-
Notifications
You must be signed in to change notification settings - Fork 129
/
sac_v2_multiprocess.py
543 lines (426 loc) · 21.1 KB
/
sac_v2_multiprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
'''
Soft Actor-Critic version 2
using target Q instead of V net: 2 Q net, 2 target Q net, 1 policy net
add alpha loss compared with version 1
paper: https://arxiv.org/pdf/1812.05905.pdf
'''
import math
import random
import gym
import numpy as np
import torch
torch.multiprocessing.set_start_method('forkserver', force=True) # critical for make multiprocessing work
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
from IPython.display import clear_output
import matplotlib.pyplot as plt
from matplotlib import animation
from IPython.display import display
from reacher import Reacher
import argparse
import time
import torch.multiprocessing as mp
from torch.multiprocessing import Process
from multiprocessing import Process, Manager
from multiprocessing.managers import BaseManager
import threading as td
GPU = True
device_idx = 0
if GPU:
device = torch.device("cuda:" + str(device_idx) if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
print(device)
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=False)
parser.add_argument('--test', dest='test', action='store_true', default=False)
args = parser.parse_args()
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = int((self.position + 1) % self.capacity) # as a ring buffer
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch)) # stack for each element
'''
the * serves as unpack: sum(a,b) <=> batch=(a,b), sum(*batch) ;
zip: a=[1,2], b=[2,3], zip(a,b) => [(1, 2), (2, 3)] ;
the map serves as mapping the function on each list element: map(square, [2,3]) => [4,9] ;
np.stack((1,2)) => array([1, 2])
'''
return state, action, reward, next_state, done
def __len__(self): # cannot work in multiprocessing case, len(replay_buffer) is not available in proxy of manager!
return len(self.buffer)
def get_length(self):
return len(self.buffer)
class NormalizedActions(gym.ActionWrapper):
def _action(self, action):
low = self.action_space.low
high = self.action_space.high
action = low + (action + 1.0) * 0.5 * (high - low)
action = np.clip(action, low, high)
return action
def _reverse_action(self, action):
low = self.action_space.low
high = self.action_space.high
action = 2 * (action - low) / (high - low) - 1
action = np.clip(action, low, high)
return action
class ValueNetwork(nn.Module):
def __init__(self, state_dim, hidden_dim, init_w=3e-3):
super(ValueNetwork, self).__init__()
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, hidden_dim)
self.linear4 = nn.Linear(hidden_dim, 1)
# weights initialization
self.linear4.weight.data.uniform_(-init_w, init_w)
self.linear4.bias.data.uniform_(-init_w, init_w)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = self.linear4(x)
return x
class SoftQNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3):
super(SoftQNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, 1)
self.linear4.weight.data.uniform_(-init_w, init_w)
self.linear4.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
x = torch.cat([state, action], 1) # the dim 0 is number of samples
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = self.linear4(x)
return x
class PolicyNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, action_range=1., init_w=3e-3, log_std_min=-20, log_std_max=2):
super(PolicyNetwork, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, hidden_size)
self.mean_linear = nn.Linear(hidden_size, num_actions)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_size, num_actions)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
self.action_range = action_range
self.num_actions = num_actions
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = F.relu(self.linear4(x))
mean = (self.mean_linear(x))
# mean = F.leaky_relu(self.mean_linear(x))
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
return mean, log_std
def evaluate(self, state, epsilon=1e-6):
'''
generate sampled action with state as input wrt the policy network;
'''
mean, log_std = self.forward(state)
std = log_std.exp() # no clip in evaluation, clip affects gradients flow
normal = Normal(0, 1)
z = normal.sample(mean.shape)
action_0 = torch.tanh(mean + std*z.to(device)) # TanhNormal distribution as actions; reparameterization trick
action = self.action_range*action_0
log_prob = Normal(mean, std).log_prob(mean+ std*z.to(device)) - torch.log(1. - action_0.pow(2) + epsilon) - np.log(self.action_range)
# both dims of normal.log_prob and -log(1-a**2) are (N,dim_of_action);
# the Normal.log_prob outputs the same dim of input features instead of 1 dim probability,
# needs sum up across the features dim to get 1 dim prob; or else use Multivariate Normal.
log_prob = log_prob.sum(dim=1, keepdim=True)
return action, log_prob, z, mean, log_std
def get_action(self, state, deterministic):
state = torch.FloatTensor(state).unsqueeze(0).to(device)
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(0, 1)
z = normal.sample(mean.shape).to(device)
action = self.action_range* torch.tanh(mean + std*z)
action = self.action_range*torch.tanh(mean).detach().cpu().numpy()[0] if deterministic else action.detach().cpu().numpy()[0]
return action
def sample_action(self,):
a=torch.FloatTensor(self.num_actions).uniform_(-1, 1)
return self.action_range*a.numpy()
class SAC_Trainer():
def __init__(self, replay_buffer, hidden_dim, action_range):
self.replay_buffer = replay_buffer
self.soft_q_net1 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.soft_q_net2 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.target_soft_q_net1 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.target_soft_q_net2 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim, action_range).to(device)
self.log_alpha = torch.zeros(1, dtype=torch.float32, requires_grad=True, device=device)
print('Soft Q Network (1,2): ', self.soft_q_net1)
print('Policy Network: ', self.policy_net)
for target_param, param in zip(self.target_soft_q_net1.parameters(), self.soft_q_net1.parameters()):
target_param.data.copy_(param.data)
for target_param, param in zip(self.target_soft_q_net2.parameters(), self.soft_q_net2.parameters()):
target_param.data.copy_(param.data)
self.soft_q_criterion1 = nn.MSELoss()
self.soft_q_criterion2 = nn.MSELoss()
soft_q_lr = 3e-4
policy_lr = 3e-4
alpha_lr = 3e-4
self.soft_q_optimizer1 = optim.Adam(self.soft_q_net1.parameters(), lr=soft_q_lr)
self.soft_q_optimizer2 = optim.Adam(self.soft_q_net2.parameters(), lr=soft_q_lr)
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr)
self.alpha_optimizer = optim.Adam([self.log_alpha], lr=alpha_lr)
def update(self, batch_size, reward_scale=10., auto_entropy=True, target_entropy=-2, gamma=0.99,soft_tau=1e-2):
state, action, reward, next_state, done = self.replay_buffer.sample(batch_size)
# print('sample:', state, action, reward, done)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(device) # reward is single value, unsqueeze() to add one dim to be [reward] at the sample dim;
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)
predicted_q_value1 = self.soft_q_net1(state, action)
predicted_q_value2 = self.soft_q_net2(state, action)
new_action, log_prob, z, mean, log_std = self.policy_net.evaluate(state)
new_next_action, next_log_prob, _, _, _ = self.policy_net.evaluate(next_state)
reward = reward_scale * (reward - reward.mean(dim=0)) / (reward.std(dim=0) + 1e-6) # normalize with batch mean and std; plus a small number to prevent numerical problem
# Updating alpha wrt entropy
# alpha = 0.0 # trade-off between exploration (max entropy) and exploitation (max Q)
if auto_entropy is True:
alpha_loss = -(self.log_alpha * (log_prob + target_entropy).detach()).mean()
# print('alpha loss: ',alpha_loss)
self.alpha_optimizer.zero_grad()
alpha_loss.backward()
self.alpha_optimizer.step()
self.alpha = self.log_alpha.exp()
else:
self.alpha = 1.
alpha_loss = 0
# Training Q Function
target_q_min = torch.min(self.target_soft_q_net1(next_state, new_next_action),self.target_soft_q_net2(next_state, new_next_action)) - self.alpha * next_log_prob
target_q_value = reward + (1 - done) * gamma * target_q_min # if done==1, only reward
q_value_loss1 = self.soft_q_criterion1(predicted_q_value1, target_q_value.detach()) # detach: no gradients for the variable
q_value_loss2 = self.soft_q_criterion2(predicted_q_value2, target_q_value.detach())
self.soft_q_optimizer1.zero_grad()
q_value_loss1.backward()
self.soft_q_optimizer1.step()
self.soft_q_optimizer2.zero_grad()
q_value_loss2.backward()
self.soft_q_optimizer2.step()
# Training Policy Function
predicted_new_q_value = torch.min(self.soft_q_net1(state, new_action),self.soft_q_net2(state, new_action))
policy_loss = (self.alpha * log_prob - predicted_new_q_value).mean()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
# print('q loss: ', q_value_loss1, q_value_loss2)
# print('policy loss: ', policy_loss )
# Soft update the target value net
for target_param, param in zip(self.target_soft_q_net1.parameters(), self.soft_q_net1.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
for target_param, param in zip(self.target_soft_q_net2.parameters(), self.soft_q_net2.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
return predicted_new_q_value.mean()
def save_model(self, path):
torch.save(self.soft_q_net1.state_dict(), path+'_q1')
torch.save(self.soft_q_net2.state_dict(), path+'_q2')
torch.save(self.policy_net.state_dict(), path+'_policy')
def load_model(self, path):
self.soft_q_net1.load_state_dict(torch.load(path+'_q1'))
self.soft_q_net2.load_state_dict(torch.load(path+'_q2'))
self.policy_net.load_state_dict(torch.load(path+'_policy'))
self.soft_q_net1.eval()
self.soft_q_net2.eval()
self.policy_net.eval()
def worker(id, sac_trainer, ENV, rewards_queue, replay_buffer, max_episodes, max_steps, batch_size, explore_steps, \
update_itr, AUTO_ENTROPY, DETERMINISTIC, hidden_dim, model_path):
'''
the function for sampling with multi-processing
'''
print(sac_trainer, replay_buffer) # sac_tainer are not the same, but all networks and optimizers in it are the same; replay buffer is the same one.
if ENV == 'Reacher':
NUM_JOINTS=2
LINK_LENGTH=[200, 140]
INI_JOING_ANGLES=[0.1, 0.1]
# NUM_JOINTS=4
# LINK_LENGTH=[200, 140, 80, 50]
# INI_JOING_ANGLES=[0.1, 0.1, 0.1, 0.1]
SCREEN_SIZE=1000
SPARSE_REWARD=False
SCREEN_SHOT=False
action_range = 10.0
env=Reacher(screen_size=SCREEN_SIZE, num_joints=NUM_JOINTS, link_lengths = LINK_LENGTH, \
ini_joint_angles=INI_JOING_ANGLES, target_pos = [369,430], render=True, change_goal=False)
action_dim = env.num_actions
state_dim = env.num_observations
elif ENV == 'Pendulum':
env = NormalizedActions(gym.make("Pendulum-v0"))
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
action_range=1.
frame_idx=0
rewards=[]
# training loop
for eps in range(max_episodes):
episode_reward = 0
if ENV == 'Reacher':
state = env.reset(SCREEN_SHOT)
elif ENV == 'Pendulum':
state = env.reset()
for step in range(max_steps):
if frame_idx > explore_steps:
action = sac_trainer.policy_net.get_action(state, deterministic = DETERMINISTIC)
else:
action = sac_trainer.policy_net.sample_action()
try:
if ENV == 'Reacher':
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
elif ENV == 'Pendulum':
next_state, reward, done, _ = env.step(action)
env.render()
except KeyboardInterrupt:
print('Finished')
sac_trainer.save_model(model_path)
replay_buffer.push(state, action, reward, next_state, done)
state = next_state
episode_reward += reward
frame_idx += 1
# if len(replay_buffer) > batch_size:
if replay_buffer.get_length() > batch_size:
for i in range(update_itr):
_=sac_trainer.update(batch_size, reward_scale=10., auto_entropy=AUTO_ENTROPY, target_entropy=-1.*action_dim)
if eps % 10 == 0 and eps>0:
# plot(rewards, id)
sac_trainer.save_model(model_path)
if done:
break
print('Episode: ', eps, '| Episode Reward: ', episode_reward)
# if len(rewards) == 0: rewards.append(episode_reward)
# else: rewards.append(rewards[-1]*0.9+episode_reward*0.1)
rewards_queue.put(episode_reward)
sac_trainer.save_model(model_path)
def ShareParameters(adamoptim):
''' share parameters of Adamoptimizers for multiprocessing '''
for group in adamoptim.param_groups:
for p in group['params']:
state = adamoptim.state[p]
# initialize: have to initialize here, or else cannot find
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p.data)
state['exp_avg_sq'] = torch.zeros_like(p.data)
# share in memory
state['exp_avg'].share_memory_()
state['exp_avg_sq'].share_memory_()
def plot(rewards):
clear_output(True)
plt.figure(figsize=(20,5))
plt.plot(rewards)
plt.savefig('sac_v2_multi.png')
# plt.show()
plt.clf()
if __name__ == '__main__':
replay_buffer_size = 1e6
# replay_buffer = ReplayBuffer(replay_buffer_size)
# the replay buffer is a class, have to use torch manager to make it a proxy for sharing across processes
BaseManager.register('ReplayBuffer', ReplayBuffer)
manager = BaseManager()
manager.start()
replay_buffer = manager.ReplayBuffer(replay_buffer_size) # share the replay buffer through manager
# choose env
ENV = ['Pendulum', 'Reacher'][0]
if ENV == 'Reacher':
NUM_JOINTS=2
LINK_LENGTH=[200, 140]
SCREEN_SIZE=1000
SPARSE_REWARD=False
SCREEN_SHOT=False
action_range = 10.0
env=Reacher(screen_size=SCREEN_SIZE, num_joints=NUM_JOINTS, link_lengths = LINK_LENGTH, \
ini_joint_angles=INI_JOING_ANGLES, target_pos = [369,430], render=True, change_goal=False)
action_dim = env.num_actions
state_dim = env.num_observations
elif ENV == 'Pendulum':
env = NormalizedActions(gym.make("Pendulum-v0"))
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
action_range=1.
# hyper-parameters for RL training, no need for sharing across processes
max_episodes = 1000
max_steps = 20 if ENV == 'Reacher' else 150 # Pendulum needs 150 steps per episode to learn well, cannot handle 20
batch_size = 128
explore_steps = 0 # for random action sampling in the beginning of training
update_itr = 1
AUTO_ENTROPY=True
DETERMINISTIC=False
hidden_dim = 512
model_path = './model/sac_v2_multi'
sac_trainer=SAC_Trainer(replay_buffer, hidden_dim=hidden_dim, action_range=action_range )
if args.train:
# share the global parameters in multiprocessing
sac_trainer.soft_q_net1.share_memory()
sac_trainer.soft_q_net2.share_memory()
sac_trainer.target_soft_q_net1.share_memory()
sac_trainer.target_soft_q_net2.share_memory()
sac_trainer.policy_net.share_memory() # model
sac_trainer.log_alpha.share_memory_() # variable
ShareParameters(sac_trainer.soft_q_optimizer1)
ShareParameters(sac_trainer.soft_q_optimizer2)
ShareParameters(sac_trainer.policy_optimizer)
ShareParameters(sac_trainer.alpha_optimizer)
rewards_queue=mp.Queue() # used for get rewards from all processes and plot the curve
num_workers=2 # or: mp.cpu_count()
processes=[]
rewards=[]
for i in range(num_workers):
process = Process(target=worker, args=(i, sac_trainer, ENV, rewards_queue, replay_buffer, max_episodes, max_steps, batch_size, explore_steps, \
update_itr, AUTO_ENTROPY, DETERMINISTIC, hidden_dim, model_path)) # the args contain shared and not shared
process.daemon=True # all processes closed when the main stops
processes.append(process)
[p.start() for p in processes]
while True: # keep geting the episode reward from the queue
r = rewards_queue.get()
if r is not None:
rewards.append(r)
else:
break
if len(rewards)%20==0 and len(rewards)>0:
plot(rewards)
[p.join() for p in processes] # finished at the same time
sac_trainer.save_model(model_path)
if args.test:
# single process for testing
sac_trainer.load_model(model_path)
for eps in range(10):
if ENV == 'Reacher':
state = env.reset(SCREEN_SHOT)
elif ENV == 'Pendulum':
state = env.reset()
episode_reward = 0
for step in range(max_steps):
action = sac_trainer.policy_net.get_action(state, deterministic = DETERMINISTIC)
if ENV == 'Reacher':
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
elif ENV == 'Pendulum':
next_state, reward, done, _ = env.step(action)
env.render()
episode_reward += reward
state=next_state
print('Episode: ', eps, '| Episode Reward: ', episode_reward)