diff --git a/python/ffsim/linalg/double_factorized_decomposition.py b/python/ffsim/linalg/double_factorized_decomposition.py index 4d11926df..266c1ee2a 100644 --- a/python/ffsim/linalg/double_factorized_decomposition.py +++ b/python/ffsim/linalg/double_factorized_decomposition.py @@ -532,11 +532,7 @@ def double_factorized_t2( nocc, _, nvrt, _ = t2_amplitudes.shape norb = nocc + nvrt - occ, vrt = np.meshgrid(range(nocc), range(nvrt), indexing="ij") - occ = occ.reshape(-1) - vrt = vrt.reshape(-1) - t2_mat = t2_amplitudes[occ[:, None], occ[None, :], vrt[:, None], vrt[None, :]] - + t2_mat = t2_amplitudes.transpose(0, 2, 1, 3).reshape(nocc * nvrt, nocc * nvrt) outer_eigs, outer_vecs = _truncated_eigh(t2_mat, tol=tol, max_vecs=max_vecs) n_vecs = len(outer_eigs) @@ -643,16 +639,9 @@ def reconstruct_t2_alpha_beta( nocc_a, nocc_b, nvrt_a, nvrt_b = t2_amplitudes.shape norb = nocc_a + nvrt_a - occ_a, vrt_a = np.meshgrid(range(nocc_a), range(nvrt_a), indexing="ij") - occ_b, vrt_b = np.meshgrid(range(nocc_b), range(nvrt_b), indexing="ij") - occ_a = occ_a.reshape(-1) - vrt_a = vrt_a.reshape(-1) - occ_b = occ_b.reshape(-1) - vrt_b = vrt_b.reshape(-1) - t2_mat = t2_amplitudes[ - occ_a[:, None], occ_b[None, :], vrt_a[:, None], vrt_b[None, :] - ] - + t2_mat = t2_amplitudes.transpose(0, 2, 1, 3).reshape( + nocc_a * nvrt_a, nocc_b * nvrt_b + ) left_vecs, singular_vals, right_vecs = _truncated_svd( t2_mat, tol=tol, max_vecs=max_vecs ) diff --git a/tests/python/states/sample_slater_test.py b/tests/python/states/sample_slater_test.py new file mode 100644 index 000000000..0416049b4 --- /dev/null +++ b/tests/python/states/sample_slater_test.py @@ -0,0 +1,136 @@ +# (C) Copyright IBM 2024. +# +# This code is licensed under the Apache License, Version 2.0. You may +# obtain a copy of this license in the LICENSE.txt file in the root directory +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. +# +# Any modifications or derivative works of this code must retain this +# copyright notice, and modified files need to carry a notice indicating +# that they have been altered from the originals. + +"""Tests for sampling Slater determinants.""" + +from __future__ import annotations + +import itertools + +import numpy as np +import pytest + +import ffsim +from ffsim.states.bitstring import BitstringType + + +@pytest.mark.parametrize( + "norb, nelec, bitstring_type", + [ + (norb, nelec, bitstring_type) + for (norb, nelec), bitstring_type in itertools.product( + ffsim.testing.generate_norb_nelec(range(1, 5)), BitstringType + ) + ], +) +def test_sample_slater_determinant_spinful( + norb: int, nelec: tuple[int, int], bitstring_type: BitstringType +): + """Test sample Slater determinant, spinful.""" + rng = np.random.default_rng(1234) + shots = 1000 + for _ in range(min(2, ffsim.dim(norb, nelec))): + rotation_a = ffsim.random.random_unitary(norb, seed=rng) + rotation_b = ffsim.random.random_unitary(norb, seed=rng) + occupied_orbitals = ffsim.testing.random_occupied_orbitals( + norb, nelec, seed=rng + ) + rdm_a, rdm_b = ffsim.slater_determinant_rdms( + norb, occupied_orbitals, (rotation_a, rotation_b) + ) + vec = ffsim.slater_determinant( + norb, occupied_orbitals, (rotation_a, rotation_b) + ) + test_distribution = np.abs(vec) ** 2 + samples = ffsim.sample_slater_determinant( + (rdm_a, rdm_b), + norb, + nelec, + shots=shots, + bitstring_type=bitstring_type, + seed=rng, + ) + addresses = ffsim.strings_to_addresses(samples, norb, nelec) + indices, counts = np.unique(addresses, return_counts=True) + assert np.sum(counts) == shots + empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float) + empirical_distribution[indices] = counts / shots + assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99 + + +@pytest.mark.parametrize( + "norb, nelec, bitstring_type", + [ + (norb, nelec, bitstring_type) + for (norb, nelec), bitstring_type in itertools.product( + ffsim.testing.generate_norb_nocc(range(1, 5)), BitstringType + ) + ], +) +def test_sample_slater_determinant_spinless( + norb: int, nelec: int, bitstring_type: BitstringType +): + """Test sample Slater determinant, spinless.""" + rng = np.random.default_rng(1234) + shots = 1000 + rotation = ffsim.random.random_unitary(norb, seed=rng) + for occupied_orbitals in itertools.combinations(range(norb), nelec): + rdm = ffsim.slater_determinant_rdms(norb, occupied_orbitals, rotation, rank=1) + vec = ffsim.slater_determinant(norb, occupied_orbitals, rotation) + test_distribution = np.abs(vec) ** 2 + samples = ffsim.sample_slater_determinant( + rdm, norb, nelec, shots=shots, bitstring_type=bitstring_type, seed=rng + ) + addresses = ffsim.strings_to_addresses(samples, norb, nelec) + indices, counts = np.unique(addresses, return_counts=True) + assert np.sum(counts) == shots + empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float) + empirical_distribution[indices] = counts / shots + assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99 + + +def test_sample_slater_determinant_large(): + """Test sample Slater determinant for a larger number of orbitals.""" + norb = 6 + nelec = (3, 2) + + rng = np.random.default_rng(1234) + shots = 5000 + rotation_a = ffsim.random.random_unitary(norb, seed=rng) + rotation_b = ffsim.random.random_unitary(norb, seed=rng) + occupied_orbitals = ((0, 2, 3), (2, 4)) + rdm_a, rdm_b = ffsim.slater_determinant_rdms( + norb, occupied_orbitals, (rotation_a, rotation_b) + ) + vec = ffsim.slater_determinant(norb, occupied_orbitals, (rotation_a, rotation_b)) + test_distribution = np.abs(vec) ** 2 + samples = ffsim.sample_slater_determinant( + (rdm_a, rdm_b), norb, nelec, shots=shots, seed=rng + ) + addresses = ffsim.strings_to_addresses(samples, norb, nelec) + indices, counts = np.unique(addresses, return_counts=True) + assert np.sum(counts) == shots + empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float) + empirical_distribution[indices] = counts / shots + assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99 + + +def test_sample_slater_determinant_restrict(): + """Test sample Slater determinant with subset of orbitals.""" + norb = 8 + nelec = (4, 3) + + shots = 10 + occupied_orbitals = ((0, 2, 3, 5), (2, 3, 4)) + rdm_a, rdm_b = ffsim.slater_determinant_rdms(norb, occupied_orbitals) + samples = ffsim.sample_slater_determinant( + (rdm_a, rdm_b), norb, nelec, orbs=([1, 2, 5], [3, 4, 5]), shots=shots + ) + assert samples == ["011110"] * 10 diff --git a/tests/python/states/slater_test.py b/tests/python/states/slater_test.py index ef0c13bb7..f4c2814f9 100644 --- a/tests/python/states/slater_test.py +++ b/tests/python/states/slater_test.py @@ -19,7 +19,6 @@ import pytest import ffsim -from ffsim.states.bitstring import BitstringType @pytest.mark.parametrize("norb, nelec", ffsim.testing.generate_norb_nocc([4, 5])) @@ -69,118 +68,3 @@ def test_slater_determinant_amplitudes_spinful(norb: int, nelec: tuple[int, int] orbital_rotation=(orb_rot_a, orb_rot_b), ) ffsim.testing.assert_allclose_up_to_global_phase(actual, expected) - - -@pytest.mark.parametrize( - "norb, nelec, bitstring_type", - [ - (norb, nelec, bitstring_type) - for (norb, nelec), bitstring_type in itertools.product( - ffsim.testing.generate_norb_nelec(range(1, 5)), BitstringType - ) - ], -) -def test_sample_slater_determinant_spinful( - norb: int, nelec: tuple[int, int], bitstring_type: BitstringType -): - """Test sample Slater determinant, spinful.""" - rng = np.random.default_rng(1234) - shots = 1000 - for _ in range(min(2, ffsim.dim(norb, nelec))): - rotation_a = ffsim.random.random_unitary(norb, seed=rng) - rotation_b = ffsim.random.random_unitary(norb, seed=rng) - occupied_orbitals = ffsim.testing.random_occupied_orbitals( - norb, nelec, seed=rng - ) - rdm_a, rdm_b = ffsim.slater_determinant_rdms( - norb, occupied_orbitals, (rotation_a, rotation_b) - ) - vec = ffsim.slater_determinant( - norb, occupied_orbitals, (rotation_a, rotation_b) - ) - test_distribution = np.abs(vec) ** 2 - samples = ffsim.sample_slater_determinant( - (rdm_a, rdm_b), - norb, - nelec, - shots=shots, - bitstring_type=bitstring_type, - seed=rng, - ) - addresses = ffsim.strings_to_addresses(samples, norb, nelec) - indices, counts = np.unique(addresses, return_counts=True) - assert np.sum(counts) == shots - empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float) - empirical_distribution[indices] = counts / shots - assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99 - - -@pytest.mark.parametrize( - "norb, nelec, bitstring_type", - [ - (norb, nelec, bitstring_type) - for (norb, nelec), bitstring_type in itertools.product( - ffsim.testing.generate_norb_nocc(range(1, 5)), BitstringType - ) - ], -) -def test_sample_slater_determinant_spinless( - norb: int, nelec: int, bitstring_type: BitstringType -): - """Test sample Slater determinant, spinless.""" - rng = np.random.default_rng(1234) - shots = 1000 - rotation = ffsim.random.random_unitary(norb, seed=rng) - for occupied_orbitals in itertools.combinations(range(norb), nelec): - rdm = ffsim.slater_determinant_rdms(norb, occupied_orbitals, rotation, rank=1) - vec = ffsim.slater_determinant(norb, occupied_orbitals, rotation) - test_distribution = np.abs(vec) ** 2 - samples = ffsim.sample_slater_determinant( - rdm, norb, nelec, shots=shots, bitstring_type=bitstring_type, seed=rng - ) - addresses = ffsim.strings_to_addresses(samples, norb, nelec) - indices, counts = np.unique(addresses, return_counts=True) - assert np.sum(counts) == shots - empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float) - empirical_distribution[indices] = counts / shots - assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99 - - -def test_sample_slater_determinant_large(): - """Test sample Slater determinant for a larger number of orbitals.""" - norb = 6 - nelec = (3, 2) - - rng = np.random.default_rng(1234) - shots = 5000 - rotation_a = ffsim.random.random_unitary(norb, seed=rng) - rotation_b = ffsim.random.random_unitary(norb, seed=rng) - occupied_orbitals = ((0, 2, 3), (2, 4)) - rdm_a, rdm_b = ffsim.slater_determinant_rdms( - norb, occupied_orbitals, (rotation_a, rotation_b) - ) - vec = ffsim.slater_determinant(norb, occupied_orbitals, (rotation_a, rotation_b)) - test_distribution = np.abs(vec) ** 2 - samples = ffsim.sample_slater_determinant( - (rdm_a, rdm_b), norb, nelec, shots=shots, seed=rng - ) - addresses = ffsim.strings_to_addresses(samples, norb, nelec) - indices, counts = np.unique(addresses, return_counts=True) - assert np.sum(counts) == shots - empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float) - empirical_distribution[indices] = counts / shots - assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99 - - -def test_sample_slater_determinant_restrict(): - """Test sample Slater determinant with subset of orbitals.""" - norb = 8 - nelec = (4, 3) - - shots = 10 - occupied_orbitals = ((0, 2, 3, 5), (2, 3, 4)) - rdm_a, rdm_b = ffsim.slater_determinant_rdms(norb, occupied_orbitals) - samples = ffsim.sample_slater_determinant( - (rdm_a, rdm_b), norb, nelec, orbs=([1, 2, 5], [3, 4, 5]), shots=shots - ) - assert samples == ["011110"] * 10