-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
44 lines (40 loc) · 1.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import pdf2image
import cv2
import numpy as np
import os
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
general6_8n_pt = hf_hub_download(repo_id="qihoo360/360LayoutAnalysis", filename="general6-8n.pt")
# with blob.as_bytes_io() as file_path:
file_path = "report.pdf"
pages = pdf2image.convert_from_path(file_path)
for page_number, page in enumerate(pages):
page_img = np.asarray(page)
page_shape = page_img.shape # (h, w, c)
model = YOLO(general6_8n_pt)
results = model.predict(source=page)
for result_i, result in enumerate(results):
names = result.names
# Detection
result.boxes.xyxy # box with xyxy format, (N, 4)
result.boxes.xywh # box with xywh format, (N, 4)
result.boxes.xyxyn # box with xyxy format but normalized, (N, 4)
result.boxes.xywhn # box with xywh format but normalized, (N, 4)
result.boxes.conf # confidence score, (N, 1)
result.boxes.cls # cls, (N, 1)
# Sort by bbox
sf = (page_shape[0] // 256, page_shape[1] // 3)
sorted_bbox = []
for bbox_i in range(result.boxes.xyxy.shape[0]):
x, y, x2, y2 = result.boxes.xyxy[bbox_i, :].cpu().numpy()
x, y, x2, y2 = int(x), int(y), int(x2), int(y2)
sorted_bbox.append(((x//sf[1], y//sf[0], x2//sf[1], y2//sf[0]), bbox_i))
sorted_bbox = sorted(sorted_bbox, key=lambda x: x[0])
# Crop Image
for sorted_bbox_i, (_, bbox_i) in enumerate(sorted_bbox):
x, y, x2, y2 = result.boxes.xyxy[bbox_i, :].cpu().numpy()
x, y, x2, y2 = int(x), int(y), int(x2), int(y2)
bbox_image = page_img[y:y2, x:x2]
bbox_cls = result.boxes.cls[bbox_i].item()
bbox_image = cv2.cvtColor(bbox_image, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join("outputs", f'output_with_labels_{page_number}_{result_i}_{sorted_bbox_i}_{names[bbox_cls]}.png'), bbox_image)