1WqyU2NpZx48YxZMgQdu/eTXR0NNOmTWPw4MHcunULuVyOmZmZMNZTpkwhNTWVNWvWCP2UZNmkIFJTU7ly5QoTJkxg4sSJODg4sHXrVubPn4+HhwcjRowAYOTIkXTp0oU///yTiRMnMnXqVFq3bg2AtbV1mdlXFcawNBAdl0qGFCnJmmTStenUktYSK9aKiBSB2bNnk5WVxeHDh4X6Q6Ghobi5uRESEsKBAweA7GD9n3/+mXXr1vGvf/0LyI6De/HiBYsXL2bu3LkYGRkRHR1N7969GTVqFE2aNAGgefPmHDlyhG3btgmOS+3atQUnQCqVUrdu3TydgsDAQOHvb7/9Vm8brVbL5MmTadu2LVu2bBG2u7q60qhRI1asWMG0adOE7fb29hw4cEAIjHVxccHd3Z2jR4/qdVzat2/Po0ePCjGi5c+gQYNYsWKF8D45OZkPP/yQe/fu4e7ujkKhEMa2Zs2ayGSycnXAVCoV+/fvx9bWFoCOHTuyf/9+Dhw4IDguDRo0oEGDBsIyZfPmzcvVxso+hiVFXCqqhJhJzTDAADXqijZFRKRKsXfvXnr06KFTNNHAwICBAwdy9OhRMjIygOwMRMj+gX+V6dOnc/36dRQKBQBOTk4sXboUe3t7Dh06xH//+1+++eYbMjMzSU1NLbPruHPnDnfu3CEoKEhnu4eHBy1btmTfvn06252cnHSyedzc3ACIjIwsMxvLCmdnZ533le1aDA0NBacFsh3VevXqVRr7oPKPYUkRZ1wqKUqpEhky4rPiqSGrUdHmiIhUCaKjo7G3t8+13cnJCbVaTXx8PHXq1CEyMhJjY2PMzc112pmZmeWqJv3VV1/x+eef4+joiKurKyYmJsTExAhK3WV1HUCe13Lr1q18j89xYjSaqr/0LJPJgMp9LTKZrMQpz2VJVRjDoiA6LpUUhST7ic9UasoD1QOcFc4FHCEiImJlZSXc9F8lJiYGqVSKhYUFALa2tqSlpfHy5UuUSmWe/Z06dYrp06ezdu1aIWYFoFevXjx+/Lj0L+B/5MwY5XUtNWqIDzMi/1zEpaJKjkKi4A35G2RqM9Foq4e3LCJSVvj7+3Pw4MFcAnC7d++mbdu2QkCrj48PAL/++qtOu82bN9OyZUvh+Bxhr+7duwtttFotz549y9MGCwuLEouiubu74+DgwM6dO3W2R0VFcfHiRfz9/UvUP2QvG7yeQVXVKI2xLktyHOXKbmNltk8f4oxLFUCDhpealxhKDDGWlL1mgIhIZSMqKkoQyMr59/Tp04J6rr+/PyYmJsyZM4fdu3cTEBDA3LlzMTAwYMGCBdy6dYvTp08L/XXo0IFu3boxduxYTExMaNGiBefOnWPixIn07NlTmIXJEfiaPHkyU6ZMITk5mRUrVnDp0iXq16+v19ZWrVoJxVydnZ158OABvr6+Qp/Hjx8nOTkZyJb8z8zMZM+ePQA4ODjg6emJTCZj/vz5DBs2jClTpjB69GhiYmL4+OOPsbS0LHGl++3btxMYGIifnx9Hjx4tUV8FoVarCQ0NBRDSbC9cuCDs79SpU64lu8KSM9arV6+ma9euPHv2DEdHx1xZMXPmzGHPnj2cPn1ar+7KjRs3+PvvvwGIjY0lNTVV+D+xtbUVPgdFxc3NDUtLS5YtWyYE6z579ixXIGx0dDQ9evQgKCiIjz/+OFc/lWEMKxOi41IFkElkWMosydJmEZsVi6HEEDOpWUWbVSpoNCDWYxMpiHPnzjFgwACdbeq59oAAACAASURBVJ9++qnw971793BxccHFxYUzZ84QFBSEl5cXkO0MHDx4kHbt2ukcv3PnTsaMGUNAQABZWVkYGxszZswYHY2W1q1bs3z5cmbMmMH27duRy+VCraQdO3aQmpqaS7hu6dKl9O3bl7feegvIjpu5cOECHh4eAHz88ce5dDJy9FSCgoLYvHkzkK39odFoCA4OFlRc27Rpw7lz54Qn+eKSE+tQHlmLqampufRi5s2bJ/x99epVnTT1ohAcHMypU6cYN24ckJ16vn79et59912ddg8ePODSpUs6Wiuv8t1337Fs2TKdbTk29+3bl19++aVY9hkaGrJx40ZGjhwpfB5dXV25e/euTruMjAwuXbpEp06d9PZTGcawMiE6LlUImURGLVn1qGodE2PGgQMtyMyUM3r08Yo2R6SS079//zxvOq/j6enJ7du3iYyMRK1WU7duXb3Vik1MTNi0aRMrV64kNjaWunXr6lWmDQ4O5qOPPuLRo0fUqlVLeLL98ccf9Z6/QYMG3Lp1i8jISLKysnBychKCIwH+/PPPQl0HZDsygwcPJiIiAhMTE70BwVeuXNF7bH7jNWjQINq3b0/t2rULbUtxsbCwKNT/XV7tOnTokOfxRkZGhIaGEhMTQ3x8PE5OTnqVkp8+fYq1tXWe8UxLly5l6dKlBdqYV7sTJ07keUyfPn14/vw5ERERKJVKvSUEcooW5jXLURnGsDIhOi5VkHRNOmrUmEhMqqTOS3i4HX/84cyZM+60bPmgos0RqaY4OjoWqp2FhUWBMxhyubxI0vgSiQQnJ6dCty/o3K+r75YG+jKWSsLkyZOpUaMGO3fu1OsoliU5iq/6SE5O5uzZs4JeT0WgUCj06unkcPDgQUxMTApVZqCsyG8MIVtU7/nz5+VoUd6IjksVxEhqRJomDS1a4rMSsKpi6dLu7lG4u0cRFpb3F1lERKRqYGtrKywzVEZSUlIYNmwYn332WUWbkieOjo6sX78eGxubijYlT2xtbTE1NWXcuHF5xneVF6LjUkUxllb9IF1Dw8qreyAiIlI46tWrx8qVKyvajDyxtbVl9erVFW1GvowcObKiTSiQ1+tzVSRiWGQVx0xqylN13qmZlZkquMolIiIiIlLBiI5LFUchUWArr0OyJpk0TVpFmyMiIiIiIlKmiI5LNcFMakaSRn+VWRERERERkeqCGONSjbCSWZGlzSJNm4ap1LSizSk1njyxIiIid7R7ZqYWmQysrauW6qOIyD+dzMxMrl69Wmxht7IgLi6OqKgoGjduXKTjwsLCaNq0KYaGhmVkWcVz48YN7OzsdIqXViTlNuOSnp6eq6JpWZCZmcnu3bvLtHLr77//riP5XR7nLAwKiQKZRIZaqyZFk0IhZS8qPTduOLJxY4dcrx9/7Eh4eNF+ZESqFxMmTMglHJaDVqslKiqqnC0qGzIyMgSV4KpORkYG3bt3Z/369RVtig6PHz/mzTff1FFYLoj9+/fTpUuXalN1OS/Onj2Lj49PvqUuypNycVxWrlxJ48aNyyWPfvfu3YwaNYpNmzaVet+HDx+mU6dO9OrVi3v37pXLOYuDpcwSU6kpiZrqMRPh4fGEIUN+z/UaMOB33NxuV7R5IhVIaGgov//+u95969atw97evkg3ovLkxYsXuWoq5cW7775L3bp1SU9PL2Oryp5JkyaRmJjIqlWrSqU/b2/vUskaatq0KQsWLCAgIKBQeiUPHjwgMDCQ7777LpdGy549e5BIJHpfeRXIDA0NzVdHRR/Lly9HIpEQERGRa19qaioSiYSbN2/qPbZJkya8/fbbOtuePXuGvb09TZs21XkQf//99/Hx8WHgwIGFFoIsS8plqWj8+PGcPXuWkydPlvm5unXrxqxZs8pEyKdr1648evRIKLxWHucsCQqJArU2q6LNKDFOTrE4OeV+2kxL0/L48ROg+iyLiZQe/v7+zJgxg6ZNm1a0KXqpU6cOEyZMYOHChQW2HT16NC1btqz0iqYFcenSJdauXcv58+cr5dLKe++9x7p165gyZUqBD6Iff/wxHTt21Pu77+3tzY4dOwD4+eef+fnnn/n+++8xMTFBoVCUie0lRaVSMWDAANLS0ti9e3euUhaLFy/G1dWVDRs2MGrUqAqyMptyWyoqL2EdCwsLJk6cWGZS1vquo6zPWVxMpEpkEilZ2qxKWVlarZaiVssKbigi8gqpqalkZRXskLu4uDBnzhwsLS0L3XdycnKefWu1WqE4YmFsLE38/PyYMmVKoc6rVqsL1WdaWsFZiCqViu3bt3P//v1C9VkQixYtok2bNnh7e+fb7vbt29SoUYNdu3aVynkLi0QiYcKECfz000/5Lv/cvn2bffv2MWHCBL377ezs6N+/P/3796dhw4ZAtvR///796d27d5nYXlI+/vhjzp07x9atW/WqRNvY2DBkyBAWLVpU4bMu5ea4lLcEdFlR1a5DggSZRIYESYV/2HKIjLRizx4vkpKU3Lljy7FjjUlI0F9DREQkh3PnztG0aVNMTU0xNzdn1qxZuW7Se/fuFaTLc16vVtF9ldTUVKytrfnmm29YsmQJderUwdzcHFNTU50lGZVKxYwZM6hZsybm5uZYW1uzfPlyvX1u2rQJR0dHTE1NsbS0ZPjw4TpxAa/ap1arWb16tfD+dVn/kJAQnevQV6cohx07dtCgQQNMTU0xNjYmICAg1/LBzJkzad++PadOnaJFixYolUosLCwICQnJ87dh3bp1BAYG5irwVxxynuQDAwMLbKvRaEhISEClKn+Ryr59+6JQKIQZE3389NNP1KxZk86dO5ejZWXHd999x9dff828efPo2rVrnu2GDh3K7du3uXr1ajlal5siLRWNHz9eqCr6OtOmTStUbY6MjAzmzZvHoUOHsLe3Z8aMGbRo0ULY//DhQ5YtW4axsTF//fUXrq6ufPrpp8JTk0qlYunSpaSmpgpPDF5eXgQGBpKVlcXhw4fZuHEj//rXv/D39y/wmIKIjIxk4cKFaLVaUlJScs2q6Dvny5cv2b17N5s3b2b9+vWsXbuWU6dOsWjRInx8fFi4cCGHDh3i559/Lrco7UwyUaBAQsWrvjk6xuHoGEefPpcq2hSRKkJsbCxvv/02tWvXZteuXSiVShYuXMjDhw+FqrsAjRo1Ys6cOQBcv36dNWvW5DsDERsby5dffolGo2H48OFYW1uTmJiosyQTFBTEgQMHmDt3Lp6enhw+fJjJkyeTnp7OtGnThHZr165lzJgxTJo0icGDB/P3338zdepUevfuzdmzZ5HL5fj4+LB161Yge+m5Z8+efPDBBwC5Cjz27NkTZ2dnINsxyWupfd++fQQGBjJ06FA2bdpEdHQ0wcHBdOjQgdu3b2NsnK2ynZqaypUrV5gwYQITJ07EwcGBrVu3Mn/+fDw8PBgxYkSuvps1a4ajoyN+fn55jmFh+f3338nIyMDHx6fEfZUlSqWS5s2bc/z4cSZOnKi3zfHjx/Hy8qpyD7L6uHDhAmPHjiUwMJCpU6fm29bHxwepVMrx48d17tvlTaEdF7Vazd9//83GjRuF6qhnzpxh8ODB9OnTp1BOi1arZeLEidjY2ODt7c1PP/3E+fPnOXPmDG+88Qapqan06NGDsWPH8tFHHxETE0Pz5s3JzMwUMgeWLFlCjRo1hAHOCfSC7C/Gzz//zJEjRxg6dKhw3vyOyY+IiAjeeust1q5dS4cOHUhJSckVzKTvnIcPH2bDhg1cvnyZr7/+GqVSyePHj7l//z4+Pj6EhYVx7do1YmNjy81xMZQYotFq0Gq1aNEilVT9L5zIP4fly5eTnJzM5cuXhZkJX19f4caeQ7169QRHIDQ0lDVr1hTYt1Qq5cqVK9SsWTPXvjNnzvDzzz+zceNG4cbepk0bYmNjWbBgAZMmTUKhUJCWlsasWbMYOnQoixcvBrLjHKysrOjWrRunT5+mc+fO1K5dW3ACpFIpdevWzdMpaN++Pe3btwfg3r17eh0XrVbL5MmTadu2LVu2bBG2u7q60qhRI1asWKHjXKlUKvbv34+trS0AHTt2ZP/+/Rw4cECv49K+fXsePXpU4BgWhvDwcIA869ycO3eOixcvAv9fLXn//v3CjJWzs3O5LbPUq1dPsEUf4eHhDBs2rFxsKUueP39Ov379yMjIYPTo0QW2NzY2xtbWlr/++qscrMubQjsuWVlZvP/++8KMQ3R0NOPHj8fZ2TnPdMTX0Wg0zJw5Uyjr3a5dO8aMGcOCBQtYs2YNz58/5+nTp7i7uwPZ1Srd3NyEDzzAyZMnad26tfB+6tSp7N+/H4A333wTjUbDnj17dM6b3zH5MWXKFFq1akWHDh0AMDU1JSgoiOnTpwtt9J2zb9++REVFcfnyZby9venbty+ffvqpUMl548aNxMXF4eDgUKhxKy2kEilarbZSzLqIiBSFCxcu4OnpqbOcolQqhYeokhAUFKTXaYHs2QyJRIK5uTmHDh0StteoUYO4uDgePXqEi4sLt2/fJjY2lkGDBukc7+fnR3h4uPCbV9rcuXOHO3fu5JoZ8PDwoGXLluzbt0/HcTE0NBScFsh2nurVq1cu6bzR0dFIJJI8K3Hv379fmC3LYdOmTUKQbM+ePYvsuKxfv15vjR0XFxeOHj2a53FWVlZ5Zhap1Wri4uLyzA6qSly5cgV7e3vq1avH2LFjuXbtmjBDlxf5jU15UWjHxdDQUFjn1Gg0fPjhhyQmJrJ9+3bMzMyAbOfm9TVJhUKBTJYdgCmTyXS+wIGBgcyfP59Ll7KXDOrVq8fNmzextbUlPj6ebdu2ER0drfNFc3NzY/ny5Tx+/Jhp06bh6urKO++8o2Pn6+R3TF42R0VFcfToUf7973/r7NPnbOg7Z07keMuWLQEEpwWyf3CVyoqJ6ZBIJKi1arK0WRhgoGOXiEhl5fHjx2VWkTa/LI9nz56h1Wr1LivL5XKioqJwcXERbvyvx6HIZDIaNGhQuga/QnR0NAD29va59jk5OXHr1q0C+5DJZOUSS5KRkYFMJstzeWX69OlCsOvt27fx9fVl3bp19OvXD8j//ykv2rZtm+s3HMjTecrBwMAgz9RzlUqFVqvNtbRXFTE3N+fAgQO8ePGCzp07M2vWLBYtWpTvMfmNTXlRrJFfuHAhJ0+eZPny5ToqgytXruSLL77Qabt48eI8K19KJBLc3Nx0gudMTEyYPn06KpWKf/3rX+zZs4eMjAxh/5w5c0hMTGTnzp388ssvDBs2jC+//FL4UOu7Eed3TF425+TTFyYjoard/OUSOXLkqLQqFFTO1DwRkVextbUlJiam3M9ramqKoaEhycnJ+d44cx6uXrx4UV6mAQhLzTkOzKvExMRUqlmBnIDktLQ0vU/1rz7Q5dhtbm6e52xYYWjUqBGNGjUq8nGJiYl5ZokaGxtjYmJS6Ayz0iA0NJQHDx4wbtw4ne052WsGBgbF6rdt27Y0adIEyNZqWbp0Kf3796dNmzZ5HpOYmIiHh0exzldaFDnQ4bfffmPhwoUEBgbqzHQAdOnSheXLl+u82rVrl29/KpVK+NLHxMTQsWNH3NzcWLRokd4nFXNzc77//nt2795N48aN2bx5M++9916+58jvmLxszglCri7Km/rI1nkpXOpkZUOlUpGUFE9CQlyFe/8iZY+XlxdhYWFC7ANkK1anpKSU6Xn9/PzIyMhg586dOtu1Wq3OdLmHhwdmZma5lqlv375NixYtOHPmTK6+LSwsChVrlx/u7u44ODjksi8qKoqLFy8KCQolITIykszMzBL34+joCMCTJ09K3FdZExkZme9SvqOjY7lex+3btwkODubhw4c6248ePYqNjU2pyI0sWLAAOzs7Ro0aledvqkajISoqqtzDHF6nSDMu0dHRvP/++7i5uQkBaJAdqGRvb19k71aj0XDnzh1hGvb777/n4cOHDBgwQKfdq6l6a9as4aOPPuLNN9/k6NGjjBo1in379pGenp6nOFN+x+Rlc850ZmhoKNOmTcs1q5JXdlVVQ4aMTG0mMmTIJJVTUyUrK4uUlFRevHhBYmIicXFxqFQqjIxMyczMJDr6MV5enrkEk0SqDxMnTmT16tX06dOH+fPnY2VlxZw5c3JJkEdFRREWFgYg/Hv69GlBLt/f379In5OAgAD8/f15//33iY+Pp1u3biQkJPD5559z8+ZNwsPDkcvlmJmZ8emnnzJjxgzc3NwYNGgQDx8+JDg4mIyMDDw9PXP13apVK3bu3En//v1xdnbmwYMH+Pr6CrMO169f58GDBwDcvXtXJ5bOyMiIbt26IZPJmD9/PsOGDWPKlCmMHj2amJgYPv74YywtLfnkk0+KONK6bN++ncDAQPz8/PKNCSkMb775JpAdV/G60uzrGBkZ4eXlVWEzRlevXuXdd9/Nc/+bb76p1xnN4dmzZ8JKQk6MZmhoqCBA17179yLZM2LECBYvXkzv3r1ZvHgxtWrVYsOGDZw4cYINGzaUSnaTubk533zzDT169GD27NnMnz8/V5u//vqLly9fCnGfFUWhHZecuJbk5GR++eUXnS//r7/+ypgxYwrVR2xsLLVq1QJg69atGBoaEhwcnG3M/9YMf/31V4YMGcLOnTt58OABBgYGhIeHY2BgwJEjR+jUqRMeHh7I5XK6d+/O9evXBaclZ1np1TXbgo7Rh6urK35+fhw7doxFixYxZcoUtFot586dA7IzjnKmPPWdM0fESt8T4apVqzh58iT//e9/SyW4sCRIJBIMMCBDk4FMIssO3i3HpS+tVotWqyUrKwuNRoNGoyEjI4OkpCSSkpKIi4snJSUFpdIYCwsLzMzMsLOzxdTUlLQ0LWp1Fn//fYNLly7TsGFData0qhYpiiK61KlThyNHjjBgwAA6d+6MRCJh8ODBuRyCc+fO5Xrw+fTTT4W/7927l0svpSB2797NtGnTmDBhgjDz0KZNG3bt2qUT5xASEoJcLmf27Nl88sknSKVSevXqxcqVK/UujSxdupS+ffvy1ltvAWBmZsaFCxeEafj169fnksXPiTN0cHAQ4mqGDh2KRqMhODhYiE9o06YN586dKzCWoyByHtBK4zfB1tYWLy8vQkNDGThwYL5tXVxcBMezvLl8+TLPnz+nV69eebbp3bs369at4/79+3rF2i5cuJBL+yYnC8nS0pL4+Pgi2WRtbc2RI0cYPXq0oLNSo0YN1q1bl6+DVVS6d+9OUFAQixcvpn///rmKYO7fvx8LCwvBCa0oCu24rF27lpMnT+Li4sLKlSuF7fHx8Rw5coRJkyble3xQUBA3b97E19eXwYMHk56ezv379/n111+FOJJhw4axZcsW4QuYI4azZcsWvv/+e+bNm4dGo2HgwIF8+OGH2NjY8NNPP/HNN98AcO3aNb7++msgW1DHwcGB1q1b53tMQdc8YsQI5s2bx48//oi1tbWQx37w4EEaNGiAoaFhrnMmJCQIkfAzZ85k2rRpOtoFhw4d4uzZszx79qzCHZccDKXZAcYqVBhQvPXSwqDRaEhPTycjI4OMjAzS09NRqVSkp6cLgdJabfZ6t7GxMfXr18LExCRPZ0Qmk9K8eXPu37/P33//jUqVSZ06dUTnpRrSpk0bIiIiePjwIVZWVnqlBPr3719ooUUTE5NCtTUxMWHVqlUsWLCAJ0+eYGVllWfcxSeffML48eOJjIzEzs4u3yD8Bg0acOvWLSIjI8nKysLJyUlIZIDsmMFXf2vzIygoiMGDBxMREYGJiYlesbqlS5eydOnSXNtPnDiRZ7+DBg2iffv2paYKHhwczEcffcSSJUsqTaXh19mwYQOenp75hjm8/fbbuLq68u233+rNWurTp0+pC342btyY8+fPk5SURHR0NG+88UaJAoT//PNPvds3b97M5s2bc23XarVs3LiR0aNHV1hySQ6FvuqPPvqIjz76qNgnatmyJYcOHSIyMlJYP3xd+8Xa2prz58/z9OlT7O3tkUql+Pn5ERISImQj/fDDD8jlcsLDw9FoNGzbtk2YOWnWrJkg7vQq+R2THzVr1mTfvn2Eh4eTnJxM06ZNSU5O5oMPPtBZ49N3zpynKH1s2rSJ58+fl1mWREmQIs0O2pWUPGhXq9UKVW1TUlJITk4RZqfkcjkymRSFQoFCocDS0hIDAwMMDQ2Ry+VFfsKrW/cN5HIFERGP0Gg0Fb4GK1I2yOXyApcZygqlUombm1uB7QwNDQtto0QiKZQGVmGQy+VFnk0qDPoylorL0KFDWblyJV9++aVOuEFl4e7du2zYsKFAuQypVMrixYt55513GDt2bKmOUUGYm5tXyAPvli1biI6OJiQkpNzP/Trlns/l6OgoBGnpQy6X6+w3MDDQSaE2Nc0uqNe8efNCn7M4x7xKjq4M6E99Lio1atSoVNH+ryIj+4mvOM6LRqMhPj6B+Ph4EhISePHiBXK5HLVajZmZGRYW5hgZGSGTZTstUmn2qzSmoWUyKQ4O9kgkEu7c+QutVpvv50xERKT8kclkbNmyhXbt2uHt7c3gwYMr2iSBmJgY+vXrx+TJkwsVw9G7d2+GDx/OgAEDOHToUKWZPS8LLl68yIQJE/jxxx+FUI+KpOonoouUKjlOhAIFWdosIWA3Ow5Fg1qtJitLLaQ1pqSkkJKSSkJCAhkZGZiammBpaYm1dS1sbeug1YKHh3t+pyw1pFIpjo4OSCQS7t27J8y8vDr9LiIiUrHUr1+fI0eO6Aj6lYQVK1aUyoxHdHQ0Q4YM0YmJKojly5czffp0kpOTS+y4tGrVim3btpWoj1cxMjLi4MGD1K1bt8R93b17l82bN9OtW7dSsKzkiI6LiF7UajUJLxPQZmhJS0sjPT2DrKws1GrV//7NQiqVYGJiipVVDezt7TE0NNBxEnKOK28cHLJtuX//AVlZGpycHKuFWJSISHWhefPmxZ4Bf538NEeKQnE0X6RSqd7sm+JgbW1dqkUbZTJZqTkala28gfhrLkJWVhZpaekkJyeRlJRMcnIy6elqtFoFL9PiMTYxwNbGFhMjJQqFAgMDAx1F5MpIrVq1kMvl3Llzh9TUFBo2bFip7RURERERKRyi4/IPJDMzkxcv4oiLiyMhIYH4+ES0WjnGxrWRy80wNHTFyMgUCVoUmmukJj3DwMGpRAqW5Y1EIsHS0pImTZoQFnaJK1eu0rRpk2IrTIqIiIiIVA5Ex6Wak5SUTGTkE5KTU0lJSSMxMYmMDA0GBpYYGlqhUNhSp44FMlnuQFytNgtTQwU1ZYbcvnkV5wYNsK1th0xaNWYuJBIJSqUSH59W/PHHFcLD/6J+fTcMDQ2rXJkGkdLl0qVLLF68mP/85z8VlqUE2XIShoaGFZpeOmHCBN544w2hTtCraLVanj59WmZFIsuTjIwMkpOTK0VwqUjJEMUuqjm//36eK1ciiYlRolY7YWnpg51dR6ytW2Ju/gbGxrX0Oi2vYmZogJuFKTF/PyAy8nGpyH+XJ0ZGRjRp0pjMzEzu3bunU/tK5J/JkydP2Lp1a7nXFnqdhg0b5it0Vh6Ehoby+++/6923bt067O3tOX36dDlbVThevHjBy5cvC9X23XffpW7dulWyREhiYiISiSTP17Vr13Idk5qaikQi4ebNm4U+z7Vr15BIJHz//fd693t7e7N69Wq9+8aPH59LaDErK4suXbpgZmZWqIKfhUWccanm1FXHkxL7jFq1GmNsXHwVTRMDBU4yKU+jInmYno6Lq2uVihkxNTXF3b0Bd+7c4fr1P2natEmhtHxERMqSzz77rFLPZvj7+zNjxgyaNm1a0abopU6dOkyYMIGFCxcW2Hb06NG0bNmySn7vlUolO3bsAODmzZvMnj2bqVOnCsq2b7zxRgValzfTp0/n2LFj7Ny5k4YNG5Zav6LjUs3xNski+eVVzl1LpZn3kAJnV/JDIZVib2pIRMxT/tSk0dyjdLICygOJRIKpqSlNmjThzz9vcPHiRZo1a1ZiSXSR6kFqaipKpTLfJUStVkt6erpe+f7XSUtLw8jIqMAlycKUSoHsuDSpVFpq2XGpqan/01TK/+HDxcWFOXPmFKnv5ORklEql3r61Wi0pKSmYmZkVysbSrD/m5+eHn59fge0yMzPRaDSFcnDyqnT9OseOHUOpVBY7A0qhUNC/f38AYamrbdu29OnTp1j9lQfbtm1j4cKFzJw5k4CAgFLtu9ovFe3du5d33nmHt99+m969e7N69Wqh4No/AbkEOlpoeUt7h/Dz3xEf/xittngFIjVa0Gi12JgYkfD4Oddv/Vmlik1KJBIMDAzw9GxJ7dq1uX07nLi4uIo2S6QQTJw4EWtra72vwt789XHs2DHq16+Pqakp5ubmTJ8+Pddn+v79+/Tr1w9zc3OUSiUODg56Zd4Bli1bhpOTE0qlElNTU/r06cO9e/d02vj6+urYn3ND0sehQ4do2bKlUALD29ubI0eOFPt6z507R9OmTYXrnTVrFmq1boX4vXv35hrjnIKBr5Oamoq1tTXffPMNS5YsoU6dOpibm2NqaqqzJKNSqZgxYwY1a9bE3Nwca2trli9frrfPTZs24ejoiKmpKZaWlgwfPlynmOar9qnValavXi28f105OCQkROc69JVCyOHatWt06tQJIyMjYaxPnTql02bmzJm0b9+eU6dO0aJFC5RKJRYWFoSEhOQp8X/z5k38/f3x9fUlOjo6z/NXJ65fv857771Hjx49+Pzzz0u9/2o/49KrVy9iYmL45JNPmDlzJmPHjq1okyqEFmZg9PIxx2/uQlW/O7VqOSPNJ8hWo8lCk5XGy4x0YjTppGdlkZklQSsxJktihIGyBmnJqWRkZmBoaIhUUrV8YDc3Nx4+jODOnbu4ublWqYypfyJDhw6ldevWOtvWrFnD6dOn8fX1LXa/S5YsYe7cubi5ubFr1y6++uorjI2N+eyzzwBIT0+nS5cuJKodOwAAIABJREFUWFpasmvXLqytrdm2bRszZszAzMyM8ePH69gzadIk5syZg7+/Pw8fPiQkJISuXbty69Yt4Ql+/PjxQpG9uXPnkpSUpNe2a9eu0atXLwYMGMDKlStJS0tj3rx59OzZk7CwsCIv38TGxvL2229Tu3Ztdu3ahVKpZOHChTx8+BAvLy+hXaNGjYRZluvXr7NmzZpczs3r/X755ZdoNBqGDx+OtbU1iYmJOjMWQUFBHDhwgLlz5+Lp6cnhw4eZPHky6enpTJs2TWi3du1axowZw6RJkxg8eDB///03U6dOpXfv3pw9exa5XI6Pj49QZqVr16707NmTDz74ACDXjFTPnj1xdnYGYMeOHZw8eVLvNTx9+pQOHTrg6urKkSNHMDAw4IsvvqBLly6EhYXRrFkzINtRu3LlChMmTGDixIk4ODiwdetW5s+fj4eHByNGjMjVt62tLU2aNMHS0vIfMcMbFxdHQEAAdnZ2/PDDD2VSN67aOy4AN27cQCKRVDoRnfLGQwlG0mj2/rUfiaQX1tbOwr6srAwyM5PIyEggIyMRtToVqVSOQq4gTe6E1NAcmcwImdQAA6kcU5kBKtVN0P6vPACKKuW8yOVy6tZ1QqPRcP36nzRu3Ahra+uKNkskD7y9vfH29hbe//rrr/z2229MmTKFoUOHFrvftWvXCtWkO3XqREREBCtWrGDmzJlIpVKio6Pp3bs3o0aNokmTJkC2eNqRI0fYtm2bjuNy+PBhGjduLCivtmrVCltbWxYsWMCjR4+E2mSBgYHCMd9++22etp04cQKVSsWqVauEgoReXl6888473L17t8iOy/Lly0lOTuby5cvCzISvr69wY8+hXr16giMQGhrKmjVrCuxbKpVy5coVvQ8AZ86c4eeff2bjxo3Cjb1NmzbExsayYMECJk2ahEKhIC0tjVmzZjF06FChjpG3tzdWVlZ069aN06dP07lzZ2rXri0s+UilUurWrZvnElD79u1p3749kF0ZPC/HZfbs2WRlZXH48GFhrENDQ3FzcyMkJIQDBw4IbVUqFfv378fW1haAjh07sn//fg4cOKDXcbGysuL69esFjmF1QKPRMHjwYO7fv8+nn35aZo7aP8JxOXr0KC1atMDGxqaiTalwnI3gLU00W69uQ9usJ1lZCaSnx6HVajEyssLAwAIzMyeMjWsikRQUfJu9fp9TWTpNk4axtOD13sqCQqGgfn03FAo5f/75J02aNBGdlyrAzZs3CQoKolu3bsybN69Efb1ez6pv377s3buXe/fuUb9+fZycnFi6dClxcXEcOnSIJ0+eoFKpyMzMJCsrS+dYf39/goODmTRpEoGBgXh5eeHr61vsGSFfX18MDAx45513CA4Opl27dlhaWrJ3795i9XfhwgU8PT11llOUSmWp1NgJCgrKc9Zy3759SCQSzM3NdWT+a9SoQVxcHI8ePcLFxYXbt28TGxvLoEGDdI738/MjPDy8TIOY9+7dS48ePXQqVhsYGDBw4ECWL19ORkaGUKfO0NBQcFog23mqV68ekZGRZWZfVSEzM5MTJ07QunVrFi9ezLBhw0o1KDeHau+43L59m8ePH//jZ1tepb4SemalsOnyb3h4NMXevjMKhRJJCWdMjCRGaLSaKjXzAuDs7IxEIuXvv++jVquxsbEpk+lNkZITFxdHnz59sLW15aeffir1zLach5tXY5+++uorPv/8cxwdHXF1dcXExISYmJhc8RLjxo3D3NycRYsWsXTpUiwsLOjVqxczZ86kQYMGRbbF09OTEydOMHv2bCFlukOHDkyZMoWuXbsWub/Hjx+XWUV6hSLvoP9nz56h1Wp1ZppykMvlREVF4eLiItz4Xx9XmUxWrPErCtHR0XrrHTk5OaFWq4mPj883PkYmk6FSqcrSxCrDt99+S48ePWjYsCEjR47k7Nmzpf49rfa/zocPHwayn4ZE/h9rBVhbf0J0dB2eP39IVlbea9hFQYMGlVaVZ6BaZcXJyZE33qjLgwcPiYiIyHdNX6RiyMrKIjAwkJiYGPbs2YOlpWWpnyNH1yWn71OnTjF9+nSWLVvGnTt32L9/P9u3b9eJCXmV4cOHc/36daKioli+fDmXL1+mXbt2OsGlRaFt27YcOXKEuLg4du3ahUKh4K233ipWgUJbW1tiYmKKZUdJMDU1xdDQkJcvX6JSqXK9cmakcmYxKkJbx8rKSm/gbExMDFKptNrFpvz555/Mnz8/V3JCamoqQLEVxo2MjBgxYgS1atVixYoVXLx4UVj2K03+EY5LrVq1aNmyZUWbUulQKptTs+YsoqIsePToRon7k0gkyCVypEhRUbWePqRSKTY2Nri7NyAi4hF3794TnZdKxqRJkzhx4gQ//vgj7u6lU3H89ZvV/v37MTMzE9R0c4S9unfvLrTRarW5HBG1Wk3nzp1ZtmwZkH0THjFiBN9//z0vXrzIU+AtP4KDg3n33XeB7Jt/z5492bdvH6ampuzbt6/I/Xl5eREWFsbTp0+FbZmZmaSkpBS5r6Lg5+dHRkYGO3fu1Nmu1Wp5/vy58N7DwwMzMzP27Nmj0+727du0aNGCM2fO5OrbwsKCxMTEEtvo7+/PwYMHc4nZ7d69m7Zt2xYq5Tk/YmNjS8XO0iIjI4OQkJBcn6OjR48ClIpuz+DBg+nduzezZ88mPDy8xP29SrVeKkpKSiIsLIwBAwaIEu95YGjojI3NVzx48C4ZGcfx8Ch5dVKZRIYMGWmklYKF5YdUKqVmzZr4+LTi/PkLyGQyXFzqVSmhverK999/z4oVK+jXrx+mpqY6aapyuZx27doVq98PP/wQjUZD/fr12blzp5AxlJOdkiPwNXnyZKZMmUJycjIrVqzg0qVLOssucrkcGxsbPvvsM2rWrEmnTp2Ii4tj0aJFGBkZCVkpAMePHyc5ORnIlvzPzMwUbtYODg54enoC2dk9H374IQ4ODowcORKtVsv27dtJTk7Gx8enyNc6ceJEVq9eTZ8+fZg/fz5WVlbMmTMnlxMWFRVFWFgYgPDv6dOnBRkJf3//IumrBAQE4O/vz/vvv098fDzdunUjISGBzz//nJs3bxIeHo5cLsfMzIxPP/2UGTNm4ObmxqBBg3j48CHBwcFkZGQI4/IqrVq1YufOnfTv3x9nZ2cePHiAr6+vUELh+vXrPHjwAIC7d++i0WiEsTYyMhKqJ8+ZM4fdu3cTEBDA3LlzMTAwYMGCBdy6davEqsGPHj2iQYMGGBsb8/Dhw2LFFKnVakJDQ4HsZBNAJ0W9U6dORerX09MTf39/JkyYgEQioUWLFpw8eZKvvvqKESNGFLlKdl58/fXXNGzYkFGjRnHmzJlSW4Kv1o7LyZMnUavVxVoP/ichl1vi7PxfHjwYhURyhnr1PDEwKJ0gWy2aKhf3olQqadasKeHhfyGTZWctlJbwl0jx2L17NwC7du1i165dOvssLS2F9OKi8vH/tXfm4TGd7R//zJ6Z7IkREhJJRATVELGrnSKKV2lVG9X2pUVJUUtVVX9VxNKWarXaUrpoLdWithZvG1uVotaKKkmIbLIvs53fH+lMjUz2ycb5XNdczJnnPOc+J2e5z/Pc9/eeMoVx48aRlJSETCZj/PjxvP7665bfO3bsyLvvvsucOXPYtGkTcrmcUaNGMWrUKDZv3mwlkvbxxx8za9Ysxo8fT15eodPevHlzvv32W6t6SFOmTLE8fMwMHToUKAxy3bBhAwDjx49Hp9OxYMECFixYAICnpydLly7lySefLPe+NmjQgH379vHoo4/Sq1cvJBIJjz/+eBGH4MiRI5ZMKzPmTCkozM65Wy+lNLZt28bMmTOJioqylAzp1KkTW7dutbq2Zs2ahVwuZ968eUyfPh2pVMrgwYNZuXKlzVGPt99+m6FDh/Lwww8D4OzszLFjxwgJCQFgzZo1vPfee1brmI91o0aNLHE1gYGBxMTE8OSTT1qmARs1asTu3bsr7BSbMU+bV+blOScnx2K3mTsD00+dOmXlHJeGRCKxZMWNHTsWo9GIQqFg4sSJxWoUVQRvb2+WLVvGc889xzvvvMPUqVPt0q9EuCMY4b333uPw4cO8+uqrVlHTdZVJkybx7bffcunSJZycnGranFKZO3cuOTk5TJpUcUGtO1m0aDHaQ1t50Maux+XDZs0BXFx6WJYZDJkkJy/F0fE4QUHtUChKVo4sKDhN06YNih1GzcvLIzc/l5DmIQgIyErNUiofeXkCgiCg0djfKTKZTCQnJ3Px4iU8PDwICAhAoym6n4cPH8bXtzFPPDHK7jbcSevWoSgUlatsPWfOHN566y127NjBoEGD7GRZ7WLAgAHs3r3b5m+tWrXijz/+KLLcYDAQFxeHu7t7sXEzBoOB69evU69evVLfbE0mE3FxcTg6OtqtoF9iYiIGgwFvb+8ib61qtbrY+juTJk1i5cqVVssMBgN///03Hh4eVlk01UFubi4JCQl4eHiUqJ1UUFBAXFwc3t7epRagFASBuLg4jEYjvr6+lR4hjYuLw2Aw4OfnZ7cRgrS0NBQKRZkUg+1FTk4OTk5OnD17tsQRFPOxbtCgQanPyfDwcJ5++ulq0UMzq1R36NCBo0ePWv12z7xGfvPNN+zatYt33nnHMu/5/fff89hjj9UJp6U2IJe7oNVOJTV1DRcu7KZ168pPG0mRIZVIa32wrtFoJCcnh5ycHDIzM7l9Ox29XgCcSU7OIz//PC1ahNRoFV+R0omOjmbWrFk2fytuekMulxfRMrHVJiAgoEw2mLVF7ElJGS179+4tVsHaVqaMXC6vsYrYGo2GoKCgUtupVKoy2yiRSPD19a2saRbuTpG3B9XtIJaH8hzr2sI947hER0dz48YNcnNzcXV15dVXX8Xd3Z25c+fWtGl1CrncDS+vl7lxQ8/PP39Khw4jUSpLruFSFiQSCTpBhwKF5Xt1IggCJpMJQSgcpdHpdGRlZXP7dgbp6elkZeUilzujUrmiUmlxdm6OQlHo8Bbkx5OV+htn/zhLqwdaic5LLcYsEnc/URnlYBGRusg947gMGzaMb7/9liNHjrBt2zby8vLYvXs37u7uNW1ancTb+xVSUnw4c2YdzZq1wsXFq9LOhgIFBgzIkCGhehwXo9HI7du3ycnJJysrj4ICA/n5RoxGKQqFI0qlFienQNzdnZBKbV8OUqmEAHdn4jOyOX/uHCEtWti1+JuIiIiIvXFwcGD37t12Hf1bsWKFzVG86uaecVzmzJnDiBEjSExMZMGCBVUy3He/4ek5mrQ0CX/+uZ7gYCkuLvUr1Z9EIkGBAqNgRBCEahl1yc/P58L5C+j0Dri7N0OhcESjcUQmK1+8iEouw8/NiWvp2fzxx1lCQprfc9oOIiIi9w4ymcySNWUvKlrd2t7UnVSPMtCsWTMeeugh0WmxExKJHHf3kSgUT3HmzP/Iy8uyS79SpBgxlt7QDhiNRjyd1Lgq8tHpslAqXcrttJhxUMgI8HDG0VjA2bPnKpzJIiIiIiJScawcF3MtBnO6mkj1UlBQgFJZvHR2TSCVOlCv3hjc3N7i8OGvyMxMqnSgrVmoziAYKBAK7GRp8SikMvzdVUjzr5CV9TeCYDuQsUx9yaT4uTviJjFw7uxZ0tNrj6iUiMi9wqBBgxgwYAADBgzg1KlTNW2OSBWwaNEiy9/YLNxYVqwcF/PQd1UrKYoUxZzVUlsDP93cBtKw4XouXrxOSsrfxWYxlAe5RI4CRbVkHCllMvzcHCD3IpkZf2EyVUzZV28wkJWbh9KkJyclye6KkPcbs2bNYtGiReVap6CgwCKGdjfHjh2z6KyYP5cuXSq1z8TERLuc0/ca2dnZ/P3330UKSlY1e/fuJS8vj1atWtWqeLJ79fwq6ZqqKho3bkyrVq04fvw4586dK9e6Nh2XzMxM+1knUibMx7w2XaR34+zcDTe317lypYCbN+37wM4zVb3KrkYpx9/dAQf9JdJSz2Iw2Na+MGM0GsjKSiY+/gq/XbzMnmMn+T7mInuOSzlw2pfY+EHk5XWvcrtrI6mpqUXk0SvCnj17rFRwy8LTTz+Nn5+fTe0SQRAwGAwWbZaNGzeWekM2Vx42i7yJFIrQdenSBWdnZ/z9/fHy8mLp0qWVcmAMBgOpqallLkY4ePBglixZYjN9esSIEUgkEsvH1dWVhx56yCJUWFXUhvPLXtfenZR0TVUVo0ePZsmSJRXSjLMKzjXnwsfFxdWaIJz7BbOCo1arrWFLikcikaJWP0C9evO5ePFJmjQpoGnT4vUlyoJZUVeFigJTASqpyh6mFotKLsPXVcOt7FvcSsnHs14b5HIHBMFEfn42ycnXSUq6yu3bN0lLS0IiaYyDQyga9TgUyhbI1Q2RS51QShVIJA7ojZ8Cf1apzbWRBg0aEBUVxZIlS6p928899xxt27bFwaGoQGLHjh3ZtGkTADt37iQiIqLU/vz8/Hj11VeLKJPer5w7d45+/frRqlUr9u7di6enJ9u2bWPGjBkkJSURHR1doX6PHTtG165d7SaA6Ovry/r16wFIT0/n22+/ZdiwYaxatYoJEyZUun9b1IbzqyquvZKuqdqIlePSrFkzVCoVp06dslmCXKTqMCt6+vvbV7jK3kgkUhwcAvD338Lly2H4+FymZcuWlVarlEqkyJHbRR7bFoIgYDAaMRhNGE0mVOjRp13k1ytXyMtXkZycgF7viFrdFkfHITg4NMPPrzVyeckqqVWdGSWYh5erUb8vNzfXrlOWZe3PaDSi1+tLvXn27t2b3r1728s81Go1b7zxht36g8IpFo1GU2bl1dzcXORyebFVeXU6HVKptNTSE0lJSezfv5+BAwdWqCYOwPvvv09ubi7bt2+3KP+2bduWmzdvsmzZMl566aUib8mCIJCdnV2tyrAajYbu3f8d8RwyZAj5+fm8/PLLPP3000XOufz8fFQqVbVrSJXn/LL3tXdnvyWdX+W5pvLy8kotOmkOe6iqY211VclkMh544AEyMjKsKoiKVD2nTp1CLpfXmVILSmVDHByacft2OhcuXLRLJWWZRIYRo10qS+fl5ZGUlMT163FcuX6NUxcvc+LUGY4fPczxg/s5uW8Xwh+HyY6XIpXOxc/vJ0JCjtGkyQdotc/g7Ny1VKfF3gj/HENTRgam3FwEvR5jcjKCTodgqtoYg6ysLCZOnIi7u7tFqn7KlClW8W7bt29Hq9Wi1WoxGAysWrXK8v3u2jXZ2dlMnTqV+vXr4+joiKurK88995zNTKz8/Hz++9//4ujoiEajITw8nJMnT1q1mTVrlmVbWq22RCXZspCWlmbVn1arZfny5UXabd68uUg788dWBd3PP/+cwMBAnJ2dcXR0ZPz48TaH9fv06cOYMWPYu3cvLVu2xNHREbVazYEDB6za7dmzh7Zt26LRaFCr1YSHh7Nv375i92vixImMGjWKV199tQJHpZC8vDykUmmRh9zUqVOJjo62itXQ6/XMmTMHT09PXFxc0Gq1vPvuu1brmf925lGWJ554wnIMIyMjK2ynLXr37k1ubi7Xr1+3LHv//fdp2rSp5Rj269evSK2ohQsX2hzt7tSpU4VsLOv5Bfa/9qBs51dZr6mePXsyc+ZMVq9ejY+PDxqNBl9fX7766qsibWNiYmjVqhVOTk44Ozszbdo0hgwZwjPPPFPeQ1giRdz3nj178ttvv3HgwAGeeOIJu25MxDYnT54kNzeXtm1D7VYbozpwdHRk1Kih/Pbbb5YiXwpF5bKizNlGAAbBgFxSutSQXq8nLS2N5OQUUlKSSU1NRSaT4+LiTH5+PldPHKO7pgBHKTjLwEUBjh4gl0Bqni8G566VsrkyGG/dQuLqipCdDSYTsvr1EXQ6JP8cR6mDA1IHByRVXKH62WefZf/+/axcuZLg4GCOHDnCzJkzSUpKstygOnTowMaNGwHo168fERERjB8/HqDISMC4cePYu3cvK1eutATgTZ48mdu3b7NlyxartgcPHsTT05Pvv/+e9PR0Zs6cSf/+/bl06ZJFKj0iIsIiy79582YOHjxYqf3VaDS8+eabQKHjFBUVZSmMeCfh4eFFivQdPHiQ1atX85///Mdq+QcffMCECROYOnUqw4cP59KlS8yYMYPr16+za9cuq7YZGRmcO3eO7777jhEjRjBmzBjS09Ot4jlOnz7N4MGDefTRR1m5ciV5eXksXLiQiIgIjh8/btNx6ty5M4cPH6Zz584VPjZPPvkkn332GSNHjuTDDz+0CJiFhIRYihfe2XbXrl289dZbhIWFsXfvXqZNm0Z+fj4zZ84EYOzYsfTt25c//viDl156iRkzZtCxY0fA/lPjFy5cQCaT4eXlBcBHH33EpEmTWLBgAQMHDiQ+Pp5p06YxaNAgzp8/b4kpzM3NtRmrUqiqXX4ZiLKeX2D/aw/Kdn6V9ZpKT0/nk08+ISwsjNWrVyOTyVi4cCFjxowhPDzcUi4gKSmJAQMG0LBhQ7Zu3YparWbFihXs2rWrSNHOylJkj9u0aYOfnx+HDh2iZ8+edWYEoK5iNBrZunUrMpmM9u3Da9qcciGRgI+PN23aPMcnn3zK7t17ePjh/nZxXgCEYuZHbt++TVxcHNeuJRAfH09ubiYBAQEEBQXRuXMnGjVqhLu7GwqFgj/+OMuW338hvPpGsIvFkHgLmbYexps3kTo7g1yO1MMDZDIkdxT3k3p6IvnHgZVUk8jd3r17iYyMtFQdDg8PRy6Xs3//fotYYP369S3DyeZ6PMUNLzdu3Jg1a9YwbNgwoFCK//z587z99tvodDqrt/kHHniATZs2WYaVmzZtSlhYGJ9//jmTJ08GoGvXrnTtWuhgxsbGVtpxcXBwsNz4c3JyiIqKstnOz8/PSnn06tWrTJw4kc6dO1sVL8zOzmb27Nk8/fTTLFu2DCh0IlxcXHj00Uc5efIkbdu2teo7OTmZw4cP0759e5vbPnDgAHq9nvfee8/iwLVr146nnnqKy5cv23RcXnrpJV566aVyHImi9OrVi/Xr1/Piiy8SGBhI9+7diYyM5IknnrC6tmNiYvjmm29Yt24dY8aMAQpHKFJSUoiOjmbq1KkoFAqCg4MJDg62TAGGhobaZarPaDSSkVEoR5CRkcG2bdt47733eOGFF6wU0xcvXszLL78MwIMPPoggCAwePJgjR47Qp0+fStthi7KeX2D/a89MaedXea4pHx8fdu3aZXmxDgwMpHnz5vz4448Wx2XFihXk5uaya9cuyyhQr169aNKkSYl2VgSbr7OPPfYY0dHRfPrpp8yaNavS8QsixbNt2zZu375NWFibWp1RVBIajYYXX5zEmjUfc/DgQTp16oyjY/nnac11hAwGA3q9Ab1BR25eLimpKaQlp3HrVhJJSUmo1WrCwtoQEtKZhx9uSvfugcWeo2q1A9JqmNIWjEYQBJDJQK9H+Cc633DjBoqAAIwpKYVOilSKvFGjoh3cMdImqYFRtz59+rB+/Xr8/f0ZOHAgwcHBTJgwocJBjosXL0an0/G///2P69evk5uby99/F6bR5+XlWTkuPj4+VnPhbdu2pXHjxhw9etTiuNQGcnJyGDJkCGq1mq1bt1rtQ0xMDBkZGQQEBLBnzx7LcnPM1u+//17EcenYsWOxDxUorEGkVCp56qmnmDx5Ml26dMHNzY3t27fbec+KMnr0aAYMGMC6dev47LPPePrpp1m6dClbt261vLXv2LEDiUSCi4uL1T67u7uTlpbG9evXbU5j2IvLly9bVfNWq9VMmzaN+fPnW5aNGzcOKDz+sbGxpKWlce3aNaDw71kbsPe1Z6a086s8+Pr6Ws0GmM8Bc1IJwG+//UZYWJjV31ypVFaJwrhNxyU0NJT27dvz66+/8s033zBq1Ci7b1gEzp49y/79+3F2dqZz57qfxfXUU08ilUo5c+Y0bdq0KbW9yWQiNzeX7OxscnNzycrKQqfTodfrMRiMGI165HIFrt4utG8fjq9vYxo29MbFxRmpVMrffxsoKBBq3rE2GjFlZoLRiNTNDWNSErJ/5ouVzZsDIPf2rkkLS2XDhg0sWrSIZcuWMXXqVBo3bszo0aOZMWNGhep9md8iAVq1aoWbmxt//ln27CsvLy/S0tLKvd2qQhAEIiMjiY2N5ZdffrFMRZhJTEwEYP78+UUCEuVyuc2YwdJGJsPCwjhw4ADz5s1j8ODBAHTv3p2XX36Zfv36VWZ3yoSHhwdTp05l6tSpHDx4kJEjRzJo0CDOnj2LUqkkMTERQRBsJnLI5XJu3LhRpY5LkyZNLOnPjo6O+Pv7F7kXxMXFERERQWxsLGFhYWi1WtLT06vMpopg72vPTGVHvkvC7MTcGe9048aNMldQryzFBhC88MILJCQkEBMTQ0BAAB06dKgWg+4Xbt26xaeffopMJmP48KHFRnvXJRwcHHj00eHI5Qp++SWG8PB2cEcxxby8PFJTUy2xKJmZmajVapycnPHwcMfHxxsXFxdcXV3x8PDA1dUVNzdXZDIZ+aZ8HKS1NFVPKkWq0SD5R3na5ohKLUetVjN//nzmz5/PhQsX2L59O4sWLeLnn3/m0KFD5eorKyuLESNGMGTIED755BPLDXTZsmVMnz69TH2kpqZW6UOvvMyfP5+tW7fy5ZdfEhYWVuR3J6fCSuIHDhywa7Xmzp07s2/fPrKzszl48CDvv/8+Dz/8MLt27bJ7HRozy5Yto3Xr1vTt29eyrEePHixevJhnnnmGY8eO0a1bN5ycnFCpVGRlZVXpQ7I4HBwcePDBB0tsExkZadFcMU+3nThxgnbt2lm1Mz+IjUZjtb8I2fPaq0m8vLxITk6ulm0V67ioVCqmTZvG7Nmz2bBhA9nZ2XZNQbyfuXr1KqtWraKgoICBAx/G09Ozpk2yG66urowePQpXVxc++OBDgoODOX/+PFev/oXBYCQ4uBkhISH07dub4ODmODlSdwuNAAAgAElEQVQ5IpVKkclkyGSyYoOTVRIVBsGACRNKSS1z8iQSi9NSFzl58iTTpk1j3rx59OjRwxKEKZFImDFjBqmpqUXOUVdXV0t8wd1cvXqVzMxM+vbta/VAKy5T8e6b3YULF7h69SrPP/98JffMPmzdupU33niDmTNnFjv63LVrV1QqFV988UURx+XmzZsVihWcPHkymZmZrFu3DicnJyIiIhg4cCBubm7s2LHDpuNiNBqJi4urVFzBxx9/jCAInDlzxuqFypzlYv6b9u7dm1WrVrFlyxYef/xxSztBEEhKSioyKmWeMijuvKkKTp8+zbBhwyxOC9g+D80ZNXceO4PBUOWjM/a+9mqSNm3a8M4771id70ajsULBzaVRYspGgwYNmDt3rmVuMzk5mUcffbRULQGR4jl69CgbNmwAoG/f3oSENK9hi+yPXC5n6NAhNG3alAsXLuLt3ZDAwEAaNPAqfeVikEgkyJGTaEjETepWe0df6iDNmzcnLi6OF154gVWrVhEcHMyVK1f44osvCAoKsjlc3b59e7Zs2cLw4cPx9/fn6tWrdOvWDY1GY1lnyZIl+Pj44OTkxObNm3n77beBwgyOO+e9T5w4wbhx43jxxRdJS0vjxRdfxNXV1SqF8syZM1y9ehUojG0wmUx89913QOGbt/khfuPGDY4fPw5g+ffnn3+2ZIz06dMHR0dHdDqdJdPHnO1x/vx5S5+hoaH4+flx7tw5IiMjCQwMpF+/fkVUftu1a4ejo6PlXjl37lwcHR155plnUCqVrFu3jiVLlnDu3DmbCrAl0bJlS55//nkaNWrE2LFjEQSBTZs2kZWVVewI+OTJk3n//ff5v//7vwqnRK9YsYKHH36YiIgIZs2aRcOGDTl06BBz586lc+fOlriJYcOG0adPH8aNG8ft27fp378/6enpzJ8/n3PnznHx4kWrZ0VQUBBubm688847lmDdxMTEKn0h7tChA5s3b6Zv376WjB3zcbkzTb1///7IZDKmT5/O66+/TlZWFtHR0UWmK+19ftn72isPZb2mykpUVBTvvfceQ4YMYfHixZZ7QEJCQrn6KQuleiABAQEsWLCA6OhofvnlF06dOkWfPn3o3r17jQwP1kUEQeD06dP88MMPJCQkoFKpGDJkMI0b170phfLQqlVLWrVqadc+G8gbkGsqm9y1oNcjGKq3xkpdRKPRsGfPHiZPnkzfvn0t89a9e/dm9erVNkfB3n77bYYOHcrDDz8MgLOzM8eOHSMkJAS1Ws2WLVsYO3as5aHUpUsX5s6dy/z58zl79qzVCMSQIUNISkqyZMn4+fmxa9cui/gZwJo1a4qkJZuVSBs1amQJEjxy5EiR1MtXXnnF8v/Y2FgCAwPJysoqomT65Zdf8uWXXwKFow7PPvssP/74Izk5OcTGxtp8wJplAMzb8fDwYM6cORbNDn9/f8tDqLyMHz8enU7HggULLHLxnp6eLF261JKBcjfmv11lhL/69u3LwYMHiYqKsuyzSqUiMjKS6Ohoq/Nh27ZtzJw5k6ioKEtx3k6dOrF169YiL7gqlYp169YxduxYy1RN06ZNuXz5coVtLY0PP/yQ0aNHW0bKmjRpwuLFixk3bpyVlktAQABr165l4sSJbNmyBZVKxezZs4sE8Nr7/LL3tVceynpNlRVvb2/27dvHiBEj6NWrF1KplMcee8wqK89eSIQyVrgzGo3s2rWLrVu3kp+fj4ODA6GhoXTo0IGgoKBqVyOsCyQlJXH06FGOHz9u8dxbtmxBt25dK5R1U14WLVqM9tBWHnQq+ltcPmzWHMDFpUeF+791axDLl4+pknS3kigwFaCUKPnz7zzQKQgOVhQqzBoMGNPTkbm7Y7hxA5lWy/HfTrBx4RxGu9muQv1Z3hgMDddV2JakpNUMH36JJ56o2gD21q1DUSgqN0U2Z84c3nrrrRIl1wsKCoiPj8fLy8sSt1EcgiAQFxeH0WjE19fXZmxAfHw8CoWiyLSBLdLS0sjIyMDPz69O6RndjcFg4Nq1a6jVaho2bGiXe2NiYiIGgwFvb+8Sj43JZCIhIYHGjRtXeptQGIuXk5ODr69viSPtubm5JCQk4OHhUerUt16v59q1a2g0GryLCVpXKBQsWrSIadOmVcp+M2lpaWRmZuLn51fi38NgMHD9+nXq169f6vlvb+x97dUU5vPf09PznzhFNx5//HE+/PBDm+0feOABOnbsyJo1a6yW5+fno1ar6dChA0ePHrX6rcxzPjKZjIiICLp168bGjRs5fPgwR48eLdKhiG0aN25E9+4P4eVVv9q22bt3L1bu3IqfA7jdQ7N7KqkKfcINJL9doMCvMfnndKiaBWNMu42svhYkksIAWakUSR2pvVFbUKlUZQ6KlUgklvpmxdGoHIHKHh4eVrEIdRW5XG73wOKyKgVLpVK7OS1AmRxOwDJFWBYUCoVF+6Mk1q5dS0xMDPPnz7epWVMeynpuyeXyasuMuRt7X3vVTUJCAlFRUaxYscKyH0uXLiUzM9Oi53Qny5YtIyYmhmvXrlkECctKuR9nrq6ujB8/nmeeeYbTp09z9OhRmzLe9xqFtTjKF2SkUCgICmpKQEBAtYyw3E14eDhDo2aw74uPeUhIo768UDSutiMYDAg5OQj6QgVdQVeAISEB481EBH3hcLS8vheNurTgrOtNbijdaSwHxZ0xNP+8gdSF/RUREbFmwoQJlmkTVR0OfL+fUKvV3Lx5k4CAANq2bUtSUhJXrlxh+vTplmmtO/Hw8KBRo0aMGTOm3EWdK/werlAoaNeuXZG0snsVg8HA6dMnS29Yyxj8yCO4u7mzb91qwnOu0biW3QMEnQ5jWhqm9IxCp8RoAkFA0OnAWBifIlEqkTdsiOrBB5HckeWQl2eipcmLv4TzXNJdoqmiqRi0KyJyD3B3vSOR2o+HhwcxMTEcPHiQI0eO4OLiQpcuXQgNDbXZfuzYsYwdO7ZC27qHJhBEbKFQKOjSrSsaJyfWLl5Ap5xEWlZCoFcQDOj1KeTmnkIuzy59hTvXNZkwZWRgjI/HcDMRBAGJQoHU1RWJs3OhDL7JhESpQurpiVRdshNiMhX6Ng84tiLOEMdl/WWaKZqhktYy70xERETkPqFHjx706NGjSrchOi73AUqlkg4d2uO7ajVTnnsORW4K6jLGPhqNuWRnHyYz8yfy8s6Sn38Cb28HwsLa0qPH8BIDcwW9Ht2fl9FfuoQpJQWkUmRaLYqQENR9elda2t7R8d/1G8sL5/Uv6f+khTKkTMUZRURERETqHuLd/T6iYcOGvL5kCeui30KbdAU0YDBkYDRmYDJlYzRmIpUmI5H8hVR6GYUiDkfHHB54wIemTQPx9h6Cv38ULi6FFQtNefkYk5IQDP/EouTlYbhxs1D+3mRCIpch92mEulfPwlEVOwecZGebMBrB1bXQgWksb0y+UMA53Xn8FU1wkbrYdXsiIiIiIjWP6LjcZzRv3pwnoqaz7YvPKbi6BYViD+7uOjw9BTw8jGi1KrRaLVptO3x9/4Ozc2FanqDTYUxOxnj1Lwr+cVQsxZv/8UckKgcUzYKQ1auHpBrS8+RyCVKpYKmgChCkaEq8IZ5Y/RV85fbLrhCpGxw7dox33nnHatnrr79OcHBwieslJiZSv379WpuGXVBQQFZWlpW2jYjI/YrouNxnSKVSWrduTcOGM0hKSkKhUODk5ISTkyNOTk7I5XIEvR5jcgqGM6fJSSvMGJMoFMjqa5F61kOiKDxtJA4OSJ1dLN+rG50ul2XLlqHX68jLyyM0NJQxY56ikbwRzlIXruhjSTPWnkJ99xNardaiJgqF6bydOnXitddeKzZYzx6Yq4tDobT7oUOHmDRpUomOy8WLF2nRogXz589n7ty5lbYhNTUVtVpdbiXTknj66af5/vvvSU1NxUFM8Re5zxEdl/sQqVSKl1d9i6aMKSsL3fkL5F/5C1lKMgYXF2Q+PihbtcKhS9n0I6obo9HIlClTadGiNS+/PBGj0chzz43DYNDz7LPP4Cp1obmiOUcNv2IQDDVt7n3JI488wtSpUxEEgRs3bvD+++/TsWNHDh8+TNu2batkmx07dmTTpk0A7Ny5k4iIiFLX8fPz49VXXy2idFpRGjRoQFRUFEuWLLFLfwDPPfccbdu2FZ0WERFEx+WeRzCZEHJyMeVkF6bhCAKm7BxMyckY/9HfkarVyP38CIw5hNemzZzdsgmdj21Fy9rC999v59y5MyxduhgoFEh87LGRvP76G/Tv359GjXzQSDWEq8K4LPkSEKX/qxtvb2+6d+9u+f6f//yHkJAQpk2bxoEDB4q0z8/PR6VSVbsKt1qt5o033ihT29zcXLuOpNzZr1wuL7ZKfO/evctc0ycvLw+1Wl1im5ycHDQaTanHWq/Xs23bNsLCwmpMmE1E5G5q54SuSIUx5eWhv/IXBSd/p+DECXQnf0d/6RLG+ASMN29ivHULAEWLEBwHR+A4OAJ1n94ogpoiODshMRiot3NnDe9F6WzZ8i3+/v6o1f8G4LZu/QAGg4Hvv99eg5aJFIeDgwOdO3fmwoULVsvff/99mjZtikajQa1W069fP6s6MgALFy5Eq9UW6bNTp05ERkaW25a0tLR/Yrn+/ZjrC91NVlYWEydOxN3dHUdHR+rVq8eUKVMs1ZIBtm/fbunHYDCwatUqy3dbaqh9+vRhzJgx7N27l5YtW+Lo6IharbZy6GbNmmVlX3HquT179mTmzJmsXr0aHx8fNBoNvr6+fPXVV0XaxsTE0KpVK5ycnHB2dmbatGkMGTLEqqDlnXz00UeMHDnSbqNRIiL2QBxxqePor17F8PffmLILi4FJHNTIvRsUSt9LpSCRIHV0ROLohERWsp+aMnAgDdd8gsfOXdz473O1VnY2PT2dS5cuER7eAb3+3+Xe3t7I5XJ+//33mjNOpEQuXrxoVZ/mo48+YtKkSSxYsICBAwcSHx/PtGnTGDRoEOfPn8fRsVB0KDc31ypmxkx6ejpZWeVTtIZCifo333wTKBzpiYqKslTxvZtnn32W/fv3s3LlSkuF4ZkzZ5KUlGRxDjp06MDGjRsB6NevHxEREYwfPx7AZo2fjIwMzp07x3fffceIESMYM2YM6enpVrL5ERER+Pv7A7B582YOHjxo07709HQ++eQTwsLCWL16NTKZjIULFzJmzBjCw8Mt8vpJSUkMGDCAhg0bsnXrVtRqNStWrGDXrl1FCgeaefDBB2ncuLHN0Z6ff/6ZefPm2VwPYO/evWIhXpEqQXRc6hCGpGR0Z85gTLiBUJAPgKJFC5ShbZC5u1W6f10jH7LbtsHpxEkcz54j54FWle6zKrh58yaCIODh4WpJhTbj6KipkjLqIuWnoKCAjIwMBEEgMTGRt99+m5MnT1piUMwsXryYl19+GSh8UAqCwODBgzly5Ah9+vSpEtscHBwsjkVOTg5RUVHFtt27dy+RkZGWiszh4eHI5XL2799vyWirX7++5eEulUrx8/MrdWonOTmZw4cP0759e5u/d+3ala5duwKFVYeLc1wAfHx82LVrlyUrKjAwkObNm/Pjjz9aHJcVK1aQm5vLrl27LKNAvXr1KlGLqWvXrly/ft3mby4uLrRqVfw9Qiy8K1JViI5LLUHQGzBlZRXW6DEawGjElJuL6XY6wj9vglIXF5QtWyJ7qJuV9L09SYkYhNOJk3js3VtrHZeMjEwANBpnMjNNuLj867woFEry8vJryjSRO1i7di1r1661fPf29uazzz6zersfN24cAL///juxsbGkpaVx7do1oNChqA306dOH9evX4+/vz8CBAwkODmbChAlMmDChUv127NixWKelvPj6+lqlcptHbuLi4izLfvvtN8LCwqymrpRKJa6urhXaZmhoKCtXrqygxSIiFUd0XGoAwWTClJ6OIT4BwTxPLpEgUShAoQCpBIlMjtTFFUVAAFLHSmj0l5PbvXvhu2QZHnv2ET9lMkIJpexrCrm8UCNGEATulovR63XVXo5exDaPPvoor776KgD16tXDx8enSJu4uDgiIiKIjY0lLCwMrVZLenp6dZtaIhs2bGDRokUsW7aMqVOn0rhxY0aPHs2MGTNwd3evcL9VOY1idmLMhQoBbty4YdcA24SEBI4ePVrs78OGDau1ujgidZva91S6BxEMBvSxV9BfvoygKwCJFJmHB3LfxkjN8/0yKRKVAxKVslrE24rDpNGQ0bEDmj8vo7iVVCuzi8xBijk5WahU/w5HF1bwzsHPz8+qfb6YUFQj1KtXjwcffLDENpGRkRgMBuLi4vDw8ADgxIkTRYq3mh+ARqMRWTVfH2q1mvnz5zN//nwuXLjA9u3bWbRoET///DOHDh2qVlsqg5eXF8nJyXbr7+jRo8XGxsC/WWIiIvZGdFwqiSAI/1b7EwqlZI0pqYWxKCkpCEYjErkcZfPmqPv2QVoHdBiuz56Jwc2t1gbn+vj44Onpyc2bSWRmmvDwKHyQJScnYzQarTRCwsPDed8niP2J5+juKiCrnbt033L69GmGDRtmcVqgMIbpbszOalxcnCUmw2AwVPnozMmTJ5k2bRrz5s2jR48ehISEEBISgkQiYcaMGaSmpuLp6Wm1jqurKxkZGVVqV0Vo06YN77zzDjdv3qRhw4ZAoSNYWnBzXFwcXl5eRVK1hw8fXnj/ExGpZkTHpZyY8gsQMjMR8vMKNVL0BoTsbEzp6Qg6HQBSV1dU7cORurnV6OhJRTFUYvi7OpBIJAwc+DBff70JhUIPFB7jCxcuIJFI6NvXOqBz+fKlLH3zTY7E/ko7Bx0O4uh1raFDhw5s3ryZvn37WjJ2zNNLubm5lnb9+/dHJpMxffp0Xn/9dbKysoiOjiYtzVoZ+caNGxw/fhzA8u/PP/9syUjq06cPjo6O6HQ6du3aBWDJJjp//jzfffcdUBi/4efnR/PmzYmLi+OFF15g1apVBAcHc+XKFb744guCgoJsThW1b9+eLVu2MHz4cPz9/bl69SrdunUrt/7LmTNnuHr1KgCXL1/GZDJZ7HNwcKB///7l6i8qKor33nuPIUOGsHjxYtzd3VmyZEmJweybNm1i5MiR9O7dmx9//LFc2xMRqSpEx6WMCAYD+YePgFRaGBgrlxXGpcgVyLzqowgJQeogDotWF2PGjGHnzl3ExBxiwIDC7I3vv9/BI48MJji4mVVbd3d3Jk2fzjdrPyHmyB56OOqQiyMvtYIPP/yQ0aNHM2rUKACaNGnC4sWLGTdunJWWS0BAAGvXrmXixIls2bIFlUrF7NmziwTwHjlypMj0xSuvvGL5f2xsLIGBgWRlZRXRJvnyyy/58ssvAfj444959tln0Wg07Nmzh8mTJ9O3b19LzEjv3r1ZvXq1zRiOt99+m6FDh/Lwww8D4OzszLFjxwgJCSnXsVmzZg3vvfee1TKzzY0aNbIKvC0L3t7e7Nu3jxEjRtCrVy+kUimPPfZYkanVOzHvr5ghJFKbkAjiWF+ZMOh1nNz/ExK5HInaARQKJPd64JnJVKgFU0s5efICy5dHM2hQf2JjryCTSZkx42WbuhmCIJCZmck3X3xB7LbPecTdiEoKn+WNwdBwXbm2Kwgm8vMvk5d3gdTU9Uyf3oaHHy7f2295ad06FIWicplkc+bM4a233mLHjh0MGjTITpbZh7S0NDIzM/Hz8yvxIWkwGLh+/Tr169ev9iDsgoIC4uPj8fLyKnXbgiAQFxeH0WjE19e32uNySsJgMHDt2jU8PT1xdXXFzc2Nxx9/nA8//NBm+4SEBOrXry9qsohUK/n5+ajVajp06FAkCFwccSkrEimyep6lt7sHUMYn0HDdZ0jz8ri64P9q2pxiadOmOZ9++hFxcXEMGPAwbm7Fa9lIJBJcXV3574QJfCRXsP6bz3jCQ2+zrSCYEAQDYEQQDBgMqej1F8nLO05e3nEKCk7i5+dJ27bNaN68RZU7LfcDHh4eVnEuxSGXy2tMel6lUtlUwbWFRCLB19e3ii0qHwkJCURFRbFixQrLfixdupTMzEyGDRtW7Hq2ssFERGoS0XERscL5t99w/+kA9bZ9x+1ePWvanBLJyxMwmWQEBpbvQTZu3H/51tOTH776lHSDHqUuEYPhFnp9EgZDGnJ5ChqX20jVSbir0vBwL8DX15eGDRvi7x+Jl9d0sdidSJ1DrVZz8+ZNAgICaNu2LUlJSVy5coXp06dbprVEROoCouNSBdTb9h3uP/6E88lC6XmTgwPJ/xlGyiMRFNSyt7C7yWrXjqx27fDYu7emTalSBgwaiATYsfN3TMI8GjVS0bChCq1WiaenM271PUlyNBHs0ZlAd7G4nEjdx8PDg5iYGA4ePMiRI0dwcXGhS5cuhIaG1rRpIiLlQnRcqoCUoUPIbB/OA48UDr/+tXwpmR071LBV5cPoUHJ12dqAg4OEikZoOTg4MHBwBA/17IHJJKBUKlEqFSgUCmQyGYIgoEPHkfxjOBucqC+vb1/jRURqiB49etCjR4+aNkNEpMKIjksVofpHi6LAt3Gdc1qAWh2UayY7W8BoBHf3imU8KJXKYuMqJBIJKlT0UD/E/rwDtMBEfVl9pJLaf1xERERE7mXEu3AV4XysUEMi/aGHatiSexcHBwlqddWmaRowkN4og8ktXiLOFIdJMJW+koiIiIhIlSE6LlWE66HDAGR06VzDlohUlH3uPzKy1eO81WQhcU5x/Or4G3HG8mlniFQdx48fp6CgoKbNqFOkpaVZ6eOUh9TUVKvaR7UJnU7Hr7/+WtNmVDmHDh3CaCy9hklKSkqt/VvZA9FxqQLkKalo/vwTk0ZDdmjJtVpEKk5+vkBenv1liNJlGSz0XczsgDlcV8XRK70nm85+zZC8wSQbUjie/5vdtylSPn744Qf69u1bbhG2+534+Hgeeughfv755zKvo9PpeOqpp2jcuDF///23ZXlWVhajRo2y+nz77bdVYHXJFBQUMHDgQNasWVPt265uVq1axfDhwzEYDCW2Gzt2LIGBgZw+fbqaLKteRMelCnA9dBgEgcz24QiiaFOV4eQkwcXF/lNFr/vPZ4t2K03ym/DhpQ+IvrKIRjoflBIl7RzCcJe580fBH+gF2zowIlXL1atXGTlyJJ988glNmzatdH87d+5Eq9Xa/G306NEolUquXLlitfyHH35AIpHw5ptvFlknJycHiUTCuXPnivzWo0cPtFqtpcyAmdu3b+Pk5FSsnkp4eDirVq0qsvzEiRNIJJJiP6tXr7Zq37p1a6Kjoxk2bBi3bt2yua27efPNNzlw4ADXrl0roqFjMBgwGAzk5+ezceNGzp8/X6Y+7cnUqVPJyMgoojJcGzAYDKSmpqLX2+desWbNGi5cuMC8efNKbLd9+3YGDx7MsGHDyjRCU9cQHZcqwPXwP9NEnTvVsCX3NuUZcTFR9mHTCQkvEBU/mY3nviAsu22R3wPk/mikGi7rL6MTdGXuV8Q+TJkyhR49ejB8+PAq31Z0dDRKpZI5c+ZYlplMJmbOnIm/vz/Tp08vV3+vvfYaKSkprFu3zmr5Bx98QE5ODnPnzi1Xf4GBgWzbtq3IZ/DgwUilUquCo2aeffZZAgMDefnll8u0jXXr1jF06NAizp2zszObNm1i06ZNfP755+Wy21789ttvrF69mvfff79WVqI+duwY9erVY6+d5CUcHR1Zvnw50dHR/PnnnyW2feaZZ7h69SoHDx60y7ZrE6LjYm8MBlyOFc61ZnQW41uqEnNh7pL43ekUE4JeZLN2S5n7bZYXxJO3RiMvJulOKpHSRN4EF6krf+j+KI/JIpXkwoUL7Nixg6ioqGrZno+PD3PmzOGbb76xFG1ct24dZ8+eZfny5eUWIuzVqxddu3Zl+fLllhiEgoICVq5cyeDBg206GiXh5ubGkCFDrD6tW7fmp59+4vnnn6d9+/ZF1pFIJERFRfHVV1+VOtWm0+mIj4+nfn37yAEIglBqNeo725YWw7R06VI6depEeHh4qf0ZjUarwp3FodPpyM/PL5ONUOjIlnWfSqMs9g0aNIiAgACWL19eYjtzBfDY2Fi72FabEB0XO+N0+gyy7GzyAgPRN/CqaXMqjESnQ2qn4c2qQqOR4ORU/FTRDs+drG24jl9dfsXekTAyiQwfmTfeMh8O5v3Pzr2LFMdXX32Fp6cnvXr1qrZtTp06lYCAAGbMmEFubi6vvfYaffr0KVKksazMmzeP2NhYS6XnL774gsTERF577TW72DthwgTc3NxYuHBhsW2GDh2KQqFg8+bNJfal1+sRBKHStZb0ej1z5szB09MTFxcXtFot7777rlWbzMxMtFotX3/9NVOmTMHZ2RmNRkO7du04efJkkT7z8vLYtm0bI0eOLHa73bp1Y/z48URGRqLRaHB0dKRDhw6cOXOmSNvTp0/Ts2dPHBwcUKvVhIeH87//Fb229+7di1ar5dixYzz//PM4OTnh4uJCz57/Ko3PmjULrVZrqQn2xBNPoNVq0Wq1REZGWvWXlZXFxIkTcXd3x9HRkXr16jFlyhSys7OL3a9Ro0bx9ddflxiAa67ZVh4nrK4gOi52xpxNlNmlbk4Tqf+8jPfqD1GkpeF88iT1N36NIiWlps2ySXa2QGZm8S5JROogJsdPqrLtSyQSGsob0FQeyLH8X8kz5SHWLK1a9u/fT7t27WxWZa4qVCoVb7/9NgcPHmTo0KHcunWryEO3PPTp04fOnTuzdOlSBEFg2bJlDBo0iHbt2lXa1q+++ordu3ezYsUKXFxcim2n0WgIDQ1l//79JfaXnp4OFE4LVYYnn3ySlStX8sYbb3D48GEmTZrEtGnTWLx4saWNIAikpKQwadIkBEFg27ZtbNiwgVu3bvH4448XCUg9dOgQBQUFdOhQvE5Weno6H330EQ4ODuzevZu1a9dy+fJlBgwYYDWac/PmTbp3705WVhb79qTjUJUAAA43SURBVO3j559/xs3Njb59+xYJcNXr9aSkpDBixAhOnDjBjBkzWLhwIaNHj7a0GTt2LBs3buT1118HYMaMGWzcuJGNGzcWmV589tln+frrr1m5ciW//vorr732Gh999BH//e9/i92vzp07k56ezu+//15sG2dnZ2QyWYkOUF1FFKCzM3U9DTqvWRB5zYK48fz4mjalVJRKSalTRQ7GqlcA9pH7IJFIOa+/QHNFMI4Sxyrf5v3KxYsXrR4Q1cXgwYPp378/e/bsISoqihYtWlSqv3nz5tG/f3/mzp3L+fPnWbt2baVtTE9P56WXXmLw4MFliv8JCAgoNYX4q6++QiaT0a9fvwrbFRMTwzfffMO6desYM2YMAJ06dSIlJYXo6GimTp1qVXn6scceY8WKFZbvWVlZPP/888TGxtK8eXPL8osXLwLQrFmzErffuXNnPvroI8v3+vXrM2jQIL788kvGjh0LFP49jEYje/futYhS7ty5k6CgIGbNmsWuXbuK9NumTRu+/fZbm050cHAwwcHBlqnE0NBQevfubdO+vXv3EhkZyZNPPgkUBmLL5XL279+PIAg2q6Wbg6QvXbpEWFiYzX6VSiU9e/bk22+/ZcqUKdVeTb0qEUdc7IjiVhLqK1cwOWrIflBMg65qpFIobQRbStUK1EHhyIuP3Bt/eRNOFJwk3Zhe5du8HzEYDKSlpeHu7l7t274zNiMzM7PS/fXr14+OHTuyYMECBgwYYDMWpbzMmDGDnJwcm9lHtvDw8Cg2s+iXX34hLCyMBQsWsH79eiuHobzs2LEDiUSCi4sLe/bssXzc3d1JS0vj+vXrVu39/f2tvgcFBQEUicdJSkqyVH0vibvVsQcMGICrq6vV9NP27dsZNGiQVVulUsmIESP48ccfbcbavPjii3YZ+evTpw/r16/n7bff5tKlS0DhdN/mzZttOi137lNpmWHmFHGzA3avIDoudsT9wAEAssLCEOTiYFZVk5srkJ1de0SWPGQedHLoyG+6E2VyXj5rsJ4nWjxJ57bd6Ny2GwNaR/BOoxVccfirGqyte5jjLeQ1cG1t2LCBw4cPM2rUKNauXWsXsbOXXnrJ6t/KEBMTw8cff8ybb75J48aNy7SOUqksNv7B2dmZgIAAdDpdpbVyEhMTEQSBkSNHEhERYfksXLgQuVzOjRs3SlzfHF9zdzxHQUEBMpms3M6DRCLBx8fHartJSUn4+PgUaevr64vBYOD27dtFflPYSepiw4YNTJkyhWXLltG8eXN8fX2ZPXu2zW2aUSqVQOnxK5mZmSQnJ+Pj42Nz/+oqouNiL4xGtN9uAyDvrjcGkaqhUMeldp3CComCrqouXDbEkmZMKzHmZUxiJPOvzkMn0aGT6FhyZRFR8ZMJzBerUdtCrVbj6OhotwyOspKZmcnMmTMZMGAAGzZsICQkhBdffLHS8Uz16tWz+rei6HQ6xo8fT1hYGJMmlT2mKyMjo9hsodDQUDZt2sQHH3zArFmzbAbHlhUnJydUKhW5ubno9foin27dulWoX61Wi8FgKKKJUxZu3bqFl9e/yRMeHh4kJSUVaZecnIxUKi11VKcyqNVq5s+fT3x8POfPn2fSpEl8+OGHREREFLtORkYGQKnZXubU9+PHj/Piiy/a1e6apHbd9esgsvQMGqxdR/D4F3C4UvimrN22jUYrVlq+i1QNOp1AQUHtC4Z1kDrQVB7IdUMcyaaSA5vjVPEAtMgNoVVOq+owr07TuHFjEhISytS2oKDALsq68+fPJzk5mSVLliCTyViyZAm//vprpeNSzCMFlZ1uWLx4MZcuXeKjjz4qV/ZPXFwcjRo1KrFN//79AcqltHs3vXv3pqCggC1brCUJBEEoswieLcwjS6WdD3dP8xw5coTU1FRCQ0Mty/r06cPu3buLpCNv27aNzp07o1ZXLFbO7PCYHY27OXnyJD179rRorYSEhDBjxgxmz57N4cOHSU1Ntbme+bwu6e+Xl5fHiRMn6Nu3b7FTTnUVcT6jkhjdXEkc+zSJY5+uaVPuO4zGwk9txF3mjkqi4pzuPCnGZFoobQdzHnU9CkD3292r07w6y0MPPURMTEyZ2g4cOJD9+/fzzTffMGLEiApt78KFC6xYsYJnn32Wli1bWvrt3bs3s2fPZvjw4RV+G7eH4/LXX3+xYMECunXrxo0bN4pMu/j4+Fg9oO/k1KlTPP300yX2bw7ozMnJKfKbTqezBK2aRz3Onz9vSfMODQ3Fz8+PYcOG0adPH8aNG8ft27fp378/6enpzJ8/n3PnznHx4sUKTf899E8B299//71EBeWffvqJpUuXMnLkSK5fv05kZCRardYSDAuF6sDbtm1j2LBhvPXWWyiVSqKjozl//nylnLagoCDc3Nx45513LMG6iYmJlkDd5s2bExcXxwsvvMCqVasIDg7mypUrfPHFFwQFBRUbz/X7778jl8vpXIJWWG5uLoIgoNFoKmx/bUUccRGpszg5SXF1rb2nsEaqIdyhHSYEzuqKyr8DHHItzELrklE3s9Cqm0ceeYTz58/z11+lj2aaYyIq87b54osv4uDgwBtvvGG1fMmSJaSkpJQqvV4SZoelMvadO3eOgoICDh48aBU/Yv4sW7bM5nonTpzg1q1bDB48uMT+VSoVcrncZnBqVlYWQ4cOZejQoYwaNQqAL7/80rLsxx9/tLTdtm0bkZGRREVFERgYSFhYGMnJyWzdurXCMUsNGzakXbt27Ny5s8R2YWFh7Nq1Cz8/P8u01I8//mj1QA8MDCQmJobr16/Trl07WrduzcGDB9m9ezddunSpkH1QePzWrVtHbGws7dq1o1WrVjz//POW3zUaDXv27CEgIIC+ffvSqFEjunfvTr169fjhhx+KdWp/+OEHevToUWKautmZvJeyicyIIy4idZbsbBNGI7XaeQEIUTTnsj6Wv/RXaSL3QyoptPdP9WVuKZKop69HcF7JKZ0ihQwYMICmTZvy8ccf89Zbb5XYds+ePaSmploURCvCnQ/fO2nTpk2la8B07dq10nEygwcPrlAfa9euJSwsrNSHslwup3nz5pZslzvx9PQs87YdHR157733iI6OJiEhAQ8PDzw9Pa3auLq62uyve/fuxW5n8uTJTJgwgeXLlxfJHjLj5eXF9u3bSU5OJjMzE39/f5sOQVhYGBcuXCAuLg6DwYCfn5/NdoMGDSrXMR8yZAi3bt3i2rVraDQavL29rX4PDAxk586dFBQUEB8fj5eXV4nORkJCAnv37i0y9XY3Fy5cAKBVq3tvCrp23/FFREpALpdQWmC/TlKo/quX1lxNIZlERoDCH51QwJ/6y5blh1wPAdA5oxOSakjbvheQSqUsW7aMVatWlRrboFQqK+W03KtcvnyZtWvXFjsaczcvvfQS3333XZmn6EpCo9EQFBRUxGmpKE888QQhISEsWLCg1LZarZbAwMBSp+YaN25crHNTURQKBU2bNi3itNyJSqUiMDCw1BGS1157ja5du1pUeW2Rnp7OggULaN++fYkCfXUV0XERqbPI5aBQFP/AP+xyhI98CnUMttfbwXf1vi9XsUV7opQoCVQEIkPKsfxjAMSI00QV4pFHHiEyMpJHH33ULpoq9xPJycn85z//Ydq0aXTvXra4qmeeeYYFCxYwbNgwLl++XPoK1YhMJuPzzz9n/fr1bNy4sabNqXI++OAD9uzZw7p160qcYhw+fDgqlYodO3ZUo3XVhzhVJFJnyc4WMBgE6tWznUnRObMTnTM78RZvVrNltlFIFAQpg4g3xPOz8RfOOp1FLsjpkHnvvRFVNe+++y6zZ88mKyurRGn7stC+fXu+/vprO1mGRV7ez8/Pbn2uWLHCLjocSUlJjBo1ildeeaVc602bNo1p06ZVevtVQbNmzdi3bx979uwp8tsrr7xS6fOjNnHr1i32799fqlbPTz/9VE0W1Qyi4yJSZ3FykiAIdW+KxVvmzT7XHzFipE12KE4msURAeZFKpVZ1biqDVqu1a9FGmUxmSSO2F5062af2WcuWLS3ZUfcSoaGhNrOnzEHD9wrm2kf3O+JUkUidxWAAvb726biUhlQi5arH3wAEpgaSYyqaaioiIiIiYhvRcRGps+j1Arqai7mtMEaMHPlHv2V4xn84pTslOi8iIiIiZUR0XETqLIWS/7V7quiA20FOOFnLpR9z+ZXb8tt0zOxAkKEpDygf4KL+Irmm3GJ6ERERERExIzouInWWwiKLtXeq6Lt63/Ny4EwmBE8iS1ZYX8eEiU8arkUmyBh/YxwALlIXGsgacEn/JynGkksEiIiIiNzviMG5InUWO8osVAmJykQAwjPb4WwsVLj82PsTzjidYVrcSzxwR20iH7kPSomS64Y4CoQCfOT3TiVXEREREXsiOi4idRalUkIlhUerlCHJQ9jh+QN50nw21v+aIy5HiXeIZ+mVxXRPL6qhoZVpcZY6c0F3Eb1goInCfum0IiIiIvcKouMiUmfJzhYwGgU8PMpeEbc6aaD3YsvZbzjldJocWQ4TEl6gWV5QiSq5DhIHWihDOKc7j9qoxktWctl6ERERkfsN0XERqbNoNLVfx0UpKGmfFV6udVQSFSGK5pzXX8AkmGgob1BF1omIiIjUPUTHRaTOYjIVfu5F1FI1LRQhXNRfIsuUSWuKimtVlIiICLv1JSIiIlLdiI6LSJ1FpxMwGkGtrt2jLhVFLVXTStmSy/pY8oUCFCgr1V/Hjh3LXJ9GREREpDbQs2fPIsskQmXrqouIiIiIiIiIVBO1PKFURERERERERORfRMdFREREREREpM4gOi4iIiIiIiIidQbRcRERERERERGpM4iOi4iIiIiIiEid4f8ByoWM4yWEBMwAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Screenshot from 2023-09-14 06-26-00.png](attachment:4fef384b-1f6b-4712-8dcf-8e3f7b973a2f.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The LaS specification is shown in part b) of the figure above.\n", + "`max_i`, `max_j` and `max_k` are the bounds of spacetime.\n", + "In our example, they are 2, 2, and 3, which means all the cubes and pipes are within 2x2x3 volume." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "input_dict = {\n", + " \"max_i\": 2, \"max_j\": 2, \"max_k\": 3\n", + "}" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are certain *ports* that connects the LaS to the outside (which makes sense since a subroutine in classical computing always has some arguements and some returns).\n", + "In this example, there are two ports on the bottom floor corresponding to the two qubits before the CNOT; then, there is some manipulation of these two qubits implmented with the pipes in the gray box; on the top floor, the two ports are the qubits after going through the CNOT.\n", + "\n", + "We need to provide three things to specify each port.\n", + "Let us look at the port for the output of control qubit in the CNOT indicated in the callout in part a) of the figure above.\n", + "In the code block below, it is the third port in `input_dict[\"ports\"]`.\n", + "- Its `location` is `[1,0,3]` because that is where the information is going out of the LSS.\n", + "- In general, the pipe connecting a port can also be in I, J or K direction.\n", + "Additionally, we need another character (`-` or `+`) to indicate the direction from the port to the other parts of the LaS.\n", + "In this example, the pipe is in the K direction, and we need to go downward from `[1, 0, 3]` to everything else, so the `direction` of the port is `-K`.\n", + "- Finally, surface code patches have a space orientation of the X and Z boundaries indicated by red and blue above.\n", + "We provide which one of I, J, and K is orthogonal to the face of Z boundary (blue).\n", + "In this example, it is J that is orthogonal to the blue faces, so the `z_basis_direction` of this port is `J`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "input_dict[\"ports\"] = [\n", + " {\"location\": [1, 0, 0], \"direction\": \"+K\", \"z_basis_direction\": \"J\"},\n", + " {\"location\": [0, 1, 0], \"direction\": \"+K\", \"z_basis_direction\": \"J\"},\n", + " {\"location\": [1, 0, 3], \"direction\": \"-K\", \"z_basis_direction\": \"J\"},\n", + " {\"location\": [0, 1, 3], \"direction\": \"-K\", \"z_basis_direction\": \"J\"},\n", + "]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to provide the stabilizer constraints on the ports to ensure that the LaS indeed realizes the logical operations we want to perform.\n", + "Although intuitively there are input and output ports for the CNOT, in a LaS, there is no inherent distinction between inputs and outputs.\n", + "What matters is that the given stabilizers have to match the ordering of the ports.\n", + "Our ordering is (control qubit input, target qubit input, control qubit output, target qubit output), so the correct stabilizers are ZIZI, IZZZ, XIXX, and IXIX.\n", + "If we change the ordering of the `\"ports\"` list above, we also need to change the stabilizers." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "input_dict[\"stabilizers\"] = [\"Z.Z.\", \".ZZZ\", \"X.XX\", \".X.X\"]\n", + "# Note that we use a . for an identity in a stabilizer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solving LaS" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By now we have finished preparing the specification of the LaS.\n", + "We can use our software package `lassynth`, specifically the class `LatticeSurgerySynthesizer` to solve the problem.\n", + "When we invoke `solve` method, the synthesizer gives us a solution with respect to a `specification`." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from lassynth import LatticeSurgerySynthesizer\n", + "\n", + "las_synth = LatticeSurgerySynthesizer()\n", + "result = las_synth.solve(specification=input_dict)\n", + "result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you have noticed, the return value is of a class `LatticeSurgerySolution`.\n", + "We implement a few methods for this class to help us further manipulate the solution.\n", + "To see the \"raw\" solution, i.e., LaSRe (lattice surgery subroutine representation) in the paper, you can access the `lasre` of this result.\n", + "Due to technical reasons, the `ports` here is another encoding compared to the `ports` in the specification.\n", + "Intersted readers can refer to comments in the code to understand this encoding, but it is not too important in this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'n_i': 2,\n", + " 'n_j': 2,\n", + " 'n_k': 3,\n", + " 'n_p': 4,\n", + " 'n_s': 4,\n", + " 'ports': [{'i': 1, 'j': 0, 'k': 0, 'd': 'K', 'e': '-', 'c': 1},\n", + " {'i': 0, 'j': 1, 'k': 0, 'd': 'K', 'e': '-', 'c': 1},\n", + " {'i': 1, 'j': 0, 'k': 2, 'd': 'K', 'e': '+', 'c': 1},\n", + " {'i': 0, 'j': 1, 'k': 2, 'd': 'K', 'e': '+', 'c': 1}],\n", + " 'stabs': [[{'KI': 0, 'KJ': 1},\n", + " {'KI': 0, 'KJ': 0},\n", + " {'KI': 0, 'KJ': 1},\n", + " {'KI': 0, 'KJ': 0}],\n", + " [{'KI': 0, 'KJ': 0},\n", + " {'KI': 0, 'KJ': 1},\n", + " {'KI': 0, 'KJ': 1},\n", + " {'KI': 0, 'KJ': 1}],\n", + " [{'KI': 1, 'KJ': 0},\n", + " {'KI': 0, 'KJ': 0},\n", + " {'KI': 1, 'KJ': 0},\n", + " {'KI': 1, 'KJ': 0}],\n", + " [{'KI': 0, 'KJ': 0},\n", + " {'KI': 1, 'KJ': 0},\n", + " {'KI': 0, 'KJ': 0},\n", + " {'KI': 1, 'KJ': 0}]],\n", + " 'port_cubes': [(1, 0, 0), (0, 1, 0), (1, 0, 3), (0, 1, 3)],\n", + " 'optional': {},\n", + " 'ExistI': [[[0, 1, 0], [0, 1, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " 'ExistJ': [[[0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " 'ExistK': [[[0, 1, 0], [1, 1, 1]], [[1, 1, 1], [1, 1, 0]]],\n", + " 'ColorI': [[[0, 1, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " 'ColorJ': [[[0, 0, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0]]],\n", + " 'NodeY': [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 1]]],\n", + " 'CorrIJ': [[[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 1, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]]],\n", + " 'CorrIK': [[[[0, 0, 0], [0, 0, 1]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 1, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 0, 0], [0, 1, 0]], [[0, 0, 0], [0, 0, 0]]]],\n", + " 'CorrJK': [[[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]]],\n", + " 'CorrJI': [[[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]]],\n", + " 'CorrKI': [[[[1, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[1, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[1, 1, 1], [0, 0, 1]], [[1, 1, 1], [0, 0, 0]]],\n", + " [[[0, 0, 0], [1, 1, 1]], [[0, 0, 0], [1, 1, 0]]]],\n", + " 'CorrKJ': [[[[0, 0, 1], [0, 0, 0]], [[1, 1, 1], [0, 0, 0]]],\n", + " [[[1, 1, 1], [1, 1, 1]], [[0, 1, 1], [0, 0, 0]]],\n", + " [[[1, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]],\n", + " [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 1, 0]]]]}" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result.lasre" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Post-process and Output LaS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We provide a few rewrite passes to remove valid but unnecessary structures in the solution, and also color the K-pipes.\n", + "These can be applied with the follow call. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "result = result.after_default_optimizations()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can export the result to a few formats.\n", + "The most direct one is to save the LaSRe, which is now just a dictionary" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "result.save_lasre(\"cnot.lasre.json\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also create a 3D modelling file in the [GLTF](https://www.khronos.org/gltf/) format.\n", + "This can be opened in many software, a lot of them are also web-based.\n", + "The `attach_axes` flag attaches I (red), J (green), and K (blue) axis to the GLTF." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "result.to_3d_model_gltf(\"cnot.gltf\", attach_axes=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Like mentioned previously, the generated LaS can be easily mapped to a ZX-diagram.\n", + "We can use this connection to verify our result.\n", + "Internally, we construct the ZX-diagram and let [Stim ZX](https://github.com/quantumlib/Stim/tree/main/glue/zx) to derive the stabilizers.\n", + "Then, we check whether these stabilizers are commutable with the ones in the specification.\n", + "If all are commutable, then our LaS is correct." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "specified:\n", + "+Z_Z_\n", + "+_ZZZ\n", + "+X_XX\n", + "+_X_X\n", + "==============================================================\n", + "resulting:\n", + "+X_XX\n", + "+Z_Z_\n", + "+_X_X\n", + "+_ZZZ\n", + "==============================================================\n", + "specified and resulting stabilizers are equivalent.\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result.verify_stabilizers_stimzx(specification=input_dict, print_stabilizers=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using Other SAT solver" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So far, we are using the [Z3 SMT solver](https://github.com/Z3Prover/z3) to do everything.\n", + "In our experience, it may be faster to generate an SAT problem with Z3 and solve it using other solvers, like Kissat.\n", + "For the user, it is very easy to change: just initiate the `LatticeSurgerySynthesizer` with the directory where Kissat is installed in your system." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "las_synth = LatticeSurgerySynthesizer(solver=\"kissat\", kissat_dir=\"\")\n", + "# you need to add the kissat dir based on where kissat is on your computer" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Adding constraints time: 0.207474946975708\n", + "CNF generation time: 0.004982948303222656\n", + "c ---- [ banner ] ------------------------------------------------------------\n", + "c\n", + "c Kissat SAT Solver\n", + "c \n", + "c Copyright (c) 2021-2023 Armin Biere University of Freiburg\n", + "c Copyright (c) 2019-2021 Armin Biere Johannes Kepler University Linz\n", + "c \n", + "c Version 3.1.1 71caafb4d182ced9f76cef45b00f37cc598f2a37\n", + "c Apple clang version 15.0.0 (clang-1500.3.9.4) -W -Wall -O3 -DNDEBUG\n", + "c Sun May 12 13:03:10 PDT 2024 Darwin MacBook-Pro-2 23.4.0 arm64\n", + "c\n", + "c ---- [ parsing ] -----------------------------------------------------------\n", + "c\n", + "c opened and reading DIMACS file:\n", + "c\n", + "c cnot.dimacs\n", + "c\n", + "c parsed 'p cnf 462 2231' header\n", + "c closing input after reading 40739 bytes (40 KB)\n", + "c finished parsing after 0.00 seconds\n", + "c\n", + "c ---- [ options ] -----------------------------------------------------------\n", + "c\n", + "c --seed=916189 (different from default '0')\n", + "c\n", + "c ---- [ solving ] -----------------------------------------------------------\n", + "c\n", + "c seconds switched conflicts irredundant variables\n", + "c MB reductions redundant trail remaining\n", + "c level restarts binary glue\n", + "c\n", + "c * 0.00 2 0 0 0 0 0 0 614 1557 0% 0 402 87%\n", + "c { 0.00 2 0 0 0 0 0 0 614 1557 0% 0 402 87%\n", + "c i 0.00 2 22 0 0 0 38 23 623 1556 44% 2 398 86%\n", + "c i 0.00 2 22 0 0 0 39 23 623 1556 44% 2 397 86%\n", + "c } 0.00 2 22 0 0 0 39 23 623 1556 44% 2 397 86%\n", + "c 1 0.00 2 22 0 0 0 39 23 623 1556 44% 2 397 86%\n", + "c\n", + "c ---- [ result ] ------------------------------------------------------------\n", + "c\n", + "s SATISFIABLE\n", + "v 1 -2 -3 -4 5 -6 -7 -8 9 10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22\n", + "v 23 -24 -25 -26 -27 28 -29 -30 -31 -32 33 -34 35 -36 37 38 39 40 41 42 43 44\n", + "v 45 46 47 48 -49 50 -51 -52 -53 54 -55 -56 -57 -58 -59 60 -61 62 -63 64 65\n", + "v -66 -67 -68 69 -70 71 -72 -73 -74 75 -76 -77 -78 79 -80 -81 -82 -83 -84 85\n", + "v 86 -87 -88 -89 90 91 92 93 94 95 -96 -97 -98 99 100 101 -102 -103 -104 -105\n", + "v -106 -107 -108 109 110 111 112 113 -114 115 116 117 118 119 120 121 122 -123\n", + "v -124 -125 -126 127 128 129 130 131 132 133 134 135 -136 137 -138 139 -140\n", + "v 141 142 143 -144 145 -146 147 148 -149 -150 -151 152 153 154 -155 -156 -157\n", + "v 158 159 160 -161 -162 163 -164 165 166 -167 168 169 -170 171 172 173 174\n", + "v -175 176 177 178 179 180 -181 182 183 184 185 -186 187 188 189 190 191 192\n", + "v 193 -194 -195 196 197 198 -199 -200 201 202 -203 204 205 206 207 208 209\n", + "v -210 -211 212 213 214 215 216 217 218 219 -220 221 -222 -223 -224 225 226\n", + "v 227 228 -229 230 -231 232 -233 234 235 236 -237 -238 239 240 241 242 243\n", + "v -244 245 246 247 -248 249 -250 251 -252 -253 254 255 256 257 258 -259 260\n", + "v 261 262 263 -264 -265 266 267 268 -269 270 -271 272 273 -274 275 276 277 278\n", + "v 279 280 281 282 283 284 -285 286 -287 288 289 290 -291 292 293 -294 -295 296\n", + "v 297 -298 299 300 301 302 303 -304 305 -306 307 -308 309 -310 311 312 313\n", + "v -314 315 -316 317 318 319 -320 321 322 323 -324 -325 326 327 328 -329 330\n", + "v 331 332 333 334 335 336 -337 -338 339 340 341 -342 -343 344 345 346 347 348\n", + "v 349 350 351 352 353 354 355 -356 357 -358 359 -360 361 362 363 -364 365 -366\n", + "v 367 368 369 -370 371 -372 373 -374 -375 376 -377 378 -379 380 -381 382 -383\n", + "v -384 385 386 -387 388 389 390 391 392 393 394 395 -396 -397 398 -399 400\n", + "v -401 402 403 -404 405 406 407 408 -409 -410 411 412 413 414 415 -416 -417\n", + "v 418 -419 420 421 422 423 424 425 426 427 428 429 430 -431 432 433 434 435\n", + "v 436 437 438 439 -440 441 442 443 444 445 446 447 448 -449 450 451 452 453\n", + "v 454 455 456 457 -458 459 -460 461 462 0\n", + "c\n", + "c ---- [ profiling ] ---------------------------------------------------------\n", + "c\n", + "c 0.00 39.95 % parse\n", + "c 0.00 36.66 % search\n", + "c 0.00 34.35 % focused\n", + "c 0.00 0.00 % simplify\n", + "c =============================================\n", + "c 0.00 100.00 % total\n", + "c\n", + "c ---- [ statistics ] --------------------------------------------------------\n", + "c\n", + "c conflicts: 39 12268.01 per second\n", + "c decisions: 186 4.77 per conflict\n", + "c jumped_reasons: 1002 29 % propagations\n", + "c propagations: 3417 1074866 per second\n", + "c queue_decisions: 186 100 % decision\n", + "c random_decisions: 0 0 % decision\n", + "c random_sequences: 0 0 interval\n", + "c score_decisions: 0 0 % decision\n", + "c switched: 0 0 interval\n", + "c vivify_checks: 0 0 per vivify\n", + "c vivify_units: 0 0 % variables\n", + "c\n", + "c ---- [ resources ] ---------------------------------------------------------\n", + "c\n", + "c maximum-resident-set-size: 1828716544 bytes 1744 MB\n", + "c process-time: 0.00 seconds\n", + "c\n", + "c ---- [ shutting down ] -----------------------------------------------------\n", + "c\n", + "c exit 10\n", + "kissat runtime: 0.008579015731811523\n", + "kissat SAT!\n", + "Construct a Z3 SMT model and solve...\n", + "elapsed time: 0.021113s\n", + "Z3 SAT\n", + "Total solving time: 0.04399609565734863\n" + ] + } + ], + "source": [ + "result = las_synth.solve(\n", + " specification=input_dict,\n", + " print_detail=True,\n", + " dimacs_file_name=\"cnot\",\n", + " sat_log_file_name=\"cnot\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We used a few optional arguments above.\n", + "`print_detail` will display the output of Kissat on the screen. \n", + "`dimacs_file_name` specifies where to store the SAT problem instance in the DIMACS format.\n", + "This instance is generated by Z3 and then solved by Kissat.\n", + "`sat_log_file_name` saves the output of Kissat, which is basically what you have seen as the output (from `c ---- [ banner ]` to `c exit 10`)." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.19" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/glue/lattice_surgery/lassynth/__init__.py b/glue/lattice_surgery/lassynth/__init__.py new file mode 100644 index 00000000..9640f285 --- /dev/null +++ b/glue/lattice_surgery/lassynth/__init__.py @@ -0,0 +1,2 @@ +from .lattice_surgery_synthesis import LatticeSurgerySynthesizer +from .lattice_surgery_synthesis import LatticeSurgerySolution diff --git a/glue/lattice_surgery/lassynth/lattice_surgery_synthesis.py b/glue/lattice_surgery/lassynth/lattice_surgery_synthesis.py new file mode 100644 index 00000000..fe83bb23 --- /dev/null +++ b/glue/lattice_surgery/lassynth/lattice_surgery_synthesis.py @@ -0,0 +1,590 @@ +"""Two wrapper classes, rewrite passes, and translators.""" + +import functools +import itertools +import json +import time +import multiprocessing +import random +import networkx +from typing import Any, Literal, Mapping, Optional, Sequence +from lassynth.rewrite_passes.attach_fixups import attach_fixups +from lassynth.rewrite_passes.color_z import color_z +from lassynth.rewrite_passes.remove_unconnected import remove_unconnected +from lassynth.sat_synthesis.lattice_surgery_sat import LatticeSurgerySAT +from lassynth.tools.verify_stabilizers import verify_stabilizers +from lassynth.translators.gltf_generator import gltf_generator +from lassynth.translators.textfig_generator import textfig_generator +from lassynth.translators.zx_grid_graph import ZXGridGraph +from lassynth.translators.networkx_generator import networkx_generator + + +def check_lasre(lasre: Mapping[str, Any]) -> None: + """check aspects of LaSRe other than SMT constraints, i.e., data layout.""" + if "n_i" not in lasre: + raise ValueError( + f"upper bound of I dimension, `n_i`, is missing in lasre.") + if lasre["n_i"] <= 0: + raise ValueError("n_i <= 0.") + if "n_j" not in lasre: + raise ValueError( + f"upper bound of J dimension, `n_j`, is missing in lasre.") + if lasre["n_j"] <= 0: + raise ValueError("n_j <= 0.") + if "n_k" not in lasre: + raise ValueError( + f"upper bound of K dimension, `n_k`, is missing in lasre.") + if lasre["n_k"] <= 0: + raise ValueError("n_k <= 0.") + if "n_p" not in lasre: + raise ValueError(f"number of ports, `n_p`, is missing in lasre.") + if lasre["n_p"] <= 0: + raise ValueError("n_p <= 0.") + if "n_s" not in lasre: + raise ValueError(f"number of stabilizers, `n_s`, is missing in lasre.") + if lasre["n_s"] < 0: + raise ValueError("n_s < 0.") + if lasre["n_s"] == 0: + print("no stabilizer!") + + if "ports" not in lasre: + raise ValueError(f"`ports` is missing in lasre.") + if len(lasre["ports"]) != lasre["n_p"]: + raise ValueError("number of ports in `ports` is different from `n_p`.") + for port in lasre["ports"]: + if "i" not in port: + raise ValueError(f"location `i` missing from port {port}.") + if port["i"] not in range(lasre["n_i"]): + raise ValueError(f"i out of range in port {port}.") + if "j" not in port: + raise ValueError(f"location `j` missing from port {port}.") + if port["j"] not in range(lasre["n_j"]): + raise ValueError(f"j out of range in port {port}.") + if "k" not in port: + raise ValueError(f"location `k` missing from port {port}.") + if port["k"] not in range(lasre["n_k"]): + raise ValueError(f"k out of range in port {port}.") + if "d" not in port: + raise ValueError(f"direction `d` missing from port {port}.") + if port["d"] not in ["I", "J", "K"]: + raise ValueError(f"direction not I, J, or K in port {port}.") + if "e" not in port: + raise ValueError(f"open end `e` missing from port {port}.") + if port["e"] not in ["-", "+"]: + raise ValueError(f"open end not - or + in port {port}.") + if "c" not in port: + raise ValueError(f"color `c` missing from port {port}.") + if port["c"] not in [0, 1]: + raise ValueError(f"color not 0 or 1 in port {port}.") + + if "stabs" not in lasre: + raise ValueError(f"`stabs` is missing in lasre.") + if len(lasre["stabs"]) != lasre["n_s"]: + raise ValueError("number of stabs in `stabs` is different from `n_s`.") + for stab in lasre["stabs"]: + if len(stab) != lasre["n_p"]: + raise ValueError("number of boundary corrsurf is not `n_p`.") + for i, corrsurf in enumerate(stab): + for (k, v) in corrsurf.items(): + if lasre["ports"][i]["d"] == "I" and k not in ["IJ", "IK"]: + raise ValueError(f"stabs[{i}] key invalid {stab}.") + if lasre["ports"][i]["d"] == "J" and k not in ["JI", "JK"]: + raise ValueError(f"stabs[{i}] key invalid {stab}.") + if lasre["ports"][i]["d"] == "K" and k not in ["KI", "KJ"]: + raise ValueError(f"stabs[{i}] key invalid {stab}.") + if v not in [0, 1]: + raise ValueError(f"stabs[{i}] value not 0 or 1 {stab}.") + + port_cubes = [] + for p in lasre["ports"]: + # if e=-, (i,j,k); otherwise, +1 in the proper direction + if p["e"] == "-": + port_cubes.append((p["i"], p["j"], p["k"])) + elif p["d"] == "I": + port_cubes.append((p["i"] + 1, p["j"], p["k"])) + elif p["d"] == "J": + port_cubes.append((p["i"], p["j"] + 1, p["k"])) + elif p["d"] == "K": + port_cubes.append((p["i"], p["j"], p["k"] + 1)) + lasre["port_cubes"] = port_cubes + + if "optional" not in lasre: + lasre["optional"] = {} + + for key in [ + "NodeY", + "ExistI", + "ExistJ", + "ExistK", + "ColorI", + "ColorJ", + ]: + if key not in lasre: + raise ValueError(f"`{key}` missing from lasre.") + if len(lasre[key]) != lasre["n_i"]: + raise ValueError(f"dimension of {key} is wrong.") + for tmp in lasre[key]: + if len(tmp) != lasre["n_j"]: + raise ValueError(f"dimension of {key} is wrong.") + for tmptmp in tmp: + if len(tmptmp) != lasre["n_k"]: + raise ValueError(f"dimension of {key} is wrong.") + + if lasre["n_s"] > 0: + for key in [ + "CorrIJ", + "CorrIK", + "CorrJI", + "CorrJK", + "CorrKI", + "CorrKJ", + ]: + if key not in lasre: + raise ValueError(f"`{key}` missing from lasre.") + if len(lasre[key]) != lasre["n_s"]: + raise ValueError(f"dimension of {key} is wrong.") + for tmp in lasre[key]: + if len(tmp) != lasre["n_i"]: + raise ValueError(f"dimension of {key} is wrong.") + for tmptmp in tmp: + if len(tmptmp) != lasre["n_j"]: + raise ValueError(f"dimension of {key} is wrong.") + for tmptmptmp in tmptmp: + if len(tmptmptmp) != lasre["n_k"]: + raise ValueError(f"dimension of {key} is wrong.") + + +class LatticeSurgerySolution: + """A class for the result of synthesizer lattice surgery subroutine. + + It internally saves an LaSRe (Lattice Surgery Subroutine Representation) + and we can apply rewrite passes to it, or use translators to derive + other formats of the LaS solution + """ + + def __init__( + self, + lasre: Mapping[str, Any], + ) -> None: + """initialization for LatticeSurgerySubroutine + + Args: + lasre (Mapping[str, Any]): LaSRe + """ + check_lasre(lasre) + self.lasre = lasre + + def get_depth(self) -> int: + """get the depth/height of the LaS in LaSRe. + + Returns: + int: depth/height of the LaS in LaSRe + """ + return self.lasre["n_k"] + + def after_removing_disconnected_pieces(self): + """remove_unconnected.""" + return LatticeSurgerySolution(lasre=remove_unconnected(self.lasre)) + + def after_color_k_pipes(self): + """coloring K pipes.""" + return LatticeSurgerySolution(lasre=color_z(self.lasre)) + + def after_default_optimizations(self): + """default optimizations: remove unconnected, and then color K pipes.""" + solution = LatticeSurgerySolution(lasre=remove_unconnected(self.lasre)) + solution = LatticeSurgerySolution(lasre=color_z(solution.lasre)) + return solution + + def after_t_factory_default_optimizations(self): + """default optimization for T-factories.""" + solution = LatticeSurgerySolution(lasre=remove_unconnected(self.lasre)) + solution = LatticeSurgerySolution(lasre=color_z(solution.lasre)) + solution = LatticeSurgerySolution(lasre=attach_fixups(solution.lasre)) + return solution + + def save_lasre(self, file_name: str) -> None: + """save the current LaSRe to a file. + + Args: + file_name (str): file name including extension to save the LaSRe + """ + with open(file_name, "w") as f: + json.dump(self.lasre, f) + + def to_3d_model_gltf(self, + output_file_name: str, + stabilizer: int = -1, + tube_len: float = 2.0, + no_color_z: bool = False, + attach_axes: bool = False, + rm_dir: Optional[str] = None) -> None: + """generate gltf file (for 3D modelling). + + Args: + output_file_name (str): file name including extension to save gltf + stabilizer (int, optional): Defaults to -1 meaning do not draw + correlation surfaces. If the value is in [0, n_s), + the correlation surfaces corresponding to that stabilizer + are drawn and faces in one of the directions are revealed + to unveil the correlation surfaces. + tube_len (float, optional): Length of the pipe comapred to + the cube. Defaults to 2.0. + no_color_z (bool, optional): Do not color the K pipes. + Defaults to False. + attach_axes (bool, optional): attach IJK axes. Defaults to False. + If attached, the color coding is I->red, J->green, K->blue. + rm_dir (str, optional): the (+|-)(I|J|K) faces to remove. + Intended to reveal correlation surfaces. Default to None. + """ + gltf = gltf_generator( + self.lasre, + stabilizer=stabilizer, + tube_len=tube_len, + no_color_z=no_color_z, + attach_axes=attach_axes, + rm_dir=rm_dir if rm_dir else (":+J" if stabilizer >= 0 else None), + ) + with open(output_file_name, "w") as f: + json.dump(gltf, f) + + def to_zigxag_url( + self, + io_spec: Optional[Sequence[str]] = None, + ) -> str: + """generate a link that leads to a ZigXag figure. + + Args: + io_spec (Optional[Sequence[str]], optional): Specify whether + each port is an input or an output. Length must be the same + with the number of ports. Defaults to None, which means + all ports are outputs. + + Returns: + str: the ZigXag link + """ + zxgridgraph = ZXGridGraph(self.lasre) + return zxgridgraph.to_zigxag_url(io_spec=io_spec) + + def to_text_diagram(self) -> str: + """generate the text figure of LaS time slices. + + Returns: + str: text figure of the LaS + """ + return textfig_generator(self.lasre) + + def to_networkx_graph(self) -> networkx.Graph: + """generate a annotated networkx.Graph correponding to the LaS. + + Returns: + networkx.Graph: + """ + return networkx_generator(self.lasre) + + def verify_stabilizers_stimzx(self, + specification: Mapping[str, Any], + print_stabilizers: bool = False) -> bool: + """verify the stabilizer of the LaS. + + Use StimZX to deduce the stabilizers from the annotated networkx graph. + Then use Stim to ensure that this set of stabilizers and the set of + stabilizers specified in the input are equivalent. + + Args: + specification (Mapping[str, Any]): the LaS specification to verify + the current solution against. + print_stabilizers (bool, optional): If True, print the two sets of + stabilizers. Defaults to False. + + Returns: + bool: True if the two sets are equivalent; otherwise False. + """ + paulistrings = [ + paulistring.replace(".", "_") + for paulistring in specification["stabilizers"] + ] + return verify_stabilizers( + paulistrings, + self.to_networkx_graph(), + print_stabilizers=print_stabilizers, + ) + + +class LatticeSurgerySynthesizer: + """A class to synthesize LaS.""" + + def __init__( + self, + solver: Literal["kissat", "z3"] = "z3", + kissat_dir: Optional[str] = None, + ) -> None: + """initialize. + + Args: + solver (Literal["kissat", "z3"], optional): the solver to use. + Defaults to "z3". "kissat" is recommended. + kissat_dir (Optional[str], optional): directory of the kissat + executable. Defaults to None. + """ + self.solver = solver + self.kissat_dir = kissat_dir + + def solve( + self, + specification: Mapping[str, Any], + given_arrs: Optional[Mapping[str, Any]] = None, + given_vals: Optional[Sequence[Mapping[str, Any]]] = None, + print_detail: bool = False, + dimacs_file_name: Optional[str] = None, + sat_log_file_name: Optional[str] = None, + ) -> Optional[LatticeSurgerySolution]: + """solve an LaS synthesis problem. + + Args: + specification (Mapping[str, Any]): the LaS specification to solve. + given_arrs (Optional[Mapping[str, Any]], optional): given array of + known values to plug in. Defaults to None. + given_vals (Optional[Sequence[Mapping[str, Any]]], optional): given + known values to plug in. Defaults to None. Format should be + a sequence of dicts. Each one contains three fields: "array", + the name of the array, e.g., "ExistI"; "indices", a sequence of + the indices, e.g., [0, 0, 0]; and "value", 0 or 1. + print_detail (bool, optional): whether to print details in + SAT solving. Defaults to False. + dimacs_file_name (Optional[str], optional): file to save the + DIMACS. Defaults to None. + sat_log_file_name (Optional[str], optional): file to save the + SAT solver log. Defaults to None. + + Returns: + Optional[LatticeSurgerySubroutine]: if the problem is + unsatisfiable, this is None; otherwise, a + LatticeSurgerySolution initialized by the compiled result. + """ + start_time = time.time() + sat_synthesis = LatticeSurgerySAT( + input_dict=specification, + given_arrs=given_arrs, + given_vals=given_vals, + ) + if print_detail: + print(f"Adding constraints time: {time.time() - start_time}") + + start_time = time.time() + if self.solver == "z3": + if_sat = sat_synthesis.check_z3(print_progress=print_detail) + else: + if_sat = sat_synthesis.check_kissat( + dimacs_file_name=dimacs_file_name, + sat_log_file_name=sat_log_file_name, + print_progress=print_detail, + kissat_dir=self.kissat_dir, + ) + if print_detail: + print(f"Total solving time: {time.time() - start_time}") + + if if_sat: + solver_result = sat_synthesis.get_result() + return LatticeSurgerySolution(lasre=solver_result) + else: + return None + + def optimize_depth( + self, + specification: Mapping[str, Any], + start_depth: Optional[int] = None, + print_detail: bool = False, + dimacs_file_name_prefix: Optional[str] = None, + sat_log_file_name_prefix: Optional[str] = None, + ) -> LatticeSurgerySolution: + """find the optimal solution in terms of depth/height of the LaS. + + Args: + specification (Mapping[str, Any]): the LaS specification to solve. + start_depth (int, optional): starting depth of the exploration. If not + provided, use the depth given in the specification + print_detail (bool, optional): whether to print details in SAT solving. + Defaults to False. + dimacs_file_name_prefix (Optional[str], optional): file prefix to save + the DIMACS. The full file name will contain the specific depth + after this prefix. Defaults to None. + sat_log_file_name_prefix (Optional[str], optional): file prefix to save + the SAT log. The full file name will contain the specific depth + after this prefix. Defaults to None. + result_file_name_prefix (Optional[str], optional): file prefix to save + the variable assignments. The full file name will contain the + specific depth after this prefix. Defaults to None. + post_optimization (str, optional): optimization to perform when + initializing the LatticeSurgerySubroutine object for the result. + Defaults to "default". + + Raises: + ValueError: starting depth is too low. + + Returns: + LatticeSurgerySolution: compiled result with the optimal depth. + """ + self.specification = dict(specification) + if start_depth is None: + depth = self.specification["max_k"] + else: + depth = int(start_depth) + if depth < 2: + raise ValueError("depth too low.") + + checked_depth = {} + while True: + # the ports on the top floor will still be on the top floor when we + # increase the height. This is an assumption. Adapt to your case. + for port in self.specification["ports"]: + if port["location"][2] == self.specification["max_k"]: + port["location"][2] = depth + self.specification["max_k"] = depth + + result = self.solve( + specification=self.specification, + print_detail=print_detail, + dimacs_file_name=dimacs_file_name_prefix + + f"_d={depth}" if dimacs_file_name_prefix else None, + sat_log_file_name=sat_log_file_name_prefix + + f"_d={depth}" if sat_log_file_name_prefix else None, + ) + if result is None: + checked_depth[str(depth)] = "UNSAT" + if str(depth + 1) in checked_depth: + # since this depth leads to UNSAT, we need to increase + # the depth, but if depth+1 is already checked, we can stop + break + else: + depth += 1 + else: + checked_depth[str(depth)] = "SAT" + self.sat_result = LatticeSurgerySolution(lasre=result.lasre) + if str(depth - 1) in checked_depth: + # since this depth leads to SAT, we need to try decreasing + # the depth, but if depth-1 is already checked, we can stop + break + else: + depth -= 1 + + return self.sat_result + + def try_one_permutation( + self, + perm: Sequence[int], + specification: Mapping[str, Any], + print_detail: bool = False, + dimacs_file_name_prefix: Optional[str] = None, + sat_log_file_name_prefix: Optional[str] = None, + ) -> Optional[LatticeSurgerySolution]: + """check if the problem is satisfiable given a port permutation. + + Args: + specification (Mapping[str, Any]): the LaS specification to solve. + perm (Sequence[int]): the given permutation, which is an integer + tuple of length n (n being the number of ports permuted). + print_detail (bool, optional): whether to print details in + SAT solving. Defaults to False. + dimacs_file_name_prefix (Optional[str], optional): file prefix + to save the DIMACS. The full file name will contain the + specific permutation after this prefix. Defaults to None. + sat_log_file_name_prefix (Optional[str], optional): file prefix + to save the SAT log. The full file name will contain the + specific permutation after this prefix. Defaults to None. + + Returns: + Optional[LatticeSurgerySubroutine]: if the problem is + unsatisfiable, this is None; otherwise, a + LatticeSurgerySolution initialized by the compiled result. + """ + + # say `perm` is [0,3,2], then `original` is in order, i.e., [0,2,3] + # the full permutation is 0,1,2,3 -> 0,1,3,2 + original = sorted(perm) + this_spec = dict(specification) + new_ports = [] + for p, port in enumerate(specification["ports"]): + if p not in perm: + # the p-th port is not involved in `perm`, e.g., 1 is unchanged + new_ports.append(port) + + else: + # after the permutation, the index of the p-th port in + # specification is the k-th port in `perm` where k is the place + # of p in `original`. In this example, when p=0 and 1, nothing + # changed. When p=2, we find `place` to be 1, and perm[place]=3 + # so we attach port_3. When p=3, we end up attach port_2 + place = original.index(p) + new_ports.append(specification["ports"][perm[place]]) + this_spec["ports"] = new_ports + + result = self.solve( + specification=this_spec, + print_detail=print_detail, + dimacs_file_name=dimacs_file_name_prefix + "_" + + perm.__repr__().replace(" ", "") + if dimacs_file_name_prefix else None, + sat_log_file_name=sat_log_file_name_prefix + "_" + + perm.__repr__().replace(" ", "") + if sat_log_file_name_prefix else None, + ) + print(f"{perm}: {'SAT' if result else 'UNSAT'}") + return result + + def solve_all_port_permutations( + self, + permute_ports: Sequence[int], + parallelism: int = 1, + shuffle: bool = True, + **kwargs, + ) -> Mapping[str, Sequence[Sequence[int]]]: + """try all the permutations of given ports, which ones are satisfiable. + + Note that we do not check that the LaS after permuting the ports (we do + not permute the stabilizers accordingly) is functionally equivalent. + The user should use this method based on their judgement. Also, the + number of permutations scales exponentially with the number of ports + to permute, so this method can easily take an immense amount of time. + + Args: + permute_ports (Sequence[int]): the indices of ports to permute + parallelism (int, optional): number of parallel process. Each one + try one permutation. A New proess starts when an old one + finishes. Defaults to 1. + shuffle (bool, optional): whether using a random order to start the + processes. Defaults to True. + **kwargs: other arguments to `try_one_permutation`. + + Returns: + Mapping[str, Sequence[Sequence[int]]]: a dict with two keys. + "SAT": [.] a list containing all the satisfiable permutations; + "UNSAT": [.] all the unsatisfiable permutations. + """ + perms = list(itertools.permutations(permute_ports)) + if shuffle: + random.shuffle(perms) + + pool = multiprocessing.Pool(parallelism) + # issue the job one by one (chuck=1) + results = pool.map( + functools.partial( + self.try_one_permutation, + **kwargs, + ), + perms, + chunksize=1, + ) + + sat_perms = [] + unsat_perms = [] + for p, result in enumerate(results): + if result is None: + unsat_perms.append(perms[p]) + else: + sat_perms.append(perms[p]) + + return { + "SAT": sat_perms, + "UNSAT": unsat_perms, + } diff --git a/glue/lattice_surgery/lassynth/rewrite_passes/__init__.py b/glue/lattice_surgery/lassynth/rewrite_passes/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/glue/lattice_surgery/lassynth/rewrite_passes/attach_fixups.py b/glue/lattice_surgery/lassynth/rewrite_passes/attach_fixups.py new file mode 100644 index 00000000..cad628f3 --- /dev/null +++ b/glue/lattice_surgery/lassynth/rewrite_passes/attach_fixups.py @@ -0,0 +1,86 @@ +"""assuming all T injections requiring fixup are on the top floor. +The output is also on the top floor""" + +from typing import Mapping, Any + + +def attach_fixups(lasre: Mapping[str, Any]) -> Mapping[str, Any]: + n_s = lasre["n_s"] + n_i = lasre["n_i"] + n_j = lasre["n_j"] + n_k = lasre["n_k"] + + fixup_locs = [] + for p in lasre["optional"]["top_fixups"]: + fixup_locs.append((lasre["ports"][p]["i"], lasre["ports"][p]["j"])) + + lasre["n_k"] += 2 + # we add two layers on the top. The lower layer will contain fixups dressed + # as Y cubes that is connecting downwards. The upper layer will contain no + # new cubes. This corresponds to waiting the machine to apply the fixups + # because there is a finite interaction time from the machine knows whether + # the injection is T or T^dagger to apply the fixups. + for i in range(n_i): + for j in range(n_j): + if (i, j) in fixup_locs: + lasre["NodeY"][i][j].append(1) # fixup dressed as Y cubes + lasre["ExistK"][i][j][n_k - 1] = 1 # connect fixup downwards + else: + lasre["NodeY"][i][j].append(0) # no fixup + lasre["ExistK"][i][j][n_k - 1] = 0 + lasre["NodeY"][i][j].append(0) # the upper layer is empty + + # do not add any new pipes in the added layer + for arr in ["ExistI", "ExistJ", "ExistK"]: + lasre[arr][i][j].append(0) + lasre[arr][i][j].append(0) + for arr in ["ColorI", "ColorJ", "ColorKM", "ColorKP"]: + lasre[arr][i][j].append(-1) + lasre[arr][i][j].append(-1) + for s in range(n_s): + for arr in [ + "CorrIJ", "CorrIK", "CorrJK", "CorrJI", "CorrKI", + "CorrKJ" + ]: + lasre[arr][s][i][j].append(0) + lasre[arr][s][i][j].append(0) + + # the output ports need to be extended in the two added layers + for port in lasre["ports"]: + if "f" in port and port["f"] == "output": + ii, jj = port["i"], port["j"] + lasre["ExistK"][ii][jj][n_k - 1] = 1 + lasre["ExistK"][ii][jj][n_k] = 1 + lasre["ExistK"][ii][jj][n_k + 1] = 1 + lasre["ColorKM"][ii][jj][n_k] = lasre["ColorKP"][ii][jj][n_k - 1] + lasre["ColorKM"][ii][jj][n_k + 1] = lasre["ColorKM"][ii][jj][n_k] + lasre["ColorKP"][ii][jj][n_k] = lasre["ColorKM"][ii][jj][n_k] + lasre["ColorKP"][ii][jj][n_k + 1] = lasre["ColorKP"][ii][jj][n_k] + for s in range(n_s): + lasre["CorrKI"][s][ii][jj][n_k] = lasre["CorrKI"][s][ii][jj][ + n_k - 1] + lasre["CorrKI"][s][ii][jj][n_k + + 1] = lasre["CorrKI"][s][ii][jj][n_k] + lasre["CorrKJ"][s][ii][jj][n_k] = lasre["CorrKJ"][s][ii][jj][ + n_k - 1] + lasre["CorrKJ"][s][ii][jj][n_k + + 1] = lasre["CorrKJ"][s][ii][jj][n_k] + port["k"] += 2 + new_cubes = [] + for c in lasre["port_cubes"]: + if c[0] == port["i"] and c[1] == port["j"]: + new_cubes.append((c[0], c[1], port["k"] + 1)) + else: + new_cubes.append(c) + lasre["port_cubes"] = new_cubes + + t_injections = [] + for port in lasre["ports"]: + if port["f"] == "T": + if port["e"] == "+": + t_injections.append([port["i"], port["j"], port["k"] + 1]) + else: + t_injections.append([port["i"], port["j"], port["k"]]) + lasre["optional"]["t_injections"] = t_injections + + return lasre diff --git a/glue/lattice_surgery/lassynth/rewrite_passes/color_z.py b/glue/lattice_surgery/lassynth/rewrite_passes/color_z.py new file mode 100644 index 00000000..7c0c956d --- /dev/null +++ b/glue/lattice_surgery/lassynth/rewrite_passes/color_z.py @@ -0,0 +1,210 @@ +"""We do not have ColorZ from the SAT/SMT. Now we color the Z-pipes.""" + +from typing import Sequence, Mapping, Any, Union, Tuple + + +def if_uncolorK(n_i: int, n_j: int, n_k: int, + ExistK: Sequence[Sequence[Sequence[int]]], + ColorKP: Sequence[Sequence[Sequence[int]]], + ColorKM: Sequence[Sequence[Sequence[int]]]) -> bool: + """return whether there are uncolored K-pipes""" + for i in range(n_i): + for j in range(n_j): + for k in range(n_k): + if ExistK[i][j][k] and (ColorKP[i][j][k] == -1 + or ColorKM[i][j][k] == -1): + return True + return False + + +def in_bound(n_i: int, n_j: int, n_k: int, i: int, j: int, k: int) -> bool: + if i in range(n_i) and j in range(n_j) and k in range(n_k): + return True + return False + + +def propogate_IJcolor(n_i: int, n_j: int, n_k: int, + ExistI: Sequence[Sequence[Sequence[int]]], + ExistJ: Sequence[Sequence[Sequence[int]]], + ExistK: Sequence[Sequence[Sequence[int]]], + ColorI: Sequence[Sequence[Sequence[int]]], + ColorJ: Sequence[Sequence[Sequence[int]]], + ColorKP: Sequence[Sequence[Sequence[int]]], + ColorKM: Sequence[Sequence[Sequence[int]]]) -> None: + """propagate the color of I- and J-pipes to their neighbor K-pipes.""" + + for i in range(n_i): + for j in range(n_j): + for k in range(n_k): + if ExistK[i][j][k]: + # 4 possible neighbor I/J pipe for the minus end of K-pipe + if in_bound(n_i, n_j, n_k, i - 1, j, + k) and ExistI[i - 1][j][k]: + ColorKM[i][j][k] = 1 - ColorI[i - 1][j][k] + if ExistI[i][j][k]: + ColorKM[i][j][k] = 1 - ColorI[i][j][k] + if in_bound(n_i, n_j, n_k, i, j - 1, + k) and ExistJ[i][j - 1][k]: + ColorKM[i][j][k] = 1 - ColorJ[i][j - 1][k] + if ExistJ[i][j][k]: + ColorKM[i][j][k] = 1 - ColorJ[i][j][k] + + # 4 possible neighbor I/J pipe for the plus end of K-pipe + if (in_bound(n_i, n_j, n_k, i - 1, j, k + 1) + and ExistI[i - 1][j][k + 1]): + ColorKP[i][j][k] = 1 - ColorI[i - 1][j][k + 1] + if in_bound(n_i, n_j, n_k, i, j, + k + 1) and ExistI[i][j][k + 1]: + ColorKP[i][j][k] = 1 - ColorI[i][j][k + 1] + if (in_bound(n_i, n_j, n_k, i, j - 1, k + 1) + and ExistJ[i][j - 1][k + 1]): + ColorKP[i][j][k] = 1 - ColorJ[i][j - 1][k + 1] + if in_bound(n_i, n_j, n_k, i, j, + k + 1) and ExistJ[i][j][k + 1]: + ColorKP[i][j][k] = 1 - ColorJ[i][j][k + 1] + + +def propogate_Kcolor(n_i: int, n_j: int, n_k: int, + ExistK: Sequence[Sequence[Sequence[int]]], + ColorKP: Sequence[Sequence[Sequence[int]]], + ColorKM: Sequence[Sequence[Sequence[int]]], + NodeY: Sequence[Sequence[Sequence[int]]]) -> bool: + """propagate color from colored K-pipes to uncolored K-pipes. + If no new color can be assigned, return False; otherwise, return True.""" + + did_something = False + for i in range(n_i): + for j in range(n_j): + for k in range(n_k): + if ExistK[i][j][k]: + # consider propagate color from below + if in_bound( + n_i, n_j, n_k, i, j, k - + 1) and ExistK[i][j][k - 1] and NodeY[i][j][k - + 1] == 0: + if ColorKP[i][j][k - + 1] > -1 and ColorKM[i][j][k] == -1: + ColorKM[i][j][k] = ColorKP[i][j][k - 1] + did_something = True + # consider propagate color from above + if in_bound( + n_i, n_j, n_k, i, j, k + + 1) and ExistK[i][j][k + 1] and NodeY[i][j][k + + 1] == 0: + if ColorKM[i][j][k + + 1] > -1 and ColorKP[i][j][k] == -1: + ColorKP[i][j][k] = ColorKM[i][j][k + 1] + did_something = True + + # if K-pipe connects a Y Cube, two ends can be colored same + if (NodeY[i][j][k] and ColorKM[i][j][k] == -1 + and ColorKP[i][j][k] > -1): + ColorKM[i][j][k] = ColorKP[i][j][k] + did_something = True + if (in_bound(n_i, n_j, n_k, i, j, k + 1) + and NodeY[i][j][k + 1] and ColorKM[i][j][k] > -1 + and ColorKP[i][j][k] == -1): + ColorKP[i][j][k] = ColorKM[i][j][k] + did_something = True + return did_something + + +def assign_Kcolor(n_i: int, n_j: int, n_k: int, + ExistK: Sequence[Sequence[Sequence[int]]], + ColorKP: Sequence[Sequence[Sequence[int]]], + ColorKM: Sequence[Sequence[Sequence[int]]], + NodeY: Sequence[Sequence[Sequence[int]]]) -> None: + """when no color can be deducted by propagating from other K-pipes, we + assign some color variables at will. Then, we can continue to propagate.""" + + # assign a color by letting the two ends of a K-pipe to be the same + for i in range(n_i): + for j in range(n_j): + for k in range(n_k): + if ExistK[i][j][k]: + if ColorKM[i][j][k] > -1 and ColorKP[i][j][k] == -1: + ColorKP[i][j][k] = ColorKM[i][j][k] + break + # For K-pipes that have no color at both ends and connects a Y-cube + for i in range(n_i): + for j in range(n_j): + for k in range(n_k): + if ExistK[i][j][k]: + if NodeY[i][j][k] and ColorKM[i][j][k] == -1: + ColorKM[i][j][k] = 0 + break + if (in_bound(n_i, n_j, n_k, i, j, k + 1) + and NodeY[i][j][k + 1] and ColorKP[i][j][k] == -1): + ColorKP[i][j][k] = 0 + break + + +def color_ports(ports: Sequence[Mapping[str, Union[str, int]]], + ColorKP: Sequence[Sequence[Sequence[int]]], + ColorKM: Sequence[Sequence[Sequence[int]]]) -> None: + for port in ports: + if port['d'] == 'K': + if port['e'] == '+': + ColorKP[port['i']][port['j']][port['k']] = port['c'] + else: + ColorKM[port['i']][port['j']][port['k']] = port['c'] + + +def color_kp_km( + n_i: int, + n_j: int, + n_k: int, + ExistI: Sequence[Sequence[Sequence[int]]], + ExistJ: Sequence[Sequence[Sequence[int]]], + ExistK: Sequence[Sequence[Sequence[int]]], + ColorI: Sequence[Sequence[Sequence[int]]], + ColorJ: Sequence[Sequence[Sequence[int]]], + ports: Sequence[Mapping[str, Union[str, int]]], + NodeY: Sequence[Sequence[Sequence[int]]], +) -> Tuple[Sequence[Sequence[Sequence[int]]], + Sequence[Sequence[Sequence[int]]]]: + ColorKP = [[[-1 for _ in range(n_k)] for _ in range(n_j)] + for _ in range(n_i)] + ColorKM = [[[-1 for _ in range(n_k)] for _ in range(n_j)] + for _ in range(n_i)] + + # at ports, the color follows from the port configuration + color_ports(ports, ColorKP, ColorKM) + + # propogate the color of I-pipes and J-pipes to their neighboring K-pipes + propogate_IJcolor(n_i, n_j, n_k, ExistI, ExistJ, ExistK, ColorI, ColorJ, + ColorKP, ColorKM) + + # the rest of the K-pipes are only neighboring other K-pipes. Until all of + # them are colored, we propagate colors of the existing K-pipes. If at one + # point, nothing can be implied via propagation, we assign a color at will + # and continue. Because of the domain wall operation, we can do this. + while if_uncolorK(n_i, n_j, n_k, ExistK, ColorKP, ColorKM): + if not propogate_Kcolor(n_i, n_j, n_k, ExistK, ColorKP, ColorKM, + NodeY): + assign_Kcolor(n_i, n_j, n_k, ExistK, ColorKP, ColorKM, NodeY) + return ColorKP, ColorKM + + +def color_z(lasre: Mapping[str, Any]) -> Mapping[str, Any]: + n_i, n_j, n_k = ( + lasre['n_i'], + lasre['n_j'], + lasre['n_k'], + ) + ExistI, ColorI, ExistJ, ColorJ, ExistK = ( + lasre['ExistI'], + lasre['ColorI'], + lasre['ExistJ'], + lasre['ColorJ'], + lasre['ExistK'], + ) + NodeY = lasre['NodeY'] + ports = lasre['ports'] + + # for a K-pipe (i,j,k)-(i,j,k+1), ColorKP (plus) is its color at (i,j,k+1) + # and ColorKM (minus) is its color at (i,j,k) + lasre['ColorKP'], lasre['ColorKM'] = color_kp_km(n_i, n_j, n_k, ExistI, + ExistJ, ExistK, ColorI, + ColorJ, ports, NodeY) + return lasre diff --git a/glue/lattice_surgery/lassynth/rewrite_passes/remove_unconnected.py b/glue/lattice_surgery/lassynth/rewrite_passes/remove_unconnected.py new file mode 100644 index 00000000..e983b009 --- /dev/null +++ b/glue/lattice_surgery/lassynth/rewrite_passes/remove_unconnected.py @@ -0,0 +1,152 @@ +"""In the generated LaS, there can be some 'floating donuts' not connecting to +any ports. These objects won't affect the function of the LaS. We remove them. +""" + +from typing import Mapping, Any, Sequence, Union, Tuple + + +def check_cubes( + n_i: int, n_j: int, n_k: int, ExistI: Sequence[Sequence[Sequence[int]]], + ExistJ: Sequence[Sequence[Sequence[int]]], + ExistK: Sequence[Sequence[Sequence[int]]], + ports: Sequence[Mapping[str, Union[str, int]]], + NodeY: Sequence[Sequence[Sequence[int]]] +) -> Sequence[Sequence[Sequence[int]]]: + # we linearize the cubes, cube at (i,j,k) -> index i*n_j*n_k + j*n_k + k + # construct adjancency list of the cubes from the pipes + adj = [[] for _ in range(n_i * n_j * n_k)] + for i in range(n_i): + for j in range(n_j): + for k in range(n_k): + if ExistI[i][j][k] and i + 1 < n_i: + adj[i * n_j * n_k + j * n_k + + k].append((i + 1) * n_j * n_k + j * n_k + k) + adj[(i + 1) * n_j * n_k + j * n_k + + k].append(i * n_j * n_k + j * n_k + k) + if ExistJ[i][j][k] and j + 1 < n_j: + adj[i * n_j * n_k + j * n_k + k].append(i * n_j * n_k + + (j + 1) * n_k + k) + adj[i * n_j * n_k + (j + 1) * n_k + + k].append(i * n_j * n_k + j * n_k + k) + if ExistK[i][j][k] and k + 1 < n_k: + adj[i * n_j * n_k + j * n_k + k].append(i * n_j * n_k + + j * n_k + k + 1) + adj[i * n_j * n_k + j * n_k + k + 1].append(i * n_j * n_k + + j * n_k + k) + + # if a cube can reach any of the vips, i.e., open cube for a port + vips = [p["i"] * n_j * n_k + p["j"] * n_k + p["k"] for p in ports] + + # first assume all cubes are nonconnected + connected_cubes = [[[0 for _ in range(n_k)] for _ in range(n_j)] + for _ in range(n_i)] + + # a Y cube is only effective if it is connected to a cube (i,j,k) that is + # connected to ports. In this case, (i,j,k) will be in `connected_cubes` + # and all pipes from (i,j,k) will be selected in `check_pipes`, so we can + # assume all the Y cubes to be nonconnected for now. + y_cubes = [ + i * n_j * n_k + j * n_k + k for i in range(n_i) for j in range(n_j) + for k in range(n_k) if NodeY[i][j][k] + ] + + for i in range(n_i): + for j in range(n_j): + for k in range(n_k): + # breadth first search for each cube + queue = [ + i * n_j * n_k + j * n_k + k, + ] + if i * n_j * n_k + j * n_k + k in y_cubes: + continue + visited = [0 for _ in range(n_i * n_j * n_k)] + while len(queue) > 0: + if queue[0] in vips: + connected_cubes[i][j][k] = 1 + break + visited[queue[0]] = 1 + for v in adj[queue[0]]: + if not visited[v] and v not in y_cubes: + queue.append(v) + queue.pop(0) + + return connected_cubes + + +def check_pipes( + n_i: int, n_j: int, n_k: int, ExistI: Sequence[Sequence[Sequence[int]]], + ExistJ: Sequence[Sequence[Sequence[int]]], + ExistK: Sequence[Sequence[Sequence[int]]], + connected_cubes: Sequence[Sequence[Sequence[int]]] +) -> Tuple[Sequence[Sequence[Sequence[int]]], + Sequence[Sequence[Sequence[int]]], + Sequence[Sequence[Sequence[int]]]]: + EffectI = [[[0 for _ in range(n_k)] for _ in range(n_j)] + for _ in range(n_i)] + EffectJ = [[[0 for _ in range(n_k)] for _ in range(n_j)] + for _ in range(n_i)] + EffectK = [[[0 for _ in range(n_k)] for _ in range(n_j)] + for _ in range(n_i)] + for i in range(n_i): + for j in range(n_j): + for k in range(n_k): + if ExistI[i][j][k] and (connected_cubes[i][j][k] or + (i + 1 < n_i + and connected_cubes[i + 1][j][k])): + EffectI[i][j][k] = 1 + if ExistJ[i][j][k] and (connected_cubes[i][j][k] or + (j + 1 < n_j + and connected_cubes[i][j + 1][k])): + EffectJ[i][j][k] = 1 + if ExistK[i][j][k] and (connected_cubes[i][j][k] or + (k + 1 < n_k + and connected_cubes[i][j][k + 1])): + EffectK[i][j][k] = 1 + return EffectI, EffectJ, EffectK + + +def array3DAnd( + arr0: Sequence[Sequence[Sequence[int]]], + arr1: Sequence[Sequence[Sequence[int]]] +) -> Sequence[Sequence[Sequence[int]]]: + """taking the AND of two arrays of bits""" + a = len(arr0) + b = len(arr0[0]) + c = len(arr0[0][0]) + arrAnd = [[[0 for _ in range(c)] for _ in range(b)] for _ in range(a)] + for i in range(a): + for j in range(b): + for k in range(c): + if arr0[i][j][k] == 1 and arr1[i][j][k] == 1: + arrAnd[i][j][k] = 1 + return arrAnd + + +def remove_unconnected(lasre: Mapping[str, Any]) -> Mapping[str, Any]: + n_i, n_j, n_k = ( + lasre["n_i"], + lasre["n_j"], + lasre["n_k"], + ) + ExistI, ExistJ, ExistK, NodeY = ( + lasre["ExistI"], + lasre["ExistJ"], + lasre["ExistK"], + lasre["NodeY"], + ) + ports = lasre["ports"] + + connected_cubes = check_cubes(n_i, n_j, n_k, ExistI, ExistJ, ExistK, ports, + NodeY) + connectedI, connectedJ, connectedK = check_pipes(n_i, n_j, n_k, ExistI, + ExistJ, ExistK, + connected_cubes) + maskedI, maskedJ, maskedK = ( + array3DAnd(ExistI, connectedI), + array3DAnd(ExistJ, connectedJ), + array3DAnd(ExistK, connectedK), + ) + lasre["ExistI"], lasre["ExistJ"], lasre[ + "ExistK"] = maskedI, maskedJ, maskedK + + return lasre diff --git a/glue/lattice_surgery/lassynth/sat_synthesis/__init__.py b/glue/lattice_surgery/lassynth/sat_synthesis/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/glue/lattice_surgery/lassynth/sat_synthesis/lattice_surgery_sat.py b/glue/lattice_surgery/lassynth/sat_synthesis/lattice_surgery_sat.py new file mode 100644 index 00000000..da6bd670 --- /dev/null +++ b/glue/lattice_surgery/lassynth/sat_synthesis/lattice_surgery_sat.py @@ -0,0 +1,1842 @@ +"""LatticeSurgerySAT to encode the synthesis problem to SAT/SMT""" + +import os +import subprocess +import sys +import tempfile +import time +from typing import Any, Mapping, Sequence, Union, Tuple, Optional +import z3 + + +def var_given( + data: Mapping[str, Any], + arr: str, + i: int, + j: int, + k: int, + l: Optional[int] = None, +) -> bool: + """Check whether data[arr][i][j][k]([l]) is given. + + If the given indices are not found, return False; otherwise return True. + + Args: + data (Mapping[str, Any]): contain arrays + arr (str): ExistI, etc. + i (int): first index + j (int): second index + k (int): third index + l (int, optional): optional fourth index. Defaults to None. + + Returns: + bool: whether the variable value is given + + Raises: + ValueError: found value, but not 0 nor 1 nor -1. + """ + + if arr not in data: + return False + if l is None: + if data[arr][i][j][k] == -1: + return False + elif data[arr][i][j][k] != 0 and data[arr][i][j][k] != 1: + raise ValueError(f"{arr}[{i}, {j}, {k}] is not 0 nor 1 nor -1.") + return True + # l is not None, then + if data[arr][i][j][k][l] == -1: + return False + elif data[arr][i][j][k][l] != 0 and data[arr][i][j][k][l] != 1: + raise ValueError(f"{arr}[{i}, {j}, {k}, {l}] is not 0 nor 1 nor -1.") + return True + + +def port_incident_pipes( + port: Mapping[str, Union[str, int]], n_i: int, n_j: int, + n_k: int) -> Tuple[Sequence[str], Sequence[Tuple[int, int, int]]]: + """Compute the pipes incident to a port. + + A port is an pipe with a open end. The incident pipes of a port are the + five other pipes connecting to that end. However, some of these pipes + can be out of bound, we just want to compute those that are in bound. + + Args: + port (Mapping[str, Union[str, int]]): the port to consider + n_i (int): spatial bound on I direction + n_j (int): spatial bound on J direction + n_k (int): spatial bound on K direction + + Returns: + Tuple[Sequence[str], Sequence[Tuple[int, int, int]]]: + Two lists of the same length [0,6): (dirs, coords) + dirs: the direction of the incident pipes, can be "I", "J", or "K" + coords: the coordinates of the incident pipes, each one is (i,j,k) + """ + coords = [] + dirs = [] + + # first, just consider adjancency without caring about out-of-bound + if port["d"] == "I": + adj_dirs = ["I", "J", "J", "K", "K"] + if port["e"] == "-": # empty cube is (i,j,k) + adj_coords = [ + (port["i"] - 1, port["j"], port["k"]), # (i-1,j,k)---(i,j,k) + (port["i"], port["j"] - 1, port["k"]), # (i,j-1,k)---(i,j,k) + (port["i"], port["j"], port["k"]), # (i,j,k)---(i,j+1,k) + (port["i"], port["j"], port["k"] - 1), # (i,j,k-1)---(i,j,k) + (port["i"], port["j"], port["k"]), # (i,j,k)---(i,j,k+1) + ] + elif port["e"] == "+": # empty cube is (i+1,j,k) + adj_coords = [ + (port["i"] + 1, port["j"], port["k"]), # (i+1,j,k)---(i+2,j,k) + (port["i"] + 1, port["j"] - 1, + port["k"]), # (i+1,j-1,k)---(i+1,j,k) + (port["i"] + 1, port["j"], + port["k"]), # (i+1,j,k)---(i+1,j+1,k) + (port["i"] + 1, port["j"], + port["k"] - 1), # (i+1,j,k-1)---(i+1,j,k) + (port["i"] + 1, port["j"], + port["k"]), # (i+1,j,k)---(i+1,j,k+1) + ] + + if port["d"] == "J": + adj_dirs = ["J", "K", "K", "I", "I"] + if port["e"] == "-": + adj_coords = [ + (port["i"], port["j"] - 1, port["k"]), + (port["i"], port["j"], port["k"] - 1), + (port["i"], port["j"], port["k"]), + (port["i"] - 1, port["j"], port["k"]), + (port["i"], port["j"], port["k"]), + ] + elif port["e"] == "+": + adj_coords = [ + (port["i"], port["j"] + 1, port["k"]), + (port["i"], port["j"] + 1, port["k"] - 1), + (port["i"], port["j"] + 1, port["k"]), + (port["i"] - 1, port["j"] + 1, port["k"]), + (port["i"], port["j"] + 1, port["k"]), + ] + + if port["d"] == "K": + adj_dirs = ["K", "I", "I", "J", "J"] + if port["e"] == "-": + adj_coords = [ + (port["i"], port["j"], port["k"] - 1), + (port["i"] - 1, port["j"], port["k"]), + (port["i"], port["j"], port["k"]), + (port["i"], port["j"] - 1, port["k"]), + (port["i"], port["j"], port["k"]), + ] + elif port["e"] == "+": + adj_coords = [ + (port["i"], port["j"], port["k"] + 1), + (port["i"] - 1, port["j"], port["k"] + 1), + (port["i"], port["j"], port["k"] + 1), + (port["i"], port["j"] - 1, port["k"] + 1), + (port["i"], port["j"], port["k"] + 1), + ] + + # only keep the pipes in bound + for i, coord in enumerate(adj_coords): + if ((coord[0] in range(n_i)) and (coord[1] in range(n_j)) + and (coord[2] in range(n_k))): + coords.append(adj_coords[i]) + dirs.append(adj_dirs[i]) + + return dirs, coords + + +def cnf_even_parity_upto4(eles: Sequence[Any]) -> Any: + """Compute the CNF format of parity of up to four Z3 binary variables. + + Args: + eles (Sequence[Any]): the binary variables. + + Returns: + (Any) the Z3 constraint meaning the parity of the inputs is even. + + Raises: + ValueError: number of elements is not 1, 2, 3, or 4. + """ + + if len(eles) == 1: + # 1 var even parity -> this var is false + return z3.Not(eles[0]) + + elif len(eles) == 2: + # 2 vars even pairty -> both True or both False + return z3.Or(z3.And(z3.Not(eles[0]), z3.Not(eles[1])), + z3.And(eles[0], eles[1])) + + elif len(eles) == 3: + # 3 vars even parity -> all False, or 2 True and 1 False + return z3.Or( + z3.And(z3.Not(eles[0]), z3.Not(eles[1]), z3.Not(eles[2])), + z3.And(eles[0], eles[1], z3.Not(eles[2])), + z3.And(eles[0], z3.Not(eles[1]), eles[2]), + z3.And(z3.Not(eles[0]), eles[1], eles[2]), + ) + + elif len(eles) == 4: + # 4 vars even parity -> 0, 2, or 4 vars are True + return z3.Or( + z3.And(z3.Not(eles[0]), z3.Not(eles[1]), z3.Not(eles[2]), + z3.Not(eles[3])), + z3.And(z3.Not(eles[0]), z3.Not(eles[1]), eles[2], eles[3]), + z3.And(z3.Not(eles[0]), eles[1], z3.Not(eles[2]), eles[3]), + z3.And(z3.Not(eles[0]), eles[1], eles[2], z3.Not(eles[3])), + z3.And(eles[0], z3.Not(eles[1]), z3.Not(eles[2]), eles[3]), + z3.And(eles[0], z3.Not(eles[1]), eles[2], z3.Not(eles[3])), + z3.And(eles[0], eles[1], z3.Not(eles[2]), z3.Not(eles[3])), + z3.And(eles[0], eles[1], eles[2], eles[3]), + ) + + else: + raise ValueError("This function only supports 1, 2, 3, or 4 vars.") + + +class LatticeSurgerySAT: + """class of synthesizing LaSRe using Z3 SMT solver and Kissat SAT solver. + + It encodes a lattice surgery synthesis problem to SAT/SMT and checks + whether there is a solution. We are given certain spacetime volume, certain + ports, and certain stabilizers. LatticeSurgerySAT encodes the constraints + on LaSRe variables such that the resulting variable assignments consist of + a valid lattice surgery subroutine with the correct functionality + (satisfies all the given stabilizers). LatticeSurgerySAT finds the solution + with a SAT/SMT solver. + """ + + def __init__( + self, + input_dict: Mapping[str, Any], + color_ij: bool = True, + given_arrs: Optional[Mapping[str, Any]] = None, + given_vals: Optional[Sequence[Mapping[str, Any]]] = None, + ) -> None: + """initialization of LatticeSurgerySAT. + + Args: + input_dict (Mapping[str, Any]): specification of LaS. + color_ij (bool, optional): if the color matching constraints of + I and J pipes are imposed. Defaults to True. So far, we always + impose these constraints. + given_arrs (Mapping[str, Any], optional): + Arrays of values to plug in. Defaults to None. + given_vals (Sequence[Mapping[str, Any]], optional): + Values to plug in. Defaults to None. These values will + replace existing values if already set by given_arrs. + """ + self.input_dict = input_dict + self.color_ij = color_ij + self.goal = z3.Goal() + self.process_input(input_dict) + self.build_smt_model(given_arrs=given_arrs, given_vals=given_vals) + + def process_input(self, input_dict: Mapping[str, Any]) -> None: + """read input specification, mainly translating the info at the ports. + + Args: + input_dict (Mapping[str, Any]): LaS specification. + + Raises: + ValueError: missing key in input specification. + ValueError: some spatial bound <= 0. + ValueError: more stabilizers than ports. + ValueError: stabilizer length is not the same as + the number of ports. + ValueError: stabilizer contains things other than I, X, Y, or Z. + ValueError: missing key in port. + ValueError: port location is not a 3-tuple. + ValueError: port direction is not 2-string. + ValueError: port sign (which end is dangling) is not - or +. + ValueError: port axis is not I, J, or K. + ValueError: port location+direction is out of bound. + ValueError: port Z basis direction is not I, J, or K, and + the same with the pipe. + ValueError: forbidden cube location is not a 3-tuple. + ValueError: forbiddent cube location is out of bounds. + """ + data = input_dict + + for key in ["max_i", "max_j", "max_k", "ports", "stabilizers"]: + if key not in data: + raise ValueError(f"missing key {key} in input specification.") + + # load spatial bound, check > 0 + self.n_i = data["max_i"] + self.n_j = data["max_j"] + self.n_k = data["max_k"] + if min([self.n_i, self.n_j, self.n_k]) <= 0: + raise ValueError("max_i or _j or _k <= 0.") + + self.n_p = len(data["ports"]) + self.n_s = len(data["stabilizers"]) + # there should be at most as many stabilizers as ports + if self.n_s > self.n_p: + raise ValueError( + f"{self.n_s} stabilizers, too many for {self.n_p} ports.") + + # stabilizers should be paulistrings of length #ports + self.paulistrings = [s.replace(".", "I") for s in data["stabilizers"]] + for s in self.paulistrings: + if len(s) != self.n_p: + raise ValueError( + f"len({s}) = {len(s)}, but there are {self.n_p} ports.") + for i in range(len(s)): + if s[i] not in ["I", "X", "Y", "Z"]: + raise ValueError( + f"{s} has invalid Pauli. I, X, Y, and Z are allowed.") + + # transform port data + self.ports = [] + for port in data["ports"]: + for key in ["location", "direction", "z_basis_direction"]: + if key not in port: + raise ValueError(f"missing key {key} in port {port}") + + if len(port["location"]) != 3: + raise ValueError(f"port location should be 3-tuple {port}.") + + if len(port["direction"]) != 2: + raise ValueError( + f"port direction should have 2 characters {port}.") + if port["direction"][0] not in ["+", "-"]: + raise ValueError(f"port direction with invalid sign {port}.") + if port["direction"][1] not in ["I", "J", "K"]: + raise ValueError(f"port direction with invalid axis {port}.") + + if port["direction"][0] == "-" and port["direction"][ + 1] == "I" and (port["location"][0] not in range( + 1, self.n_i + 1)): + raise ValueError( + f"{port['location']} with direction {port['direction']}" + f" should be in range [1, f{self.n_i+1}).") + if port["direction"][0] == "+" and port["direction"][ + 1] == "I" and (port["location"][0] not in range( + 0, self.n_i)): + raise ValueError( + f"{port['location']} with direction {port['direction']}" + f" should be in range [0, f{self.n_i}).") + if port["direction"][0] == "-" and port["direction"][ + 1] == "J" and (port["location"][1] not in range( + 1, self.n_j + 1)): + raise ValueError( + f"{port['location']} with direction {port['direction']}" + f" should be in range [1, {self.n_j+1}).") + if port["direction"][0] == "+" and port["direction"][ + 1] == "J" and (port["location"][1] not in range( + 0, self.n_j)): + raise ValueError( + f"{port['location']} with direction {port['direction']}" + f" should be in range [0, f{self.n_j}).") + if port["direction"][0] == "-" and port["direction"][ + 1] == "K" and (port["location"][2] not in range( + 1, self.n_k + 1)): + raise ValueError( + f"{port['location']} with direction {port['direction']}" + f" should be in range [1, f{self.n_k+1}).") + if port["direction"][0] == "+" and port["direction"][ + 1] == "K" and (port["location"][2] not in range( + 0, self.n_k)): + raise ValueError( + f"{port['location']} with direction {port['direction']}" + f" should be in range [0, f{self.n_k}).") + + # internally, a port is an pipe. This is different from what we + # expose to the user: in LaS specification, a port is a cube and + # associated with a direction, e.g., cube [i,j,k] and direction + # "-K". This means the port should be the pipe connecting (i,j,k) + # downwards to the volume of LaS. Thus, that pipe is (i,j,k-1) -- + # (i,j,k) which by convention is the K-pipe (i,j,k-1). + # a port here has fields "i", "j", "k", "d", "e", "f", "c" + my_port = {} + + # "i", "j", and "k" are the i,j,k of the pipe + my_port["i"], my_port["j"], my_port["k"] = port["location"] + if port["direction"][0] == "-": + my_port[port["direction"][1].lower()] -= 1 + + # "d" is one of I, J, and K, corresponding to the port being an + # I-pipe, J-pipe, or a K-pipe + my_port["d"] = port["direction"][1] + + # "e" is the end of the pipe that is open. For example, if the port + # is a K-pipe (i,j,k), then "e"="+" means the cube (i,j,k+1) is + # open; otherwise, "e"="-" means cube (i,j,k) is open. + my_port["e"] = "-" if port["direction"][0] == "+" else "+" + + # "c" is the color variable of the pipe corresponding to the port + z_dir = port["z_basis_direction"] + if z_dir not in ["I", "J", "K"] or z_dir == my_port["d"]: + raise ValueError( + f"port with invalid Z basis direction {port}.") + if my_port["d"] == "I": + my_port["c"] = 0 if z_dir == "J" else 1 + if my_port["d"] == "J": + my_port["c"] = 0 if z_dir == "K" else 1 + if my_port["d"] == "K": + my_port["c"] = 0 if z_dir == "I" else 1 + + # "f" is the function of the pipe, e.g., it can say this port is a + # T injection. This field is not used in the SAT synthesis, but + # we keep this info to use in later stages like gltf generation + if "function" in port: + my_port["f"] = port["function"] + + self.ports.append(my_port) + + # from paulistrings to correlation surfaces + self.stabs = self.derive_corr_boundary(self.paulistrings) + + self.optional = {} + self.forbidden_cubes = [] + if "optional" in data: + self.optional = data["optional"] + + if "forbidden_cubes" in data["optional"]: + for cube in data["optional"]["forbidden_cubes"]: + if len(cube) != 3: + raise ValueError( + f"forbid cube should be 3-tuple {cube}.") + if (cube[0] not in range(self.n_i) + or cube[1] not in range(self.n_j) + or cube[2] not in range(self.n_k)): + raise ValueError( + f"forbidden {cube} out of range " + f"(i,j,k) < ({self.n_i, self.n_j, self.n_k})") + self.forbidden_cubes.append(cube) + + self.get_port_cubes() + + def get_port_cubes(self) -> None: + """calculate which cubes are the open cube for the ports. + Note that these are *** 3-tuples ***, not lists with 3 elements.""" + self.port_cubes = [] + for p in self.ports: + # if e=-, (i,j,k); otherwise, +1 in the proper direction + if p["e"] == "-": + self.port_cubes.append((p["i"], p["j"], p["k"])) + elif p["d"] == "I": + self.port_cubes.append((p["i"] + 1, p["j"], p["k"])) + elif p["d"] == "J": + self.port_cubes.append((p["i"], p["j"] + 1, p["k"])) + elif p["d"] == "K": + self.port_cubes.append((p["i"], p["j"], p["k"] + 1)) + + def derive_corr_boundary( + self, paulistrings: Sequence[str] + ) -> Sequence[Sequence[Mapping[str, int]]]: + """derive the boundary correlation surface variable values. + + From the color orientation of the ports and the stabilizers, we can + derive which correlation surface variables evaluates to True and which + to False at the ports for each stabilizer. + + Args: + paulistrings (Sequence[str]): stabilizers as a list of Paulistrings + + Returns: + Sequence[Sequence[Mapping[str, int]]]: Outer layer list is the + list of stabilizers. Inner layer list is the situation at each port + for one specifeic stabilizer. Each port is specified with a + dictionary of 2 bits for the 2 correaltion surfaces. + """ + stabs = [] + for paulistring in paulistrings: + corr = [] + for p in range(self.n_p): + if paulistring[p] == "I": + # I -> no corr surf should be present + if self.ports[p]["d"] == "I": + corr.append({"IJ": 0, "IK": 0}) + if self.ports[p]["d"] == "J": + corr.append({"JI": 0, "JK": 0}) + if self.ports[p]["d"] == "K": + corr.append({"KI": 0, "KJ": 0}) + + if paulistring[p] == "Y": + # Y -> both corr surf should be present + if self.ports[p]["d"] == "I": + corr.append({"IJ": 1, "IK": 1}) + if self.ports[p]["d"] == "J": + corr.append({"JI": 1, "JK": 1}) + if self.ports[p]["d"] == "K": + corr.append({"KI": 1, "KJ": 1}) + + if paulistring[p] == "X": + # X -> only corr surf touching red faces + if self.ports[p]["d"] == "I": + if self.ports[p]["c"]: + corr.append({"IJ": 1, "IK": 0}) + else: + corr.append({"IJ": 0, "IK": 1}) + if self.ports[p]["d"] == "J": + if self.ports[p]["c"]: + corr.append({"JI": 0, "JK": 1}) + else: + corr.append({"JI": 1, "JK": 0}) + if self.ports[p]["d"] == "K": + if self.ports[p]["c"]: + corr.append({"KI": 1, "KJ": 0}) + else: + corr.append({"KI": 0, "KJ": 1}) + + if paulistring[p] == "Z": + # Z -> only corr surf touching blue faces + if self.ports[p]["d"] == "I": + if not self.ports[p]["c"]: + corr.append({"IJ": 1, "IK": 0}) + else: + corr.append({"IJ": 0, "IK": 1}) + if self.ports[p]["d"] == "J": + if not self.ports[p]["c"]: + corr.append({"JI": 0, "JK": 1}) + else: + corr.append({"JI": 1, "JK": 0}) + if self.ports[p]["d"] == "K": + if not self.ports[p]["c"]: + corr.append({"KI": 1, "KJ": 0}) + else: + corr.append({"KI": 0, "KJ": 1}) + stabs.append(corr) + return stabs + + def build_smt_model( + self, + given_arrs: Optional[Mapping[str, Any]] = None, + given_vals: Optional[Sequence[Mapping[str, Any]]] = None, + ) -> None: + """build the SMT model with variables and constraints. + + Args: + given_arrs (Mapping[str, Any], optional): + Arrays of values to plug in. Defaults to None. + given_vals (Sequence[Mapping[str, Any]], optional): + Values to plug in. Defaults to None. These values will + replace existing values if already set by given_arrs. + """ + self.define_vars() + if given_arrs is not None: + self.plugin_arrs(given_arrs) + if given_vals is not None: + self.plugin_vals(given_vals) + + # baseline order of constraint sets, '...' menas name in the paper + + # validity constraints that directly set variables values + self.constraint_forbid_cube() + self.constraint_port() # 'no fanouts' + self.constraint_connect_outside() # 'no unexpected ports' + + # more complex validity constraints involving boolean logic + self.constraint_timelike_y() # 'time-like Y cubes' + self.constraint_no_deg1() # 'no degree-1 non-Y cubes' + if self.color_ij: + # 'matching colors at passthroughs' and '... at turns' + self.constraint_ij_color() + self.constraint_3d_corner() # 'no 3D corners' + + # simpler functionality constraints + self.constraint_corr_ports() # 'stabilizer as boundary conditions' + self.constraint_corr_y() # 'both or non at Y cubes' + + # more complex functionality constraints + # 'all or no orthogonal surfaces at non-Y cubes: + self.constraint_corr_perp() + # 'even parity of parallel surfaces at non-Y cubes': + self.constraint_corr_para() + + def define_vars(self) -> None: + """define the variables in Z3 into self.vars.""" + self.vars = { + "ExistI": + [[[z3.Bool(f"ExistI({i},{j},{k})") for k in range(self.n_k)] + for j in range(self.n_j)] for i in range(self.n_i)], + "ExistJ": + [[[z3.Bool(f"ExistJ({i},{j},{k})") for k in range(self.n_k)] + for j in range(self.n_j)] for i in range(self.n_i)], + "ExistK": + [[[z3.Bool(f"ExistK({i},{j},{k})") for k in range(self.n_k)] + for j in range(self.n_j)] for i in range(self.n_i)], + "NodeY": + [[[z3.Bool(f"NodeY({i},{j},{k})") for k in range(self.n_k)] + for j in range(self.n_j)] for i in range(self.n_i)], + "CorrIJ": + [[[[z3.Bool(f"CorrIJ({s},{i},{j},{k})") for k in range(self.n_k)] + for j in range(self.n_j)] for i in range(self.n_i)] + for s in range(self.n_s)], + "CorrIK": + [[[[z3.Bool(f"CorrIK({s},{i},{j},{k})") for k in range(self.n_k)] + for j in range(self.n_j)] for i in range(self.n_i)] + for s in range(self.n_s)], + "CorrJK": + [[[[z3.Bool(f"CorrJK({s},{i},{j},{k})") for k in range(self.n_k)] + for j in range(self.n_j)] for i in range(self.n_i)] + for s in range(self.n_s)], + "CorrJI": + [[[[z3.Bool(f"CorrJI({s},{i},{j},{k})") for k in range(self.n_k)] + for j in range(self.n_j)] for i in range(self.n_i)] + for s in range(self.n_s)], + "CorrKI": + [[[[z3.Bool(f"CorrKI({s},{i},{j},{k})") for k in range(self.n_k)] + for j in range(self.n_j)] for i in range(self.n_i)] + for s in range(self.n_s)], + "CorrKJ": + [[[[z3.Bool(f"CorrKJ({s},{i},{j},{k})") for k in range(self.n_k)] + for j in range(self.n_j)] for i in range(self.n_i)] + for s in range(self.n_s)], + } + + if self.color_ij: + self.vars["ColorI"] = [[[ + z3.Bool(f"ColorI({i},{j},{k})") for k in range(self.n_k) + ] for j in range(self.n_j)] for i in range(self.n_i)] + self.vars["ColorJ"] = [[[ + z3.Bool(f"ColorJ({i},{j},{k})") for k in range(self.n_k) + ] for j in range(self.n_j)] for i in range(self.n_i)] + + def plugin_arrs(self, data: Mapping[str, Any]) -> None: + """plug in the given arrays of values. + + Args: + data (Mapping[str, Any]): contains gieven values. + + Raises: + ValueError: data contains an invalid array name. + ValueError: array given has wrong dimensions. + """ + + for key in data: + if key in [ + "NodeY", + "ExistI", + "ExistJ", + "ExistK", + "ColorI", + "ColorJ", + ]: + if len(data[key]) != self.n_i: + raise ValueError(f"dimension of {key} is wrong.") + for tmp in data[key]: + if len(tmp) != self.n_j: + raise ValueError(f"dimension of {key} is wrong.") + for tmptmp in tmp: + if len(tmptmp) != self.n_k: + raise ValueError(f"dimension of {key} is wrong.") + elif key in [ + "CorrIJ", + "CorrIK", + "CorrJI", + "CorrJK", + "CorrKI", + "CorrKJ", + ]: + if len(data[key]) != self.n_s: + raise ValueError(f"dimension of {key} is wrong.") + for tmp in data[key]: + if len(tmp) != self.n_i: + raise ValueError(f"dimension of {key} is wrong.") + for tmptmp in tmp: + if len(tmptmp) != self.n_j: + raise ValueError(f"dimension of {key} is wrong.") + for tmptmptmp in tmptmp: + if len(tmptmptmp) != self.n_k: + raise ValueError( + f"dimension of {key} is wrong.") + else: + raise ValueError(f"{key} is not a valid array name") + + arrs = [ + "NodeY", + "ExistI", + "ExistJ", + "ExistK", + ] + if self.color_ij: + arrs += ["ColorI", "ColorJ"] + + for s in range(self.n_s): + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + if s == 0: # Exist, Node, and Color vars + for arr in arrs: + if var_given(data, arr, i, j, k): + self.goal.add( + self.vars[arr][i][j][k] + if data[arr][i][j][k] == + 1 else z3.Not(self.vars[arr][i][j][k])) + # Corr vars + for arr in [ + "CorrIJ", + "CorrIK", + "CorrJI", + "CorrJK", + "CorrKI", + "CorrKJ", + ]: + if var_given(data, arr, s, i, j, k): + self.goal.add( + self.vars[arr][s][i][j][k] + if data[arr][s][i][j][k] == + 1 else z3.Not(self.vars[arr][s][i][j][k])) + + def plugin_vals(self, data_set: Sequence[Mapping[str, Any]]): + """plug in the given values + + Args: + data (Sequence[Mapping[str, Any]]): given values as a sequence + of dicts. Each one contains three fields: "array", the name of + the array, e.g., "ExistI"; "indices", a sequence of the indices; + and "value". + + Raises: + ValueError: given_vals missing a field. + ValueError: array name is not valid. + ValueError: indices dimension for certain array is wrong. + ValueError: index value out of bound. + ValueError: given value is neither 0 nor 1. + """ + for data in data_set: + for key in ["array", "indices", "value"]: + if key not in data: + raise ValueError(f"{key} is not in given val") + if data["array"] not in [ + "NodeY", + "ExistI", + "ExistJ", + "ExistK", + "ColorI", + "ColorJ", + "CorrIJ", + "CorrIK", + "CorrJI", + "CorrJK", + "CorrKI", + "CorrKJ", + ]: + raise ValueError(f"{data['array']} is not a valid array.") + if data["array"] in [ + "NodeY", + "ExistI", + "ExistJ", + "ExistK", + "ColorI", + "ColorJ", + ]: + if len(data["indices"] != 3): + raise ValueError(f"Need 3 indices for {data['array']}.") + if data["indices"][0] not in range(self.n_i): + raise ValueError(f"i index out of range") + if data["indices"][1] not in range(self.n_j): + raise ValueError(f"j index out of range") + if data["indices"][2] not in range(self.n_k): + raise ValueError(f"k index out of range") + + if data["array"] in [ + "CorrIJ", + "CorrIK", + "CorrJI", + "CorrJK", + "CorrKI", + "CorrKJ", + ]: + if len(data["indices"] != 4): + raise ValueError(f"Need 4 indices for {data['array']}.") + if data["indices"][0] not in range(self.n_s): + raise ValueError(f"s index out of range") + if data["indices"][1] not in range(self.n_i): + raise ValueError(f"i index out of range") + if data["indices"][2] not in range(self.n_j): + raise ValueError(f"j index out of range") + if data["indices"][3] not in range(self.n_k): + raise ValueError(f"k index out of range") + + if data["value"] not in [0, 1]: + raise ValueError("Given value can only be 0 or 1.") + + (arr, idx) = data["array"], data["indices"] + if arr.startswith("Corr"): + s, i, j, k = idx + if data["value"] == 1: + self.goal.add(self.vars[arr][s][i][j][k]) + else: + self.goal.add(z3.Not(self.vars[arr][s][i][j][k])) + else: + i, j, k = idx + if data["value"] == 1: + self.goal.add(self.vars[arr][i][j][k]) + else: + self.goal.add(z3.Not(self.vars[arr][i][j][k])) + + def constraint_forbid_cube(self) -> None: + """forbid a list of cubes.""" + for cube in self.forbidden_cubes: + (i, j, k) = cube[0], cube[1], cube[2] + self.goal.add(z3.Not(self.vars["NodeY"][i][j][k])) + if i > 0: + self.goal.add(z3.Not(self.vars["ExistI"][i - 1][j][k])) + self.goal.add(z3.Not(self.vars["ExistI"][i][j][k])) + if j > 0: + self.goal.add(z3.Not(self.vars["ExistJ"][i][j - 1][k])) + self.goal.add(z3.Not(self.vars["ExistJ"][i][j][k])) + if k > 0: + self.goal.add(z3.Not(self.vars["ExistK"][i][j][k - 1])) + self.goal.add(z3.Not(self.vars["ExistK"][i][j][k])) + + def constraint_port(self) -> None: + """some pipes must exist and some must not depending on the ports.""" + for port in self.ports: + # the pipe specified by the port exists + self.goal.add(self.vars[f"Exist{port['d']}"][port["i"]][port["j"]][ + port["k"]]) + # if I- or J-pipe exist, set the color value too to the given one + if self.color_ij: + if port["d"] != "K": + if port["c"] == 1: + self.goal.add(self.vars[f"Color{port['d']}"][port["i"]] + [port["j"]][port["k"]]) + else: + self.goal.add( + z3.Not(self.vars[f"Color{port['d']}"][port["i"]][ + port["j"]][port["k"]])) + + # collect the pipes touching the port to forbid them + dirs, coords = port_incident_pipes(port, self.n_i, self.n_j, + self.n_k) + for i, coord in enumerate(coords): + self.goal.add( + z3.Not(self.vars[f"Exist{dirs[i]}"][coord[0]][coord[1]][ + coord[2]])) + + def constraint_connect_outside(self) -> None: + """no pipe should cross the spatial bound except for ports.""" + for i in range(self.n_i): + for j in range(self.n_j): + # consider K-pipes crossing K-bound and not a port + if (i, j, self.n_k) not in self.port_cubes: + self.goal.add( + z3.Not(self.vars["ExistK"][i][j][self.n_k - 1])) + for i in range(self.n_i): + for k in range(self.n_k): + if (i, self.n_j, k) not in self.port_cubes: + self.goal.add( + z3.Not(self.vars["ExistJ"][i][self.n_j - 1][k])) + for j in range(self.n_j): + for k in range(self.n_k): + if (self.n_i, j, k) not in self.port_cubes: + self.goal.add( + z3.Not(self.vars["ExistI"][self.n_i - 1][j][k])) + + def constraint_timelike_y(self) -> None: + """forbid all I- and J- pipes to Y cubes.""" + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + if (i, j, k) not in self.port_cubes: + self.goal.add( + z3.Implies( + self.vars["NodeY"][i][j][k], + z3.Not(self.vars["ExistI"][i][j][k]), + )) + self.goal.add( + z3.Implies( + self.vars["NodeY"][i][j][k], + z3.Not(self.vars["ExistJ"][i][j][k]), + )) + if i - 1 >= 0: + self.goal.add( + z3.Implies( + self.vars["NodeY"][i][j][k], + z3.Not(self.vars["ExistI"][i - 1][j][k]), + )) + if j - 1 >= 0: + self.goal.add( + z3.Implies( + self.vars["NodeY"][i][j][k], + z3.Not(self.vars["ExistJ"][i][j - 1][k]), + )) + + def constraint_ij_color(self) -> None: + """color matching for I- and J-pipes.""" + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + if i >= 1 and j >= 1: + # (i-1,j,k)-(i,j,k) and (i,j-1,k)-(i,j,k) + self.goal.add( + z3.Implies( + z3.And( + self.vars["ExistI"][i - 1][j][k], + self.vars["ExistJ"][i][j - 1][k], + ), + z3.Or( + z3.And( + self.vars["ColorI"][i - 1][j][k], + z3.Not(self.vars["ColorJ"][i][j - + 1][k]), + ), + z3.And( + z3.Not(self.vars["ColorI"][i - + 1][j][k]), + self.vars["ColorJ"][i][j - 1][k], + ), + ), + )) + + if i >= 1: + # (i-1,j,k)-(i,j,k) and (i,j,k)-(i,j+1,k) + self.goal.add( + z3.Implies( + z3.And( + self.vars["ExistI"][i - 1][j][k], + self.vars["ExistJ"][i][j][k], + ), + z3.Or( + z3.And( + self.vars["ColorI"][i - 1][j][k], + z3.Not(self.vars["ColorJ"][i][j][k]), + ), + z3.And( + z3.Not(self.vars["ColorI"][i - + 1][j][k]), + self.vars["ColorJ"][i][j][k], + ), + ), + )) + # (i-1,j,k)-(i,j,k) and (i,j,k)-(i+1,j,k) + self.goal.add( + z3.Implies( + z3.And( + self.vars["ExistI"][i - 1][j][k], + self.vars["ExistI"][i][j][k], + ), + z3.Or( + z3.And( + self.vars["ColorI"][i - 1][j][k], + self.vars["ColorI"][i][j][k], + ), + z3.And( + z3.Not(self.vars["ColorI"][i - + 1][j][k]), + z3.Not(self.vars["ColorI"][i][j][k]), + ), + ), + )) + + if j >= 1: + # (i,j,k)-(i+1,j,k) and (i,j-1,k)-(i,j,k) + self.goal.add( + z3.Implies( + z3.And( + self.vars["ExistI"][i][j][k], + self.vars["ExistJ"][i][j - 1][k], + ), + z3.Or( + z3.And( + self.vars["ColorI"][i][j][k], + z3.Not(self.vars["ColorJ"][i][j - + 1][k]), + ), + z3.And( + z3.Not(self.vars["ColorI"][i][j][k]), + self.vars["ColorJ"][i][j - 1][k], + ), + ), + )) + # (i,j-1,k)-(i,j,k) and (i,j,k)-(i,j+1,k) + self.goal.add( + z3.Implies( + z3.And( + self.vars["ExistJ"][i][j - 1][k], + self.vars["ExistJ"][i][j][k], + ), + z3.Or( + z3.And( + self.vars["ColorJ"][i][j - 1][k], + self.vars["ColorJ"][i][j][k], + ), + z3.And( + z3.Not(self.vars["ColorJ"][i][j - + 1][k]), + z3.Not(self.vars["ColorJ"][i][j][k]), + ), + ), + )) + + # (i,j,k)-(i+1,j,k) and (i,j,k)-(i,j+1,k) + self.goal.add( + z3.Implies( + z3.And(self.vars["ExistI"][i][j][k], + self.vars["ExistJ"][i][j][k]), + z3.Or( + z3.And( + self.vars["ColorI"][i][j][k], + z3.Not(self.vars["ColorJ"][i][j][k]), + ), + z3.And( + z3.Not(self.vars["ColorI"][i][j][k]), + self.vars["ColorJ"][i][j][k], + ), + ), + )) + + def constraint_3d_corner(self) -> None: + """at least in one direction, both pipes nonexist.""" + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + i_pipes = [ + self.vars["ExistI"][i][j][k], + ] + if i - 1 >= 0: + i_pipes.append(self.vars["ExistI"][i - 1][j][k]) + j_pipes = [ + self.vars["ExistJ"][i][j][k], + ] + if j - 1 >= 0: + j_pipes.append(self.vars["ExistJ"][i][j - 1][k]) + k_pipes = [ + self.vars["ExistK"][i][j][k], + ] + if k - 1 >= 0: + k_pipes.append(self.vars["ExistK"][i][j][k - 1]) + + # at least one of the three terms is true. The first term + # is that both I-pipes connecting to (i,j,k) do not exist. + self.goal.add( + z3.Or( + z3.Not(z3.Or(i_pipes)), + z3.Not(z3.Or(j_pipes)), + z3.Not(z3.Or(k_pipes)), + )) + + def constraint_no_deg1(self) -> None: + """forbid degree-1 X or Z cubes by considering incident pipes.""" + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + for d in ["I", "J", "K"]: + for e in ["-", "+"]: + cube = {"I": i, "J": j, "K": k} + cube[d] += 1 if e == "+" else 0 + + # construct fake ports to get incident pipes + p0 = { + "i": i, + "j": j, + "k": k, + "d": d, + "e": e, + "c": 0 + } + found_p0 = False + for port in self.ports: + if (i == port["i"] and j == port["j"] + and k == port["k"] and d == port["d"]): + found_p0 = True + + # only non-port pipes need to consider + if (not found_p0 and cube["I"] < self.n_i + and cube["J"] < self.n_j + and cube["K"] < self.n_k): + # only cubes inside bound need to consider + dirs, coords = port_incident_pipes( + p0, self.n_i, self.n_j, self.n_k) + pipes = [ + self.vars[f"Exist{dirs[l]}"][coord[0]][ + coord[1]][coord[2]] + for l, coord in enumerate(coords) + ] + # if the cube is not Y and the pipe exist, then + # at least one of its incident pipes exists. + self.goal.add( + z3.Implies( + z3.And( + z3.Not( + self.vars["NodeY"][cube["I"]][ + cube["J"]][cube["K"]]), + self.vars[f"Exist{d}"][i][j][k], + ), + z3.Or(pipes), + )) + + def constraint_corr_ports(self) -> None: + """plug in the correlation surface values at the ports.""" + for s, stab in enumerate(self.stabs): + for p, corrs in enumerate(stab): + for k, v in corrs.items(): + if v == 1: + self.goal.add( + self.vars[f"Corr{k}"][s][self.ports[p]["i"]][ + self.ports[p]["j"]][self.ports[p]["k"]]) + else: + self.goal.add( + z3.Not(self.vars[f"Corr{k}"][s][self.ports[p]["i"]] + [self.ports[p]["j"]][self.ports[p]["k"]])) + + def constraint_corr_y(self) -> None: + """correlation surfaces at Y-cubes should both exist or nonexist.""" + for s in range(self.n_s): + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + self.goal.add( + z3.Or( + z3.Not(self.vars["NodeY"][i][j][k]), + z3.Or( + z3.And( + self.vars["CorrKI"][s][i][j][k], + self.vars["CorrKJ"][s][i][j][k], + ), + z3.And( + z3.Not( + self.vars["CorrKI"][s][i][j][k]), + z3.Not( + self.vars["CorrKJ"][s][i][j][k]), + ), + ), + )) + if k - 1 >= 0: + self.goal.add( + z3.Or( + z3.Not(self.vars["NodeY"][i][j][k]), + z3.Or( + z3.And( + self.vars["CorrKI"][s][i][j][k - + 1], + self.vars["CorrKJ"][s][i][j][k - + 1], + ), + z3.And( + z3.Not(self.vars["CorrKI"][s][i][j] + [k - 1]), + z3.Not(self.vars["CorrKJ"][s][i][j] + [k - 1]), + ), + ), + )) + + def constraint_corr_perp(self) -> None: + """for corr surf perpendicular to normal vector, all or none exists.""" + for s in range(self.n_s): + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + if (i, j, k) not in self.port_cubes: + # only consider X or Z spider + # if normal is K meaning meaning both + # (i,j,k)-(i,j,k+1) and (i,j,k)-(i,j,k-1) are + # out of range, or in range but nonexistent + normal = z3.And( + z3.Not(self.vars["NodeY"][i][j][k]), + z3.Not(self.vars["ExistK"][i][j][k]), + ) + if k - 1 >= 0: + normal = z3.And( + normal, + z3.Not(self.vars["ExistK"][i][j][k - 1])) + + # for other pipes, we need to build an intermediate + # expression for (i,j,k)-(i+1,j,k) and + # (i,j,k)-(i,j+1,k), built expression meaning + # the pipe is nonexistent or exist and has + # the correlation surface perpendicular to + # the normal vector in them. + no_pipe_or_with_corr = [ + z3.Or( + z3.Not(self.vars["ExistI"][i][j][k]), + self.vars["CorrIJ"][s][i][j][k], + ), + z3.Or( + z3.Not(self.vars["ExistJ"][i][j][k]), + self.vars["CorrJI"][s][i][j][k], + ), + ] + + # for (i,j,k)-(i+1,j,k) and (i,j,k)-(i,j+1,k), + # build expression meaning the pipe is nonexistent + # or exist and does not have the correlation + # surface perpendicular to the normal vector. + no_pipe_or_no_corr = [ + z3.Or( + z3.Not(self.vars["ExistI"][i][j][k]), + z3.Not(self.vars["CorrIJ"][s][i][j][k]), + ), + z3.Or( + z3.Not(self.vars["ExistJ"][i][j][k]), + z3.Not(self.vars["CorrJI"][s][i][j][k]), + ), + ] + + if i - 1 >= 0: + # add (i-1,j,k)-(i,j,k) to the expression + no_pipe_or_with_corr.append( + z3.Or( + z3.Not(self.vars["ExistI"][i - + 1][j][k]), + self.vars["CorrIJ"][s][i - 1][j][k], + )) + no_pipe_or_no_corr.append( + z3.Or( + z3.Not(self.vars["ExistI"][i - + 1][j][k]), + z3.Not( + self.vars["CorrIJ"][s][i - + 1][j][k]), + )) + + if j - 1 >= 0: + # add (i,j-1,k)-(i,j,k) to the expression + no_pipe_or_with_corr.append( + z3.Or( + z3.Not(self.vars["ExistJ"][i][j - + 1][k]), + self.vars["CorrJI"][s][i][j - 1][k], + )) + no_pipe_or_no_corr.append( + z3.Or( + z3.Not(self.vars["ExistJ"][i][j - + 1][k]), + z3.Not( + self.vars["CorrJI"][s][i][j - + 1][k]), + )) + + # if normal vector is K, then in all its + # incident pipes that exist all correlation surface + # in I-J plane exist or nonexist + self.goal.add( + z3.Implies( + normal, + z3.Or( + z3.And(no_pipe_or_with_corr), + z3.And(no_pipe_or_no_corr), + ), + )) + + # if normal is I + normal = z3.And( + z3.Not(self.vars["NodeY"][i][j][k]), + z3.Not(self.vars["ExistI"][i][j][k]), + ) + if i - 1 >= 0: + normal = z3.And( + normal, + z3.Not(self.vars["ExistI"][i - 1][j][k])) + no_pipe_or_with_corr = [ + z3.Or( + z3.Not(self.vars["ExistJ"][i][j][k]), + self.vars["CorrJK"][s][i][j][k], + ), + z3.Or( + z3.Not(self.vars["ExistK"][i][j][k]), + self.vars["CorrKJ"][s][i][j][k], + ), + ] + no_pipe_or_no_corr = [ + z3.Or( + z3.Not(self.vars["ExistJ"][i][j][k]), + z3.Not(self.vars["CorrJK"][s][i][j][k]), + ), + z3.Or( + z3.Not(self.vars["ExistK"][i][j][k]), + z3.Not(self.vars["CorrKJ"][s][i][j][k]), + ), + ] + if j - 1 >= 0: + no_pipe_or_with_corr.append( + z3.Or( + z3.Not(self.vars["ExistJ"][i][j - + 1][k]), + self.vars["CorrJK"][s][i][j - 1][k], + )) + no_pipe_or_no_corr.append( + z3.Or( + z3.Not(self.vars["ExistJ"][i][j - + 1][k]), + z3.Not( + self.vars["CorrJK"][s][i][j - + 1][k]), + )) + if k - 1 >= 0: + no_pipe_or_with_corr.append( + z3.Or( + z3.Not(self.vars["ExistK"][i][j][k - + 1]), + self.vars["CorrKJ"][s][i][j][k - 1], + )) + no_pipe_or_no_corr.append( + z3.Or( + z3.Not(self.vars["ExistK"][i][j][k - + 1]), + z3.Not( + self.vars["CorrKJ"][s][i][j][k - + 1]), + )) + self.goal.add( + z3.Implies( + normal, + z3.Or( + z3.And(no_pipe_or_with_corr), + z3.And(no_pipe_or_no_corr), + ), + )) + + # if normal is J + normal = z3.And( + z3.Not(self.vars["NodeY"][i][j][k]), + z3.Not(self.vars["ExistJ"][i][j][k]), + ) + if j - 1 >= 0: + normal = z3.And( + normal, + z3.Not(self.vars["ExistJ"][i][j - 1][k])) + no_pipe_or_with_corr = [ + z3.Or( + z3.Not(self.vars["ExistI"][i][j][k]), + self.vars["CorrIK"][s][i][j][k], + ), + z3.Or( + z3.Not(self.vars["ExistK"][i][j][k]), + self.vars["CorrKI"][s][i][j][k], + ), + ] + no_pipe_or_no_corr = [ + z3.Or( + z3.Not(self.vars["ExistI"][i][j][k]), + z3.Not(self.vars["CorrIK"][s][i][j][k]), + ), + z3.Or( + z3.Not(self.vars["ExistK"][i][j][k]), + z3.Not(self.vars["CorrKI"][s][i][j][k]), + ), + ] + if i - 1 >= 0: + no_pipe_or_with_corr.append( + z3.Or( + z3.Not(self.vars["ExistI"][i - + 1][j][k]), + self.vars["CorrIK"][s][i - 1][j][k], + )) + no_pipe_or_no_corr.append( + z3.Or( + z3.Not(self.vars["ExistI"][i - + 1][j][k]), + z3.Not( + self.vars["CorrIK"][s][i - + 1][j][k]), + )) + if k - 1 >= 0: + no_pipe_or_with_corr.append( + z3.Or( + z3.Not(self.vars["ExistK"][i][j][k - + 1]), + self.vars["CorrKI"][s][i][j][k - 1], + )) + no_pipe_or_no_corr.append( + z3.Or( + z3.Not(self.vars["ExistK"][i][j][k - + 1]), + z3.Not( + self.vars["CorrKI"][s][i][j][k - + 1]), + )) + self.goal.add( + z3.Implies( + normal, + z3.Or( + z3.And(no_pipe_or_with_corr), + z3.And(no_pipe_or_no_corr), + ), + )) + + def constraint_corr_para(self) -> None: + """for corr surf parallel to the normal , even number of them exist.""" + for s in range(self.n_s): + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + if (i, j, k) not in self.port_cubes: + # only X or Z spiders, if normal is K + normal = z3.And( + z3.Not(self.vars["NodeY"][i][j][k]), + z3.Not(self.vars["ExistK"][i][j][k]), + ) + if k - 1 >= 0: + normal = z3.And( + normal, + z3.Not(self.vars["ExistK"][i][j][k - 1])) + + # unlike in constraint_corr_perp, we only care + # about the cases where the pipe exists and the + # correlation surface parallel to K also is present + # so we build intermediate expressions as below + pipe_with_corr = [ + z3.And( + self.vars["ExistI"][i][j][k], + self.vars["CorrIK"][s][i][j][k], + ), + z3.And( + self.vars["ExistJ"][i][j][k], + self.vars["CorrJK"][s][i][j][k], + ), + ] + + # add (i-1,j,k)-(i,j,k) to the expression + if i - 1 >= 0: + pipe_with_corr.append( + z3.And( + self.vars["ExistI"][i - 1][j][k], + self.vars["CorrIK"][s][i - 1][j][k], + )) + + # add (i,j-1,k)-(i,j,k) to the expression + if j - 1 >= 0: + pipe_with_corr.append( + z3.And( + self.vars["ExistJ"][i][j - 1][k], + self.vars["CorrJK"][s][i][j - 1][k], + )) + + # parity of the expressions must be even + self.goal.add( + z3.Implies( + normal, + cnf_even_parity_upto4(pipe_with_corr))) + + # if normal is I + normal = z3.And( + z3.Not(self.vars["NodeY"][i][j][k]), + z3.Not(self.vars["ExistI"][i][j][k]), + ) + if i - 1 >= 0: + normal = z3.And( + normal, + z3.Not(self.vars["ExistI"][i - 1][j][k])) + pipe_with_corr = [ + z3.And( + self.vars["ExistJ"][i][j][k], + self.vars["CorrJI"][s][i][j][k], + ), + z3.And( + self.vars["ExistK"][i][j][k], + self.vars["CorrKI"][s][i][j][k], + ), + ] + if j - 1 >= 0: + pipe_with_corr.append( + z3.And( + self.vars["ExistJ"][i][j - 1][k], + self.vars["CorrJI"][s][i][j - 1][k], + )) + if k - 1 >= 0: + pipe_with_corr.append( + z3.And( + self.vars["ExistK"][i][j][k - 1], + self.vars["CorrKI"][s][i][j][k - 1], + )) + self.goal.add( + z3.Implies( + normal, + cnf_even_parity_upto4(pipe_with_corr))) + + # if normal is J + normal = z3.And( + z3.Not(self.vars["NodeY"][i][j][k]), + z3.Not(self.vars["ExistJ"][i][j][k]), + ) + if j - 1 >= 0: + normal = z3.And( + normal, + z3.Not(self.vars["ExistJ"][i][j - 1][k])) + pipe_with_corr = [ + z3.And( + self.vars["ExistI"][i][j][k], + self.vars["CorrIJ"][s][i][j][k], + ), + z3.And( + self.vars["ExistK"][i][j][k], + self.vars["CorrKJ"][s][i][j][k], + ), + ] + if i - 1 >= 0: + pipe_with_corr.append( + z3.And( + self.vars["ExistI"][i - 1][j][k], + self.vars["CorrIJ"][s][i - 1][j][k], + )) + if k - 1 >= 0: + pipe_with_corr.append( + z3.And( + self.vars["ExistK"][i][j][k - 1], + self.vars["CorrKJ"][s][i][j][k - 1], + )) + self.goal.add( + z3.Implies( + normal, + cnf_even_parity_upto4(pipe_with_corr))) + + def check_z3(self, print_progress: bool = True) -> bool: + """check whether the built goal in self.goal is satisfiable. + + Args: + print_progress (bool, optional): if print out the progress made. + + Returns: + bool: True if SAT, False if UNSAT + """ + if print_progress: + print("Construct a Z3 SMT model and solve...") + start_time = time.time() + self.solver = z3.Solver() + self.solver.add(self.goal) + ifsat = self.solver.check() + elapsed = time.time() - start_time + if print_progress: + print("elapsed time: {:2f}s".format(elapsed)) + if ifsat == z3.sat: + if print_progress: + print("Z3 SAT") + return True + else: + if print_progress: + print("Z3 UNSAT") + return False + + def check_kissat( + self, + kissat_dir: str, + dimacs_file_name: Optional[str] = None, + sat_log_file_name: Optional[str] = None, + print_progress: bool = True, + ) -> bool: + """check whether there is a solution with Kissat + + Args: + kissat_dir (str): directory containing an executable named kissat + dimacs_file_name (str, optional): Defaults to None. Then, the + dimacs file is in a tmp directory. If specified, the dimacs + will be saved to that path. + sat_log_file_name (str, optional): Defaults to None. Then, the + sat log file is in a tmp directory. If specified, the sat log + will be saved to that path. + print_progress (bool, optional): whether print the SAT solving + process on screen. Defaults to True. + + Raises: + ValueError: kissat_dir is not a directory + ValueError: there is no executable kissat in kissat_dir + ValueError: the return code to kissat is neither SAT nor UNSAT + + Returns: + bool: True if SAT, False if UNSAT + """ + if not os.path.isdir(kissat_dir): + raise ValueError(f"{kissat_dir} is not a directory.") + if kissat_dir.endswith("/"): + solver_cmd = kissat_dir + "kissat" + else: + solver_cmd = kissat_dir + "/kissat" + if not os.path.isfile(solver_cmd): + raise ValueError(f"There is no kissat in {kissat_dir}.") + + if_solved = False + with tempfile.TemporaryDirectory() as tmp_dir: + # open a tmp directory as workspace + + # dimacs and sat log are either in the tmp dir, or as user specify + tmp_dimacs_file_name = (dimacs_file_name + ".dimacs" if dimacs_file_name else + tmp_dir + "/tmp.dimacs") + tmp_sat_log_file_name = (sat_log_file_name + ".kissat" if sat_log_file_name + else tmp_dir + "/tmp.sat") + + if self.write_cnf(tmp_dimacs_file_name, + print_progress=print_progress): + # continue if the CNF is non-trivial, i.e., write_cnf is True + kissat_start_time = time.time() + + with open(tmp_sat_log_file_name, "w") as log: + # use tmp_sat_log_file_name to record stdout of kissat + + kissat_return_code = -100 + # -100 if the return code is not updated later on. + + import random + with subprocess.Popen( + [ + solver_cmd, f'--seed={random.randrange(1000000)}', + tmp_dimacs_file_name + ], + stdout=subprocess.PIPE, + bufsize=1, + universal_newlines=True, + ) as run_kissat: + for line in run_kissat.stdout: + log.write(line) + if print_progress: + sys.stdout.write(line) + get_return_code = run_kissat.communicate()[0] + kissat_return_code = run_kissat.returncode + + if kissat_return_code == 10: + # 10 means SAT in Kissat + if_solved = True + if print_progress: + print( + f"kissat runtime: {time.time()-kissat_start_time}") + print("kissat SAT!") + + # we read the Kissat solution from the SAT log, then, plug + # those into the Z3 model and solved inside Z3 again. + # The reason is that Z3 did some simplification of the + # problem so not every variable appear in the DIMACS given + # to Kissat. We still need to know their value. + result = self.read_kissat_result( + tmp_dimacs_file_name, + tmp_sat_log_file_name, + ) + self.plugin_arrs(result) + self.check_z3(print_progress) + + elif kissat_return_code == 20: + if print_progress: + print(f"{solver_cmd} UNSAT") + + elif kissat_return_code == -100: + print("Did not get Kissat return code.") + + else: + raise ValueError( + f"Kissat return code {kissat_return_code} is neither" + " SAT nor UNSAT. Maybe you should add print_process=" + "True to enable the Kissat printout message to see " + "what is going on.") + # closing the tmp directory, the files and itself are removed + + return if_solved + + def write_cnf(self, + output_file_name: str, + print_progress: bool = False) -> bool: + """generate CNF for the problem. + + Args: + output_file_name (str): file to write CNF. + + Returns: + bool: False if the CNF is trivial, True otherwise + """ + cnf_start_time = time.time() + simplified = z3.Tactic("simplify")(self.goal)[0] + simplified = z3.Tactic("propagate-values")(simplified)[0] + cnf = z3.Tactic("tseitin-cnf")(simplified)[0] + dimacs = cnf.dimacs() + if print_progress: + print(f"CNF generation time: {time.time() - cnf_start_time}") + + with open(output_file_name, "w") as output_f: + output_f.write(cnf.dimacs()) + if dimacs.startswith("p cnf 1 1"): + print("Generated CNF is trivial meaning z3 concludes the instance" + " UNSAT during simplification.") + return False + else: + return True + + def read_kissat_result(self, dimacs_file: str, + result_file: str) -> Mapping[str, Any]: + """read result from external SAT solver + + Args: + dimacs_file (str): + result_file (str): log from Kissat containing SAT assignments + + Raises: + ValueError: in the dimacs file, the last lines are comments that + records the mapping from SAT variable indices to the variable + names in Z3. If the coordinates in this name is incorrect. + + Returns: + Mapping[str, Any]: variable assignment in arrays. All the one with + a corresponding SAT variable are read off from the SAT log. + The others are left with -1. + """ + results = { + "ExistI": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "ExistJ": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "ExistK": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "ColorI": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "ColorJ": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "NodeY": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "CorrIJ": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + "CorrIK": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + "CorrJK": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + "CorrJI": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + "CorrKI": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + "CorrKJ": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + } + + # in this file, the assigments are lines starting with "v" like + # v -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 ... + # the vars starts from 1 and - means it's False; otherwise, it's True + # we scan through all these lines, and save the assignments to `sat` + with open(result_file, "r") as f: + sat_output = f.readlines() + sat = {} + for line in sat_output: + if line.startswith("v"): + assignments = line[1:].strip().split(" ") + for assignment in assignments: + tmp = int(assignment) + if tmp < 0: + sat[str(-tmp)] = 0 + elif tmp > 0: + sat[str(tmp)] = 1 + + # in the dimacs generated by Z3, there are lines starting with "c" like + # c 8804 CorrIJ(1,0,3,4) or c 60053 k!44404 + # which records the mapping from our variables to variables in dimacs + # the ones starting with k! are added in the translation, we don"t care + with open(dimacs_file, "r") as f: + dimacs = f.readlines() + for line in dimacs: + if line.startswith("c"): + _, index, name = line.strip().split(" ") + if name.startswith(( + "NodeY", + "ExistI", + "ExistJ", + "ExistK", + "ColorI", + "ColorJ", + "CorrIJ", + "CorrIK", + "CorrJI", + "CorrJK", + "CorrKI", + "CorrKJ", + )): + arr, tmp = name[:-1].split("(") + coords = [int(num) for num in tmp.split(",")] + if len(coords) == 3: + results[arr][coords[0]][coords[1]][ + coords[2]] = sat[index] + elif len(coords) == 4: + results[arr][coords[0]][coords[1]][coords[2]][ + coords[3]] = sat[index] + else: + raise ValueError("number of coord should be 3 or 4!") + + return results + + def get_result(self) -> Mapping[str, Any]: + """get the variable values. + + Returns: + Mapping[str, Any]: output in the LaSRe format + """ + model = self.solver.model() + data = { + "n_i": + self.n_i, + "n_j": + self.n_j, + "n_k": + self.n_k, + "n_p": + self.n_p, + "n_s": + self.n_s, + "ports": + self.ports, + "stabs": + self.stabs, + "port_cubes": + self.port_cubes, + "optional": + self.optional, + "ExistI": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "ExistJ": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "ExistK": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "ColorI": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "ColorJ": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "NodeY": [[[-1 for _ in range(self.n_k)] for _ in range(self.n_j)] + for _ in range(self.n_i)], + "CorrIJ": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + "CorrIK": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + "CorrJK": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + "CorrJI": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + "CorrKI": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + "CorrKJ": [[[[-1 for _ in range(self.n_k)] + for _ in range(self.n_j)] for _ in range(self.n_i)] + for _ in range(self.n_s)], + } + arrs = [ + "NodeY", + "ExistI", + "ExistJ", + "ExistK", + ] + if self.color_ij: + arrs += [ + "ColorI", + "ColorJ", + ] + for s in range(self.n_s): + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + if s == 0: # Exist, Node, and Color vars + for arr in arrs: + data[arr][i][j][k] = ( + 1 if model[self.vars[arr][i][j][k]] else 0) + + # Corr vars + for arr in [ + "CorrIJ", + "CorrIK", + "CorrJI", + "CorrJK", + "CorrKI", + "CorrKJ", + ]: + data[arr][s][i][j][k] = ( + 1 if model[self.vars[arr][s][i][j][k]] else 0) + return data diff --git a/glue/lattice_surgery/lassynth/tools/__init__.py b/glue/lattice_surgery/lassynth/tools/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/glue/lattice_surgery/lassynth/tools/verify_stabilizers.py b/glue/lattice_surgery/lassynth/tools/verify_stabilizers.py new file mode 100644 index 00000000..25fba0b8 --- /dev/null +++ b/glue/lattice_surgery/lassynth/tools/verify_stabilizers.py @@ -0,0 +1,38 @@ +from typing import Sequence +import stim +import stimzx + + +def verify_stabilizers( + specified_paulistrings: Sequence[str], + result_networkx, + print_stabilizers: bool = False, +) -> bool: + result_stabilizers = [ + stab.output + for stab in stimzx.zx_graph_to_external_stabilizers(result_networkx) + ] + specified_stabilizers = [ + stim.PauliString(paulistring) for paulistring in specified_paulistrings + ] + if print_stabilizers: + print("specified:") + for s in specified_stabilizers: + print(s) + print("==============================================================") + print("resulting:") + for s in result_stabilizers: + print(s) + print("==============================================================") + + for s in result_stabilizers: + for ss in specified_stabilizers: + if not ss.commutes(s): + print(f"result stabilizer {s} not commuting with " + f"specified stabilizer {ss}") + if print_stabilizers: + print("specified and resulting stabilizers not equivalent") + return False + if print_stabilizers: + print("specified and resulting stabilizers are equivalent.") + return True diff --git a/glue/lattice_surgery/lassynth/translators/__init__.py b/glue/lattice_surgery/lassynth/translators/__init__.py new file mode 100644 index 00000000..e93e0abc --- /dev/null +++ b/glue/lattice_surgery/lassynth/translators/__init__.py @@ -0,0 +1 @@ +from lassynth.translators.zx_grid_graph import ZXGridGraph diff --git a/glue/lattice_surgery/lassynth/translators/gltf_generator.py b/glue/lattice_surgery/lassynth/translators/gltf_generator.py new file mode 100644 index 00000000..20ce69be --- /dev/null +++ b/glue/lattice_surgery/lassynth/translators/gltf_generator.py @@ -0,0 +1,2622 @@ +"""generating a 3D modelling file in gltf format from our LaSRe.""" + +import json +from typing import Any, Mapping, Optional, Sequence, Tuple + +# constants +SQ2 = 0.707106769085 # square root of 2 +THICKNESS = 0.01 # half separation of front and back sides of each face +AXESTHICKNESS = 0.1 + +def float_to_little_endian_hex(f): + from struct import pack + + # Pack the float into a binary string using the little-endian format + binary_data = pack(" Mapping[str, Any]: + """generate basic gltf contents, i.e., independent from the LaS + + Args: + tubelen (float, optional): ratio of the length of the pipe with respect + to the length of a cube. Defaults to 2.0. + + Returns: + Mapping[str, Any]: gltf with everything here. + """ + # floats as hex, little endian + floats = { + "0": "00000000", + "1": "0000803F", + "-1": "000080BF", + "0.5": "0000003F", + "0.45": "6666E63E", + } + floats["tube"] = float_to_little_endian_hex(tubelen) + floats["+SQ2"] = float_to_little_endian_hex(SQ2) + floats["-SQ2"] = float_to_little_endian_hex(-SQ2) + floats["+T"] = float_to_little_endian_hex(THICKNESS) + floats["-T"] = float_to_little_endian_hex(-THICKNESS) + floats["1-T"] = float_to_little_endian_hex(1 - THICKNESS) + floats["T-1"] = float_to_little_endian_hex(THICKNESS - 1) + floats["0.5+T"] = float_to_little_endian_hex(0.5 + THICKNESS) + floats["0.5-T"] = float_to_little_endian_hex(0.5 - THICKNESS) + + # integers as hex + ints = ["0000", "0100", "0200", "0300", "0400", "0500", "0600", "0700"] + + gltf = { + "asset": { + "generator": "LaSRe CodeGen by Daniel Bochen Tan", + "version": "2.0" + }, + "scene": 0, + "scenes": [{ + "name": "Scene", + "nodes": [0] + }], + "nodes": [{ + "name": "Lattice Surgery Subroutine", + "children": [] + }], + } + gltf["accessors"] = [] + gltf["buffers"] = [] + gltf["bufferViews"] = [] + + # materials are the colors. baseColorFactor is (R, G, B, alpha) + gltf["materials"] = [ + { + "name": "0-blue", + "pbrMetallicRoughness": { + "baseColorFactor": [0, 0, 1, 1] + }, + "doubleSided": False, + }, + { + "name": "1-red", + "pbrMetallicRoughness": { + "baseColorFactor": [1, 0, 0, 1] + }, + "doubleSided": False, + }, + { + "name": "2-green", + "pbrMetallicRoughness": { + "baseColorFactor": [0, 1, 0, 1] + }, + "doubleSided": False, + }, + { + "name": "3-gray", + "pbrMetallicRoughness": { + "baseColorFactor": [0.5, 0.5, 0.5, 1] + }, + "doubleSided": False, + }, + { + "name": "4-cyan.3", + "pbrMetallicRoughness": { + "baseColorFactor": [0, 1, 1, 0.3] + }, + "doubleSided": False, + "alphaMode": "BLEND", + }, + { + "name": "5-black", + "pbrMetallicRoughness": { + "baseColorFactor": [0, 0, 0, 1] + }, + "doubleSided": False, + }, + { + "name": "6-yellow", + "pbrMetallicRoughness": { + "baseColorFactor": [1, 1, 0, 1] + }, + "doubleSided": False, + }, + { + "name": "7-white", + "pbrMetallicRoughness": { + "baseColorFactor": [1, 1, 1, 1] + }, + "doubleSided": False, + }, + ] + + # for a 3D coordinate (X,Y,Z), the convention of VEC3 in GLTF is (X,Z,-Y) + # below are the data we store into the embedded binary in the GLTF. + # For each data, we create a buffer, there is one and only one bufferView + # for this buffer, and there is one and only one accessor for this + # bufferView. This is for simplicity. So in what follows, we always gather + # the string corresponding to the data, whether they're a list of floats or + # a list of integers. Then, we append a buffer, a bufferView, and an + # accessor to the GLTF. This part is quite machinary. + + # GLTF itself support doubleside color in materials, but this can lead to + # problems when converting to other formats. So, for each face of a cube or + # a pipe, we will make it two sides, front and back. The POSITION of + # vertices of these two are shifted on the Z axis by 2*THICKNESS. Since we + # need their color to both facing outside, the back side require opposite + # NORMAL vectors, and the index order needs to be reversed. We begin with + # definition for the front sides. + + # 0, positions of square: [(+T,+T,-T),(1-T,+T,-T),(+T,1-T,-T),(1-T,1-T,-T)] + s = (floats["+T"] + floats["-T"] + floats["-T"] + floats["1-T"] + + floats["-T"] + floats["-T"] + floats["+T"] + floats["-T"] + + floats["T-1"] + floats["1-T"] + floats["-T"] + floats["T-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 0, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 0, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [1 - THICKNESS, -THICKNESS, -THICKNESS], + "min": [THICKNESS, -THICKNESS, THICKNESS - 1], + }) + + # 1, positions of rectangle: [(0,0,-T),(L,0,-T),(0,1,-T),(L,1,-T)] + s = (floats["0"] + floats["-T"] + floats["0"] + floats["tube"] + + floats["-T"] + floats["0"] + floats["0"] + floats["-T"] + + floats["-1"] + floats["tube"] + floats["-T"] + floats["-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 1, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 1, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [tubelen, -THICKNESS, 0], + "min": [0, -THICKNESS, -1], + }) + + # 2, normals of rect/sqr: (0,0,-1)*4 + s = (floats["0"] + floats["-1"] + floats["0"] + floats["0"] + + floats["-1"] + floats["0"] + floats["0"] + floats["-1"] + + floats["0"] + floats["0"] + floats["-1"] + floats["0"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 2, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 2, + "componentType": 5126, + "type": "VEC3", + "count": 4 + }) + + # 3, vertices of rect/sqr: [1,0,3, 3,0,2] + s = ints[1] + ints[0] + ints[3] + ints[3] + ints[0] + ints[2] + gltf["buffers"].append({"byteLength": 12, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 3, + "byteLength": 12, + "byteOffset": 0, + "target": 34963 + }) + gltf["accessors"].append({ + "bufferView": 3, + "componentType": 5123, + "type": "SCALAR", + "count": 6 + }) + + # 4, positions of tilted rect: [(0,0,1/2+T),(1/2,0,+T),(0,1,1/2+T),(1/2,1,+T)] + s = (floats["0"] + floats["0.5+T"] + floats["0"] + floats["0.5"] + + floats["+T"] + floats["0"] + floats["0"] + floats["0.5+T"] + + floats["-1"] + floats["0.5"] + floats["+T"] + floats["-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 4, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 4, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [0.5, 0.5 + THICKNESS, 0], + "min": [0, THICKNESS, -1], + }) + + # 5, normals of tilted rect: (-sqrt(2)/2, 0, -sqrt(2)/2)*4 + s = (floats["-SQ2"] + floats["-SQ2"] + floats["0"] + floats["-SQ2"] + + floats["-SQ2"] + floats["0"] + floats["-SQ2"] + floats["-SQ2"] + + floats["0"] + floats["-SQ2"] + floats["-SQ2"] + floats["0"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 5, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 5, + "componentType": 5126, + "type": "VEC3", + "count": 4 + }) + + # 6, positions of Hadamard rectangle: [(0,0,-T),(15/32L,0,-T),(15/32L,1,-T), + # (15/32L,1,-T),(17/32L,0,-T),(17/32L,1,-T),(L,0,-T),(L,1,-T)] + floats["left"] = float_to_little_endian_hex(tubelen * 15 / 32) + floats["right"] = float_to_little_endian_hex(tubelen * 17 / 32) + s = (floats["0"] + floats["-T"] + floats["0"] + floats["left"] + + floats["-T"] + floats["0"] + floats["0"] + floats["-T"] + + floats["-1"] + floats["left"] + floats["-T"] + floats["-1"] + + floats["right"] + floats["-T"] + floats["0"] + floats["right"] + + floats["-T"] + floats["-1"] + floats["tube"] + floats["-T"] + + floats["0"] + floats["tube"] + floats["-T"] + floats["-1"]) + gltf["buffers"].append({"byteLength": 96, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 6, + "byteLength": 96, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 6, + "componentType": 5126, + "type": "VEC3", + "count": 8, + "max": [tubelen, -THICKNESS, 0], + "min": [0, -THICKNESS, -1], + }) + + # 7, normals of Hadamard rect (0,0,-1)*8 + s = (floats["0"] + floats["-1"] + floats["0"] + floats["0"] + + floats["-1"] + floats["0"] + floats["0"] + floats["-1"] + + floats["0"] + floats["0"] + floats["-1"] + floats["0"] + floats["0"] + + floats["-1"] + floats["0"] + floats["0"] + floats["-1"] + + floats["0"] + floats["0"] + floats["-1"] + floats["0"] + floats["0"] + + floats["-1"] + floats["0"]) + gltf["buffers"].append({"byteLength": 96, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 7, + "byteLength": 96, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 7, + "componentType": 5126, + "type": "VEC3", + "count": 8 + }) + + # 8, vertices of middle rect in Hadamard rect: [4,1,5, 5,1,3] + s = ints[4] + ints[1] + ints[5] + ints[5] + ints[1] + ints[3] + gltf["buffers"].append({"byteLength": 12, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 8, + "byteLength": 12, + "byteOffset": 0, + "target": 34963 + }) + gltf["accessors"].append({ + "bufferView": 8, + "componentType": 5123, + "type": "SCALAR", + "count": 6 + }) + + # 9, vertices of upper rect in Hadamard rect: [6,4,7, 7,4,5] + s = ints[6] + ints[4] + ints[7] + ints[7] + ints[4] + ints[5] + gltf["buffers"].append({"byteLength": 12, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 9, + "byteLength": 12, + "byteOffset": 0, + "target": 34963 + }) + gltf["accessors"].append({ + "bufferView": 9, + "componentType": 5123, + "type": "SCALAR", + "count": 6 + }) + + # 10, vertices of lines around a face: [0,1, 0,2, 2,3, 3,1] + # GLTF supports drawing lines, but there may be a problem converting to + # other formats. We have thus not used these data. + s = (ints[0] + ints[1] + ints[0] + ints[2] + ints[2] + ints[3] + ints[3] + + ints[1]) + gltf["buffers"].append({"byteLength": 16, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 10, + "byteLength": 16, + "byteOffset": 0, + "target": 34963 + }) + gltf["accessors"].append({ + "bufferView": 10, + "componentType": 5123, + "type": "SCALAR", + "count": 8 + }) + + # 11, positions of half-distance rectangle: [(0,0,-T),(0.45,0,-T),(0,1,-T),(0.45,1,-T)] + s = (floats["0"] + floats["-T"] + floats["0"] + floats["0.45"] + + floats["-T"] + floats["0"] + floats["0"] + floats["-T"] + + floats["-1"] + floats["0.45"] + floats["-T"] + floats["-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 11, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 11, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [0.45, -THICKNESS, 0], + "min": [0, -THICKNESS, -1], + }) + + # 12, backside, positions of square: [(+T,+T,+T),(1-T,+T,+T),(+T,1-T,+T),(1-T,1-T,+T)] + s = (floats["+T"] + floats["+T"] + floats["-T"] + floats["1-T"] + + floats["+T"] + floats["-T"] + floats["+T"] + floats["+T"] + + floats["T-1"] + floats["1-T"] + floats["+T"] + floats["T-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 12, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 12, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [1 - THICKNESS, THICKNESS, -THICKNESS], + "min": [THICKNESS, THICKNESS, THICKNESS - 1], + }) + + # 13, backside, normals of rect/sqr: (0,0,1)*4 + s = (floats["0"] + floats["1"] + floats["0"] + floats["0"] + floats["1"] + + floats["0"] + floats["0"] + floats["1"] + floats["0"] + floats["0"] + + floats["1"] + floats["0"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 13, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 13, + "componentType": 5126, + "type": "VEC3", + "count": 4 + }) + + # For the cubes, we want to draw black lines around its boundaries to help + # people identify them visually. However, drawing lines in GLTF may become + # a problem when converting to other formats. Here, we define super thin + # rectangles at the boundaries of squares which will be seen as lines. + + # 14, frontside, positions of edge 0: [(+T,0,-T),(1-T,0,-T),(+T,+T,-T),(1-T,+T,-T)] + s = (floats["+T"] + floats["-T"] + floats["0"] + floats["1-T"] + + floats["-T"] + floats["0"] + floats["+T"] + floats["-T"] + + floats["-T"] + floats["1-T"] + floats["-T"] + floats["-T"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 14, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 14, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [1 - THICKNESS, -THICKNESS, 0], + "min": [THICKNESS, -THICKNESS, -THICKNESS], + }) + + # 15, frontside, positions of edge 1: [(1-T,+T,-T),(1,+T,-T),(1-T,1-T,-T),(1,1-T,-T)] + s = (floats["1-T"] + floats["-T"] + floats["-T"] + floats["1"] + + floats["-T"] + floats["-T"] + floats["1-T"] + floats["-T"] + + floats["T-1"] + floats["1"] + floats["-T"] + floats["T-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 15, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 15, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [1, -THICKNESS, -THICKNESS], + "min": [1 - THICKNESS, -THICKNESS, THICKNESS - 1], + }) + + # 16, frontside, positions of edge 2: [(0,+T,-T),(+T,+T,-T),(0,1-T,-T),(+T,1-T,-T)] + s = (floats["0"] + floats["-T"] + floats["-T"] + floats["+T"] + + floats["-T"] + floats["-T"] + floats["0"] + floats["-T"] + + floats["T-1"] + floats["+T"] + floats["-T"] + floats["T-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 16, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 16, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [THICKNESS, -THICKNESS, -THICKNESS], + "min": [0, -THICKNESS, THICKNESS - 1], + }) + + # 17, frontside, positions of edge 3: [(+T,1-T,-T),(1-T,1-T,-T),(+T,1,-T),(1-T,1,-T)] + s = (floats["+T"] + floats["-T"] + floats["T-1"] + floats["1-T"] + + floats["-T"] + floats["T-1"] + floats["+T"] + floats["-T"] + + floats["-1"] + floats["1-T"] + floats["-T"] + floats["-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 17, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 17, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [1 - THICKNESS, -THICKNESS, THICKNESS - 1], + "min": [THICKNESS, -THICKNESS, -1], + }) + + # 18, backside, positions of edge 0: [(+T,0,+T),(1-T,0,+T),(+T,+T,+T),(1-T,+T,+T)] + s = (floats["+T"] + floats["+T"] + floats["0"] + floats["1-T"] + + floats["+T"] + floats["0"] + floats["+T"] + floats["+T"] + + floats["-T"] + floats["1-T"] + floats["+T"] + floats["-T"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 18, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 18, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [1 - THICKNESS, THICKNESS, 0], + "min": [THICKNESS, THICKNESS, -THICKNESS], + }) + + # 19, backside, positions of edge 1: [(1-T,+T,+T),(1,+T,+T),(1-T,1-T,+T),(1,1-T,+T)] + s = (floats["1-T"] + floats["+T"] + floats["-T"] + floats["1"] + + floats["+T"] + floats["-T"] + floats["1-T"] + floats["+T"] + + floats["T-1"] + floats["1"] + floats["+T"] + floats["T-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 19, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 19, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [1, THICKNESS, -THICKNESS], + "min": [1 - THICKNESS, THICKNESS, THICKNESS - 1], + }) + + # 20, backside, positions of edge 2: [(0,+T,+T),(+T,+T,+T),(0,1-T,+T),(+T,1-T,+T)] + s = (floats["0"] + floats["+T"] + floats["-T"] + floats["+T"] + + floats["+T"] + floats["-T"] + floats["0"] + floats["+T"] + + floats["T-1"] + floats["+T"] + floats["+T"] + floats["T-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 20, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 20, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [THICKNESS, THICKNESS, -THICKNESS], + "min": [0, THICKNESS, THICKNESS - 1], + }) + + # 21, backside, positions of edge 3: [(+T,1-T,+T),(1-T,1-T,+T),(+T,1,+T),(1-T,1,+T)] + s = (floats["+T"] + floats["+T"] + floats["T-1"] + floats["1-T"] + + floats["+T"] + floats["T-1"] + floats["+T"] + floats["+T"] + + floats["-1"] + floats["1-T"] + floats["+T"] + floats["-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 21, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 21, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [1 - THICKNESS, THICKNESS, THICKNESS - 1], + "min": [THICKNESS, THICKNESS, -1], + }) + + # 22, backside vertices of rect/sqr: [1,3,0, 3,2,0] + s = ints[1] + ints[3] + ints[0] + ints[3] + ints[2] + ints[0] + gltf["buffers"].append({"byteLength": 12, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 22, + "byteLength": 12, + "byteOffset": 0, + "target": 34963 + }) + gltf["accessors"].append({ + "bufferView": 22, + "componentType": 5123, + "type": "SCALAR", + "count": 6 + }) + + # 23, backside, positions of rectangle: [(0,0,+T),(L,0,+T),(0,1,+T),(L,1,+T)] + s = (floats["0"] + floats["+T"] + floats["0"] + floats["tube"] + + floats["+T"] + floats["0"] + floats["0"] + floats["+T"] + + floats["-1"] + floats["tube"] + floats["+T"] + floats["-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 23, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 23, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [tubelen, THICKNESS, 0], + "min": [0, THICKNESS, -1], + }) + + # 24, backside, positions of half-distance rectangle: [(0,0,+T),(0.45,0,+T),(0,1,+T),(0.45,1,+T)] + s = (floats["0"] + floats["+T"] + floats["0"] + floats["0.45"] + + floats["+T"] + floats["0"] + floats["0"] + floats["+T"] + + floats["-1"] + floats["0.45"] + floats["+T"] + floats["-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 24, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 24, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [0.45, THICKNESS, 0], + "min": [0, THICKNESS, -1], + }) + + # 25, backside, positions of Hadamard rectangle: [(0,0,+T),(15/32L,0,+T),(15/32L,1,+T), + # (15/32L,1,+T),(17/32L,0,+T),(17/32L,1,+T),(L,0,+T),(L,1,+T)] + floats["left"] = float_to_little_endian_hex(tubelen * 15 / 32) + floats["right"] = float_to_little_endian_hex(tubelen * 17 / 32) + s = (floats["0"] + floats["+T"] + floats["0"] + floats["left"] + + floats["+T"] + floats["0"] + floats["0"] + floats["+T"] + + floats["-1"] + floats["left"] + floats["+T"] + floats["-1"] + + floats["right"] + floats["+T"] + floats["0"] + floats["right"] + + floats["+T"] + floats["-1"] + floats["tube"] + floats["+T"] + + floats["0"] + floats["tube"] + floats["+T"] + floats["-1"]) + gltf["buffers"].append({"byteLength": 96, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 25, + "byteLength": 96, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 25, + "componentType": 5126, + "type": "VEC3", + "count": 8, + "max": [tubelen, THICKNESS, 0], + "min": [0, THICKNESS, -1], + }) + + # 26, backside, normals of Hadamard rect (0,0,1)*8 + s = (floats["0"] + floats["1"] + floats["0"] + floats["0"] + floats["1"] + + floats["0"] + floats["0"] + floats["1"] + floats["0"] + floats["0"] + + floats["1"] + floats["0"] + floats["0"] + floats["1"] + floats["0"] + + floats["0"] + floats["1"] + floats["0"] + floats["0"] + floats["1"] + + floats["0"] + floats["0"] + floats["1"] + floats["0"]) + gltf["buffers"].append({"byteLength": 96, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 26, + "byteLength": 96, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 26, + "componentType": 5126, + "type": "VEC3", + "count": 8 + }) + + # 27, backside, vertices of middle rect in Hadamard rect: [4,5,1, 5,3,1] + s = ints[4] + ints[5] + ints[1] + ints[5] + ints[3] + ints[1] + gltf["buffers"].append({"byteLength": 12, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 27, + "byteLength": 12, + "byteOffset": 0, + "target": 34963 + }) + gltf["accessors"].append({ + "bufferView": 27, + "componentType": 5123, + "type": "SCALAR", + "count": 6 + }) + + # 28, backside, vertices of upper rect in Hadamard rect: [6,7,4, 7,5,4] + s = ints[6] + ints[7] + ints[4] + ints[7] + ints[5] + ints[4] + gltf["buffers"].append({"byteLength": 12, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 28, + "byteLength": 12, + "byteOffset": 0, + "target": 34963 + }) + gltf["accessors"].append({ + "bufferView": 28, + "componentType": 5123, + "type": "SCALAR", + "count": 6 + }) + + # 29, backside, positions of tilted rect: [(0,0,1/2+T),(1/2,0,+T),(0,1,1/2+T),(1/2,1,+T)] + s = (floats["0"] + floats["0.5-T"] + floats["0"] + floats["0.5"] + + floats["-T"] + floats["0"] + floats["0"] + floats["0.5-T"] + + floats["-1"] + floats["0.5"] + floats["-T"] + floats["-1"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 29, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 29, + "componentType": 5126, + "type": "VEC3", + "count": 4, + "max": [0.5, 0.5 - THICKNESS, 0], + "min": [0, -THICKNESS, -1], + }) + + # 30, backside, normals of tilted rect: (sqrt(2)/2, 0, sqrt(2)/2)*4 + s = (floats["+SQ2"] + floats["+SQ2"] + floats["0"] + floats["+SQ2"] + + floats["+SQ2"] + floats["0"] + floats["+SQ2"] + floats["+SQ2"] + + floats["0"] + floats["+SQ2"] + floats["+SQ2"] + floats["0"]) + gltf["buffers"].append({"byteLength": 48, "uri": hex_to_bin(s)}) + gltf["bufferViews"].append({ + "buffer": 30, + "byteLength": 48, + "byteOffset": 0, + "target": 34962 + }) + gltf["accessors"].append({ + "bufferView": 30, + "componentType": 5126, + "type": "VEC3", + "count": 4 + }) + + # finished creating the binary + + # Now we create meshes. These are the real constructors of the 3D diagram. + # a mesh can contain multiple primitives. A primitive can be defined by a + # set of vertices POSITION, their NORMAL vectors, the order of going around + # these vertices, and the color (material) for the triangles defined by + # going around the vertices. `mode:4` means color these triangles. + gltf["meshes"] = [ + { + "name": + "0-square-blue", + "primitives": [ + # front side + { + "attributes": { + "NORMAL": 2, + "POSITION": 0 + }, + "indices": 3, + "material": 0, + "mode": 4, + }, + # back side + { + "attributes": { + "NORMAL": 13, + "POSITION": 12 + }, + "indices": 22, + "material": 0, + "mode": 4, + }, + # front side edge 0 + { + "attributes": { + "NORMAL": 2, + "POSITION": 14 + }, + "indices": 3, + "material": 5, + "mode": 4, + }, + # front side edge 1 + { + "attributes": { + "NORMAL": 2, + "POSITION": 15 + }, + "indices": 3, + "material": 5, + "mode": 4, + }, + # front side edge 2 + { + "attributes": { + "NORMAL": 2, + "POSITION": 16 + }, + "indices": 3, + "material": 5, + "mode": 4, + }, + # front side edge 3 + { + "attributes": { + "NORMAL": 2, + "POSITION": 17 + }, + "indices": 3, + "material": 5, + "mode": 4, + }, + # back side edge 0 + { + "attributes": { + "NORMAL": 13, + "POSITION": 18 + }, + "indices": 22, + "material": 5, + "mode": 4, + }, + # back side edge 1 + { + "attributes": { + "NORMAL": 13, + "POSITION": 19 + }, + "indices": 22, + "material": 5, + "mode": 4, + }, + # back side edge 2 + { + "attributes": { + "NORMAL": 13, + "POSITION": 20 + }, + "indices": 22, + "material": 5, + "mode": 4, + }, + # back side edge 3 + { + "attributes": { + "NORMAL": 13, + "POSITION": 21 + }, + "indices": 22, + "material": 5, + "mode": 4, + }, + ], + }, + { + "name": + "1-square-red", + "primitives": [ + # front side + { + "attributes": { + "NORMAL": 2, + "POSITION": 0 + }, + "indices": 3, + "material": 1, + "mode": 4, + }, + # back side + { + "attributes": { + "NORMAL": 13, + "POSITION": 12 + }, + "indices": 22, + "material": 1, + "mode": 4, + }, + # front side edge 0 + { + "attributes": { + "NORMAL": 2, + "POSITION": 14 + }, + "indices": 3, + "material": 5, + "mode": 4, + }, + # front side edge 1 + { + "attributes": { + "NORMAL": 2, + "POSITION": 15 + }, + "indices": 3, + "material": 5, + "mode": 4, + }, + # front side edge 2 + { + "attributes": { + "NORMAL": 2, + "POSITION": 16 + }, + "indices": 3, + "material": 5, + "mode": 4, + }, + # front side edge 3 + { + "attributes": { + "NORMAL": 2, + "POSITION": 17 + }, + "indices": 3, + "material": 5, + "mode": 4, + }, + # back side edge 0 + { + "attributes": { + "NORMAL": 13, + "POSITION": 18 + }, + "indices": 22, + "material": 5, + "mode": 4, + }, + # back side edge 1 + { + "attributes": { + "NORMAL": 13, + "POSITION": 19 + }, + "indices": 22, + "material": 5, + "mode": 4, + }, + # back side edge 2 + { + "attributes": { + "NORMAL": 13, + "POSITION": 20 + }, + "indices": 22, + "material": 5, + "mode": 4, + }, + # back side edge 3 + { + "attributes": { + "NORMAL": 13, + "POSITION": 21 + }, + "indices": 22, + "material": 5, + "mode": 4, + }, + ], + }, + { + "name": + "2-square-gray", + "primitives": [ + { + "attributes": { + "NORMAL": 2, + "POSITION": 0 + }, + "indices": 3, + "material": 3, + "mode": 4, + }, + # back side + { + "attributes": { + "NORMAL": 13, + "POSITION": 12 + }, + "indices": 22, + "material": 3, + "mode": 4, + }, + ], + }, + { + "name": + "3-square-green", + "primitives": [ + { + "attributes": { + "NORMAL": 2, + "POSITION": 0 + }, + "indices": 3, + "material": 2, + "mode": 4, + }, # back side + { + "attributes": { + "NORMAL": 13, + "POSITION": 12 + }, + "indices": 22, + "material": 2, + "mode": 4, + }, + ], + }, + { + "name": + "4-rectangle-blue", + "primitives": [ + { + "attributes": { + "NORMAL": 2, + "POSITION": 1 + }, + "indices": 3, + "material": 0, + "mode": 4, + }, + # backside + { + "attributes": { + "NORMAL": 13, + "POSITION": 23 + }, + "indices": 22, + "material": 0, + "mode": 4, + } + ], + }, + { + "name": + "5-rectangle-red", + "primitives": [ + { + "attributes": { + "NORMAL": 2, + "POSITION": 1 + }, + "indices": 3, + "material": 1, + "mode": 4, + }, + # backside + { + "attributes": { + "NORMAL": 13, + "POSITION": 23 + }, + "indices": 22, + "material": 1, + "mode": 4, + } + ], + }, + { + "name": + "6-rectangle-gray", + "primitives": [ + { + "attributes": { + "NORMAL": 2, + "POSITION": 1 + }, + "indices": 3, + "material": 3, + "mode": 4, + }, + # backside + { + "attributes": { + "NORMAL": 13, + "POSITION": 23 + }, + "indices": 22, + "material": 3, + "mode": 4, + } + ], + }, + { + "name": + "7-rectangle-red/yellow/blue", + "primitives": [ + { + "attributes": { + "NORMAL": 7, + "POSITION": 6 + }, + "indices": 3, + "material": 1, + "mode": 4, + }, + { + "attributes": { + "NORMAL": 7, + "POSITION": 6 + }, + "indices": 8, + "material": 6, + "mode": 4, + }, + { + "attributes": { + "NORMAL": 7, + "POSITION": 6 + }, + "indices": 9, + "material": 0, + "mode": 4, + }, + # backside + { + "attributes": { + "NORMAL": 26, + "POSITION": 25 + }, + "indices": 22, + "material": 1, + "mode": 4, + }, + { + "attributes": { + "NORMAL": 26, + "POSITION": 25 + }, + "indices": 27, + "material": 6, + "mode": 4, + }, + { + "attributes": { + "NORMAL": 26, + "POSITION": 25 + }, + "indices": 28, + "material": 0, + "mode": 4, + }, + ], + }, + { + "name": + "8-rectangle-blue/yellow/red", + "primitives": [ + { + "attributes": { + "NORMAL": 7, + "POSITION": 6 + }, + "indices": 3, + "material": 0, + "mode": 4, + }, + { + "attributes": { + "NORMAL": 7, + "POSITION": 6 + }, + "indices": 8, + "material": 6, + "mode": 4, + }, + { + "attributes": { + "NORMAL": 7, + "POSITION": 6 + }, + "indices": 9, + "material": 1, + "mode": 4, + }, + # backside + { + "attributes": { + "NORMAL": 26, + "POSITION": 25 + }, + "indices": 22, + "material": 0, + "mode": 4, + }, + { + "attributes": { + "NORMAL": 26, + "POSITION": 25 + }, + "indices": 27, + "material": 6, + "mode": 4, + }, + { + "attributes": { + "NORMAL": 26, + "POSITION": 25 + }, + "indices": 28, + "material": 1, + "mode": 4, + }, + ], + }, + { + "name": + "9-square-cyan.3", + "primitives": [ + { + "attributes": { + "NORMAL": 2, + "POSITION": 0 + }, + "indices": 3, + "material": 4, + "mode": 4, + }, # back side + { + "attributes": { + "NORMAL": 13, + "POSITION": 12 + }, + "indices": 22, + "material": 4, + "mode": 4, + }, + ], + }, + { + "name": + "10-rectangle-cyan.3", + "primitives": [ + { + "attributes": { + "NORMAL": 2, + "POSITION": 1 + }, + "indices": 3, + "material": 4, + "mode": 4, + }, + # backside + { + "attributes": { + "NORMAL": 13, + "POSITION": 23 + }, + "indices": 22, + "material": 4, + "mode": 4, + } + ], + }, + { + "name": + "11-tilted-cyan.3", + "primitives": [ + { + "attributes": { + "NORMAL": 5, + "POSITION": 4 + }, + "indices": 3, + "material": 4, + "mode": 4, + }, + # backside + { + "attributes": { + "NORMAL": 30, + "POSITION": 29 + }, + "indices": 22, + "material": 4, + "mode": 4, + }, + ], + }, + { + "name": + "12-half-distance-rectangle-green", + "primitives": [ + { + "attributes": { + "NORMAL": 2, + "POSITION": 11 + }, + "indices": 3, + "material": 2, + "mode": 4, + }, + # back side + { + "attributes": { + "NORMAL": 13, + "POSITION": 24 + }, + "indices": 22, + "material": 2, + "mode": 4, + }, + ], + }, + { + "name": + "13-square-black", + "primitives": [ + { + "attributes": { + "NORMAL": 2, + "POSITION": 0 + }, + "indices": 3, + "material": 5, + "mode": 4, + }, # back side + { + "attributes": { + "NORMAL": 13, + "POSITION": 12 + }, + "indices": 22, + "material": 5, + "mode": 4, + }, + ], + }, + { + "name": + "14-half-distance-rectangle-black", + "primitives": [ + { + "attributes": { + "NORMAL": 2, + "POSITION": 11 + }, + "indices": 3, + "material": 5, + "mode": 4, + }, + # back side + { + "attributes": { + "NORMAL": 13, + "POSITION": 24 + }, + "indices": 22, + "material": 5, + "mode": 4, + }, + ], + }, + ] + + return gltf + + +def axes_gen(SEP: float, max_i: int, max_j: int, + max_k: int) -> Sequence[Mapping[str, Any]]: + rectangles = [] + + # I axis, red + rectangles += [ + { + "name": f"axisI:-K", + "mesh": 5, + "translation": [-0.5, -0.5, 0.5], + "scale": [SEP * max_i / (SEP - 1), AXESTHICKNESS, AXESTHICKNESS], + }, + { + "name": f"axisI:+K", + "mesh": 5, + "translation": [-0.5, -0.5 + AXESTHICKNESS, 0.5], + "scale": [SEP * max_i / (SEP - 1), AXESTHICKNESS, AXESTHICKNESS], + }, + { + "name": f"axisI:-J", + "mesh": 5, + "translation": [-0.5, -0.5, 0.5], + "rotation": [SQ2, 0, 0, SQ2], + "scale": [SEP * max_i / (SEP - 1), AXESTHICKNESS, AXESTHICKNESS], + }, + { + "name": f"axisI:+J", + "mesh": 5, + "translation": [-0.5, -0.5, 0.5 - AXESTHICKNESS], + "rotation": [SQ2, 0, 0, SQ2], + "scale": [SEP * max_i / (SEP - 1), AXESTHICKNESS, AXESTHICKNESS], + }, + ] + + # J axis, green + rectangles += [ + { + "name": f"axisJ:-K", + "rotation": [0, SQ2, 0, SQ2], + "translation": [-0.5 + AXESTHICKNESS, -0.5, 0.5], + "mesh": 3, + "scale": [SEP * max_j, AXESTHICKNESS, AXESTHICKNESS], + }, + { + "name": f"axisJ:+K", + "rotation": [0, SQ2, 0, SQ2], + "translation": [ + -0.5 + AXESTHICKNESS, + -0.5 + AXESTHICKNESS, + 0.5, + ], + "mesh": 3, + "scale": [SEP * max_j, AXESTHICKNESS, AXESTHICKNESS], + }, + { + "name": f"axisJ:-I", + "rotation": [0.5, 0.5, -0.5, 0.5], + "translation": [-0.5, -0.5, 0.5], + "mesh": 3, + "scale": [SEP * max_j, AXESTHICKNESS, AXESTHICKNESS], + }, + { + "name": f"axisJ:+I", + "rotation": [0.5, 0.5, -0.5, 0.5], + "translation": [-0.5 + AXESTHICKNESS, -0.5, 0.5], + "mesh": 3, + "scale": [SEP * max_j, AXESTHICKNESS, AXESTHICKNESS], + }, + ] + + # K axis, blue + rectangles += [ + { + "name": f"axisK:-I", + "mesh": 4, + "rotation": [0, 0, SQ2, SQ2], + "translation": [-0.5, -0.5 + AXESTHICKNESS, 0.5], + "scale": [SEP * max_k / (SEP - 1), AXESTHICKNESS, AXESTHICKNESS], + }, + { + "name": f"axisK:+I", + "mesh": 4, + "rotation": [0, 0, SQ2, SQ2], + "translation": [-0.5 + AXESTHICKNESS, -0.5 + AXESTHICKNESS, 0.5], + "scale": [SEP * max_k / (SEP - 1), AXESTHICKNESS, AXESTHICKNESS], + }, + { + "name": f"axisK:-J", + "mesh": 4, + "rotation": [0.5, 0.5, 0.5, 0.5], + "translation": [-0.5 + AXESTHICKNESS, -0.5 + AXESTHICKNESS, 0.5], + "scale": [SEP * max_k / (SEP - 1), AXESTHICKNESS, AXESTHICKNESS], + }, + { + "name": + f"axisK:+J", + "mesh": + 4, + "rotation": [0.5, 0.5, 0.5, 0.5], + "translation": [ + -0.5 + AXESTHICKNESS, + -0.5 + AXESTHICKNESS, + 0.5 - AXESTHICKNESS, + ], + "scale": [SEP * max_k / (SEP - 1), AXESTHICKNESS, AXESTHICKNESS], + }, + ] + + return rectangles + + +def tube_gen(SEP: float, loc: Tuple[int, int, int], dir: str, color: int, + stabilizer: int, corr: Tuple[int, int], noColor: bool, + rm_dir: str) -> Sequence[Mapping[str, Any]]: + """compute the GLTF nodes for a pipe. This can include its four faces and + correlation surface inside, minus the face to remove specified by rm_dir. + + Args: + SEP (float): the distance, e.g., from I-pipe(i,j,k) to I-pipe(i+1,j,k). + loc (Tuple[int, int, int]): 3D coordinate of the pipe. + dir (str): direction of the pipe, "I", "J", or "K". + color (int): color variable of the pipe, can be -1(unknown), 0, or 1. + stabilizer (int): index of the stabilizer. + corr (Tuple[int, int]): two bits for two possible corr surface inside. + noColor (bool): K-pipe are not colored if this is True. + rm_dir (str): the direction of face to remove. if a stabilier is shown. + + Returns: + Sequence[Mapping[str, Any]]: list of constructed GLTF nodes, typically + 4 or 5 contiguous nodes in the list corredpond to one pipe. + """ + rectangles = [] + if dir == "I": + rectangles = [ + { + "name": f"edgeI{loc}:-K", + "mesh": 4 if color else 5, + "translation": [1 + SEP * loc[0], SEP * loc[2], -SEP * loc[1]], + }, + { + "name": f"edgeI{loc}:+K", + "mesh": 4 if color else 5, + "translation": + [1 + SEP * loc[0], 1 + SEP * loc[2], -SEP * loc[1]], + }, + { + "name": f"edgeI{loc}:-J", + "mesh": 5 if color else 4, + "translation": [1 + SEP * loc[0], SEP * loc[2], -SEP * loc[1]], + "rotation": [SQ2, 0, 0, SQ2], + }, + { + "name": f"edgeI{loc}:+J", + "mesh": 5 if color else 4, + "translation": + [1 + SEP * loc[0], SEP * loc[2], -1 - SEP * loc[1]], + "rotation": [SQ2, 0, 0, SQ2], + }, + ] + if corr[0]: + rectangles.append({ + "name": + f"edgeI{loc}:CorrIJ", + "mesh": + 10, + "translation": [ + 1 + SEP * loc[0], + 0.5 + SEP * loc[2], + -SEP * loc[1], + ], + }) + if corr[1]: + rectangles.append({ + "name": + f"edgeI{loc}:CorrIK", + "mesh": + 10, + "translation": [ + 1 + SEP * loc[0], + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [SQ2, 0, 0, SQ2], + }) + elif dir == "J": + rectangles = [ + { + "name": f"edgeJ{loc}:-K", + "rotation": [0, SQ2, 0, SQ2], + "translation": + [1 + SEP * loc[0], SEP * loc[2], -1 - SEP * loc[1]], + "mesh": 5 if color else 4, + }, + { + "name": + f"edgeJ{loc}:+K", + "rotation": [0, SQ2, 0, SQ2], + "translation": [ + 1 + SEP * loc[0], + 1 + SEP * loc[2], + -1 - SEP * loc[1], + ], + "mesh": + 5 if color else 4, + }, + { + "name": f"edgeJ{loc}:-I", + "rotation": [0.5, 0.5, -0.5, 0.5], + "translation": [SEP * loc[0], SEP * loc[2], -1 - SEP * loc[1]], + "mesh": 4 if color else 5, + }, + { + "name": f"edgeJ{loc}:+I", + "rotation": [0.5, 0.5, -0.5, 0.5], + "translation": + [1 + SEP * loc[0], SEP * loc[2], -1 - SEP * loc[1]], + "mesh": 4 if color else 5, + }, + ] + if corr[0]: + rectangles.append({ + "name": + f"edgeJ{loc}:CorrJK", + "mesh": + 10, + "rotation": [0.5, 0.5, -0.5, 0.5], + "translation": [ + 0.5 + SEP * loc[0], + SEP * loc[2], + -1 - SEP * loc[1], + ], + }) + if corr[1]: + rectangles.append({ + "name": + f"edgeJ{loc}:CorrJI", + "mesh": + 10, + "rotation": [0, SQ2, 0, SQ2], + "translation": [ + 1 + SEP * loc[0], + 0.5 + SEP * loc[2], + -1 - SEP * loc[1], + ], + }) + + elif dir == "K": + colorKM = color // 7 + colorKP = color % 7 + rectangles = [ + { + "name": f"edgeJ{loc}:-I", + "mesh": 6, + "rotation": [0, 0, SQ2, SQ2], + "translation": [SEP * loc[0], 1 + SEP * loc[2], -SEP * loc[1]], + }, + { + "name": f"edgeJ{loc}:+I", + "mesh": 6, + "rotation": [0, 0, SQ2, SQ2], + "translation": + [1 + SEP * loc[0], 1 + SEP * loc[2], -SEP * loc[1]], + }, + { + "name": f"edgeK{loc}:-J", + "mesh": 6, + "rotation": [0.5, 0.5, 0.5, 0.5], + "translation": + [1 + SEP * loc[0], 1 + SEP * loc[2], -SEP * loc[1]], + }, + { + "name": + f"edgeJ{loc}:+J", + "mesh": + 6, + "rotation": [0.5, 0.5, 0.5, 0.5], + "translation": [ + 1 + SEP * loc[0], + 1 + SEP * loc[2], + -1 - SEP * loc[1], + ], + }, + ] + if not noColor: + if colorKM == 0 and colorKP == 0: + rectangles[0]["mesh"] = 4 + rectangles[1]["mesh"] = 4 + rectangles[2]["mesh"] = 5 + rectangles[3]["mesh"] = 5 + if colorKM == 1 and colorKP == 1: + rectangles[0]["mesh"] = 5 + rectangles[1]["mesh"] = 5 + rectangles[2]["mesh"] = 4 + rectangles[3]["mesh"] = 4 + if colorKM == 1 and colorKP == 0: + rectangles[0]["mesh"] = 7 + rectangles[1]["mesh"] = 7 + rectangles[2]["mesh"] = 8 + rectangles[3]["mesh"] = 8 + if colorKM == 0 and colorKP == 1: + rectangles[0]["mesh"] = 8 + rectangles[1]["mesh"] = 8 + rectangles[2]["mesh"] = 7 + rectangles[3]["mesh"] = 7 + + if corr[0]: + rectangles.append({ + "name": + f"edgeK{loc}:CorrKI", + "mesh": + 10, + "rotation": [0.5, 0.5, 0.5, 0.5], + "translation": [ + 1 + SEP * loc[0], + 1 + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + }) + if corr[1]: + rectangles.append({ + "name": + f"edgeK{loc}:CorrKJ", + "mesh": + 10, + "rotation": [0, 0, SQ2, SQ2], + "translation": [ + 0.5 + SEP * loc[0], + 1 + SEP * loc[2], + -SEP * loc[1], + ], + }) + + rectangles = [rect for rect in rectangles if rm_dir not in rect["name"]] + if stabilizer == -1: + rectangles = [ + rect for rect in rectangles if "Corr" not in rect["name"] + ] + return rectangles + + +def cube_gen( + SEP: float, + loc: Tuple[int, int, int], + exists: Mapping[str, int], + colors: Mapping[str, int], + stabilizer: int, + corr: Mapping[str, Tuple[int, int]], + noColor: bool, + rm_dir: str, +) -> Sequence[Mapping[str, Any]]: + """compute the GLTF nodes for a cube. This can include its faces and + correlation surface inside, minus the face to remove specified by rm_dir. + + Args: + SEP (float): the distance, e.g., from cube(i,j,k) to cube(i+1,j,k). + loc (Tuple[int, int, int]): 3D coordinate of the pipe. + exists (Mapping[str, int]): whether there is a pipe in the 6 directions + to this cube. (+|-)(I|J|K). + colors (Mapping[str, int]): color variable of the pipe, can be + -1(unknown), 0, or 1. + stabilizer (int): index of the stabilizer. + corr (Mapping[str, Tuple[int, int]]): two bits for two possible + correlation surface inside a pipe. These info for all 6 pipes. + noColor (bool): K-pipe are not colored if this is True. + rm_dir (str): the direction of face to remove. if a stabilier is shown. + + Returns: + Sequence[Mapping[str, Any]]: list of constructed GLTF nodes. + """ + squares = [] + for face in ["-K", "+K"]: + if exists[face] == 0: + squares.append({ + "name": + f"spider{loc}:{face}", + "mesh": + 2, + "translation": [ + SEP * loc[0], + (1 if face == "+K" else 0) + SEP * loc[2], + -SEP * loc[1], + ], + }) + for dir in ["+I", "-I", "+J", "-J"]: + if exists[dir]: + if dir == "+I" or dir == "-I": + if colors[dir] == 1: + squares[-1]["mesh"] = 0 + else: + squares[-1]["mesh"] = 1 + else: + if colors[dir] == 0: + squares[-1]["mesh"] = 0 + else: + squares[-1]["mesh"] = 1 + break + for face in ["-I", "+I"]: + if exists[face] == 0: + squares.append({ + "name": + f"spider{loc}:{face}", + "mesh": + 2, + "translation": [ + (1 if face == "+I" else 0) + SEP * loc[0], + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [0, 0, SQ2, SQ2], + }) + for dir in ["+J", "-J", "+K", "-K"]: + if exists[dir]: + if dir == "+J" or dir == "-J": + if colors[dir] == 1: + squares[-1]["mesh"] = 0 + else: + squares[-1]["mesh"] = 1 + elif not noColor: + if colors[dir] == 1: + squares[-1]["mesh"] = 1 + elif colors[dir] == 0: + squares[-1]["mesh"] = 0 + for face in ["-J", "+J"]: + if exists[face] == 0: + squares.append({ + "name": + f"spider{loc}:{face}", + "mesh": + 2, + "translation": [ + 1 + SEP * loc[0], + SEP * loc[2], + (-1 if face == "+J" else 0) - SEP * loc[1], + ], + "rotation": [0.5, 0.5, 0.5, 0.5], + }) + for dir in ["+I", "-I", "+K", "-K"]: + if exists[dir]: + if dir == "+I" or dir == "-I": + if colors[dir] == 0: + squares[-1]["mesh"] = 0 + else: + squares[-1]["mesh"] = 1 + elif not noColor: + if colors[dir] == 1: + squares[-1]["mesh"] = 0 + elif colors[dir] == 0: + squares[-1]["mesh"] = 1 + + degree = sum([v for (k, v) in exists.items()]) + normal = {"I": 0, "J": 0, "K": 0} + if exists["-I"] == 0 and exists["+I"] == 0: + normal["I"] = 1 + if exists["-J"] == 0 and exists["+J"] == 0: + normal["J"] = 1 + if exists["-K"] == 0 and exists["+K"] == 0: + normal["K"] = 1 + if degree > 1: + if (exists["-I"] and exists["+I"] and exists["-J"] == 0 + and exists["+J"] == 0 and exists["-K"] == 0 + and exists["+K"] == 0): + if corr["-I"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + SEP * loc[0], + 0.5 + SEP * loc[2], + -SEP * loc[1], + ], + }) + if corr["-I"][1]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + 1 + SEP * loc[0], + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [0.5, 0.5, 0.5, 0.5], + }) + elif (exists["-I"] == 0 and exists["+I"] == 0 and exists["-J"] + and exists["+J"] and exists["-K"] == 0 and exists["+K"] == 0): + if corr["-J"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + 0.5 + SEP * loc[0], + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [0, 0, SQ2, SQ2], + }) + if corr["-J"][1]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + SEP * loc[0], + 0.5 + SEP * loc[2], + -SEP * loc[1], + ], + }) + elif (exists["-I"] == 0 and exists["+I"] == 0 and exists["-J"] == 0 + and exists["+J"] == 0 and exists["-K"] and exists["+K"]): + if corr["-K"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + 1 + SEP * loc[0], + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [0.5, 0.5, 0.5, 0.5], + }) + if corr["-K"][1]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + 0.5 + SEP * loc[0], + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [0, 0, SQ2, SQ2], + }) + else: + if normal["I"]: + if corr["-J"][0] or corr["+J"][0] or corr["-K"][1] or corr[ + "+K"][1]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + 0.5 + SEP * loc[0], + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [0, 0, SQ2, SQ2], + }) + + if corr["-J"][1] and corr["+J"][1] and corr["-K"][0] and corr[ + "+K"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + SEP * loc[0], + SEP * loc[2], + -1 - SEP * loc[1], + ], + "rotation": [0, -SQ2, 0, SQ2], + }) + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + SEP * loc[0], + 0.5 + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [0, -SQ2, 0, SQ2], + }) + elif corr["-J"][1] and corr["+J"][1]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + SEP * loc[0], + 0.5 + SEP * loc[2], + -SEP * loc[1], + ], + }) + elif corr["-K"][0] and corr["+K"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + 1 + SEP * loc[0], + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [0.5, 0.5, 0.5, 0.5], + }) + elif corr["-J"][1] and corr["-K"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + 1 + SEP * loc[0], + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [0, SQ2, 0, SQ2], + }) + elif corr["+J"][1] and corr["+K"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + 1 + SEP * loc[0], + 0.5 + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [0, SQ2, 0, SQ2], + }) + elif corr["+J"][1] and corr["-K"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + SEP * loc[0], + SEP * loc[2], + -1 - SEP * loc[1], + ], + "rotation": [0, -SQ2, 0, SQ2], + }) + elif corr["-J"][1] and corr["+K"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + SEP * loc[0], + 0.5 + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [0, -SQ2, 0, SQ2], + }) + elif normal["J"]: + if corr["-K"][0] or corr["+K"][0] or corr["-I"][1] or corr[ + "+I"][1]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + 1 + SEP * loc[0], + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [0.5, 0.5, 0.5, 0.5], + }) + + if corr["-K"][1] and corr["+K"][1] and corr["-I"][0] and corr[ + "+I"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + 0.5 + SEP * loc[0], + 0.5 + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [0, 0, SQ2, SQ2], + }) + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + 1 + SEP * loc[0], + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [0, 0, SQ2, SQ2], + }) + elif corr["-K"][1] and corr["+K"][1]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + 0.5 + SEP * loc[0], + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [0, 0, SQ2, SQ2], + }) + elif corr["-I"][0] and corr["+I"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + SEP * loc[0], + 0.5 + SEP * loc[2], + -SEP * loc[1], + ], + }) + elif corr["-K"][1] and corr["-I"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": + [SEP * loc[0], SEP * loc[2], -SEP * loc[1]], + }) + elif corr["+K"][1] and corr["+I"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + 0.5 + SEP * loc[0], + 0.5 + SEP * loc[2], + -SEP * loc[1], + ], + }) + elif corr["+K"][1] and corr["-I"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + 0.5 + SEP * loc[0], + 0.5 + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [0, 0, SQ2, SQ2], + }) + elif corr["-K"][1] and corr["+I"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + 1 + SEP * loc[0], + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [0, 0, SQ2, SQ2], + }) + else: + if corr["-I"][0] or corr["+I"][0] or corr["-J"][1] or corr[ + "+J"][1]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + SEP * loc[0], + 0.5 + SEP * loc[2], + -SEP * loc[1], + ], + }) + + if corr["-I"][1] and corr["+I"][1] and corr["-J"][0] and corr[ + "+J"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + 0.5 + SEP * loc[0], + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [SQ2, 0, 0, SQ2], + }) + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + SEP * loc[0], + SEP * loc[2], + -1 - SEP * loc[1], + ], + "rotation": [SQ2, 0, 0, SQ2], + }) + elif corr["-I"][1] and corr["+I"][1]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + 1 + SEP * loc[0], + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [0.5, 0.5, 0.5, 0.5], + }) + elif corr["-J"][0] and corr["+J"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 9, + "translation": [ + 0.5 + SEP * loc[0], + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [0, 0, SQ2, SQ2], + }) + elif corr["-I"][1] and corr["-J"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + SEP * loc[0], + 1 + SEP * loc[2], + -SEP * loc[1], + ], + "rotation": [-SQ2, 0, 0, SQ2], + }) + elif corr["+I"][1] and corr["+J"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + 0.5 + SEP * loc[0], + 1 + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [-SQ2, 0, 0, SQ2], + }) + elif corr["+I"][1] and corr["-J"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + 0.5 + SEP * loc[0], + SEP * loc[2], + -0.5 - SEP * loc[1], + ], + "rotation": [SQ2, 0, 0, SQ2], + }) + elif corr["-I"][1] and corr["+J"][0]: + squares.append({ + "name": + f"spider{loc}:Corr", + "mesh": + 11, + "translation": [ + SEP * loc[0], + SEP * loc[2], + -1 - SEP * loc[1], + ], + "rotation": [SQ2, 0, 0, SQ2], + }) + + squares = [sqar for sqar in squares if rm_dir not in sqar["name"]] + if stabilizer == -1: + squares = [sqar for sqar in squares if "Corr" not in sqar["name"]] + return squares + + +def special_gen( + SEP: float, + loc: Tuple[int, int, int], + exists: Mapping[str, int], + type: str, + stabilizer: int, + rm_dir: str, +) -> Sequence[Mapping[str, Any]]: + """compute the GLTF nodes for special cubes. Currently Ycube and Tinjection + + Args: + SEP (float): the distance, e.g., from cube(i,j,k) to cube(i+1,j,k). + loc (Tuple[int, int, int]): 3D coordinate of the pipe. + exists (Mapping[str, int]): whether there is a pipe in the 6 directions + to this cube. (+|-)(I|J|K). + stabilizer (int): index of the stabilizer. + noColor (bool): K-pipe are not colored if this is True. + rm_dir (str): the direction of face to remove. if a stabilier is shown. + + Returns: + Sequence[Mapping[str, Any]]: list of constructed GLTF nodes. + """ + if type == "Y": + square_mesh = 3 + half_dist_mesh = 12 + elif type == "T": + square_mesh = 13 + half_dist_mesh = 14 + else: + square_mesh = -1 + half_dist_mesh = -1 + + shapes = [] + if exists["+K"]: + # need connect to top + shapes.append({ + "name": + f"spider{loc}:top:-K", + "mesh": + square_mesh, + "translation": [ + SEP * loc[0], + 0.55 + SEP * loc[2], + -SEP * loc[1], + ], + }) + shapes.append({ + "name": + f"spider{loc}:top:-I", + "mesh": + half_dist_mesh, + "rotation": [0, 0, SQ2, SQ2], + "translation": [SEP * loc[0], 0.55 + SEP * loc[2], -SEP * loc[1]], + }) + shapes.append({ + "name": + f"spider{loc}:top:+I", + "mesh": + half_dist_mesh, + "rotation": [0, 0, SQ2, SQ2], + "translation": + [1 + SEP * loc[0], 0.55 + SEP * loc[2], -SEP * loc[1]], + }) + shapes.append({ + "name": + f"spider{loc}:top:-J", + "mesh": + half_dist_mesh, + "rotation": [0.5, 0.5, 0.5, 0.5], + "translation": + [1 + SEP * loc[0], 0.55 + SEP * loc[2], -SEP * loc[1]], + }) + shapes.append({ + "name": + f"spider{loc}:top:+J", + "mesh": + half_dist_mesh, + "rotation": [0.5, 0.5, 0.5, 0.5], + "translation": [ + 1 + SEP * loc[0], + 0.55 + SEP * loc[2], + -SEP * loc[1] - 1, + ], + }) + + if exists["-K"]: + # need connect to bottom + shapes.append({ + "name": + f"spider{loc}:bottom:+K", + "mesh": + square_mesh, + "translation": [ + SEP * loc[0], + 0.45 + SEP * loc[2], + -SEP * loc[1], + ], + }) + shapes.append({ + "name": + f"spider{loc}:bottom:-I", + "mesh": + half_dist_mesh, + "rotation": [0, 0, SQ2, SQ2], + "translation": [SEP * loc[0], SEP * loc[2], -SEP * loc[1]], + }) + shapes.append({ + "name": + f"spider{loc}:bottom:+I", + "mesh": + half_dist_mesh, + "rotation": [0, 0, SQ2, SQ2], + "translation": [1 + SEP * loc[0], SEP * loc[2], -SEP * loc[1]], + }) + shapes.append({ + "name": + f"spider{loc}:bottom:-J", + "mesh": + half_dist_mesh, + "rotation": [0.5, 0.5, 0.5, 0.5], + "translation": [1 + SEP * loc[0], SEP * loc[2], -SEP * loc[1]], + }) + shapes.append({ + "name": + f"spider{loc}:bottom:+J", + "mesh": + half_dist_mesh, + "rotation": [0.5, 0.5, 0.5, 0.5], + "translation": [ + 1 + SEP * loc[0], + SEP * loc[2], + -SEP * loc[1] - 1, + ], + }) + + shapes = [shp for shp in shapes if rm_dir not in shp["name"]] + return shapes + + +def gltf_generator(lasre: Mapping[str, Any], + stabilizer: int = -1, + tube_len: float = 2.0, + no_color_z: bool = False, + attach_axes: bool = False, + rm_dir: Optional[str] = None) -> Mapping[str, Any]: + """generate gltf in a dict and write to a json file with extension .gltf + + Args: + lasre (Mapping[str, Any]): LaSRe of the LaS. + stabilizer (int, optional): index of the stabilizer. The correlation + surfaces corresponding to it will be drawn. Defaults to -1, which + means do not draw any correlation surfaces. + tube_len (float, optional): ratio of the length of the pipes compared + to the length of the cubes. Defaults to 2.0. + no_color_z (bool, optional): do not color the Z-pipes. Defaults to + False, which means by default Z-pipes are colored. + attach_axes (bool, optional): attach an IJK axes. Defaults to False. + rm_dir (str, optional): the direction of faces to remove to reveal + the correlation surfaces. Defaults to None. + + Raises: + ValueError: rm_dir is not any one of :(+|-)(I|J|K) + ValueError: the index of stabilizer is not -1 nor in [0, n_stabilizer) + + Returns: + Mapping[str, Any]: the constructed gltf in a dict. + """ + s, tubelen, noColor = ( + stabilizer, + tube_len, + no_color_z, + ) + if rm_dir is None: + rm_dir = ":II" + elif rm_dir not in [":+I", ":-I", ":+J", ":-J", ":+K", ":-K"]: + raise ValueError("rm_dir is not one of :+I, :-I, :+J, :-J, :+K, :-K") + + gltf = base_gen(tubelen) + + i_bound = lasre["n_i"] + j_bound = lasre["n_j"] + k_bound = lasre["n_k"] + NodeY = lasre["NodeY"] + ExistI = lasre["ExistI"] + ColorI = lasre["ColorI"] + ExistJ = lasre["ExistJ"] + ColorJ = lasre["ColorJ"] + ExistK = lasre["ExistK"] + if "CorrIJ" in lasre: + CorrIJ = lasre["CorrIJ"] + CorrIK = lasre["CorrIK"] + CorrJI = lasre["CorrJI"] + CorrJK = lasre["CorrJK"] + CorrKI = lasre["CorrKI"] + CorrKJ = lasre["CorrKJ"] + s_bound = len(CorrIJ) + if "ColorKP" not in lasre: + ColorKP = [[[-1 for _ in range(k_bound)] for _ in range(j_bound)] + for _ in range(i_bound)] + else: + ColorKP = lasre["ColorKP"] + if "ColorKM" not in lasre: + ColorKM = [[[-1 for _ in range(k_bound)] for _ in range(j_bound)] + for _ in range(i_bound)] + else: + ColorKM = lasre["ColorKM"] + port_cubes = lasre["port_cubes"] + t_injections = (lasre["optional"]["t_injections"] + if "t_injections" in lasre["optional"] else []) + + if s < -1 or (s_bound > 0 and s not in range(-1, s_bound)): + raise ValueError(f"No such stabilizer index {s}.") + + for i in range(i_bound): + for j in range(j_bound): + for k in range(k_bound): + if ExistI[i][j][k]: + gltf["nodes"] += tube_gen( + tubelen + 1.0, + (i, j, k), + "I", + ColorI[i][j][k], + s, + (CorrIJ[s][i][j][k], + CorrIK[s][i][j][k]) if s_bound else (0, 0), + noColor, + rm_dir, + ) + if ExistJ[i][j][k]: + gltf["nodes"] += tube_gen( + tubelen + 1.0, + (i, j, k), + "J", + ColorJ[i][j][k], + s, + (CorrJK[s][i][j][k], + CorrJI[s][i][j][k]) if s_bound else (0, 0), + noColor, + rm_dir, + ) + if ExistK[i][j][k]: + gltf["nodes"] += tube_gen( + tubelen + 1.0, + (i, j, k), + "K", + 7 * ColorKM[i][j][k] + ColorKP[i][j][k], + s, + (CorrKI[s][i][j][k], + CorrKJ[s][i][j][k]) if s_bound else (0, 0), + noColor, + rm_dir, + ) + + for i in range(i_bound): + for j in range(j_bound): + for k in range(k_bound): + exists = {"-I": 0, "+I": 0, "-K": 0, "+K": 0, "-J": 0, "+J": 0} + colors = {} + corr = { + "-I": (0, 0), + "+I": (0, 0), + "-J": (0, 0), + "+J": (0, 0), + "-K": (0, 0), + "+K": (0, 0), + } + if i > 0 and ExistI[i - 1][j][k]: + exists["-I"] = 1 + colors["-I"] = ColorI[i - 1][j][k] + corr["-I"] = (CorrIJ[s][i - 1][j][k], + CorrIK[s][i - 1][j][k]) if s_bound else (0, + 0) + if ExistI[i][j][k]: + exists["+I"] = 1 + colors["+I"] = ColorI[i][j][k] + corr["+I"] = (CorrIJ[s][i][j][k], + CorrIK[s][i][j][k]) if s_bound else (0, 0) + if j > 0 and ExistJ[i][j - 1][k]: + exists["-J"] = 1 + colors["-J"] = ColorJ[i][j - 1][k] + corr["-J"] = (CorrJK[s][i][j - 1][k], + CorrJI[s][i][j - 1][k]) if s_bound else (0, + 0) + if ExistJ[i][j][k]: + exists["+J"] = 1 + colors["+J"] = ColorJ[i][j][k] + corr["+J"] = (CorrJK[s][i][j][k], + CorrJI[s][i][j][k]) if s_bound else (0, 0) + if k > 0 and ExistK[i][j][k - 1]: + exists["-K"] = 1 + colors["-K"] = ColorKP[i][j][k - 1] + corr["-K"] = (CorrKI[s][i][j][k - 1], + CorrKJ[s][i][j][k - 1]) if s_bound else (0, + 0) + if ExistK[i][j][k]: + exists["+K"] = 1 + colors["+K"] = ColorKM[i][j][k] + corr["+K"] = (CorrKI[s][i][j][k], + CorrKJ[s][i][j][k]) if s_bound else (0, 0) + if sum([v for (k, v) in exists.items()]) > 0: + if (i, j, k) not in port_cubes: + if NodeY[i][j][k]: + gltf["nodes"] += special_gen( + tubelen + 1.0, + (i, j, k), + exists, + "Y", + s, + rm_dir, + ) + else: + gltf["nodes"] += cube_gen( + tubelen + 1.0, + (i, j, k), + exists, + colors, + s, + corr, + noColor, + rm_dir, + ) + elif [i, j, k] in t_injections: + gltf["nodes"] += special_gen( + tubelen + 1.0, + (i, j, k), + exists, + "T", + s, + rm_dir, + ) + + if attach_axes: + gltf["nodes"] += axes_gen(tube_len + 1.0, i_bound, j_bound, k_bound) + + gltf["nodes"][0]["children"] = list(range(1, len(gltf["nodes"]))) + + return gltf diff --git a/glue/lattice_surgery/lassynth/translators/networkx_generator.py b/glue/lattice_surgery/lassynth/translators/networkx_generator.py new file mode 100644 index 00000000..4003f75c --- /dev/null +++ b/glue/lattice_surgery/lassynth/translators/networkx_generator.py @@ -0,0 +1,53 @@ +"""generate a annotated networkx.Graph corresponding to the LaS.""" + +import networkx +from lassynth.translators import ZXGridGraph +import stimzx +from typing import Mapping, Any + + +def networkx_generator(lasre: Mapping[str, Any]) -> networkx.Graph: + n_i, n_j, n_k = lasre["n_i"], lasre["n_j"], lasre["n_k"] + port_cubes = lasre["port_cubes"] + zxgridgraph = ZXGridGraph(lasre) + edges = zxgridgraph.edges + nodes = zxgridgraph.nodes + + zx_nx_graph = networkx.Graph() + type_to_str = {"X": "X", "Z": "Z", "Pi": "in", "Po": "out", "I": "X"} + cnt = 0 + for (i, j, k) in port_cubes: + node = nodes[i][j][k] + zx_nx_graph.add_node(cnt, value=stimzx.ZxType(type_to_str[node.type])) + node.node_id = cnt + cnt += 1 + + for i in range(n_i + 1): + for j in range(n_j + 1): + for k in range(n_k + 1): + node = nodes[i][j][k] + if node.type not in ["N", "Po", "Pi"]: + zx_nx_graph.add_node(cnt, + value=stimzx.ZxType( + type_to_str[node.type])) + node.node_id = cnt + cnt += 1 + if node.y_tail_minus: + zx_nx_graph.add_node(cnt, value=stimzx.ZxType("Z", 1)) + zx_nx_graph.add_edge(node.node_id, cnt) + cnt += 1 + if node.y_tail_plus: + zx_nx_graph.add_node(cnt, value=stimzx.ZxType("Z", 3)) + zx_nx_graph.add_edge(node.node_id, cnt) + cnt += 1 + + for edge in edges: + if edge.type != "h": + zx_nx_graph.add_edge(edge.node0.node_id, edge.node1.node_id) + else: + zx_nx_graph.add_node(cnt, value=stimzx.ZxType("H")) + zx_nx_graph.add_edge(cnt, edge.node0.node_id) + zx_nx_graph.add_edge(cnt, edge.node1.node_id) + cnt += 1 + + return zx_nx_graph diff --git a/glue/lattice_surgery/lassynth/translators/textfig_generator.py b/glue/lattice_surgery/lassynth/translators/textfig_generator.py new file mode 100644 index 00000000..1024b46f --- /dev/null +++ b/glue/lattice_surgery/lassynth/translators/textfig_generator.py @@ -0,0 +1,217 @@ +"""Generate text figures of 2D time slices of the LaS.""" + +from lassynth.translators import ZXGridGraph + + +class TextLayer: + pad_i = 1 + pad_j = 1 + sep_i = 4 + sep_j = 4 + + def __init__(self, zx_graph: ZXGridGraph, k: int, if_middle: bool) -> None: + self.n_i, self.n_j, self.n_k = ( + zx_graph.n_i, + zx_graph.n_j, + zx_graph.n_k, + ) + self.chars = [[ + " " for _ in range(2 * TextLayer.pad_i + + (self.n_i - 1) * TextLayer.sep_i + 1) + ] + ["\n"] for _ in range(2 * TextLayer.pad_j + + (self.n_j - 1) * TextLayer.sep_j + 1)] + if if_middle: + self.compute_middle(zx_graph, k) + else: + self.compute_normal(zx_graph, k) + + def set_char(self, j: int, i: int, character): + self.chars[j][i] = character + + def compute_normal(self, zx_graph: ZXGridGraph, k: int): + """a normal layer corresponds to a layer of cubes in LaS, e.g., + / / + X X + | / + | + |/ + Z . + / + There are 2x2 tiles of surface codes. The bottom right one is not being + used, represented by a `.`; the top right one is identity in because + it has degree 2, but our convention is that these spiders have type `X` + The top left one is like that, too. The bottom left is a Z-spider with + three edges, which is non trivial. `-` and `|` I-pipes and J-pipes. + `/` are K-pipes. The `/` on the bottom left corner of a spider connects + to the previous moment. The `/` on the top right corner of a spider + connects to the next moment. + + Args: + zx_graph (ZXGridGraph): + k (int): the height of this layer. + """ + for i in range(self.n_i): + for j in range(self.n_j): + spider = zx_graph.nodes[i][j][k] + + if spider.type in ["N", "Pi", "Po"]: + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j, + TextLayer.pad_i + i * TextLayer.sep_i, + ".", + ) + continue + elif spider.type == "I": + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j, + TextLayer.pad_i + i * TextLayer.sep_i, + "X", + ) + else: + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j, + TextLayer.pad_i + i * TextLayer.sep_i, + spider.type, + ) + + # I pipes + if spider.exists["+I"]: + for offset in range(1, TextLayer.sep_i): + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j, + TextLayer.pad_i + i * TextLayer.sep_i + offset, + "-", + ) + + # J pipes + if spider.exists["+J"]: + for offset in range(1, TextLayer.sep_i): + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j + offset, + TextLayer.pad_i + i * TextLayer.sep_i, + "|", + ) + + # K pipes + if spider.exists["+K"]: + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j - 1, + TextLayer.pad_i + i * TextLayer.sep_i + 1, + "/", + ) + if spider.exists["-K"]: + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j + 1, + TextLayer.pad_i + i * TextLayer.sep_i - 1, + "/", + ) + + def compute_middle(self, zx_graph: ZXGridGraph, k: int): + """a middle layer is either a Hadmard edge or a normal edge, e.g., + / + . X + / + + / + H . + / + These layers cannot have `-` or `|`. It only has `/` which are K-pipes. + The node is either `H` meaning the edge is a Hadamard edge, or `X` + meaning the edge is a normal edge. We use `X` for identity here. + + Args: + zx_graph (ZXGridGraph): + k (int): the height of this layer. There is a middle layer after a + normal layer. + """ + for i in range(self.n_i): + for j in range(self.n_j): + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j, + TextLayer.pad_i + i * TextLayer.sep_i, + ".", + ) + spider = zx_graph.nodes[i][j][k] + color_sum = -1 + if k == self.n_k - 1: + try: + for port in zx_graph.lasre["ports"]: + if (port["i"], port["j"], port["k"]) == (i, j, k): + color_sum = port["c"] + spider.colors["+K"] + break + except ValueError: + print( + f"KPipe({i},{j},{k}) connect outside but not port." + ) + else: + upper_spider = zx_graph.nodes[i][j][k + 1] + if spider.exists["+K"] == 1 and upper_spider.exists[ + "-K"] == 1: + color_sum = spider.colors["+K"] + upper_spider.colors[ + "-K"] + if spider.exists["+K"] == 0 and upper_spider.exists[ + "-K"] == 1: + try: + for port in zx_graph.lasre["ports"]: + if (port["i"], port["j"], port["k"]) == (i, j, + k): + color_sum = port[ + "c"] + upper_spider.colors["-K"] + break + except ValueError: + print(f"KPipe({i},{j},{k})- should be a port.") + if spider.exists["+K"] == 1 and upper_spider.exists[ + "-K"] == 0: + try: + for port in zx_graph.lasre["ports"]: + if (port["i"], port["j"], + port["k"]) == (i, j, k + 1): + color_sum = port["c"] + spider.colors["+K"] + break + except ValueError: + print(f"KPipe({i},{j},{k + 1})- should be a port") + + if color_sum != -1: + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j - 1, + TextLayer.pad_i + i * TextLayer.sep_i + 1, + "/", + ) + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j + 1, + TextLayer.pad_i + i * TextLayer.sep_i - 1, + "/", + ) + if color_sum == 1: + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j, + TextLayer.pad_i + i * TextLayer.sep_i, + "H", + ) + else: + self.set_char( + TextLayer.pad_j + j * TextLayer.sep_j, + TextLayer.pad_i + i * TextLayer.sep_i, + "X", + ) + + def get_text(self): + text = "" + for j in range(2 * TextLayer.pad_j + (self.n_j - 1) * TextLayer.sep_j + + 1): + for i in range(2 * TextLayer.pad_i + + (self.n_i - 1) * TextLayer.sep_i + 1): + text += self.chars[j][i] + text += "\n" + return text + + +def textfig_generator(lasre: dict): + text = "======================================\n" + zx_graph = ZXGridGraph(lasre) + for k in range(lasre["n_k"] - 1, -1, -1): + text += TextLayer(zx_graph, k, True).get_text() + text += "======================================\n" + text += TextLayer(zx_graph, k, False).get_text() + text += "======================================\n" + return text diff --git a/glue/lattice_surgery/lassynth/translators/zx_grid_graph.py b/glue/lattice_surgery/lassynth/translators/zx_grid_graph.py new file mode 100644 index 00000000..4586e6df --- /dev/null +++ b/glue/lattice_surgery/lassynth/translators/zx_grid_graph.py @@ -0,0 +1,292 @@ +"""Classes ZXGridEdge, ZXGridSpider, and ZXGridGraph. ZXGridGraph is a graph +where nodes are the cubes in LaS and edges are pipes in LaS. +""" + +from typing import Any, Mapping, Sequence, Tuple, Optional + + +class ZXGridNode: + + def __init__(self, coord3: Tuple[int, int, int], + connectivity: Mapping[str, Mapping[str, int]]) -> None: + """initialize ZXGridNode for a cube in the LaS. + + self.type: type of ZX spider, 'N': no spider, 'X'/'Z': X/Z-spider, + 'S': Y cube, 'I': identity, 'Pi': input port, 'Po': output port. + self.i/j/k: 3D corrdinates of the cube in the LaS. + self.exists is a dictionary with six keys corresponding to whether a + pipe exist in the six directions to a cube in the LaS. + self.colors are the colors of these possible pipes. + self.y_tail_plus: if this node connects a Y on the top. + self.y_tail_minus: if this node connects a Y on the bottom. + + Args: + coord3 (Tuple[int, int, int]): 3D coordinate of the cube. + connectivity (Mapping[str, Mapping[str, int]]): contains exists + and colors of the six possible pipes to a cube + """ + self.i, self.j, self.k = coord3 + self.y_tail_plus = False + self.y_tail_minus = False + self.node_id = -1 + self.exists = connectivity["exists"] + self.colors = connectivity["colors"] + self.compute_type() + + def compute_type(self) -> None: + """decide the type of a ZXGridNoe + + Raises: + ValueError: node has degree=1, which should be forbidden earlier. + ValueError: node has degree>4, which should be forbidden earlier. + """ + deg = sum([v for (k, v) in self.exists.items()]) + if deg == 0: + self.type = "N" + return + elif deg == 1: + raise ValueError("There should not be deg-1 Z or X spiders.") + elif deg == 2: + self.type = "I" + elif deg >= 5: + raise ValueError("deg > 4: 3D corner exists") + else: # degree = 3 or 4 + if self.exists["-I"] == 0 and self.exists["+I"] == 0: + if self.exists["-J"]: + if self.colors["-J"] == 0: + self.type = "X" + else: + self.type = "Z" + else: # must exist +J + if self.colors["+J"] == 0: + self.type = "X" + else: + self.type = "Z" + + if self.exists["-J"] == 0 and self.exists["+J"] == 0: + if self.exists["-I"]: + if self.colors["-I"] == 0: + self.type = "Z" + else: + self.type = "X" + else: # must exist +I + if self.colors["+I"] == 0: + self.type = "Z" + else: + self.type = "X" + + if self.exists["-K"] == 0 and self.exists["+K"] == 0: + if self.exists["-I"]: + if self.colors["-I"] == 0: + self.type = "X" + else: + self.type = "Z" + else: # must exist +I + if self.colors["+I"] == 0: + self.type = "X" + else: + self.type = "Z" + + def zigxag_xy(self, n_j: int) -> Tuple[int, int]: + return (self.k * (n_j + 2) + self.j, -(n_j + 1) * self.i + self.j) + + def zigxag_str(self, n_j: int) -> str: + zigxag_type = { + 'Z': '@', + 'X': 'O', + 'S': 's', + 'W': 'w', + 'I': 'O', + 'Pi': 'in', + 'Po': 'out', + } + (x, y) = self.zigxag_xy(n_j) + return str(-y) + ',' + str(-x) + ',' + str(zigxag_type[self.type]) + + +class ZXGridEdge: + + def __init__(self, if_h: bool, node0: ZXGridNode, + node1: ZXGridNode) -> None: + """initialize ZXGridEdge for a pipe in the LaS. + + Args: + if_h (bool): if this edge is a Hadamard edge. + node0 (ZXGridNode): one end of the edge. + node1 (ZXGridNode): the other end of the edge. + + Raises: + ValueError: the two spiders are the same. + ValueError: the two spiders are not neighbors. + """ + + dist = abs(node0.i - node1.i) + abs(node0.j - node1.j) + abs(node0.k - + node1.k) + if dist == 0: + raise ValueError(f"{node0} and {node1} are the same.") + if dist > 1: + raise ValueError(f"{node0} and {node1} are not neighbors.") + self.node0, self.node1 = node0, node1 + self.type = "h" if if_h else "-" + + def zigxag_str(self, n_j: int) -> str: + (xa, ya) = self.node0.zigxag_xy(n_j) + (xb, yb) = self.node1.zigxag_xy(n_j) + return (str(-ya) + ',' + str(-xa) + ',' + str(-yb) + ',' + str(-xb) + + ',' + self.type) + + +class ZXGridGraph: + + def __init__(self, lasre: Mapping[str, Any]) -> None: + self.lasre = lasre + self.n_i, self.n_j, self.n_k = ( + lasre["n_i"], + lasre["n_j"], + lasre["n_k"], + ) + self.nodes = [[[ + ZXGridNode((i, j, k), self.gather_cube_connectivity(i, j, k)) + for k in range(self.n_k + 1) + ] for j in range(self.n_j + 1)] for i in range(self.n_i + 1)] + for (i, j, k) in self.lasre["port_cubes"]: + self.nodes[i][j][k].type = 'Po' + self.append_y_tails() + self.edges = [] + self.derive_edges() + + def gather_cube_connectivity(self, i: int, j: int, + k: int) -> Mapping[str, Mapping[str, int]]: + # exists and colors for no cube + exists = {"-I": 0, "+I": 0, "-K": 0, "+K": 0, "-J": 0, "+J": 0} + colors = { + "-I": -1, + "+I": -1, + "-K": -1, + "+K": -1, + "-J": -1, + "+J": -1, + } + if i in range(self.n_i) and j in range(self.n_j) and k in range( + self.n_k) and ((i, j, k) not in self.lasre["port_cubes"]) and ( + self.lasre["NodeY"][i][j][k] == 0): + if i > 0 and self.lasre["ExistI"][i - 1][j][k]: + exists["-I"] = 1 + colors["-I"] = self.lasre["ColorI"][i - 1][j][k] + if self.lasre["ExistI"][i][j][k]: + exists["+I"] = 1 + colors["+I"] = self.lasre["ColorI"][i][j][k] + if j > 0 and self.lasre["ExistJ"][i][j - 1][k]: + exists["-J"] = 1 + colors["-J"] = self.lasre["ColorJ"][i][j - 1][k] + if self.lasre["ExistJ"][i][j][k]: + exists["+J"] = 1 + colors["+J"] = self.lasre["ColorJ"][i][j][k] + if k > 0 and self.lasre["ExistK"][i][j][k - 1]: + exists["-K"] = 1 + colors["-K"] = self.lasre["ColorKP"][i][j][k - 1] + if self.lasre["ExistK"][i][j][k]: + exists["+K"] = 1 + colors["+K"] = self.lasre["ColorKM"][i][j][k] + return {"exists": exists, "colors": colors} + + def append_y_tails(self) -> None: + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + if self.lasre["NodeY"][i][j][k]: + if (k - 1 >= 0 and self.lasre["ExistK"][i][j][k - 1] + and (not self.lasre["NodeY"][i][j][k - 1])): + self.nodes[i][j][k - 1].y_tail_plus = True + if (k + 1 < self.n_k and self.lasre["ExistK"][i][j][k] + and (not self.lasre["NodeY"][i][j][k + 1])): + self.nodes[i][j][k + 1].y_tail_minus = True + + def derive_edges(self): + valid_types = ["Z", "X", "S", "I", "Pi", "Po"] + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + if (self.lasre["ExistI"][i][j][k] == 1 + and self.nodes[i][j][k].type in valid_types + and self.nodes[i + 1][j][k].type in valid_types): + self.edges.append( + ZXGridEdge(0, self.nodes[i][j][k], + self.nodes[i + 1][j][k])) + + if (self.lasre["ExistJ"][i][j][k] == 1 + and self.nodes[i][j][k].type in valid_types + and self.nodes[i][j + 1][k].type in valid_types): + self.edges.append( + ZXGridEdge(0, self.nodes[i][j][k], + self.nodes[i][j + 1][k])) + + if (self.lasre["ExistK"][i][j][k] == 1 + and self.nodes[i][j][k].type in valid_types + and self.nodes[i][j][k + 1].type in valid_types): + self.edges.append( + ZXGridEdge( + abs(self.lasre["ColorKM"][i][j][k] - + self.lasre["ColorKP"][i][j][k]), + self.nodes[i][j][k], + self.nodes[i][j][k + 1], + )) + + def to_zigxag_url(self, io_spec: Optional[Sequence[str]] = None) -> str: + """generate a url for ZigXag + + Args: + io_spec (Sequence[str], optional): specify whether each port is an + input port or an output port. + + Raises: + ValueError: len(io_spec) is not the same with the number of ports. + + Returns: + str: zigxag url + """ + if io_spec is not None: + if len(io_spec) != len(self.lasre["port_cubes"]): + raise ValueError( + f"io_spec has length {len(io_spec)} but there are " + f"{len(self.lasre['port_cubes'])} ports.") + for w, (i, j, k) in enumerate(self.lasre["port_cubes"]): + self.nodes[i][j][k].type = io_spec[w] + + valid_types = ["Z", "X", "S", "W", "I", "Pi", "Po"] + nodes_str = "" + first = True + for i in range(self.n_i + 1): + for j in range(self.n_j + 1): + for k in range(self.n_k + 1): + if self.nodes[i][j][k].type in valid_types: + if not first: + nodes_str += ";" + nodes_str += self.nodes[i][j][k].zigxag_str(self.n_j) + first = False + + edges_str = "" + for i, edge in enumerate(self.edges): + if i > 0: + edges_str += ";" + edges_str += edge.zigxag_str(self.n_j) + + # add nodes and edges for Y cubes + for i in range(self.n_i): + for j in range(self.n_j): + for k in range(self.n_k): + (x, y) = self.nodes[i][j][k].zigxag_xy(self.n_j) + if self.nodes[i][j][k].y_tail_plus: + nodes_str += (";" + str(x + self.n_j - j) + "," + + str(y) + ",s") + edges_str += (";" + str(x + self.n_j - j) + "," + + str(y) + "," + str(x) + "," + str(y) + + ",-") + if self.nodes[i][j][k].y_tail_minus: + nodes_str += (";" + str(x - j - 1) + "," + str(y) + + ",s") + edges_str += (";" + str(x - j - 1) + "," + str(y) + + "," + str(x) + "," + str(y) + ",-") + + zigxag_str = "https://algassert.com/zigxag#" + nodes_str + ":" + edges_str + return zigxag_str diff --git a/glue/lattice_surgery/setup.py b/glue/lattice_surgery/setup.py new file mode 100644 index 00000000..008b51bb --- /dev/null +++ b/glue/lattice_surgery/setup.py @@ -0,0 +1,28 @@ +from setuptools import find_packages, setup + +with open('README.md', encoding='UTF-8') as f: + long_description = f.read() + +__version__ = '0.1.0' + +setup( + name='LaSsynth', + version=__version__, + author='', + author_email='', + url='', + license='Apache 2', + packages=find_packages(), + description='Lattice Surgery Subroutine Synthesizer', + long_description=long_description, + long_description_content_type='text/markdown', + python_requires='>=3.6.0', + data_files=['README.md'], + install_requires=[ + 'z3-solver==4.12.1.0', + 'stim', + 'networkx', + 'ipykernel', + ], + tests_require=['pytest', 'python3-distutils'], +) diff --git a/glue/lattice_surgery/stimzx/__init__.py b/glue/lattice_surgery/stimzx/__init__.py new file mode 100644 index 00000000..93489c42 --- /dev/null +++ b/glue/lattice_surgery/stimzx/__init__.py @@ -0,0 +1,14 @@ +__version__ = '1.12.dev0' +from ._external_stabilizer import ( + ExternalStabilizer, +) + +from ._text_diagram_parsing import ( + text_diagram_to_networkx_graph, +) + +from ._zx_graph_solver import ( + zx_graph_to_external_stabilizers, + text_diagram_to_zx_graph, + ZxType, +) diff --git a/glue/lattice_surgery/stimzx/_external_stabilizer.py b/glue/lattice_surgery/stimzx/_external_stabilizer.py new file mode 100644 index 00000000..1363fed4 --- /dev/null +++ b/glue/lattice_surgery/stimzx/_external_stabilizer.py @@ -0,0 +1,90 @@ +from typing import List, Any + +import stim + + +class ExternalStabilizer: + """An input-to-output relationship enforced by a stabilizer circuit.""" + + def __init__(self, *, input: stim.PauliString, output: stim.PauliString): + self.input = input + self.output = output + + @staticmethod + def from_dual(dual: stim.PauliString, num_inputs: int) -> 'ExternalStabilizer': + sign = dual.sign + + # Transpose input. Ys get negated. + for k in range(num_inputs): + if dual[k] == 2: + sign *= -1 + + return ExternalStabilizer( + input=dual[:num_inputs], + output=dual[num_inputs:], + ) + + @staticmethod + def canonicals_from_duals(duals: List[stim.PauliString], num_inputs: int) -> List['ExternalStabilizer']: + if not duals: + return [] + duals = [e.copy() for e in duals] + num_qubits = len(duals[0]) + num_outputs = num_qubits - num_inputs + id_out = stim.PauliString(num_outputs) + + # Pivot on output qubits, to potentially isolate input-only stabilizers. + _eliminate_stabilizers(duals, range(num_inputs, num_qubits)) + + # Separate input-only stabilizers from the rest. + input_only_stabilizers = [] + output_using_stabilizers = [] + for dual in duals: + if dual[num_inputs:] == id_out: + input_only_stabilizers.append(dual) + else: + output_using_stabilizers.append(dual) + + # Separately canonicalize the output-using and input-only stabilizers. + _eliminate_stabilizers(output_using_stabilizers, range(num_qubits)) + _eliminate_stabilizers(input_only_stabilizers, range(num_inputs)) + + duals = input_only_stabilizers + output_using_stabilizers + return [ExternalStabilizer.from_dual(e, num_inputs) for e in duals] + + def __mul__(self, other: 'ExternalStabilizer') -> 'ExternalStabilizer': + return ExternalStabilizer(input=other.input * self.input, output=self.output * other.output) + + def __str__(self) -> str: + return str(self.input) + ' -> ' + str(self.output) + + def __eq__(self, other: Any) -> bool: + if not isinstance(other, ExternalStabilizer): + return NotImplemented + return self.output == other.output and self.input == other.input + + def __ne__(self, other: Any) -> bool: + return not self == other + + def __repr__(self): + return f'stimzx.ExternalStabilizer(input={self.input!r}, output={self.output!r})' + + +def _eliminate_stabilizers(stabilizers: List[stim.PauliString], elimination_indices: range): + """Performs partial Gaussian elimination on the list of stabilizers.""" + min_pivot = 0 + for q in elimination_indices: + for b in [1, 3]: + for pivot in range(min_pivot, len(stabilizers)): + p = stabilizers[pivot][q] + if p == 2 or p == b: + break + else: + continue + for k, stabilizer in enumerate(stabilizers): + p = stabilizer[q] + if k != pivot and (p == 2 or p == b): + stabilizer *= stabilizers[pivot] + if min_pivot != pivot: + stabilizers[min_pivot], stabilizers[pivot] = stabilizers[pivot], stabilizers[min_pivot] + min_pivot += 1 diff --git a/glue/lattice_surgery/stimzx/_external_stabilizer_test.py b/glue/lattice_surgery/stimzx/_external_stabilizer_test.py new file mode 100644 index 00000000..b0e940b4 --- /dev/null +++ b/glue/lattice_surgery/stimzx/_external_stabilizer_test.py @@ -0,0 +1,7 @@ +import stim +import stimzx + + +def test_repr(): + e = stimzx.ExternalStabilizer(input=stim.PauliString("XX"), output=stim.PauliString("Y")) + assert eval(repr(e), {'stimzx': stimzx, 'stim': stim}) == e diff --git a/glue/lattice_surgery/stimzx/_text_diagram_parsing.py b/glue/lattice_surgery/stimzx/_text_diagram_parsing.py new file mode 100644 index 00000000..36c1068a --- /dev/null +++ b/glue/lattice_surgery/stimzx/_text_diagram_parsing.py @@ -0,0 +1,178 @@ +import re +from typing import Dict, Tuple, TypeVar, List, Set, Callable + +import networkx as nx + +K = TypeVar("K") + + +def text_diagram_to_networkx_graph(text_diagram: str, *, value_func: Callable[[str], K] = str) -> nx.MultiGraph: + r"""Converts a text diagram into a networkx multi graph. + + Args: + text_diagram: An ascii text diagram of the graph, linking nodes together with edges. Edges can be horizontal + (-), vertical (|), diagonal (/\), crossing (+), or changing direction (*). Nodes can be alphanumeric with + parentheses. It is assumed that all text is shown with a fixed-width font. + value_func: An optional transformation to apply to the node text in order to get the node's value. Otherwise + the node's value is just its text. + + Example: + + >>> import stimzx + >>> import networkx as nx + >>> actual = stimzx.text_diagram_to_networkx_graph(r''' + ... + ... A + ... | + ... NODE1--+--NODE2----------* + ... | | / + ... B | / + ... *------NODE4 + ... + ... ''') + >>> expected = nx.MultiGraph() + >>> expected.add_node(0, value='A') + >>> expected.add_node(1, value='NODE1') + >>> expected.add_node(2, value='NODE2') + >>> expected.add_node(3, value='B') + >>> expected.add_node(4, value='NODE4') + >>> _ = expected.add_edge(0, 3) + >>> _ = expected.add_edge(1, 2) + >>> _ = expected.add_edge(2, 4) + >>> _ = expected.add_edge(2, 4) + >>> nx.testing.assert_graphs_equal(actual, expected) + + Returns: + A networkx multi graph containing the graph from the text diagram. Nodes in the graph are integers (the ordering + of nodes is in the natural string ordering from left to right then top to bottom in the diagram), and have a + "value" attribute containing either the node's string from the diagram or else a function of that string if + value_func was specified. + """ + char_map = _text_to_char_map(text_diagram) + node_ids, nodes = _find_nodes(char_map, value_func) + edges = _find_all_edges(char_map, node_ids) + result = nx.MultiGraph() + for k, v in enumerate(nodes): + result.add_node(k, value=v) + for a, b in edges: + result.add_edge(a, b) + return result + + +def _text_to_char_map(text: str) -> Dict[complex, str]: + char_map = {} + x = 0 + y = 0 + for c in text: + if c == '\n': + x = 0 + y += 1 + continue + if c != ' ': + char_map[x + 1j*y] = c + x += 1 + return char_map + + +DIR_TO_CHARS = { + -1 - 1j: '\\', + 0 - 1j: '|+', + 1 - 1j: '/', + -1: '-+', + 1: '-+', + -1 + 1j: '/', + 1j: '|+', + 1 + 1j: '\\', +} + +CHAR_TO_DIR = { + '\\': 1 + 1j, + '-': 1, + '|': 1j, + '/': -1 + 1j, +} + + +def _find_all_edges(char_map: Dict[complex, str], terminal_map: Dict[complex, K]) -> List[Tuple[K, K]]: + edges = [] + already_travelled = set() + for xy, c in char_map.items(): + x = int(xy.real) + y = int(xy.imag) + if xy in terminal_map or xy in already_travelled or c in '*+': + continue + already_travelled.add(xy) + dxy = CHAR_TO_DIR.get(c) + if dxy is None: + raise ValueError(f"Character {x+1} ('{c}') in line {y+1} isn't part in a node or an edge") + n1 = _find_end_of_edge(xy + dxy, dxy, char_map, terminal_map, already_travelled) + n2 = _find_end_of_edge(xy - dxy, -dxy, char_map, terminal_map, already_travelled) + edges.append((n2, n1)) + return edges + + +def _find_end_of_edge(xy: complex, dxy: complex, char_map: Dict[complex, str], terminal_map: Dict[complex, K], already_travelled: Set[complex]): + while True: + c = char_map[xy] + if xy in terminal_map: + return terminal_map[xy] + + if c != '+': + if xy in already_travelled: + raise ValueError("Edge used twice.") + already_travelled.add(xy) + + next_deltas: List[complex] = [] + if c == '*': + for dx2 in [-1, 0, 1]: + for dy2 in [-1, 0, 1]: + dxy2 = dx2 + dy2 * 1j + c2 = char_map.get(xy + dxy2) + if dxy2 != 0 and dxy2 != -dxy and c2 is not None and c2 in DIR_TO_CHARS[dxy2]: + next_deltas.append(dxy2) + if len(next_deltas) != 1: + raise ValueError(f"Edge junction ('*') at character {int(xy.real)+1}$ in line {int(xy.imag)+1} doesn't have exactly 2 legs.") + dxy, = next_deltas + else: + expected = DIR_TO_CHARS[dxy] + if c not in expected: + raise ValueError(f"Dangling edge at character {int(xy.real)+1} in line {int(xy.imag)+1} travelling dx=${int(dxy.real)},dy={int(dxy.imag)}.") + xy += dxy + + +def _find_nodes(char_map: Dict[complex, str], value_func: Callable[[str], K]) -> Tuple[Dict[complex, int], List[K]]: + node_ids = {} + nodes = [] + + node_chars = re.compile("^[a-zA-Z0-9()]$") + next_node_id = 0 + + for xy, lead_char in char_map.items(): + if xy in node_ids: + continue + if not node_chars.match(lead_char): + continue + + n = 0 + nested = 0 + full_name = '' + while True: + c = char_map.get(xy + n, ' ') + if c == ' ' and nested > 0: + raise ValueError("Label ended before ')' to go with '(' was found.") + if nested == 0 and not node_chars.match(c): + break + full_name += c + if c == '(': + nested += 1 + elif c == ')': + nested -= 1 + n += 1 + + nodes.append(value_func(full_name)) + node_id = next_node_id + next_node_id += 1 + for k in range(n): + node_ids[xy + k] = node_id + + return node_ids, nodes diff --git a/glue/lattice_surgery/stimzx/_text_diagram_parsing_test.py b/glue/lattice_surgery/stimzx/_text_diagram_parsing_test.py new file mode 100644 index 00000000..eef8e900 --- /dev/null +++ b/glue/lattice_surgery/stimzx/_text_diagram_parsing_test.py @@ -0,0 +1,149 @@ +import networkx as nx +import pytest +from ._text_diagram_parsing import _find_nodes, _text_to_char_map, _find_end_of_edge, _find_all_edges, text_diagram_to_networkx_graph + + +def test_text_to_char_map(): + assert _text_to_char_map(""" +ABC DEF +G + HI + """) == { + 0 + 1j: 'A', + 1 + 1j: 'B', + 2 + 1j: 'C', + 4 + 1j: 'D', + 5 + 1j: 'E', + 6 + 1j: 'F', + 0 + 2j: 'G', + 1 + 3j: 'H', + 2 + 3j: 'I', + } + + +def test_find_nodes(): + assert _find_nodes(_text_to_char_map(''), lambda e: e) == ({}, []) + with pytest.raises(ValueError, match="base 10"): + _find_nodes(_text_to_char_map('NOTANINT'), int) + with pytest.raises(ValueError, match=r"ended before '\)'"): + _find_nodes(_text_to_char_map('X(run_off'), str) + assert _find_nodes(_text_to_char_map('X'), str) == ( + { + 0j: 0, + }, + ['X'], + ) + assert _find_nodes(_text_to_char_map('\n X'), str) == ( + { + 3 + 1j: 0, + }, + ['X'], + ) + assert _find_nodes(_text_to_char_map('X(pi)'), str) == ( + { + 0: 0, + 1: 0, + 2: 0, + 3: 0, + 4: 0, + }, + ['X(pi)'], + ) + assert _find_nodes(_text_to_char_map('X--Z'), str) == ( + { + 0: 0, + 3: 1, + }, + ['X', 'Z'], + ) + assert _find_nodes(_text_to_char_map(""" +X--* + / + Z +"""), str) == ( + { + 1j: 0, + 1 + 3j: 1, + }, + ['X', 'Z'], + ) + assert _find_nodes(_text_to_char_map(""" +X(pi)--Z +"""), str) == ( + { + 0 + 1j: 0, + 1 + 1j: 0, + 2 + 1j: 0, + 3 + 1j: 0, + 4 + 1j: 0, + 7 + 1j: 1, + }, + ["X(pi)", "Z"], + ) + + +def test_find_end_of_edge(): + c = _text_to_char_map(r""" +1--------* + \ 2 | + 5 \ *--++-* + *-----+-* |/ + | | / + 2 |/ + * + """) + terminal = {1: 'ONE', 18 + 6j: 'TWO'} + seen = set() + assert _find_end_of_edge(1 + 1j, 1, c, terminal, seen) == 'TWO' + assert len(seen) == 31 + + +def test_find_all_edges(): + c = _text_to_char_map(r""" +X---Z H----X(pi/2) + / + Z(pi/2) + """) + node_ids, _ = _find_nodes(c, str) + assert _find_all_edges(c, node_ids) == [ + (0, 1), + (2, 3), + (2, 4), + ] + + +def test_from_text_diagram(): + actual = text_diagram_to_networkx_graph(""" +in---Z---H---------out + | +in---X---Z(-pi/2)---out + """) + expected = nx.MultiGraph() + expected.add_node(0, value='in'), + expected.add_node(1, value='Z'), + expected.add_node(2, value='H'), + expected.add_node(3, value='out'), + expected.add_node(4, value='in'), + expected.add_node(5, value='X'), + expected.add_node(6, value='Z(-pi/2)'), + expected.add_node(7, value='out'), + expected.add_edge(0, 1) + expected.add_edge(1, 2) + expected.add_edge(2, 3) + expected.add_edge(1, 5) + expected.add_edge(4, 5) + expected.add_edge(5, 6) + expected.add_edge(6, 7) + nx.testing.assert_graphs_equal(actual, expected) + + actual = text_diagram_to_networkx_graph(""" + Z-* + | | + X-* + """) + expected = nx.MultiGraph() + expected.add_node(0, value='Z') + expected.add_node(1, value='X') + expected.add_edge(0, 1) + expected.add_edge(0, 1) + nx.testing.assert_graphs_equal(actual, expected) diff --git a/glue/lattice_surgery/stimzx/_zx_graph_solver.py b/glue/lattice_surgery/stimzx/_zx_graph_solver.py new file mode 100644 index 00000000..ff5bd091 --- /dev/null +++ b/glue/lattice_surgery/stimzx/_zx_graph_solver.py @@ -0,0 +1,196 @@ +from typing import Dict, Tuple, List, Any, Union +import stim +import networkx as nx + +from ._text_diagram_parsing import text_diagram_to_networkx_graph +from ._external_stabilizer import ExternalStabilizer + + +class ZxType: + """Data describing a ZX node.""" + + def __init__(self, kind: str, quarter_turns: int = 0): + self.kind = kind + self.quarter_turns = quarter_turns + + def __eq__(self, other): + if not isinstance(other, ZxType): + return NotImplemented + return self.kind == other.kind and self.quarter_turns == other.quarter_turns + + def __ne__(self, other): + return not self == other + + def __hash__(self): + return hash((ZxType, self.kind, self.quarter_turns)) + + def __repr__(self): + return f'ZxType(kind={self.kind!r}, quarter_turns={self.quarter_turns!r})' + + +ZX_TYPES = { + "X": ZxType("X"), + "X(pi/2)": ZxType("X", 1), + "X(pi)": ZxType("X", 2), + "X(-pi/2)": ZxType("X", 3), + "Z": ZxType("Z"), + "Z(pi/2)": ZxType("Z", 1), + "Z(pi)": ZxType("Z", 2), + "Z(-pi/2)": ZxType("Z", 3), + "H": ZxType("H"), + "in": ZxType("in"), + "out": ZxType("out"), +} + + +def text_diagram_to_zx_graph(text_diagram: str) -> nx.MultiGraph: + """Converts an ASCII text diagram into a ZX graph (represented as a networkx MultiGraph). + + Supported node types: + "X": X spider with angle set to 0. + "Z": Z spider with angle set to 0. + "X(pi/2)": X spider with angle set to pi/2. + "X(pi)": X spider with angle set to pi. + "X(-pi/2)": X spider with angle set to -pi/2. + "Z(pi/2)": X spider with angle set to pi/2. + "Z(pi)": X spider with angle set to pi. + "Z(-pi/2)": X spider with angle set to -pi/2. + "H": Hadamard node. Must have degree 2. + "in": Input node. Must have degree 1. + "out": Output node. Must have degree 1. + + Args: + text_diagram: A text diagram containing ZX nodes (e.g. "X(pi)") and edges (e.g. "------") connecting them. + + Example: + >>> import stimzx + >>> import networkx + >>> actual: networkx.MultiGraph = stimzx.text_diagram_to_zx_graph(r''' + ... in----X------out + ... | + ... in---Z(pi)---out + ... ''') + >>> expected = networkx.MultiGraph() + >>> expected.add_node(0, value=stimzx.ZxType("in")) + >>> expected.add_node(1, value=stimzx.ZxType("X")) + >>> expected.add_node(2, value=stimzx.ZxType("out")) + >>> expected.add_node(3, value=stimzx.ZxType("in")) + >>> expected.add_node(4, value=stimzx.ZxType("Z", quarter_turns=2)) + >>> expected.add_node(5, value=stimzx.ZxType("out")) + >>> _ = expected.add_edge(0, 1) + >>> _ = expected.add_edge(1, 2) + >>> _ = expected.add_edge(1, 4) + >>> _ = expected.add_edge(3, 4) + >>> _ = expected.add_edge(4, 5) + >>> networkx.testing.assert_graphs_equal(actual, expected) + + Returns: + A networkx MultiGraph containing the nodes and edges from the diagram. Nodes are numbered 0, 1, 2, etc in + reading ordering from the diagram, and have a "value" attribute of type `stimzx.ZxType`. + """ + return text_diagram_to_networkx_graph(text_diagram, value_func=ZX_TYPES.__getitem__) + + +def _reduced_zx_graph(graph: Union[nx.Graph, nx.MultiGraph]) -> nx.Graph: + """Return an equivalent graph without self edges or repeated edges.""" + reduced_graph = nx.Graph() + odd_parity_edges = set() + for n1, n2 in graph.edges(): + if n1 == n2: + continue + odd_parity_edges ^= {frozenset([n1, n2])} + for n, value in graph.nodes('value'): + reduced_graph.add_node(n, value=value) + for n1, n2 in odd_parity_edges: + reduced_graph.add_edge(n1, n2) + return reduced_graph + + +def zx_graph_to_external_stabilizers(graph: Union[nx.Graph, nx.MultiGraph]) -> List[ExternalStabilizer]: + """Computes the external stabilizers of a ZX graph; generators of Paulis that leave it unchanged including sign. + + Args: + graph: A non-contradictory connected ZX graph with nodes annotated by 'type' and optionally by 'angle'. + Allowed types are 'x', 'z', 'h', and 'out'. + Allowed angles are multiples of `math.pi/2`. Only 'x' and 'z' node types can have angles. + 'out' nodes must have degree 1. + 'h' nodes must have degree 2. + + Returns: + A list of canonicalized external stabilizer generators for the graph. + """ + + graph = _reduced_zx_graph(graph) + sim = stim.TableauSimulator() + + # Interpret each edge as a cup producing an EPR pair. + # - The qubits of the EPR pair fly away from the center of the edge, towards their respective nodes. + # - The qubit keyed by (a, b) is the qubit heading towards b from the edge between a and b. + qubit_ids: Dict[Tuple[Any, Any], int] = {} + for n1, n2 in graph.edges: + qubit_ids[(n1, n2)] = len(qubit_ids) + qubit_ids[(n2, n1)] = len(qubit_ids) + sim.h(qubit_ids[(n1, n2)]) + sim.cnot(qubit_ids[(n1, n2)], qubit_ids[(n2, n1)]) + + # Interpret each internal node as a family of post-selected parity measurements. + for n, node_type in graph.nodes('value'): + if node_type.kind in 'XZ': + # Surround X type node with Hadamards so it can be handled as if it were Z type. + if node_type.kind == 'X': + for neighbor in graph.neighbors(n): + sim.h(qubit_ids[(neighbor, n)]) + elif node_type.kind == 'H': + # Hadamard one input so the H node can be handled as if it were Z type. + neighbor, _ = graph.neighbors(n) + sim.h(qubit_ids[(neighbor, n)]) + elif node_type.kind in ['out', 'in']: + continue # Don't measure qubits leaving the system. + else: + raise ValueError(f"Unknown node type {node_type!r}") + + # Handle Z type node. + # - Postselects the ZZ observable over each pair of incoming qubits. + # - Postselects the (S**quarter_turns X S**-quarter_turns)XX..X observable over all incoming qubits. + neighbors = [n2 for n2 in graph.neighbors(n) if n2 != n] + center = qubit_ids[(neighbors[0], n)] # Pick one incoming qubit to be the common control for the others. + # Handle node angle using a phasing operation. + [id, sim.s, sim.z, sim.s_dag][node_type.quarter_turns](center) + # Use multi-target CNOT and Hadamard to transform postselected observables into single-qubit Z observables. + for n2 in neighbors[1:]: + sim.cnot(center, qubit_ids[(n2, n)]) + sim.h(center) + # Postselect the observables. + for n2 in neighbors: + _pseudo_postselect(sim, qubit_ids[(n2, n)]) + + # Find output qubits. + in_nodes = sorted(n for n, value in graph.nodes('value') if value.kind == 'in') + out_nodes = sorted(n for n, value in graph.nodes('value') if value.kind == 'out') + ext_nodes = in_nodes + out_nodes + out_qubits = [] + for out in ext_nodes: + (neighbor,) = graph.neighbors(out) + out_qubits.append(qubit_ids[(neighbor, out)]) + + # Remove qubits corresponding to non-external edges. + for i, q in enumerate(out_qubits): + sim.swap(q, len(qubit_ids) + i) + for i, q in enumerate(out_qubits): + sim.swap(i, len(qubit_ids) + i) + sim.set_num_qubits(len(out_qubits)) + + # Stabilizers of the simulator state are the external stabilizers of the graph. + dual_stabilizers = sim.canonical_stabilizers() + return ExternalStabilizer.canonicals_from_duals(dual_stabilizers, len(in_nodes)) + + +def _pseudo_postselect(sim: stim.TableauSimulator, target: int): + """Pretend to postselect by using classical feedback to consistently get into the measurement-was-false state.""" + measurement_result, kickback = sim.measure_kickback(target) + if kickback is not None: + for qubit, pauli in enumerate(kickback): + feedback_op = [None, sim.cnot, sim.cy, sim.cz][pauli] + if feedback_op is not None: + feedback_op(stim.target_rec(-1), qubit) + assert kickback is not None or not measurement_result, "Impossible postselection. Graph contained a contradiction." diff --git a/glue/lattice_surgery/stimzx/_zx_graph_solver_test.py b/glue/lattice_surgery/stimzx/_zx_graph_solver_test.py new file mode 100644 index 00000000..9db02fdf --- /dev/null +++ b/glue/lattice_surgery/stimzx/_zx_graph_solver_test.py @@ -0,0 +1,137 @@ +from typing import List + +import stim + +from ._zx_graph_solver import zx_graph_to_external_stabilizers, text_diagram_to_zx_graph, ExternalStabilizer + + +def test_disconnected(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---X X---out + """)) == [ + ExternalStabilizer(input=stim.PauliString("Z"), output=stim.PauliString("_")), + ExternalStabilizer(input=stim.PauliString("_"), output=stim.PauliString("Z")), + ] + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---Z---out + | + X + """)) == [ + ExternalStabilizer(input=stim.PauliString("Z"), output=stim.PauliString("_")), + ExternalStabilizer(input=stim.PauliString("_"), output=stim.PauliString("Z")), + ] + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---Z---X---out + | | + *---* + """)) == [ + ExternalStabilizer(input=stim.PauliString("X"), output=stim.PauliString("_")), + ExternalStabilizer(input=stim.PauliString("_"), output=stim.PauliString("Z")), + ] + + +def test_cnot(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---X---out + | + in---Z---out + """)) == external_stabilizers_of_circuit(stim.Circuit("CNOT 1 0")) + + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---Z---out + | + in---X---out + """)) == external_stabilizers_of_circuit(stim.Circuit("CNOT 0 1")) + + +def test_cz(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---Z---out + | + H + | + in---Z---out + """)) == external_stabilizers_of_circuit(stim.Circuit("CZ 0 1")) + + +def test_s(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---Z(pi/2)---out + """)) == external_stabilizers_of_circuit(stim.Circuit("S 0")) + + +def test_s_dag(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---Z(-pi/2)---out + """)) == external_stabilizers_of_circuit(stim.Circuit("S_DAG 0")) + + +def test_sqrt_x(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---X(pi/2)---out + """)) == external_stabilizers_of_circuit(stim.Circuit("SQRT_X 0")) + + +def test_sqrt_x_sqrt_x(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---X(pi/2)---X(pi/2)---out + """)) == external_stabilizers_of_circuit(stim.Circuit("X 0")) + + +def test_sqrt_z_sqrt_z(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---Z(pi/2)---Z(pi/2)---out + """)) == external_stabilizers_of_circuit(stim.Circuit("Z 0")) + + +def test_sqrt_x_dag(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---X(-pi/2)---out + """)) == external_stabilizers_of_circuit(stim.Circuit("SQRT_X_DAG 0")) + + +def test_x(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---X(pi)---out + """)) == external_stabilizers_of_circuit(stim.Circuit("X 0")) + + +def test_z(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---Z(pi)---out + """)) == external_stabilizers_of_circuit(stim.Circuit("Z 0")) + + +def test_id(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(""" + in---X---Z---out + """)) == external_stabilizers_of_circuit(stim.Circuit("I 0")) + + +def test_s_state_distill(): + assert zx_graph_to_external_stabilizers(text_diagram_to_zx_graph(r""" + * *---------------Z--------------------Z-------Z(pi/2) + / \ | | | + *-----* *------------Z---+---------------+---Z----------------+-------Z(pi/2) + | | | | | | + X---X---Z(pi/2) X---X---Z(pi/2) X---X---Z(pi/2) X---X---Z(pi/2) + | | | | | | + *---+------------------Z-------------------+--------------------+---Z---Z(pi/2) + | | | + in-------Z--------------------------------------Z-------------------Z(pi)--------out + """)) == external_stabilizers_of_circuit(stim.Circuit("S 0")) + + +def external_stabilizers_of_circuit(circuit: stim.Circuit) -> List[ExternalStabilizer]: + n = circuit.num_qubits + s = stim.TableauSimulator() + s.do(circuit) + t = s.current_inverse_tableau()**-1 + stabilizers = [] + for k in range(n): + p = [0] * n + p[k] = 1 + stabilizers.append(stim.PauliString(p) + t.x_output(k)) + p[k] = 3 + stabilizers.append(stim.PauliString(p) + t.z_output(k)) + return [ExternalStabilizer.from_dual(e, circuit.num_qubits) for e in stabilizers] From b4ec946f2f11aef63783cbf3273da0a03ca007ed Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Mon, 29 Jul 2024 15:59:49 -0700 Subject: [PATCH 08/17] Fix `HERALDED_PAULI_CHANNEL_1` permuting X/Y/Z error argument components (#805) - :foreheadslap: - autoformat - Add `stim::circuit_to_dem` to the C++ API for easier conversions with named arguments via a struct --- file_lists/test_files | 1 + src/stim.h | 1 + src/stim/cmd/command_diagram.pybind.cc | 11 +- .../dem/detector_error_model_target.pybind.cc | 1 - src/stim/gates/gates.cc | 200 +++++++++--------- src/stim/gates/gates.test.cc | 8 +- src/stim/simulators/error_analyzer.cc | 25 ++- src/stim/simulators/error_analyzer.h | 3 +- src/stim/simulators/error_analyzer.test.cc | 117 ++++------ src/stim/simulators/matched_error.pybind.cc | 3 +- src/stim/util_top/circuit_to_dem.h | 30 +++ src/stim/util_top/circuit_to_dem.test.cc | 115 ++++++++++ src/stim/util_top/circuit_vs_amplitudes.cc | 2 +- 13 files changed, 326 insertions(+), 191 deletions(-) create mode 100644 src/stim/util_top/circuit_to_dem.h create mode 100644 src/stim/util_top/circuit_to_dem.test.cc diff --git a/file_lists/test_files b/file_lists/test_files index 9de5d724..b57d0093 100644 --- a/file_lists/test_files +++ b/file_lists/test_files @@ -82,6 +82,7 @@ src/stim/util_bot/twiddle.test.cc src/stim/util_top/circuit_flow_generators.test.cc src/stim/util_top/circuit_inverse_qec.test.cc src/stim/util_top/circuit_inverse_unitary.test.cc +src/stim/util_top/circuit_to_dem.test.cc src/stim/util_top/circuit_to_detecting_regions.test.cc src/stim/util_top/circuit_vs_amplitudes.test.cc src/stim/util_top/circuit_vs_tableau.test.cc diff --git a/src/stim.h b/src/stim.h index adc845a5..e04fcdba 100644 --- a/src/stim.h +++ b/src/stim.h @@ -108,6 +108,7 @@ #include "stim/util_top/circuit_flow_generators.h" #include "stim/util_top/circuit_inverse_qec.h" #include "stim/util_top/circuit_inverse_unitary.h" +#include "stim/util_top/circuit_to_dem.h" #include "stim/util_top/circuit_to_detecting_regions.h" #include "stim/util_top/circuit_vs_amplitudes.h" #include "stim/util_top/circuit_vs_tableau.h" diff --git a/src/stim/cmd/command_diagram.pybind.cc b/src/stim/cmd/command_diagram.pybind.cc index 3ea12cd4..8f35dda0 100644 --- a/src/stim/cmd/command_diagram.pybind.cc +++ b/src/stim/cmd/command_diagram.pybind.cc @@ -268,7 +268,13 @@ DiagramHelper stim_pybind::circuit_diagram( type == "timeslice" || type == "time-slice") { std::stringstream out; DiagramTimelineSvgDrawer::make_diagram_write_to( - circuit, out, tick_min, num_ticks, DiagramTimelineSvgDrawerMode::SVG_MODE_TIME_SLICE, filter_coords, num_rows); + circuit, + out, + tick_min, + num_ticks, + DiagramTimelineSvgDrawerMode::SVG_MODE_TIME_SLICE, + filter_coords, + num_rows); DiagramType d_type = type.find("html") != std::string::npos ? DiagramType::DIAGRAM_TYPE_SVG_HTML : DiagramType::DIAGRAM_TYPE_SVG; return DiagramHelper{d_type, out.str()}; @@ -276,7 +282,8 @@ DiagramHelper stim_pybind::circuit_diagram( type == "detslice-svg" || type == "detslice" || type == "detslice-html" || type == "detslice-svg-html" || type == "detector-slice-svg" || type == "detector-slice") { std::stringstream out; - DetectorSliceSet::from_circuit_ticks(circuit, tick_min, num_ticks, filter_coords).write_svg_diagram_to(out, num_rows); + DetectorSliceSet::from_circuit_ticks(circuit, tick_min, num_ticks, filter_coords) + .write_svg_diagram_to(out, num_rows); DiagramType d_type = type.find("html") != std::string::npos ? DiagramType::DIAGRAM_TYPE_SVG_HTML : DiagramType::DIAGRAM_TYPE_SVG; return DiagramHelper{d_type, out.str()}; diff --git a/src/stim/dem/detector_error_model_target.pybind.cc b/src/stim/dem/detector_error_model_target.pybind.cc index 43b442e6..ce5ca16f 100644 --- a/src/stim/dem/detector_error_model_target.pybind.cc +++ b/src/stim/dem/detector_error_model_target.pybind.cc @@ -28,7 +28,6 @@ pybind11::class_ stim_pybind::pybind_detector_error_model_targ void stim_pybind::pybind_detector_error_model_target_methods( pybind11::module &m, pybind11::class_ &c) { - c.def( pybind11::init([](const pybind11::object &arg) -> ExposedDemTarget { if (pybind11::isinstance(arg)) { diff --git a/src/stim/gates/gates.cc b/src/stim/gates/gates.cc index 09f46adf..2ee52a2b 100644 --- a/src/stim/gates/gates.cc +++ b/src/stim/gates/gates.cc @@ -47,110 +47,110 @@ GateDataMap::GateDataMap() { GateType Gate::hadamard_conjugated(bool ignoring_sign) const { switch (id) { - case GateType::DETECTOR: - case GateType::OBSERVABLE_INCLUDE: - case GateType::TICK: - case GateType::QUBIT_COORDS: - case GateType::SHIFT_COORDS: - case GateType::MPAD: - case GateType::H: - case GateType::DEPOLARIZE1: - case GateType::DEPOLARIZE2: - case GateType::Y_ERROR: - case GateType::I: - case GateType::Y: - case GateType::SQRT_YY: - case GateType::SQRT_YY_DAG: - case GateType::MYY: - case GateType::SWAP: - return id; + case GateType::DETECTOR: + case GateType::OBSERVABLE_INCLUDE: + case GateType::TICK: + case GateType::QUBIT_COORDS: + case GateType::SHIFT_COORDS: + case GateType::MPAD: + case GateType::H: + case GateType::DEPOLARIZE1: + case GateType::DEPOLARIZE2: + case GateType::Y_ERROR: + case GateType::I: + case GateType::Y: + case GateType::SQRT_YY: + case GateType::SQRT_YY_DAG: + case GateType::MYY: + case GateType::SWAP: + return id; - case GateType::MY: - case GateType::MRY: - case GateType::RY: - case GateType::YCY: - return ignoring_sign ? id : GateType::NOT_A_GATE; + case GateType::MY: + case GateType::MRY: + case GateType::RY: + case GateType::YCY: + return ignoring_sign ? id : GateType::NOT_A_GATE; - case GateType::ISWAP: - case GateType::CZSWAP: - case GateType::ISWAP_DAG: - return GateType::NOT_A_GATE; + case GateType::ISWAP: + case GateType::CZSWAP: + case GateType::ISWAP_DAG: + return GateType::NOT_A_GATE; - case GateType::XCY: - return ignoring_sign ? GateType::CY : GateType::NOT_A_GATE; - case GateType::CY: - return ignoring_sign ? GateType::XCY : GateType::NOT_A_GATE; - case GateType::YCX: - return ignoring_sign ? GateType::YCZ : GateType::NOT_A_GATE; - case GateType::YCZ: - return ignoring_sign ? GateType::YCX : GateType::NOT_A_GATE; - case GateType::C_XYZ: - return ignoring_sign ? GateType::C_ZYX : GateType::NOT_A_GATE; - case GateType::C_ZYX: - return ignoring_sign ? GateType::C_XYZ : GateType::NOT_A_GATE; - case GateType::H_XY: - return ignoring_sign ? GateType::H_YZ : GateType::NOT_A_GATE; - case GateType::H_YZ: - return ignoring_sign ? GateType::H_XY : GateType::NOT_A_GATE; + case GateType::XCY: + return ignoring_sign ? GateType::CY : GateType::NOT_A_GATE; + case GateType::CY: + return ignoring_sign ? GateType::XCY : GateType::NOT_A_GATE; + case GateType::YCX: + return ignoring_sign ? GateType::YCZ : GateType::NOT_A_GATE; + case GateType::YCZ: + return ignoring_sign ? GateType::YCX : GateType::NOT_A_GATE; + case GateType::C_XYZ: + return ignoring_sign ? GateType::C_ZYX : GateType::NOT_A_GATE; + case GateType::C_ZYX: + return ignoring_sign ? GateType::C_XYZ : GateType::NOT_A_GATE; + case GateType::H_XY: + return ignoring_sign ? GateType::H_YZ : GateType::NOT_A_GATE; + case GateType::H_YZ: + return ignoring_sign ? GateType::H_XY : GateType::NOT_A_GATE; - case GateType::X: - return GateType::Z; - case GateType::Z: - return GateType::X; - case GateType::SQRT_Y: - return GateType::SQRT_Y_DAG; - case GateType::SQRT_Y_DAG: - return GateType::SQRT_Y; - case GateType::MX: - return GateType::M; - case GateType::M: - return GateType::MX; - case GateType::MRX: - return GateType::MR; - case GateType::MR: - return GateType::MRX; - case GateType::RX: - return GateType::R; - case GateType::R: - return GateType::RX; - case GateType::XCX: - return GateType::CZ; - case GateType::XCZ: - return GateType::CX; - case GateType::CX: - return GateType::XCZ; - case GateType::CZ: - return GateType::XCX; - case GateType::X_ERROR: - return GateType::Z_ERROR; - case GateType::Z_ERROR: - return GateType::X_ERROR; - case GateType::SQRT_X: - return GateType::S; - case GateType::SQRT_X_DAG: - return GateType::S_DAG; - case GateType::S: - return GateType::SQRT_X; - case GateType::S_DAG: - return GateType::SQRT_X_DAG; - case GateType::SQRT_XX: - return GateType::SQRT_ZZ; - case GateType::SQRT_XX_DAG: - return GateType::SQRT_ZZ_DAG; - case GateType::SQRT_ZZ: - return GateType::SQRT_XX; - case GateType::SQRT_ZZ_DAG: - return GateType::SQRT_XX_DAG; - case GateType::CXSWAP: - return GateType::SWAPCX; - case GateType::SWAPCX: - return GateType::CXSWAP; - case GateType::MXX: - return GateType::MZZ; - case GateType::MZZ: - return GateType::MXX; - default: - return GateType::NOT_A_GATE; + case GateType::X: + return GateType::Z; + case GateType::Z: + return GateType::X; + case GateType::SQRT_Y: + return GateType::SQRT_Y_DAG; + case GateType::SQRT_Y_DAG: + return GateType::SQRT_Y; + case GateType::MX: + return GateType::M; + case GateType::M: + return GateType::MX; + case GateType::MRX: + return GateType::MR; + case GateType::MR: + return GateType::MRX; + case GateType::RX: + return GateType::R; + case GateType::R: + return GateType::RX; + case GateType::XCX: + return GateType::CZ; + case GateType::XCZ: + return GateType::CX; + case GateType::CX: + return GateType::XCZ; + case GateType::CZ: + return GateType::XCX; + case GateType::X_ERROR: + return GateType::Z_ERROR; + case GateType::Z_ERROR: + return GateType::X_ERROR; + case GateType::SQRT_X: + return GateType::S; + case GateType::SQRT_X_DAG: + return GateType::S_DAG; + case GateType::S: + return GateType::SQRT_X; + case GateType::S_DAG: + return GateType::SQRT_X_DAG; + case GateType::SQRT_XX: + return GateType::SQRT_ZZ; + case GateType::SQRT_XX_DAG: + return GateType::SQRT_ZZ_DAG; + case GateType::SQRT_ZZ: + return GateType::SQRT_XX; + case GateType::SQRT_ZZ_DAG: + return GateType::SQRT_XX_DAG; + case GateType::CXSWAP: + return GateType::SWAPCX; + case GateType::SWAPCX: + return GateType::CXSWAP; + case GateType::MXX: + return GateType::MZZ; + case GateType::MZZ: + return GateType::MXX; + default: + return GateType::NOT_A_GATE; } } diff --git a/src/stim/gates/gates.test.cc b/src/stim/gates/gates.test.cc index edafb88f..1fe5c6b3 100644 --- a/src/stim/gates/gates.test.cc +++ b/src/stim/gates/gates.test.cc @@ -22,8 +22,8 @@ #include "stim/simulators/tableau_simulator.h" #include "stim/util_bot/str_util.h" #include "stim/util_bot/test_util.test.h" -#include "stim/util_top/has_flow.h" #include "stim/util_top/circuit_flow_generators.h" +#include "stim/util_top/has_flow.h" using namespace stim; @@ -375,8 +375,10 @@ TEST(gate_data, hadamard_conjugated_vs_flow_generators_of_two_qubit_gates) { GateType actual_s = g.hadamard_conjugated(false); GateType actual_u = g.hadamard_conjugated(true); bool found = std::find(other_us.begin(), other_us.end(), actual_u) != other_us.end(); - EXPECT_EQ(actual_s, expected_s) << "signed " << g.name << " -> " << GATE_DATA[actual_s].name << " != " << GATE_DATA[expected_s].name; - EXPECT_TRUE(found) << "unsigned " << g.name << " -> " << GATE_DATA[actual_u].name << " not in " << GATE_DATA[other_us[0]].name; + EXPECT_EQ(actual_s, expected_s) + << "signed " << g.name << " -> " << GATE_DATA[actual_s].name << " != " << GATE_DATA[expected_s].name; + EXPECT_TRUE(found) << "unsigned " << g.name << " -> " << GATE_DATA[actual_u].name << " not in " + << GATE_DATA[other_us[0]].name; } } } diff --git a/src/stim/simulators/error_analyzer.cc b/src/stim/simulators/error_analyzer.cc index 823caeb0..47f393be 100644 --- a/src/stim/simulators/error_analyzer.cc +++ b/src/stim/simulators/error_analyzer.cc @@ -307,7 +307,7 @@ void ErrorAnalyzer::undo_MZ_with_context(const CircuitInstruction &dat, const ch } void ErrorAnalyzer::undo_HERALDED_ERASE(const CircuitInstruction &dat) { - check_can_approximate_disjoint("HERALDED_ERASE", dat.args); + check_can_approximate_disjoint("HERALDED_ERASE", dat.args, false); double p = dat.args[0] * 0.25; double i = std::max(0.0, 1.0 - 4 * p); @@ -327,7 +327,7 @@ void ErrorAnalyzer::undo_HERALDED_ERASE(const CircuitInstruction &dat) { } void ErrorAnalyzer::undo_HERALDED_PAULI_CHANNEL_1(const CircuitInstruction &dat) { - check_can_approximate_disjoint("HERALDED_PAULI_CHANNEL_1", dat.args); + check_can_approximate_disjoint("HERALDED_PAULI_CHANNEL_1", dat.args, true); double hi = dat.args[0]; double hx = dat.args[1]; double hy = dat.args[2]; @@ -341,7 +341,7 @@ void ErrorAnalyzer::undo_HERALDED_PAULI_CHANNEL_1(const CircuitInstruction &dat) SparseXorVec &herald_symptoms = tracker.rec_bits[tracker.num_measurements_in_past]; if (accumulate_errors) { add_error_combinations<3>( - {i, 0, 0, 0, hi, hx, hy, hz}, + {i, 0, 0, 0, hi, hz, hx, hy}, {tracker.xs[q].range(), tracker.zs[q].range(), herald_symptoms.range()}, true); } @@ -750,7 +750,7 @@ void ErrorAnalyzer::correlated_error_block(const std::vector add_composite_error(dats[0].args[0], dats[0].targets); return; } - check_can_approximate_disjoint("ELSE_CORRELATED_ERROR", {}); + check_can_approximate_disjoint("ELSE_CORRELATED_ERROR", {}, false); double remaining_p = 1; for (size_t k = dats.size(); k--;) { @@ -820,7 +820,18 @@ void ErrorAnalyzer::undo_ELSE_CORRELATED_ERROR(const CircuitInstruction &dat) { } } -void ErrorAnalyzer::check_can_approximate_disjoint(const char *op_name, SpanRef probabilities) const { +void ErrorAnalyzer::check_can_approximate_disjoint( + const char *op_name, SpanRef probabilities, bool allow_single_component) const { + if (allow_single_component) { + size_t num_specified = 0; + for (double p : probabilities) { + num_specified += p > 0; + } + if (num_specified <= 1) { + return; + } + } + if (approximate_disjoint_errors_threshold == 0) { std::stringstream msg; msg << "Encountered the operation " << op_name @@ -854,7 +865,7 @@ void ErrorAnalyzer::undo_PAULI_CHANNEL_1(const CircuitInstruction &dat) { double iz; bool is_independent = try_disjoint_to_independent_xyz_errors_approx(dx, dy, dz, &ix, &iy, &iz); if (!is_independent) { - check_can_approximate_disjoint("PAULI_CHANNEL_1", dat.args); + check_can_approximate_disjoint("PAULI_CHANNEL_1", dat.args, true); ix = dx; iy = dy; iz = dz; @@ -875,7 +886,7 @@ void ErrorAnalyzer::undo_PAULI_CHANNEL_1(const CircuitInstruction &dat) { } void ErrorAnalyzer::undo_PAULI_CHANNEL_2(const CircuitInstruction &dat) { - check_can_approximate_disjoint("PAULI_CHANNEL_2", dat.args); + check_can_approximate_disjoint("PAULI_CHANNEL_2", dat.args, true); std::array probabilities; for (size_t k = 0; k < 15; k++) { diff --git a/src/stim/simulators/error_analyzer.h b/src/stim/simulators/error_analyzer.h index f55178f1..38c14420 100644 --- a/src/stim/simulators/error_analyzer.h +++ b/src/stim/simulators/error_analyzer.h @@ -329,7 +329,8 @@ struct ErrorAnalyzer { void undo_MXX_disjoint_controls_segment(const CircuitInstruction &inst); void undo_MYY_disjoint_controls_segment(const CircuitInstruction &inst); void undo_MZZ_disjoint_controls_segment(const CircuitInstruction &inst); - void check_can_approximate_disjoint(const char *op_name, SpanRef probabilities) const; + void check_can_approximate_disjoint( + const char *op_name, SpanRef probabilities, bool allow_single_component) const; void add_composite_error(double probability, SpanRef targets); void correlated_error_block(const std::vector &dats); }; diff --git a/src/stim/simulators/error_analyzer.test.cc b/src/stim/simulators/error_analyzer.test.cc index 1666d96c..3e6b26c9 100644 --- a/src/stim/simulators/error_analyzer.test.cc +++ b/src/stim/simulators/error_analyzer.test.cc @@ -23,6 +23,7 @@ #include "stim/mem/simd_word.test.h" #include "stim/simulators/frame_simulator.h" #include "stim/util_bot/test_util.test.h" +#include "stim/util_top/circuit_to_dem.h" using namespace stim; @@ -3491,17 +3492,13 @@ TEST(ErrorAnalyzer, heralded_erase_conditional_division) { } TEST(ErrorAnalyzer, heralded_erase) { - ErrorAnalyzer::circuit_to_detector_error_model( - Circuit("HERALDED_ERASE(0.25) 0"), false, false, false, 0.3, false, false); + circuit_to_dem(Circuit("HERALDED_ERASE(0.25) 0"), {.approximate_disjoint_errors_threshold = 0.3}); ASSERT_THROW( - { - ErrorAnalyzer::circuit_to_detector_error_model( - Circuit("HERALDED_ERASE(0.25) 0"), false, false, false, 0.2, false, false); - }, + { circuit_to_dem(Circuit("HERALDED_ERASE(0.25) 0"), {.approximate_disjoint_errors_threshold = 0.2}); }, std::invalid_argument); ASSERT_EQ( - ErrorAnalyzer::circuit_to_detector_error_model( + circuit_to_dem( Circuit(R"CIRCUIT( MZZ 0 1 MXX 0 1 @@ -3512,12 +3509,7 @@ TEST(ErrorAnalyzer, heralded_erase) { DETECTOR rec[-2] rec[-5] DETECTOR rec[-3] )CIRCUIT"), - false, - false, - false, - 1.0, - false, - false), + {.approximate_disjoint_errors_threshold = 1}), DetectorErrorModel(R"DEM( error(0.0625) D0 D1 D2 error(0.0625) D0 D2 @@ -3526,7 +3518,7 @@ TEST(ErrorAnalyzer, heralded_erase) { )DEM")); ASSERT_EQ( - ErrorAnalyzer::circuit_to_detector_error_model( + circuit_to_dem( Circuit(R"CIRCUIT( MPP X10*X11*X20*X21 MPP Z11*Z12*Z21*Z22 @@ -3543,12 +3535,7 @@ TEST(ErrorAnalyzer, heralded_erase) { DETECTOR rec[-4] rec[-9] DETECTOR rec[-5] )CIRCUIT"), - true, - false, - false, - 1.0, - false, - false), + {.decompose_errors = true, .approximate_disjoint_errors_threshold = 1}), DetectorErrorModel(R"DEM( error(0.0625) D0 D3 ^ D1 D2 ^ D4 error(0.0625) D0 D3 ^ D4 @@ -3557,7 +3544,7 @@ TEST(ErrorAnalyzer, heralded_erase) { )DEM")); ASSERT_EQ( - ErrorAnalyzer::circuit_to_detector_error_model( + circuit_to_dem( Circuit(R"CIRCUIT( M 0 HERALDED_ERASE(0.25) 9 0 9 9 9 @@ -3565,19 +3552,14 @@ TEST(ErrorAnalyzer, heralded_erase) { DETECTOR rec[-1] rec[-7] DETECTOR rec[-5] )CIRCUIT"), - false, - false, - false, - 1.0, - false, - false), + {.approximate_disjoint_errors_threshold = 1}), DetectorErrorModel(R"DEM( error(0.125) D0 D1 error(0.125) D1 )DEM")); ASSERT_EQ( - ErrorAnalyzer::circuit_to_detector_error_model( + circuit_to_dem( Circuit(R"CIRCUIT( MPAD 0 MPAD 0 @@ -3594,12 +3576,7 @@ TEST(ErrorAnalyzer, heralded_erase) { DETECTOR rec[-4] rec[-9] DETECTOR rec[-5] )CIRCUIT"), - true, - false, - false, - 1.0, - false, - false), + {.decompose_errors = true, .approximate_disjoint_errors_threshold = 1}), DetectorErrorModel(R"DEM( error(0.0625) D0 ^ D1 ^ D4 error(0.0625) D0 ^ D4 @@ -3626,54 +3603,44 @@ TEST(ErrorAnalyzer, heralded_pauli_channel_1) { }, std::invalid_argument); - ASSERT_TRUE(ErrorAnalyzer::circuit_to_detector_error_model( + ASSERT_TRUE(circuit_to_dem( Circuit(R"CIRCUIT( - MZZ 0 1 - MXX 0 1 - HERALDED_PAULI_CHANNEL_1(0.01, 0.02, 0.03, 0.04) 0 - MZZ 0 1 - MXX 0 1 - DETECTOR rec[-1] rec[-4] - DETECTOR rec[-2] rec[-5] - DETECTOR rec[-3] - )CIRCUIT"), - false, - false, - false, - 1.0, - false, - false) + MZZ 0 1 + MXX 0 1 + HERALDED_PAULI_CHANNEL_1(0.01, 0.02, 0.03, 0.04) 0 + MZZ 0 1 + MXX 0 1 + DETECTOR rec[-1] rec[-4] + DETECTOR rec[-2] rec[-5] + DETECTOR rec[-3] + )CIRCUIT"), + {.approximate_disjoint_errors_threshold = 1}) .approx_equals( DetectorErrorModel(R"DEM( - error(0.04) D0 D1 D2 - error(0.02) D0 D2 - error(0.03) D1 D2 - error(0.01) D2 - )DEM"), + error(0.03) D0 D1 D2 + error(0.04) D0 D2 + error(0.02) D1 D2 + error(0.01) D2 + )DEM"), 1e-6)); - ASSERT_TRUE(ErrorAnalyzer::circuit_to_detector_error_model( + ASSERT_TRUE(circuit_to_dem( Circuit(R"CIRCUIT( - MZZ 0 1 - MXX 0 1 - HERALDED_PAULI_CHANNEL_1(0.01, 0.02, 0.03, 0.04) 0 - MZZ 0 1 - MXX 0 1 - DETECTOR - DETECTOR rec[-2] rec[-5] - DETECTOR rec[-3] - )CIRCUIT"), - false, - false, - false, - 1.0, - false, - false) + MZZ 0 1 + MXX 0 1 + HERALDED_PAULI_CHANNEL_1(0.01, 0.02, 0.03, 0.1) 0 + MZZ 0 1 + MXX 0 1 + DETECTOR + DETECTOR rec[-2] rec[-5] + DETECTOR rec[-3] + )CIRCUIT"), + {.approximate_disjoint_errors_threshold = 1}) .approx_equals( DetectorErrorModel(R"DEM( - error(0.07) D1 D2 - error(0.03) D2 - detector D0 - )DEM"), + error(0.05) D1 D2 + error(0.11) D2 + detector D0 + )DEM"), 1e-6)); } diff --git a/src/stim/simulators/matched_error.pybind.cc b/src/stim/simulators/matched_error.pybind.cc index 984c74c4..a85efef3 100644 --- a/src/stim/simulators/matched_error.pybind.cc +++ b/src/stim/simulators/matched_error.pybind.cc @@ -383,7 +383,8 @@ void stim_pybind::pybind_flipped_measurement_methods( }); c.def( pybind11::init( - [](const pybind11::object &measurement_record_index, const pybind11::object &measured_observable) -> FlippedMeasurement { + [](const pybind11::object &measurement_record_index, + const pybind11::object &measured_observable) -> FlippedMeasurement { uint64_t u; if (measurement_record_index.is_none()) { u = UINT64_MAX; diff --git a/src/stim/util_top/circuit_to_dem.h b/src/stim/util_top/circuit_to_dem.h new file mode 100644 index 00000000..1ffcf4a1 --- /dev/null +++ b/src/stim/util_top/circuit_to_dem.h @@ -0,0 +1,30 @@ +#ifndef _STIM_UTIL_TOP_CIRCUIT_TO_DEM_H +#define _STIM_UTIL_TOP_CIRCUIT_TO_DEM_H + +#include "stim/simulators/error_analyzer.h" + +namespace stim { + +struct DemOptions { + bool decompose_errors = false; + bool flatten_loops = true; + bool allow_gauge_detectors = false; + double approximate_disjoint_errors_threshold = 0; + bool ignore_decomposition_failures = false; + bool block_decomposition_from_introducing_remnant_edges = false; +}; + +inline DetectorErrorModel circuit_to_dem(const Circuit &circuit, DemOptions options = {}) { + return ErrorAnalyzer::circuit_to_detector_error_model( + circuit, + options.decompose_errors, + !options.flatten_loops, + options.allow_gauge_detectors, + options.approximate_disjoint_errors_threshold, + options.ignore_decomposition_failures, + options.block_decomposition_from_introducing_remnant_edges); +} + +} // namespace stim + +#endif diff --git a/src/stim/util_top/circuit_to_dem.test.cc b/src/stim/util_top/circuit_to_dem.test.cc new file mode 100644 index 00000000..371717a6 --- /dev/null +++ b/src/stim/util_top/circuit_to_dem.test.cc @@ -0,0 +1,115 @@ +#include "stim/util_top/circuit_to_dem.h" + +#include "gtest/gtest.h" + +using namespace stim; + +TEST(circuit_to_dem, heralded_noise_basis) { + ASSERT_EQ( + circuit_to_dem(Circuit(R"CIRCUIT( + MXX 0 1 + MZZ 0 1 + HERALDED_PAULI_CHANNEL_1(0.25, 0, 0, 0) 0 + MXX 0 1 + MZZ 0 1 + DETECTOR(2) rec[-3] + DETECTOR(3) rec[-2] rec[-5] + DETECTOR(5) rec[-1] rec[-4] + )CIRCUIT")), + DetectorErrorModel(R"DEM( + error(0.25) D0 + detector(2) D0 + detector(3) D1 + detector(5) D2 + )DEM")); + + ASSERT_EQ( + circuit_to_dem(Circuit(R"CIRCUIT( + MXX 0 1 + MZZ 0 1 + HERALDED_PAULI_CHANNEL_1(0, 0.25, 0, 0) 0 + MXX 0 1 + MZZ 0 1 + DETECTOR(2) rec[-3] + DETECTOR(3) rec[-2] rec[-5] + DETECTOR(5) rec[-1] rec[-4] + )CIRCUIT")), + DetectorErrorModel(R"DEM( + error(0.25) D0 D2 + detector(2) D0 + detector(3) D1 + detector(5) D2 + )DEM")); + + ASSERT_EQ( + circuit_to_dem(Circuit(R"CIRCUIT( + MXX 0 1 + MZZ 0 1 + HERALDED_PAULI_CHANNEL_1(0, 0, 0.25, 0) 0 + MXX 0 1 + MZZ 0 1 + DETECTOR(2) rec[-3] + DETECTOR(3) rec[-2] rec[-5] + DETECTOR(5) rec[-1] rec[-4] + )CIRCUIT")), + DetectorErrorModel(R"DEM( + error(0.25) D0 D1 D2 + detector(2) D0 + detector(3) D1 + detector(5) D2 + )DEM")); + + ASSERT_EQ( + circuit_to_dem(Circuit(R"CIRCUIT( + MXX 0 1 + MZZ 0 1 + HERALDED_PAULI_CHANNEL_1(0, 0, 0, 0.25) 0 + MXX 0 1 + MZZ 0 1 + DETECTOR(2) rec[-3] + DETECTOR(3) rec[-2] rec[-5] + DETECTOR(5) rec[-1] rec[-4] + )CIRCUIT")), + DetectorErrorModel(R"DEM( + error(0.25) D0 D1 + detector(2) D0 + detector(3) D1 + detector(5) D2 + )DEM")); + + ASSERT_EQ( + circuit_to_dem( + Circuit(R"CIRCUIT( + MXX 0 1 + MZZ 0 1 + HERALDED_PAULI_CHANNEL_1(0.125, 0, 0.25, 0) 0 + MXX 0 1 + MZZ 0 1 + DETECTOR(2) rec[-3] + DETECTOR(3) rec[-2] rec[-5] + DETECTOR(5) rec[-1] rec[-4] + )CIRCUIT"), + {.approximate_disjoint_errors_threshold = 1}), + DetectorErrorModel(R"DEM( + error(0.125) D0 + error(0.25) D0 D1 D2 + detector(2) D0 + detector(3) D1 + detector(5) D2 + )DEM")); + + ASSERT_THROW( + { + circuit_to_dem(Circuit(R"CIRCUIT( + MXX 0 1 + MZZ 0 1 + HERALDED_PAULI_CHANNEL_1(0.125, 0, 0.25, 0) 0 + MXX 0 1 + MZZ 0 1 + DETECTOR(2) rec[-3] + DETECTOR(3) rec[-2] rec[-5] + DETECTOR(5) rec[-1] rec[-4] + )CIRCUIT")); + }, + std::invalid_argument); +} diff --git a/src/stim/util_top/circuit_vs_amplitudes.cc b/src/stim/util_top/circuit_vs_amplitudes.cc index 6a56219b..75bfeba9 100644 --- a/src/stim/util_top/circuit_vs_amplitudes.cc +++ b/src/stim/util_top/circuit_vs_amplitudes.cc @@ -1,9 +1,9 @@ #include "stim/util_top/circuit_vs_amplitudes.h" -#include "stim/util_top/circuit_inverse_unitary.h" #include "stim/simulators/tableau_simulator.h" #include "stim/simulators/vector_simulator.h" #include "stim/util_bot/twiddle.h" +#include "stim/util_top/circuit_inverse_unitary.h" using namespace stim; From 81c925a68c2d4c2007aa4d008c89299b496ef785 Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Tue, 30 Jul 2024 01:00:36 -0700 Subject: [PATCH 09/17] Create documentation listing papers with stim files attached (#802) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit ## 2021 - [arXiv:2103.02202](https://arxiv.org/abs/2103.02202) → [Ancillary files of "Stim: a fast stabilizer circuit simulator"](https://arxiv.org/src/2103.02202v3/anc) - [arXiv:2108.10457](https://arxiv.org/abs/2108.10457) → [Ancillary files of "A Fault-Tolerant Honeycomb Memory"](https://arxiv.org/src/2108.10457v2/anc) ## 2022 - [arXiv:2202.11845](https://arxiv.org/abs/2202.11845) → [Data for "Benchmarking the Planar Honeycomb Code"](https://zenodo.org/records/7072889) - [arXiv:2204.13834](https://arxiv.org/abs/2204.13834) → [Data for "Stability Experiments: The Overlooked Dual of Memory Experiments"](https://zenodo.org/records/6859486) - [arXiv:2206.12780](https://arxiv.org/abs/2206.12780) → [Data for "A Pair Measurement Surface Code on Pentagons"](https://zenodo.org/records/6626417) - [arXiv:2207.06431](https://arxiv.org/abs/2207.06431) → [Data for "Suppressing quantum errors by scaling a surface code logical qubit"](https://zenodo.org/records/6804040) - [arXiv:2209.08552](https://arxiv.org/abs/2209.08552) → [Parallel window decoding enables scalable fault tolerant quantum computation](https://doi.org/10.5281/zenodo.8422904) ## 2023 - [arXiv:2302.02192](https://arxiv.org/abs/2302.02192) → [Data for "Relaxing Hardware Requirements for Surface Code Circuits using Time-dynamics"](https://zenodo.org/records/7587578) - [arXiv:2302.07395](https://arxiv.org/abs/2302.07395) → [Data for "Inplace Access to the Surface Code Y Basis"](https://zenodo.org/records/7487893) - [arXiv:2302.12292](https://arxiv.org/abs/2302.12292) → [Data for "Cleaner magic states with hook injection"](https://zenodo.org/records/7575030) - [arXiv:2305.12046](https://arxiv.org/abs/2305.12046) → [Data for "Less Bacon More Threshold"](https://zenodo.org/records/7901729) - [arXiv:2307.10147](https://arxiv.org/abs/2307.10147) → [Stim circuits for "Tangling schedules eases hardware connectivity requirements for quantum error correction" manuscript](https://zenodo.org/records/8391674) - [arXiv:2308.03750](https://arxiv.org/abs/2308.03750) → [Ancillary data for the paper "Constructions and performance of hyperbolic and semi-hyperbolic Floquet codes" ](https://github.com/oscarhiggott/hyperbolic-floquet-data) - [arXiv:2312.04522](https://arxiv.org/abs/2312.04522) → [Data for "Yoked Surface Codes"](https://zenodo.org/records/10277397) - [arXiv:2312.08813](https://arxiv.org/abs/2312.08813) → [Data for "New circuits and an open source decoder for the colorcode"](https://zenodo.org/records/10375289) - [arXiv:2312.11605](https://arxiv.org/abs/2312.11605) → [Stim circuits and collected data for "Error-corrected Hadamard gate simulated at the circuit level" manuscript](https://zenodo.org/records/10391116) ## 2024 - [arXiv:2405.15854](https://arxiv.org/abs/2405.15854) → [Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript](https://zenodo.org/records/11241876) --- doc/circuit_data_references.md | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) create mode 100644 doc/circuit_data_references.md diff --git a/doc/circuit_data_references.md b/doc/circuit_data_references.md new file mode 100644 index 00000000..3e26d485 --- /dev/null +++ b/doc/circuit_data_references.md @@ -0,0 +1,28 @@ +## 2021 + +- [arXiv:2103.02202](https://arxiv.org/abs/2103.02202) → [Ancillary files of "Stim: a fast stabilizer circuit simulator"](https://arxiv.org/src/2103.02202v3/anc) +- [arXiv:2108.10457](https://arxiv.org/abs/2108.10457) → [Ancillary files of "A Fault-Tolerant Honeycomb Memory"](https://arxiv.org/src/2108.10457v2/anc) + +## 2022 + +- [arXiv:2202.11845](https://arxiv.org/abs/2202.11845) → [Data for "Benchmarking the Planar Honeycomb Code"](https://zenodo.org/records/7072889) +- [arXiv:2204.13834](https://arxiv.org/abs/2204.13834) → [Data for "Stability Experiments: The Overlooked Dual of Memory Experiments"](https://zenodo.org/records/6859486) +- [arXiv:2206.12780](https://arxiv.org/abs/2206.12780) → [Data for "A Pair Measurement Surface Code on Pentagons"](https://zenodo.org/records/6626417) +- [arXiv:2207.06431](https://arxiv.org/abs/2207.06431) → [Data for "Suppressing quantum errors by scaling a surface code logical qubit"](https://zenodo.org/records/6804040) +- [arXiv:2209.08552](https://arxiv.org/abs/2209.08552) → [Parallel window decoding enables scalable fault tolerant quantum computation](https://doi.org/10.5281/zenodo.8422904) + +## 2023 + +- [arXiv:2302.02192](https://arxiv.org/abs/2302.02192) → [Data for "Relaxing Hardware Requirements for Surface Code Circuits using Time-dynamics"](https://zenodo.org/records/7587578) +- [arXiv:2302.07395](https://arxiv.org/abs/2302.07395) → [Data for "Inplace Access to the Surface Code Y Basis"](https://zenodo.org/records/7487893) +- [arXiv:2302.12292](https://arxiv.org/abs/2302.12292) → [Data for "Cleaner magic states with hook injection"](https://zenodo.org/records/7575030) +- [arXiv:2305.12046](https://arxiv.org/abs/2305.12046) → [Data for "Less Bacon More Threshold"](https://zenodo.org/records/7901729) +- [arXiv:2307.10147](https://arxiv.org/abs/2307.10147) → [Stim circuits for "Tangling schedules eases hardware connectivity requirements for quantum error correction" manuscript](https://zenodo.org/records/8391674) +- [arXiv:2308.03750](https://arxiv.org/abs/2308.03750) → [Ancillary data for the paper "Constructions and performance of hyperbolic and semi-hyperbolic Floquet codes" ](https://github.com/oscarhiggott/hyperbolic-floquet-data) +- [arXiv:2312.04522](https://arxiv.org/abs/2312.04522) → [Data for "Yoked Surface Codes"](https://zenodo.org/records/10277397) +- [arXiv:2312.08813](https://arxiv.org/abs/2312.08813) → [Data for "New circuits and an open source decoder for the colorcode"](https://zenodo.org/records/10375289) +- [arXiv:2312.11605](https://arxiv.org/abs/2312.11605) → [Stim circuits and collected data for "Error-corrected Hadamard gate simulated at the circuit level" manuscript](https://zenodo.org/records/10391116) + +## 2024 + +- [arXiv:2405.15854](https://arxiv.org/abs/2405.15854) → [Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript](https://zenodo.org/records/11241876) From f66de616f09c50ac77267e7e6f392d8eb677923f Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Wed, 31 Jul 2024 00:04:40 -0700 Subject: [PATCH 10/17] Improve dem anticommutation error message to suggest making a diagram (#807) - Also give `_DiagramHelper` a repr that explains what it is and how to get at its contents - Also compress DETECTOR and OBSERVABLE_INCLUDE names in crumble URLs --- src/stim/cmd/command_analyze_errors.test.cc | 6 +- src/stim/cmd/command_diagram.pybind.cc | 25 ++ src/stim/simulators/error_analyzer.cc | 34 ++- src/stim/simulators/error_analyzer.test.cc | 288 +++++++++---------- src/stim/stabilizers/pauli_string_ref.inl | 18 +- src/stim/util_top/export_crumble_url.cc | 2 + src/stim/util_top/export_crumble_url.test.cc | 4 +- 7 files changed, 207 insertions(+), 170 deletions(-) diff --git a/src/stim/cmd/command_analyze_errors.test.cc b/src/stim/cmd/command_analyze_errors.test.cc index 875e6cc6..dfb5c61a 100644 --- a/src/stim/cmd/command_analyze_errors.test.cc +++ b/src/stim/cmd/command_analyze_errors.test.cc @@ -97,7 +97,11 @@ DETECTOR rec[-2] [stderr=)OUTPUT" "\x1B" R"OUTPUT([31mThe circuit contains non-deterministic detectors. -(To allow non-deterministic detectors, use the `allow_gauge_detectors` option.) + +To make an SVG picture of the problem, you can use the python API like this: + your_circuit.diagram('detslice-with-ops-svg', tick=range(0, 5), filter_coords=['D0', 'D1', ]) +or the command line API like this: + stim diagram --in your_circuit_file.stim --type detslice-with-ops-svg --tick 0:5 --filter_coords D0:D1 > output_image.svg This was discovered while analyzing a Z-basis reset (R) on: qubit 0 diff --git a/src/stim/cmd/command_diagram.pybind.cc b/src/stim/cmd/command_diagram.pybind.cc index 8f35dda0..9ef8b45a 100644 --- a/src/stim/cmd/command_diagram.pybind.cc +++ b/src/stim/cmd/command_diagram.pybind.cc @@ -125,6 +125,31 @@ void stim_pybind::pybind_diagram_methods(pybind11::module &m, pybind11::class_ void { pybind11::getattr(p, "text")(self.content); }); + c.def("__repr__", [](const DiagramHelper &self) -> std::string { + std::stringstream ss; + ss << ""; + return ss.str(); + }); c.def("__str__", [](const DiagramHelper &self) -> pybind11::object { if (self.type == DiagramType::DIAGRAM_TYPE_SVG_HTML) { return diagram_as_html(self); diff --git a/src/stim/simulators/error_analyzer.cc b/src/stim/simulators/error_analyzer.cc index 47f393be..7edb4431 100644 --- a/src/stim/simulators/error_analyzer.cc +++ b/src/stim/simulators/error_analyzer.cc @@ -414,12 +414,32 @@ void ErrorAnalyzer::check_for_gauge( has_detectors &= !allow_gauge_detectors; if (has_observables) { error_msg << "The circuit contains non-deterministic observables.\n"; - error_msg << "(Error analysis requires deterministic observables.)\n"; } if (has_detectors) { error_msg << "The circuit contains non-deterministic detectors.\n"; - error_msg << "(To allow non-deterministic detectors, use the `allow_gauge_detectors` option.)\n"; } + size_t range_start = num_ticks_in_past - std::min((size_t)num_ticks_in_past, size_t{5}); + size_t range_end = num_ticks_in_past + 5; + error_msg << "\nTo make an SVG picture of the problem, you can use the python API like this:\n "; + error_msg << "your_circuit.diagram('detslice-with-ops-svg'"; + error_msg << ", tick=range(" << range_start << ", " << range_end << ")"; + error_msg << ", filter_coords=["; + for (auto d : potential_gauge) { + error_msg << "'" << d << "', "; + } + error_msg << "])"; + error_msg << "\nor the command line API like this:\n "; + error_msg << "stim diagram --in your_circuit_file.stim"; + error_msg << " --type detslice-with-ops-svg"; + error_msg << " --tick " << range_start << ":" << range_end; + error_msg << " --filter_coords "; + for (size_t k = 0; k < potential_gauge.size(); k++) { + if (k) { + error_msg << ':'; + } + error_msg << potential_gauge.sorted_items[k]; + } + error_msg << " > output_image.svg\n"; std::map> qubit_coords_map; if (current_circuit_being_analyzed != nullptr) { @@ -1492,7 +1512,7 @@ void ErrorAnalyzer::do_global_error_decomposition_pass() { "`--ignore_decomposition_failures` to `stim analyze_errors`."; if (block_decomposition_from_introducing_remnant_edges) { ss << "\n\nNote: `block_decomposition_from_introducing_remnant_edges` is ON.\n"; - ss << "Turning it off may prevent this error.\n"; + ss << "Turning it off may prevent this error."; } throw std::invalid_argument(ss.str()); } @@ -1538,12 +1558,16 @@ void ErrorAnalyzer::add_error_combinations( std::stringstream message; message << "An error case in a composite error exceeded the max supported number of symptoms " - "(<=15). "; + "(<=15)."; message << "\nThe " << std::to_string(s) << " basis error cases (e.g. X, Z) used to form the combined "; message << "error cases (e.g. Y = X*Z) are:\n"; for (size_t k2 = 0; k2 < s; k2++) { - message << std::to_string(k2) << ": " << comma_sep_workaround(basis_errors[k2]) << "\n"; + message << std::to_string(k2) << ":"; + if (!basis_errors[k2].empty()) { + message << ' '; + } + message << comma_sep_workaround(basis_errors[k2]) << "\n"; } throw std::invalid_argument(message.str()); } diff --git a/src/stim/simulators/error_analyzer.test.cc b/src/stim/simulators/error_analyzer.test.cc index 3e6b26c9..c8d7d49c 100644 --- a/src/stim/simulators/error_analyzer.test.cc +++ b/src/stim/simulators/error_analyzer.test.cc @@ -1,17 +1,3 @@ -// Copyright 2021 Google LLC -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - #include "stim/simulators/error_analyzer.h" #include @@ -2349,28 +2335,19 @@ TEST(ErrorAnalyzer, noisy_measurement_mrz) { } template -std::string check_catch(std::string expected_substring, std::function func) { +std::string expect_catch_message(std::function func) { try { func(); - return "Expected an exception with message '" + expected_substring + "', but no exception was thrown."; - } catch (const TEx &ex) { - std::string s = ex.what(); - if (s.find(expected_substring) == std::string::npos) { - return "Didn't find '" + expected_substring + "' in '" + std::string(ex.what()) + "'."; - } + EXPECT_TRUE(false) << "Function didn't throw an exception."; return ""; + } catch (const TEx &ex) { + return ex.what(); } } TEST(ErrorAnalyzer, context_clues_for_errors) { ASSERT_EQ( - "", - check_catch( - "Can't analyze over-mixing DEPOLARIZE1 errors (probability > 3/4).\n" - "\n" - "Circuit stack trace:\n" - " at instruction #2 [which is DEPOLARIZE1(1) 0]", - [&] { + expect_catch_message([&](){ ErrorAnalyzer::circuit_to_detector_error_model( Circuit(R"CIRCUIT( X 0 @@ -2382,33 +2359,28 @@ TEST(ErrorAnalyzer, context_clues_for_errors) { 0.0, false, true); - })); + }), + "Can't analyze over-mixing DEPOLARIZE1 errors (probability > 3/4).\n" + "\n" + "Circuit stack trace:\n" + " at instruction #2 [which is DEPOLARIZE1(1) 0]"); ASSERT_EQ( - "", - check_catch( - "Can't analyze over-mixing DEPOLARIZE1 errors (probability > 3/4).\n" - "\n" - "Circuit stack trace:\n" - " at instruction #3 [which is a REPEAT 500 block]\n" - " at block's instruction #1 [which is DEPOLARIZE1(1) 0]", - [&] { - ErrorAnalyzer::circuit_to_detector_error_model( - Circuit(R"CIRCUIT( + expect_catch_message([&](){ + circuit_to_dem(Circuit(R"CIRCUIT( X 0 Y 1 REPEAT 500 { DEPOLARIZE1(1) 0 } Z 3 - )CIRCUIT"), - false, - false, - false, - 0.0, - false, - true); - })); + )CIRCUIT"), {.block_decomposition_from_introducing_remnant_edges = true}); + }), + "Can't analyze over-mixing DEPOLARIZE1 errors (probability > 3/4).\n" + "\n" + "Circuit stack trace:\n" + " at instruction #3 [which is a REPEAT 500 block]\n" + " at block's instruction #1 [which is DEPOLARIZE1(1) 0]"); } TEST(ErrorAnalyzer, too_many_symptoms) { @@ -2436,9 +2408,22 @@ TEST(ErrorAnalyzer, too_many_symptoms) { DETECTOR rec[-1] DETECTOR rec[-1] )CIRCUIT"); - ASSERT_EQ("", check_catch("max supported number of symptoms", [&] { - ErrorAnalyzer::circuit_to_detector_error_model(symptoms_20, true, false, false, 0.0, false, true); - })); + + ASSERT_EQ( + expect_catch_message([&](){ + circuit_to_dem( + symptoms_20, + {.decompose_errors = true, .block_decomposition_from_introducing_remnant_edges = true}); + }), + R"MSG(An error case in a composite error exceeded the max supported number of symptoms (<=15). +The 2 basis error cases (e.g. X, Z) used to form the combined error cases (e.g. Y = X*Z) are: +0: +1: D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19 + + +Circuit stack trace: + at instruction #1 [which is DEPOLARIZE1(0.001) 0])MSG"); + ASSERT_EQ( ErrorAnalyzer::circuit_to_detector_error_model(symptoms_20, false, false, false, 0.0, false, true), DetectorErrorModel(R"model( @@ -2447,57 +2432,63 @@ TEST(ErrorAnalyzer, too_many_symptoms) { } TEST(ErrorAnalyzer, decompose_error_failures) { - ASSERT_EQ("", check_catch("failed to decompose is 'D0, D1, D2'", [] { - ErrorAnalyzer::circuit_to_detector_error_model( - Circuit(R"CIRCUIT( + ASSERT_EQ( + expect_catch_message([&](){ + circuit_to_dem(Circuit(R"CIRCUIT( DEPOLARIZE1(0.001) 0 M 0 DETECTOR rec[-1] DETECTOR rec[-1] DETECTOR rec[-1] - )CIRCUIT"), - true, - false, - false, - 0.0, - false, - true); - })); - - ASSERT_EQ("", check_catch("decompose errors into graphlike components", [] { - ErrorAnalyzer::circuit_to_detector_error_model( - Circuit(R"CIRCUIT( + )CIRCUIT"), {.decompose_errors = true, .block_decomposition_from_introducing_remnant_edges = true}); + }), + R"MSG(Failed to decompose errors into graphlike components with at most two symptoms. +The error component that failed to decompose is 'D0, D1, D2'. + +In Python, you can ignore this error by passing `ignore_decomposition_failures=True` to `stim.Circuit.detector_error_model(...)`. +From the command line, you can ignore this error by passing the flag `--ignore_decomposition_failures` to `stim analyze_errors`. + +Note: `block_decomposition_from_introducing_remnant_edges` is ON. +Turning it off may prevent this error.)MSG"); + + ASSERT_EQ( + expect_catch_message([&](){ + circuit_to_dem(Circuit(R"CIRCUIT( X_ERROR(0.001) 0 M 0 DETECTOR rec[-1] DETECTOR rec[-1] DETECTOR rec[-1] - )CIRCUIT"), - true, - false, - false, - 0.0, - false, - true); - })); - - ASSERT_EQ("", check_catch("failed to decompose is 'D0, D1, D2, L5'", [] { - ErrorAnalyzer::circuit_to_detector_error_model( - Circuit(R"CIRCUIT( + )CIRCUIT"), {.decompose_errors = true, .block_decomposition_from_introducing_remnant_edges = true}); + }), + R"MSG(Failed to decompose errors into graphlike components with at most two symptoms. +The error component that failed to decompose is 'D0, D1, D2'. + +In Python, you can ignore this error by passing `ignore_decomposition_failures=True` to `stim.Circuit.detector_error_model(...)`. +From the command line, you can ignore this error by passing the flag `--ignore_decomposition_failures` to `stim analyze_errors`. + +Note: `block_decomposition_from_introducing_remnant_edges` is ON. +Turning it off may prevent this error.)MSG"); + + ASSERT_EQ( + expect_catch_message([&](){ + circuit_to_dem(Circuit(R"CIRCUIT( X_ERROR(0.001) 0 M 0 DETECTOR rec[-1] DETECTOR rec[-1] DETECTOR rec[-1] OBSERVABLE_INCLUDE(5) rec[-1] - )CIRCUIT"), - true, - false, - false, - 0.0, - false, - true); - })); + )CIRCUIT"), {.decompose_errors = true, .block_decomposition_from_introducing_remnant_edges = true}); + }), + R"MSG(Failed to decompose errors into graphlike components with at most two symptoms. +The error component that failed to decompose is 'D0, D1, D2, L5'. + +In Python, you can ignore this error by passing `ignore_decomposition_failures=True` to `stim.Circuit.detector_error_model(...)`. +From the command line, you can ignore this error by passing the flag `--ignore_decomposition_failures` to `stim analyze_errors`. + +Note: `block_decomposition_from_introducing_remnant_edges` is ON. +Turning it off may prevent this error.)MSG"); } TEST(ErrorAnalyzer, other_error_decomposition_fallback) { @@ -2846,10 +2837,31 @@ TEST(ErrorAnalyzer, mpp_ordering) { TEST(ErrorAnalyzer, anticommuting_observable_error_message_help) { for (size_t folding = 0; folding < 2; folding++) { ASSERT_EQ( - "", - check_catch( - R"ERROR(The circuit contains non-deterministic observables. -(Error analysis requires deterministic observables.) + expect_catch_message([&](){ + circuit_to_dem( + Circuit(R"CIRCUIT( + QUBIT_COORDS(1, 2, 3) 0 + RX 2 + REPEAT 10 { + REPEAT 20 { + C_XYZ 0 + R 1 + M 1 + DETECTOR rec[-1] + TICK + } + } + M 0 2 + OBSERVABLE_INCLUDE(0) rec[-1] rec[-2] + )CIRCUIT"), + {.flatten_loops = folding != 1}); + }), + R"ERROR(The circuit contains non-deterministic observables. + +To make an SVG picture of the problem, you can use the python API like this: + your_circuit.diagram('detslice-with-ops-svg', tick=range(0, 5), filter_coords=['L0', ]) +or the command line API like this: + stim diagram --in your_circuit_file.stim --type detslice-with-ops-svg --tick 0:5 --filter_coords L0 > output_image.svg This was discovered while analyzing an X-basis reset (RX) on: qubit 2 @@ -2863,39 +2875,42 @@ The backward-propagating error sensitivity for L0 was: Circuit stack trace: during TICK layer #1 of 201 - at instruction #2 [which is RX 2])ERROR", - [&] { - ErrorAnalyzer::circuit_to_detector_error_model( - Circuit(R"CIRCUIT( - QUBIT_COORDS(1, 2, 3) 0 - RX 2 - REPEAT 10 { - REPEAT 20 { - C_XYZ 0 - R 1 - M 1 - DETECTOR rec[-1] - TICK - } - } - M 0 2 - OBSERVABLE_INCLUDE(0) rec[-1] rec[-2] - )CIRCUIT"), - false, - folding == 1, - false, - 0.0, - false, - true); - })); + at instruction #2 [which is RX 2])ERROR"); ASSERT_EQ( - "", - check_catch( - R"ERROR(The circuit contains non-deterministic observables. -(Error analysis requires deterministic observables.) + expect_catch_message([&](){ + circuit_to_dem(Circuit(R"CIRCUIT( + TICK + SHIFT_COORDS(1000, 2000) + M 0 1 + REPEAT 100 { + RX 0 + DETECTOR rec[-1] + TICK + } + REPEAT 200 { + TICK + } + REPEAT 100 { + M 0 1 + SHIFT_COORDS(0, 100) + DETECTOR(1, 2, 3) rec[-1] rec[-3] + DETECTOR(4, 5, 6) rec[-2] rec[-4] + OBSERVABLE_INCLUDE(0) rec[-1] rec[-2] rec[-3] rec[-4] + TICK + } + REPEAT 1000 { + TICK + } + )CIRCUIT"), {.flatten_loops = folding != 1}); + }), + R"ERROR(The circuit contains non-deterministic observables. The circuit contains non-deterministic detectors. -(To allow non-deterministic detectors, use the `allow_gauge_detectors` option.) + +To make an SVG picture of the problem, you can use the python API like this: + your_circuit.diagram('detslice-with-ops-svg', tick=range(95, 105), filter_coords=['D101', 'L0', ]) +or the command line API like this: + stim diagram --in your_circuit_file.stim --type detslice-with-ops-svg --tick 95:105 --filter_coords D101:L0 > output_image.svg This was discovered while analyzing an X-basis reset (RX) on: qubit 0 @@ -2914,40 +2929,7 @@ The backward-propagating error sensitivity for L0 was: Circuit stack trace: during TICK layer #101 of 1402 at instruction #4 [which is a REPEAT 100 block] - at block's instruction #1 [which is RX 0])ERROR", - [&] { - ErrorAnalyzer::circuit_to_detector_error_model( - Circuit(R"CIRCUIT( - TICK - SHIFT_COORDS(1000, 2000) - M 0 1 - REPEAT 100 { - RX 0 - DETECTOR rec[-1] - TICK - } - REPEAT 200 { - TICK - } - REPEAT 100 { - M 0 1 - SHIFT_COORDS(0, 100) - DETECTOR(1, 2, 3) rec[-1] rec[-3] - DETECTOR(4, 5, 6) rec[-2] rec[-4] - OBSERVABLE_INCLUDE(0) rec[-1] rec[-2] rec[-3] rec[-4] - TICK - } - REPEAT 1000 { - TICK - } - )CIRCUIT"), - false, - folding == 1, - false, - 0.0, - false, - true); - })); + at block's instruction #1 [which is RX 0])ERROR"); } } diff --git a/src/stim/stabilizers/pauli_string_ref.inl b/src/stim/stabilizers/pauli_string_ref.inl index 1be812e7..7fcd5f65 100644 --- a/src/stim/stabilizers/pauli_string_ref.inl +++ b/src/stim/stabilizers/pauli_string_ref.inl @@ -989,9 +989,9 @@ template void PauliStringRef::do_SWAP(const CircuitInstruction &inst) { const auto &targets = inst.targets; assert((targets.size() & 1) == 0); - for (size_t k = 0; k < inst.targets.size(); k += 2) { - size_t k2 = reverse_order ? inst.targets.size() - 2 - k : k; - size_t q1 = inst.targets[k2].data, q2 = inst.targets[k2 + 1].data; + for (size_t k = 0; k < targets.size(); k += 2) { + size_t k2 = reverse_order ? targets.size() - 2 - k : k; + size_t q1 = targets[k2].data, q2 = targets[k2 + 1].data; zs[q1].swap_with(zs[q2]); xs[q1].swap_with(xs[q2]); } @@ -1195,9 +1195,9 @@ template void PauliStringRef::do_XCZ(const CircuitInstruction &inst) { const auto &targets = inst.targets; assert((targets.size() & 1) == 0); - for (size_t k = 0; k < inst.targets.size(); k += 2) { - size_t k2 = reverse_order ? inst.targets.size() - 2 - k : k; - size_t q1 = inst.targets[k2].data, q2 = inst.targets[k2 + 1].data; + for (size_t k = 0; k < targets.size(); k += 2) { + size_t k2 = reverse_order ? targets.size() - 2 - k : k; + size_t q1 = targets[k2].data, q2 = targets[k2 + 1].data; do_single_cx(inst, q2, q1); } } @@ -1238,9 +1238,9 @@ template void PauliStringRef::do_YCZ(const CircuitInstruction &inst) { const auto &targets = inst.targets; assert((targets.size() & 1) == 0); - for (size_t k = 0; k < inst.targets.size(); k += 2) { - size_t k2 = reverse_order ? inst.targets.size() - 2 - k : k; - size_t q1 = inst.targets[k2].data, q2 = inst.targets[k2 + 1].data; + for (size_t k = 0; k < targets.size(); k += 2) { + size_t k2 = reverse_order ? targets.size() - 2 - k : k; + size_t q1 = targets[k2].data, q2 = targets[k2 + 1].data; do_single_cy(inst, q2, q1); } } diff --git a/src/stim/util_top/export_crumble_url.cc b/src/stim/util_top/export_crumble_url.cc index fcb9765c..dab4bd92 100644 --- a/src/stim/util_top/export_crumble_url.cc +++ b/src/stim/util_top/export_crumble_url.cc @@ -7,6 +7,8 @@ std::string stim::export_crumble_url(const Circuit &circuit) { std::string_view s_view = s; std::vector> replace_rules{ {"QUBIT_COORDS", "Q"}, + {"DETECTOR", "DT"}, + {"OBSERVABLE_INCLUDE", "OI"}, {", ", ","}, {") ", ")"}, {" ", ""}, diff --git a/src/stim/util_top/export_crumble_url.test.cc b/src/stim/util_top/export_crumble_url.test.cc index 29061aac..e1436cb9 100644 --- a/src/stim/util_top/export_crumble_url.test.cc +++ b/src/stim/util_top/export_crumble_url.test.cc @@ -91,8 +91,8 @@ TEST(export_crumble, all_operations) { "X_ERROR(0.1)0;" "MR(0.01)0;" "SHIFT_COORDS(1,2,3);" - "DETECTOR(1,2,3)rec[-1];" - "OBSERVABLE_INCLUDE(0)rec[-1];" + "DT(1,2,3)rec[-1];" + "OI(0)rec[-1];" "MPAD_0_1_0;" "TICK;" "MRX_!0;" From 51b29e339b9828a51e57e7fdc615e3d81656d1a2 Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Fri, 2 Aug 2024 18:55:54 -0700 Subject: [PATCH 11/17] Fix rounding errors breaking buffer sizes of large gltf models (#810) - Add uint64_t/int64_t types to the JsonObj class so that sizes never touch floats - In match graph diagrams, color nodes with obs-crossing boundary edges in red instead of in black --- src/stim/diagram/basic_3d_diagram.cc | 2 +- src/stim/diagram/gate_data_3d.cc | 27 +-- src/stim/diagram/gltf.cc | 12 +- src/stim/diagram/gltf.h | 49 +++-- .../diagram/graph/match_graph_3d_drawer.cc | 17 +- src/stim/diagram/json_obj.cc | 168 +++++++++++------- src/stim/diagram/json_obj.h | 20 ++- testdata/circuit_all_ops_3d.gltf | 2 +- testdata/classical_feedback.gltf | 2 +- testdata/collapsing.gltf | 2 +- testdata/detector_pseudo_targets.gltf | 2 +- testdata/empty_match_graph.gltf | 2 +- testdata/lattice_surgery_cnot.gltf | 2 +- testdata/match_graph_no_coords.gltf | 2 +- testdata/match_graph_repetition_code.gltf | 2 +- testdata/match_graph_surface_code.gltf | 2 +- testdata/measurement_looping.gltf | 2 +- testdata/noise_gates_1.gltf | 2 +- testdata/noise_gates_2.gltf | 2 +- testdata/noise_gates_3.gltf | 2 +- testdata/repeat.gltf | 2 +- testdata/repetition_code.gltf | 2 +- testdata/single_qubits_gates.gltf | 2 +- testdata/surface_code.gltf | 2 +- testdata/tick.gltf | 2 +- testdata/two_qubits_gates.gltf | 2 +- 26 files changed, 194 insertions(+), 139 deletions(-) diff --git a/src/stim/diagram/basic_3d_diagram.cc b/src/stim/diagram/basic_3d_diagram.cc index b9cc590b..5baa916b 100644 --- a/src/stim/diagram/basic_3d_diagram.cc +++ b/src/stim/diagram/basic_3d_diagram.cc @@ -60,7 +60,7 @@ GltfScene Basic3dDiagram::to_gltf_scene() const { }); auto buf_purple_scattered_lines = std::shared_ptr>(new GltfBuffer<3>{ - {"buf_blue_scattered_lines"}, + {"buf_purple_scattered_lines"}, purple_line_data, }); diff --git a/src/stim/diagram/gate_data_3d.cc b/src/stim/diagram/gate_data_3d.cc index 6571747c..e260479b 100644 --- a/src/stim/diagram/gate_data_3d.cc +++ b/src/stim/diagram/gate_data_3d.cc @@ -342,7 +342,7 @@ std::pair> make_z_control_mesh() { return {"Z_CONTROL", mesh}; } -std::pair> make_detector_mesh() { +std::pair> make_detector_mesh(bool excited) { auto circle = make_circle_loop(8, CONTROL_RADIUS, true); auto circle2 = make_circle_loop(8, CONTROL_RADIUS, true); auto circle3 = make_circle_loop(8, CONTROL_RADIUS, true); @@ -354,44 +354,44 @@ std::pair> make_detector_mesh() { std::swap(e.xyz[0], e.xyz[1]); std::swap(e.xyz[1], e.xyz[2]); } - auto black_material = std::shared_ptr(new GltfMaterial{ - {"black"}, - {0, 0, 0, 1}, + auto material = std::shared_ptr(new GltfMaterial{ + {excited ? "det_red" : "det_black"}, + {excited ? 1.0f : 0.0f, excited ? 0.5f : 0.0f, excited ? 0.5f : 0.0f, 1}, 1, 1, true, nullptr, }); auto disc_interior = std::shared_ptr(new GltfPrimitive{ - {"detector_primitive_circle_interior"}, + {excited ? "excited_detector_primitive_circle_interior" : "detector_primitive_circle_interior"}, GL_TRIANGLE_FAN, circle, nullptr, - black_material, + material, }); auto disc_interior2 = std::shared_ptr(new GltfPrimitive{ - {"detector_primitive_circle_interior_2"}, + {excited ? "excited_detector_primitive_circle_interior_2" : "detector_primitive_circle_interior_2"}, GL_TRIANGLE_FAN, circle2, nullptr, - black_material, + material, }); auto disc_interior3 = std::shared_ptr(new GltfPrimitive{ - {"detector_primitive_circle_interior_3"}, + {excited ? "excited_detector_primitive_circle_interior_3" : "detector_primitive_circle_interior_3"}, GL_TRIANGLE_FAN, circle3, nullptr, - black_material, + material, }); auto mesh = std::shared_ptr(new GltfMesh{ - {"mesh_DETECTOR"}, + {excited ? "mesh_EXCITED_DETECTOR" : "mesh_DETECTOR"}, { disc_interior, disc_interior2, disc_interior3, }, }); - return {"DETECTOR", mesh}; + return {excited ? "EXCITED_DETECTOR" : "DETECTOR", mesh}; } std::map> stim_draw_internal::make_gate_primitives() { @@ -516,6 +516,7 @@ std::map> stim_draw_internal::make_g make_z_control_mesh(), make_xswap_control_mesh(), make_zswap_control_mesh(), - make_detector_mesh(), + make_detector_mesh(false), + make_detector_mesh(true), }; } diff --git a/src/stim/diagram/gltf.cc b/src/stim/diagram/gltf.cc index 10a2699e..0dc574ec 100644 --- a/src/stim/diagram/gltf.cc +++ b/src/stim/diagram/gltf.cc @@ -31,14 +31,14 @@ JsonObj GltfScene::_to_json_local() const { JsonObj GltfScene::to_json() { // Clear indices. visit([&](GltfId &item_id, const char *type, const std::function &to_json, uintptr_t abs_id) { - item_id.index = SIZE_MAX; + item_id.index = UINT64_MAX; }); // Re-index. std::map counts; visit([&](GltfId &item_id, const char *type, const std::function &to_json, uintptr_t abs_id) { auto &c = counts[type]; - if (item_id.index == SIZE_MAX || item_id.index == c) { + if (item_id.index == UINT64_MAX || item_id.index == c) { item_id.index = c; c++; } else if (item_id.index > c) { @@ -97,7 +97,8 @@ void GltfImage::visit(const gltf_visit_callback &callback) { JsonObj GltfImage::to_json() const { return std::map{ - {"name", id.name}, + // Note: saving space by not including names. + //{"name", id.name}, {"uri", uri}, }; } @@ -116,7 +117,8 @@ void GltfTexture::visit(const gltf_visit_callback &callback) { JsonObj GltfTexture::to_json() const { return std::map{ - {"name", id.name}, + // Note: saving space by not including names. +// {"name", id.name}, {"sampler", 0}, {"source", 0}, }; @@ -137,7 +139,7 @@ void GltfMaterial::visit(const gltf_visit_callback &callback) { JsonObj GltfMaterial::to_json() const { JsonObj result = std::map{ - {"name", id.name}, +// {"name", id.name}, {"pbrMetallicRoughness", std::map{ {"baseColorFactor", diff --git a/src/stim/diagram/gltf.h b/src/stim/diagram/gltf.h index 1abfc97e..5dd0a834 100644 --- a/src/stim/diagram/gltf.h +++ b/src/stim/diagram/gltf.h @@ -11,30 +11,23 @@ namespace stim_draw_internal { -constexpr size_t GL_FLOAT = 5126; -constexpr size_t GL_ARRAY_BUFFER = 34962; -constexpr size_t GL_UNSIGNED_SHORT = 5123; -constexpr size_t GL_ELEMENT_ARRAY_BUFFER = 34963; -constexpr size_t GL_TRIANGLE_STRIP = 5; -constexpr size_t GL_TRIANGLES = 4; -constexpr size_t GL_TRIANGLE_FAN = 6; - -constexpr size_t GL_LINES = 1; -constexpr size_t GL_LINE_STRIP = 3; -constexpr size_t GL_LINE_LOOP = 2; - -constexpr size_t GL_REPEAT = 10497; -constexpr size_t GL_CLAMP = 10496; -constexpr size_t GL_CLAMP_TO_EDGE = 33071; -constexpr size_t GL_LINEAR = 9729; -constexpr size_t GL_LINEAR_MIPMAP_NEAREST = 9987; -constexpr size_t GL_NEAREST = 9728; +constexpr uint64_t GL_FLOAT = 5126; +constexpr uint64_t GL_ARRAY_BUFFER = 34962; +constexpr uint64_t GL_TRIANGLES = 4; +constexpr uint64_t GL_TRIANGLE_FAN = 6; + +constexpr uint64_t GL_LINES = 1; +constexpr uint64_t GL_LINE_STRIP = 3; +constexpr uint64_t GL_LINE_LOOP = 2; + +constexpr uint64_t GL_CLAMP_TO_EDGE = 33071; +constexpr uint64_t GL_NEAREST = 9728; struct GltfId { std::string name; - size_t index; + uint64_t index; - GltfId(std::string name) : name(name), index(SIZE_MAX) { + GltfId(std::string name) : name(name), index(UINT64_MAX) { } GltfId() = delete; }; @@ -81,7 +74,7 @@ struct GltfBuffer { return std::map{ {"name", id.name}, {"uri", ss.str()}, - {"byteLength", vertex_data_size}, + {"byteLength", (uint64_t)vertex_data_size}, }; } @@ -90,7 +83,7 @@ struct GltfBuffer { {"name", id.name}, {"buffer", id.index}, {"byteOffset", 0}, - {"byteLength", vertices.size() * sizeof(Coord)}, + {"byteLength", (uint64_t)(vertices.size() * sizeof(Coord))}, {"target", GL_ARRAY_BUFFER}, }; } @@ -115,7 +108,7 @@ struct GltfBuffer { {"bufferView", id.index}, {"byteOffset", 0}, {"componentType", GL_FLOAT}, - {"count", vertices.size()}, + {"count", (uint64_t)vertices.size()}, {"type", "VEC" + std::to_string(DIM)}, {"min", std::move(min_v)}, {"max", std::move(max_v)}, @@ -125,10 +118,10 @@ struct GltfBuffer { struct GltfSampler { GltfId id; - size_t magFilter; - size_t minFilter; - size_t wrapS; - size_t wrapT; + uint64_t magFilter; + uint64_t minFilter; + uint64_t wrapS; + uint64_t wrapT; void visit(const gltf_visit_callback &callback); JsonObj to_json() const; @@ -165,7 +158,7 @@ struct GltfMaterial { struct GltfPrimitive { GltfId id; - size_t element_type; + uint64_t element_type; std::shared_ptr> position_buffer; std::shared_ptr> tex_coords_buffer; std::shared_ptr material; diff --git a/src/stim/diagram/graph/match_graph_3d_drawer.cc b/src/stim/diagram/graph/match_graph_3d_drawer.cc index c7558016..bcf5e504 100644 --- a/src/stim/diagram/graph/match_graph_3d_drawer.cc +++ b/src/stim/diagram/graph/match_graph_3d_drawer.cc @@ -79,6 +79,7 @@ Basic3dDiagram stim_draw_internal::dem_match_graph_to_basic_3d_diagram(const sti auto minmax = Coord<3>::min_max(coords); auto center = (minmax.first + minmax.second) * 0.5; + std::set boundary_observable_detectors; std::vector> det_coords; auto handle_contiguous_targets = [&](SpanRef targets) { bool has_observables = false; @@ -102,6 +103,13 @@ Basic3dDiagram stim_draw_internal::dem_match_graph_to_basic_3d_diagram(const sti } auto a = det_coords[0]; det_coords.push_back(a + d * 10); + if (has_observables) { + for (auto t : targets) { + if (t.is_relative_detector_id()) { + boundary_observable_detectors.insert(t.val()); + } + } + } } if (det_coords.size() == 2) { if (has_observables) { @@ -129,10 +137,6 @@ Basic3dDiagram stim_draw_internal::dem_match_graph_to_basic_3d_diagram(const sti } }; - for (const auto &c : coords) { - out.elements.push_back({"DETECTOR", c}); - } - dem.iter_flatten_error_instructions([&](const DemInstruction &op) { if (op.type != DemInstructionType::DEM_ERROR) { return; @@ -148,5 +152,10 @@ Basic3dDiagram stim_draw_internal::dem_match_graph_to_basic_3d_diagram(const sti handle_contiguous_targets({p + start, op.target_data.ptr_end}); }); + for (size_t k = 0; k < coords.size(); k++) { + bool excited = boundary_observable_detectors.find(k) != boundary_observable_detectors.end(); + out.elements.push_back({excited ? "EXCITED_DETECTOR" : "DETECTOR", coords[k]}); + } + return out; } diff --git a/src/stim/diagram/json_obj.cc b/src/stim/diagram/json_obj.cc index 1654c9e9..d59bc578 100644 --- a/src/stim/diagram/json_obj.cc +++ b/src/stim/diagram/json_obj.cc @@ -5,41 +5,60 @@ using namespace stim; using namespace stim_draw_internal; -JsonObj::JsonObj(bool boolean) : boolean(boolean), type(4) { +enum JsonType : uint8_t { + JsonTypeEmpty = 0, + JsonTypeMap = 1, + JsonTypeArray = 2, + JsonTypeBool = 3, + JsonTypeSingle = 4, + JsonTypeDouble = 5, + JsonTypeInt64 = 6, + JsonTypeUInt64 = 7, + JsonTypeString = 8, +}; + +JsonObj::JsonObj(float num) : val_float(num), type(JsonTypeSingle) { +} +JsonObj::JsonObj(double num) : val_double(num), type(JsonTypeDouble) { +} +JsonObj::JsonObj(uint64_t num) : val_uint64_t(num), type(JsonTypeUInt64) { +} +JsonObj::JsonObj(uint32_t num) : val_uint64_t(num), type(JsonTypeUInt64) { } -JsonObj::JsonObj(int num) : num(num), type(0) { +JsonObj::JsonObj(uint16_t num) : val_uint64_t(num), type(JsonTypeUInt64) { } -JsonObj::JsonObj(size_t num) : num(num), type(0) { +JsonObj::JsonObj(uint8_t num) : val_uint64_t(num), type(JsonTypeUInt64) { } -JsonObj::JsonObj(float num) : num(num), type(0) { +JsonObj::JsonObj(int8_t num) : val_int64_t(num), type(JsonTypeInt64) { } -JsonObj::JsonObj(double num) : double_num(num), type(11) { +JsonObj::JsonObj(int16_t num) : val_int64_t(num), type(JsonTypeInt64) { +} +JsonObj::JsonObj(int32_t num) : val_int64_t(num), type(JsonTypeInt64) { +} +JsonObj::JsonObj(int64_t num) : val_int64_t(num), type(JsonTypeInt64) { } -JsonObj::JsonObj(std::string text) : text(text), type(1) { +JsonObj::JsonObj(std::string text) : text(text), type(JsonTypeString) { } -JsonObj::JsonObj(const char *text) : text(text), type(1) { +JsonObj::JsonObj(const char *text) : text(text), type(JsonTypeString) { } -JsonObj::JsonObj(std::map map) : map(map), type(2) { +JsonObj::JsonObj(std::map map) : map(map), type(JsonTypeMap) { } -JsonObj::JsonObj(std::vector arr) : arr(arr), type(3) { +JsonObj::JsonObj(std::vector arr) : arr(arr), type(JsonTypeArray) { + +}; +JsonObj::JsonObj(bool boolean) : val_boolean(boolean), type(JsonTypeBool) { } void JsonObj::clear() { - auto old_type = type; - if (old_type == 1) { - text.clear(); - } else if (old_type == 2) { - map.clear(); - } else if (old_type == 3) { - arr.clear(); - } - type = 0; - num = 0; - double_num = 0; + text.clear(); + map.clear(); + arr.clear(); + type = JsonTypeEmpty; + val_uint64_t = 0; } void JsonObj::write_str(std::string_view s, std::ostream &out) { @@ -70,55 +89,76 @@ void indented_new_line(std::ostream &out, int64_t indent) { } void JsonObj::write(std::ostream &out, int64_t indent) const { - if (type == 0) { - out << num; - } else if (type == 11) { - auto p = out.precision(); - out.precision(std::numeric_limits::digits10); - out << double_num; - out.precision(p); - } else if (type == 1) { - write_str(text, out); - } else if (type == 2) { - out << "{"; - indented_new_line(out, indent + 2); - bool first = true; - for (const auto &e : map) { - if (first) { - first = false; - } else { - out << ','; - indented_new_line(out, indent + 2); + switch (type) { + case JsonTypeMap: { + out << "{"; + indented_new_line(out, indent + 2); + bool first = true; + for (const auto &e : map) { + if (first) { + first = false; + } else { + out << ','; + indented_new_line(out, indent + 2); + } + write_str(e.first, out); + out << ':'; + e.second.write(out, indent + 2); } - write_str(e.first, out); - out << ':'; - e.second.write(out, indent + 2); - } - if (!first) { - indented_new_line(out, indent); + if (!first) { + indented_new_line(out, indent); + } + out << "}"; + break; } - out << "}"; - } else if (type == 3) { - out << "["; - indented_new_line(out, indent + 2); - bool first = true; - for (const auto &e : arr) { - if (first) { - first = false; - } else { - out << ','; - indented_new_line(out, indent + 2); + case JsonTypeArray: { + out << "["; + indented_new_line(out, indent + 2); + bool first = true; + for (const auto &e : arr) { + if (first) { + first = false; + } else { + out << ','; + indented_new_line(out, indent + 2); + } + e.write(out, indent + 2); } - e.write(out, indent + 2); + if (!first) { + indented_new_line(out, indent); + } + out << "]"; + break; + } + case JsonTypeString: { + write_str(text, out); + break; + } + case JsonTypeBool: { + out << (val_boolean ? "true" : "false"); + break; + } + case JsonTypeSingle: { + out << val_float; + break; + } + case JsonTypeDouble: { + auto p = out.precision(); + out.precision(std::numeric_limits::digits10); + out << val_double; + out.precision(p); + break; + } + case JsonTypeInt64: { + out << val_int64_t; + break; } - if (!first) { - indented_new_line(out, indent); + case JsonTypeUInt64: { + out << val_uint64_t; + break; } - out << "]"; - } else if (type == 4) { - out << (boolean ? "true" : "false"); - } else { - throw std::invalid_argument("unknown type"); + default: + throw std::invalid_argument("unknown type"); } } diff --git a/src/stim/diagram/json_obj.h b/src/stim/diagram/json_obj.h index f373d4d8..1cf8c8c7 100644 --- a/src/stim/diagram/json_obj.h +++ b/src/stim/diagram/json_obj.h @@ -24,19 +24,29 @@ namespace stim_draw_internal { struct JsonObj { - float num = 0; - double double_num = 0; + union { + float val_float; + double val_double; + int64_t val_int64_t; + uint64_t val_uint64_t; + bool val_boolean; + }; std::string text; std::map map; std::vector arr; - bool boolean = false; uint8_t type; JsonObj(bool boolean); - JsonObj(int num); - JsonObj(size_t num); JsonObj(float num); JsonObj(double double_num); + JsonObj(uint8_t int_num); + JsonObj(uint16_t int_num); + JsonObj(uint32_t int_num); + JsonObj(uint64_t uint_num); + JsonObj(int8_t int_num); + JsonObj(int16_t int_num); + JsonObj(int32_t int_num); + JsonObj(int64_t int_num); JsonObj(std::string text); JsonObj(const char *text); JsonObj(std::map map); diff --git a/testdata/circuit_all_ops_3d.gltf b/testdata/circuit_all_ops_3d.gltf index a53263e8..780820cd 100644 --- a/testdata/circuit_all_ops_3d.gltf +++ b/testdata/circuit_all_ops_3d.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.4375],"min":[0,0.375],"name":"tex_coords_gate_I","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.4375],"min":[0,0.375],"name":"tex_coords_gate_X","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.5],"min":[0,0.4375],"name":"tex_coords_gate_Y","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.5625],"min":[0,0.5],"name":"tex_coords_gate_Z","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.625],"min":[0.0625,0.5625],"name":"tex_coords_gate_C_XYZ","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.625],"min":[0.125,0.5625],"name":"tex_coords_gate_C_ZYX","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5625],"min":[0.0625,0.5],"name":"tex_coords_gate_H_XY","type":"VEC2"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5],"min":[0.0625,0.4375],"name":"tex_coords_gate_H","type":"VEC2"},{"bufferView":9,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.4375],"min":[0.0625,0.375],"name":"tex_coords_gate_H_YZ","type":"VEC2"},{"bufferView":10,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.4375],"min":[0.125,0.375],"name":"tex_coords_gate_SQRT_X","type":"VEC2"},{"bufferView":11,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.4375],"min":[0.1875,0.375],"name":"tex_coords_gate_SQRT_X_DAG","type":"VEC2"},{"bufferView":12,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.5],"min":[0.125,0.4375],"name":"tex_coords_gate_SQRT_Y","type":"VEC2"},{"bufferView":13,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.5],"min":[0.1875,0.4375],"name":"tex_coords_gate_SQRT_Y_DAG","type":"VEC2"},{"bufferView":14,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.5625],"min":[0.125,0.5],"name":"tex_coords_gate_S","type":"VEC2"},{"bufferView":15,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.5625],"min":[0.1875,0.5],"name":"tex_coords_gate_S_DAG","type":"VEC2"},{"bufferView":16,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":17,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.45254835486412,0.45254835486412],"min":[0,-0.45254835486412,-0.45254835486412],"name":"control_zswap_line_cross","type":"VEC3"},{"bufferView":18,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":19,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.45254835486412,0.45254835486412],"min":[0,-0.45254835486412,-0.45254835486412],"name":"control_xswap_line_cross","type":"VEC3"},{"bufferView":20,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.625],"min":[0.3125,0.5625],"name":"tex_coords_gate_ISWAP","type":"VEC2"},{"bufferView":21,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.625],"min":[0.375,0.5625],"name":"tex_coords_gate_ISWAP_DAG","type":"VEC2"},{"bufferView":22,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.625],"min":[0.4375,0.5625],"name":"tex_coords_gate_SWAP","type":"VEC2"},{"bufferView":23,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.4375],"min":[0.6875,0.375],"name":"tex_coords_gate_SQRT_XX","type":"VEC2"},{"bufferView":24,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.4375],"min":[0.75,0.375],"name":"tex_coords_gate_SQRT_XX_DAG","type":"VEC2"},{"bufferView":25,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.5],"min":[0.6875,0.4375],"name":"tex_coords_gate_SQRT_YY","type":"VEC2"},{"bufferView":26,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.5],"min":[0.75,0.4375],"name":"tex_coords_gate_SQRT_YY_DAG","type":"VEC2"},{"bufferView":27,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.5625],"min":[0.6875,0.5],"name":"tex_coords_gate_SQRT_ZZ","type":"VEC2"},{"bufferView":28,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.5625],"min":[0.75,0.5],"name":"tex_coords_gate_SQRT_ZZ_DAG","type":"VEC2"},{"bufferView":29,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":30,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"control_x_line_cross","type":"VEC3"},{"bufferView":31,"byteOffset":0,"componentType":5126,"count":3,"max":[0,0.400000005960464,0.346410155296326],"min":[0,-0.200000032782555,-0.346410185098648],"name":"circle_loop","type":"VEC3"},{"bufferView":32,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":33,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.4375],"min":[0.5,0.375],"name":"tex_coords_gate_E:X","type":"VEC2"},{"bufferView":34,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.5],"min":[0.5,0.4375],"name":"tex_coords_gate_E:Y","type":"VEC2"},{"bufferView":35,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.5625],"min":[0.5,0.5],"name":"tex_coords_gate_E:Z","type":"VEC2"},{"bufferView":36,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.4375],"min":[0.5625,0.375],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","type":"VEC2"},{"bufferView":37,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.5],"min":[0.5625,0.4375],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","type":"VEC2"},{"bufferView":38,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.5625],"min":[0.5625,0.5],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","type":"VEC2"},{"bufferView":39,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.625],"min":[0.1875,0.5625],"name":"tex_coords_gate_DEPOLARIZE1","type":"VEC2"},{"bufferView":40,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.625],"min":[0.25,0.5625],"name":"tex_coords_gate_DEPOLARIZE2","type":"VEC2"},{"bufferView":41,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.625],"min":[0.5,0.5625],"name":"tex_coords_gate_PAULI_CHANNEL_1","type":"VEC2"},{"bufferView":42,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.625],"min":[0.5625,0.5625],"name":"tex_coords_gate_PAULI_CHANNEL_2","type":"VEC2"},{"bufferView":43,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.4375],"min":[0.4375,0.375],"name":"tex_coords_gate_X_ERROR","type":"VEC2"},{"bufferView":44,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.5],"min":[0.4375,0.4375],"name":"tex_coords_gate_Y_ERROR","type":"VEC2"},{"bufferView":45,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.5625],"min":[0.4375,0.5],"name":"tex_coords_gate_Z_ERROR","type":"VEC2"},{"bufferView":46,"byteOffset":0,"componentType":5126,"count":12,"max":[0.9375,0.625],"min":[0.875,0.5625],"name":"tex_coords_gate_HERALDED_ERASE","type":"VEC2"},{"bufferView":47,"byteOffset":0,"componentType":5126,"count":12,"max":[1,0.625],"min":[0.9375,0.5625],"name":"tex_coords_gate_HERALDED_PAULI_CHANNEL_1","type":"VEC2"},{"bufferView":48,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.4375],"min":[0.625,0.375],"name":"tex_coords_gate_MPP:X","type":"VEC2"},{"bufferView":49,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5],"min":[0.625,0.4375],"name":"tex_coords_gate_MPP:Y","type":"VEC2"},{"bufferView":50,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5625],"min":[0.625,0.5],"name":"tex_coords_gate_MPP:Z","type":"VEC2"},{"bufferView":51,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.6875],"min":[0,0.625],"name":"tex_coords_gate_SPP:X","type":"VEC2"},{"bufferView":52,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.6875],"min":[0.0625,0.625],"name":"tex_coords_gate_SPP:Y","type":"VEC2"},{"bufferView":53,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.6875],"min":[0.125,0.625],"name":"tex_coords_gate_SPP:Z","type":"VEC2"},{"bufferView":54,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.6875],"min":[0.1875,0.625],"name":"tex_coords_gate_SPP_DAG:X","type":"VEC2"},{"bufferView":55,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.6875],"min":[0.25,0.625],"name":"tex_coords_gate_SPP_DAG:Y","type":"VEC2"},{"bufferView":56,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.6875],"min":[0.3125,0.625],"name":"tex_coords_gate_SPP_DAG:Z","type":"VEC2"},{"bufferView":57,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.4375],"min":[0.375,0.375],"name":"tex_coords_gate_MRX","type":"VEC2"},{"bufferView":58,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5],"min":[0.375,0.4375],"name":"tex_coords_gate_MRY","type":"VEC2"},{"bufferView":59,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5625],"min":[0.375,0.5],"name":"tex_coords_gate_MR","type":"VEC2"},{"bufferView":60,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.4375],"min":[0.25,0.375],"name":"tex_coords_gate_MX","type":"VEC2"},{"bufferView":61,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5],"min":[0.25,0.4375],"name":"tex_coords_gate_MY","type":"VEC2"},{"bufferView":62,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":63,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.4375],"min":[0.3125,0.375],"name":"tex_coords_gate_RX","type":"VEC2"},{"bufferView":64,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5],"min":[0.3125,0.4375],"name":"tex_coords_gate_RY","type":"VEC2"},{"bufferView":65,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5625],"min":[0.3125,0.5],"name":"tex_coords_gate_R","type":"VEC2"},{"bufferView":66,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.625],"min":[0.625,0.5625],"name":"tex_coords_gate_MXX","type":"VEC2"},{"bufferView":67,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.625],"min":[0.6875,0.5625],"name":"tex_coords_gate_MYY","type":"VEC2"},{"bufferView":68,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.625],"min":[0.75,0.5625],"name":"tex_coords_gate_MZZ","type":"VEC2"},{"bufferView":69,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.625],"min":[0.8125,0.5625],"name":"tex_coords_gate_MPAD","type":"VEC2"},{"bufferView":70,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.4375],"min":[0.8125,0.375],"name":"tex_coords_gate_X:REC","type":"VEC2"},{"bufferView":71,"byteOffset":0,"componentType":5126,"count":12,"max":[0.9375,0.5],"min":[0.875,0.4375],"name":"tex_coords_gate_Y:SWEEP","type":"VEC2"},{"bufferView":72,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.5625],"min":[0.8125,0.5],"name":"tex_coords_gate_Z:REC","type":"VEC2"},{"bufferView":73,"byteOffset":0,"componentType":5126,"count":142,"max":[1,-2,-0],"min":[-29,-34,-32],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":74,"byteOffset":0,"componentType":5126,"count":30,"max":[0,0.5,1],"min":[-20.25,-35,-33],"name":"buf_red_scattered_lines","type":"VEC3"},{"bufferView":75,"byteOffset":0,"componentType":5126,"count":96,"max":[-0.75,-1.20000004768372,0.5],"min":[-26.25,-1.60000002384186,-32.5],"name":"buf_blue_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_I","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_C_XYZ","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_C_ZYX","target":34962},{"buffer":7,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H_XY","target":34962},{"buffer":8,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H","target":34962},{"buffer":9,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H_YZ","target":34962},{"buffer":10,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_X","target":34962},{"buffer":11,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_X_DAG","target":34962},{"buffer":12,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_Y","target":34962},{"buffer":13,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_Y_DAG","target":34962},{"buffer":14,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_S","target":34962},{"buffer":15,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_S_DAG","target":34962},{"buffer":16,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":17,"byteLength":48,"byteOffset":0,"name":"control_zswap_line_cross","target":34962},{"buffer":18,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":19,"byteLength":48,"byteOffset":0,"name":"control_xswap_line_cross","target":34962},{"buffer":20,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ISWAP","target":34962},{"buffer":21,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ISWAP_DAG","target":34962},{"buffer":22,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SWAP","target":34962},{"buffer":23,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_XX","target":34962},{"buffer":24,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_XX_DAG","target":34962},{"buffer":25,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_YY","target":34962},{"buffer":26,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_YY_DAG","target":34962},{"buffer":27,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_ZZ","target":34962},{"buffer":28,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_ZZ_DAG","target":34962},{"buffer":29,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":30,"byteLength":48,"byteOffset":0,"name":"control_x_line_cross","target":34962},{"buffer":31,"byteLength":36,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":32,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":33,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:X","target":34962},{"buffer":34,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:Y","target":34962},{"buffer":35,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:Z","target":34962},{"buffer":36,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","target":34962},{"buffer":37,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","target":34962},{"buffer":38,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","target":34962},{"buffer":39,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_DEPOLARIZE1","target":34962},{"buffer":40,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_DEPOLARIZE2","target":34962},{"buffer":41,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_PAULI_CHANNEL_1","target":34962},{"buffer":42,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_PAULI_CHANNEL_2","target":34962},{"buffer":43,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X_ERROR","target":34962},{"buffer":44,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y_ERROR","target":34962},{"buffer":45,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z_ERROR","target":34962},{"buffer":46,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_HERALDED_ERASE","target":34962},{"buffer":47,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_HERALDED_PAULI_CHANNEL_1","target":34962},{"buffer":48,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:X","target":34962},{"buffer":49,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Y","target":34962},{"buffer":50,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Z","target":34962},{"buffer":51,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP:X","target":34962},{"buffer":52,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP:Y","target":34962},{"buffer":53,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP:Z","target":34962},{"buffer":54,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP_DAG:X","target":34962},{"buffer":55,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP_DAG:Y","target":34962},{"buffer":56,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP_DAG:Z","target":34962},{"buffer":57,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MRX","target":34962},{"buffer":58,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MRY","target":34962},{"buffer":59,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MR","target":34962},{"buffer":60,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MX","target":34962},{"buffer":61,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MY","target":34962},{"buffer":62,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":63,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_RX","target":34962},{"buffer":64,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_RY","target":34962},{"buffer":65,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_R","target":34962},{"buffer":66,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MXX","target":34962},{"buffer":67,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MYY","target":34962},{"buffer":68,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MZZ","target":34962},{"buffer":69,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPAD","target":34962},{"buffer":70,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X:REC","target":34962},{"buffer":71,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y:SWEEP","target":34962},{"buffer":72,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z:REC","target":34962},{"buffer":73,"byteLength":1704,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":74,"byteLength":360,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962},{"buffer":75,"byteLength":1152,"byteOffset":0,"name":"buf_blue_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_I","uri":"data:application/octet-stream;base64,AACAPQAAwD4AAAAAAADAPgAAgD0AAOA+AAAAAAAAwD4AAAAAAADgPgAAgD0AAOA+AACAPQAA4D4AAIA9AADAPgAAAAAAAOA+AAAAAAAA4D4AAIA9AADAPgAAAAAAAMA+"},{"byteLength":96,"name":"tex_coords_gate_X","uri":"data:application/octet-stream;base64,AACAPQAAwD4AAAAAAADAPgAAgD0AAOA+AAAAAAAAwD4AAAAAAADgPgAAgD0AAOA+AACAPQAA4D4AAIA9AADAPgAAAAAAAOA+AAAAAAAA4D4AAIA9AADAPgAAAAAAAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y","uri":"data:application/octet-stream;base64,AACAPQAA4D4AAAAAAADgPgAAgD0AAAA/AAAAAAAA4D4AAAAAAAAAPwAAgD0AAAA/AACAPQAAAD8AAIA9AADgPgAAAAAAAAA/AAAAAAAAAD8AAIA9AADgPgAAAAAAAOA+"},{"byteLength":96,"name":"tex_coords_gate_Z","uri":"data:application/octet-stream;base64,AACAPQAAAD8AAAAAAAAAPwAAgD0AABA/AAAAAAAAAD8AAAAAAAAQPwAAgD0AABA/AACAPQAAED8AAIA9AAAAPwAAAAAAABA/AAAAAAAAED8AAIA9AAAAPwAAAAAAAAA/"},{"byteLength":96,"name":"tex_coords_gate_C_XYZ","uri":"data:application/octet-stream;base64,AAAAPgAAED8AAIA9AAAQPwAAAD4AACA/AACAPQAAED8AAIA9AAAgPwAAAD4AACA/AAAAPgAAID8AAAA+AAAQPwAAgD0AACA/AACAPQAAID8AAAA+AAAQPwAAgD0AABA/"},{"byteLength":96,"name":"tex_coords_gate_C_ZYX","uri":"data:application/octet-stream;base64,AABAPgAAED8AAAA+AAAQPwAAQD4AACA/AAAAPgAAED8AAAA+AAAgPwAAQD4AACA/AABAPgAAID8AAEA+AAAQPwAAAD4AACA/AAAAPgAAID8AAEA+AAAQPwAAAD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_H_XY","uri":"data:application/octet-stream;base64,AAAAPgAAAD8AAIA9AAAAPwAAAD4AABA/AACAPQAAAD8AAIA9AAAQPwAAAD4AABA/AAAAPgAAED8AAAA+AAAAPwAAgD0AABA/AACAPQAAED8AAAA+AAAAPwAAgD0AAAA/"},{"byteLength":96,"name":"tex_coords_gate_H","uri":"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+"},{"byteLength":96,"name":"tex_coords_gate_H_YZ","uri":"data:application/octet-stream;base64,AAAAPgAAwD4AAIA9AADAPgAAAD4AAOA+AACAPQAAwD4AAIA9AADgPgAAAD4AAOA+AAAAPgAA4D4AAAA+AADAPgAAgD0AAOA+AACAPQAA4D4AAAA+AADAPgAAgD0AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_X","uri":"data:application/octet-stream;base64,AABAPgAAwD4AAAA+AADAPgAAQD4AAOA+AAAAPgAAwD4AAAA+AADgPgAAQD4AAOA+AABAPgAA4D4AAEA+AADAPgAAAD4AAOA+AAAAPgAA4D4AAEA+AADAPgAAAD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_X_DAG","uri":"data:application/octet-stream;base64,AACAPgAAwD4AAEA+AADAPgAAgD4AAOA+AABAPgAAwD4AAEA+AADgPgAAgD4AAOA+AACAPgAA4D4AAIA+AADAPgAAQD4AAOA+AABAPgAA4D4AAIA+AADAPgAAQD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_Y","uri":"data:application/octet-stream;base64,AABAPgAA4D4AAAA+AADgPgAAQD4AAAA/AAAAPgAA4D4AAAA+AAAAPwAAQD4AAAA/AABAPgAAAD8AAEA+AADgPgAAAD4AAAA/AAAAPgAAAD8AAEA+AADgPgAAAD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_Y_DAG","uri":"data:application/octet-stream;base64,AACAPgAA4D4AAEA+AADgPgAAgD4AAAA/AABAPgAA4D4AAEA+AAAAPwAAgD4AAAA/AACAPgAAAD8AAIA+AADgPgAAQD4AAAA/AABAPgAAAD8AAIA+AADgPgAAQD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_S","uri":"data:application/octet-stream;base64,AABAPgAAAD8AAAA+AAAAPwAAQD4AABA/AAAAPgAAAD8AAAA+AAAQPwAAQD4AABA/AABAPgAAED8AAEA+AAAAPwAAAD4AABA/AAAAPgAAED8AAEA+AAAAPwAAAD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_S_DAG","uri":"data:application/octet-stream;base64,AACAPgAAAD8AAEA+AAAAPwAAgD4AABA/AABAPgAAAD8AAEA+AAAQPwAAgD4AABA/AACAPgAAED8AAIA+AAAAPwAAQD4AABA/AABAPgAAED8AAIA+AAAAPwAAQD4AAAA/"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_zswap_line_cross","uri":"data:application/octet-stream;base64,AAAAAGu0575rtOe+AAAAAGu05z5rtOc+AAAAAGu0575rtOc+AAAAAGu05z5rtOe+"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_xswap_line_cross","uri":"data:application/octet-stream;base64,AAAAAGu0575rtOe+AAAAAGu05z5rtOc+AAAAAGu0575rtOc+AAAAAGu05z5rtOe+"},{"byteLength":96,"name":"tex_coords_gate_ISWAP","uri":"data:application/octet-stream;base64,AADAPgAAED8AAKA+AAAQPwAAwD4AACA/AACgPgAAED8AAKA+AAAgPwAAwD4AACA/AADAPgAAID8AAMA+AAAQPwAAoD4AACA/AACgPgAAID8AAMA+AAAQPwAAoD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_ISWAP_DAG","uri":"data:application/octet-stream;base64,AADgPgAAED8AAMA+AAAQPwAA4D4AACA/AADAPgAAED8AAMA+AAAgPwAA4D4AACA/AADgPgAAID8AAOA+AAAQPwAAwD4AACA/AADAPgAAID8AAOA+AAAQPwAAwD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_SWAP","uri":"data:application/octet-stream;base64,AAAAPwAAED8AAOA+AAAQPwAAAD8AACA/AADgPgAAED8AAOA+AAAgPwAAAD8AACA/AAAAPwAAID8AAAA/AAAQPwAA4D4AACA/AADgPgAAID8AAAA/AAAQPwAA4D4AABA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_XX","uri":"data:application/octet-stream;base64,AABAPwAAwD4AADA/AADAPgAAQD8AAOA+AAAwPwAAwD4AADA/AADgPgAAQD8AAOA+AABAPwAA4D4AAEA/AADAPgAAMD8AAOA+AAAwPwAA4D4AAEA/AADAPgAAMD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_XX_DAG","uri":"data:application/octet-stream;base64,AABQPwAAwD4AAEA/AADAPgAAUD8AAOA+AABAPwAAwD4AAEA/AADgPgAAUD8AAOA+AABQPwAA4D4AAFA/AADAPgAAQD8AAOA+AABAPwAA4D4AAFA/AADAPgAAQD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_YY","uri":"data:application/octet-stream;base64,AABAPwAA4D4AADA/AADgPgAAQD8AAAA/AAAwPwAA4D4AADA/AAAAPwAAQD8AAAA/AABAPwAAAD8AAEA/AADgPgAAMD8AAAA/AAAwPwAAAD8AAEA/AADgPgAAMD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_YY_DAG","uri":"data:application/octet-stream;base64,AABQPwAA4D4AAEA/AADgPgAAUD8AAAA/AABAPwAA4D4AAEA/AAAAPwAAUD8AAAA/AABQPwAAAD8AAFA/AADgPgAAQD8AAAA/AABAPwAAAD8AAFA/AADgPgAAQD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_ZZ","uri":"data:application/octet-stream;base64,AABAPwAAAD8AADA/AAAAPwAAQD8AABA/AAAwPwAAAD8AADA/AAAQPwAAQD8AABA/AABAPwAAED8AAEA/AAAAPwAAMD8AABA/AAAwPwAAED8AAEA/AAAAPwAAMD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_ZZ_DAG","uri":"data:application/octet-stream;base64,AABQPwAAAD8AAEA/AAAAPwAAUD8AABA/AABAPwAAAD8AAEA/AAAQPwAAUD8AABA/AABQPwAAED8AAFA/AAAAPwAAQD8AABA/AABAPwAAED8AAFA/AAAAPwAAQD8AAAA/"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_x_line_cross","uri":"data:application/octet-stream;base64,AAAAAM3MzL4AAAAAAAAAAM3MzD4AAAAAAAAAAAAAAADNzMy+AAAAAAAAAADNzMw+"},{"byteLength":36,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAM/MTL6sXLE+AAAAAMvMTL6tXLG+"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":96,"name":"tex_coords_gate_E:X","uri":"data:application/octet-stream;base64,AAAQPwAAwD4AAAA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/AADgPgAAED8AAOA+AAAQPwAA4D4AABA/AADAPgAAAD8AAOA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_E:Y","uri":"data:application/octet-stream;base64,AAAQPwAA4D4AAAA/AADgPgAAED8AAAA/AAAAPwAA4D4AAAA/AAAAPwAAED8AAAA/AAAQPwAAAD8AABA/AADgPgAAAD8AAAA/AAAAPwAAAD8AABA/AADgPgAAAD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_E:Z","uri":"data:application/octet-stream;base64,AAAQPwAAAD8AAAA/AAAAPwAAED8AABA/AAAAPwAAAD8AAAA/AAAQPwAAED8AABA/AAAQPwAAED8AABA/AAAAPwAAAD8AABA/AAAAPwAAED8AABA/AAAAPwAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","uri":"data:application/octet-stream;base64,AAAgPwAAwD4AABA/AADAPgAAID8AAOA+AAAQPwAAwD4AABA/AADgPgAAID8AAOA+AAAgPwAA4D4AACA/AADAPgAAED8AAOA+AAAQPwAA4D4AACA/AADAPgAAED8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","uri":"data:application/octet-stream;base64,AAAgPwAA4D4AABA/AADgPgAAID8AAAA/AAAQPwAA4D4AABA/AAAAPwAAID8AAAA/AAAgPwAAAD8AACA/AADgPgAAED8AAAA/AAAQPwAAAD8AACA/AADgPgAAED8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","uri":"data:application/octet-stream;base64,AAAgPwAAAD8AABA/AAAAPwAAID8AABA/AAAQPwAAAD8AABA/AAAQPwAAID8AABA/AAAgPwAAED8AACA/AAAAPwAAED8AABA/AAAQPwAAED8AACA/AAAAPwAAED8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_DEPOLARIZE1","uri":"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_DEPOLARIZE2","uri":"data:application/octet-stream;base64,AACgPgAAED8AAIA+AAAQPwAAoD4AACA/AACAPgAAED8AAIA+AAAgPwAAoD4AACA/AACgPgAAID8AAKA+AAAQPwAAgD4AACA/AACAPgAAID8AAKA+AAAQPwAAgD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_PAULI_CHANNEL_1","uri":"data:application/octet-stream;base64,AAAQPwAAED8AAAA/AAAQPwAAED8AACA/AAAAPwAAED8AAAA/AAAgPwAAED8AACA/AAAQPwAAID8AABA/AAAQPwAAAD8AACA/AAAAPwAAID8AABA/AAAQPwAAAD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_PAULI_CHANNEL_2","uri":"data:application/octet-stream;base64,AAAgPwAAED8AABA/AAAQPwAAID8AACA/AAAQPwAAED8AABA/AAAgPwAAID8AACA/AAAgPwAAID8AACA/AAAQPwAAED8AACA/AAAQPwAAID8AACA/AAAQPwAAED8AABA/"},{"byteLength":96,"name":"tex_coords_gate_X_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAAwD4AAOA+AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+AADgPgAAAD8AAOA+AAAAPwAA4D4AAAA/AADAPgAA4D4AAOA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAA4D4AAOA+AADgPgAAAD8AAAA/AADgPgAA4D4AAOA+AAAAPwAAAD8AAAA/AAAAPwAAAD8AAAA/AADgPgAA4D4AAAA/AADgPgAAAD8AAAA/AADgPgAA4D4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_Z_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAAAD8AAOA+AAAAPwAAAD8AABA/AADgPgAAAD8AAOA+AAAQPwAAAD8AABA/AAAAPwAAED8AAAA/AAAAPwAA4D4AABA/AADgPgAAED8AAAA/AAAAPwAA4D4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_HERALDED_ERASE","uri":"data:application/octet-stream;base64,AABwPwAAED8AAGA/AAAQPwAAcD8AACA/AABgPwAAED8AAGA/AAAgPwAAcD8AACA/AABwPwAAID8AAHA/AAAQPwAAYD8AACA/AABgPwAAID8AAHA/AAAQPwAAYD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_HERALDED_PAULI_CHANNEL_1","uri":"data:application/octet-stream;base64,AACAPwAAED8AAHA/AAAQPwAAgD8AACA/AABwPwAAED8AAHA/AAAgPwAAgD8AACA/AACAPwAAID8AAIA/AAAQPwAAcD8AACA/AABwPwAAID8AAIA/AAAQPwAAcD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_MPP:X","uri":"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Y","uri":"data:application/octet-stream;base64,AAAwPwAA4D4AACA/AADgPgAAMD8AAAA/AAAgPwAA4D4AACA/AAAAPwAAMD8AAAA/AAAwPwAAAD8AADA/AADgPgAAID8AAAA/AAAgPwAAAD8AADA/AADgPgAAID8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Z","uri":"data:application/octet-stream;base64,AAAwPwAAAD8AACA/AAAAPwAAMD8AABA/AAAgPwAAAD8AACA/AAAQPwAAMD8AABA/AAAwPwAAED8AADA/AAAAPwAAID8AABA/AAAgPwAAED8AADA/AAAAPwAAID8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SPP:X","uri":"data:application/octet-stream;base64,AACAPQAAID8AAAAAAAAgPwAAgD0AADA/AAAAAAAAID8AAAAAAAAwPwAAgD0AADA/AACAPQAAMD8AAIA9AAAgPwAAAAAAADA/AAAAAAAAMD8AAIA9AAAgPwAAAAAAACA/"},{"byteLength":96,"name":"tex_coords_gate_SPP:Y","uri":"data:application/octet-stream;base64,AAAAPgAAID8AAIA9AAAgPwAAAD4AADA/AACAPQAAID8AAIA9AAAwPwAAAD4AADA/AAAAPgAAMD8AAAA+AAAgPwAAgD0AADA/AACAPQAAMD8AAAA+AAAgPwAAgD0AACA/"},{"byteLength":96,"name":"tex_coords_gate_SPP:Z","uri":"data:application/octet-stream;base64,AABAPgAAID8AAAA+AAAgPwAAQD4AADA/AAAAPgAAID8AAAA+AAAwPwAAQD4AADA/AABAPgAAMD8AAEA+AAAgPwAAAD4AADA/AAAAPgAAMD8AAEA+AAAgPwAAAD4AACA/"},{"byteLength":96,"name":"tex_coords_gate_SPP_DAG:X","uri":"data:application/octet-stream;base64,AACAPgAAID8AAEA+AAAgPwAAgD4AADA/AABAPgAAID8AAEA+AAAwPwAAgD4AADA/AACAPgAAMD8AAIA+AAAgPwAAQD4AADA/AABAPgAAMD8AAIA+AAAgPwAAQD4AACA/"},{"byteLength":96,"name":"tex_coords_gate_SPP_DAG:Y","uri":"data:application/octet-stream;base64,AACgPgAAID8AAIA+AAAgPwAAoD4AADA/AACAPgAAID8AAIA+AAAwPwAAoD4AADA/AACgPgAAMD8AAKA+AAAgPwAAgD4AADA/AACAPgAAMD8AAKA+AAAgPwAAgD4AACA/"},{"byteLength":96,"name":"tex_coords_gate_SPP_DAG:Z","uri":"data:application/octet-stream;base64,AADAPgAAID8AAKA+AAAgPwAAwD4AADA/AACgPgAAID8AAKA+AAAwPwAAwD4AADA/AADAPgAAMD8AAMA+AAAgPwAAoD4AADA/AACgPgAAMD8AAMA+AAAgPwAAoD4AACA/"},{"byteLength":96,"name":"tex_coords_gate_MRX","uri":"data:application/octet-stream;base64,AADgPgAAwD4AAMA+AADAPgAA4D4AAOA+AADAPgAAwD4AAMA+AADgPgAA4D4AAOA+AADgPgAA4D4AAOA+AADAPgAAwD4AAOA+AADAPgAA4D4AAOA+AADAPgAAwD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MRY","uri":"data:application/octet-stream;base64,AADgPgAA4D4AAMA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+AAAAPwAA4D4AAAA/AADgPgAAAD8AAOA+AADgPgAAwD4AAAA/AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_MR","uri":"data:application/octet-stream;base64,AADgPgAAAD8AAMA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+AAAQPwAA4D4AABA/AADgPgAAED8AAOA+AAAAPwAAwD4AABA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MX","uri":"data:application/octet-stream;base64,AACgPgAAwD4AAIA+AADAPgAAoD4AAOA+AACAPgAAwD4AAIA+AADgPgAAoD4AAOA+AACgPgAA4D4AAKA+AADAPgAAgD4AAOA+AACAPgAA4D4AAKA+AADAPgAAgD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MY","uri":"data:application/octet-stream;base64,AACgPgAA4D4AAIA+AADgPgAAoD4AAAA/AACAPgAA4D4AAIA+AAAAPwAAoD4AAAA/AACgPgAAAD8AAKA+AADgPgAAgD4AAAA/AACAPgAAAD8AAKA+AADgPgAAgD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_RX","uri":"data:application/octet-stream;base64,AADAPgAAwD4AAKA+AADAPgAAwD4AAOA+AACgPgAAwD4AAKA+AADgPgAAwD4AAOA+AADAPgAA4D4AAMA+AADAPgAAoD4AAOA+AACgPgAA4D4AAMA+AADAPgAAoD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_RY","uri":"data:application/octet-stream;base64,AADAPgAA4D4AAKA+AADgPgAAwD4AAAA/AACgPgAA4D4AAKA+AAAAPwAAwD4AAAA/AADAPgAAAD8AAMA+AADgPgAAoD4AAAA/AACgPgAAAD8AAMA+AADgPgAAoD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_R","uri":"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MXX","uri":"data:application/octet-stream;base64,AAAwPwAAED8AACA/AAAQPwAAMD8AACA/AAAgPwAAED8AACA/AAAgPwAAMD8AACA/AAAwPwAAID8AADA/AAAQPwAAID8AACA/AAAgPwAAID8AADA/AAAQPwAAID8AABA/"},{"byteLength":96,"name":"tex_coords_gate_MYY","uri":"data:application/octet-stream;base64,AABAPwAAED8AADA/AAAQPwAAQD8AACA/AAAwPwAAED8AADA/AAAgPwAAQD8AACA/AABAPwAAID8AAEA/AAAQPwAAMD8AACA/AAAwPwAAID8AAEA/AAAQPwAAMD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_MZZ","uri":"data:application/octet-stream;base64,AABQPwAAED8AAEA/AAAQPwAAUD8AACA/AABAPwAAED8AAEA/AAAgPwAAUD8AACA/AABQPwAAID8AAFA/AAAQPwAAQD8AACA/AABAPwAAID8AAFA/AAAQPwAAQD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_MPAD","uri":"data:application/octet-stream;base64,AABgPwAAED8AAFA/AAAQPwAAYD8AACA/AABQPwAAED8AAFA/AAAgPwAAYD8AACA/AABgPwAAID8AAGA/AAAQPwAAUD8AACA/AABQPwAAID8AAGA/AAAQPwAAUD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_X:REC","uri":"data:application/octet-stream;base64,AABgPwAAwD4AAFA/AADAPgAAYD8AAOA+AABQPwAAwD4AAFA/AADgPgAAYD8AAOA+AABgPwAA4D4AAGA/AADAPgAAUD8AAOA+AABQPwAA4D4AAGA/AADAPgAAUD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y:SWEEP","uri":"data:application/octet-stream;base64,AABwPwAA4D4AAGA/AADgPgAAcD8AAAA/AABgPwAA4D4AAGA/AAAAPwAAcD8AAAA/AABwPwAAAD8AAHA/AADgPgAAYD8AAAA/AABgPwAAAD8AAHA/AADgPgAAYD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_Z:REC","uri":"data:application/octet-stream;base64,AABgPwAAAD8AAFA/AAAAPwAAYD8AABA/AABQPwAAAD8AAFA/AAAQPwAAYD8AABA/AABgPwAAED8AAGA/AAAAPwAAUD8AABA/AABQPwAAED8AAGA/AAAAPwAAUD8AAAA/"},{"byteLength":1704,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AABAwAAAAMIAAADCAABQwAAAiMEAAIDBAABQwAAAiMEAAIDBAABAwAAAAMAAAACAAABAwAAAgMAAAACAAABAwAAAwMAAAACAAABAwAAAAMEAAACAAABAwAAAIMEAAACAAABAwAAAQMEAAACAAABAwAAAYMEAAACAAABAwAAAgMEAAACAAABAwAAAkMEAAACAAABAwAAAoMEAAACAAABAwAAAsMEAAACAAACAwAAAAMIAAADCAACIwAAAiMEAAIDBAACIwAAAiMEAAIDBAACAwAAAAMAAAACAAACAwAAAgMAAAACAAACAwAAAwMAAAACAAACAwAAAAMEAAACAAACAwAAAIMEAAACAAACAwAAAQMEAAACAAACAwAAAYMEAAACAAACAwAAAgMEAAACAAACAwAAAkMEAAACAAACAwAAAoMEAAACAAACAwAAAsMEAAACAAACgwAAAAMIAAADCAACowAAAiMEAAIDBAACowAAAiMEAAIDBAACgwAAAAMAAAACAAACgwAAAgMAAAACAAACgwAAAwMAAAACAAACgwAAAAMEAAACAAACgwAAAIMEAAACAAACgwAAAQMEAAACAAACgwAAAYMEAAACAAACgwAAAgMEAAACAAACgwAAAkMEAAACAAACgwAAAoMEAAACAAACgwAAAsMEAAACAAACgwAAAwMEAAACAAACgwAAA0MEAAACAAACgwAAA4MEAAACAAACgwAAA8MEAAACAAACgwAAAAMIAAACAAACgwAAACMIAAACAAADAwAAAgMAAAACAAADAwAAAAMAAAACAAADAwAAAwMAAAACAAADAwAAAgMAAAACAAADAwAAAYMEAAACAAADIwAAAMMEAAACAAADIwAAAMMEAAACAAADAwAAAAMEAAACAAADAwAAAQMEAAACAAADAwAAAYMEAAACAAADgwAAAAMAAAACAAADgwAAAgMAAAACAAADgwAAAAMEAAACAAADgwAAAIMEAAACAAAAQwQAAAMAAAACAAAAUwQAAiMEAAIDBAAAUwQAAiMEAAIDBAAAQwQAAAMIAAADCAAAQwQAAgMAAAACAAAAQwQAAAMAAAACAAAAgwQAAAMAAAACAAAAkwQAAiMEAAIDBAAAkwQAAiMEAAIDBAAAgwQAAAMIAAADCAAAwwQAAAMAAAACAAAA0wQAAiMEAAIDBAAA0wQAAiMEAAIDBAAAwwQAAAMIAAADCAAAwwQAAgMAAAACAAAAwwQAAAMAAAACAAABAwQAAAMAAAACAAABEwQAAiMEAAIDBAABEwQAAiMEAAIDBAABAwQAAAMIAAADCAABAwQAAgMAAAACAAABAwQAAAMAAAACAAABwwQAAAMIAAADCAAB0wQAAiMEAAIDBAAB0wQAAiMEAAIDBAABwwQAAAMAAAACAAABwwQAAgMAAAACAAABwwQAAwMAAAACAAABwwQAAAMEAAACAAABwwQAAIMEAAACAAABwwQAAQMEAAACAAABwwQAAYMEAAACAAACQwQAAAMIAAADCAACSwQAAiMEAAIDBAACSwQAAiMEAAIDBAACQwQAAAMAAAACAAADYwQAAgMAAAACAAADYwQAAwMAAAACAAADYwQAAAMEAAACAAADYwQAAIMEAAACAAADYwQAAYMEAAACAAADYwQAAQMEAAACAAADYwQAAgMEAAACAAADYwQAAYMEAAACAAACAPwAAAMIAAADCAADowQAAAMIAAADCAACAPwAAAMAAAACAAADowQAAAMAAAACAAACAPwAAgMAAAACAAADowQAAgMAAAACAAACAPwAAwMAAAACAAADowQAAwMAAAACAAACAPwAAAMEAAACAAADowQAAAMEAAACAAACAPwAAIMEAAACAAADowQAAIMEAAACAAACAPwAAQMEAAACAAADowQAAQMEAAACAAACAPwAAYMEAAACAAADowQAAYMEAAACAAACAPwAAgMEAAACAAADowQAAgMEAAACAAACAPwAAkMEAAACAAADowQAAkMEAAACAAACAPwAAoMEAAACAAADowQAAoMEAAACAAACAPwAAsMEAAACAAADowQAAsMEAAACAAACAPwAAwMEAAACAAADowQAAwMEAAACAAACAPwAA0MEAAACAAADowQAA0MEAAACAAACAPwAA4MEAAACAAADowQAA4MEAAACAAACAPwAA8MEAAACAAADowQAA8MEAAACAAACAPwAAAMIAAACAAADowQAAAMIAAACAAACAPwAACMIAAACAAADowQAACMIAAACA"},{"byteLength":360,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAIAAAIDBAABAwAAAAIAAAIDBAAAgwAAAAL8AAIDBAABAwAAAAIAAAIDBAAAgwAAAAD8AAIDBAABAwAAAAIAAAIDBAACGwQAAgL8AAIA/AACGwQAAgL8AAATCAACGwQAAgL8AAIA/AACGwQAADMIAAIA/AACGwQAAgL8AAIA/AACiwQAAgL8AAIA/AACGwQAAgL8AAATCAACGwQAADMIAAATCAACGwQAAgL8AAATCAACiwQAAgL8AAATCAACGwQAADMIAAIA/AACGwQAADMIAAATCAACGwQAADMIAAIA/AACiwQAADMIAAIA/AACGwQAADMIAAATCAACiwQAADMIAAATCAACiwQAAgL8AAIA/AACiwQAAgL8AAATCAACiwQAAgL8AAIA/AACiwQAADMIAAIA/AACiwQAAgL8AAATCAACiwQAADMIAAATCAACiwQAADMIAAIA/AACiwQAADMIAAATC"},{"byteLength":1152,"name":"buf_blue_scattered_lines","uri":"data:application/octet-stream;base64,AABAv83MzL8AAAA/AABAv5qZmb8AAAA/AABAv83MzL8AAALCAABAv5qZmb8AAALCAABAv5qZmb8AAAA/AABAv5qZmb8AAALCAABAv5qZmb8AAAA/AAAQwJqZmb8AAAA/AABAv5qZmb8AAALCAAAQwJqZmb8AAALCAAAQwM3MzL8AAAA/AAAQwJqZmb8AAAA/AAAQwM3MzL8AAALCAAAQwJqZmb8AAALCAAAQwJqZmb8AAAA/AAAQwJqZmb8AAALCAAAwwM3MzL8AAAA/AAAwwJqZmb8AAAA/AAAwwM3MzL8AAALCAAAwwJqZmb8AAALCAAAwwJqZmb8AAAA/AAAwwJqZmb8AAALCAAAwwJqZmb8AAAA/AACowJqZmb8AAAA/AAAwwJqZmb8AAALCAACowJqZmb8AAALCAACowM3MzL8AAAA/AACowJqZmb8AAAA/AACowM3MzL8AAALCAACowJqZmb8AAALCAACowJqZmb8AAAA/AACowJqZmb8AAALCAAC4wM3MzL8AAAA/AAC4wJqZmb8AAAA/AAC4wM3MzL8AAALCAAC4wJqZmb8AAALCAAC4wJqZmb8AAAA/AAC4wJqZmb8AAALCAAC4wJqZmb8AAAA/AAAEwZqZmb8AAAA/AAC4wJqZmb8AAALCAAAEwZqZmb8AAALCAAAEwc3MzL8AAAA/AAAEwZqZmb8AAAA/AAAEwc3MzL8AAALCAAAEwZqZmb8AAALCAAAEwZqZmb8AAAA/AAAEwZqZmb8AAALCAAAMwc3MzL8AAAA/AAAMwZqZmb8AAAA/AAAMwc3MzL8AAALCAAAMwZqZmb8AAALCAAAMwZqZmb8AAAA/AAAMwZqZmb8AAALCAAAMwZqZmb8AAAA/AABUwZqZmb8AAAA/AAAMwZqZmb8AAALCAABUwZqZmb8AAALCAABUwc3MzL8AAAA/AABUwZqZmb8AAAA/AABUwc3MzL8AAALCAABUwZqZmb8AAALCAABUwZqZmb8AAAA/AABUwZqZmb8AAALCAACGwc3MzL8AAAA/AACGwZqZmb8AAAA/AACGwc3MzL8AAALCAACGwZqZmb8AAALCAACGwZqZmb8AAAA/AACGwZqZmb8AAALCAACGwZqZmb8AAAA/AACawZqZmb8AAAA/AACGwZqZmb8AAALCAACawZqZmb8AAALCAACawc3MzL8AAAA/AACawZqZmb8AAAA/AACawc3MzL8AAALCAACawZqZmb8AAALCAACawZqZmb8AAAA/AACawZqZmb8AAALCAACuwc3MzL8AAAA/AACuwZqZmb8AAAA/AACuwc3MzL8AAALCAACuwZqZmb8AAALCAACuwZqZmb8AAAA/AACuwZqZmb8AAALCAACuwZqZmb8AAAA/AADSwZqZmb8AAAA/AACuwZqZmb8AAALCAADSwZqZmb8AAALCAADSwc3MzL8AAAA/AADSwZqZmb8AAAA/AADSwc3MzL8AAALCAADSwZqZmb8AAALCAADSwZqZmb8AAAA/AADSwZqZmb8AAALC"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"white","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"white","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"white","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"gray","pbrMetallicRoughness":{"baseColorFactor":[0.5,0.5,0.5,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"blue","pbrMetallicRoughness":{"baseColorFactor":[0,0,1,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":7},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":8},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":9},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":10},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":11},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":12},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":13},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":14},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":15},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":16},"material":1,"mode":6},{"attributes":{"POSITION":17},"material":2,"mode":1}]},{"primitives":[{"attributes":{"POSITION":18},"material":3,"mode":6},{"attributes":{"POSITION":18},"material":4,"mode":3},{"attributes":{"POSITION":19},"material":4,"mode":1}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":20},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":21},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":22},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":23},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":24},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":25},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":26},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":27},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":28},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":29},"material":5,"mode":6},{"attributes":{"POSITION":29},"material":6,"mode":3},{"attributes":{"POSITION":30},"material":6,"mode":1}]},{"primitives":[{"attributes":{"POSITION":31},"material":7,"mode":2},{"attributes":{"POSITION":31},"material":8,"mode":4}]},{"primitives":[{"attributes":{"POSITION":32},"material":9,"mode":6}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":33},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":34},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":35},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":36},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":37},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":38},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":39},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":40},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":41},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":42},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":43},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":44},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":45},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":46},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":47},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":48},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":49},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":50},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":51},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":52},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":53},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":54},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":55},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":56},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":57},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":58},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":59},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":60},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":61},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":62},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":63},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":64},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":65},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":66},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":67},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":68},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":69},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":70},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":71},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":72},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":73},"material":10,"mode":1}]},{"primitives":[{"attributes":{"POSITION":74},"material":11,"mode":1}]},{"primitives":[{"attributes":{"POSITION":75},"material":12,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-32,-32]},{"mesh":1,"translation":[-0,-2,-0]},{"mesh":2,"translation":[-0,-4,-0]},{"mesh":3,"translation":[-0,-6,-0]},{"mesh":4,"translation":[-1,-32,-32]},{"mesh":5,"translation":[-1,-2,-0]},{"mesh":6,"translation":[-1,-4,-0]},{"mesh":7,"translation":[-1,-6,-0]},{"mesh":8,"translation":[-1,-8,-0]},{"mesh":9,"translation":[-2,-32,-32]},{"mesh":10,"translation":[-2,-2,-0]},{"mesh":11,"translation":[-2,-4,-0]},{"mesh":12,"translation":[-2,-6,-0]},{"mesh":13,"translation":[-2,-8,-0]},{"mesh":14,"translation":[-2,-10,-0]},{"mesh":15,"translation":[-3,-32,-32]},{"mesh":16,"translation":[-3,-2,-0]},{"mesh":17,"translation":[-3,-4,-0]},{"mesh":17,"translation":[-3,-6,-0]},{"mesh":18,"translation":[-3,-8,-0]},{"mesh":18,"translation":[-3,-10,-0]},{"mesh":19,"translation":[-3,-12,-0]},{"mesh":19,"translation":[-3,-14,-0]},{"mesh":16,"translation":[-3,-16,-0]},{"mesh":15,"translation":[-3,-18,-0]},{"mesh":15,"translation":[-3,-20,-0]},{"mesh":15,"translation":[-3,-22,-0]},{"mesh":20,"translation":[-4,-32,-32]},{"mesh":20,"translation":[-4,-2,-0]},{"mesh":21,"translation":[-4,-4,-0]},{"mesh":21,"translation":[-4,-6,-0]},{"mesh":22,"translation":[-4,-8,-0]},{"mesh":22,"translation":[-4,-10,-0]},{"mesh":23,"translation":[-4,-12,-0]},{"mesh":23,"translation":[-4,-14,-0]},{"mesh":24,"translation":[-4,-16,-0]},{"mesh":24,"translation":[-4,-18,-0]},{"mesh":25,"translation":[-4,-20,-0]},{"mesh":25,"translation":[-4,-22,-0]},{"mesh":26,"translation":[-5,-32,-32]},{"mesh":26,"translation":[-5,-2,-0]},{"mesh":26,"translation":[-5,-4,-0]},{"mesh":27,"translation":[-5,-6,-0]},{"mesh":26,"translation":[-5,-8,-0]},{"mesh":28,"translation":[-5,-10,-0]},{"mesh":27,"translation":[-5,-12,-0]},{"mesh":26,"translation":[-5,-14,-0]},{"mesh":27,"translation":[-5,-16,-0]},{"mesh":27,"translation":[-5,-18,-0]},{"mesh":27,"translation":[-5,-20,-0]},{"mesh":28,"translation":[-5,-22,-0]},{"mesh":28,"translation":[-5,-24,-0]},{"mesh":26,"translation":[-5,-26,-0]},{"mesh":28,"translation":[-5,-28,-0]},{"mesh":27,"translation":[-5,-30,-0]},{"mesh":28,"translation":[-5,-32,-0]},{"mesh":28,"translation":[-5,-34,-0]},{"mesh":29,"translation":[-6,-2,-0]},{"mesh":30,"translation":[-6,-4,-0]},{"mesh":31,"translation":[-6,-6,-0]},{"mesh":32,"translation":[-6,-8,-0]},{"mesh":33,"translation":[-6,-14,-0]},{"mesh":34,"translation":[-6,-12,-0]},{"mesh":35,"translation":[-6,-32,-32]},{"mesh":36,"translation":[-7,-2,-0]},{"mesh":36,"translation":[-7,-4,-0]},{"mesh":37,"translation":[-7,-6,-0]},{"mesh":38,"translation":[-7,-8,-0]},{"mesh":38,"translation":[-7,-10,-0]},{"mesh":39,"translation":[-7,-32,-32]},{"mesh":40,"translation":[-8,-2,-0]},{"mesh":41,"translation":[-8,-4,-0]},{"mesh":42,"translation":[-8,-6,-0]},{"mesh":43,"translation":[-8,-12,-0]},{"mesh":44,"translation":[-9,-32,-32]},{"mesh":45,"translation":[-9,-2,-0]},{"mesh":46,"translation":[-9,-4,-0]},{"mesh":46,"translation":[-10,-32,-32]},{"mesh":46,"translation":[-10,-2,-0]},{"mesh":47,"translation":[-11,-32,-32]},{"mesh":48,"translation":[-11,-2,-0]},{"mesh":49,"translation":[-11,-4,-0]},{"mesh":47,"translation":[-11,-6,-0]},{"mesh":50,"translation":[-12,-32,-32]},{"mesh":51,"translation":[-12,-2,-0]},{"mesh":52,"translation":[-12,-4,-0]},{"mesh":50,"translation":[-13,-4,-0]},{"mesh":53,"translation":[-14,-32,-32]},{"mesh":54,"translation":[-14,-2,-0]},{"mesh":55,"translation":[-14,-4,-0]},{"mesh":56,"translation":[-14,-6,-0]},{"mesh":57,"translation":[-14,-8,-0]},{"mesh":58,"translation":[-14,-10,-0]},{"mesh":58,"translation":[-14,-12,-0]},{"mesh":59,"translation":[-14,-14,-0]},{"mesh":60,"translation":[-14,-16,-0]},{"mesh":61,"translation":[-14,-18,-0]},{"mesh":62,"translation":[-15,-32,-32]},{"mesh":62,"translation":[-15,-2,-0]},{"mesh":62,"translation":[-15,-4,-0]},{"mesh":62,"translation":[-15,-6,-0]},{"mesh":63,"translation":[-15,-8,-0]},{"mesh":63,"translation":[-15,-10,-0]},{"mesh":64,"translation":[-15,-12,-0]},{"mesh":64,"translation":[-15,-14,-0]},{"mesh":7,"translation":[-17,-32,-32]},{"mesh":28,"translation":[-18,-32,-32]},{"mesh":26,"translation":[-18,-2,-0]},{"mesh":13,"translation":[-19,-2,-0]},{"mesh":55,"translation":[-22,-32,-32]},{"mesh":39,"translation":[-23,-32,-32]},{"mesh":55,"translation":[-24,-32,-32]},{"mesh":65,"translation":[-25,-32,-32]},{"mesh":65,"translation":[-25,-2,-0]},{"mesh":65,"translation":[-26,-32,-32]},{"mesh":53,"translation":[-27,-32,-32]},{"mesh":57,"translation":[-27,-2,-0]},{"mesh":64,"translation":[-27,-4,-0]},{"mesh":64,"translation":[-27,-6,-0]},{"mesh":63,"translation":[-27,-8,-0]},{"mesh":63,"translation":[-27,-10,-0]},{"mesh":44,"translation":[-27,-12,-0]},{"mesh":45,"translation":[-27,-14,-0]},{"mesh":46,"translation":[-27,-16,-0]},{"mesh":66,"translation":[-28,-32,-32]},{"mesh":67,"translation":[-28,-2,-0]},{"mesh":68,"translation":[-28,-4,-0]},{"mesh":69,"translation":[0,0,0]},{"mesh":70,"translation":[0,0,0]},{"mesh":71,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.4375],"min":[0,0.375],"name":"tex_coords_gate_I","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.4375],"min":[0,0.375],"name":"tex_coords_gate_X","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.5],"min":[0,0.4375],"name":"tex_coords_gate_Y","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.5625],"min":[0,0.5],"name":"tex_coords_gate_Z","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.625],"min":[0.0625,0.5625],"name":"tex_coords_gate_C_XYZ","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.625],"min":[0.125,0.5625],"name":"tex_coords_gate_C_ZYX","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5625],"min":[0.0625,0.5],"name":"tex_coords_gate_H_XY","type":"VEC2"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5],"min":[0.0625,0.4375],"name":"tex_coords_gate_H","type":"VEC2"},{"bufferView":9,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.4375],"min":[0.0625,0.375],"name":"tex_coords_gate_H_YZ","type":"VEC2"},{"bufferView":10,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.4375],"min":[0.125,0.375],"name":"tex_coords_gate_SQRT_X","type":"VEC2"},{"bufferView":11,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.4375],"min":[0.1875,0.375],"name":"tex_coords_gate_SQRT_X_DAG","type":"VEC2"},{"bufferView":12,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.5],"min":[0.125,0.4375],"name":"tex_coords_gate_SQRT_Y","type":"VEC2"},{"bufferView":13,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.5],"min":[0.1875,0.4375],"name":"tex_coords_gate_SQRT_Y_DAG","type":"VEC2"},{"bufferView":14,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.5625],"min":[0.125,0.5],"name":"tex_coords_gate_S","type":"VEC2"},{"bufferView":15,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.5625],"min":[0.1875,0.5],"name":"tex_coords_gate_S_DAG","type":"VEC2"},{"bufferView":16,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":17,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.45254835486412,0.45254835486412],"min":[0,-0.45254835486412,-0.45254835486412],"name":"control_zswap_line_cross","type":"VEC3"},{"bufferView":18,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":19,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.45254835486412,0.45254835486412],"min":[0,-0.45254835486412,-0.45254835486412],"name":"control_xswap_line_cross","type":"VEC3"},{"bufferView":20,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.625],"min":[0.3125,0.5625],"name":"tex_coords_gate_ISWAP","type":"VEC2"},{"bufferView":21,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.625],"min":[0.375,0.5625],"name":"tex_coords_gate_ISWAP_DAG","type":"VEC2"},{"bufferView":22,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.625],"min":[0.4375,0.5625],"name":"tex_coords_gate_SWAP","type":"VEC2"},{"bufferView":23,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.4375],"min":[0.6875,0.375],"name":"tex_coords_gate_SQRT_XX","type":"VEC2"},{"bufferView":24,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.4375],"min":[0.75,0.375],"name":"tex_coords_gate_SQRT_XX_DAG","type":"VEC2"},{"bufferView":25,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.5],"min":[0.6875,0.4375],"name":"tex_coords_gate_SQRT_YY","type":"VEC2"},{"bufferView":26,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.5],"min":[0.75,0.4375],"name":"tex_coords_gate_SQRT_YY_DAG","type":"VEC2"},{"bufferView":27,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.5625],"min":[0.6875,0.5],"name":"tex_coords_gate_SQRT_ZZ","type":"VEC2"},{"bufferView":28,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.5625],"min":[0.75,0.5],"name":"tex_coords_gate_SQRT_ZZ_DAG","type":"VEC2"},{"bufferView":29,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":30,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"control_x_line_cross","type":"VEC3"},{"bufferView":31,"byteOffset":0,"componentType":5126,"count":3,"max":[0,0.400000005960464,0.346410155296326],"min":[0,-0.200000032782555,-0.346410185098648],"name":"circle_loop","type":"VEC3"},{"bufferView":32,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":33,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.4375],"min":[0.5,0.375],"name":"tex_coords_gate_E:X","type":"VEC2"},{"bufferView":34,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.5],"min":[0.5,0.4375],"name":"tex_coords_gate_E:Y","type":"VEC2"},{"bufferView":35,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.5625],"min":[0.5,0.5],"name":"tex_coords_gate_E:Z","type":"VEC2"},{"bufferView":36,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.4375],"min":[0.5625,0.375],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","type":"VEC2"},{"bufferView":37,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.5],"min":[0.5625,0.4375],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","type":"VEC2"},{"bufferView":38,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.5625],"min":[0.5625,0.5],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","type":"VEC2"},{"bufferView":39,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.625],"min":[0.1875,0.5625],"name":"tex_coords_gate_DEPOLARIZE1","type":"VEC2"},{"bufferView":40,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.625],"min":[0.25,0.5625],"name":"tex_coords_gate_DEPOLARIZE2","type":"VEC2"},{"bufferView":41,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.625],"min":[0.5,0.5625],"name":"tex_coords_gate_PAULI_CHANNEL_1","type":"VEC2"},{"bufferView":42,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.625],"min":[0.5625,0.5625],"name":"tex_coords_gate_PAULI_CHANNEL_2","type":"VEC2"},{"bufferView":43,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.4375],"min":[0.4375,0.375],"name":"tex_coords_gate_X_ERROR","type":"VEC2"},{"bufferView":44,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.5],"min":[0.4375,0.4375],"name":"tex_coords_gate_Y_ERROR","type":"VEC2"},{"bufferView":45,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.5625],"min":[0.4375,0.5],"name":"tex_coords_gate_Z_ERROR","type":"VEC2"},{"bufferView":46,"byteOffset":0,"componentType":5126,"count":12,"max":[0.9375,0.625],"min":[0.875,0.5625],"name":"tex_coords_gate_HERALDED_ERASE","type":"VEC2"},{"bufferView":47,"byteOffset":0,"componentType":5126,"count":12,"max":[1,0.625],"min":[0.9375,0.5625],"name":"tex_coords_gate_HERALDED_PAULI_CHANNEL_1","type":"VEC2"},{"bufferView":48,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.4375],"min":[0.625,0.375],"name":"tex_coords_gate_MPP:X","type":"VEC2"},{"bufferView":49,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5],"min":[0.625,0.4375],"name":"tex_coords_gate_MPP:Y","type":"VEC2"},{"bufferView":50,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5625],"min":[0.625,0.5],"name":"tex_coords_gate_MPP:Z","type":"VEC2"},{"bufferView":51,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.6875],"min":[0,0.625],"name":"tex_coords_gate_SPP:X","type":"VEC2"},{"bufferView":52,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.6875],"min":[0.0625,0.625],"name":"tex_coords_gate_SPP:Y","type":"VEC2"},{"bufferView":53,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.6875],"min":[0.125,0.625],"name":"tex_coords_gate_SPP:Z","type":"VEC2"},{"bufferView":54,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.6875],"min":[0.1875,0.625],"name":"tex_coords_gate_SPP_DAG:X","type":"VEC2"},{"bufferView":55,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.6875],"min":[0.25,0.625],"name":"tex_coords_gate_SPP_DAG:Y","type":"VEC2"},{"bufferView":56,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.6875],"min":[0.3125,0.625],"name":"tex_coords_gate_SPP_DAG:Z","type":"VEC2"},{"bufferView":57,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.4375],"min":[0.375,0.375],"name":"tex_coords_gate_MRX","type":"VEC2"},{"bufferView":58,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5],"min":[0.375,0.4375],"name":"tex_coords_gate_MRY","type":"VEC2"},{"bufferView":59,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5625],"min":[0.375,0.5],"name":"tex_coords_gate_MR","type":"VEC2"},{"bufferView":60,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.4375],"min":[0.25,0.375],"name":"tex_coords_gate_MX","type":"VEC2"},{"bufferView":61,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5],"min":[0.25,0.4375],"name":"tex_coords_gate_MY","type":"VEC2"},{"bufferView":62,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":63,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.4375],"min":[0.3125,0.375],"name":"tex_coords_gate_RX","type":"VEC2"},{"bufferView":64,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5],"min":[0.3125,0.4375],"name":"tex_coords_gate_RY","type":"VEC2"},{"bufferView":65,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5625],"min":[0.3125,0.5],"name":"tex_coords_gate_R","type":"VEC2"},{"bufferView":66,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.625],"min":[0.625,0.5625],"name":"tex_coords_gate_MXX","type":"VEC2"},{"bufferView":67,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.625],"min":[0.6875,0.5625],"name":"tex_coords_gate_MYY","type":"VEC2"},{"bufferView":68,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.625],"min":[0.75,0.5625],"name":"tex_coords_gate_MZZ","type":"VEC2"},{"bufferView":69,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.625],"min":[0.8125,0.5625],"name":"tex_coords_gate_MPAD","type":"VEC2"},{"bufferView":70,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.4375],"min":[0.8125,0.375],"name":"tex_coords_gate_X:REC","type":"VEC2"},{"bufferView":71,"byteOffset":0,"componentType":5126,"count":12,"max":[0.9375,0.5],"min":[0.875,0.4375],"name":"tex_coords_gate_Y:SWEEP","type":"VEC2"},{"bufferView":72,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.5625],"min":[0.8125,0.5],"name":"tex_coords_gate_Z:REC","type":"VEC2"},{"bufferView":73,"byteOffset":0,"componentType":5126,"count":142,"max":[1,-2,-0],"min":[-29,-34,-32],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":74,"byteOffset":0,"componentType":5126,"count":30,"max":[0,0.5,1],"min":[-20.25,-35,-33],"name":"buf_red_scattered_lines","type":"VEC3"},{"bufferView":75,"byteOffset":0,"componentType":5126,"count":96,"max":[-0.75,-1.20000004768372,0.5],"min":[-26.25,-1.60000002384186,-32.5],"name":"buf_blue_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_I","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_C_XYZ","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_C_ZYX","target":34962},{"buffer":7,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H_XY","target":34962},{"buffer":8,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H","target":34962},{"buffer":9,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H_YZ","target":34962},{"buffer":10,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_X","target":34962},{"buffer":11,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_X_DAG","target":34962},{"buffer":12,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_Y","target":34962},{"buffer":13,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_Y_DAG","target":34962},{"buffer":14,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_S","target":34962},{"buffer":15,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_S_DAG","target":34962},{"buffer":16,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":17,"byteLength":48,"byteOffset":0,"name":"control_zswap_line_cross","target":34962},{"buffer":18,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":19,"byteLength":48,"byteOffset":0,"name":"control_xswap_line_cross","target":34962},{"buffer":20,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ISWAP","target":34962},{"buffer":21,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ISWAP_DAG","target":34962},{"buffer":22,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SWAP","target":34962},{"buffer":23,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_XX","target":34962},{"buffer":24,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_XX_DAG","target":34962},{"buffer":25,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_YY","target":34962},{"buffer":26,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_YY_DAG","target":34962},{"buffer":27,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_ZZ","target":34962},{"buffer":28,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_ZZ_DAG","target":34962},{"buffer":29,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":30,"byteLength":48,"byteOffset":0,"name":"control_x_line_cross","target":34962},{"buffer":31,"byteLength":36,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":32,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":33,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:X","target":34962},{"buffer":34,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:Y","target":34962},{"buffer":35,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:Z","target":34962},{"buffer":36,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","target":34962},{"buffer":37,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","target":34962},{"buffer":38,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","target":34962},{"buffer":39,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_DEPOLARIZE1","target":34962},{"buffer":40,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_DEPOLARIZE2","target":34962},{"buffer":41,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_PAULI_CHANNEL_1","target":34962},{"buffer":42,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_PAULI_CHANNEL_2","target":34962},{"buffer":43,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X_ERROR","target":34962},{"buffer":44,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y_ERROR","target":34962},{"buffer":45,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z_ERROR","target":34962},{"buffer":46,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_HERALDED_ERASE","target":34962},{"buffer":47,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_HERALDED_PAULI_CHANNEL_1","target":34962},{"buffer":48,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:X","target":34962},{"buffer":49,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Y","target":34962},{"buffer":50,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Z","target":34962},{"buffer":51,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP:X","target":34962},{"buffer":52,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP:Y","target":34962},{"buffer":53,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP:Z","target":34962},{"buffer":54,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP_DAG:X","target":34962},{"buffer":55,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP_DAG:Y","target":34962},{"buffer":56,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SPP_DAG:Z","target":34962},{"buffer":57,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MRX","target":34962},{"buffer":58,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MRY","target":34962},{"buffer":59,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MR","target":34962},{"buffer":60,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MX","target":34962},{"buffer":61,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MY","target":34962},{"buffer":62,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":63,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_RX","target":34962},{"buffer":64,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_RY","target":34962},{"buffer":65,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_R","target":34962},{"buffer":66,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MXX","target":34962},{"buffer":67,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MYY","target":34962},{"buffer":68,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MZZ","target":34962},{"buffer":69,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPAD","target":34962},{"buffer":70,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X:REC","target":34962},{"buffer":71,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y:SWEEP","target":34962},{"buffer":72,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z:REC","target":34962},{"buffer":73,"byteLength":1704,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":74,"byteLength":360,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962},{"buffer":75,"byteLength":1152,"byteOffset":0,"name":"buf_blue_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_I","uri":"data:application/octet-stream;base64,AACAPQAAwD4AAAAAAADAPgAAgD0AAOA+AAAAAAAAwD4AAAAAAADgPgAAgD0AAOA+AACAPQAA4D4AAIA9AADAPgAAAAAAAOA+AAAAAAAA4D4AAIA9AADAPgAAAAAAAMA+"},{"byteLength":96,"name":"tex_coords_gate_X","uri":"data:application/octet-stream;base64,AACAPQAAwD4AAAAAAADAPgAAgD0AAOA+AAAAAAAAwD4AAAAAAADgPgAAgD0AAOA+AACAPQAA4D4AAIA9AADAPgAAAAAAAOA+AAAAAAAA4D4AAIA9AADAPgAAAAAAAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y","uri":"data:application/octet-stream;base64,AACAPQAA4D4AAAAAAADgPgAAgD0AAAA/AAAAAAAA4D4AAAAAAAAAPwAAgD0AAAA/AACAPQAAAD8AAIA9AADgPgAAAAAAAAA/AAAAAAAAAD8AAIA9AADgPgAAAAAAAOA+"},{"byteLength":96,"name":"tex_coords_gate_Z","uri":"data:application/octet-stream;base64,AACAPQAAAD8AAAAAAAAAPwAAgD0AABA/AAAAAAAAAD8AAAAAAAAQPwAAgD0AABA/AACAPQAAED8AAIA9AAAAPwAAAAAAABA/AAAAAAAAED8AAIA9AAAAPwAAAAAAAAA/"},{"byteLength":96,"name":"tex_coords_gate_C_XYZ","uri":"data:application/octet-stream;base64,AAAAPgAAED8AAIA9AAAQPwAAAD4AACA/AACAPQAAED8AAIA9AAAgPwAAAD4AACA/AAAAPgAAID8AAAA+AAAQPwAAgD0AACA/AACAPQAAID8AAAA+AAAQPwAAgD0AABA/"},{"byteLength":96,"name":"tex_coords_gate_C_ZYX","uri":"data:application/octet-stream;base64,AABAPgAAED8AAAA+AAAQPwAAQD4AACA/AAAAPgAAED8AAAA+AAAgPwAAQD4AACA/AABAPgAAID8AAEA+AAAQPwAAAD4AACA/AAAAPgAAID8AAEA+AAAQPwAAAD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_H_XY","uri":"data:application/octet-stream;base64,AAAAPgAAAD8AAIA9AAAAPwAAAD4AABA/AACAPQAAAD8AAIA9AAAQPwAAAD4AABA/AAAAPgAAED8AAAA+AAAAPwAAgD0AABA/AACAPQAAED8AAAA+AAAAPwAAgD0AAAA/"},{"byteLength":96,"name":"tex_coords_gate_H","uri":"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+"},{"byteLength":96,"name":"tex_coords_gate_H_YZ","uri":"data:application/octet-stream;base64,AAAAPgAAwD4AAIA9AADAPgAAAD4AAOA+AACAPQAAwD4AAIA9AADgPgAAAD4AAOA+AAAAPgAA4D4AAAA+AADAPgAAgD0AAOA+AACAPQAA4D4AAAA+AADAPgAAgD0AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_X","uri":"data:application/octet-stream;base64,AABAPgAAwD4AAAA+AADAPgAAQD4AAOA+AAAAPgAAwD4AAAA+AADgPgAAQD4AAOA+AABAPgAA4D4AAEA+AADAPgAAAD4AAOA+AAAAPgAA4D4AAEA+AADAPgAAAD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_X_DAG","uri":"data:application/octet-stream;base64,AACAPgAAwD4AAEA+AADAPgAAgD4AAOA+AABAPgAAwD4AAEA+AADgPgAAgD4AAOA+AACAPgAA4D4AAIA+AADAPgAAQD4AAOA+AABAPgAA4D4AAIA+AADAPgAAQD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_Y","uri":"data:application/octet-stream;base64,AABAPgAA4D4AAAA+AADgPgAAQD4AAAA/AAAAPgAA4D4AAAA+AAAAPwAAQD4AAAA/AABAPgAAAD8AAEA+AADgPgAAAD4AAAA/AAAAPgAAAD8AAEA+AADgPgAAAD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_Y_DAG","uri":"data:application/octet-stream;base64,AACAPgAA4D4AAEA+AADgPgAAgD4AAAA/AABAPgAA4D4AAEA+AAAAPwAAgD4AAAA/AACAPgAAAD8AAIA+AADgPgAAQD4AAAA/AABAPgAAAD8AAIA+AADgPgAAQD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_S","uri":"data:application/octet-stream;base64,AABAPgAAAD8AAAA+AAAAPwAAQD4AABA/AAAAPgAAAD8AAAA+AAAQPwAAQD4AABA/AABAPgAAED8AAEA+AAAAPwAAAD4AABA/AAAAPgAAED8AAEA+AAAAPwAAAD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_S_DAG","uri":"data:application/octet-stream;base64,AACAPgAAAD8AAEA+AAAAPwAAgD4AABA/AABAPgAAAD8AAEA+AAAQPwAAgD4AABA/AACAPgAAED8AAIA+AAAAPwAAQD4AABA/AABAPgAAED8AAIA+AAAAPwAAQD4AAAA/"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_zswap_line_cross","uri":"data:application/octet-stream;base64,AAAAAGu0575rtOe+AAAAAGu05z5rtOc+AAAAAGu0575rtOc+AAAAAGu05z5rtOe+"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_xswap_line_cross","uri":"data:application/octet-stream;base64,AAAAAGu0575rtOe+AAAAAGu05z5rtOc+AAAAAGu0575rtOc+AAAAAGu05z5rtOe+"},{"byteLength":96,"name":"tex_coords_gate_ISWAP","uri":"data:application/octet-stream;base64,AADAPgAAED8AAKA+AAAQPwAAwD4AACA/AACgPgAAED8AAKA+AAAgPwAAwD4AACA/AADAPgAAID8AAMA+AAAQPwAAoD4AACA/AACgPgAAID8AAMA+AAAQPwAAoD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_ISWAP_DAG","uri":"data:application/octet-stream;base64,AADgPgAAED8AAMA+AAAQPwAA4D4AACA/AADAPgAAED8AAMA+AAAgPwAA4D4AACA/AADgPgAAID8AAOA+AAAQPwAAwD4AACA/AADAPgAAID8AAOA+AAAQPwAAwD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_SWAP","uri":"data:application/octet-stream;base64,AAAAPwAAED8AAOA+AAAQPwAAAD8AACA/AADgPgAAED8AAOA+AAAgPwAAAD8AACA/AAAAPwAAID8AAAA/AAAQPwAA4D4AACA/AADgPgAAID8AAAA/AAAQPwAA4D4AABA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_XX","uri":"data:application/octet-stream;base64,AABAPwAAwD4AADA/AADAPgAAQD8AAOA+AAAwPwAAwD4AADA/AADgPgAAQD8AAOA+AABAPwAA4D4AAEA/AADAPgAAMD8AAOA+AAAwPwAA4D4AAEA/AADAPgAAMD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_XX_DAG","uri":"data:application/octet-stream;base64,AABQPwAAwD4AAEA/AADAPgAAUD8AAOA+AABAPwAAwD4AAEA/AADgPgAAUD8AAOA+AABQPwAA4D4AAFA/AADAPgAAQD8AAOA+AABAPwAA4D4AAFA/AADAPgAAQD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_YY","uri":"data:application/octet-stream;base64,AABAPwAA4D4AADA/AADgPgAAQD8AAAA/AAAwPwAA4D4AADA/AAAAPwAAQD8AAAA/AABAPwAAAD8AAEA/AADgPgAAMD8AAAA/AAAwPwAAAD8AAEA/AADgPgAAMD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_YY_DAG","uri":"data:application/octet-stream;base64,AABQPwAA4D4AAEA/AADgPgAAUD8AAAA/AABAPwAA4D4AAEA/AAAAPwAAUD8AAAA/AABQPwAAAD8AAFA/AADgPgAAQD8AAAA/AABAPwAAAD8AAFA/AADgPgAAQD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_ZZ","uri":"data:application/octet-stream;base64,AABAPwAAAD8AADA/AAAAPwAAQD8AABA/AAAwPwAAAD8AADA/AAAQPwAAQD8AABA/AABAPwAAED8AAEA/AAAAPwAAMD8AABA/AAAwPwAAED8AAEA/AAAAPwAAMD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_ZZ_DAG","uri":"data:application/octet-stream;base64,AABQPwAAAD8AAEA/AAAAPwAAUD8AABA/AABAPwAAAD8AAEA/AAAQPwAAUD8AABA/AABQPwAAED8AAFA/AAAAPwAAQD8AABA/AABAPwAAED8AAFA/AAAAPwAAQD8AAAA/"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_x_line_cross","uri":"data:application/octet-stream;base64,AAAAAM3MzL4AAAAAAAAAAM3MzD4AAAAAAAAAAAAAAADNzMy+AAAAAAAAAADNzMw+"},{"byteLength":36,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAM/MTL6sXLE+AAAAAMvMTL6tXLG+"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":96,"name":"tex_coords_gate_E:X","uri":"data:application/octet-stream;base64,AAAQPwAAwD4AAAA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/AADgPgAAED8AAOA+AAAQPwAA4D4AABA/AADAPgAAAD8AAOA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_E:Y","uri":"data:application/octet-stream;base64,AAAQPwAA4D4AAAA/AADgPgAAED8AAAA/AAAAPwAA4D4AAAA/AAAAPwAAED8AAAA/AAAQPwAAAD8AABA/AADgPgAAAD8AAAA/AAAAPwAAAD8AABA/AADgPgAAAD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_E:Z","uri":"data:application/octet-stream;base64,AAAQPwAAAD8AAAA/AAAAPwAAED8AABA/AAAAPwAAAD8AAAA/AAAQPwAAED8AABA/AAAQPwAAED8AABA/AAAAPwAAAD8AABA/AAAAPwAAED8AABA/AAAAPwAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","uri":"data:application/octet-stream;base64,AAAgPwAAwD4AABA/AADAPgAAID8AAOA+AAAQPwAAwD4AABA/AADgPgAAID8AAOA+AAAgPwAA4D4AACA/AADAPgAAED8AAOA+AAAQPwAA4D4AACA/AADAPgAAED8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","uri":"data:application/octet-stream;base64,AAAgPwAA4D4AABA/AADgPgAAID8AAAA/AAAQPwAA4D4AABA/AAAAPwAAID8AAAA/AAAgPwAAAD8AACA/AADgPgAAED8AAAA/AAAQPwAAAD8AACA/AADgPgAAED8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","uri":"data:application/octet-stream;base64,AAAgPwAAAD8AABA/AAAAPwAAID8AABA/AAAQPwAAAD8AABA/AAAQPwAAID8AABA/AAAgPwAAED8AACA/AAAAPwAAED8AABA/AAAQPwAAED8AACA/AAAAPwAAED8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_DEPOLARIZE1","uri":"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_DEPOLARIZE2","uri":"data:application/octet-stream;base64,AACgPgAAED8AAIA+AAAQPwAAoD4AACA/AACAPgAAED8AAIA+AAAgPwAAoD4AACA/AACgPgAAID8AAKA+AAAQPwAAgD4AACA/AACAPgAAID8AAKA+AAAQPwAAgD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_PAULI_CHANNEL_1","uri":"data:application/octet-stream;base64,AAAQPwAAED8AAAA/AAAQPwAAED8AACA/AAAAPwAAED8AAAA/AAAgPwAAED8AACA/AAAQPwAAID8AABA/AAAQPwAAAD8AACA/AAAAPwAAID8AABA/AAAQPwAAAD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_PAULI_CHANNEL_2","uri":"data:application/octet-stream;base64,AAAgPwAAED8AABA/AAAQPwAAID8AACA/AAAQPwAAED8AABA/AAAgPwAAID8AACA/AAAgPwAAID8AACA/AAAQPwAAED8AACA/AAAQPwAAID8AACA/AAAQPwAAED8AABA/"},{"byteLength":96,"name":"tex_coords_gate_X_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAAwD4AAOA+AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+AADgPgAAAD8AAOA+AAAAPwAA4D4AAAA/AADAPgAA4D4AAOA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAA4D4AAOA+AADgPgAAAD8AAAA/AADgPgAA4D4AAOA+AAAAPwAAAD8AAAA/AAAAPwAAAD8AAAA/AADgPgAA4D4AAAA/AADgPgAAAD8AAAA/AADgPgAA4D4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_Z_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAAAD8AAOA+AAAAPwAAAD8AABA/AADgPgAAAD8AAOA+AAAQPwAAAD8AABA/AAAAPwAAED8AAAA/AAAAPwAA4D4AABA/AADgPgAAED8AAAA/AAAAPwAA4D4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_HERALDED_ERASE","uri":"data:application/octet-stream;base64,AABwPwAAED8AAGA/AAAQPwAAcD8AACA/AABgPwAAED8AAGA/AAAgPwAAcD8AACA/AABwPwAAID8AAHA/AAAQPwAAYD8AACA/AABgPwAAID8AAHA/AAAQPwAAYD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_HERALDED_PAULI_CHANNEL_1","uri":"data:application/octet-stream;base64,AACAPwAAED8AAHA/AAAQPwAAgD8AACA/AABwPwAAED8AAHA/AAAgPwAAgD8AACA/AACAPwAAID8AAIA/AAAQPwAAcD8AACA/AABwPwAAID8AAIA/AAAQPwAAcD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_MPP:X","uri":"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Y","uri":"data:application/octet-stream;base64,AAAwPwAA4D4AACA/AADgPgAAMD8AAAA/AAAgPwAA4D4AACA/AAAAPwAAMD8AAAA/AAAwPwAAAD8AADA/AADgPgAAID8AAAA/AAAgPwAAAD8AADA/AADgPgAAID8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Z","uri":"data:application/octet-stream;base64,AAAwPwAAAD8AACA/AAAAPwAAMD8AABA/AAAgPwAAAD8AACA/AAAQPwAAMD8AABA/AAAwPwAAED8AADA/AAAAPwAAID8AABA/AAAgPwAAED8AADA/AAAAPwAAID8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SPP:X","uri":"data:application/octet-stream;base64,AACAPQAAID8AAAAAAAAgPwAAgD0AADA/AAAAAAAAID8AAAAAAAAwPwAAgD0AADA/AACAPQAAMD8AAIA9AAAgPwAAAAAAADA/AAAAAAAAMD8AAIA9AAAgPwAAAAAAACA/"},{"byteLength":96,"name":"tex_coords_gate_SPP:Y","uri":"data:application/octet-stream;base64,AAAAPgAAID8AAIA9AAAgPwAAAD4AADA/AACAPQAAID8AAIA9AAAwPwAAAD4AADA/AAAAPgAAMD8AAAA+AAAgPwAAgD0AADA/AACAPQAAMD8AAAA+AAAgPwAAgD0AACA/"},{"byteLength":96,"name":"tex_coords_gate_SPP:Z","uri":"data:application/octet-stream;base64,AABAPgAAID8AAAA+AAAgPwAAQD4AADA/AAAAPgAAID8AAAA+AAAwPwAAQD4AADA/AABAPgAAMD8AAEA+AAAgPwAAAD4AADA/AAAAPgAAMD8AAEA+AAAgPwAAAD4AACA/"},{"byteLength":96,"name":"tex_coords_gate_SPP_DAG:X","uri":"data:application/octet-stream;base64,AACAPgAAID8AAEA+AAAgPwAAgD4AADA/AABAPgAAID8AAEA+AAAwPwAAgD4AADA/AACAPgAAMD8AAIA+AAAgPwAAQD4AADA/AABAPgAAMD8AAIA+AAAgPwAAQD4AACA/"},{"byteLength":96,"name":"tex_coords_gate_SPP_DAG:Y","uri":"data:application/octet-stream;base64,AACgPgAAID8AAIA+AAAgPwAAoD4AADA/AACAPgAAID8AAIA+AAAwPwAAoD4AADA/AACgPgAAMD8AAKA+AAAgPwAAgD4AADA/AACAPgAAMD8AAKA+AAAgPwAAgD4AACA/"},{"byteLength":96,"name":"tex_coords_gate_SPP_DAG:Z","uri":"data:application/octet-stream;base64,AADAPgAAID8AAKA+AAAgPwAAwD4AADA/AACgPgAAID8AAKA+AAAwPwAAwD4AADA/AADAPgAAMD8AAMA+AAAgPwAAoD4AADA/AACgPgAAMD8AAMA+AAAgPwAAoD4AACA/"},{"byteLength":96,"name":"tex_coords_gate_MRX","uri":"data:application/octet-stream;base64,AADgPgAAwD4AAMA+AADAPgAA4D4AAOA+AADAPgAAwD4AAMA+AADgPgAA4D4AAOA+AADgPgAA4D4AAOA+AADAPgAAwD4AAOA+AADAPgAA4D4AAOA+AADAPgAAwD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MRY","uri":"data:application/octet-stream;base64,AADgPgAA4D4AAMA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+AAAAPwAA4D4AAAA/AADgPgAAAD8AAOA+AADgPgAAwD4AAAA/AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_MR","uri":"data:application/octet-stream;base64,AADgPgAAAD8AAMA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+AAAQPwAA4D4AABA/AADgPgAAED8AAOA+AAAAPwAAwD4AABA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MX","uri":"data:application/octet-stream;base64,AACgPgAAwD4AAIA+AADAPgAAoD4AAOA+AACAPgAAwD4AAIA+AADgPgAAoD4AAOA+AACgPgAA4D4AAKA+AADAPgAAgD4AAOA+AACAPgAA4D4AAKA+AADAPgAAgD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MY","uri":"data:application/octet-stream;base64,AACgPgAA4D4AAIA+AADgPgAAoD4AAAA/AACAPgAA4D4AAIA+AAAAPwAAoD4AAAA/AACgPgAAAD8AAKA+AADgPgAAgD4AAAA/AACAPgAAAD8AAKA+AADgPgAAgD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_RX","uri":"data:application/octet-stream;base64,AADAPgAAwD4AAKA+AADAPgAAwD4AAOA+AACgPgAAwD4AAKA+AADgPgAAwD4AAOA+AADAPgAA4D4AAMA+AADAPgAAoD4AAOA+AACgPgAA4D4AAMA+AADAPgAAoD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_RY","uri":"data:application/octet-stream;base64,AADAPgAA4D4AAKA+AADgPgAAwD4AAAA/AACgPgAA4D4AAKA+AAAAPwAAwD4AAAA/AADAPgAAAD8AAMA+AADgPgAAoD4AAAA/AACgPgAAAD8AAMA+AADgPgAAoD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_R","uri":"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MXX","uri":"data:application/octet-stream;base64,AAAwPwAAED8AACA/AAAQPwAAMD8AACA/AAAgPwAAED8AACA/AAAgPwAAMD8AACA/AAAwPwAAID8AADA/AAAQPwAAID8AACA/AAAgPwAAID8AADA/AAAQPwAAID8AABA/"},{"byteLength":96,"name":"tex_coords_gate_MYY","uri":"data:application/octet-stream;base64,AABAPwAAED8AADA/AAAQPwAAQD8AACA/AAAwPwAAED8AADA/AAAgPwAAQD8AACA/AABAPwAAID8AAEA/AAAQPwAAMD8AACA/AAAwPwAAID8AAEA/AAAQPwAAMD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_MZZ","uri":"data:application/octet-stream;base64,AABQPwAAED8AAEA/AAAQPwAAUD8AACA/AABAPwAAED8AAEA/AAAgPwAAUD8AACA/AABQPwAAID8AAFA/AAAQPwAAQD8AACA/AABAPwAAID8AAFA/AAAQPwAAQD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_MPAD","uri":"data:application/octet-stream;base64,AABgPwAAED8AAFA/AAAQPwAAYD8AACA/AABQPwAAED8AAFA/AAAgPwAAYD8AACA/AABgPwAAID8AAGA/AAAQPwAAUD8AACA/AABQPwAAID8AAGA/AAAQPwAAUD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_X:REC","uri":"data:application/octet-stream;base64,AABgPwAAwD4AAFA/AADAPgAAYD8AAOA+AABQPwAAwD4AAFA/AADgPgAAYD8AAOA+AABgPwAA4D4AAGA/AADAPgAAUD8AAOA+AABQPwAA4D4AAGA/AADAPgAAUD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y:SWEEP","uri":"data:application/octet-stream;base64,AABwPwAA4D4AAGA/AADgPgAAcD8AAAA/AABgPwAA4D4AAGA/AAAAPwAAcD8AAAA/AABwPwAAAD8AAHA/AADgPgAAYD8AAAA/AABgPwAAAD8AAHA/AADgPgAAYD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_Z:REC","uri":"data:application/octet-stream;base64,AABgPwAAAD8AAFA/AAAAPwAAYD8AABA/AABQPwAAAD8AAFA/AAAQPwAAYD8AABA/AABgPwAAED8AAGA/AAAAPwAAUD8AABA/AABQPwAAED8AAGA/AAAAPwAAUD8AAAA/"},{"byteLength":1704,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AABAwAAAAMIAAADCAABQwAAAiMEAAIDBAABQwAAAiMEAAIDBAABAwAAAAMAAAACAAABAwAAAgMAAAACAAABAwAAAwMAAAACAAABAwAAAAMEAAACAAABAwAAAIMEAAACAAABAwAAAQMEAAACAAABAwAAAYMEAAACAAABAwAAAgMEAAACAAABAwAAAkMEAAACAAABAwAAAoMEAAACAAABAwAAAsMEAAACAAACAwAAAAMIAAADCAACIwAAAiMEAAIDBAACIwAAAiMEAAIDBAACAwAAAAMAAAACAAACAwAAAgMAAAACAAACAwAAAwMAAAACAAACAwAAAAMEAAACAAACAwAAAIMEAAACAAACAwAAAQMEAAACAAACAwAAAYMEAAACAAACAwAAAgMEAAACAAACAwAAAkMEAAACAAACAwAAAoMEAAACAAACAwAAAsMEAAACAAACgwAAAAMIAAADCAACowAAAiMEAAIDBAACowAAAiMEAAIDBAACgwAAAAMAAAACAAACgwAAAgMAAAACAAACgwAAAwMAAAACAAACgwAAAAMEAAACAAACgwAAAIMEAAACAAACgwAAAQMEAAACAAACgwAAAYMEAAACAAACgwAAAgMEAAACAAACgwAAAkMEAAACAAACgwAAAoMEAAACAAACgwAAAsMEAAACAAACgwAAAwMEAAACAAACgwAAA0MEAAACAAACgwAAA4MEAAACAAACgwAAA8MEAAACAAACgwAAAAMIAAACAAACgwAAACMIAAACAAADAwAAAgMAAAACAAADAwAAAAMAAAACAAADAwAAAwMAAAACAAADAwAAAgMAAAACAAADAwAAAYMEAAACAAADIwAAAMMEAAACAAADIwAAAMMEAAACAAADAwAAAAMEAAACAAADAwAAAQMEAAACAAADAwAAAYMEAAACAAADgwAAAAMAAAACAAADgwAAAgMAAAACAAADgwAAAAMEAAACAAADgwAAAIMEAAACAAAAQwQAAAMAAAACAAAAUwQAAiMEAAIDBAAAUwQAAiMEAAIDBAAAQwQAAAMIAAADCAAAQwQAAgMAAAACAAAAQwQAAAMAAAACAAAAgwQAAAMAAAACAAAAkwQAAiMEAAIDBAAAkwQAAiMEAAIDBAAAgwQAAAMIAAADCAAAwwQAAAMAAAACAAAA0wQAAiMEAAIDBAAA0wQAAiMEAAIDBAAAwwQAAAMIAAADCAAAwwQAAgMAAAACAAAAwwQAAAMAAAACAAABAwQAAAMAAAACAAABEwQAAiMEAAIDBAABEwQAAiMEAAIDBAABAwQAAAMIAAADCAABAwQAAgMAAAACAAABAwQAAAMAAAACAAABwwQAAAMIAAADCAAB0wQAAiMEAAIDBAAB0wQAAiMEAAIDBAABwwQAAAMAAAACAAABwwQAAgMAAAACAAABwwQAAwMAAAACAAABwwQAAAMEAAACAAABwwQAAIMEAAACAAABwwQAAQMEAAACAAABwwQAAYMEAAACAAACQwQAAAMIAAADCAACSwQAAiMEAAIDBAACSwQAAiMEAAIDBAACQwQAAAMAAAACAAADYwQAAgMAAAACAAADYwQAAwMAAAACAAADYwQAAAMEAAACAAADYwQAAIMEAAACAAADYwQAAYMEAAACAAADYwQAAQMEAAACAAADYwQAAgMEAAACAAADYwQAAYMEAAACAAACAPwAAAMIAAADCAADowQAAAMIAAADCAACAPwAAAMAAAACAAADowQAAAMAAAACAAACAPwAAgMAAAACAAADowQAAgMAAAACAAACAPwAAwMAAAACAAADowQAAwMAAAACAAACAPwAAAMEAAACAAADowQAAAMEAAACAAACAPwAAIMEAAACAAADowQAAIMEAAACAAACAPwAAQMEAAACAAADowQAAQMEAAACAAACAPwAAYMEAAACAAADowQAAYMEAAACAAACAPwAAgMEAAACAAADowQAAgMEAAACAAACAPwAAkMEAAACAAADowQAAkMEAAACAAACAPwAAoMEAAACAAADowQAAoMEAAACAAACAPwAAsMEAAACAAADowQAAsMEAAACAAACAPwAAwMEAAACAAADowQAAwMEAAACAAACAPwAA0MEAAACAAADowQAA0MEAAACAAACAPwAA4MEAAACAAADowQAA4MEAAACAAACAPwAA8MEAAACAAADowQAA8MEAAACAAACAPwAAAMIAAACAAADowQAAAMIAAACAAACAPwAACMIAAACAAADowQAACMIAAACA"},{"byteLength":360,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAIAAAIDBAABAwAAAAIAAAIDBAAAgwAAAAL8AAIDBAABAwAAAAIAAAIDBAAAgwAAAAD8AAIDBAABAwAAAAIAAAIDBAACGwQAAgL8AAIA/AACGwQAAgL8AAATCAACGwQAAgL8AAIA/AACGwQAADMIAAIA/AACGwQAAgL8AAIA/AACiwQAAgL8AAIA/AACGwQAAgL8AAATCAACGwQAADMIAAATCAACGwQAAgL8AAATCAACiwQAAgL8AAATCAACGwQAADMIAAIA/AACGwQAADMIAAATCAACGwQAADMIAAIA/AACiwQAADMIAAIA/AACGwQAADMIAAATCAACiwQAADMIAAATCAACiwQAAgL8AAIA/AACiwQAAgL8AAATCAACiwQAAgL8AAIA/AACiwQAADMIAAIA/AACiwQAAgL8AAATCAACiwQAADMIAAATCAACiwQAADMIAAIA/AACiwQAADMIAAATC"},{"byteLength":1152,"name":"buf_blue_scattered_lines","uri":"data:application/octet-stream;base64,AABAv83MzL8AAAA/AABAv5qZmb8AAAA/AABAv83MzL8AAALCAABAv5qZmb8AAALCAABAv5qZmb8AAAA/AABAv5qZmb8AAALCAABAv5qZmb8AAAA/AAAQwJqZmb8AAAA/AABAv5qZmb8AAALCAAAQwJqZmb8AAALCAAAQwM3MzL8AAAA/AAAQwJqZmb8AAAA/AAAQwM3MzL8AAALCAAAQwJqZmb8AAALCAAAQwJqZmb8AAAA/AAAQwJqZmb8AAALCAAAwwM3MzL8AAAA/AAAwwJqZmb8AAAA/AAAwwM3MzL8AAALCAAAwwJqZmb8AAALCAAAwwJqZmb8AAAA/AAAwwJqZmb8AAALCAAAwwJqZmb8AAAA/AACowJqZmb8AAAA/AAAwwJqZmb8AAALCAACowJqZmb8AAALCAACowM3MzL8AAAA/AACowJqZmb8AAAA/AACowM3MzL8AAALCAACowJqZmb8AAALCAACowJqZmb8AAAA/AACowJqZmb8AAALCAAC4wM3MzL8AAAA/AAC4wJqZmb8AAAA/AAC4wM3MzL8AAALCAAC4wJqZmb8AAALCAAC4wJqZmb8AAAA/AAC4wJqZmb8AAALCAAC4wJqZmb8AAAA/AAAEwZqZmb8AAAA/AAC4wJqZmb8AAALCAAAEwZqZmb8AAALCAAAEwc3MzL8AAAA/AAAEwZqZmb8AAAA/AAAEwc3MzL8AAALCAAAEwZqZmb8AAALCAAAEwZqZmb8AAAA/AAAEwZqZmb8AAALCAAAMwc3MzL8AAAA/AAAMwZqZmb8AAAA/AAAMwc3MzL8AAALCAAAMwZqZmb8AAALCAAAMwZqZmb8AAAA/AAAMwZqZmb8AAALCAAAMwZqZmb8AAAA/AABUwZqZmb8AAAA/AAAMwZqZmb8AAALCAABUwZqZmb8AAALCAABUwc3MzL8AAAA/AABUwZqZmb8AAAA/AABUwc3MzL8AAALCAABUwZqZmb8AAALCAABUwZqZmb8AAAA/AABUwZqZmb8AAALCAACGwc3MzL8AAAA/AACGwZqZmb8AAAA/AACGwc3MzL8AAALCAACGwZqZmb8AAALCAACGwZqZmb8AAAA/AACGwZqZmb8AAALCAACGwZqZmb8AAAA/AACawZqZmb8AAAA/AACGwZqZmb8AAALCAACawZqZmb8AAALCAACawc3MzL8AAAA/AACawZqZmb8AAAA/AACawc3MzL8AAALCAACawZqZmb8AAALCAACawZqZmb8AAAA/AACawZqZmb8AAALCAACuwc3MzL8AAAA/AACuwZqZmb8AAAA/AACuwc3MzL8AAALCAACuwZqZmb8AAALCAACuwZqZmb8AAAA/AACuwZqZmb8AAALCAACuwZqZmb8AAAA/AADSwZqZmb8AAAA/AACuwZqZmb8AAALCAADSwZqZmb8AAALCAADSwc3MzL8AAAA/AADSwZqZmb8AAAA/AADSwc3MzL8AAALCAADSwZqZmb8AAALCAADSwZqZmb8AAAA/AADSwZqZmb8AAALC"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0.5,0.5,0.5,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,1,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":7},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":8},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":9},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":10},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":11},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":12},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":13},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":14},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":15},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":16},"material":1,"mode":6},{"attributes":{"POSITION":17},"material":2,"mode":1}]},{"primitives":[{"attributes":{"POSITION":18},"material":3,"mode":6},{"attributes":{"POSITION":18},"material":4,"mode":3},{"attributes":{"POSITION":19},"material":4,"mode":1}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":20},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":21},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":22},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":23},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":24},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":25},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":26},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":27},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":28},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":29},"material":5,"mode":6},{"attributes":{"POSITION":29},"material":6,"mode":3},{"attributes":{"POSITION":30},"material":6,"mode":1}]},{"primitives":[{"attributes":{"POSITION":31},"material":7,"mode":2},{"attributes":{"POSITION":31},"material":8,"mode":4}]},{"primitives":[{"attributes":{"POSITION":32},"material":9,"mode":6}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":33},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":34},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":35},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":36},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":37},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":38},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":39},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":40},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":41},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":42},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":43},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":44},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":45},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":46},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":47},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":48},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":49},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":50},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":51},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":52},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":53},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":54},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":55},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":56},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":57},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":58},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":59},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":60},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":61},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":62},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":63},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":64},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":65},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":66},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":67},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":68},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":69},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":70},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":71},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":72},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":73},"material":10,"mode":1}]},{"primitives":[{"attributes":{"POSITION":74},"material":11,"mode":1}]},{"primitives":[{"attributes":{"POSITION":75},"material":12,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-32,-32]},{"mesh":1,"translation":[-0,-2,-0]},{"mesh":2,"translation":[-0,-4,-0]},{"mesh":3,"translation":[-0,-6,-0]},{"mesh":4,"translation":[-1,-32,-32]},{"mesh":5,"translation":[-1,-2,-0]},{"mesh":6,"translation":[-1,-4,-0]},{"mesh":7,"translation":[-1,-6,-0]},{"mesh":8,"translation":[-1,-8,-0]},{"mesh":9,"translation":[-2,-32,-32]},{"mesh":10,"translation":[-2,-2,-0]},{"mesh":11,"translation":[-2,-4,-0]},{"mesh":12,"translation":[-2,-6,-0]},{"mesh":13,"translation":[-2,-8,-0]},{"mesh":14,"translation":[-2,-10,-0]},{"mesh":15,"translation":[-3,-32,-32]},{"mesh":16,"translation":[-3,-2,-0]},{"mesh":17,"translation":[-3,-4,-0]},{"mesh":17,"translation":[-3,-6,-0]},{"mesh":18,"translation":[-3,-8,-0]},{"mesh":18,"translation":[-3,-10,-0]},{"mesh":19,"translation":[-3,-12,-0]},{"mesh":19,"translation":[-3,-14,-0]},{"mesh":16,"translation":[-3,-16,-0]},{"mesh":15,"translation":[-3,-18,-0]},{"mesh":15,"translation":[-3,-20,-0]},{"mesh":15,"translation":[-3,-22,-0]},{"mesh":20,"translation":[-4,-32,-32]},{"mesh":20,"translation":[-4,-2,-0]},{"mesh":21,"translation":[-4,-4,-0]},{"mesh":21,"translation":[-4,-6,-0]},{"mesh":22,"translation":[-4,-8,-0]},{"mesh":22,"translation":[-4,-10,-0]},{"mesh":23,"translation":[-4,-12,-0]},{"mesh":23,"translation":[-4,-14,-0]},{"mesh":24,"translation":[-4,-16,-0]},{"mesh":24,"translation":[-4,-18,-0]},{"mesh":25,"translation":[-4,-20,-0]},{"mesh":25,"translation":[-4,-22,-0]},{"mesh":26,"translation":[-5,-32,-32]},{"mesh":26,"translation":[-5,-2,-0]},{"mesh":26,"translation":[-5,-4,-0]},{"mesh":27,"translation":[-5,-6,-0]},{"mesh":26,"translation":[-5,-8,-0]},{"mesh":28,"translation":[-5,-10,-0]},{"mesh":27,"translation":[-5,-12,-0]},{"mesh":26,"translation":[-5,-14,-0]},{"mesh":27,"translation":[-5,-16,-0]},{"mesh":27,"translation":[-5,-18,-0]},{"mesh":27,"translation":[-5,-20,-0]},{"mesh":28,"translation":[-5,-22,-0]},{"mesh":28,"translation":[-5,-24,-0]},{"mesh":26,"translation":[-5,-26,-0]},{"mesh":28,"translation":[-5,-28,-0]},{"mesh":27,"translation":[-5,-30,-0]},{"mesh":28,"translation":[-5,-32,-0]},{"mesh":28,"translation":[-5,-34,-0]},{"mesh":29,"translation":[-6,-2,-0]},{"mesh":30,"translation":[-6,-4,-0]},{"mesh":31,"translation":[-6,-6,-0]},{"mesh":32,"translation":[-6,-8,-0]},{"mesh":33,"translation":[-6,-14,-0]},{"mesh":34,"translation":[-6,-12,-0]},{"mesh":35,"translation":[-6,-32,-32]},{"mesh":36,"translation":[-7,-2,-0]},{"mesh":36,"translation":[-7,-4,-0]},{"mesh":37,"translation":[-7,-6,-0]},{"mesh":38,"translation":[-7,-8,-0]},{"mesh":38,"translation":[-7,-10,-0]},{"mesh":39,"translation":[-7,-32,-32]},{"mesh":40,"translation":[-8,-2,-0]},{"mesh":41,"translation":[-8,-4,-0]},{"mesh":42,"translation":[-8,-6,-0]},{"mesh":43,"translation":[-8,-12,-0]},{"mesh":44,"translation":[-9,-32,-32]},{"mesh":45,"translation":[-9,-2,-0]},{"mesh":46,"translation":[-9,-4,-0]},{"mesh":46,"translation":[-10,-32,-32]},{"mesh":46,"translation":[-10,-2,-0]},{"mesh":47,"translation":[-11,-32,-32]},{"mesh":48,"translation":[-11,-2,-0]},{"mesh":49,"translation":[-11,-4,-0]},{"mesh":47,"translation":[-11,-6,-0]},{"mesh":50,"translation":[-12,-32,-32]},{"mesh":51,"translation":[-12,-2,-0]},{"mesh":52,"translation":[-12,-4,-0]},{"mesh":50,"translation":[-13,-4,-0]},{"mesh":53,"translation":[-14,-32,-32]},{"mesh":54,"translation":[-14,-2,-0]},{"mesh":55,"translation":[-14,-4,-0]},{"mesh":56,"translation":[-14,-6,-0]},{"mesh":57,"translation":[-14,-8,-0]},{"mesh":58,"translation":[-14,-10,-0]},{"mesh":58,"translation":[-14,-12,-0]},{"mesh":59,"translation":[-14,-14,-0]},{"mesh":60,"translation":[-14,-16,-0]},{"mesh":61,"translation":[-14,-18,-0]},{"mesh":62,"translation":[-15,-32,-32]},{"mesh":62,"translation":[-15,-2,-0]},{"mesh":62,"translation":[-15,-4,-0]},{"mesh":62,"translation":[-15,-6,-0]},{"mesh":63,"translation":[-15,-8,-0]},{"mesh":63,"translation":[-15,-10,-0]},{"mesh":64,"translation":[-15,-12,-0]},{"mesh":64,"translation":[-15,-14,-0]},{"mesh":7,"translation":[-17,-32,-32]},{"mesh":28,"translation":[-18,-32,-32]},{"mesh":26,"translation":[-18,-2,-0]},{"mesh":13,"translation":[-19,-2,-0]},{"mesh":55,"translation":[-22,-32,-32]},{"mesh":39,"translation":[-23,-32,-32]},{"mesh":55,"translation":[-24,-32,-32]},{"mesh":65,"translation":[-25,-32,-32]},{"mesh":65,"translation":[-25,-2,-0]},{"mesh":65,"translation":[-26,-32,-32]},{"mesh":53,"translation":[-27,-32,-32]},{"mesh":57,"translation":[-27,-2,-0]},{"mesh":64,"translation":[-27,-4,-0]},{"mesh":64,"translation":[-27,-6,-0]},{"mesh":63,"translation":[-27,-8,-0]},{"mesh":63,"translation":[-27,-10,-0]},{"mesh":44,"translation":[-27,-12,-0]},{"mesh":45,"translation":[-27,-14,-0]},{"mesh":46,"translation":[-27,-16,-0]},{"mesh":66,"translation":[-28,-32,-32]},{"mesh":67,"translation":[-28,-2,-0]},{"mesh":68,"translation":[-28,-4,-0]},{"mesh":69,"translation":[0,0,0]},{"mesh":70,"translation":[0,0,0]},{"mesh":71,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/classical_feedback.gltf b/testdata/classical_feedback.gltf index 2698ce8c..0ec9ff51 100644 --- a/testdata/classical_feedback.gltf +++ b/testdata/classical_feedback.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.4375],"min":[0.8125,0.375],"name":"tex_coords_gate_X:REC","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.9375,0.5],"min":[0.875,0.4375],"name":"tex_coords_gate_Y:SWEEP","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":6,"max":[1,-0,-0],"min":[-1,-4,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X:REC","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y:SWEEP","target":34962},{"buffer":4,"byteLength":72,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":5,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_X:REC","uri":"data:application/octet-stream;base64,AABgPwAAwD4AAFA/AADAPgAAYD8AAOA+AABQPwAAwD4AAFA/AADgPgAAYD8AAOA+AABgPwAA4D4AAGA/AADAPgAAUD8AAOA+AABQPwAA4D4AAGA/AADAPgAAUD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y:SWEEP","uri":"data:application/octet-stream;base64,AABwPwAA4D4AAGA/AADgPgAAcD8AAAA/AABgPwAA4D4AAGA/AAAAPwAAcD8AAAA/AABwPwAAAD8AAHA/AADgPgAAYD8AAAA/AABgPwAAAD8AAHA/AADgPgAAYD8AAOA+"},{"byteLength":72,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAPwAAAIAAAACAAACAvwAAAIAAAACAAACAPwAAAMAAAACAAACAvwAAAMAAAACAAACAPwAAgMAAAACAAACAvwAAgMAAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":5},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":1,"translation":[-0,-2,-0]},{"mesh":2,"translation":[-0,-4,-0]},{"mesh":3,"translation":[0,0,0]},{"mesh":4,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.4375],"min":[0.8125,0.375],"name":"tex_coords_gate_X:REC","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.9375,0.5],"min":[0.875,0.4375],"name":"tex_coords_gate_Y:SWEEP","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":6,"max":[1,-0,-0],"min":[-1,-4,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X:REC","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y:SWEEP","target":34962},{"buffer":4,"byteLength":72,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":5,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_X:REC","uri":"data:application/octet-stream;base64,AABgPwAAwD4AAFA/AADAPgAAYD8AAOA+AABQPwAAwD4AAFA/AADgPgAAYD8AAOA+AABgPwAA4D4AAGA/AADAPgAAUD8AAOA+AABQPwAA4D4AAGA/AADAPgAAUD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y:SWEEP","uri":"data:application/octet-stream;base64,AABwPwAA4D4AAGA/AADgPgAAcD8AAAA/AABgPwAA4D4AAGA/AAAAPwAAcD8AAAA/AABwPwAAAD8AAHA/AADgPgAAYD8AAAA/AABgPwAAAD8AAHA/AADgPgAAYD8AAOA+"},{"byteLength":72,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAPwAAAIAAAACAAACAvwAAAIAAAACAAACAPwAAAMAAAACAAACAvwAAAMAAAACAAACAPwAAgMAAAACAAACAvwAAgMAAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":5},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":1,"translation":[-0,-2,-0]},{"mesh":2,"translation":[-0,-4,-0]},{"mesh":3,"translation":[0,0,0]},{"mesh":4,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/collapsing.gltf b/testdata/collapsing.gltf index 9ef1820b..7a3e15ca 100644 --- a/testdata/collapsing.gltf +++ b/testdata/collapsing.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5625],"min":[0.3125,0.5],"name":"tex_coords_gate_R","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.4375],"min":[0.3125,0.375],"name":"tex_coords_gate_RX","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5],"min":[0.3125,0.4375],"name":"tex_coords_gate_RY","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5625],"min":[0.375,0.5],"name":"tex_coords_gate_MR","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.4375],"min":[0.375,0.375],"name":"tex_coords_gate_MRX","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5],"min":[0.375,0.4375],"name":"tex_coords_gate_MRY","type":"VEC2"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.4375],"min":[0.25,0.375],"name":"tex_coords_gate_MX","type":"VEC2"},{"bufferView":9,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5],"min":[0.25,0.4375],"name":"tex_coords_gate_MY","type":"VEC2"},{"bufferView":10,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.4375],"min":[0.625,0.375],"name":"tex_coords_gate_MPP:X","type":"VEC2"},{"bufferView":11,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5],"min":[0.625,0.4375],"name":"tex_coords_gate_MPP:Y","type":"VEC2"},{"bufferView":12,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5625],"min":[0.625,0.5],"name":"tex_coords_gate_MPP:Z","type":"VEC2"},{"bufferView":13,"byteOffset":0,"componentType":5126,"count":14,"max":[1,-0,-0],"min":[-8,-6,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":14,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_R","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_RX","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_RY","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MR","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MRX","target":34962},{"buffer":7,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MRY","target":34962},{"buffer":8,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MX","target":34962},{"buffer":9,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MY","target":34962},{"buffer":10,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:X","target":34962},{"buffer":11,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Y","target":34962},{"buffer":12,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Z","target":34962},{"buffer":13,"byteLength":168,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":14,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_R","uri":"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_RX","uri":"data:application/octet-stream;base64,AADAPgAAwD4AAKA+AADAPgAAwD4AAOA+AACgPgAAwD4AAKA+AADgPgAAwD4AAOA+AADAPgAA4D4AAMA+AADAPgAAoD4AAOA+AACgPgAA4D4AAMA+AADAPgAAoD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_RY","uri":"data:application/octet-stream;base64,AADAPgAA4D4AAKA+AADgPgAAwD4AAAA/AACgPgAA4D4AAKA+AAAAPwAAwD4AAAA/AADAPgAAAD8AAMA+AADgPgAAoD4AAAA/AACgPgAAAD8AAMA+AADgPgAAoD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MR","uri":"data:application/octet-stream;base64,AADgPgAAAD8AAMA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+AAAQPwAA4D4AABA/AADgPgAAED8AAOA+AAAAPwAAwD4AABA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MRX","uri":"data:application/octet-stream;base64,AADgPgAAwD4AAMA+AADAPgAA4D4AAOA+AADAPgAAwD4AAMA+AADgPgAA4D4AAOA+AADgPgAA4D4AAOA+AADAPgAAwD4AAOA+AADAPgAA4D4AAOA+AADAPgAAwD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MRY","uri":"data:application/octet-stream;base64,AADgPgAA4D4AAMA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+AAAAPwAA4D4AAAA/AADgPgAAAD8AAOA+AADgPgAAwD4AAAA/AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_MX","uri":"data:application/octet-stream;base64,AACgPgAAwD4AAIA+AADAPgAAoD4AAOA+AACAPgAAwD4AAIA+AADgPgAAoD4AAOA+AACgPgAA4D4AAKA+AADAPgAAgD4AAOA+AACAPgAA4D4AAKA+AADAPgAAgD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MY","uri":"data:application/octet-stream;base64,AACgPgAA4D4AAIA+AADgPgAAoD4AAAA/AACAPgAA4D4AAIA+AAAAPwAAoD4AAAA/AACgPgAAAD8AAKA+AADgPgAAgD4AAAA/AACAPgAAAD8AAKA+AADgPgAAgD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:X","uri":"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Y","uri":"data:application/octet-stream;base64,AAAwPwAA4D4AACA/AADgPgAAMD8AAAA/AAAgPwAA4D4AACA/AAAAPwAAMD8AAAA/AAAwPwAAAD8AADA/AADgPgAAID8AAAA/AAAgPwAAAD8AADA/AADgPgAAID8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Z","uri":"data:application/octet-stream;base64,AAAwPwAAAD8AACA/AAAAPwAAMD8AABA/AAAgPwAAAD8AACA/AAAQPwAAMD8AABA/AAAwPwAAED8AADA/AAAAPwAAID8AABA/AAAgPwAAED8AADA/AAAAPwAAID8AAAA/"},{"byteLength":168,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AADAwAAAgMAAAACAAADIwAAAAMAAAACAAADIwAAAAMAAAACAAADAwAAAAIAAAACAAADgwAAAwMAAAACAAADgwAAAgMAAAACAAACAPwAAAIAAAACAAAAAwQAAAIAAAACAAACAPwAAAMAAAACAAAAAwQAAAMAAAACAAACAPwAAgMAAAACAAAAAwQAAgMAAAACAAACAPwAAwMAAAACAAAAAwQAAwMAAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":7},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":8},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":9},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":10},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":11},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":12},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":13},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":14},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":1,"translation":[-0,-2,-0]},{"mesh":2,"translation":[-0,-4,-0]},{"mesh":0,"translation":[-0,-6,-0]},{"mesh":3,"translation":[-1,-0,-0]},{"mesh":3,"translation":[-1,-2,-0]},{"mesh":4,"translation":[-2,-2,-0]},{"mesh":4,"translation":[-2,-0,-0]},{"mesh":5,"translation":[-3,-2,-0]},{"mesh":5,"translation":[-3,-4,-0]},{"mesh":6,"translation":[-3,-0,-0]},{"mesh":6,"translation":[-3,-6,-0]},{"mesh":6,"translation":[-4,-2,-0]},{"mesh":4,"translation":[-4,-0,-0]},{"mesh":7,"translation":[-5,-2,-0]},{"mesh":8,"translation":[-5,-4,-0]},{"mesh":3,"translation":[-5,-6,-0]},{"mesh":9,"translation":[-6,-0,-0]},{"mesh":10,"translation":[-6,-4,-0]},{"mesh":11,"translation":[-6,-6,-0]},{"mesh":9,"translation":[-6,-2,-0]},{"mesh":11,"translation":[-7,-4,-0]},{"mesh":10,"translation":[-7,-6,-0]},{"mesh":12,"translation":[0,0,0]},{"mesh":13,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5625],"min":[0.3125,0.5],"name":"tex_coords_gate_R","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.4375],"min":[0.3125,0.375],"name":"tex_coords_gate_RX","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5],"min":[0.3125,0.4375],"name":"tex_coords_gate_RY","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5625],"min":[0.375,0.5],"name":"tex_coords_gate_MR","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.4375],"min":[0.375,0.375],"name":"tex_coords_gate_MRX","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5],"min":[0.375,0.4375],"name":"tex_coords_gate_MRY","type":"VEC2"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.4375],"min":[0.25,0.375],"name":"tex_coords_gate_MX","type":"VEC2"},{"bufferView":9,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5],"min":[0.25,0.4375],"name":"tex_coords_gate_MY","type":"VEC2"},{"bufferView":10,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.4375],"min":[0.625,0.375],"name":"tex_coords_gate_MPP:X","type":"VEC2"},{"bufferView":11,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5],"min":[0.625,0.4375],"name":"tex_coords_gate_MPP:Y","type":"VEC2"},{"bufferView":12,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5625],"min":[0.625,0.5],"name":"tex_coords_gate_MPP:Z","type":"VEC2"},{"bufferView":13,"byteOffset":0,"componentType":5126,"count":14,"max":[1,-0,-0],"min":[-8,-6,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":14,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_R","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_RX","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_RY","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MR","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MRX","target":34962},{"buffer":7,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MRY","target":34962},{"buffer":8,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MX","target":34962},{"buffer":9,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MY","target":34962},{"buffer":10,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:X","target":34962},{"buffer":11,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Y","target":34962},{"buffer":12,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Z","target":34962},{"buffer":13,"byteLength":168,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":14,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_R","uri":"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_RX","uri":"data:application/octet-stream;base64,AADAPgAAwD4AAKA+AADAPgAAwD4AAOA+AACgPgAAwD4AAKA+AADgPgAAwD4AAOA+AADAPgAA4D4AAMA+AADAPgAAoD4AAOA+AACgPgAA4D4AAMA+AADAPgAAoD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_RY","uri":"data:application/octet-stream;base64,AADAPgAA4D4AAKA+AADgPgAAwD4AAAA/AACgPgAA4D4AAKA+AAAAPwAAwD4AAAA/AADAPgAAAD8AAMA+AADgPgAAoD4AAAA/AACgPgAAAD8AAMA+AADgPgAAoD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MR","uri":"data:application/octet-stream;base64,AADgPgAAAD8AAMA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+AAAQPwAA4D4AABA/AADgPgAAED8AAOA+AAAAPwAAwD4AABA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MRX","uri":"data:application/octet-stream;base64,AADgPgAAwD4AAMA+AADAPgAA4D4AAOA+AADAPgAAwD4AAMA+AADgPgAA4D4AAOA+AADgPgAA4D4AAOA+AADAPgAAwD4AAOA+AADAPgAA4D4AAOA+AADAPgAAwD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MRY","uri":"data:application/octet-stream;base64,AADgPgAA4D4AAMA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+AAAAPwAA4D4AAAA/AADgPgAAAD8AAOA+AADgPgAAwD4AAAA/AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_MX","uri":"data:application/octet-stream;base64,AACgPgAAwD4AAIA+AADAPgAAoD4AAOA+AACAPgAAwD4AAIA+AADgPgAAoD4AAOA+AACgPgAA4D4AAKA+AADAPgAAgD4AAOA+AACAPgAA4D4AAKA+AADAPgAAgD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MY","uri":"data:application/octet-stream;base64,AACgPgAA4D4AAIA+AADgPgAAoD4AAAA/AACAPgAA4D4AAIA+AAAAPwAAoD4AAAA/AACgPgAAAD8AAKA+AADgPgAAgD4AAAA/AACAPgAAAD8AAKA+AADgPgAAgD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:X","uri":"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Y","uri":"data:application/octet-stream;base64,AAAwPwAA4D4AACA/AADgPgAAMD8AAAA/AAAgPwAA4D4AACA/AAAAPwAAMD8AAAA/AAAwPwAAAD8AADA/AADgPgAAID8AAAA/AAAgPwAAAD8AADA/AADgPgAAID8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Z","uri":"data:application/octet-stream;base64,AAAwPwAAAD8AACA/AAAAPwAAMD8AABA/AAAgPwAAAD8AACA/AAAQPwAAMD8AABA/AAAwPwAAED8AADA/AAAAPwAAID8AABA/AAAgPwAAED8AADA/AAAAPwAAID8AAAA/"},{"byteLength":168,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AADAwAAAgMAAAACAAADIwAAAAMAAAACAAADIwAAAAMAAAACAAADAwAAAAIAAAACAAADgwAAAwMAAAACAAADgwAAAgMAAAACAAACAPwAAAIAAAACAAAAAwQAAAIAAAACAAACAPwAAAMAAAACAAAAAwQAAAMAAAACAAACAPwAAgMAAAACAAAAAwQAAgMAAAACAAACAPwAAwMAAAACAAAAAwQAAwMAAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":7},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":8},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":9},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":10},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":11},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":12},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":13},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":14},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":1,"translation":[-0,-2,-0]},{"mesh":2,"translation":[-0,-4,-0]},{"mesh":0,"translation":[-0,-6,-0]},{"mesh":3,"translation":[-1,-0,-0]},{"mesh":3,"translation":[-1,-2,-0]},{"mesh":4,"translation":[-2,-2,-0]},{"mesh":4,"translation":[-2,-0,-0]},{"mesh":5,"translation":[-3,-2,-0]},{"mesh":5,"translation":[-3,-4,-0]},{"mesh":6,"translation":[-3,-0,-0]},{"mesh":6,"translation":[-3,-6,-0]},{"mesh":6,"translation":[-4,-2,-0]},{"mesh":4,"translation":[-4,-0,-0]},{"mesh":7,"translation":[-5,-2,-0]},{"mesh":8,"translation":[-5,-4,-0]},{"mesh":3,"translation":[-5,-6,-0]},{"mesh":9,"translation":[-6,-0,-0]},{"mesh":10,"translation":[-6,-4,-0]},{"mesh":11,"translation":[-6,-6,-0]},{"mesh":9,"translation":[-6,-2,-0]},{"mesh":11,"translation":[-7,-4,-0]},{"mesh":10,"translation":[-7,-6,-0]},{"mesh":12,"translation":[0,0,0]},{"mesh":13,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/detector_pseudo_targets.gltf b/testdata/detector_pseudo_targets.gltf index c5e36fca..e2727aaf 100644 --- a/testdata/detector_pseudo_targets.gltf +++ b/testdata/detector_pseudo_targets.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[1,-0,-0],"min":[-3,-10,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":30,"max":[0,2.5,1],"min":[-3,-11,-1],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":2,"byteLength":144,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":3,"byteLength":360,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":144,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAPwAAAIAAAACAAABAwAAAAIAAAACAAACAPwAAAMAAAACAAABAwAAAAMAAAACAAACAPwAAgMAAAACAAABAwAAAgMAAAACAAACAPwAAwMAAAACAAABAwAAAwMAAAACAAACAPwAAAMEAAACAAABAwAAAAMEAAACAAACAPwAAIMEAAACAAABAwAAAIMEAAACA"},{"byteLength":360,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACAAABAvwAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAAgD8AAIA/AABAvwAAMMEAAIA/AABAvwAAgD8AAIA/AACgvwAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAAMMEAAIC/AABAvwAAgD8AAIC/AACgvwAAgD8AAIC/AABAvwAAMMEAAIA/AABAvwAAMMEAAIC/AABAvwAAMMEAAIA/AACgvwAAMMEAAIA/AABAvwAAMMEAAIC/AACgvwAAMMEAAIC/AACgvwAAgD8AAIA/AACgvwAAgD8AAIC/AACgvwAAgD8AAIA/AACgvwAAMMEAAIA/AACgvwAAgD8AAIC/AACgvwAAMMEAAIC/AACgvwAAMMEAAIA/AACgvwAAMMEAAIC/"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":2},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":3},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":0,"translation":[-0,-6,-0]},{"mesh":0,"translation":[-0,-8,-0]},{"mesh":0,"translation":[-0,-10,-0]},{"mesh":0,"translation":[-1,-2,-0]},{"mesh":0,"translation":[-1,-4,-0]},{"mesh":1,"translation":[0,0,0]},{"mesh":2,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[1,-0,-0],"min":[-3,-10,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":30,"max":[0,2.5,1],"min":[-3,-11,-1],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":2,"byteLength":144,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":3,"byteLength":360,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":144,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAPwAAAIAAAACAAABAwAAAAIAAAACAAACAPwAAAMAAAACAAABAwAAAAMAAAACAAACAPwAAgMAAAACAAABAwAAAgMAAAACAAACAPwAAwMAAAACAAABAwAAAwMAAAACAAACAPwAAAMEAAACAAABAwAAAAMEAAACAAACAPwAAIMEAAACAAABAwAAAIMEAAACA"},{"byteLength":360,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACAAABAvwAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAAgD8AAIA/AABAvwAAMMEAAIA/AABAvwAAgD8AAIA/AACgvwAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAAMMEAAIC/AABAvwAAgD8AAIC/AACgvwAAgD8AAIC/AABAvwAAMMEAAIA/AABAvwAAMMEAAIC/AABAvwAAMMEAAIA/AACgvwAAMMEAAIA/AABAvwAAMMEAAIC/AACgvwAAMMEAAIC/AACgvwAAgD8AAIA/AACgvwAAgD8AAIC/AACgvwAAgD8AAIA/AACgvwAAMMEAAIA/AACgvwAAgD8AAIC/AACgvwAAMMEAAIC/AACgvwAAMMEAAIA/AACgvwAAMMEAAIC/"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":2},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":3},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":0,"translation":[-0,-6,-0]},{"mesh":0,"translation":[-0,-8,-0]},{"mesh":0,"translation":[-0,-10,-0]},{"mesh":0,"translation":[-1,-2,-0]},{"mesh":0,"translation":[-1,-4,-0]},{"mesh":1,"translation":[0,0,0]},{"mesh":2,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/empty_match_graph.gltf b/testdata/empty_match_graph.gltf index ce9f02b7..daccda52 100644 --- a/testdata/empty_match_graph.gltf +++ b/testdata/empty_match_graph.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":32,"max":[8,2,0],"min":[0,-1,0],"name":"buf_blue_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":384,"byteOffset":0,"name":"buf_blue_scattered_lines","target":34962}],"buffers":[{"byteLength":384,"name":"buf_blue_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAEAAAAAAAACAPwAAAEAAAAAAAAAAAAAAgD8AAAAAAACAPwAAgD8AAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAQAAAgD8AAAAAAABAQAAAgD8AAAAAAAAAQAAAAAAAAAAAAAAAQAAAgD8AAAAAAAAgQAAAAAAAAAAAAAAgQAAAgD8AAAAAAABAQAAAAAAAAAAAAABAQAAAgD8AAAAAAACAQAAAgD8AAAAAAACAQAAAgL8AAAAAAACAQAAAgD8AAAAAAACgQAAAgD8AAAAAAACgQAAAgD8AAAAAAACgQAAAAAAAAAAAAACAQAAAAAAAAAAAAACgQAAAAAAAAAAAAADAQAAAAAAAAAAAAADAQAAAAEAAAAAAAACwQAAAwD8AAAAAAADQQAAAwD8AAAAAAADgQAAAgL8AAAAAAAAAQQAAgD8AAAAAAADgQAAAgD8AAAAAAADwQAAAAAAAAAAA"}],"materials":[{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0},"material":0,"mode":1}]}],"nodes":[{"mesh":0,"translation":[0,0,0]}],"scene":0,"scenes":[{"nodes":[0]}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":32,"max":[8,2,0],"min":[0,-1,0],"name":"buf_blue_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":384,"byteOffset":0,"name":"buf_blue_scattered_lines","target":34962}],"buffers":[{"byteLength":384,"name":"buf_blue_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAEAAAAAAAACAPwAAAEAAAAAAAAAAAAAAgD8AAAAAAACAPwAAgD8AAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAQAAAgD8AAAAAAABAQAAAgD8AAAAAAAAAQAAAAAAAAAAAAAAAQAAAgD8AAAAAAAAgQAAAAAAAAAAAAAAgQAAAgD8AAAAAAABAQAAAAAAAAAAAAABAQAAAgD8AAAAAAACAQAAAgD8AAAAAAACAQAAAgL8AAAAAAACAQAAAgD8AAAAAAACgQAAAgD8AAAAAAACgQAAAgD8AAAAAAACgQAAAAAAAAAAAAACAQAAAAAAAAAAAAACgQAAAAAAAAAAAAADAQAAAAAAAAAAAAADAQAAAAEAAAAAAAACwQAAAwD8AAAAAAADQQAAAwD8AAAAAAADgQAAAgL8AAAAAAAAAQQAAgD8AAAAAAADgQAAAgD8AAAAAAADwQAAAAAAAAAAA"}],"materials":[{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0},"material":0,"mode":1}]}],"nodes":[{"mesh":0,"translation":[0,0,0]}],"scene":0,"scenes":[{"nodes":[0]}]} \ No newline at end of file diff --git a/testdata/lattice_surgery_cnot.gltf b/testdata/lattice_surgery_cnot.gltf index d8240a95..3c6c61b5 100644 --- a/testdata/lattice_surgery_cnot.gltf +++ b/testdata/lattice_surgery_cnot.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5625],"min":[0.3125,0.5],"name":"tex_coords_gate_R","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.4375],"min":[0.625,0.375],"name":"tex_coords_gate_MPP:X","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5625],"min":[0.625,0.5],"name":"tex_coords_gate_MPP:Z","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.4375],"min":[0.25,0.375],"name":"tex_coords_gate_MX","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.5625],"min":[0.8125,0.5],"name":"tex_coords_gate_Z:REC","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.4375],"min":[0.8125,0.375],"name":"tex_coords_gate_X:REC","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[1,-0,-0],"min":[-5,-4,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_R","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:X","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Z","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MX","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z:REC","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X:REC","target":34962},{"buffer":7,"byteLength":144,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":8,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_R","uri":"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MPP:X","uri":"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Z","uri":"data:application/octet-stream;base64,AAAwPwAAAD8AACA/AAAAPwAAMD8AABA/AAAgPwAAAD8AACA/AAAQPwAAMD8AABA/AAAwPwAAED8AADA/AAAAPwAAID8AABA/AAAgPwAAED8AADA/AAAAPwAAID8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MX","uri":"data:application/octet-stream;base64,AACgPgAAwD4AAIA+AADAPgAAoD4AAOA+AACAPgAAwD4AAIA+AADgPgAAoD4AAOA+AACgPgAA4D4AAKA+AADAPgAAgD4AAOA+AACAPgAA4D4AAKA+AADAPgAAgD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_Z:REC","uri":"data:application/octet-stream;base64,AABgPwAAAD8AAFA/AAAAPwAAYD8AABA/AABQPwAAAD8AAFA/AAAQPwAAYD8AABA/AABgPwAAED8AAGA/AAAAPwAAUD8AABA/AABQPwAAED8AAGA/AAAAPwAAUD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_X:REC","uri":"data:application/octet-stream;base64,AABgPwAAwD4AAFA/AADAPgAAYD8AAOA+AABQPwAAwD4AAFA/AADgPgAAYD8AAOA+AABgPwAA4D4AAGA/AADAPgAAUD8AAOA+AABQPwAA4D4AAGA/AADAPgAAUD8AAMA+"},{"byteLength":144,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAvwAAgMAAAACAAACAvwAAAMAAAACAAAAAwAAAgMAAAACAAAAQwAAAAMAAAACAAAAQwAAAAMAAAACAAAAAwAAAAIAAAACAAACAPwAAAIAAAACAAACgwAAAAIAAAACAAACAPwAAAMAAAACAAACgwAAAAMAAAACAAACAPwAAgMAAAACAAACgwAAAgMAAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":7},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":8},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-4,-0]},{"mesh":1,"translation":[-1,-2,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":2,"translation":[-2,-0,-0]},{"mesh":2,"translation":[-2,-4,-0]},{"mesh":3,"translation":[-3,-4,-0]},{"mesh":4,"translation":[-3,-0,-0]},{"mesh":5,"translation":[-3,-2,-0]},{"mesh":4,"translation":[-4,-0,-0]},{"mesh":6,"translation":[0,0,0]},{"mesh":7,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5625],"min":[0.3125,0.5],"name":"tex_coords_gate_R","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.4375],"min":[0.625,0.375],"name":"tex_coords_gate_MPP:X","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5625],"min":[0.625,0.5],"name":"tex_coords_gate_MPP:Z","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.4375],"min":[0.25,0.375],"name":"tex_coords_gate_MX","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.5625],"min":[0.8125,0.5],"name":"tex_coords_gate_Z:REC","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.875,0.4375],"min":[0.8125,0.375],"name":"tex_coords_gate_X:REC","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[1,-0,-0],"min":[-5,-4,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_R","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:X","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Z","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MX","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z:REC","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X:REC","target":34962},{"buffer":7,"byteLength":144,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":8,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_R","uri":"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MPP:X","uri":"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Z","uri":"data:application/octet-stream;base64,AAAwPwAAAD8AACA/AAAAPwAAMD8AABA/AAAgPwAAAD8AACA/AAAQPwAAMD8AABA/AAAwPwAAED8AADA/AAAAPwAAID8AABA/AAAgPwAAED8AADA/AAAAPwAAID8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MX","uri":"data:application/octet-stream;base64,AACgPgAAwD4AAIA+AADAPgAAoD4AAOA+AACAPgAAwD4AAIA+AADgPgAAoD4AAOA+AACgPgAA4D4AAKA+AADAPgAAgD4AAOA+AACAPgAA4D4AAKA+AADAPgAAgD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_Z:REC","uri":"data:application/octet-stream;base64,AABgPwAAAD8AAFA/AAAAPwAAYD8AABA/AABQPwAAAD8AAFA/AAAQPwAAYD8AABA/AABgPwAAED8AAGA/AAAAPwAAUD8AABA/AABQPwAAED8AAGA/AAAAPwAAUD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_X:REC","uri":"data:application/octet-stream;base64,AABgPwAAwD4AAFA/AADAPgAAYD8AAOA+AABQPwAAwD4AAFA/AADgPgAAYD8AAOA+AABgPwAA4D4AAGA/AADAPgAAUD8AAOA+AABQPwAA4D4AAGA/AADAPgAAUD8AAMA+"},{"byteLength":144,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAvwAAgMAAAACAAACAvwAAAMAAAACAAAAAwAAAgMAAAACAAAAQwAAAAMAAAACAAAAQwAAAAMAAAACAAAAAwAAAAIAAAACAAACAPwAAAIAAAACAAACgwAAAAIAAAACAAACAPwAAAMAAAACAAACgwAAAAMAAAACAAACAPwAAgMAAAACAAACgwAAAgMAAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":7},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":8},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-4,-0]},{"mesh":1,"translation":[-1,-2,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":2,"translation":[-2,-0,-0]},{"mesh":2,"translation":[-2,-4,-0]},{"mesh":3,"translation":[-3,-4,-0]},{"mesh":4,"translation":[-3,-0,-0]},{"mesh":5,"translation":[-3,-2,-0]},{"mesh":4,"translation":[-4,-0,-0]},{"mesh":6,"translation":[0,0,0]},{"mesh":7,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/match_graph_no_coords.gltf b/testdata/match_graph_no_coords.gltf index ba8bf609..ab209873 100644 --- a/testdata/match_graph_no_coords.gltf +++ b/testdata/match_graph_no_coords.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":9,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0,0.400000005960464],"min":[-0.400000005960464,0,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0.400000005960464,0],"min":[-0.400000005960464,-0.400000005960464,0],"name":"circle_loop","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":18,"max":[9,14.9442720413208,-1],"min":[-1.4721360206604,0,-1],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":2,"max":[0,0,-1],"min":[-8.32050228118896,-5.54700183868408,-1],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":1,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":2,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":3,"byteLength":216,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":4,"byteLength":24,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA"},{"byteLength":216,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAAAAAIC/AABAQAAAAAAAAIC/AABAQAAAAAAAAIC/AAAAAAAAQEAAAIC/AAAAAAAAQEAAAIC/AAAAAAAAwEAAAIC/AAAAAAAAwEAAAIC/AABAQAAAQEAAAIC/AABAQAAAQEAAAIC/AADAQAAAAAAAAIC/AADAQAAAAAAAAIC/AAAQQQAAAAAAAIC/AAAQQQAAAAAAAIC/AADAQAAAQEAAAIC/AADAQAAAQEAAAIC/AABAQAAAwEAAAIC/AABAQAAAwEAAAIC/9G68v70bb0EAAIC/"},{"byteLength":24,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAAAAAIC/xyAFwQqBscAAAIC/"}],"materials":[{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0},"material":0,"mode":6},{"attributes":{"POSITION":1},"material":0,"mode":6},{"attributes":{"POSITION":2},"material":0,"mode":6}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":4},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[0,0,-1]},{"mesh":0,"translation":[3,0,-1]},{"mesh":0,"translation":[0,3,-1]},{"mesh":0,"translation":[0,6,-1]},{"mesh":0,"translation":[3,3,-1]},{"mesh":0,"translation":[6,0,-1]},{"mesh":0,"translation":[9,0,-1]},{"mesh":0,"translation":[6,3,-1]},{"mesh":0,"translation":[3,6,-1]},{"mesh":1,"translation":[0,0,0]},{"mesh":2,"translation":[0,0,0]}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10]}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":9,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0,0.400000005960464],"min":[-0.400000005960464,0,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0.400000005960464,0],"min":[-0.400000005960464,-0.400000005960464,0],"name":"circle_loop","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":9,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0,0.400000005960464],"min":[-0.400000005960464,0,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0.400000005960464,0],"min":[-0.400000005960464,-0.400000005960464,0],"name":"circle_loop","type":"VEC3"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":18,"max":[9,14.9442720413208,-1],"min":[-1.4721360206604,0,-1],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":2,"max":[0,0,-1],"min":[-8.32050228118896,-5.54700183868408,-1],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":1,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":2,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":3,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":4,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":5,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":6,"byteLength":216,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":7,"byteLength":24,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA"},{"byteLength":216,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAAAAAIC/AABAQAAAAAAAAIC/AABAQAAAAAAAAIC/AAAAAAAAQEAAAIC/AAAAAAAAQEAAAIC/AAAAAAAAwEAAAIC/AAAAAAAAwEAAAIC/AABAQAAAQEAAAIC/AABAQAAAQEAAAIC/AADAQAAAAAAAAIC/AADAQAAAAAAAAIC/AAAQQQAAAAAAAIC/AAAQQQAAAAAAAIC/AADAQAAAQEAAAIC/AADAQAAAQEAAAIC/AABAQAAAwEAAAIC/AABAQAAAwEAAAIC/9G68v70bb0EAAIC/"},{"byteLength":24,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAAAAAIC/xyAFwQqBscAAAIC/"}],"materials":[{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0.5,0.5,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0},"material":0,"mode":6},{"attributes":{"POSITION":1},"material":0,"mode":6},{"attributes":{"POSITION":2},"material":0,"mode":6}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":6},{"attributes":{"POSITION":4},"material":1,"mode":6},{"attributes":{"POSITION":5},"material":1,"mode":6}]},{"primitives":[{"attributes":{"POSITION":6},"material":2,"mode":1}]},{"primitives":[{"attributes":{"POSITION":7},"material":3,"mode":1}]}],"nodes":[{"mesh":0,"translation":[0,0,-1]},{"mesh":1,"translation":[3,0,-1]},{"mesh":1,"translation":[0,3,-1]},{"mesh":1,"translation":[0,6,-1]},{"mesh":1,"translation":[3,3,-1]},{"mesh":1,"translation":[6,0,-1]},{"mesh":1,"translation":[9,0,-1]},{"mesh":1,"translation":[6,3,-1]},{"mesh":1,"translation":[3,6,-1]},{"mesh":2,"translation":[0,0,0]},{"mesh":3,"translation":[0,0,0]}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10]}]} \ No newline at end of file diff --git a/testdata/match_graph_repetition_code.gltf b/testdata/match_graph_repetition_code.gltf index 86f4a20b..088fbd43 100644 --- a/testdata/match_graph_repetition_code.gltf +++ b/testdata/match_graph_repetition_code.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":9,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0,0.400000005960464],"min":[-0.400000005960464,0,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0.400000005960464,0],"min":[-0.400000005960464,-0.400000005960464,0],"name":"circle_loop","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":500,"max":[33,37.0710678100586,0],"min":[-7,-7.07106781005859,0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":80,"max":[43,37.0710678100586,0],"min":[33,-7.07106781005859,0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":1,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":2,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":3,"byteLength":6000,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":4,"byteLength":960,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA"},{"byteLength":6000,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AABAQAAAAAAAAAAAMEaCwDBG4sAAAAAAAABAQAAAAAAAAAAAAAAQQQAAAAAAAAAAAABAQAAAAAAAAAAAAABAQAAAQEAAAAAAAABAQAAAAAAAAAAAAAAQQQAAQEAAAAAAAAAQQQAAAAAAAAAAAABwQQAAAAAAAAAAAAAQQQAAAAAAAAAAAAAQQQAAQEAAAAAAAAAQQQAAAAAAAAAAAABwQQAAQEAAAAAAAABwQQAAAAAAAAAAAACoQQAAAAAAAAAAAABwQQAAAAAAAAAAAABwQQAAQEAAAAAAAABwQQAAAAAAAAAAAACoQQAAQEAAAAAAAACoQQAAAAAAAAAAAADYQQAAAAAAAAAAAACoQQAAAAAAAAAAAACoQQAAQEAAAAAAAACoQQAAAAAAAAAAAADYQQAAQEAAAAAAAADYQQAAAAAAAAAAAAAEQgAAAAAAAAAAAADYQQAAAAAAAAAAAADYQQAAQEAAAAAAAADYQQAAAAAAAAAAAAAEQgAAQEAAAAAAAAAEQgAAAAAAAAAAAAAEQgAAQEAAAAAAAABAQAAAQEAAAAAAxeCZwAjOT8AAAAAAAABAQAAAQEAAAAAAAAAQQQAAQEAAAAAAAABAQAAAQEAAAAAAxeCZwAjOT8AAAAAAAABAQAAAAAAAAAAAMEaCwDBG4sAAAAAAAAAQQQAAQEAAAAAAAABwQQAAQEAAAAAAAABwQQAAQEAAAAAAAACoQQAAQEAAAAAAAACoQQAAQEAAAAAAAADYQQAAQEAAAAAAAADYQQAAQEAAAAAAAAAEQgAAQEAAAAAAAABAQAAAQEAAAAAAxeCZwAjOT8AAAAAAAABAQAAAQEAAAAAAAAAQQQAAQEAAAAAAAABAQAAAQEAAAAAAAABAQAAAwEAAAAAAAABAQAAAQEAAAAAAAAAQQQAAwEAAAAAAAAAQQQAAQEAAAAAAAABwQQAAQEAAAAAAAAAQQQAAQEAAAAAAAAAQQQAAwEAAAAAAAAAQQQAAQEAAAAAAAABwQQAAwEAAAAAAAABwQQAAQEAAAAAAAACoQQAAQEAAAAAAAABwQQAAQEAAAAAAAABwQQAAwEAAAAAAAABwQQAAQEAAAAAAAACoQQAAwEAAAAAAAACoQQAAQEAAAAAAAADYQQAAQEAAAAAAAACoQQAAQEAAAAAAAACoQQAAwEAAAAAAAACoQQAAQEAAAAAAAADYQQAAwEAAAAAAAADYQQAAQEAAAAAAAAAEQgAAQEAAAAAAAADYQQAAQEAAAAAAAADYQQAAwEAAAAAAAADYQQAAQEAAAAAAAAAEQgAAwEAAAAAAAAAEQgAAQEAAAAAAAAAEQgAAwEAAAAAAAABAQAAAwEAAAAAA1GWywAjkWj8AAAAAAABAQAAAwEAAAAAAAAAQQQAAwEAAAAAAAABAQAAAwEAAAAAA1GWywAjkWj8AAAAAAABAQAAAQEAAAAAAxeCZwAjOT8AAAAAAAAAQQQAAwEAAAAAAAABwQQAAwEAAAAAAAABwQQAAwEAAAAAAAACoQQAAwEAAAAAAAACoQQAAwEAAAAAAAADYQQAAwEAAAAAAAADYQQAAwEAAAAAAAAAEQgAAwEAAAAAAAABAQAAAwEAAAAAA1GWywAjkWj8AAAAAAABAQAAAwEAAAAAAAAAQQQAAwEAAAAAAAABAQAAAwEAAAAAAAABAQAAAEEEAAAAAAABAQAAAwEAAAAAAAAAQQQAAEEEAAAAAAAAQQQAAwEAAAAAAAABwQQAAwEAAAAAAAAAQQQAAwEAAAAAAAAAQQQAAEEEAAAAAAAAQQQAAwEAAAAAAAABwQQAAEEEAAAAAAABwQQAAwEAAAAAAAACoQQAAwEAAAAAAAABwQQAAwEAAAAAAAABwQQAAEEEAAAAAAABwQQAAwEAAAAAAAACoQQAAEEEAAAAAAACoQQAAwEAAAAAAAADYQQAAwEAAAAAAAACoQQAAwEAAAAAAAACoQQAAEEEAAAAAAACoQQAAwEAAAAAAAADYQQAAEEEAAAAAAADYQQAAwEAAAAAAAAAEQgAAwEAAAAAAAADYQQAAwEAAAAAAAADYQQAAEEEAAAAAAADYQQAAwEAAAAAAAAAEQgAAEEEAAAAAAAAEQgAAwEAAAAAAAAAEQgAAEEEAAAAAAABAQAAAEEEAAAAA0BzJwK0nqUAAAAAAAABAQAAAEEEAAAAAAAAQQQAAEEEAAAAAAABAQAAAEEEAAAAA0BzJwK0nqUAAAAAAAABAQAAAwEAAAAAA1GWywAjkWj8AAAAAAAAQQQAAEEEAAAAAAABwQQAAEEEAAAAAAABwQQAAEEEAAAAAAACoQQAAEEEAAAAAAACoQQAAEEEAAAAAAADYQQAAEEEAAAAAAADYQQAAEEEAAAAAAAAEQgAAEEEAAAAAAABAQAAAEEEAAAAA0BzJwK0nqUAAAAAAAABAQAAAEEEAAAAAAAAQQQAAEEEAAAAAAABAQAAAEEEAAAAAAABAQAAAQEEAAAAAAABAQAAAEEEAAAAAAAAQQQAAQEEAAAAAAAAQQQAAEEEAAAAAAABwQQAAEEEAAAAAAAAQQQAAEEEAAAAAAAAQQQAAQEEAAAAAAAAQQQAAEEEAAAAAAABwQQAAQEEAAAAAAABwQQAAEEEAAAAAAACoQQAAEEEAAAAAAABwQQAAEEEAAAAAAABwQQAAQEEAAAAAAABwQQAAEEEAAAAAAACoQQAAQEEAAAAAAACoQQAAEEEAAAAAAADYQQAAEEEAAAAAAACoQQAAEEEAAAAAAACoQQAAQEEAAAAAAACoQQAAEEEAAAAAAADYQQAAQEEAAAAAAADYQQAAEEEAAAAAAAAEQgAAEEEAAAAAAADYQQAAEEEAAAAAAADYQQAAQEEAAAAAAADYQQAAEEEAAAAAAAAEQgAAQEEAAAAAAAAEQgAAEEEAAAAAAAAEQgAAQEEAAAAAAABAQAAAQEEAAAAALMnZwBWfIEEAAAAAAABAQAAAQEEAAAAAAAAQQQAAQEEAAAAAAABAQAAAQEEAAAAALMnZwBWfIEEAAAAAAABAQAAAEEEAAAAA0BzJwK0nqUAAAAAAAAAQQQAAQEEAAAAAAABwQQAAQEEAAAAAAABwQQAAQEEAAAAAAACoQQAAQEEAAAAAAACoQQAAQEEAAAAAAADYQQAAQEEAAAAAAADYQQAAQEEAAAAAAAAEQgAAQEEAAAAAAABAQAAAQEEAAAAALMnZwBWfIEEAAAAAAABAQAAAQEEAAAAAAAAQQQAAQEEAAAAAAABAQAAAQEEAAAAAAABAQAAAcEEAAAAAAABAQAAAQEEAAAAAAAAQQQAAcEEAAAAAAAAQQQAAQEEAAAAAAABwQQAAQEEAAAAAAAAQQQAAQEEAAAAAAAAQQQAAcEEAAAAAAAAQQQAAQEEAAAAAAABwQQAAcEEAAAAAAABwQQAAQEEAAAAAAACoQQAAQEEAAAAAAABwQQAAQEEAAAAAAABwQQAAcEEAAAAAAABwQQAAQEEAAAAAAACoQQAAcEEAAAAAAACoQQAAQEEAAAAAAADYQQAAQEEAAAAAAACoQQAAQEEAAAAAAACoQQAAcEEAAAAAAACoQQAAQEEAAAAAAADYQQAAcEEAAAAAAADYQQAAQEEAAAAAAAAEQgAAQEEAAAAAAADYQQAAQEEAAAAAAADYQQAAcEEAAAAAAADYQQAAQEEAAAAAAAAEQgAAcEEAAAAAAAAEQgAAQEEAAAAAAAAEQgAAcEEAAAAAAABAQAAAcEEAAAAAAADgwAAAcEEAAAAAAABAQAAAcEEAAAAAAAAQQQAAcEEAAAAAAABAQAAAcEEAAAAAAADgwAAAcEEAAAAAAABAQAAAQEEAAAAALMnZwBWfIEEAAAAAAAAQQQAAcEEAAAAAAABwQQAAcEEAAAAAAABwQQAAcEEAAAAAAACoQQAAcEEAAAAAAACoQQAAcEEAAAAAAADYQQAAcEEAAAAAAADYQQAAcEEAAAAAAAAEQgAAcEEAAAAAAABAQAAAcEEAAAAAAADgwAAAcEEAAAAAAABAQAAAcEEAAAAAAAAQQQAAcEEAAAAAAABAQAAAcEEAAAAAAABAQAAAkEEAAAAAAABAQAAAcEEAAAAAAAAQQQAAkEEAAAAAAAAQQQAAcEEAAAAAAABwQQAAcEEAAAAAAAAQQQAAcEEAAAAAAAAQQQAAkEEAAAAAAAAQQQAAcEEAAAAAAABwQQAAkEEAAAAAAABwQQAAcEEAAAAAAACoQQAAcEEAAAAAAABwQQAAcEEAAAAAAABwQQAAkEEAAAAAAABwQQAAcEEAAAAAAACoQQAAkEEAAAAAAACoQQAAcEEAAAAAAADYQQAAcEEAAAAAAACoQQAAcEEAAAAAAACoQQAAkEEAAAAAAACoQQAAcEEAAAAAAADYQQAAkEEAAAAAAADYQQAAcEEAAAAAAAAEQgAAcEEAAAAAAADYQQAAcEEAAAAAAADYQQAAkEEAAAAAAADYQQAAcEEAAAAAAAAEQgAAkEEAAAAAAAAEQgAAcEEAAAAAAAAEQgAAkEEAAAAAAABAQAAAkEEAAAAALMnZwHWwn0EAAAAAAABAQAAAkEEAAAAAAAAQQQAAkEEAAAAAAABAQAAAkEEAAAAALMnZwHWwn0EAAAAAAABAQAAAcEEAAAAAAADgwAAAcEEAAAAAAAAQQQAAkEEAAAAAAABwQQAAkEEAAAAAAABwQQAAkEEAAAAAAACoQQAAkEEAAAAAAACoQQAAkEEAAAAAAADYQQAAkEEAAAAAAADYQQAAkEEAAAAAAAAEQgAAkEEAAAAAAABAQAAAkEEAAAAALMnZwHWwn0EAAAAAAABAQAAAkEEAAAAAAAAQQQAAkEEAAAAAAABAQAAAkEEAAAAAAABAQAAAqEEAAAAAAABAQAAAkEEAAAAAAAAQQQAAqEEAAAAAAAAQQQAAkEEAAAAAAABwQQAAkEEAAAAAAAAQQQAAkEEAAAAAAAAQQQAAqEEAAAAAAAAQQQAAkEEAAAAAAABwQQAAqEEAAAAAAABwQQAAkEEAAAAAAACoQQAAkEEAAAAAAABwQQAAkEEAAAAAAABwQQAAqEEAAAAAAABwQQAAkEEAAAAAAACoQQAAqEEAAAAAAACoQQAAkEEAAAAAAADYQQAAkEEAAAAAAACoQQAAkEEAAAAAAACoQQAAqEEAAAAAAACoQQAAkEEAAAAAAADYQQAAqEEAAAAAAADYQQAAkEEAAAAAAAAEQgAAkEEAAAAAAADYQQAAkEEAAAAAAADYQQAAqEEAAAAAAADYQQAAkEEAAAAAAAAEQgAAqEEAAAAAAAAEQgAAkEEAAAAAAAAEQgAAqEEAAAAAAABAQAAAqEEAAAAA0BzJwBW2xUEAAAAAAABAQAAAqEEAAAAAAAAQQQAAqEEAAAAAAABAQAAAqEEAAAAA0BzJwBW2xUEAAAAAAABAQAAAkEEAAAAALMnZwHWwn0EAAAAAAAAQQQAAqEEAAAAAAABwQQAAqEEAAAAAAABwQQAAqEEAAAAAAACoQQAAqEEAAAAAAACoQQAAqEEAAAAAAADYQQAAqEEAAAAAAADYQQAAqEEAAAAAAAAEQgAAqEEAAAAAAABAQAAAqEEAAAAA0BzJwBW2xUEAAAAAAABAQAAAqEEAAAAAAAAQQQAAqEEAAAAAAABAQAAAqEEAAAAAAABAQAAAwEEAAAAAAABAQAAAqEEAAAAAAAAQQQAAwEEAAAAAAAAQQQAAqEEAAAAAAABwQQAAqEEAAAAAAAAQQQAAqEEAAAAAAAAQQQAAwEEAAAAAAAAQQQAAqEEAAAAAAABwQQAAwEEAAAAAAABwQQAAqEEAAAAAAACoQQAAqEEAAAAAAABwQQAAqEEAAAAAAABwQQAAwEEAAAAAAABwQQAAqEEAAAAAAACoQQAAwEEAAAAAAACoQQAAqEEAAAAAAADYQQAAqEEAAAAAAACoQQAAqEEAAAAAAACoQQAAwEEAAAAAAACoQQAAqEEAAAAAAADYQQAAwEEAAAAAAADYQQAAqEEAAAAAAAAEQgAAqEEAAAAAAADYQQAAqEEAAAAAAADYQQAAwEEAAAAAAADYQQAAqEEAAAAAAAAEQgAAwEEAAAAAAAAEQgAAqEEAAAAAAAAEQgAAwEEAAAAAAABAQAAAwEEAAAAA1GWywOAo6UEAAAAAAABAQAAAwEEAAAAAAAAQQQAAwEEAAAAAAABAQAAAwEEAAAAA1GWywOAo6UEAAAAAAABAQAAAqEEAAAAA0BzJwBW2xUEAAAAAAAAQQQAAwEEAAAAAAABwQQAAwEEAAAAAAABwQQAAwEEAAAAAAACoQQAAwEEAAAAAAACoQQAAwEEAAAAAAADYQQAAwEEAAAAAAADYQQAAwEEAAAAAAAAEQgAAwEEAAAAAAABAQAAAwEEAAAAA1GWywOAo6UEAAAAAAABAQAAAwEEAAAAAAAAQQQAAwEEAAAAAAABAQAAAwEEAAAAAAABAQAAA2EEAAAAAAABAQAAAwEEAAAAAAAAQQQAA2EEAAAAAAAAQQQAAwEEAAAAAAABwQQAAwEEAAAAAAAAQQQAAwEEAAAAAAAAQQQAA2EEAAAAAAAAQQQAAwEEAAAAAAABwQQAA2EEAAAAAAABwQQAAwEEAAAAAAACoQQAAwEEAAAAAAABwQQAAwEEAAAAAAABwQQAA2EEAAAAAAABwQQAAwEEAAAAAAACoQQAA2EEAAAAAAACoQQAAwEEAAAAAAADYQQAAwEEAAAAAAACoQQAAwEEAAAAAAACoQQAA2EEAAAAAAACoQQAAwEEAAAAAAADYQQAA2EEAAAAAAADYQQAAwEEAAAAAAAAEQgAAwEEAAAAAAADYQQAAwEEAAAAAAADYQQAA2EEAAAAAAADYQQAAwEEAAAAAAAAEQgAA2EEAAAAAAAAEQgAAwEEAAAAAAAAEQgAA2EEAAAAAAABAQAAA2EEAAAAAxeCZwOD8BEIAAAAAAABAQAAA2EEAAAAAAAAQQQAA2EEAAAAAAABAQAAA2EEAAAAAxeCZwOD8BEIAAAAAAABAQAAAwEEAAAAA1GWywOAo6UEAAAAAAAAQQQAA2EEAAAAAAABwQQAA2EEAAAAAAABwQQAA2EEAAAAAAACoQQAA2EEAAAAAAACoQQAA2EEAAAAAAADYQQAA2EEAAAAAAADYQQAA2EEAAAAAAAAEQgAA2EEAAAAAAABAQAAA2EEAAAAAxeCZwOD8BEIAAAAAAABAQAAA2EEAAAAAAAAQQQAA2EEAAAAAAABAQAAA2EEAAAAAAABAQAAA8EEAAAAAAABAQAAA2EEAAAAAAAAQQQAA8EEAAAAAAAAQQQAA2EEAAAAAAABwQQAA2EEAAAAAAAAQQQAA2EEAAAAAAAAQQQAA8EEAAAAAAAAQQQAA2EEAAAAAAABwQQAA8EEAAAAAAABwQQAA2EEAAAAAAACoQQAA2EEAAAAAAABwQQAA2EEAAAAAAABwQQAA8EEAAAAAAABwQQAA2EEAAAAAAACoQQAA8EEAAAAAAACoQQAA2EEAAAAAAADYQQAA2EEAAAAAAACoQQAA2EEAAAAAAACoQQAA8EEAAAAAAACoQQAA2EEAAAAAAADYQQAA8EEAAAAAAADYQQAA2EEAAAAAAAAEQgAA2EEAAAAAAADYQQAA2EEAAAAAAADYQQAA8EEAAAAAAADYQQAA2EEAAAAAAAAEQgAA8EEAAAAAAAAEQgAA2EEAAAAAAAAEQgAA8EEAAAAAAABAQAAA8EEAAAAAMEaCwMZIFEIAAAAAAABAQAAA8EEAAAAAAAAQQQAA8EEAAAAAAABAQAAA8EEAAAAAMEaCwMZIFEIAAAAAAABAQAAA2EEAAAAAxeCZwOD8BEIAAAAAAAAQQQAA8EEAAAAAAABwQQAA8EEAAAAAAABwQQAA8EEAAAAAAACoQQAA8EEAAAAAAACoQQAA8EEAAAAAAADYQQAA8EEAAAAAAADYQQAA8EEAAAAAAAAEQgAA8EEAAAAA"},{"byteLength":960,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAEQgAAAAAAAAAAxkggQjBG4sAAAAAAAAAEQgAAQEAAAAAAGTwjQgjOT8AAAAAAAAAEQgAAQEAAAAAAGTwjQgjOT8AAAAAAAAAEQgAAAAAAAAAAxkggQjBG4sAAAAAAAAAEQgAAQEAAAAAAGTwjQgjOT8AAAAAAAAAEQgAAwEAAAAAAukwmQgjkWj8AAAAAAAAEQgAAwEAAAAAAukwmQgjkWj8AAAAAAAAEQgAAQEAAAAAAGTwjQgjOT8AAAAAAAAAEQgAAwEAAAAAAukwmQgjkWj8AAAAAAAAEQgAAEEEAAAAAmiMpQq0nqUAAAAAAAAAEQgAAEEEAAAAAmiMpQq0nqUAAAAAAAAAEQgAAwEAAAAAAukwmQgjkWj8AAAAAAAAEQgAAEEEAAAAAmiMpQq0nqUAAAAAAAAAEQgAAQEEAAAAAJjkrQhWfIEEAAAAAAAAEQgAAQEEAAAAAJjkrQhWfIEEAAAAAAAAEQgAAEEEAAAAAmiMpQq0nqUAAAAAAAAAEQgAAQEEAAAAAJjkrQhWfIEEAAAAAAAAEQgAAcEEAAAAAAAAsQgAAcEEAAAAAAAAEQgAAcEEAAAAAAAAsQgAAcEEAAAAAAAAEQgAAQEEAAAAAJjkrQhWfIEEAAAAAAAAEQgAAcEEAAAAAAAAsQgAAcEEAAAAAAAAEQgAAkEEAAAAAJjkrQnWwn0EAAAAAAAAEQgAAkEEAAAAAJjkrQnWwn0EAAAAAAAAEQgAAcEEAAAAAAAAsQgAAcEEAAAAAAAAEQgAAkEEAAAAAJjkrQnWwn0EAAAAAAAAEQgAAqEEAAAAAmiMpQhW2xUEAAAAAAAAEQgAAqEEAAAAAmiMpQhW2xUEAAAAAAAAEQgAAkEEAAAAAJjkrQnWwn0EAAAAAAAAEQgAAqEEAAAAAmiMpQhW2xUEAAAAAAAAEQgAAwEEAAAAAukwmQuAo6UEAAAAAAAAEQgAAwEEAAAAAukwmQuAo6UEAAAAAAAAEQgAAqEEAAAAAmiMpQhW2xUEAAAAAAAAEQgAAwEEAAAAAukwmQuAo6UEAAAAAAAAEQgAA2EEAAAAAGTwjQuD8BEIAAAAAAAAEQgAA2EEAAAAAGTwjQuD8BEIAAAAAAAAEQgAAwEEAAAAAukwmQuAo6UEAAAAAAAAEQgAA2EEAAAAAGTwjQuD8BEIAAAAAAAAEQgAA8EEAAAAAxkggQsZIFEIAAAAAAAAEQgAA8EEAAAAAxkggQsZIFEIAAAAAAAAEQgAA2EEAAAAAGTwjQuD8BEIAAAAA"}],"materials":[{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0},"material":0,"mode":6},{"attributes":{"POSITION":1},"material":0,"mode":6},{"attributes":{"POSITION":2},"material":0,"mode":6}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":4},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[3,0,0]},{"mesh":0,"translation":[9,0,0]},{"mesh":0,"translation":[15,0,0]},{"mesh":0,"translation":[21,0,0]},{"mesh":0,"translation":[27,0,0]},{"mesh":0,"translation":[33,0,0]},{"mesh":0,"translation":[3,3,0]},{"mesh":0,"translation":[9,3,0]},{"mesh":0,"translation":[15,3,0]},{"mesh":0,"translation":[21,3,0]},{"mesh":0,"translation":[27,3,0]},{"mesh":0,"translation":[33,3,0]},{"mesh":0,"translation":[3,6,0]},{"mesh":0,"translation":[9,6,0]},{"mesh":0,"translation":[15,6,0]},{"mesh":0,"translation":[21,6,0]},{"mesh":0,"translation":[27,6,0]},{"mesh":0,"translation":[33,6,0]},{"mesh":0,"translation":[3,9,0]},{"mesh":0,"translation":[9,9,0]},{"mesh":0,"translation":[15,9,0]},{"mesh":0,"translation":[21,9,0]},{"mesh":0,"translation":[27,9,0]},{"mesh":0,"translation":[33,9,0]},{"mesh":0,"translation":[3,12,0]},{"mesh":0,"translation":[9,12,0]},{"mesh":0,"translation":[15,12,0]},{"mesh":0,"translation":[21,12,0]},{"mesh":0,"translation":[27,12,0]},{"mesh":0,"translation":[33,12,0]},{"mesh":0,"translation":[3,15,0]},{"mesh":0,"translation":[9,15,0]},{"mesh":0,"translation":[15,15,0]},{"mesh":0,"translation":[21,15,0]},{"mesh":0,"translation":[27,15,0]},{"mesh":0,"translation":[33,15,0]},{"mesh":0,"translation":[3,18,0]},{"mesh":0,"translation":[9,18,0]},{"mesh":0,"translation":[15,18,0]},{"mesh":0,"translation":[21,18,0]},{"mesh":0,"translation":[27,18,0]},{"mesh":0,"translation":[33,18,0]},{"mesh":0,"translation":[3,21,0]},{"mesh":0,"translation":[9,21,0]},{"mesh":0,"translation":[15,21,0]},{"mesh":0,"translation":[21,21,0]},{"mesh":0,"translation":[27,21,0]},{"mesh":0,"translation":[33,21,0]},{"mesh":0,"translation":[3,24,0]},{"mesh":0,"translation":[9,24,0]},{"mesh":0,"translation":[15,24,0]},{"mesh":0,"translation":[21,24,0]},{"mesh":0,"translation":[27,24,0]},{"mesh":0,"translation":[33,24,0]},{"mesh":0,"translation":[3,27,0]},{"mesh":0,"translation":[9,27,0]},{"mesh":0,"translation":[15,27,0]},{"mesh":0,"translation":[21,27,0]},{"mesh":0,"translation":[27,27,0]},{"mesh":0,"translation":[33,27,0]},{"mesh":0,"translation":[3,30,0]},{"mesh":0,"translation":[9,30,0]},{"mesh":0,"translation":[15,30,0]},{"mesh":0,"translation":[21,30,0]},{"mesh":0,"translation":[27,30,0]},{"mesh":0,"translation":[33,30,0]},{"mesh":1,"translation":[0,0,0]},{"mesh":2,"translation":[0,0,0]}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67]}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":9,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0,0.400000005960464],"min":[-0.400000005960464,0,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0.400000005960464,0],"min":[-0.400000005960464,-0.400000005960464,0],"name":"circle_loop","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":9,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0,0.400000005960464],"min":[-0.400000005960464,0,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0.400000005960464,0],"min":[-0.400000005960464,-0.400000005960464,0],"name":"circle_loop","type":"VEC3"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":500,"max":[33,37.0710678100586,0],"min":[-7,-7.07106781005859,0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":80,"max":[43,37.0710678100586,0],"min":[33,-7.07106781005859,0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":1,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":2,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":3,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":4,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":5,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":6,"byteLength":6000,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":7,"byteLength":960,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA"},{"byteLength":6000,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AABAQAAAAAAAAAAAMEaCwDBG4sAAAAAAAABAQAAAAAAAAAAAAAAQQQAAAAAAAAAAAABAQAAAAAAAAAAAAABAQAAAQEAAAAAAAABAQAAAAAAAAAAAAAAQQQAAQEAAAAAAAAAQQQAAAAAAAAAAAABwQQAAAAAAAAAAAAAQQQAAAAAAAAAAAAAQQQAAQEAAAAAAAAAQQQAAAAAAAAAAAABwQQAAQEAAAAAAAABwQQAAAAAAAAAAAACoQQAAAAAAAAAAAABwQQAAAAAAAAAAAABwQQAAQEAAAAAAAABwQQAAAAAAAAAAAACoQQAAQEAAAAAAAACoQQAAAAAAAAAAAADYQQAAAAAAAAAAAACoQQAAAAAAAAAAAACoQQAAQEAAAAAAAACoQQAAAAAAAAAAAADYQQAAQEAAAAAAAADYQQAAAAAAAAAAAAAEQgAAAAAAAAAAAADYQQAAAAAAAAAAAADYQQAAQEAAAAAAAADYQQAAAAAAAAAAAAAEQgAAQEAAAAAAAAAEQgAAAAAAAAAAAAAEQgAAQEAAAAAAAABAQAAAQEAAAAAAxeCZwAjOT8AAAAAAAABAQAAAQEAAAAAAAAAQQQAAQEAAAAAAAABAQAAAQEAAAAAAxeCZwAjOT8AAAAAAAABAQAAAAAAAAAAAMEaCwDBG4sAAAAAAAAAQQQAAQEAAAAAAAABwQQAAQEAAAAAAAABwQQAAQEAAAAAAAACoQQAAQEAAAAAAAACoQQAAQEAAAAAAAADYQQAAQEAAAAAAAADYQQAAQEAAAAAAAAAEQgAAQEAAAAAAAABAQAAAQEAAAAAAxeCZwAjOT8AAAAAAAABAQAAAQEAAAAAAAAAQQQAAQEAAAAAAAABAQAAAQEAAAAAAAABAQAAAwEAAAAAAAABAQAAAQEAAAAAAAAAQQQAAwEAAAAAAAAAQQQAAQEAAAAAAAABwQQAAQEAAAAAAAAAQQQAAQEAAAAAAAAAQQQAAwEAAAAAAAAAQQQAAQEAAAAAAAABwQQAAwEAAAAAAAABwQQAAQEAAAAAAAACoQQAAQEAAAAAAAABwQQAAQEAAAAAAAABwQQAAwEAAAAAAAABwQQAAQEAAAAAAAACoQQAAwEAAAAAAAACoQQAAQEAAAAAAAADYQQAAQEAAAAAAAACoQQAAQEAAAAAAAACoQQAAwEAAAAAAAACoQQAAQEAAAAAAAADYQQAAwEAAAAAAAADYQQAAQEAAAAAAAAAEQgAAQEAAAAAAAADYQQAAQEAAAAAAAADYQQAAwEAAAAAAAADYQQAAQEAAAAAAAAAEQgAAwEAAAAAAAAAEQgAAQEAAAAAAAAAEQgAAwEAAAAAAAABAQAAAwEAAAAAA1GWywAjkWj8AAAAAAABAQAAAwEAAAAAAAAAQQQAAwEAAAAAAAABAQAAAwEAAAAAA1GWywAjkWj8AAAAAAABAQAAAQEAAAAAAxeCZwAjOT8AAAAAAAAAQQQAAwEAAAAAAAABwQQAAwEAAAAAAAABwQQAAwEAAAAAAAACoQQAAwEAAAAAAAACoQQAAwEAAAAAAAADYQQAAwEAAAAAAAADYQQAAwEAAAAAAAAAEQgAAwEAAAAAAAABAQAAAwEAAAAAA1GWywAjkWj8AAAAAAABAQAAAwEAAAAAAAAAQQQAAwEAAAAAAAABAQAAAwEAAAAAAAABAQAAAEEEAAAAAAABAQAAAwEAAAAAAAAAQQQAAEEEAAAAAAAAQQQAAwEAAAAAAAABwQQAAwEAAAAAAAAAQQQAAwEAAAAAAAAAQQQAAEEEAAAAAAAAQQQAAwEAAAAAAAABwQQAAEEEAAAAAAABwQQAAwEAAAAAAAACoQQAAwEAAAAAAAABwQQAAwEAAAAAAAABwQQAAEEEAAAAAAABwQQAAwEAAAAAAAACoQQAAEEEAAAAAAACoQQAAwEAAAAAAAADYQQAAwEAAAAAAAACoQQAAwEAAAAAAAACoQQAAEEEAAAAAAACoQQAAwEAAAAAAAADYQQAAEEEAAAAAAADYQQAAwEAAAAAAAAAEQgAAwEAAAAAAAADYQQAAwEAAAAAAAADYQQAAEEEAAAAAAADYQQAAwEAAAAAAAAAEQgAAEEEAAAAAAAAEQgAAwEAAAAAAAAAEQgAAEEEAAAAAAABAQAAAEEEAAAAA0BzJwK0nqUAAAAAAAABAQAAAEEEAAAAAAAAQQQAAEEEAAAAAAABAQAAAEEEAAAAA0BzJwK0nqUAAAAAAAABAQAAAwEAAAAAA1GWywAjkWj8AAAAAAAAQQQAAEEEAAAAAAABwQQAAEEEAAAAAAABwQQAAEEEAAAAAAACoQQAAEEEAAAAAAACoQQAAEEEAAAAAAADYQQAAEEEAAAAAAADYQQAAEEEAAAAAAAAEQgAAEEEAAAAAAABAQAAAEEEAAAAA0BzJwK0nqUAAAAAAAABAQAAAEEEAAAAAAAAQQQAAEEEAAAAAAABAQAAAEEEAAAAAAABAQAAAQEEAAAAAAABAQAAAEEEAAAAAAAAQQQAAQEEAAAAAAAAQQQAAEEEAAAAAAABwQQAAEEEAAAAAAAAQQQAAEEEAAAAAAAAQQQAAQEEAAAAAAAAQQQAAEEEAAAAAAABwQQAAQEEAAAAAAABwQQAAEEEAAAAAAACoQQAAEEEAAAAAAABwQQAAEEEAAAAAAABwQQAAQEEAAAAAAABwQQAAEEEAAAAAAACoQQAAQEEAAAAAAACoQQAAEEEAAAAAAADYQQAAEEEAAAAAAACoQQAAEEEAAAAAAACoQQAAQEEAAAAAAACoQQAAEEEAAAAAAADYQQAAQEEAAAAAAADYQQAAEEEAAAAAAAAEQgAAEEEAAAAAAADYQQAAEEEAAAAAAADYQQAAQEEAAAAAAADYQQAAEEEAAAAAAAAEQgAAQEEAAAAAAAAEQgAAEEEAAAAAAAAEQgAAQEEAAAAAAABAQAAAQEEAAAAALMnZwBWfIEEAAAAAAABAQAAAQEEAAAAAAAAQQQAAQEEAAAAAAABAQAAAQEEAAAAALMnZwBWfIEEAAAAAAABAQAAAEEEAAAAA0BzJwK0nqUAAAAAAAAAQQQAAQEEAAAAAAABwQQAAQEEAAAAAAABwQQAAQEEAAAAAAACoQQAAQEEAAAAAAACoQQAAQEEAAAAAAADYQQAAQEEAAAAAAADYQQAAQEEAAAAAAAAEQgAAQEEAAAAAAABAQAAAQEEAAAAALMnZwBWfIEEAAAAAAABAQAAAQEEAAAAAAAAQQQAAQEEAAAAAAABAQAAAQEEAAAAAAABAQAAAcEEAAAAAAABAQAAAQEEAAAAAAAAQQQAAcEEAAAAAAAAQQQAAQEEAAAAAAABwQQAAQEEAAAAAAAAQQQAAQEEAAAAAAAAQQQAAcEEAAAAAAAAQQQAAQEEAAAAAAABwQQAAcEEAAAAAAABwQQAAQEEAAAAAAACoQQAAQEEAAAAAAABwQQAAQEEAAAAAAABwQQAAcEEAAAAAAABwQQAAQEEAAAAAAACoQQAAcEEAAAAAAACoQQAAQEEAAAAAAADYQQAAQEEAAAAAAACoQQAAQEEAAAAAAACoQQAAcEEAAAAAAACoQQAAQEEAAAAAAADYQQAAcEEAAAAAAADYQQAAQEEAAAAAAAAEQgAAQEEAAAAAAADYQQAAQEEAAAAAAADYQQAAcEEAAAAAAADYQQAAQEEAAAAAAAAEQgAAcEEAAAAAAAAEQgAAQEEAAAAAAAAEQgAAcEEAAAAAAABAQAAAcEEAAAAAAADgwAAAcEEAAAAAAABAQAAAcEEAAAAAAAAQQQAAcEEAAAAAAABAQAAAcEEAAAAAAADgwAAAcEEAAAAAAABAQAAAQEEAAAAALMnZwBWfIEEAAAAAAAAQQQAAcEEAAAAAAABwQQAAcEEAAAAAAABwQQAAcEEAAAAAAACoQQAAcEEAAAAAAACoQQAAcEEAAAAAAADYQQAAcEEAAAAAAADYQQAAcEEAAAAAAAAEQgAAcEEAAAAAAABAQAAAcEEAAAAAAADgwAAAcEEAAAAAAABAQAAAcEEAAAAAAAAQQQAAcEEAAAAAAABAQAAAcEEAAAAAAABAQAAAkEEAAAAAAABAQAAAcEEAAAAAAAAQQQAAkEEAAAAAAAAQQQAAcEEAAAAAAABwQQAAcEEAAAAAAAAQQQAAcEEAAAAAAAAQQQAAkEEAAAAAAAAQQQAAcEEAAAAAAABwQQAAkEEAAAAAAABwQQAAcEEAAAAAAACoQQAAcEEAAAAAAABwQQAAcEEAAAAAAABwQQAAkEEAAAAAAABwQQAAcEEAAAAAAACoQQAAkEEAAAAAAACoQQAAcEEAAAAAAADYQQAAcEEAAAAAAACoQQAAcEEAAAAAAACoQQAAkEEAAAAAAACoQQAAcEEAAAAAAADYQQAAkEEAAAAAAADYQQAAcEEAAAAAAAAEQgAAcEEAAAAAAADYQQAAcEEAAAAAAADYQQAAkEEAAAAAAADYQQAAcEEAAAAAAAAEQgAAkEEAAAAAAAAEQgAAcEEAAAAAAAAEQgAAkEEAAAAAAABAQAAAkEEAAAAALMnZwHWwn0EAAAAAAABAQAAAkEEAAAAAAAAQQQAAkEEAAAAAAABAQAAAkEEAAAAALMnZwHWwn0EAAAAAAABAQAAAcEEAAAAAAADgwAAAcEEAAAAAAAAQQQAAkEEAAAAAAABwQQAAkEEAAAAAAABwQQAAkEEAAAAAAACoQQAAkEEAAAAAAACoQQAAkEEAAAAAAADYQQAAkEEAAAAAAADYQQAAkEEAAAAAAAAEQgAAkEEAAAAAAABAQAAAkEEAAAAALMnZwHWwn0EAAAAAAABAQAAAkEEAAAAAAAAQQQAAkEEAAAAAAABAQAAAkEEAAAAAAABAQAAAqEEAAAAAAABAQAAAkEEAAAAAAAAQQQAAqEEAAAAAAAAQQQAAkEEAAAAAAABwQQAAkEEAAAAAAAAQQQAAkEEAAAAAAAAQQQAAqEEAAAAAAAAQQQAAkEEAAAAAAABwQQAAqEEAAAAAAABwQQAAkEEAAAAAAACoQQAAkEEAAAAAAABwQQAAkEEAAAAAAABwQQAAqEEAAAAAAABwQQAAkEEAAAAAAACoQQAAqEEAAAAAAACoQQAAkEEAAAAAAADYQQAAkEEAAAAAAACoQQAAkEEAAAAAAACoQQAAqEEAAAAAAACoQQAAkEEAAAAAAADYQQAAqEEAAAAAAADYQQAAkEEAAAAAAAAEQgAAkEEAAAAAAADYQQAAkEEAAAAAAADYQQAAqEEAAAAAAADYQQAAkEEAAAAAAAAEQgAAqEEAAAAAAAAEQgAAkEEAAAAAAAAEQgAAqEEAAAAAAABAQAAAqEEAAAAA0BzJwBW2xUEAAAAAAABAQAAAqEEAAAAAAAAQQQAAqEEAAAAAAABAQAAAqEEAAAAA0BzJwBW2xUEAAAAAAABAQAAAkEEAAAAALMnZwHWwn0EAAAAAAAAQQQAAqEEAAAAAAABwQQAAqEEAAAAAAABwQQAAqEEAAAAAAACoQQAAqEEAAAAAAACoQQAAqEEAAAAAAADYQQAAqEEAAAAAAADYQQAAqEEAAAAAAAAEQgAAqEEAAAAAAABAQAAAqEEAAAAA0BzJwBW2xUEAAAAAAABAQAAAqEEAAAAAAAAQQQAAqEEAAAAAAABAQAAAqEEAAAAAAABAQAAAwEEAAAAAAABAQAAAqEEAAAAAAAAQQQAAwEEAAAAAAAAQQQAAqEEAAAAAAABwQQAAqEEAAAAAAAAQQQAAqEEAAAAAAAAQQQAAwEEAAAAAAAAQQQAAqEEAAAAAAABwQQAAwEEAAAAAAABwQQAAqEEAAAAAAACoQQAAqEEAAAAAAABwQQAAqEEAAAAAAABwQQAAwEEAAAAAAABwQQAAqEEAAAAAAACoQQAAwEEAAAAAAACoQQAAqEEAAAAAAADYQQAAqEEAAAAAAACoQQAAqEEAAAAAAACoQQAAwEEAAAAAAACoQQAAqEEAAAAAAADYQQAAwEEAAAAAAADYQQAAqEEAAAAAAAAEQgAAqEEAAAAAAADYQQAAqEEAAAAAAADYQQAAwEEAAAAAAADYQQAAqEEAAAAAAAAEQgAAwEEAAAAAAAAEQgAAqEEAAAAAAAAEQgAAwEEAAAAAAABAQAAAwEEAAAAA1GWywOAo6UEAAAAAAABAQAAAwEEAAAAAAAAQQQAAwEEAAAAAAABAQAAAwEEAAAAA1GWywOAo6UEAAAAAAABAQAAAqEEAAAAA0BzJwBW2xUEAAAAAAAAQQQAAwEEAAAAAAABwQQAAwEEAAAAAAABwQQAAwEEAAAAAAACoQQAAwEEAAAAAAACoQQAAwEEAAAAAAADYQQAAwEEAAAAAAADYQQAAwEEAAAAAAAAEQgAAwEEAAAAAAABAQAAAwEEAAAAA1GWywOAo6UEAAAAAAABAQAAAwEEAAAAAAAAQQQAAwEEAAAAAAABAQAAAwEEAAAAAAABAQAAA2EEAAAAAAABAQAAAwEEAAAAAAAAQQQAA2EEAAAAAAAAQQQAAwEEAAAAAAABwQQAAwEEAAAAAAAAQQQAAwEEAAAAAAAAQQQAA2EEAAAAAAAAQQQAAwEEAAAAAAABwQQAA2EEAAAAAAABwQQAAwEEAAAAAAACoQQAAwEEAAAAAAABwQQAAwEEAAAAAAABwQQAA2EEAAAAAAABwQQAAwEEAAAAAAACoQQAA2EEAAAAAAACoQQAAwEEAAAAAAADYQQAAwEEAAAAAAACoQQAAwEEAAAAAAACoQQAA2EEAAAAAAACoQQAAwEEAAAAAAADYQQAA2EEAAAAAAADYQQAAwEEAAAAAAAAEQgAAwEEAAAAAAADYQQAAwEEAAAAAAADYQQAA2EEAAAAAAADYQQAAwEEAAAAAAAAEQgAA2EEAAAAAAAAEQgAAwEEAAAAAAAAEQgAA2EEAAAAAAABAQAAA2EEAAAAAxeCZwOD8BEIAAAAAAABAQAAA2EEAAAAAAAAQQQAA2EEAAAAAAABAQAAA2EEAAAAAxeCZwOD8BEIAAAAAAABAQAAAwEEAAAAA1GWywOAo6UEAAAAAAAAQQQAA2EEAAAAAAABwQQAA2EEAAAAAAABwQQAA2EEAAAAAAACoQQAA2EEAAAAAAACoQQAA2EEAAAAAAADYQQAA2EEAAAAAAADYQQAA2EEAAAAAAAAEQgAA2EEAAAAAAABAQAAA2EEAAAAAxeCZwOD8BEIAAAAAAABAQAAA2EEAAAAAAAAQQQAA2EEAAAAAAABAQAAA2EEAAAAAAABAQAAA8EEAAAAAAABAQAAA2EEAAAAAAAAQQQAA8EEAAAAAAAAQQQAA2EEAAAAAAABwQQAA2EEAAAAAAAAQQQAA2EEAAAAAAAAQQQAA8EEAAAAAAAAQQQAA2EEAAAAAAABwQQAA8EEAAAAAAABwQQAA2EEAAAAAAACoQQAA2EEAAAAAAABwQQAA2EEAAAAAAABwQQAA8EEAAAAAAABwQQAA2EEAAAAAAACoQQAA8EEAAAAAAACoQQAA2EEAAAAAAADYQQAA2EEAAAAAAACoQQAA2EEAAAAAAACoQQAA8EEAAAAAAACoQQAA2EEAAAAAAADYQQAA8EEAAAAAAADYQQAA2EEAAAAAAAAEQgAA2EEAAAAAAADYQQAA2EEAAAAAAADYQQAA8EEAAAAAAADYQQAA2EEAAAAAAAAEQgAA8EEAAAAAAAAEQgAA2EEAAAAAAAAEQgAA8EEAAAAAAABAQAAA8EEAAAAAMEaCwMZIFEIAAAAAAABAQAAA8EEAAAAAAAAQQQAA8EEAAAAAAABAQAAA8EEAAAAAMEaCwMZIFEIAAAAAAABAQAAA2EEAAAAAxeCZwOD8BEIAAAAAAAAQQQAA8EEAAAAAAABwQQAA8EEAAAAAAABwQQAA8EEAAAAAAACoQQAA8EEAAAAAAACoQQAA8EEAAAAAAADYQQAA8EEAAAAAAADYQQAA8EEAAAAAAAAEQgAA8EEAAAAA"},{"byteLength":960,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAEQgAAAAAAAAAAxkggQjBG4sAAAAAAAAAEQgAAQEAAAAAAGTwjQgjOT8AAAAAAAAAEQgAAQEAAAAAAGTwjQgjOT8AAAAAAAAAEQgAAAAAAAAAAxkggQjBG4sAAAAAAAAAEQgAAQEAAAAAAGTwjQgjOT8AAAAAAAAAEQgAAwEAAAAAAukwmQgjkWj8AAAAAAAAEQgAAwEAAAAAAukwmQgjkWj8AAAAAAAAEQgAAQEAAAAAAGTwjQgjOT8AAAAAAAAAEQgAAwEAAAAAAukwmQgjkWj8AAAAAAAAEQgAAEEEAAAAAmiMpQq0nqUAAAAAAAAAEQgAAEEEAAAAAmiMpQq0nqUAAAAAAAAAEQgAAwEAAAAAAukwmQgjkWj8AAAAAAAAEQgAAEEEAAAAAmiMpQq0nqUAAAAAAAAAEQgAAQEEAAAAAJjkrQhWfIEEAAAAAAAAEQgAAQEEAAAAAJjkrQhWfIEEAAAAAAAAEQgAAEEEAAAAAmiMpQq0nqUAAAAAAAAAEQgAAQEEAAAAAJjkrQhWfIEEAAAAAAAAEQgAAcEEAAAAAAAAsQgAAcEEAAAAAAAAEQgAAcEEAAAAAAAAsQgAAcEEAAAAAAAAEQgAAQEEAAAAAJjkrQhWfIEEAAAAAAAAEQgAAcEEAAAAAAAAsQgAAcEEAAAAAAAAEQgAAkEEAAAAAJjkrQnWwn0EAAAAAAAAEQgAAkEEAAAAAJjkrQnWwn0EAAAAAAAAEQgAAcEEAAAAAAAAsQgAAcEEAAAAAAAAEQgAAkEEAAAAAJjkrQnWwn0EAAAAAAAAEQgAAqEEAAAAAmiMpQhW2xUEAAAAAAAAEQgAAqEEAAAAAmiMpQhW2xUEAAAAAAAAEQgAAkEEAAAAAJjkrQnWwn0EAAAAAAAAEQgAAqEEAAAAAmiMpQhW2xUEAAAAAAAAEQgAAwEEAAAAAukwmQuAo6UEAAAAAAAAEQgAAwEEAAAAAukwmQuAo6UEAAAAAAAAEQgAAqEEAAAAAmiMpQhW2xUEAAAAAAAAEQgAAwEEAAAAAukwmQuAo6UEAAAAAAAAEQgAA2EEAAAAAGTwjQuD8BEIAAAAAAAAEQgAA2EEAAAAAGTwjQuD8BEIAAAAAAAAEQgAAwEEAAAAAukwmQuAo6UEAAAAAAAAEQgAA2EEAAAAAGTwjQuD8BEIAAAAAAAAEQgAA8EEAAAAAxkggQsZIFEIAAAAAAAAEQgAA8EEAAAAAxkggQsZIFEIAAAAAAAAEQgAA2EEAAAAAGTwjQuD8BEIAAAAA"}],"materials":[{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0.5,0.5,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0},"material":0,"mode":6},{"attributes":{"POSITION":1},"material":0,"mode":6},{"attributes":{"POSITION":2},"material":0,"mode":6}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":6},{"attributes":{"POSITION":4},"material":1,"mode":6},{"attributes":{"POSITION":5},"material":1,"mode":6}]},{"primitives":[{"attributes":{"POSITION":6},"material":2,"mode":1}]},{"primitives":[{"attributes":{"POSITION":7},"material":3,"mode":1}]}],"nodes":[{"mesh":0,"translation":[3,0,0]},{"mesh":0,"translation":[9,0,0]},{"mesh":0,"translation":[15,0,0]},{"mesh":0,"translation":[21,0,0]},{"mesh":0,"translation":[27,0,0]},{"mesh":1,"translation":[33,0,0]},{"mesh":0,"translation":[3,3,0]},{"mesh":0,"translation":[9,3,0]},{"mesh":0,"translation":[15,3,0]},{"mesh":0,"translation":[21,3,0]},{"mesh":0,"translation":[27,3,0]},{"mesh":1,"translation":[33,3,0]},{"mesh":0,"translation":[3,6,0]},{"mesh":0,"translation":[9,6,0]},{"mesh":0,"translation":[15,6,0]},{"mesh":0,"translation":[21,6,0]},{"mesh":0,"translation":[27,6,0]},{"mesh":1,"translation":[33,6,0]},{"mesh":0,"translation":[3,9,0]},{"mesh":0,"translation":[9,9,0]},{"mesh":0,"translation":[15,9,0]},{"mesh":0,"translation":[21,9,0]},{"mesh":0,"translation":[27,9,0]},{"mesh":1,"translation":[33,9,0]},{"mesh":0,"translation":[3,12,0]},{"mesh":0,"translation":[9,12,0]},{"mesh":0,"translation":[15,12,0]},{"mesh":0,"translation":[21,12,0]},{"mesh":0,"translation":[27,12,0]},{"mesh":1,"translation":[33,12,0]},{"mesh":0,"translation":[3,15,0]},{"mesh":0,"translation":[9,15,0]},{"mesh":0,"translation":[15,15,0]},{"mesh":0,"translation":[21,15,0]},{"mesh":0,"translation":[27,15,0]},{"mesh":1,"translation":[33,15,0]},{"mesh":0,"translation":[3,18,0]},{"mesh":0,"translation":[9,18,0]},{"mesh":0,"translation":[15,18,0]},{"mesh":0,"translation":[21,18,0]},{"mesh":0,"translation":[27,18,0]},{"mesh":1,"translation":[33,18,0]},{"mesh":0,"translation":[3,21,0]},{"mesh":0,"translation":[9,21,0]},{"mesh":0,"translation":[15,21,0]},{"mesh":0,"translation":[21,21,0]},{"mesh":0,"translation":[27,21,0]},{"mesh":1,"translation":[33,21,0]},{"mesh":0,"translation":[3,24,0]},{"mesh":0,"translation":[9,24,0]},{"mesh":0,"translation":[15,24,0]},{"mesh":0,"translation":[21,24,0]},{"mesh":0,"translation":[27,24,0]},{"mesh":1,"translation":[33,24,0]},{"mesh":0,"translation":[3,27,0]},{"mesh":0,"translation":[9,27,0]},{"mesh":0,"translation":[15,27,0]},{"mesh":0,"translation":[21,27,0]},{"mesh":0,"translation":[27,27,0]},{"mesh":1,"translation":[33,27,0]},{"mesh":0,"translation":[3,30,0]},{"mesh":0,"translation":[9,30,0]},{"mesh":0,"translation":[15,30,0]},{"mesh":0,"translation":[21,30,0]},{"mesh":0,"translation":[27,30,0]},{"mesh":1,"translation":[33,30,0]},{"mesh":2,"translation":[0,0,0]},{"mesh":3,"translation":[0,0,0]}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67]}]} \ No newline at end of file diff --git a/testdata/match_graph_surface_code.gltf b/testdata/match_graph_surface_code.gltf index 5504a89d..d5e1304f 100644 --- a/testdata/match_graph_surface_code.gltf +++ b/testdata/match_graph_surface_code.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":9,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0,0.400000005960464],"min":[-0.400000005960464,0,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0.400000005960464,0],"min":[-0.400000005960464,-0.400000005960464,0],"name":"circle_loop","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":8192,"max":[20.9442710876465,20.9442710876465,39.8058090209961],"min":[-8.9442720413208,-8.9442720413208,-9.80580711364746],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":1336,"max":[20.9442710876465,3,39.8058090209961],"min":[-8.9442720413208,-7,-9.80580711364746],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":1,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":2,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":3,"byteLength":98304,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":4,"byteLength":16032,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA"},{"byteLength":98304,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAQEAAAAAAAAAAAAAAEEEAAAAAAAAAAAAAQEAAAAAAAADAQAAAQEAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAAAA6LFpwD02LUEyDxLBAAAAAAAAEEEAAAAAAADAQAAAEEEAAAAAAAAAAAAAEEEAAAAAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAAAAAAAAAAAAEEEAAEBAAADAQAAAQEAAAAAAAADAQAAAEEEAAAAAAADAQAAAQEAAAAAAAADAQAAAEEEAAAAAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAAAAAABAQQAAQEAAAAAAAADAQAAAQEAAAAAAAAAAAAAAQEAAAEBAAADAQAAAQEAAAAAAAAAAAAAAQEAAAEBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAADAQAAAQEAAAAAAAAAAAAAAQEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAADAQAAAQEAAAAAAAAAAAAAAQEAAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAAAAAAAAAAAAQEAAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAADAQAAAQEAAAAAAAADAQAAAQEAAAEBAAADAQAAAQEAAAAAAAADAQAAAQEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAADAQAAAQEAAAAAAAADAQAAAQEAAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAAAAAAAAAAAAEEEAAEBAAADAQAAAQEAAAAAAAAAAAAAAEEEAAEBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAADAQAAAQEAAAAAAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAAAAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAADAQAAAEEEAAAAAAABAQQAAEEEAAAAAAADAQAAAEEEAAAAAAADAQAAAQEAAAEBAAADAQAAAEEEAAAAAAADAQAAAQEAAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQAAAQEAAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAAAAAADAQAAAQEAAAEBAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAAAAAAAAAAAAEEEAAEBAAADAQAAAEEEAAAAAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAADAQAAAEEEAAAAAAADAQAAAEEEAAEBAAADAQAAAEEEAAAAAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAADAQAAAEEEAAAAAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAAAAAADAQAAAEEEAAEBAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQQAAQEAAAAAAAABAQQAAEEEAAAAAAABAQQAAQEAAAAAAAABAQQAAEEEAAAAAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAAAAAADAQAAAQEAAAEBAAABAQQAAQEAAAAAAAADAQAAAQEAAAEBAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQQAAQEAAAAAAAADAQAAAQEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAABAQQAAQEAAAAAAAADAQAAAQEAAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAAAAAADAQAAAQEAAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQQAAQEAAAAAAAABAQQAAQEAAAEBAAABAQQAAQEAAAAAAAABAQQAAQEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAABAQQAAQEAAAAAAAABAQQAAQEAAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAAAAAADAQAAAEEEAAEBAAABAQQAAQEAAAAAAAADAQAAAEEEAAEBAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQQAAQEAAAAAAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAAAAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAABAQQAAEEEAAAAAAABAQQAAQEAAAEBAAABAQQAAEEEAAAAAAABAQQAAQEAAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAAABAQQAAQEAAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAAAAAABAQQAAQEAAAEBAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAAAAAADAQAAAEEEAAEBAAABAQQAAEEEAAAAAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAABAQQAAEEEAAAAAAABAQQAAEEEAAEBAAABAQQAAEEEAAAAAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAABAQQAAEEEAAAAAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAAAAAABAQQAAEEEAAEBAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAEBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAAAAAAAAQEAAAEBAAADAQAAAQEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAAAAAAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAABAQAAAAAAAAEBAAABAQAAAAAAAAMBAAABAQAAAAAAAAEBAAABAQAAAAAAAAMBAAABAQAAAAAAAAEBAAABAQAAAAAAAAMBAAABAQAAAAAAAAEBAAABAQAAAAAAAAMBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAADAQAAAQEAAAEBAAABAQQAAQEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAADAQAAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAABAQQAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAAAAAAQEAAAEBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAEBAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAEBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAAAAAAQEAAAEBAAAAAAAAAQEAAAMBAAAAAAAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAAAAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAADAQAAAQEAAAEBAAABAQQAAQEAAAEBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBAAAAQQQAAwEAAAEBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAQEAAAMBAAADAQAAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAQEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAEBAAADAQAAAQEAAAMBAAABAQQAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAABAQQAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAABAQQAAQEAAAMBAAABAQQAAQEAAAEBAAABAQQAAQEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAABAQQAAQEAAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAwEAAAEBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAAAAAAAAEEEAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAAAAAAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAABAQQAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAABAQQAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAAAAAAAAEEEAAEBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAEBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAEBAAAAAAAAAQEAAAMBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAAAAAAEEEAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAAAAAAEEEAAEBAAAAAAAAAEEEAAMBAAAAAAAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAAAAAAAAEEEAAAAA6LFpwD02LUEyDxLBAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAADAQAAAEEEAAEBAAADAQELONkESctbAAADAQAAAEEEAAEBAAABAQQAAEEEAAEBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAMBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQAAAEEEAAMBAAADAQAAAEEEAAEBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQQAAEEEAAEBAAABAQQAAQEAAAMBAAABAQQAAEEEAAEBAAABAQQAAQEAAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAEEEAAEBAAABAQQAAQEAAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBAAABAQQAAQEAAAMBAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBAAADAQAAAEEEAAMBAAABAQQAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAABAQQAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAEEEAAEBAAABAQQAAEEEAAMBAAABAQQAAEEEAAEBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAEEEAAEBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAEEEAAEBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBAAABAQQAAEEEAAMBAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQAAAQEEAAEBAAAAQQQAAQEEAAEBAAABAQAAAQEEAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAAABAQAAAQEEAAMBAAABAQAAAQEEAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAEBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBAAABAQAAAQEEAAMBAAAAQQQAAQEEAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAQEEAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAQEEAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAQEEAAEBAAAAQQQAAQEEAAMBAAAAQQQAAQEEAAEBAAAAQQQAAQEEAAMBAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAQEEAAEBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAMBAAAAQQQAAAAAAAMBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAAAAAAAAQEAAAMBAAADAQAAAQEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAABAQQAAQEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAAAAAAQEAAAMBAAADAQAAAQEAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAMBAAABAQQAAQEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAwEAAAMBAAAAQQQAAwEAAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAAMBAAADAQAAAEEEAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAADAQAAAEEEAAEBAAADAQELONkESctbAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAMBAAABAQQAAEEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAEBAAADAQELONkESctbAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAQEEAAMBAAAAQQQAAQEEAAMBAAABAQAAAQEEAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAMBAAAAQQQAAAAAAAMBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAAAAAAAAQEAAAMBAAADAQAAAQEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAADAQAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAAAAAABBBAABAQAAAAAAAAMBAAABAQAAAAAAAABBBAABAQAAAAAAAAMBAAABAQAAAAAAAABBBAABAQAAAAAAAAMBAAABAQAAAAAAAABBBAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAABAQQAAQEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAMBAAABAQAAAAAAAABBBAAAQQQAAAAAAAMBAAABAQAAAAAAAABBBAAAQQQAAAAAAAMBAAABAQAAAAAAAABBBAAAQQQAAAAAAAMBAAABAQAAAAAAAABBBAAAQQQAAAAAAAMBAAAAQQQAAAAAAABBBAAAQQQAAAAAAAMBAAAAQQQAAAAAAABBBAAAQQQAAAAAAAMBAAAAQQQAAAAAAABBBAAAQQQAAAAAAAMBAAAAQQQAAAAAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAAAAAAAAQEAAAMBAAADAQAAAQEAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAAAAAAQEAAAMBAAAAAAAAAQEAAABBBAAAAAAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAAAAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAADAQAAAQEAAAMBAAABAQQAAQEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAAAAAAAAQEAAABBBAADAQAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAADAQAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAQEAAABBBAADAQAAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAQEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAQEAAAMBAAADAQAAAQEAAABBBAABAQQAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAABAQQAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAABAQQAAQEAAABBBAABAQQAAQEAAAMBAAABAQQAAQEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAABAQQAAQEAAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAQEAAAMBAAADAQAAAEEEAABBBAABAQQAAQEAAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAQEAAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAABAQQAAQEAAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAADAQAAAEEEAABBBAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAADAQAAAEEEAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAwEAAAMBAAAAQQQAAwEAAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAABAQQAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAAMBAAADAQAAAEEEAAMBAAAAAAAAAEEEAAMBAAAAAAAAAQEAAABBBAAAAAAAAEEEAAMBAAAAAAAAAQEAAABBBAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAAAAAAEEEAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAAAAAAEEEAAMBAAAAAAAAAEEEAABBBAAAAAAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAMBAAABAQQAAEEEAAMBAAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAAAAAAAAEEEAABBBAADAQAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQAAAEEEAABBBAADAQAAAEEEAAMBAAADAQAAAEEEAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAAMBAAABAQQAAQEAAABBBAABAQQAAEEEAAMBAAABAQQAAQEAAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAEEEAAMBAAABAQQAAQEAAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBAAABAQQAAQEAAABBBAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBAAADAQAAAEEEAABBBAABAQQAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAABAQQAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAEEEAAMBAAABAQQAAEEEAABBBAABAQQAAEEEAAMBAAABAQQAAEEEAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAEEEAAMBAAABAQQAAEEEAABBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAEEEAAMBAAABAQQAAEEEAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBAAABAQQAAEEEAABBBAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAQEEAAMBAAAAQQQAAQEEAAMBAAABAQAAAQEEAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAAABAQAAAQEEAABBBAABAQAAAQEEAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAAABAQAAAQEEAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAAMBAAABAQAAAQEEAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAAMBAAABAQAAAQEEAABBBAAAQQQAAQEEAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAQEEAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAQEEAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAQEEAAMBAAAAQQQAAQEEAABBBAAAQQQAAQEEAAMBAAAAQQQAAQEEAABBBAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAAMBAAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAQEEAAMBAAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAABBBAAAQQQAAAAAAABBBAABAQAAAAAAAABBBAAAQQQAAAAAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAAAAAAAAQEAAABBBAADAQAAAQEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAAAAAAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAADAQAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAAAAAAEBBAABAQAAAAAAAABBBAABAQAAAAAAAAEBBAABAQAAAAAAAABBBAABAQAAAAAAAAEBBAABAQAAAAAAAABBBAABAQAAAAAAAAEBBAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAADAQAAAQEAAABBBAABAQQAAQEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAADAQAAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAABAQQAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAAAQQQAAAAAAABBBAABAQAAAAAAAAEBBAAAQQQAAAAAAABBBAABAQAAAAAAAAEBBAAAQQQAAAAAAABBBAABAQAAAAAAAAEBBAAAQQQAAAAAAABBBAABAQAAAAAAAAEBBAAAQQQAAAAAAABBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAABBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAABBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAABBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAAAAAAQEAAABBBAADAQAAAQEAAABBBAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAAAAAAQEAAABBBAAAAAAAAQEAAAEBBAAAAAAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAAAAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAADAQAAAQEAAABBBAABAQQAAQEAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAABAQAAAwEAAABBBAAAQQQAAwEAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAABAQAAAQEEAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAAAAAAAAQEAAAEBBAADAQAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAADAQAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAQEAAAEBBAADAQAAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAQEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAABAQAAAQEEAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQQAAQEAAABBBAABAQQAAEEEAABBBAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAQEAAABBBAADAQAAAQEAAAEBBAABAQQAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAABAQQAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAABAQQAAQEAAAEBBAABAQQAAQEAAABBBAABAQQAAQEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAABAQQAAQEAAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAwEAAABBBAAAQQQAAwEAAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAwEAAABBBAABAQAAAQEEAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAwEAAABBBAABAQAAAQEEAABBBAAAAAAAAEEEAABBBAADAQAAAEEEAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAAAAAAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAABAQQAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAAAAAAEEEAABBBAADAQAAAEEEAABBBAAAAAAAAEEEAABBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAABBBAAAAAAAAQEAAAEBBAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAAAAAAEEEAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAAAAAAEEEAABBBAAAAAAAAEEEAAEBBAAAAAAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAABBBAABAQQAAEEEAABBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAAAAAAAAEEEAAEBBAADAQAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAQEEAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQAAAEEEAAEBBAADAQAAAEEEAABBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQQAAEEEAABBBAABAQQAAQEAAAEBBAABAQQAAEEEAABBBAABAQQAAQEAAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAEEEAABBBAABAQQAAQEAAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBAABAQQAAQEAAAEBBAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBAADAQAAAEEEAAEBBAABAQQAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAABAQQAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAEEEAABBBAABAQQAAEEEAAEBBAABAQQAAEEEAABBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAEEEAABBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAEEEAABBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBAABAQQAAEEEAAEBBAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAQEEAABBBAAAQQQAAQEEAABBBAABAQAAAQEEAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAQEEAABBBAABAQAAAwEAAAEBBAABAQAAAQEEAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAQEEAABBBAABAQAAAwEAAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAABBBAABAQAAAwEAAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAQEEAABBBAABAQAAAQEEAAEBBAABAQAAAQEEAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAQEEAABBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAABBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBAABAQAAAQEEAAEBBAAAQQQAAQEEAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAQEEAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAQEEAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAQEEAABBBAAAQQQAAQEEAAEBBAAAQQQAAQEEAABBBAAAQQQAAQEEAAEBBAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAQEEAABBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAEBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAEBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAAAAAAAAQEAAAEBBAADAQAAAQEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAABAQQAAQEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAAAAAAQEAAAEBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AADAQAAAQEAAAEBBAABAQQAAQEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAwEAAAEBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAAEBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAAEBBAABAQQAAEEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAQEEAAEBBAAAQQQAAQEEAAEBBAABAQAAAQEEAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAEBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAEBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAAAAAAAAQEAAAEBBAADAQAAAQEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAAAAAAHBBAABAQAAAAAAAAEBBAABAQAAAAAAAAHBBAABAQAAAAAAAAEBBAABAQAAAAAAAAHBBAABAQAAAAAAAAEBBAABAQAAAAAAAAHBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAABAQQAAQEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAABAQQAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAAAAAAAAQEAAAEBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAAAAAAQEAAAEBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAAAAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAADAQAAAQEAAAEBBAABAQQAAQEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAQEAAAHBBAADAQAAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAQEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAQEAAAEBBAADAQAAAQEAAAHBBAABAQQAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAABAQQAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAQEAAAHBBAABAQQAAQEAAAEBBAABAQQAAQEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAQEAAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAwEAAAEBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAABAQQAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAAEBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAEBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAEBBAAAAAAAAQEAAAHBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAAAAAAEEEAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAAAAAAEEEAAEBBAAAAAAAAEEEAAHBBAAAAAAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAAEBBAABAQQAAEEEAAEBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAHBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQAAAEEEAAHBBAADAQAAAEEEAAEBBAADAQAAAEEEAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAAEBBAABAQQAAQEAAAHBBAABAQQAAEEEAAEBBAABAQQAAQEAAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAEEEAAEBBAABAQQAAQEAAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBBAABAQQAAQEAAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBBAADAQAAAEEEAAHBBAABAQQAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAABAQQAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAEEEAAEBBAABAQQAAEEEAAHBBAABAQQAAEEEAAEBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAEEEAAEBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAEEEAAEBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBBAABAQQAAEEEAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAQEEAAEBBAAAQQQAAQEEAAEBBAABAQAAAQEEAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBAABAQAAAQEEAAHBBAABAQAAAQEEAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAEBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAEBBAABAQAAAQEEAAHBBAAAQQQAAQEEAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAQEEAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAQEEAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAQEEAAEBBAAAQQQAAQEEAAHBBAAAQQQAAQEEAAEBBAAAQQQAAQEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAEBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAQEEAAEBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAAAAAAAAQEAAAHBBAADAQAAAQEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAAAAAAJBBAABAQAAAAAAAAHBBAABAQAAAAAAAAJBBAABAQAAAAAAAAHBBAABAQAAAAAAAAJBBAABAQAAAAAAAAHBBAABAQAAAAAAAAJBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAADAQAAAQEAAAHBBAABAQQAAQEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAADAQAAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAAAAAAQEAAAHBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAADAQAAAQEAAAHBBAABAQQAAQEAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAABAQAAAwEAAAHBBAAAQQQAAwEAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAQEAAAJBBAADAQAAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAQEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAQEAAAHBBAADAQAAAQEAAAJBBAABAQQAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAABAQQAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAABAQQAAQEAAAJBBAABAQQAAQEAAAHBBAABAQQAAQEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAABAQQAAQEAAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAwEAAAHBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBAADAQAAAEEEAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAABAQQAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAAAAAAEEEAAHBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAHBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAHBBAAAAAAAAQEAAAJBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAAAAAAEEEAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAAAAAAEEEAAHBBAAAAAAAAEEEAAJBBAAAAAAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAHBBAABAQQAAEEEAAHBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAJBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAEEEAAJBBAADAQAAAEEEAAHBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQQAAEEEAAHBBAABAQQAAQEAAAJBBAABAQQAAEEEAAHBBAABAQQAAQEAAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAEEEAAHBBAABAQQAAQEAAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBBAABAQQAAQEAAAJBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBBAADAQAAAEEEAAJBBAABAQQAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAABAQQAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAEEEAAHBBAABAQQAAEEEAAJBBAABAQQAAEEEAAHBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAEEEAAHBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAEEEAAHBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBBAABAQQAAEEEAAJBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAQEEAAHBBAAAQQQAAQEEAAHBBAABAQAAAQEEAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAQEEAAHBBAABAQAAAQEEAAJBBAABAQAAAQEEAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAQEEAAHBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAHBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBBAABAQAAAQEEAAJBBAAAQQQAAQEEAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAQEEAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAQEEAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAQEEAAHBBAAAQQQAAQEEAAJBBAAAQQQAAQEEAAHBBAAAQQQAAQEEAAJBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAQEEAAHBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAJBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAAAAAAAAQEAAAJBBAADAQAAAQEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAABAQQAAQEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAAAAAAQEAAAJBBAADAQAAAQEAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAADAQAAAQEAAAJBBAABAQQAAQEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAwEAAAJBBAAAQQQAAwEAAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAJBBAADAQAAAEEEAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAJBBAABAQQAAEEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAQEEAAJBBAAAQQQAAQEEAAJBBAABAQAAAQEEAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAJBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAAAAAAAAQEAAAJBBAADAQAAAQEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAADAQAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAAAAAAKhBAABAQAAAAAAAAJBBAABAQAAAAAAAAKhBAABAQAAAAAAAAJBBAABAQAAAAAAAAKhBAABAQAAAAAAAAJBBAABAQAAAAAAAAKhBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAABAQQAAQEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAJBBAABAQAAAAAAAAKhBAAAQQQAAAAAAAJBBAABAQAAAAAAAAKhBAAAQQQAAAAAAAJBBAABAQAAAAAAAAKhBAAAQQQAAAAAAAJBBAABAQAAAAAAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAAAAAAAAQEAAAJBBAADAQAAAQEAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAKhBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAADAQAAAQEAAAJBBAABAQQAAQEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAQEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAADAQAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAQEAAAKhBAADAQAAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAQEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAQEAAAJBBAADAQAAAQEAAAKhBAABAQQAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAABAQQAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAABAQQAAQEAAAKhBAABAQQAAQEAAAJBBAABAQQAAQEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAABAQQAAQEAAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAwEAAAJBBAAAQQQAAwEAAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAABAQQAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAJBBAADAQAAAEEEAAJBBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAKhBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAAAAAAEEEAAJBBAAAAAAAAEEEAAKhBAAAAAAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAJBBAABAQQAAEEEAAJBBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAAAAAAAAEEEAAKhBAADAQAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQAAAEEEAAKhBAADAQAAAEEEAAJBBAADAQAAAEEEAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAJBBAABAQQAAQEAAAKhBAABAQQAAEEEAAJBBAABAQQAAQEAAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAEEEAAJBBAABAQQAAQEAAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBBAABAQQAAQEAAAKhBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBBAADAQAAAEEEAAKhBAABAQQAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAABAQQAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAEEEAAJBBAABAQQAAEEEAAKhBAABAQQAAEEEAAJBBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAEEEAAJBBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAEEEAAJBBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBBAABAQQAAEEEAAKhBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAQEEAAJBBAAAQQQAAQEEAAJBBAABAQAAAQEEAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBAABAQAAAQEEAAKhBAABAQAAAQEEAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAJBBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAJBBAABAQAAAQEEAAKhBAAAQQQAAQEEAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAQEEAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAQEEAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAQEEAAJBBAAAQQQAAQEEAAKhBAAAQQQAAQEEAAJBBAAAQQQAAQEEAAKhBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAJBBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAQEEAAJBBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAKhBAAAQQQAAAAAAAKhBAABAQAAAAAAAAKhBAAAQQQAAAAAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAAAAAAAAQEAAAKhBAADAQAAAQEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAAAAAAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAADAQAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAAAAAAMBBAABAQAAAAAAAAKhBAABAQAAAAAAAAMBBAABAQAAAAAAAAKhBAABAQAAAAAAAAMBBAABAQAAAAAAAAKhBAABAQAAAAAAAAMBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAADAQAAAQEAAAKhBAABAQQAAQEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAADAQAAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAABAQQAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAKhBAABAQAAAAAAAAMBBAAAQQQAAAAAAAKhBAABAQAAAAAAAAMBBAAAQQQAAAAAAAKhBAABAQAAAAAAAAMBBAAAQQQAAAAAAAKhBAABAQAAAAAAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAAAAAAQEAAAKhBAADAQAAAQEAAAKhBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAAAAAAQEAAAKhBAAAAAAAAQEAAAMBBAAAAAAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAAAAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAADAQAAAQEAAAKhBAABAQQAAQEAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAABAQAAAwEAAAKhBAAAQQQAAwEAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAQEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAADAQAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAQEAAAMBBAADAQAAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAQEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAQEAAAKhBAADAQAAAQEAAAMBBAABAQQAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAABAQQAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAABAQQAAQEAAAMBBAABAQQAAQEAAAKhBAABAQQAAQEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAABAQQAAQEAAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAwEAAAKhBAAAQQQAAwEAAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBAADAQAAAEEEAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAABAQQAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAAAAAAEEEAAKhBAADAQAAAEEEAAKhBAAAAAAAAEEEAAKhBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAKhBAAAAAAAAQEAAAMBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAAAAAAEEEAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAAAAAAEEEAAKhBAAAAAAAAEEEAAMBBAAAAAAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAKhBAABAQQAAEEEAAKhBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAAAAAAAAEEEAAMBBAADAQAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQAAAEEEAAMBBAADAQAAAEEEAAKhBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQQAAEEEAAKhBAABAQQAAQEAAAMBBAABAQQAAEEEAAKhBAABAQQAAQEAAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAEEEAAKhBAABAQQAAQEAAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBAABAQQAAQEAAAMBBAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBAADAQAAAEEEAAMBBAABAQQAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAABAQQAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAEEEAAKhBAABAQQAAEEEAAMBBAABAQQAAEEEAAKhBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAEEEAAKhBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAEEEAAKhBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBAABAQQAAEEEAAMBBAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAQEEAAKhBAAAQQQAAQEEAAKhBAABAQAAAQEEAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAQEEAAKhBAABAQAAAQEEAAMBBAABAQAAAQEEAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAQEEAAKhBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAKhBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBAABAQAAAQEEAAMBBAAAQQQAAQEEAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAQEEAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAQEEAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAQEEAAKhBAAAQQQAAQEEAAMBBAAAQQQAAQEEAAKhBAAAQQQAAQEEAAMBBAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAQEEAAKhBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAMBBAAAQQQAAAAAAAMBBAABAQAAAAAAAAMBBAAAQQQAAAAAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAAAAAAAAQEAAAMBBAADAQAAAQEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAABAQQAAQEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAAAAAAQEAAAMBBAADAQAAAQEAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAADAQAAAQEAAAMBBAABAQQAAQEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAwEAAAMBBAAAQQQAAwEAAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAAMBBAADAQAAAEEEAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAMBBAABAQQAAEEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAQEEAAMBBAAAQQQAAQEEAAMBBAABAQAAAQEEAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAMBBAAAQQQAAAAAAAMBBAABAQAAAAAAAAMBBAAAQQQAAAAAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAAAAAAAAQEAAAMBBAADAQAAAQEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAADAQAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAAAAAANhBAABAQAAAAAAAAMBBAABAQAAAAAAAANhBAABAQAAAAAAAAMBBAABAQAAAAAAAANhBAABAQAAAAAAAAMBBAABAQAAAAAAAANhBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAABAQQAAQEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAABAQQAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAMBBAABAQAAAAAAAANhBAAAQQQAAAAAAAMBBAABAQAAAAAAAANhBAAAQQQAAAAAAAMBBAABAQAAAAAAAANhBAAAQQQAAAAAAAMBBAABAQAAAAAAAANhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAANhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAANhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAANhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAAAAAAAAQEAAAMBBAADAQAAAQEAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAAAAAAQEAAAMBBAAAAAAAAQEAAANhBAAAAAAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAAAAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAADAQAAAQEAAAMBBAABAQQAAQEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAAAAAAAAQEAAANhBAADAQAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAADAQAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAQEAAANhBAADAQAAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAQEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAQEAAAMBBAADAQAAAQEAAANhBAABAQQAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAABAQQAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAABAQQAAQEAAANhBAABAQQAAQEAAAMBBAABAQQAAQEAAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAABAQQAAQEAAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAwEAAAMBBAAAQQQAAwEAAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAABAQQAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAAMBBAADAQAAAEEEAAMBBAAAAAAAAEEEAAMBBAAAAAAAAQEAAANhBAAAAAAAAEEEAAMBBAAAAAAAAQEAAANhBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAAAAAAEEEAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAAAAAAEEEAAMBBAAAAAAAAEEEAANhBAAAAAAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAMBBAABAQQAAEEEAAMBBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAAAAAAAAEEEAANhBAADAQAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQAAAEEEAANhBAADAQAAAEEEAAMBBAADAQAAAEEEAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQQAAEEEAAMBBAABAQQAAQEAAANhBAABAQQAAEEEAAMBBAABAQQAAQEAAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAEEEAAMBBAABAQQAAQEAAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBAABAQQAAQEAAANhBAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBAADAQAAAEEEAANhBAABAQQAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAABAQQAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAABAQQAAEEEAAMBBAABAQQAAEEEAANhBAABAQQAAEEEAAMBBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAEEEAAMBBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAABAQQAAEEEAAMBBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBAABAQQAAEEEAANhBAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAQEEAAMBBAAAQQQAAQEEAAMBBAABAQAAAQEEAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBAABAQAAAQEEAANhBAABAQAAAQEEAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBAABAQAAAQEEAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAAMBBAABAQAAAQEEAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAAMBBAABAQAAAQEEAANhBAAAQQQAAQEEAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAQEEAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAQEEAAMBBAAAQQQAAQEEAANhBAAAQQQAAQEEAAMBBAAAQQQAAQEEAANhBAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAAMBBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAAMBBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBAAAQQQAAAAAAANhBAABAQAAAAAAAANhBAAAQQQAAAAAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAAAAAAAAQEAAANhBAADAQAAAQEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAAAAAAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAADAQAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAADAQAAAQEAAANhBAABAQQAAQEAAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAADAQAAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAABAQQAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAAAAAAQEAAANhBAADAQAAAQEAAANhBAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAAAAAAQEAAANhBAAAAAAAAQEAAAPBBAAAAAAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAAAAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAADAQAAAQEAAANhBAABAQQAAQEAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhBAAAQQQAAwEAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAQEAAANhBAAAAAAAAQEAAAPBBAADAQAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAADAQAAAQEAAANhBAAAAAAAAEEEAAPBBAADAQAAAQEAAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAADAQAAAQEAAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAQEAAANhBAAAAAAAAEEEAAPBBAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAQEAAANhBAADAQAAAQEAAAPBBAADAQAAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAADAQAAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAABAQQAAQEAAANhBAABAQQAAEEEAANhBAABAQQAAQEAAANhBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAQEAAANhBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAQEAAANhBAABAQQAAEEEAANhBAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAQEAAANhBAADAQAAAQEAAAPBBAABAQQAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAQEAAANhBAADAQAAAEEEAAPBBAABAQQAAQEAAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAQEAAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAQEAAANhBAADAQAAAEEEAAPBBAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAQEAAANhBAABAQQAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAwEAAANhBAAAQQQAAwEAAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAwEAAANhBAABAQAAAQEEAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAANhBAABAQAAAQEEAANhBAAAAAAAAEEEAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAAAAAAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAwEAAANhBAABAQAAAQEEAANhBAADAQAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAABAQQAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAAAAAAAAEEEAANhBAADAQAAAEEEAANhBAAAAAAAAEEEAANhBAAAAAAAAQEAAAPBBAAAAAAAAEEEAANhBAAAAAAAAQEAAAPBBAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAAAAAAEEEAANhBAAAAAAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhBAAAAAAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAAAAAAEEEAANhBAAAAAAAAEEEAAPBBAAAAAAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAANhBAABAQQAAEEEAANhBAADAQAAAEEEAANhBAAAAAAAAEEEAAPBBAADAQAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAADAQAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAEEEAANhBAADAQAAAQEAAAPBBAADAQAAAEEEAANhBAADAQAAAQEAAAPBBAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAADAQAAAEEEAANhBAADAQAAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQAAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAADAQAAAEEEAANhBAADAQAAAEEEAAPBBAADAQAAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAABAQQAAEEEAANhBAADAQAAAEEEAAPBBAABAQQAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAANhBAABAQQAAQEAAAPBBAABAQQAAEEEAANhBAABAQQAAEEEAAPBBAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAABAQAAAQEEAANhBAAAQQQAAQEEAANhBAABAQAAAQEEAANhBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAAAAAAAAQEAAAPBBAAAAAAAAEEEAAPBBAAAAAAAAQEAAAPBBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAQEAAAPBBAADAQAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAAAAAAAAEEEAAPBBAADAQAAAEEEAAPBBAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAQEAAAPBBAADAQAAAEEEAAPBBAADAQAAAQEAAAPBBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAQEAAAPBBAABAQQAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAADAQAAAEEEAAPBBAABAQQAAEEEAAPBBAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAABAQQAAQEAAAPBBAABAQQAAEEEAAPBBAABAQQAAEEEAAPBBemx6QT02LUHMgxxCAABAQQAAEEEAAPBBemx6QT02LUHMgxxCAABAQQAAEEEAANhBNOqCQTTqMkE06g5C"},{"byteLength":16032,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAQEAAAAAA6LFpwBhOlj8yDxLBAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAAAAAAAAQEAAAAAA6LFpwBhOlj8yDxLBAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAAPBBemx6QRhOlj/MgxxCAABAQQAAQEAAAPBBemx6QRhOlj/MgxxCAABAQQAAQEAAANhBNOqCQbxcUT806g5C"}],"materials":[{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0},"material":0,"mode":6},{"attributes":{"POSITION":1},"material":0,"mode":6},{"attributes":{"POSITION":2},"material":0,"mode":6}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":4},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[0,3,0]},{"mesh":0,"translation":[0,9,0]},{"mesh":0,"translation":[6,3,0]},{"mesh":0,"translation":[6,9,0]},{"mesh":0,"translation":[12,3,0]},{"mesh":0,"translation":[12,9,0]},{"mesh":0,"translation":[3,0,3]},{"mesh":0,"translation":[9,0,3]},{"mesh":0,"translation":[0,3,3]},{"mesh":0,"translation":[6,3,3]},{"mesh":0,"translation":[12,3,3]},{"mesh":0,"translation":[3,6,3]},{"mesh":0,"translation":[9,6,3]},{"mesh":0,"translation":[0,9,3]},{"mesh":0,"translation":[6,9,3]},{"mesh":0,"translation":[12,9,3]},{"mesh":0,"translation":[3,12,3]},{"mesh":0,"translation":[9,12,3]},{"mesh":0,"translation":[3,0,6]},{"mesh":0,"translation":[9,0,6]},{"mesh":0,"translation":[0,3,6]},{"mesh":0,"translation":[6,3,6]},{"mesh":0,"translation":[12,3,6]},{"mesh":0,"translation":[3,6,6]},{"mesh":0,"translation":[9,6,6]},{"mesh":0,"translation":[0,9,6]},{"mesh":0,"translation":[6,9,6]},{"mesh":0,"translation":[12,9,6]},{"mesh":0,"translation":[3,12,6]},{"mesh":0,"translation":[9,12,6]},{"mesh":0,"translation":[3,0,9]},{"mesh":0,"translation":[9,0,9]},{"mesh":0,"translation":[0,3,9]},{"mesh":0,"translation":[6,3,9]},{"mesh":0,"translation":[12,3,9]},{"mesh":0,"translation":[3,6,9]},{"mesh":0,"translation":[9,6,9]},{"mesh":0,"translation":[0,9,9]},{"mesh":0,"translation":[6,9,9]},{"mesh":0,"translation":[12,9,9]},{"mesh":0,"translation":[3,12,9]},{"mesh":0,"translation":[9,12,9]},{"mesh":0,"translation":[3,0,12]},{"mesh":0,"translation":[9,0,12]},{"mesh":0,"translation":[0,3,12]},{"mesh":0,"translation":[6,3,12]},{"mesh":0,"translation":[12,3,12]},{"mesh":0,"translation":[3,6,12]},{"mesh":0,"translation":[9,6,12]},{"mesh":0,"translation":[0,9,12]},{"mesh":0,"translation":[6,9,12]},{"mesh":0,"translation":[12,9,12]},{"mesh":0,"translation":[3,12,12]},{"mesh":0,"translation":[9,12,12]},{"mesh":0,"translation":[3,0,15]},{"mesh":0,"translation":[9,0,15]},{"mesh":0,"translation":[0,3,15]},{"mesh":0,"translation":[6,3,15]},{"mesh":0,"translation":[12,3,15]},{"mesh":0,"translation":[3,6,15]},{"mesh":0,"translation":[9,6,15]},{"mesh":0,"translation":[0,9,15]},{"mesh":0,"translation":[6,9,15]},{"mesh":0,"translation":[12,9,15]},{"mesh":0,"translation":[3,12,15]},{"mesh":0,"translation":[9,12,15]},{"mesh":0,"translation":[3,0,18]},{"mesh":0,"translation":[9,0,18]},{"mesh":0,"translation":[0,3,18]},{"mesh":0,"translation":[6,3,18]},{"mesh":0,"translation":[12,3,18]},{"mesh":0,"translation":[3,6,18]},{"mesh":0,"translation":[9,6,18]},{"mesh":0,"translation":[0,9,18]},{"mesh":0,"translation":[6,9,18]},{"mesh":0,"translation":[12,9,18]},{"mesh":0,"translation":[3,12,18]},{"mesh":0,"translation":[9,12,18]},{"mesh":0,"translation":[3,0,21]},{"mesh":0,"translation":[9,0,21]},{"mesh":0,"translation":[0,3,21]},{"mesh":0,"translation":[6,3,21]},{"mesh":0,"translation":[12,3,21]},{"mesh":0,"translation":[3,6,21]},{"mesh":0,"translation":[9,6,21]},{"mesh":0,"translation":[0,9,21]},{"mesh":0,"translation":[6,9,21]},{"mesh":0,"translation":[12,9,21]},{"mesh":0,"translation":[3,12,21]},{"mesh":0,"translation":[9,12,21]},{"mesh":0,"translation":[3,0,24]},{"mesh":0,"translation":[9,0,24]},{"mesh":0,"translation":[0,3,24]},{"mesh":0,"translation":[6,3,24]},{"mesh":0,"translation":[12,3,24]},{"mesh":0,"translation":[3,6,24]},{"mesh":0,"translation":[9,6,24]},{"mesh":0,"translation":[0,9,24]},{"mesh":0,"translation":[6,9,24]},{"mesh":0,"translation":[12,9,24]},{"mesh":0,"translation":[3,12,24]},{"mesh":0,"translation":[9,12,24]},{"mesh":0,"translation":[3,0,27]},{"mesh":0,"translation":[9,0,27]},{"mesh":0,"translation":[0,3,27]},{"mesh":0,"translation":[6,3,27]},{"mesh":0,"translation":[12,3,27]},{"mesh":0,"translation":[3,6,27]},{"mesh":0,"translation":[9,6,27]},{"mesh":0,"translation":[0,9,27]},{"mesh":0,"translation":[6,9,27]},{"mesh":0,"translation":[12,9,27]},{"mesh":0,"translation":[3,12,27]},{"mesh":0,"translation":[9,12,27]},{"mesh":0,"translation":[0,3,30]},{"mesh":0,"translation":[0,9,30]},{"mesh":0,"translation":[6,3,30]},{"mesh":0,"translation":[6,9,30]},{"mesh":0,"translation":[12,3,30]},{"mesh":0,"translation":[12,9,30]},{"mesh":1,"translation":[0,0,0]},{"mesh":2,"translation":[0,0,0]}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121]}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":9,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0,0.400000005960464],"min":[-0.400000005960464,0,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0.400000005960464,0],"min":[-0.400000005960464,-0.400000005960464,0],"name":"circle_loop","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":9,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0,0.400000005960464],"min":[-0.400000005960464,0,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":9,"max":[0.400000005960464,0.400000005960464,0],"min":[-0.400000005960464,-0.400000005960464,0],"name":"circle_loop","type":"VEC3"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":8192,"max":[20.9442710876465,20.9442710876465,39.8058090209961],"min":[-8.9442720413208,-8.9442720413208,-9.80580711364746],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":1336,"max":[20.9442710876465,3,39.8058090209961],"min":[-8.9442720413208,-7,-9.80580711364746],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":1,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":2,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":3,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":4,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":5,"byteLength":108,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":6,"byteLength":98304,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":7,"byteLength":16032,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAMPQkD7D0JA+AAAAAPIwlrLNzMw+AAAAAMPQkL7D0JA+AAAAAM3MzL7yMBazAAAAAMHQkL7E0JC+AAAAAPLkozHNzMy+AAAAAMbQkD6/0JC+AAAAAM3MzD4AAAAA"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAAAAAADNzMw+w9CQPgAAAADD0JA+zczMPgAAAADyMJayw9CQPgAAAADD0JC+8jAWswAAAADNzMy+xNCQvgAAAADB0JC+zczMvgAAAADy5KMxv9CQvgAAAADG0JA+AAAAAAAAAADNzMw+"},{"byteLength":108,"name":"circle_loop","uri":"data:application/octet-stream;base64,zczMPgAAAAAAAAAAw9CQPsPQkD4AAAAA8jCWss3MzD4AAAAAw9CQvsPQkD4AAAAAzczMvvIwFrMAAAAAwdCQvsTQkL4AAAAA8uSjMc3MzL4AAAAAxtCQPr/QkL4AAAAAzczMPgAAAAAAAAAA"},{"byteLength":98304,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAQEAAAAAAAAAAAAAAEEEAAAAAAAAAAAAAQEAAAAAAAADAQAAAQEAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAAAA6LFpwD02LUEyDxLBAAAAAAAAEEEAAAAAAADAQAAAEEEAAAAAAAAAAAAAEEEAAAAAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAAAAAAAAAAAAEEEAAEBAAADAQAAAQEAAAAAAAADAQAAAEEEAAAAAAADAQAAAQEAAAAAAAADAQAAAEEEAAAAAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAAAAAABAQQAAQEAAAAAAAADAQAAAQEAAAAAAAAAAAAAAQEAAAEBAAADAQAAAQEAAAAAAAAAAAAAAQEAAAEBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAADAQAAAQEAAAAAAAAAAAAAAQEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAADAQAAAQEAAAAAAAAAAAAAAQEAAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAAAAAAAAAAAAQEAAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAADAQAAAQEAAAAAAAADAQAAAQEAAAEBAAADAQAAAQEAAAAAAAADAQAAAQEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAADAQAAAQEAAAAAAAADAQAAAQEAAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAAAAAAAAAAAAEEEAAEBAAADAQAAAQEAAAAAAAAAAAAAAEEEAAEBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAADAQAAAQEAAAAAAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAAAAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAADAQAAAEEEAAAAAAABAQQAAEEEAAAAAAADAQAAAEEEAAAAAAADAQAAAQEAAAEBAAADAQAAAEEEAAAAAAADAQAAAQEAAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQAAAQEAAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAAAAAADAQAAAQEAAAEBAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAAAAAAAAAAAAEEEAAEBAAADAQAAAEEEAAAAAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAADAQAAAEEEAAAAAAADAQAAAEEEAAEBAAADAQAAAEEEAAAAAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAADAQAAAEEEAAAAAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAAAAAADAQAAAEEEAAEBAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQQAAQEAAAAAAAABAQQAAEEEAAAAAAABAQQAAQEAAAAAAAABAQQAAEEEAAAAAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAAAAAADAQAAAQEAAAEBAAABAQQAAQEAAAAAAAADAQAAAQEAAAEBAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQQAAQEAAAAAAAADAQAAAQEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAABAQQAAQEAAAAAAAADAQAAAQEAAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAAAAAADAQAAAQEAAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQQAAQEAAAAAAAABAQQAAQEAAAEBAAABAQQAAQEAAAAAAAABAQQAAQEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAABAQQAAQEAAAAAAAABAQQAAQEAAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAAAAAADAQAAAEEEAAEBAAABAQQAAQEAAAAAAAADAQAAAEEEAAEBAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQQAAQEAAAAAAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAAAAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAABAQQAAEEEAAAAAAABAQQAAQEAAAEBAAABAQQAAEEEAAAAAAABAQQAAQEAAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAAABAQQAAQEAAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAAAAAABAQQAAQEAAAEBAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAAAAAADAQAAAEEEAAEBAAABAQQAAEEEAAAAAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAABAQQAAEEEAAAAAAABAQQAAEEEAAEBAAABAQQAAEEEAAAAAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAABAQQAAEEEAAAAAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAAAAAABAQQAAEEEAAEBAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAEBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAAAAAAAAQEAAAEBAAADAQAAAQEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAAAAAAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAABAQAAAAAAAAEBAAABAQAAAwEAAAEBAAABAQAAAAAAAAEBAAABAQAAAAAAAAMBAAABAQAAAAAAAAEBAAABAQAAAAAAAAMBAAABAQAAAAAAAAEBAAABAQAAAAAAAAMBAAABAQAAAAAAAAEBAAABAQAAAAAAAAMBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAADAQAAAQEAAAEBAAABAQQAAQEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAADAQAAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAABAQQAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAEBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAEBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAAAAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAAAQQQAAAAAAAEBAAABAQAAAwEAAAMBAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAAAAAAQEAAAEBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAEBAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAEBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAQEAAAEBAAAAAAAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAAAAAAQEAAAEBAAAAAAAAAQEAAAMBAAAAAAAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAAAAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAADAQAAAQEAAAEBAAABAQQAAQEAAAEBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBAAAAQQQAAwEAAAEBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAQEAAAEBAAADAQAAAEEEAAEBAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAQEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAQEAAAMBAAADAQAAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAADAQAAAQEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAEBAAAAAAAAAEEEAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAQEAAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAQEAAAEBAAADAQAAAQEAAAMBAAABAQQAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAABAQQAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAADAQAAAQEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAABAQQAAQEAAAMBAAABAQQAAQEAAAEBAAABAQQAAQEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAABAQQAAQEAAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAEBAAADAQAAAEEEAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAwEAAAEBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAAAAAAAAEEEAAEBAAADAQAAAEEEAAEBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAAAAAAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAQEEAAEBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAABAQAAAwEAAAEBAAABAQAAAAAAAAMBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBAAABAQAAAwEAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAEBAAABAQQAAEEEAAEBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAABAQQAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAABAQAAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAABAQQAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAAAAAAAAEEEAAEBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAEBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAEBAAAAAAAAAQEAAAMBAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAAAAAAEEEAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBAAAAAAAAAQEAAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAAAAAAAAEEEAAEBAAAAAAAAAEEEAAMBAAAAAAAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAAAAAAAAEEEAAAAA6LFpwD02LUEyDxLBAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAADAQAAAEEEAAEBAAADAQELONkESctbAAADAQAAAEEEAAEBAAABAQQAAEEEAAEBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAADAQAAAEEEAAEBAAADAQAAAQEAAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAMBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQAAAEEEAAMBAAADAQAAAEEEAAEBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQQAAEEEAAEBAAABAQQAAQEAAAMBAAABAQQAAEEEAAEBAAABAQQAAQEAAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAEEEAAEBAAABAQQAAQEAAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBAAABAQQAAQEAAAMBAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBAAADAQAAAEEEAAMBAAABAQQAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAABAQQAAEEEAAEBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAEEEAAEBAAABAQQAAEEEAAMBAAABAQQAAEEEAAEBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAEEEAAEBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAEEEAAEBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBAAABAQQAAEEEAAMBAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQAAAQEEAAEBAAAAQQQAAQEEAAEBAAABAQAAAQEEAAEBAAAAQQQAAQEEAAEBAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAEBAAABAQAAAwEAAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAAABAQAAAQEEAAMBAAABAQAAAQEEAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAEBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAADAQAAAEEEAAAAAAADAQOtgL0GW5BzBAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAQEEAAEBAAAAQQQAAwEAAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBAAABAQAAAQEEAAMBAAAAQQQAAQEEAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAQEEAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAQEEAAEBAAABAQAAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAQEEAAEBAAAAQQQAAQEEAAMBAAAAQQQAAQEEAAEBAAAAQQQAAQEEAAMBAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAQEEAAEBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQQAAEEEAAAAAemx6QT02LUEyDxLBAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAMBAAAAQQQAAAAAAAMBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAAAAAAAAQEAAAMBAAADAQAAAQEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAEBAvFxRP9Goi8CiUbfAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAABAQQAAQEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAEBANOoyQdGoi8CiUbfAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAAAAAAQEAAAMBAAADAQAAAQEAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAADAQAAAQEAAAMBAAABAQQAAQEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAwEAAAMBAAAAQQQAAwEAAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAADAQAAAEEEAAEBAAADAQELONkESctbAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAEBAQs42QQAAwEASctbAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAAMBAAADAQAAAEEEAAMBAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAwEAAAEBA3BsTPwAAwEASctbAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAAEBA0aiLwDTqMkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAADAQAAAEEEAAEBAAADAQELONkESctbAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAMBAAABAQQAAEEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAEBAAADAQELONkESctbAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAQEEAAMBAAAAQQQAAQEEAAMBAAABAQAAAQEEAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAQEEAAEBAvFxRPzTqgkGiUbfAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAQEEAAEBANOoyQTTqgkGiUbfAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAAEBANOqCQTTqMkGiUbfAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAMBAAAAQQQAAAAAAAMBAAABAQAAAAAAAAMBAAAAQQQAAAAAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAAAAAAAAQEAAAMBAAADAQAAAQEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAADAQAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAwEAAAMBAAABAQAAAAAAAAMBAAABAQAAAAAAAABBBAABAQAAAAAAAAMBAAABAQAAAAAAAABBBAABAQAAAAAAAAMBAAABAQAAAAAAAABBBAABAQAAAAAAAAMBAAABAQAAAAAAAABBBAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAABAQQAAQEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAABAQQAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAMBAAAAQQQAAwEAAAMBAAAAQQQAAAAAAAMBAAABAQAAAAAAAABBBAAAQQQAAAAAAAMBAAABAQAAAAAAAABBBAAAQQQAAAAAAAMBAAABAQAAAAAAAABBBAAAQQQAAAAAAAMBAAABAQAAAAAAAABBBAAAQQQAAAAAAAMBAAAAQQQAAAAAAABBBAAAQQQAAAAAAAMBAAAAQQQAAAAAAABBBAAAQQQAAAAAAAMBAAAAQQQAAAAAAABBBAAAQQQAAAAAAAMBAAAAQQQAAAAAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAAAQQQAAAAAAAMBAAABAQAAAwEAAABBBAAAAAAAAQEAAAMBAAADAQAAAQEAAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAQEAAAMBAAAAAAAAAEEEAAMBAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAAAAAAQEAAAMBAAAAAAAAAQEAAABBBAAAAAAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAAAAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAADAQAAAQEAAAMBAAABAQQAAQEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAAAQQQAAwEAAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAEEEAAMBAAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAAAAAAAAQEAAABBBAADAQAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAADAQAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAAAAAAAAQEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAQEAAABBBAADAQAAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAADAQAAAQEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAAMBAAAAAAAAAEEEAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAQEAAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAABAQQAAQEAAAMBAAADAQAAAQEAAABBBAABAQQAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAABAQQAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAADAQAAAQEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAABAQQAAQEAAABBBAABAQQAAQEAAAMBAAABAQQAAQEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAABAQQAAQEAAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAQEAAAMBAAADAQAAAEEEAABBBAABAQQAAQEAAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAQEAAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAABAQQAAQEAAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAADAQAAAEEEAABBBAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAABAQQAAQEAAAMBAAADAQAAAEEEAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAwEAAAMBAAAAQQQAAwEAAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAAADAQAAAEEEAAMBAAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAAAAAAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAQEEAAMBAAADAQAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAABAQAAAwEAAAMBAAABAQAAAAAAAABBBAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAAABAQAAAwEAAABBBAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAABAQQAAEEEAAMBAAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAABAQQAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAAAQQQAAwEAAAMBAAAAQQQAAAAAAABBBAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAABAQAAAwEAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAABAQQAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAAAQQQAAwEAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAAMBAAADAQAAAEEEAAMBAAAAAAAAAEEEAAMBAAAAAAAAAQEAAABBBAAAAAAAAEEEAAMBAAAAAAAAAQEAAABBBAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAAAAAAEEEAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAAMBAAAAAAAAAQEAAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAAAAAAAAEEEAAMBAAAAAAAAAEEEAABBBAAAAAAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAAMBAAABAQQAAEEEAAMBAAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAADAQAAAEEEAAMBAAADAQAAAQEAAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAAAAAAAAEEEAABBBAADAQAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAAAAAAAAEEEAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQAAAEEEAABBBAADAQAAAEEEAAMBAAADAQAAAEEEAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAAMBAAABAQQAAQEAAABBBAABAQQAAEEEAAMBAAABAQQAAQEAAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAEEEAAMBAAABAQQAAQEAAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBAAABAQQAAQEAAABBBAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBAAADAQAAAEEEAABBBAABAQQAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAABAQQAAEEEAAMBAAADAQAAAEEEAABBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAEEEAAMBAAABAQQAAEEEAABBBAABAQQAAEEEAAMBAAABAQQAAEEEAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAEEEAAMBAAABAQQAAEEEAABBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAEEEAAMBAAABAQQAAEEEAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBAAABAQQAAEEEAABBBAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAQEEAAMBAAAAQQQAAQEEAAMBAAABAQAAAQEEAAMBAAAAQQQAAQEEAAMBAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAAMBAAABAQAAAwEAAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAAABAQAAAQEEAABBBAABAQAAAQEEAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAAABAQAAAQEEAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAAMBAAABAQAAAQEEAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAQEEAAMBAAAAQQQAAwEAAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAAMBAAABAQAAAQEEAABBBAAAQQQAAQEEAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAQEEAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAQEEAAMBAAABAQAAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAAAQQQAAQEEAAMBAAAAQQQAAQEEAABBBAAAQQQAAQEEAAMBAAAAQQQAAQEEAABBBAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAAMBAAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAQEEAAMBAAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAABBBAAAQQQAAAAAAABBBAABAQAAAAAAAABBBAAAQQQAAAAAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAAAAAAAAQEAAABBBAADAQAAAQEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAAAAAAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAADAQAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAwEAAABBBAABAQAAAAAAAABBBAABAQAAAAAAAAEBBAABAQAAAAAAAABBBAABAQAAAAAAAAEBBAABAQAAAAAAAABBBAABAQAAAAAAAAEBBAABAQAAAAAAAABBBAABAQAAAAAAAAEBBAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAAMBAWJ+nPhUMq8BAJAHAAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAADAQAAAQEAAABBBAABAQQAAQEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAADAQAAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAABAQQAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAAAQQQAAAAAAABBBAAAQQQAAwEAAABBBAAAQQQAAAAAAABBBAABAQAAAAAAAAEBBAAAQQQAAAAAAABBBAABAQAAAAAAAAEBBAAAQQQAAAAAAABBBAABAQAAAAAAAAEBBAAAQQQAAAAAAABBBAABAQAAAAAAAAEBBAAAQQQAAAAAAABBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAABBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAABBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAABBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAAAQQQAAAAAAABBBAABAQAAAwEAAAEBBAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAAMBABcM6QRUMq8BAJAHAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAAAAAAQEAAABBBAADAQAAAQEAAABBBAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAQEAAABBBAAAAAAAAEEEAABBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAAAAAAQEAAABBBAAAAAAAAQEAAAEBBAAAAAAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAAAAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAADAQAAAQEAAABBBAABAQQAAQEAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAABAQAAAwEAAABBBAAAQQQAAwEAAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAEEEAABBBAABAQAAAQEEAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAAAAAAAAQEAAAEBBAADAQAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAADAQAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAAAAAAAAQEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAQEAAAEBBAADAQAAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAADAQAAAQEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAABAQAAAQEEAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAABBBAAAAAAAAEEEAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQQAAQEAAABBBAABAQQAAEEEAABBBAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAQEAAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AABAQQAAQEAAABBBAADAQAAAQEAAAEBBAABAQQAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAABAQQAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAADAQAAAQEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAABAQQAAQEAAAEBBAABAQQAAQEAAABBBAABAQQAAQEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAABAQQAAQEAAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAABAQQAAQEAAABBBAADAQAAAEEEAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAwEAAABBBAAAQQQAAwEAAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAwEAAABBBAABAQAAAQEEAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAwEAAABBBAABAQAAAQEEAABBBAAAAAAAAEEEAABBBAADAQAAAEEEAABBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAAAAAAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAQEEAABBBAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAABAQAAAwEAAABBBAABAQAAAQEEAABBBAADAQAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAABAQAAAwEAAABBBAABAQAAAAAAAAEBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBBAABAQAAAwEAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAABAQQAAEEEAABBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAABAQQAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAABBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAABAQAAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAABAQQAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAAMBAsJhCQQAAwEBIKF/AAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAAAAAAEEEAABBBAADAQAAAEEEAABBBAAAAAAAAEEEAABBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAABBBAAAAAAAAQEAAAEBBAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAAAAAAEEEAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBAAAAAAAAQEAAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAAAAAAAAEEEAABBBAAAAAAAAEEEAAEBBAAAAAAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAwEAAAMBAICwmvgAAwEBIKF/AAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAAAAAAEEEAAMBAFQyrwAXDOkFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAABBBAABAQQAAEEEAABBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAADAQAAAEEEAABBBAADAQAAAQEAAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAAAAAAAAEEEAAEBBAADAQAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAQEEAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAAAAAAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQAAAEEEAAEBBAADAQAAAEEEAABBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAMBAAADAQLCYQkFIKF/AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQQAAEEEAABBBAABAQQAAQEAAAEBBAABAQQAAEEEAABBBAABAQQAAQEAAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAEEEAABBBAABAQQAAQEAAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBAABAQQAAQEAAAEBBAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBAADAQAAAEEEAAEBBAABAQQAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAABAQQAAEEEAABBBAADAQAAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAEEEAABBBAABAQQAAEEEAAEBBAABAQQAAEEEAABBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAEEEAABBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAEEEAABBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBAABAQQAAEEEAAEBBAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAQEEAABBBAAAQQQAAQEEAABBBAABAQAAAQEEAABBBAAAQQQAAQEEAABBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAQEEAABBBAABAQAAAwEAAAEBBAABAQAAAQEEAABBBAABAQAAAwEAAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAQEEAABBBAABAQAAAwEAAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAABBBAABAQAAAwEAAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAQEEAABBBAABAQAAAQEEAAEBBAABAQAAAQEEAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAQEEAABBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAABBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAQEEAAMBAWJ+nPgXDikFAJAHAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAQEEAABBBAAAQQQAAwEAAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBAABAQAAAQEEAAEBBAAAQQQAAQEEAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAQEEAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAQEEAABBBAABAQAAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AAAQQQAAQEEAABBBAAAQQQAAQEEAAEBBAAAQQQAAQEEAABBBAAAQQQAAQEEAAEBBAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAQEEAABBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAAAQQQAAQEEAAMBABcM6QQXDikFAJAHAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQQAAEEEAAMBABcOKQQXDOkFAJAHAAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAEBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAEBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAAAAAAAAQEAAAEBBAADAQAAAQEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAABBBsKqqvlZV1cBUVRVAAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAABAQQAAQEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAABBBVlVFQVZV1cBUVRVAAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAAAAAAQEAAAEBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AADAQAAAQEAAAEBBAABAQQAAQEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAwEAAAEBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAABBB3o1XQQAAwEAAQ2Q9AAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAAEBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAwEAAABBB9G68vwAAwEAAQ2Q9AAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAABBBVlXVwFZVRUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAAEBBAABAQQAAEEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAABBBAADAQN6NV0EAQ2Q9AADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAQEEAAEBBAAAQQQAAQEEAAEBBAABAQAAAQEEAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAQEEAABBBsKqqvlZVlUFUVRVAAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAQEEAABBBVlVFQVZVlUFUVRVAAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAABBBVlWVQVZVRUFUVRVAAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAEBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAEBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAAAAAAAAQEAAAEBBAADAQAAAQEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAwEAAAEBBAABAQAAAAAAAAEBBAABAQAAAAAAAAHBBAABAQAAAAAAAAEBBAABAQAAAAAAAAHBBAABAQAAAAAAAAEBBAABAQAAAAAAAAHBBAABAQAAAAAAAAEBBAABAQAAAAAAAAHBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAABAQQAAQEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAABAQQAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAEBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAEBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAAAQQQAAAAAAAEBBAABAQAAAwEAAAHBBAAAAAAAAQEAAAEBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAQEAAAEBBAAAAAAAAEEEAAEBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAAAAAAQEAAAEBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAAAAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAADAQAAAQEAAAEBBAABAQQAAQEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAAAQQQAAwEAAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAEEEAAEBBAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAQEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAQEAAAHBBAADAQAAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAADAQAAAQEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAEBBAAAAAAAAEEEAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAABAQQAAQEAAAEBBAADAQAAAQEAAAHBBAABAQQAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAABAQQAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAADAQAAAQEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAQEAAAHBBAABAQQAAQEAAAEBBAABAQQAAQEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAABAQQAAQEAAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAEBBAADAQAAAEEEAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAwEAAAEBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBAADAQAAAEEEAAEBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAAAAAAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAQEEAAEBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAABAQAAAwEAAAEBBAABAQAAAAAAAAHBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBAABAQAAAwEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAABAQQAAEEEAAEBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAABAQQAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAwEAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAABAQQAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAAAQQQAAwEAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAAEBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAEBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAEBBAAAAAAAAQEAAAHBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAAAAAAEEEAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAEBBAAAAAAAAQEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAAAAAAAAEEEAAEBBAAAAAAAAEEEAAHBBAAAAAAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAAEBBAABAQQAAEEEAAEBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAADAQAAAEEEAAEBBAADAQAAAQEAAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAHBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQAAAEEEAAHBBAADAQAAAEEEAAEBBAADAQAAAEEEAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAAEBBAABAQQAAQEAAAHBBAABAQQAAEEEAAEBBAABAQQAAQEAAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAEEEAAEBBAABAQQAAQEAAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBBAABAQQAAQEAAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBBAADAQAAAEEEAAHBBAABAQQAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAABAQQAAEEEAAEBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAEEEAAEBBAABAQQAAEEEAAHBBAABAQQAAEEEAAEBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAEEEAAEBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAEEEAAEBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBBAABAQQAAEEEAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAQEEAAEBBAAAQQQAAQEEAAEBBAABAQAAAQEEAAEBBAAAQQQAAQEEAAEBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAEBBAABAQAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBAABAQAAAQEEAAHBBAABAQAAAQEEAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAEBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAQEEAAEBBAAAQQQAAwEAAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAEBBAABAQAAAQEEAAHBBAAAQQQAAQEEAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAQEEAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAQEEAAEBBAABAQAAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAAAQQQAAQEEAAEBBAAAQQQAAQEEAAHBBAAAQQQAAQEEAAEBBAAAQQQAAQEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAEBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAQEEAAEBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAHBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAAAAAAAAQEAAAHBBAADAQAAAQEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAwEAAAHBBAABAQAAAAAAAAHBBAABAQAAAAAAAAJBBAABAQAAAAAAAAHBBAABAQAAAAAAAAJBBAABAQAAAAAAAAHBBAABAQAAAAAAAAJBBAABAQAAAAAAAAHBBAABAQAAAAAAAAJBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAEBBzI6Kv7OjAsFNXP1AAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAADAQAAAQEAAAHBBAABAQQAAQEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAADAQAAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAABAQQAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAHBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAAAQQQAAAAAAAHBBAABAQAAAwEAAAJBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAEBB2lFRQbOjAsFNXP1AAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAAAAAAQEAAAHBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAQEAAAHBBAAAAAAAAEEEAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAADAQAAAQEAAAHBBAABAQQAAQEAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAABAQAAAwEAAAHBBAAAQQQAAwEAAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAEEEAAHBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAQEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAQEAAAJBBAADAQAAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAADAQAAAQEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAHBBAAAAAAAAEEEAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAQEAAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAABAQQAAQEAAAHBBAADAQAAAQEAAAJBBAABAQQAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAABAQQAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAADAQAAAQEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAABAQQAAQEAAAJBBAABAQQAAQEAAAHBBAABAQQAAQEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAABAQQAAQEAAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAHBBAADAQAAAEEEAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAwEAAAHBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBAADAQAAAEEEAAHBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAABAQAAAwEAAAHBBAABAQAAAQEEAAHBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAABAQAAAwEAAAHBBAABAQAAAAAAAAJBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAABAQAAAwEAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAABAQQAAEEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAABAQQAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAABAQAAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAABAQQAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAEBBjJGAQQAAwEDPuZ1AAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAAAAAAEEEAAHBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAHBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAHBBAAAAAAAAQEAAAJBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAAAAAAEEEAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBAAAAAAAAQEAAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAAAAAAAAEEEAAHBBAAAAAAAAEEEAAJBBAAAAAAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAwEAAAEBBMUaCwAAAwEDPuZ1AAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAAAAAAEEEAAEBBs6MCwdpRUUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAHBBAABAQQAAEEEAAHBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAADAQAAAEEEAAHBBAADAQAAAQEAAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAJBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAEEEAAJBBAADAQAAAEEEAAHBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAEBBAADAQIyRgEHPuZ1AAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQQAAEEEAAHBBAABAQQAAQEAAAJBBAABAQQAAEEEAAHBBAABAQQAAQEAAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAEEEAAHBBAABAQQAAQEAAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBBAABAQQAAQEAAAJBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBBAADAQAAAEEEAAJBBAABAQQAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAABAQQAAEEEAAHBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAEEEAAHBBAABAQQAAEEEAAJBBAABAQQAAEEEAAHBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAEEEAAHBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAEEEAAHBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBBAABAQQAAEEEAAJBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAQEEAAHBBAAAQQQAAQEEAAHBBAABAQAAAQEEAAHBBAAAQQQAAQEEAAHBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAHBBAABAQAAAwEAAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAQEEAAHBBAABAQAAAQEEAAJBBAABAQAAAQEEAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAQEEAAHBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAHBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAQEEAAEBBzI6Kv9pRoUFNXP1AAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAQEEAAHBBAAAQQQAAwEAAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBBAABAQAAAQEEAAJBBAAAQQQAAQEEAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAQEEAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAQEEAAHBBAABAQAAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAAAQQQAAQEEAAHBBAAAQQQAAQEEAAJBBAAAQQQAAQEEAAHBBAAAQQQAAQEEAAJBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAQEEAAHBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAAAQQQAAQEEAAEBB2lFRQdpRoUFNXP1AAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQQAAEEEAAEBB2lGhQdpRUUFNXP1AAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAJBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAAAAAAAAQEAAAJBBAADAQAAAQEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAHBB9G68v70bD8EAAHBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAABAQQAAQEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAHBB3o1XQb0bD8EAAHBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAAAAAAQEAAAJBBAADAQAAAQEAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAADAQAAAQEAAAJBBAABAQQAAQEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAwEAAAJBBAAAQQQAAwEAAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAHBBAACYQQAAwEAAAHBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAJBBAADAQAAAEEEAAJBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAwEAAAHBBAADgwAAAwEAAAHBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAHBBvRsPwd6NV0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAJBBAABAQQAAEEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAHBBAADAQAAAmEEAAHBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAQEEAAJBBAAAQQQAAQEEAAJBBAABAQAAAQEEAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAQEEAAHBB9G68v96Np0EAAHBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAQEEAAHBB3o1XQd6Np0EAAHBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAHBB3o2nQd6NV0EAAHBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAJBBAABAQAAAAAAAAJBBAAAQQQAAAAAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAAAAAAAAQEAAAJBBAADAQAAAQEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAADAQAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAwEAAAJBBAABAQAAAAAAAAJBBAABAQAAAAAAAAKhBAABAQAAAAAAAAJBBAABAQAAAAAAAAKhBAABAQAAAAAAAAJBBAABAQAAAAAAAAKhBAABAQAAAAAAAAJBBAABAQAAAAAAAAKhBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAABAQQAAQEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAABAQQAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAJBBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAJBBAABAQAAAAAAAAKhBAAAQQQAAAAAAAJBBAABAQAAAAAAAAKhBAAAQQQAAAAAAAJBBAABAQAAAAAAAAKhBAAAQQQAAAAAAAJBBAABAQAAAAAAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAAAQQQAAAAAAAJBBAABAQAAAwEAAAKhBAAAAAAAAQEAAAJBBAADAQAAAQEAAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAQEAAAJBBAAAAAAAAEEEAAJBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAKhBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAADAQAAAQEAAAJBBAABAQQAAQEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAAAQQQAAwEAAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAEEEAAJBBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAQEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAADAQAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAQEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAQEAAAKhBAADAQAAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAADAQAAAQEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAJBBAAAAAAAAEEEAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAQEAAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAABAQQAAQEAAAJBBAADAQAAAQEAAAKhBAABAQQAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAABAQQAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAADAQAAAQEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAABAQQAAQEAAAKhBAABAQQAAQEAAAJBBAABAQQAAQEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAABAQQAAQEAAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAABAQQAAQEAAAJBBAADAQAAAEEEAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAwEAAAJBBAAAQQQAAwEAAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBAADAQAAAEEEAAJBBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAAAAAAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAQEEAAJBBAADAQAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAABAQAAAwEAAAJBBAABAQAAAAAAAAKhBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBAABAQAAAwEAAAKhBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAABAQQAAEEEAAJBBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAABAQQAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAABAQAAAwEAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAABAQQAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAAAQQQAAwEAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAJBBAADAQAAAEEEAAJBBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAKhBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAJBBAAAAAAAAQEAAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAAAAAAAAEEEAAJBBAAAAAAAAEEEAAKhBAAAAAAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAJBBAABAQQAAEEEAAJBBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAADAQAAAEEEAAJBBAADAQAAAQEAAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAAAAAAAAEEEAAKhBAADAQAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAAAAAAAAEEEAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQAAAEEEAAKhBAADAQAAAEEEAAJBBAADAQAAAEEEAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAJBBAABAQQAAQEAAAKhBAABAQQAAEEEAAJBBAABAQQAAQEAAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAEEEAAJBBAABAQQAAQEAAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBBAABAQQAAQEAAAKhBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBBAADAQAAAEEEAAKhBAABAQQAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAABAQQAAEEEAAJBBAADAQAAAEEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAEEEAAJBBAABAQQAAEEEAAKhBAABAQQAAEEEAAJBBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAEEEAAJBBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAEEEAAJBBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBBAABAQQAAEEEAAKhBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAQEEAAJBBAAAQQQAAQEEAAJBBAABAQAAAQEEAAJBBAAAQQQAAQEEAAJBBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAJBBAABAQAAAwEAAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBAABAQAAAQEEAAKhBAABAQAAAQEEAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAJBBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAQEEAAJBBAAAQQQAAwEAAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAJBBAABAQAAAQEEAAKhBAAAQQQAAQEEAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAQEEAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAQEEAAJBBAABAQAAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAAAQQQAAQEEAAJBBAAAQQQAAQEEAAKhBAAAQQQAAQEEAAJBBAAAQQQAAQEEAAKhBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAJBBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAQEEAAJBBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAKhBAAAQQQAAAAAAAKhBAABAQAAAAAAAAKhBAAAQQQAAAAAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAAAAAAAAQEAAAKhBAADAQAAAQEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAAAAAAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAADAQAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAwEAAAKhBAABAQAAAAAAAAKhBAABAQAAAAAAAAMBBAABAQAAAAAAAAKhBAABAQAAAAAAAAMBBAABAQAAAAAAAAKhBAABAQAAAAAAAAMBBAABAQAAAAAAAAKhBAABAQAAAAAAAAMBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAJBBzI6Kv7OjAsHtqLBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAADAQAAAQEAAAKhBAABAQQAAQEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAADAQAAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAABAQQAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAKhBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAKhBAABAQAAAAAAAAMBBAAAQQQAAAAAAAKhBAABAQAAAAAAAAMBBAAAQQQAAAAAAAKhBAABAQAAAAAAAAMBBAAAQQQAAAAAAAKhBAABAQAAAAAAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAAAQQQAAAAAAAKhBAABAQAAAwEAAAMBBAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAJBB2lFRQbOjAsHtqLBBAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAAAAAAQEAAAKhBAADAQAAAQEAAAKhBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAQEAAAKhBAAAAAAAAEEEAAKhBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAAAAAAQEAAAKhBAAAAAAAAQEAAAMBBAAAAAAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAAAAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAADAQAAAQEAAAKhBAABAQQAAQEAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAABAQAAAwEAAAKhBAAAQQQAAwEAAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAEEEAAKhBAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAQEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAADAQAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAQEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAQEAAAMBBAADAQAAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAADAQAAAQEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAKhBAAAAAAAAEEEAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAQEAAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAABAQQAAQEAAAKhBAADAQAAAQEAAAMBBAABAQQAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAABAQQAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAADAQAAAQEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAABAQQAAQEAAAMBBAABAQQAAQEAAAKhBAABAQQAAQEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAABAQQAAQEAAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAABAQQAAQEAAAKhBAADAQAAAEEEAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAwEAAAKhBAAAQQQAAwEAAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBAADAQAAAEEEAAKhBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAABAQAAAwEAAAKhBAABAQAAAQEEAAKhBAADAQAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAABAQAAAwEAAAKhBAABAQAAAAAAAAMBBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhBAABAQAAAwEAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAABAQQAAEEEAAKhBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAABAQQAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAABAQAAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAABAQQAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAJBBjJGAQQAAwECMkchBAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAAAAAAEEEAAKhBAADAQAAAEEEAAKhBAAAAAAAAEEEAAKhBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAKhBAAAAAAAAQEAAAMBBAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAAAAAAEEEAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBAAAAAAAAQEAAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAAAAAAAAEEEAAKhBAAAAAAAAEEEAAMBBAAAAAAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAwEAAAJBBMUaCwAAAwECMkchBAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAAAAAAEEEAAJBBs6MCwdpRUUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAKhBAABAQQAAEEEAAKhBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAADAQAAAEEEAAKhBAADAQAAAQEAAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAAAAAAAAEEEAAMBBAADAQAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAAAAAAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQAAAEEEAAMBBAADAQAAAEEEAAKhBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAJBBAADAQIyRgEGMkchBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQQAAEEEAAKhBAABAQQAAQEAAAMBBAABAQQAAEEEAAKhBAABAQQAAQEAAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAEEEAAKhBAABAQQAAQEAAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBAABAQQAAQEAAAMBBAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBAADAQAAAEEEAAMBBAABAQQAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAABAQQAAEEEAAKhBAADAQAAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAEEEAAKhBAABAQQAAEEEAAMBBAABAQQAAEEEAAKhBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAEEEAAKhBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAEEEAAKhBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBAABAQQAAEEEAAMBBAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAQEEAAKhBAAAQQQAAQEEAAKhBAABAQAAAQEEAAKhBAAAQQQAAQEEAAKhBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAKhBAABAQAAAwEAAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAQEEAAKhBAABAQAAAQEEAAMBBAABAQAAAQEEAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAQEEAAKhBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAKhBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAQEEAAJBBzI6Kv9pRoUHtqLBBAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAQEEAAKhBAAAQQQAAwEAAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBAABAQAAAQEEAAMBBAAAQQQAAQEEAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAQEEAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAQEEAAKhBAABAQAAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAAAQQQAAQEEAAKhBAAAQQQAAQEEAAMBBAAAQQQAAQEEAAKhBAAAQQQAAQEEAAMBBAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAQEEAAKhBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAAAQQQAAQEEAAJBB2lFRQdpRoUHtqLBBAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQQAAEEEAAJBB2lGhQdpRUUHtqLBBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAMBBAAAQQQAAAAAAAMBBAABAQAAAAAAAAMBBAAAQQQAAAAAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAAAAAAAAQEAAAMBBAADAQAAAQEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAKhBsKqqvlZV1cBWVd1BAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAABAQQAAQEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAKhBVlVFQVZV1cBWVd1BAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAAAAAAQEAAAMBBAADAQAAAQEAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAADAQAAAQEAAAMBBAABAQQAAQEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAwEAAAMBBAAAQQQAAwEAAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAKhB3o1XQQAAwEDeje9BAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAAMBBAADAQAAAEEEAAMBBAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAwEAAAKhB9G68vwAAwEDeje9BAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAAKhBVlXVwFZVRUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAMBBAABAQQAAEEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAKhBAADAQN6NV0Heje9BAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAQEEAAMBBAAAQQQAAQEEAAMBBAABAQAAAQEEAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAQEEAAKhBsKqqvlZVlUFWVd1BAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAQEEAAKhBVlVFQVZVlUFWVd1BAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQQAAEEEAAKhBVlWVQVZVRUFWVd1BAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAMBBAAAQQQAAAAAAAMBBAABAQAAAAAAAAMBBAAAQQQAAAAAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAAAAAAAAQEAAAMBBAADAQAAAQEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAADAQAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAwEAAAMBBAABAQAAAAAAAAMBBAABAQAAAAAAAANhBAABAQAAAAAAAAMBBAABAQAAAAAAAANhBAABAQAAAAAAAAMBBAABAQAAAAAAAANhBAABAQAAAAAAAAMBBAABAQAAAAAAAANhBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAABAQQAAQEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAABAQQAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAMBBAAAQQQAAwEAAAMBBAAAQQQAAAAAAAMBBAABAQAAAAAAAANhBAAAQQQAAAAAAAMBBAABAQAAAAAAAANhBAAAQQQAAAAAAAMBBAABAQAAAAAAAANhBAAAQQQAAAAAAAMBBAABAQAAAAAAAANhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAANhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAANhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAANhBAAAQQQAAAAAAAMBBAAAQQQAAAAAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAAAQQQAAAAAAAMBBAABAQAAAwEAAANhBAAAAAAAAQEAAAMBBAADAQAAAQEAAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAQEAAAMBBAAAAAAAAEEEAAMBBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAAAAAAQEAAAMBBAAAAAAAAQEAAANhBAAAAAAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAAAAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAADAQAAAQEAAAMBBAABAQQAAQEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAAAQQQAAwEAAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAEEEAAMBBAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAAAAAAAAQEAAANhBAADAQAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAADAQAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAAAAAAAAQEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAQEAAANhBAADAQAAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAADAQAAAQEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAAMBBAAAAAAAAEEEAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAQEAAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAABAQQAAQEAAAMBBAADAQAAAQEAAANhBAABAQQAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAABAQQAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAADAQAAAQEAAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAABAQQAAQEAAANhBAABAQQAAQEAAAMBBAABAQQAAQEAAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAABAQQAAQEAAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAABAQQAAQEAAAMBBAADAQAAAEEEAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAwEAAAMBBAAAQQQAAwEAAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBAADAQAAAEEEAAMBBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAAAAAAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAQEEAAMBBAADAQAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAABAQAAAwEAAAMBBAABAQAAAAAAAANhBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBAABAQAAAwEAAANhBAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAABAQQAAEEEAAMBBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAABAQQAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAwEAAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAAAQQQAAwEAAAMBBAAAQQQAAAAAAANhBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAABAQAAAwEAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAABAQQAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAAAQQQAAwEAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAwEAAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAAMBBAADAQAAAEEEAAMBBAAAAAAAAEEEAAMBBAAAAAAAAQEAAANhBAAAAAAAAEEEAAMBBAAAAAAAAQEAAANhBAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAAAAAAEEEAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAAMBBAAAAAAAAQEAAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAAAAAAAAEEEAAMBBAAAAAAAAEEEAANhBAAAAAAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAAMBBAABAQQAAEEEAAMBBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAADAQAAAEEEAAMBBAADAQAAAQEAAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAAAAAAAAEEEAANhBAADAQAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAAAAAAAAEEEAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQAAAEEEAANhBAADAQAAAEEEAAMBBAADAQAAAEEEAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQQAAEEEAAMBBAABAQQAAQEAAANhBAABAQQAAEEEAAMBBAABAQQAAQEAAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAEEEAAMBBAABAQQAAQEAAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBAABAQQAAQEAAANhBAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBAADAQAAAEEEAANhBAABAQQAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAABAQQAAEEEAAMBBAADAQAAAEEEAANhBAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAABAQQAAEEEAAMBBAABAQQAAEEEAANhBAABAQQAAEEEAAMBBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAEEEAAMBBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAABAQQAAEEEAAMBBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBAABAQQAAEEEAANhBAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAQEEAAMBBAAAQQQAAQEEAAMBBAABAQAAAQEEAAMBBAAAQQQAAQEEAAMBBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAAMBBAABAQAAAwEAAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBAABAQAAAQEEAANhBAABAQAAAQEEAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBAABAQAAAQEEAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAAMBBAABAQAAAQEEAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAAMBBAAAQQQAAwEAAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAAMBBAABAQAAAQEEAANhBAAAQQQAAQEEAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAQEEAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAAMBBAABAQAAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAAAQQQAAQEEAAMBBAAAQQQAAQEEAANhBAAAQQQAAQEEAAMBBAAAQQQAAQEEAANhBAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAAMBBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAAMBBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBAAAQQQAAAAAAANhBAABAQAAAAAAAANhBAAAQQQAAAAAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAAAAAAAAQEAAANhBAADAQAAAQEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAAAAAAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAADAQAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAABAQAAAAAAAANhBAABAQAAAwEAAANhBAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAAMBBWJ+nPhUMq8BEEgBCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAADAQAAAQEAAANhBAABAQQAAQEAAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAADAQAAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAAAAAANhBAAAQQQAAwEAAANhBAABAQQAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAAMBBBcM6QRUMq8BEEgBCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAAAAAAQEAAANhBAADAQAAAQEAAANhBAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAQEAAANhBAAAAAAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAAAAAAQEAAANhBAAAAAAAAQEAAAPBBAAAAAAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAAAAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAADAQAAAQEAAANhBAABAQQAAQEAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhBAAAQQQAAwEAAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAQEAAANhBAADAQAAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAADAQAAAQEAAANhBAADAQAAAEEEAANhBAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAQEAAANhBAAAAAAAAQEAAAPBBAADAQAAAQEAAANhBAAAAAAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAADAQAAAQEAAANhBAAAAAAAAEEEAAPBBAADAQAAAQEAAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAADAQAAAQEAAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAQEAAANhBAAAAAAAAEEEAAPBBAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAQEAAANhBAADAQAAAQEAAAPBBAADAQAAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAADAQAAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAABAQQAAQEAAANhBAABAQQAAEEEAANhBAABAQQAAQEAAANhBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAQEAAANhBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAQEAAANhBAABAQQAAEEEAANhBAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAQEAAANhBAADAQAAAQEAAAPBBAABAQQAAQEAAANhBAADAQAAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAQEAAANhBAADAQAAAEEEAAPBBAABAQQAAQEAAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAQEAAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAQEAAANhBAADAQAAAEEEAAPBBAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAQEAAANhBAABAQQAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAwEAAANhBAAAQQQAAwEAAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAwEAAANhBAABAQAAAQEEAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAANhBAABAQAAAQEEAANhBAAAAAAAAEEEAANhBAADAQAAAEEEAANhBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAAAAAAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhBAABAQAAAQEEAANhBAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAABAQAAAwEAAANhBAABAQAAAQEEAANhBAADAQAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAABAQQAAEEEAANhBAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAwEAAANhBAAAQQQAAQEEAANhBAABAQQAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAAMBBsJhCQQAAwECE8gVCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAAAAAAAAEEEAANhBAADAQAAAEEEAANhBAAAAAAAAEEEAANhBAAAAAAAAQEAAAPBBAAAAAAAAEEEAANhBAAAAAAAAQEAAAPBBAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAAAAAAEEEAANhBAAAAAAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhBAAAAAAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAAAAAANhBvFxRP9Goi8A06g5CAAAAAAAAEEEAANhBAAAAAAAAEEEAAPBBAAAAAAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAwEAAAMBBICwmvgAAwECE8gVCAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAAAAAAAAEEEAAMBBFQyrwAXDOkFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAANhBAABAQQAAEEEAANhBAADAQAAAEEEAANhBAAAAAAAAEEEAAPBBAADAQAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAADAQAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAEEEAANhBAAAAAAAAEEEAAPBBAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAEEEAANhBAADAQAAAQEAAAPBBAADAQAAAEEEAANhBAADAQAAAQEAAAPBBAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAADAQAAAEEEAANhBAADAQAAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQAAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAAAAAANhBNOoyQdGoi8A06g5CAADAQAAAEEEAANhBAADAQAAAEEEAAPBBAADAQAAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAMBBAADAQLCYQkGE8gVCAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAABAQQAAEEEAANhBAADAQAAAEEEAAPBBAABAQQAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAABAQQAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAANhBAADAQAAAEEEAAPBBAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAANhBAABAQQAAQEAAAPBBAABAQQAAEEEAANhBAABAQQAAEEEAAPBBAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAABAQAAAQEEAANhBAAAQQQAAQEEAANhBAABAQAAAQEEAANhBAAAQQQAAQEEAANhBAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAABAQAAAQEEAAMBBWJ+nPgXDikFEEgBCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAEEEAANhBAADAQELONkFCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAABAQAAAQEEAANhBvFxRPzTqgkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAQQQAAQEEAAMBBBcM6QQXDikFEEgBCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAABAQQAAEEEAAMBBBcOKQQXDOkFEEgBCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAADAQAAAEEEAANhBAADAQELONkFCzhJCAAAQQQAAQEEAANhBNOoyQTTqgkE06g5CAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAAAAAAAAQEAAAPBBAAAAAAAAEEEAAPBBAAAAAAAAQEAAAPBBAAAAAAAAEEEAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAQEAAAPBBAADAQAAAQEAAAPBBAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAAAAAAAAEEEAAPBBAADAQAAAEEEAAPBBAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAABAQAAAwEAAANhB3BsTPwAAwEBCzhJCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAAAAAAAAEEEAANhB0aiLwDTqMkE06g5CAAAAAAAAEEEAAPBB6LFpwD02LUHMgxxCAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAQEAAAPBBAADAQAAAEEEAAPBBAADAQAAAQEAAAPBBAADAQAAAEEEAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAQEAAAPBBAABAQQAAQEAAAPBBAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAADAQAAAEEEAAPBBAABAQQAAEEEAAPBBAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAAAQQQAAwEAAANhBQs42QQAAwEBCzhJCAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAADAQAAAEEEAANhBAADAQELONkFCzhJCAADAQAAAEEEAAPBBAADAQOtgL0EmOR9CAABAQQAAEEEAANhBNOqCQTTqMkE06g5CAABAQQAAQEAAAPBBAABAQQAAEEEAAPBBAABAQQAAEEEAAPBBemx6QT02LUHMgxxCAABAQQAAEEEAAPBBemx6QT02LUHMgxxCAABAQQAAEEEAANhBNOqCQTTqMkE06g5C"},{"byteLength":16032,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAQEAAAAAA6LFpwBhOlj8yDxLBAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAAAAAAAAQEAAAAAA6LFpwBhOlj8yDxLBAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAAAAAADAQKr4hD+W5BzBAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAAAAemx6QRhOlj8yDxLBAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAAEBA0aiLwLxcUT+iUbfAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAEBAAADAQNwbEz8SctbAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAABAQQAAQEAAAEBANOqCQbxcUT+iUbfAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAAMBAFQyrwFifpz5AJAHAAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAMBAAADAQCAsJr5IKF/AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAMBABcOKQVifpz5AJAHAAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAABBBVlXVwLCqqr5UVRVAAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAABBBAADAQPRuvL8AQ2Q9AADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAABAQQAAQEAAABBBVlWVQbCqqr5UVRVAAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAEBBs6MCwcyOir9NXP1AAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAEBBAADAQDFGgsDPuZ1AAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAEBB2lGhQcyOir9NXP1AAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAHBBvRsPwfRuvL8AAHBBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAHBBAADAQAAA4MAAAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAABAQQAAQEAAAHBB3o2nQfRuvL8AAHBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAJBBs6MCwcyOir/tqLBBAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAJBBAADAQDFGgsCMkchBAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAJBB2lGhQcyOir/tqLBBAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAAKhBVlXVwLCqqr5WVd1BAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAKhBAADAQPRuvL/eje9BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAABAQQAAQEAAAKhBVlWVQbCqqr5WVd1BAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAAMBBFQyrwFifpz5EEgBCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAMBBAADAQCAsJr6E8gVCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAABAQQAAQEAAAMBBBcOKQVifpz5EEgBCAABAQQAAQEAAANhBNOqCQbxcUT806g5CAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAANhB0aiLwLxcUT806g5CAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAAAAAAAAQEAAAPBB6LFpwBhOlj/MgxxCAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAANhBAADAQNwbEz9CzhJCAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAADAQAAAQEAAAPBBAADAQKr4hD8mOR9CAABAQQAAQEAAANhBNOqCQbxcUT806g5CAABAQQAAQEAAAPBBemx6QRhOlj/MgxxCAABAQQAAQEAAAPBBemx6QRhOlj/MgxxCAABAQQAAQEAAANhBNOqCQbxcUT806g5C"}],"materials":[{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0.5,0.5,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0},"material":0,"mode":6},{"attributes":{"POSITION":1},"material":0,"mode":6},{"attributes":{"POSITION":2},"material":0,"mode":6}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":6},{"attributes":{"POSITION":4},"material":1,"mode":6},{"attributes":{"POSITION":5},"material":1,"mode":6}]},{"primitives":[{"attributes":{"POSITION":6},"material":2,"mode":1}]},{"primitives":[{"attributes":{"POSITION":7},"material":3,"mode":1}]}],"nodes":[{"mesh":0,"translation":[0,3,0]},{"mesh":1,"translation":[0,9,0]},{"mesh":0,"translation":[6,3,0]},{"mesh":1,"translation":[6,9,0]},{"mesh":0,"translation":[12,3,0]},{"mesh":1,"translation":[12,9,0]},{"mesh":1,"translation":[3,0,3]},{"mesh":1,"translation":[9,0,3]},{"mesh":0,"translation":[0,3,3]},{"mesh":0,"translation":[6,3,3]},{"mesh":0,"translation":[12,3,3]},{"mesh":1,"translation":[3,6,3]},{"mesh":1,"translation":[9,6,3]},{"mesh":1,"translation":[0,9,3]},{"mesh":1,"translation":[6,9,3]},{"mesh":1,"translation":[12,9,3]},{"mesh":1,"translation":[3,12,3]},{"mesh":1,"translation":[9,12,3]},{"mesh":1,"translation":[3,0,6]},{"mesh":1,"translation":[9,0,6]},{"mesh":0,"translation":[0,3,6]},{"mesh":0,"translation":[6,3,6]},{"mesh":0,"translation":[12,3,6]},{"mesh":1,"translation":[3,6,6]},{"mesh":1,"translation":[9,6,6]},{"mesh":1,"translation":[0,9,6]},{"mesh":1,"translation":[6,9,6]},{"mesh":1,"translation":[12,9,6]},{"mesh":1,"translation":[3,12,6]},{"mesh":1,"translation":[9,12,6]},{"mesh":1,"translation":[3,0,9]},{"mesh":1,"translation":[9,0,9]},{"mesh":0,"translation":[0,3,9]},{"mesh":0,"translation":[6,3,9]},{"mesh":0,"translation":[12,3,9]},{"mesh":1,"translation":[3,6,9]},{"mesh":1,"translation":[9,6,9]},{"mesh":1,"translation":[0,9,9]},{"mesh":1,"translation":[6,9,9]},{"mesh":1,"translation":[12,9,9]},{"mesh":1,"translation":[3,12,9]},{"mesh":1,"translation":[9,12,9]},{"mesh":1,"translation":[3,0,12]},{"mesh":1,"translation":[9,0,12]},{"mesh":0,"translation":[0,3,12]},{"mesh":0,"translation":[6,3,12]},{"mesh":0,"translation":[12,3,12]},{"mesh":1,"translation":[3,6,12]},{"mesh":1,"translation":[9,6,12]},{"mesh":1,"translation":[0,9,12]},{"mesh":1,"translation":[6,9,12]},{"mesh":1,"translation":[12,9,12]},{"mesh":1,"translation":[3,12,12]},{"mesh":1,"translation":[9,12,12]},{"mesh":1,"translation":[3,0,15]},{"mesh":1,"translation":[9,0,15]},{"mesh":0,"translation":[0,3,15]},{"mesh":0,"translation":[6,3,15]},{"mesh":0,"translation":[12,3,15]},{"mesh":1,"translation":[3,6,15]},{"mesh":1,"translation":[9,6,15]},{"mesh":1,"translation":[0,9,15]},{"mesh":1,"translation":[6,9,15]},{"mesh":1,"translation":[12,9,15]},{"mesh":1,"translation":[3,12,15]},{"mesh":1,"translation":[9,12,15]},{"mesh":1,"translation":[3,0,18]},{"mesh":1,"translation":[9,0,18]},{"mesh":0,"translation":[0,3,18]},{"mesh":0,"translation":[6,3,18]},{"mesh":0,"translation":[12,3,18]},{"mesh":1,"translation":[3,6,18]},{"mesh":1,"translation":[9,6,18]},{"mesh":1,"translation":[0,9,18]},{"mesh":1,"translation":[6,9,18]},{"mesh":1,"translation":[12,9,18]},{"mesh":1,"translation":[3,12,18]},{"mesh":1,"translation":[9,12,18]},{"mesh":1,"translation":[3,0,21]},{"mesh":1,"translation":[9,0,21]},{"mesh":0,"translation":[0,3,21]},{"mesh":0,"translation":[6,3,21]},{"mesh":0,"translation":[12,3,21]},{"mesh":1,"translation":[3,6,21]},{"mesh":1,"translation":[9,6,21]},{"mesh":1,"translation":[0,9,21]},{"mesh":1,"translation":[6,9,21]},{"mesh":1,"translation":[12,9,21]},{"mesh":1,"translation":[3,12,21]},{"mesh":1,"translation":[9,12,21]},{"mesh":1,"translation":[3,0,24]},{"mesh":1,"translation":[9,0,24]},{"mesh":0,"translation":[0,3,24]},{"mesh":0,"translation":[6,3,24]},{"mesh":0,"translation":[12,3,24]},{"mesh":1,"translation":[3,6,24]},{"mesh":1,"translation":[9,6,24]},{"mesh":1,"translation":[0,9,24]},{"mesh":1,"translation":[6,9,24]},{"mesh":1,"translation":[12,9,24]},{"mesh":1,"translation":[3,12,24]},{"mesh":1,"translation":[9,12,24]},{"mesh":1,"translation":[3,0,27]},{"mesh":1,"translation":[9,0,27]},{"mesh":0,"translation":[0,3,27]},{"mesh":0,"translation":[6,3,27]},{"mesh":0,"translation":[12,3,27]},{"mesh":1,"translation":[3,6,27]},{"mesh":1,"translation":[9,6,27]},{"mesh":1,"translation":[0,9,27]},{"mesh":1,"translation":[6,9,27]},{"mesh":1,"translation":[12,9,27]},{"mesh":1,"translation":[3,12,27]},{"mesh":1,"translation":[9,12,27]},{"mesh":0,"translation":[0,3,30]},{"mesh":1,"translation":[0,9,30]},{"mesh":0,"translation":[6,3,30]},{"mesh":1,"translation":[6,9,30]},{"mesh":0,"translation":[12,3,30]},{"mesh":1,"translation":[12,9,30]},{"mesh":2,"translation":[0,0,0]},{"mesh":3,"translation":[0,0,0]}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121]}]} \ No newline at end of file diff --git a/testdata/measurement_looping.gltf b/testdata/measurement_looping.gltf index d1dba6bc..5ad842ae 100644 --- a/testdata/measurement_looping.gltf +++ b/testdata/measurement_looping.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.4375],"min":[0.625,0.375],"name":"tex_coords_gate_MPP:X","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5],"min":[0.625,0.4375],"name":"tex_coords_gate_MPP:Y","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[1,-0,-0],"min":[-7,-8,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":78,"max":[0,2.5,1],"min":[-5.25,-9,-1],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:X","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Y","target":34962},{"buffer":4,"byteLength":144,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":5,"byteLength":936,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MPP:X","uri":"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Y","uri":"data:application/octet-stream;base64,AAAwPwAA4D4AACA/AADgPgAAMD8AAAA/AAAgPwAA4D4AACA/AAAAPwAAMD8AAAA/AAAwPwAAAD8AADA/AADgPgAAID8AAAA/AAAgPwAAAD8AADA/AADgPgAAID8AAOA+"},{"byteLength":144,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAwAAAAMEAAACAAACAwAAAwMAAAACAAACAPwAAAIAAAACAAADgwAAAAIAAAACAAACAPwAAAMAAAACAAADgwAAAAMAAAACAAACAPwAAgMAAAACAAADgwAAAgMAAAACAAACAPwAAwMAAAACAAADgwAAAwMAAAACAAACAPwAAAMEAAACAAADgwAAAAMEAAACA"},{"byteLength":936,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACAAADgvwAAQD8AAEA/AADgvwAAQD8AAEC/AADgvwAAQD8AAEA/AADgvwAADMEAAEA/AADgvwAAQD8AAEA/AAAQwAAAQD8AAEA/AADgvwAAQD8AAEC/AADgvwAADMEAAEC/AADgvwAAQD8AAEC/AAAQwAAAQD8AAEC/AADgvwAADMEAAEA/AADgvwAADMEAAEC/AADgvwAADMEAAEA/AAAQwAAADMEAAEA/AADgvwAADMEAAEC/AAAQwAAADMEAAEC/AAAQwAAAQD8AAEA/AAAQwAAAQD8AAEC/AAAQwAAAQD8AAEA/AAAQwAAADMEAAEA/AAAQwAAAQD8AAEC/AAAQwAAADMEAAEC/AAAQwAAADMEAAEA/AAAQwAAADMEAAEC/AABwwAAAQD8AAEA/AABwwAAAQD8AAEC/AABwwAAAQD8AAEA/AABwwAAADMEAAEA/AABwwAAAQD8AAEA/AACIwAAAQD8AAEA/AABwwAAAQD8AAEC/AABwwAAADMEAAEC/AABwwAAAQD8AAEC/AACIwAAAQD8AAEC/AABwwAAADMEAAEA/AABwwAAADMEAAEC/AABwwAAADMEAAEA/AACIwAAADMEAAEA/AABwwAAADMEAAEC/AACIwAAADMEAAEC/AACIwAAAQD8AAEA/AACIwAAAQD8AAEC/AACIwAAAQD8AAEA/AACIwAAADMEAAEA/AACIwAAAQD8AAEC/AACIwAAADMEAAEC/AACIwAAADMEAAEA/AACIwAAADMEAAEC/AABAvwAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAAgD8AAIA/AABAvwAAEMEAAIA/AABAvwAAgD8AAIA/AACowAAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAAEMEAAIC/AABAvwAAgD8AAIC/AACowAAAgD8AAIC/AABAvwAAEMEAAIA/AABAvwAAEMEAAIC/AABAvwAAEMEAAIA/AACowAAAEMEAAIA/AABAvwAAEMEAAIC/AACowAAAEMEAAIC/AACowAAAgD8AAIA/AACowAAAgD8AAIC/AACowAAAgD8AAIA/AACowAAAEMEAAIA/AACowAAAgD8AAIC/AACowAAAEMEAAIC/AACowAAAEMEAAIA/AACowAAAEMEAAIC/"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":5},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-1,-2,-0]},{"mesh":0,"translation":[-2,-4,-0]},{"mesh":1,"translation":[-4,-6,-0]},{"mesh":2,"translation":[-4,-8,-0]},{"mesh":3,"translation":[0,0,0]},{"mesh":4,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.4375],"min":[0.625,0.375],"name":"tex_coords_gate_MPP:X","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.6875,0.5],"min":[0.625,0.4375],"name":"tex_coords_gate_MPP:Y","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[1,-0,-0],"min":[-7,-8,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":78,"max":[0,2.5,1],"min":[-5.25,-9,-1],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:X","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MPP:Y","target":34962},{"buffer":4,"byteLength":144,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":5,"byteLength":936,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_MPP:X","uri":"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_MPP:Y","uri":"data:application/octet-stream;base64,AAAwPwAA4D4AACA/AADgPgAAMD8AAAA/AAAgPwAA4D4AACA/AAAAPwAAMD8AAAA/AAAwPwAAAD8AADA/AADgPgAAID8AAAA/AAAgPwAAAD8AADA/AADgPgAAID8AAOA+"},{"byteLength":144,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAwAAAAMEAAACAAACAwAAAwMAAAACAAACAPwAAAIAAAACAAADgwAAAAIAAAACAAACAPwAAAMAAAACAAADgwAAAAMAAAACAAACAPwAAgMAAAACAAADgwAAAgMAAAACAAACAPwAAwMAAAACAAADgwAAAwMAAAACAAACAPwAAAMEAAACAAADgwAAAAMEAAACA"},{"byteLength":936,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACAAADgvwAAQD8AAEA/AADgvwAAQD8AAEC/AADgvwAAQD8AAEA/AADgvwAADMEAAEA/AADgvwAAQD8AAEA/AAAQwAAAQD8AAEA/AADgvwAAQD8AAEC/AADgvwAADMEAAEC/AADgvwAAQD8AAEC/AAAQwAAAQD8AAEC/AADgvwAADMEAAEA/AADgvwAADMEAAEC/AADgvwAADMEAAEA/AAAQwAAADMEAAEA/AADgvwAADMEAAEC/AAAQwAAADMEAAEC/AAAQwAAAQD8AAEA/AAAQwAAAQD8AAEC/AAAQwAAAQD8AAEA/AAAQwAAADMEAAEA/AAAQwAAAQD8AAEC/AAAQwAAADMEAAEC/AAAQwAAADMEAAEA/AAAQwAAADMEAAEC/AABwwAAAQD8AAEA/AABwwAAAQD8AAEC/AABwwAAAQD8AAEA/AABwwAAADMEAAEA/AABwwAAAQD8AAEA/AACIwAAAQD8AAEA/AABwwAAAQD8AAEC/AABwwAAADMEAAEC/AABwwAAAQD8AAEC/AACIwAAAQD8AAEC/AABwwAAADMEAAEA/AABwwAAADMEAAEC/AABwwAAADMEAAEA/AACIwAAADMEAAEA/AABwwAAADMEAAEC/AACIwAAADMEAAEC/AACIwAAAQD8AAEA/AACIwAAAQD8AAEC/AACIwAAAQD8AAEA/AACIwAAADMEAAEA/AACIwAAAQD8AAEC/AACIwAAADMEAAEC/AACIwAAADMEAAEA/AACIwAAADMEAAEC/AABAvwAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAAgD8AAIA/AABAvwAAEMEAAIA/AABAvwAAgD8AAIA/AACowAAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAAEMEAAIC/AABAvwAAgD8AAIC/AACowAAAgD8AAIC/AABAvwAAEMEAAIA/AABAvwAAEMEAAIC/AABAvwAAEMEAAIA/AACowAAAEMEAAIA/AABAvwAAEMEAAIC/AACowAAAEMEAAIC/AACowAAAgD8AAIA/AACowAAAgD8AAIC/AACowAAAgD8AAIA/AACowAAAEMEAAIA/AACowAAAgD8AAIC/AACowAAAEMEAAIC/AACowAAAEMEAAIA/AACowAAAEMEAAIC/"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":5},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-1,-2,-0]},{"mesh":0,"translation":[-2,-4,-0]},{"mesh":1,"translation":[-4,-6,-0]},{"mesh":2,"translation":[-4,-8,-0]},{"mesh":3,"translation":[0,0,0]},{"mesh":4,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/noise_gates_1.gltf b/testdata/noise_gates_1.gltf index 1ab94f1e..08b09866 100644 --- a/testdata/noise_gates_1.gltf +++ b/testdata/noise_gates_1.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.625],"min":[0.1875,0.5625],"name":"tex_coords_gate_DEPOLARIZE1","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.625],"min":[0.25,0.5625],"name":"tex_coords_gate_DEPOLARIZE2","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.4375],"min":[0.4375,0.375],"name":"tex_coords_gate_X_ERROR","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.5],"min":[0.4375,0.4375],"name":"tex_coords_gate_Y_ERROR","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.5625],"min":[0.4375,0.5],"name":"tex_coords_gate_Z_ERROR","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":18,"max":[1,-0,-0],"min":[-4,-10,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_DEPOLARIZE1","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_DEPOLARIZE2","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X_ERROR","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y_ERROR","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z_ERROR","target":34962},{"buffer":6,"byteLength":216,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":7,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_DEPOLARIZE1","uri":"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_DEPOLARIZE2","uri":"data:application/octet-stream;base64,AACgPgAAED8AAIA+AAAQPwAAoD4AACA/AACAPgAAED8AAIA+AAAgPwAAoD4AACA/AACgPgAAID8AAKA+AAAQPwAAgD4AACA/AACAPgAAID8AAKA+AAAQPwAAgD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_X_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAAwD4AAOA+AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+AADgPgAAAD8AAOA+AAAAPwAA4D4AAAA/AADAPgAA4D4AAOA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAA4D4AAOA+AADgPgAAAD8AAAA/AADgPgAA4D4AAOA+AAAAPwAAAD8AAAA/AAAAPwAAAD8AAAA/AADgPgAA4D4AAAA/AADgPgAAAD8AAAA/AADgPgAA4D4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_Z_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAAAD8AAOA+AAAAPwAAAD8AABA/AADgPgAAAD8AAOA+AAAQPwAAAD8AABA/AAAAPwAAED8AAAA/AAAAPwAA4D4AABA/AADgPgAAED8AAAA/AAAAPwAA4D4AAAA/"},{"byteLength":216,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAvwAAAIAAAACAAACgvwAAAMAAAACAAACgvwAAAMAAAACAAACAvwAAgMAAAACAAACAvwAAAMEAAACAAACAvwAAIMEAAACAAACAPwAAAIAAAACAAACAwAAAAIAAAACAAACAPwAAAMAAAACAAACAwAAAAMAAAACAAACAPwAAgMAAAACAAACAwAAAgMAAAACAAACAPwAAwMAAAACAAACAwAAAwMAAAACAAACAPwAAAMEAAACAAACAwAAAAMEAAACAAACAPwAAIMEAAACAAACAwAAAIMEAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":6},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":7},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-0,-2,-0]},{"mesh":1,"translation":[-1,-0,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":1,"translation":[-1,-8,-0]},{"mesh":1,"translation":[-1,-10,-0]},{"mesh":2,"translation":[-2,-0,-0]},{"mesh":2,"translation":[-2,-2,-0]},{"mesh":2,"translation":[-2,-4,-0]},{"mesh":3,"translation":[-3,-0,-0]},{"mesh":3,"translation":[-3,-2,-0]},{"mesh":3,"translation":[-3,-8,-0]},{"mesh":4,"translation":[-3,-4,-0]},{"mesh":4,"translation":[-3,-6,-0]},{"mesh":4,"translation":[-3,-10,-0]},{"mesh":5,"translation":[0,0,0]},{"mesh":6,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.625],"min":[0.1875,0.5625],"name":"tex_coords_gate_DEPOLARIZE1","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.625],"min":[0.25,0.5625],"name":"tex_coords_gate_DEPOLARIZE2","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.4375],"min":[0.4375,0.375],"name":"tex_coords_gate_X_ERROR","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.5],"min":[0.4375,0.4375],"name":"tex_coords_gate_Y_ERROR","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.5625],"min":[0.4375,0.5],"name":"tex_coords_gate_Z_ERROR","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":18,"max":[1,-0,-0],"min":[-4,-10,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_DEPOLARIZE1","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_DEPOLARIZE2","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X_ERROR","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y_ERROR","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z_ERROR","target":34962},{"buffer":6,"byteLength":216,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":7,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_DEPOLARIZE1","uri":"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_DEPOLARIZE2","uri":"data:application/octet-stream;base64,AACgPgAAED8AAIA+AAAQPwAAoD4AACA/AACAPgAAED8AAIA+AAAgPwAAoD4AACA/AACgPgAAID8AAKA+AAAQPwAAgD4AACA/AACAPgAAID8AAKA+AAAQPwAAgD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_X_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAAwD4AAOA+AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+AADgPgAAAD8AAOA+AAAAPwAA4D4AAAA/AADAPgAA4D4AAOA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAA4D4AAOA+AADgPgAAAD8AAAA/AADgPgAA4D4AAOA+AAAAPwAAAD8AAAA/AAAAPwAAAD8AAAA/AADgPgAA4D4AAAA/AADgPgAAAD8AAAA/AADgPgAA4D4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_Z_ERROR","uri":"data:application/octet-stream;base64,AAAAPwAAAD8AAOA+AAAAPwAAAD8AABA/AADgPgAAAD8AAOA+AAAQPwAAAD8AABA/AAAAPwAAED8AAAA/AAAAPwAA4D4AABA/AADgPgAAED8AAAA/AAAAPwAA4D4AAAA/"},{"byteLength":216,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAvwAAAIAAAACAAACgvwAAAMAAAACAAACgvwAAAMAAAACAAACAvwAAgMAAAACAAACAvwAAAMEAAACAAACAvwAAIMEAAACAAACAPwAAAIAAAACAAACAwAAAAIAAAACAAACAPwAAAMAAAACAAACAwAAAAMAAAACAAACAPwAAgMAAAACAAACAwAAAgMAAAACAAACAPwAAwMAAAACAAACAwAAAwMAAAACAAACAPwAAAMEAAACAAACAwAAAAMEAAACAAACAPwAAIMEAAACAAACAwAAAIMEAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":6},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":7},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-0,-2,-0]},{"mesh":1,"translation":[-1,-0,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":1,"translation":[-1,-8,-0]},{"mesh":1,"translation":[-1,-10,-0]},{"mesh":2,"translation":[-2,-0,-0]},{"mesh":2,"translation":[-2,-2,-0]},{"mesh":2,"translation":[-2,-4,-0]},{"mesh":3,"translation":[-3,-0,-0]},{"mesh":3,"translation":[-3,-2,-0]},{"mesh":3,"translation":[-3,-8,-0]},{"mesh":4,"translation":[-3,-4,-0]},{"mesh":4,"translation":[-3,-6,-0]},{"mesh":4,"translation":[-3,-10,-0]},{"mesh":5,"translation":[0,0,0]},{"mesh":6,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/noise_gates_2.gltf b/testdata/noise_gates_2.gltf index 33b3ec75..adfd883d 100644 --- a/testdata/noise_gates_2.gltf +++ b/testdata/noise_gates_2.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.4375],"min":[0.5,0.375],"name":"tex_coords_gate_E:X","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.5],"min":[0.5,0.4375],"name":"tex_coords_gate_E:Y","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.5625],"min":[0.5,0.5],"name":"tex_coords_gate_E:Z","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.4375],"min":[0.5625,0.375],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.5],"min":[0.5625,0.4375],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.5625],"min":[0.5625,0.5],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":22,"max":[1,-2,-0],"min":[-3,-10,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":6,"max":[0,0.5,-0],"min":[-3,-0.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:X","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:Y","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:Z","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","target":34962},{"buffer":7,"byteLength":264,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":8,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_E:X","uri":"data:application/octet-stream;base64,AAAQPwAAwD4AAAA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/AADgPgAAED8AAOA+AAAQPwAA4D4AABA/AADAPgAAAD8AAOA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_E:Y","uri":"data:application/octet-stream;base64,AAAQPwAA4D4AAAA/AADgPgAAED8AAAA/AAAAPwAA4D4AAAA/AAAAPwAAED8AAAA/AAAQPwAAAD8AABA/AADgPgAAAD8AAAA/AAAAPwAAAD8AABA/AADgPgAAAD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_E:Z","uri":"data:application/octet-stream;base64,AAAQPwAAAD8AAAA/AAAAPwAAED8AABA/AAAAPwAAAD8AAAA/AAAQPwAAED8AABA/AAAQPwAAED8AABA/AAAAPwAAAD8AABA/AAAAPwAAED8AABA/AAAAPwAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","uri":"data:application/octet-stream;base64,AAAgPwAAwD4AABA/AADAPgAAID8AAOA+AAAQPwAAwD4AABA/AADgPgAAID8AAOA+AAAgPwAA4D4AACA/AADAPgAAED8AAOA+AAAQPwAA4D4AACA/AADAPgAAED8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","uri":"data:application/octet-stream;base64,AAAgPwAA4D4AABA/AADgPgAAID8AAAA/AAAQPwAA4D4AABA/AAAAPwAAID8AAAA/AAAgPwAAAD8AACA/AADgPgAAED8AAAA/AAAQPwAAAD8AACA/AADgPgAAED8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","uri":"data:application/octet-stream;base64,AAAgPwAAAD8AABA/AAAAPwAAID8AABA/AAAQPwAAAD8AABA/AAAQPwAAID8AABA/AAAgPwAAED8AACA/AAAAPwAAED8AABA/AAAQPwAAED8AACA/AAAAPwAAED8AAAA/"},{"byteLength":264,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AAAAgAAAgMAAAACAAAAAgAAAAMAAAACAAACAvwAAgMAAAACAAACAvwAAAMAAAACAAACAvwAAwMAAAACAAACAvwAAgMAAAACAAAAAwAAAAMEAAACAAAAQwAAAwMAAAACAAAAQwAAAwMAAAACAAAAAwAAAgMAAAACAAAAAwAAAwMAAAACAAAAAwAAAAMEAAACAAACAPwAAAMAAAACAAABAwAAAAMAAAACAAACAPwAAgMAAAACAAABAwAAAgMAAAACAAACAPwAAwMAAAACAAABAwAAAwMAAAACAAACAPwAAAMEAAACAAABAwAAAAMEAAACAAACAPwAAIMEAAACAAABAwAAAIMEAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAIAAAACAAABAwAAAAIAAAACAAAAgwAAAAL8AAACAAABAwAAAAIAAAACAAAAgwAAAAD8AAACAAABAwAAAAIAAAACA"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":7},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":8},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":0,"translation":[-1,-2,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":2,"translation":[-1,-6,-0]},{"mesh":3,"translation":[-2,-4,-0]},{"mesh":4,"translation":[-2,-8,-0]},{"mesh":5,"translation":[-2,-6,-0]},{"mesh":3,"translation":[-2,-10,-0]},{"mesh":6,"translation":[0,0,0]},{"mesh":7,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.4375],"min":[0.5,0.375],"name":"tex_coords_gate_E:X","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.5],"min":[0.5,0.4375],"name":"tex_coords_gate_E:Y","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.5625],"min":[0.5,0.5],"name":"tex_coords_gate_E:Z","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.4375],"min":[0.5625,0.375],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.5],"min":[0.5625,0.4375],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.5625],"min":[0.5625,0.5],"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":22,"max":[1,-2,-0],"min":[-3,-10,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":6,"max":[0,0.5,-0],"min":[-3,-0.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:X","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:Y","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_E:Z","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","target":34962},{"buffer":7,"byteLength":264,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":8,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_E:X","uri":"data:application/octet-stream;base64,AAAQPwAAwD4AAAA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/AADgPgAAED8AAOA+AAAQPwAA4D4AABA/AADAPgAAAD8AAOA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_E:Y","uri":"data:application/octet-stream;base64,AAAQPwAA4D4AAAA/AADgPgAAED8AAAA/AAAAPwAA4D4AAAA/AAAAPwAAED8AAAA/AAAQPwAAAD8AABA/AADgPgAAAD8AAAA/AAAAPwAAAD8AABA/AADgPgAAAD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_E:Z","uri":"data:application/octet-stream;base64,AAAQPwAAAD8AAAA/AAAAPwAAED8AABA/AAAAPwAAAD8AAAA/AAAQPwAAED8AABA/AAAQPwAAED8AABA/AAAAPwAAAD8AABA/AAAAPwAAED8AABA/AAAAPwAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:X","uri":"data:application/octet-stream;base64,AAAgPwAAwD4AABA/AADAPgAAID8AAOA+AAAQPwAAwD4AABA/AADgPgAAID8AAOA+AAAgPwAA4D4AACA/AADAPgAAED8AAOA+AAAQPwAA4D4AACA/AADAPgAAED8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Y","uri":"data:application/octet-stream;base64,AAAgPwAA4D4AABA/AADgPgAAID8AAAA/AAAQPwAA4D4AABA/AAAAPwAAID8AAAA/AAAgPwAAAD8AACA/AADgPgAAED8AAAA/AAAQPwAAAD8AACA/AADgPgAAED8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_ELSE_CORRELATED_ERROR:Z","uri":"data:application/octet-stream;base64,AAAgPwAAAD8AABA/AAAAPwAAID8AABA/AAAQPwAAAD8AABA/AAAQPwAAID8AABA/AAAgPwAAED8AACA/AAAAPwAAED8AABA/AAAQPwAAED8AACA/AAAAPwAAED8AAAA/"},{"byteLength":264,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AAAAgAAAgMAAAACAAAAAgAAAAMAAAACAAACAvwAAgMAAAACAAACAvwAAAMAAAACAAACAvwAAwMAAAACAAACAvwAAgMAAAACAAAAAwAAAAMEAAACAAAAQwAAAwMAAAACAAAAQwAAAwMAAAACAAAAAwAAAgMAAAACAAAAAwAAAwMAAAACAAAAAwAAAAMEAAACAAACAPwAAAMAAAACAAABAwAAAAMAAAACAAACAPwAAgMAAAACAAABAwAAAgMAAAACAAACAPwAAwMAAAACAAABAwAAAwMAAAACAAACAPwAAAMEAAACAAABAwAAAAMEAAACAAACAPwAAIMEAAACAAABAwAAAIMEAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAIAAAACAAABAwAAAAIAAAACAAAAgwAAAAL8AAACAAABAwAAAAIAAAACAAAAgwAAAAD8AAACAAABAwAAAAIAAAACA"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":7},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":8},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":0,"translation":[-1,-2,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":2,"translation":[-1,-6,-0]},{"mesh":3,"translation":[-2,-4,-0]},{"mesh":4,"translation":[-2,-8,-0]},{"mesh":5,"translation":[-2,-6,-0]},{"mesh":3,"translation":[-2,-10,-0]},{"mesh":6,"translation":[0,0,0]},{"mesh":7,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/noise_gates_3.gltf b/testdata/noise_gates_3.gltf index bab5ebbd..e75ad89a 100644 --- a/testdata/noise_gates_3.gltf +++ b/testdata/noise_gates_3.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.625],"min":[0.5,0.5625],"name":"tex_coords_gate_PAULI_CHANNEL_1","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.625],"min":[0.5625,0.5625],"name":"tex_coords_gate_PAULI_CHANNEL_2","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":16,"max":[1,-0,-0],"min":[-2,-8,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_PAULI_CHANNEL_1","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_PAULI_CHANNEL_2","target":34962},{"buffer":3,"byteLength":192,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":4,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_PAULI_CHANNEL_1","uri":"data:application/octet-stream;base64,AAAQPwAAED8AAAA/AAAQPwAAED8AACA/AAAAPwAAED8AAAA/AAAgPwAAED8AACA/AAAQPwAAID8AABA/AAAQPwAAAD8AACA/AAAAPwAAID8AABA/AAAQPwAAAD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_PAULI_CHANNEL_2","uri":"data:application/octet-stream;base64,AAAgPwAAED8AABA/AAAQPwAAID8AACA/AAAQPwAAED8AABA/AAAgPwAAID8AACA/AAAgPwAAID8AACA/AAAQPwAAED8AACA/AAAQPwAAID8AACA/AAAQPwAAED8AABA/"},{"byteLength":192,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAvwAAAIAAAACAAACAvwAAAMAAAACAAACAvwAAgMAAAACAAACgvwAAwMAAAACAAACgvwAAwMAAAACAAACAvwAAAMEAAACAAACAPwAAAIAAAACAAAAAwAAAAIAAAACAAACAPwAAAMAAAACAAAAAwAAAAMAAAACAAACAPwAAgMAAAACAAAAAwAAAgMAAAACAAACAPwAAwMAAAACAAAAAwAAAwMAAAACAAACAPwAAAMEAAACAAAAAwAAAAMEAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":4},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":0,"translation":[-0,-6,-0]},{"mesh":1,"translation":[-1,-0,-0]},{"mesh":1,"translation":[-1,-2,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":1,"translation":[-1,-8,-0]},{"mesh":2,"translation":[0,0,0]},{"mesh":3,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5625,0.625],"min":[0.5,0.5625],"name":"tex_coords_gate_PAULI_CHANNEL_1","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.625,0.625],"min":[0.5625,0.5625],"name":"tex_coords_gate_PAULI_CHANNEL_2","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":16,"max":[1,-0,-0],"min":[-2,-8,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_PAULI_CHANNEL_1","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_PAULI_CHANNEL_2","target":34962},{"buffer":3,"byteLength":192,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":4,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_PAULI_CHANNEL_1","uri":"data:application/octet-stream;base64,AAAQPwAAED8AAAA/AAAQPwAAED8AACA/AAAAPwAAED8AAAA/AAAgPwAAED8AACA/AAAQPwAAID8AABA/AAAQPwAAAD8AACA/AAAAPwAAID8AABA/AAAQPwAAAD8AABA/"},{"byteLength":96,"name":"tex_coords_gate_PAULI_CHANNEL_2","uri":"data:application/octet-stream;base64,AAAgPwAAED8AABA/AAAQPwAAID8AACA/AAAQPwAAED8AABA/AAAgPwAAID8AACA/AAAgPwAAID8AACA/AAAQPwAAED8AACA/AAAQPwAAID8AACA/AAAQPwAAED8AABA/"},{"byteLength":192,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAvwAAAIAAAACAAACAvwAAAMAAAACAAACAvwAAgMAAAACAAACgvwAAwMAAAACAAACgvwAAwMAAAACAAACAvwAAAMEAAACAAACAPwAAAIAAAACAAAAAwAAAAIAAAACAAACAPwAAAMAAAACAAAAAwAAAAMAAAACAAACAPwAAgMAAAACAAAAAwAAAgMAAAACAAACAPwAAwMAAAACAAAAAwAAAwMAAAACAAACAPwAAAMEAAACAAAAAwAAAAMEAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":4},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":0,"translation":[-0,-6,-0]},{"mesh":1,"translation":[-1,-0,-0]},{"mesh":1,"translation":[-1,-2,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":1,"translation":[-1,-8,-0]},{"mesh":2,"translation":[0,0,0]},{"mesh":3,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/repeat.gltf b/testdata/repeat.gltf index b43b4148..83ca2d9c 100644 --- a/testdata/repeat.gltf +++ b/testdata/repeat.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5],"min":[0.0625,0.4375],"name":"tex_coords_gate_H","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.4375],"min":[0.3125,0.375],"name":"tex_coords_gate_RX","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":8,"max":[1,-0,-0],"min":[-6,-6,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":54,"max":[0,2.5,1],"min":[-4.25,-7,-1],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_RX","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":4,"byteLength":648,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_H","uri":"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+"},{"byteLength":96,"name":"tex_coords_gate_RX","uri":"data:application/octet-stream;base64,AADAPgAAwD4AAKA+AADAPgAAwD4AAOA+AACgPgAAwD4AAKA+AADgPgAAwD4AAOA+AADAPgAA4D4AAMA+AADAPgAAoD4AAOA+AACgPgAA4D4AAMA+AADAPgAAoD4AAMA+"},{"byteLength":96,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAPwAAAIAAAACAAADAwAAAAIAAAACAAACAPwAAAMAAAACAAADAwAAAAMAAAACAAACAPwAAgMAAAACAAADAwAAAgMAAAACAAACAPwAAwMAAAACAAADAwAAAwMAAAACA"},{"byteLength":648,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACAAADgvwAAQD8AAEA/AADgvwAAQD8AAEC/AADgvwAAQD8AAEA/AADgvwAA2MAAAEA/AADgvwAAQD8AAEA/AABQwAAAQD8AAEA/AADgvwAAQD8AAEC/AADgvwAA2MAAAEC/AADgvwAAQD8AAEC/AABQwAAAQD8AAEC/AADgvwAA2MAAAEA/AADgvwAA2MAAAEC/AADgvwAA2MAAAEA/AABQwAAA2MAAAEA/AADgvwAA2MAAAEC/AABQwAAA2MAAAEC/AABQwAAAQD8AAEA/AABQwAAAQD8AAEC/AABQwAAAQD8AAEA/AABQwAAA2MAAAEA/AABQwAAAQD8AAEC/AABQwAAA2MAAAEC/AABQwAAA2MAAAEA/AABQwAAA2MAAAEC/AABAvwAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAAgD8AAIA/AABAvwAA4MAAAIA/AABAvwAAgD8AAIA/AACIwAAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAA4MAAAIC/AABAvwAAgD8AAIC/AACIwAAAgD8AAIC/AABAvwAA4MAAAIA/AABAvwAA4MAAAIC/AABAvwAA4MAAAIA/AACIwAAA4MAAAIA/AABAvwAA4MAAAIC/AACIwAAA4MAAAIC/AACIwAAAgD8AAIA/AACIwAAAgD8AAIC/AACIwAAAgD8AAIA/AACIwAAA4MAAAIA/AACIwAAAgD8AAIC/AACIwAAA4MAAAIC/AACIwAAA4MAAAIA/AACIwAAA4MAAAIC/"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":4},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":0,"translation":[-2,-0,-0]},{"mesh":0,"translation":[-2,-2,-0]},{"mesh":0,"translation":[-2,-6,-0]},{"mesh":0,"translation":[-3,-6,-0]},{"mesh":2,"translation":[0,0,0]},{"mesh":3,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5],"min":[0.0625,0.4375],"name":"tex_coords_gate_H","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.4375],"min":[0.3125,0.375],"name":"tex_coords_gate_RX","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":8,"max":[1,-0,-0],"min":[-6,-6,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":54,"max":[0,2.5,1],"min":[-4.25,-7,-1],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_RX","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":4,"byteLength":648,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_H","uri":"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+"},{"byteLength":96,"name":"tex_coords_gate_RX","uri":"data:application/octet-stream;base64,AADAPgAAwD4AAKA+AADAPgAAwD4AAOA+AACgPgAAwD4AAKA+AADgPgAAwD4AAOA+AADAPgAA4D4AAMA+AADAPgAAoD4AAOA+AACgPgAA4D4AAMA+AADAPgAAoD4AAMA+"},{"byteLength":96,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAPwAAAIAAAACAAADAwAAAAIAAAACAAACAPwAAAMAAAACAAADAwAAAAMAAAACAAACAPwAAgMAAAACAAADAwAAAgMAAAACAAACAPwAAwMAAAACAAADAwAAAwMAAAACA"},{"byteLength":648,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACAAADgvwAAQD8AAEA/AADgvwAAQD8AAEC/AADgvwAAQD8AAEA/AADgvwAA2MAAAEA/AADgvwAAQD8AAEA/AABQwAAAQD8AAEA/AADgvwAAQD8AAEC/AADgvwAA2MAAAEC/AADgvwAAQD8AAEC/AABQwAAAQD8AAEC/AADgvwAA2MAAAEA/AADgvwAA2MAAAEC/AADgvwAA2MAAAEA/AABQwAAA2MAAAEA/AADgvwAA2MAAAEC/AABQwAAA2MAAAEC/AABQwAAAQD8AAEA/AABQwAAAQD8AAEC/AABQwAAAQD8AAEA/AABQwAAA2MAAAEA/AABQwAAAQD8AAEC/AABQwAAA2MAAAEC/AABQwAAA2MAAAEA/AABQwAAA2MAAAEC/AABAvwAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAAgD8AAIA/AABAvwAA4MAAAIA/AABAvwAAgD8AAIA/AACIwAAAgD8AAIA/AABAvwAAgD8AAIC/AABAvwAA4MAAAIC/AABAvwAAgD8AAIC/AACIwAAAgD8AAIC/AABAvwAA4MAAAIA/AABAvwAA4MAAAIC/AABAvwAA4MAAAIA/AACIwAAA4MAAAIA/AABAvwAA4MAAAIC/AACIwAAA4MAAAIC/AACIwAAAgD8AAIA/AACIwAAAgD8AAIC/AACIwAAAgD8AAIA/AACIwAAA4MAAAIA/AACIwAAAgD8AAIC/AACIwAAA4MAAAIC/AACIwAAA4MAAAIA/AACIwAAA4MAAAIC/"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":4},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":0,"translation":[-2,-0,-0]},{"mesh":0,"translation":[-2,-2,-0]},{"mesh":0,"translation":[-2,-6,-0]},{"mesh":0,"translation":[-3,-6,-0]},{"mesh":2,"translation":[0,0,0]},{"mesh":3,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/repetition_code.gltf b/testdata/repetition_code.gltf index bfadd55d..914c1846 100644 --- a/testdata/repetition_code.gltf +++ b/testdata/repetition_code.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5625],"min":[0.3125,0.5],"name":"tex_coords_gate_R","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"control_x_line_cross","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5625],"min":[0.375,0.5],"name":"tex_coords_gate_MR","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":26,"max":[1,-0,-0],"min":[-9,-8,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":30,"max":[0,2.5,1],"min":[-7.25,-9,-1],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_R","target":34962},{"buffer":2,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":3,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":4,"byteLength":48,"byteOffset":0,"name":"control_x_line_cross","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MR","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":7,"byteLength":312,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":8,"byteLength":360,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_R","uri":"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_x_line_cross","uri":"data:application/octet-stream;base64,AAAAAM3MzL4AAAAAAAAAAM3MzD4AAAAAAAAAAAAAAADNzMy+AAAAAAAAAADNzMw+"},{"byteLength":96,"name":"tex_coords_gate_MR","uri":"data:application/octet-stream;base64,AADgPgAAAD8AAMA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+AAAQPwAA4D4AABA/AADgPgAAED8AAOA+AAAAPwAAwD4AABA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":312,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAvwAAAIAAAACAAACAvwAAAMAAAACAAACAvwAAgMAAAACAAACAvwAAwMAAAACAAAAAwAAAgMAAAACAAAAAwAAAAMAAAACAAAAAwAAAAMEAAACAAAAAwAAAwMAAAACAAACgwAAAAIAAAACAAACgwAAAAMAAAACAAACgwAAAgMAAAACAAACgwAAAwMAAAACAAADAwAAAgMAAAACAAADAwAAAAMAAAACAAADAwAAAAMEAAACAAADAwAAAwMAAAACAAACAPwAAAIAAAACAAAAQwQAAAIAAAACAAACAPwAAAMAAAACAAAAQwQAAAMAAAACAAACAPwAAgMAAAACAAAAQwQAAgMAAAACAAACAPwAAwMAAAACAAAAQwQAAwMAAAACAAACAPwAAAMEAAACAAAAQwQAAAMEAAACA"},{"byteLength":360,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACAAABwwAAAgD8AAIA/AABwwAAAgD8AAIC/AABwwAAAgD8AAIA/AABwwAAAEMEAAIA/AABwwAAAgD8AAIA/AADowAAAgD8AAIA/AABwwAAAgD8AAIC/AABwwAAAEMEAAIC/AABwwAAAgD8AAIC/AADowAAAgD8AAIC/AABwwAAAEMEAAIA/AABwwAAAEMEAAIC/AABwwAAAEMEAAIA/AADowAAAEMEAAIA/AABwwAAAEMEAAIC/AADowAAAEMEAAIC/AADowAAAgD8AAIA/AADowAAAgD8AAIC/AADowAAAgD8AAIA/AADowAAAEMEAAIA/AADowAAAgD8AAIC/AADowAAAEMEAAIC/AADowAAAEMEAAIA/AADowAAAEMEAAIC/"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"white","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":2},"material":1,"mode":6}]},{"primitives":[{"attributes":{"POSITION":3},"material":2,"mode":6},{"attributes":{"POSITION":3},"material":3,"mode":3},{"attributes":{"POSITION":4},"material":3,"mode":1}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":7},"material":4,"mode":1}]},{"primitives":[{"attributes":{"POSITION":8},"material":5,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":0,"translation":[-0,-6,-0]},{"mesh":0,"translation":[-0,-8,-0]},{"mesh":1,"translation":[-1,-0,-0]},{"mesh":2,"translation":[-1,-2,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":2,"translation":[-1,-6,-0]},{"mesh":1,"translation":[-2,-4,-0]},{"mesh":2,"translation":[-2,-2,-0]},{"mesh":1,"translation":[-2,-8,-0]},{"mesh":2,"translation":[-2,-6,-0]},{"mesh":3,"translation":[-3,-2,-0]},{"mesh":3,"translation":[-3,-6,-0]},{"mesh":1,"translation":[-5,-0,-0]},{"mesh":2,"translation":[-5,-2,-0]},{"mesh":1,"translation":[-5,-4,-0]},{"mesh":2,"translation":[-5,-6,-0]},{"mesh":1,"translation":[-6,-4,-0]},{"mesh":2,"translation":[-6,-2,-0]},{"mesh":1,"translation":[-6,-8,-0]},{"mesh":2,"translation":[-6,-6,-0]},{"mesh":3,"translation":[-7,-2,-0]},{"mesh":3,"translation":[-7,-6,-0]},{"mesh":4,"translation":[-8,-0,-0]},{"mesh":4,"translation":[-8,-4,-0]},{"mesh":4,"translation":[-8,-8,-0]},{"mesh":5,"translation":[0,0,0]},{"mesh":6,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5625],"min":[0.3125,0.5],"name":"tex_coords_gate_R","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"control_x_line_cross","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5625],"min":[0.375,0.5],"name":"tex_coords_gate_MR","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":26,"max":[1,-0,-0],"min":[-9,-8,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":30,"max":[0,2.5,1],"min":[-7.25,-9,-1],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_R","target":34962},{"buffer":2,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":3,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":4,"byteLength":48,"byteOffset":0,"name":"control_x_line_cross","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MR","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":7,"byteLength":312,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":8,"byteLength":360,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_R","uri":"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_x_line_cross","uri":"data:application/octet-stream;base64,AAAAAM3MzL4AAAAAAAAAAM3MzD4AAAAAAAAAAAAAAADNzMy+AAAAAAAAAADNzMw+"},{"byteLength":96,"name":"tex_coords_gate_MR","uri":"data:application/octet-stream;base64,AADgPgAAAD8AAMA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+AAAQPwAA4D4AABA/AADgPgAAED8AAOA+AAAAPwAAwD4AABA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":312,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAvwAAAIAAAACAAACAvwAAAMAAAACAAACAvwAAgMAAAACAAACAvwAAwMAAAACAAAAAwAAAgMAAAACAAAAAwAAAAMAAAACAAAAAwAAAAMEAAACAAAAAwAAAwMAAAACAAACgwAAAAIAAAACAAACgwAAAAMAAAACAAACgwAAAgMAAAACAAACgwAAAwMAAAACAAADAwAAAgMAAAACAAADAwAAAAMAAAACAAADAwAAAAMEAAACAAADAwAAAwMAAAACAAACAPwAAAIAAAACAAAAQwQAAAIAAAACAAACAPwAAAMAAAACAAAAQwQAAAMAAAACAAACAPwAAgMAAAACAAAAQwQAAgMAAAACAAACAPwAAwMAAAACAAAAQwQAAwMAAAACAAACAPwAAAMEAAACAAAAQwQAAAMEAAACA"},{"byteLength":360,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACAAABwwAAAgD8AAIA/AABwwAAAgD8AAIC/AABwwAAAgD8AAIA/AABwwAAAEMEAAIA/AABwwAAAgD8AAIA/AADowAAAgD8AAIA/AABwwAAAgD8AAIC/AABwwAAAEMEAAIC/AABwwAAAgD8AAIC/AADowAAAgD8AAIC/AABwwAAAEMEAAIA/AABwwAAAEMEAAIC/AABwwAAAEMEAAIA/AADowAAAEMEAAIA/AABwwAAAEMEAAIC/AADowAAAEMEAAIC/AADowAAAgD8AAIA/AADowAAAgD8AAIC/AADowAAAgD8AAIA/AADowAAAEMEAAIA/AADowAAAgD8AAIC/AADowAAAEMEAAIC/AADowAAAEMEAAIA/AADowAAAEMEAAIC/"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":2},"material":1,"mode":6}]},{"primitives":[{"attributes":{"POSITION":3},"material":2,"mode":6},{"attributes":{"POSITION":3},"material":3,"mode":3},{"attributes":{"POSITION":4},"material":3,"mode":1}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":7},"material":4,"mode":1}]},{"primitives":[{"attributes":{"POSITION":8},"material":5,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":0,"translation":[-0,-6,-0]},{"mesh":0,"translation":[-0,-8,-0]},{"mesh":1,"translation":[-1,-0,-0]},{"mesh":2,"translation":[-1,-2,-0]},{"mesh":1,"translation":[-1,-4,-0]},{"mesh":2,"translation":[-1,-6,-0]},{"mesh":1,"translation":[-2,-4,-0]},{"mesh":2,"translation":[-2,-2,-0]},{"mesh":1,"translation":[-2,-8,-0]},{"mesh":2,"translation":[-2,-6,-0]},{"mesh":3,"translation":[-3,-2,-0]},{"mesh":3,"translation":[-3,-6,-0]},{"mesh":1,"translation":[-5,-0,-0]},{"mesh":2,"translation":[-5,-2,-0]},{"mesh":1,"translation":[-5,-4,-0]},{"mesh":2,"translation":[-5,-6,-0]},{"mesh":1,"translation":[-6,-4,-0]},{"mesh":2,"translation":[-6,-2,-0]},{"mesh":1,"translation":[-6,-8,-0]},{"mesh":2,"translation":[-6,-6,-0]},{"mesh":3,"translation":[-7,-2,-0]},{"mesh":3,"translation":[-7,-6,-0]},{"mesh":4,"translation":[-8,-0,-0]},{"mesh":4,"translation":[-8,-4,-0]},{"mesh":4,"translation":[-8,-8,-0]},{"mesh":5,"translation":[0,0,0]},{"mesh":6,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/single_qubits_gates.gltf b/testdata/single_qubits_gates.gltf index e4b76e96..7e2836b6 100644 --- a/testdata/single_qubits_gates.gltf +++ b/testdata/single_qubits_gates.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.4375],"min":[0,0.375],"name":"tex_coords_gate_I","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.4375],"min":[0,0.375],"name":"tex_coords_gate_X","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.5],"min":[0,0.4375],"name":"tex_coords_gate_Y","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.5625],"min":[0,0.5],"name":"tex_coords_gate_Z","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.625],"min":[0.0625,0.5625],"name":"tex_coords_gate_C_XYZ","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.625],"min":[0.125,0.5625],"name":"tex_coords_gate_C_ZYX","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5],"min":[0.0625,0.4375],"name":"tex_coords_gate_H","type":"VEC2"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5625],"min":[0.0625,0.5],"name":"tex_coords_gate_H_XY","type":"VEC2"},{"bufferView":9,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.4375],"min":[0.0625,0.375],"name":"tex_coords_gate_H_YZ","type":"VEC2"},{"bufferView":10,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.5625],"min":[0.125,0.5],"name":"tex_coords_gate_S","type":"VEC2"},{"bufferView":11,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.4375],"min":[0.125,0.375],"name":"tex_coords_gate_SQRT_X","type":"VEC2"},{"bufferView":12,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.4375],"min":[0.1875,0.375],"name":"tex_coords_gate_SQRT_X_DAG","type":"VEC2"},{"bufferView":13,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.5],"min":[0.125,0.4375],"name":"tex_coords_gate_SQRT_Y","type":"VEC2"},{"bufferView":14,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.5],"min":[0.1875,0.4375],"name":"tex_coords_gate_SQRT_Y_DAG","type":"VEC2"},{"bufferView":15,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.5625],"min":[0.1875,0.5],"name":"tex_coords_gate_S_DAG","type":"VEC2"},{"bufferView":16,"byteOffset":0,"componentType":5126,"count":8,"max":[1,-0,-0],"min":[-6,-6,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":17,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_I","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_C_XYZ","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_C_ZYX","target":34962},{"buffer":7,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H","target":34962},{"buffer":8,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H_XY","target":34962},{"buffer":9,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H_YZ","target":34962},{"buffer":10,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_S","target":34962},{"buffer":11,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_X","target":34962},{"buffer":12,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_X_DAG","target":34962},{"buffer":13,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_Y","target":34962},{"buffer":14,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_Y_DAG","target":34962},{"buffer":15,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_S_DAG","target":34962},{"buffer":16,"byteLength":96,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":17,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_I","uri":"data:application/octet-stream;base64,AACAPQAAwD4AAAAAAADAPgAAgD0AAOA+AAAAAAAAwD4AAAAAAADgPgAAgD0AAOA+AACAPQAA4D4AAIA9AADAPgAAAAAAAOA+AAAAAAAA4D4AAIA9AADAPgAAAAAAAMA+"},{"byteLength":96,"name":"tex_coords_gate_X","uri":"data:application/octet-stream;base64,AACAPQAAwD4AAAAAAADAPgAAgD0AAOA+AAAAAAAAwD4AAAAAAADgPgAAgD0AAOA+AACAPQAA4D4AAIA9AADAPgAAAAAAAOA+AAAAAAAA4D4AAIA9AADAPgAAAAAAAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y","uri":"data:application/octet-stream;base64,AACAPQAA4D4AAAAAAADgPgAAgD0AAAA/AAAAAAAA4D4AAAAAAAAAPwAAgD0AAAA/AACAPQAAAD8AAIA9AADgPgAAAAAAAAA/AAAAAAAAAD8AAIA9AADgPgAAAAAAAOA+"},{"byteLength":96,"name":"tex_coords_gate_Z","uri":"data:application/octet-stream;base64,AACAPQAAAD8AAAAAAAAAPwAAgD0AABA/AAAAAAAAAD8AAAAAAAAQPwAAgD0AABA/AACAPQAAED8AAIA9AAAAPwAAAAAAABA/AAAAAAAAED8AAIA9AAAAPwAAAAAAAAA/"},{"byteLength":96,"name":"tex_coords_gate_C_XYZ","uri":"data:application/octet-stream;base64,AAAAPgAAED8AAIA9AAAQPwAAAD4AACA/AACAPQAAED8AAIA9AAAgPwAAAD4AACA/AAAAPgAAID8AAAA+AAAQPwAAgD0AACA/AACAPQAAID8AAAA+AAAQPwAAgD0AABA/"},{"byteLength":96,"name":"tex_coords_gate_C_ZYX","uri":"data:application/octet-stream;base64,AABAPgAAED8AAAA+AAAQPwAAQD4AACA/AAAAPgAAED8AAAA+AAAgPwAAQD4AACA/AABAPgAAID8AAEA+AAAQPwAAAD4AACA/AAAAPgAAID8AAEA+AAAQPwAAAD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_H","uri":"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+"},{"byteLength":96,"name":"tex_coords_gate_H_XY","uri":"data:application/octet-stream;base64,AAAAPgAAAD8AAIA9AAAAPwAAAD4AABA/AACAPQAAAD8AAIA9AAAQPwAAAD4AABA/AAAAPgAAED8AAAA+AAAAPwAAgD0AABA/AACAPQAAED8AAAA+AAAAPwAAgD0AAAA/"},{"byteLength":96,"name":"tex_coords_gate_H_YZ","uri":"data:application/octet-stream;base64,AAAAPgAAwD4AAIA9AADAPgAAAD4AAOA+AACAPQAAwD4AAIA9AADgPgAAAD4AAOA+AAAAPgAA4D4AAAA+AADAPgAAgD0AAOA+AACAPQAA4D4AAAA+AADAPgAAgD0AAMA+"},{"byteLength":96,"name":"tex_coords_gate_S","uri":"data:application/octet-stream;base64,AABAPgAAAD8AAAA+AAAAPwAAQD4AABA/AAAAPgAAAD8AAAA+AAAQPwAAQD4AABA/AABAPgAAED8AAEA+AAAAPwAAAD4AABA/AAAAPgAAED8AAEA+AAAAPwAAAD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_X","uri":"data:application/octet-stream;base64,AABAPgAAwD4AAAA+AADAPgAAQD4AAOA+AAAAPgAAwD4AAAA+AADgPgAAQD4AAOA+AABAPgAA4D4AAEA+AADAPgAAAD4AAOA+AAAAPgAA4D4AAEA+AADAPgAAAD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_X_DAG","uri":"data:application/octet-stream;base64,AACAPgAAwD4AAEA+AADAPgAAgD4AAOA+AABAPgAAwD4AAEA+AADgPgAAgD4AAOA+AACAPgAA4D4AAIA+AADAPgAAQD4AAOA+AABAPgAA4D4AAIA+AADAPgAAQD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_Y","uri":"data:application/octet-stream;base64,AABAPgAA4D4AAAA+AADgPgAAQD4AAAA/AAAAPgAA4D4AAAA+AAAAPwAAQD4AAAA/AABAPgAAAD8AAEA+AADgPgAAAD4AAAA/AAAAPgAAAD8AAEA+AADgPgAAAD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_Y_DAG","uri":"data:application/octet-stream;base64,AACAPgAA4D4AAEA+AADgPgAAgD4AAAA/AABAPgAA4D4AAEA+AAAAPwAAgD4AAAA/AACAPgAAAD8AAIA+AADgPgAAQD4AAAA/AABAPgAAAD8AAIA+AADgPgAAQD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_S_DAG","uri":"data:application/octet-stream;base64,AACAPgAAAD8AAEA+AAAAPwAAgD4AABA/AABAPgAAAD8AAEA+AAAQPwAAgD4AABA/AACAPgAAED8AAIA+AAAAPwAAQD4AABA/AABAPgAAED8AAIA+AAAAPwAAQD4AAAA/"},{"byteLength":96,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAPwAAAIAAAACAAADAwAAAAIAAAACAAACAPwAAAMAAAACAAADAwAAAAMAAAACAAACAPwAAgMAAAACAAADAwAAAgMAAAACAAACAPwAAwMAAAACAAADAwAAAwMAAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":7},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":8},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":9},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":10},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":11},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":12},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":13},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":14},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":15},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":16},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":17},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":1,"translation":[-0,-2,-0]},{"mesh":2,"translation":[-0,-4,-0]},{"mesh":3,"translation":[-0,-6,-0]},{"mesh":4,"translation":[-1,-0,-0]},{"mesh":5,"translation":[-1,-2,-0]},{"mesh":6,"translation":[-1,-4,-0]},{"mesh":7,"translation":[-1,-6,-0]},{"mesh":6,"translation":[-2,-0,-0]},{"mesh":8,"translation":[-2,-2,-0]},{"mesh":9,"translation":[-2,-4,-0]},{"mesh":10,"translation":[-2,-6,-0]},{"mesh":11,"translation":[-3,-0,-0]},{"mesh":12,"translation":[-3,-2,-0]},{"mesh":13,"translation":[-3,-4,-0]},{"mesh":9,"translation":[-3,-6,-0]},{"mesh":14,"translation":[-4,-0,-0]},{"mesh":14,"translation":[-4,-2,-0]},{"mesh":6,"translation":[-4,-4,-0]},{"mesh":6,"translation":[-5,-0,-0]},{"mesh":6,"translation":[-5,-6,-0]},{"mesh":15,"translation":[0,0,0]},{"mesh":16,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.4375],"min":[0,0.375],"name":"tex_coords_gate_I","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.4375],"min":[0,0.375],"name":"tex_coords_gate_X","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.5],"min":[0,0.4375],"name":"tex_coords_gate_Y","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0.0625,0.5625],"min":[0,0.5],"name":"tex_coords_gate_Z","type":"VEC2"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.625],"min":[0.0625,0.5625],"name":"tex_coords_gate_C_XYZ","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.625],"min":[0.125,0.5625],"name":"tex_coords_gate_C_ZYX","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5],"min":[0.0625,0.4375],"name":"tex_coords_gate_H","type":"VEC2"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5625],"min":[0.0625,0.5],"name":"tex_coords_gate_H_XY","type":"VEC2"},{"bufferView":9,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.4375],"min":[0.0625,0.375],"name":"tex_coords_gate_H_YZ","type":"VEC2"},{"bufferView":10,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.5625],"min":[0.125,0.5],"name":"tex_coords_gate_S","type":"VEC2"},{"bufferView":11,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.4375],"min":[0.125,0.375],"name":"tex_coords_gate_SQRT_X","type":"VEC2"},{"bufferView":12,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.4375],"min":[0.1875,0.375],"name":"tex_coords_gate_SQRT_X_DAG","type":"VEC2"},{"bufferView":13,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.5],"min":[0.125,0.4375],"name":"tex_coords_gate_SQRT_Y","type":"VEC2"},{"bufferView":14,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.5],"min":[0.1875,0.4375],"name":"tex_coords_gate_SQRT_Y_DAG","type":"VEC2"},{"bufferView":15,"byteOffset":0,"componentType":5126,"count":12,"max":[0.25,0.5625],"min":[0.1875,0.5],"name":"tex_coords_gate_S_DAG","type":"VEC2"},{"bufferView":16,"byteOffset":0,"componentType":5126,"count":8,"max":[1,-0,-0],"min":[-6,-6,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":17,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_I","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_X","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Y","target":34962},{"buffer":4,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_Z","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_C_XYZ","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_C_ZYX","target":34962},{"buffer":7,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H","target":34962},{"buffer":8,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H_XY","target":34962},{"buffer":9,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H_YZ","target":34962},{"buffer":10,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_S","target":34962},{"buffer":11,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_X","target":34962},{"buffer":12,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_X_DAG","target":34962},{"buffer":13,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_Y","target":34962},{"buffer":14,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_Y_DAG","target":34962},{"buffer":15,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_S_DAG","target":34962},{"buffer":16,"byteLength":96,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":17,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_I","uri":"data:application/octet-stream;base64,AACAPQAAwD4AAAAAAADAPgAAgD0AAOA+AAAAAAAAwD4AAAAAAADgPgAAgD0AAOA+AACAPQAA4D4AAIA9AADAPgAAAAAAAOA+AAAAAAAA4D4AAIA9AADAPgAAAAAAAMA+"},{"byteLength":96,"name":"tex_coords_gate_X","uri":"data:application/octet-stream;base64,AACAPQAAwD4AAAAAAADAPgAAgD0AAOA+AAAAAAAAwD4AAAAAAADgPgAAgD0AAOA+AACAPQAA4D4AAIA9AADAPgAAAAAAAOA+AAAAAAAA4D4AAIA9AADAPgAAAAAAAMA+"},{"byteLength":96,"name":"tex_coords_gate_Y","uri":"data:application/octet-stream;base64,AACAPQAA4D4AAAAAAADgPgAAgD0AAAA/AAAAAAAA4D4AAAAAAAAAPwAAgD0AAAA/AACAPQAAAD8AAIA9AADgPgAAAAAAAAA/AAAAAAAAAD8AAIA9AADgPgAAAAAAAOA+"},{"byteLength":96,"name":"tex_coords_gate_Z","uri":"data:application/octet-stream;base64,AACAPQAAAD8AAAAAAAAAPwAAgD0AABA/AAAAAAAAAD8AAAAAAAAQPwAAgD0AABA/AACAPQAAED8AAIA9AAAAPwAAAAAAABA/AAAAAAAAED8AAIA9AAAAPwAAAAAAAAA/"},{"byteLength":96,"name":"tex_coords_gate_C_XYZ","uri":"data:application/octet-stream;base64,AAAAPgAAED8AAIA9AAAQPwAAAD4AACA/AACAPQAAED8AAIA9AAAgPwAAAD4AACA/AAAAPgAAID8AAAA+AAAQPwAAgD0AACA/AACAPQAAID8AAAA+AAAQPwAAgD0AABA/"},{"byteLength":96,"name":"tex_coords_gate_C_ZYX","uri":"data:application/octet-stream;base64,AABAPgAAED8AAAA+AAAQPwAAQD4AACA/AAAAPgAAED8AAAA+AAAgPwAAQD4AACA/AABAPgAAID8AAEA+AAAQPwAAAD4AACA/AAAAPgAAID8AAEA+AAAQPwAAAD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_H","uri":"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+"},{"byteLength":96,"name":"tex_coords_gate_H_XY","uri":"data:application/octet-stream;base64,AAAAPgAAAD8AAIA9AAAAPwAAAD4AABA/AACAPQAAAD8AAIA9AAAQPwAAAD4AABA/AAAAPgAAED8AAAA+AAAAPwAAgD0AABA/AACAPQAAED8AAAA+AAAAPwAAgD0AAAA/"},{"byteLength":96,"name":"tex_coords_gate_H_YZ","uri":"data:application/octet-stream;base64,AAAAPgAAwD4AAIA9AADAPgAAAD4AAOA+AACAPQAAwD4AAIA9AADgPgAAAD4AAOA+AAAAPgAA4D4AAAA+AADAPgAAgD0AAOA+AACAPQAA4D4AAAA+AADAPgAAgD0AAMA+"},{"byteLength":96,"name":"tex_coords_gate_S","uri":"data:application/octet-stream;base64,AABAPgAAAD8AAAA+AAAAPwAAQD4AABA/AAAAPgAAAD8AAAA+AAAQPwAAQD4AABA/AABAPgAAED8AAEA+AAAAPwAAAD4AABA/AAAAPgAAED8AAEA+AAAAPwAAAD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_X","uri":"data:application/octet-stream;base64,AABAPgAAwD4AAAA+AADAPgAAQD4AAOA+AAAAPgAAwD4AAAA+AADgPgAAQD4AAOA+AABAPgAA4D4AAEA+AADAPgAAAD4AAOA+AAAAPgAA4D4AAEA+AADAPgAAAD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_X_DAG","uri":"data:application/octet-stream;base64,AACAPgAAwD4AAEA+AADAPgAAgD4AAOA+AABAPgAAwD4AAEA+AADgPgAAgD4AAOA+AACAPgAA4D4AAIA+AADAPgAAQD4AAOA+AABAPgAA4D4AAIA+AADAPgAAQD4AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_Y","uri":"data:application/octet-stream;base64,AABAPgAA4D4AAAA+AADgPgAAQD4AAAA/AAAAPgAA4D4AAAA+AAAAPwAAQD4AAAA/AABAPgAAAD8AAEA+AADgPgAAAD4AAAA/AAAAPgAAAD8AAEA+AADgPgAAAD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_Y_DAG","uri":"data:application/octet-stream;base64,AACAPgAA4D4AAEA+AADgPgAAgD4AAAA/AABAPgAA4D4AAEA+AAAAPwAAgD4AAAA/AACAPgAAAD8AAIA+AADgPgAAQD4AAAA/AABAPgAAAD8AAIA+AADgPgAAQD4AAOA+"},{"byteLength":96,"name":"tex_coords_gate_S_DAG","uri":"data:application/octet-stream;base64,AACAPgAAAD8AAEA+AAAAPwAAgD4AABA/AABAPgAAAD8AAEA+AAAQPwAAgD4AABA/AACAPgAAED8AAIA+AAAAPwAAQD4AABA/AABAPgAAED8AAIA+AAAAPwAAQD4AAAA/"},{"byteLength":96,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAPwAAAIAAAACAAADAwAAAAIAAAACAAACAPwAAAMAAAACAAADAwAAAAMAAAACAAACAPwAAgMAAAACAAADAwAAAgMAAAACAAACAPwAAwMAAAACAAADAwAAAwMAAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":4},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":5},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":7},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":8},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":9},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":10},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":11},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":12},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":13},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":14},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":15},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":16},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":17},"material":2,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":1,"translation":[-0,-2,-0]},{"mesh":2,"translation":[-0,-4,-0]},{"mesh":3,"translation":[-0,-6,-0]},{"mesh":4,"translation":[-1,-0,-0]},{"mesh":5,"translation":[-1,-2,-0]},{"mesh":6,"translation":[-1,-4,-0]},{"mesh":7,"translation":[-1,-6,-0]},{"mesh":6,"translation":[-2,-0,-0]},{"mesh":8,"translation":[-2,-2,-0]},{"mesh":9,"translation":[-2,-4,-0]},{"mesh":10,"translation":[-2,-6,-0]},{"mesh":11,"translation":[-3,-0,-0]},{"mesh":12,"translation":[-3,-2,-0]},{"mesh":13,"translation":[-3,-4,-0]},{"mesh":9,"translation":[-3,-6,-0]},{"mesh":14,"translation":[-4,-0,-0]},{"mesh":14,"translation":[-4,-2,-0]},{"mesh":6,"translation":[-4,-4,-0]},{"mesh":6,"translation":[-5,-0,-0]},{"mesh":6,"translation":[-5,-6,-0]},{"mesh":15,"translation":[0,0,0]},{"mesh":16,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/surface_code.gltf b/testdata/surface_code.gltf index dbe3e626..1ec7ab45 100644 --- a/testdata/surface_code.gltf +++ b/testdata/surface_code.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5625],"min":[0.3125,0.5],"name":"tex_coords_gate_R","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5],"min":[0.0625,0.4375],"name":"tex_coords_gate_H","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"control_x_line_cross","type":"VEC3"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5625],"min":[0.375,0.5],"name":"tex_coords_gate_MR","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":210,"max":[1,-32,-32],"min":[-17,-40,-40],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":9,"byteOffset":0,"componentType":5126,"count":30,"max":[0,-29.5,-31],"min":[-15.25,-41,-41],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_R","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H","target":34962},{"buffer":3,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":4,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":5,"byteLength":48,"byteOffset":0,"name":"control_x_line_cross","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MR","target":34962},{"buffer":7,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":8,"byteLength":2520,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":9,"byteLength":360,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_R","uri":"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_H","uri":"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_x_line_cross","uri":"data:application/octet-stream;base64,AAAAAM3MzL4AAAAAAAAAAM3MzD4AAAAAAAAAAAAAAADNzMy+AAAAAAAAAADNzMw+"},{"byteLength":96,"name":"tex_coords_gate_MR","uri":"data:application/octet-stream;base64,AADgPgAAAD8AAMA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+AAAQPwAA4D4AABA/AADgPgAAED8AAOA+AAAAPwAAwD4AABA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":2520,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AAAAwAAACMIAAADCAAAAwAAAEMIAAADCAAAAwAAACMIAABDCAAAAwAAAEMIAABDCAAAAwAAACMIAACDCAAAAwAAAEMIAACDCAAAAwAAAGMIAAADCAAAAwAAAIMIAAADCAAAAwAAAGMIAABDCAAAAwAAAIMIAABDCAAAAwAAAGMIAACDCAAAAwAAAIMIAACDCAAAAwAAACMIAAAjCAAAAwAAAAMIAAAjCAAAAwAAACMIAABjCAAAAwAAAAMIAABjCAAAAwAAAGMIAAAjCAAAAwAAAEMIAAAjCAAAAwAAAGMIAABjCAAAAwAAAEMIAABjCAABAwAAACMIAAADCAABAwAAACMIAAAjCAABAwAAACMIAABDCAABAwAAACMIAABjCAABAwAAAGMIAAADCAABAwAAAGMIAAAjCAABAwAAAGMIAABDCAABAwAAAGMIAABjCAABAwAAAAMIAABDCAABAwAAAAMIAAAjCAABAwAAAAMIAACDCAABAwAAAAMIAABjCAABAwAAAEMIAABDCAABAwAAAEMIAAAjCAABAwAAAEMIAACDCAABAwAAAEMIAABjCAABAwAAAIMIAABDCAABAwAAAIMIAAAjCAABAwAAAIMIAACDCAABAwAAAIMIAABjCAACAwAAACMIAABDCAACAwAAACMIAAAjCAACAwAAACMIAACDCAACAwAAACMIAABjCAACAwAAAGMIAABDCAACAwAAAGMIAAAjCAACAwAAAGMIAACDCAACAwAAAGMIAABjCAACAwAAAAMIAAADCAACAwAAAAMIAAAjCAACAwAAAAMIAABDCAACAwAAAAMIAABjCAACAwAAAEMIAAADCAACAwAAAEMIAAAjCAACAwAAAEMIAABDCAACAwAAAEMIAABjCAACAwAAAIMIAAADCAACAwAAAIMIAAAjCAACAwAAAIMIAABDCAACAwAAAIMIAABjCAACgwAAACMIAAADCAACgwAAAAMIAAADCAACgwAAACMIAABDCAACgwAAAAMIAABDCAACgwAAACMIAACDCAACgwAAAAMIAACDCAACgwAAAGMIAAADCAACgwAAAEMIAAADCAACgwAAAGMIAABDCAACgwAAAEMIAABDCAACgwAAAGMIAACDCAACgwAAAEMIAACDCAACgwAAACMIAAAjCAACgwAAAEMIAAAjCAACgwAAACMIAABjCAACgwAAAEMIAABjCAACgwAAAGMIAAAjCAACgwAAAIMIAAAjCAACgwAAAGMIAABjCAACgwAAAIMIAABjCAAAgwQAACMIAAADCAAAgwQAAEMIAAADCAAAgwQAACMIAABDCAAAgwQAAEMIAABDCAAAgwQAACMIAACDCAAAgwQAAEMIAACDCAAAgwQAAGMIAAADCAAAgwQAAIMIAAADCAAAgwQAAGMIAABDCAAAgwQAAIMIAABDCAAAgwQAAGMIAACDCAAAgwQAAIMIAACDCAAAgwQAACMIAAAjCAAAgwQAAAMIAAAjCAAAgwQAACMIAABjCAAAgwQAAAMIAABjCAAAgwQAAGMIAAAjCAAAgwQAAEMIAAAjCAAAgwQAAGMIAABjCAAAgwQAAEMIAABjCAAAwwQAACMIAAADCAAAwwQAACMIAAAjCAAAwwQAACMIAABDCAAAwwQAACMIAABjCAAAwwQAAGMIAAADCAAAwwQAAGMIAAAjCAAAwwQAAGMIAABDCAAAwwQAAGMIAABjCAAAwwQAAAMIAABDCAAAwwQAAAMIAAAjCAAAwwQAAAMIAACDCAAAwwQAAAMIAABjCAAAwwQAAEMIAABDCAAAwwQAAEMIAAAjCAAAwwQAAEMIAACDCAAAwwQAAEMIAABjCAAAwwQAAIMIAABDCAAAwwQAAIMIAAAjCAAAwwQAAIMIAACDCAAAwwQAAIMIAABjCAABAwQAACMIAABDCAABAwQAACMIAAAjCAABAwQAACMIAACDCAABAwQAACMIAABjCAABAwQAAGMIAABDCAABAwQAAGMIAAAjCAABAwQAAGMIAACDCAABAwQAAGMIAABjCAABAwQAAAMIAAADCAABAwQAAAMIAAAjCAABAwQAAAMIAABDCAABAwQAAAMIAABjCAABAwQAAEMIAAADCAABAwQAAEMIAAAjCAABAwQAAEMIAABDCAABAwQAAEMIAABjCAABAwQAAIMIAAADCAABAwQAAIMIAAAjCAABAwQAAIMIAABDCAABAwQAAIMIAABjCAABQwQAACMIAAADCAABQwQAAAMIAAADCAABQwQAACMIAABDCAABQwQAAAMIAABDCAABQwQAACMIAACDCAABQwQAAAMIAACDCAABQwQAAGMIAAADCAABQwQAAEMIAAADCAABQwQAAGMIAABDCAABQwQAAEMIAABDCAABQwQAAGMIAACDCAABQwQAAEMIAACDCAABQwQAACMIAAAjCAABQwQAAEMIAAAjCAABQwQAACMIAABjCAABQwQAAEMIAABjCAABQwQAAGMIAAAjCAABQwQAAIMIAAAjCAABQwQAAGMIAABjCAABQwQAAIMIAABjCAACAPwAAAMIAAADCAACIwQAAAMIAAADCAACAPwAACMIAAADCAACIwQAACMIAAADCAACAPwAAEMIAAADCAACIwQAAEMIAAADCAACAPwAAGMIAAADCAACIwQAAGMIAAADCAACAPwAAIMIAAADCAACIwQAAIMIAAADCAACAPwAAAMIAAAjCAACIwQAAAMIAAAjCAACAPwAACMIAAAjCAACIwQAACMIAAAjCAACAPwAAEMIAAAjCAACIwQAAEMIAAAjCAACAPwAAGMIAAAjCAACIwQAAGMIAAAjCAACAPwAAIMIAAAjCAACIwQAAIMIAAAjCAACAPwAAAMIAABDCAACIwQAAAMIAABDCAACAPwAACMIAABDCAACIwQAACMIAABDCAACAPwAAEMIAABDCAACIwQAAEMIAABDCAACAPwAAGMIAABDCAACIwQAAGMIAABDCAACAPwAAIMIAABDCAACIwQAAIMIAABDCAACAPwAAAMIAABjCAACIwQAAAMIAABjCAACAPwAACMIAABjCAACIwQAACMIAABjCAACAPwAAEMIAABjCAACIwQAAEMIAABjCAACAPwAAGMIAABjCAACIwQAAGMIAABjCAACAPwAAIMIAABjCAACIwQAAIMIAABjCAACAPwAAAMIAACDCAACIwQAAAMIAACDCAACAPwAACMIAACDCAACIwQAACMIAACDCAACAPwAAEMIAACDCAACIwQAAEMIAACDCAACAPwAAGMIAACDCAACIwQAAGMIAACDCAACAPwAAIMIAACDCAACIwQAAIMIAACDC"},{"byteLength":360,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAA8MEAABDCAABAwAAA8MEAABDCAAAgwAAA9MEAABDCAABAwAAA8MEAABDCAAAgwAAA7MEAABDCAABAwAAA8MEAABDCAAD4wAAA+MEAAPjBAAD4wAAA+MEAACTCAAD4wAAA+MEAAPjBAAD4wAAAJMIAAPjBAAD4wAAA+MEAAPjBAAB0wQAA+MEAAPjBAAD4wAAA+MEAACTCAAD4wAAAJMIAACTCAAD4wAAA+MEAACTCAAB0wQAA+MEAACTCAAD4wAAAJMIAAPjBAAD4wAAAJMIAACTCAAD4wAAAJMIAAPjBAAB0wQAAJMIAAPjBAAD4wAAAJMIAACTCAAB0wQAAJMIAACTCAAB0wQAA+MEAAPjBAAB0wQAA+MEAACTCAAB0wQAA+MEAAPjBAAB0wQAAJMIAAPjBAAB0wQAA+MEAACTCAAB0wQAAJMIAACTCAAB0wQAAJMIAAPjBAAB0wQAAJMIAACTC"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"white","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":6}]},{"primitives":[{"attributes":{"POSITION":4},"material":2,"mode":6},{"attributes":{"POSITION":4},"material":3,"mode":3},{"attributes":{"POSITION":5},"material":3,"mode":1}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":7},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":8},"material":4,"mode":1}]},{"primitives":[{"attributes":{"POSITION":9},"material":5,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-32,-32]},{"mesh":0,"translation":[-0,-36,-32]},{"mesh":0,"translation":[-0,-40,-32]},{"mesh":0,"translation":[-0,-34,-34]},{"mesh":0,"translation":[-0,-38,-34]},{"mesh":0,"translation":[-0,-32,-36]},{"mesh":0,"translation":[-0,-36,-36]},{"mesh":0,"translation":[-0,-40,-36]},{"mesh":0,"translation":[-0,-34,-38]},{"mesh":0,"translation":[-0,-38,-38]},{"mesh":0,"translation":[-0,-32,-40]},{"mesh":0,"translation":[-0,-36,-40]},{"mesh":0,"translation":[-0,-40,-40]},{"mesh":0,"translation":[-0,-34,-32]},{"mesh":0,"translation":[-0,-38,-32]},{"mesh":0,"translation":[-0,-32,-34]},{"mesh":0,"translation":[-0,-36,-34]},{"mesh":0,"translation":[-0,-40,-34]},{"mesh":0,"translation":[-0,-34,-36]},{"mesh":0,"translation":[-0,-38,-36]},{"mesh":0,"translation":[-0,-32,-38]},{"mesh":0,"translation":[-0,-36,-38]},{"mesh":0,"translation":[-0,-40,-38]},{"mesh":0,"translation":[-0,-34,-40]},{"mesh":0,"translation":[-0,-38,-40]},{"mesh":1,"translation":[-1,-34,-32]},{"mesh":1,"translation":[-1,-38,-32]},{"mesh":1,"translation":[-1,-34,-36]},{"mesh":1,"translation":[-1,-38,-36]},{"mesh":1,"translation":[-1,-34,-40]},{"mesh":1,"translation":[-1,-38,-40]},{"mesh":2,"translation":[-2,-34,-32]},{"mesh":3,"translation":[-2,-36,-32]},{"mesh":2,"translation":[-2,-34,-36]},{"mesh":3,"translation":[-2,-36,-36]},{"mesh":2,"translation":[-2,-34,-40]},{"mesh":3,"translation":[-2,-36,-40]},{"mesh":2,"translation":[-2,-38,-32]},{"mesh":3,"translation":[-2,-40,-32]},{"mesh":2,"translation":[-2,-38,-36]},{"mesh":3,"translation":[-2,-40,-36]},{"mesh":2,"translation":[-2,-38,-40]},{"mesh":3,"translation":[-2,-40,-40]},{"mesh":2,"translation":[-2,-34,-34]},{"mesh":3,"translation":[-2,-32,-34]},{"mesh":2,"translation":[-2,-34,-38]},{"mesh":3,"translation":[-2,-32,-38]},{"mesh":2,"translation":[-2,-38,-34]},{"mesh":3,"translation":[-2,-36,-34]},{"mesh":2,"translation":[-2,-38,-38]},{"mesh":3,"translation":[-2,-36,-38]},{"mesh":2,"translation":[-3,-34,-32]},{"mesh":3,"translation":[-3,-34,-34]},{"mesh":2,"translation":[-3,-34,-36]},{"mesh":3,"translation":[-3,-34,-38]},{"mesh":2,"translation":[-3,-38,-32]},{"mesh":3,"translation":[-3,-38,-34]},{"mesh":2,"translation":[-3,-38,-36]},{"mesh":3,"translation":[-3,-38,-38]},{"mesh":2,"translation":[-3,-32,-36]},{"mesh":3,"translation":[-3,-32,-34]},{"mesh":2,"translation":[-3,-32,-40]},{"mesh":3,"translation":[-3,-32,-38]},{"mesh":2,"translation":[-3,-36,-36]},{"mesh":3,"translation":[-3,-36,-34]},{"mesh":2,"translation":[-3,-36,-40]},{"mesh":3,"translation":[-3,-36,-38]},{"mesh":2,"translation":[-3,-40,-36]},{"mesh":3,"translation":[-3,-40,-34]},{"mesh":2,"translation":[-3,-40,-40]},{"mesh":3,"translation":[-3,-40,-38]},{"mesh":2,"translation":[-4,-34,-36]},{"mesh":3,"translation":[-4,-34,-34]},{"mesh":2,"translation":[-4,-34,-40]},{"mesh":3,"translation":[-4,-34,-38]},{"mesh":2,"translation":[-4,-38,-36]},{"mesh":3,"translation":[-4,-38,-34]},{"mesh":2,"translation":[-4,-38,-40]},{"mesh":3,"translation":[-4,-38,-38]},{"mesh":2,"translation":[-4,-32,-32]},{"mesh":3,"translation":[-4,-32,-34]},{"mesh":2,"translation":[-4,-32,-36]},{"mesh":3,"translation":[-4,-32,-38]},{"mesh":2,"translation":[-4,-36,-32]},{"mesh":3,"translation":[-4,-36,-34]},{"mesh":2,"translation":[-4,-36,-36]},{"mesh":3,"translation":[-4,-36,-38]},{"mesh":2,"translation":[-4,-40,-32]},{"mesh":3,"translation":[-4,-40,-34]},{"mesh":2,"translation":[-4,-40,-36]},{"mesh":3,"translation":[-4,-40,-38]},{"mesh":2,"translation":[-5,-34,-32]},{"mesh":3,"translation":[-5,-32,-32]},{"mesh":2,"translation":[-5,-34,-36]},{"mesh":3,"translation":[-5,-32,-36]},{"mesh":2,"translation":[-5,-34,-40]},{"mesh":3,"translation":[-5,-32,-40]},{"mesh":2,"translation":[-5,-38,-32]},{"mesh":3,"translation":[-5,-36,-32]},{"mesh":2,"translation":[-5,-38,-36]},{"mesh":3,"translation":[-5,-36,-36]},{"mesh":2,"translation":[-5,-38,-40]},{"mesh":3,"translation":[-5,-36,-40]},{"mesh":2,"translation":[-5,-34,-34]},{"mesh":3,"translation":[-5,-36,-34]},{"mesh":2,"translation":[-5,-34,-38]},{"mesh":3,"translation":[-5,-36,-38]},{"mesh":2,"translation":[-5,-38,-34]},{"mesh":3,"translation":[-5,-40,-34]},{"mesh":2,"translation":[-5,-38,-38]},{"mesh":3,"translation":[-5,-40,-38]},{"mesh":1,"translation":[-6,-34,-32]},{"mesh":1,"translation":[-6,-38,-32]},{"mesh":1,"translation":[-6,-34,-36]},{"mesh":1,"translation":[-6,-38,-36]},{"mesh":1,"translation":[-6,-34,-40]},{"mesh":1,"translation":[-6,-38,-40]},{"mesh":4,"translation":[-7,-34,-32]},{"mesh":4,"translation":[-7,-38,-32]},{"mesh":4,"translation":[-7,-32,-34]},{"mesh":4,"translation":[-7,-36,-34]},{"mesh":4,"translation":[-7,-40,-34]},{"mesh":4,"translation":[-7,-34,-36]},{"mesh":4,"translation":[-7,-38,-36]},{"mesh":4,"translation":[-7,-32,-38]},{"mesh":4,"translation":[-7,-36,-38]},{"mesh":4,"translation":[-7,-40,-38]},{"mesh":4,"translation":[-7,-34,-40]},{"mesh":4,"translation":[-7,-38,-40]},{"mesh":1,"translation":[-9,-34,-32]},{"mesh":1,"translation":[-9,-38,-32]},{"mesh":1,"translation":[-9,-34,-36]},{"mesh":1,"translation":[-9,-38,-36]},{"mesh":1,"translation":[-9,-34,-40]},{"mesh":1,"translation":[-9,-38,-40]},{"mesh":2,"translation":[-10,-34,-32]},{"mesh":3,"translation":[-10,-36,-32]},{"mesh":2,"translation":[-10,-34,-36]},{"mesh":3,"translation":[-10,-36,-36]},{"mesh":2,"translation":[-10,-34,-40]},{"mesh":3,"translation":[-10,-36,-40]},{"mesh":2,"translation":[-10,-38,-32]},{"mesh":3,"translation":[-10,-40,-32]},{"mesh":2,"translation":[-10,-38,-36]},{"mesh":3,"translation":[-10,-40,-36]},{"mesh":2,"translation":[-10,-38,-40]},{"mesh":3,"translation":[-10,-40,-40]},{"mesh":2,"translation":[-10,-34,-34]},{"mesh":3,"translation":[-10,-32,-34]},{"mesh":2,"translation":[-10,-34,-38]},{"mesh":3,"translation":[-10,-32,-38]},{"mesh":2,"translation":[-10,-38,-34]},{"mesh":3,"translation":[-10,-36,-34]},{"mesh":2,"translation":[-10,-38,-38]},{"mesh":3,"translation":[-10,-36,-38]},{"mesh":2,"translation":[-11,-34,-32]},{"mesh":3,"translation":[-11,-34,-34]},{"mesh":2,"translation":[-11,-34,-36]},{"mesh":3,"translation":[-11,-34,-38]},{"mesh":2,"translation":[-11,-38,-32]},{"mesh":3,"translation":[-11,-38,-34]},{"mesh":2,"translation":[-11,-38,-36]},{"mesh":3,"translation":[-11,-38,-38]},{"mesh":2,"translation":[-11,-32,-36]},{"mesh":3,"translation":[-11,-32,-34]},{"mesh":2,"translation":[-11,-32,-40]},{"mesh":3,"translation":[-11,-32,-38]},{"mesh":2,"translation":[-11,-36,-36]},{"mesh":3,"translation":[-11,-36,-34]},{"mesh":2,"translation":[-11,-36,-40]},{"mesh":3,"translation":[-11,-36,-38]},{"mesh":2,"translation":[-11,-40,-36]},{"mesh":3,"translation":[-11,-40,-34]},{"mesh":2,"translation":[-11,-40,-40]},{"mesh":3,"translation":[-11,-40,-38]},{"mesh":2,"translation":[-12,-34,-36]},{"mesh":3,"translation":[-12,-34,-34]},{"mesh":2,"translation":[-12,-34,-40]},{"mesh":3,"translation":[-12,-34,-38]},{"mesh":2,"translation":[-12,-38,-36]},{"mesh":3,"translation":[-12,-38,-34]},{"mesh":2,"translation":[-12,-38,-40]},{"mesh":3,"translation":[-12,-38,-38]},{"mesh":2,"translation":[-12,-32,-32]},{"mesh":3,"translation":[-12,-32,-34]},{"mesh":2,"translation":[-12,-32,-36]},{"mesh":3,"translation":[-12,-32,-38]},{"mesh":2,"translation":[-12,-36,-32]},{"mesh":3,"translation":[-12,-36,-34]},{"mesh":2,"translation":[-12,-36,-36]},{"mesh":3,"translation":[-12,-36,-38]},{"mesh":2,"translation":[-12,-40,-32]},{"mesh":3,"translation":[-12,-40,-34]},{"mesh":2,"translation":[-12,-40,-36]},{"mesh":3,"translation":[-12,-40,-38]},{"mesh":2,"translation":[-13,-34,-32]},{"mesh":3,"translation":[-13,-32,-32]},{"mesh":2,"translation":[-13,-34,-36]},{"mesh":3,"translation":[-13,-32,-36]},{"mesh":2,"translation":[-13,-34,-40]},{"mesh":3,"translation":[-13,-32,-40]},{"mesh":2,"translation":[-13,-38,-32]},{"mesh":3,"translation":[-13,-36,-32]},{"mesh":2,"translation":[-13,-38,-36]},{"mesh":3,"translation":[-13,-36,-36]},{"mesh":2,"translation":[-13,-38,-40]},{"mesh":3,"translation":[-13,-36,-40]},{"mesh":2,"translation":[-13,-34,-34]},{"mesh":3,"translation":[-13,-36,-34]},{"mesh":2,"translation":[-13,-34,-38]},{"mesh":3,"translation":[-13,-36,-38]},{"mesh":2,"translation":[-13,-38,-34]},{"mesh":3,"translation":[-13,-40,-34]},{"mesh":2,"translation":[-13,-38,-38]},{"mesh":3,"translation":[-13,-40,-38]},{"mesh":1,"translation":[-14,-34,-32]},{"mesh":1,"translation":[-14,-38,-32]},{"mesh":1,"translation":[-14,-34,-36]},{"mesh":1,"translation":[-14,-38,-36]},{"mesh":1,"translation":[-14,-34,-40]},{"mesh":1,"translation":[-14,-38,-40]},{"mesh":4,"translation":[-15,-34,-32]},{"mesh":4,"translation":[-15,-38,-32]},{"mesh":4,"translation":[-15,-32,-34]},{"mesh":4,"translation":[-15,-36,-34]},{"mesh":4,"translation":[-15,-40,-34]},{"mesh":4,"translation":[-15,-34,-36]},{"mesh":4,"translation":[-15,-38,-36]},{"mesh":4,"translation":[-15,-32,-38]},{"mesh":4,"translation":[-15,-36,-38]},{"mesh":4,"translation":[-15,-40,-38]},{"mesh":4,"translation":[-15,-34,-40]},{"mesh":4,"translation":[-15,-38,-40]},{"mesh":5,"translation":[-16,-32,-32]},{"mesh":5,"translation":[-16,-36,-32]},{"mesh":5,"translation":[-16,-40,-32]},{"mesh":5,"translation":[-16,-34,-34]},{"mesh":5,"translation":[-16,-38,-34]},{"mesh":5,"translation":[-16,-32,-36]},{"mesh":5,"translation":[-16,-36,-36]},{"mesh":5,"translation":[-16,-40,-36]},{"mesh":5,"translation":[-16,-34,-38]},{"mesh":5,"translation":[-16,-38,-38]},{"mesh":5,"translation":[-16,-32,-40]},{"mesh":5,"translation":[-16,-36,-40]},{"mesh":5,"translation":[-16,-40,-40]},{"mesh":6,"translation":[0,0,0]},{"mesh":7,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.5625],"min":[0.3125,0.5],"name":"tex_coords_gate_R","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5],"min":[0.0625,0.4375],"name":"tex_coords_gate_H","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"control_x_line_cross","type":"VEC3"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.5625],"min":[0.375,0.5],"name":"tex_coords_gate_MR","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[0.3125,0.5625],"min":[0.25,0.5],"name":"tex_coords_gate_M","type":"VEC2"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":210,"max":[1,-32,-32],"min":[-17,-40,-40],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":9,"byteOffset":0,"componentType":5126,"count":30,"max":[0,-29.5,-31],"min":[-15.25,-41,-41],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_R","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H","target":34962},{"buffer":3,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":4,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":5,"byteLength":48,"byteOffset":0,"name":"control_x_line_cross","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_MR","target":34962},{"buffer":7,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_M","target":34962},{"buffer":8,"byteLength":2520,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":9,"byteLength":360,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_R","uri":"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_H","uri":"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_x_line_cross","uri":"data:application/octet-stream;base64,AAAAAM3MzL4AAAAAAAAAAM3MzD4AAAAAAAAAAAAAAADNzMy+AAAAAAAAAADNzMw+"},{"byteLength":96,"name":"tex_coords_gate_MR","uri":"data:application/octet-stream;base64,AADgPgAAAD8AAMA+AAAAPwAA4D4AABA/AADAPgAAAD8AAMA+AAAQPwAA4D4AABA/AADgPgAAED8AAOA+AAAAPwAAwD4AABA/AADAPgAAED8AAOA+AAAAPwAAwD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_M","uri":"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/"},{"byteLength":2520,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AAAAwAAACMIAAADCAAAAwAAAEMIAAADCAAAAwAAACMIAABDCAAAAwAAAEMIAABDCAAAAwAAACMIAACDCAAAAwAAAEMIAACDCAAAAwAAAGMIAAADCAAAAwAAAIMIAAADCAAAAwAAAGMIAABDCAAAAwAAAIMIAABDCAAAAwAAAGMIAACDCAAAAwAAAIMIAACDCAAAAwAAACMIAAAjCAAAAwAAAAMIAAAjCAAAAwAAACMIAABjCAAAAwAAAAMIAABjCAAAAwAAAGMIAAAjCAAAAwAAAEMIAAAjCAAAAwAAAGMIAABjCAAAAwAAAEMIAABjCAABAwAAACMIAAADCAABAwAAACMIAAAjCAABAwAAACMIAABDCAABAwAAACMIAABjCAABAwAAAGMIAAADCAABAwAAAGMIAAAjCAABAwAAAGMIAABDCAABAwAAAGMIAABjCAABAwAAAAMIAABDCAABAwAAAAMIAAAjCAABAwAAAAMIAACDCAABAwAAAAMIAABjCAABAwAAAEMIAABDCAABAwAAAEMIAAAjCAABAwAAAEMIAACDCAABAwAAAEMIAABjCAABAwAAAIMIAABDCAABAwAAAIMIAAAjCAABAwAAAIMIAACDCAABAwAAAIMIAABjCAACAwAAACMIAABDCAACAwAAACMIAAAjCAACAwAAACMIAACDCAACAwAAACMIAABjCAACAwAAAGMIAABDCAACAwAAAGMIAAAjCAACAwAAAGMIAACDCAACAwAAAGMIAABjCAACAwAAAAMIAAADCAACAwAAAAMIAAAjCAACAwAAAAMIAABDCAACAwAAAAMIAABjCAACAwAAAEMIAAADCAACAwAAAEMIAAAjCAACAwAAAEMIAABDCAACAwAAAEMIAABjCAACAwAAAIMIAAADCAACAwAAAIMIAAAjCAACAwAAAIMIAABDCAACAwAAAIMIAABjCAACgwAAACMIAAADCAACgwAAAAMIAAADCAACgwAAACMIAABDCAACgwAAAAMIAABDCAACgwAAACMIAACDCAACgwAAAAMIAACDCAACgwAAAGMIAAADCAACgwAAAEMIAAADCAACgwAAAGMIAABDCAACgwAAAEMIAABDCAACgwAAAGMIAACDCAACgwAAAEMIAACDCAACgwAAACMIAAAjCAACgwAAAEMIAAAjCAACgwAAACMIAABjCAACgwAAAEMIAABjCAACgwAAAGMIAAAjCAACgwAAAIMIAAAjCAACgwAAAGMIAABjCAACgwAAAIMIAABjCAAAgwQAACMIAAADCAAAgwQAAEMIAAADCAAAgwQAACMIAABDCAAAgwQAAEMIAABDCAAAgwQAACMIAACDCAAAgwQAAEMIAACDCAAAgwQAAGMIAAADCAAAgwQAAIMIAAADCAAAgwQAAGMIAABDCAAAgwQAAIMIAABDCAAAgwQAAGMIAACDCAAAgwQAAIMIAACDCAAAgwQAACMIAAAjCAAAgwQAAAMIAAAjCAAAgwQAACMIAABjCAAAgwQAAAMIAABjCAAAgwQAAGMIAAAjCAAAgwQAAEMIAAAjCAAAgwQAAGMIAABjCAAAgwQAAEMIAABjCAAAwwQAACMIAAADCAAAwwQAACMIAAAjCAAAwwQAACMIAABDCAAAwwQAACMIAABjCAAAwwQAAGMIAAADCAAAwwQAAGMIAAAjCAAAwwQAAGMIAABDCAAAwwQAAGMIAABjCAAAwwQAAAMIAABDCAAAwwQAAAMIAAAjCAAAwwQAAAMIAACDCAAAwwQAAAMIAABjCAAAwwQAAEMIAABDCAAAwwQAAEMIAAAjCAAAwwQAAEMIAACDCAAAwwQAAEMIAABjCAAAwwQAAIMIAABDCAAAwwQAAIMIAAAjCAAAwwQAAIMIAACDCAAAwwQAAIMIAABjCAABAwQAACMIAABDCAABAwQAACMIAAAjCAABAwQAACMIAACDCAABAwQAACMIAABjCAABAwQAAGMIAABDCAABAwQAAGMIAAAjCAABAwQAAGMIAACDCAABAwQAAGMIAABjCAABAwQAAAMIAAADCAABAwQAAAMIAAAjCAABAwQAAAMIAABDCAABAwQAAAMIAABjCAABAwQAAEMIAAADCAABAwQAAEMIAAAjCAABAwQAAEMIAABDCAABAwQAAEMIAABjCAABAwQAAIMIAAADCAABAwQAAIMIAAAjCAABAwQAAIMIAABDCAABAwQAAIMIAABjCAABQwQAACMIAAADCAABQwQAAAMIAAADCAABQwQAACMIAABDCAABQwQAAAMIAABDCAABQwQAACMIAACDCAABQwQAAAMIAACDCAABQwQAAGMIAAADCAABQwQAAEMIAAADCAABQwQAAGMIAABDCAABQwQAAEMIAABDCAABQwQAAGMIAACDCAABQwQAAEMIAACDCAABQwQAACMIAAAjCAABQwQAAEMIAAAjCAABQwQAACMIAABjCAABQwQAAEMIAABjCAABQwQAAGMIAAAjCAABQwQAAIMIAAAjCAABQwQAAGMIAABjCAABQwQAAIMIAABjCAACAPwAAAMIAAADCAACIwQAAAMIAAADCAACAPwAACMIAAADCAACIwQAACMIAAADCAACAPwAAEMIAAADCAACIwQAAEMIAAADCAACAPwAAGMIAAADCAACIwQAAGMIAAADCAACAPwAAIMIAAADCAACIwQAAIMIAAADCAACAPwAAAMIAAAjCAACIwQAAAMIAAAjCAACAPwAACMIAAAjCAACIwQAACMIAAAjCAACAPwAAEMIAAAjCAACIwQAAEMIAAAjCAACAPwAAGMIAAAjCAACIwQAAGMIAAAjCAACAPwAAIMIAAAjCAACIwQAAIMIAAAjCAACAPwAAAMIAABDCAACIwQAAAMIAABDCAACAPwAACMIAABDCAACIwQAACMIAABDCAACAPwAAEMIAABDCAACIwQAAEMIAABDCAACAPwAAGMIAABDCAACIwQAAGMIAABDCAACAPwAAIMIAABDCAACIwQAAIMIAABDCAACAPwAAAMIAABjCAACIwQAAAMIAABjCAACAPwAACMIAABjCAACIwQAACMIAABjCAACAPwAAEMIAABjCAACIwQAAEMIAABjCAACAPwAAGMIAABjCAACIwQAAGMIAABjCAACAPwAAIMIAABjCAACIwQAAIMIAABjCAACAPwAAAMIAACDCAACIwQAAAMIAACDCAACAPwAACMIAACDCAACIwQAACMIAACDCAACAPwAAEMIAACDCAACIwQAAEMIAACDCAACAPwAAGMIAACDCAACIwQAAGMIAACDCAACAPwAAIMIAACDCAACIwQAAIMIAACDC"},{"byteLength":360,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAA8MEAABDCAABAwAAA8MEAABDCAAAgwAAA9MEAABDCAABAwAAA8MEAABDCAAAgwAAA7MEAABDCAABAwAAA8MEAABDCAAD4wAAA+MEAAPjBAAD4wAAA+MEAACTCAAD4wAAA+MEAAPjBAAD4wAAAJMIAAPjBAAD4wAAA+MEAAPjBAAB0wQAA+MEAAPjBAAD4wAAA+MEAACTCAAD4wAAAJMIAACTCAAD4wAAA+MEAACTCAAB0wQAA+MEAACTCAAD4wAAAJMIAAPjBAAD4wAAAJMIAACTCAAD4wAAAJMIAAPjBAAB0wQAAJMIAAPjBAAD4wAAAJMIAACTCAAB0wQAAJMIAACTCAAB0wQAA+MEAAPjBAAB0wQAA+MEAACTCAAB0wQAA+MEAAPjBAAB0wQAAJMIAAPjBAAB0wQAA+MEAACTCAAB0wQAAJMIAACTCAAB0wQAAJMIAAPjBAAB0wQAAJMIAACTC"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":3},"material":1,"mode":6}]},{"primitives":[{"attributes":{"POSITION":4},"material":2,"mode":6},{"attributes":{"POSITION":4},"material":3,"mode":3},{"attributes":{"POSITION":5},"material":3,"mode":1}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":6},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":7},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":8},"material":4,"mode":1}]},{"primitives":[{"attributes":{"POSITION":9},"material":5,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-32,-32]},{"mesh":0,"translation":[-0,-36,-32]},{"mesh":0,"translation":[-0,-40,-32]},{"mesh":0,"translation":[-0,-34,-34]},{"mesh":0,"translation":[-0,-38,-34]},{"mesh":0,"translation":[-0,-32,-36]},{"mesh":0,"translation":[-0,-36,-36]},{"mesh":0,"translation":[-0,-40,-36]},{"mesh":0,"translation":[-0,-34,-38]},{"mesh":0,"translation":[-0,-38,-38]},{"mesh":0,"translation":[-0,-32,-40]},{"mesh":0,"translation":[-0,-36,-40]},{"mesh":0,"translation":[-0,-40,-40]},{"mesh":0,"translation":[-0,-34,-32]},{"mesh":0,"translation":[-0,-38,-32]},{"mesh":0,"translation":[-0,-32,-34]},{"mesh":0,"translation":[-0,-36,-34]},{"mesh":0,"translation":[-0,-40,-34]},{"mesh":0,"translation":[-0,-34,-36]},{"mesh":0,"translation":[-0,-38,-36]},{"mesh":0,"translation":[-0,-32,-38]},{"mesh":0,"translation":[-0,-36,-38]},{"mesh":0,"translation":[-0,-40,-38]},{"mesh":0,"translation":[-0,-34,-40]},{"mesh":0,"translation":[-0,-38,-40]},{"mesh":1,"translation":[-1,-34,-32]},{"mesh":1,"translation":[-1,-38,-32]},{"mesh":1,"translation":[-1,-34,-36]},{"mesh":1,"translation":[-1,-38,-36]},{"mesh":1,"translation":[-1,-34,-40]},{"mesh":1,"translation":[-1,-38,-40]},{"mesh":2,"translation":[-2,-34,-32]},{"mesh":3,"translation":[-2,-36,-32]},{"mesh":2,"translation":[-2,-34,-36]},{"mesh":3,"translation":[-2,-36,-36]},{"mesh":2,"translation":[-2,-34,-40]},{"mesh":3,"translation":[-2,-36,-40]},{"mesh":2,"translation":[-2,-38,-32]},{"mesh":3,"translation":[-2,-40,-32]},{"mesh":2,"translation":[-2,-38,-36]},{"mesh":3,"translation":[-2,-40,-36]},{"mesh":2,"translation":[-2,-38,-40]},{"mesh":3,"translation":[-2,-40,-40]},{"mesh":2,"translation":[-2,-34,-34]},{"mesh":3,"translation":[-2,-32,-34]},{"mesh":2,"translation":[-2,-34,-38]},{"mesh":3,"translation":[-2,-32,-38]},{"mesh":2,"translation":[-2,-38,-34]},{"mesh":3,"translation":[-2,-36,-34]},{"mesh":2,"translation":[-2,-38,-38]},{"mesh":3,"translation":[-2,-36,-38]},{"mesh":2,"translation":[-3,-34,-32]},{"mesh":3,"translation":[-3,-34,-34]},{"mesh":2,"translation":[-3,-34,-36]},{"mesh":3,"translation":[-3,-34,-38]},{"mesh":2,"translation":[-3,-38,-32]},{"mesh":3,"translation":[-3,-38,-34]},{"mesh":2,"translation":[-3,-38,-36]},{"mesh":3,"translation":[-3,-38,-38]},{"mesh":2,"translation":[-3,-32,-36]},{"mesh":3,"translation":[-3,-32,-34]},{"mesh":2,"translation":[-3,-32,-40]},{"mesh":3,"translation":[-3,-32,-38]},{"mesh":2,"translation":[-3,-36,-36]},{"mesh":3,"translation":[-3,-36,-34]},{"mesh":2,"translation":[-3,-36,-40]},{"mesh":3,"translation":[-3,-36,-38]},{"mesh":2,"translation":[-3,-40,-36]},{"mesh":3,"translation":[-3,-40,-34]},{"mesh":2,"translation":[-3,-40,-40]},{"mesh":3,"translation":[-3,-40,-38]},{"mesh":2,"translation":[-4,-34,-36]},{"mesh":3,"translation":[-4,-34,-34]},{"mesh":2,"translation":[-4,-34,-40]},{"mesh":3,"translation":[-4,-34,-38]},{"mesh":2,"translation":[-4,-38,-36]},{"mesh":3,"translation":[-4,-38,-34]},{"mesh":2,"translation":[-4,-38,-40]},{"mesh":3,"translation":[-4,-38,-38]},{"mesh":2,"translation":[-4,-32,-32]},{"mesh":3,"translation":[-4,-32,-34]},{"mesh":2,"translation":[-4,-32,-36]},{"mesh":3,"translation":[-4,-32,-38]},{"mesh":2,"translation":[-4,-36,-32]},{"mesh":3,"translation":[-4,-36,-34]},{"mesh":2,"translation":[-4,-36,-36]},{"mesh":3,"translation":[-4,-36,-38]},{"mesh":2,"translation":[-4,-40,-32]},{"mesh":3,"translation":[-4,-40,-34]},{"mesh":2,"translation":[-4,-40,-36]},{"mesh":3,"translation":[-4,-40,-38]},{"mesh":2,"translation":[-5,-34,-32]},{"mesh":3,"translation":[-5,-32,-32]},{"mesh":2,"translation":[-5,-34,-36]},{"mesh":3,"translation":[-5,-32,-36]},{"mesh":2,"translation":[-5,-34,-40]},{"mesh":3,"translation":[-5,-32,-40]},{"mesh":2,"translation":[-5,-38,-32]},{"mesh":3,"translation":[-5,-36,-32]},{"mesh":2,"translation":[-5,-38,-36]},{"mesh":3,"translation":[-5,-36,-36]},{"mesh":2,"translation":[-5,-38,-40]},{"mesh":3,"translation":[-5,-36,-40]},{"mesh":2,"translation":[-5,-34,-34]},{"mesh":3,"translation":[-5,-36,-34]},{"mesh":2,"translation":[-5,-34,-38]},{"mesh":3,"translation":[-5,-36,-38]},{"mesh":2,"translation":[-5,-38,-34]},{"mesh":3,"translation":[-5,-40,-34]},{"mesh":2,"translation":[-5,-38,-38]},{"mesh":3,"translation":[-5,-40,-38]},{"mesh":1,"translation":[-6,-34,-32]},{"mesh":1,"translation":[-6,-38,-32]},{"mesh":1,"translation":[-6,-34,-36]},{"mesh":1,"translation":[-6,-38,-36]},{"mesh":1,"translation":[-6,-34,-40]},{"mesh":1,"translation":[-6,-38,-40]},{"mesh":4,"translation":[-7,-34,-32]},{"mesh":4,"translation":[-7,-38,-32]},{"mesh":4,"translation":[-7,-32,-34]},{"mesh":4,"translation":[-7,-36,-34]},{"mesh":4,"translation":[-7,-40,-34]},{"mesh":4,"translation":[-7,-34,-36]},{"mesh":4,"translation":[-7,-38,-36]},{"mesh":4,"translation":[-7,-32,-38]},{"mesh":4,"translation":[-7,-36,-38]},{"mesh":4,"translation":[-7,-40,-38]},{"mesh":4,"translation":[-7,-34,-40]},{"mesh":4,"translation":[-7,-38,-40]},{"mesh":1,"translation":[-9,-34,-32]},{"mesh":1,"translation":[-9,-38,-32]},{"mesh":1,"translation":[-9,-34,-36]},{"mesh":1,"translation":[-9,-38,-36]},{"mesh":1,"translation":[-9,-34,-40]},{"mesh":1,"translation":[-9,-38,-40]},{"mesh":2,"translation":[-10,-34,-32]},{"mesh":3,"translation":[-10,-36,-32]},{"mesh":2,"translation":[-10,-34,-36]},{"mesh":3,"translation":[-10,-36,-36]},{"mesh":2,"translation":[-10,-34,-40]},{"mesh":3,"translation":[-10,-36,-40]},{"mesh":2,"translation":[-10,-38,-32]},{"mesh":3,"translation":[-10,-40,-32]},{"mesh":2,"translation":[-10,-38,-36]},{"mesh":3,"translation":[-10,-40,-36]},{"mesh":2,"translation":[-10,-38,-40]},{"mesh":3,"translation":[-10,-40,-40]},{"mesh":2,"translation":[-10,-34,-34]},{"mesh":3,"translation":[-10,-32,-34]},{"mesh":2,"translation":[-10,-34,-38]},{"mesh":3,"translation":[-10,-32,-38]},{"mesh":2,"translation":[-10,-38,-34]},{"mesh":3,"translation":[-10,-36,-34]},{"mesh":2,"translation":[-10,-38,-38]},{"mesh":3,"translation":[-10,-36,-38]},{"mesh":2,"translation":[-11,-34,-32]},{"mesh":3,"translation":[-11,-34,-34]},{"mesh":2,"translation":[-11,-34,-36]},{"mesh":3,"translation":[-11,-34,-38]},{"mesh":2,"translation":[-11,-38,-32]},{"mesh":3,"translation":[-11,-38,-34]},{"mesh":2,"translation":[-11,-38,-36]},{"mesh":3,"translation":[-11,-38,-38]},{"mesh":2,"translation":[-11,-32,-36]},{"mesh":3,"translation":[-11,-32,-34]},{"mesh":2,"translation":[-11,-32,-40]},{"mesh":3,"translation":[-11,-32,-38]},{"mesh":2,"translation":[-11,-36,-36]},{"mesh":3,"translation":[-11,-36,-34]},{"mesh":2,"translation":[-11,-36,-40]},{"mesh":3,"translation":[-11,-36,-38]},{"mesh":2,"translation":[-11,-40,-36]},{"mesh":3,"translation":[-11,-40,-34]},{"mesh":2,"translation":[-11,-40,-40]},{"mesh":3,"translation":[-11,-40,-38]},{"mesh":2,"translation":[-12,-34,-36]},{"mesh":3,"translation":[-12,-34,-34]},{"mesh":2,"translation":[-12,-34,-40]},{"mesh":3,"translation":[-12,-34,-38]},{"mesh":2,"translation":[-12,-38,-36]},{"mesh":3,"translation":[-12,-38,-34]},{"mesh":2,"translation":[-12,-38,-40]},{"mesh":3,"translation":[-12,-38,-38]},{"mesh":2,"translation":[-12,-32,-32]},{"mesh":3,"translation":[-12,-32,-34]},{"mesh":2,"translation":[-12,-32,-36]},{"mesh":3,"translation":[-12,-32,-38]},{"mesh":2,"translation":[-12,-36,-32]},{"mesh":3,"translation":[-12,-36,-34]},{"mesh":2,"translation":[-12,-36,-36]},{"mesh":3,"translation":[-12,-36,-38]},{"mesh":2,"translation":[-12,-40,-32]},{"mesh":3,"translation":[-12,-40,-34]},{"mesh":2,"translation":[-12,-40,-36]},{"mesh":3,"translation":[-12,-40,-38]},{"mesh":2,"translation":[-13,-34,-32]},{"mesh":3,"translation":[-13,-32,-32]},{"mesh":2,"translation":[-13,-34,-36]},{"mesh":3,"translation":[-13,-32,-36]},{"mesh":2,"translation":[-13,-34,-40]},{"mesh":3,"translation":[-13,-32,-40]},{"mesh":2,"translation":[-13,-38,-32]},{"mesh":3,"translation":[-13,-36,-32]},{"mesh":2,"translation":[-13,-38,-36]},{"mesh":3,"translation":[-13,-36,-36]},{"mesh":2,"translation":[-13,-38,-40]},{"mesh":3,"translation":[-13,-36,-40]},{"mesh":2,"translation":[-13,-34,-34]},{"mesh":3,"translation":[-13,-36,-34]},{"mesh":2,"translation":[-13,-34,-38]},{"mesh":3,"translation":[-13,-36,-38]},{"mesh":2,"translation":[-13,-38,-34]},{"mesh":3,"translation":[-13,-40,-34]},{"mesh":2,"translation":[-13,-38,-38]},{"mesh":3,"translation":[-13,-40,-38]},{"mesh":1,"translation":[-14,-34,-32]},{"mesh":1,"translation":[-14,-38,-32]},{"mesh":1,"translation":[-14,-34,-36]},{"mesh":1,"translation":[-14,-38,-36]},{"mesh":1,"translation":[-14,-34,-40]},{"mesh":1,"translation":[-14,-38,-40]},{"mesh":4,"translation":[-15,-34,-32]},{"mesh":4,"translation":[-15,-38,-32]},{"mesh":4,"translation":[-15,-32,-34]},{"mesh":4,"translation":[-15,-36,-34]},{"mesh":4,"translation":[-15,-40,-34]},{"mesh":4,"translation":[-15,-34,-36]},{"mesh":4,"translation":[-15,-38,-36]},{"mesh":4,"translation":[-15,-32,-38]},{"mesh":4,"translation":[-15,-36,-38]},{"mesh":4,"translation":[-15,-40,-38]},{"mesh":4,"translation":[-15,-34,-40]},{"mesh":4,"translation":[-15,-38,-40]},{"mesh":5,"translation":[-16,-32,-32]},{"mesh":5,"translation":[-16,-36,-32]},{"mesh":5,"translation":[-16,-40,-32]},{"mesh":5,"translation":[-16,-34,-34]},{"mesh":5,"translation":[-16,-38,-34]},{"mesh":5,"translation":[-16,-32,-36]},{"mesh":5,"translation":[-16,-36,-36]},{"mesh":5,"translation":[-16,-40,-36]},{"mesh":5,"translation":[-16,-34,-38]},{"mesh":5,"translation":[-16,-38,-38]},{"mesh":5,"translation":[-16,-32,-40]},{"mesh":5,"translation":[-16,-36,-40]},{"mesh":5,"translation":[-16,-40,-40]},{"mesh":6,"translation":[0,0,0]},{"mesh":7,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/tick.gltf b/testdata/tick.gltf index c06bc551..7a0debc4 100644 --- a/testdata/tick.gltf +++ b/testdata/tick.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5],"min":[0.0625,0.4375],"name":"tex_coords_gate_H","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.5625],"min":[0.125,0.5],"name":"tex_coords_gate_S","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.4375],"min":[0.125,0.375],"name":"tex_coords_gate_SQRT_X","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":4,"max":[1,-0,-0],"min":[-12,-2,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":30,"max":[0,2.5,1],"min":[-6.25,-3,-1],"name":"buf_red_scattered_lines","type":"VEC3"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":32,"max":[0.25,0.800000011920929,0.5],"min":[-9.25,0.400000005960464,-0.5],"name":"buf_blue_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_S","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_X","target":34962},{"buffer":4,"byteLength":48,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":5,"byteLength":360,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962},{"buffer":6,"byteLength":384,"byteOffset":0,"name":"buf_blue_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_H","uri":"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+"},{"byteLength":96,"name":"tex_coords_gate_S","uri":"data:application/octet-stream;base64,AABAPgAAAD8AAAA+AAAAPwAAQD4AABA/AAAAPgAAAD8AAAA+AAAQPwAAQD4AABA/AABAPgAAED8AAEA+AAAAPwAAAD4AABA/AAAAPgAAED8AAEA+AAAAPwAAAD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_X","uri":"data:application/octet-stream;base64,AABAPgAAwD4AAAA+AADAPgAAQD4AAOA+AAAAPgAAwD4AAAA+AADgPgAAQD4AAOA+AABAPgAA4D4AAEA+AADAPgAAAD4AAOA+AAAAPgAA4D4AAEA+AADAPgAAAD4AAMA+"},{"byteLength":48,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAPwAAAIAAAACAAABAwQAAAIAAAACAAACAPwAAAMAAAACAAABAwQAAAMAAAACA"},{"byteLength":360,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACAAABwwAAAgD8AAIA/AABwwAAAgD8AAIC/AABwwAAAgD8AAIA/AABwwAAAQMAAAIA/AABwwAAAgD8AAIA/AADIwAAAgD8AAIA/AABwwAAAgD8AAIC/AABwwAAAQMAAAIC/AABwwAAAgD8AAIC/AADIwAAAgD8AAIC/AABwwAAAQMAAAIA/AABwwAAAQMAAAIC/AABwwAAAQMAAAIA/AADIwAAAQMAAAIA/AABwwAAAQMAAAIC/AADIwAAAQMAAAIC/AADIwAAAgD8AAIA/AADIwAAAgD8AAIC/AADIwAAAgD8AAIA/AADIwAAAQMAAAIA/AADIwAAAgD8AAIC/AADIwAAAQMAAAIC/AADIwAAAQMAAAIA/AADIwAAAQMAAAIC/"},{"byteLength":384,"name":"buf_blue_scattered_lines","uri":"data:application/octet-stream;base64,AACAPs3MzD4AAAA/AACAPs3MTD8AAAA/AACAPs3MzD4AAAC/AACAPs3MTD8AAAC/AACAPs3MTD8AAAA/AACAPs3MTD8AAAC/AACAPs3MTD8AAAA/AACgv83MTD8AAAA/AACAPs3MTD8AAAC/AACgv83MTD8AAAC/AACgv83MzD4AAAA/AACgv83MTD8AAAA/AACgv83MzD4AAAC/AACgv83MTD8AAAC/AACgv83MTD8AAAA/AACgv83MTD8AAAC/AADYwM3MzD4AAAA/AADYwM3MTD8AAAA/AADYwM3MzD4AAAC/AADYwM3MTD8AAAC/AADYwM3MTD8AAAA/AADYwM3MTD8AAAC/AADYwM3MTD8AAAA/AAAUwc3MTD8AAAA/AADYwM3MTD8AAAC/AAAUwc3MTD8AAAC/AAAUwc3MzD4AAAA/AAAUwc3MTD8AAAA/AAAUwc3MzD4AAAC/AAAUwc3MTD8AAAC/AAAUwc3MTD8AAAA/AAAUwc3MTD8AAAC/"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"blue","pbrMetallicRoughness":{"baseColorFactor":[0,0,1,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":5},"material":2,"mode":1}]},{"primitives":[{"attributes":{"POSITION":6},"material":3,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-1,-0,-0]},{"mesh":0,"translation":[-2,-0,-0]},{"mesh":0,"translation":[-2,-2,-0]},{"mesh":0,"translation":[-3,-0,-0]},{"mesh":0,"translation":[-4,-0,-0]},{"mesh":0,"translation":[-4,-2,-0]},{"mesh":0,"translation":[-5,-0,-0]},{"mesh":1,"translation":[-6,-0,-0]},{"mesh":0,"translation":[-7,-0,-0]},{"mesh":0,"translation":[-8,-0,-0]},{"mesh":2,"translation":[-9,-0,-0]},{"mesh":0,"translation":[-10,-0,-0]},{"mesh":0,"translation":[-11,-0,-0]},{"mesh":3,"translation":[0,0,0]},{"mesh":4,"translation":[0,0,0]},{"mesh":5,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":12,"max":[0.125,0.5],"min":[0.0625,0.4375],"name":"tex_coords_gate_H","type":"VEC2"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.5625],"min":[0.125,0.5],"name":"tex_coords_gate_S","type":"VEC2"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":12,"max":[0.1875,0.4375],"min":[0.125,0.375],"name":"tex_coords_gate_SQRT_X","type":"VEC2"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":4,"max":[1,-0,-0],"min":[-12,-2,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":30,"max":[0,2.5,1],"min":[-6.25,-3,-1],"name":"buf_red_scattered_lines","type":"VEC3"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":32,"max":[0.25,0.800000011920929,0.5],"min":[-9.25,0.400000005960464,-0.5],"name":"buf_blue_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":1,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_H","target":34962},{"buffer":2,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_S","target":34962},{"buffer":3,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_X","target":34962},{"buffer":4,"byteLength":48,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":5,"byteLength":360,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962},{"buffer":6,"byteLength":384,"byteOffset":0,"name":"buf_blue_scattered_lines","target":34962}],"buffers":[{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_H","uri":"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+"},{"byteLength":96,"name":"tex_coords_gate_S","uri":"data:application/octet-stream;base64,AABAPgAAAD8AAAA+AAAAPwAAQD4AABA/AAAAPgAAAD8AAAA+AAAQPwAAQD4AABA/AABAPgAAED8AAEA+AAAAPwAAAD4AABA/AAAAPgAAED8AAEA+AAAAPwAAAD4AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_X","uri":"data:application/octet-stream;base64,AABAPgAAwD4AAAA+AADAPgAAQD4AAOA+AAAAPgAAwD4AAAA+AADgPgAAQD4AAOA+AABAPgAA4D4AAEA+AADAPgAAAD4AAOA+AAAAPgAA4D4AAEA+AADAPgAAAD4AAMA+"},{"byteLength":48,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AACAPwAAAIAAAACAAABAwQAAAIAAAACAAACAPwAAAMAAAACAAABAwQAAAMAAAACA"},{"byteLength":360,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACAAABwwAAAgD8AAIA/AABwwAAAgD8AAIC/AABwwAAAgD8AAIA/AABwwAAAQMAAAIA/AABwwAAAgD8AAIA/AADIwAAAgD8AAIA/AABwwAAAgD8AAIC/AABwwAAAQMAAAIC/AABwwAAAgD8AAIC/AADIwAAAgD8AAIC/AABwwAAAQMAAAIA/AABwwAAAQMAAAIC/AABwwAAAQMAAAIA/AADIwAAAQMAAAIA/AABwwAAAQMAAAIC/AADIwAAAQMAAAIC/AADIwAAAgD8AAIA/AADIwAAAgD8AAIC/AADIwAAAgD8AAIA/AADIwAAAQMAAAIA/AADIwAAAgD8AAIC/AADIwAAAQMAAAIC/AADIwAAAQMAAAIA/AADIwAAAQMAAAIC/"},{"byteLength":384,"name":"buf_blue_scattered_lines","uri":"data:application/octet-stream;base64,AACAPs3MzD4AAAA/AACAPs3MTD8AAAA/AACAPs3MzD4AAAC/AACAPs3MTD8AAAC/AACAPs3MTD8AAAA/AACAPs3MTD8AAAC/AACAPs3MTD8AAAA/AACgv83MTD8AAAA/AACAPs3MTD8AAAC/AACgv83MTD8AAAC/AACgv83MzD4AAAA/AACgv83MTD8AAAA/AACgv83MzD4AAAC/AACgv83MTD8AAAC/AACgv83MTD8AAAA/AACgv83MTD8AAAC/AADYwM3MzD4AAAA/AADYwM3MTD8AAAA/AADYwM3MzD4AAAC/AADYwM3MTD8AAAC/AADYwM3MTD8AAAA/AADYwM3MTD8AAAC/AADYwM3MTD8AAAA/AAAUwc3MTD8AAAA/AADYwM3MTD8AAAC/AAAUwc3MTD8AAAC/AAAUwc3MzD4AAAA/AAAUwc3MTD8AAAA/AAAUwc3MzD4AAAC/AAAUwc3MTD8AAAC/AAAUwc3MTD8AAAA/AAAUwc3MTD8AAAC/"}],"images":[{"uri":""}],"materials":[{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,1,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":1},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":2},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":0,"TEXCOORD_0":3},"material":0,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4},"material":1,"mode":1}]},{"primitives":[{"attributes":{"POSITION":5},"material":2,"mode":1}]},{"primitives":[{"attributes":{"POSITION":6},"material":3,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":0,"translation":[-1,-0,-0]},{"mesh":0,"translation":[-2,-0,-0]},{"mesh":0,"translation":[-2,-2,-0]},{"mesh":0,"translation":[-3,-0,-0]},{"mesh":0,"translation":[-4,-0,-0]},{"mesh":0,"translation":[-4,-2,-0]},{"mesh":0,"translation":[-5,-0,-0]},{"mesh":1,"translation":[-6,-0,-0]},{"mesh":0,"translation":[-7,-0,-0]},{"mesh":0,"translation":[-8,-0,-0]},{"mesh":2,"translation":[-9,-0,-0]},{"mesh":0,"translation":[-10,-0,-0]},{"mesh":0,"translation":[-11,-0,-0]},{"mesh":3,"translation":[0,0,0]},{"mesh":4,"translation":[0,0,0]},{"mesh":5,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file diff --git a/testdata/two_qubits_gates.gltf b/testdata/two_qubits_gates.gltf index 96258114..2debb822 100644 --- a/testdata/two_qubits_gates.gltf +++ b/testdata/two_qubits_gates.gltf @@ -1 +1 @@ -{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"control_x_line_cross","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":3,"max":[0,0.400000005960464,0.346410155296326],"min":[0,-0.200000032782555,-0.346410185098648],"name":"circle_loop","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.625],"min":[0.3125,0.5625],"name":"tex_coords_gate_ISWAP","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.625],"min":[0.375,0.5625],"name":"tex_coords_gate_ISWAP_DAG","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.4375],"min":[0.6875,0.375],"name":"tex_coords_gate_SQRT_XX","type":"VEC2"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.4375],"min":[0.75,0.375],"name":"tex_coords_gate_SQRT_XX_DAG","type":"VEC2"},{"bufferView":9,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.5],"min":[0.6875,0.4375],"name":"tex_coords_gate_SQRT_YY","type":"VEC2"},{"bufferView":10,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.5],"min":[0.75,0.4375],"name":"tex_coords_gate_SQRT_YY_DAG","type":"VEC2"},{"bufferView":11,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.5625],"min":[0.6875,0.5],"name":"tex_coords_gate_SQRT_ZZ","type":"VEC2"},{"bufferView":12,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.5625],"min":[0.75,0.5],"name":"tex_coords_gate_SQRT_ZZ_DAG","type":"VEC2"},{"bufferView":13,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.625],"min":[0.4375,0.5625],"name":"tex_coords_gate_SWAP","type":"VEC2"},{"bufferView":14,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":15,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.45254835486412,0.45254835486412],"min":[0,-0.45254835486412,-0.45254835486412],"name":"control_zswap_line_cross","type":"VEC3"},{"bufferView":16,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":17,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.45254835486412,0.45254835486412],"min":[0,-0.45254835486412,-0.45254835486412],"name":"control_xswap_line_cross","type":"VEC3"},{"bufferView":18,"byteOffset":0,"componentType":5126,"count":82,"max":[1,-0,-0],"min":[-12,-10,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":19,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":1,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":2,"byteLength":48,"byteOffset":0,"name":"control_x_line_cross","target":34962},{"buffer":3,"byteLength":36,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":4,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ISWAP","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ISWAP_DAG","target":34962},{"buffer":7,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_XX","target":34962},{"buffer":8,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_XX_DAG","target":34962},{"buffer":9,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_YY","target":34962},{"buffer":10,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_YY_DAG","target":34962},{"buffer":11,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_ZZ","target":34962},{"buffer":12,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_ZZ_DAG","target":34962},{"buffer":13,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SWAP","target":34962},{"buffer":14,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":15,"byteLength":48,"byteOffset":0,"name":"control_zswap_line_cross","target":34962},{"buffer":16,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":17,"byteLength":48,"byteOffset":0,"name":"control_xswap_line_cross","target":34962},{"buffer":18,"byteLength":984,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":19,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_x_line_cross","uri":"data:application/octet-stream;base64,AAAAAM3MzL4AAAAAAAAAAM3MzD4AAAAAAAAAAAAAAADNzMy+AAAAAAAAAADNzMw+"},{"byteLength":36,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAM/MTL6sXLE+AAAAAMvMTL6tXLG+"},{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_ISWAP","uri":"data:application/octet-stream;base64,AADAPgAAED8AAKA+AAAQPwAAwD4AACA/AACgPgAAED8AAKA+AAAgPwAAwD4AACA/AADAPgAAID8AAMA+AAAQPwAAoD4AACA/AACgPgAAID8AAMA+AAAQPwAAoD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_ISWAP_DAG","uri":"data:application/octet-stream;base64,AADgPgAAED8AAMA+AAAQPwAA4D4AACA/AADAPgAAED8AAMA+AAAgPwAA4D4AACA/AADgPgAAID8AAOA+AAAQPwAAwD4AACA/AADAPgAAID8AAOA+AAAQPwAAwD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_XX","uri":"data:application/octet-stream;base64,AABAPwAAwD4AADA/AADAPgAAQD8AAOA+AAAwPwAAwD4AADA/AADgPgAAQD8AAOA+AABAPwAA4D4AAEA/AADAPgAAMD8AAOA+AAAwPwAA4D4AAEA/AADAPgAAMD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_XX_DAG","uri":"data:application/octet-stream;base64,AABQPwAAwD4AAEA/AADAPgAAUD8AAOA+AABAPwAAwD4AAEA/AADgPgAAUD8AAOA+AABQPwAA4D4AAFA/AADAPgAAQD8AAOA+AABAPwAA4D4AAFA/AADAPgAAQD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_YY","uri":"data:application/octet-stream;base64,AABAPwAA4D4AADA/AADgPgAAQD8AAAA/AAAwPwAA4D4AADA/AAAAPwAAQD8AAAA/AABAPwAAAD8AAEA/AADgPgAAMD8AAAA/AAAwPwAAAD8AAEA/AADgPgAAMD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_YY_DAG","uri":"data:application/octet-stream;base64,AABQPwAA4D4AAEA/AADgPgAAUD8AAAA/AABAPwAA4D4AAEA/AAAAPwAAUD8AAAA/AABQPwAAAD8AAFA/AADgPgAAQD8AAAA/AABAPwAAAD8AAFA/AADgPgAAQD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_ZZ","uri":"data:application/octet-stream;base64,AABAPwAAAD8AADA/AAAAPwAAQD8AABA/AAAwPwAAAD8AADA/AAAQPwAAQD8AABA/AABAPwAAED8AAEA/AAAAPwAAMD8AABA/AAAwPwAAED8AAEA/AAAAPwAAMD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_ZZ_DAG","uri":"data:application/octet-stream;base64,AABQPwAAAD8AAEA/AAAAPwAAUD8AABA/AABAPwAAAD8AAEA/AAAQPwAAUD8AABA/AABQPwAAED8AAFA/AAAAPwAAQD8AABA/AABAPwAAED8AAFA/AAAAPwAAQD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SWAP","uri":"data:application/octet-stream;base64,AAAAPwAAED8AAOA+AAAQPwAAAD8AACA/AADgPgAAED8AAOA+AAAgPwAAAD8AACA/AAAAPwAAID8AAAA/AAAQPwAA4D4AACA/AADgPgAAID8AAAA/AAAQPwAA4D4AABA/"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_zswap_line_cross","uri":"data:application/octet-stream;base64,AAAAAGu0575rtOe+AAAAAGu05z5rtOc+AAAAAGu0575rtOc+AAAAAGu05z5rtOe+"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_xswap_line_cross","uri":"data:application/octet-stream;base64,AAAAAGu0575rtOe+AAAAAGu05z5rtOc+AAAAAGu0575rtOc+AAAAAGu05z5rtOe+"},{"byteLength":984,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AAAAgAAAAIAAAACAAAAAgAAAAMAAAACAAAAAgAAAgMAAAACAAAAAgAAAwMAAAACAAAAAgAAAAMEAAACAAAAAgAAAIMEAAACAAACAvwAAIMEAAACAAACAvwAAAMEAAACAAACAvwAAAIAAAACAAACgvwAAAMAAAACAAACgvwAAAMAAAACAAACAvwAAgMAAAACAAACAvwAAAMAAAACAAACgvwAAgMAAAACAAACgvwAAgMAAAACAAACAvwAAwMAAAACAAAAAwAAAgMAAAACAAAAQwAAAwMAAAACAAAAQwAAAwMAAAACAAAAAwAAAAMEAAACAAAAAwAAAwMAAAACAAAAQwAAAAMEAAACAAAAQwAAAAMEAAACAAAAAwAAAIMEAAACAAABAwAAAAIAAAACAAABQwAAAoMAAAACAAABQwAAAoMAAAACAAABAwAAAIMEAAACAAABAwAAAwMAAAACAAABAwAAAAMEAAACAAACAwAAAAMEAAACAAACAwAAAwMAAAACAAACAwAAAAIAAAACAAACAwAAAAMAAAACAAACgwAAAgMAAAACAAACgwAAAwMAAAACAAACgwAAAAMEAAACAAACgwAAAIMEAAACAAACgwAAAAIAAAACAAACgwAAAAMAAAACAAADAwAAAgMAAAACAAADAwAAAwMAAAACAAADgwAAAwMAAAACAAADgwAAAAMEAAACAAADgwAAAAIAAAACAAADgwAAAAMAAAACAAAAAwQAAgMAAAACAAAAAwQAAwMAAAACAAAAAwQAAAMEAAACAAAAAwQAAIMEAAACAAAAAwQAAAIAAAACAAAAAwQAAAMAAAACAAAAQwQAAgMAAAACAAAAQwQAAwMAAAACAAAAQwQAAAMEAAACAAAAQwQAAIMEAAACAAAAgwQAAAIAAAACAAAAkwQAAoMAAAACAAAAkwQAAoMAAAACAAAAgwQAAIMEAAACAAAAgwQAAgMAAAACAAAAgwQAAwMAAAACAAAAgwQAAAMAAAACAAAAkwQAAoMAAAACAAAAkwQAAoMAAAACAAAAgwQAAAMEAAACAAAAwwQAAAIAAAACAAAAwwQAAAMAAAACAAAAwwQAAgMAAAACAAAAwwQAAwMAAAACAAACAPwAAAIAAAACAAABAwQAAAIAAAACAAACAPwAAAMAAAACAAABAwQAAAMAAAACAAACAPwAAgMAAAACAAABAwQAAgMAAAACAAACAPwAAwMAAAACAAABAwQAAwMAAAACAAACAPwAAAMEAAACAAABAwQAAAMEAAACAAACAPwAAIMEAAACAAABAwQAAIMEAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"name":"gates_image","uri":""}],"materials":[{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"white","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"gray","pbrMetallicRoughness":{"baseColorFactor":[0.5,0.5,0.5,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":false,"name":"gates_material","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"white","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"white","pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"black","pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"name":"red","pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0},"material":0,"mode":6}]},{"primitives":[{"attributes":{"POSITION":1},"material":1,"mode":6},{"attributes":{"POSITION":1},"material":2,"mode":3},{"attributes":{"POSITION":2},"material":2,"mode":1}]},{"primitives":[{"attributes":{"POSITION":3},"material":3,"mode":2},{"attributes":{"POSITION":3},"material":4,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":5},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":6},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":7},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":8},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":9},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":10},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":11},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":12},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":13},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":14},"material":6,"mode":6},{"attributes":{"POSITION":15},"material":7,"mode":1}]},{"primitives":[{"attributes":{"POSITION":16},"material":8,"mode":6},{"attributes":{"POSITION":16},"material":9,"mode":3},{"attributes":{"POSITION":17},"material":9,"mode":1}]},{"primitives":[{"attributes":{"POSITION":18},"material":10,"mode":1}]},{"primitives":[{"attributes":{"POSITION":19},"material":11,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":1,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":1,"translation":[-0,-6,-0]},{"mesh":0,"translation":[-0,-8,-0]},{"mesh":2,"translation":[-0,-10,-0]},{"mesh":0,"translation":[-1,-10,-0]},{"mesh":2,"translation":[-1,-8,-0]},{"mesh":0,"translation":[-1,-0,-0]},{"mesh":0,"translation":[-1,-4,-0]},{"mesh":3,"translation":[-1,-2,-0]},{"mesh":3,"translation":[-1,-6,-0]},{"mesh":4,"translation":[-2,-4,-0]},{"mesh":4,"translation":[-2,-8,-0]},{"mesh":5,"translation":[-2,-6,-0]},{"mesh":5,"translation":[-2,-10,-0]},{"mesh":6,"translation":[-3,-0,-0]},{"mesh":6,"translation":[-3,-10,-0]},{"mesh":7,"translation":[-3,-6,-0]},{"mesh":7,"translation":[-3,-8,-0]},{"mesh":7,"translation":[-4,-8,-0]},{"mesh":7,"translation":[-4,-6,-0]},{"mesh":8,"translation":[-4,-0,-0]},{"mesh":8,"translation":[-4,-2,-0]},{"mesh":9,"translation":[-5,-4,-0]},{"mesh":9,"translation":[-5,-6,-0]},{"mesh":10,"translation":[-5,-8,-0]},{"mesh":10,"translation":[-5,-10,-0]},{"mesh":11,"translation":[-5,-0,-0]},{"mesh":11,"translation":[-5,-2,-0]},{"mesh":1,"translation":[-6,-4,-0]},{"mesh":1,"translation":[-6,-6,-0]},{"mesh":1,"translation":[-7,-6,-0]},{"mesh":2,"translation":[-7,-8,-0]},{"mesh":1,"translation":[-7,-0,-0]},{"mesh":0,"translation":[-7,-2,-0]},{"mesh":2,"translation":[-8,-4,-0]},{"mesh":1,"translation":[-8,-6,-0]},{"mesh":2,"translation":[-8,-8,-0]},{"mesh":2,"translation":[-8,-10,-0]},{"mesh":2,"translation":[-8,-0,-0]},{"mesh":0,"translation":[-8,-2,-0]},{"mesh":0,"translation":[-9,-4,-0]},{"mesh":1,"translation":[-9,-6,-0]},{"mesh":0,"translation":[-9,-8,-0]},{"mesh":2,"translation":[-9,-10,-0]},{"mesh":0,"translation":[-10,-0,-0]},{"mesh":0,"translation":[-10,-10,-0]},{"mesh":0,"translation":[-10,-4,-0]},{"mesh":0,"translation":[-10,-6,-0]},{"mesh":0,"translation":[-10,-2,-0]},{"mesh":0,"translation":[-10,-8,-0]},{"mesh":12,"translation":[-11,-0,-0]},{"mesh":13,"translation":[-11,-2,-0]},{"mesh":13,"translation":[-11,-4,-0]},{"mesh":12,"translation":[-11,-6,-0]},{"mesh":14,"translation":[0,0,0]},{"mesh":15,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57]}],"textures":[{"name":"gates_texture","sampler":0,"source":0}]} \ No newline at end of file +{"accessors":[{"bufferView":0,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":1,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":2,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"control_x_line_cross","type":"VEC3"},{"bufferView":3,"byteOffset":0,"componentType":5126,"count":3,"max":[0,0.400000005960464,0.346410155296326],"min":[0,-0.200000032782555,-0.346410185098648],"name":"circle_loop","type":"VEC3"},{"bufferView":4,"byteOffset":0,"componentType":5126,"count":12,"max":[0,0.5,0.5],"min":[0,-0.5,-0.5],"name":"cube","type":"VEC3"},{"bufferView":5,"byteOffset":0,"componentType":5126,"count":12,"max":[0.375,0.625],"min":[0.3125,0.5625],"name":"tex_coords_gate_ISWAP","type":"VEC2"},{"bufferView":6,"byteOffset":0,"componentType":5126,"count":12,"max":[0.4375,0.625],"min":[0.375,0.5625],"name":"tex_coords_gate_ISWAP_DAG","type":"VEC2"},{"bufferView":7,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.4375],"min":[0.6875,0.375],"name":"tex_coords_gate_SQRT_XX","type":"VEC2"},{"bufferView":8,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.4375],"min":[0.75,0.375],"name":"tex_coords_gate_SQRT_XX_DAG","type":"VEC2"},{"bufferView":9,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.5],"min":[0.6875,0.4375],"name":"tex_coords_gate_SQRT_YY","type":"VEC2"},{"bufferView":10,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.5],"min":[0.75,0.4375],"name":"tex_coords_gate_SQRT_YY_DAG","type":"VEC2"},{"bufferView":11,"byteOffset":0,"componentType":5126,"count":12,"max":[0.75,0.5625],"min":[0.6875,0.5],"name":"tex_coords_gate_SQRT_ZZ","type":"VEC2"},{"bufferView":12,"byteOffset":0,"componentType":5126,"count":12,"max":[0.8125,0.5625],"min":[0.75,0.5],"name":"tex_coords_gate_SQRT_ZZ_DAG","type":"VEC2"},{"bufferView":13,"byteOffset":0,"componentType":5126,"count":12,"max":[0.5,0.625],"min":[0.4375,0.5625],"name":"tex_coords_gate_SWAP","type":"VEC2"},{"bufferView":14,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":15,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.45254835486412,0.45254835486412],"min":[0,-0.45254835486412,-0.45254835486412],"name":"control_zswap_line_cross","type":"VEC3"},{"bufferView":16,"byteOffset":0,"componentType":5126,"count":17,"max":[0,0.400000005960464,0.400000005960464],"min":[0,-0.400000005960464,-0.400000005960464],"name":"circle_loop","type":"VEC3"},{"bufferView":17,"byteOffset":0,"componentType":5126,"count":4,"max":[0,0.45254835486412,0.45254835486412],"min":[0,-0.45254835486412,-0.45254835486412],"name":"control_xswap_line_cross","type":"VEC3"},{"bufferView":18,"byteOffset":0,"componentType":5126,"count":82,"max":[1,-0,-0],"min":[-12,-10,-0],"name":"buf_scattered_lines","type":"VEC3"},{"bufferView":19,"byteOffset":0,"componentType":5126,"count":6,"max":[0,2.5,-0],"min":[-3,1.5,-0],"name":"buf_red_scattered_lines","type":"VEC3"}],"asset":{"version":"2.0"},"bufferViews":[{"buffer":0,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":1,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":2,"byteLength":48,"byteOffset":0,"name":"control_x_line_cross","target":34962},{"buffer":3,"byteLength":36,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":4,"byteLength":144,"byteOffset":0,"name":"cube","target":34962},{"buffer":5,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ISWAP","target":34962},{"buffer":6,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_ISWAP_DAG","target":34962},{"buffer":7,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_XX","target":34962},{"buffer":8,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_XX_DAG","target":34962},{"buffer":9,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_YY","target":34962},{"buffer":10,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_YY_DAG","target":34962},{"buffer":11,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_ZZ","target":34962},{"buffer":12,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SQRT_ZZ_DAG","target":34962},{"buffer":13,"byteLength":96,"byteOffset":0,"name":"tex_coords_gate_SWAP","target":34962},{"buffer":14,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":15,"byteLength":48,"byteOffset":0,"name":"control_zswap_line_cross","target":34962},{"buffer":16,"byteLength":204,"byteOffset":0,"name":"circle_loop","target":34962},{"buffer":17,"byteLength":48,"byteOffset":0,"name":"control_xswap_line_cross","target":34962},{"buffer":18,"byteLength":984,"byteOffset":0,"name":"buf_scattered_lines","target":34962},{"buffer":19,"byteLength":72,"byteOffset":0,"name":"buf_red_scattered_lines","target":34962}],"buffers":[{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_x_line_cross","uri":"data:application/octet-stream;base64,AAAAAM3MzL4AAAAAAAAAAM3MzD4AAAAAAAAAAAAAAADNzMy+AAAAAAAAAADNzMw+"},{"byteLength":36,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAM/MTL6sXLE+AAAAAMvMTL6tXLG+"},{"byteLength":144,"name":"cube","uri":"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_ISWAP","uri":"data:application/octet-stream;base64,AADAPgAAED8AAKA+AAAQPwAAwD4AACA/AACgPgAAED8AAKA+AAAgPwAAwD4AACA/AADAPgAAID8AAMA+AAAQPwAAoD4AACA/AACgPgAAID8AAMA+AAAQPwAAoD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_ISWAP_DAG","uri":"data:application/octet-stream;base64,AADgPgAAED8AAMA+AAAQPwAA4D4AACA/AADAPgAAED8AAMA+AAAgPwAA4D4AACA/AADgPgAAID8AAOA+AAAQPwAAwD4AACA/AADAPgAAID8AAOA+AAAQPwAAwD4AABA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_XX","uri":"data:application/octet-stream;base64,AABAPwAAwD4AADA/AADAPgAAQD8AAOA+AAAwPwAAwD4AADA/AADgPgAAQD8AAOA+AABAPwAA4D4AAEA/AADAPgAAMD8AAOA+AAAwPwAA4D4AAEA/AADAPgAAMD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_XX_DAG","uri":"data:application/octet-stream;base64,AABQPwAAwD4AAEA/AADAPgAAUD8AAOA+AABAPwAAwD4AAEA/AADgPgAAUD8AAOA+AABQPwAA4D4AAFA/AADAPgAAQD8AAOA+AABAPwAA4D4AAFA/AADAPgAAQD8AAMA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_YY","uri":"data:application/octet-stream;base64,AABAPwAA4D4AADA/AADgPgAAQD8AAAA/AAAwPwAA4D4AADA/AAAAPwAAQD8AAAA/AABAPwAAAD8AAEA/AADgPgAAMD8AAAA/AAAwPwAAAD8AAEA/AADgPgAAMD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_YY_DAG","uri":"data:application/octet-stream;base64,AABQPwAA4D4AAEA/AADgPgAAUD8AAAA/AABAPwAA4D4AAEA/AAAAPwAAUD8AAAA/AABQPwAAAD8AAFA/AADgPgAAQD8AAAA/AABAPwAAAD8AAFA/AADgPgAAQD8AAOA+"},{"byteLength":96,"name":"tex_coords_gate_SQRT_ZZ","uri":"data:application/octet-stream;base64,AABAPwAAAD8AADA/AAAAPwAAQD8AABA/AAAwPwAAAD8AADA/AAAQPwAAQD8AABA/AABAPwAAED8AAEA/AAAAPwAAMD8AABA/AAAwPwAAED8AAEA/AAAAPwAAMD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SQRT_ZZ_DAG","uri":"data:application/octet-stream;base64,AABQPwAAAD8AAEA/AAAAPwAAUD8AABA/AABAPwAAAD8AAEA/AAAQPwAAUD8AABA/AABQPwAAED8AAFA/AAAAPwAAQD8AABA/AABAPwAAED8AAFA/AAAAPwAAQD8AAAA/"},{"byteLength":96,"name":"tex_coords_gate_SWAP","uri":"data:application/octet-stream;base64,AAAAPwAAED8AAOA+AAAQPwAAAD8AACA/AADgPgAAED8AAOA+AAAgPwAAAD8AACA/AAAAPwAAID8AAAA/AAAQPwAA4D4AACA/AADgPgAAID8AAAA/AAAQPwAA4D4AABA/"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_zswap_line_cross","uri":"data:application/octet-stream;base64,AAAAAGu0575rtOe+AAAAAGu05z5rtOc+AAAAAGu0575rtOc+AAAAAGu05z5rtOe+"},{"byteLength":204,"name":"circle_loop","uri":"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA"},{"byteLength":48,"name":"control_xswap_line_cross","uri":"data:application/octet-stream;base64,AAAAAGu0575rtOe+AAAAAGu05z5rtOc+AAAAAGu0575rtOc+AAAAAGu05z5rtOe+"},{"byteLength":984,"name":"buf_scattered_lines","uri":"data:application/octet-stream;base64,AAAAgAAAAIAAAACAAAAAgAAAAMAAAACAAAAAgAAAgMAAAACAAAAAgAAAwMAAAACAAAAAgAAAAMEAAACAAAAAgAAAIMEAAACAAACAvwAAIMEAAACAAACAvwAAAMEAAACAAACAvwAAAIAAAACAAACgvwAAAMAAAACAAACgvwAAAMAAAACAAACAvwAAgMAAAACAAACAvwAAAMAAAACAAACgvwAAgMAAAACAAACgvwAAgMAAAACAAACAvwAAwMAAAACAAAAAwAAAgMAAAACAAAAQwAAAwMAAAACAAAAQwAAAwMAAAACAAAAAwAAAAMEAAACAAAAAwAAAwMAAAACAAAAQwAAAAMEAAACAAAAQwAAAAMEAAACAAAAAwAAAIMEAAACAAABAwAAAAIAAAACAAABQwAAAoMAAAACAAABQwAAAoMAAAACAAABAwAAAIMEAAACAAABAwAAAwMAAAACAAABAwAAAAMEAAACAAACAwAAAAMEAAACAAACAwAAAwMAAAACAAACAwAAAAIAAAACAAACAwAAAAMAAAACAAACgwAAAgMAAAACAAACgwAAAwMAAAACAAACgwAAAAMEAAACAAACgwAAAIMEAAACAAACgwAAAAIAAAACAAACgwAAAAMAAAACAAADAwAAAgMAAAACAAADAwAAAwMAAAACAAADgwAAAwMAAAACAAADgwAAAAMEAAACAAADgwAAAAIAAAACAAADgwAAAAMAAAACAAAAAwQAAgMAAAACAAAAAwQAAwMAAAACAAAAAwQAAAMEAAACAAAAAwQAAIMEAAACAAAAAwQAAAIAAAACAAAAAwQAAAMAAAACAAAAQwQAAgMAAAACAAAAQwQAAwMAAAACAAAAQwQAAAMEAAACAAAAQwQAAIMEAAACAAAAgwQAAAIAAAACAAAAkwQAAoMAAAACAAAAkwQAAoMAAAACAAAAgwQAAIMEAAACAAAAgwQAAgMAAAACAAAAgwQAAwMAAAACAAAAgwQAAAMAAAACAAAAkwQAAoMAAAACAAAAkwQAAoMAAAACAAAAgwQAAAMEAAACAAAAwwQAAAIAAAACAAAAwwQAAAMAAAACAAAAwwQAAgMAAAACAAAAwwQAAwMAAAACAAACAPwAAAIAAAACAAABAwQAAAIAAAACAAACAPwAAAMAAAACAAABAwQAAAMAAAACAAACAPwAAgMAAAACAAABAwQAAgMAAAACAAACAPwAAwMAAAACAAABAwQAAwMAAAACAAACAPwAAAMEAAACAAABAwQAAAMEAAACAAACAPwAAIMEAAACAAABAwQAAIMEAAACA"},{"byteLength":72,"name":"buf_red_scattered_lines","uri":"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA"}],"images":[{"uri":""}],"materials":[{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0.5,0.5,0.5,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":false,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"baseColorTexture":{"index":0,"texCoord":0},"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,1,1,1],"metallicFactor":0.4,"roughnessFactor":0.5}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[0,0,0,1],"metallicFactor":1,"roughnessFactor":1}},{"doubleSided":true,"pbrMetallicRoughness":{"baseColorFactor":[1,0,0,1],"metallicFactor":1,"roughnessFactor":1}}],"meshes":[{"primitives":[{"attributes":{"POSITION":0},"material":0,"mode":6}]},{"primitives":[{"attributes":{"POSITION":1},"material":1,"mode":6},{"attributes":{"POSITION":1},"material":2,"mode":3},{"attributes":{"POSITION":2},"material":2,"mode":1}]},{"primitives":[{"attributes":{"POSITION":3},"material":3,"mode":2},{"attributes":{"POSITION":3},"material":4,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":5},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":6},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":7},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":8},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":9},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":10},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":11},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":12},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":4,"TEXCOORD_0":13},"material":5,"mode":4}]},{"primitives":[{"attributes":{"POSITION":14},"material":6,"mode":6},{"attributes":{"POSITION":15},"material":7,"mode":1}]},{"primitives":[{"attributes":{"POSITION":16},"material":8,"mode":6},{"attributes":{"POSITION":16},"material":9,"mode":3},{"attributes":{"POSITION":17},"material":9,"mode":1}]},{"primitives":[{"attributes":{"POSITION":18},"material":10,"mode":1}]},{"primitives":[{"attributes":{"POSITION":19},"material":11,"mode":1}]}],"nodes":[{"mesh":0,"translation":[-0,-0,-0]},{"mesh":1,"translation":[-0,-2,-0]},{"mesh":0,"translation":[-0,-4,-0]},{"mesh":1,"translation":[-0,-6,-0]},{"mesh":0,"translation":[-0,-8,-0]},{"mesh":2,"translation":[-0,-10,-0]},{"mesh":0,"translation":[-1,-10,-0]},{"mesh":2,"translation":[-1,-8,-0]},{"mesh":0,"translation":[-1,-0,-0]},{"mesh":0,"translation":[-1,-4,-0]},{"mesh":3,"translation":[-1,-2,-0]},{"mesh":3,"translation":[-1,-6,-0]},{"mesh":4,"translation":[-2,-4,-0]},{"mesh":4,"translation":[-2,-8,-0]},{"mesh":5,"translation":[-2,-6,-0]},{"mesh":5,"translation":[-2,-10,-0]},{"mesh":6,"translation":[-3,-0,-0]},{"mesh":6,"translation":[-3,-10,-0]},{"mesh":7,"translation":[-3,-6,-0]},{"mesh":7,"translation":[-3,-8,-0]},{"mesh":7,"translation":[-4,-8,-0]},{"mesh":7,"translation":[-4,-6,-0]},{"mesh":8,"translation":[-4,-0,-0]},{"mesh":8,"translation":[-4,-2,-0]},{"mesh":9,"translation":[-5,-4,-0]},{"mesh":9,"translation":[-5,-6,-0]},{"mesh":10,"translation":[-5,-8,-0]},{"mesh":10,"translation":[-5,-10,-0]},{"mesh":11,"translation":[-5,-0,-0]},{"mesh":11,"translation":[-5,-2,-0]},{"mesh":1,"translation":[-6,-4,-0]},{"mesh":1,"translation":[-6,-6,-0]},{"mesh":1,"translation":[-7,-6,-0]},{"mesh":2,"translation":[-7,-8,-0]},{"mesh":1,"translation":[-7,-0,-0]},{"mesh":0,"translation":[-7,-2,-0]},{"mesh":2,"translation":[-8,-4,-0]},{"mesh":1,"translation":[-8,-6,-0]},{"mesh":2,"translation":[-8,-8,-0]},{"mesh":2,"translation":[-8,-10,-0]},{"mesh":2,"translation":[-8,-0,-0]},{"mesh":0,"translation":[-8,-2,-0]},{"mesh":0,"translation":[-9,-4,-0]},{"mesh":1,"translation":[-9,-6,-0]},{"mesh":0,"translation":[-9,-8,-0]},{"mesh":2,"translation":[-9,-10,-0]},{"mesh":0,"translation":[-10,-0,-0]},{"mesh":0,"translation":[-10,-10,-0]},{"mesh":0,"translation":[-10,-4,-0]},{"mesh":0,"translation":[-10,-6,-0]},{"mesh":0,"translation":[-10,-2,-0]},{"mesh":0,"translation":[-10,-8,-0]},{"mesh":12,"translation":[-11,-0,-0]},{"mesh":13,"translation":[-11,-2,-0]},{"mesh":13,"translation":[-11,-4,-0]},{"mesh":12,"translation":[-11,-6,-0]},{"mesh":14,"translation":[0,0,0]},{"mesh":15,"translation":[0,0,0]}],"samplers":[{"magFilter":9728,"minFilter":9728,"wrapS":33071,"wrapT":33071}],"scene":0,"scenes":[{"nodes":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57]}],"textures":[{"sampler":0,"source":0}]} \ No newline at end of file From 1efe91b6aeebd420f8e7c5bbfa3c2dfff3dfd44e Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Mon, 5 Aug 2024 03:43:20 -0700 Subject: [PATCH 12/17] Add `stim.{CircuitInstruction,DemInstruction}.target_groups` (#812) Fixes https://github.com/quantumlib/Stim/issues/811 --- doc/python_api_reference_vDev.md | 127 +++++++++++++++++- doc/stim.pyi | 111 ++++++++++++++- file_lists/test_files | 1 + glue/python/src/stim/__init__.pyi | 111 ++++++++++++++- src/stim/circuit/circuit_instruction.h | 32 +++++ .../circuit/circuit_instruction.pybind.cc | 92 +++++++++++-- src/stim/circuit/circuit_instruction.pybind.h | 1 + src/stim/circuit/circuit_instruction.test.cc | 78 +++++++++++ .../circuit_instruction_pybind_test.py | 19 +++ src/stim/circuit/gate_target.cc | 9 +- src/stim/circuit/gate_target.pybind.cc | 2 +- src/stim/dem/dem_instruction.h | 14 ++ src/stim/dem/dem_instruction.test.cc | 45 +++++++ ...detector_error_model_instruction.pybind.cc | 59 ++++++-- .../detector_error_model_instruction.pybind.h | 17 +-- ...tor_error_model_instruction_pybind_test.py | 19 +-- .../diagram/graph/match_graph_3d_drawer.h | 16 --- src/stim/gates/gate_data_annotations.cc | 14 -- src/stim/simulators/matched_error.pybind.cc | 19 +++ 19 files changed, 693 insertions(+), 93 deletions(-) create mode 100644 src/stim/circuit/circuit_instruction.test.cc diff --git a/doc/python_api_reference_vDev.md b/doc/python_api_reference_vDev.md index 4ba62593..f509eef0 100644 --- a/doc/python_api_reference_vDev.md +++ b/doc/python_api_reference_vDev.md @@ -82,6 +82,7 @@ API references for stable versions are kept on the [stim github wiki](https://gi - [`stim.CircuitInstruction.gate_args_copy`](#stim.CircuitInstruction.gate_args_copy) - [`stim.CircuitInstruction.name`](#stim.CircuitInstruction.name) - [`stim.CircuitInstruction.num_measurements`](#stim.CircuitInstruction.num_measurements) + - [`stim.CircuitInstruction.target_groups`](#stim.CircuitInstruction.target_groups) - [`stim.CircuitInstruction.targets_copy`](#stim.CircuitInstruction.targets_copy) - [`stim.CircuitRepeatBlock`](#stim.CircuitRepeatBlock) - [`stim.CircuitRepeatBlock.__eq__`](#stim.CircuitRepeatBlock.__eq__) @@ -123,6 +124,7 @@ API references for stable versions are kept on the [stim github wiki](https://gi - [`stim.DemInstruction.__repr__`](#stim.DemInstruction.__repr__) - [`stim.DemInstruction.__str__`](#stim.DemInstruction.__str__) - [`stim.DemInstruction.args_copy`](#stim.DemInstruction.args_copy) + - [`stim.DemInstruction.target_groups`](#stim.DemInstruction.target_groups) - [`stim.DemInstruction.targets_copy`](#stim.DemInstruction.targets_copy) - [`stim.DemInstruction.type`](#stim.DemInstruction.type) - [`stim.DemRepeatBlock`](#stim.DemRepeatBlock) @@ -3664,6 +3666,25 @@ def instruction_targets( """Within the error instruction, which may have hundreds of targets, which specific targets were being executed to produce the error. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> targets = err[0].circuit_error_locations[0].instruction_targets + >>> targets == stim.CircuitTargetsInsideInstruction( + ... gate='Y_ERROR', + ... args=[0.125], + ... target_range_start=0, + ... target_range_end=1, + ... targets_in_range=(stim.GateTargetWithCoords(0, []),), + ... ) + True """ ``` @@ -3917,6 +3938,17 @@ def gate_args_copy( For noisy gates this typically a list of probabilities. For OBSERVABLE_INCLUDE it's a singleton list containing the logical observable index. + + Examples: + >>> import stim + >>> instruction = stim.CircuitInstruction('X_ERROR', [2, 3], [0.125]) + >>> instruction.gate_args_copy() + [0.125] + + >>> instruction.gate_args_copy() == instruction.gate_args_copy() + True + >>> instruction.gate_args_copy() is instruction.gate_args_copy() + False """ ``` @@ -3961,6 +3993,52 @@ def num_measurements( """ ``` + +```python +# stim.CircuitInstruction.target_groups + +# (in class stim.CircuitInstruction) +def target_groups( + self, +) -> List[List[stim.GateTarget]]: + """Splits the instruction's targets into groups depending on the type of gate. + + Single qubit gates like H get one group per target. + Two qubit gates like CX get one group per pair of targets. + Pauli product gates like MPP get one group per combined product. + + Returns: + A list of groups of targets. + + Examples: + >>> import stim + >>> for g in stim.Circuit('H 0 1 2')[0].target_groups(): + ... print(repr(g)) + [stim.GateTarget(0)] + [stim.GateTarget(1)] + [stim.GateTarget(2)] + + >>> for g in stim.Circuit('CX 0 1 2 3')[0].target_groups(): + ... print(repr(g)) + [stim.GateTarget(0), stim.GateTarget(1)] + [stim.GateTarget(2), stim.GateTarget(3)] + + >>> for g in stim.Circuit('MPP X0*Y1*Z2 X5*X6')[0].target_groups(): + ... print(repr(g)) + [stim.target_x(0), stim.target_y(1), stim.target_z(2)] + [stim.target_x(5), stim.target_x(6)] + + >>> for g in stim.Circuit('DETECTOR rec[-1] rec[-2]')[0].target_groups(): + ... print(repr(g)) + [stim.target_rec(-1)] + [stim.target_rec(-2)] + + >>> for g in stim.Circuit('CORRELATED_ERROR(0.1) X0 Y1')[0].target_groups(): + ... print(repr(g)) + [stim.target_x(0), stim.target_y(1)] + """ +``` + ```python # stim.CircuitInstruction.targets_copy @@ -3970,6 +4048,17 @@ def targets_copy( self, ) -> List[stim.GateTarget]: """Returns a copy of the targets of the instruction. + + Examples: + >>> import stim + >>> instruction = stim.CircuitInstruction('X_ERROR', [2, 3], [0.125]) + >>> instruction.targets_copy() + [stim.GateTarget(2), stim.GateTarget(3)] + + >>> instruction.targets_copy() == instruction.targets_copy() + True + >>> instruction.targets_copy() is instruction.targets_copy() + False """ ``` @@ -5335,6 +5424,42 @@ def args_copy( """ ``` + +```python +# stim.DemInstruction.target_groups + +# (in class stim.DemInstruction) +def target_groups( + self, +) -> List[List[stim.DemTarget]]: + """Returns a copy of the instruction's targets, split by target separators. + + When a detector error model instruction contains a suggested decomposition, + its targets contain separators (`stim.DemTarget("^")`). This method splits the + targets into groups based the separators, similar to how `str.split` works. + + Returns: + A list of groups of targets. + + Examples: + >>> import stim + >>> dem = stim.DetectorErrorModel(''' + ... error(0.01) D0 D1 ^ D2 + ... error(0.01) D0 L0 + ... error(0.01) + ... ''') + + >>> dem[0].target_groups() + [[stim.DemTarget('D0'), stim.DemTarget('D1')], [stim.DemTarget('D2')]] + + >>> dem[1].target_groups() + [[stim.DemTarget('D0'), stim.DemTarget('L0')]] + + >>> dem[2].target_groups() + [[]] + """ +``` + ```python # stim.DemInstruction.targets_copy @@ -8928,7 +9053,7 @@ class GateTarget: >>> circuit[0].targets_copy()[0] stim.GateTarget(0) >>> circuit[0].targets_copy()[1] - stim.GateTarget(stim.target_inv(1)) + stim.target_inv(1) """ ``` diff --git a/doc/stim.pyi b/doc/stim.pyi index cd232b6a..e20cbea0 100644 --- a/doc/stim.pyi +++ b/doc/stim.pyi @@ -2846,6 +2846,25 @@ class CircuitErrorLocation: """Within the error instruction, which may have hundreds of targets, which specific targets were being executed to produce the error. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> targets = err[0].circuit_error_locations[0].instruction_targets + >>> targets == stim.CircuitTargetsInsideInstruction( + ... gate='Y_ERROR', + ... args=[0.125], + ... target_range_start=0, + ... target_range_end=1, + ... targets_in_range=(stim.GateTargetWithCoords(0, []),), + ... ) + True """ @property def stack_frames( @@ -3001,6 +3020,17 @@ class CircuitInstruction: For noisy gates this typically a list of probabilities. For OBSERVABLE_INCLUDE it's a singleton list containing the logical observable index. + + Examples: + >>> import stim + >>> instruction = stim.CircuitInstruction('X_ERROR', [2, 3], [0.125]) + >>> instruction.gate_args_copy() + [0.125] + + >>> instruction.gate_args_copy() == instruction.gate_args_copy() + True + >>> instruction.gate_args_copy() is instruction.gate_args_copy() + False """ @property def name( @@ -3029,10 +3059,60 @@ class CircuitInstruction: >>> stim.CircuitInstruction('HERALDED_ERASE', [0]).num_measurements 1 """ + def target_groups( + self, + ) -> List[List[stim.GateTarget]]: + """Splits the instruction's targets into groups depending on the type of gate. + + Single qubit gates like H get one group per target. + Two qubit gates like CX get one group per pair of targets. + Pauli product gates like MPP get one group per combined product. + + Returns: + A list of groups of targets. + + Examples: + >>> import stim + >>> for g in stim.Circuit('H 0 1 2')[0].target_groups(): + ... print(repr(g)) + [stim.GateTarget(0)] + [stim.GateTarget(1)] + [stim.GateTarget(2)] + + >>> for g in stim.Circuit('CX 0 1 2 3')[0].target_groups(): + ... print(repr(g)) + [stim.GateTarget(0), stim.GateTarget(1)] + [stim.GateTarget(2), stim.GateTarget(3)] + + >>> for g in stim.Circuit('MPP X0*Y1*Z2 X5*X6')[0].target_groups(): + ... print(repr(g)) + [stim.target_x(0), stim.target_y(1), stim.target_z(2)] + [stim.target_x(5), stim.target_x(6)] + + >>> for g in stim.Circuit('DETECTOR rec[-1] rec[-2]')[0].target_groups(): + ... print(repr(g)) + [stim.target_rec(-1)] + [stim.target_rec(-2)] + + >>> for g in stim.Circuit('CORRELATED_ERROR(0.1) X0 Y1')[0].target_groups(): + ... print(repr(g)) + [stim.target_x(0), stim.target_y(1)] + """ def targets_copy( self, ) -> List[stim.GateTarget]: """Returns a copy of the targets of the instruction. + + Examples: + >>> import stim + >>> instruction = stim.CircuitInstruction('X_ERROR', [2, 3], [0.125]) + >>> instruction.targets_copy() + [stim.GateTarget(2), stim.GateTarget(3)] + + >>> instruction.targets_copy() == instruction.targets_copy() + True + >>> instruction.targets_copy() is instruction.targets_copy() + False """ class CircuitRepeatBlock: """A REPEAT block from a circuit. @@ -4172,6 +4252,35 @@ class DemInstruction: >>> instruction.args_copy() is instruction.args_copy() False """ + def target_groups( + self, + ) -> List[List[stim.DemTarget]]: + """Returns a copy of the instruction's targets, split by target separators. + + When a detector error model instruction contains a suggested decomposition, + its targets contain separators (`stim.DemTarget("^")`). This method splits the + targets into groups based the separators, similar to how `str.split` works. + + Returns: + A list of groups of targets. + + Examples: + >>> import stim + >>> dem = stim.DetectorErrorModel(''' + ... error(0.01) D0 D1 ^ D2 + ... error(0.01) D0 L0 + ... error(0.01) + ... ''') + + >>> dem[0].target_groups() + [[stim.DemTarget('D0'), stim.DemTarget('D1')], [stim.DemTarget('D2')]] + + >>> dem[1].target_groups() + [[stim.DemTarget('D0'), stim.DemTarget('L0')]] + + >>> dem[2].target_groups() + [[]] + """ def targets_copy( self, ) -> List[Union[int, stim.DemTarget]]: @@ -6976,7 +7085,7 @@ class GateTarget: >>> circuit[0].targets_copy()[0] stim.GateTarget(0) >>> circuit[0].targets_copy()[1] - stim.GateTarget(stim.target_inv(1)) + stim.target_inv(1) """ def __eq__( self, diff --git a/file_lists/test_files b/file_lists/test_files index b57d0093..b00287c5 100644 --- a/file_lists/test_files +++ b/file_lists/test_files @@ -1,5 +1,6 @@ src/stim.test.cc src/stim/circuit/circuit.test.cc +src/stim/circuit/circuit_instruction.test.cc src/stim/circuit/gate_decomposition.test.cc src/stim/circuit/gate_target.test.cc src/stim/cmd/command_analyze_errors.test.cc diff --git a/glue/python/src/stim/__init__.pyi b/glue/python/src/stim/__init__.pyi index cd232b6a..e20cbea0 100644 --- a/glue/python/src/stim/__init__.pyi +++ b/glue/python/src/stim/__init__.pyi @@ -2846,6 +2846,25 @@ class CircuitErrorLocation: """Within the error instruction, which may have hundreds of targets, which specific targets were being executed to produce the error. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> targets = err[0].circuit_error_locations[0].instruction_targets + >>> targets == stim.CircuitTargetsInsideInstruction( + ... gate='Y_ERROR', + ... args=[0.125], + ... target_range_start=0, + ... target_range_end=1, + ... targets_in_range=(stim.GateTargetWithCoords(0, []),), + ... ) + True """ @property def stack_frames( @@ -3001,6 +3020,17 @@ class CircuitInstruction: For noisy gates this typically a list of probabilities. For OBSERVABLE_INCLUDE it's a singleton list containing the logical observable index. + + Examples: + >>> import stim + >>> instruction = stim.CircuitInstruction('X_ERROR', [2, 3], [0.125]) + >>> instruction.gate_args_copy() + [0.125] + + >>> instruction.gate_args_copy() == instruction.gate_args_copy() + True + >>> instruction.gate_args_copy() is instruction.gate_args_copy() + False """ @property def name( @@ -3029,10 +3059,60 @@ class CircuitInstruction: >>> stim.CircuitInstruction('HERALDED_ERASE', [0]).num_measurements 1 """ + def target_groups( + self, + ) -> List[List[stim.GateTarget]]: + """Splits the instruction's targets into groups depending on the type of gate. + + Single qubit gates like H get one group per target. + Two qubit gates like CX get one group per pair of targets. + Pauli product gates like MPP get one group per combined product. + + Returns: + A list of groups of targets. + + Examples: + >>> import stim + >>> for g in stim.Circuit('H 0 1 2')[0].target_groups(): + ... print(repr(g)) + [stim.GateTarget(0)] + [stim.GateTarget(1)] + [stim.GateTarget(2)] + + >>> for g in stim.Circuit('CX 0 1 2 3')[0].target_groups(): + ... print(repr(g)) + [stim.GateTarget(0), stim.GateTarget(1)] + [stim.GateTarget(2), stim.GateTarget(3)] + + >>> for g in stim.Circuit('MPP X0*Y1*Z2 X5*X6')[0].target_groups(): + ... print(repr(g)) + [stim.target_x(0), stim.target_y(1), stim.target_z(2)] + [stim.target_x(5), stim.target_x(6)] + + >>> for g in stim.Circuit('DETECTOR rec[-1] rec[-2]')[0].target_groups(): + ... print(repr(g)) + [stim.target_rec(-1)] + [stim.target_rec(-2)] + + >>> for g in stim.Circuit('CORRELATED_ERROR(0.1) X0 Y1')[0].target_groups(): + ... print(repr(g)) + [stim.target_x(0), stim.target_y(1)] + """ def targets_copy( self, ) -> List[stim.GateTarget]: """Returns a copy of the targets of the instruction. + + Examples: + >>> import stim + >>> instruction = stim.CircuitInstruction('X_ERROR', [2, 3], [0.125]) + >>> instruction.targets_copy() + [stim.GateTarget(2), stim.GateTarget(3)] + + >>> instruction.targets_copy() == instruction.targets_copy() + True + >>> instruction.targets_copy() is instruction.targets_copy() + False """ class CircuitRepeatBlock: """A REPEAT block from a circuit. @@ -4172,6 +4252,35 @@ class DemInstruction: >>> instruction.args_copy() is instruction.args_copy() False """ + def target_groups( + self, + ) -> List[List[stim.DemTarget]]: + """Returns a copy of the instruction's targets, split by target separators. + + When a detector error model instruction contains a suggested decomposition, + its targets contain separators (`stim.DemTarget("^")`). This method splits the + targets into groups based the separators, similar to how `str.split` works. + + Returns: + A list of groups of targets. + + Examples: + >>> import stim + >>> dem = stim.DetectorErrorModel(''' + ... error(0.01) D0 D1 ^ D2 + ... error(0.01) D0 L0 + ... error(0.01) + ... ''') + + >>> dem[0].target_groups() + [[stim.DemTarget('D0'), stim.DemTarget('D1')], [stim.DemTarget('D2')]] + + >>> dem[1].target_groups() + [[stim.DemTarget('D0'), stim.DemTarget('L0')]] + + >>> dem[2].target_groups() + [[]] + """ def targets_copy( self, ) -> List[Union[int, stim.DemTarget]]: @@ -6976,7 +7085,7 @@ class GateTarget: >>> circuit[0].targets_copy()[0] stim.GateTarget(0) >>> circuit[0].targets_copy()[1] - stim.GateTarget(stim.target_inv(1)) + stim.target_inv(1) """ def __eq__( self, diff --git a/src/stim/circuit/circuit_instruction.h b/src/stim/circuit/circuit_instruction.h index 9cc510ed..33caeb81 100644 --- a/src/stim/circuit/circuit_instruction.h +++ b/src/stim/circuit/circuit_instruction.h @@ -109,6 +109,38 @@ struct CircuitInstruction { /// Raises: /// std::invalid_argument: Validation failed. void validate() const; + + template + inline void for_combined_target_groups(CALLBACK callback) const { + auto flags = GATE_DATA[gate_type].flags; + size_t start = 0; + while (start < targets.size()) { + size_t end; + if (flags & stim::GateFlags::GATE_TARGETS_COMBINERS) { + end = start + 1; + while (end < targets.size() && targets[end].is_combiner()) { + end += 2; + } + } else if (flags & stim::GateFlags::GATE_IS_SINGLE_QUBIT_GATE) { + end = start + 1; + } else if (flags & stim::GateFlags::GATE_TARGETS_PAIRS) { + end = start + 2; + } else if ((flags & stim::GateFlags::GATE_TARGETS_PAULI_STRING) && !(flags & stim::GateFlags::GATE_TARGETS_COMBINERS)) { + // like CORRELATED_ERROR + end = targets.size(); + } else if (flags & stim::GateFlags::GATE_ONLY_TARGETS_MEASUREMENT_RECORD) { + // like DETECTOR + end = start + 1; + } else if (gate_type == GateType::MPAD || gate_type == GateType::QUBIT_COORDS) { + end = start + 1; + } else { + throw std::invalid_argument("Not implemented: splitting " + str()); + } + std::span group = targets.sub(start, end); + callback(group); + start = end; + } + } }; } // namespace stim diff --git a/src/stim/circuit/circuit_instruction.pybind.cc b/src/stim/circuit/circuit_instruction.pybind.cc index adef47c2..5c1cce13 100644 --- a/src/stim/circuit/circuit_instruction.pybind.cc +++ b/src/stim/circuit/circuit_instruction.pybind.cc @@ -1,17 +1,3 @@ -// Copyright 2021 Google LLC -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - #include "stim/circuit/circuit_instruction.pybind.h" #include "stim/circuit/gate_target.pybind.h" @@ -90,6 +76,19 @@ std::vector PyCircuitInstruction::targets_copy() const { std::vector PyCircuitInstruction::gate_args_copy() const { return gate_args; } +std::vector> PyCircuitInstruction::target_groups() const { + std::vector> results; + as_operation_ref().for_combined_target_groups([&](std::span group) { + std::vector copy; + for (auto g : group) { + if (!g.is_combiner()) { + copy.push_back(g); + } + } + results.push_back(std::move(copy)); + }); + return results; +} pybind11::class_ stim_pybind::pybind_circuit_instruction(pybind11::module &m) { return pybind11::class_( @@ -142,11 +141,65 @@ void stim_pybind::pybind_circuit_instruction_methods(pybind11::module &m, pybind )DOC") .data()); + c.def( + "target_groups", + &PyCircuitInstruction::target_groups, + clean_doc_string(R"DOC( + @signature def target_groups(self) -> List[List[stim.GateTarget]]: + Splits the instruction's targets into groups depending on the type of gate. + + Single qubit gates like H get one group per target. + Two qubit gates like CX get one group per pair of targets. + Pauli product gates like MPP get one group per combined product. + + Returns: + A list of groups of targets. + + Examples: + >>> import stim + >>> for g in stim.Circuit('H 0 1 2')[0].target_groups(): + ... print(repr(g)) + [stim.GateTarget(0)] + [stim.GateTarget(1)] + [stim.GateTarget(2)] + + >>> for g in stim.Circuit('CX 0 1 2 3')[0].target_groups(): + ... print(repr(g)) + [stim.GateTarget(0), stim.GateTarget(1)] + [stim.GateTarget(2), stim.GateTarget(3)] + + >>> for g in stim.Circuit('MPP X0*Y1*Z2 X5*X6')[0].target_groups(): + ... print(repr(g)) + [stim.target_x(0), stim.target_y(1), stim.target_z(2)] + [stim.target_x(5), stim.target_x(6)] + + >>> for g in stim.Circuit('DETECTOR rec[-1] rec[-2]')[0].target_groups(): + ... print(repr(g)) + [stim.target_rec(-1)] + [stim.target_rec(-2)] + + >>> for g in stim.Circuit('CORRELATED_ERROR(0.1) X0 Y1')[0].target_groups(): + ... print(repr(g)) + [stim.target_x(0), stim.target_y(1)] + )DOC") + .data()); + c.def( "targets_copy", &PyCircuitInstruction::targets_copy, clean_doc_string(R"DOC( Returns a copy of the targets of the instruction. + + Examples: + >>> import stim + >>> instruction = stim.CircuitInstruction('X_ERROR', [2, 3], [0.125]) + >>> instruction.targets_copy() + [stim.GateTarget(2), stim.GateTarget(3)] + + >>> instruction.targets_copy() == instruction.targets_copy() + True + >>> instruction.targets_copy() is instruction.targets_copy() + False )DOC") .data()); @@ -159,6 +212,17 @@ void stim_pybind::pybind_circuit_instruction_methods(pybind11::module &m, pybind For noisy gates this typically a list of probabilities. For OBSERVABLE_INCLUDE it's a singleton list containing the logical observable index. + + Examples: + >>> import stim + >>> instruction = stim.CircuitInstruction('X_ERROR', [2, 3], [0.125]) + >>> instruction.gate_args_copy() + [0.125] + + >>> instruction.gate_args_copy() == instruction.gate_args_copy() + True + >>> instruction.gate_args_copy() is instruction.gate_args_copy() + False )DOC") .data()); diff --git a/src/stim/circuit/circuit_instruction.pybind.h b/src/stim/circuit/circuit_instruction.pybind.h index 48873543..a1a36bf2 100644 --- a/src/stim/circuit/circuit_instruction.pybind.h +++ b/src/stim/circuit/circuit_instruction.pybind.h @@ -39,6 +39,7 @@ struct PyCircuitInstruction { std::vector targets_copy() const; std::vector gate_args_copy() const; std::vector raw_targets() const; + std::vector> target_groups() const; bool operator==(const PyCircuitInstruction &other) const; bool operator!=(const PyCircuitInstruction &other) const; diff --git a/src/stim/circuit/circuit_instruction.test.cc b/src/stim/circuit/circuit_instruction.test.cc new file mode 100644 index 00000000..e0339977 --- /dev/null +++ b/src/stim/circuit/circuit_instruction.test.cc @@ -0,0 +1,78 @@ +#include "stim/circuit/circuit_instruction.h" + +#include "gtest/gtest.h" + +#include "stim/circuit/circuit.h" +#include "stim/circuit/circuit.test.h" + +using namespace stim; + +TEST(circuit_instruction, for_combined_targets) { + Circuit circuit(R"CIRCUIT( + X + CX + S 1 + H 0 2 + TICK + CX 0 1 2 3 + CY 3 5 + SPP + MPP X0*X1*Z2 Z7 X5*X9 + SPP Z5 + )CIRCUIT"); + auto get_k = [&](size_t k) { + std::vector> results; + circuit.operations[k].for_combined_target_groups([&](std::span group) { + std::vector items; + for (auto g : group) { + items.push_back(g); + } + results.push_back(items); + }); + return results; + }; + ASSERT_EQ(get_k(0), (std::vector>{ + })); + ASSERT_EQ(get_k(1), (std::vector>{ + })); + ASSERT_EQ(get_k(2), (std::vector>{ + {GateTarget::qubit(1)}, + })); + ASSERT_EQ(get_k(3), (std::vector>{ + {GateTarget::qubit(0)}, + {GateTarget::qubit(2)}, + })); + ASSERT_EQ(get_k(4), (std::vector>{ + })); + ASSERT_EQ(get_k(5), (std::vector>{ + {GateTarget::qubit(0), GateTarget::qubit(1)}, + {GateTarget::qubit(2), GateTarget::qubit(3)}, + })); + ASSERT_EQ(get_k(6), (std::vector>{ + {GateTarget::qubit(3), GateTarget::qubit(5)}, + })); + ASSERT_EQ(get_k(7), (std::vector>{ + })); + ASSERT_EQ(get_k(8), (std::vector>{ + {GateTarget::x(0), GateTarget::combiner(), GateTarget::x(1), GateTarget::combiner(), GateTarget::z(2)}, + {GateTarget::z(7)}, + {GateTarget::x(5), GateTarget::combiner(), GateTarget::x(9)}, + })); + ASSERT_EQ(get_k(9), (std::vector>{ + {GateTarget::z(5)}, + })); +} + +TEST(circuit_instruction, for_combined_targets_works_on_all) { + Circuit c = generate_test_circuit_with_all_operations(); + size_t count = 0; + for (const auto &e : c.operations) { + if (e.gate_type == GateType::REPEAT) { + continue; + } + e.for_combined_target_groups([&](std::span group) { + count += group.size(); + }); + } + ASSERT_TRUE(count > 0); +} diff --git a/src/stim/circuit/circuit_instruction_pybind_test.py b/src/stim/circuit/circuit_instruction_pybind_test.py index d0592713..1939d70b 100644 --- a/src/stim/circuit/circuit_instruction_pybind_test.py +++ b/src/stim/circuit/circuit_instruction_pybind_test.py @@ -57,3 +57,22 @@ def test_num_measurements(): assert stim.CircuitInstruction("MXX", [1, 2]).num_measurements == 1 assert stim.CircuitInstruction("M", [1, 2]).num_measurements == 2 assert stim.CircuitInstruction("MPAD", [0, 1, 0]).num_measurements == 3 + + +def test_target_groups(): + assert stim.CircuitInstruction("MPAD", [0, 1, 0]).target_groups() == [ + [stim.GateTarget(0)], + [stim.GateTarget(1)], + [stim.GateTarget(0)], + ] + assert stim.CircuitInstruction("H", []).target_groups() == [] + assert stim.CircuitInstruction("H", [1]).target_groups() == [[stim.GateTarget(1)]] + assert stim.CircuitInstruction("H", [2, 3]).target_groups() == [[stim.GateTarget(2)], [stim.GateTarget(3)]] + assert stim.CircuitInstruction("CX", []).target_groups() == [] + assert stim.CircuitInstruction("CX", [0, 1]).target_groups() == [[stim.GateTarget(0), stim.GateTarget(1)]] + assert stim.CircuitInstruction("CX", [2, 3, 5, 7]).target_groups() == [[stim.GateTarget(2), stim.GateTarget(3)], [stim.GateTarget(5), stim.GateTarget(7)]] + assert stim.CircuitInstruction("DETECTOR", []).target_groups() == [] + assert stim.CircuitInstruction("CORRELATED_ERROR", [], [0.001]).target_groups() == [] + assert stim.CircuitInstruction("MPP", []).target_groups() == [] + assert stim.CircuitInstruction("MPAD", []).target_groups() == [] + assert stim.CircuitInstruction("QUBIT_COORDS", [1, 2]).target_groups() == [[stim.GateTarget(1)], [stim.GateTarget(2)]] diff --git a/src/stim/circuit/gate_target.cc b/src/stim/circuit/gate_target.cc index a7918ff6..e961bab8 100644 --- a/src/stim/circuit/gate_target.cc +++ b/src/stim/circuit/gate_target.cc @@ -178,9 +178,14 @@ std::string GateTarget::str() const { std::string GateTarget::repr() const { std::stringstream ss; - ss << "stim.GateTarget("; + bool need_wrap = is_qubit_target() && !is_inverted_result_target(); + if (need_wrap) { + ss << "stim.GateTarget("; + } ss << *this; - ss << ")"; + if (need_wrap) { + ss << ")"; + } return ss.str(); } diff --git a/src/stim/circuit/gate_target.pybind.cc b/src/stim/circuit/gate_target.pybind.cc index 9278ae4b..ba7db7f4 100644 --- a/src/stim/circuit/gate_target.pybind.cc +++ b/src/stim/circuit/gate_target.pybind.cc @@ -52,7 +52,7 @@ pybind11::class_ stim_pybind::pybind_circuit_gate_target(pybin >>> circuit[0].targets_copy()[0] stim.GateTarget(0) >>> circuit[0].targets_copy()[1] - stim.GateTarget(stim.target_inv(1)) + stim.target_inv(1) )DOC") .data()); } diff --git a/src/stim/dem/dem_instruction.h b/src/stim/dem/dem_instruction.h index 42361112..39423b58 100644 --- a/src/stim/dem/dem_instruction.h +++ b/src/stim/dem/dem_instruction.h @@ -61,6 +61,20 @@ struct DemInstruction { uint64_t repeat_block_rep_count() const; const DetectorErrorModel &repeat_block_body(const DetectorErrorModel &host) const; DetectorErrorModel &repeat_block_body(DetectorErrorModel &host) const; + + template + inline void for_separated_targets(CALLBACK callback) const { + size_t start = 0; + do { + size_t end = start + 1; + while (end < target_data.size() && !target_data[end].is_separator()) { + end++; + } + std::span group = target_data.sub(start, std::min(end, target_data.size())); + callback(group); + start = end + 1; + } while (start < target_data.size()); + } }; std::ostream &operator<<(std::ostream &out, const DemInstructionType &type); diff --git a/src/stim/dem/dem_instruction.test.cc b/src/stim/dem/dem_instruction.test.cc index 53865e46..f14c2f1e 100644 --- a/src/stim/dem/dem_instruction.test.cc +++ b/src/stim/dem/dem_instruction.test.cc @@ -2,6 +2,8 @@ #include "gtest/gtest.h" +#include "stim/dem/detector_error_model.h" + using namespace stim; TEST(dem_instruction, from_str) { @@ -29,3 +31,46 @@ TEST(dem_instruction, from_str) { ASSERT_THROW({ DemTarget::from_text("'"); }, std::invalid_argument); ASSERT_THROW({ DemTarget::from_text(" "); }, std::invalid_argument); } + +TEST(dem_instruction, for_separated_targets) { + DetectorErrorModel dem("error(0.1) D0 ^ D2 L0 ^ D1 D2 D3"); + std::vector> results; + dem.instructions[0].for_separated_targets([&](std::span group) { + std::vector items; + for (auto g : group) { + items.push_back(g); + } + results.push_back(items); + }); + ASSERT_EQ(results, (std::vector>{ + {DemTarget::relative_detector_id(0)}, + {DemTarget::relative_detector_id(2), DemTarget::observable_id(0)}, + {DemTarget::relative_detector_id(1), DemTarget::relative_detector_id(2), DemTarget::relative_detector_id(3)}, + })); + + dem = DetectorErrorModel("error(0.1) D0"); + results.clear(); + dem.instructions[0].for_separated_targets([&](std::span group) { + std::vector items; + for (auto g : group) { + items.push_back(g); + } + results.push_back(items); + }); + ASSERT_EQ(results, (std::vector>{ + {DemTarget::relative_detector_id(0)}, + })); + + dem = DetectorErrorModel("error(0.1)"); + results.clear(); + dem.instructions[0].for_separated_targets([&](std::span group) { + std::vector items; + for (auto g : group) { + items.push_back(g); + } + results.push_back(items); + }); + ASSERT_EQ(results, (std::vector>{ + {}, + })); +} diff --git a/src/stim/dem/detector_error_model_instruction.pybind.cc b/src/stim/dem/detector_error_model_instruction.pybind.cc index a9f0a5ca..ceac444d 100644 --- a/src/stim/dem/detector_error_model_instruction.pybind.cc +++ b/src/stim/dem/detector_error_model_instruction.pybind.cc @@ -1,17 +1,3 @@ -// Copyright 2021 Google LLC -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - #include "stim/dem/detector_error_model_instruction.pybind.h" #include "stim/dem/detector_error_model_target.pybind.h" @@ -21,6 +7,18 @@ using namespace stim; using namespace stim_pybind; +std::vector> ExposedDemInstruction::target_groups() const { + std::vector> result; + as_dem_instruction().for_separated_targets([&](std::span group) { + std::vector copy; + for (auto e : group) { + copy.push_back(e); + } + result.push_back(copy); + }); + return result; +} + DemInstruction ExposedDemInstruction::as_dem_instruction() const { return DemInstruction{arguments, targets, type}; } @@ -205,6 +203,39 @@ void stim_pybind::pybind_detector_error_model_instruction_methods( )DOC") .data()); + c.def( + "target_groups", + &ExposedDemInstruction::target_groups, + clean_doc_string(R"DOC( + @signature def target_groups(self) -> List[List[stim.DemTarget]]: + Returns a copy of the instruction's targets, split by target separators. + + When a detector error model instruction contains a suggested decomposition, + its targets contain separators (`stim.DemTarget("^")`). This method splits the + targets into groups based the separators, similar to how `str.split` works. + + Returns: + A list of groups of targets. + + Examples: + >>> import stim + >>> dem = stim.DetectorErrorModel(''' + ... error(0.01) D0 D1 ^ D2 + ... error(0.01) D0 L0 + ... error(0.01) + ... ''') + + >>> dem[0].target_groups() + [[stim.DemTarget('D0'), stim.DemTarget('D1')], [stim.DemTarget('D2')]] + + >>> dem[1].target_groups() + [[stim.DemTarget('D0'), stim.DemTarget('L0')]] + + >>> dem[2].target_groups() + [[]] + )DOC") + .data()); + c.def( "targets_copy", &ExposedDemInstruction::targets_copy, diff --git a/src/stim/dem/detector_error_model_instruction.pybind.h b/src/stim/dem/detector_error_model_instruction.pybind.h index facaa8e0..247a713a 100644 --- a/src/stim/dem/detector_error_model_instruction.pybind.h +++ b/src/stim/dem/detector_error_model_instruction.pybind.h @@ -1,23 +1,9 @@ -// Copyright 2021 Google LLC -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - #ifndef _STIM_DEM_DETECTOR_ERROR_MODEL_INSTRUCTION_PYBIND_H #define _STIM_DEM_DETECTOR_ERROR_MODEL_INSTRUCTION_PYBIND_H #include -#include "stim/dem/detector_error_model.h" +#include "stim/dem/detector_error_model_target.pybind.h" namespace stim_pybind { @@ -26,6 +12,7 @@ struct ExposedDemInstruction { std::vector targets; stim::DemInstructionType type; + std::vector> target_groups() const; std::vector args_copy() const; std::vector targets_copy() const; stim::DemInstruction as_dem_instruction() const; diff --git a/src/stim/dem/detector_error_model_instruction_pybind_test.py b/src/stim/dem/detector_error_model_instruction_pybind_test.py index 46c8aa3a..2afbe0e6 100644 --- a/src/stim/dem/detector_error_model_instruction_pybind_test.py +++ b/src/stim/dem/detector_error_model_instruction_pybind_test.py @@ -1,17 +1,3 @@ -# Copyright 2021 Google LLC -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - import stim import pytest @@ -87,3 +73,8 @@ def test_hashable(): c = stim.DemInstruction("error", [0.25], [stim.target_relative_detector_id(3)]) assert hash(a) == hash(c) assert len({a, b, c}) == 2 + + +def test_target_groups(): + dem = stim.DetectorErrorModel("detector D0") + assert dem[0].target_groups() == [[stim.DemTarget("D0")]] diff --git a/src/stim/diagram/graph/match_graph_3d_drawer.h b/src/stim/diagram/graph/match_graph_3d_drawer.h index 9d033018..535307ea 100644 --- a/src/stim/diagram/graph/match_graph_3d_drawer.h +++ b/src/stim/diagram/graph/match_graph_3d_drawer.h @@ -1,19 +1,3 @@ -/* - * Copyright 2021 Google LLC - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - #ifndef _STIM_DIAGRAM_GRAPH_MATCH_GRAPH_DRAWER_H #define _STIM_DIAGRAM_GRAPH_MATCH_GRAPH_DRAWER_H diff --git a/src/stim/gates/gate_data_annotations.cc b/src/stim/gates/gate_data_annotations.cc index b71301cc..c95027a0 100644 --- a/src/stim/gates/gate_data_annotations.cc +++ b/src/stim/gates/gate_data_annotations.cc @@ -1,17 +1,3 @@ -// Copyright 2021 Google LLC -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - #include "stim/gates/gates.h" using namespace stim; diff --git a/src/stim/simulators/matched_error.pybind.cc b/src/stim/simulators/matched_error.pybind.cc index a85efef3..6587750a 100644 --- a/src/stim/simulators/matched_error.pybind.cc +++ b/src/stim/simulators/matched_error.pybind.cc @@ -624,6 +624,25 @@ void stim_pybind::pybind_circuit_error_location_methods( Within the error instruction, which may have hundreds of targets, which specific targets were being executed to produce the error. + + Examples: + >>> import stim + >>> err = stim.Circuit(''' + ... R 0 + ... TICK + ... Y_ERROR(0.125) 0 + ... M 0 + ... OBSERVABLE_INCLUDE(0) rec[-1] + ... ''').shortest_graphlike_error() + >>> targets = err[0].circuit_error_locations[0].instruction_targets + >>> targets == stim.CircuitTargetsInsideInstruction( + ... gate='Y_ERROR', + ... args=[0.125], + ... target_range_start=0, + ... target_range_end=1, + ... targets_in_range=(stim.GateTargetWithCoords(0, []),), + ... ) + True )DOC") .data()); From da89d9ed241cc855f3befea39df277f70e8fcda7 Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Wed, 7 Aug 2024 12:08:23 -0700 Subject: [PATCH 13/17] Update circuit_data_references.md (#813) --- doc/circuit_data_references.md | 1 + 1 file changed, 1 insertion(+) diff --git a/doc/circuit_data_references.md b/doc/circuit_data_references.md index 3e26d485..ea041097 100644 --- a/doc/circuit_data_references.md +++ b/doc/circuit_data_references.md @@ -26,3 +26,4 @@ ## 2024 - [arXiv:2405.15854](https://arxiv.org/abs/2405.15854) → [Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript](https://zenodo.org/records/11241876) +- [arXiv:2408.00758](https://arxiv.org/abs/2408.00758) → [Stim circuits for ``To reset, or not to reset -- that is the question" manuscript](https://zenodo.org/records/13152440) From 8a23f4cf9cee29c73d8c6e3ac8646e5177b762c9 Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Mon, 26 Aug 2024 15:40:01 -0700 Subject: [PATCH 14/17] Update circuit_data_references.md (#816) --- doc/circuit_data_references.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/doc/circuit_data_references.md b/doc/circuit_data_references.md index ea041097..3eaf5ae8 100644 --- a/doc/circuit_data_references.md +++ b/doc/circuit_data_references.md @@ -26,4 +26,6 @@ ## 2024 - [arXiv:2405.15854](https://arxiv.org/abs/2405.15854) → [Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript](https://zenodo.org/records/11241876) +- [arXiv:2407.13826 ](https://arxiv.org/abs/2407.13826) → [Stim circuits for 'Designing fault-tolerant circuits using detector error models'](https://github.com/peter-janderks/short_measurement_schedules_simulations/tree/main/stim_circuits) - [arXiv:2408.00758](https://arxiv.org/abs/2408.00758) → [Stim circuits for ``To reset, or not to reset -- that is the question" manuscript](https://zenodo.org/records/13152440) +- [arXiv:2408.11894](https://arxiv.org/abs/2408.11894) → [Stim circuits for 'Automated Synthesis of Fault-Tolerant State Preparation Circuits for Quantum Error Correction Codes'](https://github.com/cda-tum/mqt-qecc/tree/main/src/mqt/qecc/ft_stateprep/eval/circuits) From 64cf7e11f5a8407e65eb194d5fa9638e6d42342a Mon Sep 17 00:00:00 2001 From: Paul Conner <97137029+qec-pconner@users.noreply.github.com> Date: Fri, 6 Sep 2024 20:30:25 -0700 Subject: [PATCH 15/17] Fixing Extra Semicolon (#821) * Removing unnecessary `;` on `JsonObj::JsonObj(std::vector)`. * Trips off `-Wpedantic` and other warnings. * Fixing newlines around function definition. --- src/stim/diagram/json_obj.cc | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/stim/diagram/json_obj.cc b/src/stim/diagram/json_obj.cc index d59bc578..71e44d5d 100644 --- a/src/stim/diagram/json_obj.cc +++ b/src/stim/diagram/json_obj.cc @@ -48,8 +48,8 @@ JsonObj::JsonObj(std::map map) : map(map), type(JsonTypeMa } JsonObj::JsonObj(std::vector arr) : arr(arr), type(JsonTypeArray) { +} -}; JsonObj::JsonObj(bool boolean) : val_boolean(boolean), type(JsonTypeBool) { } From 07d5232f74036fcbd6282dcf4fc26e0de33907e1 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Tue, 10 Sep 2024 03:59:06 +0000 Subject: [PATCH 16/17] Bump actions/download-artifact from 2 to 4.1.7 in /.github/workflows (#818) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Bumps [actions/download-artifact](https://github.com/actions/download-artifact) from 2 to 4.1.7.
Release notes

Sourced from actions/download-artifact's releases.

v4.1.7

What's Changed

Full Changelog: https://github.com/actions/download-artifact/compare/v4.1.6...v4.1.7

v4.1.6

What's Changed

Full Changelog: https://github.com/actions/download-artifact/compare/v4.1.5...v4.1.6

v4.1.5

What's Changed

Full Changelog: https://github.com/actions/download-artifact/compare/v4.1.4...v4.1.5

v4.1.4

What's Changed

Full Changelog: https://github.com/actions/download-artifact/compare/v4...v4.1.4

v4.1.3

What's Changed

New Contributors

Full Changelog: https://github.com/actions/download-artifact/compare/v4...v4.1.3

v4.1.2

v4.1.1

v4.1.0

What's Changed

... (truncated)

Commits
  • 65a9edc Merge pull request #325 from bethanyj28/main
  • fdd1595 licensed
  • c13dba1 update @​actions/artifact dependency
  • 0daa75e Merge pull request #324 from actions/eggyhead/use-artifact-v2.1.6
  • 9c19ed7 Merge branch 'main' into eggyhead/use-artifact-v2.1.6
  • 3d3ea87 updating license
  • 89af5db updating artifact package v2.1.6
  • b4aefff Merge pull request #323 from actions/eggyhead/update-artifact-v215
  • 8caf195 package lock update
  • d7a2ec4 updating package version
  • Additional commits viewable in compare view

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/download-artifact&package-manager=github_actions&previous-version=2&new-version=4.1.7)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself) You can disable automated security fix PRs for this repo from the [Security Alerts page](https://github.com/quantumlib/Stim/network/alerts).
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- .github/workflows/ci.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 3c6709c6..b22c5327 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -185,7 +185,7 @@ jobs: if: github.ref == 'refs/heads/main' runs-on: ubuntu-latest steps: - - uses: actions/download-artifact@v2 + - uses: actions/download-artifact@v4.1.7 with: name: dist path: dist From 5e4f8b2497b2bf128aac8144098c4572ec83ecbd Mon Sep 17 00:00:00 2001 From: Craig Gidney Date: Mon, 9 Sep 2024 21:25:33 -0700 Subject: [PATCH 17/17] Add custom samplers, better collection, and better plotting to sinter (#804) - Add `sinter.Sampler` and `sinter.CompiledSampler` classes - They can go anywhere a Decoder would go, but they are responsible for all parts of the sampling instead of only prediction - Add a new default sampler `perfectionist`, which discards anything with detection events and predicts the observables are not flipped - Improved layout of the progress printouts when collect is running - Sinter decoders can now flag that they want to discard shots by adding an extra byte to the returned observable data, with 0 meaning keep and not-0 meaning discard - Change how `sinter collect` distributes work - Workers are now distributed as widely as possible, instead of all on one task - Workers are now never switched between tasks until their current task is done - Add `sinter plot --point_label_func` argument for drawing text next to data points - Augment `sinter plot --group_func` to support dictionaries with special keys controlling precise grouping behaviors - If group_func returns a dict with a `"color"` key, all items with the same `"color"` value are drawn with the same color - If group_func returns a dict with a `"linestyle"` key, all items with the same `"linestyle"` value are drawn with the same linestyle - If group_func returns a dict with a `"marker"` key, all items with the same `"marker"` value are drawn with the same marker - If group_func returns a dict with a `"label"` key, this forces the label shown in the legend - If group_func returns a dict with an `"order"` key, this takes priority for ordering the legend - `sinter collect --processes` is no longer required (defaults to `"auto"`) - `sinter plot --show` is no longer required (defaults to showing, unless `--out` is specified, unless `--show` is specified) - Group some of sinter's code into private subpackages - Show traditional error bars instead of a filled region for high/low fit when only one data point is present - Add `sinter plot --preprocess_stats_func` - Add `sinter.TaskStats.with_edits` - Add safety error when adding stats that have equal strong ids but differing identifying information (json_metadata or decoder) Some of the sampler design is adapted from @inmzhang's design in https://github.com/quantumlib/Stim/pull/735 Fixes https://github.com/quantumlib/Stim/issues/774 Fixes https://github.com/quantumlib/Stim/issues/682 Fixes https://github.com/quantumlib/Stim/issues/392 --------- Co-authored-by: Matt McEwen --- dev/gen_sinter_api_reference.py | 24 +- dev/util_gen_stub_file.py | 13 +- doc/python_api_reference_vDev.md | 1 + doc/sinter_api.md | 179 +++++- doc/stim.pyi | 1 + glue/python/src/stim/__init__.pyi | 1 + glue/sample/setup.py | 2 +- glue/sample/src/sinter/__init__.py | 33 +- .../sample/src/sinter/_collection/__init__.py | 10 + .../sinter/{ => _collection}/_collection.py | 102 ++-- .../sinter/_collection/_collection_manager.py | 577 ++++++++++++++++++ .../_collection/_collection_manager_test.py | 287 +++++++++ .../{ => _collection}/_collection_test.py | 64 ++ .../_collection/_collection_worker_loop.py | 35 ++ .../_collection/_collection_worker_state.py | 256 ++++++++ .../_collection/_collection_worker_test.py | 214 +++++++ .../src/sinter/_collection/_mux_sampler.py | 56 ++ .../src/sinter/{ => _collection}/_printer.py | 0 .../_collection/_sampler_ramp_throttled.py | 66 ++ .../_collection_tracker_for_single_task.py | 230 ------- .../src/sinter/_collection_work_manager.py | 275 --------- glue/sample/src/sinter/_command/__init__.py | 0 .../sample/src/sinter/{ => _command}/_main.py | 8 +- .../sinter/{ => _command}/_main_collect.py | 20 +- .../{ => _command}/_main_collect_test.py | 38 +- .../sinter/{ => _command}/_main_combine.py | 3 +- .../{ => _command}/_main_combine_test.py | 2 +- .../src/sinter/{ => _command}/_main_plot.py | 222 ++++--- .../sinter/{ => _command}/_main_plot_test.py | 4 +- .../sinter/{ => _command}/_main_predict.py | 0 .../{ => _command}/_main_predict_test.py | 2 +- glue/sample/src/sinter/_data/__init__.py | 20 + .../sinter/{ => _data}/_anon_task_stats.py | 23 +- .../{ => _data}/_anon_task_stats_test.py | 0 .../sinter/{ => _data}/_collection_options.py | 0 .../{ => _data}/_collection_options_test.py | 0 .../sample/src/sinter/{ => _data}/_csv_out.py | 0 .../src/sinter/{ => _data}/_existing_data.py | 11 +- .../sinter/{ => _data}/_existing_data_test.py | 0 glue/sample/src/sinter/{ => _data}/_task.py | 2 +- .../src/sinter/{ => _data}/_task_stats.py | 96 ++- .../sinter/{ => _data}/_task_stats_test.py | 51 ++ .../src/sinter/{ => _data}/_task_test.py | 0 glue/sample/src/sinter/_decoding/__init__.py | 16 + .../src/sinter/{ => _decoding}/_decoding.py | 6 +- .../_decoding_all_built_in_decoders.py | 20 + .../_decoding_decoder_class.py | 0 .../_decoding_fusion_blossom.py | 2 +- .../{ => _decoding}/_decoding_pymatching.py | 2 +- .../sinter/{ => _decoding}/_decoding_test.py | 6 +- .../{ => _decoding}/_decoding_vacuous.py | 2 +- .../_decoding/_perfectionist_sampler.py | 38 ++ glue/sample/src/sinter/_decoding/_sampler.py | 72 +++ .../_decoding/_stim_then_decode_sampler.py | 222 +++++++ .../_stim_then_decode_sampler_test.py | 192 ++++++ .../sinter/_decoding_all_built_in_decoders.py | 12 - glue/sample/src/sinter/_plotting.py | 294 ++++++--- glue/sample/src/sinter/_plotting_test.py | 3 + glue/sample/src/sinter/_predict.py | 4 +- glue/sample/src/sinter/_probability_util.py | 7 +- glue/sample/src/sinter/_worker.py | 212 ------- glue/sample/src/sinter/_worker_test.py | 134 ---- src/stim/circuit/circuit.pybind.cc | 2 +- src/stim/util_bot/probability_util.h | 10 + 64 files changed, 2998 insertions(+), 1186 deletions(-) create mode 100644 glue/sample/src/sinter/_collection/__init__.py rename glue/sample/src/sinter/{ => _collection}/_collection.py (87%) create mode 100644 glue/sample/src/sinter/_collection/_collection_manager.py create mode 100644 glue/sample/src/sinter/_collection/_collection_manager_test.py rename glue/sample/src/sinter/{ => _collection}/_collection_test.py (78%) create mode 100644 glue/sample/src/sinter/_collection/_collection_worker_loop.py create mode 100644 glue/sample/src/sinter/_collection/_collection_worker_state.py create mode 100644 glue/sample/src/sinter/_collection/_collection_worker_test.py create mode 100755 glue/sample/src/sinter/_collection/_mux_sampler.py rename glue/sample/src/sinter/{ => _collection}/_printer.py (100%) create mode 100755 glue/sample/src/sinter/_collection/_sampler_ramp_throttled.py delete mode 100644 glue/sample/src/sinter/_collection_tracker_for_single_task.py delete mode 100644 glue/sample/src/sinter/_collection_work_manager.py create mode 100644 glue/sample/src/sinter/_command/__init__.py rename glue/sample/src/sinter/{ => _command}/_main.py (83%) rename glue/sample/src/sinter/{ => _command}/_main_collect.py (96%) rename glue/sample/src/sinter/{ => _command}/_main_collect_test.py (92%) rename glue/sample/src/sinter/{ => _command}/_main_combine.py (97%) rename glue/sample/src/sinter/{ => _command}/_main_combine_test.py (99%) rename glue/sample/src/sinter/{ => _command}/_main_plot.py (82%) rename glue/sample/src/sinter/{ => _command}/_main_plot_test.py (99%) rename glue/sample/src/sinter/{ => _command}/_main_predict.py (100%) rename glue/sample/src/sinter/{ => _command}/_main_predict_test.py (95%) create mode 100644 glue/sample/src/sinter/_data/__init__.py rename glue/sample/src/sinter/{ => _data}/_anon_task_stats.py (84%) rename glue/sample/src/sinter/{ => _data}/_anon_task_stats_test.py (100%) rename glue/sample/src/sinter/{ => _data}/_collection_options.py (100%) rename glue/sample/src/sinter/{ => _data}/_collection_options_test.py (100%) rename glue/sample/src/sinter/{ => _data}/_csv_out.py (100%) rename glue/sample/src/sinter/{ => _data}/_existing_data.py (96%) rename glue/sample/src/sinter/{ => _data}/_existing_data_test.py (100%) rename glue/sample/src/sinter/{ => _data}/_task.py (99%) rename glue/sample/src/sinter/{ => _data}/_task_stats.py (62%) rename glue/sample/src/sinter/{ => _data}/_task_stats_test.py (53%) rename glue/sample/src/sinter/{ => _data}/_task_test.py (100%) create mode 100644 glue/sample/src/sinter/_decoding/__init__.py rename glue/sample/src/sinter/{ => _decoding}/_decoding.py (98%) create mode 100644 glue/sample/src/sinter/_decoding/_decoding_all_built_in_decoders.py rename glue/sample/src/sinter/{ => _decoding}/_decoding_decoder_class.py (100%) rename glue/sample/src/sinter/{ => _decoding}/_decoding_fusion_blossom.py (99%) rename glue/sample/src/sinter/{ => _decoding}/_decoding_pymatching.py (97%) rename glue/sample/src/sinter/{ => _decoding}/_decoding_test.py (98%) rename glue/sample/src/sinter/{ => _decoding}/_decoding_vacuous.py (94%) create mode 100755 glue/sample/src/sinter/_decoding/_perfectionist_sampler.py create mode 100644 glue/sample/src/sinter/_decoding/_sampler.py create mode 100755 glue/sample/src/sinter/_decoding/_stim_then_decode_sampler.py create mode 100755 glue/sample/src/sinter/_decoding/_stim_then_decode_sampler_test.py delete mode 100644 glue/sample/src/sinter/_decoding_all_built_in_decoders.py delete mode 100644 glue/sample/src/sinter/_worker.py delete mode 100644 glue/sample/src/sinter/_worker_test.py diff --git a/dev/gen_sinter_api_reference.py b/dev/gen_sinter_api_reference.py index c3e348af..a4b907f0 100644 --- a/dev/gen_sinter_api_reference.py +++ b/dev/gen_sinter_api_reference.py @@ -48,6 +48,25 @@ def main(): ``` '''.strip()) + replace_rules = [] + for package in ['stim', 'sinter']: + p = __import__(package) + for name in dir(p): + x = getattr(p, name) + if isinstance(x, type) and 'class' in str(x): + desired_name = f'{package}.{name}' + if '._' in str(x): + bad_name = str(x).split("'")[1] + replace_rules.append((bad_name, desired_name)) + lonely_name = desired_name.split(".")[-1] + for q in ['"', "'"]: + replace_rules.append(('ForwardRef(' + q + lonely_name + q + ')', desired_name)) + replace_rules.append(('ForwardRef(' + q + desired_name + q + ')', desired_name)) + replace_rules.append((q + desired_name + q, desired_name)) + replace_rules.append((q + lonely_name + q, desired_name)) + replace_rules.append(('ForwardRef(' + desired_name + ')', desired_name)) + replace_rules.append(('ForwardRef(' + lonely_name + ')', desired_name)) + for obj in objects: print() print(f'') @@ -58,7 +77,10 @@ def main(): print(f'# (in class {".".join(obj.full_name.split(".")[:-1])})') else: print(f'# (at top-level in the sinter module)') - print('\n'.join(obj.lines)) + for line in obj.lines: + for a, b in replace_rules: + line = line.replace(a, b) + print(line) print("```") diff --git a/dev/util_gen_stub_file.py b/dev/util_gen_stub_file.py index 26a34530..2c651999 100644 --- a/dev/util_gen_stub_file.py +++ b/dev/util_gen_stub_file.py @@ -1,5 +1,4 @@ import dataclasses -import sys import types from typing import Any from typing import Optional, Iterator, List @@ -9,6 +8,7 @@ keep = { "__add__", + "__radd__", "__eq__", "__call__", "__ge__", @@ -224,17 +224,6 @@ def print_doc(*, full_name: str, parent: object, obj: object, level: int) -> Opt text += '@abc.abstractmethod\n' sig_name = f'{term_name}{inspect.signature(obj)}' text += "\n".join(splay_signature(f"def {sig_name}:")) - text = text.replace('''ForwardRef('sinter.TaskStats')''', 'sinter.TaskStats') - text = text.replace('''ForwardRef('sinter.Task')''', 'sinter.Task') - text = text.replace('''ForwardRef('sinter.Progress')''', 'sinter.Progress') - text = text.replace('''ForwardRef('sinter.Decoder')''', 'sinter.Decoder') - text = text.replace("'AnonTaskStats'", "sinter.AnonTaskStats") - text = text.replace('sinter._decoding_decoder_class.CompiledDecoder', 'sinter.CompiledDecoder') - text = text.replace("'AnonTaskStats'", "sinter.AnonTaskStats") - text = text.replace("'stim.Circuit'", "stim.Circuit") - text = text.replace("'stim.DetectorErrorModel'", "stim.DetectorErrorModel") - text = text.replace("'sinter.CollectionOptions'", "sinter.CollectionOptions") - text = text.replace("'sinter.Fit'", 'sinter.Fit') # Replace default value lambdas with their source. if 'lambda' in str(text): diff --git a/doc/python_api_reference_vDev.md b/doc/python_api_reference_vDev.md index f509eef0..3b7e34cf 100644 --- a/doc/python_api_reference_vDev.md +++ b/doc/python_api_reference_vDev.md @@ -1610,6 +1610,7 @@ def diagram( *, tick: Union[None, int, range] = None, filter_coords: Iterable[Union[Iterable[float], stim.DemTarget]] = ((),), + rows: int | None = None, ) -> 'stim._DiagramHelper': """Returns a diagram of the circuit, from a variety of options. diff --git a/doc/sinter_api.md b/doc/sinter_api.md index f940813f..3093e41a 100644 --- a/doc/sinter_api.md +++ b/doc/sinter_api.md @@ -12,11 +12,16 @@ API references for stable versions are kept on the [stim github wiki](https://gi - [`sinter.CollectionOptions.combine`](#sinter.CollectionOptions.combine) - [`sinter.CompiledDecoder`](#sinter.CompiledDecoder) - [`sinter.CompiledDecoder.decode_shots_bit_packed`](#sinter.CompiledDecoder.decode_shots_bit_packed) +- [`sinter.CompiledSampler`](#sinter.CompiledSampler) + - [`sinter.CompiledSampler.handles_throttling`](#sinter.CompiledSampler.handles_throttling) + - [`sinter.CompiledSampler.sample`](#sinter.CompiledSampler.sample) - [`sinter.Decoder`](#sinter.Decoder) - [`sinter.Decoder.compile_decoder_for_dem`](#sinter.Decoder.compile_decoder_for_dem) - [`sinter.Decoder.decode_via_files`](#sinter.Decoder.decode_via_files) - [`sinter.Fit`](#sinter.Fit) - [`sinter.Progress`](#sinter.Progress) +- [`sinter.Sampler`](#sinter.Sampler) + - [`sinter.Sampler.compiled_sampler_for_task`](#sinter.Sampler.compiled_sampler_for_task) - [`sinter.Task`](#sinter.Task) - [`sinter.Task.__init__`](#sinter.Task.__init__) - [`sinter.Task.strong_id`](#sinter.Task.strong_id) @@ -26,6 +31,7 @@ API references for stable versions are kept on the [stim github wiki](https://gi - [`sinter.TaskStats`](#sinter.TaskStats) - [`sinter.TaskStats.to_anon_stats`](#sinter.TaskStats.to_anon_stats) - [`sinter.TaskStats.to_csv_line`](#sinter.TaskStats.to_csv_line) + - [`sinter.TaskStats.with_edits`](#sinter.TaskStats.with_edits) - [`sinter.better_sorted_str_terms`](#sinter.better_sorted_str_terms) - [`sinter.collect`](#sinter.collect) - [`sinter.comma_separated_key_values`](#sinter.comma_separated_key_values) @@ -257,6 +263,73 @@ def decode_shots_bit_packed( """ ``` + +```python +# sinter.CompiledSampler + +# (at top-level in the sinter module) +class CompiledSampler(metaclass=abc.ABCMeta): + """A sampler that has been configured for efficiently sampling some task. + """ +``` + + +```python +# sinter.CompiledSampler.handles_throttling + +# (in class sinter.CompiledSampler) +def handles_throttling( + self, +) -> bool: + """Return True to disable sinter wrapping samplers with throttling. + + By default, sinter will wrap samplers so that they initially only do + a small number of shots then slowly ramp up. Sometimes this behavior + is not desired (e.g. in unit tests). Override this method to return True + to disable it. + """ +``` + + +```python +# sinter.CompiledSampler.sample + +# (in class sinter.CompiledSampler) +@abc.abstractmethod +def sample( + self, + suggested_shots: int, +) -> sinter.AnonTaskStats: + """Samples shots and returns statistics. + + Args: + suggested_shots: The number of shots being requested. The sampler + may perform more shots or fewer shots than this, so technically + this argument can just be ignored. If a sampler is optimized for + a specific batch size, it can simply return one batch per call + regardless of this parameter. + + However, this parameter is a useful hint about the amount of + work being done. The sampler can use this to optimize its + behavior. For example, it could adjust its batch size downward + if the suggested shots is very small. Whereas if the suggested + shots is very high, the sampler should focus entirely on + achieving the best possible throughput. + + Note that, in typical workloads, the sampler will be called + repeatedly with the same value of suggested_shots. Therefore it + is reasonable to allocate buffers sized to accomodate the + current suggested_shots, expecting them to be useful again for + the next shot. + + Returns: + A sinter.AnonTaskStats saying how many shots were actually taken, + how many errors were seen, etc. + + The returned stats must have at least one shot. + """ +``` + ```python # sinter.Decoder @@ -385,9 +458,9 @@ class Fit: of the best fit's square error, or whose likelihood was within some maximum Bayes factor of the max likelihood hypothesis. """ - low: float - best: float - high: float + low: Optional[float] + best: Optional[float] + high: Optional[float] ``` @@ -409,10 +482,45 @@ class Progress: collection status, such as the number of tasks left and the estimated time to completion for each task. """ - new_stats: Tuple[sinter._task_stats.TaskStats, ...] + new_stats: Tuple[sinter.TaskStats, ...] status_message: str ``` + +```python +# sinter.Sampler + +# (at top-level in the sinter module) +class Sampler(metaclass=abc.ABCMeta): + """A strategy for producing stats from tasks. + + Call `sampler.compiled_sampler_for_task(task)` to get a compiled sampler for + a task, then call `compiled_sampler.sample(shots)` to collect statistics. + + A sampler differs from a `sinter.Decoder` because the sampler is responsible + for the full sampling process (e.g. simulating the circuit), whereas a + decoder can do nothing except predict observable flips from detection event + data. This prevents the decoders from cheating, but makes them less flexible + overall. A sampler can do things like use simulators other than stim, or + really anything at all as long as it ends with returning statistics about + shot counts, error counts, and etc. + """ +``` + + +```python +# sinter.Sampler.compiled_sampler_for_task + +# (in class sinter.Sampler) +@abc.abstractmethod +def compiled_sampler_for_task( + self, + task: sinter.Task, +) -> sinter.CompiledSampler: + """Creates, configures, and returns an object for sampling the task. + """ +``` + ```python # sinter.Task @@ -475,9 +583,9 @@ class Task: def __init__( self, *, - circuit: Optional[ForwardRef(stim.Circuit)] = None, + circuit: Optional[stim.Circuit] = None, decoder: Optional[str] = None, - detector_error_model: Optional[ForwardRef(stim.DetectorErrorModel)] = None, + detector_error_model: Optional[stim.DetectorErrorModel] = None, postselection_mask: Optional[np.ndarray] = None, postselected_observables_mask: Optional[np.ndarray] = None, json_metadata: Any = None, @@ -699,7 +807,7 @@ class TaskStats: # (in class sinter.TaskStats) def to_anon_stats( self, -) -> sinter._anon_task_stats.AnonTaskStats: +) -> sinter.AnonTaskStats: """Returns a `sinter.AnonTaskStats` with the same statistics. Examples: @@ -745,6 +853,25 @@ def to_csv_line( """ ``` + +```python +# sinter.TaskStats.with_edits + +# (in class sinter.TaskStats) +def with_edits( + self, + *, + strong_id: Optional[str] = None, + decoder: Optional[str] = None, + json_metadata: Optional[Any] = None, + shots: Optional[int] = None, + errors: Optional[int] = None, + discards: Optional[int] = None, + seconds: Optional[float] = None, + custom_counts: Optional[Counter[str]] = None, +) -> sinter.TaskStats: +``` + ```python # sinter.better_sorted_str_terms @@ -809,7 +936,7 @@ def collect( start_batch_size: Optional[int] = None, print_progress: bool = False, hint_num_tasks: Optional[int] = None, - custom_decoders: Optional[Dict[str, sinter.Decoder]] = None, + custom_decoders: Optional[Dict[str, Union[sinter.Decoder, sinter.Sampler]]] = None, custom_error_count_key: Optional[str] = None, allowed_cpu_affinity_ids: Optional[Iterable[int]] = None, ) -> List[sinter.TaskStats]: @@ -1124,7 +1251,7 @@ def iter_collect( num_workers: int, tasks: Union[Iterator[sinter.Task], Iterable[sinter.Task]], hint_num_tasks: Optional[int] = None, - additional_existing_data: Optional[sinter._existing_data.ExistingData] = None, + additional_existing_data: Union[NoneType, Dict[str, sinter.TaskStats], Iterable[sinter.TaskStats]] = None, max_shots: Optional[int] = None, max_errors: Optional[int] = None, decoders: Optional[Iterable[str]] = None, @@ -1133,7 +1260,7 @@ def iter_collect( start_batch_size: Optional[int] = None, count_observable_error_combos: bool = False, count_detection_events: bool = False, - custom_decoders: Optional[Dict[str, sinter.Decoder]] = None, + custom_decoders: Optional[Dict[str, Union[sinter.Decoder, sinter.Sampler]]] = None, custom_error_count_key: Optional[str] = None, allowed_cpu_affinity_ids: Optional[Iterable[int]] = None, ) -> Iterator[sinter.Progress]: @@ -1337,6 +1464,7 @@ def plot_discard_rate( filter_func: Callable[[sinter.TaskStats], Any] = lambda _: True, plot_args_func: Callable[[int, ~TCurveId, List[sinter.TaskStats]], Dict[str, Any]] = lambda index, group_key, group_stats: dict(), highlight_max_likelihood_factor: Optional[float] = 1000.0, + point_label_func: Callable[[sinter.TaskStats], Any] = lambda _: None, ) -> None: """Plots discard rates in curves with uncertainty highlights. @@ -1353,11 +1481,21 @@ def plot_discard_rate( group_func: Optional. When specified, multiple curves will be plotted instead of one curve. The statistics are grouped into curves based on whether or not they get the same result out of this function. For example, this could be `group_func=lambda stat: stat.decoder`. + If the result of the function is a dictionary, then optional keys in the dictionary will + also control the plotting of each curve. Available keys are: + 'label': the label added to the legend for the curve + 'color': the color used for plotting the curve + 'marker': the marker used for the curve + 'linestyle': the linestyle used for the curve + 'sort': the order in which the curves will be plotted and added to the legend + e.g. if two curves (with different resulting dictionaries from group_func) share the same + value for key 'marker', they will be plotted with the same marker. + Colors, markers and linestyles are assigned in order, sorted by the values for those keys. filter_func: Optional. When specified, some curves will not be plotted. The statistics are filtered and only plotted if filter_func(stat) returns True. For example, `filter_func=lambda s: s.json_metadata['basis'] == 'x'` would plot only stats where the saved metadata indicates the basis was 'x'. - plot_args_func: Optional. Specifies additional arguments to give the the underlying calls to + plot_args_func: Optional. Specifies additional arguments to give the underlying calls to `plot` and `fill_between` used to do the actual plotting. For example, this can be used to specify markers and colors. Takes the index of the curve in sorted order and also a curve_id (these will be 0 and None respectively if group_func is not specified). For example, @@ -1370,6 +1508,7 @@ def plot_discard_rate( highlight_max_likelihood_factor: Controls how wide the uncertainty highlight region around curves is. Must be 1 or larger. Hypothesis probabilities at most that many times as unlikely as the max likelihood hypothesis will be highlighted. + point_label_func: Optional. Specifies text to draw next to data points. """ ``` @@ -1390,6 +1529,7 @@ def plot_error_rate( plot_args_func: Callable[[int, ~TCurveId, List[sinter.TaskStats]], Dict[str, Any]] = lambda index, group_key, group_stats: dict(), highlight_max_likelihood_factor: Optional[float] = 1000.0, line_fits: Optional[Tuple[Literal['linear', 'log', 'sqrt'], Literal['linear', 'log', 'sqrt']]] = None, + point_label_func: Callable[[sinter.TaskStats], Any] = lambda _: None, ) -> None: """Plots error rates in curves with uncertainty highlights. @@ -1410,11 +1550,21 @@ def plot_error_rate( group_func: Optional. When specified, multiple curves will be plotted instead of one curve. The statistics are grouped into curves based on whether or not they get the same result out of this function. For example, this could be `group_func=lambda stat: stat.decoder`. + If the result of the function is a dictionary, then optional keys in the dictionary will + also control the plotting of each curve. Available keys are: + 'label': the label added to the legend for the curve + 'color': the color used for plotting the curve + 'marker': the marker used for the curve + 'linestyle': the linestyle used for the curve + 'sort': the order in which the curves will be plotted and added to the legend + e.g. if two curves (with different resulting dictionaries from group_func) share the same + value for key 'marker', they will be plotted with the same marker. + Colors, markers and linestyles are assigned in order, sorted by the values for those keys. filter_func: Optional. When specified, some curves will not be plotted. The statistics are filtered and only plotted if filter_func(stat) returns True. For example, `filter_func=lambda s: s.json_metadata['basis'] == 'x'` would plot only stats where the saved metadata indicates the basis was 'x'. - plot_args_func: Optional. Specifies additional arguments to give the the underlying calls to + plot_args_func: Optional. Specifies additional arguments to give the underlying calls to `plot` and `fill_between` used to do the actual plotting. For example, this can be used to specify markers and colors. Takes the index of the curve in sorted order and also a curve_id (these will be 0 and None respectively if group_func is not specified). For example, @@ -1430,6 +1580,7 @@ def plot_error_rate( line_fits: Defaults to None. Set this to a tuple (x_scale, y_scale) to include a dashed line fit to every curve. The scales determine how to transform the coordinates before performing the fit, and can be set to 'linear', 'sqrt', or 'log'. + point_label_func: Optional. Specifies text to draw next to data points. """ ``` @@ -1712,11 +1863,11 @@ def read_stats_from_csv_files( # (at top-level in the sinter module) def shot_error_rate_to_piece_error_rate( - shot_error_rate: Union[float, ForwardRef(sinter.Fit)], + shot_error_rate: Union[float, sinter.Fit], *, pieces: float, values: float = 1, -) -> Union[float, ForwardRef(sinter.Fit)]: +) -> Union[float, sinter.Fit]: """Convert from total error rate to per-piece error rate. Args: diff --git a/doc/stim.pyi b/doc/stim.pyi index e20cbea0..2ffe7d47 100644 --- a/doc/stim.pyi +++ b/doc/stim.pyi @@ -1010,6 +1010,7 @@ class Circuit: *, tick: Union[None, int, range] = None, filter_coords: Iterable[Union[Iterable[float], stim.DemTarget]] = ((),), + rows: int | None = None, ) -> 'stim._DiagramHelper': """Returns a diagram of the circuit, from a variety of options. diff --git a/glue/python/src/stim/__init__.pyi b/glue/python/src/stim/__init__.pyi index e20cbea0..2ffe7d47 100644 --- a/glue/python/src/stim/__init__.pyi +++ b/glue/python/src/stim/__init__.pyi @@ -1010,6 +1010,7 @@ class Circuit: *, tick: Union[None, int, range] = None, filter_coords: Iterable[Union[Iterable[float], stim.DemTarget]] = ((),), + rows: int | None = None, ) -> 'stim._DiagramHelper': """Returns a diagram of the circuit, from a variety of options. diff --git a/glue/sample/setup.py b/glue/sample/setup.py index f6c5da08..7fc73a6d 100644 --- a/glue/sample/setup.py +++ b/glue/sample/setup.py @@ -37,6 +37,6 @@ install_requires=requirements, tests_require=['pytest', 'pymatching'], entry_points={ - 'console_scripts': ['sinter=sinter._main:main'], + 'console_scripts': ['sinter=sinter._command._main:main'], }, ) diff --git a/glue/sample/src/sinter/__init__.py b/glue/sample/src/sinter/__init__.py index 1237b79b..a8ccc678 100644 --- a/glue/sample/src/sinter/__init__.py +++ b/glue/sample/src/sinter/__init__.py @@ -1,26 +1,27 @@ __version__ = '1.14.dev0' -from sinter._anon_task_stats import ( - AnonTaskStats, -) from sinter._collection import ( collect, iter_collect, post_selection_mask_from_4th_coord, Progress, ) -from sinter._collection_options import ( +from sinter._data import ( + AnonTaskStats, CollectionOptions, -) -from sinter._csv_out import ( CSV_HEADER, -) -from sinter._decoding_all_built_in_decoders import ( - BUILT_IN_DECODERS, -) -from sinter._existing_data import ( read_stats_from_csv_files, stats_from_csv_files, + Task, + TaskStats, +) +from sinter._decoding import ( + CompiledDecoder, + Decoder, + BUILT_IN_DECODERS, + BUILT_IN_SAMPLERS, + Sampler, + CompiledSampler, ) from sinter._probability_util import ( comma_separated_key_values, @@ -38,19 +39,9 @@ plot_error_rate, group_by, ) -from sinter._task import ( - Task, -) -from sinter._task_stats import ( - TaskStats, -) from sinter._predict import ( predict_discards_bit_packed, predict_observables_bit_packed, predict_on_disk, predict_observables, ) -from sinter._decoding_decoder_class import ( - CompiledDecoder, - Decoder, -) diff --git a/glue/sample/src/sinter/_collection/__init__.py b/glue/sample/src/sinter/_collection/__init__.py new file mode 100644 index 00000000..271e17c7 --- /dev/null +++ b/glue/sample/src/sinter/_collection/__init__.py @@ -0,0 +1,10 @@ +from sinter._collection._collection import ( + collect, + iter_collect, + post_selection_mask_from_4th_coord, + post_selection_mask_from_predicate, + Progress, +) +from sinter._collection._printer import ( + ThrottledProgressPrinter, +) diff --git a/glue/sample/src/sinter/_collection.py b/glue/sample/src/sinter/_collection/_collection.py similarity index 87% rename from glue/sample/src/sinter/_collection.py rename to glue/sample/src/sinter/_collection/_collection.py index 40bfceef..54f875ba 100644 --- a/glue/sample/src/sinter/_collection.py +++ b/glue/sample/src/sinter/_collection/_collection.py @@ -1,19 +1,15 @@ import contextlib import dataclasses import pathlib -from typing import Any -from typing import Callable, Iterator, Optional, Union, Iterable, List, TYPE_CHECKING, Tuple, Dict +from typing import Any, Callable, Iterator, Optional, Union, Iterable, List, TYPE_CHECKING, Tuple, Dict import math import numpy as np import stim -from sinter._collection_options import CollectionOptions -from sinter._csv_out import CSV_HEADER -from sinter._collection_work_manager import CollectionWorkManager -from sinter._existing_data import ExistingData -from sinter._printer import ThrottledProgressPrinter -from sinter._task_stats import TaskStats +from sinter._data import CSV_HEADER, ExistingData, TaskStats, CollectionOptions, Task +from sinter._collection._collection_manager import CollectionManager +from sinter._collection._printer import ThrottledProgressPrinter if TYPE_CHECKING: import sinter @@ -42,7 +38,7 @@ def iter_collect(*, tasks: Union[Iterator['sinter.Task'], Iterable['sinter.Task']], hint_num_tasks: Optional[int] = None, - additional_existing_data: Optional[ExistingData] = None, + additional_existing_data: Union[None, dict[str, 'TaskStats'], Iterable['TaskStats']] = None, max_shots: Optional[int] = None, max_errors: Optional[int] = None, decoders: Optional[Iterable[str]] = None, @@ -51,7 +47,7 @@ def iter_collect(*, start_batch_size: Optional[int] = None, count_observable_error_combos: bool = False, count_detection_events: bool = False, - custom_decoders: Optional[Dict[str, 'sinter.Decoder']] = None, + custom_decoders: Optional[Dict[str, Union['sinter.Decoder', 'sinter.Sampler']]] = None, custom_error_count_key: Optional[str] = None, allowed_cpu_affinity_ids: Optional[Iterable[int]] = None, ) -> Iterator['sinter.Progress']: @@ -156,6 +152,19 @@ def iter_collect(*, >>> print(total_shots) 200 """ + existing_data: dict[str, TaskStats] + if isinstance(additional_existing_data, ExistingData): + existing_data = additional_existing_data.data + elif isinstance(additional_existing_data, dict): + existing_data = additional_existing_data + elif additional_existing_data is None: + existing_data = {} + else: + acc = ExistingData() + for stat in additional_existing_data: + acc.add_sample(stat) + existing_data = acc.data + if isinstance(decoders, str): decoders = [decoders] @@ -166,50 +175,65 @@ def iter_collect(*, except TypeError: pass - with CollectionWorkManager( - tasks_iter=iter(tasks), - global_collection_options=CollectionOptions( + if decoders is not None: + old_tasks = tasks + tasks = ( + Task( + circuit=task.circuit, + decoder=decoder, + detector_error_model=task.detector_error_model, + postselection_mask=task.postselection_mask, + postselected_observables_mask=task.postselected_observables_mask, + json_metadata=task.json_metadata, + collection_options=task.collection_options, + circuit_path=task.circuit_path, + ) + for task in old_tasks + for decoder in (decoders if task.decoder is None else [task.decoder]) + ) + + progress_log: list[Optional[TaskStats]] = [] + def log_progress(e: Optional[TaskStats]): + progress_log.append(e) + with CollectionManager( + num_workers=num_workers, + tasks=tasks, + collection_options=CollectionOptions( max_shots=max_shots, max_errors=max_errors, max_batch_seconds=max_batch_seconds, start_batch_size=start_batch_size, max_batch_size=max_batch_size, ), - decoders=decoders, + existing_data=existing_data, count_observable_error_combos=count_observable_error_combos, count_detection_events=count_detection_events, - additional_existing_data=additional_existing_data, - custom_decoders=custom_decoders, custom_error_count_key=custom_error_count_key, + custom_decoders=custom_decoders or {}, allowed_cpu_affinity_ids=allowed_cpu_affinity_ids, + worker_flush_period=max_batch_seconds or 120, + progress_callback=log_progress, ) as manager: try: yield Progress( new_stats=(), status_message=f"Starting {num_workers} workers..." ) - manager.start_workers(num_workers) - - yield Progress( - new_stats=(), - status_message="Finding work..." - ) - manager.fill_work_queue() - yield Progress( - new_stats=(), - status_message=manager.status(num_circuits=hint_num_tasks) - ) - - while manager.fill_work_queue(): - # Wait for a worker to finish a job. - sample = manager.wait_for_next_sample() - manager.fill_work_queue() + manager.start_workers() + manager.start_distributing_work() + + while manager.task_states: + manager.process_message() + if progress_log: + vals = list(progress_log) + progress_log.clear() + for e in vals: + if e is not None: + yield Progress( + new_stats=(e,), + status_message=manager.status_message(), + ) - # Report the incremental results. - yield Progress( - new_stats=(sample,) if sample.shots > 0 else (), - status_message=manager.status(num_circuits=hint_num_tasks), - ) except KeyboardInterrupt: yield Progress( new_stats=(), @@ -234,7 +258,7 @@ def collect(*, start_batch_size: Optional[int] = None, print_progress: bool = False, hint_num_tasks: Optional[int] = None, - custom_decoders: Optional[Dict[str, 'sinter.Decoder']] = None, + custom_decoders: Optional[Dict[str, Union['sinter.Decoder', 'sinter.Sampler']]] = None, custom_error_count_key: Optional[str] = None, allowed_cpu_affinity_ids: Optional[Iterable[int]] = None, ) -> List['sinter.TaskStats']: @@ -356,7 +380,7 @@ def collect(*, progress_printer = ThrottledProgressPrinter( outs=[], print_progress=print_progress, - min_progress_delay=1, + min_progress_delay=0.1, ) with contextlib.ExitStack() as exit_stack: # Open save/resume file. diff --git a/glue/sample/src/sinter/_collection/_collection_manager.py b/glue/sample/src/sinter/_collection/_collection_manager.py new file mode 100644 index 00000000..3c331355 --- /dev/null +++ b/glue/sample/src/sinter/_collection/_collection_manager.py @@ -0,0 +1,577 @@ +import collections +import contextlib +import math +import multiprocessing +import os +import pathlib +import queue +import tempfile +import threading +from typing import Any, Optional, List, Dict, Iterable, Callable, Tuple +from typing import Union +from typing import cast + +from sinter._collection._collection_worker_loop import collection_worker_loop +from sinter._collection._mux_sampler import MuxSampler +from sinter._collection._sampler_ramp_throttled import RampThrottledSampler +from sinter._data import CollectionOptions, Task, AnonTaskStats, TaskStats +from sinter._decoding import Sampler, Decoder + + +class _ManagedWorkerState: + def __init__(self, worker_id: int, *, cpu_pin: Optional[int] = None): + self.worker_id: int = worker_id + self.process: Union[multiprocessing.Process, threading.Thread, None] = None + self.input_queue: Optional[multiprocessing.Queue[Tuple[str, Any]]] = None + self.assigned_work_key: Any = None + self.asked_to_drop_shots: int = 0 + self.cpu_pin = cpu_pin + + # Shots transfer into this field when manager sends shot requests to workers. + # Shots transfer out of this field when clients flush results or respond to work return requests. + self.assigned_shots: int = 0 + + def send_message(self, message: Any): + self.input_queue.put(message) + + def ask_to_return_all_shots(self): + if self.asked_to_drop_shots == 0 and self.assigned_shots > 0: + self.send_message(( + 'return_shots', + ( + self.assigned_work_key, + self.assigned_shots, + ), + )) + self.asked_to_drop_shots = self.assigned_shots + + def has_returned_all_shots(self) -> bool: + return self.assigned_shots == 0 and self.asked_to_drop_shots == 0 + + def is_available_to_reassign(self) -> bool: + return self.assigned_work_key is None + + +class _ManagedTaskState: + def __init__(self, *, partial_task: Task, strong_id: str, shots_left: int, errors_left: int): + self.partial_task = partial_task + self.strong_id = strong_id + self.shots_left = shots_left + self.errors_left = errors_left + self.shots_unassigned = shots_left + self.shot_return_requests = 0 + self.assigned_soft_error_flush_threshold: int = errors_left + self.workers_assigned: list[int] = [] + + def is_completed(self) -> bool: + return self.shots_left <= 0 or self.errors_left <= 0 + + +class CollectionManager: + def __init__( + self, + *, + existing_data: Dict[Any, TaskStats], + collection_options: CollectionOptions, + custom_decoders: dict[str, Union[Decoder, Sampler]], + num_workers: int, + worker_flush_period: float, + tasks: Iterable[Task], + progress_callback: Callable[[Optional[TaskStats]], None], + allowed_cpu_affinity_ids: Optional[Iterable[int]], + count_observable_error_combos: bool = False, + count_detection_events: bool = False, + custom_error_count_key: Optional[str] = None, + use_threads_for_debugging: bool = False, + ): + assert isinstance(custom_decoders, dict) + self.existing_data = existing_data + self.num_workers: int = num_workers + self.custom_decoders = custom_decoders + self.worker_flush_period: float = worker_flush_period + self.progress_callback = progress_callback + self.collection_options = collection_options + self.partial_tasks: list[Task] = list(tasks) + self.task_strong_ids: List[Optional[str]] = [None] * len(self.partial_tasks) + self.allowed_cpu_affinity_ids = None if allowed_cpu_affinity_ids is None else sorted(set(allowed_cpu_affinity_ids)) + self.count_observable_error_combos = count_observable_error_combos + self.count_detection_events = count_detection_events + self.custom_error_count_key = custom_error_count_key + self.use_threads_for_debugging = use_threads_for_debugging + + self.shared_worker_output_queue: Optional[multiprocessing.SimpleQueue[Tuple[str, int, Any]]] = None + self.task_states: Dict[Any, _ManagedTaskState] = {} + self.started: bool = False + self.total_collected = {k: v.to_anon_stats() for k, v in existing_data.items()} + + if self.allowed_cpu_affinity_ids is None: + cpus = range(os.cpu_count()) + else: + num_cpus = os.cpu_count() + cpus = [e for e in self.allowed_cpu_affinity_ids if e < num_cpus] + self.worker_states: List[_ManagedWorkerState] = [] + for index in range(num_workers): + cpu_pin = None if len(cpus) == 0 else cpus[index % len(cpus)] + self.worker_states.append(_ManagedWorkerState(index, cpu_pin=cpu_pin)) + self.tmp_dir: Optional[pathlib.Path] = None + + def __enter__(self): + self.exit_stack = contextlib.ExitStack().__enter__() + self.tmp_dir = pathlib.Path(self.exit_stack.enter_context(tempfile.TemporaryDirectory())) + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + self.hard_stop() + self.exit_stack.__exit__(exc_type, exc_val, exc_tb) + self.exit_stack = None + self.tmp_dir = None + + def start_workers(self, *, actually_start_worker_processes: bool = True): + assert not self.started + + sampler = RampThrottledSampler( + sub_sampler=MuxSampler( + custom_decoders=self.custom_decoders, + count_observable_error_combos=self.count_observable_error_combos, + count_detection_events=self.count_detection_events, + tmp_dir=self.tmp_dir, + ), + target_batch_seconds=1, + max_batch_shots=1024, + ) + + self.started = True + current_method = multiprocessing.get_start_method() + try: + # To ensure the child processes do not accidentally share ANY state + # related to random number generation, we use 'spawn' instead of 'fork'. + multiprocessing.set_start_method('spawn', force=True) + # Create queues after setting start method to work around a deadlock + # bug that occurs otherwise. + self.shared_worker_output_queue = multiprocessing.SimpleQueue() + + for worker_id in range(self.num_workers): + worker_state = self.worker_states[worker_id] + worker_state.input_queue = multiprocessing.Queue() + worker_state.input_queue.cancel_join_thread() + worker_state.assigned_work_key = None + args = ( + self.worker_flush_period, + worker_id, + sampler, + worker_state.input_queue, + self.shared_worker_output_queue, + worker_state.cpu_pin, + self.custom_error_count_key, + ) + if self.use_threads_for_debugging: + worker_state.process = threading.Thread( + target=collection_worker_loop, + args=args, + ) + else: + worker_state.process = multiprocessing.Process( + target=collection_worker_loop, + args=args, + ) + + if actually_start_worker_processes: + worker_state.process.start() + finally: + multiprocessing.set_start_method(current_method, force=True) + + def start_distributing_work(self): + self._compute_task_ids() + self._distribute_work() + + def _compute_task_ids(self): + idle_worker_ids = list(range(self.num_workers)) + unknown_task_ids = list(range(len(self.partial_tasks))) + worker_to_task_map = {} + while worker_to_task_map or unknown_task_ids: + while idle_worker_ids and unknown_task_ids: + worker_id = idle_worker_ids.pop() + unknown_task_id = unknown_task_ids.pop() + worker_to_task_map[worker_id] = unknown_task_id + self.worker_states[worker_id].send_message(('compute_strong_id', self.partial_tasks[unknown_task_id])) + + try: + message = self.shared_worker_output_queue.get() + message_type, worker_id, message_body = message + if message_type == 'computed_strong_id': + assert worker_id in worker_to_task_map + assert isinstance(message_body, str) + self.task_strong_ids[worker_to_task_map.pop(worker_id)] = message_body + idle_worker_ids.append(worker_id) + elif message_type == 'stopped_due_to_exception': + cur_task, cur_shots_left, unflushed_work_done, traceback, ex = message_body + raise ValueError(f'Worker failed: traceback={traceback}') from ex + else: + raise NotImplementedError(f'{message_type=}') + self.progress_callback(None) + except queue.Empty: + pass + + assert len(idle_worker_ids) == self.num_workers + seen = set() + for k in range(len(self.partial_tasks)): + options = self.partial_tasks[k].collection_options.combine(self.collection_options) + key: str = self.task_strong_ids[k] + if key in seen: + raise ValueError(f'Same task given twice: {self.partial_tasks[k]!r}') + seen.add(key) + + shots_left = options.max_shots + errors_left = options.max_errors + if errors_left is None: + errors_left = shots_left + errors_left = min(errors_left, shots_left) + if key in self.existing_data: + val = self.existing_data[key] + shots_left -= val.shots + if self.custom_error_count_key is None: + errors_left -= val.errors + else: + errors_left -= val.custom_counts[self.custom_error_count_key] + if shots_left <= 0: + continue + self.task_states[key] = _ManagedTaskState( + partial_task=self.partial_tasks[k], + strong_id=key, + shots_left=shots_left, + errors_left=errors_left, + ) + if self.task_states[key].is_completed(): + del self.task_states[key] + + def hard_stop(self): + if not self.started: + return + + removed_workers = [state.process for state in self.worker_states] + for state in self.worker_states: + if isinstance(state.process, threading.Thread): + state.send_message('stop') + state.process = None + state.assigned_work_key = None + state.input_queue = None + self.shared_worker_output_queue = None + self.started = False + self.task_states.clear() + + # SIGKILL everything. + for w in removed_workers: + if isinstance(w, multiprocessing.Process): + w.kill() + # Wait for them to be done. + for w in removed_workers: + w.join() + + def _handle_task_progress(self, task_id: Any): + task_state = self.task_states[task_id] + if task_state.is_completed(): + workers_ready = all(self.worker_states[worker_id].has_returned_all_shots() for worker_id in task_state.workers_assigned) + if workers_ready: + # Task is fully completed and can be forgotten entirely. Re-assign the workers. + del self.task_states[task_id] + for worker_id in task_state.workers_assigned: + w = self.worker_states[worker_id] + assert w.assigned_shots <= 0 + assert w.asked_to_drop_shots == 0 + w.assigned_work_key = None + self._distribute_work() + else: + # Task is sufficiently sampled, but some workers are still running. + for worker_id in task_state.workers_assigned: + self.worker_states[worker_id].ask_to_return_all_shots() + self.progress_callback(None) + else: + self._distribute_unassigned_workers_to_jobs() + self._distribute_work_within_a_job(task_state) + + def state_summary(self) -> str: + lines = [] + for worker_id, worker in enumerate(self.worker_states): + lines.append(f'worker {worker_id}:' + f' asked_to_drop_shots={worker.asked_to_drop_shots}' + f' assigned_shots={worker.assigned_shots}' + f' assigned_work_key={worker.assigned_work_key}') + for task in self.task_states.values(): + lines.append(f'task {task.strong_id=}:\n' + f' workers_assigned={task.workers_assigned}\n' + f' shot_return_requests={task.shot_return_requests}\n' + f' shots_left={task.shots_left}\n' + f' errors_left={task.errors_left}\n' + f' shots_unassigned={task.shots_unassigned}') + return '\n' + '\n'.join(lines) + '\n' + + def process_message(self) -> bool: + try: + message = self.shared_worker_output_queue.get() + except queue.Empty: + return False + + message_type, worker_id, message_body = message + worker_state = self.worker_states[worker_id] + + if message_type == 'flushed_results': + task_strong_id, anon_stat = message_body + assert isinstance(anon_stat, AnonTaskStats) + assert worker_state.assigned_work_key == task_strong_id + task_state = self.task_states[task_strong_id] + + worker_state.assigned_shots -= anon_stat.shots + task_state.shots_left -= anon_stat.shots + if worker_state.assigned_shots < 0: + # Worker over-achieved. Correct the imbalance by giving them the shots. + extra_shots = abs(worker_state.assigned_shots) + worker_state.assigned_shots += extra_shots + task_state.shots_unassigned -= extra_shots + worker_state.send_message(( + 'accept_shots', + (task_state.strong_id, extra_shots), + )) + + if self.custom_error_count_key is None: + task_state.errors_left -= anon_stat.errors + else: + task_state.errors_left -= anon_stat.custom_counts[self.custom_error_count_key] + + stat = TaskStats( + strong_id=task_state.strong_id, + decoder=task_state.partial_task.decoder, + json_metadata=task_state.partial_task.json_metadata, + shots=anon_stat.shots, + discards=anon_stat.discards, + seconds=anon_stat.seconds, + errors=anon_stat.errors, + custom_counts=anon_stat.custom_counts, + ) + + self._handle_task_progress(task_strong_id) + + if stat.strong_id not in self.total_collected: + self.total_collected[stat.strong_id] = AnonTaskStats() + self.total_collected[stat.strong_id] += stat.to_anon_stats() + self.progress_callback(stat) + + elif message_type == 'changed_job': + pass + + elif message_type == 'accepted_shots': + pass + + elif message_type == 'returned_shots': + task_key, shots_returned = message_body + assert isinstance(shots_returned, int) + assert shots_returned >= 0 + assert worker_state.assigned_work_key == task_key + assert worker_state.asked_to_drop_shots or worker_state.asked_to_drop_errors + task_state = self.task_states[task_key] + task_state.shot_return_requests -= 1 + worker_state.asked_to_drop_shots = 0 + worker_state.asked_to_drop_errors = 0 + task_state.shots_unassigned += shots_returned + worker_state.assigned_shots -= shots_returned + assert worker_state.assigned_shots >= 0 + self._handle_task_progress(task_key) + + elif message_type == 'stopped_due_to_exception': + cur_task, cur_shots_left, unflushed_work_done, traceback, ex = message_body + raise RuntimeError(f'Worker failed: traceback={traceback}') from ex + + else: + raise NotImplementedError(f'{message_type=}') + + return True + + def run_until_done(self) -> bool: + try: + while self.task_states: + self.process_message() + return True + + except KeyboardInterrupt: + return False + + finally: + self.hard_stop() + + def _distribute_unassigned_workers_to_jobs(self): + idle_workers = [ + w + for w in range(self.num_workers)[::-1] + if self.worker_states[w].is_available_to_reassign() + ] + if not idle_workers or not self.started: + return + + groups = collections.defaultdict(list) + for work_state in self.task_states.values(): + if not work_state.is_completed(): + groups[len(work_state.workers_assigned)].append(work_state) + for k in groups.keys(): + groups[k] = groups[k][::-1] + if not groups: + return + min_assigned = min(groups.keys(), default=0) + + # Distribute workers to unfinished jobs with the fewest workers. + while idle_workers: + task_state: _ManagedTaskState = groups[min_assigned].pop() + groups[min_assigned + 1].append(task_state) + if not groups[min_assigned]: + min_assigned += 1 + + worker_id = idle_workers.pop() + task_state.workers_assigned.append(worker_id) + worker_state = self.worker_states[worker_id] + worker_state.assigned_work_key = task_state.strong_id + worker_state.send_message(( + 'change_job', + (task_state.partial_task, CollectionOptions(max_errors=task_state.errors_left), task_state.assigned_soft_error_flush_threshold), + )) + + def _distribute_unassigned_work_to_workers_within_a_job(self, task_state: _ManagedTaskState): + if not self.started or not task_state.workers_assigned or task_state.shots_left <= 0: + return + + num_task_workers = len(task_state.workers_assigned) + expected_shots_per_worker = (task_state.shots_left + num_task_workers - 1) // num_task_workers + + # Give unassigned shots to idle workers. + for worker_id in sorted(task_state.workers_assigned, key=lambda wid: self.worker_states[wid].assigned_shots): + worker_state = self.worker_states[worker_id] + if worker_state.assigned_shots < expected_shots_per_worker: + shots_to_assign = min(expected_shots_per_worker - worker_state.assigned_shots, + task_state.shots_unassigned) + if shots_to_assign > 0: + task_state.shots_unassigned -= shots_to_assign + worker_state.assigned_shots += shots_to_assign + worker_state.send_message(( + 'accept_shots', + (task_state.strong_id, shots_to_assign), + )) + + def status_message(self) -> str: + num_known_tasks_ids = sum(e is not None for e in self.task_strong_ids) + if num_known_tasks_ids < len(self.task_strong_ids): + return f"Analyzed {num_known_tasks_ids}/{len(self.task_strong_ids)} tasks..." + max_errors = self.collection_options.max_errors + max_shots = self.collection_options.max_shots + + tasks_left = 0 + lines = [] + skipped_lines = [] + for k, strong_id in enumerate(self.task_strong_ids): + if strong_id not in self.task_states: + continue + c = self.total_collected.get(strong_id, AnonTaskStats()) + tasks_left += 1 + w = len(self.task_states[strong_id].workers_assigned) + dt = None + if max_shots is not None and c.shots: + dt = (max_shots - c.shots) * c.seconds / c.shots + c_errors = c.custom_counts[self.custom_error_count_key] if self.custom_error_count_key is not None else c.errors + if max_errors is not None and c_errors and c.seconds: + dt2 = (max_errors - c_errors) * c.seconds / c_errors + if dt is None: + dt = dt2 + else: + dt = min(dt, dt2) + if dt is not None: + dt /= 60 + if dt is not None and w > 0: + dt /= w + line = [ + f'{w}', + self.partial_tasks[k].decoder, + ("?" if dt is None or dt == 0 else "[draining]" if dt <= 0 else "<1m" if dt < 1 else str(round(dt)) + 'm') + ('·∞' if w == 0 else ''), + f'{max_shots - c.shots}' if max_shots is not None else f'{c.shots}', + f'{max_errors - c_errors}' if max_errors is not None else f'{c_errors}', + ",".join( + [f"{k}={v}" for k, v in self.partial_tasks[k].json_metadata.items()] + if isinstance(self.partial_tasks[k].json_metadata, dict) + else str(self.partial_tasks[k].json_metadata) + ) + ] + if w == 0: + skipped_lines.append(line) + else: + lines.append(line) + if len(lines) < 50 and skipped_lines: + missing_lines = 50 - len(lines) + lines.extend(skipped_lines[:missing_lines]) + skipped_lines = skipped_lines[missing_lines:] + + if lines: + lines.insert(0, [ + 'workers', + 'decoder', + 'eta', + 'shots_left' if max_shots is not None else 'shots_taken', + 'errors_left' if max_errors is not None else 'errors_seen', + 'json_metadata']) + justs = cast(list[Callable[[str, int], str]], [str.rjust, str.rjust, str.rjust, str.rjust, str.rjust, str.ljust]) + cols = len(lines[0]) + lengths = [ + max(len(lines[row][col]) for row in range(len(lines))) + for col in range(cols) + ] + lines = [ + " " + " ".join(justs[col](row[col], lengths[col]) for col in range(cols)) + for row in lines + ] + if skipped_lines: + lines.append(' ... (' + str(len(skipped_lines)) + ' more tasks) ...') + return f'{tasks_left} tasks left:\n' + '\n'.join(lines) + + def _update_soft_error_threshold_for_a_job(self, task_state: _ManagedTaskState): + if task_state.errors_left <= len(task_state.workers_assigned): + desired_threshold = 1 + elif task_state.errors_left <= task_state.assigned_soft_error_flush_threshold * self.num_workers: + desired_threshold = max(1, math.ceil(task_state.errors_left * 0.5 / self.num_workers)) + else: + return + + if task_state.assigned_soft_error_flush_threshold != desired_threshold: + task_state.assigned_soft_error_flush_threshold = desired_threshold + for wid in task_state.workers_assigned: + self.worker_states[wid].send_message(('set_soft_error_flush_threshold', desired_threshold)) + + def _take_work_if_unsatisfied_workers_within_a_job(self, task_state: _ManagedTaskState): + if not self.started or not task_state.workers_assigned or task_state.shots_left <= 0: + return + + if all(self.worker_states[w].assigned_shots > 0 for w in task_state.workers_assigned): + return + + w = len(task_state.workers_assigned) + expected_shots_per_worker = (task_state.shots_left + w - 1) // w + + # There are idle workers that couldn't be given any shots. Take shots from other workers. + for worker_id in sorted(task_state.workers_assigned, key=lambda w: self.worker_states[w].assigned_shots, reverse=True): + worker_state = self.worker_states[worker_id] + if worker_state.asked_to_drop_shots or worker_state.assigned_shots <= expected_shots_per_worker: + continue + shots_to_take = worker_state.assigned_shots - expected_shots_per_worker + assert shots_to_take > 0 + worker_state.asked_to_drop_shots = shots_to_take + task_state.shot_return_requests += 1 + worker_state.send_message(( + 'return_shots', + ( + task_state.strong_id, + shots_to_take, + ), + )) + + def _distribute_work_within_a_job(self, t: _ManagedTaskState): + self._distribute_unassigned_work_to_workers_within_a_job(t) + self._take_work_if_unsatisfied_workers_within_a_job(t) + + def _distribute_work(self): + self._distribute_unassigned_workers_to_jobs() + for w in self.task_states.values(): + if not w.is_completed(): + self._distribute_work_within_a_job(w) diff --git a/glue/sample/src/sinter/_collection/_collection_manager_test.py b/glue/sample/src/sinter/_collection/_collection_manager_test.py new file mode 100644 index 00000000..c4cb359b --- /dev/null +++ b/glue/sample/src/sinter/_collection/_collection_manager_test.py @@ -0,0 +1,287 @@ +import multiprocessing +import time +from typing import Any, List, Union + +import sinter +import stim + +from sinter._collection._collection_manager import CollectionManager + + +def _assert_drain_queue(q: multiprocessing.Queue, expected_contents: List[Any]): + for v in expected_contents: + assert q.get(timeout=0.1) == v + if not q.empty(): + assert False, f'queue had another item: {q.get()=}' + + +def _put_wait_not_empty(q: Union[multiprocessing.Queue, multiprocessing.SimpleQueue], item: Any): + q.put(item) + while q.empty(): + time.sleep(0.0001) + + +def test_manager(): + log = [] + t0 = sinter.Task( + circuit=stim.Circuit('H 0'), + detector_error_model=stim.DetectorErrorModel(), + decoder='fusion_blossom', + collection_options=sinter.CollectionOptions(max_shots=100_000_000, max_errors=100), + json_metadata={'a': 3}, + ) + t1 = sinter.Task( + circuit=stim.Circuit('M 0'), + detector_error_model=stim.DetectorErrorModel(), + decoder='pymatching', + collection_options=sinter.CollectionOptions(max_shots=10_000_000), + json_metadata=None, + ) + manager = CollectionManager( + num_workers=3, + worker_flush_period=30, + tasks=[t0, t1], + progress_callback=log.append, + existing_data={}, + collection_options=sinter.CollectionOptions(), + custom_decoders={}, + allowed_cpu_affinity_ids=None, + ) + + assert manager.state_summary() == """ +worker 0: asked_to_drop_shots=0 assigned_shots=0 assigned_work_key=None +worker 1: asked_to_drop_shots=0 assigned_shots=0 assigned_work_key=None +worker 2: asked_to_drop_shots=0 assigned_shots=0 assigned_work_key=None +""" + + manager.start_workers(actually_start_worker_processes=False) + manager.shared_worker_output_queue.put(('computed_strong_id', 2, 'c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa')) + manager.shared_worker_output_queue.put(('computed_strong_id', 1, 'a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604')) + manager.start_distributing_work() + + assert manager.state_summary() == """ +worker 0: asked_to_drop_shots=0 assigned_shots=100000000 assigned_work_key=a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604 +worker 1: asked_to_drop_shots=0 assigned_shots=5000000 assigned_work_key=c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa +worker 2: asked_to_drop_shots=0 assigned_shots=5000000 assigned_work_key=c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa +task task.strong_id='a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604': + workers_assigned=[0] + shot_return_requests=0 + shots_left=100000000 + errors_left=100 + shots_unassigned=0 +task task.strong_id='c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa': + workers_assigned=[1, 2] + shot_return_requests=0 + shots_left=10000000 + errors_left=10000000 + shots_unassigned=0 +""" + + _assert_drain_queue(manager.worker_states[0].input_queue, [ + ( + 'change_job', + (t0, sinter.CollectionOptions(max_errors=100), 100), + ), + ( + 'accept_shots', + (t0.strong_id(), 100_000_000), + ), + ]) + _assert_drain_queue(manager.worker_states[1].input_queue, [ + ('compute_strong_id', t0), + ( + 'change_job', + (t1, sinter.CollectionOptions(max_errors=10000000), 10000000), + ), + ( + 'accept_shots', + (t1.strong_id(), 5_000_000), + ), + ]) + _assert_drain_queue(manager.worker_states[2].input_queue, [ + ('compute_strong_id', t1), + ( + 'change_job', + (t1, sinter.CollectionOptions(max_errors=10000000), 10000000), + ), + ( + 'accept_shots', + (t1.strong_id(), 5_000_000), + ), + ]) + + assert manager.shared_worker_output_queue.empty() + assert log.pop() is None + assert log.pop() is None + assert not log + _put_wait_not_empty(manager.shared_worker_output_queue, ( + 'flushed_results', + 2, + (t1.strong_id(), sinter.AnonTaskStats( + shots=5_000_000, + errors=123, + discards=0, + seconds=1, + )), + )) + + assert manager.process_message() + assert manager.state_summary() == """ +worker 0: asked_to_drop_shots=0 assigned_shots=100000000 assigned_work_key=a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604 +worker 1: asked_to_drop_shots=2500000 assigned_shots=5000000 assigned_work_key=c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa +worker 2: asked_to_drop_shots=0 assigned_shots=0 assigned_work_key=c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa +task task.strong_id='a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604': + workers_assigned=[0] + shot_return_requests=0 + shots_left=100000000 + errors_left=100 + shots_unassigned=0 +task task.strong_id='c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa': + workers_assigned=[1, 2] + shot_return_requests=1 + shots_left=5000000 + errors_left=9999877 + shots_unassigned=0 +""" + + assert log.pop() == sinter.TaskStats( + strong_id=t1.strong_id(), + decoder=t1.decoder, + json_metadata=t1.json_metadata, + shots=5_000_000, + errors=123, + discards=0, + seconds=1, + ) + assert not log + + _assert_drain_queue(manager.worker_states[0].input_queue, []) + _assert_drain_queue(manager.worker_states[1].input_queue, [ + ( + 'return_shots', + (t1.strong_id(), 2_500_000), + ), + ]) + _assert_drain_queue(manager.worker_states[2].input_queue, []) + + _put_wait_not_empty(manager.shared_worker_output_queue, ( + 'returned_shots', + 1, + (t1.strong_id(), 2_000_000), + )) + assert manager.process_message() + assert manager.state_summary() == """ +worker 0: asked_to_drop_shots=0 assigned_shots=100000000 assigned_work_key=a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604 +worker 1: asked_to_drop_shots=0 assigned_shots=3000000 assigned_work_key=c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa +worker 2: asked_to_drop_shots=0 assigned_shots=2000000 assigned_work_key=c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa +task task.strong_id='a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604': + workers_assigned=[0] + shot_return_requests=0 + shots_left=100000000 + errors_left=100 + shots_unassigned=0 +task task.strong_id='c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa': + workers_assigned=[1, 2] + shot_return_requests=0 + shots_left=5000000 + errors_left=9999877 + shots_unassigned=0 +""" + + _assert_drain_queue(manager.worker_states[0].input_queue, []) + _assert_drain_queue(manager.worker_states[1].input_queue, []) + _assert_drain_queue(manager.worker_states[2].input_queue, [ + ( + 'accept_shots', + (t1.strong_id(), 2_000_000), + ), + ]) + + _put_wait_not_empty(manager.shared_worker_output_queue, ( + 'flushed_results', + 1, + (t1.strong_id(), sinter.AnonTaskStats( + shots=3_000_000, + errors=444, + discards=1, + seconds=2, + )) + )) + assert manager.process_message() + assert manager.state_summary() == """ +worker 0: asked_to_drop_shots=0 assigned_shots=100000000 assigned_work_key=a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604 +worker 1: asked_to_drop_shots=0 assigned_shots=0 assigned_work_key=c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa +worker 2: asked_to_drop_shots=1000000 assigned_shots=2000000 assigned_work_key=c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa +task task.strong_id='a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604': + workers_assigned=[0] + shot_return_requests=0 + shots_left=100000000 + errors_left=100 + shots_unassigned=0 +task task.strong_id='c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa': + workers_assigned=[1, 2] + shot_return_requests=1 + shots_left=2000000 + errors_left=9999433 + shots_unassigned=0 +""" + + _put_wait_not_empty(manager.shared_worker_output_queue, ( + 'flushed_results', + 2, + (t1.strong_id(), sinter.AnonTaskStats( + shots=2_000_000, + errors=555, + discards=2, + seconds=2.5, + )) + )) + assert manager.process_message() + assert manager.state_summary() == """ +worker 0: asked_to_drop_shots=0 assigned_shots=100000000 assigned_work_key=a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604 +worker 1: asked_to_drop_shots=0 assigned_shots=0 assigned_work_key=c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa +worker 2: asked_to_drop_shots=1000000 assigned_shots=0 assigned_work_key=c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa +task task.strong_id='a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604': + workers_assigned=[0] + shot_return_requests=0 + shots_left=100000000 + errors_left=100 + shots_unassigned=0 +task task.strong_id='c03f7852e4579e2a99cefac80eeb6b09556907540ab3d7787a3d07309c3333aa': + workers_assigned=[1, 2] + shot_return_requests=1 + shots_left=0 + errors_left=9998878 + shots_unassigned=0 +""" + + assert manager.shared_worker_output_queue.empty() + _put_wait_not_empty(manager.shared_worker_output_queue, ( + 'returned_shots', + 2, + (t1.strong_id(), 0) + )) + assert manager.process_message() + assert manager.shared_worker_output_queue.empty() + assert manager.state_summary() == """ +worker 0: asked_to_drop_shots=66666666 assigned_shots=100000000 assigned_work_key=a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604 +worker 1: asked_to_drop_shots=0 assigned_shots=0 assigned_work_key=a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604 +worker 2: asked_to_drop_shots=0 assigned_shots=0 assigned_work_key=a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604 +task task.strong_id='a9165b6e4ab1053c04c017d0739a7bfff0910d62091fc9ee81716833eda7f604': + workers_assigned=[0, 1, 2] + shot_return_requests=1 + shots_left=100000000 + errors_left=100 + shots_unassigned=0 +""" + + _assert_drain_queue(manager.worker_states[0].input_queue, [ + ('return_shots', (t0.strong_id(), 66666666)), + ]) + _assert_drain_queue(manager.worker_states[1].input_queue, [ + ('change_job', (t0, sinter.CollectionOptions(max_errors=100), 100)), + ]) + _assert_drain_queue(manager.worker_states[2].input_queue, [ + ('return_shots', (t1.strong_id(), 1000000)), + ('change_job', (t0, sinter.CollectionOptions(max_errors=100), 100)), + ]) diff --git a/glue/sample/src/sinter/_collection_test.py b/glue/sample/src/sinter/_collection/_collection_test.py similarity index 78% rename from glue/sample/src/sinter/_collection_test.py rename to glue/sample/src/sinter/_collection/_collection_test.py index 3ca72a5e..2956d419 100644 --- a/glue/sample/src/sinter/_collection_test.py +++ b/glue/sample/src/sinter/_collection/_collection_test.py @@ -1,6 +1,9 @@ import collections +import math import pathlib +import sys import tempfile +import time import pytest import stim @@ -208,3 +211,64 @@ def test_iter_collect_worker_fails(): ), ]), )) + + +class FixedSizeSampler(sinter.Sampler, sinter.CompiledSampler): + def compiled_sampler_for_task(self, task: sinter.Task) -> sinter.CompiledSampler: + return self + + def sample(self, suggested_shots: int) -> 'sinter.AnonTaskStats': + return sinter.AnonTaskStats( + shots=1024, + errors=5, + ) + + +def test_fixed_size_sampler(): + results = sinter.collect( + num_workers=2, + tasks=[ + sinter.Task( + circuit=stim.Circuit(), + decoder='fixed_size_sampler', + json_metadata={}, + collection_options=sinter.CollectionOptions( + max_shots=100_000, + max_errors=1_000, + ), + ) + ], + custom_decoders={'fixed_size_sampler': FixedSizeSampler()} + ) + assert 100_000 <= results[0].shots <= 100_000 + 3000 + + +class MockTimingSampler(sinter.Sampler, sinter.CompiledSampler): + def compiled_sampler_for_task(self, task: sinter.Task) -> sinter.CompiledSampler: + return self + + def sample(self, suggested_shots: int) -> 'sinter.AnonTaskStats': + actual_shots = -(-suggested_shots // 1024) * 1024 + time.sleep(actual_shots * 0.00001) + return sinter.AnonTaskStats( + shots=actual_shots, + errors=5, + seconds=actual_shots * 0.00001, + ) + + +def test_mock_timing_sampler(): + results = sinter.collect( + num_workers=12, + tasks=[ + sinter.Task( + circuit=stim.Circuit(), + decoder='MockTimingSampler', + json_metadata={}, + ) + ], + max_shots=1_000_000, + max_errors=10_000, + custom_decoders={'MockTimingSampler': MockTimingSampler()}, + ) + assert 1_000_000 <= results[0].shots <= 1_000_000 + 12000 diff --git a/glue/sample/src/sinter/_collection/_collection_worker_loop.py b/glue/sample/src/sinter/_collection/_collection_worker_loop.py new file mode 100644 index 00000000..1467315f --- /dev/null +++ b/glue/sample/src/sinter/_collection/_collection_worker_loop.py @@ -0,0 +1,35 @@ +import os +from typing import Optional, TYPE_CHECKING + +from sinter._decoding import Sampler +from sinter._collection._collection_worker_state import CollectionWorkerState + +if TYPE_CHECKING: + import multiprocessing + + +def collection_worker_loop( + flush_period: float, + worker_id: int, + sampler: Sampler, + inp: 'multiprocessing.Queue', + out: 'multiprocessing.Queue', + core_affinity: Optional[int], + custom_error_count_key: Optional[str], +) -> None: + try: + if core_affinity is not None and hasattr(os, 'sched_setaffinity'): + os.sched_setaffinity(0, {core_affinity}) + except: + # If setting the core affinity fails, we keep going regardless. + pass + + worker = CollectionWorkerState( + flush_period=flush_period, + worker_id=worker_id, + sampler=sampler, + inp=inp, + out=out, + custom_error_count_key=custom_error_count_key, + ) + worker.run_message_loop() diff --git a/glue/sample/src/sinter/_collection/_collection_worker_state.py b/glue/sample/src/sinter/_collection/_collection_worker_state.py new file mode 100644 index 00000000..ba8967e6 --- /dev/null +++ b/glue/sample/src/sinter/_collection/_collection_worker_state.py @@ -0,0 +1,256 @@ +import queue +import time +from typing import Any +from typing import Optional +from typing import TYPE_CHECKING + +import stim + +from sinter._data import AnonTaskStats +from sinter._data import CollectionOptions +from sinter._data import Task +from sinter._decoding import CompiledSampler +from sinter._decoding import Sampler + +if TYPE_CHECKING: + import multiprocessing + + +def _fill_in_task(task: Task) -> Task: + changed = False + circuit = task.circuit + if circuit is None: + circuit = stim.Circuit.from_file(task.circuit_path) + changed = True + dem = task.detector_error_model + if dem is None: + try: + dem = circuit.detector_error_model(decompose_errors=True, approximate_disjoint_errors=True) + except ValueError: + dem = circuit.detector_error_model(approximate_disjoint_errors=True) + changed = True + if not changed: + return task + return Task( + circuit=circuit, + decoder=task.decoder, + detector_error_model=dem, + postselection_mask=task.postselection_mask, + postselected_observables_mask=task.postselected_observables_mask, + json_metadata=task.json_metadata, + collection_options=task.collection_options, + ) + + +class CollectionWorkerState: + def __init__( + self, + *, + flush_period: float, + worker_id: int, + inp: 'multiprocessing.Queue', + out: 'multiprocessing.Queue', + sampler: Sampler, + custom_error_count_key: Optional[str], + ): + assert isinstance(flush_period, (int, float)) + assert isinstance(sampler, Sampler) + self.max_flush_period = flush_period + self.cur_flush_period = 0.01 + self.inp = inp + self.out = out + self.sampler = sampler + self.compiled_sampler: CompiledSampler | None = None + self.worker_id = worker_id + + self.current_task: Task | None = None + self.current_error_cutoff: int | None = None + self.custom_error_count_key = custom_error_count_key + self.current_task_shots_left: int = 0 + self.unflushed_results: AnonTaskStats = AnonTaskStats() + self.last_flush_message_time = time.monotonic() + self.soft_error_flush_threshold: int = 1 + + def _send_message_to_manager(self, message: Any): + self.out.put(message) + + def state_summary(self) -> str: + lines = [ + f'Worker(id={self.worker_id}) [', + f' max_flush_period={self.max_flush_period}', + f' cur_flush_period={self.cur_flush_period}', + f' sampler={self.sampler}', + f' compiled_sampler={self.compiled_sampler}', + f' current_task={self.current_task}', + f' current_error_cutoff={self.current_error_cutoff}', + f' custom_error_count_key={self.custom_error_count_key}', + f' current_task_shots_left={self.current_task_shots_left}', + f' unflushed_results={self.unflushed_results}', + f' last_flush_message_time={self.last_flush_message_time}', + f' soft_error_flush_threshold={self.soft_error_flush_threshold}', + f']', + ] + return '\n' + '\n'.join(lines) + '\n' + + def flush_results(self): + if self.unflushed_results.shots > 0: + self.last_flush_message_time = time.monotonic() + self.cur_flush_period = min(self.cur_flush_period * 1.4, self.max_flush_period) + self._send_message_to_manager(( + 'flushed_results', + self.worker_id, + (self.current_task.strong_id(), self.unflushed_results), + )) + self.unflushed_results = AnonTaskStats() + return True + return False + + def accept_shots(self, *, shots_delta: int): + assert shots_delta >= 0 + self.current_task_shots_left += shots_delta + self._send_message_to_manager(( + 'accepted_shots', + self.worker_id, + (self.current_task.strong_id(), shots_delta), + )) + + def return_shots(self, *, requested_shots: int): + assert requested_shots >= 0 + returned_shots = max(0, min(requested_shots, self.current_task_shots_left)) + self.current_task_shots_left -= returned_shots + if self.current_task_shots_left <= 0: + self.flush_results() + self._send_message_to_manager(( + 'returned_shots', + self.worker_id, + (self.current_task.strong_id(), returned_shots), + )) + + def compute_strong_id(self, *, new_task: Task): + strong_id = _fill_in_task(new_task).strong_id() + self._send_message_to_manager(( + 'computed_strong_id', + self.worker_id, + strong_id, + )) + + def change_job(self, *, new_task: Task, new_collection_options: CollectionOptions): + self.flush_results() + + self.current_task = _fill_in_task(new_task) + self.current_error_cutoff = new_collection_options.max_errors + self.compiled_sampler = self.sampler.compiled_sampler_for_task(self.current_task) + assert self.current_task.strong_id() is not None + self.current_task_shots_left = 0 + self.last_flush_message_time = time.monotonic() + + self._send_message_to_manager(( + 'changed_job', + self.worker_id, + (self.current_task.strong_id(),), + )) + + def process_messages(self) -> int: + num_processed = 0 + while True: + try: + message = self.inp.get_nowait() + except queue.Empty: + return num_processed + + num_processed += 1 + message_type, message_body = message + + if message_type == 'stop': + return -1 + + elif message_type == 'flush_results': + self.flush_results() + + elif message_type == 'compute_strong_id': + assert isinstance(message_body, Task) + self.compute_strong_id(new_task=message_body) + + elif message_type == 'change_job': + new_task, new_collection_options, soft_error_flush_threshold = message_body + self.cur_flush_period = 0.01 + self.soft_error_flush_threshold = soft_error_flush_threshold + assert isinstance(new_task, Task) + self.change_job(new_task=new_task, new_collection_options=new_collection_options) + + elif message_type == 'set_soft_error_flush_threshold': + soft_error_flush_threshold = message_body + self.soft_error_flush_threshold = soft_error_flush_threshold + + elif message_type == 'accept_shots': + job_key, shots_delta = message_body + assert isinstance(shots_delta, int) + assert job_key == self.current_task.strong_id() + self.accept_shots(shots_delta=shots_delta) + + elif message_type == 'return_shots': + job_key, requested_shots = message_body + assert isinstance(requested_shots, int) + assert job_key == self.current_task.strong_id() + self.return_shots(requested_shots=requested_shots) + + else: + raise NotImplementedError(f'{message_type=}') + + def num_unflushed_errors(self) -> int: + if self.custom_error_count_key is not None: + return self.unflushed_results.custom_counts[self.custom_error_count_key] + return self.unflushed_results.errors + + def do_some_work(self) -> bool: + did_some_work = False + + # Sample some stats. + if self.current_task_shots_left > 0: + # Don't keep sampling if we've exceeded the number of errors needed. + if self.current_error_cutoff is not None and self.current_error_cutoff <= 0: + return self.flush_results() + + some_work_done = self.compiled_sampler.sample(self.current_task_shots_left) + if some_work_done.shots < 1: + raise ValueError(f"Sampler didn't do any work. It returned statistics with shots == 0: {some_work_done}.") + assert isinstance(some_work_done, AnonTaskStats) + self.current_task_shots_left -= some_work_done.shots + if self.current_error_cutoff is not None: + errors_done = some_work_done.custom_counts[self.custom_error_count_key] if self.custom_error_count_key is not None else some_work_done.errors + self.current_error_cutoff -= errors_done + self.unflushed_results += some_work_done + did_some_work = True + + # Report them periodically. + should_flush = False + if self.num_unflushed_errors() >= self.soft_error_flush_threshold: + should_flush = True + if self.unflushed_results.shots > 0: + if self.current_task_shots_left <= 0 or self.last_flush_message_time + self.cur_flush_period < time.monotonic(): + should_flush = True + if should_flush: + did_some_work |= self.flush_results() + + return did_some_work + + def run_message_loop(self): + try: + while True: + num_messages_processed = self.process_messages() + if num_messages_processed == -1: + break + did_some_work = self.do_some_work() + if not did_some_work and num_messages_processed == 0: + time.sleep(0.01) + + except KeyboardInterrupt: + pass + + except BaseException as ex: + import traceback + self._send_message_to_manager(( + 'stopped_due_to_exception', + self.worker_id, + (None if self.current_task is None else self.current_task.strong_id(), self.current_task_shots_left, self.unflushed_results, traceback.format_exc(), ex), + )) diff --git a/glue/sample/src/sinter/_collection/_collection_worker_test.py b/glue/sample/src/sinter/_collection/_collection_worker_test.py new file mode 100644 index 00000000..db0518dc --- /dev/null +++ b/glue/sample/src/sinter/_collection/_collection_worker_test.py @@ -0,0 +1,214 @@ +import collections +import multiprocessing +import time +from typing import Any, List + +import sinter +import stim + +from sinter._collection._collection_worker_state import CollectionWorkerState + + +class MockWorkHandler(sinter.Sampler, sinter.CompiledSampler): + def __init__(self): + self.expected_task = None + self.expected = collections.deque() + + def compiled_sampler_for_task(self, task: sinter.Task) -> sinter.CompiledSampler: + assert task == self.expected_task + return self + + def handles_throttling(self) -> bool: + return True + + def sample(self, shots: int) -> sinter.AnonTaskStats: + assert self.expected + expected_shots, response = self.expected.popleft() + assert shots == expected_shots + return response + + +def _assert_drain_queue(q: multiprocessing.Queue, expected_contents: List[Any]): + for v in expected_contents: + assert q.get(timeout=0.1) == v + assert q.empty() + + +def _put_wait_not_empty(q: multiprocessing.Queue, item: Any): + q.put(item) + while q.empty(): + time.sleep(0.0001) + + +def test_worker_stop(): + handler = MockWorkHandler() + + inp = multiprocessing.Queue() + out = multiprocessing.Queue() + inp.cancel_join_thread() + out.cancel_join_thread() + + worker = CollectionWorkerState( + flush_period=-1, + worker_id=5, + sampler=handler, + inp=inp, + out=out, + custom_error_count_key=None, + ) + + assert worker.process_messages() == 0 + _assert_drain_queue(out, []) + + t0 = sinter.Task( + circuit=stim.Circuit('H 0'), + detector_error_model=stim.DetectorErrorModel(), + decoder='mock', + collection_options=sinter.CollectionOptions(max_shots=100_000_000), + json_metadata={'a': 3}, + ) + handler.expected_task = t0 + + _put_wait_not_empty(inp, ('change_job', (t0, sinter.CollectionOptions(max_errors=100_000_000), 100_000_000))) + assert worker.process_messages() == 1 + _assert_drain_queue(out, [('changed_job', 5, (t0.strong_id(),))]) + + _put_wait_not_empty(inp, ('stop', None)) + assert worker.process_messages() == -1 + + +def test_worker_skip_work(): + handler = MockWorkHandler() + + inp = multiprocessing.Queue() + out = multiprocessing.Queue() + inp.cancel_join_thread() + out.cancel_join_thread() + + worker = CollectionWorkerState( + flush_period=-1, + worker_id=5, + sampler=handler, + inp=inp, + out=out, + custom_error_count_key=None, + ) + + assert worker.process_messages() == 0 + _assert_drain_queue(out, []) + + t0 = sinter.Task( + circuit=stim.Circuit('H 0'), + detector_error_model=stim.DetectorErrorModel(), + decoder='mock', + collection_options=sinter.CollectionOptions(max_shots=100_000_000), + json_metadata={'a': 3}, + ) + handler.expected_task = t0 + _put_wait_not_empty(inp, ('change_job', (t0, sinter.CollectionOptions(max_errors=100_000_000), 100_000_000))) + assert worker.process_messages() == 1 + _assert_drain_queue(out, [('changed_job', 5, (t0.strong_id(),))]) + + _put_wait_not_empty(inp, ('accept_shots', (t0.strong_id(), 10000))) + assert worker.process_messages() == 1 + _assert_drain_queue(out, [('accepted_shots', 5, (t0.strong_id(), 10000))]) + + assert worker.current_task == t0 + assert worker.current_task_shots_left == 10000 + assert worker.process_messages() == 0 + _assert_drain_queue(out, []) + + _put_wait_not_empty(inp, ('return_shots', (t0.strong_id(), 2000))) + assert worker.process_messages() == 1 + _assert_drain_queue(out, [ + ('returned_shots', 5, (t0.strong_id(), 2000)), + ]) + + _put_wait_not_empty(inp, ('return_shots', (t0.strong_id(), 20000000))) + assert worker.process_messages() == 1 + _assert_drain_queue(out, [ + ('returned_shots', 5, (t0.strong_id(), 8000)), + ]) + + assert not worker.do_some_work() + + +def test_worker_finish_work(): + handler = MockWorkHandler() + + inp = multiprocessing.Queue() + out = multiprocessing.Queue() + inp.cancel_join_thread() + out.cancel_join_thread() + + worker = CollectionWorkerState( + flush_period=-1, + worker_id=5, + sampler=handler, + inp=inp, + out=out, + custom_error_count_key=None, + ) + + assert worker.process_messages() == 0 + _assert_drain_queue(out, []) + + ta = sinter.Task( + circuit=stim.Circuit('H 0'), + detector_error_model=stim.DetectorErrorModel(), + decoder='mock', + collection_options=sinter.CollectionOptions(max_shots=100_000_000), + json_metadata={'a': 3}, + ) + handler.expected_task = ta + _put_wait_not_empty(inp, ('change_job', (ta, sinter.CollectionOptions(max_errors=100_000_000), 100_000_000))) + _put_wait_not_empty(inp, ('accept_shots', (ta.strong_id(), 10000))) + assert worker.process_messages() == 2 + _assert_drain_queue(out, [ + ('changed_job', 5, (ta.strong_id(),)), + ('accepted_shots', 5, (ta.strong_id(), 10000)), + ]) + + assert worker.current_task == ta + assert worker.current_task_shots_left == 10000 + assert worker.process_messages() == 0 + _assert_drain_queue(out, []) + + handler.expected.append(( + 10000, + sinter.AnonTaskStats( + shots=1000, + errors=23, + discards=0, + seconds=1, + ), + )) + + assert worker.do_some_work() + worker.flush_results() + _assert_drain_queue(out, [ + ('flushed_results', 5, (ta.strong_id(), sinter.AnonTaskStats(shots=1000, errors=23, discards=0, seconds=1)))]) + + handler.expected.append(( + 9000, + sinter.AnonTaskStats( + shots=9000, + errors=13, + discards=0, + seconds=1, + ), + )) + + assert worker.do_some_work() + worker.flush_results() + _assert_drain_queue(out, [ + ('flushed_results', 5, (ta.strong_id(), sinter.AnonTaskStats( + shots=9000, + errors=13, + discards=0, + seconds=1, + ))), + ]) + assert not worker.do_some_work() + worker.flush_results() + _assert_drain_queue(out, []) diff --git a/glue/sample/src/sinter/_collection/_mux_sampler.py b/glue/sample/src/sinter/_collection/_mux_sampler.py new file mode 100755 index 00000000..d0db3caa --- /dev/null +++ b/glue/sample/src/sinter/_collection/_mux_sampler.py @@ -0,0 +1,56 @@ +import pathlib +from typing import Optional +from typing import Union + +from sinter._data import Task +from sinter._decoding._decoding_all_built_in_decoders import BUILT_IN_SAMPLERS +from sinter._decoding._decoding_decoder_class import Decoder +from sinter._decoding._sampler import CompiledSampler +from sinter._decoding._sampler import Sampler +from sinter._decoding._stim_then_decode_sampler import StimThenDecodeSampler + + +class MuxSampler(Sampler): + """Looks up the sampler to use for a task, by the task's decoder name.""" + + def __init__( + self, + *, + custom_decoders: Union[dict[str, Union[Decoder, Sampler]], None], + count_observable_error_combos: bool, + count_detection_events: bool, + tmp_dir: Optional[pathlib.Path], + ): + self.custom_decoders = custom_decoders + self.count_observable_error_combos = count_observable_error_combos + self.count_detection_events = count_detection_events + self.tmp_dir = tmp_dir + + def compiled_sampler_for_task(self, task: Task) -> CompiledSampler: + return self._resolve_sampler(task.decoder).compiled_sampler_for_task(task) + + def _resolve_sampler(self, name: str) -> Sampler: + sub_sampler: Union[Decoder, Sampler] + + if name in self.custom_decoders: + sub_sampler = self.custom_decoders[name] + elif name in BUILT_IN_SAMPLERS: + sub_sampler = BUILT_IN_SAMPLERS[name] + else: + raise NotImplementedError(f'Not a recognized decoder or sampler: {name=}. Did you forget to specify custom_decoders?') + + if isinstance(sub_sampler, Sampler): + if self.count_detection_events: + raise NotImplementedError("'count_detection_events' not supported when using a custom Sampler (instead of a custom Decoder).") + if self.count_observable_error_combos: + raise NotImplementedError("'count_observable_error_combos' not supported when using a custom Sampler (instead of a custom Decoder).") + return sub_sampler + elif isinstance(sub_sampler, Decoder) or hasattr(sub_sampler, 'compile_decoder_for_dem'): + return StimThenDecodeSampler( + decoder=sub_sampler, + count_detection_events=self.count_detection_events, + count_observable_error_combos=self.count_observable_error_combos, + tmp_dir=self.tmp_dir, + ) + else: + raise NotImplementedError(f"Don't know how to turn this into a Sampler: {sub_sampler!r}") diff --git a/glue/sample/src/sinter/_printer.py b/glue/sample/src/sinter/_collection/_printer.py similarity index 100% rename from glue/sample/src/sinter/_printer.py rename to glue/sample/src/sinter/_collection/_printer.py diff --git a/glue/sample/src/sinter/_collection/_sampler_ramp_throttled.py b/glue/sample/src/sinter/_collection/_sampler_ramp_throttled.py new file mode 100755 index 00000000..5f8ae056 --- /dev/null +++ b/glue/sample/src/sinter/_collection/_sampler_ramp_throttled.py @@ -0,0 +1,66 @@ +import time + +from sinter._decoding import Sampler, CompiledSampler +from sinter._data import Task, AnonTaskStats + + +class RampThrottledSampler(Sampler): + """Wraps a sampler to adjust requested shots to hit a target time. + + This sampler will initially only take 1 shot per call. If the time taken + significantly undershoots the target time, the maximum number of shots per + call is increased by a constant factor. If it exceeds the target time, the + maximum is reduced by a constant factor. The result is that the sampler + "ramps up" how many shots it does per call until it takes roughly the target + time, and then dynamically adapts to stay near it. + """ + + def __init__(self, sub_sampler: Sampler, target_batch_seconds: float, max_batch_shots: int): + self.sub_sampler = sub_sampler + self.target_batch_seconds = target_batch_seconds + self.max_batch_shots = max_batch_shots + + def __str__(self) -> str: + return f'CompiledRampThrottledSampler({self.sub_sampler})' + + def compiled_sampler_for_task(self, task: Task) -> CompiledSampler: + compiled_sub_sampler = self.sub_sampler.compiled_sampler_for_task(task) + if compiled_sub_sampler.handles_throttling(): + return compiled_sub_sampler + + return CompiledRampThrottledSampler( + sub_sampler=compiled_sub_sampler, + target_batch_seconds=self.target_batch_seconds, + max_batch_shots=self.max_batch_shots, + ) + + +class CompiledRampThrottledSampler(CompiledSampler): + def __init__(self, sub_sampler: CompiledSampler, target_batch_seconds: float, max_batch_shots: int): + self.sub_sampler = sub_sampler + self.target_batch_seconds = target_batch_seconds + self.batch_shots = 1 + self.max_batch_shots = max_batch_shots + + def __str__(self) -> str: + return f'CompiledRampThrottledSampler({self.sub_sampler})' + + def sample(self, max_shots: int) -> AnonTaskStats: + t0 = time.monotonic() + actual_shots = min(max_shots, self.batch_shots) + result = self.sub_sampler.sample(actual_shots) + dt = time.monotonic() - t0 + + # Rebalance number of shots. + if self.batch_shots > 1 and dt > self.target_batch_seconds * 1.3: + self.batch_shots //= 2 + if result.shots * 2 >= actual_shots: + for _ in range(4): + if self.batch_shots * 2 > self.max_batch_shots: + break + if dt > self.target_batch_seconds * 0.3: + break + self.batch_shots *= 2 + dt *= 2 + + return result diff --git a/glue/sample/src/sinter/_collection_tracker_for_single_task.py b/glue/sample/src/sinter/_collection_tracker_for_single_task.py deleted file mode 100644 index 0932b55e..00000000 --- a/glue/sample/src/sinter/_collection_tracker_for_single_task.py +++ /dev/null @@ -1,230 +0,0 @@ -import math -from typing import Iterator -from typing import Optional - -import stim - -from sinter._anon_task_stats import AnonTaskStats -from sinter._existing_data import ExistingData -from sinter._task import Task -from sinter._worker import WorkIn -from sinter._worker import WorkOut - - -DEFAULT_MAX_BATCH_SECONDS = 120 - - -class CollectionTrackerForSingleTask: - def __init__( - self, - *, - task: Task, - count_observable_error_combos: bool, - count_detection_events: bool, - circuit_path: str, - dem_path: str, - existing_data: ExistingData, - custom_error_count_key: Optional[str], - ): - self.unfilled_task = task - self.count_observable_error_combos = count_observable_error_combos - self.count_detection_events = count_detection_events - self.task_strong_id = None - self.circuit_path = circuit_path - self.dem_path = dem_path - self.finished_stats = AnonTaskStats() - self.existing_data = existing_data - self.deployed_shots = 0 - self.waiting_for_worker_computing_dem_and_strong_id = False - self.deployed_processes = 0 - self.custom_error_count_key = custom_error_count_key - - task.circuit.to_file(circuit_path) - if task.detector_error_model is not None: - task.detector_error_model.to_file(dem_path) - self.task_strong_id = task.strong_id() - existing = self.existing_data.data.get(self.task_strong_id) - if existing is not None: - self.finished_stats += existing.to_anon_stats() - if self.copts.max_shots is None and self.copts.max_errors is None: - raise ValueError('Neither the task nor the collector specified max_shots or max_errors. Must specify one.') - - @property - def copts(self): - return self.unfilled_task.collection_options - - def expected_shots_remaining( - self, *, safety_factor_on_shots_per_error: float = 1) -> float: - """Doesn't include deployed shots.""" - result: float = float('inf') - - if self.copts.max_shots is not None: - result = self.copts.max_shots - self.finished_stats.shots - - errs = self._seen_errors() - if errs and self.copts.max_errors is not None: - shots_per_error = self.finished_stats.shots / errs - errors_left = self.copts.max_errors - errs - result = min(result, errors_left * shots_per_error * safety_factor_on_shots_per_error) - - return result - - def _seen_errors(self) -> int: - if self.custom_error_count_key is not None: - return self.finished_stats.custom_counts.get(self.custom_error_count_key, 0) - return self.finished_stats.errors - - def expected_time_per_shot(self) -> Optional[float]: - if self.finished_stats.shots == 0: - return None - return self.finished_stats.seconds / self.finished_stats.shots - - def expected_errors_per_shot(self) -> Optional[float]: - return (self._seen_errors() + 1) / (self.finished_stats.shots + 1) - - def expected_time_remaining(self) -> Optional[float]: - dt = self.expected_time_per_shot() - n = self.expected_shots_remaining() - if dt is None or n == float('inf'): - return None - return dt * n - - def work_completed(self, result: WorkOut) -> None: - if self.waiting_for_worker_computing_dem_and_strong_id: - self.task_strong_id = result.strong_id - existing = self.existing_data.data.get(self.task_strong_id) - if existing is not None: - self.finished_stats += existing.to_anon_stats() - self.waiting_for_worker_computing_dem_and_strong_id = False - else: - self.deployed_shots -= result.stats.shots - self.finished_stats += result.stats - self.deployed_processes -= 1 - - def is_done(self) -> bool: - if self.task_strong_id is None or self.waiting_for_worker_computing_dem_and_strong_id: - return False - enough_shots = False - if self.copts.max_shots is not None and self.finished_stats.shots >= self.copts.max_shots: - enough_shots = True - if self.copts.max_errors is not None and self._seen_errors() >= self.copts.max_errors: - enough_shots = True - return enough_shots and self.deployed_shots == 0 - - def iter_batch_size_limits(self, *, desperate: bool) -> Iterator[float]: - if self.finished_stats.shots == 0: - if self.deployed_shots > 0: - yield 0 - elif self.copts.start_batch_size is None: - yield 100 - else: - yield self.copts.start_batch_size - return - - # Do exponential ramp-up of batch sizes. - yield self.finished_stats.shots * 2 - - # Don't go super parallel before reaching other maximums. - if not desperate: - yield self.finished_stats.shots * 5 - self.deployed_shots - - # Don't take more shots than requested. - if self.copts.max_shots is not None: - yield self.copts.max_shots - self.finished_stats.shots - self.deployed_shots - - # Don't take more errors than requested. - if self.copts.max_errors is not None: - errors_left = self.copts.max_errors - self._seen_errors() - errors_left += 2 # oversample once count gets low - de = self.expected_errors_per_shot() - yield errors_left / de - self.deployed_shots - - # Don't exceed max batch size. - if self.copts.max_batch_size is not None: - yield self.copts.max_batch_size - - # If no maximum on batch size is specified, default to 30s maximum. - max_batch_seconds = self.copts.max_batch_seconds - if max_batch_seconds is None and self.copts.max_batch_size is None: - max_batch_seconds = DEFAULT_MAX_BATCH_SECONDS - - # Try not to exceed max batch duration. - if max_batch_seconds is not None: - dt = self.expected_time_per_shot() - if dt is not None and dt > 0: - yield max(1, math.floor(max_batch_seconds / dt)) - - def next_shot_count(self, *, desperate: bool) -> int: - return math.ceil(min(self.iter_batch_size_limits(desperate=desperate))) - - def provide_more_work(self, *, desperate: bool) -> Optional[WorkIn]: - if self.task_strong_id is None: - if self.waiting_for_worker_computing_dem_and_strong_id: - return None - self.waiting_for_worker_computing_dem_and_strong_id = True - self.deployed_processes += 1 - return WorkIn( - work_key=None, - circuit_path=self.circuit_path, - dem_path=self.dem_path, - decoder=self.unfilled_task.decoder, - postselection_mask=self.unfilled_task.postselection_mask, - postselected_observables_mask=self.unfilled_task.postselected_observables_mask, - json_metadata=self.unfilled_task.json_metadata, - strong_id=None, - num_shots=-1, - count_observable_error_combos=self.count_observable_error_combos, - count_detection_events=self.count_detection_events, - ) - - # Wait to have *some* data before starting to sample in parallel. - num_shots = self.next_shot_count(desperate=desperate) - if num_shots <= 0: - return None - - self.deployed_shots += num_shots - self.deployed_processes += 1 - return WorkIn( - work_key=None, - strong_id=self.task_strong_id, - circuit_path=self.circuit_path, - dem_path=self.dem_path, - decoder=self.unfilled_task.decoder, - postselection_mask=self.unfilled_task.postselection_mask, - postselected_observables_mask=self.unfilled_task.postselected_observables_mask, - json_metadata=self.unfilled_task.json_metadata, - num_shots=num_shots, - count_observable_error_combos=self.count_observable_error_combos, - count_detection_events=self.count_detection_events, - ) - - def status(self) -> str: - t = self.expected_time_remaining() - if t is not None: - t /= 60 - t = math.ceil(t) - t = f'{t}' - terms = [ - f'{self.unfilled_task.decoder} '.rjust(22), - f'processes={self.deployed_processes}'.ljust(13), - f'~core_mins_left={t}'.ljust(24), - ] - if self.task_strong_id is None: - terms.append(f'(initializing...) ') - else: - if self.copts.max_shots is not None: - terms.append(f'shots_left={max(0, self.copts.max_shots - self.finished_stats.shots)}'.ljust(20)) - if self.copts.max_errors is not None: - terms.append(f'errors_left={max(0, self.copts.max_errors - self._seen_errors())}'.ljust(20)) - if isinstance(self.unfilled_task.json_metadata, dict): - keys = self.unfilled_task.json_metadata.keys() - try: - keys = sorted(keys) - except: - keys = list(keys) - meta_desc = '{' + ','.join(f'{k}={self.unfilled_task.json_metadata[k]}' for k in keys) + '}' - else: - meta_desc = f'{self.unfilled_task.json_metadata}' - terms.append(meta_desc) - - return ''.join(terms) diff --git a/glue/sample/src/sinter/_collection_work_manager.py b/glue/sample/src/sinter/_collection_work_manager.py deleted file mode 100644 index d32db698..00000000 --- a/glue/sample/src/sinter/_collection_work_manager.py +++ /dev/null @@ -1,275 +0,0 @@ -import os - -import contextlib -import multiprocessing -import pathlib -import tempfile -import stim -from typing import cast, Iterable, Optional, Iterator, Tuple, Dict, List - -from sinter._decoding_decoder_class import Decoder -from sinter._collection_options import CollectionOptions -from sinter._existing_data import ExistingData -from sinter._task_stats import TaskStats -from sinter._task import Task -from sinter._anon_task_stats import AnonTaskStats -from sinter._collection_tracker_for_single_task import CollectionTrackerForSingleTask -from sinter._worker import worker_loop, WorkIn, WorkOut - - -class CollectionWorkManager: - def __init__( - self, - *, - tasks_iter: Iterator[Task], - global_collection_options: CollectionOptions, - additional_existing_data: Optional[ExistingData], - count_observable_error_combos: bool, - count_detection_events: bool, - decoders: Optional[Iterable[str]], - custom_decoders: Dict[str, Decoder], - custom_error_count_key: Optional[str], - allowed_cpu_affinity_ids: Optional[List[int]], - ): - self.custom_decoders = custom_decoders - self.queue_from_workers: Optional[multiprocessing.Queue] = None - self.queue_to_workers: Optional[multiprocessing.Queue] = None - self.additional_existing_data = ExistingData() if additional_existing_data is None else additional_existing_data - self.tmp_dir: Optional[pathlib.Path] = None - self.exit_stack: Optional[contextlib.ExitStack] = None - self.custom_error_count_key = custom_error_count_key - self.allowed_cpu_affinity_ids = None if allowed_cpu_affinity_ids is None else sorted(set(allowed_cpu_affinity_ids)) - - self.global_collection_options = global_collection_options - self.decoders: Optional[Tuple[str, ...]] = None if decoders is None else tuple(decoders) - self.did_work = False - - self.workers: List[multiprocessing.Process] = [] - self.active_collectors: Dict[int, CollectionTrackerForSingleTask] = {} - self.next_collector_key: int = 0 - self.finished_count = 0 - self.deployed_jobs: Dict[int, WorkIn] = {} - self.next_job_id = 0 - self.count_observable_error_combos = count_observable_error_combos - self.count_detection_events = count_detection_events - - self.tasks_with_decoder_iter: Iterator[Task] = _iter_tasks_with_assigned_decoders( - tasks_iter=tasks_iter, - default_decoders=self.decoders, - global_collections_options=self.global_collection_options) - - def start_workers(self, num_workers: int) -> None: - assert self.tmp_dir is not None - current_method = multiprocessing.get_start_method() - try: - # To ensure the child processes do not accidentally share ANY state - # related to, we use 'spawn' instead of 'fork'. - multiprocessing.set_start_method('spawn', force=True) - # Create queues after setting start method to work around a deadlock - # bug that occurs otherwise. - self.queue_from_workers = multiprocessing.Queue() - self.queue_to_workers = multiprocessing.Queue() - self.queue_from_workers.cancel_join_thread() - self.queue_to_workers.cancel_join_thread() - - if self.allowed_cpu_affinity_ids is None: - cpus = range(os.cpu_count()) - else: - num_cpus = os.cpu_count() - cpus = [e for e in self.allowed_cpu_affinity_ids if e < num_cpus] - for index in range(num_workers): - cpu_pin = None if len(cpus) == 0 else cpus[index % len(cpus)] - w = multiprocessing.Process( - target=worker_loop, - args=(self.tmp_dir, self.queue_to_workers, self.queue_from_workers, self.custom_decoders, cpu_pin)) - w.start() - self.workers.append(w) - finally: - multiprocessing.set_start_method(current_method, force=True) - - def __enter__(self): - self.exit_stack = contextlib.ExitStack().__enter__() - self.tmp_dir = pathlib.Path(self.exit_stack.enter_context(tempfile.TemporaryDirectory())) - return self - - def __exit__(self, exc_type, exc_val, exc_tb): - self.shut_down_workers() - self.exit_stack.__exit__(exc_type, exc_val, exc_tb) - self.exit_stack = None - self.tmp_dir = None - - def shut_down_workers(self) -> None: - removed_workers = self.workers - self.workers = [] - - # SIGKILL everything. - for w in removed_workers: - # This is supposed to be safe because all state on disk was put - # in the specified tmp directory which we will handle deleting. - w.kill() - # Wait for them to be done. - for w in removed_workers: - w.join() - - def fill_work_queue(self) -> bool: - while len(self.deployed_jobs) < len(self.workers): - work = self.provide_more_work() - if work is None: - break - self.did_work = True - self.queue_to_workers.put(work.with_work_key((self.next_job_id, work.work_key))) - self.deployed_jobs[self.next_job_id] = work - self.next_job_id += 1 - return bool(self.deployed_jobs) - - def wait_for_next_sample(self, - *, - timeout: Optional[float] = None, - ) -> TaskStats: - result = self.queue_from_workers.get(timeout=timeout) - assert isinstance(result, WorkOut) - if result.msg_error is not None: - msg, error = result.msg_error - if isinstance(error, KeyboardInterrupt): - raise KeyboardInterrupt() - raise RuntimeError(f"Worker failed: {msg}") from error - - else: - job_id, sub_key = result.work_key - stats = result.stats - work_in = self.deployed_jobs[job_id] - - self.work_completed(WorkOut( - work_key=sub_key, - stats=stats, - strong_id=result.strong_id, - msg_error=result.msg_error, - )) - del self.deployed_jobs[job_id] - if stats is None: - stats = AnonTaskStats() - return TaskStats( - strong_id=result.strong_id, - decoder=work_in.decoder, - json_metadata=work_in.json_metadata, - shots=stats.shots, - errors=stats.errors, - custom_counts=stats.custom_counts, - discards=stats.discards, - seconds=stats.seconds, - ) - - def _iter_draw_collectors(self, *, prefer_started: bool) -> Iterator[Tuple[int, CollectionTrackerForSingleTask]]: - if prefer_started: - yield from self.active_collectors.items() - while True: - key = self.next_collector_key - try: - task = next(self.tasks_with_decoder_iter) - except StopIteration: - break - collector = CollectionTrackerForSingleTask( - task=task, - circuit_path=str((self.tmp_dir / f'circuit_{self.next_collector_key}.stim').absolute()), - dem_path=str((self.tmp_dir / f'dem_{self.next_collector_key}.dem').absolute()), - existing_data=self.additional_existing_data, - count_detection_events=self.count_detection_events, - count_observable_error_combos=self.count_observable_error_combos, - custom_error_count_key=self.custom_error_count_key, - ) - if collector.is_done(): - self.finished_count += 1 - continue - self.next_collector_key += 1 - self.active_collectors[key] = collector - yield key, collector - if not prefer_started: - yield from self.active_collectors.items() - - def is_done(self) -> bool: - return len(self.active_collectors) == 0 - - def work_completed(self, result: WorkOut): - assert isinstance(result.work_key, int) - collector_index = cast(int, result.work_key) - collector = self.active_collectors[collector_index] - collector.work_completed(result) - if collector.is_done(): - self.finished_count += 1 - del self.active_collectors[collector_index] - - def provide_more_work(self) -> Optional[WorkIn]: - iter_collectors = self._iter_draw_collectors( - prefer_started=len(self.active_collectors) >= 2) - for desperate in False, True: - for collector_index, collector in iter_collectors: - w = collector.provide_more_work(desperate=desperate) - if w is not None: - assert w.work_key is None - return w.with_work_key(collector_index) - return None - - def status(self, *, num_circuits: Optional[int]) -> str: - if self.is_done(): - if self.did_work: - main_status = 'Done collecting' - else: - main_status = 'There was nothing additional to collect' - elif num_circuits is not None: - main_status = f'{num_circuits - self.finished_count} cases left:' - else: - main_status = "Running..." - collector_statuses = [ - collector.status() - for collector in self.active_collectors.values() - ] - if len(collector_statuses) > 24: - collector_statuses = collector_statuses[:24] + ['\n...'] - - min_indent = 0 - while collector_statuses and all(min_indent < len(c) and c[min_indent] == ' ' for c in collector_statuses): - min_indent += 1 - if min_indent > 4: - collector_statuses = [c[min_indent - 4:] for c in collector_statuses] - collector_statuses = ['\n' + c for c in collector_statuses] - - return main_status + ''.join(collector_statuses) - - -def _iter_tasks_with_assigned_decoders( - *, - tasks_iter: Iterator[Task], - default_decoders: Optional[Iterable[str]], - global_collections_options: CollectionOptions, -) -> Iterator[Task]: - for task in tasks_iter: - if task.circuit is None: - task = Task( - circuit=stim.Circuit.from_file(task.circuit_path), - decoder=task.decoder, - detector_error_model=task.detector_error_model, - postselection_mask=task.postselection_mask, - postselected_observables_mask=task.postselected_observables_mask, - json_metadata=task.json_metadata, - collection_options=task.collection_options, - circuit_path=task.circuit_path, - ) - - if task.decoder is None and default_decoders is None: - raise ValueError("Decoders to use was not specified. decoders is None and task.decoder is None") - task_decoders = [] - if default_decoders is not None: - task_decoders.extend(default_decoders) - if task.decoder is not None and task.decoder not in task_decoders: - task_decoders.append(task.decoder) - for decoder in task_decoders: - yield Task( - circuit=task.circuit, - decoder=decoder, - detector_error_model=task.detector_error_model, - postselection_mask=task.postselection_mask, - postselected_observables_mask=task.postselected_observables_mask, - json_metadata=task.json_metadata, - collection_options=task.collection_options.combine(global_collections_options), - skip_validation=True, - ) diff --git a/glue/sample/src/sinter/_command/__init__.py b/glue/sample/src/sinter/_command/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/glue/sample/src/sinter/_main.py b/glue/sample/src/sinter/_command/_main.py similarity index 83% rename from glue/sample/src/sinter/_main.py rename to glue/sample/src/sinter/_command/_main.py index ef5f3c35..30488ca3 100644 --- a/glue/sample/src/sinter/_main.py +++ b/glue/sample/src/sinter/_command/_main.py @@ -8,16 +8,16 @@ def main(*, command_line_args: Optional[List[str]] = None): mode = command_line_args[0] if command_line_args else None if mode == 'combine': - from sinter._main_combine import main_combine + from sinter._command._main_combine import main_combine return main_combine(command_line_args=command_line_args[1:]) if mode == 'collect': - from sinter._main_collect import main_collect + from sinter._command._main_collect import main_collect return main_collect(command_line_args=command_line_args[1:]) if mode == 'plot': - from sinter._main_plot import main_plot + from sinter._command._main_plot import main_plot return main_plot(command_line_args=command_line_args[1:]) if mode == 'predict': - from sinter._main_predict import main_predict + from sinter._command._main_predict import main_predict return main_predict(command_line_args=command_line_args[1:]) want_help = mode in ['help', 'h', '--help', '-help', '-h', '--h'] diff --git a/glue/sample/src/sinter/_main_collect.py b/glue/sample/src/sinter/_command/_main_collect.py similarity index 96% rename from glue/sample/src/sinter/_main_collect.py rename to glue/sample/src/sinter/_command/_main_collect.py index b53dc392..5f008ae7 100644 --- a/glue/sample/src/sinter/_main_collect.py +++ b/glue/sample/src/sinter/_command/_main_collect.py @@ -8,12 +8,11 @@ import numpy as np import stim -import sinter -from sinter._printer import ThrottledProgressPrinter -from sinter._task import Task +from sinter._collection import ThrottledProgressPrinter +from sinter._data import Task from sinter._collection import collect, Progress, post_selection_mask_from_predicate -from sinter._decoding_all_built_in_decoders import BUILT_IN_DECODERS -from sinter._main_combine import ExistingData, CSV_HEADER +from sinter._command._main_combine import ExistingData, CSV_HEADER +from sinter._decoding._decoding_all_built_in_decoders import BUILT_IN_SAMPLERS def iter_file_paths_into_goals(circuit_paths: Iterator[str], @@ -82,7 +81,7 @@ def parse_args(args: List[str]) -> Any: default=None, help='Sampling of a circuit will stop if this many errors have been seen.') parser.add_argument('--processes', - required=True, + default='auto', type=str, help='Number of processes to use for simultaneous sampling and decoding. ' 'Must be either a number or "auto" which sets it to the number of ' @@ -203,6 +202,7 @@ def parse_args(args: List[str]) -> Any: ''' --metadata_func "auto"\n''' ''' --metadata_func "{'n': circuit.num_qubits, 'p': float(path.split('/')[-1].split('.')[0])}"\n''' ) + import sinter a = parser.parse_args(args=args) if a.metadata_func == 'auto': a.metadata_func = "sinter.comma_separated_key_values(path)" @@ -243,9 +243,9 @@ def parse_args(args: List[str]) -> Any: else: a.custom_decoders = None for decoder in a.decoders: - if decoder not in BUILT_IN_DECODERS and (a.custom_decoders is None or decoder not in a.custom_decoders): - message = f"Not a recognized decoder: {decoder=}.\n" - message += f"Available built-in decoders: {sorted(e for e in BUILT_IN_DECODERS.keys() if 'internal' not in e)}.\n" + if decoder not in BUILT_IN_SAMPLERS and (a.custom_decoders is None or decoder not in a.custom_decoders): + message = f"Not a recognized decoder or sampler: {decoder=}.\n" + message += f"Available built-in decoders and samplers: {sorted(e for e in BUILT_IN_SAMPLERS.keys() if 'internal' not in e)}.\n" if a.custom_decoders is None: message += f"No custom decoders are available. --custom_decoders_module_function wasn't specified." else: @@ -296,7 +296,7 @@ def main_collect(*, command_line_args: List[str]): printer = ThrottledProgressPrinter( outs=[], print_progress=not args.quiet, - min_progress_delay=0.03 if args.also_print_results_to_stdout else 0.2, + min_progress_delay=0.03 if args.also_print_results_to_stdout else 0.1, ) if print_to_stdout: printer.outs.append(sys.stdout) diff --git a/glue/sample/src/sinter/_main_collect_test.py b/glue/sample/src/sinter/_command/_main_collect_test.py similarity index 92% rename from glue/sample/src/sinter/_main_collect_test.py rename to glue/sample/src/sinter/_command/_main_collect_test.py index 09f45d89..408fde65 100644 --- a/glue/sample/src/sinter/_main_collect_test.py +++ b/glue/sample/src/sinter/_command/_main_collect_test.py @@ -6,8 +6,8 @@ import pytest import sinter -from sinter._main import main -from sinter._main_combine import ExistingData +from sinter._command._main import main +from sinter._command._main_combine import ExistingData from sinter._plotting import split_by @@ -144,7 +144,7 @@ def test_main_collect_with_custom_decoder(): "--decoders", "NOTEXIST", "--custom_decoders_module_function", - "sinter._main_collect_test:_make_custom_decoders", + "sinter._command._main_collect_test:_make_custom_decoders", "--processes", "2", "--quiet", @@ -162,7 +162,7 @@ def test_main_collect_with_custom_decoder(): "--decoders", "alternate", "--custom_decoders_module_function", - "sinter._main_collect_test:_make_custom_decoders", + "sinter._command._main_collect_test:_make_custom_decoders", "--processes", "2", "--quiet", @@ -450,3 +450,33 @@ def test_auto_processes(): ]) data = sinter.stats_from_csv_files(d / "out.csv") assert len(data) == 1 + + +def test_implicit_auto_processes(): + with tempfile.TemporaryDirectory() as d: + d = pathlib.Path(d) + stim.Circuit.generated( + 'repetition_code:memory', + rounds=5, + distance=3, + after_clifford_depolarization=0.1, + ).to_file(d / 'a=3.stim') + + # Collects requested stats. + main(command_line_args=[ + "collect", + "--circuits", + str(d / 'a=3.stim'), + "--max_shots", + "200", + "--quiet", + "--metadata_func", + "auto", + "--decoders", + "perfectionist", + "--save_resume_filepath", + str(d / "out.csv"), + ]) + data = sinter.stats_from_csv_files(d / "out.csv") + assert len(data) == 1 + assert data[0].discards > 0 diff --git a/glue/sample/src/sinter/_main_combine.py b/glue/sample/src/sinter/_command/_main_combine.py similarity index 97% rename from glue/sample/src/sinter/_main_combine.py rename to glue/sample/src/sinter/_command/_main_combine.py index 86c5e0cf..216815e9 100644 --- a/glue/sample/src/sinter/_main_combine.py +++ b/glue/sample/src/sinter/_command/_main_combine.py @@ -6,8 +6,7 @@ from typing import List, Any import sinter -from sinter._csv_out import CSV_HEADER -from sinter._existing_data import ExistingData +from sinter._data import CSV_HEADER, ExistingData from sinter._plotting import better_sorted_str_terms diff --git a/glue/sample/src/sinter/_main_combine_test.py b/glue/sample/src/sinter/_command/_main_combine_test.py similarity index 99% rename from glue/sample/src/sinter/_main_combine_test.py rename to glue/sample/src/sinter/_command/_main_combine_test.py index f89ae463..6419c7d2 100644 --- a/glue/sample/src/sinter/_main_combine_test.py +++ b/glue/sample/src/sinter/_command/_main_combine_test.py @@ -3,7 +3,7 @@ import pathlib import tempfile -from sinter._main import main +from sinter._command._main import main def test_main_combine(): diff --git a/glue/sample/src/sinter/_main_plot.py b/glue/sample/src/sinter/_command/_main_plot.py similarity index 82% rename from glue/sample/src/sinter/_main_plot.py rename to glue/sample/src/sinter/_command/_main_plot.py index c6defeb9..4c1c38da 100644 --- a/glue/sample/src/sinter/_main_plot.py +++ b/glue/sample/src/sinter/_command/_main_plot.py @@ -4,11 +4,12 @@ import argparse import matplotlib.pyplot as plt +import numpy as np -from sinter import shot_error_rate_to_piece_error_rate -from sinter._main_combine import ExistingData +from sinter._command._main_combine import ExistingData from sinter._plotting import plot_discard_rate, plot_custom from sinter._plotting import plot_error_rate +from sinter._probability_util import shot_error_rate_to_piece_error_rate, Fit if TYPE_CHECKING: import sinter @@ -32,6 +33,16 @@ def parse_args(args: List[str]) -> Any: 'Examples:\n' ''' --filter_func "decoder=='pymatching'"\n''' ''' --filter_func "0.001 < metadata['p'] < 0.005"\n''') + parser.add_argument('--preprocess_stats_func', + type=str, + default=None, + help='An expression that operates on a `stats` value, returning a new list of stats to plot.\n' + 'For example, this could double add a field to json_metadata or merge stats together.\n' + 'Examples:\n' + ''' --preprocess_stats_func "[stat for stat in stats if stat.errors > 0]\n''' + ''' --preprocess_stats_func "[stat.with_edits(errors=stat.custom_counts['severe_errors']) for stat in stats]\n''' + ''' --preprocess_stats_func "__import__('your_custom_module').your_custom_function(stats)"\n''' + ) parser.add_argument('--x_func', type=str, default="1", @@ -49,6 +60,21 @@ def parse_args(args: List[str]) -> Any: ''' --x_func m.p\n''' ''' --x_func "metadata['path'].split('/')[-1].split('.')[0]"\n''' ) + parser.add_argument('--point_label_func', + type=str, + default="None", + help='A python expression that determines text to put next to data points.\n' + 'Values available to the python expression:\n' + ' metadata: The parsed value from the json_metadata for the data point.\n' + ' m: `m.key` is a shorthand for `metadata.get("key", None)`.\n' + ' decoder: The decoder that decoded the data for the data point.\n' + ' strong_id: The cryptographic hash of the case that was sampled for the data point.\n' + ' stat: The sinter.TaskStats object for the data point.\n' + 'Expected expression type:\n' + ' Something Falsy (no label), or something that can be given to `str` to get a string.\n' + 'Examples:\n' + ''' --point_label_func "f'p={m.p}'"\n''' + ) parser.add_argument('--y_func', type=str, default=None, @@ -62,7 +88,8 @@ def parse_args(args: List[str]) -> Any: ' strong_id: The cryptographic hash of the case that was sampled for the data point.\n' ' stat: The sinter.TaskStats object for the data point.\n' 'Expected expression type:\n' - ' Something that can be given to `float` to get a float.\n' + ' A `sinter.Fit` specifying an uncertainty region,.\n' + ' or else something that can be given to `float` to get a float.\n' 'Examples:\n' ''' --x_func "metadata['p']"\n''' ''' --x_func "metadata['path'].split('/')[-1].split('.')[0]"\n''' @@ -76,6 +103,7 @@ def parse_args(args: List[str]) -> Any: type=str, default="'all data (use -group_func and -x_func to group into curves)'", help='A python expression that determines how points are grouped into curves.\n' + 'If this evaluates to a dict, different keys control different groupings (e.g. "color" and "marker")\n' 'Values available to the python expression:\n' ' metadata: The parsed value from the json_metadata for the data point.\n' ' m: `m.key` is a shorthand for `metadata.get("key", None)`.\n' @@ -83,10 +111,16 @@ def parse_args(args: List[str]) -> Any: ' strong_id: The cryptographic hash of the case that was sampled for the data point.\n' ' stat: The sinter.TaskStats object for the data point.\n' 'Expected expression type:\n' - ' Something that can be given to `str` to get a useful string.\n' + ' A dict, or something that can be given to `str` to get a useful string.\n' + 'Recognized dict keys:\n' + ' "color": controls color grouping\n' + ' "marker": controls marker grouping\n' + ' "linestyle": controls linestyle grouping\n' + ' "order": controls ordering in the legend\n' + ' "label": the text shown in the legend\n' 'Examples:\n' - ''' --group_func "(decoder, metadata['d'])"\n''' - ''' --group_func m.d\n''' + ''' --group_func "(decoder, m.d)"\n''' + ''' --group_func "{'color': decoder, 'marker': m.d, 'label': (decoder, m.d)}"\n''' ''' --group_func "metadata['path'].split('/')[-2]"\n''' ) parser.add_argument('--failure_unit_name', @@ -151,7 +185,7 @@ def parse_args(args: List[str]) -> Any: ) parser.add_argument('--plot_args_func', type=str, - default='''{'marker': 'ov*sp^<>8P+xXhHDd|'[index % 18]}''', + default='''{}''', help='A python expression used to customize the look of curves.\n' 'Values available to the python expression:\n' ' index: A unique integer identifying the curve.\n' @@ -181,9 +215,8 @@ def parse_args(args: List[str]) -> Any: parser.add_argument('--out', type=str, default=None, - help='Output file to write the plot to.\n' - 'The file extension determines the type of image.\n' - 'Either this or --show must be specified.') + help='Write the plot to a file instead of showing it.\n' + '(Use --show to still show the plot.)') parser.add_argument('--xaxis', type=str, default='[log]', @@ -207,8 +240,7 @@ def parse_args(args: List[str]) -> Any: "stats.") parser.add_argument('--show', action='store_true', - help='Displays the plot in a window.\n' - 'Either this or --out must be specified.') + help='Displays the plot in a window even when --out is specified.') parser.add_argument('--xmin', default=None, type=float, @@ -246,8 +278,6 @@ def parse_args(args: List[str]) -> Any: help='Adds dashed line fits to every curve.') a = parser.parse_args(args=args) - if not a.show and a.out is None: - raise ValueError("Must specify '--out file' or '--show'.") if 'custom_y' in a.type and a.y_func is None: raise ValueError("--type custom_y requires --y_func.") if a.y_func is not None and a.type and 'custom_y' not in a.type: @@ -265,35 +295,51 @@ def parse_args(args: List[str]) -> Any: a.failure_values_func = "1" if a.failure_unit_name is None: a.failure_unit_name = 'shot' - a.x_func = eval(compile( - f'lambda *, stat, decoder, metadata, m, strong_id: {a.x_func}', - filename='x_func:command_line_arg', + + def _compile_argument_into_func(arg_name: str, arg_val: Any = ()): + if arg_val == (): + arg_val = getattr(a, arg_name) + raw_func = eval(compile( + f'lambda *, stat, decoder, metadata, m, strong_id, sinter, math, np: {arg_val}', + filename=f'{arg_name}:command_line_arg', + mode='eval', + )) + import sinter + return lambda stat: raw_func( + sinter=sinter, + math=math, + np=np, + stat=stat, + decoder=stat.decoder, + metadata=stat.json_metadata, + m=_FieldToMetadataWrapper(stat.json_metadata), + strong_id=stat.strong_id) + + a.preprocess_stats_func = None if a.preprocess_stats_func is None else eval(compile( + f'lambda *, stats: {a.preprocess_stats_func}', + filename='preprocess_stats_func:command_line_arg', mode='eval')) + a.x_func = _compile_argument_into_func('x_func', a.x_func) if a.y_func is not None: - a.y_func = eval(compile( - f'lambda *, stat, decoder, metadata, m, strong_id: {a.y_func}', - filename='x_func:command_line_arg', - mode='eval')) - a.group_func = eval(compile( - f'lambda *, stat, decoder, metadata, m, strong_id: {a.group_func}', - filename='group_func:command_line_arg', - mode='eval')) - a.filter_func = eval(compile( - f'lambda *, stat, decoder, metadata, m, strong_id: {a.filter_func}', - filename='filter_func:command_line_arg', - mode='eval')) - a.failure_units_per_shot_func = eval(compile( - f'lambda *, stat, decoder, metadata, m, strong_id: {a.failure_units_per_shot_func}', - filename='failure_units_per_shot_func:command_line_arg', - mode='eval')) - a.failure_values_func = eval(compile( - f'lambda *, stat, decoder, metadata, m, strong_id: {a.failure_values_func}', - filename='failure_values_func:command_line_arg', - mode='eval')) - a.plot_args_func = eval(compile( + a.y_func = _compile_argument_into_func('y_func') + a.point_label_func = _compile_argument_into_func('point_label_func') + a.group_func = _compile_argument_into_func('group_func') + a.filter_func = _compile_argument_into_func('filter_func') + a.failure_units_per_shot_func = _compile_argument_into_func('failure_units_per_shot_func') + a.failure_values_func = _compile_argument_into_func('failure_values_func') + raw_plot_args_func = eval(compile( f'lambda *, index, key, stats, stat, decoder, metadata, m, strong_id: {a.plot_args_func}', filename='plot_args_func:command_line_arg', mode='eval')) + a.plot_args_func = lambda index, group_key, stats: raw_plot_args_func( + index=index, + key=group_key, + stats=stats, + stat=stats[0], + decoder=stats[0].decoder, + metadata=stats[0].json_metadata, + m=_FieldToMetadataWrapper(stats[0].json_metadata), + strong_id=stats[0].strong_id) return a @@ -361,12 +407,21 @@ def _pick_min_max( want_strictly_positive: bool, ) -> Tuple[float, float]: assert default_max >= default_min - vs = [ - v - for stat in plotted_stats - if (v := v_func(stat)) is not None - if v > 0 or not want_positive - ] + vs = [] + for stat in plotted_stats: + v = v_func(stat) + if isinstance(v, (int, float)): + vs.append(v) + elif isinstance(v, Fit): + for e in [v.low, v.best, v.high]: + if e is not None: + vs.append(e) + elif v is None: + pass + else: + raise NotImplementedError(f'{v=}') + if want_positive: + vs = [v for v in vs if v > 0] min_v = min(vs, default=default_min) max_v = max(vs, default=default_max) @@ -429,16 +484,24 @@ def _set_axis_scale_label_ticks( elif scale_name == 'log': set_scale('log') min_v, max_v, major_ticks, minor_ticks = _log_ticks(min_v, max_v) + if forced_min_v is not None: + min_v = forced_min_v + if forced_max_v is not None: + max_v = forced_max_v set_ticks(major_ticks) set_ticks(minor_ticks, minor=True) set_lim(min_v, max_v) elif scale_name == 'sqrt': from matplotlib.scale import FuncScale min_v, max_v, major_ticks, minor_ticks = _sqrt_ticks(min_v, max_v) - set_lim(min_v, max_v) + if forced_min_v is not None: + min_v = forced_min_v + if forced_max_v is not None: + max_v = forced_max_v set_scale(FuncScale(ax, (lambda e: e**0.5, lambda e: e**2))) set_ticks(major_ticks) set_ticks(minor_ticks, minor=True) + set_lim(min_v, max_v) else: raise NotImplemented(f'{scale_name=}') return scale_name @@ -468,6 +531,7 @@ def _plot_helper( samples: Union[Iterable['sinter.TaskStats'], ExistingData], group_func: Callable[['sinter.TaskStats'], Any], filter_func: Callable[['sinter.TaskStats'], Any], + preprocess_stats_func: Optional[Callable], failure_units_per_shot_func: Callable[['sinter.TaskStats'], Any], failure_values_func: Callable[['sinter.TaskStats'], Any], x_func: Callable[['sinter.TaskStats'], Any], @@ -486,6 +550,7 @@ def _plot_helper( fig_size: Optional[Tuple[int, int]], plot_args_func: Callable[[int, Any, List['sinter.TaskStats']], Dict[str, Any]], line_fits: bool, + point_label_func: Callable[['sinter.TaskStats'], Any] = lambda _: None, ) -> Tuple[plt.Figure, List[plt.Axes]]: if isinstance(samples, ExistingData): total = samples @@ -497,6 +562,12 @@ def _plot_helper( for k, v in total.data.items() if bool(filter_func(v))} + if preprocess_stats_func is not None: + processed_stats = preprocess_stats_func(stats=list(total.data.values())) + total.data = {} + for stat in processed_stats: + total.add_sample(stat) + if not plot_types: if y_func is not None: plot_types = ['custom_y'] @@ -529,7 +600,6 @@ def _plot_helper( plotted_stats: List['sinter.TaskStats'] = [ stat for stat in total.data.values() - if filter_func(stat) ] def stat_to_err_rate(stat: 'sinter.TaskStats') -> Optional[float]: @@ -581,6 +651,7 @@ def stat_to_err_rate(stat: 'sinter.TaskStats') -> Optional[float]: highlight_max_likelihood_factor=highlight_max_likelihood_factor, plot_args_func=plot_args_func, line_fits=None if not line_fits else (x_scale_name, y_scale_name), + point_label_func=point_label_func, ) ax_err.grid(which='major', color='#000000') ax_err.grid(which='minor', color='#DDDDDD') @@ -595,6 +666,7 @@ def stat_to_err_rate(stat: 'sinter.TaskStats') -> Optional[float]: x_func=x_func, highlight_max_likelihood_factor=highlight_max_likelihood_factor, plot_args_func=plot_args_func, + point_label_func=point_label_func, ) ax_dis.set_yticks([p / 10 for p in range(11)], labels=[f'{10*p}%' for p in range(11)]) ax_dis.set_ylim(0, 1) @@ -626,9 +698,9 @@ def stat_to_err_rate(stat: 'sinter.TaskStats') -> Optional[float]: x_func=x_func, y_func=y_func, group_func=group_func, - filter_func=filter_func, plot_args_func=plot_args_func, line_fits=None if not line_fits else (x_scale_name, y_scale_name), + point_label_func=point_label_func, ) ax_cus.grid(which='major', color='#000000') ax_cus.grid(which='minor', color='#DDDDDD') @@ -710,51 +782,14 @@ def main_plot(*, command_line_args: List[str]): fig, _ = _plot_helper( samples=total, - group_func=lambda stat: args.group_func( - stat=stat, - decoder=stat.decoder, - metadata=stat.json_metadata, - m=_FieldToMetadataWrapper(stat.json_metadata), - strong_id=stat.strong_id), - x_func=lambda stat: args.x_func( - stat=stat, - decoder=stat.decoder, - metadata=stat.json_metadata, - m=_FieldToMetadataWrapper(stat.json_metadata), - strong_id=stat.strong_id), - y_func=None if args.y_func is None else lambda stat: args.y_func( - stat=stat, - decoder=stat.decoder, - metadata=stat.json_metadata, - m=_FieldToMetadataWrapper(stat.json_metadata), - strong_id=stat.strong_id), - filter_func=lambda stat: args.filter_func( - stat=stat, - decoder=stat.decoder, - metadata=stat.json_metadata, - m=_FieldToMetadataWrapper(stat.json_metadata), - strong_id=stat.strong_id), - failure_units_per_shot_func=lambda stat: args.failure_units_per_shot_func( - stat=stat, - decoder=stat.decoder, - metadata=stat.json_metadata, - m=_FieldToMetadataWrapper(stat.json_metadata), - strong_id=stat.strong_id), - failure_values_func=lambda stat: args.failure_values_func( - stat=stat, - decoder=stat.decoder, - metadata=stat.json_metadata, - m=_FieldToMetadataWrapper(stat.json_metadata), - strong_id=stat.strong_id), - plot_args_func=lambda index, group_key, stats: args.plot_args_func( - index=index, - key=group_key, - stats=stats, - stat=stats[0], - decoder=stats[0].decoder, - metadata=stats[0].json_metadata, - m=_FieldToMetadataWrapper(stats[0].json_metadata), - strong_id=stats[0].strong_id), + group_func=args.group_func, + x_func=args.x_func, + point_label_func=args.point_label_func, + y_func=args.y_func, + filter_func=args.filter_func, + failure_units_per_shot_func=args.failure_units_per_shot_func, + failure_values_func=args.failure_values_func, + plot_args_func=args.plot_args_func, failure_unit=args.failure_unit_name, plot_types=args.type, xaxis=args.xaxis, @@ -768,8 +803,9 @@ def main_plot(*, command_line_args: List[str]): title=args.title, subtitle=args.subtitle, line_fits=args.line_fits, + preprocess_stats_func=args.preprocess_stats_func, ) if args.out is not None: fig.savefig(args.out) - if args.show: + if args.show or args.out is None: plt.show() diff --git a/glue/sample/src/sinter/_main_plot_test.py b/glue/sample/src/sinter/_command/_main_plot_test.py similarity index 99% rename from glue/sample/src/sinter/_main_plot_test.py rename to glue/sample/src/sinter/_command/_main_plot_test.py index 689199a5..3408a08c 100644 --- a/glue/sample/src/sinter/_main_plot_test.py +++ b/glue/sample/src/sinter/_command/_main_plot_test.py @@ -4,8 +4,8 @@ import tempfile import pytest -from sinter._main import main -from sinter._main_plot import _log_ticks, _sqrt_ticks +from sinter._command._main import main +from sinter._command._main_plot import _log_ticks, _sqrt_ticks def test_main_plot(): diff --git a/glue/sample/src/sinter/_main_predict.py b/glue/sample/src/sinter/_command/_main_predict.py similarity index 100% rename from glue/sample/src/sinter/_main_predict.py rename to glue/sample/src/sinter/_command/_main_predict.py diff --git a/glue/sample/src/sinter/_main_predict_test.py b/glue/sample/src/sinter/_command/_main_predict_test.py similarity index 95% rename from glue/sample/src/sinter/_main_predict_test.py rename to glue/sample/src/sinter/_command/_main_predict_test.py index 2dec070c..4e819668 100644 --- a/glue/sample/src/sinter/_main_predict_test.py +++ b/glue/sample/src/sinter/_command/_main_predict_test.py @@ -1,7 +1,7 @@ import pathlib import tempfile -from sinter._main import main +from sinter._command._main import main def test_main_predict(): diff --git a/glue/sample/src/sinter/_data/__init__.py b/glue/sample/src/sinter/_data/__init__.py new file mode 100644 index 00000000..41a0194a --- /dev/null +++ b/glue/sample/src/sinter/_data/__init__.py @@ -0,0 +1,20 @@ +from sinter._data._anon_task_stats import ( + AnonTaskStats, +) +from sinter._data._collection_options import ( + CollectionOptions, +) +from sinter._data._csv_out import ( + CSV_HEADER, +) +from sinter._data._existing_data import ( + read_stats_from_csv_files, + stats_from_csv_files, + ExistingData, +) +from sinter._data._task import ( + Task, +) +from sinter._data._task_stats import ( + TaskStats, +) diff --git a/glue/sample/src/sinter/_anon_task_stats.py b/glue/sample/src/sinter/_data/_anon_task_stats.py similarity index 84% rename from glue/sample/src/sinter/_anon_task_stats.py rename to glue/sample/src/sinter/_data/_anon_task_stats.py index d5e62f95..60fee918 100644 --- a/glue/sample/src/sinter/_anon_task_stats.py +++ b/glue/sample/src/sinter/_data/_anon_task_stats.py @@ -1,6 +1,9 @@ import collections import dataclasses -from typing import Counter +from typing import Counter, Union, TYPE_CHECKING + +if TYPE_CHECKING: + from sinter._data._task_stats import TaskStats @dataclasses.dataclass(frozen=True) @@ -74,13 +77,13 @@ def __add__(self, other: 'AnonTaskStats') -> 'AnonTaskStats': >>> a + b sinter.AnonTaskStats(shots=1100, errors=220) """ - if not isinstance(other, AnonTaskStats): - return NotImplemented + if isinstance(other, AnonTaskStats): + return AnonTaskStats( + shots=self.shots + other.shots, + errors=self.errors + other.errors, + discards=self.discards + other.discards, + seconds=self.seconds + other.seconds, + custom_counts=self.custom_counts + other.custom_counts, + ) - return AnonTaskStats( - shots=self.shots + other.shots, - errors=self.errors + other.errors, - discards=self.discards + other.discards, - seconds=self.seconds + other.seconds, - custom_counts=self.custom_counts + other.custom_counts, - ) + return NotImplemented diff --git a/glue/sample/src/sinter/_anon_task_stats_test.py b/glue/sample/src/sinter/_data/_anon_task_stats_test.py similarity index 100% rename from glue/sample/src/sinter/_anon_task_stats_test.py rename to glue/sample/src/sinter/_data/_anon_task_stats_test.py diff --git a/glue/sample/src/sinter/_collection_options.py b/glue/sample/src/sinter/_data/_collection_options.py similarity index 100% rename from glue/sample/src/sinter/_collection_options.py rename to glue/sample/src/sinter/_data/_collection_options.py diff --git a/glue/sample/src/sinter/_collection_options_test.py b/glue/sample/src/sinter/_data/_collection_options_test.py similarity index 100% rename from glue/sample/src/sinter/_collection_options_test.py rename to glue/sample/src/sinter/_data/_collection_options_test.py diff --git a/glue/sample/src/sinter/_csv_out.py b/glue/sample/src/sinter/_data/_csv_out.py similarity index 100% rename from glue/sample/src/sinter/_csv_out.py rename to glue/sample/src/sinter/_data/_csv_out.py diff --git a/glue/sample/src/sinter/_existing_data.py b/glue/sample/src/sinter/_data/_existing_data.py similarity index 96% rename from glue/sample/src/sinter/_existing_data.py rename to glue/sample/src/sinter/_data/_existing_data.py index 925b2110..077c01c6 100644 --- a/glue/sample/src/sinter/_existing_data.py +++ b/glue/sample/src/sinter/_data/_existing_data.py @@ -3,9 +3,9 @@ import pathlib from typing import Any, Dict, List, TYPE_CHECKING -from sinter._task_stats import TaskStats -from sinter._task import Task -from sinter._decoding import AnonTaskStats +from sinter._data._task_stats import TaskStats +from sinter._data._task import Task +from sinter._data._anon_task_stats import AnonTaskStats if TYPE_CHECKING: import sinter @@ -26,8 +26,9 @@ def stats_for(self, case: Task) -> AnonTaskStats: def add_sample(self, sample: TaskStats) -> None: k = sample.strong_id - if k in self.data: - self.data[k] += sample + current = self.data.get(k) + if current is not None: + self.data[k] = current + sample else: self.data[k] = sample diff --git a/glue/sample/src/sinter/_existing_data_test.py b/glue/sample/src/sinter/_data/_existing_data_test.py similarity index 100% rename from glue/sample/src/sinter/_existing_data_test.py rename to glue/sample/src/sinter/_data/_existing_data_test.py diff --git a/glue/sample/src/sinter/_task.py b/glue/sample/src/sinter/_data/_task.py similarity index 99% rename from glue/sample/src/sinter/_task.py rename to glue/sample/src/sinter/_data/_task.py index c358bde3..4f19b034 100644 --- a/glue/sample/src/sinter/_task.py +++ b/glue/sample/src/sinter/_data/_task.py @@ -8,7 +8,7 @@ import numpy as np -from sinter._collection_options import CollectionOptions +from sinter._data._collection_options import CollectionOptions if TYPE_CHECKING: import sinter diff --git a/glue/sample/src/sinter/_task_stats.py b/glue/sample/src/sinter/_data/_task_stats.py similarity index 62% rename from glue/sample/src/sinter/_task_stats.py rename to glue/sample/src/sinter/_data/_task_stats.py index 73a2dd16..4d846e89 100644 --- a/glue/sample/src/sinter/_task_stats.py +++ b/glue/sample/src/sinter/_data/_task_stats.py @@ -1,9 +1,27 @@ import collections import dataclasses from typing import Counter, List, Any +from typing import Optional +from typing import Union +from typing import overload -from sinter._anon_task_stats import AnonTaskStats -from sinter._csv_out import csv_line +from sinter._data._anon_task_stats import AnonTaskStats +from sinter._data._csv_out import csv_line + + +def _is_equal_json_values(json1: Any, json2: Any): + if json1 == json2: + return True + + if type(json1) == type(json2): + if isinstance(json1, dict): + return json1.keys() == json2.keys() and all(_is_equal_json_values(json1[k], json2[k]) for k in json1.keys()) + elif isinstance(json1, (list, tuple)): + return len(json1) == len(json2) and all(_is_equal_json_values(a, b) for a, b in zip(json1, json2)) + elif isinstance(json1, (list, tuple)) and isinstance(json2, (list, tuple)): + return _is_equal_json_values(tuple(json1), tuple(json2)) + + return False @dataclasses.dataclass(frozen=True) @@ -67,22 +85,70 @@ def __post_init__(self): assert self.shots >= self.errors + self.discards assert all(isinstance(k, str) and isinstance(v, int) for k, v in self.custom_counts.items()) - def __add__(self, other: 'TaskStats') -> 'TaskStats': - if self.strong_id != other.strong_id: - raise ValueError(f'{self.strong_id=} != {other.strong_id=}') - total = self.to_anon_stats() + other.to_anon_stats() - + def with_edits( + self, + *, + strong_id: Optional[str] = None, + decoder: Optional[str] = None, + json_metadata: Optional[Any] = None, + shots: Optional[int] = None, + errors: Optional[int] = None, + discards: Optional[int] = None, + seconds: Optional[float] = None, + custom_counts: Optional[Counter[str]] = None, + ) -> 'TaskStats': return TaskStats( - decoder=self.decoder, - strong_id=self.strong_id, - json_metadata=self.json_metadata, - shots=total.shots, - errors=total.errors, - discards=total.discards, - seconds=total.seconds, - custom_counts=total.custom_counts, + strong_id=self.strong_id if strong_id is None else strong_id, + decoder=self.decoder if decoder is None else decoder, + json_metadata=self.json_metadata if json_metadata is None else json_metadata, + shots=self.shots if shots is None else shots, + errors=self.errors if errors is None else errors, + discards=self.discards if discards is None else discards, + seconds=self.seconds if seconds is None else seconds, + custom_counts=self.custom_counts if custom_counts is None else custom_counts, ) + @overload + def __add__(self, other: AnonTaskStats) -> AnonTaskStats: + pass + @overload + def __add__(self, other: 'TaskStats') -> 'TaskStats': + pass + def __add__(self, other: Union[AnonTaskStats, 'TaskStats']) -> Union[AnonTaskStats, 'TaskStats']: + if isinstance(other, AnonTaskStats): + return self.to_anon_stats() + other + + if isinstance(other, TaskStats): + if self.strong_id != other.strong_id: + raise ValueError(f'{self.strong_id=} != {other.strong_id=}') + if not _is_equal_json_values(self.json_metadata, other.json_metadata) or self.decoder != other.decoder: + raise ValueError( + "A stat had the same strong id as another, but their other identifying information (json_metadata, decoder) differed.\n" + "The strong id is supposed to be a cryptographic hash that uniquely identifies what was sampled, so this is an error.\n" + "\n" + "This failure can occur when post-processing data (e.g. combining X basis stats and Z basis stats into synthetic both-basis stats).\n" + "To fix it, ensure any post-processing sets the strong id of the synthetic data in some cryptographically secure way.\n" + "\n" + "In some cases this can be caused by attempting to add a value that has gone through JSON serialization+parsing to one\n" + "that hasn't, which causes things like tuples transforming into lists.\n" + "\n" + f"The two stats:\n1. {self!r}\n2. {other!r}") + + total = self.to_anon_stats() + other.to_anon_stats() + return TaskStats( + decoder=self.decoder, + strong_id=self.strong_id, + json_metadata=self.json_metadata, + shots=total.shots, + errors=total.errors, + discards=total.discards, + seconds=total.seconds, + custom_counts=total.custom_counts, + ) + + return NotImplemented + __radd__ = __add__ + def to_anon_stats(self) -> AnonTaskStats: """Returns a `sinter.AnonTaskStats` with the same statistics. diff --git a/glue/sample/src/sinter/_task_stats_test.py b/glue/sample/src/sinter/_data/_task_stats_test.py similarity index 53% rename from glue/sample/src/sinter/_task_stats_test.py rename to glue/sample/src/sinter/_data/_task_stats_test.py index 0847b003..4060c2f1 100644 --- a/glue/sample/src/sinter/_task_stats_test.py +++ b/glue/sample/src/sinter/_data/_task_stats_test.py @@ -3,6 +3,7 @@ import pytest import sinter +from sinter._data._task_stats import _is_equal_json_values def test_repr(): @@ -87,3 +88,53 @@ def test_add(): seconds=52, custom_counts=collections.Counter({'a': 11, 'b': 20, 'c': 3}), ) + + +def test_with_edits(): + v = sinter.TaskStats( + decoder='pymatching', + json_metadata={'a': 2}, + strong_id='abcdefDIFFERENT', + shots=270, + errors=34, + discards=43, + seconds=52, + custom_counts=collections.Counter({'a': 11, 'b': 20, 'c': 3}), + ) + assert v.with_edits(json_metadata={'b': 3}) == sinter.TaskStats( + decoder='pymatching', + json_metadata={'b': 3}, + strong_id='abcdefDIFFERENT', + shots=270, + errors=34, + discards=43, + seconds=52, + custom_counts=collections.Counter({'a': 11, 'b': 20, 'c': 3}), + ) + assert v == sinter.TaskStats(strong_id='', json_metadata={}, decoder='').with_edits( + decoder='pymatching', + json_metadata={'a': 2}, + strong_id='abcdefDIFFERENT', + shots=270, + errors=34, + discards=43, + seconds=52, + custom_counts=collections.Counter({'a': 11, 'b': 20, 'c': 3}), + ) + + +def test_is_equal_json_values(): + assert _is_equal_json_values([1, 2], (1, 2)) + assert _is_equal_json_values([1, [3, (5, 6)]], (1, (3, [5, 6]))) + assert not _is_equal_json_values([1, [3, (5, 6)]], (1, (3, [5, 7]))) + assert not _is_equal_json_values([1, [3, (5, 6)]], (1, (3, [5]))) + assert not _is_equal_json_values([1, 2], (1, 3)) + assert not _is_equal_json_values([1, 2], {1, 2}) + assert _is_equal_json_values({'x': [1, 2]}, {'x': (1, 2)}) + assert _is_equal_json_values({'x': (1, 2)}, {'x': (1, 2)}) + assert not _is_equal_json_values({'x': (1, 2)}, {'y': (1, 2)}) + assert not _is_equal_json_values({'x': (1, 2)}, {'x': (1, 2), 'y': []}) + assert not _is_equal_json_values({'x': (1, 2), 'y': []}, {'x': (1, 2)}) + assert not _is_equal_json_values({'x': (1, 2)}, {'x': (1, 3)}) + assert not _is_equal_json_values(1, 2) + assert _is_equal_json_values(1, 1) diff --git a/glue/sample/src/sinter/_task_test.py b/glue/sample/src/sinter/_data/_task_test.py similarity index 100% rename from glue/sample/src/sinter/_task_test.py rename to glue/sample/src/sinter/_data/_task_test.py diff --git a/glue/sample/src/sinter/_decoding/__init__.py b/glue/sample/src/sinter/_decoding/__init__.py new file mode 100644 index 00000000..c0aaebfd --- /dev/null +++ b/glue/sample/src/sinter/_decoding/__init__.py @@ -0,0 +1,16 @@ +from sinter._decoding._decoding import ( + streaming_post_select, + sample_decode, +) +from sinter._decoding._decoding_decoder_class import ( + CompiledDecoder, + Decoder, +) +from sinter._decoding._decoding_all_built_in_decoders import ( + BUILT_IN_DECODERS, + BUILT_IN_SAMPLERS, +) +from sinter._decoding._sampler import ( + Sampler, + CompiledSampler, +) diff --git a/glue/sample/src/sinter/_decoding.py b/glue/sample/src/sinter/_decoding/_decoding.py similarity index 98% rename from glue/sample/src/sinter/_decoding.py rename to glue/sample/src/sinter/_decoding/_decoding.py index 7170d443..1e54f87e 100644 --- a/glue/sample/src/sinter/_decoding.py +++ b/glue/sample/src/sinter/_decoding/_decoding.py @@ -11,9 +11,9 @@ import numpy as np import stim -from sinter._anon_task_stats import AnonTaskStats -from sinter._decoding_all_built_in_decoders import BUILT_IN_DECODERS -from sinter._decoding_decoder_class import CompiledDecoder, Decoder +from sinter._data import AnonTaskStats +from sinter._decoding._decoding_all_built_in_decoders import BUILT_IN_DECODERS +from sinter._decoding._decoding_decoder_class import CompiledDecoder, Decoder if TYPE_CHECKING: import sinter diff --git a/glue/sample/src/sinter/_decoding/_decoding_all_built_in_decoders.py b/glue/sample/src/sinter/_decoding/_decoding_all_built_in_decoders.py new file mode 100644 index 00000000..b495d23f --- /dev/null +++ b/glue/sample/src/sinter/_decoding/_decoding_all_built_in_decoders.py @@ -0,0 +1,20 @@ +from typing import Dict +from typing import Union + +from sinter._decoding._decoding_decoder_class import Decoder +from sinter._decoding._decoding_fusion_blossom import FusionBlossomDecoder +from sinter._decoding._decoding_pymatching import PyMatchingDecoder +from sinter._decoding._decoding_vacuous import VacuousDecoder +from sinter._decoding._perfectionist_sampler import PerfectionistSampler +from sinter._decoding._sampler import Sampler + +BUILT_IN_DECODERS: Dict[str, Decoder] = { + 'vacuous': VacuousDecoder(), + 'pymatching': PyMatchingDecoder(), + 'fusion_blossom': FusionBlossomDecoder(), +} + +BUILT_IN_SAMPLERS: Dict[str, Union[Decoder, Sampler]] = { + **BUILT_IN_DECODERS, + 'perfectionist': PerfectionistSampler(), +} diff --git a/glue/sample/src/sinter/_decoding_decoder_class.py b/glue/sample/src/sinter/_decoding/_decoding_decoder_class.py similarity index 100% rename from glue/sample/src/sinter/_decoding_decoder_class.py rename to glue/sample/src/sinter/_decoding/_decoding_decoder_class.py diff --git a/glue/sample/src/sinter/_decoding_fusion_blossom.py b/glue/sample/src/sinter/_decoding/_decoding_fusion_blossom.py similarity index 99% rename from glue/sample/src/sinter/_decoding_fusion_blossom.py rename to glue/sample/src/sinter/_decoding/_decoding_fusion_blossom.py index 966b69a4..ac3e5bfb 100644 --- a/glue/sample/src/sinter/_decoding_fusion_blossom.py +++ b/glue/sample/src/sinter/_decoding/_decoding_fusion_blossom.py @@ -5,7 +5,7 @@ import numpy as np import stim -from sinter._decoding_decoder_class import Decoder, CompiledDecoder +from sinter._decoding._decoding_decoder_class import Decoder, CompiledDecoder if TYPE_CHECKING: import fusion_blossom diff --git a/glue/sample/src/sinter/_decoding_pymatching.py b/glue/sample/src/sinter/_decoding/_decoding_pymatching.py similarity index 97% rename from glue/sample/src/sinter/_decoding_pymatching.py rename to glue/sample/src/sinter/_decoding/_decoding_pymatching.py index c8fb7464..b57bb32b 100644 --- a/glue/sample/src/sinter/_decoding_pymatching.py +++ b/glue/sample/src/sinter/_decoding/_decoding_pymatching.py @@ -1,4 +1,4 @@ -from sinter._decoding_decoder_class import Decoder, CompiledDecoder +from sinter._decoding._decoding_decoder_class import Decoder, CompiledDecoder class PyMatchingCompiledDecoder(CompiledDecoder): diff --git a/glue/sample/src/sinter/_decoding_test.py b/glue/sample/src/sinter/_decoding/_decoding_test.py similarity index 98% rename from glue/sample/src/sinter/_decoding_test.py rename to glue/sample/src/sinter/_decoding/_decoding_test.py index 2ca9fbbc..50b31b26 100644 --- a/glue/sample/src/sinter/_decoding_test.py +++ b/glue/sample/src/sinter/_decoding/_decoding_test.py @@ -11,9 +11,9 @@ import stim from sinter._collection import post_selection_mask_from_4th_coord -from sinter._decoding import sample_decode -from sinter._decoding_all_built_in_decoders import BUILT_IN_DECODERS -from sinter._decoding_vacuous import VacuousDecoder +from sinter._decoding._decoding_all_built_in_decoders import BUILT_IN_DECODERS +from sinter._decoding._decoding import sample_decode +from sinter._decoding._decoding_vacuous import VacuousDecoder def get_test_decoders() -> Tuple[List[str], Dict[str, sinter.Decoder]]: diff --git a/glue/sample/src/sinter/_decoding_vacuous.py b/glue/sample/src/sinter/_decoding/_decoding_vacuous.py similarity index 94% rename from glue/sample/src/sinter/_decoding_vacuous.py rename to glue/sample/src/sinter/_decoding/_decoding_vacuous.py index d3d3113b..8e24d551 100644 --- a/glue/sample/src/sinter/_decoding_vacuous.py +++ b/glue/sample/src/sinter/_decoding/_decoding_vacuous.py @@ -1,6 +1,6 @@ import numpy as np -from sinter._decoding_decoder_class import Decoder, CompiledDecoder +from sinter._decoding._decoding_decoder_class import Decoder, CompiledDecoder class VacuousDecoder(Decoder): diff --git a/glue/sample/src/sinter/_decoding/_perfectionist_sampler.py b/glue/sample/src/sinter/_decoding/_perfectionist_sampler.py new file mode 100755 index 00000000..7478164f --- /dev/null +++ b/glue/sample/src/sinter/_decoding/_perfectionist_sampler.py @@ -0,0 +1,38 @@ +import time + +import numpy as np + +from sinter._data import Task, AnonTaskStats +from sinter._decoding._sampler import Sampler, CompiledSampler + + +class PerfectionistSampler(Sampler): + """Predicts obs aren't flipped. Discards shots with any detection events.""" + def compiled_sampler_for_task(self, task: Task) -> CompiledSampler: + return CompiledPerfectionistSampler(task) + + +class CompiledPerfectionistSampler(CompiledSampler): + def __init__(self, task: Task): + self.stim_sampler = task.circuit.compile_detector_sampler() + + def sample(self, max_shots: int) -> AnonTaskStats: + t0 = time.monotonic() + dets, obs = self.stim_sampler.sample( + shots=max_shots, + bit_packed=True, + separate_observables=True, + ) + num_shots = dets.shape[0] + discards = np.any(dets, axis=1) + errors = np.any(obs, axis=1) + num_discards = np.count_nonzero(discards) + num_errors = np.count_nonzero(errors & ~discards) + t1 = time.monotonic() + + return AnonTaskStats( + shots=num_shots, + errors=num_errors, + discards=num_discards, + seconds=t1 - t0, + ) diff --git a/glue/sample/src/sinter/_decoding/_sampler.py b/glue/sample/src/sinter/_decoding/_sampler.py new file mode 100644 index 00000000..0fe40ca1 --- /dev/null +++ b/glue/sample/src/sinter/_decoding/_sampler.py @@ -0,0 +1,72 @@ +import abc +from typing import TYPE_CHECKING + +if TYPE_CHECKING: + import sinter + + +class CompiledSampler(metaclass=abc.ABCMeta): + """A sampler that has been configured for efficiently sampling some task.""" + + @abc.abstractmethod + def sample(self, suggested_shots: int) -> 'sinter.AnonTaskStats': + """Samples shots and returns statistics. + + Args: + suggested_shots: The number of shots being requested. The sampler + may perform more shots or fewer shots than this, so technically + this argument can just be ignored. If a sampler is optimized for + a specific batch size, it can simply return one batch per call + regardless of this parameter. + + However, this parameter is a useful hint about the amount of + work being done. The sampler can use this to optimize its + behavior. For example, it could adjust its batch size downward + if the suggested shots is very small. Whereas if the suggested + shots is very high, the sampler should focus entirely on + achieving the best possible throughput. + + Note that, in typical workloads, the sampler will be called + repeatedly with the same value of suggested_shots. Therefore it + is reasonable to allocate buffers sized to accomodate the + current suggested_shots, expecting them to be useful again for + the next shot. + + Returns: + A sinter.AnonTaskStats saying how many shots were actually taken, + how many errors were seen, etc. + + The returned stats must have at least one shot. + """ + pass + + def handles_throttling(self) -> bool: + """Return True to disable sinter wrapping samplers with throttling. + + By default, sinter will wrap samplers so that they initially only do + a small number of shots then slowly ramp up. Sometimes this behavior + is not desired (e.g. in unit tests). Override this method to return True + to disable it. + """ + return False + + +class Sampler(metaclass=abc.ABCMeta): + """A strategy for producing stats from tasks. + + Call `sampler.compiled_sampler_for_task(task)` to get a compiled sampler for + a task, then call `compiled_sampler.sample(shots)` to collect statistics. + + A sampler differs from a `sinter.Decoder` because the sampler is responsible + for the full sampling process (e.g. simulating the circuit), whereas a + decoder can do nothing except predict observable flips from detection event + data. This prevents the decoders from cheating, but makes them less flexible + overall. A sampler can do things like use simulators other than stim, or + really anything at all as long as it ends with returning statistics about + shot counts, error counts, and etc. + """ + + @abc.abstractmethod + def compiled_sampler_for_task(self, task: 'sinter.Task') -> 'sinter.CompiledSampler': + """Creates, configures, and returns an object for sampling the task.""" + pass diff --git a/glue/sample/src/sinter/_decoding/_stim_then_decode_sampler.py b/glue/sample/src/sinter/_decoding/_stim_then_decode_sampler.py new file mode 100755 index 00000000..ee28c53e --- /dev/null +++ b/glue/sample/src/sinter/_decoding/_stim_then_decode_sampler.py @@ -0,0 +1,222 @@ +import collections +import pathlib +import random +import time +from typing import Optional +from typing import Union + +import numpy as np + +from sinter._data import Task, AnonTaskStats +from sinter._decoding._sampler import Sampler, CompiledSampler +from sinter._decoding._decoding_decoder_class import Decoder, CompiledDecoder + + +class StimThenDecodeSampler(Sampler): + """Samples shots using stim, then decodes using the given decoder. + + This is the default sampler; the one used to wrap decoders with no + specified sampler. + + The decoder's goal is to predict the observable flips given the detection + event data. Errors are when the prediction is wrong. Discards are when the + decoder returns an extra byte of prediction data for each shot, and the + extra byte is not zero. + """ + def __init__( + self, + *, + decoder: Decoder, + count_observable_error_combos: bool, + count_detection_events: bool, + tmp_dir: Optional[pathlib.Path], + ): + self.decoder = decoder + self.count_observable_error_combos = count_observable_error_combos + self.count_detection_events = count_detection_events + self.tmp_dir = tmp_dir + + def compiled_sampler_for_task(self, task: Task) -> CompiledSampler: + return _CompiledStimThenDecodeSampler( + decoder=self.decoder, + task=task, + count_detection_events=self.count_detection_events, + count_observable_error_combos=self.count_observable_error_combos, + tmp_dir=self.tmp_dir, + ) + + +def classify_discards_and_errors( + *, + actual_obs: np.ndarray, + predictions: np.ndarray, + postselected_observables_mask: Union[np.ndarray, None], + out_count_observable_error_combos: Union[None, collections.Counter[str]], + num_obs: int, +) -> tuple[int, int]: + num_discards = 0 + + # Added bytes are used for signalling discards. + if predictions.shape[1] == actual_obs.shape[1] + 1: + discard_mask = predictions[:, -1] != 0 + predictions = predictions[:, :-1] + num_discards += np.count_nonzero(discard_mask) + discard_mask ^= True + actual_obs = actual_obs[discard_mask] + predictions = predictions[discard_mask] + + # Mispredicted observables can be used for signalling discards. + if postselected_observables_mask is not None: + discard_mask = np.any((actual_obs ^ predictions) & postselected_observables_mask, axis=1) + num_discards += np.count_nonzero(discard_mask) + discard_mask ^= True + actual_obs = actual_obs[discard_mask] + predictions = predictions[discard_mask] + + fail_mask = np.any(actual_obs != predictions, axis=1) + if out_count_observable_error_combos is not None: + for k in np.flatnonzero(fail_mask): + mistakes = np.unpackbits(actual_obs[k] ^ predictions[k], count=num_obs, bitorder='little') + err_key = "obs_mistake_mask=" + ''.join('_E'[b] for b in mistakes) + out_count_observable_error_combos[err_key] += 1 + + num_errors = np.count_nonzero(fail_mask) + return num_discards, num_errors + + +class DiskDecoder(CompiledDecoder): + def __init__(self, decoder: Decoder, task: Task, tmp_dir: pathlib.Path): + self.decoder = decoder + self.task = task + self.top_tmp_dir: pathlib.Path = tmp_dir + + while True: + k = random.randint(0, 2**64) + self.top_tmp_dir = tmp_dir / f'disk_decoder_{k}' + try: + self.top_tmp_dir.mkdir() + break + except FileExistsError: + pass + self.decoder_tmp_dir: pathlib.Path = self.top_tmp_dir / 'dec' + self.decoder_tmp_dir.mkdir() + self.num_obs = task.detector_error_model.num_observables + self.num_dets = task.detector_error_model.num_detectors + self.dem_path = self.top_tmp_dir / 'dem.dem' + self.dets_b8_in_path = self.top_tmp_dir / 'dets.b8' + self.obs_predictions_b8_out_path = self.top_tmp_dir / 'obs.b8' + self.task.detector_error_model.to_file(self.dem_path) + + def decode_shots_bit_packed( + self, + *, + bit_packed_detection_event_data: np.ndarray, + ) -> np.ndarray: + num_shots = bit_packed_detection_event_data.shape[0] + with open(self.dets_b8_in_path, 'wb') as f: + bit_packed_detection_event_data.tofile(f) + self.decoder.decode_via_files( + num_shots=num_shots, + num_obs=self.num_obs, + num_dets=self.num_dets, + dem_path=self.dem_path, + dets_b8_in_path=self.dets_b8_in_path, + obs_predictions_b8_out_path=self.obs_predictions_b8_out_path, + tmp_dir=self.decoder_tmp_dir, + ) + num_obs_bytes = (self.num_obs + 7) // 8 + with open(self.obs_predictions_b8_out_path, 'rb') as f: + prediction = np.fromfile(f, dtype=np.uint8, count=num_obs_bytes * num_shots) + assert prediction.shape == (num_obs_bytes * num_shots,) + self.obs_predictions_b8_out_path.unlink() + self.dets_b8_in_path.unlink() + return prediction.reshape((num_shots, num_obs_bytes)) + + +def _compile_decoder_with_disk_fallback( + decoder: Decoder, + task: Task, + tmp_dir: Optional[pathlib.Path], +) -> CompiledDecoder: + try: + return decoder.compile_decoder_for_dem(dem=task.detector_error_model) + except (NotImplementedError, ValueError): + pass + if tmp_dir is None: + raise ValueError(f"Decoder {task.decoder=} didn't implement `compile_decoder_for_dem`, but no temporary directory was provided for falling back to `decode_via_files`.") + return DiskDecoder(decoder, task, tmp_dir) + + +class _CompiledStimThenDecodeSampler(CompiledSampler): + def __init__( + self, + *, + decoder: Decoder, + task: Task, + count_observable_error_combos: bool, + count_detection_events: bool, + tmp_dir: Optional[pathlib.Path], + ): + self.task = task + self.compiled_decoder = _compile_decoder_with_disk_fallback(decoder, task, tmp_dir) + self.stim_sampler = task.circuit.compile_detector_sampler() + self.count_observable_error_combos = count_observable_error_combos + self.count_detection_events = count_detection_events + self.num_det = self.task.circuit.num_detectors + self.num_obs = self.task.circuit.num_observables + + def sample(self, max_shots: int) -> AnonTaskStats: + t0 = time.monotonic() + dets, actual_obs = self.stim_sampler.sample( + shots=max_shots, + bit_packed=True, + separate_observables=True, + ) + num_shots = dets.shape[0] + + custom_counts = collections.Counter() + if self.count_detection_events: + custom_counts['detectors_checked'] += self.num_det * num_shots + for b in range(8): + custom_counts['detection_events'] += np.count_nonzero(dets & (1 << b)) + + # Discard any shots that contain a postselected detection events. + if self.task.postselection_mask is not None: + discarded_flags = np.any(dets & self.task.postselection_mask, axis=1) + num_discards_1 = np.count_nonzero(discarded_flags) + if num_discards_1: + dets = dets[~discarded_flags, :] + actual_obs = actual_obs[~discarded_flags, :] + else: + num_discards_1 = 0 + + predictions = self.compiled_decoder.decode_shots_bit_packed(bit_packed_detection_event_data=dets) + if not isinstance(predictions, np.ndarray): + raise ValueError("not isinstance(predictions, np.ndarray)") + if predictions.dtype != np.uint8: + raise ValueError("predictions.dtype != np.uint8") + if len(predictions.shape) != 2: + raise ValueError("len(predictions.shape) != 2") + if predictions.shape[0] != num_shots: + raise ValueError("predictions.shape[0] != num_shots") + if predictions.shape[1] < actual_obs.shape[1]: + raise ValueError("predictions.shape[1] < actual_obs.shape[1]") + if predictions.shape[1] > actual_obs.shape[1] + 1: + raise ValueError("predictions.shape[1] > actual_obs.shape[1] + 1") + + num_discards_2, num_errors = classify_discards_and_errors( + actual_obs=actual_obs, + predictions=predictions, + postselected_observables_mask=self.task.postselected_observables_mask, + out_count_observable_error_combos=custom_counts if self.count_observable_error_combos else None, + num_obs=self.num_obs, + ) + t1 = time.monotonic() + + return AnonTaskStats( + shots=num_shots, + errors=num_errors, + discards=num_discards_1 + num_discards_2, + seconds=t1 - t0, + custom_counts=custom_counts, + ) diff --git a/glue/sample/src/sinter/_decoding/_stim_then_decode_sampler_test.py b/glue/sample/src/sinter/_decoding/_stim_then_decode_sampler_test.py new file mode 100755 index 00000000..413015f0 --- /dev/null +++ b/glue/sample/src/sinter/_decoding/_stim_then_decode_sampler_test.py @@ -0,0 +1,192 @@ +import collections + +import numpy as np + +from sinter._decoding._stim_then_decode_sampler import \ + classify_discards_and_errors + + +def test_classify_discards_and_errors(): + assert classify_discards_and_errors( + actual_obs=np.array([ + [1, 2], + [2, 2], + [3, 2], + [4, 3], + [1, 3], + [0, 3], + [0, 3], + ], dtype=np.uint8), + predictions=np.array([ + [1, 2], + [2, 2], + [3, 2], + [4, 3], + [1, 3], + [0, 3], + [0, 3], + ], dtype=np.uint8), + postselected_observables_mask=None, + out_count_observable_error_combos=None, + num_obs=16, + ) == (0, 0) + + assert classify_discards_and_errors( + actual_obs=np.array([ + [1, 2], + [2, 2], + [3, 2], + [4, 3], + [1, 3], + [0, 3], + [0, 3], + ], dtype=np.uint8), + predictions=np.array([ + [0, 0], + [2, 2], + [3, 2], + [4, 1], + [1, 3], + [0, 3], + [0, 3], + ], dtype=np.uint8), + postselected_observables_mask=None, + out_count_observable_error_combos=None, + num_obs=16, + ) == (0, 2) + + assert classify_discards_and_errors( + actual_obs=np.array([ + [1, 2], + [2, 2], + [3, 2], + [4, 3], + [1, 3], + [0, 3], + [0, 3], + ], dtype=np.uint8), + predictions=np.array([ + [0, 0, 0], + [2, 2, 0], + [3, 2, 0], + [4, 1, 0], + [1, 3, 0], + [0, 3, 0], + [0, 3, 0], + ], dtype=np.uint8), + postselected_observables_mask=None, + out_count_observable_error_combos=None, + num_obs=16, + ) == (0, 2) + + assert classify_discards_and_errors( + actual_obs=np.array([ + [1, 2], + [2, 2], + [3, 2], + [4, 3], + [1, 3], + [0, 3], + [0, 3], + ], dtype=np.uint8), + predictions=np.array([ + [0, 0, 0], + [2, 2, 1], + [3, 2, 0], + [4, 1, 0], + [1, 3, 0], + [0, 3, 0], + [0, 3, 0], + ], dtype=np.uint8), + postselected_observables_mask=None, + out_count_observable_error_combos=None, + num_obs=16, + ) == (1, 2) + + assert classify_discards_and_errors( + actual_obs=np.array([ + [1, 2], + [2, 2], + [3, 2], + [4, 3], + [1, 3], + [0, 3], + [0, 3], + ], dtype=np.uint8), + predictions=np.array([ + [0, 0, 1], + [2, 2, 0], + [3, 2, 0], + [4, 1, 0], + [1, 3, 0], + [0, 3, 0], + [0, 3, 0], + ], dtype=np.uint8), + postselected_observables_mask=None, + out_count_observable_error_combos=None, + num_obs=16, + ) == (1, 1) + + assert classify_discards_and_errors( + actual_obs=np.array([ + [1, 2], + [2, 2], + [3, 2], + [4, 3], + [1, 3], + [0, 3], + [0, 3], + ], dtype=np.uint8), + predictions=np.array([ + [0, 0, 1], + [2, 2, 1], + [3, 2, 0], + [4, 1, 0], + [1, 3, 0], + [0, 3, 0], + [0, 3, 0], + ], dtype=np.uint8), + postselected_observables_mask=None, + out_count_observable_error_combos=None, + num_obs=16, + ) == (2, 1) + + assert classify_discards_and_errors( + actual_obs=np.array([ + [1, 2], + [2, 2], + [3, 2], + [4, 3], + [1, 3], + [2, 3], + [1, 3], + ], dtype=np.uint8), + predictions=np.array([ + [0, 0, 1], + [2, 2, 1], + [3, 2, 0], + [4, 1, 0], + [1, 3, 0], + [0, 3, 0], + [0, 3, 0], + ], dtype=np.uint8), + postselected_observables_mask=np.array([1, 0]), + out_count_observable_error_combos=None, + num_obs=16, + ) == (3, 2) + + counter = collections.Counter() + assert classify_discards_and_errors( + actual_obs=np.array([ + [1, 2], + [1, 2], + ], dtype=np.uint8), + predictions=np.array([ + [1, 0], + [1, 2], + ], dtype=np.uint8), + postselected_observables_mask=np.array([1, 0]), + out_count_observable_error_combos=counter, + num_obs=13, + ) == (0, 1) + assert counter == collections.Counter(["obs_mistake_mask=_________E___"]) diff --git a/glue/sample/src/sinter/_decoding_all_built_in_decoders.py b/glue/sample/src/sinter/_decoding_all_built_in_decoders.py deleted file mode 100644 index a9fc5e76..00000000 --- a/glue/sample/src/sinter/_decoding_all_built_in_decoders.py +++ /dev/null @@ -1,12 +0,0 @@ -from typing import Dict - -from sinter._decoding_decoder_class import Decoder -from sinter._decoding_fusion_blossom import FusionBlossomDecoder -from sinter._decoding_pymatching import PyMatchingDecoder -from sinter._decoding_vacuous import VacuousDecoder - -BUILT_IN_DECODERS: Dict[str, Decoder] = { - 'vacuous': VacuousDecoder(), - 'pymatching': PyMatchingDecoder(), - 'fusion_blossom': FusionBlossomDecoder(), -} diff --git a/glue/sample/src/sinter/_plotting.py b/glue/sample/src/sinter/_plotting.py index 24acfa20..a8e36cba 100644 --- a/glue/sample/src/sinter/_plotting.py +++ b/glue/sample/src/sinter/_plotting.py @@ -1,6 +1,6 @@ import math -import sys from typing import Callable, TypeVar, List, Any, Iterable, Optional, TYPE_CHECKING, Dict, Union, Literal, Tuple +from typing import Sequence from typing import cast import numpy as np @@ -13,6 +13,25 @@ MARKERS: str = "ov*sp^<>8PhH+xXDd|" * 100 +LINESTYLES: tuple[str, ...] = ( + 'solid', + 'dotted', + 'dashed', + 'dashdot', + 'loosely dotted', + 'dotted', + 'densely dotted', + 'long dash with offset', + 'loosely dashed', + 'dashed', + 'densely dashed', + 'loosely dashdotted', + 'dashdotted', + 'densely dashdotted', + 'dashdotdotted', + 'loosely dashdotdotted', + 'densely dashdotdotted', +) T = TypeVar('T') TVal = TypeVar('TVal') TKey = TypeVar('TKey') @@ -37,21 +56,30 @@ def split_by(vs: Iterable[T], key_func: Callable[[T], Any]) -> List[List[T]]: class LooseCompare: def __init__(self, val: Any): - self.val = val + self.val: Any = None - def __lt__(self, other): - if isinstance(other, LooseCompare): - other_val = other.val - else: - other_val = other + self.val = val.val if isinstance(val, LooseCompare) else val + + def __lt__(self, other: Any) -> bool: + other_val = other.val if isinstance(other, LooseCompare) else other if isinstance(self.val, (int, float)) and isinstance(other_val, (int, float)): return self.val < other_val + if isinstance(self.val, (tuple, list)) and isinstance(other_val, (tuple, list)): + return tuple(LooseCompare(e) for e in self.val) < tuple(LooseCompare(e) for e in other_val) return str(self.val) < str(other_val) - def __str__(self): + def __gt__(self, other: Any) -> bool: + other_val = other.val if isinstance(other, LooseCompare) else other + if isinstance(self.val, (int, float)) and isinstance(other_val, (int, float)): + return self.val > other_val + if isinstance(self.val, (tuple, list)) and isinstance(other_val, (tuple, list)): + return tuple(LooseCompare(e) for e in self.val) > tuple(LooseCompare(e) for e in other_val) + return str(self.val) > str(other_val) + + def __str__(self) -> str: return str(self.val) - def __eq__(self, other): + def __eq__(self, other: Any) -> bool: if isinstance(other, LooseCompare): other_val = other.val else: @@ -94,11 +122,12 @@ def better_sorted_str_terms(val: Any) -> Any: distance=199999, rounds=3 distance=199999, rounds=199999 """ - + if val is None: + return 'None' if isinstance(val, tuple): return tuple(better_sorted_str_terms(e) for e in val) if not isinstance(val, str): - return val + return LooseCompare(val) terms = split_by(val, lambda c: c in '.0123456789') result = [] for term in terms: @@ -117,6 +146,8 @@ def better_sorted_str_terms(val: Any) -> Any: except ValueError: pass result.append(term) + if len(result) == 1 and isinstance(result[0], (int, float)): + return LooseCompare(result[0]) return tuple(LooseCompare(e) for e in result) @@ -155,6 +186,45 @@ def group_by(items: Iterable[TVal], TCurveId = TypeVar('TCurveId') +class _FrozenDict: + def __init__(self, v: dict): + self._v = dict(v) + self._eq = frozenset(v.items()) + self._hash = hash(self._eq) + + terms = [] + for k in sorted(self._v.keys(), key=lambda e: (e != 'sort', e)): + terms.append(k) + terms.append(better_sorted_str_terms(self._v[k]) + ) + self._order = tuple(terms) + + def __eq__(self, other): + if isinstance(other, _FrozenDict): + return self._eq == other._eq + return NotImplemented + + def __lt__(self, other): + if isinstance(other, _FrozenDict): + return self._order < other._order + return NotImplemented + + def __ne__(self, other): + return not (self == other) + + def __hash__(self): + return self._hash + + def __getitem__(self, item): + return self._v[item] + + def get(self, item, alternate = None): + return self._v.get(item, alternate) + + def __str__(self): + return " ".join(str(v) for _, v in sorted(self._v.items())) + + def plot_discard_rate( *, ax: 'plt.Axes', @@ -165,6 +235,7 @@ def plot_discard_rate( filter_func: Callable[['sinter.TaskStats'], Any] = lambda _: True, plot_args_func: Callable[[int, TCurveId, List['sinter.TaskStats']], Dict[str, Any]] = lambda index, group_key, group_stats: dict(), highlight_max_likelihood_factor: Optional[float] = 1e3, + point_label_func: Callable[['sinter.TaskStats'], Any] = lambda _: None, ) -> None: """Plots discard rates in curves with uncertainty highlights. @@ -181,11 +252,21 @@ def plot_discard_rate( group_func: Optional. When specified, multiple curves will be plotted instead of one curve. The statistics are grouped into curves based on whether or not they get the same result out of this function. For example, this could be `group_func=lambda stat: stat.decoder`. + If the result of the function is a dictionary, then optional keys in the dictionary will + also control the plotting of each curve. Available keys are: + 'label': the label added to the legend for the curve + 'color': the color used for plotting the curve + 'marker': the marker used for the curve + 'linestyle': the linestyle used for the curve + 'sort': the order in which the curves will be plotted and added to the legend + e.g. if two curves (with different resulting dictionaries from group_func) share the same + value for key 'marker', they will be plotted with the same marker. + Colors, markers and linestyles are assigned in order, sorted by the values for those keys. filter_func: Optional. When specified, some curves will not be plotted. The statistics are filtered and only plotted if filter_func(stat) returns True. For example, `filter_func=lambda s: s.json_metadata['basis'] == 'x'` would plot only stats where the saved metadata indicates the basis was 'x'. - plot_args_func: Optional. Specifies additional arguments to give the the underlying calls to + plot_args_func: Optional. Specifies additional arguments to give the underlying calls to `plot` and `fill_between` used to do the actual plotting. For example, this can be used to specify markers and colors. Takes the index of the curve in sorted order and also a curve_id (these will be 0 and None respectively if group_func is not specified). For example, @@ -198,6 +279,7 @@ def plot_discard_rate( highlight_max_likelihood_factor: Controls how wide the uncertainty highlight region around curves is. Must be 1 or larger. Hypothesis probabilities at most that many times as unlikely as the max likelihood hypothesis will be highlighted. + point_label_func: Optional. Specifies text to draw next to data points. """ if highlight_max_likelihood_factor is None: highlight_max_likelihood_factor = 1 @@ -228,6 +310,7 @@ def y_func(stat: 'sinter.TaskStats') -> Union[float, 'sinter.Fit']: group_func=group_func, filter_func=filter_func, plot_args_func=plot_args_func, + point_label_func=point_label_func, ) @@ -243,6 +326,7 @@ def plot_error_rate( plot_args_func: Callable[[int, TCurveId, List['sinter.TaskStats']], Dict[str, Any]] = lambda index, group_key, group_stats: dict(), highlight_max_likelihood_factor: Optional[float] = 1e3, line_fits: Optional[Tuple[Literal['linear', 'log', 'sqrt'], Literal['linear', 'log', 'sqrt']]] = None, + point_label_func: Callable[['sinter.TaskStats'], Any] = lambda _: None, ) -> None: """Plots error rates in curves with uncertainty highlights. @@ -263,11 +347,21 @@ def plot_error_rate( group_func: Optional. When specified, multiple curves will be plotted instead of one curve. The statistics are grouped into curves based on whether or not they get the same result out of this function. For example, this could be `group_func=lambda stat: stat.decoder`. + If the result of the function is a dictionary, then optional keys in the dictionary will + also control the plotting of each curve. Available keys are: + 'label': the label added to the legend for the curve + 'color': the color used for plotting the curve + 'marker': the marker used for the curve + 'linestyle': the linestyle used for the curve + 'sort': the order in which the curves will be plotted and added to the legend + e.g. if two curves (with different resulting dictionaries from group_func) share the same + value for key 'marker', they will be plotted with the same marker. + Colors, markers and linestyles are assigned in order, sorted by the values for those keys. filter_func: Optional. When specified, some curves will not be plotted. The statistics are filtered and only plotted if filter_func(stat) returns True. For example, `filter_func=lambda s: s.json_metadata['basis'] == 'x'` would plot only stats where the saved metadata indicates the basis was 'x'. - plot_args_func: Optional. Specifies additional arguments to give the the underlying calls to + plot_args_func: Optional. Specifies additional arguments to give the underlying calls to `plot` and `fill_between` used to do the actual plotting. For example, this can be used to specify markers and colors. Takes the index of the curve in sorted order and also a curve_id (these will be 0 and None respectively if group_func is not specified). For example, @@ -283,6 +377,7 @@ def plot_error_rate( line_fits: Defaults to None. Set this to a tuple (x_scale, y_scale) to include a dashed line fit to every curve. The scales determine how to transform the coordinates before performing the fit, and can be set to 'linear', 'sqrt', or 'log'. + point_label_func: Optional. Specifies text to draw next to data points. """ if highlight_max_likelihood_factor is None: highlight_max_likelihood_factor = 1 @@ -320,16 +415,17 @@ def y_func(stat: 'sinter.TaskStats') -> Union[float, 'sinter.Fit']: filter_func=filter_func, plot_args_func=plot_args_func, line_fits=line_fits, + point_label_func=point_label_func, ) -def _rescale(v: np.ndarray, scale: str, invert: bool) -> np.ndarray: +def _rescale(v: Sequence[float], scale: str, invert: bool) -> np.ndarray: if scale == 'linear': - return v + return np.array(v) elif scale == 'log': return np.exp(v) if invert else np.log(v) elif scale == 'sqrt': - return v**2 if invert else np.sqrt(v) + return np.array(v)**2 if invert else np.sqrt(v) else: raise NotImplementedError(f'{scale=}') @@ -341,6 +437,7 @@ def plot_custom( x_func: Callable[['sinter.TaskStats'], Any], y_func: Callable[['sinter.TaskStats'], Union['sinter.Fit', float, int]], group_func: Callable[['sinter.TaskStats'], TCurveId] = lambda _: None, + point_label_func: Callable[['sinter.TaskStats'], Any] = lambda _: None, filter_func: Callable[['sinter.TaskStats'], Any] = lambda _: True, plot_args_func: Callable[[int, TCurveId, List['sinter.TaskStats']], Dict[str, Any]] = lambda index, group_key, group_stats: dict(), line_fits: Optional[Tuple[Literal['linear', 'log', 'sqrt'], Literal['linear', 'log', 'sqrt']]] = None, @@ -358,11 +455,22 @@ def plot_custom( group_func: Optional. When specified, multiple curves will be plotted instead of one curve. The statistics are grouped into curves based on whether or not they get the same result out of this function. For example, this could be `group_func=lambda stat: stat.decoder`. + If the result of the function is a dictionary, then optional keys in the dictionary will + also control the plotting of each curve. Available keys are: + 'label': the label added to the legend for the curve + 'color': the color used for plotting the curve + 'marker': the marker used for the curve + 'linestyle': the linestyle used for the curve + 'sort': the order in which the curves will be plotted and added to the legend + e.g. if two curves (with different resulting dictionaries from group_func) share the same + value for key 'marker', they will be plotted with the same marker. + Colors, markers and linestyles are assigned in order, sorted by the values for those keys. + point_label_func: Optional. Specifies text to draw next to data points. filter_func: Optional. When specified, some curves will not be plotted. The statistics are filtered and only plotted if filter_func(stat) returns True. For example, `filter_func=lambda s: s.json_metadata['basis'] == 'x'` would plot only stats where the saved metadata indicates the basis was 'x'. - plot_args_func: Optional. Specifies additional arguments to give the the underlying calls to + plot_args_func: Optional. Specifies additional arguments to give the underlying calls to `plot` and `fill_between` used to do the actual plotting. For example, this can be used to specify markers and colors. Takes the index of the curve in sorted order and also a curve_id (these will be 0 and None respectively if group_func is not specified). For example, @@ -380,6 +488,10 @@ def plot_custom( performing the fit, and can be set to 'linear', 'sqrt', or 'log'. """ + def group_dict_func(item: 'sinter.TaskStats') -> _FrozenDict: + e = group_func(item) + return _FrozenDict(e if isinstance(e, dict) else {'label': str(e)}) + # Backwards compatibility to when the group stats argument wasn't present. import inspect if len(inspect.signature(plot_args_func).parameters) == 2: @@ -392,44 +504,95 @@ def plot_custom( if filter_func(stat) ] - curve_groups = group_by(filtered_stats, key=group_func) - for k, curve_id in enumerate(sorted(curve_groups.keys(), key=better_sorted_str_terms)): - this_group_stats = sorted(curve_groups[curve_id], key=x_func) - - xs = [] - ys = [] - xs_range = [] - ys_low = [] - ys_high = [] - saw_fit = False - for stat in this_group_stats: - num_kept = stat.shots - stat.discards - if num_kept == 0: - continue - x = float(x_func(stat)) - y = y_func(stat) + curve_groups = group_by(filtered_stats, key=group_dict_func) + colors = { + k: f'C{i}' + for i, k in enumerate(sorted({g.get('color', g) for g in curve_groups.keys()}, key=better_sorted_str_terms)) + } + markers = { + k: MARKERS[i % len(MARKERS)] + for i, k in enumerate(sorted({g.get('marker', g) for g in curve_groups.keys()}, key=better_sorted_str_terms)) + } + linestyles = { + k: LINESTYLES[i % len(LINESTYLES)] + for i, k in enumerate(sorted({g.get('linestyle', None) for g in curve_groups.keys()}, key=better_sorted_str_terms)) + } + + def sort_key(a: Any) -> Any: + if isinstance(a, _FrozenDict): + return a.get('sort', better_sorted_str_terms(a)) + return better_sorted_str_terms(a) + + for k, group_key in enumerate(sorted(curve_groups.keys(), key=sort_key)): + group = curve_groups[group_key] + group = sorted(group, key=x_func) + color = colors[group_key.get('color', group_key)] + marker = markers[group_key.get('marker', group_key)] + linestyle = linestyles[group_key.get('linestyle', None)] + label = str(group_key.get('label', group_key)) + xs_label: list[float] = [] + ys_label: list[float] = [] + vs_label: list[float] = [] + xs_best: list[float] = [] + ys_best: list[float] = [] + xs_low_high: list[float] = [] + ys_low: list[float] = [] + ys_high: list[float] = [] + for item in group: + x = x_func(item) + y = y_func(item) + point_label = point_label_func(item) if isinstance(y, Fit): - xs_range.append(x) - ys_low.append(y.low) - ys_high.append(y.high) - saw_fit = True - y = y.best - if not math.isnan(y): - xs.append(x) - ys.append(y) - - kwargs: Dict[str, Any] = dict(plot_args_func(k, curve_id, this_group_stats)) - kwargs.setdefault('marker', MARKERS[k]) - if curve_id is not None: - kwargs.setdefault('label', str(curve_id)) - kwargs.setdefault('color', f'C{k}') - kwargs.setdefault('color', 'black') - ax.plot(xs, ys, **kwargs) - - if line_fits is not None and len(set(xs)) >= 2: + if y.low is not None and y.high is not None and not math.isnan(y.low) and not math.isnan(y.high): + xs_low_high.append(x) + ys_low.append(y.low) + ys_high.append(y.high) + if y.best is not None and not math.isnan(y.best): + ys_best.append(y.best) + xs_best.append(x) + + if point_label: + cy = None + for e in [y.best, y.high, y.low]: + if e is not None and not math.isnan(e): + cy = e + break + if cy is not None: + xs_label.append(x) + ys_label.append(cy) + vs_label.append(point_label) + elif not math.isnan(y): + xs_best.append(x) + ys_best.append(y) + if point_label: + xs_label.append(x) + ys_label.append(y) + vs_label.append(point_label) + args = dict(plot_args_func(k, group_func(group[0]), group)) + if 'linestyle' not in args: + args['linestyle'] = linestyle + if 'marker' not in args: + args['marker'] = marker + if 'color' not in args: + args['color'] = color + if 'label' not in args: + args['label'] = label + ax.plot(xs_best, ys_best, **args) + for x, y, lbl in zip(xs_label, ys_label, vs_label): + if lbl: + ax.annotate(lbl, (x, y)) + if len(xs_low_high) > 1: + ax.fill_between(xs_low_high, ys_low, ys_high, color=args['color'], alpha=0.2, zorder=-100) + elif len(xs_low_high) == 1: + l, = ys_low + h, = ys_high + m = (l + h) / 2 + ax.errorbar(xs_low_high, [m], yerr=([m - l], [h - m]), marker='', elinewidth=1, ecolor=color, capsize=5) + + if line_fits is not None and len(set(xs_best)) >= 2: x_scale, y_scale = line_fits - fit_xs = _rescale(xs, x_scale, False) - fit_ys = _rescale(ys, y_scale, False) + fit_xs = _rescale(xs_best, x_scale, False) + fit_ys = _rescale(ys_best, y_scale, False) from scipy.stats import linregress line_fit = linregress(fit_xs, fit_ys) @@ -447,21 +610,10 @@ def plot_custom( out_xs = _rescale(out_xs, x_scale, True) out_ys = _rescale(out_ys, y_scale, True) - line_kwargs = kwargs.copy() - line_kwargs.pop('marker', None) - line_kwargs.pop('label', None) - line_kwargs['linestyle'] = '--' - line_kwargs.setdefault('linewidth', 1) - line_kwargs['linewidth'] /= 2 - ax.plot(out_xs, out_ys, **line_kwargs) - - if saw_fit: - fit_kwargs = kwargs.copy() - fit_kwargs.setdefault('zorder', 0) - fit_kwargs.setdefault('alpha', 1) - fit_kwargs['zorder'] -= 100 - fit_kwargs['alpha'] *= 0.25 - fit_kwargs.pop('marker', None) - fit_kwargs.pop('linestyle', None) - fit_kwargs.pop('label', None) - ax.fill_between(xs_range, ys_low, ys_high, **fit_kwargs) + line_fit_kwargs = args.copy() + line_fit_kwargs.pop('marker', None) + line_fit_kwargs.pop('label', None) + line_fit_kwargs['linestyle'] = '--' + line_fit_kwargs.setdefault('linewidth', 1) + line_fit_kwargs['linewidth'] /= 2 + ax.plot(out_xs, out_ys, **line_fit_kwargs) diff --git a/glue/sample/src/sinter/_plotting_test.py b/glue/sample/src/sinter/_plotting_test.py index 088a165f..acf69102 100644 --- a/glue/sample/src/sinter/_plotting_test.py +++ b/glue/sample/src/sinter/_plotting_test.py @@ -13,6 +13,9 @@ def test_better_sorted_str_terms(): assert f('a1b2') == ('a', 1, 'b', 2) assert f('a1.5b2') == ('a', 1.5, 'b', 2) assert f('a1.5.3b2') == ('a', (1, 5, 3), 'b', 2) + assert f(1) < f(None) + assert f(1) < f('2') + assert f('2') > f(1) assert sorted([ "planar d=10 r=30", "planar d=16 r=36", diff --git a/glue/sample/src/sinter/_predict.py b/glue/sample/src/sinter/_predict.py index eeefba04..f3a6336c 100644 --- a/glue/sample/src/sinter/_predict.py +++ b/glue/sample/src/sinter/_predict.py @@ -8,9 +8,7 @@ from typing import Optional, Union, Dict, TYPE_CHECKING from sinter._collection import post_selection_mask_from_4th_coord -from sinter._decoding_decoder_class import Decoder -from sinter._decoding_all_built_in_decoders import BUILT_IN_DECODERS -from sinter._decoding import streaming_post_select +from sinter._decoding import Decoder, BUILT_IN_DECODERS, streaming_post_select if TYPE_CHECKING: import sinter diff --git a/glue/sample/src/sinter/_probability_util.py b/glue/sample/src/sinter/_probability_util.py index 62cf0ed7..76849dcd 100644 --- a/glue/sample/src/sinter/_probability_util.py +++ b/glue/sample/src/sinter/_probability_util.py @@ -2,6 +2,7 @@ import math import pathlib from typing import Any, Dict, Union, Callable, Sequence, TYPE_CHECKING, overload +from typing import Optional import numpy as np @@ -208,9 +209,9 @@ class Fit: of the best fit's square error, or whose likelihood was within some maximum Bayes factor of the max likelihood hypothesis. """ - low: float - best: float - high: float + low: Optional[float] + best: Optional[float] + high: Optional[float] def __repr__(self) -> str: return f'sinter.Fit(low={self.low!r}, best={self.best!r}, high={self.high!r})' diff --git a/glue/sample/src/sinter/_worker.py b/glue/sample/src/sinter/_worker.py deleted file mode 100644 index c01cd5ff..00000000 --- a/glue/sample/src/sinter/_worker.py +++ /dev/null @@ -1,212 +0,0 @@ -import os - -from typing import Any, Optional, Tuple, TYPE_CHECKING, Dict -import tempfile - -if TYPE_CHECKING: - import multiprocessing - import numpy as np - import pathlib - import sinter - import stim - - -class WorkIn: - def __init__( - self, - *, - work_key: Any, - circuit_path: str, - dem_path: str, - decoder: str, - strong_id: Optional[str], - postselection_mask: 'Optional[np.ndarray]', - postselected_observables_mask: 'Optional[np.ndarray]', - json_metadata: Any, - count_observable_error_combos: bool, - count_detection_events: bool, - num_shots: int): - self.work_key = work_key - self.circuit_path = circuit_path - self.dem_path = dem_path - self.decoder = decoder - self.strong_id = strong_id - self.postselection_mask = postselection_mask - self.postselected_observables_mask = postselected_observables_mask - self.json_metadata = json_metadata - self.count_observable_error_combos = count_observable_error_combos - self.count_detection_events = count_detection_events - self.num_shots = num_shots - - def with_work_key(self, work_key: Any) -> 'WorkIn': - return WorkIn( - work_key=work_key, - circuit_path=self.circuit_path, - dem_path=self.dem_path, - decoder=self.decoder, - postselection_mask=self.postselection_mask, - postselected_observables_mask=self.postselected_observables_mask, - json_metadata=self.json_metadata, - strong_id=self.strong_id, - num_shots=self.num_shots, - count_observable_error_combos=self.count_observable_error_combos, - count_detection_events=self.count_detection_events, - ) - - -def auto_dem(circuit: 'stim.Circuit') -> 'stim.DetectorErrorModel': - """Converts a circuit into a detector error model, with some fallbacks. - - First attempts to do it with folding and decomposition, then tries - giving up on the folding, then tries giving up on the decomposition. - """ - try: - return circuit.detector_error_model( - allow_gauge_detectors=False, - approximate_disjoint_errors=True, - block_decomposition_from_introducing_remnant_edges=False, - decompose_errors=True, - flatten_loops=False, - ignore_decomposition_failures=False, - ) - except ValueError: - pass - - # This might be https://github.com/quantumlib/Stim/issues/393 - # Try turning off loop flattening. - try: - return circuit.detector_error_model( - allow_gauge_detectors=False, - approximate_disjoint_errors=True, - block_decomposition_from_introducing_remnant_edges=False, - decompose_errors=True, - flatten_loops=False, - ignore_decomposition_failures=False, - ) - except ValueError: - pass - - # Maybe decomposition is impossible, but the decoder might not need it. - # Try turning off error decomposition. - try: - return circuit.detector_error_model( - allow_gauge_detectors=False, - approximate_disjoint_errors=True, - block_decomposition_from_introducing_remnant_edges=False, - decompose_errors=False, - flatten_loops=True, - ignore_decomposition_failures=False, - ) - except ValueError: - pass - - # Okay turn them both off... - return circuit.detector_error_model( - allow_gauge_detectors=False, - approximate_disjoint_errors=True, - block_decomposition_from_introducing_remnant_edges=False, - decompose_errors=False, - flatten_loops=True, - ignore_decomposition_failures=False, - ) - - -class WorkOut: - def __init__( - self, - *, - work_key: Any, - stats: Optional['sinter.AnonTaskStats'], - strong_id: str, - msg_error: Optional[Tuple[str, BaseException]]): - self.work_key = work_key - self.stats = stats - self.strong_id = strong_id - self.msg_error = msg_error - - -def worker_loop(tmp_dir: 'pathlib.Path', - inp: 'multiprocessing.Queue', - out: 'multiprocessing.Queue', - custom_decoders: Optional[Dict[str, 'sinter.Decoder']], - core_affinity: Optional[int]) -> None: - try: - if core_affinity is not None and hasattr(os, 'sched_setaffinity'): - os.sched_setaffinity(0, {core_affinity}) - except: - # If setting the core affinity fails, we keep going regardless. - pass - - try: - with tempfile.TemporaryDirectory(dir=tmp_dir) as child_dir: - while True: - work: Optional[WorkIn] = inp.get() - if work is None: - return - out.put(do_work_safely(work, child_dir, custom_decoders)) - except KeyboardInterrupt: - pass - - -def do_work_safely(work: WorkIn, child_dir: str, custom_decoders: Dict[str, 'sinter.Decoder']) -> WorkOut: - try: - return do_work(work, child_dir, custom_decoders) - except BaseException as ex: - import traceback - return WorkOut( - work_key=work.work_key, - stats=None, - strong_id=work.strong_id, - msg_error=(traceback.format_exc(), ex), - ) - - -def do_work(work: WorkIn, child_dir: str, custom_decoders: Dict[str, 'sinter.Decoder']) -> WorkOut: - import stim - from sinter._task import Task - from sinter._decoding import sample_decode - - if work.strong_id is None: - # The work is to compute the DEM, as opposed to taking shots. - - circuit = stim.Circuit.from_file(work.circuit_path) - dem = auto_dem(circuit) - dem.to_file(work.dem_path) - - task = Task( - circuit=circuit, - decoder=work.decoder, - detector_error_model=dem, - postselection_mask=work.postselection_mask, - postselected_observables_mask=work.postselected_observables_mask, - json_metadata=work.json_metadata, - ) - - return WorkOut( - work_key=work.work_key, - stats=None, - strong_id=task.strong_id(), - msg_error=None, - ) - - stats: 'sinter.AnonTaskStats' = sample_decode( - num_shots=work.num_shots, - circuit_path=work.circuit_path, - circuit_obj=None, - dem_path=work.dem_path, - dem_obj=None, - post_mask=work.postselection_mask, - postselected_observable_mask=work.postselected_observables_mask, - decoder=work.decoder, - count_observable_error_combos=work.count_observable_error_combos, - count_detection_events=work.count_detection_events, - tmp_dir=child_dir, - custom_decoders=custom_decoders, - ) - - return WorkOut( - stats=stats, - work_key=work.work_key, - strong_id=work.strong_id, - msg_error=None, - ) diff --git a/glue/sample/src/sinter/_worker_test.py b/glue/sample/src/sinter/_worker_test.py deleted file mode 100644 index d8049ee1..00000000 --- a/glue/sample/src/sinter/_worker_test.py +++ /dev/null @@ -1,134 +0,0 @@ -import multiprocessing -import pathlib -import tempfile - -import stim - -from sinter._worker import WorkIn, WorkOut, worker_loop -from sinter._worker import auto_dem - - -def test_worker_loop_infers_dem(): - with tempfile.TemporaryDirectory() as tmp_dir: - tmp_dir = pathlib.Path(tmp_dir) - circuit = stim.Circuit(""" - M(0.2) 0 1 - DETECTOR rec[-1] - OBSERVABLE_INCLUDE(0) rec[-1] rec[-2] - """) - circuit_path = str(tmp_dir / 'input_circuit.stim') - dem_path = str(tmp_dir / 'input_dem.dem') - circuit.to_file(circuit_path) - inp = multiprocessing.Queue() - out = multiprocessing.Queue() - inp.put(WorkIn( - work_key='test1', - circuit_path=circuit_path, - dem_path=dem_path, - decoder='pymatching', - json_metadata=5, - strong_id=None, - num_shots=-1, - postselected_observables_mask=None, - postselection_mask=None, - count_detection_events=False, - count_observable_error_combos=False, - )) - inp.put(None) - worker_loop(tmp_dir, inp, out, None, 0) - result: WorkOut = out.get(timeout=1) - assert out.empty() - - assert result.stats is None - assert result.work_key == 'test1' - assert result.msg_error is None - assert stim.DetectorErrorModel.from_file(dem_path) == circuit.detector_error_model() - assert result.strong_id is not None - - -def test_worker_loop_does_not_recompute_dem(): - with tempfile.TemporaryDirectory() as tmp_dir: - tmp_dir = pathlib.Path(tmp_dir) - circuit_path = str(tmp_dir / 'input_circuit.stim') - dem_path = str(tmp_dir / 'input_dem.dem') - stim.Circuit(""" - M(0.2) 0 1 - DETECTOR rec[-1] - OBSERVABLE_INCLUDE(0) rec[-1] rec[-2] - """).to_file(circuit_path) - stim.DetectorErrorModel(""" - error(0.234567) D0 L0 - """).to_file(dem_path) - - inp = multiprocessing.Queue() - out = multiprocessing.Queue() - inp.put(WorkIn( - work_key='test1', - circuit_path=circuit_path, - dem_path=dem_path, - decoder='pymatching', - json_metadata=5, - strong_id="fake", - num_shots=1000, - postselected_observables_mask=None, - postselection_mask=None, - count_detection_events=False, - count_observable_error_combos=False, - )) - inp.put(None) - worker_loop(tmp_dir, inp, out, None, 0) - result: WorkOut = out.get(timeout=1) - assert out.empty() - - assert result.stats.shots == 1000 - assert result.stats.discards == 0 - assert 0 < result.stats.errors < 1000 - assert result.work_key == 'test1' - assert result.msg_error is None - assert result.strong_id == 'fake' - - -def test_auto_dem(): - assert auto_dem(stim.Circuit(""" - REPEAT 100 { - CORRELATED_ERROR(0.125) X0 X1 - CORRELATED_ERROR(0.125) X0 X1 X2 X3 - MR 0 1 2 3 - DETECTOR rec[-4] - DETECTOR rec[-3] - DETECTOR rec[-2] - DETECTOR rec[-1] - } - """)) == stim.DetectorErrorModel(""" - REPEAT 99 { - error(0.125) D0 D1 - error(0.125) D0 D1 ^ D2 D3 - shift_detectors 4 - } - error(0.125) D0 D1 - error(0.125) D0 D1 ^ D2 D3 - """) - - assert auto_dem(stim.Circuit(""" - CORRELATED_ERROR(0.125) X0 X1 - CORRELATED_ERROR(0.125) X0 X1 X2 X3 - M 0 1 2 3 - DETECTOR rec[-4] - DETECTOR rec[-3] - DETECTOR rec[-2] - DETECTOR rec[-1] - """)) == stim.DetectorErrorModel(""" - error(0.125) D0 D1 - error(0.125) D0 D1 ^ D2 D3 - """) - - assert auto_dem(stim.Circuit(""" - CORRELATED_ERROR(0.125) X0 X1 X2 X3 - M 0 1 2 3 - DETECTOR rec[-4] - DETECTOR rec[-3] - DETECTOR rec[-2] - DETECTOR rec[-1] - """)) == stim.DetectorErrorModel(""" - error(0.125) D0 D1 D2 D3 - """) diff --git a/src/stim/circuit/circuit.pybind.cc b/src/stim/circuit/circuit.pybind.cc index 8c801e5c..7798587b 100644 --- a/src/stim/circuit/circuit.pybind.cc +++ b/src/stim/circuit/circuit.pybind.cc @@ -3270,7 +3270,7 @@ void stim_pybind::pybind_circuit_methods(pybind11::module &, pybind11::class_ 'stim._DiagramHelper': + @signature def diagram(self, type: str = 'timeline-text', *, tick: Union[None, int, range] = None, filter_coords: Iterable[Union[Iterable[float], stim.DemTarget]] = ((),), rows: int | None = None) -> 'stim._DiagramHelper': Returns a diagram of the circuit, from a variety of options. Args: diff --git a/src/stim/util_bot/probability_util.h b/src/stim/util_bot/probability_util.h index 0c28d2a3..b338ba50 100644 --- a/src/stim/util_bot/probability_util.h +++ b/src/stim/util_bot/probability_util.h @@ -70,9 +70,19 @@ struct RareErrorIterator { std::vector sample_hit_indices(float probability, size_t attempts, std::mt19937_64 &rng); +/// Create a fresh random number generator seeded by entropy from the operating system. std::mt19937_64 externally_seeded_rng(); + +/// Create a random number generator either seeded by a --seed argument, or else by entropy from the operating system. std::mt19937_64 optionally_seeded_rng(int argc, const char **argv); +/// Overwrite the given span with random data where bits are set with the given probability. +/// +/// Args: +/// probability: The chance that each bit will be on. +/// start: Inclusive start of the memory span to overwrite. +/// end: Exclusive end of the memory span to overwrite. +/// rng: The random number generator to use to generate entropy. void biased_randomize_bits(float probability, uint64_t *start, uint64_t *end, std::mt19937_64 &rng); } // namespace stim