diff --git a/.doctrees/api/ffsim.doctree b/.doctrees/api/ffsim.doctree index 422769acd..e2da26866 100644 Binary files a/.doctrees/api/ffsim.doctree and b/.doctrees/api/ffsim.doctree differ diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle index 30a42c414..7a042d29d 100644 Binary files a/.doctrees/environment.pickle and b/.doctrees/environment.pickle differ diff --git a/.doctrees/nbsphinx/tutorials/01-introduction.ipynb b/.doctrees/nbsphinx/tutorials/01-introduction.ipynb index d895f5df7..46d49f711 100644 --- a/.doctrees/nbsphinx/tutorials/01-introduction.ipynb +++ b/.doctrees/nbsphinx/tutorials/01-introduction.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:48.438642Z", - "iopub.status.busy": "2023-10-26T02:07:48.438372Z", - "iopub.status.idle": "2023-10-26T02:07:48.803616Z", - "shell.execute_reply": "2023-10-26T02:07:48.802850Z" + "iopub.execute_input": "2023-10-26T03:24:59.783652Z", + "iopub.status.busy": "2023-10-26T03:24:59.783016Z", + "iopub.status.idle": "2023-10-26T03:25:00.176594Z", + "shell.execute_reply": "2023-10-26T03:25:00.175809Z" } }, "outputs": [], @@ -62,10 +62,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:48.808117Z", - "iopub.status.busy": "2023-10-26T02:07:48.807767Z", - "iopub.status.idle": "2023-10-26T02:07:48.813016Z", - "shell.execute_reply": "2023-10-26T02:07:48.812442Z" + "iopub.execute_input": "2023-10-26T03:25:00.181575Z", + "iopub.status.busy": "2023-10-26T03:25:00.180306Z", + "iopub.status.idle": "2023-10-26T03:25:00.187040Z", + "shell.execute_reply": "2023-10-26T03:25:00.185457Z" } }, "outputs": [], @@ -93,10 +93,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:48.816542Z", - "iopub.status.busy": "2023-10-26T02:07:48.816279Z", - "iopub.status.idle": "2023-10-26T02:07:48.820531Z", - "shell.execute_reply": "2023-10-26T02:07:48.819938Z" + "iopub.execute_input": "2023-10-26T03:25:00.192215Z", + "iopub.status.busy": "2023-10-26T03:25:00.191152Z", + "iopub.status.idle": "2023-10-26T03:25:00.195500Z", + "shell.execute_reply": "2023-10-26T03:25:00.194940Z" } }, "outputs": [], diff --git a/.doctrees/nbsphinx/tutorials/02-orbital-rotation.ipynb b/.doctrees/nbsphinx/tutorials/02-orbital-rotation.ipynb index 0cbf6f846..ea9bcf629 100644 --- a/.doctrees/nbsphinx/tutorials/02-orbital-rotation.ipynb +++ b/.doctrees/nbsphinx/tutorials/02-orbital-rotation.ipynb @@ -43,10 +43,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:50.556417Z", - "iopub.status.busy": "2023-10-26T02:07:50.555974Z", - "iopub.status.idle": "2023-10-26T02:07:50.909017Z", - "shell.execute_reply": "2023-10-26T02:07:50.908336Z" + "iopub.execute_input": "2023-10-26T03:25:02.061444Z", + "iopub.status.busy": "2023-10-26T03:25:02.061054Z", + "iopub.status.idle": "2023-10-26T03:25:02.440870Z", + "shell.execute_reply": "2023-10-26T03:25:02.439932Z" } }, "outputs": [], @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:50.913648Z", - "iopub.status.busy": "2023-10-26T02:07:50.913132Z", - "iopub.status.idle": "2023-10-26T02:07:50.943215Z", - "shell.execute_reply": "2023-10-26T02:07:50.942611Z" + "iopub.execute_input": "2023-10-26T03:25:02.446767Z", + "iopub.status.busy": "2023-10-26T03:25:02.446377Z", + "iopub.status.idle": "2023-10-26T03:25:02.488440Z", + "shell.execute_reply": "2023-10-26T03:25:02.487381Z" } }, "outputs": [], @@ -158,10 +158,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:50.947280Z", - "iopub.status.busy": "2023-10-26T02:07:50.946127Z", - "iopub.status.idle": "2023-10-26T02:07:50.958957Z", - "shell.execute_reply": "2023-10-26T02:07:50.958357Z" + "iopub.execute_input": "2023-10-26T03:25:02.493706Z", + "iopub.status.busy": "2023-10-26T03:25:02.492977Z", + "iopub.status.idle": "2023-10-26T03:25:02.510191Z", + "shell.execute_reply": "2023-10-26T03:25:02.509350Z" } }, "outputs": [], @@ -201,10 +201,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:50.963316Z", - "iopub.status.busy": "2023-10-26T02:07:50.962221Z", - "iopub.status.idle": "2023-10-26T02:07:50.968679Z", - "shell.execute_reply": "2023-10-26T02:07:50.968142Z" + "iopub.execute_input": "2023-10-26T03:25:02.514047Z", + "iopub.status.busy": "2023-10-26T03:25:02.513639Z", + "iopub.status.idle": "2023-10-26T03:25:02.520479Z", + "shell.execute_reply": "2023-10-26T03:25:02.519765Z" } }, "outputs": [], diff --git a/.doctrees/nbsphinx/tutorials/03-double-factorized.ipynb b/.doctrees/nbsphinx/tutorials/03-double-factorized.ipynb index f1047a672..71bf1c92e 100644 --- a/.doctrees/nbsphinx/tutorials/03-double-factorized.ipynb +++ b/.doctrees/nbsphinx/tutorials/03-double-factorized.ipynb @@ -43,10 +43,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:52.818189Z", - "iopub.status.busy": "2023-10-26T02:07:52.817955Z", - "iopub.status.idle": "2023-10-26T02:07:53.260463Z", - "shell.execute_reply": "2023-10-26T02:07:53.259837Z" + "iopub.execute_input": "2023-10-26T03:25:04.304070Z", + "iopub.status.busy": "2023-10-26T03:25:04.303699Z", + "iopub.status.idle": "2023-10-26T03:25:04.781195Z", + "shell.execute_reply": "2023-10-26T03:25:04.780246Z" } }, "outputs": [ @@ -92,10 +92,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.264180Z", - "iopub.status.busy": "2023-10-26T02:07:53.263406Z", - "iopub.status.idle": "2023-10-26T02:07:53.270510Z", - "shell.execute_reply": "2023-10-26T02:07:53.269965Z" + "iopub.execute_input": "2023-10-26T03:25:04.785601Z", + "iopub.status.busy": "2023-10-26T03:25:04.785014Z", + "iopub.status.idle": "2023-10-26T03:25:04.792742Z", + "shell.execute_reply": "2023-10-26T03:25:04.792080Z" } }, "outputs": [ @@ -106,28 +106,28 @@ "Original representation\n", "-----------------------\n", "One-body tensor:\n", - "[[-8.27478830e-01 -8.52909490e-17]\n", - " [-5.57029092e-17 -6.77238770e-01]]\n", + "[[-8.27478830e-01 -1.09243819e-16]\n", + " [-7.48351655e-17 -6.77238770e-01]]\n", "\n", "Two-body tensor:\n", - "[[[[5.23173938e-01 3.58782168e-17]\n", - " [3.58782168e-17 5.33545754e-01]]\n", + "[[[[ 5.23173938e-01 -5.00678144e-19]\n", + " [-5.00678144e-19 5.33545754e-01]]\n", "\n", - " [[2.49859013e-17 2.48240570e-01]\n", - " [2.48240570e-01 4.83067333e-17]]]\n", + " [[ 5.85364508e-18 2.48240570e-01]\n", + " [ 2.48240570e-01 -1.17688164e-17]]]\n", "\n", "\n", - " [[[2.49859013e-17 2.48240570e-01]\n", - " [2.48240570e-01 4.83067333e-17]]\n", + " [[[ 5.85364508e-18 2.48240570e-01]\n", + " [ 2.48240570e-01 -1.17688164e-17]]\n", "\n", - " [[5.33545754e-01 4.01841799e-17]\n", - " [4.01841799e-17 5.53132024e-01]]]]\n", + " [[ 5.33545754e-01 1.05429868e-17]\n", + " [ 1.05429868e-17 5.53132024e-01]]]]\n", "\n", "Double-factorized representation\n", "--------------------------------\n", "One-body tensor:\n", - "[[-1.21318608e+00 -1.27383424e-16]\n", - " [-8.82879498e-17 -1.07792507e+00]]\n", + "[[-1.21318608e+00 -1.03109072e-16]\n", + " [-8.30334814e-17 -1.07792507e+00]]\n", "\n", "Diagonal Coulomb matrices:\n", "[[[ 5.14653029e-01 5.33545754e-01]\n", @@ -136,18 +136,18 @@ " [[ 2.48240570e-01 -2.48240570e-01]\n", " [-2.48240570e-01 2.48240570e-01]]\n", "\n", - " [[ 2.27521846e-62 -1.39236953e-32]\n", - " [-1.39236953e-32 8.52090881e-03]]]\n", + " [[ 1.44655364e-30 -1.11022302e-16]\n", + " [-1.11022302e-16 8.52090881e-03]]]\n", "\n", "Orbital rotations:\n", "[[[ 1.00000000e+00 0.00000000e+00]\n", " [ 0.00000000e+00 1.00000000e+00]]\n", "\n", - " [[-7.07106781e-01 -7.07106781e-01]\n", - " [ 7.07106781e-01 -7.07106781e-01]]\n", + " [[-7.07106781e-01 7.07106781e-01]\n", + " [ 7.07106781e-01 7.07106781e-01]]\n", "\n", - " [[-1.27830444e-15 -1.00000000e+00]\n", - " [-1.00000000e+00 1.27830444e-15]]]\n" + " [[ 7.45733039e-16 -1.00000000e+00]\n", + " [-1.00000000e+00 -7.45733039e-16]]]\n" ] } ], @@ -226,10 +226,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.273496Z", - "iopub.status.busy": "2023-10-26T02:07:53.273047Z", - "iopub.status.idle": "2023-10-26T02:07:53.278381Z", - "shell.execute_reply": "2023-10-26T02:07:53.277882Z" + "iopub.execute_input": "2023-10-26T03:25:04.795926Z", + "iopub.status.busy": "2023-10-26T03:25:04.795491Z", + "iopub.status.idle": "2023-10-26T03:25:04.801189Z", + "shell.execute_reply": "2023-10-26T03:25:04.800506Z" } }, "outputs": [], @@ -284,10 +284,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.281185Z", - "iopub.status.busy": "2023-10-26T02:07:53.280756Z", - "iopub.status.idle": "2023-10-26T02:07:53.284978Z", - "shell.execute_reply": "2023-10-26T02:07:53.284487Z" + "iopub.execute_input": "2023-10-26T03:25:04.804523Z", + "iopub.status.busy": "2023-10-26T03:25:04.804146Z", + "iopub.status.idle": "2023-10-26T03:25:04.808538Z", + "shell.execute_reply": "2023-10-26T03:25:04.807583Z" } }, "outputs": [], @@ -324,10 +324,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.388945Z", - "iopub.status.busy": "2023-10-26T02:07:53.388090Z", - "iopub.status.idle": "2023-10-26T02:07:53.396526Z", - "shell.execute_reply": "2023-10-26T02:07:53.395944Z" + "iopub.execute_input": "2023-10-26T03:25:04.919171Z", + "iopub.status.busy": "2023-10-26T03:25:04.918322Z", + "iopub.status.idle": "2023-10-26T03:25:04.924939Z", + "shell.execute_reply": "2023-10-26T03:25:04.924221Z" } }, "outputs": [ @@ -335,7 +335,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Hartree Fock energy: -0.8377963825937084\n" + "Hartree Fock energy: -0.837796382593709\n" ] } ], @@ -363,10 +363,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.399568Z", - "iopub.status.busy": "2023-10-26T02:07:53.398866Z", - "iopub.status.idle": "2023-10-26T02:07:53.409638Z", - "shell.execute_reply": "2023-10-26T02:07:53.408966Z" + "iopub.execute_input": "2023-10-26T03:25:04.928509Z", + "iopub.status.busy": "2023-10-26T03:25:04.927709Z", + "iopub.status.idle": "2023-10-26T03:25:04.940525Z", + "shell.execute_reply": "2023-10-26T03:25:04.939470Z" } }, "outputs": [ @@ -374,7 +374,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of evolved state w.r.t. initial state: 0.9696296369955066\n" + "Fidelity of evolved state w.r.t. initial state: 0.9696296369955065\n" ] } ], @@ -405,10 +405,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.412511Z", - "iopub.status.busy": "2023-10-26T02:07:53.412280Z", - "iopub.status.idle": "2023-10-26T02:07:53.421504Z", - "shell.execute_reply": "2023-10-26T02:07:53.420828Z" + "iopub.execute_input": "2023-10-26T03:25:04.943583Z", + "iopub.status.busy": "2023-10-26T03:25:04.943383Z", + "iopub.status.idle": "2023-10-26T03:25:04.954684Z", + "shell.execute_reply": "2023-10-26T03:25:04.954070Z" } }, "outputs": [ @@ -416,7 +416,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9990275744083494\n" + "Fidelity of Trotter-evolved state with exact state: 0.9990275744083491\n" ] } ], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.425218Z", - "iopub.status.busy": "2023-10-26T02:07:53.424981Z", - "iopub.status.idle": "2023-10-26T02:07:53.477780Z", - "shell.execute_reply": "2023-10-26T02:07:53.476929Z" + "iopub.execute_input": "2023-10-26T03:25:04.958010Z", + "iopub.status.busy": "2023-10-26T03:25:04.957439Z", + "iopub.status.idle": "2023-10-26T03:25:05.023175Z", + "shell.execute_reply": "2023-10-26T03:25:05.022495Z" } }, "outputs": [ @@ -457,7 +457,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9999906233109686\n" + "Fidelity of Trotter-evolved state with exact state: 0.999990623310968\n" ] } ], @@ -489,10 +489,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.480932Z", - "iopub.status.busy": "2023-10-26T02:07:53.480683Z", - "iopub.status.idle": "2023-10-26T02:07:53.519491Z", - "shell.execute_reply": "2023-10-26T02:07:53.518584Z" + "iopub.execute_input": "2023-10-26T03:25:05.026726Z", + "iopub.status.busy": "2023-10-26T03:25:05.026166Z", + "iopub.status.idle": "2023-10-26T03:25:05.069284Z", + "shell.execute_reply": "2023-10-26T03:25:05.068579Z" } }, "outputs": [ @@ -500,7 +500,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9999906233109686\n" + "Fidelity of Trotter-evolved state with exact state: 0.999990623310968\n" ] } ], @@ -531,10 +531,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.522606Z", - "iopub.status.busy": "2023-10-26T02:07:53.522360Z", - "iopub.status.idle": "2023-10-26T02:07:53.540773Z", - "shell.execute_reply": "2023-10-26T02:07:53.540197Z" + "iopub.execute_input": "2023-10-26T03:25:05.072929Z", + "iopub.status.busy": "2023-10-26T03:25:05.072426Z", + "iopub.status.idle": "2023-10-26T03:25:05.090187Z", + "shell.execute_reply": "2023-10-26T03:25:05.089527Z" } }, "outputs": [ @@ -542,7 +542,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9999999336740067\n" + "Fidelity of Trotter-evolved state with exact state: 0.9999999336740071\n" ] } ], diff --git a/.doctrees/nbsphinx/tutorials/04-lucj.ipynb b/.doctrees/nbsphinx/tutorials/04-lucj.ipynb index 55f0767ac..686d48943 100644 --- a/.doctrees/nbsphinx/tutorials/04-lucj.ipynb +++ b/.doctrees/nbsphinx/tutorials/04-lucj.ipynb @@ -14,10 +14,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:55.873815Z", - "iopub.status.busy": "2023-10-26T02:07:55.873439Z", - "iopub.status.idle": "2023-10-26T02:07:56.479141Z", - "shell.execute_reply": "2023-10-26T02:07:56.478489Z" + "iopub.execute_input": "2023-10-26T03:25:07.270646Z", + "iopub.status.busy": "2023-10-26T03:25:07.270374Z", + "iopub.status.idle": "2023-10-26T03:25:07.945159Z", + "shell.execute_reply": "2023-10-26T03:25:07.944558Z" } }, "outputs": [ @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:56.483537Z", - "iopub.status.busy": "2023-10-26T02:07:56.483180Z", - "iopub.status.idle": "2023-10-26T02:07:57.119035Z", - "shell.execute_reply": "2023-10-26T02:07:57.118431Z" + "iopub.execute_input": "2023-10-26T03:25:07.949463Z", + "iopub.status.busy": "2023-10-26T03:25:07.948723Z", + "iopub.status.idle": "2023-10-26T03:25:08.177544Z", + "shell.execute_reply": "2023-10-26T03:25:08.176470Z" } }, "outputs": [ @@ -121,14 +121,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(CCSD) = -77.49387212754473 E_corr = -0.04824536314851458\n" + "E(CCSD) = -77.49387212754476 E_corr = -0.04824536314851423\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialialization: -77.46975600021715\n" + "Energy at initialialization: -77.46975600021705\n" ] } ], @@ -173,10 +173,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:57.122836Z", - "iopub.status.busy": "2023-10-26T02:07:57.122434Z", - "iopub.status.idle": "2023-10-26T02:08:01.106260Z", - "shell.execute_reply": "2023-10-26T02:08:01.105660Z" + "iopub.execute_input": "2023-10-26T03:25:08.181458Z", + "iopub.status.busy": "2023-10-26T03:25:08.181221Z", + "iopub.status.idle": "2023-10-26T03:25:13.608506Z", + "shell.execute_reply": "2023-10-26T03:25:13.607827Z" } }, "outputs": [ @@ -188,12 +188,12 @@ " message: STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT\n", " success: False\n", " status: 1\n", - " fun: -77.51556160098401\n", - " x: [-1.571e-01 1.943e-01 ... -6.051e-01 1.995e-01]\n", + " fun: -77.51590455311234\n", + " x: [-1.414e-01 1.960e-01 ... 4.266e-01 2.929e-01]\n", " nit: 9\n", - " jac: [-8.149e-03 -4.046e-03 ... -9.504e-03 1.670e-03]\n", - " nfev: 1168\n", - " njev: 16\n", + " jac: [ 5.865e-03 -7.506e-03 ... 3.223e-03 -4.840e-03]\n", + " nfev: 1314\n", + " njev: 18\n", " hess_inv: <72x72 LbfgsInvHessProduct with dtype=float64>\n" ] } @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:01.110339Z", - "iopub.status.busy": "2023-10-26T02:08:01.109853Z", - "iopub.status.idle": "2023-10-26T02:08:04.588432Z", - "shell.execute_reply": "2023-10-26T02:08:04.587821Z" + "iopub.execute_input": "2023-10-26T03:25:13.612077Z", + "iopub.status.busy": "2023-10-26T03:25:13.611868Z", + "iopub.status.idle": "2023-10-26T03:25:18.148485Z", + "shell.execute_reply": "2023-10-26T03:25:18.147761Z" } }, "outputs": [ @@ -261,10 +261,10 @@ " message: STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT\n", " success: False\n", " status: 1\n", - " fun: -77.46361071169422\n", - " x: [-3.343e-01 6.243e-02 ... -4.956e-01 2.145e-01]\n", + " fun: -77.46209857715131\n", + " x: [-3.732e-01 1.086e-01 ... 6.308e-01 2.626e-01]\n", " nit: 17\n", - " jac: [-2.743e-04 -6.381e-04 ... -2.174e-04 2.473e-04]\n", + " jac: [ 4.181e-03 3.695e-05 ... -9.379e-04 -9.024e-04]\n", " nfev: 1034\n", " njev: 22\n", " hess_inv: <46x46 LbfgsInvHessProduct with dtype=float64>\n" diff --git a/.doctrees/nbsphinx/tutorials/05-entanglement-forging.ipynb b/.doctrees/nbsphinx/tutorials/05-entanglement-forging.ipynb index 2c66256e8..b5edf42ea 100644 --- a/.doctrees/nbsphinx/tutorials/05-entanglement-forging.ipynb +++ b/.doctrees/nbsphinx/tutorials/05-entanglement-forging.ipynb @@ -14,10 +14,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:06.674994Z", - "iopub.status.busy": "2023-10-26T02:08:06.674598Z", - "iopub.status.idle": "2023-10-26T02:08:07.442351Z", - "shell.execute_reply": "2023-10-26T02:08:07.441711Z" + "iopub.execute_input": "2023-10-26T03:25:19.771469Z", + "iopub.status.busy": "2023-10-26T03:25:19.770921Z", + "iopub.status.idle": "2023-10-26T03:25:20.442937Z", + "shell.execute_reply": "2023-10-26T03:25:20.442231Z" } }, "outputs": [ @@ -90,10 +90,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:07.446389Z", - "iopub.status.busy": "2023-10-26T02:08:07.445971Z", - "iopub.status.idle": "2023-10-26T02:08:07.472817Z", - "shell.execute_reply": "2023-10-26T02:08:07.472029Z" + "iopub.execute_input": "2023-10-26T03:25:20.446407Z", + "iopub.status.busy": "2023-10-26T03:25:20.445993Z", + "iopub.status.idle": "2023-10-26T03:25:20.473909Z", + "shell.execute_reply": "2023-10-26T03:25:20.473211Z" } }, "outputs": [ @@ -101,7 +101,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialialization: -75.68366174447617\n" + "Energy at initialialization: -75.6836617444762\n" ] } ], @@ -135,10 +135,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:07.476415Z", - "iopub.status.busy": "2023-10-26T02:08:07.475772Z", - "iopub.status.idle": "2023-10-26T02:08:09.554066Z", - "shell.execute_reply": "2023-10-26T02:08:09.553004Z" + "iopub.execute_input": "2023-10-26T03:25:20.476941Z", + "iopub.status.busy": "2023-10-26T03:25:20.476556Z", + "iopub.status.idle": "2023-10-26T03:25:23.102812Z", + "shell.execute_reply": "2023-10-26T03:25:23.102071Z" } }, "outputs": [ @@ -150,8 +150,8 @@ " message: Maximum number of function evaluations has been exceeded.\n", " success: False\n", " status: 2\n", - " fun: -75.69448131176944\n", - " x: [ 1.354e+00 9.651e-02 -1.863e-03 1.095e+00 -2.132e-01]\n", + " fun: -75.69434198370479\n", + " x: [ 1.352e+00 8.664e-02 -2.940e-03 1.104e+00 -1.913e-01]\n", " nfev: 100\n", " maxcv: 0.0\n" ] diff --git a/.doctrees/nbsphinx/tutorials/06-fermion-operator.ipynb b/.doctrees/nbsphinx/tutorials/06-fermion-operator.ipynb index d1628bddc..1f9f34c3c 100644 --- a/.doctrees/nbsphinx/tutorials/06-fermion-operator.ipynb +++ b/.doctrees/nbsphinx/tutorials/06-fermion-operator.ipynb @@ -29,10 +29,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.260324Z", - "iopub.status.busy": "2023-10-26T02:08:11.259231Z", - "iopub.status.idle": "2023-10-26T02:08:11.612220Z", - "shell.execute_reply": "2023-10-26T02:08:11.611583Z" + "iopub.execute_input": "2023-10-26T03:25:24.711706Z", + "iopub.status.busy": "2023-10-26T03:25:24.711416Z", + "iopub.status.idle": "2023-10-26T03:25:25.058776Z", + "shell.execute_reply": "2023-10-26T03:25:25.057845Z" } }, "outputs": [ @@ -76,10 +76,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.617038Z", - "iopub.status.busy": "2023-10-26T02:08:11.615862Z", - "iopub.status.idle": "2023-10-26T02:08:11.622528Z", - "shell.execute_reply": "2023-10-26T02:08:11.621971Z" + "iopub.execute_input": "2023-10-26T03:25:25.062868Z", + "iopub.status.busy": "2023-10-26T03:25:25.062223Z", + "iopub.status.idle": "2023-10-26T03:25:25.067633Z", + "shell.execute_reply": "2023-10-26T03:25:25.066988Z" } }, "outputs": [ @@ -110,10 +110,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.626893Z", - "iopub.status.busy": "2023-10-26T02:08:11.625817Z", - "iopub.status.idle": "2023-10-26T02:08:11.633144Z", - "shell.execute_reply": "2023-10-26T02:08:11.632651Z" + "iopub.execute_input": "2023-10-26T03:25:25.072588Z", + "iopub.status.busy": "2023-10-26T03:25:25.072227Z", + "iopub.status.idle": "2023-10-26T03:25:25.078169Z", + "shell.execute_reply": "2023-10-26T03:25:25.077541Z" } }, "outputs": [ @@ -121,17 +121,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", - " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", + " (des_a(3), des_b(3)): 0.0625,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", + " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", - " (cre_a(3), des_a(0)): -0.5,\n", + " (cre_b(2)): 0-0.25j,\n", + " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,\n", - " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", + " (cre_a(3), des_a(0)): -0.5,\n", " (cre_a(0), des_a(3)): 1,\n", - " (cre_b(2)): 0-0.25j,\n", - " (des_a(3), des_b(3)): 0.0625\n", + " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j\n", "})" ] }, @@ -169,10 +169,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.637410Z", - "iopub.status.busy": "2023-10-26T02:08:11.636331Z", - "iopub.status.idle": "2023-10-26T02:08:11.642953Z", - "shell.execute_reply": "2023-10-26T02:08:11.642452Z" + "iopub.execute_input": "2023-10-26T03:25:25.081157Z", + "iopub.status.busy": "2023-10-26T03:25:25.080738Z", + "iopub.status.idle": "2023-10-26T03:25:25.085419Z", + "shell.execute_reply": "2023-10-26T03:25:25.084604Z" } }, "outputs": [ @@ -180,17 +180,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): -1,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", - " (cre_a(0), des_a(3), cre_b(2)): 2,\n", + " (des_a(3), des_b(3)): 0-1.25j,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", + " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", + " (cre_b(2)): -5,\n", + " (cre_a(0), des_a(3), cre_b(2)): 2,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,\n", - " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", " (cre_a(0), des_a(3)): 0-6j,\n", - " (cre_b(2)): -5,\n", - " (des_a(3), des_b(3)): 0-1.25j\n", + " (cre_a(3), des_a(0), cre_b(2)): -1\n", "})" ] }, @@ -219,10 +219,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.647164Z", - "iopub.status.busy": "2023-10-26T02:08:11.646082Z", - "iopub.status.idle": "2023-10-26T02:08:11.652325Z", - "shell.execute_reply": "2023-10-26T02:08:11.651735Z" + "iopub.execute_input": "2023-10-26T03:25:25.089883Z", + "iopub.status.busy": "2023-10-26T03:25:25.089433Z", + "iopub.status.idle": "2023-10-26T03:25:25.093849Z", + "shell.execute_reply": "2023-10-26T03:25:25.093226Z" } }, "outputs": [ @@ -230,16 +230,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", - " (des_b(3), des_a(3)): 0+1.25j,\n", - " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", " (cre_b(1), cre_a(4), des_b(5)): -12+12j,\n", + " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", - " (cre_b(2), cre_a(3), des_a(0)): -1,\n", " (cre_b(2)): -5,\n", + " (des_b(3), des_a(3)): 0+1.25j,\n", + " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", " (cre_b(2), cre_a(0), des_a(3)): 2,\n", - " (cre_a(0), des_a(3)): 0-6j\n", + " (cre_a(3), des_a(0)): 0+3j,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_b(2), cre_a(3), des_a(0)): -1\n", "})" ] }, @@ -264,10 +264,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.656487Z", - "iopub.status.busy": "2023-10-26T02:08:11.655436Z", - "iopub.status.idle": "2023-10-26T02:08:11.661850Z", - "shell.execute_reply": "2023-10-26T02:08:11.661256Z" + "iopub.execute_input": "2023-10-26T03:25:25.097033Z", + "iopub.status.busy": "2023-10-26T03:25:25.096581Z", + "iopub.status.idle": "2023-10-26T03:25:25.100603Z", + "shell.execute_reply": "2023-10-26T03:25:25.099965Z" } }, "outputs": [ @@ -297,10 +297,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.666001Z", - "iopub.status.busy": "2023-10-26T02:08:11.664972Z", - "iopub.status.idle": "2023-10-26T02:08:11.672138Z", - "shell.execute_reply": "2023-10-26T02:08:11.671537Z" + "iopub.execute_input": "2023-10-26T03:25:25.108357Z", + "iopub.status.busy": "2023-10-26T03:25:25.107956Z", + "iopub.status.idle": "2023-10-26T03:25:25.113129Z", + "shell.execute_reply": "2023-10-26T03:25:25.112549Z" } }, "outputs": [ @@ -340,21 +340,21 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.676207Z", - "iopub.status.busy": "2023-10-26T02:08:11.675101Z", - "iopub.status.idle": "2023-10-26T02:08:11.683397Z", - "shell.execute_reply": "2023-10-26T02:08:11.682849Z" + "iopub.execute_input": "2023-10-26T03:25:25.116235Z", + "iopub.status.busy": "2023-10-26T03:25:25.115784Z", + "iopub.status.idle": "2023-10-26T03:25:25.122966Z", + "shell.execute_reply": "2023-10-26T03:25:25.122306Z" } }, "outputs": [ { "data": { "text/plain": [ - "array([0. +0.j , 0. +0.j ,\n", - " 0. +0.j , 0. +0.j ,\n", - " 0.05286796+0.02857342j, 0. +0.j ,\n", - " 0. +0.j , 0. +0.j ,\n", - " 0. +0.j ])" + "array([ 0. +0.j , 0. +0.j ,\n", + " 0. +0.j , 0. +0.j ,\n", + " -0.07354168-0.04339062j, 0. +0.j ,\n", + " 0. +0.j , 0. +0.j ,\n", + " 0. +0.j ])" ] }, "execution_count": 8, @@ -379,10 +379,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.687584Z", - "iopub.status.busy": "2023-10-26T02:08:11.686512Z", - "iopub.status.idle": "2023-10-26T02:08:11.700534Z", - "shell.execute_reply": "2023-10-26T02:08:11.699990Z" + "iopub.execute_input": "2023-10-26T03:25:25.126078Z", + "iopub.status.busy": "2023-10-26T03:25:25.125559Z", + "iopub.status.idle": "2023-10-26T03:25:25.142346Z", + "shell.execute_reply": "2023-10-26T03:25:25.141677Z" } }, "outputs": [ diff --git a/.doctrees/tutorials/03-double-factorized.doctree b/.doctrees/tutorials/03-double-factorized.doctree index 31edac0e7..dde9bd067 100644 Binary files a/.doctrees/tutorials/03-double-factorized.doctree and b/.doctrees/tutorials/03-double-factorized.doctree differ diff --git a/.doctrees/tutorials/04-lucj.doctree b/.doctrees/tutorials/04-lucj.doctree index aae4be52d..fbd09a02e 100644 Binary files a/.doctrees/tutorials/04-lucj.doctree and b/.doctrees/tutorials/04-lucj.doctree differ diff --git a/.doctrees/tutorials/05-entanglement-forging.doctree b/.doctrees/tutorials/05-entanglement-forging.doctree index ee0680a4a..95c6f054c 100644 Binary files a/.doctrees/tutorials/05-entanglement-forging.doctree and b/.doctrees/tutorials/05-entanglement-forging.doctree differ diff --git a/.doctrees/tutorials/06-fermion-operator.doctree b/.doctrees/tutorials/06-fermion-operator.doctree index d18001416..90e20e4bd 100644 Binary files a/.doctrees/tutorials/06-fermion-operator.doctree and b/.doctrees/tutorials/06-fermion-operator.doctree differ diff --git a/api/ffsim.html b/api/ffsim.html index 1a957626c..413da8645 100644 --- a/api/ffsim.html +++ b/api/ffsim.html @@ -305,22 +305,81 @@
import ffsim
 
-op = ffsim.FermionOperator(
+op1 = ffsim.FermionOperator(
     {
         (ffsim.cre_a(0), ffsim.des_a(3)): 0.5,
         (ffsim.cre_a(3), ffsim.des_a(0)): -0.25,
         (ffsim.cre_b(1), ffsim.des_b(5), ffsim.cre_a(4)): 1 + 1j,
     }
 )
-op
+op1
 
FermionOperator({
-    (cre_b(1), des_b(5), cre_a(4)): 1+1j,
+    (cre_a(3), des_a(0)): -0.25,
     (cre_a(0), des_a(3)): 0.5,
-    (cre_a(3), des_a(0)): -0.25
+    (cre_b(1), des_b(5), cre_a(4)): 1+1j
+})
+
+
+
+ +
+
+
2 * op1
+
+
+
+
+
FermionOperator({
+    (cre_a(0), des_a(3)): 1,
+    (cre_b(1), des_b(5), cre_a(4)): 2+2j,
+    (cre_a(3), des_a(0)): -0.5
+})
+
+
+
+
+
+
+
op2 = ffsim.FermionOperator(
+    {
+        (ffsim.cre_b(2),): 1j,
+        (ffsim.des_a(3), ffsim.des_b(3)): -0.25,
+    }
+)
+op1 + op2
+
+
+
+
+
FermionOperator({
+    (des_a(3), des_b(3)): -0.25,
+    (cre_a(3), des_a(0)): -0.25,
+    (cre_b(2)): 0+1j,
+    (cre_a(0), des_a(3)): 0.5,
+    (cre_b(1), des_b(5), cre_a(4)): 1+1j
+})
+
+
+
+
+
+
+
op1 * op2
+
+
+
+
+
FermionOperator({
+    (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,
+    (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,
+    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,
+    (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,
+    (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,
+    (cre_a(3), des_a(0), cre_b(2)): 0-0.25j
 })
 
diff --git a/searchindex.js b/searchindex.js index 8fa9ff0f8..f258348b8 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["api/ffsim", "api/ffsim.contract", "api/ffsim.linalg", "api/ffsim.random", "api/ffsim.testing", "index", "tutorials/01-introduction", "tutorials/02-orbital-rotation", "tutorials/03-double-factorized", "tutorials/04-lucj", "tutorials/05-entanglement-forging", "tutorials/06-fermion-operator"], "filenames": ["api/ffsim.rst", "api/ffsim.contract.rst", "api/ffsim.linalg.rst", "api/ffsim.random.rst", "api/ffsim.testing.rst", "index.rst", "tutorials/01-introduction.ipynb", "tutorials/02-orbital-rotation.ipynb", "tutorials/03-double-factorized.ipynb", "tutorials/04-lucj.ipynb", "tutorials/05-entanglement-forging.ipynb", "tutorials/06-fermion-operator.ipynb"], "titles": ["ffsim", "ffsim.contract", "ffsim.linalg", "ffsim.random", "ffsim.testing", "Welcome to ffsim\u2019s documentation!", "Introduction to ffsim", "Orbital rotations and quadratic Hamiltonians", "Diagonal Coulomb operators and double-factorized Trotter simulation", "The local unitary cluster Jastrow (LUCJ) ansatz", "Entanglement forging", "The FermionOperator class"], "terms": {"i": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11], "softwar": [0, 5, 6], "librari": [0, 5, 6], "fast": 0, "simul": [0, 5, 6, 7, 9, 10], "fermion": [0, 5, 6, 7, 9, 11], "quantum": [0, 5, 6, 8, 9], "circuit": [0, 5, 6], "class": [0, 3, 5, 6, 9], "doublefactorizedhamiltonian": [0, 5, 8], "one_body_tensor": [0, 7, 8], "diag_coulomb_mat": [0, 8], "orbital_rot": [0, 1, 6, 7, 8], "constant": [0, 8, 9], "0": [0, 7, 8, 9, 10, 11], "z_represent": [0, 1], "fals": [0, 1, 2, 9, 10, 11], "sourc": [0, 1, 2, 3, 4], "base": [0, 2, 9, 10], "object": [0, 2, 9, 11], "A": [0, 1, 2, 3, 4, 7, 8, 9, 11], "hamiltonian": [0, 5, 9, 10], "doubl": [0, 2, 5, 9], "factor": [0, 2, 5, 9], "form": [0, 1, 2, 7, 8, 9, 11], "low": [0, 2, 6], "rank": [0, 2, 3], "decomposit": [0, 2], "The": [0, 1, 2, 3, 4, 5, 6, 7, 8], "molecular": [0, 9, 10], "h": [0, 8, 9, 10], "sum_": [0, 1, 2, 7, 8, 9], "pq": [0, 2, 8], "sigma": [0, 1, 7, 8, 9], "kappa_": 0, "dagger_": [0, 7, 8], "p": [0, 2, 8, 9], "a_": [0, 7, 8, 11], "q": [0, 8], "frac12": [0, 8, 9], "sum_t": 0, "ij": [0, 1, 2, 7, 8, 9], "tau": [0, 1, 8, 9], "z": [0, 1, 2, 5, 6, 11], "t": [0, 2, 7, 8], "_": [0, 2, 7, 8, 9], "n": [0, 2, 6, 7, 8, 9], "j": [0, 1, 7, 8, 9, 11], "text": [0, 8], "where": [0, 1, 2, 7, 8, 9], "u": [0, 1, 2], "pi": [0, 10], "qi": 0, "here": [0, 2, 6, 7, 8, 9], "each": [0, 2, 6, 8, 9, 11], "unitari": [0, 1, 2, 3, 5, 7, 8], "matrix": [0, 1, 2, 3, 6, 7, 8, 9, 11], "real": [0, 1, 2, 3, 7, 8, 9, 10], "symmetr": [0, 1, 2, 3, 8, 9], "represent": [0, 1, 2, 6, 11], "an": [0, 1, 2, 3, 6, 7, 8, 9, 11], "altern": [0, 8], "sometim": 0, "yield": [0, 2, 8, 9], "simpler": 0, "under": 0, "jordan": 0, "wigner": 0, "transform": [0, 1, 6, 7], "number": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "oper": [0, 1, 2, 5, 7, 9, 10, 11], "take": [0, 6, 9], "frac": 0, "1": [0, 2, 3, 6, 7, 8, 9, 10, 11], "2": [0, 1, 2, 3, 6, 7, 8, 9, 10, 11], "pauli": 0, "rotat": [0, 1, 2, 5, 6, 8, 9], "basi": [0, 7, 8, 9, 10], "obtain": [0, 7, 8, 9], "rewrit": 0, "two": [0, 2, 3, 8, 9, 10], "bodi": [0, 1, 2, 3, 8, 9, 10], "part": [0, 2], "term": [0, 1, 2, 8, 9, 11], "updat": [0, 8], "one": [0, 1, 2, 6, 8, 9, 10], "appropri": 0, "kappa": 0, "frac18": 0, "asterisk": 0, "denot": [0, 1, 7], "summat": 0, "over": 0, "indic": [0, 2, 9, 11], "neq": [0, 1], "tensor": [0, 1, 2, 3, 8, 9, 10], "type": [0, 1, 2, 3, 4], "np": [0, 3, 4, 7, 8, 9, 10], "ndarrai": [0, 1, 2, 3, 8], "diagon": [0, 1, 2, 5, 7, 9], "coulomb": [0, 1, 2, 5, 9], "matric": [0, 1, 2, 7, 8, 9], "orbit": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11], "float": [0, 2, 3, 8], "whether": [0, 1, 2, 11], "rather": [0, 6], "than": [0, 5, 6, 9], "bool": [0, 1, 2], "static": 0, "from_molecular_hamiltonian": [0, 8], "tol": [0, 2], "1e": [0, 2], "08": [0, 2], "max_vec": [0, 2], "none": [0, 1, 2, 3, 4], "optim": [0, 2, 9, 10], "method": [0, 2, 9, 10], "l": [0, 2, 8, 9], "bfg": [0, 2, 9], "b": [0, 2, 7, 9], "option": [0, 1, 2, 3, 9, 10], "diag_coulomb_mask": [0, 2], "choleski": [0, 2], "true": [0, 2, 6, 11], "act": [0, 11], "h_": [0, 2, 8], "pqr": [0, 2, 8], "r": [0, 2, 8], "": [0, 2, 6, 8, 9, 10, 11], "decompos": [0, 2, 8], "ar": [0, 1, 2, 3, 6, 7, 8, 9, 11], "output": [0, 8, 9], "guarante": 0, "so": [0, 2, 7, 8, 9, 11], "depend": [0, 2, 6], "allow": [0, 2, 9], "error": [0, 2], "threshold": [0, 2], "larger": [0, 2, 11], "lead": 0, "smaller": [0, 2, 8, 11], "furthermor": [0, 2], "max_rank": 0, "paramet": [0, 1, 2, 3, 4, 9, 10], "specifi": [0, 2, 9], "upper": [0, 2, 9], "bound": [0, 2], "default": [0, 2, 3], "behavior": [0, 2, 3], "thi": [0, 2, 5, 6, 7, 8, 9, 10], "routin": [0, 2, 6, 11], "perform": [0, 2, 7, 8], "straightforward": [0, 2], "exact": [0, 2, 6, 8], "nest": [0, 2], "eigenvalu": [0, 2, 7], "addition": [0, 2], "can": [0, 2, 5, 6, 7, 8, 9, 11], "choos": [0, 2, 6, 9], "coeffici": [0, 1, 2, 7, 9, 11], "store": [0, 2, 8, 9], "achiev": [0, 2, 8], "compress": [0, 2], "enabl": [0, 2], "set": [0, 2, 6, 7, 8, 9], "attempt": [0, 2], "minim": [0, 2, 9, 10], "least": [0, 2], "squar": [0, 2, 9], "function": [0, 1, 2, 6, 7, 8, 9, 10, 11], "quantifi": [0, 2], "It": [0, 2, 6, 8, 11], "us": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11], "scipi": [0, 2, 6, 7, 8, 9, 10, 11], "pass": [0, 2, 7, 11], "both": [0, 2], "its": [0, 2, 7, 8, 11], "gradient": [0, 2], "return": [0, 1, 2, 3, 4, 8, 9, 10, 11], "constrain": [0, 2], "have": [0, 2, 6, 7, 9, 11], "onli": [0, 2, 6, 7, 9], "certain": [0, 2], "element": [0, 2], "nonzero": [0, 2, 9], "which": [0, 2, 3, 6, 7, 8, 9, 11], "time": [0, 2, 6, 8], "boolean": [0, 2], "valu": [0, 1, 2, 3, 8, 9], "triangular": [0, 2], "becaus": [0, 2, 6, 8, 9, 11], "note": [0, 9, 11], "current": 0, "support": [0, 11], "two_body_tensor": [0, 2, 8], "toler": [0, 2, 9], "defin": [0, 2, 9, 10], "maximum": [0, 2, 3, 10], "absolut": [0, 2], "differ": [0, 1, 2, 9], "between": [0, 1, 2, 9], "origin": [0, 2, 8], "correspond": [0, 2, 7, 8], "reconstruct": [0, 2], "int": [0, 1, 2, 3, 4, 8, 10], "limit": [0, 2, 9], "keep": [0, 2], "argument": [0, 2, 7], "overrid": [0, 2], "str": [0, 2], "see": [0, 2], "document": [0, 2], "possibl": [0, 2], "callback": [0, 2], "usag": [0, 2, 11], "dict": [0, 2, 9, 10], "mask": [0, 2], "modifi": [0, 2], "If": [0, 1, 2, 3, 11], "full": [0, 2, 6], "instead": [0, 2], "much": [0, 2, 5, 6], "more": [0, 2, 6, 9], "expens": [0, 2], "ignor": [0, 2, 8], "refer": [0, 2, 3, 9], "arxiv": [0, 2, 3], "1808": [0, 2], "02625": [0, 2], "2104": [0, 2], "08957": [0, 2], "properti": [0, 7], "norb": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11], "spatial": [0, 1, 4, 6, 8, 9, 11], "to_number_represent": 0, "to_z_represent": 0, "fermionact": [0, 5], "action": [0, 1, 7, 11], "spin": [0, 1, 5, 6, 7, 9, 10, 11], "orb": [0, 11], "namedtupl": 0, "alia": 0, "field": 0, "fermionoper": [0, 5], "coeff": [0, 1], "repres": [0, 6, 9, 11], "linear": [0, 1, 2, 7, 11], "combin": [0, 1, 7, 11], "product": [0, 8, 11], "creation": [0, 7, 11], "annihil": [0, 11], "explan": 0, "how": [0, 6, 7, 8, 9, 10, 11], "exampl": [0, 6, 7, 9, 11], "import": [0, 6, 7, 8, 9, 10, 11], "op": [0, 11], "cre_a": [0, 5, 11], "des_a": [0, 5, 11], "3": [0, 6, 7, 8, 9, 10, 11], "5": [0, 8, 9, 10, 11], "25": [0, 11], "cre_b": [0, 5, 11], "des_b": [0, 5, 11], "4": [0, 7, 8, 9, 10, 11], "1j": [0, 7, 8, 11], "tupl": [0, 1, 2, 4, 8, 11], "complex": [0, 1, 2, 3], "conserves_particle_numb": [0, 11], "conserv": [0, 6, 11], "particl": [0, 4, 5, 6, 7, 11], "otherwis": 0, "conserves_spin_z": [0, 11], "compon": [0, 5, 6, 11], "many_body_ord": 0, "mani": [0, 5], "order": [0, 6, 8, 9, 11], "length": [0, 6, 8, 9], "longest": 0, "contain": [0, 2, 9, 11], "normal_ord": [0, 11], "normal": [0, 11], "equival": 0, "ha": [0, 1, 2, 6, 7, 8, 9, 10], "been": [0, 10], "reorder": 0, "canon": 0, "In": [0, 7, 8, 9, 10, 11], "compris": [0, 11], "appear": [0, 11], "from": [0, 3, 6, 7, 9, 10, 11], "left": [0, 7, 11], "right": [0, 7, 11], "descend": [0, 11], "lexicograph": [0, 11], "That": [0, 7, 11], "all": [0, 9, 11], "befor": [0, 9, 11], "within": [0, 2, 11], "beta": [0, 1, 4, 6, 9, 11], "alpha": [0, 1, 4, 6, 9, 11], "hopgateansatzoper": [0, 5, 10], "interaction_pair": [0, 10], "theta": [0, 10], "hop": 0, "gate": [0, 9], "ansatz": [0, 5, 10], "moleculardata": [0, 5, 8, 9, 10], "nelec": [0, 1, 4, 6, 7, 8, 9, 10, 11], "core_energi": 0, "dipole_integr": 0, "orbital_symmetri": 0, "data": [0, 3, 8, 9, 10, 11], "electron": [0, 1, 3, 4, 6, 8], "core": [0, 2], "energi": [0, 7, 8, 9, 10], "dipol": 0, "integr": 0, "symmetri": [0, 5, 6, 7, 8, 9, 10], "from_hartree_fock": [0, 8, 9, 10], "hartree_fock": [0, 8, 9, 10], "active_spac": [0, 9, 10], "initi": [0, 3, 4, 8, 9, 10], "hartre": [0, 8, 9], "fock": [0, 8, 9], "calcul": [0, 6, 8, 9], "scf": [0, 8, 9, 10], "iter": 0, "list": [0, 1, 2, 4, 9, 10], "activ": [0, 9, 10], "space": [0, 9, 10], "molecularhamiltonian": [0, 5, 8], "call": [0, 6, 7, 8, 11], "supportsapplyunitari": [0, 5], "arg": 0, "kwarg": 0, "protocol": 0, "appli": [0, 1, 2, 6, 7, 8, 9], "vector": [0, 1, 2, 3, 6, 7, 9, 10, 11], "supportsapproximateequ": [0, 5], "compar": [0, 8], "approxim": [0, 2, 8], "supportslinearoper": [0, 5], "convert": [0, 1, 6, 7, 8, 11], "linearoper": [0, 1, 7, 8, 11], "supportstrac": [0, 5], "whose": [0, 2, 6], "trace": [0, 5, 8], "comput": [0, 2, 7, 9, 10], "ucjoper": [0, 5, 9], "diag_coulomb_mats_alpha_alpha": 0, "diag_coulomb_mats_alpha_beta": 0, "final_orbital_rot": 0, "cluster": [0, 5], "jastrow": [0, 5], "ucj": 0, "prod_": [0, 9], "k": [0, 2, 7, 8, 9, 11], "mathcal": [0, 1, 7, 8, 9], "w_k": [0, 9], "e": [0, 8, 9, 10, 11], "_k": [0, 8, 9], "dagger": [0, 1, 2, 7, 8, 9, 11], "mathbf": [0, 7, 8, 9], "n_": [0, 1, 6, 7, 8, 9], "commut": [0, 8, 9], "total": [0, 8, 9], "we": [0, 7, 8, 9, 10, 11], "enforc": [0, 9], "As": [0, 6, 7, 8, 9], "result": [0, 1, 2, 3, 7, 8, 9, 10], "describ": [0, 1, 6, 7, 8, 9, 11], "involv": [0, 9], "same": [0, 6, 9], "To": [0, 6, 7, 8, 9], "variat": [0, 9], "final": [0, 8, 9], "includ": [0, 2, 5, 6, 7, 8], "end": [0, 7, 9], "from_paramet": [0, 9], "param": 0, "n_rep": [0, 9, 10], "alpha_alpha_indic": [0, 9], "alpha_beta_indic": [0, 9], "with_final_orbital_rot": 0, "from_t_amplitud": [0, 9], "t2_amplitud": [0, 2], "t1_amplitud": 0, "t2": [0, 2, 3, 9], "t1": [0, 9], "amplitud": [0, 2, 3, 9], "repetit": [0, 9], "to_paramet": [0, 9], "to_t_amplitud": 0, "nocc": [0, 3], "possibli": 0, "apply_diag_coulomb_evolut": [0, 5, 8], "vec": [0, 1, 2, 6, 7, 8, 11], "mat": [0, 1, 2], "mat_alpha_beta": [0, 1], "occupations_a": [0, 1], "occupations_b": [0, 1], "strings_a": [0, 1], "strings_b": [0, 1], "orbital_rotation_index_a": 0, "orbital_rotation_index_b": 0, "copi": [0, 11], "evolut": [0, 8], "exp": [0, 7], "z_": [0, 1], "also": [0, 1, 7, 11], "given": [0, 1, 2, 7, 8], "place": [0, 1, 9, 11], "sum": [0, 1, 8, 10], "state": [0, 1, 3, 7, 8, 9, 10], "interact": [0, 1, 6], "occupi": [0, 1, 3, 4, 8], "string": [0, 1, 6, 11], "index": [0, 6, 9, 11], "alwai": [0, 2, 7], "newli": 0, "alloc": 0, "untouch": 0, "mai": [0, 2, 9], "still": [0, 9], "overwritten": 0, "evolv": [0, 8], "apply_fsim_g": [0, 5], "phi": 0, "target_orb": 0, "fsim": 0, "consist": 0, "tunnel": 0, "follow": [0, 6, 7, 8, 9, 11], "neg": 0, "sign": 0, "convent": 0, "angl": [0, 10], "nn": 0, "dagger_i": 0, "a_i": 0, "dagger_j": 0, "a_j": [0, 1], "when": [0, 8, 9, 11], "neighbor": 0, "qubit": [0, 9], "begin": [0, 7, 9], "pmatrix": 0, "co": [0, 10], "sin": [0, 10], "apply_givens_rot": [0, 5], "g": [0, 9], "apply_hop_g": [0, 5], "apply_num_interact": [0, 5], "apply_num_num_interact": [0, 5], "apply_num_op_prod_interact": [0, 5], "prod": 0, "sequenc": 0, "pair": [0, 4], "integ": 0, "give": [0, 7], "first": [0, 2, 7, 8, 9, 10], "second": [0, 2, 8, 10], "apply_num_op_sum_evolut": [0, 5, 7, 8], "lambda_i": [0, 1, 7], "rais": 0, "valueerror": 0, "must": [0, 2, 11], "dimension": [0, 2, 6], "apply_orbital_rot": [0, 5, 6, 7], "allow_row_permut": 0, "allow_col_permut": 0, "map": [0, 7, 11], "mapsto": [0, 7], "u_": 0, "ji": [0, 7], "log": 0, "permut": [0, 2], "row": [0, 6], "column": [0, 2, 6, 7], "wa": 0, "well": 0, "actual": [0, 7, 9], "effect": [0, 9], "apply_tunneling_interact": [0, 5], "apply_unitari": [0, 5, 9], "obj": 0, "ani": [0, 7, 9], "approx_eq": [0, 5], "other": [0, 9], "rtol": [0, 2], "05": [0, 2], "atol": [0, 2], "equal": 0, "isclos": 0, "interpret": 0, "rel": [0, 2], "numer": [0, 2, 11], "up": [0, 7], "cre": [0, 5], "creat": [0, 6, 7, 8, 9, 11], "de": [0, 5], "destroi": [0, 11], "dim": [0, 3, 5, 6, 11], "get": [0, 7, 8, 9, 10], "dimens": [0, 3, 6], "fci": [0, 6, 9, 10], "dim_a": [0, 6], "dim_b": [0, 6], "expectation_one_body_pow": [0, 5], "one_rdm": 0, "power": 0, "expect": [0, 7], "w": [0, 7, 8], "slater": [0, 6, 7, 8], "determin": [0, 2, 6, 7, 8], "o": [0, 10], "m_": [0, 1, 2], "a_p": 0, "a_q": 0, "m": [0, 1, 2, 7], "let": [0, 8, 11], "lvert": [0, 9], "psi": [0, 9], "rangl": [0, 9], "Then": 0, "quantiti": 0, "langl": 0, "rvert": 0, "reduc": [0, 2], "densiti": 0, "expectation_one_body_product": [0, 5], "o_1": 0, "o_2": 0, "dot": 0, "o_k": 0, "hartree_fock_st": [0, 5, 8, 9], "statevector": [0, 6, 7], "indices_to_str": [0, 5], "bitstr": 0, "rang": [0, 6, 7, 8, 9], "011001": 0, "011010": 0, "011100": 0, "101001": 0, "101010": 0, "101100": 0, "110001": 0, "110010": 0, "110100": 0, "linear_oper": [0, 5, 8, 9, 10, 11], "multireference_st": [0, 5, 10], "ansatz_oper": 0, "reference_occup": [0, 10], "root": 0, "multirefer": 0, "occup": [0, 6, 7, 8], "desir": 0, "eigenvector": [0, 7], "lowest": [0, 7, 8], "one_hot": [0, 5], "shape": [0, 2, 3, 6, 9], "dtype": [0, 3, 9], "arrai": [0, 2, 6, 11], "zero": [0, 10], "except": 0, "hot": 0, "simulate_qdrift_double_factor": [0, 5], "n_step": [0, 8], "probabl": 0, "norm": 0, "n_sampl": 0, "seed": [0, 3, 4, 6, 7], "via": [0, 8], "qdrift": 0, "trotter": [0, 5], "step": [0, 7, 8], "sampl": [0, 3, 4], "els": [0, 3], "explicit": 0, "proport": [0, 7], "spectral": 0, "uniform": [0, 3], "requir": [0, 9], "whenev": 0, "complet": 0, "character": 0, "trajectori": 0, "pseudorandom": [0, 3, 4], "gener": [0, 3, 4, 5, 6, 7, 8, 9], "should": [0, 3, 4, 7, 8], "valid": [0, 3, 4], "input": [0, 1, 3, 4, 9], "random": [0, 4, 5, 6, 7, 11], "default_rng": [0, 3, 4], "numpi": [0, 2, 6, 7, 8, 9, 10], "just": [0, 8, 9], "simulate_trotter_double_factor": [0, 5, 8], "suzuki": 0, "formula": 0, "slater_determin": [0, 5, 6, 7], "occupied_orbit": [0, 6, 7], "configur": [0, 6], "word": [0, 9], "slater_determinant_one_rdm": [0, 5], "similarli": [0, 8], "construct": [1, 8, 9, 10, 11], "contract_diag_coulomb": [1, 5], "contract_num_op_sum": [1, 5], "diag_coulomb_linop": [1, 5], "implement": [1, 6, 7, 9], "num_op_sum_linop": [1, 5], "one_body_linop": [1, 5, 7], "algebra": [2, 11], "util": [2, 3, 4], "apply_matrix_to_slic": [2, 5], "target": 2, "slice": 2, "out": [2, 8], "double_factor": [2, 5], "ell": 2, "pk": 2, "qk": 2, "respect": 2, "too": 2, "small": [2, 9], "exce": [2, 9], "collect": 2, "double_factorized_t2": [2, 5], "t_": 2, "ijab": 2, "ap": 2, "ip": 2, "bq": 2, "jq": 2, "expm_multiply_taylor": [2, 5], "12": [2, 11], "expm": 2, "taylor": 2, "seri": 2, "expans": 2, "givens_decomposit": [2, 5], "is_antihermitian": [2, 5], "anti": [2, 3], "hermitian": [2, 3, 7], "is_hermitian": [2, 5], "is_orthogon": [2, 5], "orthogon": [2, 3], "union": 2, "bool_": 2, "is_real_symmetr": [2, 5], "is_special_orthogon": [2, 5], "special": [2, 3, 5, 6], "is_unitari": [2, 5], "lup": [2, 5], "pivot": 2, "lu": 2, "rtype": 2, "lower": 2, "unit": 2, "modified_choleski": [2, 5], "v_i": 2, "posit": [2, 10], "definit": 2, "No": 2, "check": [2, 7, 8], "verifi": 2, "1711": 2, "02242": 2, "assembl": 2, "reduced_matrix": [2, 5], "subspac": [2, 11], "span": 2, "some": [2, 8, 11], "v_j": 2, "random_antihermitian": [3, 5], "width": 3, "height": 3, "dype": 3, "random_hermitian": [3, 5, 7], "random_orthogon": [3, 5], "distribut": 3, "haar": 3, "measur": 3, "instanc": [3, 7, 8], "math": [3, 10], "ph": 3, "0609050": 3, "random_real_symmetric_matrix": [3, 5], "random_special_orthogon": [3, 5], "random_statevector": [3, 5, 11], "random_t2_amplitud": [3, 5], "random_two_body_tensor_r": [3, 5], "random_unitari": [3, 5, 6, 7], "random_nelec": [4, 5], "n_alpha": [4, 6, 7, 10], "n_beta": [4, 6, 7, 10], "random_occupied_orbit": [4, 5], "occ_a": 4, "occ_b": 4, "preserv": [5, 11], "categori": 5, "chemistri": 5, "By": [5, 6], "exploit": 5, "algorithm": 5, "faster": 5, "introduct": 5, "quadrat": [5, 8], "local": 5, "lucj": 5, "entangl": 5, "forg": 5, "contract": [5, 7], "linalg": [5, 7, 8, 11], "test": [5, 7, 8], "advantag": 6, "effici": [6, 11], "level": [6, 8], "doe": [6, 11], "primari": 6, "wai": [6, 7, 9], "directli": [6, 8], "code": [6, 8, 9, 11], "show": [6, 7, 8, 9, 10, 11], "6": [6, 7, 8, 9, 10, 11], "1234": [6, 7], "rotated_vec": [6, 7], "plain": 6, "Its": 6, "fix": 6, "For": [6, 7, 9, 11], "system": [6, 7], "conveni": 6, "comb": 6, "assert": 6, "standard": 6, "often": [6, 9], "simpli": [6, 7], "reshap": 6, "reshaped_vec": 6, "choic": 6, "pyscf": [6, 8, 9, 10], "modul": 6, "tutori": [7, 8, 9, 10], "ffsim": [7, 8, 9, 10, 11], "fundament": 7, "mode": 7, "sum_j": 7, "new": [7, 11], "th": 7, "satisfi": [7, 11], "anticommut": 7, "relat": [7, 9], "thei": [7, 9, 11], "align": [7, 9], "_1": 7, "_2": 7, "section": 7, "ll": [7, 8, 9], "demonstr": [7, 8, 9], "task": 7, "consid": [7, 9], "rewritten": 7, "introduc": [7, 9], "eigendecomposit": 7, "sum_k": [7, 8], "lambda_k": 7, "ik": 7, "jk": 7, "our": [7, 8, 9], "ground": [7, 9], "pick": 7, "phase": 7, "spars": [7, 8, 11], "eig": [7, 11], "eigsh": 7, "la": 7, "fact": 7, "you": [7, 9], "illustr": 7, "purpos": 7, "explicitli": 7, "eigh": [7, 8], "evolved_vec": 7, "conj": 7, "undo": 7, "expected_phas": 7, "assert_allclos": 7, "mention": [7, 8], "abov": [7, 8, 11], "below": [7, 8, 9], "better": [7, 8], "evolved_vec_alt": 7, "daunt": 8, "scale": 8, "cell": [8, 9], "hydrogen": 8, "molecul": [8, 9, 10], "stretch": [8, 9], "bond": [8, 9, 10], "build": [8, 9, 10], "h2": 8, "mol": [8, 9, 10], "gto": [8, 9, 10], "mole": [8, 9, 10], "atom": [8, 9, 10], "8": [8, 9, 11], "sto": [8, 9, 10], "6g": [8, 9, 10], "d2h": [8, 9], "rhf": [8, 9, 10], "kernel": [8, 9, 10], "mol_data": [8, 9, 10], "mol_hamiltonian": [8, 9, 10], "df_hamiltonian": 8, "converg": [8, 9, 10], "837796382593709": 8, "dataclass": [8, 9], "print": [8, 9, 10, 11], "inform": [8, 11], "One": 8, "27478830e": 8, "01": [8, 9, 10], "52909490e": 8, "17": [8, 9], "57029092e": 8, "77238770e": 8, "23173938e": 8, "58782168e": 8, "33545754e": 8, "49859013e": 8, "48240570e": 8, "83067333e": 8, "01841799e": 8, "53132024e": 8, "21318608e": 8, "00": [8, 10], "27383424e": 8, "16": [8, 9], "82879498e": 8, "07792507e": 8, "14653029e": 8, "27521846e": 8, "62": 8, "39236953e": 8, "32": 8, "52090881e": 8, "03": [8, 9, 10], "00000000e": 8, "7": [8, 11], "07106781e": 8, "27830444e": 8, "15": 8, "rest": 8, "although": 8, "alreadi": 8, "built": 8, "manual": 8, "asymmetr": 8, "basic": 8, "h_k": 8, "divid": 8, "singl": 8, "exponenti": 8, "individu": [8, 11], "do": [8, 11], "approx": 8, "prod_k": 8, "higher": 8, "deriv": 8, "write": 8, "recal": 8, "addit": [8, 11], "think": 8, "compos": 8, "def": [8, 9, 10], "simulate_trotter_step_double_factor": 8, "one_body_energi": 8, "one_body_basis_chang": 8, "zip": [8, 10], "finish": 8, "handl": 8, "split": 8, "multipl": [8, 11], "wrote": 8, "step_tim": 8, "match": 8, "initial_st": 8, "\u03c8": [8, 9, 10], "hf_energi": 8, "vdot": [8, 9, 10], "f": [8, 9, 10], "8377963825937084": 8, "now": 8, "later": 8, "exact_st": 8, "expm_multipli": 8, "tracea": 8, "fidel": 8, "ab": 8, "9696296369955066": 8, "final_st": [8, 9], "9990275744083494": 8, "improv": 8, "increas": [8, 9], "10": 8, "9999906233109686": 8, "commonli": 8, "known": 8, "fourth": 8, "reproduc": 8, "9": [8, 9, 10, 11], "fewer": 8, "9999999336740067": 8, "ethen": 9, "mcscf": [9, 10], "bond_dist": 9, "678": 9, "5626": 9, "c": 9, "9289": 9, "nelectron": 9, "ca": [9, 10], "casci": [9, 10], "nca": [9, 10], "neleca": [9, 10], "mo": [9, 10], "sort_mo": [9, 10], "energy_fci": [9, 10], "77": 9, "4456267643962": 9, "6290254326717": 9, "ci": [9, 10], "57322412553862": 9, "0000000": [9, 10], "phi_0": 9, "taken": 9, "express": 9, "previou": 9, "constructor": 9, "provid": 9, "truncat": 9, "ccsd": 9, "mp2": 9, "run": 9, "sinc": 9, "cc": 9, "frozen": 9, "nao_nr": 9, "reference_st": 9, "ansatz_st": [9, 10], "initiali": [9, 10], "49387212754473": 9, "e_corr": 9, "04824536314851458": 9, "46975600021715": 9, "facilit": 9, "convers": 9, "precis": 9, "somewhat": 9, "complic": 9, "short": 9, "entri": 9, "non": 9, "redund": 9, "associ": [9, 11], "evalu": [9, 10], "would": 9, "like": 9, "fun": [9, 10], "x": [9, 10], "x0": [9, 10], "maxfun": 9, "1000": 9, "len": [9, 10], "72": 9, "messag": [9, 10], "stop": 9, "NO": 9, "AND": 9, "success": [9, 10], "statu": [9, 10], "51556160098401": 9, "571e": 9, "943e": 9, "051e": 9, "995e": 9, "nit": 9, "jac": 9, "149e": 9, "046e": 9, "504e": 9, "670e": 9, "nfev": [9, 10], "1168": 9, "njev": 9, "hess_inv": 9, "lt": 9, "72x72": 9, "lbfgsinvhessproduct": 9, "float64": 9, "gt": 9, "either": 9, "connect": 9, "swap": 9, "network": 9, "make": 9, "challeng": 9, "noisi": 9, "pre": 9, "fault": 9, "processor": 9, "idea": 9, "impos": 9, "sparsiti": 9, "constraint": 9, "them": 9, "depth": 9, "topologi": 9, "triangl": 9, "need": 9, "lattic": 9, "parallel": 9, "line": 9, "rung": 9, "ladder": 9, "With": 9, "setup": 9, "while": 9, "share": 9, "ldot": 9, "without": 9, "Of": 9, "cours": 9, "less": 9, "notic": 9, "decreas": 9, "46": 9, "46361071169422": 9, "343e": 9, "243e": 9, "02": [9, 10], "956e": 9, "145e": 9, "743e": 9, "04": 9, "381e": 9, "174e": 9, "473e": 9, "1034": 9, "22": 9, "46x46": 9, "water": 10, "equilibrium": 10, "radius_1": 10, "958": 10, "radius_2": 10, "bond_angle_deg": 10, "104": 10, "478": 10, "h1_x": 10, "h2_x": 10, "180": 10, "h2_y": 10, "c2v": 10, "n_electron": 10, "mo_occ": 10, "75": 10, "6787887956297": 10, "7079508859773": 10, "14": 10, "3336207346501": 10, "reference_occupations_spati": 10, "68366174447617": 10, "cobyla": 10, "maxit": 10, "100": 10, "exceed": 10, "69448131176944": 10, "354e": 10, "651e": 10, "863e": 10, "095e": 10, "132e": 10, "maxcv": 10, "Such": 11, "programmat": 11, "dictionari": 11, "hash": 11, "tabl": 11, "three": 11, "piec": 11, "being": 11, "upon": 11, "intern": 11, "itself": 11, "recommend": 11, "helper": 11, "shown": 11, "op1": 11, "repr": 11, "view": 11, "displai": 11, "39": 11, "0j": 11, "arithmet": 11, "multipli": 11, "scalar": 11, "go": 11, "op2": 11, "op3": 11, "25j": 11, "5j": 11, "125": 11, "0625": 11, "2j": 11, "good": 11, "awar": 11, "especi": 11, "avoid": 11, "These": 11, "subtract": 11, "divis": 11, "4j": 11, "3j": 11, "12j": 11, "6j": 11, "far": 11, "criteria": 11, "op4": 11, "linop": 11, "onto": 11, "05286796": 11, "02857342j": 11, "most": 11, "lm": 11, "21984743e": 11, "18j": 11}, "objects": {"": [[0, 0, 0, "-", "ffsim"]], "ffsim": [[0, 1, 1, "", "DoubleFactorizedHamiltonian"], [0, 1, 1, "", "FermionAction"], [0, 1, 1, "", "FermionOperator"], [0, 1, 1, "", "HopGateAnsatzOperator"], [0, 1, 1, "", "MolecularData"], [0, 1, 1, "", "MolecularHamiltonian"], [0, 1, 1, "", "SupportsApplyUnitary"], [0, 1, 1, "", "SupportsApproximateEquality"], [0, 1, 1, "", "SupportsLinearOperator"], [0, 1, 1, "", "SupportsTrace"], [0, 1, 1, "", "UCJOperator"], [0, 5, 1, "", "apply_diag_coulomb_evolution"], [0, 5, 1, "", "apply_fsim_gate"], [0, 5, 1, "", "apply_givens_rotation"], [0, 5, 1, "", "apply_hop_gate"], [0, 5, 1, "", "apply_num_interaction"], [0, 5, 1, "", "apply_num_num_interaction"], [0, 5, 1, "", "apply_num_op_prod_interaction"], [0, 5, 1, "", "apply_num_op_sum_evolution"], [0, 5, 1, "", "apply_orbital_rotation"], [0, 5, 1, "", "apply_tunneling_interaction"], [0, 5, 1, "", "apply_unitary"], [0, 5, 1, "", "approx_eq"], [1, 0, 0, "-", "contract"], [0, 5, 1, "", "cre"], [0, 5, 1, "", "cre_a"], [0, 5, 1, "", "cre_b"], [0, 5, 1, "", "des"], [0, 5, 1, "", "des_a"], [0, 5, 1, "", "des_b"], [0, 5, 1, "", "dim"], [0, 5, 1, "", "dims"], [0, 5, 1, "", "expectation_one_body_power"], [0, 5, 1, "", "expectation_one_body_product"], [0, 5, 1, "", "hartree_fock_state"], [0, 5, 1, "", "indices_to_strings"], [2, 0, 0, "-", "linalg"], [0, 5, 1, "", "linear_operator"], [0, 5, 1, "", "multireference_state"], [0, 5, 1, "", "one_hot"], [3, 0, 0, "-", "random"], [0, 5, 1, "", "simulate_qdrift_double_factorized"], [0, 5, 1, "", "simulate_trotter_double_factorized"], [0, 5, 1, "", "slater_determinant"], [0, 5, 1, "", "slater_determinant_one_rdm"], [4, 0, 0, "-", "testing"], [0, 5, 1, "", "trace"]], "ffsim.DoubleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_number_representation"], [0, 3, 1, "", "to_z_representation"], [0, 2, 1, "", "z_representation"]], "ffsim.FermionAction": [[0, 2, 1, "", "action"], [0, 2, 1, "", "orb"], [0, 2, 1, "", "spin"]], "ffsim.FermionOperator": [[0, 3, 1, "", "conserves_particle_number"], [0, 3, 1, "", "conserves_spin_z"], [0, 3, 1, "", "many_body_order"], [0, 3, 1, "", "normal_ordered"]], "ffsim.MolecularData": [[0, 2, 1, "", "core_energy"], [0, 2, 1, "", "dipole_integrals"], [0, 3, 1, "", "from_hartree_fock"], [0, 4, 1, "", "hamiltonian"], [0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_symmetries"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.MolecularHamiltonian": [[0, 2, 1, "", "constant"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.UCJOperator": [[0, 2, 1, "", "diag_coulomb_mats_alpha_alpha"], [0, 2, 1, "", "diag_coulomb_mats_alpha_beta"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"], [0, 3, 1, "", "to_t_amplitudes"]], "ffsim.contract": [[1, 5, 1, "", "contract_diag_coulomb"], [1, 5, 1, "", "contract_num_op_sum"], [1, 5, 1, "", "diag_coulomb_linop"], [1, 5, 1, "", "num_op_sum_linop"], [1, 5, 1, "", "one_body_linop"]], "ffsim.linalg": [[2, 5, 1, "", "apply_matrix_to_slices"], [2, 5, 1, "", "double_factorized"], [2, 5, 1, "", "double_factorized_t2"], [2, 5, 1, "", "expm_multiply_taylor"], [2, 5, 1, "", "givens_decomposition"], [2, 5, 1, "", "is_antihermitian"], [2, 5, 1, "", "is_hermitian"], [2, 5, 1, "", "is_orthogonal"], [2, 5, 1, "", "is_real_symmetric"], [2, 5, 1, "", "is_special_orthogonal"], [2, 5, 1, "", "is_unitary"], [2, 5, 1, "", "lup"], [2, 5, 1, "", "modified_cholesky"], [2, 5, 1, "", "reduced_matrix"]], "ffsim.random": [[3, 5, 1, "", "random_antihermitian"], [3, 5, 1, "", "random_hermitian"], [3, 5, 1, "", "random_orthogonal"], [3, 5, 1, "", "random_real_symmetric_matrix"], [3, 5, 1, "", "random_special_orthogonal"], [3, 5, 1, "", "random_statevector"], [3, 5, 1, "", "random_t2_amplitudes"], [3, 5, 1, "", "random_two_body_tensor_real"], [3, 5, 1, "", "random_unitary"]], "ffsim.testing": [[4, 5, 1, "", "random_nelec"], [4, 5, 1, "", "random_occupied_orbitals"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"]}, "titleterms": {"ffsim": [0, 1, 2, 3, 4, 5, 6], "contract": 1, "linalg": 2, "random": 3, "test": 4, "welcom": 5, "": 5, "document": 5, "tutori": 5, "api": 5, "refer": 5, "introduct": 6, "orbit": 7, "rotat": 7, "quadrat": 7, "hamiltonian": [7, 8], "time": 7, "evolut": 7, "diagon": 8, "coulomb": 8, "oper": 8, "doubl": 8, "factor": 8, "trotter": 8, "simul": 8, "represent": 8, "molecular": 8, "brief": 8, "background": 8, "suzuki": 8, "formula": 8, "implement": 8, "The": [9, 11], "local": 9, "unitari": 9, "cluster": 9, "jastrow": 9, "lucj": 9, "ansatz": 9, "ucj": 9, "entangl": 10, "forg": 10, "fermionoper": 11, "class": 11}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"ffsim": [[0, "module-ffsim"]], "ffsim.contract": [[1, "module-ffsim.contract"]], "ffsim.linalg": [[2, "module-ffsim.linalg"]], "ffsim.random": [[3, "module-ffsim.random"]], "ffsim.testing": [[4, "module-ffsim.testing"]], "Welcome to ffsim\u2019s documentation!": [[5, "welcome-to-ffsim-s-documentation"]], "Tutorials": [[5, "tutorials"]], "API Reference": [[5, "api-reference"]], "Introduction to ffsim": [[6, "Introduction-to-ffsim"]], "Orbital rotations and quadratic Hamiltonians": [[7, "Orbital-rotations-and-quadratic-Hamiltonians"]], "Orbital rotations": [[7, "Orbital-rotations"]], "Time evolution by a quadratic Hamiltonian": [[7, "Time-evolution-by-a-quadratic-Hamiltonian"]], "Diagonal Coulomb operators and double-factorized Trotter simulation": [[8, "Diagonal-Coulomb-operators-and-double-factorized-Trotter-simulation"]], "Double-factorized representation of the molecular Hamiltonian": [[8, "Double-factorized-representation-of-the-molecular-Hamiltonian"]], "Trotter simulation of the double-factorized Hamiltonian": [[8, "Trotter-simulation-of-the-double-factorized-Hamiltonian"]], "Brief background on Trotter-Suzuki formulas": [[8, "Brief-background-on-Trotter-Suzuki-formulas"]], "Implementing Trotter simulation of the double-factorized Hamiltonian": [[8, "Implementing-Trotter-simulation-of-the-double-factorized-Hamiltonian"]], "The local unitary cluster Jastrow (LUCJ) ansatz": [[9, "The-local-unitary-cluster-Jastrow-(LUCJ)-ansatz"], [9, "id1"]], "The unitary cluster Jastrow (UCJ) ansatz": [[9, "The-unitary-cluster-Jastrow-(UCJ)-ansatz"]], "Entanglement forging": [[10, "Entanglement-forging"]], "The FermionOperator class": [[11, "The-FermionOperator-class"]]}, "indexentries": {"doublefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.DoubleFactorizedHamiltonian"]], "fermionaction (class in ffsim)": [[0, "ffsim.FermionAction"]], "fermionoperator (class in ffsim)": [[0, "ffsim.FermionOperator"]], "hopgateansatzoperator (class in ffsim)": [[0, "ffsim.HopGateAnsatzOperator"]], "moleculardata (class in ffsim)": [[0, "ffsim.MolecularData"]], "molecularhamiltonian (class in ffsim)": [[0, "ffsim.MolecularHamiltonian"]], "supportsapplyunitary (class in ffsim)": [[0, "ffsim.SupportsApplyUnitary"]], "supportsapproximateequality (class in ffsim)": [[0, "ffsim.SupportsApproximateEquality"]], "supportslinearoperator (class in ffsim)": [[0, "ffsim.SupportsLinearOperator"]], "supportstrace (class in ffsim)": [[0, "ffsim.SupportsTrace"]], "ucjoperator (class in ffsim)": [[0, "ffsim.UCJOperator"]], "action (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.action"]], "apply_diag_coulomb_evolution() (in module ffsim)": [[0, "ffsim.apply_diag_coulomb_evolution"]], "apply_fsim_gate() (in module ffsim)": [[0, "ffsim.apply_fsim_gate"]], "apply_givens_rotation() (in module ffsim)": [[0, "ffsim.apply_givens_rotation"]], "apply_hop_gate() (in module ffsim)": [[0, "ffsim.apply_hop_gate"]], "apply_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_interaction"]], "apply_num_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_num_interaction"]], "apply_num_op_prod_interaction() (in module ffsim)": [[0, "ffsim.apply_num_op_prod_interaction"]], "apply_num_op_sum_evolution() (in module ffsim)": [[0, "ffsim.apply_num_op_sum_evolution"]], "apply_orbital_rotation() (in module ffsim)": [[0, "ffsim.apply_orbital_rotation"]], "apply_tunneling_interaction() (in module ffsim)": [[0, "ffsim.apply_tunneling_interaction"]], "apply_unitary() (in module ffsim)": [[0, "ffsim.apply_unitary"]], "approx_eq() (in module ffsim)": [[0, "ffsim.approx_eq"]], "conserves_particle_number() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_particle_number"]], "conserves_spin_z() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_spin_z"]], "constant (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.constant"]], "constant (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.constant"]], "core_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.core_energy"]], "cre() (in module ffsim)": [[0, "ffsim.cre"]], "cre_a() (in module ffsim)": [[0, "ffsim.cre_a"]], "cre_b() (in module ffsim)": [[0, "ffsim.cre_b"]], "des() (in module ffsim)": [[0, "ffsim.des"]], "des_a() (in module ffsim)": [[0, "ffsim.des_a"]], "des_b() (in module ffsim)": [[0, "ffsim.des_b"]], "diag_coulomb_mats (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.diag_coulomb_mats"]], "diag_coulomb_mats_alpha_alpha (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_alpha"]], "diag_coulomb_mats_alpha_beta (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_beta"]], "dim() (in module ffsim)": [[0, "ffsim.dim"]], "dims() (in module ffsim)": [[0, "ffsim.dims"]], "dipole_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.dipole_integrals"]], "expectation_one_body_power() (in module ffsim)": [[0, "ffsim.expectation_one_body_power"]], "expectation_one_body_product() (in module ffsim)": [[0, "ffsim.expectation_one_body_product"]], "ffsim": [[0, "module-ffsim"]], "final_orbital_rotation (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.final_orbital_rotation"]], "from_hartree_fock() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_hartree_fock"]], "from_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian static method)": [[0, "ffsim.DoubleFactorizedHamiltonian.from_molecular_hamiltonian"]], "from_parameters() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_parameters"]], "from_t_amplitudes() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_t_amplitudes"]], "hamiltonian (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.hamiltonian"]], "hartree_fock_state() (in module ffsim)": [[0, "ffsim.hartree_fock_state"]], "indices_to_strings() (in module ffsim)": [[0, "ffsim.indices_to_strings"]], "linear_operator() (in module ffsim)": [[0, "ffsim.linear_operator"]], "many_body_order() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.many_body_order"]], "module": [[0, "module-ffsim"], [1, "module-ffsim.contract"], [2, "module-ffsim.linalg"], [3, "module-ffsim.random"], [4, "module-ffsim.testing"]], "multireference_state() (in module ffsim)": [[0, "ffsim.multireference_state"]], "n_reps (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.n_reps"]], "nelec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.nelec"]], "norb (ffsim.doublefactorizedhamiltonian property)": [[0, "ffsim.DoubleFactorizedHamiltonian.norb"]], "norb (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.norb"]], "norb (ffsim.molecularhamiltonian property)": [[0, "ffsim.MolecularHamiltonian.norb"]], "norb (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.norb"]], "normal_ordered() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.normal_ordered"]], "one_body_tensor (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.one_body_tensor"]], "one_body_tensor (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.one_body_tensor"]], "one_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.one_body_tensor"]], "one_hot() (in module ffsim)": [[0, "ffsim.one_hot"]], "orb (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.orb"]], "orbital_rotations (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.orbital_rotations"]], "orbital_rotations (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.orbital_rotations"]], "orbital_symmetries (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.orbital_symmetries"]], "simulate_qdrift_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_qdrift_double_factorized"]], "simulate_trotter_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_trotter_double_factorized"]], "slater_determinant() (in module ffsim)": [[0, "ffsim.slater_determinant"]], "slater_determinant_one_rdm() (in module ffsim)": [[0, "ffsim.slater_determinant_one_rdm"]], "spin (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.spin"]], "to_number_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_number_representation"]], "to_parameters() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_parameters"]], "to_t_amplitudes() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_t_amplitudes"]], "to_z_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_z_representation"]], "trace() (in module ffsim)": [[0, "ffsim.trace"]], "two_body_tensor (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.two_body_tensor"]], "two_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.two_body_tensor"]], "z_representation (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.z_representation"]], "contract_diag_coulomb() (in module ffsim.contract)": [[1, "ffsim.contract.contract_diag_coulomb"]], "contract_num_op_sum() (in module ffsim.contract)": [[1, "ffsim.contract.contract_num_op_sum"]], "diag_coulomb_linop() (in module ffsim.contract)": [[1, "ffsim.contract.diag_coulomb_linop"]], "ffsim.contract": [[1, "module-ffsim.contract"]], "num_op_sum_linop() (in module ffsim.contract)": [[1, "ffsim.contract.num_op_sum_linop"]], "one_body_linop() (in module ffsim.contract)": [[1, "ffsim.contract.one_body_linop"]], "apply_matrix_to_slices() (in module ffsim.linalg)": [[2, "ffsim.linalg.apply_matrix_to_slices"]], "double_factorized() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized"]], "double_factorized_t2() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2"]], "expm_multiply_taylor() (in module ffsim.linalg)": [[2, "ffsim.linalg.expm_multiply_taylor"]], "ffsim.linalg": [[2, "module-ffsim.linalg"]], "givens_decomposition() (in module ffsim.linalg)": [[2, "ffsim.linalg.givens_decomposition"]], "is_antihermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_antihermitian"]], "is_hermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_hermitian"]], "is_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_orthogonal"]], "is_real_symmetric() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_real_symmetric"]], "is_special_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_special_orthogonal"]], "is_unitary() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_unitary"]], "lup() (in module ffsim.linalg)": [[2, "ffsim.linalg.lup"]], "modified_cholesky() (in module ffsim.linalg)": [[2, "ffsim.linalg.modified_cholesky"]], "reduced_matrix() (in module ffsim.linalg)": [[2, "ffsim.linalg.reduced_matrix"]], "ffsim.random": [[3, "module-ffsim.random"]], "random_antihermitian() (in module ffsim.random)": [[3, "ffsim.random.random_antihermitian"]], "random_hermitian() (in module ffsim.random)": [[3, "ffsim.random.random_hermitian"]], "random_orthogonal() (in module ffsim.random)": [[3, "ffsim.random.random_orthogonal"]], "random_real_symmetric_matrix() (in module ffsim.random)": [[3, "ffsim.random.random_real_symmetric_matrix"]], "random_special_orthogonal() (in module ffsim.random)": [[3, "ffsim.random.random_special_orthogonal"]], "random_statevector() (in module ffsim.random)": [[3, "ffsim.random.random_statevector"]], "random_t2_amplitudes() (in module ffsim.random)": [[3, "ffsim.random.random_t2_amplitudes"]], "random_two_body_tensor_real() (in module ffsim.random)": [[3, "ffsim.random.random_two_body_tensor_real"]], "random_unitary() (in module ffsim.random)": [[3, "ffsim.random.random_unitary"]], "ffsim.testing": [[4, "module-ffsim.testing"]], "random_nelec() (in module ffsim.testing)": [[4, "ffsim.testing.random_nelec"]], "random_occupied_orbitals() (in module ffsim.testing)": [[4, "ffsim.testing.random_occupied_orbitals"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["api/ffsim", "api/ffsim.contract", "api/ffsim.linalg", "api/ffsim.random", "api/ffsim.testing", "index", "tutorials/01-introduction", "tutorials/02-orbital-rotation", "tutorials/03-double-factorized", "tutorials/04-lucj", "tutorials/05-entanglement-forging", "tutorials/06-fermion-operator"], "filenames": ["api/ffsim.rst", "api/ffsim.contract.rst", "api/ffsim.linalg.rst", "api/ffsim.random.rst", "api/ffsim.testing.rst", "index.rst", "tutorials/01-introduction.ipynb", "tutorials/02-orbital-rotation.ipynb", "tutorials/03-double-factorized.ipynb", "tutorials/04-lucj.ipynb", "tutorials/05-entanglement-forging.ipynb", "tutorials/06-fermion-operator.ipynb"], "titles": ["ffsim", "ffsim.contract", "ffsim.linalg", "ffsim.random", "ffsim.testing", "Welcome to ffsim\u2019s documentation!", "Introduction to ffsim", "Orbital rotations and quadratic Hamiltonians", "Diagonal Coulomb operators and double-factorized Trotter simulation", "The local unitary cluster Jastrow (LUCJ) ansatz", "Entanglement forging", "The FermionOperator class"], "terms": {"i": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11], "softwar": [0, 5, 6], "librari": [0, 5, 6], "fast": 0, "simul": [0, 5, 6, 7, 9, 10], "fermion": [0, 5, 6, 7, 9, 11], "quantum": [0, 5, 6, 8, 9], "circuit": [0, 5, 6], "class": [0, 3, 5, 6, 9], "doublefactorizedhamiltonian": [0, 5, 8], "one_body_tensor": [0, 7, 8], "diag_coulomb_mat": [0, 8], "orbital_rot": [0, 1, 6, 7, 8], "constant": [0, 8, 9], "0": [0, 7, 8, 9, 10, 11], "z_represent": [0, 1], "fals": [0, 1, 2, 9, 10, 11], "sourc": [0, 1, 2, 3, 4], "base": [0, 2, 9, 10], "object": [0, 2, 9, 11], "A": [0, 1, 2, 3, 4, 7, 8, 9, 11], "hamiltonian": [0, 5, 9, 10], "doubl": [0, 2, 5, 9], "factor": [0, 2, 5, 9], "form": [0, 1, 2, 7, 8, 9, 11], "low": [0, 2, 6], "rank": [0, 2, 3], "decomposit": [0, 2], "The": [0, 1, 2, 3, 4, 5, 6, 7, 8], "molecular": [0, 9, 10], "h": [0, 8, 9, 10], "sum_": [0, 1, 2, 7, 8, 9], "pq": [0, 2, 8], "sigma": [0, 1, 7, 8, 9], "kappa_": 0, "dagger_": [0, 7, 8], "p": [0, 2, 8, 9], "a_": [0, 7, 8, 11], "q": [0, 8], "frac12": [0, 8, 9], "sum_t": 0, "ij": [0, 1, 2, 7, 8, 9], "tau": [0, 1, 8, 9], "z": [0, 1, 2, 5, 6, 11], "t": [0, 2, 7, 8], "_": [0, 2, 7, 8, 9], "n": [0, 2, 6, 7, 8, 9], "j": [0, 1, 7, 8, 9, 11], "text": [0, 8], "where": [0, 1, 2, 7, 8, 9], "u": [0, 1, 2], "pi": [0, 10], "qi": 0, "here": [0, 2, 6, 7, 8, 9], "each": [0, 2, 6, 8, 9, 11], "unitari": [0, 1, 2, 3, 5, 7, 8], "matrix": [0, 1, 2, 3, 6, 7, 8, 9, 11], "real": [0, 1, 2, 3, 7, 8, 9, 10], "symmetr": [0, 1, 2, 3, 8, 9], "represent": [0, 1, 2, 6, 11], "an": [0, 1, 2, 3, 6, 7, 8, 9, 11], "altern": [0, 8], "sometim": 0, "yield": [0, 2, 8, 9], "simpler": 0, "under": 0, "jordan": 0, "wigner": 0, "transform": [0, 1, 6, 7], "number": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "oper": [0, 1, 2, 5, 7, 9, 10, 11], "take": [0, 6, 9], "frac": 0, "1": [0, 2, 3, 6, 7, 8, 9, 10, 11], "2": [0, 1, 2, 3, 6, 7, 8, 9, 10, 11], "pauli": 0, "rotat": [0, 1, 2, 5, 6, 8, 9], "basi": [0, 7, 8, 9, 10], "obtain": [0, 7, 8, 9], "rewrit": 0, "two": [0, 2, 3, 8, 9, 10], "bodi": [0, 1, 2, 3, 8, 9, 10], "part": [0, 2], "term": [0, 1, 2, 8, 9, 11], "updat": [0, 8], "one": [0, 1, 2, 6, 8, 9, 10], "appropri": 0, "kappa": 0, "frac18": 0, "asterisk": 0, "denot": [0, 1, 7], "summat": 0, "over": 0, "indic": [0, 2, 9, 11], "neq": [0, 1], "tensor": [0, 1, 2, 3, 8, 9, 10], "type": [0, 1, 2, 3, 4], "np": [0, 3, 4, 7, 8, 9, 10], "ndarrai": [0, 1, 2, 3, 8], "diagon": [0, 1, 2, 5, 7, 9], "coulomb": [0, 1, 2, 5, 9], "matric": [0, 1, 2, 7, 8, 9], "orbit": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11], "float": [0, 2, 3, 8], "whether": [0, 1, 2, 11], "rather": [0, 6], "than": [0, 5, 6, 9], "bool": [0, 1, 2], "static": 0, "from_molecular_hamiltonian": [0, 8], "tol": [0, 2], "1e": [0, 2], "08": [0, 2], "max_vec": [0, 2], "none": [0, 1, 2, 3, 4], "optim": [0, 2, 9, 10], "method": [0, 2, 9, 10], "l": [0, 2, 8, 9], "bfg": [0, 2, 9], "b": [0, 2, 7, 9], "option": [0, 1, 2, 3, 9, 10], "diag_coulomb_mask": [0, 2], "choleski": [0, 2], "true": [0, 2, 6, 11], "act": [0, 11], "h_": [0, 2, 8], "pqr": [0, 2, 8], "r": [0, 2, 8], "": [0, 2, 6, 8, 9, 10, 11], "decompos": [0, 2, 8], "ar": [0, 1, 2, 3, 6, 7, 8, 9, 11], "output": [0, 8, 9], "guarante": 0, "so": [0, 2, 7, 8, 9, 11], "depend": [0, 2, 6], "allow": [0, 2, 9], "error": [0, 2], "threshold": [0, 2], "larger": [0, 2, 11], "lead": 0, "smaller": [0, 2, 8, 11], "furthermor": [0, 2], "max_rank": 0, "paramet": [0, 1, 2, 3, 4, 9, 10], "specifi": [0, 2, 9], "upper": [0, 2, 9], "bound": [0, 2], "default": [0, 2, 3], "behavior": [0, 2, 3], "thi": [0, 2, 5, 6, 7, 8, 9, 10], "routin": [0, 2, 6, 11], "perform": [0, 2, 7, 8], "straightforward": [0, 2], "exact": [0, 2, 6, 8], "nest": [0, 2], "eigenvalu": [0, 2, 7], "addition": [0, 2], "can": [0, 2, 5, 6, 7, 8, 9, 11], "choos": [0, 2, 6, 9], "coeffici": [0, 1, 2, 7, 9, 11], "store": [0, 2, 8, 9], "achiev": [0, 2, 8], "compress": [0, 2], "enabl": [0, 2], "set": [0, 2, 6, 7, 8, 9], "attempt": [0, 2], "minim": [0, 2, 9, 10], "least": [0, 2], "squar": [0, 2, 9], "function": [0, 1, 2, 6, 7, 8, 9, 10, 11], "quantifi": [0, 2], "It": [0, 2, 6, 8, 11], "us": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11], "scipi": [0, 2, 6, 7, 8, 9, 10, 11], "pass": [0, 2, 7, 11], "both": [0, 2], "its": [0, 2, 7, 8, 11], "gradient": [0, 2], "return": [0, 1, 2, 3, 4, 8, 9, 10, 11], "constrain": [0, 2], "have": [0, 2, 6, 7, 9, 11], "onli": [0, 2, 6, 7, 9], "certain": [0, 2], "element": [0, 2], "nonzero": [0, 2, 9], "which": [0, 2, 3, 6, 7, 8, 9, 11], "time": [0, 2, 6, 8], "boolean": [0, 2], "valu": [0, 1, 2, 3, 8, 9], "triangular": [0, 2], "becaus": [0, 2, 6, 8, 9, 11], "note": [0, 9, 11], "current": 0, "support": [0, 11], "two_body_tensor": [0, 2, 8], "toler": [0, 2, 9], "defin": [0, 2, 9, 10], "maximum": [0, 2, 3, 10], "absolut": [0, 2], "differ": [0, 1, 2, 9], "between": [0, 1, 2, 9], "origin": [0, 2, 8], "correspond": [0, 2, 7, 8], "reconstruct": [0, 2], "int": [0, 1, 2, 3, 4, 8, 10], "limit": [0, 2, 9], "keep": [0, 2], "argument": [0, 2, 7], "overrid": [0, 2], "str": [0, 2], "see": [0, 2], "document": [0, 2], "possibl": [0, 2], "callback": [0, 2], "usag": [0, 2, 11], "dict": [0, 2, 9, 10], "mask": [0, 2], "modifi": [0, 2], "If": [0, 1, 2, 3, 11], "full": [0, 2, 6], "instead": [0, 2], "much": [0, 2, 5, 6], "more": [0, 2, 6, 9], "expens": [0, 2], "ignor": [0, 2, 8], "refer": [0, 2, 3, 9], "arxiv": [0, 2, 3], "1808": [0, 2], "02625": [0, 2], "2104": [0, 2], "08957": [0, 2], "properti": [0, 7], "norb": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11], "spatial": [0, 1, 4, 6, 8, 9, 11], "to_number_represent": 0, "to_z_represent": 0, "fermionact": [0, 5], "action": [0, 1, 7, 11], "spin": [0, 1, 5, 6, 7, 9, 10, 11], "orb": [0, 11], "namedtupl": 0, "alia": 0, "field": 0, "fermionoper": [0, 5], "coeff": [0, 1], "repres": [0, 6, 9, 11], "linear": [0, 1, 2, 7, 11], "combin": [0, 1, 7, 11], "product": [0, 8, 11], "creation": [0, 7, 11], "annihil": [0, 11], "explan": 0, "how": [0, 6, 7, 8, 9, 10, 11], "exampl": [0, 6, 7, 9, 11], "import": [0, 6, 7, 8, 9, 10, 11], "op1": [0, 11], "cre_a": [0, 5, 11], "des_a": [0, 5, 11], "3": [0, 6, 7, 8, 9, 10, 11], "5": [0, 8, 9, 10, 11], "25": [0, 11], "cre_b": [0, 5, 11], "des_b": [0, 5, 11], "4": [0, 7, 8, 9, 10, 11], "1j": [0, 7, 8, 11], "2j": [0, 11], "op2": [0, 11], "0625": [0, 11], "5j": [0, 11], "25j": [0, 11], "125": [0, 11], "tupl": [0, 1, 2, 4, 8, 11], "complex": [0, 1, 2, 3], "conserves_particle_numb": [0, 11], "conserv": [0, 6, 11], "particl": [0, 4, 5, 6, 7, 11], "otherwis": 0, "conserves_spin_z": [0, 11], "compon": [0, 5, 6, 11], "many_body_ord": 0, "mani": [0, 5], "order": [0, 6, 8, 9, 11], "length": [0, 6, 8, 9], "longest": 0, "contain": [0, 2, 9, 11], "normal_ord": [0, 11], "normal": [0, 11], "equival": 0, "ha": [0, 1, 2, 6, 7, 8, 9, 10], "been": [0, 10], "reorder": 0, "canon": 0, "In": [0, 7, 8, 9, 10, 11], "compris": [0, 11], "appear": [0, 11], "from": [0, 3, 6, 7, 9, 10, 11], "left": [0, 7, 11], "right": [0, 7, 11], "descend": [0, 11], "lexicograph": [0, 11], "That": [0, 7, 11], "all": [0, 9, 11], "befor": [0, 9, 11], "within": [0, 2, 11], "beta": [0, 1, 4, 6, 9, 11], "alpha": [0, 1, 4, 6, 9, 11], "hopgateansatzoper": [0, 5, 10], "interaction_pair": [0, 10], "theta": [0, 10], "hop": 0, "gate": [0, 9], "ansatz": [0, 5, 10], "moleculardata": [0, 5, 8, 9, 10], "nelec": [0, 1, 4, 6, 7, 8, 9, 10, 11], "core_energi": 0, "dipole_integr": 0, "orbital_symmetri": 0, "data": [0, 3, 8, 9, 10, 11], "electron": [0, 1, 3, 4, 6, 8], "core": [0, 2], "energi": [0, 7, 8, 9, 10], "dipol": 0, "integr": 0, "symmetri": [0, 5, 6, 7, 8, 9, 10], "from_hartree_fock": [0, 8, 9, 10], "hartree_fock": [0, 8, 9, 10], "active_spac": [0, 9, 10], "initi": [0, 3, 4, 8, 9, 10], "hartre": [0, 8, 9], "fock": [0, 8, 9], "calcul": [0, 6, 8, 9], "scf": [0, 8, 9, 10], "iter": 0, "list": [0, 1, 2, 4, 9, 10], "activ": [0, 9, 10], "space": [0, 9, 10], "molecularhamiltonian": [0, 5, 8], "call": [0, 6, 7, 8, 11], "supportsapplyunitari": [0, 5], "arg": 0, "kwarg": 0, "protocol": 0, "appli": [0, 1, 2, 6, 7, 8, 9], "vector": [0, 1, 2, 3, 6, 7, 9, 10, 11], "supportsapproximateequ": [0, 5], "compar": [0, 8], "approxim": [0, 2, 8], "supportslinearoper": [0, 5], "convert": [0, 1, 6, 7, 8, 11], "linearoper": [0, 1, 7, 8, 11], "supportstrac": [0, 5], "whose": [0, 2, 6], "trace": [0, 5, 8], "comput": [0, 2, 7, 9, 10], "ucjoper": [0, 5, 9], "diag_coulomb_mats_alpha_alpha": 0, "diag_coulomb_mats_alpha_beta": 0, "final_orbital_rot": 0, "cluster": [0, 5], "jastrow": [0, 5], "ucj": 0, "prod_": [0, 9], "k": [0, 2, 7, 8, 9, 11], "mathcal": [0, 1, 7, 8, 9], "w_k": [0, 9], "e": [0, 8, 9, 10, 11], "_k": [0, 8, 9], "dagger": [0, 1, 2, 7, 8, 9, 11], "mathbf": [0, 7, 8, 9], "n_": [0, 1, 6, 7, 8, 9], "commut": [0, 8, 9], "total": [0, 8, 9], "we": [0, 7, 8, 9, 10, 11], "enforc": [0, 9], "As": [0, 6, 7, 8, 9], "result": [0, 1, 2, 3, 7, 8, 9, 10], "describ": [0, 1, 6, 7, 8, 9, 11], "involv": [0, 9], "same": [0, 6, 9], "To": [0, 6, 7, 8, 9], "variat": [0, 9], "final": [0, 8, 9], "includ": [0, 2, 5, 6, 7, 8], "end": [0, 7, 9], "from_paramet": [0, 9], "param": 0, "n_rep": [0, 9, 10], "alpha_alpha_indic": [0, 9], "alpha_beta_indic": [0, 9], "with_final_orbital_rot": 0, "from_t_amplitud": [0, 9], "t2_amplitud": [0, 2], "t1_amplitud": 0, "t2": [0, 2, 3, 9], "t1": [0, 9], "amplitud": [0, 2, 3, 9], "repetit": [0, 9], "to_paramet": [0, 9], "to_t_amplitud": 0, "nocc": [0, 3], "possibli": 0, "apply_diag_coulomb_evolut": [0, 5, 8], "vec": [0, 1, 2, 6, 7, 8, 11], "mat": [0, 1, 2], "mat_alpha_beta": [0, 1], "occupations_a": [0, 1], "occupations_b": [0, 1], "strings_a": [0, 1], "strings_b": [0, 1], "orbital_rotation_index_a": 0, "orbital_rotation_index_b": 0, "copi": [0, 11], "evolut": [0, 8], "exp": [0, 7], "z_": [0, 1], "also": [0, 1, 7, 11], "given": [0, 1, 2, 7, 8], "place": [0, 1, 9, 11], "sum": [0, 1, 8, 10], "state": [0, 1, 3, 7, 8, 9, 10], "interact": [0, 1, 6], "occupi": [0, 1, 3, 4, 8], "string": [0, 1, 6, 11], "index": [0, 6, 9, 11], "alwai": [0, 2, 7], "newli": 0, "alloc": 0, "untouch": 0, "mai": [0, 2, 9], "still": [0, 9], "overwritten": 0, "evolv": [0, 8], "apply_fsim_g": [0, 5], "phi": 0, "target_orb": 0, "fsim": 0, "consist": 0, "tunnel": 0, "follow": [0, 6, 7, 8, 9, 11], "neg": 0, "sign": 0, "convent": 0, "angl": [0, 10], "nn": 0, "dagger_i": 0, "a_i": 0, "dagger_j": 0, "a_j": [0, 1], "when": [0, 8, 9, 11], "neighbor": 0, "qubit": [0, 9], "begin": [0, 7, 9], "pmatrix": 0, "co": [0, 10], "sin": [0, 10], "apply_givens_rot": [0, 5], "g": [0, 9], "apply_hop_g": [0, 5], "apply_num_interact": [0, 5], "apply_num_num_interact": [0, 5], "apply_num_op_prod_interact": [0, 5], "prod": 0, "sequenc": 0, "pair": [0, 4], "integ": 0, "give": [0, 7], "first": [0, 2, 7, 8, 9, 10], "second": [0, 2, 8, 10], "apply_num_op_sum_evolut": [0, 5, 7, 8], "lambda_i": [0, 1, 7], "rais": 0, "valueerror": 0, "must": [0, 2, 11], "dimension": [0, 2, 6], "apply_orbital_rot": [0, 5, 6, 7], "allow_row_permut": 0, "allow_col_permut": 0, "map": [0, 7, 11], "mapsto": [0, 7], "u_": 0, "ji": [0, 7], "log": 0, "permut": [0, 2], "row": [0, 6], "column": [0, 2, 6, 7], "wa": 0, "well": 0, "actual": [0, 7, 9], "effect": [0, 9], "apply_tunneling_interact": [0, 5], "apply_unitari": [0, 5, 9], "obj": 0, "ani": [0, 7, 9], "approx_eq": [0, 5], "other": [0, 9], "rtol": [0, 2], "05": [0, 2, 9], "atol": [0, 2], "equal": 0, "isclos": 0, "interpret": 0, "rel": [0, 2], "numer": [0, 2, 11], "up": [0, 7], "cre": [0, 5], "creat": [0, 6, 7, 8, 9, 11], "de": [0, 5], "destroi": [0, 11], "dim": [0, 3, 5, 6, 11], "get": [0, 7, 8, 9, 10], "dimens": [0, 3, 6], "fci": [0, 6, 9, 10], "dim_a": [0, 6], "dim_b": [0, 6], "expectation_one_body_pow": [0, 5], "one_rdm": 0, "power": 0, "expect": [0, 7], "w": [0, 7, 8], "slater": [0, 6, 7, 8], "determin": [0, 2, 6, 7, 8], "o": [0, 10], "m_": [0, 1, 2], "a_p": 0, "a_q": 0, "m": [0, 1, 2, 7], "let": [0, 8, 11], "lvert": [0, 9], "psi": [0, 9], "rangl": [0, 9], "Then": 0, "quantiti": 0, "langl": 0, "rvert": 0, "reduc": [0, 2], "densiti": 0, "expectation_one_body_product": [0, 5], "o_1": 0, "o_2": 0, "dot": 0, "o_k": 0, "hartree_fock_st": [0, 5, 8, 9], "statevector": [0, 6, 7], "indices_to_str": [0, 5], "bitstr": 0, "rang": [0, 6, 7, 8, 9], "011001": 0, "011010": 0, "011100": 0, "101001": 0, "101010": 0, "101100": 0, "110001": 0, "110010": 0, "110100": 0, "linear_oper": [0, 5, 8, 9, 10, 11], "multireference_st": [0, 5, 10], "ansatz_oper": 0, "reference_occup": [0, 10], "root": 0, "multirefer": 0, "occup": [0, 6, 7, 8], "desir": 0, "eigenvector": [0, 7], "lowest": [0, 7, 8], "one_hot": [0, 5], "shape": [0, 2, 3, 6, 9], "dtype": [0, 3, 9], "arrai": [0, 2, 6, 11], "zero": [0, 10], "except": 0, "hot": 0, "simulate_qdrift_double_factor": [0, 5], "n_step": [0, 8], "probabl": 0, "norm": 0, "n_sampl": 0, "seed": [0, 3, 4, 6, 7], "via": [0, 8], "qdrift": 0, "trotter": [0, 5], "step": [0, 7, 8], "sampl": [0, 3, 4], "els": [0, 3], "explicit": 0, "proport": [0, 7], "spectral": 0, "uniform": [0, 3], "requir": [0, 9], "whenev": 0, "complet": 0, "character": 0, "trajectori": 0, "pseudorandom": [0, 3, 4], "gener": [0, 3, 4, 5, 6, 7, 8, 9], "should": [0, 3, 4, 7, 8], "valid": [0, 3, 4], "input": [0, 1, 3, 4, 9], "random": [0, 4, 5, 6, 7, 11], "default_rng": [0, 3, 4], "numpi": [0, 2, 6, 7, 8, 9, 10], "just": [0, 8, 9], "simulate_trotter_double_factor": [0, 5, 8], "suzuki": 0, "formula": 0, "slater_determin": [0, 5, 6, 7], "occupied_orbit": [0, 6, 7], "configur": [0, 6], "word": [0, 9], "slater_determinant_one_rdm": [0, 5], "similarli": [0, 8], "construct": [1, 8, 9, 10, 11], "contract_diag_coulomb": [1, 5], "contract_num_op_sum": [1, 5], "diag_coulomb_linop": [1, 5], "implement": [1, 6, 7, 9], "num_op_sum_linop": [1, 5], "one_body_linop": [1, 5, 7], "algebra": [2, 11], "util": [2, 3, 4], "apply_matrix_to_slic": [2, 5], "target": 2, "slice": 2, "out": [2, 8], "double_factor": [2, 5], "ell": 2, "pk": 2, "qk": 2, "respect": 2, "too": 2, "small": [2, 9], "exce": [2, 9], "collect": 2, "double_factorized_t2": [2, 5], "t_": 2, "ijab": 2, "ap": 2, "ip": 2, "bq": 2, "jq": 2, "expm_multiply_taylor": [2, 5], "12": [2, 11], "expm": 2, "taylor": 2, "seri": 2, "expans": 2, "givens_decomposit": [2, 5], "is_antihermitian": [2, 5], "anti": [2, 3], "hermitian": [2, 3, 7], "is_hermitian": [2, 5], "is_orthogon": [2, 5], "orthogon": [2, 3], "union": 2, "bool_": 2, "is_real_symmetr": [2, 5], "is_special_orthogon": [2, 5], "special": [2, 3, 5, 6], "is_unitari": [2, 5], "lup": [2, 5], "pivot": 2, "lu": 2, "rtype": 2, "lower": 2, "unit": 2, "modified_choleski": [2, 5], "v_i": 2, "posit": [2, 10], "definit": 2, "No": 2, "check": [2, 7, 8], "verifi": 2, "1711": 2, "02242": 2, "assembl": 2, "reduced_matrix": [2, 5], "subspac": [2, 11], "span": 2, "some": [2, 8, 11], "v_j": 2, "random_antihermitian": [3, 5], "width": 3, "height": 3, "dype": 3, "random_hermitian": [3, 5, 7], "random_orthogon": [3, 5], "distribut": 3, "haar": 3, "measur": 3, "instanc": [3, 7, 8], "math": [3, 10], "ph": 3, "0609050": 3, "random_real_symmetric_matrix": [3, 5], "random_special_orthogon": [3, 5], "random_statevector": [3, 5, 11], "random_t2_amplitud": [3, 5], "random_two_body_tensor_r": [3, 5], "random_unitari": [3, 5, 6, 7], "random_nelec": [4, 5], "n_alpha": [4, 6, 7, 10], "n_beta": [4, 6, 7, 10], "random_occupied_orbit": [4, 5], "occ_a": 4, "occ_b": 4, "preserv": [5, 11], "categori": 5, "chemistri": 5, "By": [5, 6], "exploit": 5, "algorithm": 5, "faster": 5, "introduct": 5, "quadrat": [5, 8], "local": 5, "lucj": 5, "entangl": 5, "forg": 5, "contract": [5, 7], "linalg": [5, 7, 8, 11], "test": [5, 7, 8], "advantag": 6, "effici": [6, 11], "level": [6, 8], "doe": [6, 11], "primari": 6, "wai": [6, 7, 9], "directli": [6, 8], "code": [6, 8, 9, 11], "show": [6, 7, 8, 9, 10, 11], "6": [6, 7, 8, 9, 10, 11], "1234": [6, 7], "rotated_vec": [6, 7], "plain": 6, "Its": 6, "fix": 6, "For": [6, 7, 9, 11], "system": [6, 7], "conveni": 6, "comb": 6, "assert": 6, "standard": 6, "often": [6, 9], "simpli": [6, 7], "reshap": 6, "reshaped_vec": 6, "choic": 6, "pyscf": [6, 8, 9, 10], "modul": 6, "tutori": [7, 8, 9, 10], "ffsim": [7, 8, 9, 10, 11], "fundament": 7, "mode": 7, "sum_j": 7, "new": [7, 11], "th": 7, "satisfi": [7, 11], "anticommut": 7, "relat": [7, 9], "thei": [7, 9, 11], "align": [7, 9], "_1": 7, "_2": 7, "section": 7, "ll": [7, 8, 9], "demonstr": [7, 8, 9], "task": 7, "consid": [7, 9], "rewritten": 7, "introduc": [7, 9], "eigendecomposit": 7, "sum_k": [7, 8], "lambda_k": 7, "ik": 7, "jk": 7, "our": [7, 8, 9], "ground": [7, 9], "pick": 7, "phase": 7, "spars": [7, 8, 11], "eig": [7, 11], "eigsh": 7, "la": 7, "fact": 7, "you": [7, 9], "illustr": 7, "purpos": 7, "explicitli": 7, "eigh": [7, 8], "evolved_vec": 7, "conj": 7, "undo": 7, "expected_phas": 7, "assert_allclos": 7, "mention": [7, 8], "abov": [7, 8, 11], "below": [7, 8, 9], "better": [7, 8], "evolved_vec_alt": 7, "daunt": 8, "scale": 8, "cell": [8, 9], "hydrogen": 8, "molecul": [8, 9, 10], "stretch": [8, 9], "bond": [8, 9, 10], "build": [8, 9, 10], "h2": 8, "mol": [8, 9, 10], "gto": [8, 9, 10], "mole": [8, 9, 10], "atom": [8, 9, 10], "8": [8, 10, 11], "sto": [8, 9, 10], "6g": [8, 9, 10], "d2h": [8, 9], "rhf": [8, 9, 10], "kernel": [8, 9, 10], "mol_data": [8, 9, 10], "mol_hamiltonian": [8, 9, 10], "df_hamiltonian": 8, "converg": [8, 9, 10], "837796382593709": 8, "dataclass": [8, 9], "print": [8, 9, 10, 11], "inform": [8, 11], "One": 8, "27478830e": 8, "01": [8, 9, 10], "09243819e": 8, "16": 8, "7": [8, 9, 11], "48351655e": 8, "17": [8, 9], "77238770e": 8, "23173938e": 8, "00678144e": 8, "19": 8, "33545754e": 8, "85364508e": 8, "18": [8, 9], "48240570e": 8, "17688164e": 8, "05429868e": 8, "53132024e": 8, "21318608e": 8, "00": [8, 10], "03109072e": 8, "30334814e": 8, "07792507e": 8, "14653029e": 8, "44655364e": 8, "30": 8, "11022302e": 8, "52090881e": 8, "03": [8, 9, 10], "00000000e": 8, "07106781e": 8, "45733039e": 8, "rest": 8, "although": 8, "alreadi": 8, "built": 8, "manual": 8, "asymmetr": 8, "basic": 8, "h_k": 8, "divid": 8, "singl": 8, "exponenti": 8, "individu": [8, 11], "do": [8, 11], "approx": 8, "prod_k": 8, "higher": 8, "deriv": 8, "write": 8, "recal": 8, "addit": [8, 11], "think": 8, "compos": 8, "def": [8, 9, 10], "simulate_trotter_step_double_factor": 8, "one_body_energi": 8, "one_body_basis_chang": 8, "zip": [8, 10], "finish": 8, "handl": 8, "split": 8, "multipl": [8, 11], "wrote": 8, "step_tim": 8, "match": 8, "initial_st": 8, "\u03c8": [8, 9, 10], "hf_energi": 8, "vdot": [8, 9, 10], "f": [8, 9, 10], "now": 8, "later": 8, "exact_st": 8, "expm_multipli": 8, "tracea": 8, "fidel": 8, "ab": 8, "9696296369955065": 8, "final_st": [8, 9], "9990275744083491": 8, "improv": 8, "increas": [8, 9], "10": 8, "999990623310968": 8, "commonli": 8, "known": 8, "fourth": 8, "reproduc": 8, "9": [8, 9, 11], "fewer": 8, "9999999336740071": 8, "ethen": 9, "mcscf": [9, 10], "bond_dist": 9, "678": 9, "5626": 9, "c": 9, "9289": 9, "nelectron": 9, "ca": [9, 10], "casci": [9, 10], "nca": [9, 10], "neleca": [9, 10], "mo": [9, 10], "sort_mo": [9, 10], "energy_fci": [9, 10], "77": 9, "4456267643962": 9, "6290254326717": 9, "ci": [9, 10], "57322412553862": 9, "0000000": [9, 10], "phi_0": 9, "taken": 9, "express": 9, "previou": 9, "constructor": 9, "provid": 9, "truncat": 9, "ccsd": 9, "mp2": 9, "run": 9, "sinc": 9, "cc": 9, "frozen": 9, "nao_nr": 9, "reference_st": 9, "ansatz_st": [9, 10], "initiali": [9, 10], "49387212754476": 9, "e_corr": 9, "04824536314851423": 9, "46975600021705": 9, "facilit": 9, "convers": 9, "precis": 9, "somewhat": 9, "complic": 9, "short": 9, "entri": 9, "non": 9, "redund": 9, "associ": [9, 11], "evalu": [9, 10], "would": 9, "like": 9, "fun": [9, 10], "x": [9, 10], "x0": [9, 10], "maxfun": 9, "1000": 9, "len": [9, 10], "72": 9, "messag": [9, 10], "stop": 9, "NO": 9, "AND": 9, "success": [9, 10], "statu": [9, 10], "51590455311234": 9, "414e": 9, "960e": 9, "266e": 9, "929e": 9, "nit": 9, "jac": 9, "865e": 9, "506e": 9, "223e": 9, "840e": 9, "nfev": [9, 10], "1314": 9, "njev": 9, "hess_inv": 9, "lt": 9, "72x72": 9, "lbfgsinvhessproduct": 9, "float64": 9, "gt": 9, "either": 9, "connect": 9, "swap": 9, "network": 9, "make": 9, "challeng": 9, "noisi": 9, "pre": 9, "fault": 9, "processor": 9, "idea": 9, "impos": 9, "sparsiti": 9, "constraint": 9, "them": 9, "depth": 9, "topologi": 9, "triangl": 9, "need": 9, "lattic": 9, "parallel": 9, "line": 9, "rung": 9, "ladder": 9, "With": 9, "setup": 9, "while": 9, "share": 9, "ldot": 9, "without": 9, "Of": 9, "cours": 9, "less": 9, "notic": 9, "decreas": 9, "46": 9, "46209857715131": 9, "732e": 9, "086e": 9, "308e": 9, "626e": 9, "181e": 9, "695e": 9, "379e": 9, "04": 9, "024e": 9, "1034": 9, "22": 9, "46x46": 9, "water": 10, "equilibrium": 10, "radius_1": 10, "958": 10, "radius_2": 10, "bond_angle_deg": 10, "104": 10, "478": 10, "h1_x": 10, "h2_x": 10, "180": 10, "h2_y": 10, "c2v": 10, "n_electron": 10, "mo_occ": 10, "75": 10, "6787887956297": 10, "7079508859773": 10, "14": 10, "3336207346501": 10, "reference_occupations_spati": 10, "6836617444762": 10, "cobyla": 10, "maxit": 10, "100": 10, "exceed": 10, "69434198370479": 10, "352e": 10, "664e": 10, "02": 10, "940e": 10, "104e": 10, "913e": 10, "maxcv": 10, "Such": 11, "programmat": 11, "dictionari": 11, "hash": 11, "tabl": 11, "three": 11, "piec": 11, "being": 11, "upon": 11, "intern": 11, "itself": 11, "recommend": 11, "helper": 11, "shown": 11, "repr": 11, "view": 11, "displai": 11, "39": 11, "0j": 11, "arithmet": 11, "multipli": 11, "scalar": 11, "go": 11, "op": 11, "op3": 11, "good": 11, "awar": 11, "especi": 11, "avoid": 11, "These": 11, "subtract": 11, "divis": 11, "4j": 11, "12j": 11, "3j": 11, "6j": 11, "far": 11, "criteria": 11, "op4": 11, "linop": 11, "onto": 11, "07354168": 11, "04339062j": 11, "most": 11, "lm": 11, "21984743e": 11, "18j": 11}, "objects": {"": [[0, 0, 0, "-", "ffsim"]], "ffsim": [[0, 1, 1, "", "DoubleFactorizedHamiltonian"], [0, 1, 1, "", "FermionAction"], [0, 1, 1, "", "FermionOperator"], [0, 1, 1, "", "HopGateAnsatzOperator"], [0, 1, 1, "", "MolecularData"], [0, 1, 1, "", "MolecularHamiltonian"], [0, 1, 1, "", "SupportsApplyUnitary"], [0, 1, 1, "", "SupportsApproximateEquality"], [0, 1, 1, "", "SupportsLinearOperator"], [0, 1, 1, "", "SupportsTrace"], [0, 1, 1, "", "UCJOperator"], [0, 5, 1, "", "apply_diag_coulomb_evolution"], [0, 5, 1, "", "apply_fsim_gate"], [0, 5, 1, "", "apply_givens_rotation"], [0, 5, 1, "", "apply_hop_gate"], [0, 5, 1, "", "apply_num_interaction"], [0, 5, 1, "", "apply_num_num_interaction"], [0, 5, 1, "", "apply_num_op_prod_interaction"], [0, 5, 1, "", "apply_num_op_sum_evolution"], [0, 5, 1, "", "apply_orbital_rotation"], [0, 5, 1, "", "apply_tunneling_interaction"], [0, 5, 1, "", "apply_unitary"], [0, 5, 1, "", "approx_eq"], [1, 0, 0, "-", "contract"], [0, 5, 1, "", "cre"], [0, 5, 1, "", "cre_a"], [0, 5, 1, "", "cre_b"], [0, 5, 1, "", "des"], [0, 5, 1, "", "des_a"], [0, 5, 1, "", "des_b"], [0, 5, 1, "", "dim"], [0, 5, 1, "", "dims"], [0, 5, 1, "", "expectation_one_body_power"], [0, 5, 1, "", "expectation_one_body_product"], [0, 5, 1, "", "hartree_fock_state"], [0, 5, 1, "", "indices_to_strings"], [2, 0, 0, "-", "linalg"], [0, 5, 1, "", "linear_operator"], [0, 5, 1, "", "multireference_state"], [0, 5, 1, "", "one_hot"], [3, 0, 0, "-", "random"], [0, 5, 1, "", "simulate_qdrift_double_factorized"], [0, 5, 1, "", "simulate_trotter_double_factorized"], [0, 5, 1, "", "slater_determinant"], [0, 5, 1, "", "slater_determinant_one_rdm"], [4, 0, 0, "-", "testing"], [0, 5, 1, "", "trace"]], "ffsim.DoubleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_number_representation"], [0, 3, 1, "", "to_z_representation"], [0, 2, 1, "", "z_representation"]], "ffsim.FermionAction": [[0, 2, 1, "", "action"], [0, 2, 1, "", "orb"], [0, 2, 1, "", "spin"]], "ffsim.FermionOperator": [[0, 3, 1, "", "conserves_particle_number"], [0, 3, 1, "", "conserves_spin_z"], [0, 3, 1, "", "many_body_order"], [0, 3, 1, "", "normal_ordered"]], "ffsim.MolecularData": [[0, 2, 1, "", "core_energy"], [0, 2, 1, "", "dipole_integrals"], [0, 3, 1, "", "from_hartree_fock"], [0, 4, 1, "", "hamiltonian"], [0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_symmetries"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.MolecularHamiltonian": [[0, 2, 1, "", "constant"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.UCJOperator": [[0, 2, 1, "", "diag_coulomb_mats_alpha_alpha"], [0, 2, 1, "", "diag_coulomb_mats_alpha_beta"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"], [0, 3, 1, "", "to_t_amplitudes"]], "ffsim.contract": [[1, 5, 1, "", "contract_diag_coulomb"], [1, 5, 1, "", "contract_num_op_sum"], [1, 5, 1, "", "diag_coulomb_linop"], [1, 5, 1, "", "num_op_sum_linop"], [1, 5, 1, "", "one_body_linop"]], "ffsim.linalg": [[2, 5, 1, "", "apply_matrix_to_slices"], [2, 5, 1, "", "double_factorized"], [2, 5, 1, "", "double_factorized_t2"], [2, 5, 1, "", "expm_multiply_taylor"], [2, 5, 1, "", "givens_decomposition"], [2, 5, 1, "", "is_antihermitian"], [2, 5, 1, "", "is_hermitian"], [2, 5, 1, "", "is_orthogonal"], [2, 5, 1, "", "is_real_symmetric"], [2, 5, 1, "", "is_special_orthogonal"], [2, 5, 1, "", "is_unitary"], [2, 5, 1, "", "lup"], [2, 5, 1, "", "modified_cholesky"], [2, 5, 1, "", "reduced_matrix"]], "ffsim.random": [[3, 5, 1, "", "random_antihermitian"], [3, 5, 1, "", "random_hermitian"], [3, 5, 1, "", "random_orthogonal"], [3, 5, 1, "", "random_real_symmetric_matrix"], [3, 5, 1, "", "random_special_orthogonal"], [3, 5, 1, "", "random_statevector"], [3, 5, 1, "", "random_t2_amplitudes"], [3, 5, 1, "", "random_two_body_tensor_real"], [3, 5, 1, "", "random_unitary"]], "ffsim.testing": [[4, 5, 1, "", "random_nelec"], [4, 5, 1, "", "random_occupied_orbitals"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"]}, "titleterms": {"ffsim": [0, 1, 2, 3, 4, 5, 6], "contract": 1, "linalg": 2, "random": 3, "test": 4, "welcom": 5, "": 5, "document": 5, "tutori": 5, "api": 5, "refer": 5, "introduct": 6, "orbit": 7, "rotat": 7, "quadrat": 7, "hamiltonian": [7, 8], "time": 7, "evolut": 7, "diagon": 8, "coulomb": 8, "oper": 8, "doubl": 8, "factor": 8, "trotter": 8, "simul": 8, "represent": 8, "molecular": 8, "brief": 8, "background": 8, "suzuki": 8, "formula": 8, "implement": 8, "The": [9, 11], "local": 9, "unitari": 9, "cluster": 9, "jastrow": 9, "lucj": 9, "ansatz": 9, "ucj": 9, "entangl": 10, "forg": 10, "fermionoper": 11, "class": 11}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"ffsim": [[0, "module-ffsim"]], "ffsim.contract": [[1, "module-ffsim.contract"]], "ffsim.linalg": [[2, "module-ffsim.linalg"]], "ffsim.random": [[3, "module-ffsim.random"]], "ffsim.testing": [[4, "module-ffsim.testing"]], "Welcome to ffsim\u2019s documentation!": [[5, "welcome-to-ffsim-s-documentation"]], "Tutorials": [[5, "tutorials"]], "API Reference": [[5, "api-reference"]], "Introduction to ffsim": [[6, "Introduction-to-ffsim"]], "Orbital rotations and quadratic Hamiltonians": [[7, "Orbital-rotations-and-quadratic-Hamiltonians"]], "Orbital rotations": [[7, "Orbital-rotations"]], "Time evolution by a quadratic Hamiltonian": [[7, "Time-evolution-by-a-quadratic-Hamiltonian"]], "Diagonal Coulomb operators and double-factorized Trotter simulation": [[8, "Diagonal-Coulomb-operators-and-double-factorized-Trotter-simulation"]], "Double-factorized representation of the molecular Hamiltonian": [[8, "Double-factorized-representation-of-the-molecular-Hamiltonian"]], "Trotter simulation of the double-factorized Hamiltonian": [[8, "Trotter-simulation-of-the-double-factorized-Hamiltonian"]], "Brief background on Trotter-Suzuki formulas": [[8, "Brief-background-on-Trotter-Suzuki-formulas"]], "Implementing Trotter simulation of the double-factorized Hamiltonian": [[8, "Implementing-Trotter-simulation-of-the-double-factorized-Hamiltonian"]], "The local unitary cluster Jastrow (LUCJ) ansatz": [[9, "The-local-unitary-cluster-Jastrow-(LUCJ)-ansatz"], [9, "id1"]], "The unitary cluster Jastrow (UCJ) ansatz": [[9, "The-unitary-cluster-Jastrow-(UCJ)-ansatz"]], "Entanglement forging": [[10, "Entanglement-forging"]], "The FermionOperator class": [[11, "The-FermionOperator-class"]]}, "indexentries": {"doublefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.DoubleFactorizedHamiltonian"]], "fermionaction (class in ffsim)": [[0, "ffsim.FermionAction"]], "fermionoperator (class in ffsim)": [[0, "ffsim.FermionOperator"]], "hopgateansatzoperator (class in ffsim)": [[0, "ffsim.HopGateAnsatzOperator"]], "moleculardata (class in ffsim)": [[0, "ffsim.MolecularData"]], "molecularhamiltonian (class in ffsim)": [[0, "ffsim.MolecularHamiltonian"]], "supportsapplyunitary (class in ffsim)": [[0, "ffsim.SupportsApplyUnitary"]], "supportsapproximateequality (class in ffsim)": [[0, "ffsim.SupportsApproximateEquality"]], "supportslinearoperator (class in ffsim)": [[0, "ffsim.SupportsLinearOperator"]], "supportstrace (class in ffsim)": [[0, "ffsim.SupportsTrace"]], "ucjoperator (class in ffsim)": [[0, "ffsim.UCJOperator"]], "action (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.action"]], "apply_diag_coulomb_evolution() (in module ffsim)": [[0, "ffsim.apply_diag_coulomb_evolution"]], "apply_fsim_gate() (in module ffsim)": [[0, "ffsim.apply_fsim_gate"]], "apply_givens_rotation() (in module ffsim)": [[0, "ffsim.apply_givens_rotation"]], "apply_hop_gate() (in module ffsim)": [[0, "ffsim.apply_hop_gate"]], "apply_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_interaction"]], "apply_num_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_num_interaction"]], "apply_num_op_prod_interaction() (in module ffsim)": [[0, "ffsim.apply_num_op_prod_interaction"]], "apply_num_op_sum_evolution() (in module ffsim)": [[0, "ffsim.apply_num_op_sum_evolution"]], "apply_orbital_rotation() (in module ffsim)": [[0, "ffsim.apply_orbital_rotation"]], "apply_tunneling_interaction() (in module ffsim)": [[0, "ffsim.apply_tunneling_interaction"]], "apply_unitary() (in module ffsim)": [[0, "ffsim.apply_unitary"]], "approx_eq() (in module ffsim)": [[0, "ffsim.approx_eq"]], "conserves_particle_number() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_particle_number"]], "conserves_spin_z() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_spin_z"]], "constant (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.constant"]], "constant (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.constant"]], "core_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.core_energy"]], "cre() (in module ffsim)": [[0, "ffsim.cre"]], "cre_a() (in module ffsim)": [[0, "ffsim.cre_a"]], "cre_b() (in module ffsim)": [[0, "ffsim.cre_b"]], "des() (in module ffsim)": [[0, "ffsim.des"]], "des_a() (in module ffsim)": [[0, "ffsim.des_a"]], "des_b() (in module ffsim)": [[0, "ffsim.des_b"]], "diag_coulomb_mats (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.diag_coulomb_mats"]], "diag_coulomb_mats_alpha_alpha (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_alpha"]], "diag_coulomb_mats_alpha_beta (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_beta"]], "dim() (in module ffsim)": [[0, "ffsim.dim"]], "dims() (in module ffsim)": [[0, "ffsim.dims"]], "dipole_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.dipole_integrals"]], "expectation_one_body_power() (in module ffsim)": [[0, "ffsim.expectation_one_body_power"]], "expectation_one_body_product() (in module ffsim)": [[0, "ffsim.expectation_one_body_product"]], "ffsim": [[0, "module-ffsim"]], "final_orbital_rotation (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.final_orbital_rotation"]], "from_hartree_fock() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_hartree_fock"]], "from_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian static method)": [[0, "ffsim.DoubleFactorizedHamiltonian.from_molecular_hamiltonian"]], "from_parameters() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_parameters"]], "from_t_amplitudes() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_t_amplitudes"]], "hamiltonian (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.hamiltonian"]], "hartree_fock_state() (in module ffsim)": [[0, "ffsim.hartree_fock_state"]], "indices_to_strings() (in module ffsim)": [[0, "ffsim.indices_to_strings"]], "linear_operator() (in module ffsim)": [[0, "ffsim.linear_operator"]], "many_body_order() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.many_body_order"]], "module": [[0, "module-ffsim"], [1, "module-ffsim.contract"], [2, "module-ffsim.linalg"], [3, "module-ffsim.random"], [4, "module-ffsim.testing"]], "multireference_state() (in module ffsim)": [[0, "ffsim.multireference_state"]], "n_reps (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.n_reps"]], "nelec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.nelec"]], "norb (ffsim.doublefactorizedhamiltonian property)": [[0, "ffsim.DoubleFactorizedHamiltonian.norb"]], "norb (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.norb"]], "norb (ffsim.molecularhamiltonian property)": [[0, "ffsim.MolecularHamiltonian.norb"]], "norb (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.norb"]], "normal_ordered() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.normal_ordered"]], "one_body_tensor (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.one_body_tensor"]], "one_body_tensor (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.one_body_tensor"]], "one_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.one_body_tensor"]], "one_hot() (in module ffsim)": [[0, "ffsim.one_hot"]], "orb (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.orb"]], "orbital_rotations (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.orbital_rotations"]], "orbital_rotations (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.orbital_rotations"]], "orbital_symmetries (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.orbital_symmetries"]], "simulate_qdrift_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_qdrift_double_factorized"]], "simulate_trotter_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_trotter_double_factorized"]], "slater_determinant() (in module ffsim)": [[0, "ffsim.slater_determinant"]], "slater_determinant_one_rdm() (in module ffsim)": [[0, "ffsim.slater_determinant_one_rdm"]], "spin (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.spin"]], "to_number_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_number_representation"]], "to_parameters() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_parameters"]], "to_t_amplitudes() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_t_amplitudes"]], "to_z_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_z_representation"]], "trace() (in module ffsim)": [[0, "ffsim.trace"]], "two_body_tensor (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.two_body_tensor"]], "two_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.two_body_tensor"]], "z_representation (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.z_representation"]], "contract_diag_coulomb() (in module ffsim.contract)": [[1, "ffsim.contract.contract_diag_coulomb"]], "contract_num_op_sum() (in module ffsim.contract)": [[1, "ffsim.contract.contract_num_op_sum"]], "diag_coulomb_linop() (in module ffsim.contract)": [[1, "ffsim.contract.diag_coulomb_linop"]], "ffsim.contract": [[1, "module-ffsim.contract"]], "num_op_sum_linop() (in module ffsim.contract)": [[1, "ffsim.contract.num_op_sum_linop"]], "one_body_linop() (in module ffsim.contract)": [[1, "ffsim.contract.one_body_linop"]], "apply_matrix_to_slices() (in module ffsim.linalg)": [[2, "ffsim.linalg.apply_matrix_to_slices"]], "double_factorized() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized"]], "double_factorized_t2() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2"]], "expm_multiply_taylor() (in module ffsim.linalg)": [[2, "ffsim.linalg.expm_multiply_taylor"]], "ffsim.linalg": [[2, "module-ffsim.linalg"]], "givens_decomposition() (in module ffsim.linalg)": [[2, "ffsim.linalg.givens_decomposition"]], "is_antihermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_antihermitian"]], "is_hermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_hermitian"]], "is_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_orthogonal"]], "is_real_symmetric() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_real_symmetric"]], "is_special_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_special_orthogonal"]], "is_unitary() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_unitary"]], "lup() (in module ffsim.linalg)": [[2, "ffsim.linalg.lup"]], "modified_cholesky() (in module ffsim.linalg)": [[2, "ffsim.linalg.modified_cholesky"]], "reduced_matrix() (in module ffsim.linalg)": [[2, "ffsim.linalg.reduced_matrix"]], "ffsim.random": [[3, "module-ffsim.random"]], "random_antihermitian() (in module ffsim.random)": [[3, "ffsim.random.random_antihermitian"]], "random_hermitian() (in module ffsim.random)": [[3, "ffsim.random.random_hermitian"]], "random_orthogonal() (in module ffsim.random)": [[3, "ffsim.random.random_orthogonal"]], "random_real_symmetric_matrix() (in module ffsim.random)": [[3, "ffsim.random.random_real_symmetric_matrix"]], "random_special_orthogonal() (in module ffsim.random)": [[3, "ffsim.random.random_special_orthogonal"]], "random_statevector() (in module ffsim.random)": [[3, "ffsim.random.random_statevector"]], "random_t2_amplitudes() (in module ffsim.random)": [[3, "ffsim.random.random_t2_amplitudes"]], "random_two_body_tensor_real() (in module ffsim.random)": [[3, "ffsim.random.random_two_body_tensor_real"]], "random_unitary() (in module ffsim.random)": [[3, "ffsim.random.random_unitary"]], "ffsim.testing": [[4, "module-ffsim.testing"]], "random_nelec() (in module ffsim.testing)": [[4, "ffsim.testing.random_nelec"]], "random_occupied_orbitals() (in module ffsim.testing)": [[4, "ffsim.testing.random_occupied_orbitals"]]}}) \ No newline at end of file diff --git a/tutorials/01-introduction.ipynb b/tutorials/01-introduction.ipynb index d895f5df7..46d49f711 100644 --- a/tutorials/01-introduction.ipynb +++ b/tutorials/01-introduction.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:48.438642Z", - "iopub.status.busy": "2023-10-26T02:07:48.438372Z", - "iopub.status.idle": "2023-10-26T02:07:48.803616Z", - "shell.execute_reply": "2023-10-26T02:07:48.802850Z" + "iopub.execute_input": "2023-10-26T03:24:59.783652Z", + "iopub.status.busy": "2023-10-26T03:24:59.783016Z", + "iopub.status.idle": "2023-10-26T03:25:00.176594Z", + "shell.execute_reply": "2023-10-26T03:25:00.175809Z" } }, "outputs": [], @@ -62,10 +62,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:48.808117Z", - "iopub.status.busy": "2023-10-26T02:07:48.807767Z", - "iopub.status.idle": "2023-10-26T02:07:48.813016Z", - "shell.execute_reply": "2023-10-26T02:07:48.812442Z" + "iopub.execute_input": "2023-10-26T03:25:00.181575Z", + "iopub.status.busy": "2023-10-26T03:25:00.180306Z", + "iopub.status.idle": "2023-10-26T03:25:00.187040Z", + "shell.execute_reply": "2023-10-26T03:25:00.185457Z" } }, "outputs": [], @@ -93,10 +93,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:48.816542Z", - "iopub.status.busy": "2023-10-26T02:07:48.816279Z", - "iopub.status.idle": "2023-10-26T02:07:48.820531Z", - "shell.execute_reply": "2023-10-26T02:07:48.819938Z" + "iopub.execute_input": "2023-10-26T03:25:00.192215Z", + "iopub.status.busy": "2023-10-26T03:25:00.191152Z", + "iopub.status.idle": "2023-10-26T03:25:00.195500Z", + "shell.execute_reply": "2023-10-26T03:25:00.194940Z" } }, "outputs": [], diff --git a/tutorials/02-orbital-rotation.ipynb b/tutorials/02-orbital-rotation.ipynb index 0cbf6f846..ea9bcf629 100644 --- a/tutorials/02-orbital-rotation.ipynb +++ b/tutorials/02-orbital-rotation.ipynb @@ -43,10 +43,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:50.556417Z", - "iopub.status.busy": "2023-10-26T02:07:50.555974Z", - "iopub.status.idle": "2023-10-26T02:07:50.909017Z", - "shell.execute_reply": "2023-10-26T02:07:50.908336Z" + "iopub.execute_input": "2023-10-26T03:25:02.061444Z", + "iopub.status.busy": "2023-10-26T03:25:02.061054Z", + "iopub.status.idle": "2023-10-26T03:25:02.440870Z", + "shell.execute_reply": "2023-10-26T03:25:02.439932Z" } }, "outputs": [], @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:50.913648Z", - "iopub.status.busy": "2023-10-26T02:07:50.913132Z", - "iopub.status.idle": "2023-10-26T02:07:50.943215Z", - "shell.execute_reply": "2023-10-26T02:07:50.942611Z" + "iopub.execute_input": "2023-10-26T03:25:02.446767Z", + "iopub.status.busy": "2023-10-26T03:25:02.446377Z", + "iopub.status.idle": "2023-10-26T03:25:02.488440Z", + "shell.execute_reply": "2023-10-26T03:25:02.487381Z" } }, "outputs": [], @@ -158,10 +158,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:50.947280Z", - "iopub.status.busy": "2023-10-26T02:07:50.946127Z", - "iopub.status.idle": "2023-10-26T02:07:50.958957Z", - "shell.execute_reply": "2023-10-26T02:07:50.958357Z" + "iopub.execute_input": "2023-10-26T03:25:02.493706Z", + "iopub.status.busy": "2023-10-26T03:25:02.492977Z", + "iopub.status.idle": "2023-10-26T03:25:02.510191Z", + "shell.execute_reply": "2023-10-26T03:25:02.509350Z" } }, "outputs": [], @@ -201,10 +201,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:50.963316Z", - "iopub.status.busy": "2023-10-26T02:07:50.962221Z", - "iopub.status.idle": "2023-10-26T02:07:50.968679Z", - "shell.execute_reply": "2023-10-26T02:07:50.968142Z" + "iopub.execute_input": "2023-10-26T03:25:02.514047Z", + "iopub.status.busy": "2023-10-26T03:25:02.513639Z", + "iopub.status.idle": "2023-10-26T03:25:02.520479Z", + "shell.execute_reply": "2023-10-26T03:25:02.519765Z" } }, "outputs": [], diff --git a/tutorials/03-double-factorized.html b/tutorials/03-double-factorized.html index 2a2da1c44..12e5bc746 100644 --- a/tutorials/03-double-factorized.html +++ b/tutorials/03-double-factorized.html @@ -131,28 +131,28 @@

Double-factorized representation of the molecular Hamiltonian

@@ -293,7 +293,7 @@

Implementing Trotter simulation of the double-factorized Hamiltonian
-Hartree Fock energy: -0.8377963825937084
+Hartree Fock energy: -0.837796382593709
 

Now, we set the evolution time and calculate the exact result of time evolution by directly exponentiating the Hamiltonian using SciPy. Later, we will compare the result of our approximate time evolution with this exact result.

@@ -321,7 +321,7 @@

Implementing Trotter simulation of the double-factorized Hamiltonian
-Fidelity of evolved state w.r.t. initial state: 0.9696296369955066
+Fidelity of evolved state w.r.t. initial state: 0.9696296369955065
 

Now, let’s test our implementation.

@@ -348,7 +348,7 @@

Implementing Trotter simulation of the double-factorized Hamiltonian
-Fidelity of Trotter-evolved state with exact state: 0.9990275744083494
+Fidelity of Trotter-evolved state with exact state: 0.9990275744083491
 

The fidelity of the final result can be improved by increasing the number of Trotter steps.

@@ -375,7 +375,7 @@

Implementing Trotter simulation of the double-factorized Hamiltonian
-Fidelity of Trotter-evolved state with exact state: 0.9999906233109686
+Fidelity of Trotter-evolved state with exact state: 0.999990623310968
 

As mentioned above, ffsim already includes functionality for Trotter simulation of double-factorized Hamiltonians. The implementation in ffsim includes higher-order Trotter-Suzuki formulas. The first-order asymmetric formula that we just implemented corresponds to order=0 in ffsim’s implementation. order=1 corresponds to the first-order symmetric (commonly known as the second-order) formula, order=2 corresponds to the second-order symmetric (fourth-order) formula, and so on.

@@ -404,7 +404,7 @@

Implementing Trotter simulation of the double-factorized Hamiltonian
-Fidelity of Trotter-evolved state with exact state: 0.9999906233109686
+Fidelity of Trotter-evolved state with exact state: 0.999990623310968
 

A higher order formula achieves a higher fidelity with fewer Trotter steps:

@@ -432,7 +432,7 @@

Implementing Trotter simulation of the double-factorized Hamiltonian
-Fidelity of Trotter-evolved state with exact state: 0.9999999336740067
+Fidelity of Trotter-evolved state with exact state: 0.9999999336740071
 
diff --git a/tutorials/03-double-factorized.ipynb b/tutorials/03-double-factorized.ipynb index f1047a672..71bf1c92e 100644 --- a/tutorials/03-double-factorized.ipynb +++ b/tutorials/03-double-factorized.ipynb @@ -43,10 +43,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:52.818189Z", - "iopub.status.busy": "2023-10-26T02:07:52.817955Z", - "iopub.status.idle": "2023-10-26T02:07:53.260463Z", - "shell.execute_reply": "2023-10-26T02:07:53.259837Z" + "iopub.execute_input": "2023-10-26T03:25:04.304070Z", + "iopub.status.busy": "2023-10-26T03:25:04.303699Z", + "iopub.status.idle": "2023-10-26T03:25:04.781195Z", + "shell.execute_reply": "2023-10-26T03:25:04.780246Z" } }, "outputs": [ @@ -92,10 +92,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.264180Z", - "iopub.status.busy": "2023-10-26T02:07:53.263406Z", - "iopub.status.idle": "2023-10-26T02:07:53.270510Z", - "shell.execute_reply": "2023-10-26T02:07:53.269965Z" + "iopub.execute_input": "2023-10-26T03:25:04.785601Z", + "iopub.status.busy": "2023-10-26T03:25:04.785014Z", + "iopub.status.idle": "2023-10-26T03:25:04.792742Z", + "shell.execute_reply": "2023-10-26T03:25:04.792080Z" } }, "outputs": [ @@ -106,28 +106,28 @@ "Original representation\n", "-----------------------\n", "One-body tensor:\n", - "[[-8.27478830e-01 -8.52909490e-17]\n", - " [-5.57029092e-17 -6.77238770e-01]]\n", + "[[-8.27478830e-01 -1.09243819e-16]\n", + " [-7.48351655e-17 -6.77238770e-01]]\n", "\n", "Two-body tensor:\n", - "[[[[5.23173938e-01 3.58782168e-17]\n", - " [3.58782168e-17 5.33545754e-01]]\n", + "[[[[ 5.23173938e-01 -5.00678144e-19]\n", + " [-5.00678144e-19 5.33545754e-01]]\n", "\n", - " [[2.49859013e-17 2.48240570e-01]\n", - " [2.48240570e-01 4.83067333e-17]]]\n", + " [[ 5.85364508e-18 2.48240570e-01]\n", + " [ 2.48240570e-01 -1.17688164e-17]]]\n", "\n", "\n", - " [[[2.49859013e-17 2.48240570e-01]\n", - " [2.48240570e-01 4.83067333e-17]]\n", + " [[[ 5.85364508e-18 2.48240570e-01]\n", + " [ 2.48240570e-01 -1.17688164e-17]]\n", "\n", - " [[5.33545754e-01 4.01841799e-17]\n", - " [4.01841799e-17 5.53132024e-01]]]]\n", + " [[ 5.33545754e-01 1.05429868e-17]\n", + " [ 1.05429868e-17 5.53132024e-01]]]]\n", "\n", "Double-factorized representation\n", "--------------------------------\n", "One-body tensor:\n", - "[[-1.21318608e+00 -1.27383424e-16]\n", - " [-8.82879498e-17 -1.07792507e+00]]\n", + "[[-1.21318608e+00 -1.03109072e-16]\n", + " [-8.30334814e-17 -1.07792507e+00]]\n", "\n", "Diagonal Coulomb matrices:\n", "[[[ 5.14653029e-01 5.33545754e-01]\n", @@ -136,18 +136,18 @@ " [[ 2.48240570e-01 -2.48240570e-01]\n", " [-2.48240570e-01 2.48240570e-01]]\n", "\n", - " [[ 2.27521846e-62 -1.39236953e-32]\n", - " [-1.39236953e-32 8.52090881e-03]]]\n", + " [[ 1.44655364e-30 -1.11022302e-16]\n", + " [-1.11022302e-16 8.52090881e-03]]]\n", "\n", "Orbital rotations:\n", "[[[ 1.00000000e+00 0.00000000e+00]\n", " [ 0.00000000e+00 1.00000000e+00]]\n", "\n", - " [[-7.07106781e-01 -7.07106781e-01]\n", - " [ 7.07106781e-01 -7.07106781e-01]]\n", + " [[-7.07106781e-01 7.07106781e-01]\n", + " [ 7.07106781e-01 7.07106781e-01]]\n", "\n", - " [[-1.27830444e-15 -1.00000000e+00]\n", - " [-1.00000000e+00 1.27830444e-15]]]\n" + " [[ 7.45733039e-16 -1.00000000e+00]\n", + " [-1.00000000e+00 -7.45733039e-16]]]\n" ] } ], @@ -226,10 +226,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.273496Z", - "iopub.status.busy": "2023-10-26T02:07:53.273047Z", - "iopub.status.idle": "2023-10-26T02:07:53.278381Z", - "shell.execute_reply": "2023-10-26T02:07:53.277882Z" + "iopub.execute_input": "2023-10-26T03:25:04.795926Z", + "iopub.status.busy": "2023-10-26T03:25:04.795491Z", + "iopub.status.idle": "2023-10-26T03:25:04.801189Z", + "shell.execute_reply": "2023-10-26T03:25:04.800506Z" } }, "outputs": [], @@ -284,10 +284,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.281185Z", - "iopub.status.busy": "2023-10-26T02:07:53.280756Z", - "iopub.status.idle": "2023-10-26T02:07:53.284978Z", - "shell.execute_reply": "2023-10-26T02:07:53.284487Z" + "iopub.execute_input": "2023-10-26T03:25:04.804523Z", + "iopub.status.busy": "2023-10-26T03:25:04.804146Z", + "iopub.status.idle": "2023-10-26T03:25:04.808538Z", + "shell.execute_reply": "2023-10-26T03:25:04.807583Z" } }, "outputs": [], @@ -324,10 +324,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.388945Z", - "iopub.status.busy": "2023-10-26T02:07:53.388090Z", - "iopub.status.idle": "2023-10-26T02:07:53.396526Z", - "shell.execute_reply": "2023-10-26T02:07:53.395944Z" + "iopub.execute_input": "2023-10-26T03:25:04.919171Z", + "iopub.status.busy": "2023-10-26T03:25:04.918322Z", + "iopub.status.idle": "2023-10-26T03:25:04.924939Z", + "shell.execute_reply": "2023-10-26T03:25:04.924221Z" } }, "outputs": [ @@ -335,7 +335,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Hartree Fock energy: -0.8377963825937084\n" + "Hartree Fock energy: -0.837796382593709\n" ] } ], @@ -363,10 +363,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.399568Z", - "iopub.status.busy": "2023-10-26T02:07:53.398866Z", - "iopub.status.idle": "2023-10-26T02:07:53.409638Z", - "shell.execute_reply": "2023-10-26T02:07:53.408966Z" + "iopub.execute_input": "2023-10-26T03:25:04.928509Z", + "iopub.status.busy": "2023-10-26T03:25:04.927709Z", + "iopub.status.idle": "2023-10-26T03:25:04.940525Z", + "shell.execute_reply": "2023-10-26T03:25:04.939470Z" } }, "outputs": [ @@ -374,7 +374,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of evolved state w.r.t. initial state: 0.9696296369955066\n" + "Fidelity of evolved state w.r.t. initial state: 0.9696296369955065\n" ] } ], @@ -405,10 +405,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.412511Z", - "iopub.status.busy": "2023-10-26T02:07:53.412280Z", - "iopub.status.idle": "2023-10-26T02:07:53.421504Z", - "shell.execute_reply": "2023-10-26T02:07:53.420828Z" + "iopub.execute_input": "2023-10-26T03:25:04.943583Z", + "iopub.status.busy": "2023-10-26T03:25:04.943383Z", + "iopub.status.idle": "2023-10-26T03:25:04.954684Z", + "shell.execute_reply": "2023-10-26T03:25:04.954070Z" } }, "outputs": [ @@ -416,7 +416,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9990275744083494\n" + "Fidelity of Trotter-evolved state with exact state: 0.9990275744083491\n" ] } ], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.425218Z", - "iopub.status.busy": "2023-10-26T02:07:53.424981Z", - "iopub.status.idle": "2023-10-26T02:07:53.477780Z", - "shell.execute_reply": "2023-10-26T02:07:53.476929Z" + "iopub.execute_input": "2023-10-26T03:25:04.958010Z", + "iopub.status.busy": "2023-10-26T03:25:04.957439Z", + "iopub.status.idle": "2023-10-26T03:25:05.023175Z", + "shell.execute_reply": "2023-10-26T03:25:05.022495Z" } }, "outputs": [ @@ -457,7 +457,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9999906233109686\n" + "Fidelity of Trotter-evolved state with exact state: 0.999990623310968\n" ] } ], @@ -489,10 +489,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.480932Z", - "iopub.status.busy": "2023-10-26T02:07:53.480683Z", - "iopub.status.idle": "2023-10-26T02:07:53.519491Z", - "shell.execute_reply": "2023-10-26T02:07:53.518584Z" + "iopub.execute_input": "2023-10-26T03:25:05.026726Z", + "iopub.status.busy": "2023-10-26T03:25:05.026166Z", + "iopub.status.idle": "2023-10-26T03:25:05.069284Z", + "shell.execute_reply": "2023-10-26T03:25:05.068579Z" } }, "outputs": [ @@ -500,7 +500,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9999906233109686\n" + "Fidelity of Trotter-evolved state with exact state: 0.999990623310968\n" ] } ], @@ -531,10 +531,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:07:53.522606Z", - "iopub.status.busy": "2023-10-26T02:07:53.522360Z", - "iopub.status.idle": "2023-10-26T02:07:53.540773Z", - "shell.execute_reply": "2023-10-26T02:07:53.540197Z" + "iopub.execute_input": "2023-10-26T03:25:05.072929Z", + "iopub.status.busy": "2023-10-26T03:25:05.072426Z", + "iopub.status.idle": "2023-10-26T03:25:05.090187Z", + "shell.execute_reply": "2023-10-26T03:25:05.089527Z" } }, "outputs": [ @@ -542,7 +542,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9999999336740067\n" + "Fidelity of Trotter-evolved state with exact state: 0.9999999336740071\n" ] } ], diff --git a/tutorials/04-lucj.html b/tutorials/04-lucj.html index 5fe3d4000..d8fd72e45 100644 --- a/tutorials/04-lucj.html +++ b/tutorials/04-lucj.html @@ -147,8 +147,8 @@

The unitary cluster Jastrow (UCJ) ansatz
-E(CCSD) = -77.49387212754473  E_corr = -0.04824536314851458
-Energy at initialialization: -77.46975600021715
+E(CCSD) = -77.49387212754476  E_corr = -0.04824536314851423
+Energy at initialialization: -77.46975600021705
 

To facilitate variational optimization of the ansatz, UCJOperator implements methods for conversion to and from a vector of real-valued parameters. The precise relation between a parameter vector and the matrices of the UCJ operator is somewhat complicated. In short, the parameter vector stores the entries of the UCJ matrices in a non-redundant way (for the orbital rotations, the parameter vector actually stores the entries of their generators.)

@@ -187,12 +187,12 @@

The unitary cluster Jastrow (UCJ) ansatz\n" ] } @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:01.110339Z", - "iopub.status.busy": "2023-10-26T02:08:01.109853Z", - "iopub.status.idle": "2023-10-26T02:08:04.588432Z", - "shell.execute_reply": "2023-10-26T02:08:04.587821Z" + "iopub.execute_input": "2023-10-26T03:25:13.612077Z", + "iopub.status.busy": "2023-10-26T03:25:13.611868Z", + "iopub.status.idle": "2023-10-26T03:25:18.148485Z", + "shell.execute_reply": "2023-10-26T03:25:18.147761Z" } }, "outputs": [ @@ -261,10 +261,10 @@ " message: STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT\n", " success: False\n", " status: 1\n", - " fun: -77.46361071169422\n", - " x: [-3.343e-01 6.243e-02 ... -4.956e-01 2.145e-01]\n", + " fun: -77.46209857715131\n", + " x: [-3.732e-01 1.086e-01 ... 6.308e-01 2.626e-01]\n", " nit: 17\n", - " jac: [-2.743e-04 -6.381e-04 ... -2.174e-04 2.473e-04]\n", + " jac: [ 4.181e-03 3.695e-05 ... -9.379e-04 -9.024e-04]\n", " nfev: 1034\n", " njev: 22\n", " hess_inv: <46x46 LbfgsInvHessProduct with dtype=float64>\n" diff --git a/tutorials/05-entanglement-forging.html b/tutorials/05-entanglement-forging.html index 0c1f08bef..25432c795 100644 --- a/tutorials/05-entanglement-forging.html +++ b/tutorials/05-entanglement-forging.html @@ -139,7 +139,7 @@

Entanglement forging
-Energy at initialialization: -75.68366174447617
+Energy at initialialization: -75.6836617444762
 
diff --git a/tutorials/05-entanglement-forging.ipynb b/tutorials/05-entanglement-forging.ipynb index 2c66256e8..b5edf42ea 100644 --- a/tutorials/05-entanglement-forging.ipynb +++ b/tutorials/05-entanglement-forging.ipynb @@ -14,10 +14,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:06.674994Z", - "iopub.status.busy": "2023-10-26T02:08:06.674598Z", - "iopub.status.idle": "2023-10-26T02:08:07.442351Z", - "shell.execute_reply": "2023-10-26T02:08:07.441711Z" + "iopub.execute_input": "2023-10-26T03:25:19.771469Z", + "iopub.status.busy": "2023-10-26T03:25:19.770921Z", + "iopub.status.idle": "2023-10-26T03:25:20.442937Z", + "shell.execute_reply": "2023-10-26T03:25:20.442231Z" } }, "outputs": [ @@ -90,10 +90,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:07.446389Z", - "iopub.status.busy": "2023-10-26T02:08:07.445971Z", - "iopub.status.idle": "2023-10-26T02:08:07.472817Z", - "shell.execute_reply": "2023-10-26T02:08:07.472029Z" + "iopub.execute_input": "2023-10-26T03:25:20.446407Z", + "iopub.status.busy": "2023-10-26T03:25:20.445993Z", + "iopub.status.idle": "2023-10-26T03:25:20.473909Z", + "shell.execute_reply": "2023-10-26T03:25:20.473211Z" } }, "outputs": [ @@ -101,7 +101,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialialization: -75.68366174447617\n" + "Energy at initialialization: -75.6836617444762\n" ] } ], @@ -135,10 +135,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:07.476415Z", - "iopub.status.busy": "2023-10-26T02:08:07.475772Z", - "iopub.status.idle": "2023-10-26T02:08:09.554066Z", - "shell.execute_reply": "2023-10-26T02:08:09.553004Z" + "iopub.execute_input": "2023-10-26T03:25:20.476941Z", + "iopub.status.busy": "2023-10-26T03:25:20.476556Z", + "iopub.status.idle": "2023-10-26T03:25:23.102812Z", + "shell.execute_reply": "2023-10-26T03:25:23.102071Z" } }, "outputs": [ @@ -150,8 +150,8 @@ " message: Maximum number of function evaluations has been exceeded.\n", " success: False\n", " status: 2\n", - " fun: -75.69448131176944\n", - " x: [ 1.354e+00 9.651e-02 -1.863e-03 1.095e+00 -2.132e-01]\n", + " fun: -75.69434198370479\n", + " x: [ 1.352e+00 8.664e-02 -2.940e-03 1.104e+00 -1.913e-01]\n", " nfev: 100\n", " maxcv: 0.0\n" ] diff --git a/tutorials/06-fermion-operator.html b/tutorials/06-fermion-operator.html index 113dcec03..cc5013ef3 100644 --- a/tutorials/06-fermion-operator.html +++ b/tutorials/06-fermion-operator.html @@ -127,17 +127,17 @@

The FermionOperator class
 FermionOperator({
-    (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,
-    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,
-    (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,
+    (des_a(3), des_b(3)): 0.0625,
     (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,
+    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,
+    (cre_b(1), des_b(5), cre_a(4)): 2+2j,
     (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,
-    (cre_a(3), des_a(0)): -0.5,
+    (cre_b(2)): 0-0.25j,
+    (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,
     (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,
-    (cre_b(1), des_b(5), cre_a(4)): 2+2j,
+    (cre_a(3), des_a(0)): -0.5,
     (cre_a(0), des_a(3)): 1,
-    (cre_b(2)): 0-0.25j,
-    (des_a(3), des_b(3)): 0.0625
+    (cre_a(3), des_a(0), cre_b(2)): 0-0.25j
 })
 
@@ -162,17 +162,17 @@

The FermionOperator class
 FermionOperator({
-    (cre_a(3), des_a(0), cre_b(2)): -1,
-    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,
-    (cre_a(0), des_a(3), cre_b(2)): 2,
+    (des_a(3), des_b(3)): 0-1.25j,
     (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,
+    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,
+    (cre_b(1), des_b(5), cre_a(4)): 12-12j,
     (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,
-    (cre_a(3), des_a(0)): 0+3j,
+    (cre_b(2)): -5,
+    (cre_a(0), des_a(3), cre_b(2)): 2,
     (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,
-    (cre_b(1), des_b(5), cre_a(4)): 12-12j,
+    (cre_a(3), des_a(0)): 0+3j,
     (cre_a(0), des_a(3)): 0-6j,
-    (cre_b(2)): -5,
-    (des_a(3), des_b(3)): 0-1.25j
+    (cre_a(3), des_a(0), cre_b(2)): -1
 })
 
@@ -193,16 +193,16 @@

The FermionOperator class
 FermionOperator({
-    (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,
-    (des_b(3), des_a(3)): 0+1.25j,
-    (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,
     (cre_b(1), cre_a(4), des_b(5)): -12+12j,
+    (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,
     (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,
-    (cre_a(3), des_a(0)): 0+3j,
-    (cre_b(2), cre_a(3), des_a(0)): -1,
     (cre_b(2)): -5,
+    (des_b(3), des_a(3)): 0+1.25j,
+    (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,
     (cre_b(2), cre_a(0), des_a(3)): 2,
-    (cre_a(0), des_a(3)): 0-6j
+    (cre_a(3), des_a(0)): 0+3j,
+    (cre_a(0), des_a(3)): 0-6j,
+    (cre_b(2), cre_a(3), des_a(0)): -1
 })
 
@@ -271,11 +271,11 @@

The FermionOperator class
-array([0.        +0.j        , 0.        +0.j        ,
-       0.        +0.j        , 0.        +0.j        ,
-       0.05286796+0.02857342j, 0.        +0.j        ,
-       0.        +0.j        , 0.        +0.j        ,
-       0.        +0.j        ])
+array([ 0.        +0.j        ,  0.        +0.j        ,
+        0.        +0.j        ,  0.        +0.j        ,
+       -0.07354168-0.04339062j,  0.        +0.j        ,
+        0.        +0.j        ,  0.        +0.j        ,
+        0.        +0.j        ])
 

It can also be passed into most linear algebra routines in scipy.sparse.linalg.

diff --git a/tutorials/06-fermion-operator.ipynb b/tutorials/06-fermion-operator.ipynb index d1628bddc..1f9f34c3c 100644 --- a/tutorials/06-fermion-operator.ipynb +++ b/tutorials/06-fermion-operator.ipynb @@ -29,10 +29,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.260324Z", - "iopub.status.busy": "2023-10-26T02:08:11.259231Z", - "iopub.status.idle": "2023-10-26T02:08:11.612220Z", - "shell.execute_reply": "2023-10-26T02:08:11.611583Z" + "iopub.execute_input": "2023-10-26T03:25:24.711706Z", + "iopub.status.busy": "2023-10-26T03:25:24.711416Z", + "iopub.status.idle": "2023-10-26T03:25:25.058776Z", + "shell.execute_reply": "2023-10-26T03:25:25.057845Z" } }, "outputs": [ @@ -76,10 +76,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.617038Z", - "iopub.status.busy": "2023-10-26T02:08:11.615862Z", - "iopub.status.idle": "2023-10-26T02:08:11.622528Z", - "shell.execute_reply": "2023-10-26T02:08:11.621971Z" + "iopub.execute_input": "2023-10-26T03:25:25.062868Z", + "iopub.status.busy": "2023-10-26T03:25:25.062223Z", + "iopub.status.idle": "2023-10-26T03:25:25.067633Z", + "shell.execute_reply": "2023-10-26T03:25:25.066988Z" } }, "outputs": [ @@ -110,10 +110,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.626893Z", - "iopub.status.busy": "2023-10-26T02:08:11.625817Z", - "iopub.status.idle": "2023-10-26T02:08:11.633144Z", - "shell.execute_reply": "2023-10-26T02:08:11.632651Z" + "iopub.execute_input": "2023-10-26T03:25:25.072588Z", + "iopub.status.busy": "2023-10-26T03:25:25.072227Z", + "iopub.status.idle": "2023-10-26T03:25:25.078169Z", + "shell.execute_reply": "2023-10-26T03:25:25.077541Z" } }, "outputs": [ @@ -121,17 +121,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", - " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", + " (des_a(3), des_b(3)): 0.0625,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", + " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", - " (cre_a(3), des_a(0)): -0.5,\n", + " (cre_b(2)): 0-0.25j,\n", + " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,\n", - " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", + " (cre_a(3), des_a(0)): -0.5,\n", " (cre_a(0), des_a(3)): 1,\n", - " (cre_b(2)): 0-0.25j,\n", - " (des_a(3), des_b(3)): 0.0625\n", + " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j\n", "})" ] }, @@ -169,10 +169,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.637410Z", - "iopub.status.busy": "2023-10-26T02:08:11.636331Z", - "iopub.status.idle": "2023-10-26T02:08:11.642953Z", - "shell.execute_reply": "2023-10-26T02:08:11.642452Z" + "iopub.execute_input": "2023-10-26T03:25:25.081157Z", + "iopub.status.busy": "2023-10-26T03:25:25.080738Z", + "iopub.status.idle": "2023-10-26T03:25:25.085419Z", + "shell.execute_reply": "2023-10-26T03:25:25.084604Z" } }, "outputs": [ @@ -180,17 +180,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): -1,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", - " (cre_a(0), des_a(3), cre_b(2)): 2,\n", + " (des_a(3), des_b(3)): 0-1.25j,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", + " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", + " (cre_b(2)): -5,\n", + " (cre_a(0), des_a(3), cre_b(2)): 2,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,\n", - " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", " (cre_a(0), des_a(3)): 0-6j,\n", - " (cre_b(2)): -5,\n", - " (des_a(3), des_b(3)): 0-1.25j\n", + " (cre_a(3), des_a(0), cre_b(2)): -1\n", "})" ] }, @@ -219,10 +219,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.647164Z", - "iopub.status.busy": "2023-10-26T02:08:11.646082Z", - "iopub.status.idle": "2023-10-26T02:08:11.652325Z", - "shell.execute_reply": "2023-10-26T02:08:11.651735Z" + "iopub.execute_input": "2023-10-26T03:25:25.089883Z", + "iopub.status.busy": "2023-10-26T03:25:25.089433Z", + "iopub.status.idle": "2023-10-26T03:25:25.093849Z", + "shell.execute_reply": "2023-10-26T03:25:25.093226Z" } }, "outputs": [ @@ -230,16 +230,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", - " (des_b(3), des_a(3)): 0+1.25j,\n", - " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", " (cre_b(1), cre_a(4), des_b(5)): -12+12j,\n", + " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", - " (cre_b(2), cre_a(3), des_a(0)): -1,\n", " (cre_b(2)): -5,\n", + " (des_b(3), des_a(3)): 0+1.25j,\n", + " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", " (cre_b(2), cre_a(0), des_a(3)): 2,\n", - " (cre_a(0), des_a(3)): 0-6j\n", + " (cre_a(3), des_a(0)): 0+3j,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_b(2), cre_a(3), des_a(0)): -1\n", "})" ] }, @@ -264,10 +264,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.656487Z", - "iopub.status.busy": "2023-10-26T02:08:11.655436Z", - "iopub.status.idle": "2023-10-26T02:08:11.661850Z", - "shell.execute_reply": "2023-10-26T02:08:11.661256Z" + "iopub.execute_input": "2023-10-26T03:25:25.097033Z", + "iopub.status.busy": "2023-10-26T03:25:25.096581Z", + "iopub.status.idle": "2023-10-26T03:25:25.100603Z", + "shell.execute_reply": "2023-10-26T03:25:25.099965Z" } }, "outputs": [ @@ -297,10 +297,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.666001Z", - "iopub.status.busy": "2023-10-26T02:08:11.664972Z", - "iopub.status.idle": "2023-10-26T02:08:11.672138Z", - "shell.execute_reply": "2023-10-26T02:08:11.671537Z" + "iopub.execute_input": "2023-10-26T03:25:25.108357Z", + "iopub.status.busy": "2023-10-26T03:25:25.107956Z", + "iopub.status.idle": "2023-10-26T03:25:25.113129Z", + "shell.execute_reply": "2023-10-26T03:25:25.112549Z" } }, "outputs": [ @@ -340,21 +340,21 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.676207Z", - "iopub.status.busy": "2023-10-26T02:08:11.675101Z", - "iopub.status.idle": "2023-10-26T02:08:11.683397Z", - "shell.execute_reply": "2023-10-26T02:08:11.682849Z" + "iopub.execute_input": "2023-10-26T03:25:25.116235Z", + "iopub.status.busy": "2023-10-26T03:25:25.115784Z", + "iopub.status.idle": "2023-10-26T03:25:25.122966Z", + "shell.execute_reply": "2023-10-26T03:25:25.122306Z" } }, "outputs": [ { "data": { "text/plain": [ - "array([0. +0.j , 0. +0.j ,\n", - " 0. +0.j , 0. +0.j ,\n", - " 0.05286796+0.02857342j, 0. +0.j ,\n", - " 0. +0.j , 0. +0.j ,\n", - " 0. +0.j ])" + "array([ 0. +0.j , 0. +0.j ,\n", + " 0. +0.j , 0. +0.j ,\n", + " -0.07354168-0.04339062j, 0. +0.j ,\n", + " 0. +0.j , 0. +0.j ,\n", + " 0. +0.j ])" ] }, "execution_count": 8, @@ -379,10 +379,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-26T02:08:11.687584Z", - "iopub.status.busy": "2023-10-26T02:08:11.686512Z", - "iopub.status.idle": "2023-10-26T02:08:11.700534Z", - "shell.execute_reply": "2023-10-26T02:08:11.699990Z" + "iopub.execute_input": "2023-10-26T03:25:25.126078Z", + "iopub.status.busy": "2023-10-26T03:25:25.125559Z", + "iopub.status.idle": "2023-10-26T03:25:25.142346Z", + "shell.execute_reply": "2023-10-26T03:25:25.141677Z" } }, "outputs": [