diff --git a/dev/.buildinfo b/dev/.buildinfo index bc80bff0b..229036896 100644 --- a/dev/.buildinfo +++ b/dev/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file records the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 87fce256ee7b23319f04da6f402454d5 +config: d2b66d7f5e0fbf1d48589b95885ca240 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/dev/.doctrees/api/ffsim.qiskit.doctree b/dev/.doctrees/api/ffsim.qiskit.doctree index 5351608dc..dad05ff14 100644 Binary files a/dev/.doctrees/api/ffsim.qiskit.doctree and b/dev/.doctrees/api/ffsim.qiskit.doctree differ diff --git a/dev/.doctrees/environment.pickle b/dev/.doctrees/environment.pickle index 83cc239c5..d2da55780 100644 Binary files a/dev/.doctrees/environment.pickle and b/dev/.doctrees/environment.pickle differ diff --git a/dev/.doctrees/explanations/hamiltonians.doctree b/dev/.doctrees/explanations/hamiltonians.doctree index 13518c8bd..b7b1cd741 100644 Binary files a/dev/.doctrees/explanations/hamiltonians.doctree and b/dev/.doctrees/explanations/hamiltonians.doctree differ diff --git a/dev/.doctrees/how-to-guides/entanglement-forging.doctree b/dev/.doctrees/how-to-guides/entanglement-forging.doctree index 2112f4d00..3c433f56b 100644 Binary files a/dev/.doctrees/how-to-guides/entanglement-forging.doctree and b/dev/.doctrees/how-to-guides/entanglement-forging.doctree differ diff --git a/dev/.doctrees/how-to-guides/fermion-operator.doctree b/dev/.doctrees/how-to-guides/fermion-operator.doctree index 9a3bbd91b..d19ebbe1e 100644 Binary files a/dev/.doctrees/how-to-guides/fermion-operator.doctree and b/dev/.doctrees/how-to-guides/fermion-operator.doctree differ diff --git a/dev/.doctrees/how-to-guides/lucj.doctree b/dev/.doctrees/how-to-guides/lucj.doctree index 0e35403b2..868980fac 100644 Binary files a/dev/.doctrees/how-to-guides/lucj.doctree and b/dev/.doctrees/how-to-guides/lucj.doctree differ diff --git a/dev/.doctrees/how-to-guides/qiskit-circuits.doctree b/dev/.doctrees/how-to-guides/qiskit-circuits.doctree index a65991e9d..2906b86da 100644 Binary files a/dev/.doctrees/how-to-guides/qiskit-circuits.doctree and b/dev/.doctrees/how-to-guides/qiskit-circuits.doctree differ diff --git a/dev/.doctrees/how-to-guides/qiskit-sampler.doctree b/dev/.doctrees/how-to-guides/qiskit-sampler.doctree index 9beb66b35..3d00b4df1 100644 Binary files a/dev/.doctrees/how-to-guides/qiskit-sampler.doctree and b/dev/.doctrees/how-to-guides/qiskit-sampler.doctree differ diff --git a/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb b/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb index b0d2e95e2..bb2c53292 100644 --- a/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb @@ -33,10 +33,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:47.528743Z", - "iopub.status.busy": "2024-11-23T19:54:47.528209Z", - "iopub.status.idle": "2024-11-23T19:54:48.279687Z", - "shell.execute_reply": "2024-11-23T19:54:48.279124Z" + "iopub.execute_input": "2024-12-05T03:21:22.212599Z", + "iopub.status.busy": "2024-12-05T03:21:22.212405Z", + "iopub.status.idle": "2024-12-05T03:21:22.936360Z", + "shell.execute_reply": "2024-12-05T03:21:22.935726Z" } }, "outputs": [], @@ -68,10 +68,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:48.282326Z", - "iopub.status.busy": "2024-11-23T19:54:48.281811Z", - "iopub.status.idle": "2024-11-23T19:54:48.285084Z", - "shell.execute_reply": "2024-11-23T19:54:48.284596Z" + "iopub.execute_input": "2024-12-05T03:21:22.938787Z", + "iopub.status.busy": "2024-12-05T03:21:22.938491Z", + "iopub.status.idle": "2024-12-05T03:21:22.941593Z", + "shell.execute_reply": "2024-12-05T03:21:22.941110Z" } }, "outputs": [], @@ -99,10 +99,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:48.287086Z", - "iopub.status.busy": "2024-11-23T19:54:48.286703Z", - "iopub.status.idle": "2024-11-23T19:54:48.290119Z", - "shell.execute_reply": "2024-11-23T19:54:48.289660Z" + "iopub.execute_input": "2024-12-05T03:21:22.943786Z", + "iopub.status.busy": "2024-12-05T03:21:22.943290Z", + "iopub.status.idle": "2024-12-05T03:21:22.946565Z", + "shell.execute_reply": "2024-12-05T03:21:22.946108Z" } }, "outputs": [], @@ -127,10 +127,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:48.292227Z", - "iopub.status.busy": "2024-11-23T19:54:48.291721Z", - "iopub.status.idle": "2024-11-23T19:54:48.296429Z", - "shell.execute_reply": "2024-11-23T19:54:48.295877Z" + "iopub.execute_input": "2024-12-05T03:21:22.948362Z", + "iopub.status.busy": "2024-12-05T03:21:22.948174Z", + "iopub.status.idle": "2024-12-05T03:21:22.952632Z", + "shell.execute_reply": "2024-12-05T03:21:22.952065Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:48.299720Z", - "iopub.status.busy": "2024-11-23T19:54:48.298733Z", - "iopub.status.idle": "2024-11-23T19:54:48.327813Z", - "shell.execute_reply": "2024-11-23T19:54:48.327091Z" + "iopub.execute_input": "2024-12-05T03:21:22.954753Z", + "iopub.status.busy": "2024-12-05T03:21:22.954540Z", + "iopub.status.idle": "2024-12-05T03:21:22.979586Z", + "shell.execute_reply": "2024-12-05T03:21:22.979023Z" } }, "outputs": [ { "data": { "text/plain": [ - "np.float64(-99.55717072551543)" + "np.float64(-99.55717072551569)" ] }, "execution_count": 5, @@ -191,10 +191,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:48.361339Z", - "iopub.status.busy": "2024-11-23T19:54:48.360877Z", - "iopub.status.idle": "2024-11-23T19:54:49.044195Z", - "shell.execute_reply": "2024-11-23T19:54:49.043526Z" + "iopub.execute_input": "2024-12-05T03:21:23.014517Z", + "iopub.status.busy": "2024-12-05T03:21:23.013952Z", + "iopub.status.idle": "2024-12-05T03:21:23.722545Z", + "shell.execute_reply": "2024-12-05T03:21:23.721915Z" } }, "outputs": [ @@ -202,7 +202,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_4180/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", + "/tmp/ipykernel_4129/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", " evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)\n" ] } @@ -224,10 +224,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:49.048819Z", - "iopub.status.busy": "2024-11-23T19:54:49.047782Z", - "iopub.status.idle": "2024-11-23T19:54:49.643700Z", - "shell.execute_reply": "2024-11-23T19:54:49.643044Z" + "iopub.execute_input": "2024-12-05T03:21:23.725922Z", + "iopub.status.busy": "2024-12-05T03:21:23.725125Z", + "iopub.status.idle": "2024-12-05T03:21:24.323558Z", + "shell.execute_reply": "2024-12-05T03:21:24.322918Z" } }, "outputs": [], diff --git a/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb b/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb index 82e0aedc9..1226b7570 100644 --- a/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb @@ -62,10 +62,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:52.726981Z", - "iopub.status.busy": "2024-11-23T19:54:52.726791Z", - "iopub.status.idle": "2024-11-23T19:54:53.439598Z", - "shell.execute_reply": "2024-11-23T19:54:53.438907Z" + "iopub.execute_input": "2024-12-05T03:21:27.401921Z", + "iopub.status.busy": "2024-12-05T03:21:27.401472Z", + "iopub.status.idle": "2024-12-05T03:21:28.119716Z", + "shell.execute_reply": "2024-12-05T03:21:28.119137Z" } }, "outputs": [], diff --git a/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb b/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb index acee395e0..62f857fbb 100644 --- a/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb @@ -16,16 +16,16 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:54.866707Z", - "iopub.status.busy": "2024-11-23T19:54:54.866178Z", - "iopub.status.idle": "2024-11-23T19:54:56.485108Z", - "shell.execute_reply": "2024-11-23T19:54:56.484517Z" + "iopub.execute_input": "2024-12-05T03:21:29.543343Z", + "iopub.status.busy": "2024-12-05T03:21:29.542995Z", + "iopub.status.idle": "2024-12-05T03:21:31.111710Z", + "shell.execute_reply": "2024-12-05T03:21:31.111147Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAGOCAYAAAADwN1HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAw2ElEQVR4nO3de1xUdf7H8fdwFQRUULyCjo4RoiJdJM2CsavVakiYt6Jt27Lrsj9L+7m5a/fc6rebudmP7WaWbcWuki1227DSSEoh1ASBkJC8X1GREWZ+f9hOS2BcncvvvJ6PB4+Hc86Z8/3Mdz7De86Zg2NyOBwOAQBgAD7uLgAAAFch9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAw/dxfgTWw1x3Vw63fuLgNnSI/YaAWEBrdqW3qhc51u7plntOV12RqEXhsc3PqdVk96wN1l4AyZkP2Ieo8+u1Xb0gud63RzzzyjLa/L1uD0JgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGF4TejabTfPnz1dUVJSCgoI0fvx45efny2QyKTs7293lAQC8gFf8jywOh0NpaWnKz8/XggULZLFYtHz5cqWkpEiSEhIS3FqfyddH5y9I15DUi2Xy8dH2f36h9fNeUEPdSbfWBdejF1yDeUZ7ecWRXmZmpnJycvTRRx/ptttu0yWXXKLMzEz5+voqPDxc0dHRbq1v5D2T1WfscGWPn62/X3i3up81QOc+cINba4J70AuuwTyjvbwi9BYuXKiZM2cqLi7OuczX11dms9l5lLdt2zaNGTNGZ511lsaMGaPS0lKX1Td0xiXatOgfOr7rgOr2H1Hh02/Jcn2yTD5eMb3oRPSCazDPaC+P75DS0lJVVFQoNTW1ybqqqipn6M2aNUt33nmntm3bpjvvvFO33XZbq8cIDQ1VYGBgiz9Wa3KT+waEBSukfy8d2FLhXLZ/U4UCQoMVEtWrrQ8XbmS1JreqD+iFzme1Nj/3Vmtyk22ZZ2OxWpvvjdDQ0Hbtz+NDr7q6WpIUGRnZaHlxcbEqKyuVkJCgPXv2aOPGjZo2bZokadq0adq4caP27t17xuvzCwmSJNkOH3cusx0+Jkny/2EdjIFecA3mGR3h8aEXEREhSSorK3Muczgcmjt3rux2uxISElRVVaX+/fvL19dX0qlTn/369VNVVVWrxqipqVFdXV2LP7m5a5rct/5orSTJP+zH73sK6NZVknTyh3XwDrm5a1rVB/RC5zvd3DPPOF1v1NTUtGt/Hh96sbGxslgsmjdvnt5++22tXr1akyZN0saNGxUcHKyYmBi31mc7clxHq/cqPG6Qc1nEcLNsNcd1tOrMH2nCc9ALrsE8oyM8PvT8/PyUlZWlvn37Kj09XRkZGZowYYKSkpI0cuRI+fj4KCoqStXV1WpoaJAkNTQ06Pvvv1dUVJRLaix9/V8aeXeKgnr3UGBEmEbNnqKyN9fIYbe7ZHx4DnrBNZhntJdX/J1efHy88vLyGi1bvHixkpKSJJ36vG/UqFF64403NHPmTL3xxhtKSEhQr16u+VC7aNE/FBgepmvX/EkmH5O2v/uFNjz6mkvGhmehF1yDeUZ7eUXo/VRtba1KSkqUkZHhXPb8888rPT1dDz30kHr06KFXX33VZfU4GuzKn/+S8ue/5LIx4ZnoBddgntFeXhl6RUVFamhoaPQ/sZx99tlav369G6sCAHg6rwy9xMREORwOd5cBAPAyHn8hCwAAnYXQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhuE1oWez2TR//nxFRUUpKChI48ePV35+vkwmk7Kzs91dHgDAC/i5u4DWcDgcSktLU35+vhYsWCCLxaLly5crJSVFkpSQkODW+gb9Yoxib7lK4XGDVHegRlmj73BrPXAP+sA1mGd0hFeEXmZmpnJyclRYWKi4uDhJUnJyssxms8LDwxUdHe3W+uoOH1PxS++pS69uirv1GrfWAvehD1yDeUZHeMXpzYULF2rmzJnOwJMkX19fmc1m51HevffeK7PZLJPJpM2bN7u0vp2fFqkie52O7djr0nHhWegD12Ce0REeH3qlpaWqqKhQampqk3VVVVXO0Lv22mv16aefauDAga4uEQDgJTz+9GZ1dbUkKTIystHy4uJiVVZWOkNv3Lhx7R4jNDRUNputxe2G+PXQnLD2jwPPZrUmq7z+YKu2pRc6l9Xa/Nwzz7Bam++NgIAA1dTUtHl/Hn+kFxERIUkqKytzLnM4HJo7d67sdrvbL2IBAHgPjz/Si42NlcVi0bx58+Tv76+QkBAtWbJEBQUFCg4OVkxMTIfHaO27hd35xVo96YEOjwfPlJu7Rr1Hn92qbemFznW6uWee0ZbXZWt4fOj5+fkpKytLs2bNUnp6uqKiopSRkaGwsDCVl5fLx8f9B6smHx/5+PvK5OcnmUzyDfSXw+GQ3Vbv7tLgQvSBazDP6AiPDz1Jio+PV15eXqNlixcvVlJSkpsqamzIdRdr3DN3OW/fsP0NHa3aw98PGQx94BrMMzrCK0Lvp2pra1VSUqKMjAznsnvuuUf/+Mc/tGvXLl166aWKiIjQli1bXFJP2VtrVPbWGpeMBc9FH7gG84yOcP+5wXYoKipSQ0NDo4tYFi1apB07dqi+vl67du1yWeABALyHVx7pJSYmyuFwuLsMAICX8cojPQAA2oPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhuE1oWez2TR//nxFRUUpKChI48ePV35+vkwmk7Kzs91dHgDAC/i5u4DWcDgcSktLU35+vhYsWCCLxaLly5crJSVFkpSQkOC22nwC/HTBY7eo77gR6hIRpuO7D2rrS6tV/NJqt9UE96AXXIN5Rkd4RehlZmYqJydHhYWFiouLkyQlJyfLbDYrPDxc0dHRbqvNx9dXtXsO6YOpD6umcrfChw3UZW88oBN7D2n7qjy31QXXoxdcg3lGR3jF6c2FCxdq5syZzsCTJF9fX5nNZiUkJGj//v266qqrFBMToxEjRmjy5Mnau3evS2qrr61TwR//pprtuySHQwe2bFfVB18pcnSsS8aH56AXXIN5Rkd4fOiVlpaqoqJCqampTdZVVVUpISFBJpNJc+bMUUlJiTZt2qQhQ4bo/vvvd0O1ksnPV70TY3Vwa6VbxofnoBdcg3lGW3j86c3q6mpJUmRkZKPlxcXFqqysVEJCgsLDw5WcnOxcd8EFF2jJkiWtHiM0NFQ2m63F7Yb49dCcsHE/u80Fj/1KJ4/WqvztT1o9PjyD1Zqs8vqDrdqWXuhcVmvzc888w2ptvjcCAgJUU1PT5v15/JFeRESEJKmsrMy5zOFwaO7cubLb7U0uYrHb7VqyZIkmTpzo0jol6fwF6ep1bow+nPGo7CfrXT4+PAe94BrMM9rK44/0YmNjZbFYNG/ePPn7+yskJERLlixRQUGBgoODFRMT02j7u+++WyEhIbrrrrtaPUZr3y3szi/W6kkPNLtu9EM3qe+4EXov7UHVHWj7uw+4X27uGvUefXartqUXOtfp5p55Rltel63h8aHn5+enrKwszZo1S+np6YqKilJGRobCwsJUXl4uH58fD1bvvfdelZaWatWqVY2Wn2mjH75ZfccN13vXLVDd/iMuGxeeh15wDeYZ7eXxoSdJ8fHxystrfCny4sWLlZSU5Lw9b948bdiwQf/85z8VGBjostq6DuipYbdcpYYTNl23/i/O5bvXF+ujGY+6rA64H73gGswzOsIrQu+namtrVVJSooyMDEnSli1b9Pjjj+uss87S2LFjJUlms1krVqw447Uc27FPr/S97oyPA89HL7gG84yO8MrQKyoqUkNDg/Milri4ODkcDjdXBQDwdF4ZeomJiYQcAKDNPP5PFgAA6CyEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAyvCT2bzab58+crKipKQUFBGj9+vPLz82UymZSdne3u8gAAXsDP3QW0hsPhUFpamvLz87VgwQJZLBYtX75cKSkpkqSEhAS31nfB47co6rLz5B8WrJNHa1X5bp6+evg12U/Wu7UuuB694BrMM9rLK0IvMzNTOTk5KiwsVFxcnCQpOTlZZrNZ4eHhio6Odmt9W19+T189tEz1tXUKDA9VcuZsjbxnsgqffsutdcH16AXXYJ7RXl4RegsXLtTMmTOdgSdJvr6+MpvN8vf3lyRde+21qqiokI+Pj0JCQvTss89q1KhRLqnv8LYdP94wmeSwOxQ6uK9LxoZnoRdcg3lGe3l86JWWlqqiokKLFi1qsq6qqkqpqamSpKVLl6pbt26SpOzsbN18883auHGjy+occde1GpmRKv+uQTpx4Ig+nP6ay8aGZ6EXXIN5Rnt4fOhVV1dLkiIjIxstLy4uVmVlpfPzvH8HniQdPnxYPj6tv0YnNDRUNputxe2G+PXQnLBxza7btHilNi1eqW5D+2vw5ItUu+dgq8eHZ7Bak1Ve37rnjV7oXFZr83PPPMNqbb43AgICVFNT0+b9efzVmxEREZKksrIy5zKHw6G5c+fKbrc3uojllltuUXR0tH73u99p6dKlLq9Vkg6XVuvAlkpd9Ow9bhkfnoNecA3mGW3h8Ud6sbGxslgsmjdvnvz9/RUSEqIlS5aooKBAwcHBiomJcW77wgsvSJKWLVum++67Tzk5Oa0ao7XvFnbnF2v1pAda3M7H31dhfL7gdXJz16j36LNbtS290LlON/fMM9ryumwNjz/S8/PzU1ZWlvr27av09HRlZGRowoQJSkpK0siRI5s9jXnDDTcoNzdX+/fvP+P1+YcGyzIlWQFhwZKkHrEDFZ+Rqu/XfH3Gx4ZnoRdcg3lGR3j8kZ4kxcfHKy8vr9GyxYsXKykpSZJ09OhRHTx4UFFRUZKkVatWKTw8XOHh4We+OIdDg1Mv1vkL0uUT4KcT+46oMme9Cp9888yPDc9CL7gG84wO8IrQ+6na2lqVlJQoIyNDknTs2DGlpaXp2LFj8vX1VXh4uFatWiWTyXTGazl5tFYfXP/QGR8Hno9ecA3mGR3hlaFXVFSkhoYG50UsvXv31hdffOHmqgAAns4rQy8xMVEOh8PdZQAAvIzHX8gCAEBnIfQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9NBhAy45R6lf/EUzypZp0MSxHdrXTTuzFBE/pE336dq/p2aULVNgj5AOje3pxv35TiU++it3l9GsGWXLFD7c7O4y2sWba5ekPmPiNKNs2Rnb/5V/f1Bxsya2+X6RibG6/uu/noGKOsYr/xsyb3Xl3x9U1YcbtOX5dxotn168VB//8o/albelzfu0TElW3O0TlW39r84qs81GP/RLff2nLJW9meuW8Y9V79PrlhvcMnZ79Rkbp1Gzpyhi5GBJ0v6ib1X41Fvt6oEzYdTsKYqIH6J/3fh4q7b31Pm/8u8Pqte5Z8l+sl4Ou121ew7p+882afNzK3Vsxz5Jnlu7t9uzfqvejP+1u8togiM9L2by8+3U7dorJDpSB4u/O6Nj/H8y4NJzddnyB1T10Qa9dc5teuuc21T10QZd9sYDGnDJOc3ex+TbeS/VM90PnmbjE2/o9aE3aHlMuj7+1ZPq0iNUEz98SmFD+rm7NLgBoedBuvbvqcv+Nl9Tt7ykaVtf0WV/m69Qcx/n+nF/vlPj/nynkpb8VtNLlmr47RM1ZuGt6ja0v2aULdOMsmUKG9xXlinJmpT7P4r/rzRNKfyrLll6v6RTRxdXv/uYpm19Rdd++meZJ13YaPyB14zRxI+e0vSSpfrFB0+q77gRP1tvYI8QzShbJh8/X01Y8ZBmlC2Tf2iw/IK7aMwfb9WUgkxd//VfNe6ZuxTQravzfkG9uuuixfdoSuFfNb14qa5c8ZB8uwQ02X9IVKRSPntGI+6Z/LN1hAzopZt2ZikwPFRdenbTjVVvyj/01BeMWq63Njpl2uvcs3R90Qs/u78zLfGRm1X29hptWfKOTtYc18ma49qy5B2VZ32i0Y/cLEm6Lv85jcxI1VXvPKqZ376unj/U79+1i5IzZ2tG6TJd+8mf1C85vsXx/n3666yZl+q6L5do4kdPSZL6XjxS17y/UNNLlmriv55W9JXnS5KirzxfI+5JUX/rKGdf+QT8/Emhf8+xyddH07e9qu4xp77bss/YON20M0sDrxkjSQqK7K4bv/ub/EOC2jd5HXR42w59etczOr7rgBLuu75R7ZIUPtysCSsf1tQtL2vqlpeV/NfZ6tKzm/P+AWHBSnr+t5pevFST1z2rs264zNl7LYkYOVhXvP0HTfvmZU3d/KISf3iupdM/F9Kpo+5LXv3vRvu6Lv85Dbz6gmbHaen1d9POLMX+6ipNyv0fzSh/TcmZsxUQFqwL/3SHppcsVcpnz6jXOUMb7TOod3dd/ubvNaNsma55b2GrPoL4z9OuPROGaurmF398TPdOUXr1W+oSESZJMl97oa7Oad1ZhY4i9DyIyWTSN5nv6u1zZ+ntc2epdvdBXbz4N422MU+6UGVvr9Hys2/SNy/8U3lzM3W4tFqvW27Q65YbdOTbnZKkbpb+MvmYlDX6duXe8qS6x0Rp/EtzVPDUm3pj2C/12d3P6oLHb3E2b7/keCU+crM+v/d5LT/7Jm18YrmsL92n4H4Rp6237uBR56mh1Sm/1+uWG3Sy5rgSH7lZ3Sz9lX3pvVpx0W8UGB6qC//njn8/SF3y6v1y1DdoZVKG3oj7pTY+vlwOu73RvsNHmDVhxUPa9OwKbVr0j1bP4Yl9h3W4/Hv1GTNMktT3ohE6UrHTGeB9xw3XrnXuO4UYNqSfQgf2VsXKdU3WfbtircIG9VHY4L6SJEtastbNfk6vW27Q/s0VkiTzteP07YrPtPzsdBU9u0LjX5qj4D4tf1myX1Cgeo6yaOXFGXp3wlyFDuqjS5fer82LV+qNYb/UhkdfU9KS3yo8bpC+e+9LbVq0QtW5hc6+stvqW/X4HA127V6/9cf5ds7/8FO3x43Q/qJvdfJobav2dyY4Guz67r189Rkb13Sd3a4Njy/XW6N+rRUX3SP/kKBG4ZT46K8U2D1EWYl36J8Tf6fB145r1ZjBfcJ1RdYCbX/3C72VcKvePv92Vaw69cXYP/dctMfPvv5+EH3l+Xov9Q/KGn2HIuIH6+p/Pq7tq/L0RuwvVZmzXmMW3tpo+6FTx6vw6bec6y999X75BjV9o3o6+78ul4+/n3rEDpR0qi9qKnerz4U/9sWutZvb9XjbitBzsYQ512t68dJGP/9+F3Z0x15Vf1yghhM21R8/ocIn31Svc4bKLyjQef/vP9uk6o8LJIdDDbW2045Tf+yEvv6fLNlt9WqotSkm/QqV//1Tfb/ma8nh0P6vy1WRvU5DrrtYkhT7q6u05flV2ldYJjkcqv64QHvyizXoh3forWYyafDki7Tx8eWq239EtiPH9dXDyzTwqkT5hwSp5yiLusdEKe+//yrb4WNyNNi1J7+40S/VfheP1KXL5unzOf+rsrfWtG18SbvWbnL+ku0zNk6FT7+lvhed+iXc58IR2rluU5v32Vm6/HBEULv7QJN1tXsOntrmh3e/Jcs+1OHSajnsduf87PriG323Ol+OBru+zfpUB7+p1KBftPwcmXx8tOGx11VfW6eGWpvMk8Zq9/qt2r4qT44Gu6o/LtB3H3ylIWlJHX6Mu9ZubhRyhU+95QzBPhcO1851rvnl9nOO7zygwO5NL3w6+E2l9qzfKvvJetUdqNGmRSucv5hNPj4aNHGsCp58U7bDx1S3/4i+fubvrRpvcOrFOrCpQiVL31dD3Uk11Nq0Z/1WSerc56KF19+/bXl+leoO1Khu/xF9/2mRjlbtUfXHBXLY7apYuU7dY6Pl4//j0f32d/NOvU5P1mvTsyvksDvUP6nlswz/5rDbtfuLreo7brj8gruo+9AB2vL8qv94XbquL7iQxcUK/vhmsxeySFJgeKhGP3iT+oyJk39YsPTDdwYGRoSqfkedJOlY9d5WjXN894FGR08hUb3U98LhGpJ6sXOZyc9H1R8X/rA+UqPui1N8RuqP6/19dWjbjjY9vi4RYfIN9NfRqh/rPFq5W5IU3C9CIQN66viuAz8b2MNuuUq7vyw5Fe7tsHPtJo26b6q6De0v25Hjqnz3C41+6Gb5hwQp8ryzlHff8+3ab2c4caBGkhTUO1yHy75vtC4ossepbfYfkdT8c31sR+NlR6v2tupIr762TnU/jC1JwX0jdPSn+6rcrZCBvVvxKH7ezrWbNDIjVQFhwQob3E8VK9fpnPunKbhvuPqOG67PZ7tv/v8tuG+46g7WNFkeOrC3zvvDjeqVMFR+XbvIZDI5wyIwPFS+Af46Vr3Puf1//vvnhAzoqSMVO09TS+c9Fy29/g7/8Hqu3XfYub6htk61ew45b9fX1snH11d+QQGynTz1ZqtR3zkcOla9T8F9Tn8WqDk7125SnwuH63D599qzYZuqPy5Q3KxfqOuAnuraN0K787e29eG2C6HnQc6dN0MB3UO06sq5OrHvsEIG9NJ1Xy6RSSbnNg574y/PPd2X6f50u2PV+1T8yvv66qFXm93+WPU+lSx9X8Uvv9ehx3Bi/xE11J1USFQvHd916mgmJKqXpFPvrv27Bim4T7h8uwSo4UTzwffpXYt0zn9P19inb9fn9z7vDP/W2vX5FnUf2l/mSRdq52eb1FB3Uge/2a64236hE/uPqOaHXwLucKT8e9V8t1vmiWO16yfvbM2Txqrmu93OU9Q/fQ4lqeuAXo1uh0T10t6N21oc96enj4/v3K8+Yxqf3guJitTxnfub3b4tDmzZLofdrmG/vkZ7viyWw27XzrWbddb0SxUc2UN7vixu9747g8nXR9FXnK9dn3/TZN2Yhbfq6I69Wpn8W9kOH1OfMXG68h8PSpLqDtSowXZSXfv3dPZ21/49WzXm0R37NGB8QrPrWnouTh47Ib//OJVo8vVp9Dnjf2rp9ddejfrOZFJwvwgd37W/TfvYuXazRs2eoprK3dq5dtOpoDeZNPT68dq7cdvPvhHuTJze9CD+IUGqP3ZCtsPHFNCtqxL+e3qL96nde0hBkd1bPL9e8uoHskxJUt+LR8rk6yMffz9FxA9Rj2GnzrFvfTFHw2+fqJ6jLJLJJN9Af/UeM0yhbX236XDo2xWfKWHuNAVGhCkgLFjnzb9RlavX62TNce0rLNOh0h264LFbFBAWLJOvjyJHn93oQgnbkeP6YMpD6j50gMY9c5dMPm1rU9uR4zrwTaWG/fpq7Vx76lTmznWbNezWH2+7U/7vX5HleqvibvuF/EOC5B8arGG3XSPLFKvy57/8s/ftc8EwRV1+nky+Pho8+SL1GDZQ2//5RZtrqMj+XL0TYzXw6kSZfHzU3zpKUVecp/KsTyWdOhLo2r9nu68a3fX5lkbzvXPdJg279Wrt2bBNDXUn27XPztDN0k/jFt2t4L4RKnjqzSbr/UODZas5LtuR4wrq3UMj/+PMh8Nu1/ZVeRp17xQFdOuqwPBQjbw7pVXjfvuPTxUxcrBibrxcPgF+8g0KUGRirKSWn4v9m75Vz3OGqttZA+QT4KeEuVPlc7orcFt4/bXXoKsvUK/zYmTy89WIOyfJx89X339S1KZ9HNxaqYaT9Ro61aqdn53qi13O16XrTnkTeh6k4Mk3FTKgl6ZtfVnX5Dyh79cUtnifnWs3a09+saZs+F9NL17a6GrP/3Twm0rl/vppjfqvNE3d9KKmFP5V5//+RufnhdUfFyh/wVJd8MSvNX3rK7ruq+c14q6Udl3enj//ZdVs36VrP35aKWsXyXbkmD6fveTUSodD/7rxCfkFBSpl7SJN2/Kyzpk7rUmwnTxaqw+mPqyQqF66aPE9bf7lu/OzTfIL7qLdP/zd287PNikgrKtHfJ5U9f6X+mjmY4q64jxNKczUlIL/VfQV5+ujmY+p6oOvfva+FSvXakhakqYXL9XIjFTl3vKUjn/ftnfcklSzfZc+vvmPGvmb6zSt+BWdN/8GfXrXIh344YKZ7avyZDt0VFM3v6TpxUtbvHrzp5zz/cMvs51rN7tt/s+5f5pmlC7T9G2vavzLc3XyyDG9c9m9OlL+fZNt8//wivonxWtG6au6bPkDqsxZ32j9+t+9qJM1tbpu/XO6etVjqlydL0ktBvnxnQf0ftqDMqeM09SiF3Vd/hINuubU1ZctPRe71m1WySvva8KKh3Xd+udUu+eQ8yiuOT/7+mun0jdzlTBnqqYXv6JBE8fqXzc+ofraujbvZ9e6zbKfrNfBbyolnTrl6eq+MDlOd34MTezOL9bqSQ+4uwz8ROjA3kr94i96fegNHboqcEL2I+o9+uxWbUsv/Mjk46P06reUPX62Dm6tbNc+Tjf3nj7P/ccn6OK//EZvxN7k7lI8Tt9xI5Sc+V96Y9gvO7SftrwuW4MjPXi9HnGDdGL/YbdeBm9kPeIGyn6yvtUXWXmzUHMf50cAIQN6KeG+61WR3fTPT3CqL9z5+fnpcCELWjRpzZ8UMqDpB/ZVH2zQp3f82e019Bkbp/UtfBb2/92Zfo4uff136p3Y9N32yaMn5OPvqw2PLZftSPs/M/IWfkGBuujZuxXcL0Ina2q146MN2vDIa5I843Xiaqf7Pz+r13ytiBFmj7hS96cIPbQoO/m37i7BI2rwZGd6fj6a8egZ3b+3OPhNpVZc9Jtm1xmxR73x/y3l9CYAwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMLwi9Gw2m+bPn6+oqCgFBQVp/Pjxys/Pl8lkUnZ2trvLAwB4CY8PPYfDobS0NL3wwgt64IEH9O6778psNisl5dT3WCUkNP/FjO7g2yVAkz9/9rT/Hx2Mg15wDeYZbeXx//dmZmamcnJyVFhYqLi4U98unJycLLPZrPDwcEVHR7u5wh8l3He9ju7Yp6DI7u4uBW5GL7gG84y28vgjvYULF2rmzJnOwJMkX19fmc3mJkd5Dz74oEwmkzZvdv0XVUaMHKz+1lHa/JeVLh8bnoVecA3mGe3h0aFXWlqqiooKpaamNllXVVXVKPQ2btyoL774QgMHDnRliZIkk6+Pxj41S1/Me0F2W73Lx4fnoBdcg3lGe3l06FVXV0uSIiMjGy0vLi5WZWWlM/Tq6up05513asmSJe0aJzQ0VIGBgS3+WK3Jzd5/+B2TtH9ThXZ/sbVd48MzWK3JreoDeqHzWa3Nz73Vmtzs9syzcVitzfdGaGhou/bn0aEXEREhSSorK3Muczgcmjt3rux2uzP0fv/732vmzJkaNGiQy2sMHdRHMTderq8e5oN0o6MXXIN5Rkd49IUssbGxslgsmjdvnvz9/RUSEqIlS5aooKBAwcHBiomJUV5enr766is98cQT7R6npqamVdvtzi/W6kkPNFrWe/TZCurZTZPXLZIk+fj5yr9rkKZueUm5v3qSd6JeJDd3jXqPbvrt4M2hFzrX6eaeeUZbXpet4dGh5+fnp6ysLM2aNUvp6emKiopSRkaGwsLCVF5eLh8fH33yySfaunWrzGazJGnHjh264oor9PLLL+vyyy8/4zVWrPpc339W5Lzd69wYjXvmTr1z6b06sf/IGR8fnoNecA3mGR3h0aEnSfHx8crLy2u0bPHixUpKSpIk3X///br//vud6wYNGqR3331Xw4cPd0l9DbU2Ha894Lxdt/+I5HDo+M4DP3Mv/H9EL7gG84yO8OjP9JpTW1urkpISj/qj9P+0K2+LXrfc4O4y4AHoBddgntEWHn+k91NFRUVqaGg4beht377dtQUBALyG14VeYmKiHA6Hu8sAAHghrzu9CQBAexF6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMLwm9Gw2m+bPn6+oqCgFBQVp/Pjxys/Pl8lkUnZ2trvLAwB4AT93F9AaDodDaWlpys/P14IFC2SxWLR8+XKlpKRIkhISEtxW27g/3ylzyjjZT9Y7l6359dOqzi10W01wD3rBNZhndIRXhF5mZqZycnJUWFiouLg4SVJycrLMZrPCw8MVHR3t1vq2vfaR1v/uRbfWAM9AL7gG84z28orQW7hwoWbOnOkMPEny9fWV2WyWv7+/JGnQoEHq0qWLunTp4rzPFVdc4ZZ6AQCeyeNDr7S0VBUVFVq0aFGTdVVVVUpNTXXezsrK0vDhw11ZniRp8OSLNDhlnGr3Hda3f/9UmxavlKPB7vI64H70gmswz2gvjw+96upqSVJkZGSj5cXFxaqsrOyUz/NCQ0Nls9la3G6IXw/NCRvXaNk3L+boq4eX6cSBGkWMHKyk5zLkGxiggj/+rcN1wbWs1mSV1x9s1bb0QueyWpufe+YZVmvzvREQEKCampo278/jr96MiIiQJJWVlTmXORwOzZ07V3a7vVHozZgxQyNHjtQdd9yhQ4cOuaS+A5sqdGL/Ecnh0P6vy1Xw1JsyT7rQJWPDs9ALrsE8oyM8PvRiY2NlsVg0b948vf3221q9erUmTZqkjRs3Kjg4WDExMZKkzz77TF9//bW+/PJLORwO3XXXXa0eo6amRnV1dS3+5OauaXlndodkaueDhVvl5q5pVR/QC53vdHPPPON0vdGeozzJC0LPz89PWVlZ6tu3r9LT05WRkaEJEyYoKSlJI0eOlI/PqYcQFRUlSQoMDNQdd9yhdevWuaS+QRPHyj80WJLUI3ag4menafu7eS4ZG56FXnAN5hkd4fGf6UlSfHy88vIaN/XixYuVlJQkSTp27Jjq6+vVrVs3ORwO/e1vf9OoUaNcUtvZN12hMQtvlY+/r2p3H1J51icqenaFS8aGZ6EXXIN5Rkd4Rej9VG1trUpKSpSRkSFJ2r17t1JTU9XQ0KCGhgYNGzZMzz33nEtqeW/yH1wyDjwfveAazDM6witDr6ioSA0NDc6LWAYPHqyCggI3VwUA8HReGXqJiYlyOBzuLgMA4GU8/kIWAAA6C6EHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMw2tCz2azaf78+YqKilJQUJDGjx+v/Px8mUwmZWdnu7s8AIAX8HN3Aa3hcDiUlpam/Px8LViwQBaLRcuXL1dKSookKSEhwc0VSgMuOUcJc6cqbEg/1R+t1ebnV2nLknfcXRbcgF5wDeYZ7eEVoZeZmamcnBwVFhYqLi5OkpScnCyz2azw8HBFR0e7tb5+SfEa8+RtWnvPYu3K2yK/oEB17d/TrTXBPegF12Ce0V5ecXpz4cKFmjlzpjPwJMnX11dms9l5lHfixAndfvvtGjp0qEaMGKFbb73VZfUlzJmqoj//XTvXbpKjwa6TR2t1qKTKZePDc9ALrsE8o708/kivtLRUFRUVWrRoUZN1VVVVSk1NlSTNmTNHXbp00bZt22QymbR7926X1OcXFKieo4ao+uMCpXz2jAK6ddXejaXKn/+yjlbtcUkN8Az0gmswz+gIjz/Sq66uliRFRkY2Wl5cXKzKykolJCTo6NGjevXVV/Xwww/LZDJJknr37t3qMUJDQxUYGNjij9Wa3OS+Ad27yuTjo4FXJ+rDaY8oK/EO1e49JOuL97X3IcNNrNbkVvUBvdD5rNbm595qTW6yLfNsLFZr870RGhrarv15fOhFRERIksrKypzLHA6H5s6dK7vdroSEBJWXlysiIkIPPvigzjvvPCUnJ2vt2rUuqe/k0ROSpG9eyNHRHXvVUGvTxseXK2KEmc8YDIZecA3mGR3h8aEXGxsri8WiefPm6e2339bq1as1adIkbdy4UcHBwYqJiVFDQ4O+/fZbJSQk6KuvvtLChQs1efJkHTlypFVj1NTUqK6ursWf3Nw1Te57sub4qVMqDkcnP3K4Wm7umlb1Ab3Q+U4398wzTtcbNTU17dqfx4een5+fsrKy1LdvX6WnpysjI0MTJkxQUlKSRo4cKR8fH0VHR8vPz0/Tpk2TJCUmJqpnz57atm2bS2osefUDxd5ytYL7Rcg30F8Jc6Zq39flOla9zyXjw3PQC67BPKO9PP5CFkmKj49XXl5eo2WLFy9WUlKSJKlnz56yWq368MMPdfnll2vbtm3as2ePLBaLS+rb9JdsBXQL0cQP/iiZfLQnv1i5v3rSJWPDs9ALrsE8o728IvR+qra2ViUlJcrIyHAue/7553XzzTdr9uzZ8vf317Jly9S9e3fXFORwaMOjr2nDo6+5Zjx4LnrBNZhntJNXhl5RUZEaGhoa/U8sgwcP1po1a9xXFADA43ll6CUmJsrBh9gAgDby+AtZAADoLIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYfu4uoLVsNpsefvhhvfLKK9q3b5/GjBmjJ554QomJiVq5cqUmTZrklrpmlC1rdNs3wF+HSqv1ziWz3VIP3IdecA3mGR3hFaHncDiUlpam/Px8LViwQBaLRcuXL1dKSookKSEhwW21vW65odHtif96WhXZ69xUDdyJXnAN5hkd4RWhl5mZqZycHBUWFiouLk6SlJycLLPZrPDwcEVHR7u5wlN6jrKo+1kDVPZmrrtLgZvRC67BPKOtvCL0Fi5cqJkzZzoDT5J8fX1lNpvl7++v7du369prr3WuO3TokI4cOaIDBw64tM6h08er+uMC1e4+6NJx4XnoBddgntFWHh96paWlqqio0KJFi5qsq6qqUmpqqgYNGqTCwkLn8oyMDNXX17d6jNDQUNlstha3G+LXQ3PCxjW7zi8oUOZJF+qzexa3elx4Fqs1WeX1rfvlSS90Lqu1+blnnmG1Nt8bAQEBqqmpafP+PD70qqurJUmRkZGNlhcXF6uysrLJ53k2m02vv/663n//fZfVKEmDfjFG9bU27fhog0vHheehF1yDeUZ7ePyfLEREREiSysrKnMscDofmzp0ru93eJPTeeecd9e/fX+ecc06rx6ipqVFdXV2LP7m5a067j6EzLlH5W2vkaLC37QHCY+TmrmlVH9ALne90c88843S90Z6jPMkLjvRiY2NlsVg0b948+fv7KyQkREuWLFFBQYGCg4MVExPTaPuXXnpJN998s0trDBvST5HnxWhtxl9cOi48D73gGswz2svjQ8/Pz09ZWVmaNWuW0tPTFRUVpYyMDIWFham8vFw+Pj8erFZXV+uTTz7RsmXLfmaPnW/otPHavX6raip2uXRceB56wTWYZ7SXx4eeJMXHxysvL6/RssWLFyspKanRsqVLl+rqq692nhJ1lQ2PvObS8eC56AXXYJ7RXh7/mV5zamtrVVJS0uTzvFdeecXlpzYBAN7DK470fqqoqEgNDQ1NQm/btm1uqggA4A28MvQSExPlcDjcXQYAwMt45elNAADag9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGYXLwV96tZqs5roNbv3N3GThDesRGKyA0uFXb0gud63RzzzyjLa/L1iD0AACGwelNAIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIbxf8EaXFXFzzfDAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAGOCAYAAAADwN1HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAw2ElEQVR4nO3de1xUdf7H8fdwFQRUULyCjo4RoiJdJM2CsavVakiYt6Jt27Lrsj9L+7m5a/fc6rebudmP7WaWbcWuki1227DSSEoh1ASBkJC8X1GREWZ+f9hOS2BcncvvvJ6PB4+Hc86Z8/3Mdz7De86Zg2NyOBwOAQBgAD7uLgAAAFch9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAw/dxfgTWw1x3Vw63fuLgNnSI/YaAWEBrdqW3qhc51u7plntOV12RqEXhsc3PqdVk96wN1l4AyZkP2Ieo8+u1Xb0gud63RzzzyjLa/L1uD0JgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGF4TejabTfPnz1dUVJSCgoI0fvx45efny2QyKTs7293lAQC8gFf8jywOh0NpaWnKz8/XggULZLFYtHz5cqWkpEiSEhIS3FqfyddH5y9I15DUi2Xy8dH2f36h9fNeUEPdSbfWBdejF1yDeUZ7ecWRXmZmpnJycvTRRx/ptttu0yWXXKLMzEz5+voqPDxc0dHRbq1v5D2T1WfscGWPn62/X3i3up81QOc+cINba4J70AuuwTyjvbwi9BYuXKiZM2cqLi7OuczX11dms9l5lLdt2zaNGTNGZ511lsaMGaPS0lKX1Td0xiXatOgfOr7rgOr2H1Hh02/Jcn2yTD5eMb3oRPSCazDPaC+P75DS0lJVVFQoNTW1ybqqqipn6M2aNUt33nmntm3bpjvvvFO33XZbq8cIDQ1VYGBgiz9Wa3KT+waEBSukfy8d2FLhXLZ/U4UCQoMVEtWrrQ8XbmS1JreqD+iFzme1Nj/3Vmtyk22ZZ2OxWpvvjdDQ0Hbtz+NDr7q6WpIUGRnZaHlxcbEqKyuVkJCgPXv2aOPGjZo2bZokadq0adq4caP27t17xuvzCwmSJNkOH3cusx0+Jkny/2EdjIFecA3mGR3h8aEXEREhSSorK3Muczgcmjt3rux2uxISElRVVaX+/fvL19dX0qlTn/369VNVVVWrxqipqVFdXV2LP7m5a5rct/5orSTJP+zH73sK6NZVknTyh3XwDrm5a1rVB/RC5zvd3DPPOF1v1NTUtGt/Hh96sbGxslgsmjdvnt5++22tXr1akyZN0saNGxUcHKyYmBi31mc7clxHq/cqPG6Qc1nEcLNsNcd1tOrMH2nCc9ALrsE8oyM8PvT8/PyUlZWlvn37Kj09XRkZGZowYYKSkpI0cuRI+fj4KCoqStXV1WpoaJAkNTQ06Pvvv1dUVJRLaix9/V8aeXeKgnr3UGBEmEbNnqKyN9fIYbe7ZHx4DnrBNZhntJdX/J1efHy88vLyGi1bvHixkpKSJJ36vG/UqFF64403NHPmTL3xxhtKSEhQr16u+VC7aNE/FBgepmvX/EkmH5O2v/uFNjz6mkvGhmehF1yDeUZ7eUXo/VRtba1KSkqUkZHhXPb8888rPT1dDz30kHr06KFXX33VZfU4GuzKn/+S8ue/5LIx4ZnoBddgntFeXhl6RUVFamhoaPQ/sZx99tlav369G6sCAHg6rwy9xMREORwOd5cBAPAyHn8hCwAAnYXQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhuE1oWez2TR//nxFRUUpKChI48ePV35+vkwmk7Kzs91dHgDAC/i5u4DWcDgcSktLU35+vhYsWCCLxaLly5crJSVFkpSQkODW+gb9Yoxib7lK4XGDVHegRlmj73BrPXAP+sA1mGd0hFeEXmZmpnJyclRYWKi4uDhJUnJyssxms8LDwxUdHe3W+uoOH1PxS++pS69uirv1GrfWAvehD1yDeUZHeMXpzYULF2rmzJnOwJMkX19fmc1m51HevffeK7PZLJPJpM2bN7u0vp2fFqkie52O7djr0nHhWegD12Ce0REeH3qlpaWqqKhQampqk3VVVVXO0Lv22mv16aefauDAga4uEQDgJTz+9GZ1dbUkKTIystHy4uJiVVZWOkNv3Lhx7R4jNDRUNputxe2G+PXQnLD2jwPPZrUmq7z+YKu2pRc6l9Xa/Nwzz7Bam++NgIAA1dTUtHl/Hn+kFxERIUkqKytzLnM4HJo7d67sdrvbL2IBAHgPjz/Si42NlcVi0bx58+Tv76+QkBAtWbJEBQUFCg4OVkxMTIfHaO27hd35xVo96YEOjwfPlJu7Rr1Hn92qbemFznW6uWee0ZbXZWt4fOj5+fkpKytLs2bNUnp6uqKiopSRkaGwsDCVl5fLx8f9B6smHx/5+PvK5OcnmUzyDfSXw+GQ3Vbv7tLgQvSBazDP6AiPDz1Jio+PV15eXqNlixcvVlJSkpsqamzIdRdr3DN3OW/fsP0NHa3aw98PGQx94BrMMzrCK0Lvp2pra1VSUqKMjAznsnvuuUf/+Mc/tGvXLl166aWKiIjQli1bXFJP2VtrVPbWGpeMBc9FH7gG84yOcP+5wXYoKipSQ0NDo4tYFi1apB07dqi+vl67du1yWeABALyHVx7pJSYmyuFwuLsMAICX8cojPQAA2oPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhuE1oWez2TR//nxFRUUpKChI48ePV35+vkwmk7Kzs91dHgDAC/i5u4DWcDgcSktLU35+vhYsWCCLxaLly5crJSVFkpSQkOC22nwC/HTBY7eo77gR6hIRpuO7D2rrS6tV/NJqt9UE96AXXIN5Rkd4RehlZmYqJydHhYWFiouLkyQlJyfLbDYrPDxc0dHRbqvNx9dXtXsO6YOpD6umcrfChw3UZW88oBN7D2n7qjy31QXXoxdcg3lGR3jF6c2FCxdq5syZzsCTJF9fX5nNZiUkJGj//v266qqrFBMToxEjRmjy5Mnau3evS2qrr61TwR//pprtuySHQwe2bFfVB18pcnSsS8aH56AXXIN5Rkd4fOiVlpaqoqJCqampTdZVVVUpISFBJpNJc+bMUUlJiTZt2qQhQ4bo/vvvd0O1ksnPV70TY3Vwa6VbxofnoBdcg3lGW3j86c3q6mpJUmRkZKPlxcXFqqysVEJCgsLDw5WcnOxcd8EFF2jJkiWtHiM0NFQ2m63F7Yb49dCcsHE/u80Fj/1KJ4/WqvztT1o9PjyD1Zqs8vqDrdqWXuhcVmvzc888w2ptvjcCAgJUU1PT5v15/JFeRESEJKmsrMy5zOFwaO7cubLb7U0uYrHb7VqyZIkmTpzo0jol6fwF6ep1bow+nPGo7CfrXT4+PAe94BrMM9rK44/0YmNjZbFYNG/ePPn7+yskJERLlixRQUGBgoODFRMT02j7u+++WyEhIbrrrrtaPUZr3y3szi/W6kkPNLtu9EM3qe+4EXov7UHVHWj7uw+4X27uGvUefXartqUXOtfp5p55Rltel63h8aHn5+enrKwszZo1S+np6YqKilJGRobCwsJUXl4uH58fD1bvvfdelZaWatWqVY2Wn2mjH75ZfccN13vXLVDd/iMuGxeeh15wDeYZ7eXxoSdJ8fHxystrfCny4sWLlZSU5Lw9b948bdiwQf/85z8VGBjostq6DuipYbdcpYYTNl23/i/O5bvXF+ujGY+6rA64H73gGswzOsIrQu+namtrVVJSooyMDEnSli1b9Pjjj+uss87S2LFjJUlms1krVqw447Uc27FPr/S97oyPA89HL7gG84yO8MrQKyoqUkNDg/Milri4ODkcDjdXBQDwdF4ZeomJiYQcAKDNPP5PFgAA6CyEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAyvCT2bzab58+crKipKQUFBGj9+vPLz82UymZSdne3u8gAAXsDP3QW0hsPhUFpamvLz87VgwQJZLBYtX75cKSkpkqSEhAS31nfB47co6rLz5B8WrJNHa1X5bp6+evg12U/Wu7UuuB694BrMM9rLK0IvMzNTOTk5KiwsVFxcnCQpOTlZZrNZ4eHhio6Odmt9W19+T189tEz1tXUKDA9VcuZsjbxnsgqffsutdcH16AXXYJ7RXl4RegsXLtTMmTOdgSdJvr6+MpvN8vf3lyRde+21qqiokI+Pj0JCQvTss89q1KhRLqnv8LYdP94wmeSwOxQ6uK9LxoZnoRdcg3lGe3l86JWWlqqiokKLFi1qsq6qqkqpqamSpKVLl6pbt26SpOzsbN18883auHGjy+occde1GpmRKv+uQTpx4Ig+nP6ay8aGZ6EXXIN5Rnt4fOhVV1dLkiIjIxstLy4uVmVlpfPzvH8HniQdPnxYPj6tv0YnNDRUNputxe2G+PXQnLBxza7btHilNi1eqW5D+2vw5ItUu+dgq8eHZ7Bak1Ve37rnjV7oXFZr83PPPMNqbb43AgICVFNT0+b9efzVmxEREZKksrIy5zKHw6G5c+fKbrc3uojllltuUXR0tH73u99p6dKlLq9Vkg6XVuvAlkpd9Ow9bhkfnoNecA3mGW3h8Ud6sbGxslgsmjdvnvz9/RUSEqIlS5aooKBAwcHBiomJcW77wgsvSJKWLVum++67Tzk5Oa0ao7XvFnbnF2v1pAda3M7H31dhfL7gdXJz16j36LNbtS290LlON/fMM9ryumwNjz/S8/PzU1ZWlvr27av09HRlZGRowoQJSkpK0siRI5s9jXnDDTcoNzdX+/fvP+P1+YcGyzIlWQFhwZKkHrEDFZ+Rqu/XfH3Gx4ZnoRdcg3lGR3j8kZ4kxcfHKy8vr9GyxYsXKykpSZJ09OhRHTx4UFFRUZKkVatWKTw8XOHh4We+OIdDg1Mv1vkL0uUT4KcT+46oMme9Cp9888yPDc9CL7gG84wO8IrQ+6na2lqVlJQoIyNDknTs2DGlpaXp2LFj8vX1VXh4uFatWiWTyXTGazl5tFYfXP/QGR8Hno9ecA3mGR3hlaFXVFSkhoYG50UsvXv31hdffOHmqgAAns4rQy8xMVEOh8PdZQAAvIzHX8gCAEBnIfQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9NBhAy45R6lf/EUzypZp0MSxHdrXTTuzFBE/pE336dq/p2aULVNgj5AOje3pxv35TiU++it3l9GsGWXLFD7c7O4y2sWba5ekPmPiNKNs2Rnb/5V/f1Bxsya2+X6RibG6/uu/noGKOsYr/xsyb3Xl3x9U1YcbtOX5dxotn168VB//8o/albelzfu0TElW3O0TlW39r84qs81GP/RLff2nLJW9meuW8Y9V79PrlhvcMnZ79Rkbp1Gzpyhi5GBJ0v6ib1X41Fvt6oEzYdTsKYqIH6J/3fh4q7b31Pm/8u8Pqte5Z8l+sl4Ou121ew7p+882afNzK3Vsxz5Jnlu7t9uzfqvejP+1u8togiM9L2by8+3U7dorJDpSB4u/O6Nj/H8y4NJzddnyB1T10Qa9dc5teuuc21T10QZd9sYDGnDJOc3ex+TbeS/VM90PnmbjE2/o9aE3aHlMuj7+1ZPq0iNUEz98SmFD+rm7NLgBoedBuvbvqcv+Nl9Tt7ykaVtf0WV/m69Qcx/n+nF/vlPj/nynkpb8VtNLlmr47RM1ZuGt6ja0v2aULdOMsmUKG9xXlinJmpT7P4r/rzRNKfyrLll6v6RTRxdXv/uYpm19Rdd++meZJ13YaPyB14zRxI+e0vSSpfrFB0+q77gRP1tvYI8QzShbJh8/X01Y8ZBmlC2Tf2iw/IK7aMwfb9WUgkxd//VfNe6ZuxTQravzfkG9uuuixfdoSuFfNb14qa5c8ZB8uwQ02X9IVKRSPntGI+6Z/LN1hAzopZt2ZikwPFRdenbTjVVvyj/01BeMWq63Njpl2uvcs3R90Qs/u78zLfGRm1X29hptWfKOTtYc18ma49qy5B2VZ32i0Y/cLEm6Lv85jcxI1VXvPKqZ376unj/U79+1i5IzZ2tG6TJd+8mf1C85vsXx/n3666yZl+q6L5do4kdPSZL6XjxS17y/UNNLlmriv55W9JXnS5KirzxfI+5JUX/rKGdf+QT8/Emhf8+xyddH07e9qu4xp77bss/YON20M0sDrxkjSQqK7K4bv/ub/EOC2jd5HXR42w59etczOr7rgBLuu75R7ZIUPtysCSsf1tQtL2vqlpeV/NfZ6tKzm/P+AWHBSnr+t5pevFST1z2rs264zNl7LYkYOVhXvP0HTfvmZU3d/KISf3iupdM/F9Kpo+5LXv3vRvu6Lv85Dbz6gmbHaen1d9POLMX+6ipNyv0fzSh/TcmZsxUQFqwL/3SHppcsVcpnz6jXOUMb7TOod3dd/ubvNaNsma55b2GrPoL4z9OuPROGaurmF398TPdOUXr1W+oSESZJMl97oa7Oad1ZhY4i9DyIyWTSN5nv6u1zZ+ntc2epdvdBXbz4N422MU+6UGVvr9Hys2/SNy/8U3lzM3W4tFqvW27Q65YbdOTbnZKkbpb+MvmYlDX6duXe8qS6x0Rp/EtzVPDUm3pj2C/12d3P6oLHb3E2b7/keCU+crM+v/d5LT/7Jm18YrmsL92n4H4Rp6237uBR56mh1Sm/1+uWG3Sy5rgSH7lZ3Sz9lX3pvVpx0W8UGB6qC//njn8/SF3y6v1y1DdoZVKG3oj7pTY+vlwOu73RvsNHmDVhxUPa9OwKbVr0j1bP4Yl9h3W4/Hv1GTNMktT3ohE6UrHTGeB9xw3XrnXuO4UYNqSfQgf2VsXKdU3WfbtircIG9VHY4L6SJEtastbNfk6vW27Q/s0VkiTzteP07YrPtPzsdBU9u0LjX5qj4D4tf1myX1Cgeo6yaOXFGXp3wlyFDuqjS5fer82LV+qNYb/UhkdfU9KS3yo8bpC+e+9LbVq0QtW5hc6+stvqW/X4HA127V6/9cf5ds7/8FO3x43Q/qJvdfJobav2dyY4Guz67r189Rkb13Sd3a4Njy/XW6N+rRUX3SP/kKBG4ZT46K8U2D1EWYl36J8Tf6fB145r1ZjBfcJ1RdYCbX/3C72VcKvePv92Vaw69cXYP/dctMfPvv5+EH3l+Xov9Q/KGn2HIuIH6+p/Pq7tq/L0RuwvVZmzXmMW3tpo+6FTx6vw6bec6y999X75BjV9o3o6+78ul4+/n3rEDpR0qi9qKnerz4U/9sWutZvb9XjbitBzsYQ512t68dJGP/9+F3Z0x15Vf1yghhM21R8/ocIn31Svc4bKLyjQef/vP9uk6o8LJIdDDbW2045Tf+yEvv6fLNlt9WqotSkm/QqV//1Tfb/ma8nh0P6vy1WRvU5DrrtYkhT7q6u05flV2ldYJjkcqv64QHvyizXoh3forWYyafDki7Tx8eWq239EtiPH9dXDyzTwqkT5hwSp5yiLusdEKe+//yrb4WNyNNi1J7+40S/VfheP1KXL5unzOf+rsrfWtG18SbvWbnL+ku0zNk6FT7+lvhed+iXc58IR2rluU5v32Vm6/HBEULv7QJN1tXsOntrmh3e/Jcs+1OHSajnsduf87PriG323Ol+OBru+zfpUB7+p1KBftPwcmXx8tOGx11VfW6eGWpvMk8Zq9/qt2r4qT44Gu6o/LtB3H3ylIWlJHX6Mu9ZubhRyhU+95QzBPhcO1851rvnl9nOO7zygwO5NL3w6+E2l9qzfKvvJetUdqNGmRSucv5hNPj4aNHGsCp58U7bDx1S3/4i+fubvrRpvcOrFOrCpQiVL31dD3Uk11Nq0Z/1WSerc56KF19+/bXl+leoO1Khu/xF9/2mRjlbtUfXHBXLY7apYuU7dY6Pl4//j0f32d/NOvU5P1mvTsyvksDvUP6nlswz/5rDbtfuLreo7brj8gruo+9AB2vL8qv94XbquL7iQxcUK/vhmsxeySFJgeKhGP3iT+oyJk39YsPTDdwYGRoSqfkedJOlY9d5WjXN894FGR08hUb3U98LhGpJ6sXOZyc9H1R8X/rA+UqPui1N8RuqP6/19dWjbjjY9vi4RYfIN9NfRqh/rPFq5W5IU3C9CIQN66viuAz8b2MNuuUq7vyw5Fe7tsHPtJo26b6q6De0v25Hjqnz3C41+6Gb5hwQp8ryzlHff8+3ab2c4caBGkhTUO1yHy75vtC4ossepbfYfkdT8c31sR+NlR6v2tupIr762TnU/jC1JwX0jdPSn+6rcrZCBvVvxKH7ezrWbNDIjVQFhwQob3E8VK9fpnPunKbhvuPqOG67PZ7tv/v8tuG+46g7WNFkeOrC3zvvDjeqVMFR+XbvIZDI5wyIwPFS+Af46Vr3Puf1//vvnhAzoqSMVO09TS+c9Fy29/g7/8Hqu3XfYub6htk61ew45b9fX1snH11d+QQGynTz1ZqtR3zkcOla9T8F9Tn8WqDk7125SnwuH63D599qzYZuqPy5Q3KxfqOuAnuraN0K787e29eG2C6HnQc6dN0MB3UO06sq5OrHvsEIG9NJ1Xy6RSSbnNg574y/PPd2X6f50u2PV+1T8yvv66qFXm93+WPU+lSx9X8Uvv9ehx3Bi/xE11J1USFQvHd916mgmJKqXpFPvrv27Bim4T7h8uwSo4UTzwffpXYt0zn9P19inb9fn9z7vDP/W2vX5FnUf2l/mSRdq52eb1FB3Uge/2a64236hE/uPqOaHXwLucKT8e9V8t1vmiWO16yfvbM2Txqrmu93OU9Q/fQ4lqeuAXo1uh0T10t6N21oc96enj4/v3K8+Yxqf3guJitTxnfub3b4tDmzZLofdrmG/vkZ7viyWw27XzrWbddb0SxUc2UN7vixu9747g8nXR9FXnK9dn3/TZN2Yhbfq6I69Wpn8W9kOH1OfMXG68h8PSpLqDtSowXZSXfv3dPZ21/49WzXm0R37NGB8QrPrWnouTh47Ib//OJVo8vVp9Dnjf2rp9ddejfrOZFJwvwgd37W/TfvYuXazRs2eoprK3dq5dtOpoDeZNPT68dq7cdvPvhHuTJze9CD+IUGqP3ZCtsPHFNCtqxL+e3qL96nde0hBkd1bPL9e8uoHskxJUt+LR8rk6yMffz9FxA9Rj2GnzrFvfTFHw2+fqJ6jLJLJJN9Af/UeM0yhbX236XDo2xWfKWHuNAVGhCkgLFjnzb9RlavX62TNce0rLNOh0h264LFbFBAWLJOvjyJHn93oQgnbkeP6YMpD6j50gMY9c5dMPm1rU9uR4zrwTaWG/fpq7Vx76lTmznWbNezWH2+7U/7vX5HleqvibvuF/EOC5B8arGG3XSPLFKvy57/8s/ftc8EwRV1+nky+Pho8+SL1GDZQ2//5RZtrqMj+XL0TYzXw6kSZfHzU3zpKUVecp/KsTyWdOhLo2r9nu68a3fX5lkbzvXPdJg279Wrt2bBNDXUn27XPztDN0k/jFt2t4L4RKnjqzSbr/UODZas5LtuR4wrq3UMj/+PMh8Nu1/ZVeRp17xQFdOuqwPBQjbw7pVXjfvuPTxUxcrBibrxcPgF+8g0KUGRirKSWn4v9m75Vz3OGqttZA+QT4KeEuVPlc7orcFt4/bXXoKsvUK/zYmTy89WIOyfJx89X339S1KZ9HNxaqYaT9Ro61aqdn53qi13O16XrTnkTeh6k4Mk3FTKgl6ZtfVnX5Dyh79cUtnifnWs3a09+saZs+F9NL17a6GrP/3Twm0rl/vppjfqvNE3d9KKmFP5V5//+RufnhdUfFyh/wVJd8MSvNX3rK7ruq+c14q6Udl3enj//ZdVs36VrP35aKWsXyXbkmD6fveTUSodD/7rxCfkFBSpl7SJN2/Kyzpk7rUmwnTxaqw+mPqyQqF66aPE9bf7lu/OzTfIL7qLdP/zd287PNikgrKtHfJ5U9f6X+mjmY4q64jxNKczUlIL/VfQV5+ujmY+p6oOvfva+FSvXakhakqYXL9XIjFTl3vKUjn/ftnfcklSzfZc+vvmPGvmb6zSt+BWdN/8GfXrXIh344YKZ7avyZDt0VFM3v6TpxUtbvHrzp5zz/cMvs51rN7tt/s+5f5pmlC7T9G2vavzLc3XyyDG9c9m9OlL+fZNt8//wivonxWtG6au6bPkDqsxZ32j9+t+9qJM1tbpu/XO6etVjqlydL0ktBvnxnQf0ftqDMqeM09SiF3Vd/hINuubU1ZctPRe71m1WySvva8KKh3Xd+udUu+eQ8yiuOT/7+mun0jdzlTBnqqYXv6JBE8fqXzc+ofraujbvZ9e6zbKfrNfBbyolnTrl6eq+MDlOd34MTezOL9bqSQ+4uwz8ROjA3kr94i96fegNHboqcEL2I+o9+uxWbUsv/Mjk46P06reUPX62Dm6tbNc+Tjf3nj7P/ccn6OK//EZvxN7k7lI8Tt9xI5Sc+V96Y9gvO7SftrwuW4MjPXi9HnGDdGL/YbdeBm9kPeIGyn6yvtUXWXmzUHMf50cAIQN6KeG+61WR3fTPT3CqL9z5+fnpcCELWjRpzZ8UMqDpB/ZVH2zQp3f82e019Bkbp/UtfBb2/92Zfo4uff136p3Y9N32yaMn5OPvqw2PLZftSPs/M/IWfkGBuujZuxXcL0Ina2q146MN2vDIa5I843Xiaqf7Pz+r13ytiBFmj7hS96cIPbQoO/m37i7BI2rwZGd6fj6a8egZ3b+3OPhNpVZc9Jtm1xmxR73x/y3l9CYAwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMLwi9Gw2m+bPn6+oqCgFBQVp/Pjxys/Pl8lkUnZ2trvLAwB4CY8PPYfDobS0NL3wwgt64IEH9O6778psNisl5dT3WCUkNP/FjO7g2yVAkz9/9rT/Hx2Mg15wDeYZbeXx//dmZmamcnJyVFhYqLi4U98unJycLLPZrPDwcEVHR7u5wh8l3He9ju7Yp6DI7u4uBW5GL7gG84y28vgjvYULF2rmzJnOwJMkX19fmc3mJkd5Dz74oEwmkzZvdv0XVUaMHKz+1lHa/JeVLh8bnoVecA3mGe3h0aFXWlqqiooKpaamNllXVVXVKPQ2btyoL774QgMHDnRliZIkk6+Pxj41S1/Me0F2W73Lx4fnoBdcg3lGe3l06FVXV0uSIiMjGy0vLi5WZWWlM/Tq6up05513asmSJe0aJzQ0VIGBgS3+WK3Jzd5/+B2TtH9ThXZ/sbVd48MzWK3JreoDeqHzWa3Nz73Vmtzs9syzcVitzfdGaGhou/bn0aEXEREhSSorK3Muczgcmjt3rux2uzP0fv/732vmzJkaNGiQy2sMHdRHMTderq8e5oN0o6MXXIN5Rkd49IUssbGxslgsmjdvnvz9/RUSEqIlS5aooKBAwcHBiomJUV5enr766is98cQT7R6npqamVdvtzi/W6kkPNFrWe/TZCurZTZPXLZIk+fj5yr9rkKZueUm5v3qSd6JeJDd3jXqPbvrt4M2hFzrX6eaeeUZbXpet4dGh5+fnp6ysLM2aNUvp6emKiopSRkaGwsLCVF5eLh8fH33yySfaunWrzGazJGnHjh264oor9PLLL+vyyy8/4zVWrPpc339W5Lzd69wYjXvmTr1z6b06sf/IGR8fnoNecA3mGR3h0aEnSfHx8crLy2u0bPHixUpKSpIk3X///br//vud6wYNGqR3331Xw4cPd0l9DbU2Ha894Lxdt/+I5HDo+M4DP3Mv/H9EL7gG84yO8OjP9JpTW1urkpISj/qj9P+0K2+LXrfc4O4y4AHoBddgntEWHn+k91NFRUVqaGg4beht377dtQUBALyG14VeYmKiHA6Hu8sAAHghrzu9CQBAexF6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMLwm9Gw2m+bPn6+oqCgFBQVp/Pjxys/Pl8lkUnZ2trvLAwB4AT93F9AaDodDaWlpys/P14IFC2SxWLR8+XKlpKRIkhISEtxW27g/3ylzyjjZT9Y7l6359dOqzi10W01wD3rBNZhndIRXhF5mZqZycnJUWFiouLg4SVJycrLMZrPCw8MVHR3t1vq2vfaR1v/uRbfWAM9AL7gG84z28orQW7hwoWbOnOkMPEny9fWV2WyWv7+/JGnQoEHq0qWLunTp4rzPFVdc4ZZ6AQCeyeNDr7S0VBUVFVq0aFGTdVVVVUpNTXXezsrK0vDhw11ZniRp8OSLNDhlnGr3Hda3f/9UmxavlKPB7vI64H70gmswz2gvjw+96upqSVJkZGSj5cXFxaqsrOyUz/NCQ0Nls9la3G6IXw/NCRvXaNk3L+boq4eX6cSBGkWMHKyk5zLkGxiggj/+rcN1wbWs1mSV1x9s1bb0QueyWpufe+YZVmvzvREQEKCampo278/jr96MiIiQJJWVlTmXORwOzZ07V3a7vVHozZgxQyNHjtQdd9yhQ4cOuaS+A5sqdGL/Ecnh0P6vy1Xw1JsyT7rQJWPDs9ALrsE8oyM8PvRiY2NlsVg0b948vf3221q9erUmTZqkjRs3Kjg4WDExMZKkzz77TF9//bW+/PJLORwO3XXXXa0eo6amRnV1dS3+5OauaXlndodkaueDhVvl5q5pVR/QC53vdHPPPON0vdGeozzJC0LPz89PWVlZ6tu3r9LT05WRkaEJEyYoKSlJI0eOlI/PqYcQFRUlSQoMDNQdd9yhdevWuaS+QRPHyj80WJLUI3ag4menafu7eS4ZG56FXnAN5hkd4fGf6UlSfHy88vIaN/XixYuVlJQkSTp27Jjq6+vVrVs3ORwO/e1vf9OoUaNcUtvZN12hMQtvlY+/r2p3H1J51icqenaFS8aGZ6EXXIN5Rkd4Rej9VG1trUpKSpSRkSFJ2r17t1JTU9XQ0KCGhgYNGzZMzz33nEtqeW/yH1wyDjwfveAazDM6witDr6ioSA0NDc6LWAYPHqyCggI3VwUA8HReGXqJiYlyOBzuLgMA4GU8/kIWAAA6C6EHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMw2tCz2azaf78+YqKilJQUJDGjx+v/Px8mUwmZWdnu7s8AIAX8HN3Aa3hcDiUlpam/Px8LViwQBaLRcuXL1dKSookKSEhwc0VSgMuOUcJc6cqbEg/1R+t1ebnV2nLknfcXRbcgF5wDeYZ7eEVoZeZmamcnBwVFhYqLi5OkpScnCyz2azw8HBFR0e7tb5+SfEa8+RtWnvPYu3K2yK/oEB17d/TrTXBPegF12Ce0V5ecXpz4cKFmjlzpjPwJMnX11dms9l5lHfixAndfvvtGjp0qEaMGKFbb73VZfUlzJmqoj//XTvXbpKjwa6TR2t1qKTKZePDc9ALrsE8o708/kivtLRUFRUVWrRoUZN1VVVVSk1NlSTNmTNHXbp00bZt22QymbR7926X1OcXFKieo4ao+uMCpXz2jAK6ddXejaXKn/+yjlbtcUkN8Az0gmswz+gIjz/Sq66uliRFRkY2Wl5cXKzKykolJCTo6NGjevXVV/Xwww/LZDJJknr37t3qMUJDQxUYGNjij9Wa3OS+Ad27yuTjo4FXJ+rDaY8oK/EO1e49JOuL97X3IcNNrNbkVvUBvdD5rNbm595qTW6yLfNsLFZr870RGhrarv15fOhFRERIksrKypzLHA6H5s6dK7vdroSEBJWXlysiIkIPPvigzjvvPCUnJ2vt2rUuqe/k0ROSpG9eyNHRHXvVUGvTxseXK2KEmc8YDIZecA3mGR3h8aEXGxsri8WiefPm6e2339bq1as1adIkbdy4UcHBwYqJiVFDQ4O+/fZbJSQk6KuvvtLChQs1efJkHTlypFVj1NTUqK6ursWf3Nw1Te57sub4qVMqDkcnP3K4Wm7umlb1Ab3Q+U4398wzTtcbNTU17dqfx4een5+fsrKy1LdvX6WnpysjI0MTJkxQUlKSRo4cKR8fH0VHR8vPz0/Tpk2TJCUmJqpnz57atm2bS2osefUDxd5ytYL7Rcg30F8Jc6Zq39flOla9zyXjw3PQC67BPKO9PP5CFkmKj49XXl5eo2WLFy9WUlKSJKlnz56yWq368MMPdfnll2vbtm3as2ePLBaLS+rb9JdsBXQL0cQP/iiZfLQnv1i5v3rSJWPDs9ALrsE8o728IvR+qra2ViUlJcrIyHAue/7553XzzTdr9uzZ8vf317Jly9S9e3fXFORwaMOjr2nDo6+5Zjx4LnrBNZhntJNXhl5RUZEaGhoa/U8sgwcP1po1a9xXFADA43ll6CUmJsrBh9gAgDby+AtZAADoLIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYfu4uoLVsNpsefvhhvfLKK9q3b5/GjBmjJ554QomJiVq5cqUmTZrklrpmlC1rdNs3wF+HSqv1ziWz3VIP3IdecA3mGR3hFaHncDiUlpam/Px8LViwQBaLRcuXL1dKSookKSEhwW21vW65odHtif96WhXZ69xUDdyJXnAN5hkd4RWhl5mZqZycHBUWFiouLk6SlJycLLPZrPDwcEVHR7u5wlN6jrKo+1kDVPZmrrtLgZvRC67BPKOtvCL0Fi5cqJkzZzoDT5J8fX1lNpvl7++v7du369prr3WuO3TokI4cOaIDBw64tM6h08er+uMC1e4+6NJx4XnoBddgntFWHh96paWlqqio0KJFi5qsq6qqUmpqqgYNGqTCwkLn8oyMDNXX17d6jNDQUNlstha3G+LXQ3PCxjW7zi8oUOZJF+qzexa3elx4Fqs1WeX1rfvlSS90Lqu1+blnnmG1Nt8bAQEBqqmpafP+PD70qqurJUmRkZGNlhcXF6uysrLJ53k2m02vv/663n//fZfVKEmDfjFG9bU27fhog0vHheehF1yDeUZ7ePyfLEREREiSysrKnMscDofmzp0ru93eJPTeeecd9e/fX+ecc06rx6ipqVFdXV2LP7m5a067j6EzLlH5W2vkaLC37QHCY+TmrmlVH9ALne90c88843S90Z6jPMkLjvRiY2NlsVg0b948+fv7KyQkREuWLFFBQYGCg4MVExPTaPuXXnpJN998s0trDBvST5HnxWhtxl9cOi48D73gGswz2svjQ8/Pz09ZWVmaNWuW0tPTFRUVpYyMDIWFham8vFw+Pj8erFZXV+uTTz7RsmXLfmaPnW/otPHavX6raip2uXRceB56wTWYZ7SXx4eeJMXHxysvL6/RssWLFyspKanRsqVLl+rqq692nhJ1lQ2PvObS8eC56AXXYJ7RXh7/mV5zamtrVVJS0uTzvFdeecXlpzYBAN7DK470fqqoqEgNDQ1NQm/btm1uqggA4A28MvQSExPlcDjcXQYAwMt45elNAADag9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGYXLwV96tZqs5roNbv3N3GThDesRGKyA0uFXb0gud63RzzzyjLa/L1iD0AACGwelNAIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIbxf8EaXFXFzzfDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -81,16 +81,16 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:56.487374Z", - "iopub.status.busy": "2024-11-23T19:54:56.486867Z", - "iopub.status.idle": "2024-11-23T19:54:56.679667Z", - "shell.execute_reply": "2024-11-23T19:54:56.679039Z" + "iopub.execute_input": "2024-12-05T03:21:31.113976Z", + "iopub.status.busy": "2024-12-05T03:21:31.113487Z", + "iopub.status.idle": "2024-12-05T03:21:31.316959Z", + "shell.execute_reply": "2024-12-05T03:21:31.316364Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK4AAAGOCAYAAAAO1zhsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAY1UlEQVR4nO3dfViUdb7H8c/MMDwpoKAS2ggoiiggtOUjJVjpWicfs3LVZdfcIimvOWupx2qPmtW2btcWWbpdZSk+VGsWUVZagYpHcRVIJJSHwIAAFUQBkcc5f7BMgKQDyj33l/m8rss/YIDfV663t7cg89WYTCYTiITRWnsAoq5guCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJDtrDyBNXeVlXMj8ydpjqFrfgMGwd3Hu1jMYbiddyPwJX854ztpjqNq0uHXwHDOiW8/grQKJxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRxIRbV1eH559/HgaDAU5OTpg8eTKOHj0KjUaDuLg4a49HChPxnTOTyYS5c+fi6NGjWL16Nfz8/LBjxw7MmjULABAaGmrlCQGNTos7Vkdi6Jy7oNFqkf/FESSvegeNtfXWHq1HEhHu22+/jT179iAtLQ2jRo0CAISHh8PX1xfu7u4YPHiwlScEgpfOxi0TAhE3eRka6xtw9/sr8JvnFuLo85utPVqPJOJW4ZVXXsGCBQvM0QKATqeDr6+v+WqblZWF8ePHY/jw4Rg/fjyys7MVnXHY/LuRHrMbl0vKUVt2CWmvfgS/h8Oh0Yr4FIuj+s9qdnY28vLyMGfOnKseKygoMIcbFRWF6OhoZGVlITo6Go8//rjFZ7i4uMDBwcGiXxER4Ve9v72rM3oP6o/yjDzz68rS82Dv4ozehv6d/S2LFxERbvHn08XFpUtnqD7coqIiAMCAAQPavP7UqVM4c+YMQkNDcfbsWaSkpGDevHkAgHnz5iElJQXnzp1TZEa73k4AgLqLl82vq7tYDQDQ/+cxurlUH66HhwcAICcnx/w6k8mEFStWoKmpCaGhoSgoKMCgQYOg0+kANN9GDBw4EAUFBRadUVlZidraWot+JSQkXvX+DVU1AAC96y//B9XerRcAoP4/j9mShIREiz+flZWVXTpD9f84CwgIgJ+fH1atWgW9Xo/evXtj48aNSE1NhbOzM/z9/ZGammrVGesuXUZV0Tm4j/LBpdyfAQAegb6oq7yMqgJlrvq2RvXh2tnZYdeuXYiKikJkZCQMBgOMRiNcXV2Rm5sLrVYLg8GAoqIiNDY2QqfTobGxET///DMMBoNic2Zv/xbBT81CaXImmhoaEbLsIeR8mAhTU5NiM9gS1YcLAKNHj8bhw4fbvG7Dhg2YNGkSgOb735CQEOzcuRMLFizAzp07ERoaiv79lfuH0YmY3XBwd8XMxH9Ao9Ug//MjOP7iNsXOtzUiwm2vpqYGp0+fhtFoNL9u06ZNiIyMxNq1a9G3b19s3bpV0ZlMjU04+vxmft1WISLDPXHiBBobG9t8x2zEiBFITk624lSkJJHhjh07FiaTydpjkBWp/sthRB1huCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkhiwuUSampNxDOSS1hC7fPAeAQsvg/uo3xQW16JXWOWWHukHk1EuBKWUNderMapzV/Bsb8bRj32X9Yep8cTcatgyRLqp59+Gr6+vtBoNDh58qTiMxYfOIG8uEOoLuRCPiWoPlxLl1DPnDkTBw4cgLe3t9IjkhWo/lbBkiXUABAWFtblM1xcXFBXV2fR2w6164vlrl0/yxZERIQjt+GCRW9rb2/fpX2+qr/iWrKEmmyP6q+4liyhvlGd+RNfevQUvpzx3A2f2ZMlJCTCc8yIbj1D9eFasoRaDTRaLbR6HTR2doBGA52DHiaTCU11DdYerUdSfbjA9ZdQq8HQB+9C2OtPml9emL8TVQVn+fXcbiIi3PY6WkK9dOlS7N69GyUlJbjnnnvg4eGBjIwMxWbK+SgROR8lKnaerVPH37Od1NES6piYGBQWFqKhoQElJSWKRkvKE3nF5RJqEnnFJWK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSGLC5RJqak3EM5KrfQm11t4O415aDK+wIDh6uOJy6QVkbv4SpzZ/adW5ejIR4ap9CbVWp0PN2QrsfeQFVJ4phftIb9y78zlcOVeB/PjD1/8A1GkibhWut4S6rKwM9913H/z9/REUFITZs2fj3DnllkE31NQi9W8foDK/BDCZUJ6Rj4K9xzBgTIBiM9ga1YdryRJqjUaD5cuX4/Tp00hPT8fQoUOxcuVKK0zbTGOng+fYAFzIPGO1GXo61d8qWLKE2t3dHeHh4ebHxo0bh40bN1p8xs1eQj3upUdRX1WD3H/tt3iGniQigkuoO72EuqmpCRs3bsT06dMVnbPFHasj0f83/tg3/0U01XMdanfRmFS+MKyhoQEBAQGor6/H+vXr2yyhLi8vR2VlZZt9vtHR0SgqKsLu3bu7Zc/vtZZQj1n7B3iFBeGruWtQW3bppp8txbS4dVxC3Zkl1E8//TSys7MRHx+v+HLqMS8sgldYIL56cLVNR6sU1YcLWLaEetWqVTh+/Di++OILODg4KDpfr1v7YeTi+9B4pQ4PJr9pfn1p8il8M/9FRWexFSLCba/9EuqMjAy8/PLLGD58OCZMmAAA8PX1xSeffKLIPNWF5/G+14OKnEXNRIbbfgn1qFGjuNvXxogMl0uoSfVfDiPqCMMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEEhMul1BTayKekVztS6gBYNzLi2G493boXZ1RX1WDM58fxrEXtnHXWTcREa7al1ADQOZ7X+HY2lg01NTCwd0F4W8vQ/DS2Uh79SNrj9YjiQj3Wkuo9Xo9AGDmzJnIy8uDVqtF79698cYbbyAkJESxGS9mFf7ygkYDU5MJLkO8FDvf1qg+3JYl1DExMVc9VlBQYF5OvWXLFri5uQEA4uLisGjRIqSkpCg6a9CTMxFsnAN9LydcKb+Efb/bpuj5tkT14VqyhBqAOVoAuHjxYqc2S96sJdTpGz5F+oZP4TZsEIbMvhM1Zy1bxNzTRERwCXWnllAvXrwYgwcPxrPPPostW7YoPmuLi9lFKM84gzvfWGq1GXo61V9xAwIC4Ofnh1WrVkGv17dZQu3s7Ax/f3/z277zzjsAgNjYWDzzzDPYs2ePRWd05k/8tZZQt6bV6+Bqo/e4CQmJ3b6EWvVX3JYl1F5eXoiMjITRaMS0adMwadIkBAcHd3hLsHDhQiQkJKCsrEyRGfUuzvB7KBz2rs4AgL4B3hhtnIOfE79X5HxbpPorLnD9JdRVVVW4cOECDAYDACA+Ph7u7u5wd3dXZkCTCUPm3IU7VkdCa2+HK+cv4cyeZKSt/1CZ822QiHDba7+Eurq6GnPnzkV1dTV0Oh3c3d0RHx8PjUajyDz1VTXY+/BaRc6iZiLDbb+E2tPTE0eOHLHyVKQkkeFyCTWp/h9nRB1huCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCoR9lo0xr74qLXHMLtn+7MIePQ+a4/xq0R+y1cq1yFeuP35hRhwhz90DvaoOVeBgr3H8O/VnftP734PhWPUE9MRF/HnbpoU+Gb+i932sW8Ghquge2JX4cyeZByIjkFDTS1cfDzheUf3/ofrX6Ox08HU0GiVs28G3iooxMHdBa5DvHB66140XL4CmEyozCtBzkeJHb79nW88hbkp/8T87FhM37cegyJCAADugb4Y/8pjcBs2CPNzYjE/J9b8kxa3TBiF+z9/CfMy38fMA6/Bd8ZE88cLWfYQ7tn+LMa+tBiPZGzG2HWLrjnvbz9eg1FR0wE03zaM+ONvAQA6R3sszNuBsS8tNr/trIOvY9BkZZ/bguEqpLa8EhVZBZj4jyXwnTERLt6e13z74kMZiIv4M3aMiMTp2H0If3sZHDxcUX4yD4dXvI2L2UXY7rcQ2/0W4tKPxejjb8DkzcuR+vcPsXPkH3HwqTcw7uXF8Bg91PwxB94VjPKTefgweDH+vcby25PipHR4hQUBAAbc4Y/q4jJ4hQUCAJxvcYeLtydKj2R24bPSdQxXQV/N/l+cT8tB0NLZmJUUgzlH3oTPA+M7fNucD75D3cVqmBqbcHrrXtReqES/VhG25x85FbkfH2j+cSGTCWXf5yIv7hCGPniX+W0u5hQhe8e3MDU2obHGsp9qBoCSQyfhOW4koNHA684gZO/4FnbODnDy7ItbwgJxPi23+W8RBfEeV0FXyi7h+LptOL5uG/S9nTB8wb246y0jLmSeafuGGg1Cn3kYPtMnwGlAH6DJBLvejnD0cP3Vj93b0B9eEwMxdM4voWrstCj6Ls38cnXR+S7NXZaeB40GcA/0gdfEIBxZ9Q7c/AbBKywQXhMDUZyU3qWPeyMYrpXUV9UgY9NnCHpqFvr4G9o8NmRWGIY+NAn7HnkBF3OLAZMJDx59y/yjSB39J/rqovM49f7XOLZ266+eaWrq4n++N5lQcvgHeE8bCxcfT5Sn56H40El4hQXBa2Igkoxvdu3j3gDeKijE3q0Xbvuf36HP8FuhsdNBa2+H4QvvhZ2TPcq+/7HN2+p7O6GprgFXyi5Ba6fDqKjpcPbyMD9ec64CTgP6QOdkb37d6a174ffQJHjdFQyNTgut3g4eo4ei70jvmzJ/cVI6Ah6dhtLkTJiamlCclA7v+8bCsZ8bzh47fVPO6AxecRXSVNcAp/59MHnLSjj1d0NjbQMqsgrw7R9eQVXhuTZvm/OvRHjdGYQ5yW+h4XItTm/di4pTP5kfL046ibNHT+Gh4/+ERqtF/LQVuPDDGST86VXctmIe+mz6b5hMQMWpn3D8pe03Zf7ipHTYuy5GcdJJAMDl4nLUnK1AdXE5muqUf0ZKjYk/vNUplj4hiHTTPn0B+fGHkfmuZU+q0uZ949bxCUFIeXbOjnDx9kRlfom1R/lVvFWwUUFLZyN46ayrXq9ztIdWp0Pep4dQlJCm/GAWYrg2Kj1mN9Jjdlt7jC7jrQKJxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JJCJcLqCm9lT/LV8JC6hb0znaY8Z3r8JpQB9s91to7XF6LNWHK2EBdWuhzzyMqsLzzT9yQ91G9bcK11pA3f5qu2bNGmg0Gpw8eVLpMQEAHsFDMCgiBCff/NQq59sSVYfbsoC6ZdF0awUFBW3CTUlJwZEjR+DtfXN+VKWzNDotJvw9CkdWvWOVnwiwNaq+VbB0AXVtbS2io6Oxc+dOhIeHd/qcm7GEOnDJDJSl56H0SCZuGT+qg/e0HRERNr6E2tIF1H/5y1+wYMEC+Pj4WGNMuPjcAv/fT8GxF2Ktcr4tUvUV15IF1IcPH8axY8fw17/+tcvn3OgSas8xI+DUzw2zD8UAALR2Ouh7OeGRjM1IeHS94s/yYm1KLKFWdbgtC6ijoqIQGRkJg8EAo9EIV1dX5ObmQqvVYv/+/cjMzISvry8AoLCwEFOnTsV7772HKVOmKDJnXvz/4eeDJ8wv9/+NP8Jej8Zn9zyNK2WXFJnB1qg6XOD6C6hXrlyJlStXmh/z8fHB559/jsDAQMVmbKypw+WacvPLtWWXAJMJl4vLr/FedCNUfY/bkZYF1Gr7xkNrJYcz+M2Hbqb6K2577RdQt5efn6/sQGQV4sLlAmoCBN4qEAEMl4RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEklMuFxETa2JeEZytS+iDnstGr6zwtBU/8tGycQ/vYqihDTrDdXDiQhXwiLqrG3fIPnZd609hs0QEe61FlHr9XoAzWuiHB0d4ejoaH6fqVOnWmVe6n6qD7dlEXVMTMxVjxUUFLRZUL1r1y5F95u1NmT2nRgyKww15y/ix48PIH3DpzA1NlllFlug+nAtXUR9I250CfUP7+7BsRdicaW8Eh7BQzDpLSN0DvZI/dsHNzybRBERNr6EGrB8ETUAzJ8/H8HBwViyZAkqKioUm7E8Pa959anJhLLvc5H69w/hO2OiYufbItVfcS1ZRA0ABw8ehMFgQG1tLYxGI5588kls27bNojNudAn1VZpMgMbiD9njKLGEWvVX3JZF1F5eXoiMjITRaMS0adMwadIkBAcHQ6tt/i0YDAYAgIODA5YsWYJDhw4pNqPP9AnQuzgDAPoGeGP0srnI//zwdd6LboTqr7jA9RdRV1dXo6GhAW5ubjCZTPjggw8QEhKi2Hwj/jAV4195DFq9DjWlFcjdtR8n3vhEsfNtkYhw22tZRG00GgEApaWlmDNnDhobG9HY2IiRI0firbfeUmyer2b/r2JnUTOR4bZfRD1kyBCkpqZaeSpSkshwuYiaVP+PM6KOMFwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkMeFyCTW1JuIZydW+hLrFrXffhtAVj8B16EA0VNXg5KZ4ZGz8zNpj9UgiwpWwhHrgpNEYv/5xJC3dgJLDGbBzckCvQf2sPVaPJeJW4VpLqFuutleuXMETTzyBYcOGISgoCI899piiM4YufwQnXvsYxUnpMDU2ob6qBhWnCxSdwZao/opr6RLq5cuXw9HREVlZWdBoNCgtLVVsRjsnB/QLGYqi71Ix6+DrsHfrhXMp2Tj6/HuoKjir2By2RPXhWrKEuqqqClu3bkVhYSE0muZdpJ6enhafcaNLqO379IJGq4X3/WOxb9461JRdxJi1f0TEu88gfsozFs/RU0REcAm1RUuoc3Nz4eHhgTVr1uD2229HeHg4kpKSFJuxvuoKAOCHd/agqvAcGmvqkPLyDngE+fI+t5uo/opryRLqtLQ0/PjjjwgNDcX69euRnJyMBx54ADk5OXB1db3uGTe6hLq+8nLzLQF3rwHgEmoAli2hHjx4MOzs7DBv3jwAzQv8+vXrh6ysLMXmPL11LwIW3w/ngR7QOegRuvwRnP8+F9VF5xWbwZao/ooLXH8Jdb9+/RAREYF9+/ZhypQpyMrKwtmzZ+Hn56fYjOlvxsHerTem7/0boNHi7NFTSHh0vWLn2xoR4bbXfgk1AGzatAmLFi3CsmXLoNfrERsbiz59+ig3lMmE4y9uw/EXtyl3pg0TGW77JdRA8yLqxMRE6w1FihIZLpdQk+r/cUbUEYZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJDHhqnl7+vyc2Da/fv/TB5j+7atWnamnE/FU+mrfnr7db2Gbl6d/+yry4g5ZaRrbICJcCdvTW/QL8UOf4bci58MEa4/So4kI91rb0/V6PfLz8zFz5kzzYxUVFbh06RLKy8sVn3XY7yaj6LtU1JRatsuWukb14VqyPd3HxwdpaWnm1xuNRjQ0NFh8xo0uoW5h5+QA3xkTcXDpBovP7okiIrp/CbXqw7Vke3prdXV12L59O77++mvFZmzh88B4NNTUofCb44qfbWtU/1UFS7ant/bZZ59h0KBBuO222yw+o7KyErW1tRb9SkhI/NWPM2z+3cj9KBGmxqbO/SZ7mISERIs/n1252gICrriWbE9vbfPmzVi0aJHic7oOHYgBt/sjyfim4mfbItWH27I9PSoqCpGRkTAYDDAajXB1dUVubi602l/+0igqKsL+/fsRGxur+JzD5k1GaXImKvNKFD/bFqk+XOD629NbbNmyBffff7/59kJJx9dx+bSSVH+P25GW7ent72/ff/99q9wmkPJEXHHb62h7OgBkZWVZaSJSmshwuT2dRN4qEDFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJI2JX8nvlLrKy7iQ+ZO1x1C1vgGDYe/i3K1nMFwSibcKJBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLon0/8fmscPw8ZCuAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK4AAAGOCAYAAAAO1zhsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAY1UlEQVR4nO3dfViUdb7H8c/MMDwpoKAS2ggoiiggtOUjJVjpWicfs3LVZdfcIimvOWupx2qPmtW2btcWWbpdZSk+VGsWUVZagYpHcRVIJJSHwIAAFUQBkcc5f7BMgKQDyj33l/m8rss/YIDfV663t7cg89WYTCYTiITRWnsAoq5guCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJDtrDyBNXeVlXMj8ydpjqFrfgMGwd3Hu1jMYbiddyPwJX854ztpjqNq0uHXwHDOiW8/grQKJxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRxIRbV1eH559/HgaDAU5OTpg8eTKOHj0KjUaDuLg4a49HChPxnTOTyYS5c+fi6NGjWL16Nfz8/LBjxw7MmjULABAaGmrlCQGNTos7Vkdi6Jy7oNFqkf/FESSvegeNtfXWHq1HEhHu22+/jT179iAtLQ2jRo0CAISHh8PX1xfu7u4YPHiwlScEgpfOxi0TAhE3eRka6xtw9/sr8JvnFuLo85utPVqPJOJW4ZVXXsGCBQvM0QKATqeDr6+v+WqblZWF8ePHY/jw4Rg/fjyys7MVnXHY/LuRHrMbl0vKUVt2CWmvfgS/h8Oh0Yr4FIuj+s9qdnY28vLyMGfOnKseKygoMIcbFRWF6OhoZGVlITo6Go8//rjFZ7i4uMDBwcGiXxER4Ve9v72rM3oP6o/yjDzz68rS82Dv4ozehv6d/S2LFxERbvHn08XFpUtnqD7coqIiAMCAAQPavP7UqVM4c+YMQkNDcfbsWaSkpGDevHkAgHnz5iElJQXnzp1TZEa73k4AgLqLl82vq7tYDQDQ/+cxurlUH66HhwcAICcnx/w6k8mEFStWoKmpCaGhoSgoKMCgQYOg0+kANN9GDBw4EAUFBRadUVlZidraWot+JSQkXvX+DVU1AAC96y//B9XerRcAoP4/j9mShIREiz+flZWVXTpD9f84CwgIgJ+fH1atWgW9Xo/evXtj48aNSE1NhbOzM/z9/ZGammrVGesuXUZV0Tm4j/LBpdyfAQAegb6oq7yMqgJlrvq2RvXh2tnZYdeuXYiKikJkZCQMBgOMRiNcXV2Rm5sLrVYLg8GAoqIiNDY2QqfTobGxET///DMMBoNic2Zv/xbBT81CaXImmhoaEbLsIeR8mAhTU5NiM9gS1YcLAKNHj8bhw4fbvG7Dhg2YNGkSgOb735CQEOzcuRMLFizAzp07ERoaiv79lfuH0YmY3XBwd8XMxH9Ao9Ug//MjOP7iNsXOtzUiwm2vpqYGp0+fhtFoNL9u06ZNiIyMxNq1a9G3b19s3bpV0ZlMjU04+vxmft1WISLDPXHiBBobG9t8x2zEiBFITk624lSkJJHhjh07FiaTydpjkBWp/sthRB1huCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkhiwuUSampNxDOSS1hC7fPAeAQsvg/uo3xQW16JXWOWWHukHk1EuBKWUNderMapzV/Bsb8bRj32X9Yep8cTcatgyRLqp59+Gr6+vtBoNDh58qTiMxYfOIG8uEOoLuRCPiWoPlxLl1DPnDkTBw4cgLe3t9IjkhWo/lbBkiXUABAWFtblM1xcXFBXV2fR2w6164vlrl0/yxZERIQjt+GCRW9rb2/fpX2+qr/iWrKEmmyP6q+4liyhvlGd+RNfevQUvpzx3A2f2ZMlJCTCc8yIbj1D9eFasoRaDTRaLbR6HTR2doBGA52DHiaTCU11DdYerUdSfbjA9ZdQq8HQB+9C2OtPml9emL8TVQVn+fXcbiIi3PY6WkK9dOlS7N69GyUlJbjnnnvg4eGBjIwMxWbK+SgROR8lKnaerVPH37Od1NES6piYGBQWFqKhoQElJSWKRkvKE3nF5RJqEnnFJWK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSGLC5RJqak3EM5KrfQm11t4O415aDK+wIDh6uOJy6QVkbv4SpzZ/adW5ejIR4ap9CbVWp0PN2QrsfeQFVJ4phftIb9y78zlcOVeB/PjD1/8A1GkibhWut4S6rKwM9913H/z9/REUFITZs2fj3DnllkE31NQi9W8foDK/BDCZUJ6Rj4K9xzBgTIBiM9ga1YdryRJqjUaD5cuX4/Tp00hPT8fQoUOxcuVKK0zbTGOng+fYAFzIPGO1GXo61d8qWLKE2t3dHeHh4ebHxo0bh40bN1p8xs1eQj3upUdRX1WD3H/tt3iGniQigkuoO72EuqmpCRs3bsT06dMVnbPFHasj0f83/tg3/0U01XMdanfRmFS+MKyhoQEBAQGor6/H+vXr2yyhLi8vR2VlZZt9vtHR0SgqKsLu3bu7Zc/vtZZQj1n7B3iFBeGruWtQW3bppp8txbS4dVxC3Zkl1E8//TSys7MRHx+v+HLqMS8sgldYIL56cLVNR6sU1YcLWLaEetWqVTh+/Di++OILODg4KDpfr1v7YeTi+9B4pQ4PJr9pfn1p8il8M/9FRWexFSLCba/9EuqMjAy8/PLLGD58OCZMmAAA8PX1xSeffKLIPNWF5/G+14OKnEXNRIbbfgn1qFGjuNvXxogMl0uoSfVfDiPqCMMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEEhMul1BTayKekVztS6gBYNzLi2G493boXZ1RX1WDM58fxrEXtnHXWTcREa7al1ADQOZ7X+HY2lg01NTCwd0F4W8vQ/DS2Uh79SNrj9YjiQj3Wkuo9Xo9AGDmzJnIy8uDVqtF79698cYbbyAkJESxGS9mFf7ygkYDU5MJLkO8FDvf1qg+3JYl1DExMVc9VlBQYF5OvWXLFri5uQEA4uLisGjRIqSkpCg6a9CTMxFsnAN9LydcKb+Efb/bpuj5tkT14VqyhBqAOVoAuHjxYqc2S96sJdTpGz5F+oZP4TZsEIbMvhM1Zy1bxNzTRERwCXWnllAvXrwYgwcPxrPPPostW7YoPmuLi9lFKM84gzvfWGq1GXo61V9xAwIC4Ofnh1WrVkGv17dZQu3s7Ax/f3/z277zzjsAgNjYWDzzzDPYs2ePRWd05k/8tZZQt6bV6+Bqo/e4CQmJ3b6EWvVX3JYl1F5eXoiMjITRaMS0adMwadIkBAcHd3hLsHDhQiQkJKCsrEyRGfUuzvB7KBz2rs4AgL4B3hhtnIOfE79X5HxbpPorLnD9JdRVVVW4cOECDAYDACA+Ph7u7u5wd3dXZkCTCUPm3IU7VkdCa2+HK+cv4cyeZKSt/1CZ822QiHDba7+Eurq6GnPnzkV1dTV0Oh3c3d0RHx8PjUajyDz1VTXY+/BaRc6iZiLDbb+E2tPTE0eOHLHyVKQkkeFyCTWp/h9nRB1huCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCoR9lo0xr74qLXHMLtn+7MIePQ+a4/xq0R+y1cq1yFeuP35hRhwhz90DvaoOVeBgr3H8O/VnftP734PhWPUE9MRF/HnbpoU+Gb+i932sW8Ghquge2JX4cyeZByIjkFDTS1cfDzheUf3/ofrX6Ox08HU0GiVs28G3iooxMHdBa5DvHB66140XL4CmEyozCtBzkeJHb79nW88hbkp/8T87FhM37cegyJCAADugb4Y/8pjcBs2CPNzYjE/J9b8kxa3TBiF+z9/CfMy38fMA6/Bd8ZE88cLWfYQ7tn+LMa+tBiPZGzG2HWLrjnvbz9eg1FR0wE03zaM+ONvAQA6R3sszNuBsS8tNr/trIOvY9BkZZ/bguEqpLa8EhVZBZj4jyXwnTERLt6e13z74kMZiIv4M3aMiMTp2H0If3sZHDxcUX4yD4dXvI2L2UXY7rcQ2/0W4tKPxejjb8DkzcuR+vcPsXPkH3HwqTcw7uXF8Bg91PwxB94VjPKTefgweDH+vcby25PipHR4hQUBAAbc4Y/q4jJ4hQUCAJxvcYeLtydKj2R24bPSdQxXQV/N/l+cT8tB0NLZmJUUgzlH3oTPA+M7fNucD75D3cVqmBqbcHrrXtReqES/VhG25x85FbkfH2j+cSGTCWXf5yIv7hCGPniX+W0u5hQhe8e3MDU2obHGsp9qBoCSQyfhOW4koNHA684gZO/4FnbODnDy7ItbwgJxPi23+W8RBfEeV0FXyi7h+LptOL5uG/S9nTB8wb246y0jLmSeafuGGg1Cn3kYPtMnwGlAH6DJBLvejnD0cP3Vj93b0B9eEwMxdM4voWrstCj6Ls38cnXR+S7NXZaeB40GcA/0gdfEIBxZ9Q7c/AbBKywQXhMDUZyU3qWPeyMYrpXUV9UgY9NnCHpqFvr4G9o8NmRWGIY+NAn7HnkBF3OLAZMJDx59y/yjSB39J/rqovM49f7XOLZ266+eaWrq4n++N5lQcvgHeE8bCxcfT5Sn56H40El4hQXBa2Igkoxvdu3j3gDeKijE3q0Xbvuf36HP8FuhsdNBa2+H4QvvhZ2TPcq+/7HN2+p7O6GprgFXyi5Ba6fDqKjpcPbyMD9ec64CTgP6QOdkb37d6a174ffQJHjdFQyNTgut3g4eo4ei70jvmzJ/cVI6Ah6dhtLkTJiamlCclA7v+8bCsZ8bzh47fVPO6AxecRXSVNcAp/59MHnLSjj1d0NjbQMqsgrw7R9eQVXhuTZvm/OvRHjdGYQ5yW+h4XItTm/di4pTP5kfL046ibNHT+Gh4/+ERqtF/LQVuPDDGST86VXctmIe+mz6b5hMQMWpn3D8pe03Zf7ipHTYuy5GcdJJAMDl4nLUnK1AdXE5muqUf0ZKjYk/vNUplj4hiHTTPn0B+fGHkfmuZU+q0uZ949bxCUFIeXbOjnDx9kRlfom1R/lVvFWwUUFLZyN46ayrXq9ztIdWp0Pep4dQlJCm/GAWYrg2Kj1mN9Jjdlt7jC7jrQKJxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JJCJcLqCm9lT/LV8JC6hb0znaY8Z3r8JpQB9s91to7XF6LNWHK2EBdWuhzzyMqsLzzT9yQ91G9bcK11pA3f5qu2bNGmg0Gpw8eVLpMQEAHsFDMCgiBCff/NQq59sSVYfbsoC6ZdF0awUFBW3CTUlJwZEjR+DtfXN+VKWzNDotJvw9CkdWvWOVnwiwNaq+VbB0AXVtbS2io6Oxc+dOhIeHd/qcm7GEOnDJDJSl56H0SCZuGT+qg/e0HRERNr6E2tIF1H/5y1+wYMEC+Pj4WGNMuPjcAv/fT8GxF2Ktcr4tUvUV15IF1IcPH8axY8fw17/+tcvn3OgSas8xI+DUzw2zD8UAALR2Ouh7OeGRjM1IeHS94s/yYm1KLKFWdbgtC6ijoqIQGRkJg8EAo9EIV1dX5ObmQqvVYv/+/cjMzISvry8AoLCwEFOnTsV7772HKVOmKDJnXvz/4eeDJ8wv9/+NP8Jej8Zn9zyNK2WXFJnB1qg6XOD6C6hXrlyJlStXmh/z8fHB559/jsDAQMVmbKypw+WacvPLtWWXAJMJl4vLr/FedCNUfY/bkZYF1Gr7xkNrJYcz+M2Hbqb6K2577RdQt5efn6/sQGQV4sLlAmoCBN4qEAEMl4RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEklMuFxETa2JeEZytS+iDnstGr6zwtBU/8tGycQ/vYqihDTrDdXDiQhXwiLqrG3fIPnZd609hs0QEe61FlHr9XoAzWuiHB0d4ejoaH6fqVOnWmVe6n6qD7dlEXVMTMxVjxUUFLRZUL1r1y5F95u1NmT2nRgyKww15y/ix48PIH3DpzA1NlllFlug+nAtXUR9I250CfUP7+7BsRdicaW8Eh7BQzDpLSN0DvZI/dsHNzybRBERNr6EGrB8ETUAzJ8/H8HBwViyZAkqKioUm7E8Pa959anJhLLvc5H69w/hO2OiYufbItVfcS1ZRA0ABw8ehMFgQG1tLYxGI5588kls27bNojNudAn1VZpMgMbiD9njKLGEWvVX3JZF1F5eXoiMjITRaMS0adMwadIkBAcHQ6tt/i0YDAYAgIODA5YsWYJDhw4pNqPP9AnQuzgDAPoGeGP0srnI//zwdd6LboTqr7jA9RdRV1dXo6GhAW5ubjCZTPjggw8QEhKi2Hwj/jAV4195DFq9DjWlFcjdtR8n3vhEsfNtkYhw22tZRG00GgEApaWlmDNnDhobG9HY2IiRI0firbfeUmyer2b/r2JnUTOR4bZfRD1kyBCkpqZaeSpSkshwuYiaVP+PM6KOMFwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkMeFyCTW1JuIZydW+hLrFrXffhtAVj8B16EA0VNXg5KZ4ZGz8zNpj9UgiwpWwhHrgpNEYv/5xJC3dgJLDGbBzckCvQf2sPVaPJeJW4VpLqFuutleuXMETTzyBYcOGISgoCI899piiM4YufwQnXvsYxUnpMDU2ob6qBhWnCxSdwZao/opr6RLq5cuXw9HREVlZWdBoNCgtLVVsRjsnB/QLGYqi71Ix6+DrsHfrhXMp2Tj6/HuoKjir2By2RPXhWrKEuqqqClu3bkVhYSE0muZdpJ6enhafcaNLqO379IJGq4X3/WOxb9461JRdxJi1f0TEu88gfsozFs/RU0REcAm1RUuoc3Nz4eHhgTVr1uD2229HeHg4kpKSFJuxvuoKAOCHd/agqvAcGmvqkPLyDngE+fI+t5uo/opryRLqtLQ0/PjjjwgNDcX69euRnJyMBx54ADk5OXB1db3uGTe6hLq+8nLzLQF3rwHgEmoAli2hHjx4MOzs7DBv3jwAzQv8+vXrh6ysLMXmPL11LwIW3w/ngR7QOegRuvwRnP8+F9VF5xWbwZao/ooLXH8Jdb9+/RAREYF9+/ZhypQpyMrKwtmzZ+Hn56fYjOlvxsHerTem7/0boNHi7NFTSHh0vWLn2xoR4bbXfgk1AGzatAmLFi3CsmXLoNfrERsbiz59+ig3lMmE4y9uw/EXtyl3pg0TGW77JdRA8yLqxMRE6w1FihIZLpdQk+r/cUbUEYZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJDHhqnl7+vyc2Da/fv/TB5j+7atWnamnE/FU+mrfnr7db2Gbl6d/+yry4g5ZaRrbICJcCdvTW/QL8UOf4bci58MEa4/So4kI91rb0/V6PfLz8zFz5kzzYxUVFbh06RLKy8sVn3XY7yaj6LtU1JRatsuWukb14VqyPd3HxwdpaWnm1xuNRjQ0NFh8xo0uoW5h5+QA3xkTcXDpBovP7okiIrp/CbXqw7Vke3prdXV12L59O77++mvFZmzh88B4NNTUofCb44qfbWtU/1UFS7ant/bZZ59h0KBBuO222yw+o7KyErW1tRb9SkhI/NWPM2z+3cj9KBGmxqbO/SZ7mISERIs/n1252gICrriWbE9vbfPmzVi0aJHic7oOHYgBt/sjyfim4mfbItWH27I9PSoqCpGRkTAYDDAajXB1dUVubi602l/+0igqKsL+/fsRGxur+JzD5k1GaXImKvNKFD/bFqk+XOD629NbbNmyBffff7/59kJJx9dx+bSSVH+P25GW7ent72/ff/99q9wmkPJEXHHb62h7OgBkZWVZaSJSmshwuT2dRN4qEDFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJI2JX8nvlLrKy7iQ+ZO1x1C1vgGDYe/i3K1nMFwSibcKJBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLon0/8fmscPw8ZCuAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -119,16 +119,16 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:56.681821Z", - "iopub.status.busy": "2024-11-23T19:54:56.681532Z", - "iopub.status.idle": "2024-11-23T19:54:56.792485Z", - "shell.execute_reply": "2024-11-23T19:54:56.791980Z" + "iopub.execute_input": "2024-12-05T03:21:31.319255Z", + "iopub.status.busy": "2024-12-05T03:21:31.318854Z", + "iopub.status.idle": "2024-12-05T03:21:31.426366Z", + "shell.execute_reply": "2024-12-05T03:21:31.425800Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAR6UlEQVR4nO3de2xUdd7H8Xev2G6rYQiyCgMdLZda6EWJoIJTjK4SVFAkxvVSY7wATdjGNEq66MLquo9h94mrpNXGyEUBEeKNWi5/PBQe2CJiL1JS21pB26LIY4sWqJRpf88fbkd6kc7UDuec8nkl/cOZMueb9N1zptPO1zBjjEEuaOFWDyDWUwSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAgEirB3CSH0+0caC22ZJjTxo7lIvjokPy2IogCAdqm5mWWWjJsXevvp0b0keE5LF1ORBFIIpAUASCIhAUgaAIBEUgOCiCtrY2nnnmGdxuNzExMdx0003s27ePsLAwPvjgA6vHczRHRGCMYd68ebz++ussWbKEwsJCPB4Pd911FwDp6ekWT9hTdFQ4le/eTe5jqV1uX/ncdIry/mDRVL1zxMvGBQUFFBUVUV5eTnJyMgAZGRl4PB5cLhejR4+2eMKe2s508NCfd7Jr1SwKd9bzWU0Ts2eM4Q7vaCbNfc/q8bpwxJngxRdf5IEHHvAHABAREYHH4/GfBWpqarjuuusYN24c1113HbW1tVaN61da9T3/WH2ANX+7kZEjYin4yw1kvVDCN8dOWT1aF7aPoLa2lkOHDjF37twe99XX1/sjmD9/PllZWdTU1JCVlcUTTzwR8DHi4+MZMmRInx8ZMzKCnv/5gnJ87YayDXPYse8bNmz9MujHAMiYkdHnfPHx8f16bNtH0NjYCMCll17a5fbPP/+cr776ivT0dL777jtKS0u57777ALjvvvsoLS3l2LFj533e7nw+w7/LjzLcFcPKD2qsHqdXto9g2LBhAHzxxRf+24wxPP3003R0dJCenk59fT0jR44kIiIC+PlScfnll1NfXx/QMVpaWjh9+nSfH8U7ioOef9rVI3h49lheWXeQfz09lYuGRAT9GADFO4r7nK+lpaVfj237CJKSkkhMTCQ3N5eNGzeyZcsWZs+eTWlpKbGxsYwfP97qEX/V72IiWfXcjSx+aT9/enEv3zX9xAuLJls9Vg+2jyAyMpJNmzZx2WWXkZmZSXZ2NjNnzsTr9ZKSkkJ4eDhut5vGxkba29sBaG9v58iRI7jdbktn/2fOFA41tpC3oQpj4OElu3j07nFMv+b3ls7Vne0jAEhNTaWkpIRTp05RXV3NggULKCsr8z8pvPTSS0lLS2P9+vUArF+/nvT0dIYPH27ZzLdNG8W9t3p45Nn/9d/2ZUMLi1/az8q/Tic2xj4/nYc58f980traSnx8PPn5+Tz22GPAz08UMzMzaW5uZujQoaxZs2bALxV7yo4Oyj8vs0+OQfjss89ob2/v8krhhAkT+Pjjjy2cyrkcGcGUKVNw4AnMthzxnEBCSxGIIhBFICgCQREIikBQBIJDXza2ymB9a7oiEF0ORBEIikBQBIIiEBSBoAgERSAoAkERCIpAUASCQ//k3CqD9beIiiAIWnAtg5YiEEUgikBQBIIiEBSBoAgEB0WgBdeh44gItOA6tBzxsrEWXIeWI84EgSy4zsnJwePxEBYWRmVlpVWjdqEF1wMk0AXXc+bMYdeuXYwZM+Z8j3hOA7XgOpRsfzkIZME1wLRp0/p9jPj4eNra2vr8vI6YK2B0TlCP3bng+po/Jv+mBdcZMzIIbz13QNHR0f3ab2z7M0EgC67tbKAWXIeS7c8EZy+4joqKIi4ujvz8fMrKygZswXWg3z3BbjQ9e8F1/jtV7Fw5ixcWTebJ5cEv3SzeUXzh/j1BIAuu7copC65tfyaAXxZcn23FihV4vV6LJupb54LrlHt++XHw7AXXKfe8x6lWn4UT/sK+30bn0NraSnV1dZfnA4sWLWLUqFE0NDRw8803d/lx0gpbdzcwdNpb1H97ssvteRuqSJy10TYBgEMj6G3B9csvv0xDQwM+n49vv/2WgwcPWjihszjictCdFlwPLEeeCWRgKQJRBKIIBEUgKAJBEQiKQNBu46AM1remKwLR5UAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCA6KQAuuQ8cRm0o6F1zv27ePpUuXkpiYyLp162y94NpRjAO8+uqrJjIy0lRWVvpv8/l8xu12G5fLZeFkg4MjzgTnWnAdFRXF999/z4MPPkhdXR3R0dGMHTuW1157jeHDh1s4tXPY/jlBIAuuw8LCeOqpp6iurubAgQNceeWVLF682IJpncn2Z4JAFly7XC4yMjL8902dOpX8/PyAjxHogmu704Lr/+jo6CA/P58777zzvM7pZLZ/V7LP5yMpKYkzZ86wfPnyLguum5qaaGlp6bLfOCsri8bGRt59911b7z22E9tfDjoXXM+fP5/MzEzcbjfZ2dlcfPHF1NXVdflC5+TkUFtby+bNmxVAEGx/Jvg1ycnJeL1e8vLyAMjNzaWkpISPPvqI2NhYi6dzFkd+u3RfcH3w4EH+/ve/c+TIEa6//nrS0tL8LyRJ32x/OehN9wXXycnJ2nX8Gzj2ciADx5GXAxlYikAUgSgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBwUgRZch44j1tUYLbgOLcu2KgdBC65DyxFngr4WXAPMmTOHQ4cOER4eTlxcHK+88gppaWkWTewwVlfYl5qaGgOYzZs397jP4/GYnJwcY4wxx48f99/+/vvvm/T09PM2o9PZ/kwQyIJrgEsuucR/3w8//BDURtMLfcG17SM4e8H1tddeC/z6gutHH32U7du3Y4xh69atlszrRLbfYxjsgmuAN998k/Xr11NUVGTR1M5i+wgAKioqmD9/PhUVFf4F13v27KGuro6SkpJe/01MTAwNDQ3+M4n8OttfDgBSU1N7fLFXrFiB1+sF4MSJEzQ3N+N2uwHYvHkzLpcLl8t13md1IkdE0F3nguvs7GwATp48ybx58zh58iQRERG4XC42b95MWFiYtYM6hCMj6L7gesSIEezdu9fiqZzLEc8JJLQc8wskCR1FIIpAFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOPR9B1b58UQbB2qbLTn2pLFDuTguOiSPrQiCcKC2mWmZhZYce/fq27khfURIHluXA1EEoggERSAoAkERCIpAUASCQyLQcuvQsn0E5j/LrV9//XWWLFlCYWEhHo/H9suto6PCqXz3bnIfS+1y+8rnplOU9weLpuqd7V82LigooKioiPLycv9u44yMDDweDy6Xi9GjR1s8Ye/aznTw0J93smvVLAp31vNZTROzZ4zhDu9oJs19z+rxurD9meBcy627nwWWLVtGWFgYlZWV53vMXpVWfc8/Vh9gzd9uZOSIWAr+cgNZL5TwzbFTVo/Wha0jqK2t5dChQ8ydO7fHffX19V0iKC0tZe/evYwZM+Z8jtin5wvK8bUbyjbMYce+b9iw9UurR+rB1hEEutz69OnTZGVlkZ+f36/jxMfHM2TIkD4/MmZkBP3YPp/h3+VHGe6KYeUHNf2aDyBjRkaf88XHx/frsW0dwdnLrTv1ttz62Wef5YEHHiAhIcGKMc9p2tUjeHj2WF5Zd5B/PT2Vi4ZEWD1SD7aOICkpicTERHJzc9m4cSNbtmxh9uzZlJaWEhsby/jx4ykpKWH//v0sXLiw38dpaWnh9OnTfX4U7ygO6nF/FxPJquduZPFL+/nTi3v5ruknXlg0uV8zFu8o7nO+/qy5B5tHEBkZyaZNm7jsssvIzMwkOzubmTNn4vV6SUlJITw8nJ07d1JVVYXH4yEhIYGGhgZuvfVWtm/fbvX4/DNnCocaW8jbUIUx8PCSXTx69zimX/N7q0frwpEbTZOTk/F6veTl5fW4LyEhgcLCQiZOnDjgx91TdjTgvyy6bdoo1v9XBin3vEf9tyf9ty+8N4knH5pIyj3vcarVF/Cx9ZdFZ+lcbm3XF4k6bd3dwNBpb3UJACBvQxWJszYGFUCo2f7Fou66L7fu7vDhw+d3oEHAcRFMmTIFB17BbM1xlwMZeIpAFIEoAkERCIpAUASCIhAc+rsDqwzWt6YrAtHlQBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOPBPzq00WH+LqAiCoAXXMmgpAlEEoggERSAoAkERCIpAcFAEWnIdOo6IwIlLrrXgeoA5ccm1FlwPsECWXCckJDBhwgTS0tJIS0tj27ZtVo3r55QF17Y/E3QuuX755Zd73FdfX99l+fWmTZtCsr/wt3i+oJzbbxxN2YY5/I9NF1zbPoJAl1z/FvHx8bS1tfX5eR0xV8DonKAeu3PB9TV/TP7NC67DW88dUHR0dL9W29r+chDokmuA+++/n5SUFBYuXMjx48fP96i9csKCa9u/K9nn85GUlMSZM2dYvnw5cXFx5OfnU1ZWRlNTEy0tLYSHh1NfX4/b7eb06dNkZ2fT0tLCW2+9NaCzBLPWFn5ecF2x6S7+e00l+e9UsXPlLPYf/D+eXP5x0Me+oP+eIJAl1wButxuAIUOGsHDhQvbs2WPl2IBzFlzb/jkBQGpqKiUlJV1uW7FiBV6vF4CTJ0/i8/m45JJLMMbw9ttvk5aWZsGkv7ht2ijuvdVDyj2//Dj4ZUMLi1/az8q/Tg96wXUoOSKC7jqXXGdnZwNw9OhR5s6dS3t7O+3t7Vx11VW9bkA/nzoXXHeXt6GKvA1VFkz06xwZQfcl11dccQVlZWUWT+VcjoxAS64Hlu2fGEroKQJRBKIIBEUgKAJBEQiKQHDAbxHtZLC+NV0RiC4HoggERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBwUARacB06jthU0rnget++fSxdupTExETWrVtn6wXXjmIc4NVXXzWRkZGmsrLSf5vP5zNut9u4XC4LJxscHHE5CGTB9U8//cSCBQsYO3YskyZN4vHHH7dqXMex/eUg0AXXTz31FBdddBE1NTWEhYVx9OjR8z2qY9k+gkAWXJ84cYI1a9bQ0NBAWFgYACNGBL4CNtAF13Z3QS+4rqurY9iwYSxbtozJkyeTkZHB7t27rRrZeax+UtKXM2fOmMTERDNmzBjzzjvvmKKiInPHHXeYUaNGmdjYWNPe3m4+/fRTA5i1a9caY4zZu3evGT58uPnhhx8snt4ZbB+BMcaUl5ebqVOnmpiYGDNu3DiTl5dn7r//fjN16lRjjDHHjh0zkZGRpqOjw/9vkpKSzCeffGLVyI7iiAh6c9VVV5kFCxb4//uWW24x27ZtM8YYU11dbYYNG2aam5stms5ZHBnBqVOnTEREhCkoKPDfVldXZ7xer5k4caJJT083RUVFFk7oLLb/6aA33Rdcw89LrouLi60bysG0rkbs/yOihJ4iEEUgikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSA4KAJtOQ8dR+wsMtpyHloWL84KiLach5YjzgTn2nIeFRXF4cOHmTNnjv++48eP8+OPP9LU1GTBtM5j+wgC2XKekJBAeXm5//bs7Gx8Pl/Ax7jQF1zbPoJAtpyfra2tjbVr17Jt27bzNqPT2T6Cs7ecX3vttUDPLedn+/DDDxk5ciRXX311wMfoz3fPYGL7CJKSkkhMTCQ3N5eoqCji4uLIz8+nrKyM2NhYxo8f3+Xz33jjDR555BGLpnUmR2w0raioYP78+VRUVOB2u8nOzmbPnj3U1dVRUlLi/7zGxkbGjRvH119/7T+DSN9sfyYASE1N7fLFBlixYgVer7fLbatXr2bWrFkKIEiOecXwbK2trVRXV/d4PrBq1SpdCvrBEWeC7nrbcg5QU1Nj0UTO5ojnBBJajrwcyMBSBKIIRBEIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikCA/wds6/AW8VpamwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAR6UlEQVR4nO3de2xUdd7H8Xev2G6rYQiyCgMdLZda6EWJoIJTjK4SVFAkxvVSY7wATdjGNEq66MLquo9h94mrpNXGyEUBEeKNWi5/PBQe2CJiL1JS21pB26LIY4sWqJRpf88fbkd6kc7UDuec8nkl/cOZMueb9N1zptPO1zBjjEEuaOFWDyDWUwSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAgEirB3CSH0+0caC22ZJjTxo7lIvjokPy2IogCAdqm5mWWWjJsXevvp0b0keE5LF1ORBFIIpAUASCIhAUgaAIBEUgOCiCtrY2nnnmGdxuNzExMdx0003s27ePsLAwPvjgA6vHczRHRGCMYd68ebz++ussWbKEwsJCPB4Pd911FwDp6ekWT9hTdFQ4le/eTe5jqV1uX/ncdIry/mDRVL1zxMvGBQUFFBUVUV5eTnJyMgAZGRl4PB5cLhejR4+2eMKe2s508NCfd7Jr1SwKd9bzWU0Ts2eM4Q7vaCbNfc/q8bpwxJngxRdf5IEHHvAHABAREYHH4/GfBWpqarjuuusYN24c1113HbW1tVaN61da9T3/WH2ANX+7kZEjYin4yw1kvVDCN8dOWT1aF7aPoLa2lkOHDjF37twe99XX1/sjmD9/PllZWdTU1JCVlcUTTzwR8DHi4+MZMmRInx8ZMzKCnv/5gnJ87YayDXPYse8bNmz9MujHAMiYkdHnfPHx8f16bNtH0NjYCMCll17a5fbPP/+cr776ivT0dL777jtKS0u57777ALjvvvsoLS3l2LFj533e7nw+w7/LjzLcFcPKD2qsHqdXto9g2LBhAHzxxRf+24wxPP3003R0dJCenk59fT0jR44kIiIC+PlScfnll1NfXx/QMVpaWjh9+nSfH8U7ioOef9rVI3h49lheWXeQfz09lYuGRAT9GADFO4r7nK+lpaVfj237CJKSkkhMTCQ3N5eNGzeyZcsWZs+eTWlpKbGxsYwfP97qEX/V72IiWfXcjSx+aT9/enEv3zX9xAuLJls9Vg+2jyAyMpJNmzZx2WWXkZmZSXZ2NjNnzsTr9ZKSkkJ4eDhut5vGxkba29sBaG9v58iRI7jdbktn/2fOFA41tpC3oQpj4OElu3j07nFMv+b3ls7Vne0jAEhNTaWkpIRTp05RXV3NggULKCsr8z8pvPTSS0lLS2P9+vUArF+/nvT0dIYPH27ZzLdNG8W9t3p45Nn/9d/2ZUMLi1/az8q/Tic2xj4/nYc58f980traSnx8PPn5+Tz22GPAz08UMzMzaW5uZujQoaxZs2bALxV7yo4Oyj8vs0+OQfjss89ob2/v8krhhAkT+Pjjjy2cyrkcGcGUKVNw4AnMthzxnEBCSxGIIhBFICgCQREIikBQBIJDXza2ymB9a7oiEF0ORBEIikBQBIIiEBSBoAgERSAoAkERCIpAUASCQ//k3CqD9beIiiAIWnAtg5YiEEUgikBQBIIiEBSBoAgEB0WgBdeh44gItOA6tBzxsrEWXIeWI84EgSy4zsnJwePxEBYWRmVlpVWjdqEF1wMk0AXXc+bMYdeuXYwZM+Z8j3hOA7XgOpRsfzkIZME1wLRp0/p9jPj4eNra2vr8vI6YK2B0TlCP3bng+po/Jv+mBdcZMzIIbz13QNHR0f3ab2z7M0EgC67tbKAWXIeS7c8EZy+4joqKIi4ujvz8fMrKygZswXWg3z3BbjQ9e8F1/jtV7Fw5ixcWTebJ5cEv3SzeUXzh/j1BIAuu7copC65tfyaAXxZcn23FihV4vV6LJupb54LrlHt++XHw7AXXKfe8x6lWn4UT/sK+30bn0NraSnV1dZfnA4sWLWLUqFE0NDRw8803d/lx0gpbdzcwdNpb1H97ssvteRuqSJy10TYBgEMj6G3B9csvv0xDQwM+n49vv/2WgwcPWjihszjictCdFlwPLEeeCWRgKQJRBKIIBEUgKAJBEQiKQNBu46AM1remKwLR5UAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCA6KQAuuQ8cRm0o6F1zv27ePpUuXkpiYyLp162y94NpRjAO8+uqrJjIy0lRWVvpv8/l8xu12G5fLZeFkg4MjzgTnWnAdFRXF999/z4MPPkhdXR3R0dGMHTuW1157jeHDh1s4tXPY/jlBIAuuw8LCeOqpp6iurubAgQNceeWVLF682IJpncn2Z4JAFly7XC4yMjL8902dOpX8/PyAjxHogmu704Lr/+jo6CA/P58777zzvM7pZLZ/V7LP5yMpKYkzZ86wfPnyLguum5qaaGlp6bLfOCsri8bGRt59911b7z22E9tfDjoXXM+fP5/MzEzcbjfZ2dlcfPHF1NXVdflC5+TkUFtby+bNmxVAEGx/Jvg1ycnJeL1e8vLyAMjNzaWkpISPPvqI2NhYi6dzFkd+u3RfcH3w4EH+/ve/c+TIEa6//nrS0tL8LyRJ32x/OehN9wXXycnJ2nX8Gzj2ciADx5GXAxlYikAUgSgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBwUgRZch44j1tUYLbgOLcu2KgdBC65DyxFngr4WXAPMmTOHQ4cOER4eTlxcHK+88gppaWkWTewwVlfYl5qaGgOYzZs397jP4/GYnJwcY4wxx48f99/+/vvvm/T09PM2o9PZ/kwQyIJrgEsuucR/3w8//BDURtMLfcG17SM4e8H1tddeC/z6gutHH32U7du3Y4xh69atlszrRLbfYxjsgmuAN998k/Xr11NUVGTR1M5i+wgAKioqmD9/PhUVFf4F13v27KGuro6SkpJe/01MTAwNDQ3+M4n8OttfDgBSU1N7fLFXrFiB1+sF4MSJEzQ3N+N2uwHYvHkzLpcLl8t13md1IkdE0F3nguvs7GwATp48ybx58zh58iQRERG4XC42b95MWFiYtYM6hCMj6L7gesSIEezdu9fiqZzLEc8JJLQc8wskCR1FIIpAFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOPR9B1b58UQbB2qbLTn2pLFDuTguOiSPrQiCcKC2mWmZhZYce/fq27khfURIHluXA1EEoggERSAoAkERCIpAUASCQyLQcuvQsn0E5j/LrV9//XWWLFlCYWEhHo/H9suto6PCqXz3bnIfS+1y+8rnplOU9weLpuqd7V82LigooKioiPLycv9u44yMDDweDy6Xi9GjR1s8Ye/aznTw0J93smvVLAp31vNZTROzZ4zhDu9oJs19z+rxurD9meBcy627nwWWLVtGWFgYlZWV53vMXpVWfc8/Vh9gzd9uZOSIWAr+cgNZL5TwzbFTVo/Wha0jqK2t5dChQ8ydO7fHffX19V0iKC0tZe/evYwZM+Z8jtin5wvK8bUbyjbMYce+b9iw9UurR+rB1hEEutz69OnTZGVlkZ+f36/jxMfHM2TIkD4/MmZkBP3YPp/h3+VHGe6KYeUHNf2aDyBjRkaf88XHx/frsW0dwdnLrTv1ttz62Wef5YEHHiAhIcGKMc9p2tUjeHj2WF5Zd5B/PT2Vi4ZEWD1SD7aOICkpicTERHJzc9m4cSNbtmxh9uzZlJaWEhsby/jx4ykpKWH//v0sXLiw38dpaWnh9OnTfX4U7ygO6nF/FxPJquduZPFL+/nTi3v5ruknXlg0uV8zFu8o7nO+/qy5B5tHEBkZyaZNm7jsssvIzMwkOzubmTNn4vV6SUlJITw8nJ07d1JVVYXH4yEhIYGGhgZuvfVWtm/fbvX4/DNnCocaW8jbUIUx8PCSXTx69zimX/N7q0frwpEbTZOTk/F6veTl5fW4LyEhgcLCQiZOnDjgx91TdjTgvyy6bdoo1v9XBin3vEf9tyf9ty+8N4knH5pIyj3vcarVF/Cx9ZdFZ+lcbm3XF4k6bd3dwNBpb3UJACBvQxWJszYGFUCo2f7Fou66L7fu7vDhw+d3oEHAcRFMmTIFB17BbM1xlwMZeIpAFIEoAkERCIpAUASCIhAc+rsDqwzWt6YrAtHlQBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOPBPzq00WH+LqAiCoAXXMmgpAlEEoggERSAoAkERCIpAcFAEWnIdOo6IwIlLrrXgeoA5ccm1FlwPsECWXCckJDBhwgTS0tJIS0tj27ZtVo3r55QF17Y/E3QuuX755Zd73FdfX99l+fWmTZtCsr/wt3i+oJzbbxxN2YY5/I9NF1zbPoJAl1z/FvHx8bS1tfX5eR0xV8DonKAeu3PB9TV/TP7NC67DW88dUHR0dL9W29r+chDokmuA+++/n5SUFBYuXMjx48fP96i9csKCa9u/K9nn85GUlMSZM2dYvnw5cXFx5OfnU1ZWRlNTEy0tLYSHh1NfX4/b7eb06dNkZ2fT0tLCW2+9NaCzBLPWFn5ecF2x6S7+e00l+e9UsXPlLPYf/D+eXP5x0Me+oP+eIJAl1wButxuAIUOGsHDhQvbs2WPl2IBzFlzb/jkBQGpqKiUlJV1uW7FiBV6vF4CTJ0/i8/m45JJLMMbw9ttvk5aWZsGkv7ht2ijuvdVDyj2//Dj4ZUMLi1/az8q/Tg96wXUoOSKC7jqXXGdnZwNw9OhR5s6dS3t7O+3t7Vx11VW9bkA/nzoXXHeXt6GKvA1VFkz06xwZQfcl11dccQVlZWUWT+VcjoxAS64Hlu2fGEroKQJRBKIIBEUgKAJBEQiKQHDAbxHtZLC+NV0RiC4HoggERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBwUARacB06jthU0rnget++fSxdupTExETWrVtn6wXXjmIc4NVXXzWRkZGmsrLSf5vP5zNut9u4XC4LJxscHHE5CGTB9U8//cSCBQsYO3YskyZN4vHHH7dqXMex/eUg0AXXTz31FBdddBE1NTWEhYVx9OjR8z2qY9k+gkAWXJ84cYI1a9bQ0NBAWFgYACNGBL4CNtAF13Z3QS+4rqurY9iwYSxbtozJkyeTkZHB7t27rRrZeax+UtKXM2fOmMTERDNmzBjzzjvvmKKiInPHHXeYUaNGmdjYWNPe3m4+/fRTA5i1a9caY4zZu3evGT58uPnhhx8snt4ZbB+BMcaUl5ebqVOnmpiYGDNu3DiTl5dn7r//fjN16lRjjDHHjh0zkZGRpqOjw/9vkpKSzCeffGLVyI7iiAh6c9VVV5kFCxb4//uWW24x27ZtM8YYU11dbYYNG2aam5stms5ZHBnBqVOnTEREhCkoKPDfVldXZ7xer5k4caJJT083RUVFFk7oLLb/6aA33Rdcw89LrouLi60bysG0rkbs/yOihJ4iEEUgikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSA4KAJtOQ8dR+wsMtpyHloWL84KiLach5YjzgTn2nIeFRXF4cOHmTNnjv++48eP8+OPP9LU1GTBtM5j+wgC2XKekJBAeXm5//bs7Gx8Pl/Ax7jQF1zbPoJAtpyfra2tjbVr17Jt27bzNqPT2T6Cs7ecX3vttUDPLedn+/DDDxk5ciRXX311wMfoz3fPYGL7CJKSkkhMTCQ3N5eoqCji4uLIz8+nrKyM2NhYxo8f3+Xz33jjDR555BGLpnUmR2w0raioYP78+VRUVOB2u8nOzmbPnj3U1dVRUlLi/7zGxkbGjRvH119/7T+DSN9sfyYASE1N7fLFBlixYgVer7fLbatXr2bWrFkKIEiOecXwbK2trVRXV/d4PrBq1SpdCvrBEWeC7nrbcg5QU1Nj0UTO5ojnBBJajrwcyMBSBKIIRBEIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikCA/wds6/AW8VpamwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -156,16 +156,16 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:56.794444Z", - "iopub.status.busy": "2024-11-23T19:54:56.794245Z", - "iopub.status.idle": "2024-11-23T19:54:56.905202Z", - "shell.execute_reply": "2024-11-23T19:54:56.904726Z" + "iopub.execute_input": "2024-12-05T03:21:31.428468Z", + "iopub.status.busy": "2024-12-05T03:21:31.428270Z", + "iopub.status.idle": "2024-12-05T03:21:31.537726Z", + "shell.execute_reply": "2024-12-05T03:21:31.537172Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAATAElEQVR4nO3df2xV9f3H8Wd/265X4yXYMbil15ViBUqrRGos3suyTRk6KmiMX401RjagibtZGiUdczid+Rq2xU3SkoaMH1NYhcgcXQX/+PLjCytU7A8o6dquoms7v8hs0QtUym0/3z9cK/2hva1tzzn19Uj6h/fCPe+Ep+fce9v7boQxxiBfa5FWDyDWUwSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAgGirB3CSTy50caqpw5Jjz5t1Pdcmxo7LYyuCETjV1EFOXpklxz6y7R7uyEoal8fW5UAUgSgCQREIikBQBIIiEBSB4KAIurq6+PnPf47H4yE+Pp7vfOc7VFZWEhERwRtvvGH1eI7miAiMMTzwwANs3ryZdevWUVZWhtfr5b777gMgKyvL4gkHi42JpO715RSunN/v9i3PLaK86PsWTTU0R7xtXFJSQnl5OTU1NcyZMwcAv9+P1+vF7XaTnJxs8YSDdV3p4dGfHeLw1qWUHWrhZGM7yxbP5F5fMvNW7LF6vH4ccSZ48cUXeeSRR/oCAIiKisLr9fadBRobG7n99ttJS0vj9ttvp6mpyapx+1TVf8Svt51i+6/uZHpSAiW/uIP8Fyr44Nwlq0frx/YRNDU1cebMGVasWDHovpaWlr4IVq1aRX5+Po2NjeTn5/PjH/847GO4XC7i4uKG/fIv9o94/udLagh1G6pLczlQ+QGl+94d8WMA+Bf7h53P5XKN6rFtH0FbWxsAN9xwQ7/b//73v/P++++TlZXFhx9+SFVVFQ899BAADz30EFVVVZw7d27C5x0oFDL8reYsU93xbHmj0epxhmT7CKZMmQLAP/7xj77bjDE8/fTT9PT0kJWVRUtLC9OnTycqKgr47FLxrW99i5aWlrCOEQwGuXz58rBfBw8cHPH8Obck8diyWby84zS/ezqba+KiRvwYAAcPHBx2vmAwOKrHtn0E6enppKamUlhYyK5du3jzzTdZtmwZVVVVJCQkMHv2bKtH/ELfiI9m63N3svalE/zkxWN82P4pLzy5wOqxBrF9BNHR0ezevZtp06aRl5dHIBBgyZIl+Hw+MjIyiIyMxOPx0NbWRnd3NwDd3d3861//wuPxWDr7bwoWcqYtSFFpPcbAY+sO88TyNBbd+k1L5xrI9hEAzJ8/n4qKCi5dukRDQwOrV6+murq670nhDTfcQGZmJjt37gRg586dZGVlMXXqVMtmvjtnBg/e5eXxZ/6377Z3W4OsfekEW365iIR4+7w6j3Dibz7p7OzE5XJRXFzMypUrgc+eKObl5dHR0cH111/P9u3bx/xScbT67KT88TL75DgCJ0+epLu7u987hTfddBPHjx+3cCrncmQECxcuxIEnMNtyxHMCGV+KQBSBKAJBEQiKQFAEgiIQHPq2sVUm60fTFYHociCKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBAdFoAXX48cRm0p6F1xXVlayfv16UlNT2bFjh60XXDuKcYBNmzaZ6OhoU1dX13dbKBQyHo/HuN1uCyebHBxxOQhnwXVBQQFer5eIiAjq6uqsGtWRbB9BuAuuc3NzOXz4MDNnzpzoER3P9s8JwllwDZCTkzPqY7hcLrq6ukY/pE3ExsaOar+x7c8E4Sy4lq/G9meCqxdcx8TEkJiYSHFxMdXV1WO24Hq028EnC9tH0LvgetWqVeTl5eHxeAgEAlx77bU0NzcTGWn7k5nt2T4C+HzB9dU2btyIz+ezaKLJxZH/G3V2dtLQ0NDv+cCTTz7JjBkzaG1t5bvf/W6/l5Py5Ry5qeT48eNkZ2fz9ttvs2CB/X6JhNM4MgIZW468HMjYUgSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIJDPoFkF5P11+QqghE41dRBTl6ZJcc+su0e7shKGpfH1uVAFIEoAkERCIpAUASCIhAUgeCgCLTgevw4IgLznwXXmzdvZt26dZSVleH1em294Do2JpK615dTuHJ+v9u3PLeI8qLvWzTV0BzxtnFJSQnl5eXU1NT0LaTy+/14vV7cbjfJyckWTzhY15UeHv3ZIQ5vXUrZoRZONrazbPFM7vUlM2/FHqvH68cRZ4LhFlx/9NFH/OAHP2D27NnMmzeP5cuXc+7cOQsn/kxV/Uf8etsptv/qTqYnJVDyizvIf6GCD85dsnq0fmwfQTgLriMiInjqqadoaGjg1KlTfPvb32bt2rUWTDvY8yU1hLoN1aW5HKj8gNJ971o90iC2jyCcBddutxu/3993X3Z2Nu+//37Yx3C5XMTFxQ375V/sH+6hBgmFDH+rOctUdzxb3mgc8d/v5V/sH3Y+l8s1qse2fQQjXXDd09NDcXExP/zhDyd0zi+Sc0sSjy2bxcs7TvO7p7O5Ji7K6pEGsf0ew1AoRHp6OleuXGHDhg39Fly3t7cTDAb77TfOz8+nra2N119/fcz3Hh+tPjuinyf4Rnw0tbvv47fb6yh+rZ5DW5Zy4vS/+emG4yM+9tf65wl6F1xPmzaNvLw8AoEAS5YswefzkZGR0e8fuqCggKamJkpLS22x+Po3BQs50xakqLQeY+CxdYd5Ynkai279ptWj9eOIl4jhLLguLCzknXfe4a9//StxcXETPeIgd+fM4MG7vGTc//nLwXdbg6x96QRbfrmIjPv3cKkzZOGEn7P95WAonZ2duFwuiouLWblyJadPn2bu3LmkpaURHx8PgNfrZc+esX09PtLLwVgaz8uBI84EA508eZLu7u6+J4Vz5szBgS3bhiMjWLhwof7Rx5D1z57EcopAFIEoAkERCIpAUASCIhAc+raxVSbrR9MVgehyIIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgEB0WgBdfjxxGbSnoXXFdWVrJ+/XpSU1PZsWOHrRdcO4pxgE2bNpno6GhTV1fXd1soFDIej8e43W4LJ5scHHEm+LIF1zExMQDk5uZy5swZIiMjSUxM5OWXXyYzM9OiiR3G6gqH09jYaACzd+/eQfd5vV5TUFBgjDHm/Pnzfbf/+c9/NllZWRM2o9PZ/kwQzoJrgOuuu67vvo8//nhEG01dLhddXV1jMK21YmNjCQaDI/57to/g6gXXt912G/DFC66feOIJ3nrrLYwx7Nu3z5J5ncj2n0oe6YJrgD/+8Y/s3LmT8vJyi6Z2FttHAFBbW8uqVauora3F4/EQCAQ4evQozc3Ng3Ye94qPj6e1tbXvTCJfzPaXAxh+wfWFCxfo6OjA4/EAsHfvXtxuN263e8JndSJHRDBQZ2cnDQ0NBAIBAC5evMgDDzzAxYsXiYqKwu12s3fvXiIiIqwd1CEcGcHABddJSUkcO3bM4qmcyxHPCWR8OeYbSDJ+FIEoAlEEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgeDQzx1YZbL+mlxFMAKnmjrIySuz5NhHtt3DHVlJ4/LYuhyIIhBFICgCQREIikBQBIIiEBwSgZZbjy/bR2D+s9x68+bNrFu3jrKyMrxer+2XW8fGRFL3+nIKV87vd/uW5xZRXvR9i6Yamu3fNi4pKaG8vJyampq+3cZ+vx+v14vb7SY5OdniCYfWdaWHR392iMNbl1J2qIWTje0sWzyTe33JzFuxx+rx+rH9meDLllsPPAs8++yzREREUFdXN9FjDqmq/iN+ve0U2391J9OTEij5xR3kv1DBB+cuWT1aP7aOoKmpiTNnzrBixYpB97W0tPSLoKqqimPHjjFz5syJHHFYz5fUEOo2VJfmcqDyA0r3vWv1SIPYOoJwl1tfvnyZ/Px8iouLR3Ucl8tFXFzcsF/+xf4RP3YoZPhbzVmmuuPZ8kbjqOYD8C/2Dzufy+Ua1WPbOoKrl1v3Gmq59TPPPMMjjzxCSkqKFWN+qZxbknhs2Sxe3nGa3z2dzTVxUVaPNIitI0hPTyc1NZXCwkJ27drFm2++ybJly6iqqiIhIYHZs2dTUVHBiRMnWLNmzaiPEwwGuXz58rBfBw8cHNHjfiM+mq3P3cnal07wkxeP8WH7p7zw5IJRzXjwwMFh5xvNmnuweQTR0dHs3r2badOmkZeXRyAQYMmSJfh8PjIyMoiMjOTQoUPU19fj9XpJSUmhtbWVu+66i7feesvq8flNwULOtAUpKq3HGHhs3WGeWJ7Golu/afVo/Thyo+mcOXPw+XwUFRUNui8lJYWysjLmzp075sc9Wn027J8sujtnBjv/20/G/Xto+b+LfbeveTCdnz46l4z793CpMxT2sfWTRVfpXW5t1zeJeu070sr1Oa/0CwCgqLSe1KW7RhTAeLP9m0UDDVxuPdB77703sQNNAo6LYOHChTjwCmZrjrscyNhTBKIIRBEIikBQBIIiEBSB4NDvHVhlsn40XRGILgeiCARFICgCQREIikBQBIIiEBSBoAgERSAoAsGBP3Jupcn6XURFMAJacC2TliIQRSCKQFAEgiIQFIGgCAQHRaAl1+PHERE4ccm1FlyPMScuudaC6zEWzpLrlJQUbrrpJjIzM8nMzGT//v1WjdvHKQuubX8m6F1y/fvf/37QfS0tLf2WX+/evXtc9hd+Fc+X1HDPnclUl+byPzZdcG37CMJdcv1VuFwuurq6hv1zPfE3QnLBiB67d8H1rf815ysvuI7s/PKAYmNjR7Xa1vaXg3CXXAM8/PDDZGRksGbNGs6fPz/Row7JCQuubf+p5FAoRHp6OleuXGHDhg0kJiZSXFxMdXU17e3tBINBIiMjaWlpwePxcPnyZQKBAMFgkFdeeWVMZxnJWlv4bMF17e77+O32Oopfq+fQlqWcOP1vfrrh+IiP/bX+eYJwllwDeDweAOLi4lizZg1Hjx61cmzAOQuubf+cAGD+/PlUVFT0u23jxo34fD4ALl68SCgU4rrrrsMYw5/+9CcyMzMtmPRzd+fM4MG7vGTc//nLwXdbg6x96QRbfrloxAuux5MjIhiod8l1IBAA4OzZs6xYsYLu7m66u7u5+eabh9yAPpF6F1wPVFRaT1FpvQUTfTFHRjBwyfWNN95IdXW1xVM5lyMj0JLrsWX7J4Yy/hSBKAJRBIIiEBSBoAgERSA44LuIdjJZP5quCESXA1EEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOCgCLbgeP47YVNK74LqyspL169eTmprKjh07bL3g2lGMA2zatMlER0eburq6vttCoZDxeDzG7XZbONnk4IjLQTgLrj/99FNWr17NrFmzmDdvHj/60Y+sGtdxbH85CHfB9VNPPcU111xDY2MjERERnD17dqJHdSzbRxDOgusLFy6wfft2WltbiYiIACApKfwVsOEuuLa7r/WC6+bmZqZMmcKzzz7LggUL8Pv9HDlyxKqRncfqJyXDuXLliklNTTUzZ840r732mikvLzf33nuvmTFjhklISDDd3d3mnXfeMYB59dVXjTHGHDt2zEydOtV8/PHHFk/vDLaPwBhjampqTHZ2tomPjzdpaWmmqKjIPPzwwyY7O9sYY8y5c+dMdHS06enp6fs76enp5u2337ZqZEdxRARDufnmm83q1av7/vt73/ue2b9/vzHGmIaGBjNlyhTT0dFh0XTO4sgILl26ZKKiokxJSUnfbc3Nzcbn85m5c+earKwsU15ebuGEzmL7VwdDGbjgGj5bcn3w4EHrhnIwrasR+79ElPGnCEQRiCIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIDopAW87HjyN2FhltOR9fFi/OCou2nI8vR5wJvmzLeUxMDO+99x65ubl9950/f55PPvmE9vZ2C6Z1HttHEM6W85SUFGpqavpuDwQChEKhsI/xdV9wbfsIwtlyfrWuri5effVV9u/fP2EzOp3tI7h6y/ltt90GDN5yfrW//OUvTJ8+nVtuuSXsY4zm/57JxPYRpKenk5qaSmFhITExMSQmJlJcXEx1dTUJCQnMnj2735//wx/+wOOPP27RtM7kiI2mtbW1rFq1itraWjweD4FAgKNHj9Lc3ExFRUXfn2trayMtLY1//vOffWcQGZ7tzwQA8+fP7/ePDbBx40Z8Pl+/27Zt28bSpUsVwAg55h3Dq3V2dtLQ0DDo+cDWrVt1KRgFR5wJBhpqyzlAY2OjRRM5myOeE8j4cuTlQMaWIhBFIIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUAQC/D8vRNssQh2iGQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAATAElEQVR4nO3df2xV9f3H8Wd/265X4yXYMbil15ViBUqrRGos3suyTRk6KmiMX401RjagibtZGiUdczid+Rq2xU3SkoaMH1NYhcgcXQX/+PLjCytU7A8o6dquoms7v8hs0QtUym0/3z9cK/2hva1tzzn19Uj6h/fCPe+Ep+fce9v7boQxxiBfa5FWDyDWUwSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAgGirB3CSTy50caqpw5Jjz5t1Pdcmxo7LYyuCETjV1EFOXpklxz6y7R7uyEoal8fW5UAUgSgCQREIikBQBIIiEBSB4KAIurq6+PnPf47H4yE+Pp7vfOc7VFZWEhERwRtvvGH1eI7miAiMMTzwwANs3ryZdevWUVZWhtfr5b777gMgKyvL4gkHi42JpO715RSunN/v9i3PLaK86PsWTTU0R7xtXFJSQnl5OTU1NcyZMwcAv9+P1+vF7XaTnJxs8YSDdV3p4dGfHeLw1qWUHWrhZGM7yxbP5F5fMvNW7LF6vH4ccSZ48cUXeeSRR/oCAIiKisLr9fadBRobG7n99ttJS0vj9ttvp6mpyapx+1TVf8Svt51i+6/uZHpSAiW/uIP8Fyr44Nwlq0frx/YRNDU1cebMGVasWDHovpaWlr4IVq1aRX5+Po2NjeTn5/PjH/847GO4XC7i4uKG/fIv9o94/udLagh1G6pLczlQ+QGl+94d8WMA+Bf7h53P5XKN6rFtH0FbWxsAN9xwQ7/b//73v/P++++TlZXFhx9+SFVVFQ899BAADz30EFVVVZw7d27C5x0oFDL8reYsU93xbHmj0epxhmT7CKZMmQLAP/7xj77bjDE8/fTT9PT0kJWVRUtLC9OnTycqKgr47FLxrW99i5aWlrCOEQwGuXz58rBfBw8cHPH8Obck8diyWby84zS/ezqba+KiRvwYAAcPHBx2vmAwOKrHtn0E6enppKamUlhYyK5du3jzzTdZtmwZVVVVJCQkMHv2bKtH/ELfiI9m63N3svalE/zkxWN82P4pLzy5wOqxBrF9BNHR0ezevZtp06aRl5dHIBBgyZIl+Hw+MjIyiIyMxOPx0NbWRnd3NwDd3d3861//wuPxWDr7bwoWcqYtSFFpPcbAY+sO88TyNBbd+k1L5xrI9hEAzJ8/n4qKCi5dukRDQwOrV6+murq670nhDTfcQGZmJjt37gRg586dZGVlMXXqVMtmvjtnBg/e5eXxZ/6377Z3W4OsfekEW365iIR4+7w6j3Dibz7p7OzE5XJRXFzMypUrgc+eKObl5dHR0cH111/P9u3bx/xScbT67KT88TL75DgCJ0+epLu7u987hTfddBPHjx+3cCrncmQECxcuxIEnMNtyxHMCGV+KQBSBKAJBEQiKQFAEgiIQHPq2sVUm60fTFYHociCKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBAdFoAXX48cRm0p6F1xXVlayfv16UlNT2bFjh60XXDuKcYBNmzaZ6OhoU1dX13dbKBQyHo/HuN1uCyebHBxxOQhnwXVBQQFer5eIiAjq6uqsGtWRbB9BuAuuc3NzOXz4MDNnzpzoER3P9s8JwllwDZCTkzPqY7hcLrq6ukY/pE3ExsaOar+x7c8E4Sy4lq/G9meCqxdcx8TEkJiYSHFxMdXV1WO24Hq028EnC9tH0LvgetWqVeTl5eHxeAgEAlx77bU0NzcTGWn7k5nt2T4C+HzB9dU2btyIz+ezaKLJxZH/G3V2dtLQ0NDv+cCTTz7JjBkzaG1t5bvf/W6/l5Py5Ry5qeT48eNkZ2fz9ttvs2CB/X6JhNM4MgIZW468HMjYUgSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIJDPoFkF5P11+QqghE41dRBTl6ZJcc+su0e7shKGpfH1uVAFIEoAkERCIpAUASCIhAUgeCgCLTgevw4IgLznwXXmzdvZt26dZSVleH1em294Do2JpK615dTuHJ+v9u3PLeI8qLvWzTV0BzxtnFJSQnl5eXU1NT0LaTy+/14vV7cbjfJyckWTzhY15UeHv3ZIQ5vXUrZoRZONrazbPFM7vUlM2/FHqvH68cRZ4LhFlx/9NFH/OAHP2D27NnMmzeP5cuXc+7cOQsn/kxV/Uf8etsptv/qTqYnJVDyizvIf6GCD85dsnq0fmwfQTgLriMiInjqqadoaGjg1KlTfPvb32bt2rUWTDvY8yU1hLoN1aW5HKj8gNJ971o90iC2jyCcBddutxu/3993X3Z2Nu+//37Yx3C5XMTFxQ375V/sH+6hBgmFDH+rOctUdzxb3mgc8d/v5V/sH3Y+l8s1qse2fQQjXXDd09NDcXExP/zhDyd0zi+Sc0sSjy2bxcs7TvO7p7O5Ji7K6pEGsf0ew1AoRHp6OleuXGHDhg39Fly3t7cTDAb77TfOz8+nra2N119/fcz3Hh+tPjuinyf4Rnw0tbvv47fb6yh+rZ5DW5Zy4vS/+emG4yM+9tf65wl6F1xPmzaNvLw8AoEAS5YswefzkZGR0e8fuqCggKamJkpLS22x+Po3BQs50xakqLQeY+CxdYd5Ynkai279ptWj9eOIl4jhLLguLCzknXfe4a9//StxcXETPeIgd+fM4MG7vGTc//nLwXdbg6x96QRbfrmIjPv3cKkzZOGEn7P95WAonZ2duFwuiouLWblyJadPn2bu3LmkpaURHx8PgNfrZc+esX09PtLLwVgaz8uBI84EA508eZLu7u6+J4Vz5szBgS3bhiMjWLhwof7Rx5D1z57EcopAFIEoAkERCIpAUASCIhAc+raxVSbrR9MVgehyIIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgEB0WgBdfjxxGbSnoXXFdWVrJ+/XpSU1PZsWOHrRdcO4pxgE2bNpno6GhTV1fXd1soFDIej8e43W4LJ5scHHEm+LIF1zExMQDk5uZy5swZIiMjSUxM5OWXXyYzM9OiiR3G6gqH09jYaACzd+/eQfd5vV5TUFBgjDHm/Pnzfbf/+c9/NllZWRM2o9PZ/kwQzoJrgOuuu67vvo8//nhEG01dLhddXV1jMK21YmNjCQaDI/57to/g6gXXt912G/DFC66feOIJ3nrrLYwx7Nu3z5J5ncj2n0oe6YJrgD/+8Y/s3LmT8vJyi6Z2FttHAFBbW8uqVauora3F4/EQCAQ4evQozc3Ng3Ye94qPj6e1tbXvTCJfzPaXAxh+wfWFCxfo6OjA4/EAsHfvXtxuN263e8JndSJHRDBQZ2cnDQ0NBAIBAC5evMgDDzzAxYsXiYqKwu12s3fvXiIiIqwd1CEcGcHABddJSUkcO3bM4qmcyxHPCWR8OeYbSDJ+FIEoAlEEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgeDQzx1YZbL+mlxFMAKnmjrIySuz5NhHtt3DHVlJ4/LYuhyIIhBFICgCQREIikBQBIIiEBwSgZZbjy/bR2D+s9x68+bNrFu3jrKyMrxer+2XW8fGRFL3+nIKV87vd/uW5xZRXvR9i6Yamu3fNi4pKaG8vJyampq+3cZ+vx+v14vb7SY5OdniCYfWdaWHR392iMNbl1J2qIWTje0sWzyTe33JzFuxx+rx+rH9meDLllsPPAs8++yzREREUFdXN9FjDqmq/iN+ve0U2391J9OTEij5xR3kv1DBB+cuWT1aP7aOoKmpiTNnzrBixYpB97W0tPSLoKqqimPHjjFz5syJHHFYz5fUEOo2VJfmcqDyA0r3vWv1SIPYOoJwl1tfvnyZ/Px8iouLR3Ucl8tFXFzcsF/+xf4RP3YoZPhbzVmmuuPZ8kbjqOYD8C/2Dzufy+Ua1WPbOoKrl1v3Gmq59TPPPMMjjzxCSkqKFWN+qZxbknhs2Sxe3nGa3z2dzTVxUVaPNIitI0hPTyc1NZXCwkJ27drFm2++ybJly6iqqiIhIYHZs2dTUVHBiRMnWLNmzaiPEwwGuXz58rBfBw8cHNHjfiM+mq3P3cnal07wkxeP8WH7p7zw5IJRzXjwwMFh5xvNmnuweQTR0dHs3r2badOmkZeXRyAQYMmSJfh8PjIyMoiMjOTQoUPU19fj9XpJSUmhtbWVu+66i7feesvq8flNwULOtAUpKq3HGHhs3WGeWJ7Golu/afVo/Thyo+mcOXPw+XwUFRUNui8lJYWysjLmzp075sc9Wn027J8sujtnBjv/20/G/Xto+b+LfbeveTCdnz46l4z793CpMxT2sfWTRVfpXW5t1zeJeu070sr1Oa/0CwCgqLSe1KW7RhTAeLP9m0UDDVxuPdB77703sQNNAo6LYOHChTjwCmZrjrscyNhTBKIIRBEIikBQBIIiEBSB4NDvHVhlsn40XRGILgeiCARFICgCQREIikBQBIIiEBSBoAgERSAoAsGBP3Jupcn6XURFMAJacC2TliIQRSCKQFAEgiIQFIGgCAQHRaAl1+PHERE4ccm1FlyPMScuudaC6zEWzpLrlJQUbrrpJjIzM8nMzGT//v1WjdvHKQuubX8m6F1y/fvf/37QfS0tLf2WX+/evXtc9hd+Fc+X1HDPnclUl+byPzZdcG37CMJdcv1VuFwuurq6hv1zPfE3QnLBiB67d8H1rf815ysvuI7s/PKAYmNjR7Xa1vaXg3CXXAM8/PDDZGRksGbNGs6fPz/Row7JCQuubf+p5FAoRHp6OleuXGHDhg0kJiZSXFxMdXU17e3tBINBIiMjaWlpwePxcPnyZQKBAMFgkFdeeWVMZxnJWlv4bMF17e77+O32Oopfq+fQlqWcOP1vfrrh+IiP/bX+eYJwllwDeDweAOLi4lizZg1Hjx61cmzAOQuubf+cAGD+/PlUVFT0u23jxo34fD4ALl68SCgU4rrrrsMYw5/+9CcyMzMtmPRzd+fM4MG7vGTc//nLwXdbg6x96QRbfrloxAuux5MjIhiod8l1IBAA4OzZs6xYsYLu7m66u7u5+eabh9yAPpF6F1wPVFRaT1FpvQUTfTFHRjBwyfWNN95IdXW1xVM5lyMj0JLrsWX7J4Yy/hSBKAJRBIIiEBSBoAgERSA44LuIdjJZP5quCESXA1EEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOCgCLbgeP47YVNK74LqyspL169eTmprKjh07bL3g2lGMA2zatMlER0eburq6vttCoZDxeDzG7XZbONnk4IjLQTgLrj/99FNWr17NrFmzmDdvHj/60Y+sGtdxbH85CHfB9VNPPcU111xDY2MjERERnD17dqJHdSzbRxDOgusLFy6wfft2WltbiYiIACApKfwVsOEuuLa7r/WC6+bmZqZMmcKzzz7LggUL8Pv9HDlyxKqRncfqJyXDuXLliklNTTUzZ840r732mikvLzf33nuvmTFjhklISDDd3d3mnXfeMYB59dVXjTHGHDt2zEydOtV8/PHHFk/vDLaPwBhjampqTHZ2tomPjzdpaWmmqKjIPPzwwyY7O9sYY8y5c+dMdHS06enp6fs76enp5u2337ZqZEdxRARDufnmm83q1av7/vt73/ue2b9/vzHGmIaGBjNlyhTT0dFh0XTO4sgILl26ZKKiokxJSUnfbc3Nzcbn85m5c+earKwsU15ebuGEzmL7VwdDGbjgGj5bcn3w4EHrhnIwrasR+79ElPGnCEQRiCIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIDopAW87HjyN2FhltOR9fFi/OCou2nI8vR5wJvmzLeUxMDO+99x65ubl9950/f55PPvmE9vZ2C6Z1HttHEM6W85SUFGpqavpuDwQChEKhsI/xdV9wbfsIwtlyfrWuri5effVV9u/fP2EzOp3tI7h6y/ltt90GDN5yfrW//OUvTJ8+nVtuuSXsY4zm/57JxPYRpKenk5qaSmFhITExMSQmJlJcXEx1dTUJCQnMnj2735//wx/+wOOPP27RtM7kiI2mtbW1rFq1itraWjweD4FAgKNHj9Lc3ExFRUXfn2trayMtLY1//vOffWcQGZ7tzwQA8+fP7/ePDbBx40Z8Pl+/27Zt28bSpUsVwAg55h3Dq3V2dtLQ0DDo+cDWrVt1KRgFR5wJBhpqyzlAY2OjRRM5myOeE8j4cuTlQMaWIhBFIIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUAQC/D8vRNssQh2iGQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -196,16 +196,16 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:56.907545Z", - "iopub.status.busy": "2024-11-23T19:54:56.907023Z", - "iopub.status.idle": "2024-11-23T19:54:57.094728Z", - "shell.execute_reply": "2024-11-23T19:54:57.094210Z" + "iopub.execute_input": "2024-12-05T03:21:31.540008Z", + "iopub.status.busy": "2024-12-05T03:21:31.539516Z", + "iopub.status.idle": "2024-12-05T03:21:31.747721Z", + "shell.execute_reply": "2024-12-05T03:21:31.746610Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAGOCAYAAAC5Y1UnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABR80lEQVR4nO3deViU5f748fcMw7A0gIDiCjKKC6IouSCJgpS5VCou2UnLOr/Tsdyy1TLXbDnmt3JLz7Eyy7T0aIapqWWa4kExlUADBEXEDQ1cBkFGhvn9gY2NYMqIPDPweV1X19Xc9zNzf3iuGz/cz/PM51aZzWYzQgghRCWplQ5ACCGEY5IEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRNJIEIIIWwiCUQIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE43SATiSSwVGUjLOKzJ2uxbeeOq0iowtKs9oKOR86nGlw7Ab3sEBaD3clQ5DVDFJIJWQknGeyJHrFRk7/vOH6RZWX5GxReWdTz3O9wMmKx2G3egb9xb1u7RWOgxRxeQSlhBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYxGESiNFoZMqUKfj7++Pm5kZMTAyJiYmoVCri4uKUDk8IIWodh0ggZrOZoUOH8sknnzB58mTWr1+PXq8nNjYWgLCwMIUjLE/rrObgN4OY9Ex7q/bPZnZn48IHFYpKKCnwkQj6xs1keOYyhiQuVDocIe6YQ5QyWbx4MRs3biQpKYmQkBAAoqOj0ev1+Pj4EBAQoHCE5RmvlvLkGz+zY+lDrP85h+TD+Qzo2ZRHogJoN3it0uEJBRRfvEzakk241vMi5J8PKx2OEHfMIVYgs2bNYsSIEZbkAeDk5IRer7esPg4fPkxERAQtW7YkIiKCjIwMpcK12J+ax/99nsIXb/egcX13Fk/rxph3Ejh9rlDp0IQCTu9IJituF5dPnFM6FCGqhN2vQDIyMsjKymLevHnl+nJychg8eDAAzz77LGPGjGHEiBF8+eWXjBo1ip9++um2xvDw8MBoNN7yuFK3ZhDwcqXif2txEg/3CODAyoH8lHialZuOVur9f4juGY26yLb3iurXXOPNq56RSodhN3r2jOZIiTKVrMWtabVaDAZDpd9n9yuQkydPAuDn52fVnpaWRnZ2NmFhYZw9e5b9+/fzt7/9DYC//e1v7N+/n3PnlP9Lr6TEzP+Scqnn48ZncYeVDkcIIaqM3a9AfH19AcjMzKRLly5A2U31iRMnUlpaSlhYGDk5OTRu3BgnJyeg7PJWo0aNyMnJoV69ercc43Yz764DuZUu5x55b32eGtCC+SsOMXdiVzoM/ZYrxaZKfQbA9m3bpZy7A8lNTJNy7n+ybdt2KedeA9n9CiQ4OJigoCAmTZrEf//7X77//nsGDBjA/v37cXd3p1WrVkqHeFP3uGlYOrMHr835hedn7eZs/hXeGd9J6bCEEKJK2H0C0Wg0rF69moYNGzJy5EgmTJhA3759iYqKIjQ0FLVajb+/PydPnsRkKvvL3mQycerUKfz9/RWN/f2Xw8k6aWDhylTMZnhq8g7+Magl3Ts2UDQuoQyVWo2TizMqjQZUKpxcnFFr7f4igBA35RCzt3379iQkJFi1LViwgKioKKDs/kiHDh346quvGDFiBF999RVhYWG3dfnqbukT2YRhvfWEDrn+yO7REwZem/MLn73ZndAhayksKlEsPlH9mg/pQeTcsZbXTxz7ioKcs6zuMlrBqISwnUMkkBsVFRWRnp7OhAkTLG3//ve/GTlyJG+++Sbe3t588cUXygUIbIo/gXfkl+XaF65MZeHKVAUiEkrLXLWdzFXblQ5DiCrjkAkkOTkZk8lk9Q301q1bs2fPHgWjEkKI2sUhE0h4eDhms1npMIQQolaz+5voQggh7JMkECGEEDaRBCKEHQnoF07MZxOVDqPSun0wmhbDH1A6DFHNJIEIYS9UKjpNHkHSB6tQazUM2P4hoc8Psjokcs4YHlj+BgD1I9owPGMZHvrr3yty9fVkWMqn6Ad0q9S4fePeotOUJ6yaPQIbMDxjGfW7BjM8Yxk+IYFW/e3GD2LAtg9QazUkz11D2CvD5HsttYwkECHsRJOYMEouXyE/JYtSYwnx4+fTbvwgvNs0BSCgT2ea9OrErhfL9hLJTfiNwyu20n3uOFTqsl/liNmjOBN/kKy4XRWOMSRxIbomN3w/ymwmfvx8Wo54AL8/yo2oVETOHUP6F1vI3Z1K8tw1RM4bh9q5LEHUaR1A6LhYdo6dR6mxBEN2LpeOniLw4Yi7cGaEvZIEIoSd8O/TmdO7Dlpe5yUf5dCidXSfNw73hj5EzH6WPZM+oSj3elXb/e+uwMVbR9vR/Ql6NJp6YS1IeP3jSo9tyM5l39vLiZwzBo2bCyGjHkHr4c7+WV8BkPJRHFcLigh7ZRgqjRPd540lZcFa8g8ds3zGqZ0p+PfubPsJEA5H1ptC2AmfkEAyVmy1avt1zhqa9OpI/x9mc7qClYXpipGd4+bTe810zCUmfn5uDsYLBTaNn/7FFvx7d6bHogk0iGjDpkHTKDVeq5ZwbZXyyJb38NA3wFR8lZT531q9/+LhHIKGRtk0tnBMsgIRwk64eOm4aiiyajOXmDi3Nx1XXy8yV26r8H0XMk5w9VIhRkMhp3Yk31EMu174iIaRbfnt4w1WqwsoW6Xsn/U1AX26sHP8fMylpVb9RkMRLnV0dzS+cCyyAqmEdi28if9cma1I27XwVmRcUX2KLxbg7OFm1eYXHkzQsJ6kfrqRLm8+zbper2C6Yr35WZcZT3E+PQdXHw/avzCEpNkrLX362Egi3n3G8trZw43+P70PpWVfxE1ZsJaUBd9a+ovOXqA438D51OMVxngh9TimYiOGrDPl+rQebhTbuPoRjkkSSCV46rSyJ4e4a/IPHcMrqLHltcbdlcg5Y9j39nLSPt9M37Vvcu/rj7N32lLLMY1jwmj6UFfiYl5E63kPD214h5zNe8lLLtu9MmttPFlr4y3HD0lcyKZB0yi4C9vqerX0J//gsSr/XGG/5BKWEHYiZ/MvNLivreV15+lPUnD8LGlLN5Xdg3h+AS0fv5/6XYMB0NbR0e3959gzZQmFp/O5kJ5D8pw1RM4dq8jjtI0i23F8y95qH1coRxKIEHbixNb9OOtc8Wmrp3FMGPr+3SyP7ML1J6W6fVj2pFTEu89wbn8GR1fvsBxzcOG6a09LPVatsesC/PBs3ojs7xJufbCoMVRmqUooRJWzdUvbgH7hBA2N4qen37sLUd093T4Yzdl9h8lY/mOF/X3j3pItbWsguQcihB05vnEPxzc63rYEf14pidpDLmEJIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibyFNYQtghbR0dD66cglfzRiwPeqJcf8snehH4yH2ondRsHvYmao0TPT95GY27C4bsXHa9ULmnovy6tKbz1Ccxl5rJ3rCbQ//57i/7GvfsQLuxsUBZafctj84oVztL1HyyAhHCDl0tKGLLsJmc25dRru+exnXxvvaP9qbB0zCXmGgU1Z7cxLSyCrolJuq08q/UeIbsXL6PncrG/m/QpFdHnNy0f9l3clsSmwZPY9PgaRQcz5XkUUtJAhHCDplLTDcty94oqj0adxd6/3caHV56FICC42fRuLsA4OzuitFQWKnxinLPU3q1rHS72VRqKbZ4q766HYL4/dcjlRpL1BxyCasSLhUYSck4f+sD74J2Lbzx1GlvfeAtGA2FN620Wht5Bweg9XBXOoxKca3rBWbYPHQGkXPH4hMSyMWjp6gfHszAHXPIS8mi8FSeTZ/dsEcohuwzmIqv3laff5/O5GxWrv6VzGdr1T2fJYFUQkrGeSJHrldk7PjPH66SSsDnU4/bVGKjpnLEEhtXLxVyJuEQALm7f8OzeSPqdWzJsbj/kbZ0E11mPk29Tq0490t6ufd6tWxiVd4d4OS2A6Qs+Bb3hj6Ejotl68hZ5d53s76G97Xl1/f/W4U/XeXIfLZW3fNZEogQDubsvnSaxXYHyv7iPLp2F64+nhRfMABQfL4Arac7Kic12jo6ivMuWd578fAJNg2eVu4z1VoNkXPGkvDax5QUXrmtPl2AH5dP51kub4naR+6BCGGnHlw5FZ+2eh5cORW/Lq0Jea4/APkpWag1avqsmYGTmwu/H8jg6NqdBD0WQ581M/BpG8ipHcno/P3o8MKQ2xqrWWx36rRswn3vjaLPmhm4N/DBrV4dQp7rX2EfQECfLopevhLKkxWIEHZqy7A3rV6fTUyz/H/i1KVWfcaLl/nhsZlWbT4hTTm2YfdtjZW5cluFW+YeWrTO0n+j3xYrczlX2A9JIELUUNkbHK+qr3AscglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExpZVAw0LC1M4wvK0zmr2rxzIiu+P8M7Hv1raP5vZnfq+bvQbvUXB6KwFPhJB8D/64RMSSHG+gdVdRisdUo2lclLTefpImg/ugUqt5tiG3eyZ9EmFpUOEbWQ+Vx+HSCCLFy9m48aNJCUlERISAkB0dDR6vR4fHx8CAgIUjrA849VSnnzjZ3YsfYj1P+eQfDifAT2b8khUAO0Gr1U6PCvFFy+TtmQTrvW8CPnnw0qHU6OFjh9Eg/vaEhfzEqarJdy/dCIdJz9B4pQlSodWY8h8rj4OcQlr1qxZjBgxwpI8AJycnNDr9ZbVx8svv4xer0elUnHw4EGlQrWyPzWP//s8hS/e7kHj+u4sntaNMe8kcPpc5Sql3m2ndySTFbeLyyfOKR1Kjddi+P2kzPuGwjP5FOddIun9VQQNi0aldohfRYcg87n62P2szcjIICsri8GDB5fry8nJsSSQgQMHsmPHDpo2bVrdIf6ltxYnUWIyc2DlQLYlnmblpqNKhyQUovV0R9e4HvmHsixteSlZaD3c0fnXUzAyIWxj95ewTp48CYCfn59Ve1paGtnZ2ZYEEhkZafMYHh4eGI3GWx5X6tYMAl6u1GeXlJj5X1IuHR8P4bO4w7aGSHTPaNRFd558mmu8edXT9nNV0/TsGc2Rkqov0V/Redbo3AAwXry+AjVevAyA87W+mqpnz+o7z7VZz562nWetVovBYKj0++x+BeLr6wtAZmampc1sNjNx4kRKS0vt8gb6n0XeW5+nBrRg/opDzJ3YFVcXJ6VDEgopKSgCwNnz+n4NWq97gLIdCIVwNHa/AgkODiYoKIhJkybh7OyMTqdj0aJFHDhwAHd3d1q1anXHY9xu5t11ILdS+4Hc46Zh6cwevDbnFxatSuXnzx7infGdeHF25WsUbd+2vUr2A8lNTJP9E/5k27btd2X/hIrOs/FSIQUnz+ETEsilI6cA8G2rx2gopCCnZl+vr87zXJvdrfN8M3a/AtFoNKxevZqGDRsycuRIJkyYQN++fYmKiiI0NBS1Hd98fP/lcLJOGli4MhWzGZ6avIN/DGpJ944NlA7NikqtxsnFGZVGAyoVTi7OqLV2/7eFQ8pYvpXQcbG41ffGxdeTDi89SubK7ZhLS5UOrcaQ+Vx9HOKstm/fnoSEBKu2BQsWEBUVpVBEt9YnsgnDeusJHXL9kd2jJwy8NucXPnuzO6FD1lJYZB8b8TQf0oPIuWMtr5849hUFOWfl+fm7IHneN7j4eDJw+4eo1CqOrd/Nvre/VDqsGkXmc/VxiARyo6KiItLT05kwYYKlbfz48XzzzTecOXOGBx54AF9fXw4dOqRYjJviT+AdWf4fhoUrU1m4MlWBiG4uc9V2MldtVzqMWsFsKiVxyhL53sddJPO5+tjv9Z+/kJycjMlksrqBPm/ePE6cOEFJSQlnzpxRNHkIIURt4JArkPDwcMxms9JhCCFEreaQKxAhhBDKkwQihBDCJpJAxG0J6BdOzGcTlQ6j0rp9MJoWwx9QOgxhh2RO3zlJIOLWVCo6TR5B0gerUGs1DNj+IaHPD7I6JHLOGB5Y/gYA9SPaMDxjGR766993cfX1ZFjKp+gHdKvUuH3j3qLTlCesmj0CGzA8Yxn1uwYzPGMZPiGBVv3txg9iwLYPUGs1JM9dQ9grw+R7AMKazOkqIQlE3FKTmDBKLl8hPyWLUmMJ8ePn0278ILzblBWuDOjTmSa9OrHrxYUA5Cb8xuEVW+k+d5ylymzE7FGciT9IVtyuCscYkrgQXZMbCgqazcSPn0/LEQ/g98e3a1UqIueOIf2LLeTuTiV57hoi541D7Vz2y1SndQCh42LZOXYepcYSDNm5XDp6isCHI+7CmRGOSuZ01ZAEIm7Jv09nTu+6XiI/L/kohxato/u8cbg39CFi9rPsmfQJRbnXi7jtf3cFLt462o7uT9Cj0dQLa0HC6x9XemxDdi773l5O5JwxaNxcCBn1CFoPd/bP+gqAlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AqHFkTlcN5ddAwu75hASSsWKrVduvc9bQpFdH+v8wm9MV/BVmumJk57j59F4zHXOJiZ+fm4PxQoFN46d/sQX/3p3psWgCDSLasGnQNEqN177Ff+0vuke2vIeHvgGm4qukzP/W6v0XD+cQNNR+qxaI6idzumrICkTckouXjqsG62qx5hIT5/am4+rrRebKbRW+70LGCa5eKsRoKOTUjuQ7imHXCx/RMLItv328weovMSj7i27/rK8J6NOFnePnl6srZTQU4VJHd0fji5pF5nTVkBVIJbRr4U3858pskdmuhbci4wIUXyzA2cN6vwq/8GCChvUk9dONdHnzadb1egXTFes9VbrMeIrz6Tm4+njQ/oUhJM1eaenTx0YS8e4zltfOHm70/+l9KC37gmjKgrWkLPjW0l909gLF+QbOpx6vMMYLqccxFRsxZJ0p16f1cKPYxr8UbeUdHEDfuLeqdUx75h1sX9tOy5yuGpJAKsFTp62SkuqOJv/QMbyCGltea9xdiZwzhn1vLyft8830Xfsm977+OHunLbUc0zgmjKYPdSUu5kW0nvfw0IZ3yNm8l7zksk2xstbGk7U23nL8kMSFbBo0jYK7sA2pV0t/8g8eq/LP/StaD/dqLastKkfmdNWQS1jilnI2/0KD+9paXnee/iQFx8+StnRT2fXa5xfQ8vH7qd81GABtHR3d3n+OPVOWUHg6nwvpOSTPWUPk3LGKPHrYKLIdx7fsrfZxhf2SOV01JIGIWzqxdT/OOld82uppHBOGvn83y+ONcP2pkm4flj1VEvHuM5zbn8HR1TssxxxcuO7akyWPVWvsugA/PJs3Ivu7hFsfLGoNmdNVQ2WWqoS1iq07uAX0CydoaBQ/Pf3eXYjq7un2wWjO7jtMxvIfK+zvG/eWXGpyYHeyI2FNnNPVPZ/lHoi4Lcc37uH4xspvxau0P/9VKcSfyZy+c3IJSwghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2ESewhKVoq2j48GVU/Bq3ojlQdZ7Gqg0TvT46Hnc6nqR8+M+Di1aR90OQXSe8RQqlYrTu1I4MOvrKhvPyVVLz09eRuPugiE7l10vLKwwBiFu5q/mV0V9dzqf/bq0pvPUJzGXmsnesJtD//nOql/XpB791r/DpSOnKDj5O/Hj51v62jzzEE0e6MiWYW/a+NNWPVmBiEq5WlDElmEzObcvo1xf037hnPslnU2Dp1E3tDkuvp7kHczi+wGT2dj/Dep1bIWzzq2CT7VtvEZR7clNTCurZFpiok4r/wpjEOJm/mp+VdR3p/PZkJ3L97FT2dj/DZr06oiTm7bcMSd+3MemwdOskodK41Rukyl7IAlEVIq5xHTTEtYeAX6WwnAXMk5Qt31zzCUmAFRqNUW5+ZQUFVfZeAXHz6JxdwHA2d0Vo6GwwhiEuJm/ml8V9d3pfC7KPU/p1bKy7WZTqaXQ4p81ju5A329n0mxQd0tb8yFRHP02vtyxSpNLWKLKXDxyivoRbTgdn0L98GAuHT0FlFUp7fDSo5zanlT2S1NFLh07Tf3wYAbumENeShaFp/JuGkN1MxoKb1pltTbyDg5A6+GudBhVoirmc8MeoRiyz2AqvmrVXnj2PN90Hw9m6PXVZE5uO0Dxhcs0jm7Pz89+SNvnBlTFj1BlJIGIKpOz+RcaRbXnwZVTuZJ3iSu/XwKuVSn9dhfRH79EndYBXEgr/w+rV8smVqWwAU5uO2BV/vpGQUOjORb3P9KWbqLLzKep16nVTWOobudTj9tcYqMmqkklY+50Prs39CF0XCxbR84q9z7LplJA7p5UPJo2oMF9dcnZ8kvV/yBVQBKIqDLm0lJ2v1a2xWfkvHGc3ZeOWqsp+6UwmykpKMJUbETlpEZbR0dx3vV/3C8ePsGmwdMqNZ5Krab4ggGA4vMFaD3dK4xBiKpyp/NZrdUQOWcsCa99TEnhlXL9GndXS3vd9s1JW/I9jaJCaRARQvMhPfBpG0iLx+8vt5uiUuQeiKi0B1dOxaetngdXTsWvS2tCnusPwD2N69JnzQx6/3ca2esTMBUZ8X+wM33WzKDP2je5fDoPQ9YZdP5+dHhhiE3j1Wnlj1u9OoQ815+ja3cS9FgMfdbMwKdtIKd2JFcYgxB/5Wbz+ca+Oq3873g+N4vtTp2WTbjvvVH0WTMD9wY+lvkM4Ne5FQ9vmkW/797m1PZfKTp7geS537DlsZn88Pjb5B88ZjfJA6Qab61zJ9VLq0rTh8K5km8gN+E3ReOAu3dpxR7Osz2pyee5Nsznm5FLWKLaZW9wvAqoQtxMbZ7PcglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExsYCEBYWpnCEjk/lpKbz9JE0H9wDlVrNsQ272TPpk3KlFoTtAh+JIPgf/fAJCaQ438DqLqOVDqnGkvlcPRxiBbJ48WI2btzIjz/+yKhRo7j//vtZvHgxTk5O+Pj4EBAQoHSIDi90/CAa3NeWuJiXWNNtHHVaNqHj5Cdu/UZx24ovXiZtySb2/+srpUOp8WQ+Vw+HSCCzZs1ixIgRhISEWNqcnJzQ6/WEhYWRl5dHv379aNWqFe3atWPQoEGcO3dOwYgdT4vh95My7xsKz+RTnHeJpPdXETQsGpXaIaaIQzi9I5msuF1cPiFz826T+Vw97P5sZmRkkJWVxeDBg8v15eTkEBYWhkql4tVXXyU9PZ2UlBSaN2/Oa6+9pkC0jknr6Y6ucT3yD2VZ2vJSstB6uKPzr6dgZEJUnszn6mP390BOnjwJgJ+fn1V7Wloa2dnZhIWF4ePjQ3R0tKWva9euLFq06LbH8PDwwGisHTWTmmu8edUz0qpNc21THOPFQkub8eJlgEpvmONoevaM5kjJ+Sr/3IrOc23Ws2f1nWeZz5U/z1qtFoPBUOn32f0KxNfXF4DMzExLm9lsZuLEiZSWlpa7gV5aWsqiRYvo378/4vaUFBQB4Ox5fb8Grdc9QNmubEI4EpnP1cfuVyDBwcEEBQUxadIknJ2d0el0LFq0iAMHDuDu7k6rVq2sjh83bhw6nY6xY8fe9hi2ZF5HVVHxOeOlQgpOnsMnJJBLR8o2YPJtq8doKKQgp2Zfr9+2bXuNLfJnT6rzPMt8lmKKFhqNhtWrV/Pss88ycuRI/P39mTBhAp6enhw5cgT1n26Kvfzyy2RkZPDdd99ZtYtby1i+ldBxseTuSaW0xESHlx4lc+V2zKVVt4NgbadSq1E7O6HSaEClwsnFGbPZbLWJkKgaMp+rh90nEID27duTkJBg1bZgwQKioqIsrydNmsS+ffvYsGEDLi4u1R2iw0ue9w0uPp4M3P4hKrWKY+t3s+/tL5UOq0ZpPqQHkXOvr4yfOPYVBTln5fsgd4HM5+rhEAnkRkVFRaSnpzNhwgQADh06xLvvvkvLli257777ANDr9axdu1bBKB2L2VRK4pQlJE5ZonQoNVbmqu1krtqudBi1gszn6uGQCSQ5ORmTyWS5gR4SEoLsiyWEENXLIRNIeHi4JAwhhFCY3GkWQghhE0kgQgghbCIJRAg7EtAvnJjPJiodRqV1+2A0LYY/oHQYoppJAhHCXqhUdJo8gqQPVqHWahiw/UNCnx9kdUjknDE8sPwNAOpHtGF4xjI89A0s/a6+ngxL+RT9gG6VGrdv3Ft0mmJdrdYjsAHDM5ZRv2swwzOW4RMSaNXfbvwgBmz7ALVWQ/LcNYS9Mgy11iFvqwobSQIRwk40iQmj5PIV8lOyKDWWED9+Pu3GD8K7TVMAAvp0pkmvTux6cSEAuQm/cXjFVrrPHWepMhsxexRn4g+SFberwjGGJC5E1+SGgoJmM/Hj59NyxAP4/fEtZpWKyLljSP9iC7m7U0meu4bIeeNQO5cliDqtAwgdF8vOsfMoNZZgyM7l0tFTBD4ccRfOjLBXkkCEsBP+fTpzetdBy+u85KMcWrSO7vPG4d7Qh4jZz7Jn0icU5V4vlrf/3RW4eOtoO7o/QY9GUy+sBQmvf1zpsQ3Zuex7ezmRc8agcXMhZNQjaD3c2T+rbO+SlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AcDiy3hTCTviEBJKxYqtV269z1tCkV0f6/zCb0xWsLExXjOwcN5/ea6ZjLjHx83NzMF4osGn89C+24N+7Mz0WTaBBRBs2DZp2vczKtVXKI1vew0PfAFPxVVLmf2v1/ouHcwgaGlX+g0WNJSsQIeyEi5eOqwbrarHmEhPn9qbj6utF5sptFb7vQsYJrl4qxGgo5NSO5DuKYdcLH9Ewsi2/fbzBanUBZauU/bO+JqBPF3aOn1+urpTRUIRLHd0djS8ci6xAahnv4AD6xr2ldBh2wzvYfrZDLr5YgLOH9X4VfuHBBA3rSeqnG+ny5tOs6/UKpivWe9d0mfEU59NzcPXxoP0LQ0iavdLSp4+NJOLdZyyvnT3c6P/T+1Ba9kXclAVrSVnwraW/6OwFivMNnE89XmGMF1KPYyo2Ysg6U65P6+FGsY2rH1vJfLZW3fNZEkgto/Vwr9Zyz+L25R86hldQY8trjbsrkXPGsO/t5aR9vpm+a9/k3tcfZ++0pZZjGseE0fShrsTFvIjW8x4e2vAOOZv3kpd8FICstfFkrY23HD8kcSGbBk2j4C5sq+vV0p/8g8eq/HP/isxnZcklLCHsRM7mX2hwX1vL687Tn6Tg+FnSlm4quwfx/AJaPn4/9bsGA6Cto6Pb+8+xZ8oSCk/ncyE9h+Q5a4icO1aRx2kbRbbj+Ja91T6uUI4kECHsxImt+3HWueLTVk/jmDD0/btZHtmF609Kdfuw7EmpiHef4dz+DI6u3mE55uDCddeelnqsWmPXBfjh2bwR2d8l3PpgUWOozFKVUIgqZ+uOhAH9wgkaGsVPT793F6K6e7p9MJqz+w6TsfzHCvv7xr0ll5pqILkHIoQdOb5xD8c37lE6jEr780pJ1B5yCUsIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQDkRbR8fDm2cxPHNZhf0uvp70XPIKvVdPp+WIsg2eOk19kscOfkqzwd3/8rOjFr3A31KXXi/p/iet/96Xh9a/Q7/v3qZBt7YVvFvURvIYrxAO5GpBEVuGzST6Py9W2N/hhSEkTv2Myyd+t7QdXBjHhbSKa1v9WeLUz2j15IMV9p3Y8gtpS77HWedGz09e5syfys6L2ktWIEI4EHOJ6S/LtXs2b0THSSPo9fUUPJs3AuDK7xdv67OLzl24ad8ftbNKS0ygUt1+wKJGkwQiRA3i16U1B2Z9xe7XP+be1/5W5Z8fOmEwGV9tvfWBolaQBCJEDXIhPQdDdi6GrDNoPdyr9LMb9+yAe31vsr6teLtcUftIAhGiBinIOYeLjweudb0oKTLe9Di3+t6V+lyPpvUJeW4Au1//5E5DFDWIJBAhHMyDK6fi01bPgyunUqeVP2716hDyXH8AkuesoeenrxCz5FV+nbMagJDn+hMyegDtxsbSZtTDAER+OLrc53aa9iTNh0bRZcZTNBvU3dIG0P7FobjXr0Ov5W8Qvfil6vgxhQOQarxC3AW2VuOtFioVXWaMJHHq0mobUqrx1kyyAhGitjGbqzV5iJpLEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0cJoEYjUamTJmCv78/bm5uxMTEkJiYiEqlIi4uTunwhBCi1nGIYopms5mhQ4eSmJjI9OnTCQoKYsWKFcTGxgIQFhamcIRC3B6Vk5rO00fSfHAPVGo1xzbsZs+kTzAVX1U6NCEqzSESyOLFi9m4cSNJSUmEhIQAEB0djV6vx8fHh4CAAIUjFOL2hI4fRIP72hIX8xKmqyXcv3QiHSc/QeKUJUqHJkSlOcQlrFmzZjFixAhL8gBwcnJCr9dbVh8DBw6kffv2hIWF0b17d5KSkhSKVoibazH8flLmfUPhmXyK8y6R9P4qgoZFo1I7xK+iEFbsftZmZGSQlZXF4MGDy/Xl5ORYEsjnn3/Or7/+yoEDB3j55Zf5+9//Xt2hCvGXtJ7u6BrXI/9QlqUtLyULrYc7Ov96CkYmhG3s/hLWyZMnAfDz87NqT0tLIzs725JAvLy8LH0XL15EXYm/6Dw8PDAab154TojKaq7x5lXPSKs2jc4NAOPFQkub8eJlAJyv9dVUPXtGc6TkvNJhiJvQarUYDIZKv8/uE4ivry8AmZmZdOnSBSi7qT5x4kRKS0utbqD/4x//YMuWLZjNZjZt2qRIvELcTElBEQDOnu6WzZu0XvcAZTsNCuFo7D6BBAcHExQUxKRJk3B2dkan07Fo0SIOHDiAu7s7rVq1shz7ySdlpaaXLVvGK6+8wsaNG29rDFsyrxB/paJiisZLhRScPIdPSCCXjpwCwLetHqOhkIKcc0qEWW22bdsuxRRrILu/B6LRaFi9ejUNGzZk5MiRTJgwgb59+xIVFUVoaGiFl6qeeOIJtm3bRl5engIRC3FzGcu3EjouFrf63rj4etLhpUfJXLkdc2mp0qEJUWl2vwIBaN++PQkJCVZtCxYsICoqCoCCggLOnz+Pv78/AN999x0+Pj74+PhUe6xC/JXked/g4uPJwO0folKrOLZ+N/ve/lLpsISwiUMkkBsVFRWRnp7OhAkTALh8+TJDhw7l8uXLODk54ePjw3fffYdKpVI2UCFuYDaVkjhliXzvQ9QIDplAkpOTMZlMlhvo9evXZ/fu3QpHJYQQtYtDJpDw8HBkI0UhhFCW3d9EF0IIYZ8kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsojLLN/KEqHJGQyHnU48rHYbd8A4OQOvhrnQYoopJAhFCCGETuYQlhBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRON0gE4kksFRlIyzisydrsW3njqtIqMLSpPqvFak2q8NZMkkEpIyThP5Mj1iowd//nDdAurr8jYovLOpx7n+wGTlQ7DbvSNe4v6XVorHYaoYnIJSwghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFs4hAJxGg0MmXKFPz9/XFzcyMmJobExERUKhVxcXFKhyeEELWS3ScQs9nM0KFD+eSTT5g8eTLr169Hr9cTGxsLQFhYmMIRVkzrrObgN4OY9Ex7q/bPZnZn48IHFYpKKCnwkQj6xs1keOYyhiQuVDocIe6Y3ZcyWbx4MRs3biQpKYmQkBAAoqOj0ev1+Pj4EBAQoHCEFTNeLeXJN35mx9KHWP9zDsmH8xnQsymPRAXQbvBapcMTCii+eJm0JZtwredFyD8fVjocIe6Y3a9AZs2axYgRIyzJA8DJyQm9Xl9u9TFjxgxUKhUHDx6s7jArtD81j//7PIUv3u5B4/ruLJ7WjTHvJHD6XKHSoQkFnN6RTFbcLi6fOKd0KEJUCbtOIBkZGWRlZTF48OByfTk5OVYJZP/+/ezevZumTZtWZ4i39NbiJEpMZg6sHMi2xNOs3HRU6ZCEEKJK2PUlrJMnTwLg5+dn1Z6WlkZ2drYlgRQXFzNmzBi++uoroqOjKz2Oh4cHRqPxlseVujWDgJcr9dklJWb+l5RLx8dD+CzucKVj+0N0z2jURZJ8HEVzjTevekYqHYbd6NkzmiMlymyFIG5Nq9ViMBgq/T67XoH4+voCkJmZaWkzm81MnDiR0tJSSwKZOnUqI0aMIDAwUIkw/1LkvfV5akAL5q84xNyJXXF1cVI6JCGEqBJ2vQIJDg4mKCiISZMm4ezsjE6nY9GiRRw4cAB3d3datWpFQkICv/zyC//6179sHud2M++uA7mV2g/kHjcNS2f24LU5v7BoVSo/f/YQ74zvxIuz91Q6xu3btst+IA4kNzFN9gP5k23btst+IDWQXa9ANBoNq1evpmHDhowcOZIJEybQt29foqKiCA0NRa1W8/PPP5OamoperycwMJATJ07Qu3dvtmzZonT4vP9yOFknDSxcmYrZDE9N3sE/BrWke8cGSocmFKBSq3FycUal0YBKhZOLM2qtXf8NJ8RfsvvZ2759exISEqzaFixYQFRUFACvvfYar732mqUvMDCQ9evX07Zt22qN80Z9IpswrLee0CHXH9k9esLAa3N+4bM3uxM6ZC2FRSUKRiiqW/MhPYicO9by+oljX1GQc5bVXUYrGJUQtrP7BHKjoqIi0tPTmTBhgtKh/KVN8SfwjvyyXPvClaksXJmqQERCaZmrtpO5arvSYQhRZRwugSQnJ2MymW76DfRjx45Vb0BCCFFLOVwCCQ8Px2w2Kx2GEELUenZ9E10IIYT9kgQihBDCJpJAhLAjAf3CiflsotJhVFq3D0bTYvgDSochqpkkECHshUpFp8kjSPpgFWqthgHbPyT0+UFWh0TOGcMDy98AoH5EG4ZnLMNDf/17Ra6+ngxL+RT9gG6VGrdv3Ft0mvKEVbNHYAOGZyyjftdghmcswyck0Kq/3fhBDNj2AWqthuS5awh7ZZh8r6WWkQQihJ1oEhNGyeUr5KdkUWosIX78fNqNH4R3m7ICoQF9OtOkVyd2vVi2l0huwm8cXrGV7nPHoVKX/SpHzB7FmfiDZMXtqnCMIYkL0TWpZ91oNhM/fj4tRzyA3x/fFlepiJw7hvQvtpC7O5XkuWuInDcOtXNZgqjTOoDQcbHsHDuPUmMJhuxcLh09ReDDEXfhzAh7JQlECDvh36czp3dd34ogL/kohxato/u8cbg39CFi9rPsmfQJRbnXixLuf3cFLt462o7uT9Cj0dQLa0HC6x9XemxDdi773l5O5JwxaNxcCBn1CFoPd/bP+gqAlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AcDiy3hTCTviEBJKxYqtV269z1tCkV0f6/zCb0xWsLExXjOwcN5/ea6ZjLjHx83NzMF4osGn89C+24N+7Mz0WTaBBRBs2DZpGqfFatYRrq5RHtryHh74BpuKrpMz/1ur9Fw/nEDQ0yqaxhWOSFYgQdsLFS8dVQ5FVm7nExLm96bj6epG5cluF77uQcYKrlwoxGgo5tSP5jmLY9cJHNIxsy28fb7BaXUDZKmX/rK8J6NOFnePnYy4tteo3GopwqaO7o/GFY5EVSCW0a+FN/OfKbEXaroW3IuOK6lN8sQBnDzerNr/wYIKG9ST10410efNp1vV6BdMV671rusx4ivPpObj6eND+hSEkzV5p6dPHRhLx7jOW184ebvT/6X0oLfsybsqCtaQs+NbSX3T2AsX5Bs6nHq8wxgupxzEVGzFknSnXp/Vwo9jG1Y9wTJJAKsFTp5WS6uKuyT90DK+gxpbXGndXIueMYd/by0n7fDN9177Jva8/zt5pSy3HNI4Jo+lDXYmLeRGt5z08tOEdcjbvJS+5bPOxrLXxZK2Ntxw/JHEhmwZNo+AubKvr1dKf/IPHqvxzhf2SS1hC2Imczb/Q4L7rVaQ7T3+SguNnSVu6qewexPMLaPn4/dTvGgyAto6Obu8/x54pSyg8nc+F9ByS56whcu5YRR6nbRTZjuNb9lb7uEI5kkCEsBMntu7HWeeKT1s9jWPC0PfvZnlkF64/KdXtw7InpSLefYZz+zM4unqH5ZiDC9dde1rqsWqNXRfgh2fzRmR/l3Drg0WNoTJLZUIhqpytOxIG9AsnaGgUPz393l2I6u7p9sFozu47TMbyHyvs7xv3luxIWAPJPRAh7MjxjXs4vrHyWx4r7c8rJVF7yCUsIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCKP8Qphh/y6tKbz1Ccxl5rJ3rCbQ//5ztKnraPjwZVT8GreiOVBT9zy+Mpo88xDNHmgI1uGvWnVXrdDEJ1nPIVKpeL0rhQOzPoagJZP9CLwkftQO6nZPOxNzCUmG39i4YgkgQhhhwzZuXwfO5XSqyX0Xj2dtC82YyoqK6J4taCILcNmEv2fF2/r+Nul0jiV23XwD3kHsyxfjHxw1TScdW5ove7Bu3UAWx6dYdsPKRyeJJBKuFRgJCXj/K0PvAvatfDGU6e9488xGgpvWmm1NvIODkDr4a50GOX8edMos6nUUj0Xykq837jnx18df7uaD4ni6LfxtH1uQLm+P1YWKrWaotx8SoqKCex/Hxp3F3r/dxq5u1NJen9Vpce8UzKfrVX3fJYEUgkpGeeJHLlekbHjP3+4SioBn089blOJjZrK3ktsNOwRiiH7DKbiq3fleAuVisbR7fn52Q8rTCBQVhq+w0uPcmp7EmZTKa51vcAMm4fOIHLuWHxCAsvtIXK3yXy2Vt3zWRKIEHbKvaEPoeNi2TpyVpUd79WyidX+IAAntx3gUtYZcrb88pefn7U2nqxvdxH98UvUaR3A1UuFnEk4BEDu7t/wbN6o2hOIUJYkECHskFqrIXLOWBJe+5iSwis2Ha9yUqOto6M475LluIuHT7Bp8LRy7w99fhANIkJoPqQHPm0DafH4/Vbb66q1mrLtbc1mSgqKMBUbObsvnWax3YGySydH1+4q97miZpPHeIWwQ81iu1OnZRPue28UfdbMwL2BDyHP9bf0P7hyKj5t9Ty4cip1WvlXeLzO348OLwy5rfGS537Dlsdm8sPjb5N/8BgZK7biVq+OZUz/BzvTZ80M+qx9k8un8zBknSE/JQu1Rk2fNTNwcnPh9wMZd+VcCPslKxAh7FDmym3l9kA/tGid5f9vfMz2QnpOueObPhTOsQ27Kz32H59ddO6CZczs9Qlkry+/10fi1KWV/nxRc0gCEaKGyt7geGXhhWORS1hCCCFsIglECCGETSSBCCGEsInDJBCj0ciUKVPw9/fHzc2NmJgYEhMTUalUxMXFKR2eEELUOg5xE91sNjN06FASExOZPn06QUFBrFixgtjYWADCwsIUjrA8rbOa/SsHsuL7I7zz8a+W9s9mdqe+rxv9Rm9RMDprgY9EEPyPfviEBFKcb2B1l9FKh1RjqZzUdJ4+kuaDe6BSqzm2YTd7Jn1S+W+Oi5uS+Vx9HCKBLF68mI0bN5KUlERISAgA0dHR6PV6fHx8CAgIUDjC8oxXS3nyjZ/ZsfQh1v+cQ/LhfAb0bMojUQG0G7xW6fCsFF+8TNqSTbjW8yLknw8rHU6NFjp+EA3ua0tczEuYrpZw/9KJdJz8BIlTligdWo0h87n6OMQlrFmzZjFixAhL8gBwcnJCr9dbVh+BgYG0bt2aDh060KFDBzZv3qxUuBb7U/P4v89T+OLtHjSu787iad0Y804Cp88VKh2aldM7ksmK28XlE+eUDqXGazH8flLmfUPhmXyK8y6R9P4qgoZFo1I7xK+iQ5D5XH3sftZmZGSQlZXF4MGDy/Xl5ORYXb5avXo1SUlJJCUl0bt37+oM86beWpxEicnMgZUD2ZZ4mpWbjiodklCI1tMdXeN65B/KsrTlpWSh9XBH519PwciEsI3dX8I6efIkAH5+flbtaWlpZGdnV8n9Dw8PD4zGW++dUOrWDAJertRnl5SY+V9SLh0fD+GzuMO2hkh0z2jURXeefJprvHnVM/KOP6em6NkzmiMlVV+iv6LzrNG5AWC8eH0Farx4GQDna301Vc+e1Xeea7OePW07z1qtFoPBUOn32f0KxNfXF4DMzExLm9lsZuLEiZSWllolkOHDhxMaGsro0aO5cOFCdYdaoch76/PUgBbMX3GIuRO74uripHRIQiElBUUAOHte369B63UPULZJlBCOxu4TSHBwMEFBQUyaNIn//ve/fP/99wwYMID9+/fj7u5Oq1atANi5cye//vore/fuxWw2M3bs2Nsew2AwUFxcfMv/tm/bXqnY73HTsHRmD16b8wvPz9rN2fwrvDO+U6U+4w/bt22/rRhv9d+2Sv4MNd22Kjqvt3OejZcKKTh5zmrXP9+2eoyGQgpyavb1+uo8z7WZrefZltUHOEAC0Wg0rF69moYNGzJy5EgmTJhA3759iYqKIjQ0FPW1m4/+/v4AuLi4MHr0aHbtUr609Psvh5N10sDClamYzfDU5B38Y1BLundsoHRoVlRqNU4uzqg0GlCpcHJxRq21+6ubDilj+VZCx8XiVt8bF19POrz0KJkrt2MuLVU6tBpD5nP1cYiz2r59exISrCuBLliwgKioKAAuX75MSUkJXl5emM1mvv76azp06KBApNf1iWzCsN56Qodcf2T36AkDr835hc/e7E7okLUUFpUoGOF1zYf0IHLu9RXbE8e+oiDnrDw/fxckz/sGFx9PBm7/EJVaxbH1u9n39pdKh1WjyHyuPg6RQG5UVFREeno6EyZMACA3N5fBgwdjMpkwmUy0adOGhQsXKhrjpvgTeEeW/4dh4cpUFq5MVSCim8tctZ3MVduVDqNWMJtKSZyyRL73cRfJfK4+DplAkpOTMZlMlhvozZo148CBAwpHJYQQtYtDJpDw8HDMZrPSYQghRK1m9zfRhRBC2CdJIEIIIWwiCUTcloB+4cR8NlHpMCqt2wejaTH8AaXDEHZI5vSdkwQibk2lotPkESR9sAq1VsOA7R8S+vwgq0Mi54zhgeVvAFA/og3DM5bhob/+fRdXX0+GpXyKfkC3So3bN+4tOk15wqrZI7ABwzOWUb9rMMMzlll9MQ+g3fhBDNj2AWqthuS5awh7ZZh8D0BYkzldJSSBiFtqEhNGyeUr5KdkUWosIX78fNqNH4R3m6YABPTpTJNendj1Ytmj07kJv3F4xVa6zx1nqTIbMXsUZ+IPkhVX8Rc8hyQuRNfkhoKCZjPx4+fTcsQD+HVpXdamUhE5dwzpX2whd3cqyXPXEDlvHGrnsl+mOq0DCB0Xy86x8yg1lmDIzuXS0VMEPhxxF86McFQyp6uGJBBxS/59OnN610HL67zkoxxatI7u88bh3tCHiNnPsmfSJxTlXi/itv/dFbh462g7uj9Bj0ZTL6wFCa9/XOmxDdm57Ht7OZFzxqBxcyFk1CNoPdzZP+srAFI+iuNqQRFhrwxDpXGi+7yxpCxYS/6hY5bPOLUzBf/enW0/AaLGkTldNZRfAwm75xMSSMaKrVZtv85ZQ5NeHen/w2xOV/BXmOmKkZ3j5tN7zXTMJSZ+fm4OxgsFNo2f/sUW/Ht3pseiCTSIaMOmQdMoNV77Fv+1v+ge2fIeHvoGmIqvkjL/W6v3XzycQ9DQKJvGFjWTzOmqISsQcUsuXjquGqyrxZpLTJzbm46rrxeZK7dV+L4LGSe4eqkQo6GQUzuS7yiGXS98RMPItvz28Qarv8Sg7C+6/bO+JqBPF3aOn1+urpTRUIRLHd0djS9qFpnTVUNWIJXQroU38Z8rs0VmuxbeiowLUHyxAGcP6/0q/MKDCRrWk9RPN9LlzadZ1+sVTFes91TpMuMpzqfn4OrjQfsXhpA0e6WlTx8bScS7z1heO3u40f+n96G07AuiKQvWkrLgW0t/0dkLFOcbOJ96vMIYL6Qex1RsxJB1plyf1sONYhv/UrSVd3AAfePeqtYx7Zl3sH1tOy1zumpIAqkET52WbmH1lQ6j2uUfOoZXUGPLa427K5FzxrDv7eWkfb6Zvmvf5N7XH2fvtKWWYxrHhNH0oa7ExbyI1vMeHtrwDjmb95KXXLYpVtbaeLLWxluOH5K4kE2DplFwF7Yh9WrpT/7BY1X+uX9F6+FO/T9ukgq7I3O6asglLHFLOZt/ocF9bS2vO09/koLjZ0lbuqnseu3zC2j5+P3U7xoMgLaOjm7vP8eeKUsoPJ3PhfQckuesIXLuWEUePWwU2Y7jW/ZW+7jCfsmcrhqSQMQtndi6H2edKz5t9TSOCUPfv5vl8Ua4/lRJtw/LniqJePcZzu3P4OjqHZZjDi5cd+3JkseqNXZdgB+ezRuR/V3CrQ8WtYbM6aqhMktVwlolNzGN7wdMrvT7AvqFEzQ0ip+efu8uRHX3dPtgNGf3HSZj+Y8V9veNe0suNTkwW+cz1Mw5Xd3zWe6BiNtyfOMejm/co3QYlfbnvyqF+DOZ03dOLmEJIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibyFNYwmZ+XVrTeeqTmEvNZG/YzaH/fGfVH/yPfjQbGEmpyUT88x9hOFa+JAOU7XXQJCaM/INZ7Jm8xKqvcc8OtH9xKFcvXyH++QUU5Z6n19dT0LhqMRoK+XnUh6i1GmI+fQXUKgpP5bFzXPnaQULcTN0OQXSe8RQqlYrTu1I4MOtrq/5G0e3p8OKjFF8sYMfouVw1FDJwxxyunLsIwE//b/ZNiyqGv/V3fNrqOfHTAVLmfVOu361eHQbv+Yhvuo2j8HR+ubldUnjltsdSgqxAhM0M2bl8HzuVjf3foEmvjji5aa36mw2MZMPDk/hl5pe0evLBCj/Dta4Xvu30fD9wCqWmUnzbN7fqbztmIJuHTGfvtKW0GzsQgISX/833A6dwfOMemg2KxFRsZNs/32dT7FQM2bk07N7urvy8ombKO5jF9wMms7H/G9Tr2ApnnXWNrJBn+7P50Rkc/vJHWl7bCbDwdD6bBk9j0+BpN/0H3bd9c0pNpXw/cAq+7fS41vUqd0zr/9eX3w9kWl7fOLdvdyylSAIRNivKPU/p1bIS1GZTqaVo3B8un8rDycUZraf7TQu/1W3fnDMJvwFwOj6Fuh2CrPrNJSZMxVe5kJ5j6fujtpDZVIrZDKYiI8V5l/7UJt+NFbfPXGICQKVWU5SbT0lRsaVP4+bC1YIiTFeMZfMzrGwOutXzos/aN+k4ecRNP7deWAtOx6cAcCbhN3xDm1n1az3dcfXxoCDnrKXtxrl9u2MpRS5hiTvWsEcohuwzmIqvWrXnJqYycMccVCoVGx55o8L3ar3u4aqhEICSgitove6x6lc7a3Dx1uHV0t+qfLWTm5YWwx/gxxHvWNpc63rRsHs7fv1wdVX9aDYzGgpvWmW1NvIODkDr4a50GDelj42kw0uPcmp7UtkfQ9dYzc/LV9B6lv0M38dOxXjxMl1m/p0m99/Lia37y32m1sudq+llJeNLCorKze3WT/ch/YsfaPOPflbtN87t2xlLKZJAxB1xb+hD6LhYto6cZdXurHOj6UNd+ea+cXgHN6XDy4+S8Mp/yr3fePEyuqZlFY41OleMFy9b9e+f9RXRH7/MxYwTXMg4YWmPmDWKpPdXWX65VU5qun04moTXPraL+x/nU4/bXGKjJrL3kjFZa+PJ+nYX0R+/RJ3WAVxIK0v+xouXcb6W+DT3uGK8VGhpB8j54Rd82+or/EfdeLHQcjlMo3Oj6E/3AJ1ctXi19Cd5bvn7IjfO7dsZSylyCUvYTK3VEDlnLAmvfUxJ4RWrPrPZTElhMWZTKcUXDGg9y/76cqtvva9JXvJRGnRtA0DDbm35PSnTqv9sYhqbh0wnc+V2ft+fAUCbUQ9z8XAOp/+0oU/n6U9xdPUOyy++ELfLUk3XbKakoAhT8fU9QEqKinHWueHk4lw2Pw9kotI4Wd7j17ElhuNll6BunNvnDmTQsFtZxd8GXdtYyr4D6Pzr4dm0Pr1WvEHDHqF0fadsH5Eb5/bNxrIXsgIRNmsW2506LZtw33ujANgxZi6uvp7UCQ7g6OodnPslnb5xb6F2Ulueror8cDQ/PP625TOKzl0gPzWbvt/OJP+3bPJ+PYJbvTo0G9KDQ4vW0f6FITS4L4TCM/n879X/oHbW0PH14Zzbd5jGPcM4svpnTu86SMvh9+PTpimtnnyQgwvj7OqvNGHf/B/sTPDTfUCtInf3bxiyzuATEmiZx7/95zt6r56O8eJldoyeg9bTnV5fTaaksJjLp/JInvcNKic19703iq0j/2X53LxfjxA0rCd9v53Jye1JXPn9otXnbnh4EgCRc8awf9ZXFc7t45v3lhvLnkg13lrmTqqX3ikXHw9aj+xtF/co/nC3Lq0oeZ7tUU0/z76hzajTyp8j//1Z0TikGq+osYrzDXaVPISoKnnJR60uUdUWcg9ECCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExsYCEBYWpnCEjk/lpKbz9JE0H9wDlVrNsQ272TPpk3LlSYTtAh+JIPgf/fAJCaQ438DqLqOVDqnGkvlcPRxiBbJ48WI2btzIjz/+yKhRo7j//vtZvHgxTk5O+Pj4EBAQoHSIDi90/CAa3NeWuJiXWNNtHHVaNqHj5CeUDqtGKb54mbQlm9j/r6+UDqXGk/lcPRwigcyaNYsRI0YQEhJiaXNyckKv11tWH1euXOG5556jRYsWtGvXjn/+859KheuQWgy/n5R531B4Jp/ivEskvb+KoGHRqNQOMUUcwukdyWTF7eLytYqr4u6R+Vw97P4SVkZGBllZWcybN69cX05ODoMHDwbg1VdfxdXVlcOHD6NSqcjNza3uUB2W1tMdXeN65B/KsrTlpWSh9XBH518PQ7acS+E4ZD5XH7tPICdPngTAz8/Pqj0tLY3s7GzCwsIoKCjgiy++4MSJE6hUKgDq169/22N4eHhgNBpvfWAN0FzjzauekVZtmmsVQ40XCy1tf1QAvXFznZqmZ89ojpScr/LPreg812Y9e1bfeZb5XPnzrNVqMRgMlX6f3a/nfH19AcjMvF6l1Ww2M3HiREpLSwkLC+PIkSP4+voyY8YMOnXqRHR0NPHx8UqF7HBKCsr2LHD2vL5fwx97F1y91ieEo5D5XH3sfgUSHBxMUFAQkyZNwtnZGZ1Ox6JFizhw4ADu7u60atWKpKQkjh49SlhYGLNnz2bPnj088sgjZGZm4unpecsxbMm8jqqi4nPGS4UUnDyHT0ggl46cAsC3rR6joZCCnJp9vX7btu01usifvajO8yzzufqKKdr9CkSj0bB69WoaNmzIyJEjmTBhAn379iUqKorQ0FDUajUBAQFoNBr+9re/ARAeHk7dunU5fPiwwtE7jozlWwkdF4tbfW9cfD3p8NKjZK7cbhebM9UUKrUaJxdnVBoNqFQ4uThf34tCVCmZz9XDIWZv+/btSUhIsGpbsGABUVFRANStW5eePXvyww8/8OCDD3L48GHOnj1LUFBQRR8nKpA87xtcfDwZuP1DVGoVx9bvZt/bXyodVo3SfEgPIueOtbx+4thXFOScle+D3AUyn6uHQySQGxUVFZGens6ECRMsbf/+97/5+9//zksvvYSzszPLli2jTp06isXoaMymUhKnLCFxyhKlQ6mxMldtJ3PVdqXDqBVkPlcPh0wgycnJmEwmq2+gN2vWjO3btysXlBBC1DIOmUDCw8ORjRSFEEJZdn8TXQghhH2SBCKEEMImkkCEsCMB/cKJ+Wyi0mFUWrcPRtNi+ANKhyGqmSQQIeyFSkWnySNI+mAVaq2GAds/JPT5QVaHRM4ZwwPL3wCgfkQbhmcsw0PfwNLv6uvJsJRP0Q/oVqlx+8a9Racp1tVqPQIbMDxjGfW7BjM8Yxk+IYFW/e3GD2LAtg9QazUkz11D2CvD5HsttYwkECHsRJOYMEouXyE/JYtSYwnx4+fTbvwgvNs0BSCgT2ea9OrErhcXApCb8BuHV2yl+9xxliqzEbNHcSb+IFlxuyocY0jiQnRN6lk3ms3Ej59PyxEP4PfHt5hVKiLnjiH9iy3k7k4lee4aIueNQ+1cliDqtA4gdFwsO8fOo9RYgiE7l0tHTxH4cMRdODPCXkkCEcJO+PfpzOldBy2v85KPcmjROrrPG4d7Qx8iZj/LnkmfUJR7vVje/ndX4OKto+3o/gQ9Gk29sBYkvP5xpcc2ZOey7+3lRM4Zg8bNhZBRj6D1cGf/rLK9S1I+iuNqQRFhrwxDpXGi+7yxpCxYS/6hY5bPOLUzBf/enW0/AcLhyHpTCDvhExJIxoqtVm2/zllDk14d6f/DbE5XsLIwXTGyc9x8eq+ZjrnExM/PzcF4ocCm8dO/2IJ/7870WDSBBhFt2DRoGqXGkrLOa6uUR7a8h4e+Aabiq6TM/9bq/RcP5xA0NMqmsYVjkhWIEHbCxUvHVYN1tVhziYlze9Nx9fUic+W2Ct93IeMEVy8VYjQUcmpH8h3FsOuFj2gY2ZbfPt5gtbqAslXK/llfE9CnCzvHzy9XV8poKMKlju6OxheORVYgQtiJ4osFOHtY71fhFx5M0LCepH66kS5vPs26Xq9gumK9d02XGU9xPj0HVx8P2r8whKTZKy19+thIIt59xvLa2cON/j+9D6VlX8RNWbCWlAXfWvqLzl6gON/A+dTjFcZ4IfU4pmIjhqwz5fq0Hm4U27j6EY5JEkgt4x0cQN+4t5QOw254BwcoHYJF/qFjeAU1trzWuLsSOWcM+95eTtrnm+m79k3uff1x9k5bajmmcUwYTR/qSlzMi2g97+GhDe+Qs3kveclHAchaG0/W2ut74wxJXMimQdMouAvb6nq19Cf/4LEq/9y/IvPZWnXPZ0kgtYzWw71a9wsQty9n8y+EvfqY5XXn6U9ScPwsaUs3ARD//AL6//h/HP9+D7m7U9HW0dHt/efYM2UJhafzKTydT/KcNUTOHct3vV+9fv+imjSKbMfhr7be+sAqJPNZWXIPRAg7cWLrfpx1rvi01dM4Jgx9/26WR3bh+pNS3T4se1Iq4t1nOLc/g6Ord1iOObhw3bWnpR6raIi7Rhfgh2fzRmR/l3Drg0WNoTJLVUIhqpytOxIG9AsnaGgUPz393l2I6u7p9sFozu47TMbyHyvs7xv3lqwUaiC5hCWEHTm+cQ/HN+5ROoxK+/NKSdQecglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm8hjvELYmfC3/o5PWz0nfjpAyrxvLO0qjRM9Pnoet7pe5Py4j0OL1tG4ZwfajY0Fyvbo2PLoDNz86pRru7Ew4l+p2yGIzjOeQqVScXpXCgdmff2XMeia1KPf+ne4dOQUBSd/J378/Ko5EcLuSQIRwo74tm9OqamU7wdOIfrjl3Ct68WV3y8C0LRfOOd+See3jzcQtegFXHw9ObktiZPbkgB4+Pt/lSWKQ5Rvq4S8g1mWL0E+uGoazjo3rhYU3TQGgBM/7uN/L//7jn9+4VjkEpYQdqReWAtOx6cAcCbhN3xDm1n6PAL8LFVyL2ScoG775pa+uh2C+P3XI1afVVHb7TCXmABQqdUU5eZTUlR8yxgaR3eg77czaTaoe6XHE45LEogQdkTr5W75a7+koAit1z2WvotHTlE/og0A9cOD0Xq6W/r8+3QmZ/Neq8+qqO126WMjGbhjDsaLlzGbru/7UVEMhWfP80338Wx5bCYtn+iFi7fsCVJbSAIRwo4YLxbirCvbE0Sjc8N48bKlL2fzL7j6evLgyqlcybvEld8vWfoa3teW0/EHrT6rorY/eLVsQp81M6z+azd2oKU/a208a7s/j1sDH+q0vl4ivKIYSo0lmIqMmK4Yyd2TikfTBlVxKoQDkHsgQtiRcwcyaBYbyYkf9tGgaxuOrfufpc9cWsru18r2O4+cN46z+9KBskq4l0/nUXr1evn2G9tUTmq0dXQU55UlnYuHT7Bp8LQKY1BrNWWl4M1mSgqKMBVf38Cqohg07q6UFF4BoG775qQt+b6qToewc5JAhLAjeb8eIWhYT/p+O5OT25NQqVSEPNefQ4vWcU/junSfNw5zaSm/fbwBU1HZP+wBfbqUu1R1Y5vO3482/+jHnslLbhmD/4OdCX66D6hV5O7+DUPWGdzq1aHZkB4cW/e/cjE0imrPva8/TunVErLX76bo7IUqPSfCfkk5dyHuAlvLud8tTR8K50q+gdyE3xQZX8q510yyAhGiFsje4Hgl4oX9k5voQgghbCIJRAghhE0kgQghhLCJJBAhhBA2cZgEYjQamTJlCv7+/ri5uRETE0NiYiIqlYq4uDilwxPitqic1HSZ+TR/++0zHk/7nPvefw4nF2elwxLCJg6RQMxmM0OHDuWTTz5h8uTJrF+/Hr1eT2xsWcXRsLAwhSMU4vaEjh9Eg/vaEhfzEmu6jaNOyyZ0nPyE0mEJYROHeIx38eLFbNy4kaSkJEJCQgCIjo5Gr9fj4+NDQEDALT5BCPvQYvj97Jv5JYVn8gFIen8V0YtfYu+0pZhLS2/xbiHsi0MkkFmzZjFixAhL8gBwcnJCr9fj7OzMsWPHGDhwoKXvwoULXLp0ifz8fAWiFaJiWk93dI3rkX8oy9KWl5KF1sMdnX89DNm5CkYnROXZfQLJyMggKyuLefPmlevLyclh8ODBBAYGkpSUZGmfMGECJSUl5Y6/GQ8PD4xG460PFOI2Ndd486pnpFWb5lqRROPFQkvbH8US/yigWFP17BnNkZLzSochbkKr1WIwGCr9PrtPICdPngTAz8/Pqj0tLY3s7Oxy9z+MRiPLly9n8+bN1RajELej5FqZdmdPd4rOXQCwlGv/o4S7EI7E7hOIr68vAJmZmXTp0gUou6k+ceJESktLyyWQdevW0bhxY+69997bHsOWzCvEX6moFpbxUiEFJ8/hExLIpSOnAPBtq8doKKQg55wSYVabbdu2Sy2sGsjuE0hwcDBBQUFMmjQJZ2dndDodixYt4sCBA7i7u9OqVSur45csWcLf//53haIV4q9lLN9K6LhYcvekUlpiosNLj5K5crvcQBcOye4TiEajYfXq1Tz77LOMHDkSf39/JkyYgKenJ0eOHEGtvv4k8smTJ/n5559ZtmyZghELcXPJ877BxceTgds/RKVWcWz9bva9/aXSYQlhE7tPIADt27cnISHBqm3BggVERUVZtX3++ec89NBDlsteQtgbs6mUxClLSJxy6305hLB3DvFFwhsVFRWRnp5e7v7H0qVL5fKVEEJUE4dYgdwoOTkZk8lULoEcPnxYoYiEEKL2ccgEEh4ejmykKIQQynLIS1hCCCGUJwlECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYROVWb6RJ0SVMxoKOZ96XOkw7IZ3cABaD3elwxBVTBKIEEIIm8glLCGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRNJIEIIIWwiCUQIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2OT/A6NV7/Feb03ZAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAGOCAYAAAC5Y1UnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABR80lEQVR4nO3deViU5f748fcMw7A0gIDiCjKKC6IouSCJgpS5VCou2UnLOr/Tsdyy1TLXbDnmt3JLz7Eyy7T0aIapqWWa4kExlUADBEXEDQ1cBkFGhvn9gY2NYMqIPDPweV1X19Xc9zNzf3iuGz/cz/PM51aZzWYzQgghRCWplQ5ACCGEY5IEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRNJIEIIIWwiCUQIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE43SATiSSwVGUjLOKzJ2uxbeeOq0iowtKs9oKOR86nGlw7Ab3sEBaD3clQ5DVDFJIJWQknGeyJHrFRk7/vOH6RZWX5GxReWdTz3O9wMmKx2G3egb9xb1u7RWOgxRxeQSlhBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYxGESiNFoZMqUKfj7++Pm5kZMTAyJiYmoVCri4uKUDk8IIWodh0ggZrOZoUOH8sknnzB58mTWr1+PXq8nNjYWgLCwMIUjLE/rrObgN4OY9Ex7q/bPZnZn48IHFYpKKCnwkQj6xs1keOYyhiQuVDocIe6YQ5QyWbx4MRs3biQpKYmQkBAAoqOj0ev1+Pj4EBAQoHCE5RmvlvLkGz+zY+lDrP85h+TD+Qzo2ZRHogJoN3it0uEJBRRfvEzakk241vMi5J8PKx2OEHfMIVYgs2bNYsSIEZbkAeDk5IRer7esPg4fPkxERAQtW7YkIiKCjIwMpcK12J+ax/99nsIXb/egcX13Fk/rxph3Ejh9rlDp0IQCTu9IJituF5dPnFM6FCGqhN2vQDIyMsjKymLevHnl+nJychg8eDAAzz77LGPGjGHEiBF8+eWXjBo1ip9++um2xvDw8MBoNN7yuFK3ZhDwcqXif2txEg/3CODAyoH8lHialZuOVur9f4juGY26yLb3iurXXOPNq56RSodhN3r2jOZIiTKVrMWtabVaDAZDpd9n9yuQkydPAuDn52fVnpaWRnZ2NmFhYZw9e5b9+/fzt7/9DYC//e1v7N+/n3PnlP9Lr6TEzP+Scqnn48ZncYeVDkcIIaqM3a9AfH19AcjMzKRLly5A2U31iRMnUlpaSlhYGDk5OTRu3BgnJyeg7PJWo0aNyMnJoV69ercc43Yz764DuZUu5x55b32eGtCC+SsOMXdiVzoM/ZYrxaZKfQbA9m3bpZy7A8lNTJNy7n+ybdt2KedeA9n9CiQ4OJigoCAmTZrEf//7X77//nsGDBjA/v37cXd3p1WrVkqHeFP3uGlYOrMHr835hedn7eZs/hXeGd9J6bCEEKJK2H0C0Wg0rF69moYNGzJy5EgmTJhA3759iYqKIjQ0FLVajb+/PydPnsRkKvvL3mQycerUKfz9/RWN/f2Xw8k6aWDhylTMZnhq8g7+Magl3Ts2UDQuoQyVWo2TizMqjQZUKpxcnFFr7f4igBA35RCzt3379iQkJFi1LViwgKioKKDs/kiHDh346quvGDFiBF999RVhYWG3dfnqbukT2YRhvfWEDrn+yO7REwZem/MLn73ZndAhayksKlEsPlH9mg/pQeTcsZbXTxz7ioKcs6zuMlrBqISwnUMkkBsVFRWRnp7OhAkTLG3//ve/GTlyJG+++Sbe3t588cUXygUIbIo/gXfkl+XaF65MZeHKVAUiEkrLXLWdzFXblQ5DiCrjkAkkOTkZk8lk9Q301q1bs2fPHgWjEkKI2sUhE0h4eDhms1npMIQQolaz+5voQggh7JMkECGEEDaRBCKEHQnoF07MZxOVDqPSun0wmhbDH1A6DFHNJIEIYS9UKjpNHkHSB6tQazUM2P4hoc8Psjokcs4YHlj+BgD1I9owPGMZHvrr3yty9fVkWMqn6Ad0q9S4fePeotOUJ6yaPQIbMDxjGfW7BjM8Yxk+IYFW/e3GD2LAtg9QazUkz11D2CvD5HsttYwkECHsRJOYMEouXyE/JYtSYwnx4+fTbvwgvNs0BSCgT2ea9OrErhfL9hLJTfiNwyu20n3uOFTqsl/liNmjOBN/kKy4XRWOMSRxIbomN3w/ymwmfvx8Wo54AL8/yo2oVETOHUP6F1vI3Z1K8tw1RM4bh9q5LEHUaR1A6LhYdo6dR6mxBEN2LpeOniLw4Yi7cGaEvZIEIoSd8O/TmdO7Dlpe5yUf5dCidXSfNw73hj5EzH6WPZM+oSj3elXb/e+uwMVbR9vR/Ql6NJp6YS1IeP3jSo9tyM5l39vLiZwzBo2bCyGjHkHr4c7+WV8BkPJRHFcLigh7ZRgqjRPd540lZcFa8g8ds3zGqZ0p+PfubPsJEA5H1ptC2AmfkEAyVmy1avt1zhqa9OpI/x9mc7qClYXpipGd4+bTe810zCUmfn5uDsYLBTaNn/7FFvx7d6bHogk0iGjDpkHTKDVeq5ZwbZXyyJb38NA3wFR8lZT531q9/+LhHIKGRtk0tnBMsgIRwk64eOm4aiiyajOXmDi3Nx1XXy8yV26r8H0XMk5w9VIhRkMhp3Yk31EMu174iIaRbfnt4w1WqwsoW6Xsn/U1AX26sHP8fMylpVb9RkMRLnV0dzS+cCyyAqmEdi28if9cma1I27XwVmRcUX2KLxbg7OFm1eYXHkzQsJ6kfrqRLm8+zbper2C6Yr35WZcZT3E+PQdXHw/avzCEpNkrLX362Egi3n3G8trZw43+P70PpWVfxE1ZsJaUBd9a+ovOXqA438D51OMVxngh9TimYiOGrDPl+rQebhTbuPoRjkkSSCV46rSyJ4e4a/IPHcMrqLHltcbdlcg5Y9j39nLSPt9M37Vvcu/rj7N32lLLMY1jwmj6UFfiYl5E63kPD214h5zNe8lLLtu9MmttPFlr4y3HD0lcyKZB0yi4C9vqerX0J//gsSr/XGG/5BKWEHYiZ/MvNLivreV15+lPUnD8LGlLN5Xdg3h+AS0fv5/6XYMB0NbR0e3959gzZQmFp/O5kJ5D8pw1RM4dq8jjtI0i23F8y95qH1coRxKIEHbixNb9OOtc8Wmrp3FMGPr+3SyP7ML1J6W6fVj2pFTEu89wbn8GR1fvsBxzcOG6a09LPVatsesC/PBs3ojs7xJufbCoMVRmqUooRJWzdUvbgH7hBA2N4qen37sLUd093T4Yzdl9h8lY/mOF/X3j3pItbWsguQcihB05vnEPxzc63rYEf14pidpDLmEJIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibyFNYQtghbR0dD66cglfzRiwPeqJcf8snehH4yH2ondRsHvYmao0TPT95GY27C4bsXHa9ULmnovy6tKbz1Ccxl5rJ3rCbQ//57i/7GvfsQLuxsUBZafctj84oVztL1HyyAhHCDl0tKGLLsJmc25dRru+exnXxvvaP9qbB0zCXmGgU1Z7cxLSyCrolJuq08q/UeIbsXL6PncrG/m/QpFdHnNy0f9l3clsSmwZPY9PgaRQcz5XkUUtJAhHCDplLTDcty94oqj0adxd6/3caHV56FICC42fRuLsA4OzuitFQWKnxinLPU3q1rHS72VRqKbZ4q766HYL4/dcjlRpL1BxyCasSLhUYSck4f+sD74J2Lbzx1GlvfeAtGA2FN620Wht5Bweg9XBXOoxKca3rBWbYPHQGkXPH4hMSyMWjp6gfHszAHXPIS8mi8FSeTZ/dsEcohuwzmIqv3laff5/O5GxWrv6VzGdr1T2fJYFUQkrGeSJHrldk7PjPH66SSsDnU4/bVGKjpnLEEhtXLxVyJuEQALm7f8OzeSPqdWzJsbj/kbZ0E11mPk29Tq0490t6ufd6tWxiVd4d4OS2A6Qs+Bb3hj6Ejotl68hZ5d53s76G97Xl1/f/W4U/XeXIfLZW3fNZEogQDubsvnSaxXYHyv7iPLp2F64+nhRfMABQfL4Arac7Kic12jo6ivMuWd578fAJNg2eVu4z1VoNkXPGkvDax5QUXrmtPl2AH5dP51kub4naR+6BCGGnHlw5FZ+2eh5cORW/Lq0Jea4/APkpWag1avqsmYGTmwu/H8jg6NqdBD0WQ581M/BpG8ipHcno/P3o8MKQ2xqrWWx36rRswn3vjaLPmhm4N/DBrV4dQp7rX2EfQECfLopevhLKkxWIEHZqy7A3rV6fTUyz/H/i1KVWfcaLl/nhsZlWbT4hTTm2YfdtjZW5cluFW+YeWrTO0n+j3xYrczlX2A9JIELUUNkbHK+qr3AscglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExpZVAw0LC1M4wvK0zmr2rxzIiu+P8M7Hv1raP5vZnfq+bvQbvUXB6KwFPhJB8D/64RMSSHG+gdVdRisdUo2lclLTefpImg/ugUqt5tiG3eyZ9EmFpUOEbWQ+Vx+HSCCLFy9m48aNJCUlERISAkB0dDR6vR4fHx8CAgIUjrA849VSnnzjZ3YsfYj1P+eQfDifAT2b8khUAO0Gr1U6PCvFFy+TtmQTrvW8CPnnw0qHU6OFjh9Eg/vaEhfzEqarJdy/dCIdJz9B4pQlSodWY8h8rj4OcQlr1qxZjBgxwpI8AJycnNDr9ZbVx8svv4xer0elUnHw4EGlQrWyPzWP//s8hS/e7kHj+u4sntaNMe8kcPpc5Sql3m2ndySTFbeLyyfOKR1Kjddi+P2kzPuGwjP5FOddIun9VQQNi0aldohfRYcg87n62P2szcjIICsri8GDB5fry8nJsSSQgQMHsmPHDpo2bVrdIf6ltxYnUWIyc2DlQLYlnmblpqNKhyQUovV0R9e4HvmHsixteSlZaD3c0fnXUzAyIWxj95ewTp48CYCfn59Ve1paGtnZ2ZYEEhkZafMYHh4eGI3GWx5X6tYMAl6u1GeXlJj5X1IuHR8P4bO4w7aGSHTPaNRFd558mmu8edXT9nNV0/TsGc2Rkqov0V/Redbo3AAwXry+AjVevAyA87W+mqpnz+o7z7VZz562nWetVovBYKj0++x+BeLr6wtAZmampc1sNjNx4kRKS0vt8gb6n0XeW5+nBrRg/opDzJ3YFVcXJ6VDEgopKSgCwNnz+n4NWq97gLIdCIVwNHa/AgkODiYoKIhJkybh7OyMTqdj0aJFHDhwAHd3d1q1anXHY9xu5t11ILdS+4Hc46Zh6cwevDbnFxatSuXnzx7infGdeHF25WsUbd+2vUr2A8lNTJP9E/5k27btd2X/hIrOs/FSIQUnz+ETEsilI6cA8G2rx2gopCCnZl+vr87zXJvdrfN8M3a/AtFoNKxevZqGDRsycuRIJkyYQN++fYmKiiI0NBS1Hd98fP/lcLJOGli4MhWzGZ6avIN/DGpJ944NlA7NikqtxsnFGZVGAyoVTi7OqLV2/7eFQ8pYvpXQcbG41ffGxdeTDi89SubK7ZhLS5UOrcaQ+Vx9HOKstm/fnoSEBKu2BQsWEBUVpVBEt9YnsgnDeusJHXL9kd2jJwy8NucXPnuzO6FD1lJYZB8b8TQf0oPIuWMtr5849hUFOWfl+fm7IHneN7j4eDJw+4eo1CqOrd/Nvre/VDqsGkXmc/VxiARyo6KiItLT05kwYYKlbfz48XzzzTecOXOGBx54AF9fXw4dOqRYjJviT+AdWf4fhoUrU1m4MlWBiG4uc9V2MldtVzqMWsFsKiVxyhL53sddJPO5+tjv9Z+/kJycjMlksrqBPm/ePE6cOEFJSQlnzpxRNHkIIURt4JArkPDwcMxms9JhCCFEreaQKxAhhBDKkwQihBDCJpJAxG0J6BdOzGcTlQ6j0rp9MJoWwx9QOgxhh2RO3zlJIOLWVCo6TR5B0gerUGs1DNj+IaHPD7I6JHLOGB5Y/gYA9SPaMDxjGR766993cfX1ZFjKp+gHdKvUuH3j3qLTlCesmj0CGzA8Yxn1uwYzPGMZPiGBVv3txg9iwLYPUGs1JM9dQ9grw+R7AMKazOkqIQlE3FKTmDBKLl8hPyWLUmMJ8ePn0278ILzblBWuDOjTmSa9OrHrxYUA5Cb8xuEVW+k+d5ylymzE7FGciT9IVtyuCscYkrgQXZMbCgqazcSPn0/LEQ/g98e3a1UqIueOIf2LLeTuTiV57hoi541D7Vz2y1SndQCh42LZOXYepcYSDNm5XDp6isCHI+7CmRGOSuZ01ZAEIm7Jv09nTu+6XiI/L/kohxato/u8cbg39CFi9rPsmfQJRbnXi7jtf3cFLt462o7uT9Cj0dQLa0HC6x9XemxDdi773l5O5JwxaNxcCBn1CFoPd/bP+gqAlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AqHFkTlcN5ddAwu75hASSsWKrVduvc9bQpFdH+v8wm9MV/BVmumJk57j59F4zHXOJiZ+fm4PxQoFN46d/sQX/3p3psWgCDSLasGnQNEqN177Ff+0vuke2vIeHvgGm4qukzP/W6v0XD+cQNNR+qxaI6idzumrICkTckouXjqsG62qx5hIT5/am4+rrRebKbRW+70LGCa5eKsRoKOTUjuQ7imHXCx/RMLItv328weovMSj7i27/rK8J6NOFnePnl6srZTQU4VJHd0fji5pF5nTVkBVIJbRr4U3858pskdmuhbci4wIUXyzA2cN6vwq/8GCChvUk9dONdHnzadb1egXTFes9VbrMeIrz6Tm4+njQ/oUhJM1eaenTx0YS8e4zltfOHm70/+l9KC37gmjKgrWkLPjW0l909gLF+QbOpx6vMMYLqccxFRsxZJ0p16f1cKPYxr8UbeUdHEDfuLeqdUx75h1sX9tOy5yuGpJAKsFTp62SkuqOJv/QMbyCGltea9xdiZwzhn1vLyft8830Xfsm977+OHunLbUc0zgmjKYPdSUu5kW0nvfw0IZ3yNm8l7zksk2xstbGk7U23nL8kMSFbBo0jYK7sA2pV0t/8g8eq/LP/StaD/dqLastKkfmdNWQS1jilnI2/0KD+9paXnee/iQFx8+StnRT2fXa5xfQ8vH7qd81GABtHR3d3n+OPVOWUHg6nwvpOSTPWUPk3LGKPHrYKLIdx7fsrfZxhf2SOV01JIGIWzqxdT/OOld82uppHBOGvn83y+ONcP2pkm4flj1VEvHuM5zbn8HR1TssxxxcuO7akyWPVWvsugA/PJs3Ivu7hFsfLGoNmdNVQ2WWqoS1iq07uAX0CydoaBQ/Pf3eXYjq7un2wWjO7jtMxvIfK+zvG/eWXGpyYHeyI2FNnNPVPZ/lHoi4Lcc37uH4xspvxau0P/9VKcSfyZy+c3IJSwghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2ESewhKVoq2j48GVU/Bq3ojlQdZ7Gqg0TvT46Hnc6nqR8+M+Di1aR90OQXSe8RQqlYrTu1I4MOvrKhvPyVVLz09eRuPugiE7l10vLKwwBiFu5q/mV0V9dzqf/bq0pvPUJzGXmsnesJtD//nOql/XpB791r/DpSOnKDj5O/Hj51v62jzzEE0e6MiWYW/a+NNWPVmBiEq5WlDElmEzObcvo1xf037hnPslnU2Dp1E3tDkuvp7kHczi+wGT2dj/Dep1bIWzzq2CT7VtvEZR7clNTCurZFpiok4r/wpjEOJm/mp+VdR3p/PZkJ3L97FT2dj/DZr06oiTm7bcMSd+3MemwdOskodK41Rukyl7IAlEVIq5xHTTEtYeAX6WwnAXMk5Qt31zzCUmAFRqNUW5+ZQUFVfZeAXHz6JxdwHA2d0Vo6GwwhiEuJm/ml8V9d3pfC7KPU/p1bKy7WZTqaXQ4p81ju5A329n0mxQd0tb8yFRHP02vtyxSpNLWKLKXDxyivoRbTgdn0L98GAuHT0FlFUp7fDSo5zanlT2S1NFLh07Tf3wYAbumENeShaFp/JuGkN1MxoKb1pltTbyDg5A6+GudBhVoirmc8MeoRiyz2AqvmrVXnj2PN90Hw9m6PXVZE5uO0Dxhcs0jm7Pz89+SNvnBlTFj1BlJIGIKpOz+RcaRbXnwZVTuZJ3iSu/XwKuVSn9dhfRH79EndYBXEgr/w+rV8smVqWwAU5uO2BV/vpGQUOjORb3P9KWbqLLzKep16nVTWOobudTj9tcYqMmqkklY+50Prs39CF0XCxbR84q9z7LplJA7p5UPJo2oMF9dcnZ8kvV/yBVQBKIqDLm0lJ2v1a2xWfkvHGc3ZeOWqsp+6UwmykpKMJUbETlpEZbR0dx3vV/3C8ePsGmwdMqNZ5Krab4ggGA4vMFaD3dK4xBiKpyp/NZrdUQOWcsCa99TEnhlXL9GndXS3vd9s1JW/I9jaJCaRARQvMhPfBpG0iLx+8vt5uiUuQeiKi0B1dOxaetngdXTsWvS2tCnusPwD2N69JnzQx6/3ca2esTMBUZ8X+wM33WzKDP2je5fDoPQ9YZdP5+dHhhiE3j1Wnlj1u9OoQ815+ja3cS9FgMfdbMwKdtIKd2JFcYgxB/5Wbz+ca+Oq3873g+N4vtTp2WTbjvvVH0WTMD9wY+lvkM4Ne5FQ9vmkW/797m1PZfKTp7geS537DlsZn88Pjb5B88ZjfJA6Qab61zJ9VLq0rTh8K5km8gN+E3ReOAu3dpxR7Osz2pyee5Nsznm5FLWKLaZW9wvAqoQtxMbZ7PcglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExsYCEBYWpnCEjk/lpKbz9JE0H9wDlVrNsQ272TPpk3KlFoTtAh+JIPgf/fAJCaQ438DqLqOVDqnGkvlcPRxiBbJ48WI2btzIjz/+yKhRo7j//vtZvHgxTk5O+Pj4EBAQoHSIDi90/CAa3NeWuJiXWNNtHHVaNqHj5Cdu/UZx24ovXiZtySb2/+srpUOp8WQ+Vw+HSCCzZs1ixIgRhISEWNqcnJzQ6/WEhYWRl5dHv379aNWqFe3atWPQoEGcO3dOwYgdT4vh95My7xsKz+RTnHeJpPdXETQsGpXaIaaIQzi9I5msuF1cPiFz826T+Vw97P5sZmRkkJWVxeDBg8v15eTkEBYWhkql4tVXXyU9PZ2UlBSaN2/Oa6+9pkC0jknr6Y6ucT3yD2VZ2vJSstB6uKPzr6dgZEJUnszn6mP390BOnjwJgJ+fn1V7Wloa2dnZhIWF4ePjQ3R0tKWva9euLFq06LbH8PDwwGisHTWTmmu8edUz0qpNc21THOPFQkub8eJlgEpvmONoevaM5kjJ+Sr/3IrOc23Ws2f1nWeZz5U/z1qtFoPBUOn32f0KxNfXF4DMzExLm9lsZuLEiZSWlpa7gV5aWsqiRYvo378/4vaUFBQB4Ox5fb8Grdc9QNmubEI4EpnP1cfuVyDBwcEEBQUxadIknJ2d0el0LFq0iAMHDuDu7k6rVq2sjh83bhw6nY6xY8fe9hi2ZF5HVVHxOeOlQgpOnsMnJJBLR8o2YPJtq8doKKQgp2Zfr9+2bXuNLfJnT6rzPMt8lmKKFhqNhtWrV/Pss88ycuRI/P39mTBhAp6enhw5cgT1n26Kvfzyy2RkZPDdd99ZtYtby1i+ldBxseTuSaW0xESHlx4lc+V2zKVVt4NgbadSq1E7O6HSaEClwsnFGbPZbLWJkKgaMp+rh90nEID27duTkJBg1bZgwQKioqIsrydNmsS+ffvYsGEDLi4u1R2iw0ue9w0uPp4M3P4hKrWKY+t3s+/tL5UOq0ZpPqQHkXOvr4yfOPYVBTln5fsgd4HM5+rhEAnkRkVFRaSnpzNhwgQADh06xLvvvkvLli257777ANDr9axdu1bBKB2L2VRK4pQlJE5ZonQoNVbmqu1krtqudBi1gszn6uGQCSQ5ORmTyWS5gR4SEoLsiyWEENXLIRNIeHi4JAwhhFCY3GkWQghhE0kgQgghbCIJRAg7EtAvnJjPJiodRqV1+2A0LYY/oHQYoppJAhHCXqhUdJo8gqQPVqHWahiw/UNCnx9kdUjknDE8sPwNAOpHtGF4xjI89A0s/a6+ngxL+RT9gG6VGrdv3Ft0mmJdrdYjsAHDM5ZRv2swwzOW4RMSaNXfbvwgBmz7ALVWQ/LcNYS9Mgy11iFvqwobSQIRwk40iQmj5PIV8lOyKDWWED9+Pu3GD8K7TVMAAvp0pkmvTux6cSEAuQm/cXjFVrrPHWepMhsxexRn4g+SFberwjGGJC5E1+SGgoJmM/Hj59NyxAP4/fEtZpWKyLljSP9iC7m7U0meu4bIeeNQO5cliDqtAwgdF8vOsfMoNZZgyM7l0tFTBD4ccRfOjLBXkkCEsBP+fTpzetdBy+u85KMcWrSO7vPG4d7Qh4jZz7Jn0icU5V4vlrf/3RW4eOtoO7o/QY9GUy+sBQmvf1zpsQ3Zuex7ezmRc8agcXMhZNQjaD3c2T+rbO+SlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AcDiy3hTCTviEBJKxYqtV269z1tCkV0f6/zCb0xWsLExXjOwcN5/ea6ZjLjHx83NzMF4osGn89C+24N+7Mz0WTaBBRBs2DZp2vczKtVXKI1vew0PfAFPxVVLmf2v1/ouHcwgaGlX+g0WNJSsQIeyEi5eOqwbrarHmEhPn9qbj6utF5sptFb7vQsYJrl4qxGgo5NSO5DuKYdcLH9Ewsi2/fbzBanUBZauU/bO+JqBPF3aOn1+urpTRUIRLHd0djS8ci6xAahnv4AD6xr2ldBh2wzvYfrZDLr5YgLOH9X4VfuHBBA3rSeqnG+ny5tOs6/UKpivWe9d0mfEU59NzcPXxoP0LQ0iavdLSp4+NJOLdZyyvnT3c6P/T+1Ba9kXclAVrSVnwraW/6OwFivMNnE89XmGMF1KPYyo2Ysg6U65P6+FGsY2rH1vJfLZW3fNZEkgto/Vwr9Zyz+L25R86hldQY8trjbsrkXPGsO/t5aR9vpm+a9/k3tcfZ++0pZZjGseE0fShrsTFvIjW8x4e2vAOOZv3kpd8FICstfFkrY23HD8kcSGbBk2j4C5sq+vV0p/8g8eq/HP/isxnZcklLCHsRM7mX2hwX1vL687Tn6Tg+FnSlm4quwfx/AJaPn4/9bsGA6Cto6Pb+8+xZ8oSCk/ncyE9h+Q5a4icO1aRx2kbRbbj+Ja91T6uUI4kECHsxImt+3HWueLTVk/jmDD0/btZHtmF609Kdfuw7EmpiHef4dz+DI6u3mE55uDCddeelnqsWmPXBfjh2bwR2d8l3PpgUWOozFKVUIgqZ+uOhAH9wgkaGsVPT793F6K6e7p9MJqz+w6TsfzHCvv7xr0ll5pqILkHIoQdOb5xD8c37lE6jEr780pJ1B5yCUsIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQDkRbR8fDm2cxPHNZhf0uvp70XPIKvVdPp+WIsg2eOk19kscOfkqzwd3/8rOjFr3A31KXXi/p/iet/96Xh9a/Q7/v3qZBt7YVvFvURvIYrxAO5GpBEVuGzST6Py9W2N/hhSEkTv2Myyd+t7QdXBjHhbSKa1v9WeLUz2j15IMV9p3Y8gtpS77HWedGz09e5syfys6L2ktWIEI4EHOJ6S/LtXs2b0THSSPo9fUUPJs3AuDK7xdv67OLzl24ad8ftbNKS0ygUt1+wKJGkwQiRA3i16U1B2Z9xe7XP+be1/5W5Z8fOmEwGV9tvfWBolaQBCJEDXIhPQdDdi6GrDNoPdyr9LMb9+yAe31vsr6teLtcUftIAhGiBinIOYeLjweudb0oKTLe9Di3+t6V+lyPpvUJeW4Au1//5E5DFDWIJBAhHMyDK6fi01bPgyunUqeVP2716hDyXH8AkuesoeenrxCz5FV+nbMagJDn+hMyegDtxsbSZtTDAER+OLrc53aa9iTNh0bRZcZTNBvU3dIG0P7FobjXr0Ov5W8Qvfil6vgxhQOQarxC3AW2VuOtFioVXWaMJHHq0mobUqrx1kyyAhGitjGbqzV5iJpLEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0cJoEYjUamTJmCv78/bm5uxMTEkJiYiEqlIi4uTunwhBCi1nGIYopms5mhQ4eSmJjI9OnTCQoKYsWKFcTGxgIQFhamcIRC3B6Vk5rO00fSfHAPVGo1xzbsZs+kTzAVX1U6NCEqzSESyOLFi9m4cSNJSUmEhIQAEB0djV6vx8fHh4CAAIUjFOL2hI4fRIP72hIX8xKmqyXcv3QiHSc/QeKUJUqHJkSlOcQlrFmzZjFixAhL8gBwcnJCr9dbVh8DBw6kffv2hIWF0b17d5KSkhSKVoibazH8flLmfUPhmXyK8y6R9P4qgoZFo1I7xK+iEFbsftZmZGSQlZXF4MGDy/Xl5ORYEsjnn3/Or7/+yoEDB3j55Zf5+9//Xt2hCvGXtJ7u6BrXI/9QlqUtLyULrYc7Ov96CkYmhG3s/hLWyZMnAfDz87NqT0tLIzs725JAvLy8LH0XL15EXYm/6Dw8PDAab154TojKaq7x5lXPSKs2jc4NAOPFQkub8eJlAJyv9dVUPXtGc6TkvNJhiJvQarUYDIZKv8/uE4ivry8AmZmZdOnSBSi7qT5x4kRKS0utbqD/4x//YMuWLZjNZjZt2qRIvELcTElBEQDOnu6WzZu0XvcAZTsNCuFo7D6BBAcHExQUxKRJk3B2dkan07Fo0SIOHDiAu7s7rVq1shz7ySdlpaaXLVvGK6+8wsaNG29rDFsyrxB/paJiisZLhRScPIdPSCCXjpwCwLetHqOhkIKcc0qEWW22bdsuxRRrILu/B6LRaFi9ejUNGzZk5MiRTJgwgb59+xIVFUVoaGiFl6qeeOIJtm3bRl5engIRC3FzGcu3EjouFrf63rj4etLhpUfJXLkdc2mp0qEJUWl2vwIBaN++PQkJCVZtCxYsICoqCoCCggLOnz+Pv78/AN999x0+Pj74+PhUe6xC/JXked/g4uPJwO0folKrOLZ+N/ve/lLpsISwiUMkkBsVFRWRnp7OhAkTALh8+TJDhw7l8uXLODk54ePjw3fffYdKpVI2UCFuYDaVkjhliXzvQ9QIDplAkpOTMZlMlhvo9evXZ/fu3QpHJYQQtYtDJpDw8HBkI0UhhFCW3d9EF0IIYZ8kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsojLLN/KEqHJGQyHnU48rHYbd8A4OQOvhrnQYoopJAhFCCGETuYQlhBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRON0gE4kksFRlIyzisydrsW3njqtIqMLSpPqvFak2q8NZMkkEpIyThP5Mj1iowd//nDdAurr8jYovLOpx7n+wGTlQ7DbvSNe4v6XVorHYaoYnIJSwghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFs4hAJxGg0MmXKFPz9/XFzcyMmJobExERUKhVxcXFKhyeEELWS3ScQs9nM0KFD+eSTT5g8eTLr169Hr9cTGxsLQFhYmMIRVkzrrObgN4OY9Ex7q/bPZnZn48IHFYpKKCnwkQj6xs1keOYyhiQuVDocIe6Y3ZcyWbx4MRs3biQpKYmQkBAAoqOj0ev1+Pj4EBAQoHCEFTNeLeXJN35mx9KHWP9zDsmH8xnQsymPRAXQbvBapcMTCii+eJm0JZtwredFyD8fVjocIe6Y3a9AZs2axYgRIyzJA8DJyQm9Xl9u9TFjxgxUKhUHDx6s7jArtD81j//7PIUv3u5B4/ruLJ7WjTHvJHD6XKHSoQkFnN6RTFbcLi6fOKd0KEJUCbtOIBkZGWRlZTF48OByfTk5OVYJZP/+/ezevZumTZtWZ4i39NbiJEpMZg6sHMi2xNOs3HRU6ZCEEKJK2PUlrJMnTwLg5+dn1Z6WlkZ2drYlgRQXFzNmzBi++uoroqOjKz2Oh4cHRqPxlseVujWDgJcr9dklJWb+l5RLx8dD+CzucKVj+0N0z2jURZJ8HEVzjTevekYqHYbd6NkzmiMlymyFIG5Nq9ViMBgq/T67XoH4+voCkJmZaWkzm81MnDiR0tJSSwKZOnUqI0aMIDAwUIkw/1LkvfV5akAL5q84xNyJXXF1cVI6JCGEqBJ2vQIJDg4mKCiISZMm4ezsjE6nY9GiRRw4cAB3d3datWpFQkICv/zyC//6179sHud2M++uA7mV2g/kHjcNS2f24LU5v7BoVSo/f/YQ74zvxIuz91Q6xu3btst+IA4kNzFN9gP5k23btst+IDWQXa9ANBoNq1evpmHDhowcOZIJEybQt29foqKiCA0NRa1W8/PPP5OamoperycwMJATJ07Qu3dvtmzZonT4vP9yOFknDSxcmYrZDE9N3sE/BrWke8cGSocmFKBSq3FycUal0YBKhZOLM2qtXf8NJ8RfsvvZ2759exISEqzaFixYQFRUFACvvfYar732mqUvMDCQ9evX07Zt22qN80Z9IpswrLee0CHXH9k9esLAa3N+4bM3uxM6ZC2FRSUKRiiqW/MhPYicO9by+oljX1GQc5bVXUYrGJUQtrP7BHKjoqIi0tPTmTBhgtKh/KVN8SfwjvyyXPvClaksXJmqQERCaZmrtpO5arvSYQhRZRwugSQnJ2MymW76DfRjx45Vb0BCCFFLOVwCCQ8Px2w2Kx2GEELUenZ9E10IIYT9kgQihBDCJpJAhLAjAf3CiflsotJhVFq3D0bTYvgDSochqpkkECHshUpFp8kjSPpgFWqthgHbPyT0+UFWh0TOGcMDy98AoH5EG4ZnLMNDf/17Ra6+ngxL+RT9gG6VGrdv3Ft0mvKEVbNHYAOGZyyjftdghmcswyck0Kq/3fhBDNj2AWqthuS5awh7ZZh8r6WWkQQihJ1oEhNGyeUr5KdkUWosIX78fNqNH4R3m7ICoQF9OtOkVyd2vVi2l0huwm8cXrGV7nPHoVKX/SpHzB7FmfiDZMXtqnCMIYkL0TWpZ91oNhM/fj4tRzyA3x/fFlepiJw7hvQvtpC7O5XkuWuInDcOtXNZgqjTOoDQcbHsHDuPUmMJhuxcLh09ReDDEXfhzAh7JQlECDvh36czp3dd34ogL/kohxato/u8cbg39CFi9rPsmfQJRbnXixLuf3cFLt462o7uT9Cj0dQLa0HC6x9XemxDdi773l5O5JwxaNxcCBn1CFoPd/bP+gqAlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AcDiy3hTCTviEBJKxYqtV269z1tCkV0f6/zCb0xWsLExXjOwcN5/ea6ZjLjHx83NzMF4osGn89C+24N+7Mz0WTaBBRBs2DZpGqfFatYRrq5RHtryHh74BpuKrpMz/1ur9Fw/nEDQ0yqaxhWOSFYgQdsLFS8dVQ5FVm7nExLm96bj6epG5cluF77uQcYKrlwoxGgo5tSP5jmLY9cJHNIxsy28fb7BaXUDZKmX/rK8J6NOFnePnYy4tteo3GopwqaO7o/GFY5EVSCW0a+FN/OfKbEXaroW3IuOK6lN8sQBnDzerNr/wYIKG9ST10410efNp1vV6BdMV671rusx4ivPpObj6eND+hSEkzV5p6dPHRhLx7jOW184ebvT/6X0oLfsybsqCtaQs+NbSX3T2AsX5Bs6nHq8wxgupxzEVGzFknSnXp/Vwo9jG1Y9wTJJAKsFTp5WS6uKuyT90DK+gxpbXGndXIueMYd/by0n7fDN9177Jva8/zt5pSy3HNI4Jo+lDXYmLeRGt5z08tOEdcjbvJS+5bPOxrLXxZK2Ntxw/JHEhmwZNo+AubKvr1dKf/IPHqvxzhf2SS1hC2Imczb/Q4L7rVaQ7T3+SguNnSVu6qewexPMLaPn4/dTvGgyAto6Obu8/x54pSyg8nc+F9ByS56whcu5YRR6nbRTZjuNb9lb7uEI5kkCEsBMntu7HWeeKT1s9jWPC0PfvZnlkF64/KdXtw7InpSLefYZz+zM4unqH5ZiDC9dde1rqsWqNXRfgh2fzRmR/l3Drg0WNoTJLZUIhqpytOxIG9AsnaGgUPz393l2I6u7p9sFozu47TMbyHyvs7xv3luxIWAPJPRAh7MjxjXs4vrHyWx4r7c8rJVF7yCUsIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCKP8Qphh/y6tKbz1Ccxl5rJ3rCbQ//5ztKnraPjwZVT8GreiOVBT9zy+Mpo88xDNHmgI1uGvWnVXrdDEJ1nPIVKpeL0rhQOzPoagJZP9CLwkftQO6nZPOxNzCUmG39i4YgkgQhhhwzZuXwfO5XSqyX0Xj2dtC82YyoqK6J4taCILcNmEv2fF2/r+Nul0jiV23XwD3kHsyxfjHxw1TScdW5ove7Bu3UAWx6dYdsPKRyeJJBKuFRgJCXj/K0PvAvatfDGU6e9488xGgpvWmm1NvIODkDr4a50GOX8edMos6nUUj0Xykq837jnx18df7uaD4ni6LfxtH1uQLm+P1YWKrWaotx8SoqKCex/Hxp3F3r/dxq5u1NJen9Vpce8UzKfrVX3fJYEUgkpGeeJHLlekbHjP3+4SioBn089blOJjZrK3ktsNOwRiiH7DKbiq3fleAuVisbR7fn52Q8rTCBQVhq+w0uPcmp7EmZTKa51vcAMm4fOIHLuWHxCAsvtIXK3yXy2Vt3zWRKIEHbKvaEPoeNi2TpyVpUd79WyidX+IAAntx3gUtYZcrb88pefn7U2nqxvdxH98UvUaR3A1UuFnEk4BEDu7t/wbN6o2hOIUJYkECHskFqrIXLOWBJe+5iSwis2Ha9yUqOto6M475LluIuHT7Bp8LRy7w99fhANIkJoPqQHPm0DafH4/Vbb66q1mrLtbc1mSgqKMBUbObsvnWax3YGySydH1+4q97miZpPHeIWwQ81iu1OnZRPue28UfdbMwL2BDyHP9bf0P7hyKj5t9Ty4cip1WvlXeLzO348OLwy5rfGS537Dlsdm8sPjb5N/8BgZK7biVq+OZUz/BzvTZ80M+qx9k8un8zBknSE/JQu1Rk2fNTNwcnPh9wMZd+VcCPslKxAh7FDmym3l9kA/tGid5f9vfMz2QnpOueObPhTOsQ27Kz32H59ddO6CZczs9Qlkry+/10fi1KWV/nxRc0gCEaKGyt7geGXhhWORS1hCCCFsIglECCGETSSBCCGEsInDJBCj0ciUKVPw9/fHzc2NmJgYEhMTUalUxMXFKR2eEELUOg5xE91sNjN06FASExOZPn06QUFBrFixgtjYWADCwsIUjrA8rbOa/SsHsuL7I7zz8a+W9s9mdqe+rxv9Rm9RMDprgY9EEPyPfviEBFKcb2B1l9FKh1RjqZzUdJ4+kuaDe6BSqzm2YTd7Jn1S+W+Oi5uS+Vx9HCKBLF68mI0bN5KUlERISAgA0dHR6PV6fHx8CAgIUDjC8oxXS3nyjZ/ZsfQh1v+cQ/LhfAb0bMojUQG0G7xW6fCsFF+8TNqSTbjW8yLknw8rHU6NFjp+EA3ua0tczEuYrpZw/9KJdJz8BIlTligdWo0h87n6OMQlrFmzZjFixAhL8gBwcnJCr9dbVh+BgYG0bt2aDh060KFDBzZv3qxUuBb7U/P4v89T+OLtHjSu787iad0Y804Cp88VKh2aldM7ksmK28XlE+eUDqXGazH8flLmfUPhmXyK8y6R9P4qgoZFo1I7xK+iQ5D5XH3sftZmZGSQlZXF4MGDy/Xl5ORYXb5avXo1SUlJJCUl0bt37+oM86beWpxEicnMgZUD2ZZ4mpWbjiodklCI1tMdXeN65B/KsrTlpWSh9XBH519PwciEsI3dX8I6efIkAH5+flbtaWlpZGdnV8n9Dw8PD4zGW++dUOrWDAJertRnl5SY+V9SLh0fD+GzuMO2hkh0z2jURXeefJprvHnVM/KOP6em6NkzmiMlVV+iv6LzrNG5AWC8eH0Farx4GQDna301Vc+e1Xeea7OePW07z1qtFoPBUOn32f0KxNfXF4DMzExLm9lsZuLEiZSWllolkOHDhxMaGsro0aO5cOFCdYdaoch76/PUgBbMX3GIuRO74uripHRIQiElBUUAOHte369B63UPULZJlBCOxu4TSHBwMEFBQUyaNIn//ve/fP/99wwYMID9+/fj7u5Oq1atANi5cye//vore/fuxWw2M3bs2Nsew2AwUFxcfMv/tm/bXqnY73HTsHRmD16b8wvPz9rN2fwrvDO+U6U+4w/bt22/rRhv9d+2Sv4MNd22Kjqvt3OejZcKKTh5zmrXP9+2eoyGQgpyavb1+uo8z7WZrefZltUHOEAC0Wg0rF69moYNGzJy5EgmTJhA3759iYqKIjQ0FPW1m4/+/v4AuLi4MHr0aHbtUr609Psvh5N10sDClamYzfDU5B38Y1BLundsoHRoVlRqNU4uzqg0GlCpcHJxRq21+6ubDilj+VZCx8XiVt8bF19POrz0KJkrt2MuLVU6tBpD5nP1cYiz2r59exISrCuBLliwgKioKAAuX75MSUkJXl5emM1mvv76azp06KBApNf1iWzCsN56Qodcf2T36AkDr835hc/e7E7okLUUFpUoGOF1zYf0IHLu9RXbE8e+oiDnrDw/fxckz/sGFx9PBm7/EJVaxbH1u9n39pdKh1WjyHyuPg6RQG5UVFREeno6EyZMACA3N5fBgwdjMpkwmUy0adOGhQsXKhrjpvgTeEeW/4dh4cpUFq5MVSCim8tctZ3MVduVDqNWMJtKSZyyRL73cRfJfK4+DplAkpOTMZlMlhvozZo148CBAwpHJYQQtYtDJpDw8HDMZrPSYQghRK1m9zfRhRBC2CdJIEIIIWwiCUTcloB+4cR8NlHpMCqt2wejaTH8AaXDEHZI5vSdkwQibk2lotPkESR9sAq1VsOA7R8S+vwgq0Mi54zhgeVvAFA/og3DM5bhob/+fRdXX0+GpXyKfkC3So3bN+4tOk15wqrZI7ABwzOWUb9rMMMzlll9MQ+g3fhBDNj2AWqthuS5awh7ZZh8D0BYkzldJSSBiFtqEhNGyeUr5KdkUWosIX78fNqNH4R3m6YABPTpTJNendj1Ytmj07kJv3F4xVa6zx1nqTIbMXsUZ+IPkhVX8Rc8hyQuRNfkhoKCZjPx4+fTcsQD+HVpXdamUhE5dwzpX2whd3cqyXPXEDlvHGrnsl+mOq0DCB0Xy86x8yg1lmDIzuXS0VMEPhxxF86McFQyp6uGJBBxS/59OnN610HL67zkoxxatI7u88bh3tCHiNnPsmfSJxTlXi/itv/dFbh462g7uj9Bj0ZTL6wFCa9/XOmxDdm57Ht7OZFzxqBxcyFk1CNoPdzZP+srAFI+iuNqQRFhrwxDpXGi+7yxpCxYS/6hY5bPOLUzBf/enW0/AaLGkTldNZRfAwm75xMSSMaKrVZtv85ZQ5NeHen/w2xOV/BXmOmKkZ3j5tN7zXTMJSZ+fm4OxgsFNo2f/sUW/Ht3pseiCTSIaMOmQdMoNV77Fv+1v+ge2fIeHvoGmIqvkjL/W6v3XzycQ9DQKJvGFjWTzOmqISsQcUsuXjquGqyrxZpLTJzbm46rrxeZK7dV+L4LGSe4eqkQo6GQUzuS7yiGXS98RMPItvz28Qarv8Sg7C+6/bO+JqBPF3aOn1+urpTRUIRLHd0djS9qFpnTVUNWIJXQroU38Z8rs0VmuxbeiowLUHyxAGcP6/0q/MKDCRrWk9RPN9LlzadZ1+sVTFes91TpMuMpzqfn4OrjQfsXhpA0e6WlTx8bScS7z1heO3u40f+n96G07AuiKQvWkrLgW0t/0dkLFOcbOJ96vMIYL6Qex1RsxJB1plyf1sONYhv/UrSVd3AAfePeqtYx7Zl3sH1tOy1zumpIAqkET52WbmH1lQ6j2uUfOoZXUGPLa427K5FzxrDv7eWkfb6Zvmvf5N7XH2fvtKWWYxrHhNH0oa7ExbyI1vMeHtrwDjmb95KXXLYpVtbaeLLWxluOH5K4kE2DplFwF7Yh9WrpT/7BY1X+uX9F6+FO/T9ukgq7I3O6asglLHFLOZt/ocF9bS2vO09/koLjZ0lbuqnseu3zC2j5+P3U7xoMgLaOjm7vP8eeKUsoPJ3PhfQckuesIXLuWEUePWwU2Y7jW/ZW+7jCfsmcrhqSQMQtndi6H2edKz5t9TSOCUPfv5vl8Ua4/lRJtw/LniqJePcZzu3P4OjqHZZjDi5cd+3JkseqNXZdgB+ezRuR/V3CrQ8WtYbM6aqhMktVwlolNzGN7wdMrvT7AvqFEzQ0ip+efu8uRHX3dPtgNGf3HSZj+Y8V9veNe0suNTkwW+cz1Mw5Xd3zWe6BiNtyfOMejm/co3QYlfbnvyqF+DOZ03dOLmEJIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibyFNYwmZ+XVrTeeqTmEvNZG/YzaH/fGfVH/yPfjQbGEmpyUT88x9hOFa+JAOU7XXQJCaM/INZ7Jm8xKqvcc8OtH9xKFcvXyH++QUU5Z6n19dT0LhqMRoK+XnUh6i1GmI+fQXUKgpP5bFzXPnaQULcTN0OQXSe8RQqlYrTu1I4MOtrq/5G0e3p8OKjFF8sYMfouVw1FDJwxxyunLsIwE//b/ZNiyqGv/V3fNrqOfHTAVLmfVOu361eHQbv+Yhvuo2j8HR+ubldUnjltsdSgqxAhM0M2bl8HzuVjf3foEmvjji5aa36mw2MZMPDk/hl5pe0evLBCj/Dta4Xvu30fD9wCqWmUnzbN7fqbztmIJuHTGfvtKW0GzsQgISX/833A6dwfOMemg2KxFRsZNs/32dT7FQM2bk07N7urvy8ombKO5jF9wMms7H/G9Tr2ApnnXWNrJBn+7P50Rkc/vJHWl7bCbDwdD6bBk9j0+BpN/0H3bd9c0pNpXw/cAq+7fS41vUqd0zr/9eX3w9kWl7fOLdvdyylSAIRNivKPU/p1bIS1GZTqaVo3B8un8rDycUZraf7TQu/1W3fnDMJvwFwOj6Fuh2CrPrNJSZMxVe5kJ5j6fujtpDZVIrZDKYiI8V5l/7UJt+NFbfPXGICQKVWU5SbT0lRsaVP4+bC1YIiTFeMZfMzrGwOutXzos/aN+k4ecRNP7deWAtOx6cAcCbhN3xDm1n1az3dcfXxoCDnrKXtxrl9u2MpRS5hiTvWsEcohuwzmIqvWrXnJqYycMccVCoVGx55o8L3ar3u4aqhEICSgitove6x6lc7a3Dx1uHV0t+qfLWTm5YWwx/gxxHvWNpc63rRsHs7fv1wdVX9aDYzGgpvWmW1NvIODkDr4a50GDelj42kw0uPcmp7UtkfQ9dYzc/LV9B6lv0M38dOxXjxMl1m/p0m99/Lia37y32m1sudq+llJeNLCorKze3WT/ch/YsfaPOPflbtN87t2xlLKZJAxB1xb+hD6LhYto6cZdXurHOj6UNd+ea+cXgHN6XDy4+S8Mp/yr3fePEyuqZlFY41OleMFy9b9e+f9RXRH7/MxYwTXMg4YWmPmDWKpPdXWX65VU5qun04moTXPraL+x/nU4/bXGKjJrL3kjFZa+PJ+nYX0R+/RJ3WAVxIK0v+xouXcb6W+DT3uGK8VGhpB8j54Rd82+or/EfdeLHQcjlMo3Oj6E/3AJ1ctXi19Cd5bvn7IjfO7dsZSylyCUvYTK3VEDlnLAmvfUxJ4RWrPrPZTElhMWZTKcUXDGg9y/76cqtvva9JXvJRGnRtA0DDbm35PSnTqv9sYhqbh0wnc+V2ft+fAUCbUQ9z8XAOp/+0oU/n6U9xdPUOyy++ELfLUk3XbKakoAhT8fU9QEqKinHWueHk4lw2Pw9kotI4Wd7j17ElhuNll6BunNvnDmTQsFtZxd8GXdtYyr4D6Pzr4dm0Pr1WvEHDHqF0fadsH5Eb5/bNxrIXsgIRNmsW2506LZtw33ujANgxZi6uvp7UCQ7g6OodnPslnb5xb6F2Ulueror8cDQ/PP625TOKzl0gPzWbvt/OJP+3bPJ+PYJbvTo0G9KDQ4vW0f6FITS4L4TCM/n879X/oHbW0PH14Zzbd5jGPcM4svpnTu86SMvh9+PTpimtnnyQgwvj7OqvNGHf/B/sTPDTfUCtInf3bxiyzuATEmiZx7/95zt6r56O8eJldoyeg9bTnV5fTaaksJjLp/JInvcNKic19703iq0j/2X53LxfjxA0rCd9v53Jye1JXPn9otXnbnh4EgCRc8awf9ZXFc7t45v3lhvLnkg13lrmTqqX3ikXHw9aj+xtF/co/nC3Lq0oeZ7tUU0/z76hzajTyp8j//1Z0TikGq+osYrzDXaVPISoKnnJR60uUdUWcg9ECCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExsYCEBYWpnCEjk/lpKbz9JE0H9wDlVrNsQ272TPpk3LlSYTtAh+JIPgf/fAJCaQ438DqLqOVDqnGkvlcPRxiBbJ48WI2btzIjz/+yKhRo7j//vtZvHgxTk5O+Pj4EBAQoHSIDi90/CAa3NeWuJiXWNNtHHVaNqHj5CeUDqtGKb54mbQlm9j/r6+UDqXGk/lcPRwigcyaNYsRI0YQEhJiaXNyckKv11tWH1euXOG5556jRYsWtGvXjn/+859KheuQWgy/n5R531B4Jp/ivEskvb+KoGHRqNQOMUUcwukdyWTF7eLytYqr4u6R+Vw97P4SVkZGBllZWcybN69cX05ODoMHDwbg1VdfxdXVlcOHD6NSqcjNza3uUB2W1tMdXeN65B/KsrTlpWSh9XBH518PQ7acS+E4ZD5XH7tPICdPngTAz8/Pqj0tLY3s7GzCwsIoKCjgiy++4MSJE6hUKgDq169/22N4eHhgNBpvfWAN0FzjzauekVZtmmsVQ40XCy1tf1QAvXFznZqmZ89ojpScr/LPreg812Y9e1bfeZb5XPnzrNVqMRgMlX6f3a/nfH19AcjMvF6l1Ww2M3HiREpLSwkLC+PIkSP4+voyY8YMOnXqRHR0NPHx8UqF7HBKCsr2LHD2vL5fwx97F1y91ieEo5D5XH3sfgUSHBxMUFAQkyZNwtnZGZ1Ox6JFizhw4ADu7u60atWKpKQkjh49SlhYGLNnz2bPnj088sgjZGZm4unpecsxbMm8jqqi4nPGS4UUnDyHT0ggl46cAsC3rR6joZCCnJp9vX7btu01usifvajO8yzzufqKKdr9CkSj0bB69WoaNmzIyJEjmTBhAn379iUqKorQ0FDUajUBAQFoNBr+9re/ARAeHk7dunU5fPiwwtE7jozlWwkdF4tbfW9cfD3p8NKjZK7cbhebM9UUKrUaJxdnVBoNqFQ4uThf34tCVCmZz9XDIWZv+/btSUhIsGpbsGABUVFRANStW5eePXvyww8/8OCDD3L48GHOnj1LUFBQRR8nKpA87xtcfDwZuP1DVGoVx9bvZt/bXyodVo3SfEgPIueOtbx+4thXFOScle+D3AUyn6uHQySQGxUVFZGens6ECRMsbf/+97/5+9//zksvvYSzszPLli2jTp06isXoaMymUhKnLCFxyhKlQ6mxMldtJ3PVdqXDqBVkPlcPh0wgycnJmEwmq2+gN2vWjO3btysXlBBC1DIOmUDCw8ORjRSFEEJZdn8TXQghhH2SBCKEEMImkkCEsCMB/cKJ+Wyi0mFUWrcPRtNi+ANKhyGqmSQQIeyFSkWnySNI+mAVaq2GAds/JPT5QVaHRM4ZwwPL3wCgfkQbhmcsw0PfwNLv6uvJsJRP0Q/oVqlx+8a9Racp1tVqPQIbMDxjGfW7BjM8Yxk+IYFW/e3GD2LAtg9QazUkz11D2CvD5HsttYwkECHsRJOYMEouXyE/JYtSYwnx4+fTbvwgvNs0BSCgT2ea9OrErhcXApCb8BuHV2yl+9xxliqzEbNHcSb+IFlxuyocY0jiQnRN6lk3ms3Ej59PyxEP4PfHt5hVKiLnjiH9iy3k7k4lee4aIueNQ+1cliDqtA4gdFwsO8fOo9RYgiE7l0tHTxH4cMRdODPCXkkCEcJO+PfpzOldBy2v85KPcmjROrrPG4d7Qx8iZj/LnkmfUJR7vVje/ndX4OKto+3o/gQ9Gk29sBYkvP5xpcc2ZOey7+3lRM4Zg8bNhZBRj6D1cGf/rLK9S1I+iuNqQRFhrwxDpXGi+7yxpCxYS/6hY5bPOLUzBf/enW0/AcLhyHpTCDvhExJIxoqtVm2/zllDk14d6f/DbE5XsLIwXTGyc9x8eq+ZjrnExM/PzcF4ocCm8dO/2IJ/7870WDSBBhFt2DRoGqXGkrLOa6uUR7a8h4e+Aabiq6TM/9bq/RcP5xA0NMqmsYVjkhWIEHbCxUvHVYN1tVhziYlze9Nx9fUic+W2Ct93IeMEVy8VYjQUcmpH8h3FsOuFj2gY2ZbfPt5gtbqAslXK/llfE9CnCzvHzy9XV8poKMKlju6OxheORVYgQtiJ4osFOHtY71fhFx5M0LCepH66kS5vPs26Xq9gumK9d02XGU9xPj0HVx8P2r8whKTZKy19+thIIt59xvLa2cON/j+9D6VlX8RNWbCWlAXfWvqLzl6gON/A+dTjFcZ4IfU4pmIjhqwz5fq0Hm4U27j6EY5JEkgt4x0cQN+4t5QOw254BwcoHYJF/qFjeAU1trzWuLsSOWcM+95eTtrnm+m79k3uff1x9k5bajmmcUwYTR/qSlzMi2g97+GhDe+Qs3kveclHAchaG0/W2ut74wxJXMimQdMouAvb6nq19Cf/4LEq/9y/IvPZWnXPZ0kgtYzWw71a9wsQty9n8y+EvfqY5XXn6U9ScPwsaUs3ARD//AL6//h/HP9+D7m7U9HW0dHt/efYM2UJhafzKTydT/KcNUTOHct3vV+9fv+imjSKbMfhr7be+sAqJPNZWXIPRAg7cWLrfpx1rvi01dM4Jgx9/26WR3bh+pNS3T4se1Iq4t1nOLc/g6Ord1iOObhw3bWnpR6raIi7Rhfgh2fzRmR/l3Drg0WNoTJLVUIhqpytOxIG9AsnaGgUPz393l2I6u7p9sFozu47TMbyHyvs7xv3lqwUaiC5hCWEHTm+cQ/HN+5ROoxK+/NKSdQecglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm8hjvELYmfC3/o5PWz0nfjpAyrxvLO0qjRM9Pnoet7pe5Py4j0OL1tG4ZwfajY0Fyvbo2PLoDNz86pRru7Ew4l+p2yGIzjOeQqVScXpXCgdmff2XMeia1KPf+ne4dOQUBSd/J378/Ko5EcLuSQIRwo74tm9OqamU7wdOIfrjl3Ct68WV3y8C0LRfOOd+See3jzcQtegFXHw9ObktiZPbkgB4+Pt/lSWKQ5Rvq4S8g1mWL0E+uGoazjo3rhYU3TQGgBM/7uN/L//7jn9+4VjkEpYQdqReWAtOx6cAcCbhN3xDm1n6PAL8LFVyL2ScoG775pa+uh2C+P3XI1afVVHb7TCXmABQqdUU5eZTUlR8yxgaR3eg77czaTaoe6XHE45LEogQdkTr5W75a7+koAit1z2WvotHTlE/og0A9cOD0Xq6W/r8+3QmZ/Neq8+qqO126WMjGbhjDsaLlzGbru/7UVEMhWfP80338Wx5bCYtn+iFi7fsCVJbSAIRwo4YLxbirCvbE0Sjc8N48bKlL2fzL7j6evLgyqlcybvEld8vWfoa3teW0/EHrT6rorY/eLVsQp81M6z+azd2oKU/a208a7s/j1sDH+q0vl4ivKIYSo0lmIqMmK4Yyd2TikfTBlVxKoQDkHsgQtiRcwcyaBYbyYkf9tGgaxuOrfufpc9cWsru18r2O4+cN46z+9KBskq4l0/nUXr1evn2G9tUTmq0dXQU55UlnYuHT7Bp8LQKY1BrNWWl4M1mSgqKMBVf38Cqohg07q6UFF4BoG775qQt+b6qToewc5JAhLAjeb8eIWhYT/p+O5OT25NQqVSEPNefQ4vWcU/junSfNw5zaSm/fbwBU1HZP+wBfbqUu1R1Y5vO3482/+jHnslLbhmD/4OdCX66D6hV5O7+DUPWGdzq1aHZkB4cW/e/cjE0imrPva8/TunVErLX76bo7IUqPSfCfkk5dyHuAlvLud8tTR8K50q+gdyE3xQZX8q510yyAhGiFsje4Hgl4oX9k5voQgghbCIJRAghhE0kgQghhLCJJBAhhBA2cZgEYjQamTJlCv7+/ri5uRETE0NiYiIqlYq4uDilwxPitqic1HSZ+TR/++0zHk/7nPvefw4nF2elwxLCJg6RQMxmM0OHDuWTTz5h8uTJrF+/Hr1eT2xsWcXRsLAwhSMU4vaEjh9Eg/vaEhfzEmu6jaNOyyZ0nPyE0mEJYROHeIx38eLFbNy4kaSkJEJCQgCIjo5Gr9fj4+NDQEDALT5BCPvQYvj97Jv5JYVn8gFIen8V0YtfYu+0pZhLS2/xbiHsi0MkkFmzZjFixAhL8gBwcnJCr9fj7OzMsWPHGDhwoKXvwoULXLp0ifz8fAWiFaJiWk93dI3rkX8oy9KWl5KF1sMdnX89DNm5CkYnROXZfQLJyMggKyuLefPmlevLyclh8ODBBAYGkpSUZGmfMGECJSUl5Y6/GQ8PD4xG460PFOI2Ndd486pnpFWb5lqRROPFQkvbH8US/yigWFP17BnNkZLzSochbkKr1WIwGCr9PrtPICdPngTAz8/Pqj0tLY3s7Oxy9z+MRiPLly9n8+bN1RajELej5FqZdmdPd4rOXQCwlGv/o4S7EI7E7hOIr68vAJmZmXTp0gUou6k+ceJESktLyyWQdevW0bhxY+69997bHsOWzCvEX6moFpbxUiEFJ8/hExLIpSOnAPBtq8doKKQg55wSYVabbdu2Sy2sGsjuE0hwcDBBQUFMmjQJZ2dndDodixYt4sCBA7i7u9OqVSur45csWcLf//53haIV4q9lLN9K6LhYcvekUlpiosNLj5K5crvcQBcOye4TiEajYfXq1Tz77LOMHDkSf39/JkyYgKenJ0eOHEGtvv4k8smTJ/n5559ZtmyZghELcXPJ877BxceTgds/RKVWcWz9bva9/aXSYQlhE7tPIADt27cnISHBqm3BggVERUVZtX3++ec89NBDlsteQtgbs6mUxClLSJxy6305hLB3DvFFwhsVFRWRnp5e7v7H0qVL5fKVEEJUE4dYgdwoOTkZk8lULoEcPnxYoYiEEKL2ccgEEh4ejmykKIQQynLIS1hCCCGUJwlECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYROVWb6RJ0SVMxoKOZ96XOkw7IZ3cABaD3elwxBVTBKIEEIIm8glLCGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRNJIEIIIWwiCUQIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2OT/A6NV7/Feb03ZAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -250,16 +250,16 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:57.096772Z", - "iopub.status.busy": "2024-11-23T19:54:57.096575Z", - "iopub.status.idle": "2024-11-23T19:54:57.318338Z", - "shell.execute_reply": "2024-11-23T19:54:57.317709Z" + "iopub.execute_input": "2024-12-05T03:21:31.750916Z", + "iopub.status.busy": "2024-12-05T03:21:31.750536Z", + "iopub.status.idle": "2024-12-05T03:21:31.980425Z", + "shell.execute_reply": "2024-12-05T03:21:31.979904Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGOCAYAAABYCEB2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuPklEQVR4nO3deVxU5f7A8c8MM8Mim+CCCwiKIqIo5RKKgltqi4pL3luWt3vrWrlkt7qVhktpXfNXqVneq95uy82yXMLSXDLJ5aKUiuACggLihgrKDgMz8/sDG53ABYQ5A3zfr5evl3OeM+f5zvFxvvOcOfN8VSaTyYQQQgghbJJa6QCEEEIIcXOSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGEapQOoz/T5RVw5flrpMGxG00AfdC5OSochakjGsyVbH88FZZCap1z//q7grFWu/8ZEEvVduHL8ND+Mel3pMGzGiOj5tOzdWekwRA3JeLZk6+M5NQ+e2qtc/6v6QQ9P5fpvTOTStxBCCGHDJFELIYQQNkwStRBCCGHDJFELIYQQNkxuJhNCiEYkeVYEhUmxqDRaVHYaHNp0pvXEBbh2H6x0aOImZEYthBCNTOuJCwhZU0Dwp1k0CQjl5FujMRTmKh2WuAlJ1EII0UiptfY0G/oXjCUFlJxPVToccROSqIUQopEylhZzefsq1E6uOLTuqHQ44ibqTaLW6/VERUXh7e2No6MjgwYNIi4uDpVKRXR0tNLhCSFEvXFudRTxj7qT+LQvRWmH8X/9e+ycXJUOS9xEvbiZzGQyMX78eOLi4pg7dy7+/v6sXr2ayMhIAEJCQhSO8Drfh0MJfOoBPIJ8Kc3JZ23v55QOSYgak/HcMLV+9E28Il9SOgxxh+pFol6xYgWbN28mPj6eoKAgACIiIvDz88PDwwMfHx+FI7yuNLeQpI+34NDcjaC/PqR0OELcFRnPQiivXiTqhQsXMnHiRHOSBrCzs8PPzw+ttmJV+BMnTjBp0iSys7Px9PTks88+o2NH63/ncn5XAgA+w3tZvW8hapuMZyGUZ/OJOiUlhbS0NJYuXVqpLTMzk7FjxwLwzDPPMGXKFCZOnMh///tfJk+ezE8//XRHfbi4uKDX66sdWwdNU/7uGlbt5zVUAwdGcLL8itJhiBqS8Wxp4EDbHs9OAaF0mB+jWP8DB0ZQlByrWP/1kU6nIz8/v9rPs/lEffbsWQBatGhhsT0pKYmMjAxCQkK4ePEiBw8eZPv27QD88Y9/ZOrUqVy6dInmzZtbPWYhhLBVAQtilA5BVJPNJ2pPz4o6aqmpqfTu3RuouLnslVdewWg0EhISQmZmJm3atMHOzg6ouCzeunVrMjMz7yhR1+QTDkBWXJKUBbzBzp0xNl0WUNyajGdLtj6e47OVLXO5c2eMlLm0EptP1IGBgfj7+zNz5ky0Wi3Ozs4sX76cQ4cO4eTkREBAAIcOHVI6TCGEEKJO2Hyi1mg0rF27lmeeeYZJkybh7e3NjBkzcHV15eTJk6jVary9vTl79iwGgwE7OzsMBgPnzp3D29vb6vGq1GrUWjtUGg2oVNjZazGZTBj15VaPRYi7JeNZCOXZfKIG6N69O7GxljctLFu2jPDwcKDi++sePXrw5ZdfMnHiRL788ktCQkIU+X66w7gBhC2Zan78ePqXFGRelN+finpJxrMQyqsXifr3iouLSU5OZsaMGeZt//znP5k0aRJvvPEGTZs25bPPPlMkttSvY0j9OkaRvoWobTKe66/y/BxS5gyl5GwyIWsKLNqK0g5z+p/PodLo8JvxGbrm3pScTyXzX1MxlpXScuQLuPcZqVDk4vfqZaJOSEjAYDBYrEjWuXNn9u/fr2BUQghhO+wcXeg4bzun3nmkUtv5NW/Q4bUNlF05z4X1C/GZvIzzX83D76Wv0Di7Wz9YcUv1MlH36dMHk8mkdBhCCGGzVBotGhePKtuMJYVo3VugdW9B6flUjGV69JczSV/8BKhUtJuyAq17SytHLG6m3hTlEEIIUTtMJqPF38vzLlOccQTfGZ/S8uEZXFj7toLRid+TRC2EEI2MSqW2+LtdEzcc23VD49wU56D+lJxNVjA68XuSqBXg80AfBv3nFaXDqLZ+7z1Hx8eGKB2GsEEypusXtb0TZbmXKEpPwL6VP3YOTVDrHDCWlVKccQRdC1+lQxQ3kERtbSoVPV+fSPx7X6PWaRgV8z7Bz4+x2CVs8RSGfDELgJahXXgs5XNc/LzM7Q6erkxI/Dd+o/pVq98R0fPpGfW4xWYXXy8eS/mclvcF8ljK53gE+Vq0d5s+hlE730Ot05CwZB0hL09ArauXtzaIuiJj2madiBpCUdohTkQNoeDYHi6sXwRAqwlRnHxrNJkrp+M15u8AtBz1IieiBpO56nnzNmEbJFFbWdtBIZQXlpCTmIZRX86e6R/QbfoYmnZpB1RUKWo7tCd7//YRAFmxxzixegf9l0xDpa745wpdNJkLe46QFl31+oHj4j7Cue3vfkNuMrFn+gd0mjiEFr8ti6hSEbZkCsmfbSNr33ESlqwjbOk01NqKNy33zj4ET4tk99SlGPXl5GdkkXfqHL4PhdbBmRH1lYxp29XpzR/p8d9sOr35I85dwvAa8zIATu1D6LxwLwELYtA1rygT7NpjCJ3/sYeAt37GvqWfkmGL35FEbWXew3txfu8R8+PshFMcXb6R/kun4dTKg9BFz7B/5iqKs65X7Tn49mrsmzrT9bmR+D8SQfOQjsS+trLafednZHFgwReELZ6CxtGeoMkPo3Nx4uDCLwFI/DCasoJiQl6egEpjR/+lU0lctoGco+nmY5zbnYj3MCl5KK6TMS1E3WqY13tsmEeQLymrd1hsO7x4HW2H3svI7Ys4X8WswlCiZ/e0Dxi2bi6mcgM/P7sY/VXLBQzuVPJn2/Ae1osBy2fgFdqFLWPmXF8O8toM5eFt7+Di54WhtIzED761eH7uiUz8x4fXqG/RMMmYFqJuyYzayuzdnCnLL7bYZio3cOmXZBw83Uhds7PK511NOUNZXhH6/CLO7Uq4qxj2vvAhrcK6cmzlJouZBVTMUA4u/Aqf4b3ZPf0DTEajRbs+vxh7d+e76l80LDKmhahbMqO2stLcArQujhbbWvQJxH/CQI7/ezO933iSjUNfxlCit9in97w/cSU5EwcPF7q/MI74RWvMbX6RYYS+/bT5sdbFkZE/vQvGikVhEpdtIHHZt+b24otXKc3J58rx01XGePX4aQylevLTLlRq07k4UlrDmY9omGRMK8PfFVZV4967uuhfWIckaivLOZqOm38b82ONkwNhi6dwYMEXJH26lREb3uCe1x7llzmfmPdpMyiEdg/eR/Sgv6FzbcKDm94ic+svZCecAiBtwx7SNuwx7z8u7iO2jJlDwZlLtR6/Wydvco6k1/pxRf0lY1oZzlqkHnQjIZe+rSxz66949e1qftxr7hMUnL5I0idbKr5Pe34ZnR4dTMv7AgHQuTvT791n2R/1MUXnc7ianEnC4nWELZmqyE9KWod14/S2X6zer7BdMqaFqFuSqK3szI6DaJ0d8OjqR5tBIfiN7Gf+2Qpcv4u13/sVd7GGvv00lw6mcGrtLvM+Rz7aeO1O1j9YNXZnnxa4dmhNxnext99ZNBoypoWoWyqTVLeosay4JH4Y9Xq1n+fzQB/8x4fz05Pv1EFUdaffe89x8cAJUr74scr2EdHzafnb71lFvVPT8QwNc0zLeBa2Qr6jVsDpzfs5vbn+leS8cZYkxI1kTAtRd+TStxBCCGHDJFELIYQQNkwStRBCCGHDJFELIYQQNkwStRBCCGHD5K5vG9Bn/p/x6OrHmZ8Okbh0vUVb4FMP0H50GEaDgT3Pf0h++gX8H4mg42NDKDxzid3PL8NUbgAqygn2jHqC9f2m1aivnrOfwP+RcOLmfMKpdbsBGLZ2LiqVCoDY11aSe+JMbb500cC06N2ZXrOfwGQ0kbFpH0f/9R0AbQb2oNvUSKCi1OS2R+ZxJTmTAR8+j2MzNzJ/PMDR5Rur3V+zHv70mvcnVCoV5/cmcmjhV+Y2OwcdA1e9hMbJnvyMLPa+UHGHd6fHh+L7cF/Udmq2TnjD/P9HCFslM2qFeXbvgNFg5IfRUXh288OhmZtFe/vRYWx6aCa/vvlfAp64H5XGjvZjB/DDqNe5dCgFnxvK87V78D4Kz12ucV9HPorm1zc+t9hmMhjZMnYOW8bOkSQtbis/I4sfImezeeQs2g69FztHHQBnd8abx1HB6SxyjqbT7oE+XPo1mS1j59AsuAP2ntVfPDr7SBo/jHqdzSNn0fzeALTO19ccbx3enay4pIpqWuUG3AO8adKmGU2vfVDYMnaOJGlRL0iiVljzkI6c35MIwIXYY3gGt7doLzyXjZ29Fp2rE6VXC3Br34qcY+kAnN9zhGYh/gB49etKVlwSJuPN16+5XV8ll3MrP0mlYvi6efT9v2ews9fW9GWKRqI46wrGsooSkyaD0VxE4zfNevhz+fBJAFx8WpiLaFxNOUOz7h2q3d9viValVlOclUN5cam5reD0RTRO9gBonRzQ5xfROrw7Gid7hn0zhx4vPlL9FyiEAuTSt8J0bk6UJVeUCCwvKEbn1sSiPSvuOKN3LUalUrHp4Vm4+LQwlxS8cf+OfxzE/15cju9DoTXuqyoxT/8f+txCgiY/TMc/Dq5Yv9nK9PlFN62K1Bg1DfRB5+KkdBi31GpAMPkZFzCUllls9x7ei8ytFetq5548R8vQLpzfk0jLPoHknTpXo778IsPo8eIjnIuJr/hwcE1e+nla9glk9K7FZCemUXQuu+Iqkgm2jp9H2JKpeAT5ViqLWddkPFuqjfFcUAapebUUUA35u1YUSqkLkqgVps8tMl+u0zg7Upx+vQyf1tmRdg/ex/q+02ga2I4eLz3C8ZWbzCUFNc6O6HML8ezegasnzlR6U6xOXzd/TiEAp7f9QtBfH6rRa7xbV46frvHSlg2RrS9t6dTKg+BpkeyYtLBSW6u+XTn87jdARTGP1uHduX/NbEqy8yi5XPU7rVunthYlLwHO7jxkLnOZtmEPad/uJWLli7h39uFqUkUS9B8fQXr0/0j6ZAu933yS5j0DKMsr4kLsUQCy9h3DtUNrqydqGc+WamM8p+bBU3trKaAaWtWv7qqZSaJW2KVDKbSPDOPM9gN43deF9I3/M7eZTCbKi0oxGYyUXs1H59qEvLQLeAS2A6BVv65cPpRK0wBvWg8Ixuu+QDy6+hL8/BgSlqzHsWVTirOu3FFfN6Np4kB5YQktegaQf/pi7Z8A0aCodRrCFk8l9tWVlBeVWLQ5+7Sg8Hz29UvjRiP7Xl0JQNjSaVw8kIzKTo3O3ZnS7OtJO/fEGbaMnXPT/oz6cjCZKC8oxlB6vea1Sq2m9Go+AKVXCtC5OnHxQDLtI/sDFTO5UxsUfncX4g7Id9QKyz58ErVOy4hv3yTnWDoll3PxCPKl/bgBlBeWcOnXZEZEzyfin3/j6PKNGMvKOfXtXkZEz6dFzwAyt/1K6tcxbB03l+2PLiDnSDoJS9ajslPT953Jd9wXQNCzIwl6bhTdpkbSZXLF7HnY13MY8e2b+D4Uyon/Vl2MQ4jftI/sj3untvR9ZzLD183DycuDoGdHAuAzvLf5sjdAkzbNGL5uHsO+mUPG97EYivU4e7egxwvj7rg/7/t7MXzdPIZveIPC89mUF5SY+zu1YTf+fxjE8HXz8Ojqy7ldCeQkpqHWqBm+bh52jvZcPpRSuydAiDog1bPuwt1UG6prnsHtcQ/w5uQ3P1utz7q6JGvL51kJDfk8t3uwDyU5+WTFHlM0DmjY59mW1MZ5js+WS9+iHspOOEV2wimlwxCiWjI21b8KXELUNUnUQgghGqXkWREUJsWi0mhR2WlwaNOZ1hMX4Np9sNKhWZDvqIUQQjRarScuIGRNAcGfZtEkIJSTb43GUFjFmhIKkkQthBCi0VNr7Wk29C8YSwooOZ+qdDgWJFELIYRo9IylxVzevgq1kysOrTsqHY6FepOo9Xo9UVFReHt74+joyKBBg4iLi0OlUhEdHa10eEIIIeqhc6ujiH/UncSnfSlKO4z/699j51T9defrUr24mcxkMjF+/Hji4uKYO3cu/v7+rF69msjIimo8ISEhCkdoSWWnptfcSXQYOwCVWk36pn3sn7nqtiuHiTvn+3AogU89gEeQL6U5+azt/ZzSITVYMp6tQ86zMlo/+iZekS8pHcYt1YsZ9YoVK9i8eTM//vgjkydPZvDgwaxYsQI7Ozs8PDzw8fFROkQLwdPH4NW3K9GDXmRdv2m4d2rLva8/rnRYDUppbiFJH2/h4D++VDqUBk/Gs3XIeRY3Uy8S9cKFC5k4cSJBQUHmbXZ2dvj5+Zln0y+99BJ+fn6oVCqOHDmiVKgAdHxsMIlL11N0IYfS7Dzi3/0a/wkRqNT14nTXC+d3JZAWvZfCM5eUDqXBk/FsHXKexc3Y/AhISUkhLS2NsWPHVmrLzMw0J+rRo0eza9cu2rVrZ+0QLehcnXBu05yco2nmbdmJaehcnHD2bq5gZEJUn4xn65DzLG7F5r+jPnv2LAAtWrSw2J6UlERGRoY5UYeFhdW4DxcXF/R6/e13/J0Omqb83dWyX8216lT63CLztt8qUN1Y1L4hGjgwgpPlV263W7VVdZ4bs4EDrXeeZTzLea5rAwfe/Xl2Cgilw/yYaj8vYEH1n3MzAwdGUJQce8t9dDod+fn51T62zc+oPT0rFk9NTb3+uzaTycQrr7yC0Wi0uRvJygsq6j1rXa/XV/2t7nPZtTYh6gsZz9Yh51ncis3PqAMDA/H392fmzJlotVqcnZ1Zvnw5hw4dwsnJiYCAgLvuoyafcKDqxfX1eUUUnL2ER5AveSfPAeDZ1Q99fhEFmQ37+9SdO2OkiIEVWPM8y3iW81zXauM820JRjp07Y+qsKIfNz6g1Gg1r166lVatWTJo0iRkzZjBixAjCw8MJDg5GbYM3WqR8sYPgaZE4tmyKvacrPV58hNQ1MZiMRqVDazBUajV29lpUGg2oVNjZa1HrbP5zZ70k49k65DyLm6kX72zdu3cnNtby2v+yZcsIDw9XKKJbS1i6HnsPV0bHvI9KrSL9+30cWPBfpcNqUDqMG0DYkqnmx4+nf0lB5kX5PXUdkPFsHXKexc3Ui0T9e8XFxSQnJzNjxgzztunTp7N+/XouXLjAkCFD8PT05OjRo4rEZzIYiYv6mLiojxXpvzFI/TqG1K9jlA6jUZDxbB1ynsXN2N514zuQkJCAwWCwuJFs6dKlnDlzhvLyci5cuKBYkhZCCGGbTq+YRvJr/Tn/zVtVtmdtXMyJqCEA5B7cQvKsCJJnRRA/0ZOiU/GU5+dw/G/3cmiCszXDrp8z6j59+mAymZQOQwghRD1RmPIrKrWGgLd3c/If4yi7moXWvaW53VReRnFavPmx2z3DcbtnOCaTiaSXeuPo1x0M5XSct51T7zxi1djr5YxaCCGEqI7CE/txCR4EgEvXcIpSD1i0Z8d8TtP+f6z0vKKUX3Dy74lKpUKl0aJx8bBKvDeSRC2EEKLBMxReNVfFUju6YCi8am4zGY3kHdyK2z3DKj3v6v5o3PuMslaYVaqXl76FuBM+D/TBf3wEPz25UOlQqqXfe89x8cAJUr74UelQhI2RMX17xaePcfpflr/+cAsZjl0TdwxFeQAYi/PRenUwt1+NXY9b75FVHi8/cSet/jCn7gK+AzKjFg2TSkXP1ycS/97XqHUaRsW8T/DzYyx2CVs8hSFfzAKgZWgXHkv5HBc/L3O7g6crExL/jd+oftXqd0T0fHpGWVY9cvH14rGUz2l5XyCPpXyOR5CvRXu36WMYtfM91DoNCUvWEfLyBPlduLAkY/qOOPp0IWBBjMUfr3Gv0qRTb/ITdwKQf3QXTv73mp9TcjaZ7J8+IWXucIrS4rm8bRUApRdOoWvWFrVWV+dx34okatEgtR0UQnlhCTmJaRj15eyZ/gHdpo+haZeKoi0+w3vRdmhP9v7tIwCyYo9xYvUO+i+ZZq5WFLpoMhf2HCEtuuolj8bFfYRz298VTDCZ2DP9AzpNHEKL31ZbUqkIWzKF5M+2kbXvOAlL1hG2dBpqbcWblntnH4KnRbJ76lKM+nLyM7LIO3UO34dC6+DMiPpKxvTdadKxF6ayUpJf64+TX3e07i0pu3KBC+sX0eqRWXR6Yzsd527Bya8Hze5/Cqi47O3W2/Ky94moIRSlHeJE1BCKM6xTqVEStWiQvIf34vze6/+JshNOcXT5RvovnYZTKw9CFz3D/pmrKM66Xgzg4NursW/qTNfnRuL/SATNQzoS+9rKavedn5HFgQVfELZ4ChpHe4ImP4zOxYmDCytqZyd+GE1ZQTEhL09ApbGj/9KpJC7bQM7RdPMxzu1OxHtYr5qfANHgyJi+ez7PfEjA27tp9UjFEq7apl54jXnZYp9Ob16/PN9y1At4RjxWqb3Hf7Pp9OaPOLbrWvdBI99RiwbKI8iXlNU7LLYdXryOtkPvZeT2RZyvYlZhKNGze9oHDFs3F1O5gZ+fXYz+akGN+k/+bBvew3oxYPkMvEK7sGXMHIz68orGazOUh7e9g4ufF4bSMhI/+Nbi+bknMvEfb5sr7wllyJhuvGRGLRokezdnyvItqw6Zyg1c+iUZB083UtfsrPJ5V1POUJZXhD6/iHO7Eu4qhr0vfEirsK4cW7nJYmYBFTOUgwu/wmd4b3ZP/6DSes76/GLs3a27qIKwbTKmGy+ZUd+FpoE+jIier3QYNqNpoI/SIZiV5hagdbGs49uiTyD+EwZy/N+b6f3Gk2wc+jKGEss65L3n/YkryZk4eLjQ/YVxxC9aY27ziwwj9O2nzY+1Lo6M/OldMFYsvpO4bAOJy741txdfvEppTj5Xjp+uMsarx09jKNWTn3ahUpvOxZHSGs58akrGsyVbGs8gY/pW/F1hVTXuj6urGOqKJOq7oHNxqpMyeOLu5RxNx82/jfmxxsmBsMVTOLDgC5I+3cqIDW9wz2uP8sucT8z7tBkUQrsH7yN60N/QuTbhwU1vkbn1F7ITTgGQtmEPaRv2mPcfF/cRW8bMoeBM7ZchdOvkTc6R9Fo/7q3IeLZtMqZvzllLnZWYtAVy6Vs0SJlbf8Wr7/UbPXrNfYKC0xdJ+mRLxfdpzy+j06ODaXlfIAA6d2f6vfss+6M+puh8DleTM0lYvI6wJVMV+ZlU67BunN72i9X7FbZLxnTjJYlaNEhndhxE6+yAR1c/2gwKwW9kP/PPVuD6Xaz93q+4izX07ae5dDCFU2t3mfc58tHGa3ey/sGqsTv7tMC1Q2syvou9/c6i0ZAx3XipTFLdQti4rLgkfhj1erWfV7GKUzg/PflOHURVd263itOI6Plyiboeq+l4hoY5pmU83558Ry0arNOb93N6836lw6i2G2dJQtxIxnTjJJe+hRBCCBsmiVoIIYSwYZKohRBCCBsmiVoIIYSwYZKohRBCCBsmd32LRknn7sz9a6Jw69CaL/wfr9Te7qFQuj43Eowm4mb/h0sHU6o8TvjyF2gd0Z0dk/7Bxbgkizav0CDuW/g0Redz2DbhDQD8H4mg69TRlFzK5fS2Xzj2r+9r/8WJBqvP/D/j0dWPMz8dInHpevN2lcaOAR8+j2MzNzJ/PMDR5RtxbtucB75/i7yT5yg4e5k90z+47bi/nRa9O9Nr9hOYjCYyNu3j6L++s2j/fRxZscfoNe9PqFQqzu9N5NDCr+76HDRGMqMWjVJZQTHbJrzJpQNVJ+DAJ4ezJXI2P/1lEUHPjrzpceJm/4fjqzZX2ZZ9JI3vhr5caXvCknVsGTtHkrSoFs/uHTAajPwwOgrPbn44NHMzt7V7oA+Xfk1my9g5NAvugL1nxcLTZ348wJaxc9gz/QPg9uP+dvIzsvghcjabR86i7dB7sXPUWbT/Po78zIv8MOp1No+cRfN7A9A6O97kyOJWJFGLRslUbrhlub+CzItonOzRuTrdspBA8aWrN20ryy/CUFpWaXu3KaMZ9s0cPIJ8qxOyaOSah3Tk/J5EAC7EHsMzuL25zcWnhblQxtWUMzTr3gGANhE9GPHtm7Qf0x+4/bi/neKsKxjLKkpbmgxGc/GO28WhUqspzsqhvLi0xn03ZnLp+y7o84tuWkWmMWoa6IPOxUnpMGpF5vZfeXj7IlRqNT9OfKvWjpvxQxypX8fg3LY5/d5/jq3j59Xase+WjGdLtjaedW5OlCVXlLksLyhG59bE3JZ78hwtQ7twfk8iLfsEknfqHEUXr7C+/3QwwdAvX+fszkOUXqmd6lWtBgSTn3Gh0gfRquLwiwyjx4uPcC4mviK515GCMkjNq7PD35K/a0VhkLoiifouXDl+usZLATZEDWkpwK5TRvNt/xloXZ0IXfhXfvrTwlo5bll+EQAFZy5hMtrW6r0yni3Z2njW5xaZLx1rnB0pTr9eSjJz66+0Du/O/WtmU5KdR8nlPIz6cnN71v7juLTzovRK6h315daprUX5S4CzOw+RuOxbnFp5EDwtkh2TKv+fqCqO83sSSft2LxErX8S9sw9Xk+rmw2BqHjy1t04OfVur+tVt9S5J1EJUwVBaRnmJHlQqNE4OADi2bEpx1pW7Oq6miQPlhSXo3JooUsFI1F+XDqXQPjKMM9sP4HVfF9I3/s/cZjIa2ffqSgDClk7j4oFkNE4OlBeVANCseweSPv6hyuOq7NTo3J0pzb4+Hc09cYYtY+dU2let0xC2eCqxr640H/tGv4/j8uGT1xpMlBcUYyjVV3qOuD35jlo0WvevmY1HVz/uXzMb9wBvHJu7m28cO/nNzzz43QKGrZ3DsWt3toa9/1ylY/Sc8wQdxofTe96fzN8D9pzzBABNu7Qz9zH0y4qZapenH+SB7xYw9ItZxP/f19Z4maKByD58ErVOy4hv3yTnWDoqlco8Xpu0acbwdfMY9s0cMr6PxVCsp0WvAB7aspAHvlvAuZjDFF+8ClQe987eLejxwrg7iqF9ZH/cO7Wl7zuTGb5uHk5eHhb/b34fR+vw7gxfN4/hG96g8Hw2+WkXbtODqIpUz7oLd1MFpyGqq0uFNnGeVSp6z5tE3OxPlI2DBn6ebUhjOc/tHuxDSU4+WbHHFOm/ts5zfLZc+haicTOZbCJJC1HbMjbVv2pcjY0kaiGEEI1S8qwICpNiUWm0qOw0OLTpTOuJC3DtPljp0CzId9RCCCEardYTFxCypoDgT7NoEhDKybdGYyjMVTosC5KohRBCNHpqrT3Nhv4FY0kBJefv7Gds1iKJWgghRKNnLC3m8vZVqJ1ccWjdUelwLNSbRK3X64mKisLb2xtHR0cGDRpEXFwcKpWK6OhopcMTQghRD51bHUX8o+4kPu1LUdph/F//HjsnV6XDslAvbiYzmUyMHz+euLg45s6di7+/P6tXryYyMhKAkJAQhSO8zvfhUAKfegCPIF9Kc/JZ27vyb29F7VDZqek1dxIdxg5ApVaTvmkf+2euqnJ9bVFzcp6tQ947lNH60TfxinxJ6TBuqV7MqFesWMHmzZv58ccfmTx5MoMHD2bFihXY2dnh4eGBj4+P0iGaleYWkvTxFg7+40ulQ2nwgqePwatvV6IHvci6ftNw79SWe1+vfuk+cWtynq1D3jvEzdSLRL1w4UImTpxIUFCQeZudnR1+fn6EhISQnZ3NAw88QEBAAN26dWPMmDFcunRJkVjP70ogLXovhWeU6b8x6fjYYBKXrqfoQg6l2XnEv/s1/hMiUKnrxbCuN+Q8W4e8d4ibsfn/aSkpKaSlpTF27NhKbZmZmYSEhKBSqfj73/9OcnIyiYmJdOjQgVdffVWBaIW16FydcG7TnJyjaeZt2Ylp6FyccPZurmBkDYucZyGUZ/PfUZ89exaAFi1aWGxPSkoiIyODkJAQPDw8iIiIMLfdd999LF++/I77cHFxQa+v/mLxHTRN+btrWLWf11ANHBjByfK7K1pRlarOs+ZaFSF9bpF5mz63EKDBF6cfOFDOszUMHGi989yYDRxYO+fZKSCUDvNjqvWcgAXV2/9mBg6MoCg59rb76XQ68vPzq318m59Re3pWLKCamnr9d20mk4lXXnkFo9FY6UYyo9HI8uXLGTlypFXjFNZVXlBRl1frer1e8G/1ecuutYm7J+dZCOXZ/Iw6MDAQf39/Zs6ciVarxdnZmeXLl3Po0CGcnJwICAiw2H/atGk4OzszderUO+6jJp9wwPYW11fazp0xVitioM8rouDsJTyCfMk7eQ4Az65+6POLKMhs2N/xyXm2Dmue58asts6zkkU5du6MadxFOTQaDWvXruWZZ55h0qRJeHt7M2PGDFxdXTl58iTqG25oeemll0hJSeG7776z2G5NKrUatdYOlUYDKhV29lpMJpNFEXdRO1K+2EHwtEiy9h/HWG6gx4uPkLomBpPRqHRoDYqcZ+uQ9w5xMzafqAG6d+9ObKzl9f9ly5YRHh5ufjxz5kwOHDjApk2bsLe3t3aIZh3GDSBsyfXZ/OPpX1KQeVF+E1kHEpaux97DldEx76NSq0j/fh8HFvxX6bAaHDnP1iHvHeJm6kWi/r3i4mKSk5OZMWMGAEePHuXtt9+mU6dO9O3bFwA/Pz82bNhg9dhSv44h9esYq/fbGJkMRuKiPiYu6mOlQ2nQ5Dxbh7x3iJupl4k6ISEBg8FgvpEsKCgIk8mkcFRCCCFsXcGxPZz5z0ugUtO071hajn7R3FZ4Io7Mf78AJhMuwYNoM3H+Lfe3lnqZqPv06SOJWQghRLXpWran01u7UGt1JM8aSPMRz6K2r/hVg1P7EDovrLgj7UTUYAxFebfc31rqZaIWQgghakLn2dr8d5XaDlTXbzxWabQAmAwGtB6tUds7WRTo+P3+1mLzv6MWQgghalte/HbsW3VArXOw2J7z82qOTg3Erok7KjvNbfe3BknUCvB5oA+D/vOK0mFUW7/3nqPjY0OUDkPYIBnTwtYUnz5G8qwIiz8X1v4DAP3lM1xY+zZtn3y30vM8wh8l6MMkynLOUZyeeNv9rUEStbWpVPR8fSLx732NWqdhVMz7BD8/xmKXsMVTGPLFLABahnbhsZTPcfHzMrc7eLoyIfHf+I3qV61+R0TPp2eUZdUjF18vHkv5nJb3BfJYyud4BPlatHebPoZRO99DrdOQsGQdIS9PQK2Tb0zEDWRMCxvk6NOFgAUxFn+8xr2KsayU9CV/wueZ5dg5Ols8x1hWClT8pt3O0QWVzuGW+1uLJGorazsohPLCEnIS0zDqy9kz/QO6TR9D0y7tAPAZ3ou2Q3uy928fAZAVe4wTq3fQf8k0c7Wi0EWTubDnCGnRVS/DMy7uI5zb/q5ggsnEnukf0GniEFr8tgqQSkXYkikkf7aNrH3HSViyjrCl01BrK9603Dv7EDwtkt1Tl2LUl5OfkUXeqXP4PhRaB2dG1FcypkV9kvPzakoyj5GxfDLJsyLQZ5+l7MoFLqxfRG7cxorZ92sD0Hq2xaF1xyr3tzZJ1FbmPbwX5/ceMT/OTjjF0eUb6b90Gk6tPAhd9Az7Z66iOOv6IvUH316NfVNnuj43Ev9HImge0pHY11ZWu+/8jCwOLPiCsMVT0DjaEzT5YXQuThxcWFH/NvHDaMoKigl5eQIqjR39l04lcdkGco6mm49xbnci3sN61fwEiAZHxrSoT5oNeZLgT86ZZ9k6zzZom3rhNeZlmvYbX7H97V20mTj/pvtbm1zvsTKPIF9SVu+w2HZ48TraDr2XkdsXcb6KWYWhRM/uaR8wbN1cTOUGfn52MfqrBTXqP/mzbXgP68WA5TPwCu3CljFzri9ReG2G8vC2d3Dx88JQWkbiB99aPD/3RCb+48MrH1g0WjKmhahbMqO2Mns3Z8ryLasOmcoNXPolGQdPN1LX7KzyeVdTzlCWV4Q+v4hzuxLuKoa9L3xIq7CuHFu5yWJmARUzlIMLv8JneG92T/+g0nrO+vxi7N2V+Z5G2CYZ00LULZlRW1lpbgFaF8s6vi36BOI/YSDH/72Z3m88ycahL2MosayP3Xven7iSnImDhwvdXxhH/KI15ja/yDBC337a/Fjr4sjIn94FY8WiMInLNpC47Ftze/HFq5Tm5HPl+OkqY7x6/DSGUj35aRcqtelcHCmt4cynppoG+jAier5V+7RlTQN9lA7Bgozp6pHxbKm2xrO/K6yqxr2Itcnf9fb73A1J1FaWczQdN//r33FonBwIWzyFAwu+IOnTrYzY8Ab3vPYov8z5xLxPm0EhtHvwPqIH/Q2daxMe3PQWmVt/ITvhFABpG/aQtmGPef9xcR+xZcwcCs7UfhlCt07e5BxJr/Xj3orOxalOyg2K2iFjunpkPNcNZy11WmpSSXLp28oyt/6KV9+u5se95j5BwemLJH2ypeL7tOeX0enRwbS8LxAAnbsz/d59lv1RH1N0PoeryZkkLF5H2JKpivykpHVYN05v+8Xq/QrbJWNaiLolidrKzuw4iNbZAY+ufrQZFILfyH7mn63A9btY+71fcRdr6NtPc+lgCqfW7jLvc+SjjdfuZP2DVWN39mmBa4fWZHwXe/udRaMhY1qIuqUySXWLGsuKS+KHUa9X+3k+D/TBf3w4Pz35Th1EVXf6vfccFw+cIOWLH6tsHxE9Xy7p1WM1Hc/QMMe0jGdhK+Q7agWc3ryf05v3Kx1Gtd04SxLiRjKmhag7culbCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGFy17eCdO7O3L8mCrcOrfnC//FK7Z0eH4rvw31R26nZOuENAAZ8+DyOzdzI/PEAR5dvrFG/XZ5+kLZD7mXbtWPeqM/8P+PR1Y8zPx0icel62gzsQbepkUBFicBtj8yrtJayEL/Xondnes1+ApPRRMamfRz913cW7YM/fRWtiyPGciM/P/Meajs7wv/5AgBOrT1J+vgHjq3cVOm4t/s/E7ZkKi6+LTGUVpTbLLqQg4uvF/e99RfUOi3HVnxP5rZf6+ZFC1FHJFErqKygmG0T3iTiX3+r1NakTTOaXkuMv/Ed2ZdLvyZzbOUmwpe/gL2nK6XZedXqU6WxwyPIt8o2z+4dMBqM/DA6ioiVL+LQzI2zO+M5uzMegId++IckaXFH8jOy+CFyNsaycoatnUvSZ1sxFF9f6/unvyzCVG6g/bgBtI/sz/F/b2bL2DkADPhoBmd2HKzyuLf6PwMQv2gNBWcu0SqsG52fHM7Bt1fT48Xx/PzM++jzimr/hQphBXLpW0GmcsNNS/u1Du+OxsmeYd/MoceLjwDg4tPCXHTgasoZmnXvUO0+O4wL59S3e6psax7SkfN7EgG4EHsMz+D25rZmPfy5fPhktfsTjVNx1hWMZRWlJk0Go7mYxm9M5QYA7Ox1XE05Y96u0tjh4tOCvFPnqzzurf7PAOa1wE0GIyaTCbVWQ5PWzQhbOo1B/3kFh2Zud/W6hFCCzKhtlEMzNzDB1vHzCFsyFY8gX3JPnqNlaBfO70mkZZ9A8k6dq95BVSraRHTn52fep+uzoyo169ycKEuuKFdYXlCMzq2Juc17eC8yt8p6yKJ6Wg0IJj/jAobSMovtOndnhnz2GlpnB7Y/tsC83atvEBf+d/TuOlWp6Pb8GGL//i/sPVxw7+zN+r7T8AjyJXh6JHGzP7m749uIgjJIrd4FtVrl71pRCEPUPUnUNqosr4gLsRVvWFn7jlWsR/z9PlqHd+f+NbMpyc6j5HLV/0vdOrW1KBEIcHbnIfLSLtzy+zl9bhFa54pyhRpnR4rTr5cEbNW3K4ff/eZuX5ZoRJxaeRA8LZIdkxZWatNfLWDzyFl4D+tFl78+xK/zPgPA5/6enNpQ9RWfOxXyyh9I+3YvBacvonG058rx0+hzC8naf5yuU0bf1bFtSWoePLVXuf5X9Wu41apsjSRqG3XxQDLtI/sDFfVaT23Yi8loZN+rKwEIWzqNiweSUdmp0bk7W3xXnXvijPn7vhsFPz8Gr9AgOowbgEdXXzo+OpiU1TvM7ZcOpdA+Mowz2w/gdV8X0jf+D6goXFB4Ptt8KVOI21HrNIQtnkrsqyspLyqxbFSpUKlVmAxGyvKKLGbbze7pyP6o/5gfO7ZsSnHWlTvut92DfbB3d+bQV18CUF5ciqG0DLVOg3vHthRkXry7FyaEAuQ7aoXdv2Y2Hl39uH/NbFr07kzQsyMByElMQ61RM3zdPOwc7bl8KIUmbZoxfN08hn0zh4zvYzEU63H2bkGPF8bdUV8JS9az7Q9vsv3RBeQcSSdl9Q4cm7ub+8w+fBK1TsuIb98k51g6JZdzAfAZ3lsue4tqaR/ZH/dOben7zmSGr5uHk5cHHkG+tB83wHzvxbC1c+k2bTRJ//4BAI+uflw5lgHX6gSp7NT0fWdypWPf+H/GPcDbYgz3mvsnPLr4MnzdPIKfHwPA0X9uZNg3c+j95pMc+TDaSmdAiNoj1bPuwt1UG6ot7R7sQ0lOPlmxxxSNA6TaUH1nC+P5Rp7B7XEP8ObkNz8r0r+tj+f4bLn03VjIpe96LmNT/atYJMSdyE44RXbCKaXDEEJxkqiFEKIRSZ4VQWFSLCqNFpWdBoc2nWk9cQGu3QcrHZq4CfmOWgghGpnWExcQsqaA4E+zaBIQysm3RmMozFU6LHETkqiFEKKRUmvtaTb0LxhLCig5n6p0OOImJFELIUQjZSwt5vL2VaidXHFo3VHpcMRN1JtErdfriYqKwtvbG0dHRwYNGkRcXBwqlYroaPnJhRBC3Klzq6OIf9SdxKd9KUo7jP/r32Pn5Kp0WOIm6sXNZCaTifHjxxMXF8fcuXPx9/dn9erVREZWVHUKCQlROEJLKjs1veZOosPYAajUatI37WP/zFWVllEUwtb5PhxK4FMP4BHkS2lOPmt7P6d0SKIWtH70TbwiX1I6DHGH6kWiXrFiBZs3byY+Pp6goCAAIiIi8PPzw8PDAx8fH4UjtBQ8fQxefbsSPehFDGXlDP7kFe59/XHioj5WOjQhqqU0t5Ckj7fg0NyNoL8+pHQ4QjRK9eLS98KFC5k4caI5SQPY2dnh5+dnnk2PHj2a7t27ExISQv/+/YmPj1coWuj42GASl66n6EIOpdl5xL/7Nf4TIlCp68XpFsLs/K4E0qL3UnitKpUQwvpsPnOkpKSQlpbG2LFjK7VlZmaaE/Wnn37K4cOHOXToEC+99BJ//vOfrR0qADpXJ5zbNCfnaJp5W3ZiGjoXJ5y9mysSkxBCiPrL5i99nz17FoAWLVpYbE9KSiIjI8OcqN3crteZzc3NRV2N2auLiwt6vf72O/5OB01T/u4aZrFNc636lD73epF6fW4hgLkyVUM1cGAEJ8vvvICCsC1VjefGbOBA2x7PTgGhdJgfU+3nBSyo/nOqMnBgBEXJsbVyrMZCp9ORn59f7efZfKL29KxYTDY1NZXevXsDFTeXvfLKKxiNRosbyZ566im2bduGyWRiy5YtisRbXlBRz1nr6kTxpasA5rrOZdfahBBCiDtl84k6MDAQf39/Zs6ciVarxdnZmeXLl3Po0CGcnJwICAgw77tq1SoAPv/8c15++WU2b958R33U5BMOVF3EQJ9XRMHZS3gE+ZJ38hwAnl390OcXUZDZsL/n27kzxqaLGIhbs7WiHEqz9fGsdFGOnTtjpCiHldj8d9QajYa1a9fSqlUrJk2axIwZMxgxYgTh4eEEBwdXeYn78ccfZ+fOnWRnZysQMaR8sYPgaZE4tmyKvacrPV58hNQ1MZiMRkXiEaKmVGo1dvZaVBoNqFTY2WtR62z+870QDUq9+B/XvXt3YmMtvwtZtmwZ4eHhABQUFHDlyhW8vb0B+O677/Dw8MDDw8PqsQIkLF2PvYcro2PeR6VWkf79Pg4s+K8isQhxNzqMG0DYkqnmx4+nf0lB5kX5PbUQVlQvEvXvFRcXk5yczIwZMwAoLCxk/PjxFBYWYmdnh4eHB9999x0qlUqR+EwGI3FRH8vvpkW9l/p1DKlfxygdhhCNWr1M1AkJCRgMBvONZC1btmTfvn0KRyWEEELUvnqZqPv06YPJZFI6DCGEqDdOr5hGcVo8rveMoNX4mebtxtJiTi4ci7GkEPuW7fF9/j9VbhPKsfmbyYQQQtydwpRfUak1BLy9m6KTBym7mmVuy4vfhnNgGAFv/YxKo6U440iV24RyJFELIUQDV3hiPy7BgwBw6RpOUeoBc5uupR/GkopFmQwlBdg5uVW5TShHErUQQjRwhsKr5jKWakcXDIVXzW0OrfwpOLabo1MCUaFC19y7ym1COfXyO2ohhBCVFZ8+xul/Wf50zi1kOHZN3DEU5QFgLM5H69XB3J7906c0DZtAiwenkLnyeQqO/4/i9MOVtjkH9rXqaxHXSaIWQogGwtGnS5VreRem/ELOri9x7/0w+Ud30TTsEXObyWhE41Kx5oSdiweGwqtVbhPKkUvfQgjRwDXp2AtTWSnJr/XHya87WveWlF25wIX1i/AIf5TLO/5D8qwIik/F49pjaJXbhHJkRi2EEI2AzzMfWjzWNvXCa8zLAHSat82iTePctNI2oRyZUQshhBA2TGWSlUNqTJ9fxJXjp5UOw2Y0DfRB5+KkdBiihmQ8W7L18VxQBql5yvXv7wrOWuX6b0wkUQshhBA2TC59CyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhw6Qe9V2QakOWbL3akLg1Gc+WbH08S/WsxkMS9V24cvw0P4x6XekwbMaI6Pm07N1Z6TBEDcl4tmTr4zk1D57aq1z/q/pBD0/l+m9M5NK3EEIIYcMkUQshhBA2TBK1EEIIYcMkUQshhBA2TG4mE0KIRiR5VgSFSbGoNFpUdhoc2nSm9cQFuHYfrHRo4iZkRi2EEI1M64kLCFlTQPCnWTQJCOXkW6MxFOYqHZa4CUnUQgjRSKm19jQb+heMJQWUnE9VOhxxE5KohRCikTKWFnN5+yrUTq44tO6odDjiJupFotbr9URFReHt7Y2joyODBg0iLi4OlUpFdHS00uEJIUS9cm51FPGPupP4tC9FaYfxf/177JxclQ5L3ITN30xmMpkYP348cXFxzJ07F39/f1avXk1kZCQAISEhCkdoyffhUAKfegCPIF9Kc/JZ2/s5pUMSosZkPDdMrR99E6/Il5QOQ9whm0/UK1asYPPmzcTHxxMUFARAREQEfn5+eHh44OPjo3CElkpzC0n6eAsOzd0I+utDSocjxF2R8SyE8mz+0vfChQuZOHGiOUkD2NnZ4efnV2k2PW/ePFQqFUeOHLF2mGbndyWQFr2XwjOXFItBiNoi41kI5dl0ok5JSSEtLY2xY8dWasvMzLRI1AcPHmTfvn20a9fOmiEKIYQQdcqmL32fPXsWgBYtWlhsT0pKIiMjw5yoS0tLmTJlCl9++SURERHV7sfFxQW9Xl/t53XQNOXvrmHVfl5DNXBgBCfLrygdhqghGc+WBg607fHsFBBKh/kx1X5ewILqP6cqAwdGUJQcWyvHaix0Oh35+fnVfp5Nz6g9PStqqKWmXv99n8lk4pVXXsFoNJoT9ezZs5k4cSK+vr5KhCmEEELUGZueUQcGBuLv78/MmTPRarU4OzuzfPlyDh06hJOTEwEBAcTGxvLrr7/yj3/8o8b91OQTDkBWXJLU773Bzp0xNl2/V9yajGdLtj6e47OVrUe9c2eM1KO2EpueUWs0GtauXUurVq2YNGkSM2bMYMSIEYSHhxMcHIxarebnn3/m+PHj+Pn54evry5kzZxg2bBjbtm1TJGaVWo2dvRaVRgMqFXb2WtQ6m/48JMRNyXgWQnk2/z+ue/fuxMZafg+ybNkywsPDAXj11Vd59dVXzW2+vr58//33dO3a1apx/qbDuAGELZlqfvx4+pcUZF6U35+KeknGsxDKs/lE/XvFxcUkJyczY8YMpUOpUurXMaR+HaN0GELUChnPQijPpi99VyUhIQGDwXDTFcnS09MVm00LIYStKM/P4fjf7uXQBOdKbUVph0l6pR/Jswaiv5QJQMn5VFLmDid51kCu7t9o7XDFLdS7GXWfPn0wmUxKhyGEEDbNztGFjvO2c+qdRyq1nV/zBh1e20DZlfNcWL8Qn8nLOP/VPPxe+gqNs7v1gxW3VO8StRBCiNtTabRoXDyqbDOWFKJ1b4HWvQWl51MxlunRX84kffEToFLRbsoKtO4trRyxuJl6d+lbCCHE3TGZjBZ/L8+7THHGEXxnfErLh2dwYe3bCkYnfk8StQJ8HujDoP+8onQY1dbvvefo+NgQpcMQNkjGdP2iUqkt/m7XxA3Hdt3QODfFOag/JWeTFYxO/J4kamtTqej5+kTi3/satU7DqJj3CX5+jMUuYYunMOSLWQC0DO3CYymf4+LnZW538HRlQuK/8RvVr1r9joieT8+oxy02u/h68VjK57S8L5DHUj7HI8jXor3b9DGM2vkeap2GhCXrCHl5gvyOVliSMV3vqO2dKMu9RFF6Avat/LFzaIJa54CxrJTijCPoWvgqHaK4gSRqK2s7KITywhJyEtMw6svZM/0Duk0fQ9MuFcVEfIb3ou3Qnuz920cAZMUe48TqHfRfMg2VuuKfK3TRZC7sOUJadNXLEo2L+wjnts0tN5pM7Jn+AZ0mDqHFb6stqVSELZlC8mfbyNp3nIQl6whbOg21tuJNy72zD8HTItk9dSlGfTn5GVnknTqH70OhdXBmRH0lY9p2nYgaQlHaIU5EDaHg2B4urF8EQKsJUZx8azSZK6fjNebvALQc9SInogaTuep58zZhGyRRW5n38F6c33u9DGd2wimOLt9I/6XTcGrlQeiiZ9g/cxXFWdeLARx8ezX2TZ3p+txI/B+JoHlIR2JfW1ntvvMzsjiw4AvCFk9B42hP0OSH0bk4cXDhlwAkfhhNWUExIS9PQKWxo//SqSQu20DO0XTzMc7tTsR7WK+anwDR4MiYtl2d3vyRHv/NptObP+LcJQyvMS8D4NQ+hM4L9xKwIAZdcx8AXHsMofM/9hDw1s/Yt/RTMmzxO43reo8N8AjyJWX1Dotthxevo+3Qexm5fRHnq5hVGEr07J72AcPWzcVUbuDnZxejv1pQo/6TP9uG97BeDFg+A6/QLmwZMwejvryi8doM5eFt7+Di54WhtIzED761eH7uiUz8x4fXqG/RMMmYFqJuyYzayuzdnCnLL7bYZio3cOmXZBw83Uhds7PK511NOUNZXhH6/CLO7Uq4qxj2vvAhrcK6cmzlJouZBVTMUA4u/Aqf4b3ZPf0DTEajRbs+vxh798oLKIjGS8a0EHVLZtRWVppbgNbF0WJbiz6B+E8YyPF/b6b3G0+ycejLGEos62P3nvcnriRn4uDhQvcXxhG/aI25zS8yjNC3nzY/1ro4MvKnd8FYsTBM4rINJC771txefPEqpTn5XDl+usoYrx4/jaFUT37ahUptOhdHSms48xENk4xpZfi7wqpq3HtXF/0L65BEbWU5R9Nx829jfqxxciBs8RQOLPiCpE+3MmLDG9zz2qP8MucT8z5tBoXQ7sH7iB70N3SuTXhw01tkbv2F7IRTAKRt2EPahj3m/cfFfcSWMXMoOHOp1uN36+RNzpH0Wj+uqL9kTCvDWYuUmWwk5NK3lWVu/RWvvtfXIu819wkKTl8k6ZMtFd+nPb+MTo8OpuV9gQDo3J3p9+6z7I/6mKLzOVxNziRh8TrClkxV5CclrcO6cXrbL1bvV9guGdNC1C1J1FZ2ZsdBtM4OeHT1o82gEPxG9jP/bAWu38Xa7/2Ku1hD336aSwdTOLV2l3mfIx9tvHYn6x+sGruzTwtcO7Qm47vY2+8sGg0Z00LULZVJKlzUWFZcEj+Mer3az/N5oA/+48P56cl36iCqutPvvee4eOAEKV/8WGX7iOj5tPzt96yi3qnpeIaGOaZlPAtbId9RK+D05v2c3rxf6TCq7cZZkhA3kjEtRN2RS99CCCGEDZNELYQQQtgwSdRCCCGEDZNELYQQQtgwSdRCCCGEDZNEbQP6zP8zI759k27Tx1RqC3zqAR78/i1GRL+Ji29F/V7/RyIYET2fAR8+j0pjZ97XZ3gvxuz9oMZ99Zz9BH848m/aj+1v3jZs7VyGr5vH8HXzcOvUtqYvUQghRA3Jz7MU5tm9A0aDkR9GRxGx8kUcmrlRcjnX3N5+dBibHppJ854BBDxxPwfe+oL2Ywfww6jXCXzqAXyG9SJj0z4A2j14H4XnLte4ryMfRXM1yXKtZJPByNYJb9TyqxYNVYvenek1+wlMRhMZm/Zx9F/fAdBmYA+6TY0EKmpCb3tkHleSMxnw4fM4NnMj88cDHF2+sdr9NevhT695f0KlUnF+byKHFn5lbrNz0DFw1UtonOzJz8hi7wsVP8Xq9PhQfB/ui9pOzdYJb2AqN9TCKxei7siMWmHNQzpyfk8iABdij+EZ3N6ivfBcNnb2WnSuTpReLcCtfStyjqUDcH7PEZqF+APg1a8rWXFJmIw3X7/mdn3dmLTNVCqGr5tH3/97Bjt7bU1fpmgk8jOy+CFyNptHzqLt0Huxc9QBcHZnPFvGzmHL2DkUnM4i52g67R7ow6Vfk9kydg7Ngjtg71n9Kg/ZR9L4YdTrbB45i+b3BqB1vl4cpHV4d7LikirKXpYbcA/wpkmbZjS99kFhy9g5kqRFvSAzaoXp3JwoS64oEVheUIzOrYlFe1bccUbvWoxKpWLTw7Nw8WlhLil44/4d/ziI/724HN+HQmvcV1Vinv4/9LmFBE1+mI5/HFyxfrOV6fOLbloVqTFqGuiDzsVJ6TCqVJx1xfx3k8Fornb1m2Y9/Ll8+CQALj4tuBxf8ferKWdo1r0DZ386VK3+fku0KrWa4qwcyotLzW0Fpy+aP8hqnRzQ5xfRJqIHGid7hn0zh6x9x4l/9+vqv8i7JOPZUm2M54IySM2rpYBqyN+1olBKXZBErTB9bpF5FqBxdqQ4/XoZPq2zI+0evI/1fafRNLAdPV56hOMrN5lLCmqcHdHnFuLZvQNXT5zBUFpW475u/pxCAE5v+4Wgvz5Uo9d4t64cP13jpS0bovqwtGWrAcHkZ1yoNCa9h/cic2tFAYzck+doGdqF83sSadknkLxT52rUl19kGD1efIRzMfEVHw6uyUs/T8s+gYzetZjsxDSKzmXj0MwNTLB1/DzClkzFI8i3Uv3quibj2VJtjOfUPHhqby0FVEOr+tVdNTO59K2wS4dSaNWvovKQ131dzGX+AEwmE+VFpZgMRkqv5qNzbUJe2gU8AtsB0KpfVy4fSqVpgDetBwQzdPUsPLr6Evx8xY1iji2b3nFfN6Np4gBAi54B5J++ePcvWDR4Tq08CJ4WyS9zP6vU1qpvV87vOQJUVN1y8HTl/jWzKcnOo+Ry1VMit05tzTc0/van29TR5va0DXvY0P95HL08cO/sY97uPz6C9Oj/8e2AGZTm5NG8ZwBleUVciD0KQNa+Y7h2aF2Lr1yIuiEzaoVlHz6J/4SBjPj2Tc7GxFNyORePIF/cA304tXYXl35NZkT0fNR2ava//jHGsnJOfbuXEdHzKTqXze7pH2AsKyf16xgA7l8zm4Ql61HZqen7zmR2TPrHHfcV9OxI/CcMBJMJh2ZuHPvX9wz7eg7GsnL0uYXsmrpUobMk6gu1TkPY4qnEvrqS8qISizZnnxYUns/GWFYOgMloZN+rKwEIWzqNiweSUdmp0bk7U5p9PWnnnjjDlrFzbtqfUV8OJhPlBcUYSvXmNpVaTenVfABKrxSgc3Xi4oFk2kdW/KqhaaAPpzYoPA0T4g5IorYB+2eusnicczTdfDnu8PtrOfz+Wov21K9+IvWrn6o81rZrd2h7BPmS/n3l0n236uvo8o2V7rzd9OBrd/w6hGgf2R/3Tm3p+85kAHZNWYJfZBhHl2/EZ3hv82VvgCZtmtF/6TRMRiPHVm7CUKzHxdeLLk89wP7XP76j/rzv70Xgk8NBrSJr3zHKC0oIenYkR5dv5NSG3YT/628EPH4/pbkFJCxdj6ncgP/4cIavm0fuqXNcPpRSJ+dBiNokibqByk44dUeXtoWoTalrdpK6ZqfFtt8+/B1b8b3F9sKzlyvNlD2C2pF+7eeGdyLj+1gyfveB9Lf+9LmFbP/Dm5WeEzf7kzs+vhC2QBK1EMJmZGyqf6UyRf2VPCuCwqRYVBotKjsNDm0603riAly7D1Y6NAtyM5kQQohGq/XEBYSsKSD40yyaBIRy8q3RGAqrWFNCQZKohRBCNHpqrT3Nhv4FY0kBJedTlQ7HgiRqIYQQjZ6xtJjL21ehdnLFoXVHpcOxUG8StV6vJyoqCm9vbxwdHRk0aBBxcXGoVCqio6OVDk8IIUQ9dG51FPGPupP4tC9FaYfxf/177Jyqv5xtXaoXN5OZTCbGjx9PXFwcc+fOxd/fn9WrVxMZWbHIf0hIiMIRWlLZqek1dxIdxg5ApVaTvmkf+2euuu3KYeLO+T4cSuBTD+AR5EtpTj5rez+ndEgNloxn65DzrIzWj76JV+RLSodxS/ViRr1ixQo2b97Mjz/+yOTJkxk8eDArVqzAzs4ODw8PfHx8bn8QKwqePgavvl2JHvQi6/pNw71TW+59/XGlw2pQSnMLSfp4Cwf/8aXSoTR4Mp6tQ86zuJl6kagXLlzIxIkTCQoKMm+zs7PDz8/PPJv29fWlc+fO9OjRgx49erB161alwqXjY4NJXLqeogs5lGbnEf/u1/hPiEClrhenu144vyuBtOi9FJ65pHQoDZ6MZ+uQ8yxuxuZHQEpKCmlpaYwdO7ZSW2ZmpsVl77Vr1xIfH098fDzDhg2zZphmOlcnnNs0J+domnlbdmIaOhcnnL2bKxKTEDUl49k65DyLW7H576jPnj0LQIsWLSy2JyUlkZGRUSvfT7u4uKDX62+/4+900DTl765hFts016pT6XOLzNt+q0B1Y63chmjgwAhOll+53W7VVtV5bswGDrTeeZbxLOe5rg0cePfn2SkglA7zY6r9vIAF1X/OzQwcGEFRcuVlm2+k0+nIz8+v9rFtfkbt6VlRNyw19frv2kwmE6+88gpGo9EiUT/22GMEBwfz3HPPcfXqVWuHClTUeQbQul6vr/pb3eeya21C1Bcynq1DzrO4FZufUQcGBuLv78/MmTPRarU4OzuzfPlyDh06hJOTEwEBAQDs3r0bb29vSktLmTFjBlOnTuW///3vHfVRk084AFlxSZXqyurziig4ewmPIF/yTlbU1/Xs6oc+v4iCzIb9ferOnTF1Uie5qvPcmFnzPMt4lvNc12rjPMdnK1+PeufOmMZbj1qj0bB27VpatWrFpEmTmDFjBiNGjCA8PJzg4GDU12608Pb2BsDe3p7nnnuOvXuV+1dL+WIHwdMicWzZFHtPV3q8+Aipa2IwGY23f7K4Iyq1Gjt7LSqNBlQq7Oy1qHU2/7mzXpLxbB1ynsXN1It3tu7duxMba3ntf9myZYSHhwNQWFhIeXk5bm5umEwmvvrqK3r06KFApBUSlq7H3sOV0THvo1KrSP9+HwcW3NnsXtyZDuMGELZkqvnx4+lfUpB5UX5PXQdkPFuHnGdxM/UiUf9ecXExycnJzJgxA4CsrCzGjh2LwWDAYDDQpUsXPvroI8XiMxmMxEV9TFzUndXUFdWX+nUMqV/HKB1GoyDj2TrkPIubqZeJOiEhAYPBYL6RrH379hw6dEjhqIQQQojaVy8TdZ8+fTCZTEqHIYQQoh45vWIaxWnxuN4zglbjZ1Zqz9q4mNxfvqfTmz+Se3ALF9b9A4DijEQ6vbEDXXMfUuYMpeRsMiFrCqwWt83fTCaEEELcrcKUX1GpNQS8vZuikwcpu5pl0W4qL6M4Ld782O2e4QQsiKHT/J3Yt2yPo1937Bxd6DhvO0063WfV2CVRCyGEaPAKT+zHJXgQAC5dwylKPWDRnh3zOU37/7HS84pSfsHJvycqlQqVRovGxcMq8d5IErVosHwe6MOg/7yidBjV1u+95+j42BClwxA2SMZ0zRkKr5rLV6odXTAUXjW3mYxG8g5uxe2eyktPX90fjXufUdYKs0qSqEXDpFLR8/WJxL/3NWqdhlEx7xP8/BiLXcIWT2HIF7MAaBnahcdSPsfFz8vc7uDpyoTEf+M3ql+1+h0RPZ+eUZZVj1x8vXgs5XNa3hfIYymf4xHka9HebfoYRu18D7VOQ8KSdYS8PEF+Fy4syZi+I8Wnj5E8K8Liz4W1/8CuiTuGojwAjMX52DVxNz/naux63HqPrPJ4+Yk7cek2qM7jvhVJ1KJBajsohPLCEnIS0zDqy9kz/QO6TR9D0y7tAPAZ3ou2Q3uy928VP+PLij3GidU76L9kmrlaUeiiyVzYc4S06KoXzxkX9xHObX9XMMFkYs/0D+g0cQgtflttSaUibMkUkj/bRta+4yQsWUfY0mmotRVvWu6dfQieFsnuqUsx6svJz8gi79Q5fB8KrYMzI+orGdN3xtGnCwELYiz+eI17lSadepOfuBOA/KO7cPK/1/yckrPJZP/0CSlzh1OUFs/lbasAKL1wCl2ztqi1ujqP+1YkUYsGyXt4L87vPWJ+nJ1wiqPLN9J/6TScWnkQuugZ9s9cRXHW9WIAB99ejX1TZ7o+NxL/RyJoHtKR2NdWVrvv/IwsDiz4grDFU9A42hM0+WF0Lk4cXFhROzvxw2jKCooJeXkCKo0d/ZdOJXHZBnKOppuPcW53It7DetX8BIgGR8b03WnSsRemslKSX+uPk193tO4tKbtygQvrF9HqkVl0emM7HeduwcmvB83ufwqouOzt1tvysveJqCEUpR3iRNQQijOOVNVVrZNra6JB8gjyJWX1Dotthxevo+3Qexm5fRHnq5hVGEr07J72AcPWzcVUbuDnZxejv1qzn2Akf7YN72G9GLB8Bl6hXdgyZg5GfXlF47UZysPb3sHFzwtDaRmJH3xr8fzcE5n4jw+vUd+iYZIxffd8nvnQ4rG2qRdeY1622NbpzR/Nf2856oVKx7ix3VpkRi0aJHs3Z8ryLasOmcoNXPolGQdPN1LX7KzyeVdTzlCWV4Q+v4hzuxLuKoa9L3xIq7CuHFu5yWJmARUzlIMLv8JneG92T/+g0nrO+vxi7N2d76p/0bDImG68ZEZ9F5oG+jAier7SYdiMpoE+SodgVppbgNbFso5viz6B+E8YyPF/b6b3G0+ycejLGEos65D3nvcnriRn4uDhQvcXxhG/aI25zS8yjNC3nzY/1ro4MvKnd8FYsfhO4rINJC771txefPEqpTn5XDl+usoYrx4/jaFUT37ahUptOhdHSms486kpGc+WbGk8g4zpW/F3hVXVuD+urmKoK5Ko74LOxalOyuCJu5dzNB03/zbmxxonB8IWT+HAgi9I+nQrIza8wT2vPcovcz4x79NmUAjtHryP6EF/Q+fahAc3vUXm1l/ITjgFQNqGPaRt2GPef1zcR2wZM4eCM7VfhtCtkzc5R9Jr/bi3IuPZtsmYvjlnLXVWYtIWyKVv0SBlbv0Vr75dzY97zX2CgtMXSfpkS8X3ac8vo9Ojg2l5XyAAOndn+r37LPujPqbofA5XkzNJWLyOsCVTFfmZVOuwbpze9ovV+xW2S8Z04yWJWjRIZ3YcROvsgEdXP9oMCsFvZD/zz1bg+l2s/d6vuIs19O2nuXQwhVNrd5n3OfLRxmt3sv7BqrE7+7TAtUNrMr6Lvf3OotGQMd14qUxS3ULYuKy4JH4Y9Xq1n+fzQB/8x4fz05Pv1EFUdaffe89x8cAJUr6o+u7SEdHz5RJ1PVbT8QwNc0zLeL49+Y5aNFinN+/n9Ob9SodRbTfOkoS4kYzpxkkufQshhBA2TBK1EEIIYcMkUQshhBA2TBK1EEIIYcMkUQshhBA2TBK1aJR07s48tHUhj6V+XmV7u4dCeXDz2zz4/Vs0v6fjTY8TvvwF/nj8k+vl/27gFRrE6F2LuX/NbPM2/0ciGL1rMcPXzaPL5Ifu/oUIIRo8+XmWaJTKCorZNuFNIv71tyrbA58czpbI2ejcnekz/8/EPP1ulfvFzf4PAU/cX2Vb9pE0vhv6MoM/e81ie8KSdZxat/vuXoBolPrM/zMeXf0489MhEpeuN29XaewY8OHzODZzI/PHAxxdvhHnts154Pu3yDt5joKzl9kz/QN07s7cvyYKtw6t+cL/8Wr336J3Z3rNfgKT0UTGpn0c/dd3Fu2/jyMr9hi95v0JlUrF+b2JHFr41V2fg8ZIZtSiUTKVG25Z7q8g8yIaJ3t0rk63LCRQfOnqTdvK8oswlJZV2t5tymiGfTMHjyDf6oQsGjnP7h0wGoz8MDoKz25+ODRzM7e1e6APl35NZsvYOTQL7oC9Z0WFiDM/HmDL2Dnsmf4BcP0D6qUDKTWKIT8jix8iZ7N55CzaDr0XO0edRfvv48jPvMgPo15n88hZNL83AK2z402OLG5FZtR3QZ9fdNMqMo1R00AfdC5OSodRKzK3/8rD2xehUqv5ceJbtXbcjB/iSP06Bue2zen3/nNsHT+v1o59t2Q8W7K18dw8pCPn9yQCcCH2GJ7B7Tn70yEAXHxacDn+JFBR1rJZ9w7knjhDm4gejPj2TZI/28ap9btv+wH1doqzrpj/bjIYzVW2flNVHGd/OoRKraY4K4fy4tIa9307BWWQmldnh78lf9eKwiB1RRL1Xbhy/HSNlwJsiBrSUoBdp4zm2/4z0Lo6Ebrwr/z0p4W1ctyy/CIACs5cwmS0rdV7ZTxbsrXxrHNzoiy5oh51eUExOrcm5rbck+doGdqF83sSadknkLxT5yi6eIX1/aeDCYZ++Tpndx6i9ErtlJlsNSCY/IwLla4YVRWHX2QYPV58hHMx8RXJvY6k5sFTe+vs8Le0ql/dVu+SRC1EFQylZZSX6EGlQuPkAIBjy6YWM4qa0DRxoLywBJ1bE0UqGIn6S59bZL50rHF2pDj9es3nzK2/0jq8O/evmU1Jdh4ll/Mw6svN7Vn7j+PSzovSK6l31Jdbp7YWdaoBzu48ROKyb3Fq5UHwtEh2TKr84bWqOM7vSSTt271ErHwR984+XE2SqzbVJe8UotG6f81sPLr6cf+a2cTN/g+lOfm0HzeAo8s3cvKbn3nwuwWgVnH43W8ACHv/ObY/usDiGD3nPEG7EX1oO+Qejq3cxKn1u+k55wl+nfcZTbu0o9ecSXh09WPol6+z/Y/z6fL0g7QdfA8qlYoDb69W4mWLeurSoRTaR4ZxZvsBvO7rQvrG/5nbTEYj+15dCUDY0mlcPJCMxsmB8qISAJp170DSxz9UeVyVnRqduzOl2devG+eeOMOWsXMq7avWaQhbPJXYV1eaj32j38dx+fDJaw0myguKMZTqa/biGzlJ1KLR2jbhjUrbji7fCEDK6h2krN5xvUGlIjf1bKX9f533Gb/O+6zSNoArxzIq9ZGweB0Ji9fdbeiiEco+fBL/CQMZ8e2bnI2JR6VSEfTsSI4u30iTNs3ov3QaJqORYys3YSjW0zq8O/e89ijGsnIyvt9H8cWrQOUPqIbSMro89QD7X//4tjG0j+yPe6e29H1nMgC7pizBZDCaP+D+Po7W4d0JfHI4qFVk7TtGftqF2/QgqiKJWog7YTIRN/sTpaMQjdz+massHv/2wbLw7OVKM+BzPx/m3M+HKx3j9x8e2z3Yh/RN++6o/9Q1O0lds7PS9lvFkfG91KC+W5KohRCiEcvYVP/KZjY2kqiFEEI0SsmzIihMikWl0aKy0+DQpjOtJy7AtftgpUOzIAueCCGEaLRaT1xAyJoCgj/NoklAKCffGo2hMFfpsCxIohZCCNHoqbX2NBv6F4wlBZScv7OfsVlLvUnUer2eqKgovL29cXR0ZNCgQcTFxaFSqYiOjlY6PCGEEPWYsbSYy9tXoXZyxaH1zQvxKKFefEdtMpkYP348cXFxzJ07F39/f1avXk1kZCQAISEhCkd4ne/DoQQ+9QAeQb6U5uSztvdzSofUYKns1PSaO4kOYwegUqtJ37SP/TNXVbm+tqg5Oc/WIe8dyji3OooL38xHpbHHwbsL/q9/j52Tq9JhWagXiXrFihVs3ryZ+Ph4goKCAIiIiMDPzw8PDw98fHwUjvC60txCkj7egkNzN4L+KmUM61Lw9DF49e1K9KAXMZSVM/iTV7j39ceJi7r970HFnZPzbB3y3qGM1o++iVfkS0qHcUv14tL3woULmThxojlJA9jZ2eHn52eeTZeUlPDss8/SsWNHunXrxl//+ldFYj2/K4G06L0UnrmkSP+NScfHBpO4dD1FF3Iozc4j/t2v8Z8QgUpdL4Z1vSHn2TrkvUPcjM3PqFNSUkhLS2Pp0qWV2jIzMxk7diwAf//733FwcODEiROoVCqysrKsHaqwIp2rE85tmpNzNM28LTsxDZ2LE87ezcnPkH//2iDnWQjl2XyiPnu2YtnGFi1aWGxPSkoiIyODkJAQCgoK+Oyzzzhz5gwqlQqAli1b3nEfLi4u6PXVX4O2g6Ypf3cNq/bzGqqBAyM4WX53RSuqUtV51lwrTqDPLTJv0+cWAjT4mrcDB8p5toaBA613nhuzgQNr5zw7BYTSYX7MXR+nJgYOjKAo+fYrsOl0OvLz86t9fJu/duXpWVE7LDX1+u3yJpOJV155BaPRSEhICCdPnsTT05N58+bRs2dPIiIi2LNnj1IhCysoL6go96d1vV4v+Leyf2XX2sTdk/MsGrKABTE2//001IMZdWBgIP7+/sycOROtVouzszPLly/n0KFDODk5ERAQQHx8PKdOnSIkJIRFixaxf/9+Hn74YVJTU3F1vf3dezX5hAOQFZck9XtvsHNnTJ3U763qPOvziig4ewmPIF/yTp4DwLOrH/r8IgoyG/Z3fHKercOa57kxq63zHJ+tXD3qnTtj6rQetc3PqDUaDWvXrqVVq1ZMmjSJGTNmMGLECMLDwwkODkatVuPj44NGo+GPf/wjAH369KFZs2acOHHC6vGq1Grs7LWoNBpQqbCz10rd4TqS8sUOgqdF4tiyKfaervR48RFS18RgMtZdcfrGSM6zdch7h7iZejEKunfvTmys5fX/ZcuWER4eDkCzZs0YOHAg27dv5/777+fEiRNcvHgRf39/q8faYdwAwpZMNT9+PP1LCjIvym8i60DC0vXYe7gyOuZ9VGoV6d/v48CC/yodVoMj59k65L1D3Ey9SNS/V1xcTHJyMjNmzDBv++c//8mf//xnXnzxRbRaLZ9//jnu7u5Wjy316xhSv46xer+NkclgJC7qY/k9bx2T82wd8t4hbqZeJuqEhAQMBoPFimTt27cnJiZGuaCEEEKIOlAvE3WfPn0wmUxKhyGEEKKeKTi2hzP/eQlUapr2HUvL0S+a2wpPxJH57xfAZMIleBBtJs6/5f7WYvM3kwkhhBC1RdeyPZ3e2kXnd/7H1V++x1h6fY0Ap/YhdF64l87v/I/C5FgMRXm33N9a6uWMWgghhKgJnWdr899VajtQXZ+vqjRaAEwGA1qP1qjtnSwKdPx+f2uRGbUCfB7ow6D/vKJ0GNXW773n6PjYEKXDEDZIxrSob/Lit2PfqgNqnYPF9pyfV3N0aiB2TdxR2Wluu781SKK2NpWKnq9PJP69r1HrNIyKeZ/g58dY7BK2eApDvpgFQMvQLjyW8jkufl7mdgdPVyYk/hu/Uf2q1e+I6Pn0jHrcYrOLrxePpXxOy/sCeSzlczyCfC3au00fw6id76HWaUhYso6QlyfIbzuFJRnTwgYVnz5G8qwIiz8X1v4DAP3lM1xY+zZtn3y30vM8wh8l6MMkynLOUZyeeNv9rUEStZW1HRRCeWEJOYlpGPXl7Jn+Ad2mj6Fpl3YA+AzvRduhPdn7t48AyIo9xonVO+i/ZJq5WlHooslc2HOEtOiql+EZF/cRzm2bW240mdgz/QM6TRxCi99WAVKpCFsyheTPtpG17zgJS9YRtnQaam3Fm5Z7Zx+Cp0Wye+pSjPpy8jOyyDt1Dt+HQuvgzIj6Ssa0sEWOPl0IWBBj8cdr3KsYy0pJX/InfJ5Zjp2js8VzjGWlwLXFZxxdUOkcbrm/tUiitjLv4b04v/eI+XF2wimOLt9I/6XTcGrlQeiiZ9g/cxXFWdcXqT/49mrsmzrT9bmR+D8SQfOQjsS+trLafednZHFgwReELZ6CxtGeoMkPo3Nx4uDCLwFI/DCasoJiQl6egEpjR/+lU0lctoGco+nmY5zbnYj3sF41PwGiwZExLeqTnJ9XU5J5jIzlk0meFYE++yxlVy5wYf0icuM2Vsy+XxuA1rMtDq07Vrm/tcn1HivzCPIlZfUOi22HF6+j7dB7Gbl9EeermFUYSvTsnvYBw9bNxVRu4OdnF6O/WlCj/pM/24b3sF4MWD4Dr9AubBkzB6O+vKLx2gzl4W3v4OLnhaG0jMQPvrV4fu6JTPzHh9eob9EwyZgW9UmzIU/SbMiTlbZ7jXkZgKb9xt/R/tYkM2ors3dzpizfsuqQqdzApV+ScfB0I3XNziqfdzXlDGV5Rejzizi3K+GuYtj7woe0CuvKsZWbLGYWUDFDObjwK3yG92b39A8qreeszy/G3l2Zyz/CNsmYFqJuyYzaykpzC9C6WNbxbdEnEP8JAzn+7830fuNJNg59GUOJZX3s3vP+xJXkTBw8XOj+wjjiF60xt/lFhhH69tPmx1oXR0b+9C4YKxaFSVy2gcRl35rbiy9epTQnnyvHT1cZ49XjpzGU6slPu1CpTefiSGkNZz6iYZIxLUTdkkRtZTlH03Hzb2N+rHFyIGzxFA4s+IKkT7cyYsMb3PPao/wy5xPzPm0GhdDuwfuIHvQ3dK5NeHDTW2Ru/YXshFMApG3YQ9qG6/W3x8V9xJYxcyg4U/tlCN06eZNzJL3Wj3srTQN9GBE936p92rKmgT5Kh2BBxnT1yHi2VFvj2d8VVlXjRwO1yf/21ZTviiRqK8vc+ishf/+D+XGvuU9QcPoiSZ9sAWDP88sY+eP/cfqH/WTtO47O3Zl+7z7L/qiPKTqfQ9H5HBIWryNsyVS+G/b369/FWUnrsG6c+HLH7XesRToXpzqpCyxqh4zp6pHxXDectdRpTWglyXfUVnZmx0G0zg54dPWjzaAQ/Eb2M/9sBa7fxdrv/Yq7WEPffppLB1M4tXaXeZ8jH228difrH6rqos44+7TAtUNrMr6Lvf3OotGQMS1E3VKZpLpFjWXFJfHDqNer/TyfB/rgPz6cn558pw6iqjv93nuOiwdOkPLFj1W2j4ieLzOFeqym4xka5piW8SxshVz6VsDpzfs5vXm/0mFU242zJCFuJGNaiLojl76FEEIIGyaJWgghhLBhkqiFEEIIGyaJWgghhLBhkqiFEEIIGyZ3fQshal2L3p3pNfsJTEYTGZv2cfRf31m0D/70VbQujhjLjfz8zHuo7ewI/+cLADi19iTp4x84tnJTpePq3J25f00Ubh1a84X/45Xaw5ZMxcW3JYbSinKbRRdycPH14r63/oJap+XYiu/J3PZr3bxoIeqIJGoF3e5Np9PjQ/F9uC9qOzVbJ7wBwIAPn8exmRuZPx7g6PKNNeq3y9MP0nbIvWy7dswb9Zn/Zzy6+nHmp0MkLl1Pm4E96DY1Eqio5bvtkXmVih4I8Xv5GVn8EDkbY1k5w9bOJemzrRiKr6/1/dNfFmEqN9B+3ADaR/bn+L83s2XsHAAGfDSDMzsOVnncsoJitk14k4h//a3K9vhFayg4c4lWYd3o/ORwDr69mh4vjufnZ95Hn1dU+y9UCCuQRK2gW73pNGnTjKbXEuNvfEf25dKvyRxbuYnw5S9g7+lKaXZetfpUaezwCPKtss2zeweMBiM/jI4iYuWLODRz4+zOeM7ujAfgoR/+IUla3JEba0+bDEZzMQ3ztnIDAHb2Oq6mnDFvV2nscPFpQd6p81Ue11RuuGU5zN/WAjcZjJhMJtRaDU1aNyNs6TQwwf9e/icll3Nr/LqEUIIkagXd6k2ndXh3NE72DPtmDln7jhP/7te4+LTgcvxJoKJEYLPuHTj706Fq9dlhXDinvt1D12dHVWprHtKR83sSAbgQewzP4Pbm4zfr4c/lwyer1ZcQrQYEk59xAUNpmcV2nbszQz57Da2zA9sfW2De7tU3iAv/O3p3napUdHt+DLF//xf2Hi64d/Zmfd9peAT5Ejw9krjZn9zd8W1EQRmkVu9zeq3yd61YX1vUPUnUNsqhmRuYYOv4eYQtmYpHkC+5J8/RMrQL5/ck0rJPIHmnzlXvoCoVbSK68/Mz71eZqHVuTpQlV9QVLi8oRufWxNzmPbwXmVt/uavXJBoXp1YeBE+LZMekhZXa9FcL2DxyFt7DetHlrw/x67zPAPC5vyenbqiaVRMhr/yBtG/3UnD6IhpHe64cP40+t5Cs/cfpOmX0XR3blqTmwVN7let/Vb+GWwTD1kiitlFleUVciK2YWWTtO1ZROOD7fbQO7879a2ZTkp1HyeWqP067dWprUcsX4OzOQ+SlXbjljTT63CK0zhV1hTXOjhSnX6/d26pvVw6/+83dvizRSKh1GsIWTyX21ZWUF5VYNqpUqNQqTAYjZXlFFrPtZvd0ZH/Uf8yPHVs2tbiMfjvtHuyDvbszh776EoDy4lIMpWWodRrcO7alIPPi3b0wIRQgidpGXTyQTPvI/kBFvdZTG/ZiMhrZ9+pKAMKWTuPigWRUdmp07s4W31XnnjhjvjHnRsHPj8ErNIgO4wbg0dWXjo8OJmX19fJ+lw6l0D4yjDPbD+B1XxfSN/4PqKgwVHg+G2OZdcsPivqrfWR/3Du1pe87kwHYNWUJDp6uuAf6cPqHOIZ8/homowmjvow9z38IgEdXP64cy4BrdYJUdmr6vjOZHZP+YXHs+9fMxqOrH/evmU3c7P9QmpNP+3EDOLp8I73m/omi8zkMXzePc7sOk7BkPUf/uZFh38zBZDCa+xKiPpHqWXfhbqoN/ea3N52cI2nEv/s1ze/tZL6bu/cbf8IjyI/cU+eIfflfNGnTjP5Lp2EyGjm2chOZ237FxdeLLk89wP7XP652v9smvIFjc3fzmxxAn7eewqNLO87GxJOweB0AXf76ECWXczm1fvctjynVhuq32hjPtckzuD3uAd6c/OZnRfq39fEcny2XvhsLSdR3wRbe2No92IeSnHyyYo8pGgfY/hubuDVbGM+2xNbHsyTqxkMufddzGZvqX2lBIYQQd04StRBCNCLJsyIoTIpFpdGistPg0KYzrScuwLX7YKVDEzcha30LIUQj03riAkLWFBD8aRZNAkI5+dZoDIWyEIytkkQthBCNlFprT7Ohf8FYUkDJ+VSlwxE3IYlaCCEaKWNpMZe3r0Lt5IpD645KhyNuot4kar1eT1RUFN7e3jg6OjJo0CDi4uJQqVRER0crHZ4FlZ2a3m8+yR+P/YdHkz6l77vPYmcva+2J+sf34VBGRL/JY6mfMy7uI6XDEbXk3Ooo4h91J/FpX4rSDuP/+vfYObkqHZa4iXpxM5nJZGL8+PHExcUxd+5c/P39Wb16NZGRFVWdQkJCFI7QUvD0MXj17Ur0oBcxlJUz+JNXuPf1x4mLqt5vnYVQWmluIUkfb8GhuRtBf31I6XBELWn96Jt4Rb6kdBjiDtWLRL1ixQo2b95MfHw8QUFBAERERODn54eHhwc+Pj4KR2ip42ODOfDmfym6kANA/LtfE7HiRX6Z8wkmo1Hh6IS4c+d3JQDgM7yXwpEI0XjVi0S9cOFCJk6caE7SAHZ2dvj5+aHVaklPT2f06NHmtqtXr5KXl0dOTo7VY9W5OuHcpjk5R9PM27IT09C5OOHs3Zz8jCyrxySEEKL+svlEnZKSQlpaGkuXLq3UlpmZydixY/H19SU+Pt68fcaMGZSX3/m61C4uLuj1+tvv+DsdNE35u2uYxTbNtaIW+tzrRer1uYUA5oIXDdXAgRGcLL/zAgrCtlQ1nhuzgQNtezw7BYTSYX6MYv0PHBhBUXKsYv3XRzqdjvz8/Go/z+YT9dmzZwFo0aKFxfakpCQyMjIqfT+t1+v54osv2Lp1q9VivFF5QUWZSK2rE8WXrgKYy0WWXWsTQgilBCyIUToEUU02n6g9PSsWk01NTaV3795Axc1lr7zyCkajsVKi3rhxI23atOGee+654z5q8gkHql4bWZ9XRMHZS3gE+ZJ3sqJetGdXP/T5RRRkXqpRP/XFzp0xNr02srg1Wevbkq2PZ6XX+t65M0bW+rYSm0/UgYGB+Pv7M3PmTLRaLc7OzixfvpxDhw7h5OREQECAxf4ff/wxf/7znxWKtkLKFzsInhZJ1v7jGMsN9HjxEVLXxMiNZKLeUanVqLV2qDQaUKmws9diMpkw6qXkqRDWYvOJWqPRsHbtWp555hkmTZqEt7c3M2bMwNXVlZMnT6JWX/8p+NmzZ/n555/5/PPPFYwYEpaux97DldEx76NSq0j/fh8HFvxX0ZiEqIkO4wYQtmSq+fHj6V9SkHmRtb2fUzAqIRoXm0/UAN27dyc21vKmhWXLlhEeHm6x7dNPP+XBBx80Xy5XislgJC7qY/ndtKj3Ur+OIfXrGKXDEKJRqzcrk92ouLiY5OTkSt9Pf/LJJ4pf9hZCCCFqU72YUf9eQkICBoOhUqI+ceKEQhEJIYRtO71iGsVp8bjeM4JW42eatxtLizm5cCzGkkLsW7bH9/n/VLlNKKdezqj79OmDyWSiZ8+eSocihBA2rzDlV1RqDQFv76bo5EHKrl5feCkvfhvOgWEEvPUzKo2W4owjVW4TyqmXiVoIIcSdKzyxH5fgQQC4dA2nKPWAuU3X0g9jScWiTIaSAuyc3KrcJpQjiVoIIRo4Q+FVc3UstaMLhsKr5jaHVv4UHNvN0SmBqFCha+5d5TahnHr5HbUQQojKik8f4/S/LH865xYyHLsm7hiK8gAwFuej9epgbs/+6VOahk2gxYNTyFz5PAXH/0dx+uFK25wD+1r1tYjrJFELIUQD4ejTpcolQgtTfiFn15e4936Y/KO7aBr2iLnNZDSicfEAwM7FA0Ph1Sq3CeXIpW8hhGjgmnTshamslOTX+uPk1x2te0vKrlzgwvpFeIQ/yuUd/yF5VgTFp+Jx7TG0ym1COTKjFkKIRsDnmQ8tHmubeuE15mUAOs3bZtGmcW5aaZtQjsyohRBCCBsmiVoIIYSwYSqTyWRSOoj6Sp9fxJXjp5UOw2Y0DfRB5+KkdBiihmQ8W7L18VxQBql5yvXv7wrOWuX6b0wkUQshhBA2TC59CyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDbs/wG/9MfSpua4WQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGOCAYAAABYCEB2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuPklEQVR4nO3deVxU5f7A8c8MM8Mim+CCCwiKIqIo5RKKgltqi4pL3luWt3vrWrlkt7qVhktpXfNXqVneq95uy82yXMLSXDLJ5aKUiuACggLihgrKDgMz8/sDG53ABYQ5A3zfr5evl3OeM+f5zvFxvvOcOfN8VSaTyYQQQgghbJJa6QCEEEIIcXOSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGEapQOoz/T5RVw5flrpMGxG00AfdC5OSochakjGsyVbH88FZZCap1z//q7grFWu/8ZEEvVduHL8ND+Mel3pMGzGiOj5tOzdWekwRA3JeLZk6+M5NQ+e2qtc/6v6QQ9P5fpvTOTStxBCCGHDJFELIYQQNkwStRBCCGHDJFELIYQQNkxuJhNCiEYkeVYEhUmxqDRaVHYaHNp0pvXEBbh2H6x0aOImZEYthBCNTOuJCwhZU0Dwp1k0CQjl5FujMRTmKh2WuAlJ1EII0UiptfY0G/oXjCUFlJxPVToccROSqIUQopEylhZzefsq1E6uOLTuqHQ44ibqTaLW6/VERUXh7e2No6MjgwYNIi4uDpVKRXR0tNLhCSFEvXFudRTxj7qT+LQvRWmH8X/9e+ycXJUOS9xEvbiZzGQyMX78eOLi4pg7dy7+/v6sXr2ayMhIAEJCQhSO8Drfh0MJfOoBPIJ8Kc3JZ23v55QOSYgak/HcMLV+9E28Il9SOgxxh+pFol6xYgWbN28mPj6eoKAgACIiIvDz88PDwwMfHx+FI7yuNLeQpI+34NDcjaC/PqR0OELcFRnPQiivXiTqhQsXMnHiRHOSBrCzs8PPzw+ttmJV+BMnTjBp0iSys7Px9PTks88+o2NH63/ncn5XAgA+w3tZvW8hapuMZyGUZ/OJOiUlhbS0NJYuXVqpLTMzk7FjxwLwzDPPMGXKFCZOnMh///tfJk+ezE8//XRHfbi4uKDX66sdWwdNU/7uGlbt5zVUAwdGcLL8itJhiBqS8Wxp4EDbHs9OAaF0mB+jWP8DB0ZQlByrWP/1kU6nIz8/v9rPs/lEffbsWQBatGhhsT0pKYmMjAxCQkK4ePEiBw8eZPv27QD88Y9/ZOrUqVy6dInmzZtbPWYhhLBVAQtilA5BVJPNJ2pPz4o6aqmpqfTu3RuouLnslVdewWg0EhISQmZmJm3atMHOzg6ouCzeunVrMjMz7yhR1+QTDkBWXJKUBbzBzp0xNl0WUNyajGdLtj6e47OVLXO5c2eMlLm0EptP1IGBgfj7+zNz5ky0Wi3Ozs4sX76cQ4cO4eTkREBAAIcOHVI6TCGEEKJO2Hyi1mg0rF27lmeeeYZJkybh7e3NjBkzcHV15eTJk6jVary9vTl79iwGgwE7OzsMBgPnzp3D29vb6vGq1GrUWjtUGg2oVNjZazGZTBj15VaPRYi7JeNZCOXZfKIG6N69O7GxljctLFu2jPDwcKDi++sePXrw5ZdfMnHiRL788ktCQkIU+X66w7gBhC2Zan78ePqXFGRelN+finpJxrMQyqsXifr3iouLSU5OZsaMGeZt//znP5k0aRJvvPEGTZs25bPPPlMkttSvY0j9OkaRvoWobTKe66/y/BxS5gyl5GwyIWsKLNqK0g5z+p/PodLo8JvxGbrm3pScTyXzX1MxlpXScuQLuPcZqVDk4vfqZaJOSEjAYDBYrEjWuXNn9u/fr2BUQghhO+wcXeg4bzun3nmkUtv5NW/Q4bUNlF05z4X1C/GZvIzzX83D76Wv0Di7Wz9YcUv1MlH36dMHk8mkdBhCCGGzVBotGhePKtuMJYVo3VugdW9B6flUjGV69JczSV/8BKhUtJuyAq17SytHLG6m3hTlEEIIUTtMJqPF38vzLlOccQTfGZ/S8uEZXFj7toLRid+TRC2EEI2MSqW2+LtdEzcc23VD49wU56D+lJxNVjA68XuSqBXg80AfBv3nFaXDqLZ+7z1Hx8eGKB2GsEEypusXtb0TZbmXKEpPwL6VP3YOTVDrHDCWlVKccQRdC1+lQxQ3kERtbSoVPV+fSPx7X6PWaRgV8z7Bz4+x2CVs8RSGfDELgJahXXgs5XNc/LzM7Q6erkxI/Dd+o/pVq98R0fPpGfW4xWYXXy8eS/mclvcF8ljK53gE+Vq0d5s+hlE730Ot05CwZB0hL09ArauXtzaIuiJj2madiBpCUdohTkQNoeDYHi6sXwRAqwlRnHxrNJkrp+M15u8AtBz1IieiBpO56nnzNmEbJFFbWdtBIZQXlpCTmIZRX86e6R/QbfoYmnZpB1RUKWo7tCd7//YRAFmxxzixegf9l0xDpa745wpdNJkLe46QFl31+oHj4j7Cue3vfkNuMrFn+gd0mjiEFr8ti6hSEbZkCsmfbSNr33ESlqwjbOk01NqKNy33zj4ET4tk99SlGPXl5GdkkXfqHL4PhdbBmRH1lYxp29XpzR/p8d9sOr35I85dwvAa8zIATu1D6LxwLwELYtA1rygT7NpjCJ3/sYeAt37GvqWfkmGL35FEbWXew3txfu8R8+PshFMcXb6R/kun4dTKg9BFz7B/5iqKs65X7Tn49mrsmzrT9bmR+D8SQfOQjsS+trLafednZHFgwReELZ6CxtGeoMkPo3Nx4uDCLwFI/DCasoJiQl6egEpjR/+lU0lctoGco+nmY5zbnYj3MCl5KK6TMS1E3WqY13tsmEeQLymrd1hsO7x4HW2H3svI7Ys4X8WswlCiZ/e0Dxi2bi6mcgM/P7sY/VXLBQzuVPJn2/Ae1osBy2fgFdqFLWPmXF8O8toM5eFt7+Di54WhtIzED761eH7uiUz8x4fXqG/RMMmYFqJuyYzayuzdnCnLL7bYZio3cOmXZBw83Uhds7PK511NOUNZXhH6/CLO7Uq4qxj2vvAhrcK6cmzlJouZBVTMUA4u/Aqf4b3ZPf0DTEajRbs+vxh7d+e76l80LDKmhahbMqO2stLcArQujhbbWvQJxH/CQI7/ezO933iSjUNfxlCit9in97w/cSU5EwcPF7q/MI74RWvMbX6RYYS+/bT5sdbFkZE/vQvGikVhEpdtIHHZt+b24otXKc3J58rx01XGePX4aQylevLTLlRq07k4UlrDmY9omGRMK8PfFVZV4967uuhfWIckaivLOZqOm38b82ONkwNhi6dwYMEXJH26lREb3uCe1x7llzmfmPdpMyiEdg/eR/Sgv6FzbcKDm94ic+svZCecAiBtwx7SNuwx7z8u7iO2jJlDwZlLtR6/Wydvco6k1/pxRf0lY1oZzlqkHnQjIZe+rSxz66949e1qftxr7hMUnL5I0idbKr5Pe34ZnR4dTMv7AgHQuTvT791n2R/1MUXnc7ianEnC4nWELZmqyE9KWod14/S2X6zer7BdMqaFqFuSqK3szI6DaJ0d8OjqR5tBIfiN7Gf+2Qpcv4u13/sVd7GGvv00lw6mcGrtLvM+Rz7aeO1O1j9YNXZnnxa4dmhNxnext99ZNBoypoWoWyqTVLeosay4JH4Y9Xq1n+fzQB/8x4fz05Pv1EFUdaffe89x8cAJUr74scr2EdHzafnb71lFvVPT8QwNc0zLeBa2Qr6jVsDpzfs5vbn+leS8cZYkxI1kTAtRd+TStxBCCGHDJFELIYQQNkwStRBCCGHDJFELIYQQNkwStRBCCGHD5K5vG9Bn/p/x6OrHmZ8Okbh0vUVb4FMP0H50GEaDgT3Pf0h++gX8H4mg42NDKDxzid3PL8NUbgAqygn2jHqC9f2m1aivnrOfwP+RcOLmfMKpdbsBGLZ2LiqVCoDY11aSe+JMbb500cC06N2ZXrOfwGQ0kbFpH0f/9R0AbQb2oNvUSKCi1OS2R+ZxJTmTAR8+j2MzNzJ/PMDR5Rur3V+zHv70mvcnVCoV5/cmcmjhV+Y2OwcdA1e9hMbJnvyMLPa+UHGHd6fHh+L7cF/Udmq2TnjD/P9HCFslM2qFeXbvgNFg5IfRUXh288OhmZtFe/vRYWx6aCa/vvlfAp64H5XGjvZjB/DDqNe5dCgFnxvK87V78D4Kz12ucV9HPorm1zc+t9hmMhjZMnYOW8bOkSQtbis/I4sfImezeeQs2g69FztHHQBnd8abx1HB6SxyjqbT7oE+XPo1mS1j59AsuAP2ntVfPDr7SBo/jHqdzSNn0fzeALTO19ccbx3enay4pIpqWuUG3AO8adKmGU2vfVDYMnaOJGlRL0iiVljzkI6c35MIwIXYY3gGt7doLzyXjZ29Fp2rE6VXC3Br34qcY+kAnN9zhGYh/gB49etKVlwSJuPN16+5XV8ll3MrP0mlYvi6efT9v2ews9fW9GWKRqI46wrGsooSkyaD0VxE4zfNevhz+fBJAFx8WpiLaFxNOUOz7h2q3d9viValVlOclUN5cam5reD0RTRO9gBonRzQ5xfROrw7Gid7hn0zhx4vPlL9FyiEAuTSt8J0bk6UJVeUCCwvKEbn1sSiPSvuOKN3LUalUrHp4Vm4+LQwlxS8cf+OfxzE/15cju9DoTXuqyoxT/8f+txCgiY/TMc/Dq5Yv9nK9PlFN62K1Bg1DfRB5+KkdBi31GpAMPkZFzCUllls9x7ei8ytFetq5548R8vQLpzfk0jLPoHknTpXo778IsPo8eIjnIuJr/hwcE1e+nla9glk9K7FZCemUXQuu+Iqkgm2jp9H2JKpeAT5ViqLWddkPFuqjfFcUAapebUUUA35u1YUSqkLkqgVps8tMl+u0zg7Upx+vQyf1tmRdg/ex/q+02ga2I4eLz3C8ZWbzCUFNc6O6HML8ezegasnzlR6U6xOXzd/TiEAp7f9QtBfH6rRa7xbV46frvHSlg2RrS9t6dTKg+BpkeyYtLBSW6u+XTn87jdARTGP1uHduX/NbEqy8yi5XPU7rVunthYlLwHO7jxkLnOZtmEPad/uJWLli7h39uFqUkUS9B8fQXr0/0j6ZAu933yS5j0DKMsr4kLsUQCy9h3DtUNrqydqGc+WamM8p+bBU3trKaAaWtWv7qqZSaJW2KVDKbSPDOPM9gN43deF9I3/M7eZTCbKi0oxGYyUXs1H59qEvLQLeAS2A6BVv65cPpRK0wBvWg8Ixuu+QDy6+hL8/BgSlqzHsWVTirOu3FFfN6Np4kB5YQktegaQf/pi7Z8A0aCodRrCFk8l9tWVlBeVWLQ5+7Sg8Hz29UvjRiP7Xl0JQNjSaVw8kIzKTo3O3ZnS7OtJO/fEGbaMnXPT/oz6cjCZKC8oxlB6vea1Sq2m9Go+AKVXCtC5OnHxQDLtI/sDFTO5UxsUfncX4g7Id9QKyz58ErVOy4hv3yTnWDoll3PxCPKl/bgBlBeWcOnXZEZEzyfin3/j6PKNGMvKOfXtXkZEz6dFzwAyt/1K6tcxbB03l+2PLiDnSDoJS9ajslPT953Jd9wXQNCzIwl6bhTdpkbSZXLF7HnY13MY8e2b+D4Uyon/Vl2MQ4jftI/sj3untvR9ZzLD183DycuDoGdHAuAzvLf5sjdAkzbNGL5uHsO+mUPG97EYivU4e7egxwvj7rg/7/t7MXzdPIZveIPC89mUF5SY+zu1YTf+fxjE8HXz8Ojqy7ldCeQkpqHWqBm+bh52jvZcPpRSuydAiDog1bPuwt1UG6prnsHtcQ/w5uQ3P1utz7q6JGvL51kJDfk8t3uwDyU5+WTFHlM0DmjY59mW1MZ5js+WS9+iHspOOEV2wimlwxCiWjI21b8KXELUNUnUQgghGqXkWREUJsWi0mhR2WlwaNOZ1hMX4Np9sNKhWZDvqIUQQjRarScuIGRNAcGfZtEkIJSTb43GUFjFmhIKkkQthBCi0VNr7Wk29C8YSwooOZ+qdDgWJFELIYRo9IylxVzevgq1kysOrTsqHY6FepOo9Xo9UVFReHt74+joyKBBg4iLi0OlUhEdHa10eEIIIeqhc6ujiH/UncSnfSlKO4z/699j51T9defrUr24mcxkMjF+/Hji4uKYO3cu/v7+rF69msjIimo8ISEhCkdoSWWnptfcSXQYOwCVWk36pn3sn7nqtiuHiTvn+3AogU89gEeQL6U5+azt/ZzSITVYMp6tQ86zMlo/+iZekS8pHcYt1YsZ9YoVK9i8eTM//vgjkydPZvDgwaxYsQI7Ozs8PDzw8fFROkQLwdPH4NW3K9GDXmRdv2m4d2rLva8/rnRYDUppbiFJH2/h4D++VDqUBk/Gs3XIeRY3Uy8S9cKFC5k4cSJBQUHmbXZ2dvj5+Zln0y+99BJ+fn6oVCqOHDmiVKgAdHxsMIlL11N0IYfS7Dzi3/0a/wkRqNT14nTXC+d3JZAWvZfCM5eUDqXBk/FsHXKexc3Y/AhISUkhLS2NsWPHVmrLzMw0J+rRo0eza9cu2rVrZ+0QLehcnXBu05yco2nmbdmJaehcnHD2bq5gZEJUn4xn65DzLG7F5r+jPnv2LAAtWrSw2J6UlERGRoY5UYeFhdW4DxcXF/R6/e13/J0Omqb83dWyX8216lT63CLztt8qUN1Y1L4hGjgwgpPlV263W7VVdZ4bs4EDrXeeZTzLea5rAwfe/Xl2Cgilw/yYaj8vYEH1n3MzAwdGUJQce8t9dDod+fn51T62zc+oPT0rFk9NTb3+uzaTycQrr7yC0Wi0uRvJygsq6j1rXa/XV/2t7nPZtTYh6gsZz9Yh51ncis3PqAMDA/H392fmzJlotVqcnZ1Zvnw5hw4dwsnJiYCAgLvuoyafcKDqxfX1eUUUnL2ER5AveSfPAeDZ1Q99fhEFmQ37+9SdO2OkiIEVWPM8y3iW81zXauM820JRjp07Y+qsKIfNz6g1Gg1r166lVatWTJo0iRkzZjBixAjCw8MJDg5GbYM3WqR8sYPgaZE4tmyKvacrPV58hNQ1MZiMRqVDazBUajV29lpUGg2oVNjZa1HrbP5zZ70k49k65DyLm6kX72zdu3cnNtby2v+yZcsIDw9XKKJbS1i6HnsPV0bHvI9KrSL9+30cWPBfpcNqUDqMG0DYkqnmx4+nf0lB5kX5PXUdkPFsHXKexc3Ui0T9e8XFxSQnJzNjxgzztunTp7N+/XouXLjAkCFD8PT05OjRo4rEZzIYiYv6mLiojxXpvzFI/TqG1K9jlA6jUZDxbB1ynsXN2N514zuQkJCAwWCwuJFs6dKlnDlzhvLyci5cuKBYkhZCCGGbTq+YRvJr/Tn/zVtVtmdtXMyJqCEA5B7cQvKsCJJnRRA/0ZOiU/GU5+dw/G/3cmiCszXDrp8z6j59+mAymZQOQwghRD1RmPIrKrWGgLd3c/If4yi7moXWvaW53VReRnFavPmx2z3DcbtnOCaTiaSXeuPo1x0M5XSct51T7zxi1djr5YxaCCGEqI7CE/txCR4EgEvXcIpSD1i0Z8d8TtP+f6z0vKKUX3Dy74lKpUKl0aJx8bBKvDeSRC2EEKLBMxReNVfFUju6YCi8am4zGY3kHdyK2z3DKj3v6v5o3PuMslaYVaqXl76FuBM+D/TBf3wEPz25UOlQqqXfe89x8cAJUr74UelQhI2RMX17xaePcfpflr/+cAsZjl0TdwxFeQAYi/PRenUwt1+NXY9b75FVHi8/cSet/jCn7gK+AzKjFg2TSkXP1ycS/97XqHUaRsW8T/DzYyx2CVs8hSFfzAKgZWgXHkv5HBc/L3O7g6crExL/jd+oftXqd0T0fHpGWVY9cvH14rGUz2l5XyCPpXyOR5CvRXu36WMYtfM91DoNCUvWEfLyBPlduLAkY/qOOPp0IWBBjMUfr3Gv0qRTb/ITdwKQf3QXTv73mp9TcjaZ7J8+IWXucIrS4rm8bRUApRdOoWvWFrVWV+dx34okatEgtR0UQnlhCTmJaRj15eyZ/gHdpo+haZeKoi0+w3vRdmhP9v7tIwCyYo9xYvUO+i+ZZq5WFLpoMhf2HCEtuuolj8bFfYRz298VTDCZ2DP9AzpNHEKL31ZbUqkIWzKF5M+2kbXvOAlL1hG2dBpqbcWblntnH4KnRbJ76lKM+nLyM7LIO3UO34dC6+DMiPpKxvTdadKxF6ayUpJf64+TX3e07i0pu3KBC+sX0eqRWXR6Yzsd527Bya8Hze5/Cqi47O3W2/Ky94moIRSlHeJE1BCKM6xTqVEStWiQvIf34vze6/+JshNOcXT5RvovnYZTKw9CFz3D/pmrKM66Xgzg4NursW/qTNfnRuL/SATNQzoS+9rKavedn5HFgQVfELZ4ChpHe4ImP4zOxYmDCytqZyd+GE1ZQTEhL09ApbGj/9KpJC7bQM7RdPMxzu1OxHtYr5qfANHgyJi+ez7PfEjA27tp9UjFEq7apl54jXnZYp9Ob16/PN9y1At4RjxWqb3Hf7Pp9OaPOLbrWvdBI99RiwbKI8iXlNU7LLYdXryOtkPvZeT2RZyvYlZhKNGze9oHDFs3F1O5gZ+fXYz+akGN+k/+bBvew3oxYPkMvEK7sGXMHIz68orGazOUh7e9g4ufF4bSMhI/+Nbi+bknMvEfb5sr7wllyJhuvGRGLRokezdnyvItqw6Zyg1c+iUZB083UtfsrPJ5V1POUJZXhD6/iHO7Eu4qhr0vfEirsK4cW7nJYmYBFTOUgwu/wmd4b3ZP/6DSes76/GLs3a27qIKwbTKmGy+ZUd+FpoE+jIier3QYNqNpoI/SIZiV5hagdbGs49uiTyD+EwZy/N+b6f3Gk2wc+jKGEss65L3n/YkryZk4eLjQ/YVxxC9aY27ziwwj9O2nzY+1Lo6M/OldMFYsvpO4bAOJy741txdfvEppTj5Xjp+uMsarx09jKNWTn3ahUpvOxZHSGs58akrGsyVbGs8gY/pW/F1hVTXuj6urGOqKJOq7oHNxqpMyeOLu5RxNx82/jfmxxsmBsMVTOLDgC5I+3cqIDW9wz2uP8sucT8z7tBkUQrsH7yN60N/QuTbhwU1vkbn1F7ITTgGQtmEPaRv2mPcfF/cRW8bMoeBM7ZchdOvkTc6R9Fo/7q3IeLZtMqZvzllLnZWYtAVy6Vs0SJlbf8Wr7/UbPXrNfYKC0xdJ+mRLxfdpzy+j06ODaXlfIAA6d2f6vfss+6M+puh8DleTM0lYvI6wJVMV+ZlU67BunN72i9X7FbZLxnTjJYlaNEhndhxE6+yAR1c/2gwKwW9kP/PPVuD6Xaz93q+4izX07ae5dDCFU2t3mfc58tHGa3ey/sGqsTv7tMC1Q2syvou9/c6i0ZAx3XipTFLdQti4rLgkfhj1erWfV7GKUzg/PflOHURVd263itOI6Plyiboeq+l4hoY5pmU83558Ry0arNOb93N6836lw6i2G2dJQtxIxnTjJJe+hRBCCBsmiVoIIYSwYZKohRBCCBsmiVoIIYSwYZKohRBCCBsmd32LRknn7sz9a6Jw69CaL/wfr9Te7qFQuj43Eowm4mb/h0sHU6o8TvjyF2gd0Z0dk/7Bxbgkizav0CDuW/g0Redz2DbhDQD8H4mg69TRlFzK5fS2Xzj2r+9r/8WJBqvP/D/j0dWPMz8dInHpevN2lcaOAR8+j2MzNzJ/PMDR5RtxbtucB75/i7yT5yg4e5k90z+47bi/nRa9O9Nr9hOYjCYyNu3j6L++s2j/fRxZscfoNe9PqFQqzu9N5NDCr+76HDRGMqMWjVJZQTHbJrzJpQNVJ+DAJ4ezJXI2P/1lEUHPjrzpceJm/4fjqzZX2ZZ9JI3vhr5caXvCknVsGTtHkrSoFs/uHTAajPwwOgrPbn44NHMzt7V7oA+Xfk1my9g5NAvugL1nxcLTZ348wJaxc9gz/QPg9uP+dvIzsvghcjabR86i7dB7sXPUWbT/Po78zIv8MOp1No+cRfN7A9A6O97kyOJWJFGLRslUbrhlub+CzItonOzRuTrdspBA8aWrN20ryy/CUFpWaXu3KaMZ9s0cPIJ8qxOyaOSah3Tk/J5EAC7EHsMzuL25zcWnhblQxtWUMzTr3gGANhE9GPHtm7Qf0x+4/bi/neKsKxjLKkpbmgxGc/GO28WhUqspzsqhvLi0xn03ZnLp+y7o84tuWkWmMWoa6IPOxUnpMGpF5vZfeXj7IlRqNT9OfKvWjpvxQxypX8fg3LY5/d5/jq3j59Xase+WjGdLtjaedW5OlCVXlLksLyhG59bE3JZ78hwtQ7twfk8iLfsEknfqHEUXr7C+/3QwwdAvX+fszkOUXqmd6lWtBgSTn3Gh0gfRquLwiwyjx4uPcC4mviK515GCMkjNq7PD35K/a0VhkLoiifouXDl+usZLATZEDWkpwK5TRvNt/xloXZ0IXfhXfvrTwlo5bll+EQAFZy5hMtrW6r0yni3Z2njW5xaZLx1rnB0pTr9eSjJz66+0Du/O/WtmU5KdR8nlPIz6cnN71v7juLTzovRK6h315daprUX5S4CzOw+RuOxbnFp5EDwtkh2TKv+fqCqO83sSSft2LxErX8S9sw9Xk+rmw2BqHjy1t04OfVur+tVt9S5J1EJUwVBaRnmJHlQqNE4OADi2bEpx1pW7Oq6miQPlhSXo3JooUsFI1F+XDqXQPjKMM9sP4HVfF9I3/s/cZjIa2ffqSgDClk7j4oFkNE4OlBeVANCseweSPv6hyuOq7NTo3J0pzb4+Hc09cYYtY+dU2let0xC2eCqxr640H/tGv4/j8uGT1xpMlBcUYyjVV3qOuD35jlo0WvevmY1HVz/uXzMb9wBvHJu7m28cO/nNzzz43QKGrZ3DsWt3toa9/1ylY/Sc8wQdxofTe96fzN8D9pzzBABNu7Qz9zH0y4qZapenH+SB7xYw9ItZxP/f19Z4maKByD58ErVOy4hv3yTnWDoqlco8Xpu0acbwdfMY9s0cMr6PxVCsp0WvAB7aspAHvlvAuZjDFF+8ClQe987eLejxwrg7iqF9ZH/cO7Wl7zuTGb5uHk5eHhb/b34fR+vw7gxfN4/hG96g8Hw2+WkXbtODqIpUz7oLd1MFpyGqq0uFNnGeVSp6z5tE3OxPlI2DBn6ebUhjOc/tHuxDSU4+WbHHFOm/ts5zfLZc+haicTOZbCJJC1HbMjbVv2pcjY0kaiGEEI1S8qwICpNiUWm0qOw0OLTpTOuJC3DtPljp0CzId9RCCCEardYTFxCypoDgT7NoEhDKybdGYyjMVTosC5KohRBCNHpqrT3Nhv4FY0kBJefv7Gds1iKJWgghRKNnLC3m8vZVqJ1ccWjdUelwLNSbRK3X64mKisLb2xtHR0cGDRpEXFwcKpWK6OhopcMTQghRD51bHUX8o+4kPu1LUdph/F//HjsnV6XDslAvbiYzmUyMHz+euLg45s6di7+/P6tXryYyMhKAkJAQhSO8zvfhUAKfegCPIF9Kc/JZ27vyb29F7VDZqek1dxIdxg5ApVaTvmkf+2euqnJ9bVFzcp6tQ947lNH60TfxinxJ6TBuqV7MqFesWMHmzZv58ccfmTx5MoMHD2bFihXY2dnh4eGBj4+P0iGaleYWkvTxFg7+40ulQ2nwgqePwatvV6IHvci6ftNw79SWe1+vfuk+cWtynq1D3jvEzdSLRL1w4UImTpxIUFCQeZudnR1+fn6EhISQnZ3NAw88QEBAAN26dWPMmDFcunRJkVjP70ogLXovhWeU6b8x6fjYYBKXrqfoQg6l2XnEv/s1/hMiUKnrxbCuN+Q8W4e8d4ibsfn/aSkpKaSlpTF27NhKbZmZmYSEhKBSqfj73/9OcnIyiYmJdOjQgVdffVWBaIW16FydcG7TnJyjaeZt2Ylp6FyccPZurmBkDYucZyGUZ/PfUZ89exaAFi1aWGxPSkoiIyODkJAQPDw8iIiIMLfdd999LF++/I77cHFxQa+v/mLxHTRN+btrWLWf11ANHBjByfK7K1pRlarOs+ZaFSF9bpF5mz63EKDBF6cfOFDOszUMHGi989yYDRxYO+fZKSCUDvNjqvWcgAXV2/9mBg6MoCg59rb76XQ68vPzq318m59Re3pWLKCamnr9d20mk4lXXnkFo9FY6UYyo9HI8uXLGTlypFXjFNZVXlBRl1frer1e8G/1ecuutYm7J+dZCOXZ/Iw6MDAQf39/Zs6ciVarxdnZmeXLl3Po0CGcnJwICAiw2H/atGk4OzszderUO+6jJp9wwPYW11fazp0xVitioM8rouDsJTyCfMk7eQ4Az65+6POLKMhs2N/xyXm2Dmue58asts6zkkU5du6MadxFOTQaDWvXruWZZ55h0qRJeHt7M2PGDFxdXTl58iTqG25oeemll0hJSeG7776z2G5NKrUatdYOlUYDKhV29lpMJpNFEXdRO1K+2EHwtEiy9h/HWG6gx4uPkLomBpPRqHRoDYqcZ+uQ9w5xMzafqAG6d+9ObKzl9f9ly5YRHh5ufjxz5kwOHDjApk2bsLe3t3aIZh3GDSBsyfXZ/OPpX1KQeVF+E1kHEpaux97DldEx76NSq0j/fh8HFvxX6bAaHDnP1iHvHeJm6kWi/r3i4mKSk5OZMWMGAEePHuXtt9+mU6dO9O3bFwA/Pz82bNhg9dhSv44h9esYq/fbGJkMRuKiPiYu6mOlQ2nQ5Dxbh7x3iJupl4k6ISEBg8FgvpEsKCgIk8mkcFRCCCFsXcGxPZz5z0ugUtO071hajn7R3FZ4Io7Mf78AJhMuwYNoM3H+Lfe3lnqZqPv06SOJWQghRLXpWran01u7UGt1JM8aSPMRz6K2r/hVg1P7EDovrLgj7UTUYAxFebfc31rqZaIWQgghakLn2dr8d5XaDlTXbzxWabQAmAwGtB6tUds7WRTo+P3+1mLzv6MWQgghalte/HbsW3VArXOw2J7z82qOTg3Erok7KjvNbfe3BknUCvB5oA+D/vOK0mFUW7/3nqPjY0OUDkPYIBnTwtYUnz5G8qwIiz8X1v4DAP3lM1xY+zZtn3y30vM8wh8l6MMkynLOUZyeeNv9rUEStbWpVPR8fSLx732NWqdhVMz7BD8/xmKXsMVTGPLFLABahnbhsZTPcfHzMrc7eLoyIfHf+I3qV61+R0TPp2eUZdUjF18vHkv5nJb3BfJYyud4BPlatHebPoZRO99DrdOQsGQdIS9PQK2Tb0zEDWRMCxvk6NOFgAUxFn+8xr2KsayU9CV/wueZ5dg5Ols8x1hWClT8pt3O0QWVzuGW+1uLJGorazsohPLCEnIS0zDqy9kz/QO6TR9D0y7tAPAZ3ou2Q3uy928fAZAVe4wTq3fQf8k0c7Wi0EWTubDnCGnRVS/DMy7uI5zb/q5ggsnEnukf0GniEFr8tgqQSkXYkikkf7aNrH3HSViyjrCl01BrK9603Dv7EDwtkt1Tl2LUl5OfkUXeqXP4PhRaB2dG1FcypkV9kvPzakoyj5GxfDLJsyLQZ5+l7MoFLqxfRG7cxorZ92sD0Hq2xaF1xyr3tzZJ1FbmPbwX5/ceMT/OTjjF0eUb6b90Gk6tPAhd9Az7Z66iOOv6IvUH316NfVNnuj43Ev9HImge0pHY11ZWu+/8jCwOLPiCsMVT0DjaEzT5YXQuThxcWFH/NvHDaMoKigl5eQIqjR39l04lcdkGco6mm49xbnci3sN61fwEiAZHxrSoT5oNeZLgT86ZZ9k6zzZom3rhNeZlmvYbX7H97V20mTj/pvtbm1zvsTKPIF9SVu+w2HZ48TraDr2XkdsXcb6KWYWhRM/uaR8wbN1cTOUGfn52MfqrBTXqP/mzbXgP68WA5TPwCu3CljFzri9ReG2G8vC2d3Dx88JQWkbiB99aPD/3RCb+48MrH1g0WjKmhahbMqO2Mns3Z8ryLasOmcoNXPolGQdPN1LX7KzyeVdTzlCWV4Q+v4hzuxLuKoa9L3xIq7CuHFu5yWJmARUzlIMLv8JneG92T/+g0nrO+vxi7N2V+Z5G2CYZ00LULZlRW1lpbgFaF8s6vi36BOI/YSDH/72Z3m88ycahL2MosayP3Xven7iSnImDhwvdXxhH/KI15ja/yDBC337a/Fjr4sjIn94FY8WiMInLNpC47Ftze/HFq5Tm5HPl+OkqY7x6/DSGUj35aRcqtelcHCmt4cynppoG+jAier5V+7RlTQN9lA7Bgozp6pHxbKm2xrO/K6yqxr2Itcnf9fb73A1J1FaWczQdN//r33FonBwIWzyFAwu+IOnTrYzY8Ab3vPYov8z5xLxPm0EhtHvwPqIH/Q2daxMe3PQWmVt/ITvhFABpG/aQtmGPef9xcR+xZcwcCs7UfhlCt07e5BxJr/Xj3orOxalOyg2K2iFjunpkPNcNZy11WmpSSXLp28oyt/6KV9+u5se95j5BwemLJH2ypeL7tOeX0enRwbS8LxAAnbsz/d59lv1RH1N0PoeryZkkLF5H2JKpivykpHVYN05v+8Xq/QrbJWNaiLolidrKzuw4iNbZAY+ufrQZFILfyH7mn63A9btY+71fcRdr6NtPc+lgCqfW7jLvc+SjjdfuZP2DVWN39mmBa4fWZHwXe/udRaMhY1qIuqUySXWLGsuKS+KHUa9X+3k+D/TBf3w4Pz35Th1EVXf6vfccFw+cIOWLH6tsHxE9Xy7p1WM1Hc/QMMe0jGdhK+Q7agWc3ryf05v3Kx1Gtd04SxLiRjKmhag7culbCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGFy17eCdO7O3L8mCrcOrfnC//FK7Z0eH4rvw31R26nZOuENAAZ8+DyOzdzI/PEAR5dvrFG/XZ5+kLZD7mXbtWPeqM/8P+PR1Y8zPx0icel62gzsQbepkUBFicBtj8yrtJayEL/Xondnes1+ApPRRMamfRz913cW7YM/fRWtiyPGciM/P/Meajs7wv/5AgBOrT1J+vgHjq3cVOm4t/s/E7ZkKi6+LTGUVpTbLLqQg4uvF/e99RfUOi3HVnxP5rZf6+ZFC1FHJFErqKygmG0T3iTiX3+r1NakTTOaXkuMv/Ed2ZdLvyZzbOUmwpe/gL2nK6XZedXqU6WxwyPIt8o2z+4dMBqM/DA6ioiVL+LQzI2zO+M5uzMegId++IckaXFH8jOy+CFyNsaycoatnUvSZ1sxFF9f6/unvyzCVG6g/bgBtI/sz/F/b2bL2DkADPhoBmd2HKzyuLf6PwMQv2gNBWcu0SqsG52fHM7Bt1fT48Xx/PzM++jzimr/hQphBXLpW0GmcsNNS/u1Du+OxsmeYd/MoceLjwDg4tPCXHTgasoZmnXvUO0+O4wL59S3e6psax7SkfN7EgG4EHsMz+D25rZmPfy5fPhktfsTjVNx1hWMZRWlJk0Go7mYxm9M5QYA7Ox1XE05Y96u0tjh4tOCvFPnqzzurf7PAOa1wE0GIyaTCbVWQ5PWzQhbOo1B/3kFh2Zud/W6hFCCzKhtlEMzNzDB1vHzCFsyFY8gX3JPnqNlaBfO70mkZZ9A8k6dq95BVSraRHTn52fep+uzoyo169ycKEuuKFdYXlCMzq2Juc17eC8yt8p6yKJ6Wg0IJj/jAobSMovtOndnhnz2GlpnB7Y/tsC83atvEBf+d/TuOlWp6Pb8GGL//i/sPVxw7+zN+r7T8AjyJXh6JHGzP7m749uIgjJIrd4FtVrl71pRCEPUPUnUNqosr4gLsRVvWFn7jlWsR/z9PlqHd+f+NbMpyc6j5HLV/0vdOrW1KBEIcHbnIfLSLtzy+zl9bhFa54pyhRpnR4rTr5cEbNW3K4ff/eZuX5ZoRJxaeRA8LZIdkxZWatNfLWDzyFl4D+tFl78+xK/zPgPA5/6enNpQ9RWfOxXyyh9I+3YvBacvonG058rx0+hzC8naf5yuU0bf1bFtSWoePLVXuf5X9Wu41apsjSRqG3XxQDLtI/sDFfVaT23Yi8loZN+rKwEIWzqNiweSUdmp0bk7W3xXnXvijPn7vhsFPz8Gr9AgOowbgEdXXzo+OpiU1TvM7ZcOpdA+Mowz2w/gdV8X0jf+D6goXFB4Ptt8KVOI21HrNIQtnkrsqyspLyqxbFSpUKlVmAxGyvKKLGbbze7pyP6o/5gfO7ZsSnHWlTvut92DfbB3d+bQV18CUF5ciqG0DLVOg3vHthRkXry7FyaEAuQ7aoXdv2Y2Hl39uH/NbFr07kzQsyMByElMQ61RM3zdPOwc7bl8KIUmbZoxfN08hn0zh4zvYzEU63H2bkGPF8bdUV8JS9az7Q9vsv3RBeQcSSdl9Q4cm7ub+8w+fBK1TsuIb98k51g6JZdzAfAZ3lsue4tqaR/ZH/dOben7zmSGr5uHk5cHHkG+tB83wHzvxbC1c+k2bTRJ//4BAI+uflw5lgHX6gSp7NT0fWdypWPf+H/GPcDbYgz3mvsnPLr4MnzdPIKfHwPA0X9uZNg3c+j95pMc+TDaSmdAiNoj1bPuwt1UG6ot7R7sQ0lOPlmxxxSNA6TaUH1nC+P5Rp7B7XEP8ObkNz8r0r+tj+f4bLn03VjIpe96LmNT/atYJMSdyE44RXbCKaXDEEJxkqiFEKIRSZ4VQWFSLCqNFpWdBoc2nWk9cQGu3QcrHZq4CfmOWgghGpnWExcQsqaA4E+zaBIQysm3RmMozFU6LHETkqiFEKKRUmvtaTb0LxhLCig5n6p0OOImJFELIUQjZSwt5vL2VaidXHFo3VHpcMRN1JtErdfriYqKwtvbG0dHRwYNGkRcXBwqlYroaPnJhRBC3Klzq6OIf9SdxKd9KUo7jP/r32Pn5Kp0WOIm6sXNZCaTifHjxxMXF8fcuXPx9/dn9erVREZWVHUKCQlROEJLKjs1veZOosPYAajUatI37WP/zFWVllEUwtb5PhxK4FMP4BHkS2lOPmt7P6d0SKIWtH70TbwiX1I6DHGH6kWiXrFiBZs3byY+Pp6goCAAIiIi8PPzw8PDAx8fH4UjtBQ8fQxefbsSPehFDGXlDP7kFe59/XHioj5WOjQhqqU0t5Ckj7fg0NyNoL8+pHQ4QjRK9eLS98KFC5k4caI5SQPY2dnh5+dnnk2PHj2a7t27ExISQv/+/YmPj1coWuj42GASl66n6EIOpdl5xL/7Nf4TIlCp68XpFsLs/K4E0qL3UnitKpUQwvpsPnOkpKSQlpbG2LFjK7VlZmaaE/Wnn37K4cOHOXToEC+99BJ//vOfrR0qADpXJ5zbNCfnaJp5W3ZiGjoXJ5y9mysSkxBCiPrL5i99nz17FoAWLVpYbE9KSiIjI8OcqN3crteZzc3NRV2N2auLiwt6vf72O/5OB01T/u4aZrFNc636lD73epF6fW4hgLkyVUM1cGAEJ8vvvICCsC1VjefGbOBA2x7PTgGhdJgfU+3nBSyo/nOqMnBgBEXJsbVyrMZCp9ORn59f7efZfKL29KxYTDY1NZXevXsDFTeXvfLKKxiNRosbyZ566im2bduGyWRiy5YtisRbXlBRz1nr6kTxpasA5rrOZdfahBBCiDtl84k6MDAQf39/Zs6ciVarxdnZmeXLl3Po0CGcnJwICAgw77tq1SoAPv/8c15++WU2b958R33U5BMOVF3EQJ9XRMHZS3gE+ZJ38hwAnl390OcXUZDZsL/n27kzxqaLGIhbs7WiHEqz9fGsdFGOnTtjpCiHldj8d9QajYa1a9fSqlUrJk2axIwZMxgxYgTh4eEEBwdXeYn78ccfZ+fOnWRnZysQMaR8sYPgaZE4tmyKvacrPV58hNQ1MZiMRkXiEaKmVGo1dvZaVBoNqFTY2WtR62z+870QDUq9+B/XvXt3YmMtvwtZtmwZ4eHhABQUFHDlyhW8vb0B+O677/Dw8MDDw8PqsQIkLF2PvYcro2PeR6VWkf79Pg4s+K8isQhxNzqMG0DYkqnmx4+nf0lB5kX5PbUQVlQvEvXvFRcXk5yczIwZMwAoLCxk/PjxFBYWYmdnh4eHB9999x0qlUqR+EwGI3FRH8vvpkW9l/p1DKlfxygdhhCNWr1M1AkJCRgMBvONZC1btmTfvn0KRyWEEELUvnqZqPv06YPJZFI6DCGEqDdOr5hGcVo8rveMoNX4mebtxtJiTi4ci7GkEPuW7fF9/j9VbhPKsfmbyYQQQtydwpRfUak1BLy9m6KTBym7mmVuy4vfhnNgGAFv/YxKo6U440iV24RyJFELIUQDV3hiPy7BgwBw6RpOUeoBc5uupR/GkopFmQwlBdg5uVW5TShHErUQQjRwhsKr5jKWakcXDIVXzW0OrfwpOLabo1MCUaFC19y7ym1COfXyO2ohhBCVFZ8+xul/Wf50zi1kOHZN3DEU5QFgLM5H69XB3J7906c0DZtAiwenkLnyeQqO/4/i9MOVtjkH9rXqaxHXSaIWQogGwtGnS5VreRem/ELOri9x7/0w+Ud30TTsEXObyWhE41Kx5oSdiweGwqtVbhPKkUvfQgjRwDXp2AtTWSnJr/XHya87WveWlF25wIX1i/AIf5TLO/5D8qwIik/F49pjaJXbhHJkRi2EEI2AzzMfWjzWNvXCa8zLAHSat82iTePctNI2oRyZUQshhBA2TGWSlUNqTJ9fxJXjp5UOw2Y0DfRB5+KkdBiihmQ8W7L18VxQBql5yvXv7wrOWuX6b0wkUQshhBA2TC59CyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhw6Qe9V2QakOWbL3akLg1Gc+WbH08S/WsxkMS9V24cvw0P4x6XekwbMaI6Pm07N1Z6TBEDcl4tmTr4zk1D57aq1z/q/pBD0/l+m9M5NK3EEIIYcMkUQshhBA2TBK1EEIIYcMkUQshhBA2TG4mE0KIRiR5VgSFSbGoNFpUdhoc2nSm9cQFuHYfrHRo4iZkRi2EEI1M64kLCFlTQPCnWTQJCOXkW6MxFOYqHZa4CUnUQgjRSKm19jQb+heMJQWUnE9VOhxxE5KohRCikTKWFnN5+yrUTq44tO6odDjiJupFotbr9URFReHt7Y2joyODBg0iLi4OlUpFdHS00uEJIUS9cm51FPGPupP4tC9FaYfxf/177JxclQ5L3ITN30xmMpkYP348cXFxzJ07F39/f1avXk1kZCQAISEhCkdoyffhUAKfegCPIF9Kc/JZ2/s5pUMSosZkPDdMrR99E6/Il5QOQ9whm0/UK1asYPPmzcTHxxMUFARAREQEfn5+eHh44OPjo3CElkpzC0n6eAsOzd0I+utDSocjxF2R8SyE8mz+0vfChQuZOHGiOUkD2NnZ4efnV2k2PW/ePFQqFUeOHLF2mGbndyWQFr2XwjOXFItBiNoi41kI5dl0ok5JSSEtLY2xY8dWasvMzLRI1AcPHmTfvn20a9fOmiEKIYQQdcqmL32fPXsWgBYtWlhsT0pKIiMjw5yoS0tLmTJlCl9++SURERHV7sfFxQW9Xl/t53XQNOXvrmHVfl5DNXBgBCfLrygdhqghGc+WBg607fHsFBBKh/kx1X5ewILqP6cqAwdGUJQcWyvHaix0Oh35+fnVfp5Nz6g9PStqqKWmXv99n8lk4pVXXsFoNJoT9ezZs5k4cSK+vr5KhCmEEELUGZueUQcGBuLv78/MmTPRarU4OzuzfPlyDh06hJOTEwEBAcTGxvLrr7/yj3/8o8b91OQTDkBWXJLU773Bzp0xNl2/V9yajGdLtj6e47OVrUe9c2eM1KO2EpueUWs0GtauXUurVq2YNGkSM2bMYMSIEYSHhxMcHIxarebnn3/m+PHj+Pn54evry5kzZxg2bBjbtm1TJGaVWo2dvRaVRgMqFXb2WtQ6m/48JMRNyXgWQnk2/z+ue/fuxMZafg+ybNkywsPDAXj11Vd59dVXzW2+vr58//33dO3a1apx/qbDuAGELZlqfvx4+pcUZF6U35+KeknGsxDKs/lE/XvFxcUkJyczY8YMpUOpUurXMaR+HaN0GELUChnPQijPpi99VyUhIQGDwXDTFcnS09MVm00LIYStKM/P4fjf7uXQBOdKbUVph0l6pR/Jswaiv5QJQMn5VFLmDid51kCu7t9o7XDFLdS7GXWfPn0wmUxKhyGEEDbNztGFjvO2c+qdRyq1nV/zBh1e20DZlfNcWL8Qn8nLOP/VPPxe+gqNs7v1gxW3VO8StRBCiNtTabRoXDyqbDOWFKJ1b4HWvQWl51MxlunRX84kffEToFLRbsoKtO4trRyxuJl6d+lbCCHE3TGZjBZ/L8+7THHGEXxnfErLh2dwYe3bCkYnfk8StQJ8HujDoP+8onQY1dbvvefo+NgQpcMQNkjGdP2iUqkt/m7XxA3Hdt3QODfFOag/JWeTFYxO/J4kamtTqej5+kTi3/satU7DqJj3CX5+jMUuYYunMOSLWQC0DO3CYymf4+LnZW538HRlQuK/8RvVr1r9joieT8+oxy02u/h68VjK57S8L5DHUj7HI8jXor3b9DGM2vkeap2GhCXrCHl5gvyOVliSMV3vqO2dKMu9RFF6Avat/LFzaIJa54CxrJTijCPoWvgqHaK4gSRqK2s7KITywhJyEtMw6svZM/0Duk0fQ9MuFcVEfIb3ou3Qnuz920cAZMUe48TqHfRfMg2VuuKfK3TRZC7sOUJadNXLEo2L+wjnts0tN5pM7Jn+AZ0mDqHFb6stqVSELZlC8mfbyNp3nIQl6whbOg21tuJNy72zD8HTItk9dSlGfTn5GVnknTqH70OhdXBmRH0lY9p2nYgaQlHaIU5EDaHg2B4urF8EQKsJUZx8azSZK6fjNebvALQc9SInogaTuep58zZhGyRRW5n38F6c33u9DGd2wimOLt9I/6XTcGrlQeiiZ9g/cxXFWdeLARx8ezX2TZ3p+txI/B+JoHlIR2JfW1ntvvMzsjiw4AvCFk9B42hP0OSH0bk4cXDhlwAkfhhNWUExIS9PQKWxo//SqSQu20DO0XTzMc7tTsR7WK+anwDR4MiYtl2d3vyRHv/NptObP+LcJQyvMS8D4NQ+hM4L9xKwIAZdcx8AXHsMofM/9hDw1s/Yt/RTMmzxO43reo8N8AjyJWX1Dotthxevo+3Qexm5fRHnq5hVGEr07J72AcPWzcVUbuDnZxejv1pQo/6TP9uG97BeDFg+A6/QLmwZMwejvryi8doM5eFt7+Di54WhtIzED761eH7uiUz8x4fXqG/RMMmYFqJuyYzayuzdnCnLL7bYZio3cOmXZBw83Uhds7PK511NOUNZXhH6/CLO7Uq4qxj2vvAhrcK6cmzlJouZBVTMUA4u/Aqf4b3ZPf0DTEajRbs+vxh798oLKIjGS8a0EHVLZtRWVppbgNbF0WJbiz6B+E8YyPF/b6b3G0+ycejLGEos62P3nvcnriRn4uDhQvcXxhG/aI25zS8yjNC3nzY/1ro4MvKnd8FYsTBM4rINJC771txefPEqpTn5XDl+usoYrx4/jaFUT37ahUptOhdHSms48xENk4xpZfi7wqpq3HtXF/0L65BEbWU5R9Nx829jfqxxciBs8RQOLPiCpE+3MmLDG9zz2qP8MucT8z5tBoXQ7sH7iB70N3SuTXhw01tkbv2F7IRTAKRt2EPahj3m/cfFfcSWMXMoOHOp1uN36+RNzpH0Wj+uqL9kTCvDWYuUmWwk5NK3lWVu/RWvvtfXIu819wkKTl8k6ZMtFd+nPb+MTo8OpuV9gQDo3J3p9+6z7I/6mKLzOVxNziRh8TrClkxV5CclrcO6cXrbL1bvV9guGdNC1C1J1FZ2ZsdBtM4OeHT1o82gEPxG9jP/bAWu38Xa7/2Ku1hD336aSwdTOLV2l3mfIx9tvHYn6x+sGruzTwtcO7Qm47vY2+8sGg0Z00LULZVJKlzUWFZcEj+Mer3az/N5oA/+48P56cl36iCqutPvvee4eOAEKV/8WGX7iOj5tPzt96yi3qnpeIaGOaZlPAtbId9RK+D05v2c3rxf6TCq7cZZkhA3kjEtRN2RS99CCCGEDZNELYQQQtgwSdRCCCGEDZNELYQQQtgwSdRCCCGEDZNEbQP6zP8zI759k27Tx1RqC3zqAR78/i1GRL+Ji29F/V7/RyIYET2fAR8+j0pjZ97XZ3gvxuz9oMZ99Zz9BH848m/aj+1v3jZs7VyGr5vH8HXzcOvUtqYvUQghRA3Jz7MU5tm9A0aDkR9GRxGx8kUcmrlRcjnX3N5+dBibHppJ854BBDxxPwfe+oL2Ywfww6jXCXzqAXyG9SJj0z4A2j14H4XnLte4ryMfRXM1yXKtZJPByNYJb9TyqxYNVYvenek1+wlMRhMZm/Zx9F/fAdBmYA+6TY0EKmpCb3tkHleSMxnw4fM4NnMj88cDHF2+sdr9NevhT695f0KlUnF+byKHFn5lbrNz0DFw1UtonOzJz8hi7wsVP8Xq9PhQfB/ui9pOzdYJb2AqN9TCKxei7siMWmHNQzpyfk8iABdij+EZ3N6ivfBcNnb2WnSuTpReLcCtfStyjqUDcH7PEZqF+APg1a8rWXFJmIw3X7/mdn3dmLTNVCqGr5tH3/97Bjt7bU1fpmgk8jOy+CFyNptHzqLt0Huxc9QBcHZnPFvGzmHL2DkUnM4i52g67R7ow6Vfk9kydg7Ngjtg71n9Kg/ZR9L4YdTrbB45i+b3BqB1vl4cpHV4d7LikirKXpYbcA/wpkmbZjS99kFhy9g5kqRFvSAzaoXp3JwoS64oEVheUIzOrYlFe1bccUbvWoxKpWLTw7Nw8WlhLil44/4d/ziI/724HN+HQmvcV1Vinv4/9LmFBE1+mI5/HFyxfrOV6fOLbloVqTFqGuiDzsVJ6TCqVJx1xfx3k8Fornb1m2Y9/Ll8+CQALj4tuBxf8ferKWdo1r0DZ386VK3+fku0KrWa4qwcyotLzW0Fpy+aP8hqnRzQ5xfRJqIHGid7hn0zh6x9x4l/9+vqv8i7JOPZUm2M54IySM2rpYBqyN+1olBKXZBErTB9bpF5FqBxdqQ4/XoZPq2zI+0evI/1fafRNLAdPV56hOMrN5lLCmqcHdHnFuLZvQNXT5zBUFpW475u/pxCAE5v+4Wgvz5Uo9d4t64cP13jpS0bovqwtGWrAcHkZ1yoNCa9h/cic2tFAYzck+doGdqF83sSadknkLxT52rUl19kGD1efIRzMfEVHw6uyUs/T8s+gYzetZjsxDSKzmXj0MwNTLB1/DzClkzFI8i3Uv3quibj2VJtjOfUPHhqby0FVEOr+tVdNTO59K2wS4dSaNWvovKQ131dzGX+AEwmE+VFpZgMRkqv5qNzbUJe2gU8AtsB0KpfVy4fSqVpgDetBwQzdPUsPLr6Evx8xY1iji2b3nFfN6Np4gBAi54B5J++ePcvWDR4Tq08CJ4WyS9zP6vU1qpvV87vOQJUVN1y8HTl/jWzKcnOo+Ry1VMit05tzTc0/van29TR5va0DXvY0P95HL08cO/sY97uPz6C9Oj/8e2AGZTm5NG8ZwBleUVciD0KQNa+Y7h2aF2Lr1yIuiEzaoVlHz6J/4SBjPj2Tc7GxFNyORePIF/cA304tXYXl35NZkT0fNR2ava//jHGsnJOfbuXEdHzKTqXze7pH2AsKyf16xgA7l8zm4Ql61HZqen7zmR2TPrHHfcV9OxI/CcMBJMJh2ZuHPvX9wz7eg7GsnL0uYXsmrpUobMk6gu1TkPY4qnEvrqS8qISizZnnxYUns/GWFYOgMloZN+rKwEIWzqNiweSUdmp0bk7U5p9PWnnnjjDlrFzbtqfUV8OJhPlBcUYSvXmNpVaTenVfABKrxSgc3Xi4oFk2kdW/KqhaaAPpzYoPA0T4g5IorYB+2eusnicczTdfDnu8PtrOfz+Wov21K9+IvWrn6o81rZrd2h7BPmS/n3l0n236uvo8o2V7rzd9OBrd/w6hGgf2R/3Tm3p+85kAHZNWYJfZBhHl2/EZ3hv82VvgCZtmtF/6TRMRiPHVm7CUKzHxdeLLk89wP7XP76j/rzv70Xgk8NBrSJr3zHKC0oIenYkR5dv5NSG3YT/628EPH4/pbkFJCxdj6ncgP/4cIavm0fuqXNcPpRSJ+dBiNokibqByk44dUeXtoWoTalrdpK6ZqfFtt8+/B1b8b3F9sKzlyvNlD2C2pF+7eeGdyLj+1gyfveB9Lf+9LmFbP/Dm5WeEzf7kzs+vhC2QBK1EMJmZGyqf6UyRf2VPCuCwqRYVBotKjsNDm0603riAly7D1Y6NAtyM5kQQohGq/XEBYSsKSD40yyaBIRy8q3RGAqrWFNCQZKohRBCNHpqrT3Nhv4FY0kBJedTlQ7HgiRqIYQQjZ6xtJjL21ehdnLFoXVHpcOxUG8StV6vJyoqCm9vbxwdHRk0aBBxcXGoVCqio6OVDk8IIUQ9dG51FPGPupP4tC9FaYfxf/177Jyqv5xtXaoXN5OZTCbGjx9PXFwcc+fOxd/fn9WrVxMZWbHIf0hIiMIRWlLZqek1dxIdxg5ApVaTvmkf+2euuu3KYeLO+T4cSuBTD+AR5EtpTj5rez+ndEgNloxn65DzrIzWj76JV+RLSodxS/ViRr1ixQo2b97Mjz/+yOTJkxk8eDArVqzAzs4ODw8PfHx8bn8QKwqePgavvl2JHvQi6/pNw71TW+59/XGlw2pQSnMLSfp4Cwf/8aXSoTR4Mp6tQ86zuJl6kagXLlzIxIkTCQoKMm+zs7PDz8/PPJv29fWlc+fO9OjRgx49erB161alwqXjY4NJXLqeogs5lGbnEf/u1/hPiEClrhenu144vyuBtOi9FJ65pHQoDZ6MZ+uQ8yxuxuZHQEpKCmlpaYwdO7ZSW2ZmpsVl77Vr1xIfH098fDzDhg2zZphmOlcnnNs0J+domnlbdmIaOhcnnL2bKxKTEDUl49k65DyLW7H576jPnj0LQIsWLSy2JyUlkZGRUSvfT7u4uKDX62+/4+900DTl765hFts016pT6XOLzNt+q0B1Y63chmjgwAhOll+53W7VVtV5bswGDrTeeZbxLOe5rg0cePfn2SkglA7zY6r9vIAF1X/OzQwcGEFRcuVlm2+k0+nIz8+v9rFtfkbt6VlRNyw19frv2kwmE6+88gpGo9EiUT/22GMEBwfz3HPPcfXqVWuHClTUeQbQul6vr/pb3eeya21C1Bcynq1DzrO4FZufUQcGBuLv78/MmTPRarU4OzuzfPlyDh06hJOTEwEBAQDs3r0bb29vSktLmTFjBlOnTuW///3vHfVRk084AFlxSZXqyurziig4ewmPIF/yTlbU1/Xs6oc+v4iCzIb9ferOnTF1Uie5qvPcmFnzPMt4lvNc12rjPMdnK1+PeufOmMZbj1qj0bB27VpatWrFpEmTmDFjBiNGjCA8PJzg4GDU12608Pb2BsDe3p7nnnuOvXuV+1dL+WIHwdMicWzZFHtPV3q8+Aipa2IwGY23f7K4Iyq1Gjt7LSqNBlQq7Oy1qHU2/7mzXpLxbB1ynsXN1It3tu7duxMba3ntf9myZYSHhwNQWFhIeXk5bm5umEwmvvrqK3r06KFApBUSlq7H3sOV0THvo1KrSP9+HwcW3NnsXtyZDuMGELZkqvnx4+lfUpB5UX5PXQdkPFuHnGdxM/UiUf9ecXExycnJzJgxA4CsrCzGjh2LwWDAYDDQpUsXPvroI8XiMxmMxEV9TFzUndXUFdWX+nUMqV/HKB1GoyDj2TrkPIubqZeJOiEhAYPBYL6RrH379hw6dEjhqIQQQojaVy8TdZ8+fTCZTEqHIYQQoh45vWIaxWnxuN4zglbjZ1Zqz9q4mNxfvqfTmz+Se3ALF9b9A4DijEQ6vbEDXXMfUuYMpeRsMiFrCqwWt83fTCaEEELcrcKUX1GpNQS8vZuikwcpu5pl0W4qL6M4Ld782O2e4QQsiKHT/J3Yt2yPo1937Bxd6DhvO0063WfV2CVRCyGEaPAKT+zHJXgQAC5dwylKPWDRnh3zOU37/7HS84pSfsHJvycqlQqVRovGxcMq8d5IErVosHwe6MOg/7yidBjV1u+95+j42BClwxA2SMZ0zRkKr5rLV6odXTAUXjW3mYxG8g5uxe2eyktPX90fjXufUdYKs0qSqEXDpFLR8/WJxL/3NWqdhlEx7xP8/BiLXcIWT2HIF7MAaBnahcdSPsfFz8vc7uDpyoTEf+M3ql+1+h0RPZ+eUZZVj1x8vXgs5XNa3hfIYymf4xHka9HebfoYRu18D7VOQ8KSdYS8PEF+Fy4syZi+I8Wnj5E8K8Liz4W1/8CuiTuGojwAjMX52DVxNz/naux63HqPrPJ4+Yk7cek2qM7jvhVJ1KJBajsohPLCEnIS0zDqy9kz/QO6TR9D0y7tAPAZ3ou2Q3uy928VP+PLij3GidU76L9kmrlaUeiiyVzYc4S06KoXzxkX9xHObX9XMMFkYs/0D+g0cQgtflttSaUibMkUkj/bRta+4yQsWUfY0mmotRVvWu6dfQieFsnuqUsx6svJz8gi79Q5fB8KrYMzI+orGdN3xtGnCwELYiz+eI17lSadepOfuBOA/KO7cPK/1/yckrPJZP/0CSlzh1OUFs/lbasAKL1wCl2ztqi1ujqP+1YkUYsGyXt4L87vPWJ+nJ1wiqPLN9J/6TScWnkQuugZ9s9cRXHW9WIAB99ejX1TZ7o+NxL/RyJoHtKR2NdWVrvv/IwsDiz4grDFU9A42hM0+WF0Lk4cXFhROzvxw2jKCooJeXkCKo0d/ZdOJXHZBnKOppuPcW53It7DetX8BIgGR8b03WnSsRemslKSX+uPk193tO4tKbtygQvrF9HqkVl0emM7HeduwcmvB83ufwqouOzt1tvysveJqCEUpR3iRNQQijOOVNVVrZNra6JB8gjyJWX1Dotthxevo+3Qexm5fRHnq5hVGEr07J72AcPWzcVUbuDnZxejv1qzn2Akf7YN72G9GLB8Bl6hXdgyZg5GfXlF47UZysPb3sHFzwtDaRmJH3xr8fzcE5n4jw+vUd+iYZIxffd8nvnQ4rG2qRdeY1622NbpzR/Nf2856oVKx7ix3VpkRi0aJHs3Z8ryLasOmcoNXPolGQdPN1LX7KzyeVdTzlCWV4Q+v4hzuxLuKoa9L3xIq7CuHFu5yWJmARUzlIMLv8JneG92T/+g0nrO+vxi7N2d76p/0bDImG68ZEZ9F5oG+jAier7SYdiMpoE+SodgVppbgNbFso5viz6B+E8YyPF/b6b3G0+ycejLGEos65D3nvcnriRn4uDhQvcXxhG/aI25zS8yjNC3nzY/1ro4MvKnd8FYsfhO4rINJC771txefPEqpTn5XDl+usoYrx4/jaFUT37ahUptOhdHSms486kpGc+WbGk8g4zpW/F3hVXVuD+urmKoK5Ko74LOxalOyuCJu5dzNB03/zbmxxonB8IWT+HAgi9I+nQrIza8wT2vPcovcz4x79NmUAjtHryP6EF/Q+fahAc3vUXm1l/ITjgFQNqGPaRt2GPef1zcR2wZM4eCM7VfhtCtkzc5R9Jr/bi3IuPZtsmYvjlnLXVWYtIWyKVv0SBlbv0Vr75dzY97zX2CgtMXSfpkS8X3ac8vo9Ojg2l5XyAAOndn+r37LPujPqbofA5XkzNJWLyOsCVTFfmZVOuwbpze9ovV+xW2S8Z04yWJWjRIZ3YcROvsgEdXP9oMCsFvZD/zz1bg+l2s/d6vuIs19O2nuXQwhVNrd5n3OfLRxmt3sv7BqrE7+7TAtUNrMr6Lvf3OotGQMd14qUxS3ULYuKy4JH4Y9Xq1n+fzQB/8x4fz05Pv1EFUdaffe89x8cAJUr6o+u7SEdHz5RJ1PVbT8QwNc0zLeL49+Y5aNFinN+/n9Ob9SodRbTfOkoS4kYzpxkkufQshhBA2TBK1EEIIYcMkUQshhBA2TBK1EEIIYcMkUQshhBA2TBK1aJR07s48tHUhj6V+XmV7u4dCeXDz2zz4/Vs0v6fjTY8TvvwF/nj8k+vl/27gFRrE6F2LuX/NbPM2/0ciGL1rMcPXzaPL5Ifu/oUIIRo8+XmWaJTKCorZNuFNIv71tyrbA58czpbI2ejcnekz/8/EPP1ulfvFzf4PAU/cX2Vb9pE0vhv6MoM/e81ie8KSdZxat/vuXoBolPrM/zMeXf0489MhEpeuN29XaewY8OHzODZzI/PHAxxdvhHnts154Pu3yDt5joKzl9kz/QN07s7cvyYKtw6t+cL/8Wr336J3Z3rNfgKT0UTGpn0c/dd3Fu2/jyMr9hi95v0JlUrF+b2JHFr41V2fg8ZIZtSiUTKVG25Z7q8g8yIaJ3t0rk63LCRQfOnqTdvK8oswlJZV2t5tymiGfTMHjyDf6oQsGjnP7h0wGoz8MDoKz25+ODRzM7e1e6APl35NZsvYOTQL7oC9Z0WFiDM/HmDL2Dnsmf4BcP0D6qUDKTWKIT8jix8iZ7N55CzaDr0XO0edRfvv48jPvMgPo15n88hZNL83AK2z402OLG5FZtR3QZ9fdNMqMo1R00AfdC5OSodRKzK3/8rD2xehUqv5ceJbtXbcjB/iSP06Bue2zen3/nNsHT+v1o59t2Q8W7K18dw8pCPn9yQCcCH2GJ7B7Tn70yEAXHxacDn+JFBR1rJZ9w7knjhDm4gejPj2TZI/28ap9btv+wH1doqzrpj/bjIYzVW2flNVHGd/OoRKraY4K4fy4tIa9307BWWQmldnh78lf9eKwiB1RRL1Xbhy/HSNlwJsiBrSUoBdp4zm2/4z0Lo6Ebrwr/z0p4W1ctyy/CIACs5cwmS0rdV7ZTxbsrXxrHNzoiy5oh51eUExOrcm5rbck+doGdqF83sSadknkLxT5yi6eIX1/aeDCYZ++Tpndx6i9ErtlJlsNSCY/IwLla4YVRWHX2QYPV58hHMx8RXJvY6k5sFTe+vs8Le0ql/dVu+SRC1EFQylZZSX6EGlQuPkAIBjy6YWM4qa0DRxoLywBJ1bE0UqGIn6S59bZL50rHF2pDj9es3nzK2/0jq8O/evmU1Jdh4ll/Mw6svN7Vn7j+PSzovSK6l31Jdbp7YWdaoBzu48ROKyb3Fq5UHwtEh2TKr84bWqOM7vSSTt271ErHwR984+XE2SqzbVJe8UotG6f81sPLr6cf+a2cTN/g+lOfm0HzeAo8s3cvKbn3nwuwWgVnH43W8ACHv/ObY/usDiGD3nPEG7EX1oO+Qejq3cxKn1u+k55wl+nfcZTbu0o9ecSXh09WPol6+z/Y/z6fL0g7QdfA8qlYoDb69W4mWLeurSoRTaR4ZxZvsBvO7rQvrG/5nbTEYj+15dCUDY0mlcPJCMxsmB8qISAJp170DSxz9UeVyVnRqduzOl2devG+eeOMOWsXMq7avWaQhbPJXYV1eaj32j38dx+fDJaw0myguKMZTqa/biGzlJ1KLR2jbhjUrbji7fCEDK6h2krN5xvUGlIjf1bKX9f533Gb/O+6zSNoArxzIq9ZGweB0Ji9fdbeiiEco+fBL/CQMZ8e2bnI2JR6VSEfTsSI4u30iTNs3ov3QaJqORYys3YSjW0zq8O/e89ijGsnIyvt9H8cWrQOUPqIbSMro89QD7X//4tjG0j+yPe6e29H1nMgC7pizBZDCaP+D+Po7W4d0JfHI4qFVk7TtGftqF2/QgqiKJWog7YTIRN/sTpaMQjdz+massHv/2wbLw7OVKM+BzPx/m3M+HKx3j9x8e2z3Yh/RN++6o/9Q1O0lds7PS9lvFkfG91KC+W5KohRCiEcvYVP/KZjY2kqiFEEI0SsmzIihMikWl0aKy0+DQpjOtJy7AtftgpUOzIAueCCGEaLRaT1xAyJoCgj/NoklAKCffGo2hMFfpsCxIohZCCNHoqbX2NBv6F4wlBZScv7OfsVlLvUnUer2eqKgovL29cXR0ZNCgQcTFxaFSqYiOjlY6PCGEEPWYsbSYy9tXoXZyxaH1zQvxKKFefEdtMpkYP348cXFxzJ07F39/f1avXk1kZCQAISEhCkd4ne/DoQQ+9QAeQb6U5uSztvdzSofUYKns1PSaO4kOYwegUqtJ37SP/TNXVbm+tqg5Oc/WIe8dyji3OooL38xHpbHHwbsL/q9/j52Tq9JhWagXiXrFihVs3ryZ+Ph4goKCAIiIiMDPzw8PDw98fHwUjvC60txCkj7egkNzN4L+KmUM61Lw9DF49e1K9KAXMZSVM/iTV7j39ceJi7r970HFnZPzbB3y3qGM1o++iVfkS0qHcUv14tL3woULmThxojlJA9jZ2eHn52eeTZeUlPDss8/SsWNHunXrxl//+ldFYj2/K4G06L0UnrmkSP+NScfHBpO4dD1FF3Iozc4j/t2v8Z8QgUpdL4Z1vSHn2TrkvUPcjM3PqFNSUkhLS2Pp0qWV2jIzMxk7diwAf//733FwcODEiROoVCqysrKsHaqwIp2rE85tmpNzNM28LTsxDZ2LE87ezcnPkH//2iDnWQjl2XyiPnu2YtnGFi1aWGxPSkoiIyODkJAQCgoK+Oyzzzhz5gwqlQqAli1b3nEfLi4u6PXVX4O2g6Ypf3cNq/bzGqqBAyM4WX53RSuqUtV51lwrTqDPLTJv0+cWAjT4mrcDB8p5toaBA613nhuzgQNr5zw7BYTSYX7MXR+nJgYOjKAo+fYrsOl0OvLz86t9fJu/duXpWVE7LDX1+u3yJpOJV155BaPRSEhICCdPnsTT05N58+bRs2dPIiIi2LNnj1IhCysoL6go96d1vV4v+Leyf2XX2sTdk/MsGrKABTE2//001IMZdWBgIP7+/sycOROtVouzszPLly/n0KFDODk5ERAQQHx8PKdOnSIkJIRFixaxf/9+Hn74YVJTU3F1vf3dezX5hAOQFZck9XtvsHNnTJ3U763qPOvziig4ewmPIF/yTp4DwLOrH/r8IgoyG/Z3fHKercOa57kxq63zHJ+tXD3qnTtj6rQetc3PqDUaDWvXrqVVq1ZMmjSJGTNmMGLECMLDwwkODkatVuPj44NGo+GPf/wjAH369KFZs2acOHHC6vGq1Grs7LWoNBpQqbCz10rd4TqS8sUOgqdF4tiyKfaervR48RFS18RgMtZdcfrGSM6zdch7h7iZejEKunfvTmys5fX/ZcuWER4eDkCzZs0YOHAg27dv5/777+fEiRNcvHgRf39/q8faYdwAwpZMNT9+PP1LCjIvym8i60DC0vXYe7gyOuZ9VGoV6d/v48CC/yodVoMj59k65L1D3Ey9SNS/V1xcTHJyMjNmzDBv++c//8mf//xnXnzxRbRaLZ9//jnu7u5Wjy316xhSv46xer+NkclgJC7qY/k9bx2T82wd8t4hbqZeJuqEhAQMBoPFimTt27cnJiZGuaCEEEKIOlAvE3WfPn0wmUxKhyGEEKKeKTi2hzP/eQlUapr2HUvL0S+a2wpPxJH57xfAZMIleBBtJs6/5f7WYvM3kwkhhBC1RdeyPZ3e2kXnd/7H1V++x1h6fY0Ap/YhdF64l87v/I/C5FgMRXm33N9a6uWMWgghhKgJnWdr899VajtQXZ+vqjRaAEwGA1qP1qjtnSwKdPx+f2uRGbUCfB7ow6D/vKJ0GNXW773n6PjYEKXDEDZIxrSob/Lit2PfqgNqnYPF9pyfV3N0aiB2TdxR2Wluu781SKK2NpWKnq9PJP69r1HrNIyKeZ/g58dY7BK2eApDvpgFQMvQLjyW8jkufl7mdgdPVyYk/hu/Uf2q1e+I6Pn0jHrcYrOLrxePpXxOy/sCeSzlczyCfC3au00fw6id76HWaUhYso6QlyfIbzuFJRnTwgYVnz5G8qwIiz8X1v4DAP3lM1xY+zZtn3y30vM8wh8l6MMkynLOUZyeeNv9rUEStZW1HRRCeWEJOYlpGPXl7Jn+Ad2mj6Fpl3YA+AzvRduhPdn7t48AyIo9xonVO+i/ZJq5WlHooslc2HOEtOiql+EZF/cRzm2bW240mdgz/QM6TRxCi99WAVKpCFsyheTPtpG17zgJS9YRtnQaam3Fm5Z7Zx+Cp0Wye+pSjPpy8jOyyDt1Dt+HQuvgzIj6Ssa0sEWOPl0IWBBj8cdr3KsYy0pJX/InfJ5Zjp2js8VzjGWlwLXFZxxdUOkcbrm/tUiitjLv4b04v/eI+XF2wimOLt9I/6XTcGrlQeiiZ9g/cxXFWdcXqT/49mrsmzrT9bmR+D8SQfOQjsS+trLafednZHFgwReELZ6CxtGeoMkPo3Nx4uDCLwFI/DCasoJiQl6egEpjR/+lU0lctoGco+nmY5zbnYj3sF41PwGiwZExLeqTnJ9XU5J5jIzlk0meFYE++yxlVy5wYf0icuM2Vsy+XxuA1rMtDq07Vrm/tcn1HivzCPIlZfUOi22HF6+j7dB7Gbl9EeermFUYSvTsnvYBw9bNxVRu4OdnF6O/WlCj/pM/24b3sF4MWD4Dr9AubBkzB6O+vKLx2gzl4W3v4OLnhaG0jMQPvrV4fu6JTPzHh9eob9EwyZgW9UmzIU/SbMiTlbZ7jXkZgKb9xt/R/tYkM2ors3dzpizfsuqQqdzApV+ScfB0I3XNziqfdzXlDGV5Rejzizi3K+GuYtj7woe0CuvKsZWbLGYWUDFDObjwK3yG92b39A8qreeszy/G3l2Zyz/CNsmYFqJuyYzaykpzC9C6WNbxbdEnEP8JAzn+7830fuNJNg59GUOJZX3s3vP+xJXkTBw8XOj+wjjiF60xt/lFhhH69tPmx1oXR0b+9C4YKxaFSVy2gcRl35rbiy9epTQnnyvHT1cZ49XjpzGU6slPu1CpTefiSGkNZz6iYZIxLUTdkkRtZTlH03Hzb2N+rHFyIGzxFA4s+IKkT7cyYsMb3PPao/wy5xPzPm0GhdDuwfuIHvQ3dK5NeHDTW2Ru/YXshFMApG3YQ9qG6/W3x8V9xJYxcyg4U/tlCN06eZNzJL3Wj3srTQN9GBE936p92rKmgT5Kh2BBxnT1yHi2VFvj2d8VVlXjRwO1yf/21ZTviiRqK8vc+ishf/+D+XGvuU9QcPoiSZ9sAWDP88sY+eP/cfqH/WTtO47O3Zl+7z7L/qiPKTqfQ9H5HBIWryNsyVS+G/b369/FWUnrsG6c+HLH7XesRToXpzqpCyxqh4zp6pHxXDectdRpTWglyXfUVnZmx0G0zg54dPWjzaAQ/Eb2M/9sBa7fxdrv/Yq7WEPffppLB1M4tXaXeZ8jH228difrH6rqos44+7TAtUNrMr6Lvf3OotGQMS1E3VKZpLpFjWXFJfHDqNer/TyfB/rgPz6cn558pw6iqjv93nuOiwdOkPLFj1W2j4ieLzOFeqym4xka5piW8SxshVz6VsDpzfs5vXm/0mFU242zJCFuJGNaiLojl76FEEIIGyaJWgghhLBhkqiFEEIIGyaJWgghhLBhkqiFEEIIGyZ3fQshal2L3p3pNfsJTEYTGZv2cfRf31m0D/70VbQujhjLjfz8zHuo7ewI/+cLADi19iTp4x84tnJTpePq3J25f00Ubh1a84X/45Xaw5ZMxcW3JYbSinKbRRdycPH14r63/oJap+XYiu/J3PZr3bxoIeqIJGoF3e5Np9PjQ/F9uC9qOzVbJ7wBwIAPn8exmRuZPx7g6PKNNeq3y9MP0nbIvWy7dswb9Zn/Zzy6+nHmp0MkLl1Pm4E96DY1Eqio5bvtkXmVih4I8Xv5GVn8EDkbY1k5w9bOJemzrRiKr6/1/dNfFmEqN9B+3ADaR/bn+L83s2XsHAAGfDSDMzsOVnncsoJitk14k4h//a3K9vhFayg4c4lWYd3o/ORwDr69mh4vjufnZ95Hn1dU+y9UCCuQRK2gW73pNGnTjKbXEuNvfEf25dKvyRxbuYnw5S9g7+lKaXZetfpUaezwCPKtss2zeweMBiM/jI4iYuWLODRz4+zOeM7ujAfgoR/+IUla3JEba0+bDEZzMQ3ztnIDAHb2Oq6mnDFvV2nscPFpQd6p81Ue11RuuGU5zN/WAjcZjJhMJtRaDU1aNyNs6TQwwf9e/icll3Nr/LqEUIIkagXd6k2ndXh3NE72DPtmDln7jhP/7te4+LTgcvxJoKJEYLPuHTj706Fq9dlhXDinvt1D12dHVWprHtKR83sSAbgQewzP4Pbm4zfr4c/lwyer1ZcQrQYEk59xAUNpmcV2nbszQz57Da2zA9sfW2De7tU3iAv/O3p3napUdHt+DLF//xf2Hi64d/Zmfd9peAT5Ejw9krjZn9zd8W1EQRmkVu9zeq3yd61YX1vUPUnUNsqhmRuYYOv4eYQtmYpHkC+5J8/RMrQL5/ck0rJPIHmnzlXvoCoVbSK68/Mz71eZqHVuTpQlV9QVLi8oRufWxNzmPbwXmVt/uavXJBoXp1YeBE+LZMekhZXa9FcL2DxyFt7DetHlrw/x67zPAPC5vyenbqiaVRMhr/yBtG/3UnD6IhpHe64cP40+t5Cs/cfpOmX0XR3blqTmwVN7let/Vb+GWwTD1kiitlFleUVciK2YWWTtO1ZROOD7fbQO7879a2ZTkp1HyeWqP067dWprUcsX4OzOQ+SlXbjljTT63CK0zhV1hTXOjhSnX6/d26pvVw6/+83dvizRSKh1GsIWTyX21ZWUF5VYNqpUqNQqTAYjZXlFFrPtZvd0ZH/Uf8yPHVs2tbiMfjvtHuyDvbszh776EoDy4lIMpWWodRrcO7alIPPi3b0wIRQgidpGXTyQTPvI/kBFvdZTG/ZiMhrZ9+pKAMKWTuPigWRUdmp07s4W31XnnjhjvjHnRsHPj8ErNIgO4wbg0dWXjo8OJmX19fJ+lw6l0D4yjDPbD+B1XxfSN/4PqKgwVHg+G2OZdcsPivqrfWR/3Du1pe87kwHYNWUJDp6uuAf6cPqHOIZ8/homowmjvow9z38IgEdXP64cy4BrdYJUdmr6vjOZHZP+YXHs+9fMxqOrH/evmU3c7P9QmpNP+3EDOLp8I73m/omi8zkMXzePc7sOk7BkPUf/uZFh38zBZDCa+xKiPpHqWXfhbqoN/ea3N52cI2nEv/s1ze/tZL6bu/cbf8IjyI/cU+eIfflfNGnTjP5Lp2EyGjm2chOZ237FxdeLLk89wP7XP652v9smvIFjc3fzmxxAn7eewqNLO87GxJOweB0AXf76ECWXczm1fvctjynVhuq32hjPtckzuD3uAd6c/OZnRfq39fEcny2XvhsLSdR3wRbe2No92IeSnHyyYo8pGgfY/hubuDVbGM+2xNbHsyTqxkMufddzGZvqX2lBIYQQd04StRBCNCLJsyIoTIpFpdGistPg0KYzrScuwLX7YKVDEzcha30LIUQj03riAkLWFBD8aRZNAkI5+dZoDIWyEIytkkQthBCNlFprT7Ohf8FYUkDJ+VSlwxE3IYlaCCEaKWNpMZe3r0Lt5IpD645KhyNuot4kar1eT1RUFN7e3jg6OjJo0CDi4uJQqVRER0crHZ4FlZ2a3m8+yR+P/YdHkz6l77vPYmcva+2J+sf34VBGRL/JY6mfMy7uI6XDEbXk3Ooo4h91J/FpX4rSDuP/+vfYObkqHZa4iXpxM5nJZGL8+PHExcUxd+5c/P39Wb16NZGRFVWdQkJCFI7QUvD0MXj17Ur0oBcxlJUz+JNXuPf1x4mLqt5vnYVQWmluIUkfb8GhuRtBf31I6XBELWn96Jt4Rb6kdBjiDtWLRL1ixQo2b95MfHw8QUFBAERERODn54eHhwc+Pj4KR2ip42ODOfDmfym6kANA/LtfE7HiRX6Z8wkmo1Hh6IS4c+d3JQDgM7yXwpEI0XjVi0S9cOFCJk6caE7SAHZ2dvj5+aHVaklPT2f06NHmtqtXr5KXl0dOTo7VY9W5OuHcpjk5R9PM27IT09C5OOHs3Zz8jCyrxySEEKL+svlEnZKSQlpaGkuXLq3UlpmZydixY/H19SU+Pt68fcaMGZSX3/m61C4uLuj1+tvv+DsdNE35u2uYxTbNtaIW+tzrRer1uYUA5oIXDdXAgRGcLL/zAgrCtlQ1nhuzgQNtezw7BYTSYX6MYv0PHBhBUXKsYv3XRzqdjvz8/Go/z+YT9dmzZwFo0aKFxfakpCQyMjIqfT+t1+v54osv2Lp1q9VivFF5QUWZSK2rE8WXrgKYy0WWXWsTQgilBCyIUToEUU02n6g9PSsWk01NTaV3795Axc1lr7zyCkajsVKi3rhxI23atOGee+654z5q8gkHql4bWZ9XRMHZS3gE+ZJ3sqJetGdXP/T5RRRkXqpRP/XFzp0xNr02srg1Wevbkq2PZ6XX+t65M0bW+rYSm0/UgYGB+Pv7M3PmTLRaLc7OzixfvpxDhw7h5OREQECAxf4ff/wxf/7znxWKtkLKFzsInhZJ1v7jGMsN9HjxEVLXxMiNZKLeUanVqLV2qDQaUKmws9diMpkw6qXkqRDWYvOJWqPRsHbtWp555hkmTZqEt7c3M2bMwNXVlZMnT6JWX/8p+NmzZ/n555/5/PPPFYwYEpaux97DldEx76NSq0j/fh8HFvxX0ZiEqIkO4wYQtmSq+fHj6V9SkHmRtb2fUzAqIRoXm0/UAN27dyc21vKmhWXLlhEeHm6x7dNPP+XBBx80Xy5XislgJC7qY/ndtKj3Ur+OIfXrGKXDEKJRqzcrk92ouLiY5OTkSt9Pf/LJJ4pf9hZCCCFqU72YUf9eQkICBoOhUqI+ceKEQhEJIYRtO71iGsVp8bjeM4JW42eatxtLizm5cCzGkkLsW7bH9/n/VLlNKKdezqj79OmDyWSiZ8+eSocihBA2rzDlV1RqDQFv76bo5EHKrl5feCkvfhvOgWEEvPUzKo2W4owjVW4TyqmXiVoIIcSdKzyxH5fgQQC4dA2nKPWAuU3X0g9jScWiTIaSAuyc3KrcJpQjiVoIIRo4Q+FVc3UstaMLhsKr5jaHVv4UHNvN0SmBqFCha+5d5TahnHr5HbUQQojKik8f4/S/LH865xYyHLsm7hiK8gAwFuej9epgbs/+6VOahk2gxYNTyFz5PAXH/0dx+uFK25wD+1r1tYjrJFELIUQD4ejTpcolQgtTfiFn15e4936Y/KO7aBr2iLnNZDSicfEAwM7FA0Ph1Sq3CeXIpW8hhGjgmnTshamslOTX+uPk1x2te0vKrlzgwvpFeIQ/yuUd/yF5VgTFp+Jx7TG0ym1COTKjFkKIRsDnmQ8tHmubeuE15mUAOs3bZtGmcW5aaZtQjsyohRBCCBsmiVoIIYSwYSqTyWRSOoj6Sp9fxJXjp5UOw2Y0DfRB5+KkdBiihmQ8W7L18VxQBql5yvXv7wrOWuX6b0wkUQshhBA2TC59CyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDbs/wG/9MfSpua4WQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -292,16 +292,16 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:57.320321Z", - "iopub.status.busy": "2024-11-23T19:54:57.320120Z", - "iopub.status.idle": "2024-11-23T19:54:57.456391Z", - "shell.execute_reply": "2024-11-23T19:54:57.455881Z" + "iopub.execute_input": "2024-12-05T03:21:31.982569Z", + "iopub.status.busy": "2024-12-05T03:21:31.982186Z", + "iopub.status.idle": "2024-12-05T03:21:32.116976Z", + "shell.execute_reply": "2024-12-05T03:21:32.116336Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAa20lEQVR4nO2df1AUZ5rHPzMw/B5ANCq6g6D8EDUqakj0wgJZo7EsPfey5pKYFFc5b2M0u0Wyblxx9cwlJtm1diunqVWze7kkxpCts7xTk5TiXokmF2M0wq0/BySoqAEVRIYZhGHo+8NjZGAYB2Hobnk+VVbJPDPdT1d9eN+Xnu5vGxRFURAGNEa1GxDURyQQRAJBJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBAQCQQgWO0GtEyjE842qN1FV5KjIcrUd9sTCXxwtgEW/4/aXXTlT38Dkwf33fZkOhBEAkEkEBAJBGRhGHCsq3KwnzmEIdiEISiYsJFjGfHMOqIn/Ujt1tzISNAPjHhmHRl/bmTiBzVEpk2n4o0FuOw31G7LjUjQjxhNoQx59B9pu9nIze/Pqt2OG5GgH2lrbuLavj9hjIgmbESK2u240Y0ELS0trF69GovFQnh4OI888gjffPMNBoOBnTt3qt2eTy5/vJrSp2M5/k+JOCr/l+Rff0pQRLTabbnRxcJQURQWLlzIN998w9q1a0lOTubjjz/mxz/+MQAZGRkqd+ibEU+/xvAfL1e7jW7RhQTvvvsun3/+OaWlpYwfPx6AnJwckpKSiIuLIyEhQeUO9Y0upoPf/OY3PPPMM24BAIKCgkhKSnKPAmVlZUyfPp3U1FSmT59OeXm5Wu3qDs1LUF5eTmVlJY8//niXWlVVlVuCJUuWsGzZMsrKyli2bBnPP/+83/swm82EhoZ2+Zebm9M3B9HH5ObmeO3XbDbf1fY0Px1cunQJgKFDh3q8fubMGc6fP09GRgZXrlzh2LFj7Nu3D4CnnnqKF198katXr3Lffff1e88dSVtXrOr+/UHzI8Hgwbe+Mz179vbf1YqisGLFCtra2sjIyKCqqoqRI0cSFBQE3JoqRowYQVVVlV/7sNlsNDc3d/m3f39xnx9PX7B/f7HXfm02211tT/MjQXp6OsnJyRQUFGAymYiKimLTpk2UlJQQERFBWloaJSUlarepazQvQXBwMNu3b2fJkiXk5eVhsVjIz88nOjqaiooKjEYjFouFS5cu4XK5CAoKwuVycfnyZSwWi9rt6wLNTwcAkyZN4tChQzgcDqxWKy+88AIlJSXuReHQoUOZPHkyhYWFABQWFpKRkaH6ekAv6EKCzjQ1NWG1Wj1OEm3evJmNGzeSmprKxo0b2bx5s4od6gvNTwfe+Otf/4rL5fKQYOzYsRw+fFiVfi68+zOaKkuJnjKH+IUFPmvNNec4s2I6YSPTCBmSQNJLH7rfW7PrbW4c+ZTU1/6C0uqk8veLcN64QszUuQz/u18GrH9djgQPPvggiqIwbdo0tVvBXn4UgzGYtDe/wFFxDGd9zR1rMVPnkrau2EMApdVJU2Wp++frh3YQOXYGaeuKcVR8i/PG1YAdgy4l0BL2ssOYJz4CgHlCNo6z396x1lCyF+vKLGqLt7nfW1u8lUFZT7l/bqmpJHzU/QCEWdJxlB8J2DGIBL3EZa93fyNoDDfjstf7rJni4pmwyUrK2iKu7d1Ca0MtSlsbDcf2EjNltvuzoSPTaDxxAEVRaDz5BS5H4C5C0eWaQA2aLpziwpalHq/FZDxGUGQsLsetO1TammyYho9x173VjKZQdz1qXBbN1RW0XL1ATOZ8j23HZs6nobSI8jWPEhxzH8ExnmdM+xKRwE/CE8Z5PQVsLz9C3cFCYjPnYTt5kEEPP+GuRaZmdqm5mhoJCo9CURQcZ48ydO6LNJTuw3aimLrirTgqS7lW9CeGzFrMqBc2oSgK597OI2rs9IAdm0wHvSQy5QEUZzPWlVlEJE3CFDsM5/Vqqnes91qzn/mK0y9Pw7piBtEZszDFxRP/xCpS/2UfKWv3EJE0mSGzFtNy9QLWVTmUr/4Rg2b8BGNoRMCOwSBPSO2e0lq5DU0YIIgEgkwHvhgot6aLBIJMB4JIICASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAJyeVmPUPNbxb7+5rAjIkEPUDPwuq+vJuqITAeCSCCIBAIigYAsDAOOBFwLgARcCx2QgGtBAq57iwRcBw5dLAwl4Dqw6EICCbgOLLqYDvwJuF6+fDlJSUkYDAZOnDihVqu6RPMS+BtwvWDBAg4ePMioUaP6u0Xdo/npwJ+Aa4CHH374rvdhNptpaWm54/si0qYz5vXiHm27rwKuc3NzcFgP+XxPSEjIXeUba34k8CfgWugdmh8J/Am47i3+/vaomVyyf39xwK4n0LwE/gRcC71D8xLA7YDrjrzzzjtkZ2er1NG9hS5/jbwFXP/85z/nBz/4ARcvXmTmzJkef072N622Ok6/PJWSv4/qUvtu/ZNYV+Vw+uWpnH1jQf835wVdjASd8RZwvWHDBjZs2KBiV7cJCjeT8uo+vvvtE11qo3/5CQBX92wBg6G/W/OKLiVoD7jWKoZgE8HmOJ/vuXFkN6OW/bGfOvKNLqcDveNqasTVZMMUF692K4BIoAoNJXuJnvKY2m24EQlUoP7wTmIz/1btNtyIBAGibPVMHJUllK2eSeOpL6nesR4AxeWi+XIZ4QnjVO7wNpJj2APUPGModyAJAUUkEEQCQdYEPeJevTVdJBBkOhBEAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBDQ6SXn/cVAeUyuSOADNQOtfdHXl5rJdCCIBIJIICASCMjCMOBIwLUASMC10AEJuBYk4Lq3SMB14NDFwlACrgOLLiSQgOvAogsJfAVcm0wmamtrefbZZ6moqCAkJISUlBS2bNnCfffdp2LX+kHzawJ/Aq4NBgOvvPIKVquV48ePM2bMGH71q1+p0K0+0bwE/gRcx8XFkZOT46499NBDnD9/3u99mM1mQkNDu/zLzc25wyfvTNq64j5fD+Tm5njt12w239X2NC9BTwOu29ra2LRpE/Pnz+/XPvWM5u9Kbm1tJT09HafTyfr16z0Cruvq6rDZbB75xsuWLePSpUvs2LGj17nHasbT+KKvryfQ/MKwJwHXy5cvp7y8nN27d0vwdQ/QvATgX8B1QUEB3377LZ999hmhoaH93aKu0eWvS+eA65MnT/Lmm29y+fJlZsyYweTJk90nkoQ7o4uRoDOdA67Hjx+vatbxhXd/RlNlKdFT5hC/sMBnrfHUl1z89+VgMDJoxuMMW/ALWm11lP/zo9y8ZCXjz40ANNec48yK6YSNTCNkSAJJL30YsP51ORK0B1xPmzZN7Vawlx/FYAwm7c0vcFQcw1lf47MWMmw0qW8cZOxvv6L+yKe0NTvcqeiRqQ95bDtm6lzS1hUHVADQqQRawl52GPPERwAwT8jGcfZbn7WQwSMwmkIAMBiDwGDsNhW9oWQv1pVZ1BZvC+gxiAS9xGWvd38jaAw347LX+1VrKN1HaPwYjCFhXrdriotnwiYrKWuLuLZ3C60NtQE7Bl2uCdSg6cIpLmxZ6vFaTMZjBEXG4nLcukOlrcmGafgYd727Wsu1i1Rvf5Mxq3Z1uz+j6fZfOFHjsmiuriA4OjC5tiKBn4QnjPP6jEN7+RHqDhYSmzkP28mDDHr49tNOIlMzu9TanM2c+9d/IGHJJoLCuz4epx1XUyNB4VEoioLj7FGGzn0xEIcFyHTQayJTHkBxNmNdmUVE0iRMscNwXq+mesd6r7W6Ax9zs+oU5zc9j3VVDi21t74b6ZiK3nT+BPYzX3H65WlYV8wgOmNWQB+QofnTxmoyUE4by0ggiASCTAc+GSi3posEgkwHgkggIBIIiAQCIoGASCAgEgiIBAIigYBIICASCIgEAnJ5WY+4Vx+TKxL0ADUDr/v6aqKOyHQgiASCSCAgEgjIwjDgSMC1AEjAtdABCbgWJOC6t0jAdeDQxcJQAq4Diy4kkIDrwKILCe4UcA2wYMECKisrMRqNREVFsXHjRiZPnqxSx/pC8xK0B1xv2LChS62qqsodfP3BBx8QExMDwM6dO3nuuec4duxYv/aqVzQvgT8B14BbAIAbN270KNHUbDbT0tJyx/dFpE1nzOvFfm8X8Jpucjfk5ubgsB7y+Z6QkBBsNluPt615CToGXGdmZgLdB1wvXryYoqIiFEVhz549qvSrRzR/V3JPA64Btm7dSmFhIZ9//nmf9qJmcsmAvp6gPeA6Pj6evLw88vPzmTNnDtnZ2UycONHrsP/ss8+yf/9+amsDF/t2L6H56QDuHHDd2NjI9evXsVgsAOzevZu4uDji4roGRApd0YUEnWkPuM7PzwfAbrezcOFC7HY7QUFBxMXFsXv3bgwGg7qN6gRdStA54HrYsGF8/fXXqvXTXcC1dVUucGvJlfD8HwhPGMd365+koWQvyb/eTdS4hwGwWw9z6aMClLY2fpD3GyJTM/u1f11K0B5wrQU6hlhXvPUTnPU1mGKHAbeyi1Nf+4vH+y2L3+bqns3unxVFoWbn70he87lHiml/ovmFodbxFXANCtZVOZzbuJi2lpsAmAYN9/h8c3UFbS1NVLw+n8rfLcJ1095frbsRCXqJrxDr0Su2k7aumHBLOtf2/ZvXz7fWX6H5+wrG/HoX5kkzuVb0x/5o2wORoJd0DrEOiox114KjBgEQkzmfm1Unu/l8DJGpD2I0hWIe/0NuXrIGvOfOiAS9JDI1E9vx/QDYTh4kInmqu+Zy3DqFaz9ziJChSV4/HzYiFef171EUhabzxwkdmhjwnjujy4WhlohMeYDa/34f68osojNm46z7noaSIgbnPkvZmpkYTSEERcaS9NJHAFS99wvqv/5Pbhz9jKHz8hmcs4i47EWUFfwQY0gEScsL+/0YNH/aWEvIaWPhnkUkEGQ66An36q3pIoEg04EgEgiIBAIigYBIICASCIgEAiKBgEggIBIIiAQCIoGAXFnkk4HymFyRwAdqBlr7oq+vMpLpQBAJBJFAQCQQkIVhwJGAawGQgGuhAxJwLUjAdW/Qc7g1SMB1r9F7uDVIwHWvkXDrwKP56cBXuHXnUeDVV1/FYDBw4sSJ/m5T12hagvZw6/YQ645UVVV5SHDs2DG+/vprRo0a1Z8t3hNoejrwN9y6ubmZZcuWUVhYSE5OTo/3013A9d0EWnemrwKuO5Kb6z3s+m4DrjU9EnQMt27HW7j1mjVreOaZZ0hMTFSjTd2j6ZEgPT2d5ORkCgoKMJlMHuHWERERpKWlcejQIY4ePcpbb7111/vp7rdHzWQSX+zfXzxwrifwJ9z6wIEDnD59mqSkJBITE7l48SKzZ8+mqKhI7fZ1gy7zCcaPH092djZ/+MMfutQSExP59NNPmTBhQq/3o9WRYMBfWdQebq2Hk0R6QdNrAm90DrfuzLlz5/q3oXsA3UmgpXDrdrpLOfdWa645x5kV0wkbmUbIkASSXvrQ/d6aXW9z48inpL72F5RWJ5W/X4TzxhVips5l+N/9MmD962460BodU84dFcdw1tfcsRYzdS5p64o9BFBanTRVlrp/vn5oB5FjZ5C2rhhHxbc4b1wN2DGIBL3EV8p5d7WGkr1YV2ZRW7zN/d7a4q0MynrK/XNLTSXho+4HIMySjqP8SMCOQSToJb5Szr3VTHHxTNhkJWVtEdf2bqG1oRalrY2GY3uJmTLb/dnQkWk0njiAoig0nvwClyNwVyLpbk2gFk0XTnFhy1KP12IyHuuScm4aPsZd91br+GCLqHFZNFdX0HL1AjGZ8z22HZs5n4bSIsrXPEpwzH0Ex3ieOu9LRAI/CU8Y5/V7AHv5EeoOFhKbOQ/byYMMevgJdy0yNbNLzdXUSFB4FIqi4Dh7lKFzX6ShdB+2E8XUFW/FUVnKtaI/MWTWYka9sAlFUTj3dh5RY6cH7NhkOuglkSkPoDibsa7MIiJpEqbYYTivV1O9Y73Xmv3MV5x+eRrWFTOIzpiFKS6e+CdWkfov+0hZu4eIpMkMmbWYlqsXsK7KoXz1jxg04ycYQyMCdgy6PGPYX8gZQ2HAICOBDwbKrekigSDTgSASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAIigYBcWdQj7tXH5IoEPUDNwOu+vpCkIzIdCCKBIBIIiAQCsjAMOBJwLQAScC10QAKuBQm47i16DrmWgOs+QO8h1xJw3QdIyHVg0YUEvkKuTaZb36okJiYSFhZGWFiY+zOzZ8/2uj3BE81L0B5yvWHDhi61qqoqj/Dr7du390l+4UBD8xL4G3LdG7oLuO7M3QRe91XAdW6u91DrjtyTAdfgf8g1wKJFi5g4cSJLly6lvr6+v1vVLZq/K7m1tZX09HScTifr16/3CLmuq6vDZrNhNBqpqqrCYrHQ3NxMfn4+NpuNjz76qE97UTO0IpDXE2h+OmgPuV6yZAl5eXlYLBby8/OJjo6moqICo/HWYGaxWAAIDQ1l6dKlzJ8/39dmhQ5oXgKASZMmceiQ53z4zjvvkJ2dDYDdbqe1tZWYmBgUReGTTz5h8uTJKnSqTzS/JvBG55DrmpoacnJymDhxIhMmTKCsrMxrArrgHV2MBJ3pHHI9evRoSkpKVO7qNq22Osr/+VFuXrKS8edGj9p365/EWV99K9dwiIXkgv9Sp8kO6FICLYZcdyQo3EzKq/v47rdPdKmN/uUnAFzdswUMhv5uzSu6nA60jiHYRLA5zud7bhzZTewD8/qpI9+IBCrgamrE1WTDFBevdiuASKAKDSV7iZ7ymNptuBEJVKD+8E5iM/9W7TbciAQBomz1TByVJZStnknjqS+p3rEeAMXlovlyGeEJ41Tu8DaaP22sJe7V08YyEggigSDTQY+4V29NFwkEmQ4EkUBAJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkEdHrJeX8xUB6TKxL4QM1Aa1/IU9OFPkckEEQCQSQQEAkE5K+DgCMp5wIgKedCByTlvJfoOeC6Ha2mnOtiTaD3gOvLH6+m+j9exxAcSphlnKSc3w16D7jWesq5LqYDXwHX7aPAzZs3eeGFF0hJSeH+++/npz/9qVrt6g7NjwT+Bly/8sorhIWFUVZWhsFgoKampr9b1S2al8CfgOvGxkY+/PBDLl68iOH/E8GGDRvm9z66C7i+m0Dr/iA313vY9YAOuK6oqGDw4MG8+uqrTJs2jZycHL788ku1WvYgbV2xptcDoIO7kv0JuC4tLWXq1Kls27aNp59+msOHDzNv3jzOnj1LdPTdr8LVTCbxxYC7nqA94Do+Pp68vDzy8/OZM2cO2dnZTJw4EaPRSEJCAsHBwTz11FPArbDLIUOGUFZWpnL3+kDzawK4c8D1kCFDyM3NZd++fcyaNYuysjKuXLlCcnKyGu3qDs2PBN7oHHANsHnzZt544w3uv/9+nnzySbZu3UpsbKx6TeoIXYwEnekccA23Qq6Li4vVa0rH6FICrQVcX3j3ZzRVlhI9ZQ7xCwt81hpPfcnFf18OBiODZjzOsAW/8JqK3lxzjjMrphM2Mo2QIQkkvfRhwPrX5XSgJezlRzEYg0l78wscFcdw1tf4rIUMG03qGwcZ+9uvqD/yKW3NDncqemTqQx7bjpk6l7R1xQEVAESCXmMvO4x54iMAmCdk4zj7rc9ayOARGE0hABiMQWAwdpuK3lCyF+vKLGqLtwX0GESCXuKy17u/ETSGm3HZ6/2qNZTuIzR+DMaQMK/bNcXFM2GTlZS1RVzbu4XWhtqAHYMu1wRq0HThFBe2LPV4LSbjMYIiY3E5bt2m1NZkwzR8jLveXa3l2kWqt7/JmFW7ut2f0RTq/n/UuCyaqysIjg5Mrq1I4CfhCeO8PujSXn6EuoOFxGbOw3byIIMevv20k8jUzC61Nmcz5/71H0hYsomg8Khu9+dqaiQoPApFUXCcPcrQuS8G4rAAmQ56TWTKAyjOZqwrs4hImoQpdhjO69VU71jvtVZ34GNuVp3i/Kbnsa7KoaX21hdkHVPRm86fwH7mK06/PA3rihlEZ8wK6AMyNP/dgZrIdwfCgEEkEGQ68MVAyScQCQSZDgSRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBCQK4t6xL36mFyRoAeoGXjd1xeSdESmA0EkEEQCAZFAQCQQkL8OAo4EXAuABFwLHZCAa0GzAde6kUDPKeeXP15N6dOxHP+nRByV/ysB13eD3lPOtR5wrQsJ9J5yrnV0IYGvlHOTycS5c+dYsGCBu1ZfX09DQwN1dXUqdKs/NC+BPynniYmJlJaWul/Pz8+ntbXV7310F3DdGTUDr3NzvYdad+RuA641L4E/KecdaWlpYdu2bezdu7ffevSFt3QTraF5CTqmnGdmZgJdU847smvXLkaOHMmUKVP83oe/vz1qhlbs318csOsJNC9Beno6ycnJFBQUYDKZPFLOIyIiSEtL83j/e++9x3PPPadSt/pE8xK0p5wvWbKEvLw8LBYL+fn5REdHU1FRgdF4+1THpUuXOHDgAFu3blWxY/2heQngzinn7XzwwQfMnTvXPYUI/qGbM4Yd8ZZyDvD++++rMhVcePdnWFdm8f1/vOHxunVVLtZVOVhX5dB04RQA361/ktKnB9F46vaTWezWw5St/hHWVbnYy77p195BJyNBZ7ylnAOqPOSiY35xxVs/wVlfgyn21vOXDMYgUl/7i8f7LYvf5uqeze6fFUWhZufvSF7zuUeAZX+iy5GgPeV82rRparfiM9sYFKyrcji3cTFtLTcBMA0a7vH55uoK2lqaqHh9PpW/W4Trpr2/WnejSwm0hK/84tErtpO2rphwSzrX9v2b18+31l+h+fsKxvx6F+ZJM7lW9Mf+aNsDkaCXdM4vDoqMddeCowYBEJM5n5tVJ7v5fAyRqQ9iNIViHv9Dbl6yBrznzogEvSQyNRPb8f0A2E4eJCJ5qrvmctw6CWU/c4iQoUlePx82IhXn9e9RFIWm88cJHZoY8J47o8uFoZaITHmA2v9+H+vKLKIzZuOs+56GkiIG5z5L2ZqZGE0hBEXGkvTSRwBUvfcL6r/+T24c/Yyh8/IZnLOIuOxFlBX8EGNIBEnLC/v9GCTHsAeoedpYbkMTAopIIIgEgqwJesS9mk8gEggyHQgigYBIICASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAIigYBIICASCIgEAiKBgEggAP8H4pXcnXUJHCMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAa20lEQVR4nO2df1AUZ5rHPzMw/B5ANCq6g6D8EDUqakj0wgJZo7EsPfey5pKYFFc5b2M0u0Wyblxx9cwlJtm1diunqVWze7kkxpCts7xTk5TiXokmF2M0wq0/BySoqAEVRIYZhGHo+8NjZGAYB2Hobnk+VVbJPDPdT1d9eN+Xnu5vGxRFURAGNEa1GxDURyQQRAJBJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBAQCQQgWO0GtEyjE842qN1FV5KjIcrUd9sTCXxwtgEW/4/aXXTlT38Dkwf33fZkOhBEAkEkEBAJBGRhGHCsq3KwnzmEIdiEISiYsJFjGfHMOqIn/Ujt1tzISNAPjHhmHRl/bmTiBzVEpk2n4o0FuOw31G7LjUjQjxhNoQx59B9pu9nIze/Pqt2OG5GgH2lrbuLavj9hjIgmbESK2u240Y0ELS0trF69GovFQnh4OI888gjffPMNBoOBnTt3qt2eTy5/vJrSp2M5/k+JOCr/l+Rff0pQRLTabbnRxcJQURQWLlzIN998w9q1a0lOTubjjz/mxz/+MQAZGRkqd+ibEU+/xvAfL1e7jW7RhQTvvvsun3/+OaWlpYwfPx6AnJwckpKSiIuLIyEhQeUO9Y0upoPf/OY3PPPMM24BAIKCgkhKSnKPAmVlZUyfPp3U1FSmT59OeXm5Wu3qDs1LUF5eTmVlJY8//niXWlVVlVuCJUuWsGzZMsrKyli2bBnPP/+83/swm82EhoZ2+Zebm9M3B9HH5ObmeO3XbDbf1fY0Px1cunQJgKFDh3q8fubMGc6fP09GRgZXrlzh2LFj7Nu3D4CnnnqKF198katXr3Lffff1e88dSVtXrOr+/UHzI8Hgwbe+Mz179vbf1YqisGLFCtra2sjIyKCqqoqRI0cSFBQE3JoqRowYQVVVlV/7sNlsNDc3d/m3f39xnx9PX7B/f7HXfm02211tT/MjQXp6OsnJyRQUFGAymYiKimLTpk2UlJQQERFBWloaJSUlarepazQvQXBwMNu3b2fJkiXk5eVhsVjIz88nOjqaiooKjEYjFouFS5cu4XK5CAoKwuVycfnyZSwWi9rt6wLNTwcAkyZN4tChQzgcDqxWKy+88AIlJSXuReHQoUOZPHkyhYWFABQWFpKRkaH6ekAv6EKCzjQ1NWG1Wj1OEm3evJmNGzeSmprKxo0b2bx5s4od6gvNTwfe+Otf/4rL5fKQYOzYsRw+fFiVfi68+zOaKkuJnjKH+IUFPmvNNec4s2I6YSPTCBmSQNJLH7rfW7PrbW4c+ZTU1/6C0uqk8veLcN64QszUuQz/u18GrH9djgQPPvggiqIwbdo0tVvBXn4UgzGYtDe/wFFxDGd9zR1rMVPnkrau2EMApdVJU2Wp++frh3YQOXYGaeuKcVR8i/PG1YAdgy4l0BL2ssOYJz4CgHlCNo6z396x1lCyF+vKLGqLt7nfW1u8lUFZT7l/bqmpJHzU/QCEWdJxlB8J2DGIBL3EZa93fyNoDDfjstf7rJni4pmwyUrK2iKu7d1Ca0MtSlsbDcf2EjNltvuzoSPTaDxxAEVRaDz5BS5H4C5C0eWaQA2aLpziwpalHq/FZDxGUGQsLsetO1TammyYho9x173VjKZQdz1qXBbN1RW0XL1ATOZ8j23HZs6nobSI8jWPEhxzH8ExnmdM+xKRwE/CE8Z5PQVsLz9C3cFCYjPnYTt5kEEPP+GuRaZmdqm5mhoJCo9CURQcZ48ydO6LNJTuw3aimLrirTgqS7lW9CeGzFrMqBc2oSgK597OI2rs9IAdm0wHvSQy5QEUZzPWlVlEJE3CFDsM5/Vqqnes91qzn/mK0y9Pw7piBtEZszDFxRP/xCpS/2UfKWv3EJE0mSGzFtNy9QLWVTmUr/4Rg2b8BGNoRMCOwSBPSO2e0lq5DU0YIIgEgkwHvhgot6aLBIJMB4JIICASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAJyeVmPUPNbxb7+5rAjIkEPUDPwuq+vJuqITAeCSCCIBAIigYAsDAOOBFwLgARcCx2QgGtBAq57iwRcBw5dLAwl4Dqw6EICCbgOLLqYDvwJuF6+fDlJSUkYDAZOnDihVqu6RPMS+BtwvWDBAg4ePMioUaP6u0Xdo/npwJ+Aa4CHH374rvdhNptpaWm54/si0qYz5vXiHm27rwKuc3NzcFgP+XxPSEjIXeUba34k8CfgWugdmh8J/Am47i3+/vaomVyyf39xwK4n0LwE/gRcC71D8xLA7YDrjrzzzjtkZ2er1NG9hS5/jbwFXP/85z/nBz/4ARcvXmTmzJkef072N622Ok6/PJWSv4/qUvtu/ZNYV+Vw+uWpnH1jQf835wVdjASd8RZwvWHDBjZs2KBiV7cJCjeT8uo+vvvtE11qo3/5CQBX92wBg6G/W/OKLiVoD7jWKoZgE8HmOJ/vuXFkN6OW/bGfOvKNLqcDveNqasTVZMMUF692K4BIoAoNJXuJnvKY2m24EQlUoP7wTmIz/1btNtyIBAGibPVMHJUllK2eSeOpL6nesR4AxeWi+XIZ4QnjVO7wNpJj2APUPGModyAJAUUkEEQCQdYEPeJevTVdJBBkOhBEAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBDQ6SXn/cVAeUyuSOADNQOtfdHXl5rJdCCIBIJIICASCMjCMOBIwLUASMC10AEJuBYk4Lq3SMB14NDFwlACrgOLLiSQgOvAogsJfAVcm0wmamtrefbZZ6moqCAkJISUlBS2bNnCfffdp2LX+kHzawJ/Aq4NBgOvvPIKVquV48ePM2bMGH71q1+p0K0+0bwE/gRcx8XFkZOT46499NBDnD9/3u99mM1mQkNDu/zLzc25wyfvTNq64j5fD+Tm5njt12w239X2NC9BTwOu29ra2LRpE/Pnz+/XPvWM5u9Kbm1tJT09HafTyfr16z0Cruvq6rDZbB75xsuWLePSpUvs2LGj17nHasbT+KKvryfQ/MKwJwHXy5cvp7y8nN27d0vwdQ/QvATgX8B1QUEB3377LZ999hmhoaH93aKu0eWvS+eA65MnT/Lmm29y+fJlZsyYweTJk90nkoQ7o4uRoDOdA67Hjx+vatbxhXd/RlNlKdFT5hC/sMBnrfHUl1z89+VgMDJoxuMMW/ALWm11lP/zo9y8ZCXjz40ANNec48yK6YSNTCNkSAJJL30YsP51ORK0B1xPmzZN7Vawlx/FYAwm7c0vcFQcw1lf47MWMmw0qW8cZOxvv6L+yKe0NTvcqeiRqQ95bDtm6lzS1hUHVADQqQRawl52GPPERwAwT8jGcfZbn7WQwSMwmkIAMBiDwGDsNhW9oWQv1pVZ1BZvC+gxiAS9xGWvd38jaAw347LX+1VrKN1HaPwYjCFhXrdriotnwiYrKWuLuLZ3C60NtQE7Bl2uCdSg6cIpLmxZ6vFaTMZjBEXG4nLcukOlrcmGafgYd727Wsu1i1Rvf5Mxq3Z1uz+j6fZfOFHjsmiuriA4OjC5tiKBn4QnjPP6jEN7+RHqDhYSmzkP28mDDHr49tNOIlMzu9TanM2c+9d/IGHJJoLCuz4epx1XUyNB4VEoioLj7FGGzn0xEIcFyHTQayJTHkBxNmNdmUVE0iRMscNwXq+mesd6r7W6Ax9zs+oU5zc9j3VVDi21t74b6ZiK3nT+BPYzX3H65WlYV8wgOmNWQB+QofnTxmoyUE4by0ggiASCTAc+GSi3posEgkwHgkggIBIIiAQCIoGASCAgEgiIBAIigYBIICASCIgEAnJ5WY+4Vx+TKxL0ADUDr/v6aqKOyHQgiASCSCAgEgjIwjDgSMC1AEjAtdABCbgWJOC6t0jAdeDQxcJQAq4Diy4kkIDrwKILCe4UcA2wYMECKisrMRqNREVFsXHjRiZPnqxSx/pC8xK0B1xv2LChS62qqsodfP3BBx8QExMDwM6dO3nuuec4duxYv/aqVzQvgT8B14BbAIAbN270KNHUbDbT0tJyx/dFpE1nzOvFfm8X8Jpucjfk5ubgsB7y+Z6QkBBsNluPt615CToGXGdmZgLdB1wvXryYoqIiFEVhz549qvSrRzR/V3JPA64Btm7dSmFhIZ9//nmf9qJmcsmAvp6gPeA6Pj6evLw88vPzmTNnDtnZ2UycONHrsP/ss8+yf/9+amsDF/t2L6H56QDuHHDd2NjI9evXsVgsAOzevZu4uDji4roGRApd0YUEnWkPuM7PzwfAbrezcOFC7HY7QUFBxMXFsXv3bgwGg7qN6gRdStA54HrYsGF8/fXXqvXTXcC1dVUucGvJlfD8HwhPGMd365+koWQvyb/eTdS4hwGwWw9z6aMClLY2fpD3GyJTM/u1f11K0B5wrQU6hlhXvPUTnPU1mGKHAbeyi1Nf+4vH+y2L3+bqns3unxVFoWbn70he87lHiml/ovmFodbxFXANCtZVOZzbuJi2lpsAmAYN9/h8c3UFbS1NVLw+n8rfLcJ1095frbsRCXqJrxDr0Su2k7aumHBLOtf2/ZvXz7fWX6H5+wrG/HoX5kkzuVb0x/5o2wORoJd0DrEOiox114KjBgEQkzmfm1Unu/l8DJGpD2I0hWIe/0NuXrIGvOfOiAS9JDI1E9vx/QDYTh4kInmqu+Zy3DqFaz9ziJChSV4/HzYiFef171EUhabzxwkdmhjwnjujy4WhlohMeYDa/34f68osojNm46z7noaSIgbnPkvZmpkYTSEERcaS9NJHAFS99wvqv/5Pbhz9jKHz8hmcs4i47EWUFfwQY0gEScsL+/0YNH/aWEvIaWPhnkUkEGQ66An36q3pIoEg04EgEgiIBAIigYBIICASCIgEAiKBgEggIBIIiAQCIoGAXFnkk4HymFyRwAdqBlr7oq+vMpLpQBAJBJFAQCQQkIVhwJGAawGQgGuhAxJwLUjAdW/Qc7g1SMB1r9F7uDVIwHWvkXDrwKP56cBXuHXnUeDVV1/FYDBw4sSJ/m5T12hagvZw6/YQ645UVVV5SHDs2DG+/vprRo0a1Z8t3hNoejrwN9y6ubmZZcuWUVhYSE5OTo/3013A9d0EWnemrwKuO5Kb6z3s+m4DrjU9EnQMt27HW7j1mjVreOaZZ0hMTFSjTd2j6ZEgPT2d5ORkCgoKMJlMHuHWERERpKWlcejQIY4ePcpbb7111/vp7rdHzWQSX+zfXzxwrifwJ9z6wIEDnD59mqSkJBITE7l48SKzZ8+mqKhI7fZ1gy7zCcaPH092djZ/+MMfutQSExP59NNPmTBhQq/3o9WRYMBfWdQebq2Hk0R6QdNrAm90DrfuzLlz5/q3oXsA3UmgpXDrdrpLOfdWa645x5kV0wkbmUbIkASSXvrQ/d6aXW9z48inpL72F5RWJ5W/X4TzxhVips5l+N/9MmD962460BodU84dFcdw1tfcsRYzdS5p64o9BFBanTRVlrp/vn5oB5FjZ5C2rhhHxbc4b1wN2DGIBL3EV8p5d7WGkr1YV2ZRW7zN/d7a4q0MynrK/XNLTSXho+4HIMySjqP8SMCOQSToJb5Szr3VTHHxTNhkJWVtEdf2bqG1oRalrY2GY3uJmTLb/dnQkWk0njiAoig0nvwClyNwVyLpbk2gFk0XTnFhy1KP12IyHuuScm4aPsZd91br+GCLqHFZNFdX0HL1AjGZ8z22HZs5n4bSIsrXPEpwzH0Ex3ieOu9LRAI/CU8Y5/V7AHv5EeoOFhKbOQ/byYMMevgJdy0yNbNLzdXUSFB4FIqi4Dh7lKFzX6ShdB+2E8XUFW/FUVnKtaI/MWTWYka9sAlFUTj3dh5RY6cH7NhkOuglkSkPoDibsa7MIiJpEqbYYTivV1O9Y73Xmv3MV5x+eRrWFTOIzpiFKS6e+CdWkfov+0hZu4eIpMkMmbWYlqsXsK7KoXz1jxg04ycYQyMCdgy6PGPYX8gZQ2HAICOBDwbKrekigSDTgSASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAIigYBcWdQj7tXH5IoEPUDNwOu+vpCkIzIdCCKBIBIIiAQCsjAMOBJwLQAScC10QAKuBQm47i16DrmWgOs+QO8h1xJw3QdIyHVg0YUEvkKuTaZb36okJiYSFhZGWFiY+zOzZ8/2uj3BE81L0B5yvWHDhi61qqoqj/Dr7du390l+4UBD8xL4G3LdG7oLuO7M3QRe91XAdW6u91DrjtyTAdfgf8g1wKJFi5g4cSJLly6lvr6+v1vVLZq/K7m1tZX09HScTifr16/3CLmuq6vDZrNhNBqpqqrCYrHQ3NxMfn4+NpuNjz76qE97UTO0IpDXE2h+OmgPuV6yZAl5eXlYLBby8/OJjo6moqICo/HWYGaxWAAIDQ1l6dKlzJ8/39dmhQ5oXgKASZMmceiQ53z4zjvvkJ2dDYDdbqe1tZWYmBgUReGTTz5h8uTJKnSqTzS/JvBG55DrmpoacnJymDhxIhMmTKCsrMxrArrgHV2MBJ3pHHI9evRoSkpKVO7qNq22Osr/+VFuXrKS8edGj9p365/EWV99K9dwiIXkgv9Sp8kO6FICLYZcdyQo3EzKq/v47rdPdKmN/uUnAFzdswUMhv5uzSu6nA60jiHYRLA5zud7bhzZTewD8/qpI9+IBCrgamrE1WTDFBevdiuASKAKDSV7iZ7ymNptuBEJVKD+8E5iM/9W7TbciAQBomz1TByVJZStnknjqS+p3rEeAMXlovlyGeEJ41Tu8DaaP22sJe7V08YyEggigSDTQY+4V29NFwkEmQ4EkUBAJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkEdHrJeX8xUB6TKxL4QM1Aa1/IU9OFPkckEEQCQSQQEAkE5K+DgCMp5wIgKedCByTlvJfoOeC6Ha2mnOtiTaD3gOvLH6+m+j9exxAcSphlnKSc3w16D7jWesq5LqYDXwHX7aPAzZs3eeGFF0hJSeH+++/npz/9qVrt6g7NjwT+Bly/8sorhIWFUVZWhsFgoKampr9b1S2al8CfgOvGxkY+/PBDLl68iOH/E8GGDRvm9z66C7i+m0Dr/iA313vY9YAOuK6oqGDw4MG8+uqrTJs2jZycHL788ku1WvYgbV2xptcDoIO7kv0JuC4tLWXq1Kls27aNp59+msOHDzNv3jzOnj1LdPTdr8LVTCbxxYC7nqA94Do+Pp68vDzy8/OZM2cO2dnZTJw4EaPRSEJCAsHBwTz11FPArbDLIUOGUFZWpnL3+kDzawK4c8D1kCFDyM3NZd++fcyaNYuysjKuXLlCcnKyGu3qDs2PBN7oHHANsHnzZt544w3uv/9+nnzySbZu3UpsbKx6TeoIXYwEnekccA23Qq6Li4vVa0rH6FICrQVcX3j3ZzRVlhI9ZQ7xCwt81hpPfcnFf18OBiODZjzOsAW/8JqK3lxzjjMrphM2Mo2QIQkkvfRhwPrX5XSgJezlRzEYg0l78wscFcdw1tf4rIUMG03qGwcZ+9uvqD/yKW3NDncqemTqQx7bjpk6l7R1xQEVAESCXmMvO4x54iMAmCdk4zj7rc9ayOARGE0hABiMQWAwdpuK3lCyF+vKLGqLtwX0GESCXuKy17u/ETSGm3HZ6/2qNZTuIzR+DMaQMK/bNcXFM2GTlZS1RVzbu4XWhtqAHYMu1wRq0HThFBe2LPV4LSbjMYIiY3E5bt2m1NZkwzR8jLveXa3l2kWqt7/JmFW7ut2f0RTq/n/UuCyaqysIjg5Mrq1I4CfhCeO8PujSXn6EuoOFxGbOw3byIIMevv20k8jUzC61Nmcz5/71H0hYsomg8Khu9+dqaiQoPApFUXCcPcrQuS8G4rAAmQ56TWTKAyjOZqwrs4hImoQpdhjO69VU71jvtVZ34GNuVp3i/Kbnsa7KoaX21hdkHVPRm86fwH7mK06/PA3rihlEZ8wK6AMyNP/dgZrIdwfCgEEkEGQ68MVAyScQCQSZDgSRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBCQK4t6xL36mFyRoAeoGXjd1xeSdESmA0EkEEQCAZFAQCQQkL8OAo4EXAuABFwLHZCAa0GzAde6kUDPKeeXP15N6dOxHP+nRByV/ysB13eD3lPOtR5wrQsJ9J5yrnV0IYGvlHOTycS5c+dYsGCBu1ZfX09DQwN1dXUqdKs/NC+BPynniYmJlJaWul/Pz8+ntbXV7310F3DdGTUDr3NzvYdad+RuA641L4E/KecdaWlpYdu2bezdu7ffevSFt3QTraF5CTqmnGdmZgJdU847smvXLkaOHMmUKVP83oe/vz1qhlbs318csOsJNC9Beno6ycnJFBQUYDKZPFLOIyIiSEtL83j/e++9x3PPPadSt/pE8xK0p5wvWbKEvLw8LBYL+fn5REdHU1FRgdF4+1THpUuXOHDgAFu3blWxY/2heQngzinn7XzwwQfMnTvXPYUI/qGbM4Yd8ZZyDvD++++rMhVcePdnWFdm8f1/vOHxunVVLtZVOVhX5dB04RQA361/ktKnB9F46vaTWezWw5St/hHWVbnYy77p195BJyNBZ7ylnAOqPOSiY35xxVs/wVlfgyn21vOXDMYgUl/7i8f7LYvf5uqeze6fFUWhZufvSF7zuUeAZX+iy5GgPeV82rRparfiM9sYFKyrcji3cTFtLTcBMA0a7vH55uoK2lqaqHh9PpW/W4Trpr2/WnejSwm0hK/84tErtpO2rphwSzrX9v2b18+31l+h+fsKxvx6F+ZJM7lW9Mf+aNsDkaCXdM4vDoqMddeCowYBEJM5n5tVJ7v5fAyRqQ9iNIViHv9Dbl6yBrznzogEvSQyNRPb8f0A2E4eJCJ5qrvmctw6CWU/c4iQoUlePx82IhXn9e9RFIWm88cJHZoY8J47o8uFoZaITHmA2v9+H+vKLKIzZuOs+56GkiIG5z5L2ZqZGE0hBEXGkvTSRwBUvfcL6r/+T24c/Yyh8/IZnLOIuOxFlBX8EGNIBEnLC/v9GCTHsAeoedpYbkMTAopIIIgEgqwJesS9mk8gEggyHQgigYBIICASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAIigYBIICASCIgEAiKBgEggAP8H4pXcnXUJHCMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -334,16 +334,16 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:57.458521Z", - "iopub.status.busy": "2024-11-23T19:54:57.458064Z", - "iopub.status.idle": "2024-11-23T19:54:57.979688Z", - "shell.execute_reply": "2024-11-23T19:54:57.979027Z" + "iopub.execute_input": "2024-12-05T03:21:32.119328Z", + "iopub.status.busy": "2024-12-05T03:21:32.118738Z", + "iopub.status.idle": "2024-12-05T03:21:32.640450Z", + "shell.execute_reply": "2024-12-05T03:21:32.639847Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADD7ElEQVR4nOzde3hU1b34//fkAiEkBAIiASEEAxi5C4JcIhEj9VJpUdFqOaIHa+ulrX6t1ar0aAVb6rdqtdZqpVWpqK2H71H78wJ4iCBGEQEFgZAoRERBBSGQhFtmfn+MREIg3MJMMrxfz5OHzFpr7/ns7XZm5bPXWjsQCoVCSJIkSZIkSTEgLtoBSJIkSZIkSfXFZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUMxKiHUBjsnUnlJRF572zW0BKYnTeW5IkSZIkqbEw2XUISsrgqnnRee/Hh0Lf1tF5b0mSJEmSpMbCaYySJEmSJEmKGSa7JEmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzHCB+qOs6PY8ylcUEkhIJBCfQFKHk2g/dhIt+pwZ7dAkSZIkSZJijiO7IqD92En0e24rvZ9cT/Pug/nonu9TVb452mFJkiRJkiTFHJNdERSX2JQ2Z40nuG0r2z4viXY4kiRJkiRJMcdkVwQFt1fy1czHiUtuQVL7rtEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6IdXp0+mzaBxZe1ZMmPOlOx6n2y7/g38cktoh1WVGzaDh9+DSVlEAxFO5rYtXUnLNsERZthVzDa0UhHZlcQVm4OX9NbdkY7GunIrdkKS7+G9ZXRjkRSY1G2I9yHLt4MVfahJemAGsUC9aFQiDFjxjB//nzuvPNOsrOzmTZtGqNHjwagX79+UY6wbu0vu5t2o38R7TCi6tNyeHg5vP75t0mujGZweTZc1BkCgaiGFzO+3g5/XgH/3xrY8U2Sq1UTuCQLrugKCY0mvS2Fk1xTP4JnP4YN28NlTeLgOx3guhxokxTd+KRDVfA5PFYEK8u+LRvYBq45CXqlRy8uSQ3X+spwH3rGWtj1TR/6uCT4YRe47ESIsw8tSfvUKJJdjz32GC+//DKLFy+mR48eAOTl5ZGVlUV6ejqdOnWKcoSqy+qt8J9zw6ON9hxktK4SJi+B0q1wU08TXkdq43a4ci58XlHzPH+9A/5SFB4Vc+9AiPc8qxEIhuCOhTDrs5rlO4LhZO67X8ETuSa81Hg8vxp+9wHs/RG84Cv40Tx48DQYeFw0IpPUUK2rgCvmhvt4e/btvtwGDyyD4jK4s599aEnal0YxzmPy5MmMHTu2OtEFEB8fT1ZWVvWorpUrVzJ48GC6devG4MGDKS4ujla42ss979dOdAHsHoH97CpYtDHSUcWeh5fXTnTtac56eHlNREOSDtvMz2onunYLAl9Uwh8/jGhI0mH7chv8fkn4971nHwUJJ3cnLHTauaSa/u/S2omuPf1/n4b7d5Kk2hp8squ4uJhVq1Zx4YUX1qpbs2ZNdbLrJz/5Cddddx0rV67kuuuu48c//nGkQ9U+rN4CCzfs/0sawsOvn18VsZBi0pad8MqnBzjPwD89z2ok/rWq7i+oIOGE2KbtkYpIOnwvlNa9TmWQ8FTduf7RKukbX1TCG+sO3Lf7l307SdqnQCgUatBLHBYUFHDGGWfwzjvvMHDgwOryFStW0KNHD6ZOnUp+fj7dunVjw4YNxMfHU1VVRevWrSkuLua44w48JyA1NZUdO3YcsF1y98GcOLHgSA7nsH10Rx4VRYVRee8jkTbsEjr9/KkDttu+7mNW/jQnAhHFpmZdB5J9z9wDtgtV7WLpD5pHICLpyPT4x9fENU0+YLuP/yuf8mUHvvalaOp0879oMeA8AnHx+20TClbx5fTJrH/urghGJqmhSu13Np1vO/BDuHZt2cDy/2wfgYgkKfJCoRAJCQmsW7eOFi0O7SF/DX5kV+vWrQEoKSmpLguFQtxyyy0Eg0H69evHmjVr6NChA/Hx4U5kfHw87du3Z80a52xFXdWug2sXrDq6ccS6gzzPIc+zGomDvVa9ptUoBHfBAe8tBryeJVUL2YeWJEKhEJWVlSxZsuSQt23wC9Tn5OSQnZ3NbbfdRmJiIikpKTzyyCMsWrSI5ORkunfvzqJFi47oPbZs2XJQ7RZvgKvmHdFbHbbZswvo2zo6730kvtoG586se/pGHHD50K7cvN35SIdrRxWcPQPKdu6/TVwAhnZoykLPsxqBm+cfePpG8wT4/L3ZJDX4bzId655fBb87QB8tEBfHS3+cQN9/TIhMUJIatK07YeRr3z5de1/igFE92rLYvp2kGDVv3jyGDRt2WNs2+JFdCQkJPP/882RkZDBu3DhuuOEGzjnnHIYPH07v3r2Ji4ujY8eOrF27lqqq8J2NqqoqPvvsMzp27Bjl6NUmCc5qX/vpU3u7qHMkooldTeJhTFbdbYIh+EGXyMQjHalLutSd6AK4IBMTXWoUzukIKQn773TFBaBrC+iTHtGwJDVgKYnwvU5196GDwMUH6P9J0rGqwSe7APr06UNhYSEVFRUUFRVxzTXXsGjRourF6du2bUvfvn155plnAHjmmWfo16/fQa3XpaPvll6Q/c302j2/sOO+eX1HX8hKjXxcseaqbjD4m0t+7/MM8KNuMLhtpKOSDs+ANnD9N8v4xe1xQe/+dUBr+MlJEQ9LOizNE+D/DoTEuNodrwDQqgn8fgAEDnRnSNIx5WcnQ69W4d9r9O2+eXFTT+jZKuJhSVKj0CiSXXurrKykqKioOtkF8Je//IWHHnqIbt268dBDD/GXv/wlihFqTy2awJRhcMPJ0H6P9abPbB8uH9UperHFksQ4uH8Q3NYbTtwjeTjoOPjjIPixiQE1Mld0hT+d9m0SF8KJ8Vt7wUODoen+1/qWGpwBbeDpPBid+W1Zqybh6/zp4dAxJWqhSWqgmiXAn4fAL3pCpz2eL5R7PPxlCFzqiH1J2q8G/zTGfXnnnXc47bTTePfddxkwYEDE3vdg1+wqXzmfNVNuhFCI1N4j6DB2Yp11oV07WXXfD9m5+QvS+p9HuwturrXPx4fSKNfs2pcBL4b/XTAqunHEOs+zYonXs2KJ17Okw+Fnh6Rjze41u958802GDh16SNs2ytVOBg0aREPO0SV36cdJk8NZsZUTzqSqooz45Bb7rdv83is0P2kIx4+6gY/v/QE7N39JYppTMCVJkiRJkg5Vo5zG2NAFEhIBCFVVkZjenrimyXXW7Vi/imaZvQBI6phDRfG7kQ9akiRJkiQpBpjsOko2vjGND6/PIb55SwLxCXXWNe3Qna1L3yAUCrH1w7lUVWyOUtSSJEmSJEmNW6OcxthQVH6yjE8evbZGWVq/s2l30a2kD7+MVrk/4OPfj6Fy9RKade5V3WbvupYDR1G2eAbFvz6LhLTjSEjzkXmSJEmSJEmHw2TXEWjW6WS6TyqoVR7cuZ24xKYE4uKIb5ZKoElSnXWB+Hgyr3mEUCjE6gfGkXLS4AgehSRJkiRJUuww2XUUbJ7/Il+8/DAEg6T0OJ2k9l3Z+fU6NsyeStPjO9eq2/HlJ6x64HICgTjann9DjTW+JEmSJEmSdPBMdh0FrYaOodXQMTXKElu1o90FN1fX76nJcZ32OUJMkiRJkiRJh8YF6iVJkiRJkhQzTHZJkiRJkiQpZpjskiRJkiRJUsxwza5DkN0CHh8avfc+FhQUFHDllVeSmZlJZmYmTz75ZI36qVOnkpGRQX5+Pvfccw+vvPIKffv25aGHHqrR7tVXX+Wuu+4iNTWVJ554gvbt23P++edTVlZGQkICzz33HG3atOHuu+9m5syZZGVlMWXKFMrKypg4cSL33XdfJA9bkiRJkiTVE5NdhyAlEfq2jnYUsW/8+PHccccd/OxnP6OwsJDBgwdX17300ks899xzrF+/noULFzJ37lxuvPFGFixYwIABA6rbTZ48mdmzZ1NSUsLkyZP54x//yPTp00lMTGTq1KlMmzaNMWPGsGjRIubMmcOf/vQnXnrpJUaPHs2mTZvYunUrKSkp0Th8SZIkSZJ0BJzGqAarZ8+erF27tvr1xo0bSUpKIhAIsGDBAoYPHw7AiBEjmD9/fo1tExISSEpKokePHtV1iYmJAGzbto2cnBxKS0vp0aMHAL169aKwsBCAQYMGUVBQcLQPT5IkSZIkHQWO7FKDVVhYyM9//vPq1yUlJWRmZgKwadMmWrQIz+1MTU1l06ZNNbbduXMnGzZsYNmyZWzcuBEIJ8u++93vsmXLFl555RWaNGnC22+/TTAYZM6cOWzevBmAzMxMli1bFoEjlCRJkiRJ9c2RXWpwpkyZQl5eHh06dKBv3777bNOyZUvKysoA2LJlCy1btqxRP3HiRC666CKeeeYZTj75ZADS09N56623mDhxIvfffz9t27Zl9OjRjBgxgvXr19O2bdujeViSJEmSJCkCTHapwRk/fjwFBQVMnDixRnl2djalpaUA9O/fnzlz5gAwe/ZsBg4cWKPtsGHDmD17NldccQWDBg0iGAyya9cuANLS0khKSgLg2muvpaCggMzMTM4991wASktL6dq161E9RkmSJEmSdHQ4jVGNRnp6OhUVFQC0a9eO3r17k5ubS+/evRkwYADr1q1j6tSp3HzzzfzmN7+hoKCADh068Oijj1JeXs53v/td4uLiaNq0KU888QQAF1xwAWVlZeTm5lYvhP/222/z4IMPRuswJUmSJEnSEQiEQqFQtIPQsWXAi+F/F4w69G2feuop2rdvT35+fv0G9Y2NGzdy9913c//99x+V/UfSkZxnqaHxelYs8XqWdDj87JB0rJk3bx7Dhg3jzTffZOjQoYe0rSO71KhcfvnlR3X/6enpMZHokiRJkiTpWOWaXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMcIH6g7R1J5SURTeG7BaQkhjdGCRJkiRJkhoyk10HqaQMrpoX3RgeHwp9W0c3BkmSJEmSpIbMaYySJEmSJEmKGSa7JEmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzHCB+qOs6PY8ylcUEkhIJBCfQFKHk2g/dhIt+pwZ7dAkSZIkSZJijiO7IqD92En0e24rvZ9cT/Pug/nonu9TVb452mFJkiRJkiTFHJNdERSX2JQ2Z40nuG0r2z4viXY4kiRJkiRJMcdkVwQFt1fy1czHiUtuQVL7rtEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6IdXp0+mzaBxZe1ZMmPOlOx6n2y7/g38cktoh1WVGzbFe0IpPpTFYK15eGfXcFoRyMduS+3wSdbodLPakkHqWJX+HPjq23RjkQ6cruC8Gk5fFYR7udJarwaxQL1oVCIMWPGMH/+fO68806ys7OZNm0ao0ePBqBfv35RjrBu7S+7m3ajfxHtMKLqi0qYshL+vebbsssK4PJsOPuEqIUlHZadQZhaAv9aBV9uD5e1bgpjOsN/ZEPT+KiGJx2yWZ/Bk8Ww/JvlJJvEwbknwFXdoF1ydGOT1DB9Wh7u2726Nvy9CNCrFVzRFYa3i25s0qHatgueKIH/Xg1f7wiXtWsGl2TBpV0godEMEZG0W6NIdj322GO8/PLLLF68mB49egCQl5dHVlYW6enpdOrUKcoRqi6fV8CVc2Hjdthz8EtJGdyxEEq3wo9Pilp40iHZGYQb34G3v6xZvmE7/KUI3v0KHjoNmpjwUiPx92J4eHnNod47gvDiJ/DGOvh7LpzQPGrhSWqAVm2B8W/C1p01+3Yffg03zYebeoYTBFJjsG0X/KQwfP3uOZhrXSX8cRks3gCTTzXhJTU2jeJ/2cmTJzN27NjqRBdAfHw8WVlZ1aO6fvGLX5CVlUUgEGDp0qXRClX7MOn92oku+Pb1X1fC0q8jHZV0eJ77uHaia0/vbYB/fBS5eKQjUbQ5nOiCfX9Gb94Bv1kc4aAkNXi/Xghbd+2/b3ff0vDNTKkxmFJcO9G1pzfWw/98EtGQJNWDBp/sKi4uZtWqVVx44YW16tasWVOd7Pr+97/PnDlzyMzMjHSIqsOn5eHEQF3LGcURng4mNXTBEDy3CgIHaPev1a7zoMbh+dV1dwSCwMIN4VEckgSwfFN4ynPwAN9zz6+ORDTSkdkZhOmr95/ognC/758fQ8i+ndSoNPhpjGvXrgWgbdu2NcpXrFhBaWlpdbJr2LBhh/0eqamp7Nixo842yd0Hc+LEgkPed/dJh77N/pxxRh4VRYX1tr9ISBt6MZ1umFpnmyAwfcFH/G7wyZEJ6hjR85/hlWKbNk2KciSxI75FG06esvaA7b7cBi3ad2HXxgO31cHxej46ut63kKSOPQ7Y7rSLrmJTQd2f5Tp4Xs9qzNK/8xM6XPXHOtuEgCmvvsNt/U+PTFDHCD876l+T9t3o/scldbYJAR9vhWYtWhLaURmZwCQBEAwe/lPAGvzIrtatWwNQUlJSXRYKhbjlllsIBoMNfnH6Y17oIC9Ob5WoMTikD1uvaTV8oYO9pv2MlrTbQfbtQn4PqjGwbyfFrAY/sisnJ4fs7Gxuu+02EhMTSUlJ4ZFHHmHRokUkJyfTvXv3I36PLVsOPD9j8Qa4at4Rv9URmT27gL6toxvDoVpXCefPrPurIQ74wWnZ3L59e6TCOiYMeDH873bPa70JheCi2eFHrO/vmg4QfnrP/M9WEXeg+Y46aF7PR8e9S8LTyA/U1X/v/03hhOZTIhLTscDrWY1ZSRn8oKDuNgHgunNP4/pfeI3XJz876t+uIJw3M/ygof2JA7qmwYItmyMWl6SwefPmHfYsvgY/sishIYHnn3+ejIwMxo0bxw033MA555zD8OHD6d27N3FxDf4QjmntmoUfP32gNWHGdI5QQNIRCATgB1l1J29DwA+6YKJLjcJFnQ98M2JIW5/GKOlb2S2gb3rdfbsAcEHnCAUkHYGEOBiTVXebIHDpAdpIangaRaaoT58+FBYWUlFRQVFREddccw2LFi1yCmMj8ave0KF57UW9d198/6cHdEuLdFTS4bmgM+S3D/++5zW9+/fhx8MldojUSGSlwi29wr/v3SEIAMc3gwl9IxyUpAbv7lOgddK++3YBwp8b7ZMjH5d0OMZlw2nHhX/fV9/uux3hvI6RjkrSkWoUya69VVZWUlRUVCPZ9bOf/YwTTjiBTz/9lPz8fHr0OPCCu4qM1knwRC5c2RXSEr8tP/U4eOg0uOzE6MUmHar4AEzqH07iZqV8W94pBX7ZCyafGr5LKDUWF2XBnwfDoOO+LWuRCJdnw1Onw3GugyxpLxnJMPV0+OGJ0HyPRVGGHg+PDoXzO0UvNulQJcbBA4PCN+A77JGkzW4RTtz+um94dL+kxqXBr9m1Lx988AFVVVU1kl0PPvggDz74YBSjgk8e+ymVqxbT4pRzyBhzW3V5cHslH02+kOC2cpoe34XOP/8729evZsUtg0nq0J0mbTqRdeNT+yyLFWlN4Noc+PFJsHUnNI2DpEZ59UnhhNeFneGCTDj1pXDZ82fYEVLjNfC48M/u9WBmnh2+ziVpf9okwQ094Kcnw6BvvgvvHxTdmKTDlRAXvgF/aZdv+3bThtu3kxqzRpluGDRoEKEG9mSo8uIFBOIS6P7buXz0u4vYuWk9iS2PB6Bs8QxScoaRMeY2Sh++msrSpcQlpZDW/zw6//TxGvvZV1ksiQ+EE19SLNizA2RnSLHERJekg+XnhWKJfTspdjjZpp6Ur3yH1N4jAEjtOZyKkveq65ocn0VwWzkAVdu2Ep8cXqCqbNFrFP0qlw0FT1e33VeZJEmSJEmSDk6jHNnVEFWVbyI+sycAcc1SqSrfVF2XlJHN1mVz+fC6HJK7nEKT4zoS3Lmdno8UAQGK7/wOaaecTWJ6Rq2yhBato3I8kiRJkiRJjZHJrkNU+ckyPnn02hplaf3OJr55S6oqygAIVm4hsd23q65v+N8naTXsEtqedx1r/vpzti5/i5ScIdX1KSfnsn3dRzTvNrBWmckuSZIkSZKkg2ey6xA163Qy3ScV1CovL36XjXOeoeXA89ny4RxaDbu4ui4UDJKQmg5AfGo6VeWbqKrcSnyzFEKhEBUlC2h73vX7LJMkSZIkSdLBM9lVT5p3PZUNrz9B0a9yadHvOyS2PJ6dX69jw+yptBl5FR/fewlfvvYoCc1bkXHRbWxZMpu1U28jkJBIqyEXkZieQdmiGbXKJEmSJEmSdPBMdtWjTj95uMbrxFbtaHfBzQB0u2tGjboW/UbSot/IA5ZJkiRJkiTp4Pk0RkmSJEmSJMUMk12SJEmSJEmKGSa7JEmSJEmSFDNcs+sgZbeAx4dGPwapPhQUFHDllVeSmZlJZmYmTz75ZI36qVOnkpGRQX5+Pi+++CIPPPAAwWCQp556ik6dOlW3+9GPfsTKlSupqqrib3/7G926deP888+nrKyMhIQEnnvuOVq2bMlPfvITHn/88UgfpiRJkiTpGGSy6yClJELf1tGOQqo/48eP54477uBnP/sZhYWFDB48uLrupZde4rnnnqO8vJxnn32W119/nUAgUGsff/7zn0lMTGTu3Ln85S9/4b777mP69OkkJiYydepUpk2bxs9+9jOOO+44PvroI0488cRIHqIkSZIk6RjkNEbpGNezZ0/Wrl1b/Xrjxo0kJSURCAQoLCwkGAxy1llncd111xEMBmtsm5iYCMDWrVvp2bNnjbJt27aRk5MDQF5eHq+88kokDqfBKSgoICsri7y8PMaNG1erftKkSRQXF+93+40bN9K/f39SUlL2Wb969WoyMjLIy8vj8ssvZ+fOnVx88cXk5eVx7733ArB8+XImT55cPwckSZIkSQ2cyS7pGFdYWEh2dnb165KSEjIzMwH44osv+Oqrr5gxYwZt2rThxRdfrLX9mWeeyfXXX8+pp54KhJMzQ4YM4cEHH6xOdmVmZrJy5coIHE3DNH78eAoKCkhLS6OwsLC6PBgM8sEHH9C1a9f9bpuamsrMmTM57bTT9tvmvPPOo6CggKeeeorp06czZMgQCgoKeO+99/jyyy/Jyclh4cKFhEKhej0uSZIkSWqITHZJx6gpU6aQl5dHhw4d6Nu37z7bpKWlkZubS1xcHKeffjpFRUW12rz++utMnz6dO++8E4D09HTeeustJk6cyP33338Uj6Dx2XsU3fvvv0+3bt3q3CYxMZH09PQ627z22mvk5uby9NNPs2rVKnr16gVATk4O7777LgBdunThww8/PMIjkCRJkqSGz2SXdIzaPdpo4sSJNcqzs7MpLS0F4NRTT2XZsmUALFmyhM6dO9dou337diCcFGvWrBnBYJBdu3ZVlyUlJQFQWlpa5+ilY8Xeo+iKi4trndNDlZGRQVFRETNmzODRRx+la9euvPHGG4RCIebOncvmzZsBR9dJkiRJOna4QL2kGtLT06moqACgbdu2nHLKKQwfPpzjjjuOadOmsW7dOqZOncrNN9/M6NGjqaysJBAI8PDDD1NeXs53v/td4uLiaNq0KU888QQQXrdq/PjxUTyq6JoyZQqzZs1i2LBh+x1Ft2zZMq699toaZWeffTa33nprnftu2rRp9e+5ubmccMIJzJo1i7POOovjjjuOtm3bHnH8kiRJktSYmOySjkF5eXnk5eXtt37UqFHMmjWL/Px8brnlFm655Zbqunbt2nHzzTcD8PLLL9fa9o033qjxeteuXXzxxRc1RjQda3Y/+XJvXbt2Zfr06QCcfPLJFBQUHPK+t27dSkpKCqFQiAULFnD99dfzyCOPEAqFGDduXPVTNktLSxk6dOgRHYckSZIkNQZOY5RUy+WXX05+fn697CshIYEpU6bUy75iTZ8+ffa5Dtre8vPzWbRoEfn5+SxdupR169ZVP2nxrbfeYsCAAQwZMoSRI0eyc+dO8vLyOPPMM7noootITk4Gwg8e2P3ETEmSJEmKZY7skqSjqK5RdHFxcfTu3Zvi4uI61zSbNWtWrbLdo+tGjhzJyJEja9TtPUJs+fLl9O/fn0AgcGjBS5IkSVIjZLJLkqJoX9Mb61tOTg45OTlH/X0kSZIkqSFwGqMkSZIkSZJihskuSZIkSZIkxQynMR6CrTuhpCw6753dAlISo/PekiRJkiRJjYXJrkNQUgZXzYvOez8+FPq2js57S5IkSZIkNRZOY5QkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihgvUH2VFt+dRvqKQQEIigfgEkjqcRPuxk2jR58xohyZJkiRJkhRzHNkVAe3HTqLfc1vp/eR6mncfzEf3fJ+q8s3RDkuSJEmSJCnmmOyKoLjEprQ5azzBbVvZ9nlJtMORJEmSJEmKOSa7Iii4vZKvZj5OXHILktp3jXY4kiRJkiRJMafRJLt27NjBhAkT6NixI82aNWPEiBHMnz+fQCDACy+8EO3w6vTZtAksvqwlS37UmYpV75N9x7+JT24R7bAUw4KhaEdwbAiF9v27JCn6dgZh03bYURXtSCRJewqFYOtOKNthH1pHT6NYoD4UCjFmzBjmz5/PnXfeSXZ2NtOmTWP06NEA9OvXL8oR1q39ZXfTbvQvoh2GjgHbquDZj+Gfq74t+4834LIT4ewOEAhEL7ZYUhWC/7cant3jPF/4v3BJF7gwExIazW0ESYo9pVvhqRJ45VPYEYT4AOS3h8uzoXtatKOTpGNXKAQvrQn/vbKyLFyW0QwuzoJLsqBJfHTjU2xpFMmuxx57jJdffpnFixfTo0cPAPLy8sjKyiI9PZ1OnTpFOUIp+ip3wbWFsOTrmuVFm2HCQlj6NfyipwmvI1UVgtsWwOufw56nck053LsE3vkCfn+qCS9JioYPv4Zr3grf/Al+U1YVgplr4X8/h/sHwmltoxqiJB2TQiGY+D688EnNPvS6SvjjMpi3Hv54GjQ14aV60ij+HJs8eTJjx46tTnQBxMfHk5WVRb9+/diwYQPnnnsu3bt3p1evXlxwwQV8+eWXUYxYirxHi8IJrb3t7uw/twreWBfRkGLS9NXhRBfAnqOud/8+Z33NEV+SpMioCsHN79ZMdO0WBHYF4ZYFULErGtFJ0rHttbXhRBfsuw+9YAP8vTjSUSmWNfhkV3FxMatWreLCCy+sVbdmzRr69etHIBDgl7/8JUVFRSxZsoQTTzyRW2+9NQrRStGxbRf8v9KaXxx7i8MkzJEKheCZj2vejdpbAHjuY9dNk6RIe3M9fLGtdqJrtxBQvgte/TSSUUmSIDx18UDJh+dXh9dblOpDg5/GuHbtWgDatq055nzFihWUlpbSr18/0tPTycvLq6477bTTeOSRRw76PVJTU9mxY8cB2yV3H8yJEwsOer8A3ScdWvv9OeOMPCqKCutlX4o9zbIHkP3beXW2CQLvrttB06apkQkqBsWntubkv31WZ5sQ8HklpLbPYtfGutvq4PX85zYAmjZNinIksc3zHBme56Oj3X/8jjbn/ZRA/P67t6GqXdz8p+e49KH/jGBksc9rOjI8z5HheT4K4hPo9Wz5AZtt2gGtu/Zl+6fLIxCUGoNg8PCznw1+ZFfr1q0BKCkpqS4LhULccsstBIPBWovTB4NBHnnkEUaNGhXROKXoOtiFuFyw64gc0oJnnmtJiqiD/oz281mSGiwXGFY9afAju3JycsjOzua2224jMTGRlJQUHnnkERYtWkRycjLdu3ev0f6nP/0pKSkpXH/99Qf9Hlu2bDmodos3wFV1D545ambPLqBv6+i8txq+8l3wndfC65TsTxzQq20i723fHrG4Yk0wBN+bFV5Is65ZisclwTuffUy839X1ZsCL4X+3e/0eVZ7nyPA8Hx2zPoNbF9TdJhCfwD3XXcYl//eyyAR1jPCajgzPc2R4no+OywqguKzuPnRKAnxZtMhF6lVt3rx5DBs27LC2bfAjuxISEnj++efJyMhg3Lhx3HDDDZxzzjkMHz6c3r17Exf37SH84he/oLi4mOeee65GuRTrmifA+R3rvlcdJPxYXx2+uABc0qXuL2mAMZ0x0SVJEZbXDtKb7r9zGwCS4uG8EyIZlSQJDtyHDgCjM30ao+pPo8gI9enTh8LCQioqKigqKuKaa65h0aJFNaYw3nbbbbz33nv8z//8D02bNo1itFJ0XJcDJ6bWTnjtfn3eCTCyfaSjij0/yILBx+2/fkBrGHti5OKRJIUlxMFv+4f/3buDG0d4Zszdp0BKYjSik6Rj23c7Qv43f4vs6++VnJZwdXeketMokl17q6yspKioqDrZ9eGHH/Lb3/6Wzz77jCFDhtC3b19Gjx4d5SilyEpJhMeHweXZ0GKPjvwJzeGXveC/+jkFvj4kxMF9g+D6nPB0xd3aNIWfnAQPngZNvCMlSVHRvw38PRfyMmp2ck9rC48NgTMyohaaJB3T4gMwqT/8nx6Qkfxtecsm8J/d4NEh0KzBL7KkxqRRXk4ffPABVVVV1cmuHj16EAodaGJR5K1/8QE2v/tvut09q0b5J4/9lMpVi2lxyjlkjLkNgC9ffZSv5/2TULCKbnfNJJDgbUcdupRE+OnJ4aTLF5UQHwfHJ5nkqm+JcXBFV/iP7PB5DgFtk8KJMElSdHVPg9+fClt2whmvhMsePC26MUmSwgmvy06EH3SBgS+Fy14daR9aR0ejTHYNGjSoQSa39hTatZPKVYtrlZcXLyAQl0D3387lo99dxM5N6wnt3E5l6RK63f165ANVTEqMgw7Nox1F7IsP1LwzJUlqOFK9byhJDVLcHjfiTXTpaPHSOko2FEylVe6ltcrLV75Dau8RAKT2HE5FyXuULZpBcFs5K+8YwWfP3BnhSCVJkiRJkmKHya6jIBQMUrbwNdJO+U6tuqryTcQntwAgrlkqVeWb2Ln5CwgE6Dbxf9m+fhUVHy+OcMSSJEmSJEmxoVFOY2woKj9ZxiePXlujLK3f2TTNyCZt4Kh9bhPfvCVVFWUABCu3kNjuROKT00jtORyA1B6ns21tEcld+h7V2CVJkiRJkmKRya4j0KzTyXSfVFCr/PN/TmLL0gI2FkylYtVivprxOG1GXgVA824D2TjnGVoOPJ8tH86h1bCLSWzVjo1zpgFQWbqE9H1Mf5QkSZIkSdKBOY3xKMi4+Ha6/WYmXe98leSsvrQZeRU7v17Huun30rzrqYR2bqfoV7kkZ/UhseXxJJ94CqGqXRTdnkdwewXNuw+K9iFIkiRJkiQ1So7sOsq63T0LgMRW7Wh3wc0AdPrJw7XadbzqgUiGJUmSJEmSFJMc2SVJkiRJkqSYYbJLkiRJkiRJMcNklyRJkiRJkmKGa3YdguwW8PjQ6L23JEnRVFBQwJVXXklmZiaZmZk8+eSTNeqnTp1KRkYG+fn53HPPPbzyyiv07duXhx56qEa7L7/8kquvvppNmzZx6aWXcvXVV1NSUsL111/P9u3bufHGGxk1ahR33303M2fOJCsriylTplBWVsbEiRO57777InnYilGHcj3n5uayaNEiVqxYwQknnLDP/fXr14+bbrqJsWPH8uyzz/KrX/2KM888k8cffxyACRMmcPXVV9OxY8ejfmySJB3rHNl1CFISoW/r6PykJEb76CVJgvHjx1NQUEBaWhqFhYU16l566SXOPPNM1q9fz8KFC5k7dy4JCQksWLCgRrvf/OY3PPDAA8yePZurr74agLvuuotnn32W2bNnM2rUKD7//HMWLVrEnDlzOPXUU3nppZdIT09n06ZNbN26NWLHq9h2MNczwL/+9S8uuuii/e7nlVdeIT09vfr1WWedxcyZM2u0+eEPf8hf//rXeoxekiTtj8kuSVKjV1BQQFZWFnl5eYwbN65W/aRJkyguLq5zHz/96U/Jzc3lnnvuqVW3evVqMjIyyMvL4/LLL2f+/PkMHTqUIUOGcMcddwDss2z58uVMnjy5Ho6w4enZsydr166tfr1x40aSkpIIBAIsWLCA4cOHAzBixAjmz59fY9uVK1dy6623MnLkSIqKitixYwdr1qzh8ssv53vf+x7r16+ntLSUHj16ANCrV6/qRMSgQYMoKCiIzEHqmFHX9QzQrl27Ord/+umnufTSS6tft27dmoSEmhMoTjrpJBYuXFiPUUuSpP0x2SVJign7G6ERDAb54IMP6Nq16363XbBgAQkJCcydO5eFCxeyfv36Wm3OO+88CgoKeOqpp+jXrx/z5s3jrbfeorCwkLKysn2W5eTksHDhQkKh0FE55mgqLCwkOzu7+nVJSQmZmZkAbNq0iRYtwvPvU1NT2bRpU41t33zzTSZOnMjDDz/M7bffzldffcXSpUt58sknueGGG/jtb39Lly5dePvttwkGg8yZM4fNmzcDkJmZycqVKyNzkDpm1HU9H8i8efMYMGBAreTWvuzYseOwY5QkSQfPZJckKabsPULj/fffp1u3bnVu88477zBixAgAhg8fznvvvVerzWuvvUZubi5PP/00iYnhueVVVVW0b9+e5OTkfZYBdOnShQ8//LBejq0hmDJlCnl5eXTo0IG+ffvus03Lli0pKysDYMuWLbRs2bJGfY8ePTjxxBPp2rUrmzdvJi0tjV69etGqVStyc3MpKiqibdu2jB49mhEjRrB+/Xratm17lI9Mx6KDuZ4P5NFHH+Wqq66q38AkSdIRMdklSYope4/QKC4upnPnznVuc6CRSBkZGRQVFTFjxgweffRRNmzYwLRp08jJyaFly5bVIzr2VRZrI5F2j6CbOHFijfLs7GxKS0sB6N+/P3PmzAFg9uzZDBw4sEbbzp0789VXX7F+/XqSk5Np3rw5SUlJbN++naVLl1b/97r22mspKCggMzOTc889F4DS0tI6R+lJh+JgrucD+fjjj7nooov4wx/+wL333lvndk2aNDmieCVJ0sEx2SVJigkHM0Jj2bJl5OXl1fj53e9+d8CRSE2bNiU5OZlmzZqRm5vLRx99xGWXXcaKFSv47LPPWLJkCcA+y44V6enpVFRUAOH1jXr37k1ubi7bt29nwIABrFu3jnvvvReAO+64gwsuuIDRo0czYcIEAG666SbOPPNMfv7zn/PLX/4SgAsuuID8/HwqKioYPHgwAG+//TZ5eXmRP0AdU/a8ngHGjh3LjBkzuPTSS3n99deB8DUL4Wm5r776KjfddBM333wzmZmZzJgxg7Fjx/LKK69UryO4YsWKwx49JkmSDs2BFxeQJKkRGD9+fPXC8Hvq2rUr06dPB+Dkk0/e5+Lm7777Ls888wznn38+c+bM4eKLL65Rv3XrVlJSUgiFQixYsKD6CYJxcXGkpqZWj0pq2rRpjTIIj0QaOnRoPR9tdOxOEO7PqFGjmDVrFvn5+UyYMKE6kQXhBNjNN98MQO/evatHfu2Wn59Pfn5+jbLd/91227hxIy1btiQ1NfUIj0Q6tOv5H//4R636P/zhDzVeX3HFFdW/jxw5kpEjR9aof/rpp6s/OyRJ0tHlyC5JUkzr06cPRUVFdbY59dRT2b59O7m5ufTp04fjjz++xkikt956iwEDBjBkyBBGjhzJ/PnzycvL4/TTT+eEE06ga9euvPjii7XKILzQdc+ePY/6cTYEl19+ea2EVX1KT0/n/vvvP2r7l/ZU39fz3XffTadOneptf5Ikaf8c2SVJavTqGqERFxdH7969KS4urnOtp4cffrjG6z1HIu1rlMaYMWNqvd67bPny5fTv359AIHCwhyJJkiTpCJnskiTFvH1Nb4yEnJwccnJyovLekiRJ0rHKaYySJEmSJEmKGSa7JEmSJEmSFDOcxniQtu6EkrLoxpDdAlISoxuDJEmSJElSQ2ay6yCVlMFV86Ibw+NDoW/r6MYgSZIkSZLUkDmNUZIkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZLlB/lBXdnkf5ikICCYkE4hNI6nAS7cdOokWfM6MdmiRJkiRJUsxxZFcEtB87iX7PbaX3k+tp3n0wH93zfarKN0c7LEmSJEmSpJhjsiuC4hKb0uas8QS3bWXb5yXRDkeSJEmSJCnmmOyKoOD2Sr6a+ThxyS1Iat812uFIkiRJkiTFnEaT7NqxYwcTJkygY8eONGvWjBEjRjB//nwCgQAvvPBCtMOr02fTJrD4spYs+VFnKla9T/Yd/yY+uUW0w5IkSZIkSTEqFIKqULSjiI5GsUB9KBRizJgxzJ8/nzvvvJPs7GymTZvG6NGjAejXr1+UI6xb+8vupt3oX0Q7DElqdN7+AqZ9/O3rMf8LY7Lg+52gSXz04oo1S7+GaR99+/q7M+HCzjCmM6QkRisq6fCsr4RnP4YXPvm2bPIHcFkX6JgSvbgkSYqUhRvCfbu568PJrhOah/t1F2ZCUqPIAh25RnGYjz32GC+//DKLFy+mR48eAOTl5ZGVlUV6ejqdOnWKcoSSpPr2t5Xw5xUQF/i2bPVW+P0SeP0z+ONpkGTC64i9vAbuXATscZ7XVcLDy8N1fx0KLZtGLTzpkHxUBlfPg7KdsOeN7P9eDf9eA38aDH3SoxWdJElH3z9XhfvLcQEIfvNluLYc7v8QXlsLjwyB5o0iE3RkGsU0xsmTJzN27NjqRBdAfHw8WVlZ1aO6vv/979OnTx/69etHbm4uixcvjlK0kqQjteCrcKILvv2Shm//eF24AR5dEfGwYs6n5XDnYghS8zzvVroVJr4f6aikwxMMwS/ehS17JbogfI1vr4L/8w5sq4pGdJIkHX0rNsG9S8K/76sPvXwT3L80wkFFSYNPdhUXF7Nq1SouvPDCWnVr1qypTnY9+eSTvP/++yxatIhf/OIX/Od//mekQ5Uk1ZPnPq77CyoETC+FbbsiFVFs+u/V4bUc9icIvLEO1lVEKiLp8L3zJawpD1+3+xIENu+EWZ9FMipJkiLnn6trDNavJQT8f5/C5h0RCiiKGvzgtbVr1wLQtm3bGuUrVqygtLS0OtmVlpZWXbd582bi4g4+j5eamsqOHXX/107uPpgTJxYc9D536z7p0LfZnzPOyKOiqLDe9idJDdXJT31FfLPUOtuU74KM/mdQseKtCEUVe7LvfZdmnXvX2SYE9Pnef7JpztORCeoY0POf2wBo2jQpypHElnZj76HNd28gEL//+c2hql38/IFnufBP4yMYWezzmo4Mz3NkeJ4jw/N8dJz0l49JbN2hzjY7g3Di8NFsWfhyhKI6fMHg/m5hHViDT3a1bt0agJKSEgYOHAiEF6y/5ZZbCAaDNRanv+qqq5gxYwahUIhXX301KvFKko5cIO7gFuM62Hbat0D8wXUDPM9qDMLX84EeORXyepYkxa6D7NtxDHwXBkKhuiYwRN+uXbvIyclh586d3HvvvaSkpPDII4+waNEiNm7cyJYtW2qN4po6dSrPPPMML79cf5nKxRvgqnn1trvD8vhQ6Ns6ujFIUiRc9SZ8sHH/05EAEgLw6kgXTz8Sdy2C/29N3ecZYNpw6JZ2gEY6aANeDP+7YFR044g1r3wKExYeuN0NJ8PY7KMfz7HEazoyPM+R4XmODM/z0XHjOzBvfd19uwDwYj5kJEcqqsM3b948hg0bxptvvsnQoUMPadsGv2ZXQkICzz//PBkZGYwbN44bbriBc845h+HDh9O7d+99Tlf8j//4D2bPns2GDRuiELEk6UiNyar7SzoOOKuDia4jdWHnA5/nXq1MdKlxGJEBLRLrXqskMQ6+60O8JUkx6oB96AAMads4El1HqsEnuwD69OlDYWEhFRUVFBUVcc0117Bo0aLqKYxbt25lzZo11e1feukl0tPTSU/32dKS1Bid1T78sy9xwPHN4OcnRzSkmNSzFYz7ZoTL3gmCOCA5Ae7oE+mopMPTNB5+c0q4I793BzeO8DV+ex9o2SQKwUmSFAGDj4PRmfuuiyP8HXhL3cu1xowGv2bXvlRWVlJUVMQNN9wAQHl5OWPGjKG8vJz4+HjS09N56aWXCATqurcnSWqo4gIwsT90T4NnP4avtofLm8TBOSfANSdBG9czrRfX50DH5vBkSfhJdhA+/yPawTU5kJkS3fikQzHseHh0CPxlBSzYY4D/yS3hR91h6PFRC02SpKMuEIBf9YYTU+EfH8G6ynB5QgBGdoBrT4J2x8CoLmikya4PPviAqqqq6pFdxx9/PG+//XaUo5Ik1af4AFzRFcaeCKu3hp8c07E5pCRGO7LYEgjA9zPhe53C57myCjKaQSuniKqR6tsa/jI03MHfsC18F7tD82hHJUlSZMQF4Add4OIsGPhSuOy170DaMTayuVEmuwYNGkRDXFf/k8d+SuWqxbQ45RwyxtxWXb512Zt8+vdfQCCOVkMu5Pjv31Rdt/7FB9j87r/pdvcsdm3ZSPF/ncW2tUX0e25rNA5BkhqchDjIbhHtKGJfIABZqdGOQqo/7ZqFfyRJOhbF7THR7VhLdEEjWbOrMSgvXkAgLoHuv51LxUcL2blpfXVdk+O70O2eOZz0+7fY9O6/CW6vACC0ayeVqxZXt4tvlkrXu2bSvNtpkQ5fkiRJkiQpJpjsqiflK98htfcIAFJ7Dqei5L3quiat2xOXGE6lBuLiIRA+7RsKptIq99LqdoGERBJSXVRfkiRJkiTpcJnsqidV5ZuITw7Ps4lrlkpV+aZabcoWz6RpxonENUkiFAxStvA10k75ToQjlSRJkiRJil2Ncs2uaKr8ZBmfPHptjbK0fmcT37wlVRVlAAQrt5DY7sQabXZ89Snrnv8tJ97+IgCbCqeTNnBUZIKWJEmSJEk6RpjsOkTNOp1M90kFtcrLi99l45xnaDnwfLZ8OIdWwy6urgvu3M7qP15Bp588Qnyz8DPct60tYsvSAjYWTKVi1WK+mvE4bUZeFanDkCRJkiRJiklOY6wnzbueSmjndop+lUtyVh8SWx7Pzq/XsW76vWx8Yxrb1iyj9JEfU3R7Hjs2rCXj4tvp9puZdL3zVZKz+lYnulZOyKdi1SJWTsinsnRplI9KkiRJkiSpcXFkVz3q9JOHa7xObNWOdhfcDECb/Cv3u123u2ft83dJkiRJkiQdGkd2SZIkSZIkKWaY7JIkSZIkSVLMcBrjQcpuAY8PjX4MkiRJkqTIKygo4MorryQzM5PMzEyefPLJGvVTp04lIyOD/Px87rnnHl555RX69u3LQw89VKPdq6++yl133UVqaipPPPEE7du35/zzz6esrIyEhASee+452rRpw913383MmTPJyspiypQplJWVMXHiRO67775IHrbUKJnsOkgpidC3dbSjkCRJkiRFy/jx47njjjv42c9+RmFhIYMHD66ue+mll3juuedYv349CxcuZO7cudx4440sWLCAAQMGVLebPHkys2fPpqSkhMmTJ/PHP/6R6dOnk5iYyNSpU5k2bRpjxoxh0aJFzJkzhz/96U+89NJLjB49mk2bNrF161ZSUlKicfhSo+E0RkmSpAamoKCArKws8vLyGDduXK36SZMmUVxcXOc+Hn30Uc4880zy8vLYuXNndfmrr75KXl4eeXl5tG7dmsWLF7Nz504uvvhi8vLyuPfeewFYvnw5kydPrt8Dk6QY0bNnT9auXVv9euPGjSQlJREIBFiwYAHDhw8HYMSIEcyfP7/GtgkJCSQlJdGjR4/qusTERAC2bdtGTk4OpaWl9OjRA4BevXpRWFgIwKBBgygoKDjahyc1eia7JEmSGqDx48dTUFBAWlpa9R85AMFgkA8++ICuXbvud9tPPvmEJUuW8Prrr1NQUFD9RxTA2WefTUFBAbNnz6ZLly706dOH6dOnM2TIEAoKCnjvvff48ssvycnJYeHChYRCoaN6nJLUGBUWFpKdnV39uqSkhMzMTAA2bdpEixbhNWhSU1PZtGlTjW137tzJhg0bePPNN9m4cSMQTpYNGTKEBx98kJycHLp06cLbb79NMBhkzpw5bN68GYDMzExWrlwZgSOUGjeTXZIkSQ3Y3qMH3n//fbp161bnNjNmzKC8vJwRI0Zw55137rPNu+++y4ABAwgEAqxatYpevXoBkJOTw7vvvgtAly5d+PDDD+vnQCQpBkyZMoW8vDw6dOhA375999mmZcuWlJWVAbBlyxZatmxZo37ixIlcdNFFPPPMM5x88skApKen89ZbbzFx4kTuv/9+2rZty+jRoxkxYgTr16+nbdu2R/OwpJhjskuSJKkB23v0QHFxMZ07d65zmy+++IJAIMD//u//smrVKhYvXlyrzQsvvMD3vvc9ALp3784bb7xBKBRi7ty5jiCQpP3YPep24sSJNcqzs7MpLS0FoH///syZMweA2bNnM3DgwBpthw0bxuzZs7niiisYNGgQwWCQXbt2AZCWlkZSUhIA1157LQUFBWRmZnLuuecCUFpaWufIXklhLlAvSZLUAE2ZMoVZs2YxbNiw/Y4eWLZsGddee22NsrPPPpu0tLTq9WJOP/10ioqKau1j9uzZ/Nd//RcAo0aNYsaMGZx11lkcd9xxjiCQpEOUnp5ORUUFAO3ataN3797k5ubSu3dvBgwYwLp165g6dSo333wzv/nNbygoKKBDhw48+uijlJeX893vfpe4uDiaNm3KE088AcAFF1xAWVkZubm51Qvhv/322zz44IPROkyp0TDZJUmS1ADtfuLX3rp27cr06dMBOPnkk/e5UPHChQuZNm0aAEuWLOHSSy+tUf/xxx9zwgkn0KRJEwDi4+N55JFHCIVCjBs3rvqPqtLSUoYOHVqfhyVJjdbuh3vsz6hRo5g1axb5+flMmDCBCRMmVNe1a9eOm2++GYBf//rX/PrXv66x7RtvvFFrf7s/63fbuHEjLVu2JDU19QiOQjo2OI1RkiSpEenTpw9FRUV1tjnllFPYtWsXeXl5VFRUMGjQINatW1f9pMU9pzBCeEH7vLw8zjzzTC666CKSk5OB8ILLPXv2PHoHI0kx5PLLLyc/P/+o7T89PZ3777//qO1fiiWO7JIkSWpg6ho9EBcXR+/evSkuLq5z3ZYHHnigxus9RxXceOONNeo6depUa4TY8uXL6d+/P4FA4JDjlyRJiiaTXZIkSY3MvqY31recnBxycnKO+vtIkiTVN6cxSpIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmOGaXYdg604oKYvOe2e3gJTE6Ly3JEmSJElSY2Gy6xCUlMFV86Lz3o8Phb6to/PekiRJkiRJjYXTGCVJkiRJkhQzTHZJkiRJkiQpZpjskiRJkiRJUsxwza6jrOj2PMpXFBJISCQQn0BSh5NoP3YSLfqcGe3QJEmSJEmSYo4juyKg/dhJ9HtuK72fXE/z7oP56J7vU1W+OdphSZIkSZIkxRyTXREUl9iUNmeNJ7htK9s+L4l2OJIkSZIkSTHHZFcEBbdX8tXMx4lLbkFS+67RDkeSJEmSJCnmNIpk144dO5gwYQIdO3akWbNmjBgxgvnz5xMIBHjhhReiHd4BfTZtAosva8mSH3WmYtX7ZN/xb+KTW0Q7LEmSJEmSpJjT4BeoD4VCjBkzhvnz53PnnXeSnZ3NtGnTGD16NAD9+vWLcoQH1v6yu2k3+hfRDiOqtlfBK5/C86uhdCs0jYczMuCSLMg271dvgiF4/TP45yoo2gzxARjcFi7pAn3Sox2ddOiWfg3PfgzzvoCqIHRNgzGd4awO4etbakzWVcK/Vn37+oLX4XudYHQmtGgSvbgk6VgXCsEb6+Bfq78t+8X88N8qpx4XtbAkHYEGn+x67LHHePnll1m8eDE9evQAIC8vj6ysLNLT0+nUqVOUI9SBVOyC6wvhg6/DQwmDQGUVvFAKL34Ck/pDfvtoR9n47QrCHQth1mffnmeAWZ/DjM/gxh7wwxOjGaF0aP61Cn6/BAKBcCIXYMlGeH8jzFwLk0+FhEYxPlkKJ26vKwx/J+72STk8tBz+uxQeGwrtmkUvPkk6VgVDMOl9eOETiNvjRtqc9VCwDn7UDX58UvTik3R4GvyfCZMnT2bs2LHViS6A+Ph4srKyao3quuuuuwgEAixdujTSYaoO/3cpLPk6/Htwj/Ig4S+XO96DT8ujEVlsebIknOiCvc7zN0mC+z+E976KeFjSYflgI0xeAiG+vYbh22v7jfXw+MpoRCYdum274OdvQ+Wu8DW9t3UVcMu7EQ9LkkR45skLn4R/r9Hn+Ob3v64Mj/qS1Lg06GRXcXExq1at4sILL6xVt2bNmhrJroULF/L222+TmZkZyRB1AJu2w8tr9t25h3B5VQj+e3UEg4pBu4LhqV51iePAbaSG4rlVB/6C+ucq2FEVkXCkI/LaZ7B5Z80bEXsKAh9ugg+/jmBQkiSCIXj6I6hrZYQ4YNpHkYpIUn1p0NMY165dC0Dbtm1rlK9YsYLS0tLqZNf27du57rrreOaZZ8jLyzvk90lNTWXHjh0HbJfcfTAnTiw4pH13n3Ro7ffnjDPyqCgqrJd9RVKL0y4g86Zn6mwTAv46ZwW/PKVPZIKKQUld+tF18tt1tgkCr3+yjaa5aZEJSjoCJz/55QEf5FG2E47vO5yKlXVf+1K0dfo/02gx8HsE4vff7QoFg5x9/d188fw9EYxMqh89/7kNgKZNk6IcSWzzPNe/Jsd3ofufltfZJgi8twGSmqcS2nXgvxl1cLyeI6Oxn+dgcH+3Cg+sQY/sat26NQAlJSXVZaFQiFtuuYVgMFid7Pr1r3/N2LFj6dy5czTCVB0CCYkH1S4uoelRjiS2BeIP7jwfbDsp2upKCtRol+Cq3moE4hPDi8/VKeT1LEkRdih944P9u0ZSw9CgR3bl5OSQnZ3NbbfdRmJiIikpKTzyyCMsWrSI5ORkunfvTmFhIQsWLOB3v/vdYb/Pli1bDqrd4g1w1bzDfpsjMnt2AX1bR+e9j0RJGfygoO42cQH4Tp8sPti+PSIxxaJNO+Ds12DX/uaLEh6end0ynvc8z2oExs2B5Zv2P+0Lwp8dKwtn0qZx3qjSMeSRFfC3lfuf0g8QiIvn8Xt+xcgnfxWxuKT6MuDF8L/b7WMcVZ7n+rdtF+S/BtsOsCxCu2bw7qaNB75voYPm9RwZjf08z5s3j2HDhh3Wtg16ZFdCQgLPP/88GRkZjBs3jhtuuIFzzjmH4cOH07t3b+Li4njjjTdYvnw5WVlZdO7cmU8//ZTvfOc7zJgxI9rhC8huAb1a1X2hBUNwUVbEQopJLZvAWR3qPs8h4GLPsxqJMZ0PnOg6ox0mutQofP8AD44OAGmJcEZGRMKRJH0jKQFGdap7zS4I90tMdEmNS4NOdgH06dOHwsJCKioqKCoq4pprrmHRokXVUxhvvfVWPvvsM1avXs3q1as54YQTeO211xg5cmSUI9duv+oNTeNrPsp3T9/tCAPbRDamWHR9DrRO2v//1ANaw/kH+INLaijOPgGGtN13XRzQMhF+3mPf9VJDk5EMPz05/PveX4WBb35+3Q8SG3yvTJJiz9XdoH3yvvvQAaBHS7jEG8ZSo9PoulWVlZUUFRXVeBKjGrZuafD33NoJrVZN4Loc+HVf75TUh+Obhc/ziIyaicXkePhhF/jjaf4hpcYjIQ7+76lweTY032PCfRwwvB08cXq4Yyo1Fpdnw519a1+3J6XBQ4PD17UkKfJaNg33ob9zAiTs0YdOioeLOsMjQ8IjwCQ1Lo3uf9sPPviAqqqq/Sa7Vq9eHdmAdFCyW8CfBsNnFTBqVrjs5ZEmX+pbu2bwu1Phq21w9jczeV/7DjRrdP+nS9AkHn52cviO67CXw2X/30g4zqmLaqS+2wnO7QgrNkPZDmjbDLqkRjsqSVJ6U7j7FLipBxSXhW/En5QGKa5JLzVaje5P4EGDBhEK1bXEa/SVr5zPmik3QihEau8RdBg7sc660K6drLrvh+zc/AVp/c+j3QU3RzH6o2vPO9omuo6ePdcxMtGlxm7Pu6kmutTYxQXg5JbRjkKStC8tm8Kpx0U7Ckn1wT+Dj4LkLv04aXL4sY0rJ5xJVUUZ8ckt9lu3+b1XaH7SEI4fdQMf3/sDdm7+ksQ0P2UlSZIkSZIOlWNrjoJAQni8a6iqisT09sQ1Ta6zbsf6VTTL7AVAUsccKorfjXzQkiRJkiRJMcBk11Gy8Y1pfHh9DvHNWxKIT6izrmmH7mxd+gahUIitH86lqmJzlKKWJEmSJElq3JzGeAQqP1nGJ49eW6Msrd/ZtLvoVtKHX0ar3B/w8e/HULl6Cc0696pus3ddy4GjKFs8g+Jfn0VC2nEkpLWN9KFIkiRJkiTFBJNdR6BZp5PpPqmgVnlw53biEpsSiIsjvlkqgSZJddYF4uPJvOYRQqEQqx8YR8pJgyN4FJIkSZIkSbHDZNdRsHn+i3zx8sMQDJLS43SS2ndl59fr2DB7Kk2P71yrbseXn7DqgcsJBOJoe/4NNdb4kiRJkiRJ0sEz2XUUtBo6hlZDx9QoS2zVjnYX3Fxdv6cmx3Xa5wgxSZIkSZIkHRoXqJckSZIkSVLMMNklSZIkSZKkmOE0xkOQ3QIeHxq99z4WFBQUcOWVV5KZmUlmZiZPPvlkjfqpU6eSkZFBfn4+99xzD6+88gp9+/bloYceqtHu1Vdf5a677iI1NZUnnniC9u3bc/7551NWVkZCQgLPPfccbdq04e6772bmzJlkZWUxZcoUysrKmDhxIvfdd18kD1uSJEk6bPahJakmR3YdgpRE6Ns6Oj8pidE++sgZP348BQUFpKWlUVhYWKPupZde4swzz2T9+vUsXLiQuXPnkpCQwIIFC2q0mzx5MrNnz+a+++5j8uTJAEyfPp033niDK664gmnTpvH555+zaNEi5syZw6mnnspLL71Eeno6mzZtYuvWrRE7XkmSJOlI2YeWpG+Z7FKD1bNnT9auXVv9euPGjSQlJREIBFiwYAHDhw8HYMSIEcyfP7/GtgkJCSQlJdGjR4/qusTEcMZw27Zt5OTkUFpaSo8ePQDo1atXdadg0KBBFBQUHO3DkyRJOiYUFBSQlZVFXl4e48aNq1U/adIkiouL97v9xo0b6d+/PykpKbXqXn31VfLy8sjLy6N169YsXrx4n+2XL19enbyJdfahJclklxqwwsJCsrOzq1+XlJSQmZkJwKZNm2jRIjy3MzU1lU2bNtXYdufOnWzYsIE333yTjRs3AuEv+iFDhvDggw+Sk5NDly5dePvttwkGg8yZM4fNmzcDkJmZycqVKyNwhJIkSceG/Y06CgaDfPDBB3Tt2nW/26ampjJz5kxOO+20WnVnn302BQUFzJ49my5dutCnT599ts/JyWHhwoWEQqH6PbAGyD60JJnsUgM0ZcoU8vLy6NChA3379t1nm5YtW1JWVgbAli1baNmyZY36iRMnctFFF/HMM89w8sknA5Cens5bb73FxIkTuf/++2nbti2jR49mxIgRrF+/nrZt2x7Nw5IkSTrm7T3q6P3336dbt251bpOYmEh6enqdbd59910GDBhAIBDYb/suXbrw4YcfHl7gjYB9aEn6lskuNTi77/xNnDixRnl2djalpaUA9O/fnzlz5gAwe/ZsBg4cWKPtsGHDmD17NldccQWDBg0iGAyya9cuANLS0khKSgLg2muvpaCggMzMTM4991wASktL67y7KEmSpMOz96ij4uJiOnfufMT7feGFF/je975XZ5tYH3lkH1qSvuXTGNVopKenU1FRAUC7du3o3bs3ubm59O7dmwEDBrBu3TqmTp3KzTffzG9+8xsKCgro0KEDjz76KOXl5Xz3u98lLi6Opk2b8sQTTwBwwQUXUFZWRm5uLoMHDwbg7bff5sEHH4zWYUqSJMWcKVOmMGvWLIYNG7bfUUfLli3j2muvrVF29tlnc+uttx5w/7Nnz+a//uu/6iPUmGMfWtKxyGSXGpTdC4zuz6hRo5g1axb5+flMmDCBCRMmVNe1a9eOm2++GYBf//rX/PrXv66x7RtvvFFrf9OnT6/xeuPGjbRs2ZLU1NQjOApJkiTtafz48dxxxx21yrt27VrdHzv55JMPa4Hzjz/+mBNOOIEmTZrU2a60tJShQ4ce8v4bA/vQklST0xjVqFx++eXk5+cftf2np6dz//33H7X9S5Ik6Vt9+vShqKjogO3y8/NZtGgR+fn5LF26lHXr1nHvvfcC+57CuHd7CC/U3rNnz/o/iEbAPrSkY40juyRJkiQdNXWNOoqLi6N3794UFxfXud7TrFmzapXtHo104403HrD98uXL6d+/P4FA4BAilyQ1Via7JEmSJEXNvqY31recnBxycnKO+vtIkhoGpzFKkiRJkiQpZpjskiRJkiRJUsww2SVJkiRJkqSY4ZpdB2nrTigpi24M2S0gJTG6MUiSJEmSJDVkJrsOUkkZXDUvujE8PhT6to5uDJIkSZIkSQ2Z0xglSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMcM2uo6zo9jzKVxQSSEgkEJ9AUoeTaD92Ei36nBnt0CRJkiRJkmKOI7sioP3YSfR7biu9n1xP8+6D+eie71NVvjnaYUmSJEmSJMUck10RFJfYlDZnjSe4bSvbPi+JdjiSJEmSJEkxx2RXBAW3V/LVzMeJS25BUvuu0Q5HkiRJkiQp5jSaZNeOHTuYMGECHTt2pFmzZowYMYL58+cTCAR44YUXoh1enT6bNoHFl7VkyY86U7HqfbLv+DfxyS2iHZYkSZIkSVLMaRQL1IdCIcaMGcP8+fO58847yc7OZtq0aYwePRqAfv36RTnCurW/7G7ajf5FtMOIql1BeGMdTC/9tuyhZXBhZ2ifHLWwpMO29Gv41yp4b0P4dd90GJMFfdKjG5d0ONZVwH+XwuufQcUu6JwCF3SGERmQ0Ghui0mKpJ1BmPUZTF/9bdmjK8KfHcclRSuq2BMMwZvr4b9Xf1v2h6UwpjN0SolWVJLU8DWKZNdjjz3Gyy+/zOLFi+nRowcAeXl5ZGVlkZ6eTqdOnaIcoeqyvQpufhfe+qLmUMKnSuCZj+EPA2Fw26iFJx2yvxfDw8vD13Pwm7IZn8Gra+FH3eDHJ0UzOunQvPsl3Dg//Fkd+qZs43ZYsAFObQP3D4SkRtFbkBQp5bvgZ2/D+xtr9u0eXwlPfwQPngZ9W0ctvJixKwh3LAwnFfc8z89+HL7hNqk/nNk+auFJUoPWKO7XTp48mbFjx1YnugDi4+PJysqqHtXVuXNnTjrpJPr27Uvfvn157bXXohWu9vLHZeFEF3ybGIDwH1U7g3DT/PCoAqkxKPg8nOiCmtdz8JsswV9Xwsy1EQ9LOixfbQsnunbskeiCb6/tBV/BHz6MRmSSGrJ73ocPNoZ/37tvt60Kfv4ObN4Rjchiy19XhhNdUPs8V4Xgtvdg1ZZoRCZJDV+DT3YVFxezatUqLrzwwlp1a9asqTGF8fnnn2fx4sUsXryY73znO5EMU/uxZSf8T+n+63cnvKbX0UZqSP7xUd0fnHHA1I8iFY10ZP6nNPyHaXA/9SHgpU9g0/ZIRiWpIVtfGb6pE9pPfZDwyK+X1kQyqtizrQqe+3j/9SEgFIJ/ropYSJLUqDT4iQlr14aHSLRtW3Oe24oVKygtLa2X9bpSU1PZsaPu20/J3Qdz4sSCQ95390mHvs3+nHFGHhVFhfW2v0hoMfB7ZN78zzrbBEMh/vy/y7mxb8Nee62x6fnPbQA0berCGfUlLrkFPZ78ss42QWDZJkg+7gSqyupuq4Pn9Xx0nPi7Qpp16UcgENhvm10h6Hbu5Wx+87kIRiapoWo14kpOuOYvdbYJhYJM+tc8xv9XfoSiij3Ne+bR5b/qnqkSBKYt/Ixfn5oVmaCkemTfLjIa+3kOBvd3S/bAGvzIrtatwxP+S0pKqstCoRC33HILwWCwRrLrhz/8Ib179+baa69l06ZNkQ5V+xDXpNkB2wQCAeKaukq9Gr64xIP/kjiYa1+KtrimyXUmuqrbeT1L+sbB9e3iCNi3OyIH+7kb8PNZkvapwY/sysnJITs7m9tuu43ExERSUlJ45JFHWLRoEcnJyXTv3h2AuXPn0rFjR7Zv384NN9zA9ddfzz/+8Y+Deo8tWw482X3xBrhq3hEdyhGbPbug0S32uXwT/MecutvEASN6deaD7c6TqU8DXgz/u93zWm92BWHka1C2s+52yfGw8ZNimsRHJq5jgdfz0fHLd6Fg3bdrzu3Pa08/Sp/0RyMTlKQG7e0v4Pq3624TB1yc1587/cw+bGu2wuj/rbtNHNC/YysWe57VCNm3i4zGfp7nzZvHsGHDDmvbBj+yKyEhgeeff56MjAzGjRvHDTfcwDnnnMPw4cPp3bs3cXHhQ+jYsSMATZs25dprr2XevChnpgTASWnQrUXdF1oQuKhzhAKSjkBCHIzOhLrGwQSA72ViokuNwoWd6050xQFZKdC7VaQiktTQDTwOMprV/V0YBC7IjFREsaljCgxofRB9aGcwStI+NfhkF0CfPn0oLCykoqKCoqIirrnmGhYtWlQ9hbG8vJzNmzcD4SmOzz77LH379o1ixNotEIBbe0N83P4vtrx2MKTtfiqlBuY/sqFD8r6v5zigXTO4smuko5IOz8A2MLLDvuvigLgA/KpP+LNckiD8uXD7N58L+/toGNUJepkkP2I39YSm8fvvQw9sA2e1j2hIktRoNIpk194qKyspKiqqTnatX7+evLw8evfuTc+ePVm5ciV//vOfoxylduudDo8NgZNa1ixPiof/OBF+NyDccZIag5ZNYMowyMuo+QEaAHLbwd9yIb1ptKKTDk0gAL/pF07QJu81GrFrC3hkCJzSyKbPSzr6TmsLfzoNuqTWLG+eAFd3/zYZpiPTNS3c5+iVXrO8SRyM6Qz3DQqPOpck1dbg1+zalw8++ICqqqrqZFeXLl1YtGhRlKNSXXqlw1Onw8rNULo1nOjq3waSG+UVqGNd6yT4/anwRSWcOzNc9tJZ4VFdUmOTEAfX5cB/doXcl8Nl/xgenoYuSfsz8Dh4Ng+Wb4a15eE+Xf824T6e6k+3bxJeH28J/yTGQf/WkJIY7cgkqWFrlKmGQYMGEQodYDXdKPjksZ9SuWoxLU45h4wxt1WXB7dX8tHkCwluK6fp8V3o/PO/s339albcMpikDt1p0qYTWTc+tc+yWNMtLfwjxYK2eyS3THSpsWu2R4/ARJekgxEIwMktwz86urqk1h5JJ0nav0aZ7GqIyosXEIhLoPtv5/LR7y5i56b1JLY8HoCyxTNIyRlGxpjbKH34aipLlxKXlEJa//Po/NPHa+xnX2WSJEmSJEk6OM7yriflK98htfcIAFJ7Dqei5L3quibHZxHcVg5A1batxCeHb5mXLXqNol/lsqHg6eq2+yqTJEmSJEnSwXFkVz2pKt9EfGZPAOKapVJVvqm6Likjm63L5vLhdTkkdzmFJsd1JLhzOz0fKQICFN/5HdJOOZvE9IxaZQktXBlYkiRJkiTpYJnsOkSVnyzjk0evrVGW1u9s4pu3pKqiDIBg5RYS251YXb/hf5+k1bBLaHvedaz568/ZuvwtUnKGVNennJzL9nUf0bzbwFplJrskSZIkSZIOnsmuQ9Ss08l0n1RQq7y8+F02znmGlgPPZ8uHc2g17OLqulAwSEJq+JnB8anpVJVvoqpyK/HNUgiFQlSULKDtedfvs0ySJEmSJEkHz2RXPWne9VQ2vP4ERb/KpUW/75DY8nh2fr2ODbOn0mbkVXx87yV8+dqjJDRvRcZFt7FlyWzWTr2NQEIirYZcRGJ6BmWLZtQqkyRJkiRJ0sEz2VWPOv3k4RqvE1u1o90FNwPQ7a4ZNepa9BtJi34jD1gmSZIkSZKkg+fTGCVJkiRJkhQzTHZJkiRJkiQpZjiN8SBlt4DHh0Y/Bqk+FBQUcOWVV5KZmUlmZiZPPvlkjfqpU6eSkZFBfn4+L774Ig888ADBYJCnnnqKTp06Vbf70Y9+xMqVK6mqquJvf/sb3bp14/zzz6esrIyEhASee+45WrZsyU9+8hMef/zxSB+mJEmSJOkYZLLrIKUkQt/W0Y5Cqj/jx4/njjvu4Gc/+xmFhYUMHjy4uu6ll17iueeeo7y8nGeffZbXX3+dQCBQax9//vOfSUxMZO7cufzlL3/hvvvuY/r06SQmJjJ16lSmTZvGz372M4477jg++ugjTjzxxEgeoiRJkiTpGOQ0RukY17NnT9auXVv9euPGjSQlJREIBCgsLCQYDHLWWWdx3XXXEQwGa2ybmJgIwNatW+nZs2eNsm3btpGTkwNAXl4er7zySiQOp8EpKCggKyuLvLw8xo0bV6t+0qRJFBcX73f7jRs30r9/f1JSUvZZv3r1ajIyMsjLy+Pyyy9n586dXHzxxeTl5XHvvfcCsHz5ciZPnlw/ByRJkiQdZUfah66srOTcc89l+PDhXHnllbXq9+5jz58/n6FDhzJkyBDuuOMOwD50Y2eySzrGFRYWkp2dXf26pKSEzMxMAL744gu++uorZsyYQZs2bXjxxRdrbX/mmWdy/fXXc+qppwLhL44hQ4bw4IMPVie7MjMzWblyZQSOpmEaP348BQUFpKWlUVhYWF0eDAb54IMP6Nq16363TU1NZebMmZx22mn7bXPeeedRUFDAU089xfTp0xkyZAgFBQW89957fPnll+Tk5LBw4UJCoVC9HpckSZJ0tBxJH3rGjBkMGzaMN954g8TERJYuXVqjfu8+dr9+/Zg3bx5vvfUWhYWFlJWV2Ydu5Ex2SceoKVOmkJeXR4cOHejbt+8+26SlpZGbm0tcXBynn346RUVFtdq8/vrrTJ8+nTvvvBOA9PR03nrrLSZOnMj9999/FI+g8dl7FN37779Pt27d6twmMTGR9PT0Otu89tpr5Obm8vTTT7Nq1Sp69eoFQE5ODu+++y4AXbp04cMPPzzCI5AkSZIi63D60FlZWZSXlwPhWShpaWk16vfuY++enVJVVUX79u1JTk4G7EM3Zia7pGPU7jslEydOrFGenZ1NaWkpAKeeeirLli0DYMmSJXTu3LlG2+3btwPhpFizZs0IBoPs2rWruiwpKQmA0tLSOu+8HCv2HkVXXFxc65weqoyMDIqKipgxYwaPPvooXbt25Y033iAUCjF37lw2b94MOLpOkiRJjdPh9KGzs7OZO3cuOTk5BAIBOnbseMD3mTZtGjk5ObRs2ZKEhPDy5vahGy8XqJdUQ3p6OhUVFQC0bduWU045heHDh3Pccccxbdo01q1bx9SpU7n55psZPXo0lZWVBAIBHn74YcrLy/nud79LXFwcTZs25YknngDCc+7Hjx8fxaOKrilTpjBr1iyGDRu231F0y5Yt49prr61RdvbZZ3PrrbfWue+mTZtW/56bm8sJJ5zArFmzOOusszjuuONo27btEccvSZIkRdqR9KHT0tK45JJLuO666/j5z3/OW2+9xZAhQ+p8v8suu4wf/OAHjBkzhiVLllTPllDjZLJLOgbl5eWRl5e33/pRo0Yxa9Ys8vPzueWWW7jllluq69q1a8fNN98MwMsvv1xr2zfeeKPG6127dvHFF1/UuBtzrNn95Mu9de3alenTpwNw8sknU1BQcMj73rp1KykpKYRCIRYsWMD111/PI488QigUYty4cdVP2SwtLWXo0KFHdBySJElSpBxJH/rhhx+unqaYnp7Opk2b6nyv7du307RpU+Li4khNTa0xQ8U+dOPkNEZJtVx++eXk5+fXy74SEhKYMmVKvewr1vTp02ef66DtLT8/n0WLFpGfn8/SpUtZt25d9ZMW33rrLQYMGMCQIUMYOXIkO3fuJC8vjzPPPJOLLrqoer2BkpKS6idmSpIkSY3VwfShL7vsMv7+97+Tl5fH4sWLOeuss2r0oaFmH/v3v/89eXl5nH766ZxwwgnVS7DYh268HNklSUdRXaPo4uLi6N27N8XFxXWuaTZr1qxaZbtH140cOZKRI0fWqNv77tby5cvp378/gUDg0IKXJEmSouBI+9CtWrVixowZNcr2nKECtfvYEyZMqPHaPnTjZrJLkqJoX0Oz61tOTg45OTlH/X0kSZKkSLAPrQNxGqMkSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZrtl1CLbuhJKy6Lx3dgtISYzOe0uSJEmSJDUWJrsOQUkZXDUvOu/9+FDo2zo67y1JkiRJktRYOI1RkiRJkiRJMcNklyRJkiRJkmKGyS5JkiRJkiTFDJNdkiRJkiRJihkuUH+UFd2eR/mKQgIJiQTiE0jqcBLtx06iRZ8zox2aJEmSJElSzHFkVwS0HzuJfs9tpfeT62nefTAf3fN9qso3RzssSZIkSZKkmGOyK4LiEpvS5qzxBLdtZdvnJdEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6Id3kEJbq/kq5mPE5fcgqT2XaMdjiRJkiRJUsxpFGt2hUIhxowZw/z587nzzjvJzs5m2rRpjB49GoB+/fpFOcK6fTZtAuv+NZFAQlOSOp5M9h3/Jj65RbTDUoxatgmeX/3t64eXwwWZkJEcrYhi0+qt8N+rv339+yVwUWfokhqtiCQ1dBW74NVP4bW1sGkHtGsG53eCvHaQ0GhuP0qSdPg+LYfppd++nvR+uA/dPS1qISlGNYpk12OPPcbLL7/M4sWL6dGjBwB5eXlkZWWRnp5Op06dohxh3dpfdjftRv8i2mEoxoVC8NByeKqk5pDNJ4phaglM7A/57aMWXkz516pwcmtPz6+Cf66C/9MDLjsxOnFJarg+LYefvAXrKiEAhIBVW2DeF9CrFTx4GqQmRjtKSZKOnpfXwJ2Lw3+37PZCKfy/Uri6e/hHqi+N4j7i5MmTGTt2bHWiCyA+Pp6srKzqUV3btm3jmmuuoWvXrvTq1Yurr746WuFKUfH/SsOJLoDgHuUhoCoEt78HRT4X4Yi9/QVMXhI+r3t8T1ef8/s+hDnrohCYpAZrVxCuK4QvtoVf7/7s2P25sfRrmLAwGpFJkhQZSzbCfy2CYGjffejHisLJMKm+NPhkV3FxMatWreLCCy+sVbdmzZrqZNcvf/lLkpKSWLlyJUuWLOHuu++OdKhS1ARD8ERJeLTAvoQI30F59uNIRhWb9h45t7c4vk06ShJAwTpYWxH+rN6XEPDm+vBIL0mSYtE/PoLA/v5YIfx3zBMlNUd9SUeiwU9jXLt2LQBt27atUb5ixQpKS0vp168fW7du5amnnuLTTz8l8M3/Qccff/xBv0dqaio7duw4YLvk7oM5cWLBwQdfj844I4+KosKovLcavqROPen6h/fqbBME/mflVu45rXVkgopBcUkp9Ji6oc42QWDxRkhu056qLXW31cHr+c/wkJimTZOiHEls8zwfHR1//iRpgy8iEL//blcoFCT3ql/z5f/cG8HIJEmKgECAntO2EEjY/3z9EPDxFmiRmcOO9d6hry+NvW8XDAYP3Gg/GvzIrtatw3+Yl5R8O1QiFApxyy23EAwG6devHx999BGtW7fmrrvuYsCAAeTl5fHmm29GK+Qauk8qcL0uHXVxSSkH165ps6McSWyLS2p+8G2bHnxbSbEtLiml7tvZAMEQcc0O7rNckqTGJJDQpM5E154Opb8t1aXBj+zKyckhOzub2267jcTERFJSUnjkkUdYtGgRycnJdO/encWLF/Pxxx/Tr18/7r33Xt555x3OP/98SkpKaNHiwE893LLl4OYNLN4AV8070iM6PLNnF9DXATnaj6+2wTkzas5/31sA6JASz3vbt0cqrJizKwhnvgrlu+pulxQPX31STFJ8ZOI6Fgx4Mfzvdq/fo8rzfHTctzQ8jbyue5OB+Hge+s2tfO+JWyMWlyRJkfKd12DDAboX8QH4ZOkC0ppEJqZjQWPv282bN49hw4Yd1rYNfmRXQkICzz//PBkZGYwbN44bbriBc845h+HDh9O7d2/i4uLo1KkTCQkJXHrppQAMGjSINm3asHLlyihHL0VGmyQYdjzE1TFwIET4sb46fAlxMKrT/tdGg/CH6nc7YqJLUrXvZ9ad6AJoFg9n+cRcSVKMurBz3fVxhJ8cb6JL9aXBJ7sA+vTpQ2FhIRUVFRQVFXHNNdewaNGi6sXp27RpwxlnnMHMmTMBWLlyJV988QXZ2dnRDFuKqOtzoGncvv+nDgBdUmF0ZqSjij3jssPJxX2d5zigZVO4smuko5LUkHVJhYuz6m5zQw9IbvDj7SVJOjw/yIKOzfffh05OgB93j3RUimWNItm1t8rKSoqKiqqTXQB/+ctfuOeee+jVqxc/+MEPmDp1Ki1btoxekFKEndgCHh8GXfeauRsATj8eHhsCKQc3VV51aJMEfxsGp+xjWnGf9HDd8S6NJmkvv+gJP+pWe9RnqyYwoe+B73hLktSYtWgCfx0Kg9vWrstpCX/LhU4uXal61CjvIX7wwQdUVVXVSHZ16dKFgoKC6AUlNQDd0+DpPPjwa1hZFp73PqANtE+OdmSxJSMZ/jIUVm2B9zeGy3q1CiccJWlf4gLw45PgP7Lh9JfDZfcPDHf6ExrlrUdJkg5NmyT442nwaTm8twGCoXCi66S0aEemWNQok12DBg0iFKprKe6GYf2LD7D53X/T7e5ZNco/eeynVK5aTItTziFjzG0AfPnqo3w975+EglV0u2vmQT+tQtqXHq3CPzq6slLDP5J0sPacqpjbLnpxSJIULSc0D/9IR1OjTHY1BqFdO6lctbhWeXnxAgJxCXT/7Vw++t1F7Ny0ntDO7VSWLqHb3a9HPlBJkiRJkqQY4sD5o2RDwVRa5V5aq7x85Tuk9h4BQGrP4VSUvEfZohkEt5Wz8o4RfPbMnRGOVJIkSZIkKXaY7DoKQsEgZQtfI+2U79SqqyrfRHxyeGGfuGapVJVvYufmLyAQoNvE/2X7+lVUfLw4whFLkiRJkiTFBqcxHoHKT5bxyaPX1ihL63c2TTOySRs4ap/bxDdvSVVFGQDByi0ktjuR+OQ0UnsOByC1x+lsW1tEcpe+RzV2SZIkSZKkWGSy6wg063Qy3ScV1Cr//J+T2LK0gI0FU6lYtZivZjxOm5FXAdC820A2znmGlgPPZ8uHc2g17GISW7Vj45xpAFSWLiF9H9MfJUmSJEmSdGBOYzwKMi6+nW6/mUnXO18lOasvbUZexc6v17Fu+r0073oqoZ3bKfpVLslZfUhseTzJJ55CqGoXRbfnEdxeQfPug6J9CJIkSZIkSY2SI7uOsm53zwIgsVU72l1wMwCdfvJwrXYdr3ogkmFJkiRJkiTFJEd2SZIkSZIkKWaY7JIkSZIkSVLMcBrjIchuAY8Pjd57S5IUTQUFBVx55ZVkZmaSmZnJk08+WaN+6tSpZGRkkJ+fzz333MMrr7xC3759eeihh2q0+/LLL7n66qvZtGkTl156KVdffTUlJSVcf/31bN++nRtvvJFRo0Zx9913M3PmTLKyspgyZQplZWVMnDiR++67L5KHHVGHco5zc3NZtGgRK1as4IQTTtjn/vr168dNN93E2LFjefbZZ/nVr37FmWeeyeOPPw7AhAkTuPrqq+nYseNRPzZJkqRIcWTXIUhJhL6to/OTkhjto5ckCcaPH09BQQFpaWkUFhbWqHvppZc488wzWb9+PQsXLmTu3LkkJCSwYMGCGu1+85vf8MADDzB79myuvvpqAO666y6effZZZs+ezahRo/j8889ZtGgRc+bM4dRTT+Wll14iPT2dTZs2sXXr1ogdbzQczDkG+Ne//sVFF1203/288sorpKenV78+66yzmDlzZo02P/zhD/nrX/9aj9FLkiRFn8kuSVKjV1BQQFZWFnl5eYwbN65W/aRJkyguLq5zHz/96U/Jzc3lnnvuqVW3evVqMjIyyMvL4/LLL2f+/PkMHTqUIUOGcMcddwDss2z58uVMnjy5Ho6w4enZsydr166tfr1x40aSkpIIBAIsWLCA4cOHAzBixAjmz59fY9uVK1dy6623MnLkSIqKitixYwdr1qzh8ssv53vf+x7r16+ntLSUHj16ANCrV6/qpM+gQYMoKCiIzEFGWV3nGKBdu3Z1bv/0009z6aWXVr9u3bo1CQk1B/WfdNJJLFy4sB6jliRJjcXR7kPv9sADD5Cfn09lZSXnnnsuw4cP58orrwTgzTff5LTTTmPIkCH84Q9/AOqnD22yS5IUE/Y3GiYYDPLBBx/QtWvX/W67YMECEhISmDt3LgsXLmT9+vW12px33nkUFBTw1FNP0a9fP+bNm8dbb71FYWEhZWVl+yzLyclh4cKFhEKho3LM0VRYWEh2dnb165KSEjIzMwHYtGkTLVqE59+npqayadOmGtu++eabTJw4kYcffpjbb7+dr776iqVLl/Lkk09yww038Nvf/pYuXbrw9ttvEwwGmTNnDps3bwYgMzOTlStXRuYgo6yuc3wg8+bNY8CAAbWSW/uyY8eOw45RkiQ1bke7D71z504WL14MwIwZMxg2bBhvvPEGiYmJLF26lC5dujBnzhzeeust/v3vf1NRUVEvfWiTXZKkmLL3aJj333+fbt261bnNO++8w4gRIwAYPnw47733Xq02r732Grm5uTz99NMkJobnlldVVdG+fXuSk5P3WQbQpUsXPvzww3o5toZgypQp5OXl0aFDB/r27bvPNi1btqSsrAyALVu20LJlyxr1PXr04MQTT6Rr165s3ryZtLQ0evXqRatWrcjNzaWoqIi2bdsyevRoRowYwfr162nbtu1RPrKG42DO8YE8+uijXHXVVfUbmCRJillHqw89derU6pHmWVlZlJeXA7B161bS0tJo3749TZo0ASA+Pp64uHCaqkuXLqxateqwj8dklyQppuw9Gqa4uJjOnTvXuc2BRiJlZGRQVFTEjBkzePTRR9mwYQPTpk0jJyeHli1bVo+e2VdZrI1E2n33b+LEiTXKs7OzKS0tBaB///7MmTMHgNmzZzNw4MAabTt37sxXX33F+vXrSU5Opnnz5iQlJbF9+3aWLl1a/d/r2muvpaCggMzMTM4991wASktL67zDGAsO5hwfyMcff8xFF13EH/7wB+699946t9vdwZQkSceuo9GHDgaDvPbaa3znO98Bwn2ZuXPnkpOTQyAQqPGAnJkzZ3LiiSeSlJQEhPvQa9asOezjMdklSYoJBzMaZtmyZeTl5dX4+d3vfnfAkUhNmzYlOTmZZs2akZuby0cffcRll13GihUr+Oyzz1iyZAnAPsuOFenp6VRUVADhtaR69+5Nbm4u27dvZ8CAAaxbt457770XgDvuuIMLLriA0aNHM2HCBABuuukmzjzzTH7+85/zy1/+EoALLriA/Px8KioqGDx4MABvv/02eXl5kT/ABmDPcwwwduxYZsyYwaWXXsrrr78OhM8jhKeKvvrqq9x0003cfPPNZGZmMmPGDMaOHcsrr7xSvS7HihUrDnv0mCRJavyOZh96+vTpjBo1qvr1k08+ySWXXMLy5ctp06YNb731FgCffvopv/3tb6vX7KoPB17IQZKkRmD8+PHVC8PvqWvXrkyfPh2Ak08+eZ+Lm7/77rs888wznH/++cyZM4eLL764Rv3WrVtJSUkhFAqxYMGC6icIxsXFkZqaWj0qqWnTpjXKIDwSaejQofV8tNGxu3OzP6NGjWLWrFnk5+czYcKE6kQWhBNgN998MwC9e/euHvm1W35+Pvn5+TXKdv93223jxo20bNmS1NTUIzyShutQzvE//vGPWvV7dxKvuOKK6t9HjhzJyJEja9Q//fTT1dezJEk69hzNPnRRUREFBQVMnTqVxYsXc/7551cvTbH7Kdvbt2/niiuu4JFHHiElJaV629LSUnJycg77uBzZJUmKaX369KGoqKjONqeeeirbt28nNzeXPn36cPzxx9cYifTWW28xYMAAhgwZwsiRI5k/fz55eXmcfvrpnHDCCXTt2pUXX3yxVhmEFxXv2bPnUT/OhuDyyy+vlbCqT+np6dx///1Hbf+NQX2f47vvvptOnTrV2/4kSVJsqI8+9O23387MmTN59dVX6du3L5dffjl///vfycvLY/HixZx11llMmzaNZcuW8eMf/5i8vLzqdcNKSkro0qXLYccfCMXiI6IkSTFlwIvhfxeMqrvd/kycOJFLLrkk4ms9LV++nBdeeIFbb701ou97uI70POvgeJ4lSVIkNPY+dG5uLsOGDePNN9885JkSTmOUJMW8fQ3NjoScnJwjGn4tSZIkRUu0+9Dz5s077H04jVGSJEmSJEkxw2SXJEmSJEmSYobJLkmSJEmSJMUM1+w6SFt3QklZdGPIbgEpidGNQZIkSZIkqSEz2XWQSsrgqsNfG61ePD4U+raObgySJEmSJEkNmdMYJUmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzDDZJUmSJEmSpJjhAvVHWdHteZSvKCSQkEggPoGkDifRfuwkWvQ5M9qhSZIkSZIkxRxHdkVA+7GT6PfcVno/uZ7m3Qfz0T3fp6p8c7TDkiRJkiRJijkmuyIoLrEpbc4aT3DbVrZ9XhLtcCRJkiRJkmKOya4ICm6v5KuZjxOX3IKk9l2jHY4kSZIkSVLMaTTJrh07djBhwgQ6duxIs2bNGDFiBPPnzycQCPDCCy9EO7w6fTZtAosva8mSH3WmYtX7ZN/xb+KTW0Q7LElq8Mp2wNMfffv6D0th9ZboxROrtu2C/yn99vWk9+HDr6MXT6zaFYRZn337esJCmP8lhELRi0mSJMWerTvhn6u+fT35Aygpi1480dAoFqgPhUKMGTOG+fPnc+edd5Kdnc20adMYPXo0AP369YtyhHVrf9ndtBv9i2iHIUmNyrtfwv+ZD5VV35Y9+zE88zFc3T38oyNXUgbXFcKG7d+WvVAK/68URnWE2/tCfCBq4cWMLyrD53nV1m/LXlsLr3wKpx0H954KzRpFr0ySJDVkS7+Gn70NZTu/Lfvv1fCv1fDDLnBDDwgcA327RtGteuyxx3j55ZdZvHgxPXr0ACAvL4+srCzS09Pp1KlTlCOUJNWnNVvhhndgZ7Bm+e4BMI8VQdsk+H5mxEOLKVt2wrVvwaYdNct3n/YX10DrJLguJ+KhxZSqEFz/NpRurVke/OaCfudL+M1i+O2AiIcmSZJiyJfbwjfXKnfVLN/dt3v6YzguCcZmRzy0iGsU0xgnT57M2LFjqxNdAPHx8WRlZdGvXz9Wr15N3759q386d+5Menp6FCOWJB2J51bBjuC3X8x7CwB/K/42WaDD8+81sHHH/s8zhEfSle+qo4EOaN56+HjL/s9ziPD0xk/LIxmVJEmKNdNXQ8Wuuvt2T5bUvqEcixr8yK7i4mJWrVrFgw8+WKtuzZo1XHjhhXTu3JnFixdXl99www3s2nXwPfPU1FR27NhRZ5vk7oM5cWLBQe/zaDjjjDwqigqjGoMkRULO45+SkHbcfutDwGcV0CpnENtWLY5YXLGmy6Q3SM4eSCBu//e+tlVB5zN/QNnb/y+CkcWWE376N1oOvYRA/P67XcFQiEFX3M5XL/4hgpFJkqRY0u3BpTRpl02gjnmKX++A40/9DuVLCyIX2GEKBg8/K9fgk11r164FoG3btjXKV6xYQWlpaa31unbs2MHTTz/Na6+9FrEY69J9UkG0Q5CkRieuWepBtYtPTjvKkcS2+Oat6kx0VbfzPB+R+OS0Ay+OEawivrkPr5EkSYcvPjmtzkTXt+1iv8/R4JNdrVu3BqCkpISBAwcC4QXrb7nlFoLBYK1k14svvkiHDh045ZRTDvo9tmw58KO9Fm+Aq+YdQuBHwezZBfRtHd0YJCkSRr8entJ1oFmKH8ydwQnNIxJSTPrZ2/D2F3UPdQd44alHGXTcoxGJKRb9fgk8v6ru8xyIT+CBO2/lgidujVhckiQptoybA8s2HbgPPfelf3FSywgEdITKyspYsmQJvXr1OuRtG/yaXTk5OWRnZ3Pbbbfxr3/9i1deeYXvfe97LFy4kOTkZLp3r/k4rr/97W/853/+Z5SilSTVhwsy6/6SjgP6pWOi6wh9v9MBEjDA8UkwoE2kIopN3zvAeQZoEgcjO0QkHEmSFKNGH6APHQCyU6F7Ixm036JFC4YOHUqLFoc+Eq3BJ7sSEhJ4/vnnycjIYNy4cdxwww2cc845DB8+nN69exO3x/SLtWvX8sYbb/DDH/4wihFLko7U6Ezo1HzfX1JxQFwAfnpypKOKPae3CycN9zXYPUC4s3RjT4g/Bh5PfTR1T4PzTqi7zU9OgpTEyMQjSZJi09knQPcW++/bBYAbehx4dYVY0OCTXQB9+vShsLCQiooKioqKuOaaa1i0aFGtKYxPPvkk5513XvXUR0lS45SSCI8NhVP2MaKobTP402Do7UN3j1hCHDxwGpzZvnanqEUiTDwF8ttHJbSYM6EvXJIFCXud6Gbx4U7nf5wYlbAkSVIMSYqHPw+BocfXrmvdFP4wEE5rW7suFgVCoVCje3B7ZWUlqampPPLII/zoRz+qLu/WrRsPPvggZ599dr2/Z0NYs+vxobhml6Rjzkdl8PaX4Uckd0uD044Lj+xS/fqsAuasCz99sWPz8KivxEZxS6xx2bgdZn8OZTuhbRKckQHJDX4FVUmS1Nh8shXeXA87gtAlFYa0Dd/oPFY0yu7VBx98QFVVVa2RXStXroxSRGGfPPZTKlctpsUp55Ax5rbq8q3L3uTTv/8CAnG0GnIhx3//puq69S8+wOZ3/023u2exa8tGiv/rLLatLaLfc1ujcQiS1OCc2CL8o6OrfTL8oEu0o4h96U3hws7RjkKSJMW6TilwWUq0o4ieRpnXGzRoEKFQiAEDBkQ7lGrlxQsIxCXQ/bdzqfhoITs3ra+ua3J8F7rdM4eTfv8Wm979N8HtFQCEdu2kctXi6nbxzVLpetdMmnc7LdLhS5IkSZIkxYRGmexqiMpXvkNq7xEApPYcTkXJe9V1TVq3Jy6xCQCBuHgIhE/7hoKptMq9tLpdICGRhFQXoZEkSZIkSTpcJrvqSVX5JuKTw/Ns4pqlUlW+qVabssUzaZpxInFNkggFg5QtfI20U74T4UglSZIkSZJiV6NcsyuaKj9ZxiePXlujLK3f2cQ3b0lVRRkAwcotJLar+VilHV99yrrnf8uJt78IwKbC6aQNHBWZoCVJkiRJko4RJrsOUbNOJ9N9UkGt8vLid9k45xlaDjyfLR/OodWwi6vrgju3s/qPV9DpJ48Q3yy8Qty2tUVsWVrAxoKpVKxazFczHqfNyKsidRiSJEmSJEkxyWmM9aR511MJ7dxO0a9ySc7qQ2LL49n59TrWTb+XjW9MY9uaZZQ+8mOKbs9jx4a1ZFx8O91+M5Oud75Kclbf6kTXygn5VKxaxMoJ+VSWLo3yUUmSJEmSJDUugVAoFIp2EI3B4g1w1bzoxvD4UOjbOroxSJIkSZIkNWSO7JIkSZIkSVLMMNklSZIkSZKkmOE0xoO0dSeUlEU3huwWkJIY3RgkSZIkSZIaMpNdkiRJkiRJihlOY5QkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5Ik6f9v7+7joyrv/P+/JiQEMAgGjSC3wQBGIBBBUTBmBKTeVLeIuLWy4LdYW+9attbiUtmv1rvy89u1a7WoLVsVRduybMUuVsQa8CYakSAoEIKFiFhQpMh9IJn5/TElEBPCXTKTnLyej0cezLnOdSafMx4nc95zXedIkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwmkzYtXfvXqZOnUrXrl1p3bo1w4cPp6ioiFAoxAsvvJDo8uLus90wYzX8dCn8/AMo/gKi0URXJUmKROGtz2DaMrhnKTzzEWwtT3RVkiRJUvMRikYbf0QSjUb5xje+QVFREXfddRdZWVnMmjWLP//5z3z66aeUlZXRrVu3RJcZF9EoPFYCv10NUSApFGuLAH3bw3+cAx1aJbhISWqmPtkJk96BdTti788hoDIKySGY1Be+2TPRFUqSJEnB1yTCrscff5xbbrmFpUuX0rdvXwAqKyvJzMxk586dfPHFFwmuMH6eLIVHVta+Lgno2RZm5kNKkxmzJ0nBsG0vXFMAn++JfQFRm7tz4bKu8axKkiRJan6aRCQybdo0xo0bVxV0AbRo0YLMzExyc3MBWL16Needdx69e/fmvPPOo7S0NFHlNpjdFfBfqw+9PgKs2Q6v/S1uJUmS/mHuethUR9AFMH1VbJqjJEmSpIaTnOgCDqe0tJS1a9fy8MMP11i3fv16xowZA8D3vvc9br75ZsaNG8czzzzDd7/7Xf7yl78c9vm3bdtGx44dqaioIBQK1Xv99and0Kvo9q/P1tknWlnBLb9+hbIHvhGfoiRJAGT9v8W06tqXUNKhv0fauBs6DBzOrlVvxrEySZIkqWlq2bIl27dvP+rtGv3Irg0bNgCQkZFRrX3VqlWUlZWRm5vLZ599xpIlS7jmmmsAuOaaa1iyZAmff/75YZ9/+fLl7N69myYwm5PkEzMO2yfUIpmU9h3jUI0k6WAp7U6tM+jaL7ndKXGoRpIkSWq+Gv3Irg4dOgCwZs0azjnnHCB2wfrJkycTiUTIzc1l/fr1dO7cmRYtWgCxKY6nnXYa69ev55RTjuykoqCggGHDhjXMTtST+Rtgynt190kCRp6by4fl3vpLkuLpm6/BR9tjNw+pyyv/8zsGdohLSZIkSVKz1OjDruzsbLKyspgyZQopKSmkpaUxffp0iouLadOmDX369KG4uDjRZcbFBadCmxawq/LQfSLA1734sSTF3eXd4KEP6+7TqTXkpMenHkmSJKm5avTTGJOTk5k9ezadOnViwoQJTJo0iUsuuYT8/HxycnJISkqia9eubNiwgcrKWApUWVnJp59+SteuwUp9WiXD9X0OvT4J6HUihDvFrSRJ0j9c0Q06tq77D+tN2ZDUuC8PKUmSJDV5jT7sAhgwYACFhYXs2rWLkpISbrzxRoqLi6vuxJiRkcHAgQN57rnnAHjuuefIzc094imMTcm/nA7f6V37yVLfk+DR8yClSfxXlaRgaZsCjw2F7mk116UkwY/7wyVd4l+XJEmS1Nw0yVhk9+7dlJSUVIVdAI899hi//OUv6d27N7/85S957LHHElhhwwmF4LtnwLyL4JbsA+0zzof/Oh/SUxNXmyQ1d11OgN9dCI+ce6Dth33hz6Pg6szE1SVJkiQ1J43+ml21WbZsGZWVldXCrjPOOIN33nkngVXF18mt4Lpe8MjK2PIArwEjSY1CUgjOPejmud86PXG1SJIkSc1Rkwy7hgwZQjR6uPtdSZIkSZIkqblpktMYJUmSJEmSpNoYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMBoMmHX3r17mTp1Kl27dqV169YMHz6coqIiQqEQL7zwQqLLk3QcKiLw6qfw8Ap4ZAW89RlEoomuSpIEsHEXPFkKv/gQZq6Bz3YnuiJJkqS6JSe6gCMRjUYZO3YsRUVF3HXXXWRlZTFr1ixGjx4NQG5uboIrlHSs3tsMU96DL8oPpO9ProHObeDBs6F3u4SWJ0nN1r4I/H/L4I8fQxRoEYLKKPxyBYzNhH/tC8lN5mtTSZLUnDSJsOuJJ55g3rx5LF26lL59+wIQDofJzMwkPT2dbt26JbhCScdi1Va49e3YyC6AyEHr/rYLvvsWPHMBdD4hEdVJUvN23/vwp/UHliv/MeI2AvxubWwE7uSchJQmSZJUpybxfdy0adMYN25cVdAF0KJFCzIzM6tGdf3oRz8iMzOTUCjEBx98kKhSJR2FX6+OBV2RWtZFgJ374JmP4l2VJGnt9upBV21mr4NPd8WlHEmSpKPS6MOu0tJS1q5dy5gxY2qsW79+fVXY9Y1vfINFixbRvXv3eJco6Rhs3QuLNtYedO0XAV5cf2A0gSQpPv53PYSOoN+8wwRikiRJidDopzFu2LABgIyMjGrtq1atoqysrCrsOv/884/r94TDYZKSGn32V0O/3+8BIDW1VYIrkY5Oaucz6P2L9w/bb08lpKWfQmTXtjhUJdUf35/VlHW5+Te0z/smoRYph+wTqdjHfb/8LTf/+tY4ViZJkpqTli1bsn379qPertGnOx06dABgzZo1VW3RaJTJkycTiUS8OL3URFXu2HJE/SL7yons2dnA1UiSDhZ7jz7M2K6kJCq3fxGXeiRJko5Gox/ZlZ2dTVZWFlOmTCElJYW0tDSmT59OcXExbdq0oU+fPvXyewoKChg2bFi9PFc8DZ4b+7e8vDyxhUjH4HtvwpIvDj2VMQm4LDOVJbu9KIyaHt+f1ZSt2ArjF9XdJ5TUgoJH/o2eT/1bXGqSJEk6Uo1+ZFdycjKzZ8+mU6dOTJgwgUmTJnHJJZeQn59PTk5Ok5x6KCnm+j6x29nXNnYgROyW9v+SFeeiJEmc2R6GZhx6bFcIGN4JeraNY1GSJElHqEkkRQMGDKCwsJBdu3ZRUlLCjTfeSHFxsVMYpSZu8Mlw76BYqPVVrZPhP86BrBPjX5ckCe4fBOecUr1t/9v1sFPhbj+GSZKkRqpJhF1ftXv3bkpKSqqFXd///vfp0qULn3zyCSNHjqRv374JrFDSkfpaZ/jzKJh00P+y/5YDL42CczMOvZ0kqWGlpcAj58KMg+4BNKYHPJkHD50T+1JCkiSpMWqSYdeyZcuorKysFnY9/PDDfPLJJ1RUVLBx40Y+/PDDBFYo6Wi0awnjTj+wPKYHnOBJlCQlXCgEA9IPLE/OgX4nxdolSZIaqyZ5OjlkyBCi0Wiiy5AkSZIkSVIj0yRHdkmSJEmSJEm1MeySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmB0WTCrr179zJ16lS6du1K69atGT58OEVFRYRCIV544YVEl6eAqojAwo3wX6vhmTXw1+2Jrkg6Piu2wlOl8NtSePsziEQTXZEkSfGzLwILPoUZq2HWR/DJzkRXJElqCMmJLuBIRKNRxo4dS1FREXfddRdZWVnMmjWL0aNHA5Cbm5vgChVEb26Ce5bC5vIDbb9YAeecDPcOgvTUhJUmHbUNO2HKe/Dh1urtndvAvWdB//SElCVJUty8sgF+tgy+3Heg7T8+hPyOcHcupKUkrjZJUv1qEmHXE088wbx581i6dCl9+/YFIBwOk5mZSXp6Ot26dUtwhQqaxZvhX4sgWsuol8Wb4XtvwpMXQJsm8X+Qmrsv9sD1b8IX5TXX/W0XfO8t+G0e9G4X/9okSYqHgr/FvvSpzaKNcEsh/Pp8SGky814kSXVpEm/n06ZNY9y4cVVBF0CLFi3IzMwkNzeXL774gksvvZQ+ffrQv39/rrzySj7//PMEVqym7hcfAlGobYZXBPjrDvjT+jgXJR2j59fC5j21T1mMEJvS8XhJ3MuSJCkuItHYCC6o/bNdFPhgK7z6aRyLkiQ1qEYfdpWWlrJ27VrGjBlTY9369evJzc0lFArx4x//mJKSEpYvX87pp5/OHXfckYBqFQRrtsGqL2MhwKGEgP8pi1dF0rGLRmHOuto/3O8XIfat9pZaRn5JktTUFX8Bn+6q+29hEvBHP9tJUmA0+klYGzZsACAjI6Na+6pVqygrKyM3N5f09HTC4XDVunPPPZfp06cf1e8Jh8MkJTX67K+Gfr/fA0BqaqsEVxIcbc+6hB7/9sc6+0SBVX/7ktTUjDr76eh4PNe/UHJL+j13+DsrRIHMnHPYs+79hi+qmfB4VpB4PKspa3/Bt+h662/r7BMB3lq5jtThfeJTlCTpiLRs2ZLt24/+TnGNPt3p0KEDAGvWrKlqi0ajTJ48mUgkUuPi9JFIhOnTp3PFFVfEtU4FR+WuLw/bJxqNUrlra8MXIx2naMVeIvuObMjWkRz7kiQ1NZW7th22TzQSoXLH3+NQjSQpHhr9yK7s7GyysrKYMmUKKSkppKWlMX36dIqLi2nTpg19+lT/9uXWW28lLS2NW2655ah+T0FBAcOGDavP0uNi8NzYv+Xlzj+qLxURuPwV+LyOlzQpFOK7Q7tzs697vfJ4bhj/dwm89Mmhp+YmEbs4/eL1XrirPnk8K0g8ntWU7amAr82HnRWH7hNKSuKOr+fyL5M8xiUpCBr9yK7k5GRmz55Np06dmDBhApMmTeKSSy4hPz+fnJycalMPf/SjH1FaWsrvfve7JjklUY1DchL8n96HXp8EtG4BY3rEqyLp+Fx7OiSFYteaq00EmFjHMS9JUlPWKhn+5fRDr08C2reEy73BuyQFRqMf2QUwYMAACgsLq7U98sgj5OfnVy1PmTKF9957j//93/8lNTU13iUqYMb2gM/3wG9LYwHBwRc0bZMM/3kudGydoOKko9S7HTx4NtyxGMoPGt61P/y6rR9c2CkhpUmSFBff7g1flMMf1sXCrYNHO7dvCY+cF/tXkhQMTXL40+7duykpKam6XteHH37IAw88wKeffsrQoUMZOHAgo0ePTnCVaspCIbg5G/5wIXyz54H2yf3hTxfBgPTE1SYdi7yO8L8XwffPPNB2XS94YWT1Y1ySpCBKCsHkHHg2H67scaD9zgGxv4W92yWsNElSA2gSI7u+atmyZVRWVlaFXX379iUaretmwtKxyWwbG/Xy3F9jy2MzE1uPdDzap8L4LHh4RWz55uzE1iNJUrz1aQd35MDsdbHlb3RPaDmSpAbSJMOuIUOGGG5JkiRJkiSphiY5jVGSJEmSJEmqjWGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKjCYTdu3du5epU6fStWtXWrduzfDhwykqKiIUCvHCCy8kujxJkhRn2/bCvPXwh7XwxiaoiCS6IunYVURg0cbY8fznT2DHvkRXJB27aBSWb4HZ6+CPZbBhZ6IrktTcJCe6gCMRjUYZO3YsRUVF3HXXXWRlZTFr1ixGjx4NQG5uboIrlCRJ8VIRgYdXxE6i9h4UcJ2cCj/sB6M6J6w06Zj86WP4zxXw970H2lKT4Js94aZsaBFKXG3S0Vq5Fe4uhjXbD7SFgLxTYepAOCk1QYVJalaaRNj1xBNPMG/ePJYuXUrfvn0BCIfDZGZmkp6eTrdu3RJcoSRJiodoFP69GOZvqLnui3KY8h5EonBxl/jXJh2LP5bBve/XbC+PwFNrYOveWEAgNQVrtsF33oS9ldXbo8RG4N7wJvw2D9JSElKepGakSUxjnDZtGuPGjasKugBatGhBZmZm1aiub3zjGwwYMIDc3Fzy8vJYunRpgqqVJEkN5f0ttQddEDuZCgE//wD2OaVRTcCeCnjow7r7vPAxrPoyPvVIx+uXK2JBV21vwRFg7Q74n7J4VyWpOWr0YVdpaSlr165lzJgxNdatX7++Kux66qmneP/99ykuLuZHP/oR3/72t+NdqiRJamB//LjuDy9RYlPB3tgUr4qkY/eXv8HOirr7JAEvGA6oCfhsN7z1We1B134h4L/XxakgSc1ao5/GuGFD7OvbjIyMau2rVq2irKysKuxq165d1bovv/ySpKSjy/HC4fBRb9MY9Pv9HgBSU1sluJJg83WOD1/n+PB1jg9f54bR857XOOGMoYftN+7WO9j84kNxqKh58HhuGBlX/YSMsXcSquMzaGU0wn/9cQH/fvblcaws+Dym61+bPudx+r0FdfaJAuu3V5Ka2iYuNUlq+lq2bMn27dsP3/ErGn3Y1aFDBwDWrFnDOeecA8QuWD958mQikUi1i9Nff/31zJ8/n2g0yp///OeE1CtJkhpOZNc2opFKQkkt6u63Z0ecKpKOXWTPjjqDrliniMezmoTI7iM7GY3s3dXAlUhSEwi7srOzycrKYsqUKaSkpJCWlsb06dMpLi6mTZs29OnTp6rvb37zGwBmzpzJ7bffzrx584749xQUFDBs2LB6r7+hDZ4b+7e8vDyxhQScr3N8+DrHh69zfPg6N4xDXcz7YEnAstmPcEqrR+JSU3Pg8dwwPtkJo1+NjXY5lFCLZH5505VcfL+vfX3ymK5/kSh841X4265DH9NJwBV92lLs6y6pgTX6eXvJycnMnj2bTp06MWHCBCZNmsQll1xCfn4+OTk5tU49/Jd/+Rdee+01vvjiiwRULEmSGsrXOsPJqZAUOnSfS7vCKc5MUhPQ5QQY3il2HaPaJAGdWsf6SI1dUgiuyzp00BX6R59rMuNZlaTmqtGHXQADBgygsLCQXbt2UVJSwo033khxcXHVFMYdO3awfv36qv4vvvgi6enppKenJ6pkSZLUAFonw6PnQfuW1dv3h1/nngJ39I9/XdKx+vdcGPiPj6xfDXFPbgWPnAct6561KzUao7vHAi+ofqIZAlqE4IHB0KtdbVtKUv1q9NMYa7N7925KSkqYNGkSADt37mTs2LHs3LmTFi1akJ6ezosvvkgoVMfXvpIkqUk6/USYMxxe+gSmLY+15Z8K/9QdzsuInVBJTcUJyfDYsNgdRF8og0X/uJPolBy4uAu0aZKf1tVchUJwy5kw8jSYvS52B12Aib3hG92hY+uEliepGWmSfz6XLVtGZWVl1ciuU089lbfffjvBVUmSpHhJS4GxmQfCrgfPSWw90vFoEYL8jrGf/deSurJHQkuSjssZ7eHOgQfCru+dkchqJDVHTTLsGjJkCNFoXZfylCRJkiRJUnPUJK7ZJUmSJEmSJB0Jwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMu6TgVFBSQmZlJOBxmwoQJNdbPnDmTBQsWADB37lyGDx9OOBzm448/rtbvO9/5Dvn5+Zx//vmsXr0agMsvv5z8/HxGjBjB5s2bqaio4Prrr2/4nZIkSZIkqYky7JLqwcSJEykoKKBdu3YUFhZWW/fiiy8yYsQIdu7cyfPPP8+rr75KQUEB3bp1q9bvV7/6FQsXLuSBBx7gscceA2DOnDksXLiQ6667jlmzZpGcnMwpp5zCRx99FLd9kyRJkiSpKTHskupRv3792LBhQ9Xyli1baNWqFaFQiMLCQiKRCBdddBE333wzkUik2rYpKSkA7Nixg379+lVr27NnD9nZ2QCEw2FeeumleOyOJDV5hxt9e99991FaWlrnc9x6663k5eVx//3311i3bt06OnXqRDgcZvz48RQVFTFs2DCGDh3KnXfeCVBr28qVK5k2bVo97KEkSZK+yrBLqkeFhYVkZWVVLa9Zs4bu3bsD8Nlnn7F582bmz5/PySefzNy5c2tsP2LECG655RbOPvtsIBaWDR06lIcffrgq7OrevXvVNEdJ0uEdavRtJBJh2bJl9OrV65DbLl68mOTkZF5//XWWLFnCpk2bavS57LLLKCgo4OmnnyY3N5c333yTt956i8LCQrZt21ZrW3Z2NkuWLCEajTbIPkuSJDVnhl1SPZgxYwbhcJjOnTszcODAWvu0a9eOvLw8kpKSuOCCCygpKanR59VXX2XOnDncddddAKSnp/PWW29x77338tBDDzXgHkhS8H119O37779P796969zmnXfeYfjw4QDk5+fz3nvv1ejz8ssvk5eXx7PPPls1IreyspLTTjuNNm3a1NoG0LNnTz788MN62TdJkiQdYNgl1YP9owbuvffeau1ZWVmUlZUBcPbZZ7NixQoAli9fTo8ePar1LS8vB2KhWOvWrYlEIlRUVFS1tWrVCoCysrI6RyFIkmr31dG3paWlNd6Lv2rr1q2ceOKJALRt25atW7dWW9+pUydKSkqYP38+jz/+OF988QWzZs0iOzub9u3bk5ycDFBrmyN1JUmSGkZyoguQgiw9PZ1du3YBkJGRwVlnnUV+fj6nnHIKs2bNYuPGjcycOZPbb7+d0aNHs3v3bkKhEI8++ig7d+7k61//OklJSaSmpvLkk08CsevPTJw4MYF7JUlNy4wZM1iwYAHnn3/+IUffrlixgptuuqla28UXX0z79u3Ztm0bANu3b+f000+v1ic1NbXqcV5eHh999BHf+ta3+OY3v8nYsWNZvnw5/fv3r7VNkiRJDcOwSzpO4XCYcDh8yPVXXHEFCxYsYOTIkUyePJnJkydXrevYsSO33347APPmzaux7cKFC6stV1RU8Nlnn1UbmSBJqtvEiROrLgx/sF69ejFnzhwAzjzzTAoKCmr0effdd3nuuee4/PLLWbRoEVdffXW19Tt27CAtLY1oNMrixYu54YYbAEhKSqJt27a0atWK8vJyUlNTq7VBbKTusGHD6nlvJUmS5DRGqYGNHz+ekSNH1stzJScnM2PGjHp5Lklq7gYMGFDr9RMPdvbZZ1NeXk5eXh4DBgzg1FNPZePGjTz44IMAvPXWWwwePJihQ4cyatQoioqKCIfDXHDBBXTp0oVevXoxd+7cGm0Qu4nJ/rvvSpIkqf44skuSJAVWXaNvk5KSyMnJobS0tM5rIT766KPVlg8elTtq1ChGjRpVbf3YsWNrLH+1beXKlQwaNIhQKHSkuyJJkqQjZNglSZKardqmN8ZDdnY22dnZCfndkiRJQec0RkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAaBJh1969e5k6dSpdu3aldevWDB8+nKKiIkKhEC+88EKiy1PArdl24PG2vYmrQ5JU3Z7KA4+XbYFoNHG1SJIkqfFITnQBhxONRhk7dixFRUXcddddZGVlMWvWLEaPHg1Abm5ugitUUJV8CT9bBsv/fqDt4vlweVf4177QqtH/3yNJwRSJwn+thpkfHWj79hvQPQ1+2BeGnZq42iRJkpR4jf50/YknnmDevHksXbqUvn37AhAOh8nMzCQ9PZ1u3boluEIF0eovYeIbsLeyevveCMwpg3U74JHzIKVJjI2UpGD52bLYe/FXfbwDJr0D/+8cyO8Y/7okSZLUODT6U/Vp06Yxbty4qqALoEWLFmRmZtYY1XX33XcTCoX44IMP4l2mAuY/PogFXZFa1kWB976A+RviXZUk6cO/1x50Qez9GeBn70NFbW/gkiRJahYaddhVWlrK2rVrGTNmTI1169evrxZ2LVmyhLfffpvu3bvHs0QF0PodsPiL2oOu/ZKA2eviVJAkqcr/lNX94SUKfF4OhZ/FqyJJkiQ1No16GuOGDbGhMxkZGdXaV61aRVlZWVXYVV5ezs0338xzzz1HOBw+pt8VDodJSmrU2V+t+v1+DwCpqa0SXElwtM29mB5T6r7xQQRY+slWUlO9MEx98niOD1/n+PB1bhg9f/oXTsgedth+37zlDja/+FAcKmoePJ7jx9c6Pnyd48PXWdLxatmyJdu3bz/q7Rp1utOhQwcA1qxZU9UWjUaZPHkykUikKuz693//d8aNG0ePHj0SUaYCJrJ395H1K9/VwJVIkr4qUr6LaOTwcxR9j5YkSWq+GvXIruzsbLKyspgyZQopKSmkpaUxffp0iouLadOmDX369KGwsJDFixfzs5/97Lh+V0FBAcOGHf6b4sZm8NzYv+Xl5YktJEDKK2N3Xdy+79B9koBvnXUak33d65XHc3z4OseHr3PD+P1a+P+W190nBCz53cN0avNwXGpqDjye48fXOj58nePD11lSojTqkV3JycnMnj2bTp06MWHCBCZNmsQll1xCfn4+OTk5JCUlsXDhQlauXElmZiY9evTgk08+4Wtf+xrz589PdPlqolJbwDczD70+BCSF4Oo6+kiSGsalXeDElEN/gAkBwztBpzbxrEqSJEmNSaMOuwAGDBhAYWEhu3btoqSkhBtvvJHi4uKqKYx33HEHn376KevWrWPdunV06dKFl19+mVGjRiW4cjVlE3vDqM6xx0mhA+0hoEUI7h8EmW0TUpokNWtpKfDLc+GElOrt+z/Q9DsJpg6Md1WSJElqTBr1NMba7N69m5KSEiZNmpToUhRgyUlw71lwWZfYXRdLt0HLJLigI4zpDl3TEl2hJDVffU+C2RfCHz+G+Rtgxz7ofAKM7g4jOkHLFomuUJIkSYnU5MKuZcuWUVlZWTWy66vWrVsX34IUWEkhGHZq7EeS1Lh0aBUbhTuxd6IrkSRJUmPT5MKuIUOGEI1GE12GJEmSJEmSGqFGf80uSZIkSZIk6UgZdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJTUBBQQGZmZmEw2EmTJhQY/3MmTNZsGABAPfffz95eXnceuutNfp9/vnnjB49mgsvvJAnnngCgDVr1nDxxRdz4YUXMnfuXADuueceLrjgAiZMmEBFRQVbtmzhhz/8YQPuoSRJ9cOwS5IkSWoiJk6cSEFBAe3ataOwsLDauhdffJERI0awadMmlixZwuuvv05ycjKLFy+u1u+nP/0pv/jFL3jttde44YYbALj77rt5/vnnee2117jiiiv429/+RnFxMYsWLeLss8/mxRdfJD09na1bt7Jjx4647a8kScfCsEuSVM3hRg7cd999lJaWHnL7LVu2MGjQINLS0mpdv27dOjp16kQ4HGb8+PHs27ePq6++mnA4zIMPPgjAypUrmTZtWv3skCQFUL9+/diwYUPV8pYtW2jVqhWhUIjFixeTn58PwPDhwykqKqq27erVq7njjjsYNWoUJSUl7N27l/Xr1zN+/Hj+6Z/+iU2bNlFWVkbfvn0B6N+/f1WwNmTIEAoKCuKzk5IkHSPDLklSDYcaORCJRFi2bBm9evU65LZt27bllVde4dxzzz1kn8suu4yCggKefvpp5syZw9ChQykoKOC9997j888/Jzs7myVLlhCNRut1vyQpKAoLC8nKyqpaXrNmDd27dwdg69atnHjiiUDsPXnr1q3Vtn3jjTe49957efTRR/nJT37C5s2b+eCDD3jqqaeYNGkSDzzwAD179uTtt98mEomwaNEivvzySwC6d+/O6tWr47OTkiQdI8MuSdIhfXXkwPvvv0/v3r3r3CYlJYX09PQ6+7z88svk5eXx7LPPsnbtWvr37w9AdnY27777LgA9e/bkww8/PM49kKRgmTFjBuFwmM6dOzNw4MBa+7Rv355t27YBsH37dtq3b19tfd++fTn99NPp1asXX375Je3ataN///6cdNJJ5OXlUVJSQkZGBqNHj2b48OFs2rSJjIyMBt4zSZLqj2GXJOmQvjpyoLS0lB49ehzXc3bq1ImSkhLmz5/P448/Tq9evVi4cCHRaJTXX3/d0QOSVIf9I2/vvffeau1ZWVmUlZUBMGjQIBYtWgTAa6+9xjnnnFOtb48ePdi8eTObNm2iTZs2nHDCCbRq1Yry8nI++OCDqvf5m266iYKCArp3786ll14KQFlZWZ2jeyVJagySE12AJKnxmTFjBgsWLOD8888/5MiBFStWcNNNN1Vru/jii7njjjvqfO7U1NSqx3l5eXTp0oUFCxZw0UUXccoppzh6QJKOQXp6Ort27QKgY8eO5OTkkJeXR05ODoMHD2bjxo3MnDmT22+/nTvvvJMrr7ySiooKHn74YQBuu+02RowYQYsWLXjyyScBuPLKK9m2bRt5eXmcd955ALz99ttV20iS1FgZdkmSapg4cSJ33nlnjfZevXoxZ84cAM4888xjukjxjh07SEtLIxqNsnjxYm655RamT59ONBplwoQJVSdUZWVlDBs27Lj2Q5KCJBwOEw6HD7n+iiuuYMGCBYwcOZKpU6cyderUqnUdO3bk9ttvByAnJ6dq5Nd+I0eOZOTIkdXa9r/f77dlyxbat29P27Ztj3NPJElqWE5jlCQdsQEDBlBSUnLYfiNHjqS4uJiRI0fywQcfsHHjxqo7Lb711lsMHjyYoUOHMmrUKPbt20c4HGbEiBFcddVVtGnTBohdbLlfv34Nuj+SFCTjx4+vEVjVp/T0dB566KEGe35JkuqLI7skSdXUNXIgKSmJnJwcSktL67xmy4IFC2q07R9RMGrUKEaNGlVt3VdHiK1cuZJBgwYRCoWOrnhJkiRJzZ5hlyTpqNQ2vbG+ZWdnk52d3eC/R5IkSVLwOI1RkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTCaTNi1d+9epk6dSteuXWndujXDhw+nqKiIUCjECy+8kOjyJKlJ2LHvwOMv9iSuDklSTR9tO/C4Mpq4OiRJauqSE13AkYhGo4wdO5aioiLuuususrKymDVrFqNHjwYgNzc3wRVKUuO2uwIeXgFzPz7QdskrMKIT/LAfnNIqcbVJUnP37uex9+iVXx5ou+IVmNgbRneHUChxtUmS1BQ1ibDriSeeYN68eSxdupS+ffsCEA6HyczMJD09nW7duiW4QklqvPZUwk2F8MHf4eCBApEovPopLNsCT10AJxt4SVLcvbEJflhE9TdoYNMeuH8ZbC6HG/okpDRJkpqsJjGNcdq0aYwbN64q6AJo0aIFmZmZVaO6evTowRlnnMHAgQMZOHAgL7/8cqLKlaRG5b/XwfK/1ziPAiACfL4HHi+Jc1GSJCoi8NOlEI3G3o9r80QJrN8Rz6okSWr6Gn3YVVpaytq1axkzZkyNdevXr682hXH27NksXbqUpUuX8rWvfS2eZUpSo/WHtVDXDJgI8L/rq1/PS5LU8F7fBFvKa/8yYr8QMKcsXhVJkhQMjX4a44YNGwDIyMio1r5q1SrKysrq7Xpd4XCYpKRGn/3V0O/3sStMp6Y6/0hNn8dz/Qslp9DvucMPCdgbgc59B7OnbHkcqmoePJ4VJB7PDSPjqilkXD2VUOjQn0Ej0Qi/mv0KPz7rijhWFnwe0/Hh6yzpeLVs2ZLt27cf9XaNPt3p0KEDAGvWrKlqi0ajTJ48mUgkUi3suvbaa8nJyeGmm25i69at8S5VkhqdaKSSaKTyyPpWOLRLkuIpsq+cusfeAtEo0Yq9calHkqSgaPQju7Kzs8nKymLKlCmkpKSQlpbG9OnTKS4upk2bNvTpE7ti5+uvv07Xrl0pLy9n0qRJ3HLLLTzzzDNH/HsKCgoYNmxYQ+1Ggxk8N/ZveXl5YguR6oHHc8O4tRDe+fzQ14MB6Ngaij56nyTv+FVvPJ4VJB7PDWP1l/CthXX3CSW14IGJlzPmHl/7+uQxHR++zpISpdGP7EpOTmb27Nl06tSJCRMmMGnSJC655BLy8/PJycmpmnrYtWtXAFJTU7npppt48803E1m2JDUa155ed9C1v49BlyTFV+92cFaHQ38gTwJOTIFLusSzKkmSmr5GH3YBDBgwgMLCQnbt2kVJSQk33ngjxcXFVVMYd+7cyZdffgnEpjg+//zzDBw4MIEVS1LjcW4G3JIde3zwm/7+x5d3hX/OjHdVkiSA+wdBlxNijw/+ziEEtE6GXwyBNo1+LoYkSY1Lk/zTuXv3bkpKSpg0aRIAmzZtYsyYMVRWVlJZWcmZZ57Jr371q8QWKUmNyHW9YGA6/G7tP6Y0RqHvSTC2B+R3hJCjuiQpIU5uBU9fAHM/hv8pg027oW0KXNwl9h7dsU2iK5QkqelpkmHXsmXLqKysrBrZ1bNnT4qLixNclSQ1bgM7xH4kSY1LWgp86/TYjyRJOn5NMuwaMmQI0Wg00WVIkiRJkiSpkWkS1+ySJEmSJEmSjoRhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYVeAFRQUkJmZSTgcZsKECTXWz5w5kwULFgAwd+5chg8fTjgc5uOPP67W7zvf+Q75+fmcf/75rF69GoDLL7+c/Px8RowYwebNm6moqOD6669v+J2SJEmS1OQdzblKXl4eaWlpfPLJJ4d8vtzcXJ555hkAnn/+eTIzM6udn0ydOpX169fX815IaqwMuwJu4sSJFBQU0K5dOwoLC6ute/HFFxkxYgQ7d+7k+eef59VXX6WgoIBu3bpV6/erX/2KhQsX8sADD/DYY48BMGfOHBYuXMh1113HrFmzSE5O5pRTTuGjjz6K275JkiRJarqO5FwF4A9/+ANXXXXVIZ/npZdeIj09vWr5oosu4pVXXqnW59prr+XXv/51PVYvqTEz7Gom+vXrx4YNG6qWt2zZQqtWrQiFQhQWFhKJRLjooou4+eabiUQi1bZNSUkBYMeOHfTr169a2549e8jOzgYgHA7z0ksvxWN31Ewd7hvA++67j9LS0kNuv2XLFgYNGkRaWlqt69etW0enTp0Ih8OMHz+effv2cfXVVxMOh3nwwQcBWLlyJdOmTaufHZIkSVKd5yoAHTt2rHP7Z599lmuuuaZquUOHDiQnJ1frc8YZZ7BkyZJ6rFpSY2bY1UwUFhaSlZVVtbxmzRq6d+8OwGeffcbmzZuZP38+J598MnPnzq2x/YgRI7jllls4++yzgdgfoKFDh/Lwww9XhV3du3evmuYoNZRDfQMYiURYtmwZvXr1OuS2bdu25ZVXXuHcc889ZJ/LLruMgoICnn76aebMmcPQoUMpKCjgvffe4/PPPyc7O5slS5YQjUbrdb8kSZKaq7rOVQ7nzTffZPDgwTXCrdrs3bv3mGuU1LQYdgXcjBkzCIfDdO7cmYEDB9bap127duTl5ZGUlMQFF1xASUlJjT6vvvoqc+bM4a677gIgPT2dt956i3vvvZeHHnqoAfdAqt1XvwF8//336d27d53bpKSkVBviXpuXX36ZvLw8nn32WdauXUv//v0ByM7O5t133wWgZ8+efPjhh8e5B5IkSc3bkZyrHM7jjz/utYMl1XD4+FtN2sSJE7nzzjtrtGdlZVFWVgbA2WefzdNPPw3A8uXL6dGjR7W+5eXlpKam0q5dO1q3bk0kEiESiZCcnEy7du1o1aoVAGVlZXWOqpHqU2FhIT/4wQ+qlktLS2scu0erU6dOlJSUEAqF+NrXvsYPfvADFi5cyPDhw3n99derwrT9oxj3T+uVJEnS0TuSc5XD+etf/8pVV13Fhg0bSEpKIi8v75Cjwlq2bHlc9UpqOgy7mqn09HR27doFQEZGBmeddRb5+fmccsopzJo1i40bNzJz5kxuv/12Ro8eze7duwmFQjz66KPs3LmTr3/96yQlJZGamsqTTz4JxK6nNHHixATulZqDGTNmsGDBAs4///xDfgO4YsUKbrrppmptF198MXfccUedz52amlr1OC8vjy5durBgwQIuuugiTjnlFDIyMo67fkmSJNXt4HMVgHHjxvGXv/yFjz76iLvuuosRI0Zw22238fOf/5w33ngDgCeffJLk5GS6d+/O/Pnz+elPf8ratWuZMGECTz31FKtWrTrm0WOSmh7DrgALh8OEw+FDrr/iiitYsGABI0eOZPLkyUyePLlqXceOHbn99tsBmDdvXo1tFy5cWG25oqKCzz77rNpce6khHOobwF69ejFnzhwAzjzzTAoKCo76uXfs2EFaWhrRaJTFixdzyy23MH36dKLRKBMmTOC8884DYqMYhw0bdlz7IUmS1JwdzbnKM888U2P9z3/+82rL1113XdXjUaNGMWrUqGrrn332WW644YbjqllS0+E1u5qx8ePHM3LkyHp5ruTkZGbMmFEvzyUdiwEDBtR6vbmvGjlyJMXFxYwcOZIPPviAjRs3Vt1p8a233mLw4MEMHTqUUaNGsW/fPsLhMCNGjOCqq66iTZs2QOyiqU5hlCRJajj1ea4CcM8999CtW7d6ez5JjZsjuyQ1GXV9A5iUlEROTg6lpaV1XjtuwYIFNdr2j2Ks7VvAr44QW7lyJYMGDaq6FbYkSZIkqXEx7JIUGLVNb6xv2dnZZGdnN/jvkSRJkiQdG6cxSpIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAVGkwm79u7dy9SpU+natSutW7dm+PDhFBUVEQqFeOGFFxJdXkJs3nPgcTSauDqk+rCr4sDj8srE1SFJkqTjt2PfgccVkcTVIal5ahJhVzQaZezYsfzmN7/hzjvv5E9/+hOZmZmMHj0agNzc3ARXGF9rtsEP34FL5h9oG/MXePHjxNUkHavt+2DaMhj18oG2i+fDIysMvSRJkpqaLeVwz9Lqn+0umQ+/KTH0khQ/yYku4Eg88cQTzJs3j6VLl9K3b18AwuEwmZmZpKen061btwRXGD+rtsJ33oTyCBw8mGv9Trh7KXy6C757RoKKk47Sjn1w/Rvw1+3Vj+ft++CpNbDs7/DIudCyRcJKlCRJ0hHaUg7XvQ4bd8HBudbf98JjJbBiKzx4DrQIJapCSc1FkxjZNW3aNMaNG1cVdAG0aNGCzMzMqlFde/bs4cYbb6RXr17079+fG264IVHlNphoFP5vcWy0S+Qr0xb3L/56NZR+GffSpGPym9U1g679osCSL+D36+JclCRJko7JL1fUDLoOtmgTzFsf15IkNVONPuwqLS1l7dq1jBkzpsa69evXV4VdP/7xj2nVqhWrV69m+fLl3HPPPfEutcEt/zt8tP3Qfzwg9h909ro4FSQdh/JK+J+y2oOu/ULAH9Z6TTpJkqTGbtte+POGw5+r/H5tvCqS1Jw1+mmMGzZsACAjI6Na+6pVqygrKyM3N5cdO3bw9NNP88knnxAKxcbEnnrqqUf1e8LhMElJjTv7S//a9+h8/X/W2ScCzHx1MXedMyw+RUnHqOVpvenzn8vr7BMFNuyCNu3TiezZGZ/CpHrS7/exu4ikprZKcCXS8fN4VtB4TNe/Nr2HcPp9i+rsEwFWfLGP1NS0+BQlqclr2bIl27dvP+rtGne6A3To0AGANWvWVLVFo1EmT55MJBIhNzeXjz76iA4dOnD33XczePBgwuEwb7zxRqJKbjiVFYftEo1GiR5BPynhjuI4jUa8Ur0kSVJjdqTnINGoV6mX1PAa/ciu7OxssrKymDJlCikpKaSlpTF9+nSKi4tp06YNffr0YenSpfz1r38lNzeXBx98kHfeeYfLL7+cNWvWcOKJJx7R7ykoKGDYsMY9GurjHXDlX+rukxQKMenyc/nu7eXxKUo6RpEoXLEANu4+dJ8koO9JsHi7F6JT0zN4buzf8nLfj9X0eTwraDym69/eytgdtbftO3SfJCCvSypLfN0lNbBGP7IrOTmZ2bNn06lTJyZMmMCkSZO45JJLyM/PJycnh6SkJLp160ZycjLXXHMNAEOGDOHkk09m9erVCa6+fnVLg6EZh/6PFiJ2Z5PR3eNZlXRskkJwTc+6+0Q4fB9JkiQlXssWMDaz7j4R4J8P00eS6kOjD7sABgwYQGFhIbt27aKkpIQbb7yR4uLiqovTn3zyyVx44YW88sorAKxevZrPPvuMrKysRJbdIP7vQOhyQs32JGLhwf2DIKN1vKuSjs03e8Ko02KPD34z2v/4mp5w0WnxrkqSJEnH4vrecN4psce1fbb7Xh84N+OrW0lS/Wv00xhrs3v3bkpKSpg0aVJV22OPPca3v/1tbrvtNlJSUpg5cybt27dPWI0NpUMreOqC2B0X/3tdbApYahJc1DkWDPRpl+gKpSPXIgT3DoJhp8buzLNiK4RCcFY6/HNPCHeMLUuSJKnxS0mCh4bAi+tjn+3WbIt9IT/klNi5ynkGXZLipEmGXcuWLaOysrJqZBdAz549KSgoSFxRcdQ2Bf5Pr9hPJBr7AyI1VUkhuKxr7CcajbUZcEmSJDVNyUmxy6qM7h47VwnhZztJ8dckw64hQ4YQ3X9W3MwZdClI/CAkSZIUHJ6rSEqUJnHNLkmSJEmSJOlIGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIk6bgUFBSQmZlJOBxmwoQJNdbPnDmTBQsWAHD//feTl5fHrbfeWqPf559/zujRo7nwwgt54oknAFizZg0XX3wxF154IXPnzgXgnnvu4YILLmDChAlUVFSwZcsWfvjDHzbgHqo5OZrjOS8vj7S0ND755JNDPl9ubi7PPPMMAM8//zyZmZlcf/31VeunTp3K+vXr63kvJKl5M+ySJEnScZs4cSIFBQW0a9eOwsLCautefPFFRowYwaZNm1iyZAmvv/46ycnJLF68uFq/n/70p/ziF7/gtdde44YbbgDg7rvv5vnnn+e1117jiiuu4G9/+xvFxcUsWrSIs88+mxdffJH09HS2bt3Kjh074ra/CrYjOZ4B/vCHP3DVVVcd8nleeukl0tPTq5YvuugiXnnllWp9rr32Wn7961/XY/WSJMMuSZIS4HAjB+677z5KS0vrfI5bb72VvLw87r///hrr1q1bR6dOnQiHw4wfP56ioiKGDRvG0KFDufPOOwFqbVu5ciXTpk2rhz1Uc9WvXz82bNhQtbxlyxZatWpFKBRi8eLF5OfnAzB8+HCKioqqbbt69WruuOMORo0aRUlJCXv37mX9+vWMHz+ef/qnf2LTpk2UlZXRt29fAPr3718VRAwZMoSCgoL47KSajbqOZ4COHTvWuf2zzz7LNddcU7XcoUMHkpOTq/U544wzWLJkST1WLUky7JIkKUEONXIgEomwbNkyevXqdchtFy9eTHJyMq+//jpLlixh06ZNNfpcdtllFBQU8PTTT5Obm8ubb77JW2+9RWFhIdu2bau1LTs7myVLlhCNRhtknxV8hYWFZGVlVS2vWbOG7t27A7B161ZOPPFEANq2bcvWrVurbfvGG29w77338uijj/KTn/yEzZs388EHH/DUU08xadIkHnjgAXr27Mnbb79NJBJh0aJFfPnllwB0796d1atXx2cn1WzUdTwfzptvvsngwYNrhFu12bt37zHXKEmqybBLkqQE++rIgffff5/evXvXuc0777zD8OHDAcjPz+e9996r0efll18mLy+PZ599lpSUFAAqKys57bTTaNOmTa1tAD179uTDDz+sl31T8zFjxgzC4TCdO3dm4MCBtfZp374927ZtA2D79u20b9++2vq+ffty+umn06tXL7788kvatWtH//79Oemkk8jLy6OkpISMjAxGjx7N8OHD2bRpExkZGQ28Z2qOjuR4PpzHH3+82rW5JEnxY9glSVKCfXXkQGlpKT169Khzm8ONkOnUqRMlJSXMnz+fxx9/nC+++IJZs2aRnZ1N+/btq0Ya1NbmCBkdi/0jFe+9995q7VlZWZSVlQEwaNAgFi1aBMBrr73GOeecU61vjx492Lx5M5s2baJNmzaccMIJtGrVivLycj744IOq/y9uuukmCgoK6N69O5deeikAZWVldY6GlI7GkRzPh/PXv/6Vq666ip///Oc8+OCDdW7XsmXL46pXklSdYZckSQlyJCMHVqxYQTgcrvbzs5/97LAjZFJTU2nTpg2tW7cmLy+Pjz76iG9961usWrWKTz/9lOXLlwPU2ibVp/T0dHbt2gXErm+Uk5NDXl4e5eXlDB48mI0bN/Lggw8CcOedd3LllVcyevRopk6dCsBtt93GiBEj+MEPfsCPf/xjAK688kpGjhzJrl27OO+88wB4++23CYfD8d9BNSsHH88A48aNY/78+VxzzTW8+uqrQOyYhdi03D//+c/cdttt3H777XTv3p358+czbtw4XnrpparrNa5ateqYR49Jkmp3+AnkkiSpQUycOLHqwvAH69WrF3PmzAHgzDPPrPWi2++++y7PPfccl19+OYsWLeLqq6+utn7Hjh2kpaURjUZZvHhx1Z3tkpKSaNu2bdVomdTU1GptEBshM2zYsHreWwXZ/iD2UK644goWLFjAyJEjmTp1alWQBbEA7PbbbwcgJyenauTXfiNHjmTkyJHV2vb//7Hfli1baN++PW3btj3OPZGO7nh+5plnaqz/+c9/Xm35uuuuq3o8atQoRo0aVW39s88+W/UeLUmqH47skiSpkRkwYAAlJSV19jn77LMpLy8nLy+PAQMGcOqpp1YbIfPWW28xePBghg4dyqhRoygqKiIcDnPBBRfQpUsXevXqxdy5c2u0QewCzP369Wvw/VTzMX78+BqBVX1KT0/noYcearDnlw5W38fzPffcQ7du3ert+SRJjuySJCkh6ho5kJSURE5ODqWlpXVeg+jRRx+ttnzwCJnaRg+MHTu2xvJX21auXMmgQYMIhUJHuiuSJElSo2LYJUlSI1Tb9MZ4yM7OJjs7OyG/W5IkSaoPTmOUJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCowmE3bt3buXqVOn0rVrV1q3bs3w4cMpKioiFArxwgsvJLo8SZKqRKMHHu+pSFwdUn37cm+iK5CO3+6D3pcPfr+WJAVHkwi7otEoY8eO5Te/+Q133nknf/rTn8jMzGT06NEA5ObmJrhCSZJiJ01/+hj+ueBA28iXYdoy+GJPwsqSjtn7W+D7bx9YHvln+Nd34MO/J64m6Vh9thvuez92HO937UL48yeJq0mS1DCSE13AkXjiiSeYN28eS5cupW/fvgCEw2EyMzNJT0+nW7duCa5QkiR4eAXM/AhCB7XtqYT/Xgevb4Lf5sEprRJVnXR0Fm2E29+Fgwe+RIE3P4PCz+AXQ+DcjERVJx2dT3fB/3kd/l4OkYPa12yDO5dA2Q747hkJK0+SVM+axMiuadOmMW7cuKqgC6BFixZkZmaSm5vLunXrGDhwYNVPjx49SE9PT2DFkqTmZvHmWNAF1cMBiJ1YfbY7NsJLagp2VcBP3oNINPZzsEgUKqMw5T0or0xMfdLRuu/9mkEXHFj+9Wr4wBGLkhQYjX5kV2lpKWvXruXhhx+usW79+vWMGTOGHj16sHTp0qr2SZMmUVHhRVIkSfHz+7WQFKoZDOwXARZuhE274dTWcS1NOmovfQK76wiyosC2ffDqp3Bp17iVJR2T9Tvgnc/r7pMEzF4H/U6KR0WSpIbW6MOuDRs2AJCRUX2c/KpVqygrK6txva69e/fy7LPP8vLLLx/V7wmHwyQlNYmBbpKkRuiMx9eRkt6pzj5RoO/Iq9i++MX4FCUdo843Ps5J+dcSapFyyD7Ryn3cdP+v+dt//WscK5OOXrvz/5luP3i6zj4R4L+L1vDAuX3r7CdJiq+WLVuyffv2o96u0ac7HTp0AGDNmjVVbdFolMmTJxOJRGqEXXPnzqVz586cddZZca1TktTMRb86OeaQHRu0DKleRCNUv/pcbULeyk5NQ+QI3589niUpMELRaON+V6+oqCA7O5t9+/bx4IMPkpaWxvTp0ykuLmbLli1s37692oisSy+9lIsvvpjvf//7R/T827ZtY/ny5fTv358TTzyxoXZDkhRw/74kdkevuk6pWoTgpVGQnhq3sqRj8qf1cFfx4ftNGwwjTmv4eqTjsXEXXL6g7q8akoDR3eHfBsSrKklSQ2r0I7uSk5OZPXs2nTp1YsKECUyaNIlLLrmE/Px8cnJyqgVdGzZsYOHChVx77bVH/Pwnnngiw4YNM+iSJB2XqzPrDrpCwEWnGXSpabjoNGiXcugPiknAyamQ3zGeVUnHpmOb2LFa14lPFLiqR5wKkiQ1uEYfdgEMGDCAwsJCdu3aRUlJCTfeeCPFxcU1pjA+9dRTXHbZZVVTHyVJipd+J8Et2bHHX/3jGgIy0+D2/vGuSjo2qS3gwXMgJanm8Zz0j/X/7xxIbhKfJCX4txzofELNyblJ/2i4rR/0ahf3siRJDaRJfkTZvXs3JSUlNcKuJ598km9/+9sJqkqS1Nxd1wt+MQTOOug7l/RUuL43/FcetGuZuNqko3VWB3j6gtjdFpP/EQi0TILLu8HMfO9ap6alQyt4Mg/+Ty9of9B78TknwyPnwjd7Jq42SVL9a/TX7KrNO++8w7nnnsu7777L4MGDE12OJEk17KmAvRFISzkwckBqqioisLMCTkh2NJeavkgUduyDli2gVYtEVyNJaghNMuySJEmSJEmSauN3c5IkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYPz/QzTh9vHKr5QAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADD7ElEQVR4nOzde3hU1b34//fkAiEkBAIiASEEAxi5C4JcIhEj9VJpUdFqOaIHa+ulrX6t1ar0aAVb6rdqtdZqpVWpqK2H71H78wJ4iCBGEQEFgZAoRERBBSGQhFtmfn+MREIg3MJMMrxfz5OHzFpr7/ns7XZm5bPXWjsQCoVCSJIkSZIkSTEgLtoBSJIkSZIkSfXFZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUMxKiHUBjsnUnlJRF572zW0BKYnTeW5IkSZIkqbEw2XUISsrgqnnRee/Hh0Lf1tF5b0mSJEmSpMbCaYySJEmSJEmKGSa7JEmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzHCB+qOs6PY8ylcUEkhIJBCfQFKHk2g/dhIt+pwZ7dAkSZIkSZJijiO7IqD92En0e24rvZ9cT/Pug/nonu9TVb452mFJkiRJkiTFHJNdERSX2JQ2Z40nuG0r2z4viXY4kiRJkiRJMcdkVwQFt1fy1czHiUtuQVL7rtEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6IdXp0+mzaBxZe1ZMmPOlOx6n2y7/g38cktoh1WVGzaDh9+DSVlEAxFO5rYtXUnLNsERZthVzDa0UhHZlcQVm4OX9NbdkY7GunIrdkKS7+G9ZXRjkRSY1G2I9yHLt4MVfahJemAGsUC9aFQiDFjxjB//nzuvPNOsrOzmTZtGqNHjwagX79+UY6wbu0vu5t2o38R7TCi6tNyeHg5vP75t0mujGZweTZc1BkCgaiGFzO+3g5/XgH/3xrY8U2Sq1UTuCQLrugKCY0mvS2Fk1xTP4JnP4YN28NlTeLgOx3guhxokxTd+KRDVfA5PFYEK8u+LRvYBq45CXqlRy8uSQ3X+spwH3rGWtj1TR/6uCT4YRe47ESIsw8tSfvUKJJdjz32GC+//DKLFy+mR48eAOTl5ZGVlUV6ejqdOnWKcoSqy+qt8J9zw6ON9hxktK4SJi+B0q1wU08TXkdq43a4ci58XlHzPH+9A/5SFB4Vc+9AiPc8qxEIhuCOhTDrs5rlO4LhZO67X8ETuSa81Hg8vxp+9wHs/RG84Cv40Tx48DQYeFw0IpPUUK2rgCvmhvt4e/btvtwGDyyD4jK4s599aEnal0YxzmPy5MmMHTu2OtEFEB8fT1ZWVvWorpUrVzJ48GC6devG4MGDKS4ujla42ss979dOdAHsHoH97CpYtDHSUcWeh5fXTnTtac56eHlNREOSDtvMz2onunYLAl9Uwh8/jGhI0mH7chv8fkn4971nHwUJJ3cnLHTauaSa/u/S2omuPf1/n4b7d5Kk2hp8squ4uJhVq1Zx4YUX1qpbs2ZNdbLrJz/5Cddddx0rV67kuuuu48c//nGkQ9U+rN4CCzfs/0sawsOvn18VsZBi0pad8MqnBzjPwD89z2ok/rWq7i+oIOGE2KbtkYpIOnwvlNa9TmWQ8FTduf7RKukbX1TCG+sO3Lf7l307SdqnQCgUatBLHBYUFHDGGWfwzjvvMHDgwOryFStW0KNHD6ZOnUp+fj7dunVjw4YNxMfHU1VVRevWrSkuLua44w48JyA1NZUdO3YcsF1y98GcOLHgSA7nsH10Rx4VRYVRee8jkTbsEjr9/KkDttu+7mNW/jQnAhHFpmZdB5J9z9wDtgtV7WLpD5pHICLpyPT4x9fENU0+YLuP/yuf8mUHvvalaOp0879oMeA8AnHx+20TClbx5fTJrH/urghGJqmhSu13Np1vO/BDuHZt2cDy/2wfgYgkKfJCoRAJCQmsW7eOFi0O7SF/DX5kV+vWrQEoKSmpLguFQtxyyy0Eg0H69evHmjVr6NChA/Hx4U5kfHw87du3Z80a52xFXdWug2sXrDq6ccS6gzzPIc+zGomDvVa9ptUoBHfBAe8tBryeJVUL2YeWJEKhEJWVlSxZsuSQt23wC9Tn5OSQnZ3NbbfdRmJiIikpKTzyyCMsWrSI5ORkunfvzqJFi47oPbZs2XJQ7RZvgKvmHdFbHbbZswvo2zo6730kvtoG586se/pGHHD50K7cvN35SIdrRxWcPQPKdu6/TVwAhnZoykLPsxqBm+cfePpG8wT4/L3ZJDX4bzId655fBb87QB8tEBfHS3+cQN9/TIhMUJIatK07YeRr3z5de1/igFE92rLYvp2kGDVv3jyGDRt2WNs2+JFdCQkJPP/882RkZDBu3DhuuOEGzjnnHIYPH07v3r2Ji4ujY8eOrF27lqqq8J2NqqoqPvvsMzp27Bjl6NUmCc5qX/vpU3u7qHMkooldTeJhTFbdbYIh+EGXyMQjHalLutSd6AK4IBMTXWoUzukIKQn773TFBaBrC+iTHtGwJDVgKYnwvU5196GDwMUH6P9J0rGqwSe7APr06UNhYSEVFRUUFRVxzTXXsGjRourF6du2bUvfvn155plnAHjmmWfo16/fQa3XpaPvll6Q/c302j2/sOO+eX1HX8hKjXxcseaqbjD4m0t+7/MM8KNuMLhtpKOSDs+ANnD9N8v4xe1xQe/+dUBr+MlJEQ9LOizNE+D/DoTEuNodrwDQqgn8fgAEDnRnSNIx5WcnQ69W4d9r9O2+eXFTT+jZKuJhSVKj0CiSXXurrKykqKioOtkF8Je//IWHHnqIbt268dBDD/GXv/wlihFqTy2awJRhcMPJ0H6P9abPbB8uH9UperHFksQ4uH8Q3NYbTtwjeTjoOPjjIPixiQE1Mld0hT+d9m0SF8KJ8Vt7wUODoen+1/qWGpwBbeDpPBid+W1Zqybh6/zp4dAxJWqhSWqgmiXAn4fAL3pCpz2eL5R7PPxlCFzqiH1J2q8G/zTGfXnnnXc47bTTePfddxkwYEDE3vdg1+wqXzmfNVNuhFCI1N4j6DB2Yp11oV07WXXfD9m5+QvS+p9HuwturrXPx4fSKNfs2pcBL4b/XTAqunHEOs+zYonXs2KJ17Okw+Fnh6Rjze41u958802GDh16SNs2ytVOBg0aREPO0SV36cdJk8NZsZUTzqSqooz45Bb7rdv83is0P2kIx4+6gY/v/QE7N39JYppTMCVJkiRJkg5Vo5zG2NAFEhIBCFVVkZjenrimyXXW7Vi/imaZvQBI6phDRfG7kQ9akiRJkiQpBpjsOko2vjGND6/PIb55SwLxCXXWNe3Qna1L3yAUCrH1w7lUVWyOUtSSJEmSJEmNW6OcxthQVH6yjE8evbZGWVq/s2l30a2kD7+MVrk/4OPfj6Fy9RKade5V3WbvupYDR1G2eAbFvz6LhLTjSEjzkXmSJEmSJEmHw2TXEWjW6WS6TyqoVR7cuZ24xKYE4uKIb5ZKoElSnXWB+Hgyr3mEUCjE6gfGkXLS4AgehSRJkiRJUuww2XUUbJ7/Il+8/DAEg6T0OJ2k9l3Z+fU6NsyeStPjO9eq2/HlJ6x64HICgTjann9DjTW+JEmSJEmSdPBMdh0FrYaOodXQMTXKElu1o90FN1fX76nJcZ32OUJMkiRJkiRJh8YF6iVJkiRJkhQzTHZJkiRJkiQpZpjskiRJkiRJUsxwza5DkN0CHh8avfc+FhQUFHDllVeSmZlJZmYmTz75ZI36qVOnkpGRQX5+Pvfccw+vvPIKffv25aGHHqrR7tVXX+Wuu+4iNTWVJ554gvbt23P++edTVlZGQkICzz33HG3atOHuu+9m5syZZGVlMWXKFMrKypg4cSL33XdfJA9bkiRJkiTVE5NdhyAlEfq2jnYUsW/8+PHccccd/OxnP6OwsJDBgwdX17300ks899xzrF+/noULFzJ37lxuvPFGFixYwIABA6rbTZ48mdmzZ1NSUsLkyZP54x//yPTp00lMTGTq1KlMmzaNMWPGsGjRIubMmcOf/vQnXnrpJUaPHs2mTZvYunUrKSkp0Th8SZIkSZJ0BJzGqAarZ8+erF27tvr1xo0bSUpKIhAIsGDBAoYPHw7AiBEjmD9/fo1tExISSEpKokePHtV1iYmJAGzbto2cnBxKS0vp0aMHAL169aKwsBCAQYMGUVBQcLQPT5IkSZIkHQWO7FKDVVhYyM9//vPq1yUlJWRmZgKwadMmWrQIz+1MTU1l06ZNNbbduXMnGzZsYNmyZWzcuBEIJ8u++93vsmXLFl555RWaNGnC22+/TTAYZM6cOWzevBmAzMxMli1bFoEjlCRJkiRJ9c2RXWpwpkyZQl5eHh06dKBv3777bNOyZUvKysoA2LJlCy1btqxRP3HiRC666CKeeeYZTj75ZADS09N56623mDhxIvfffz9t27Zl9OjRjBgxgvXr19O2bdujeViSJEmSJCkCTHapwRk/fjwFBQVMnDixRnl2djalpaUA9O/fnzlz5gAwe/ZsBg4cWKPtsGHDmD17NldccQWDBg0iGAyya9cuANLS0khKSgLg2muvpaCggMzMTM4991wASktL6dq161E9RkmSJEmSdHQ4jVGNRnp6OhUVFQC0a9eO3r17k5ubS+/evRkwYADr1q1j6tSp3HzzzfzmN7+hoKCADh068Oijj1JeXs53v/td4uLiaNq0KU888QQAF1xwAWVlZeTm5lYvhP/222/z4IMPRuswJUmSJEnSEQiEQqFQtIPQsWXAi+F/F4w69G2feuop2rdvT35+fv0G9Y2NGzdy9913c//99x+V/UfSkZxnqaHxelYs8XqWdDj87JB0rJk3bx7Dhg3jzTffZOjQoYe0rSO71KhcfvnlR3X/6enpMZHokiRJkiTpWOWaXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMcIH6g7R1J5SURTeG7BaQkhjdGCRJkiRJkhoyk10HqaQMrpoX3RgeHwp9W0c3BkmSJEmSpIbMaYySJEmSJEmKGSa7JEmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzHCB+qOs6PY8ylcUEkhIJBCfQFKHk2g/dhIt+pwZ7dAkSZIkSZJijiO7IqD92En0e24rvZ9cT/Pug/nonu9TVb452mFJkiRJkiTFHJNdERSX2JQ2Z40nuG0r2z4viXY4kiRJkiRJMcdkVwQFt1fy1czHiUtuQVL7rtEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6IdXp0+mzaBxZe1ZMmPOlOx6n2y7/g38cktoh1WVGzbFe0IpPpTFYK15eGfXcFoRyMduS+3wSdbodLPakkHqWJX+HPjq23RjkQ6cruC8Gk5fFYR7udJarwaxQL1oVCIMWPGMH/+fO68806ys7OZNm0ao0ePBqBfv35RjrBu7S+7m3ajfxHtMKLqi0qYshL+vebbsssK4PJsOPuEqIUlHZadQZhaAv9aBV9uD5e1bgpjOsN/ZEPT+KiGJx2yWZ/Bk8Ww/JvlJJvEwbknwFXdoF1ydGOT1DB9Wh7u2726Nvy9CNCrFVzRFYa3i25s0qHatgueKIH/Xg1f7wiXtWsGl2TBpV0godEMEZG0W6NIdj322GO8/PLLLF68mB49egCQl5dHVlYW6enpdOrUKcoRqi6fV8CVc2Hjdthz8EtJGdyxEEq3wo9Pilp40iHZGYQb34G3v6xZvmE7/KUI3v0KHjoNmpjwUiPx92J4eHnNod47gvDiJ/DGOvh7LpzQPGrhSWqAVm2B8W/C1p01+3Yffg03zYebeoYTBFJjsG0X/KQwfP3uOZhrXSX8cRks3gCTTzXhJTU2jeJ/2cmTJzN27NjqRBdAfHw8WVlZ1aO6fvGLX5CVlUUgEGDp0qXRClX7MOn92oku+Pb1X1fC0q8jHZV0eJ77uHaia0/vbYB/fBS5eKQjUbQ5nOiCfX9Gb94Bv1kc4aAkNXi/Xghbd+2/b3ff0vDNTKkxmFJcO9G1pzfWw/98EtGQJNWDBp/sKi4uZtWqVVx44YW16tasWVOd7Pr+97/PnDlzyMzMjHSIqsOn5eHEQF3LGcURng4mNXTBEDy3CgIHaPev1a7zoMbh+dV1dwSCwMIN4VEckgSwfFN4ynPwAN9zz6+ORDTSkdkZhOmr95/ognC/758fQ8i+ndSoNPhpjGvXrgWgbdu2NcpXrFhBaWlpdbJr2LBhh/0eqamp7Nixo842yd0Hc+LEgkPed/dJh77N/pxxRh4VRYX1tr9ISBt6MZ1umFpnmyAwfcFH/G7wyZEJ6hjR85/hlWKbNk2KciSxI75FG06esvaA7b7cBi3ad2HXxgO31cHxej46ut63kKSOPQ7Y7rSLrmJTQd2f5Tp4Xs9qzNK/8xM6XPXHOtuEgCmvvsNt/U+PTFDHCD876l+T9t3o/scldbYJAR9vhWYtWhLaURmZwCQBEAwe/lPAGvzIrtatWwNQUlJSXRYKhbjlllsIBoMNfnH6Y17oIC9Ob5WoMTikD1uvaTV8oYO9pv2MlrTbQfbtQn4PqjGwbyfFrAY/sisnJ4fs7Gxuu+02EhMTSUlJ4ZFHHmHRokUkJyfTvXv3I36PLVsOPD9j8Qa4at4Rv9URmT27gL6toxvDoVpXCefPrPurIQ74wWnZ3L59e6TCOiYMeDH873bPa70JheCi2eFHrO/vmg4QfnrP/M9WEXeg+Y46aF7PR8e9S8LTyA/U1X/v/03hhOZTIhLTscDrWY1ZSRn8oKDuNgHgunNP4/pfeI3XJz876t+uIJw3M/ygof2JA7qmwYItmyMWl6SwefPmHfYsvgY/sishIYHnn3+ejIwMxo0bxw033MA555zD8OHD6d27N3FxDf4QjmntmoUfP32gNWHGdI5QQNIRCATgB1l1J29DwA+6YKJLjcJFnQ98M2JIW5/GKOlb2S2gb3rdfbsAcEHnCAUkHYGEOBiTVXebIHDpAdpIangaRaaoT58+FBYWUlFRQVFREddccw2LFi1yCmMj8ave0KF57UW9d198/6cHdEuLdFTS4bmgM+S3D/++5zW9+/fhx8MldojUSGSlwi29wr/v3SEIAMc3gwl9IxyUpAbv7lOgddK++3YBwp8b7ZMjH5d0OMZlw2nHhX/fV9/uux3hvI6RjkrSkWoUya69VVZWUlRUVCPZ9bOf/YwTTjiBTz/9lPz8fHr0OPCCu4qM1knwRC5c2RXSEr8tP/U4eOg0uOzE6MUmHar4AEzqH07iZqV8W94pBX7ZCyafGr5LKDUWF2XBnwfDoOO+LWuRCJdnw1Onw3GugyxpLxnJMPV0+OGJ0HyPRVGGHg+PDoXzO0UvNulQJcbBA4PCN+A77JGkzW4RTtz+um94dL+kxqXBr9m1Lx988AFVVVU1kl0PPvggDz74YBSjgk8e+ymVqxbT4pRzyBhzW3V5cHslH02+kOC2cpoe34XOP/8729evZsUtg0nq0J0mbTqRdeNT+yyLFWlN4Noc+PFJsHUnNI2DpEZ59UnhhNeFneGCTDj1pXDZ82fYEVLjNfC48M/u9WBmnh2+ziVpf9okwQ094Kcnw6BvvgvvHxTdmKTDlRAXvgF/aZdv+3bThtu3kxqzRpluGDRoEKEG9mSo8uIFBOIS6P7buXz0u4vYuWk9iS2PB6Bs8QxScoaRMeY2Sh++msrSpcQlpZDW/zw6//TxGvvZV1ksiQ+EE19SLNizA2RnSLHERJekg+XnhWKJfTspdjjZpp6Ur3yH1N4jAEjtOZyKkveq65ocn0VwWzkAVdu2Ep8cXqCqbNFrFP0qlw0FT1e33VeZJEmSJEmSDk6jHNnVEFWVbyI+sycAcc1SqSrfVF2XlJHN1mVz+fC6HJK7nEKT4zoS3Lmdno8UAQGK7/wOaaecTWJ6Rq2yhBato3I8kiRJkiRJjZHJrkNU+ckyPnn02hplaf3OJr55S6oqygAIVm4hsd23q65v+N8naTXsEtqedx1r/vpzti5/i5ScIdX1KSfnsn3dRzTvNrBWmckuSZIkSZKkg2ey6xA163Qy3ScV1CovL36XjXOeoeXA89ny4RxaDbu4ui4UDJKQmg5AfGo6VeWbqKrcSnyzFEKhEBUlC2h73vX7LJMkSZIkSdLBM9lVT5p3PZUNrz9B0a9yadHvOyS2PJ6dX69jw+yptBl5FR/fewlfvvYoCc1bkXHRbWxZMpu1U28jkJBIqyEXkZieQdmiGbXKJEmSJEmSdPBMdtWjTj95uMbrxFbtaHfBzQB0u2tGjboW/UbSot/IA5ZJkiRJkiTp4Pk0RkmSJEmSJMUMk12SJEmSJEmKGSa7JEmSJEmSFDNcs+sgZbeAx4dGPwapPhQUFHDllVeSmZlJZmYmTz75ZI36qVOnkpGRQX5+Pi+++CIPPPAAwWCQp556ik6dOlW3+9GPfsTKlSupqqrib3/7G926deP888+nrKyMhIQEnnvuOVq2bMlPfvITHn/88UgfpiRJkiTpGGSy6yClJELf1tGOQqo/48eP54477uBnP/sZhYWFDB48uLrupZde4rnnnqO8vJxnn32W119/nUAgUGsff/7zn0lMTGTu3Ln85S9/4b777mP69OkkJiYydepUpk2bxs9+9jOOO+44PvroI0488cRIHqIkSZIk6RjkNEbpGNezZ0/Wrl1b/Xrjxo0kJSURCAQoLCwkGAxy1llncd111xEMBmtsm5iYCMDWrVvp2bNnjbJt27aRk5MDQF5eHq+88kokDqfBKSgoICsri7y8PMaNG1erftKkSRQXF+93+40bN9K/f39SUlL2Wb969WoyMjLIy8vj8ssvZ+fOnVx88cXk5eVx7733ArB8+XImT55cPwckSZIkSQ2cyS7pGFdYWEh2dnb165KSEjIzMwH44osv+Oqrr5gxYwZt2rThxRdfrLX9mWeeyfXXX8+pp54KhJMzQ4YM4cEHH6xOdmVmZrJy5coIHE3DNH78eAoKCkhLS6OwsLC6PBgM8sEHH9C1a9f9bpuamsrMmTM57bTT9tvmvPPOo6CggKeeeorp06czZMgQCgoKeO+99/jyyy/Jyclh4cKFhEKhej0uSZIkSWqITHZJx6gpU6aQl5dHhw4d6Nu37z7bpKWlkZubS1xcHKeffjpFRUW12rz++utMnz6dO++8E4D09HTeeustJk6cyP33338Uj6Dx2XsU3fvvv0+3bt3q3CYxMZH09PQ627z22mvk5uby9NNPs2rVKnr16gVATk4O7777LgBdunThww8/PMIjkCRJkqSGz2SXdIzaPdpo4sSJNcqzs7MpLS0F4NRTT2XZsmUALFmyhM6dO9dou337diCcFGvWrBnBYJBdu3ZVlyUlJQFQWlpa5+ilY8Xeo+iKi4trndNDlZGRQVFRETNmzODRRx+la9euvPHGG4RCIebOncvmzZsBR9dJkiRJOna4QL2kGtLT06moqACgbdu2nHLKKQwfPpzjjjuOadOmsW7dOqZOncrNN9/M6NGjqaysJBAI8PDDD1NeXs53v/td4uLiaNq0KU888QQQXrdq/PjxUTyq6JoyZQqzZs1i2LBh+x1Ft2zZMq699toaZWeffTa33nprnftu2rRp9e+5ubmccMIJzJo1i7POOovjjjuOtm3bHnH8kiRJktSYmOySjkF5eXnk5eXtt37UqFHMmjWL/Px8brnlFm655Zbqunbt2nHzzTcD8PLLL9fa9o033qjxeteuXXzxxRc1RjQda3Y/+XJvXbt2Zfr06QCcfPLJFBQUHPK+t27dSkpKCqFQiAULFnD99dfzyCOPEAqFGDduXPVTNktLSxk6dOgRHYckSZIkNQZOY5RUy+WXX05+fn697CshIYEpU6bUy75iTZ8+ffa5Dtre8vPzWbRoEfn5+SxdupR169ZVP2nxrbfeYsCAAQwZMoSRI0eyc+dO8vLyOPPMM7noootITk4Gwg8e2P3ETEmSJEmKZY7skqSjqK5RdHFxcfTu3Zvi4uI61zSbNWtWrbLdo+tGjhzJyJEja9TtPUJs+fLl9O/fn0AgcGjBS5IkSVIjZLJLkqJoX9Mb61tOTg45OTlH/X0kSZIkqSFwGqMkSZIkSZJihskuSZIkSZIkxQynMR6CrTuhpCw6753dAlISo/PekiRJkiRJjYXJrkNQUgZXzYvOez8+FPq2js57S5IkSZIkNRZOY5QkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihgvUH2VFt+dRvqKQQEIigfgEkjqcRPuxk2jR58xohyZJkiRJkhRzHNkVAe3HTqLfc1vp/eR6mncfzEf3fJ+q8s3RDkuSJEmSJCnmmOyKoLjEprQ5azzBbVvZ9nlJtMORJEmSJEmKOSa7Iii4vZKvZj5OXHILktp3jXY4kiRJkiRJMafRJLt27NjBhAkT6NixI82aNWPEiBHMnz+fQCDACy+8EO3w6vTZtAksvqwlS37UmYpV75N9x7+JT24R7bAUw4KhaEdwbAiF9v27JCn6dgZh03bYURXtSCRJewqFYOtOKNthH1pHT6NYoD4UCjFmzBjmz5/PnXfeSXZ2NtOmTWP06NEA9OvXL8oR1q39ZXfTbvQvoh2GjgHbquDZj+Gfq74t+4834LIT4ewOEAhEL7ZYUhWC/7cant3jPF/4v3BJF7gwExIazW0ESYo9pVvhqRJ45VPYEYT4AOS3h8uzoXtatKOTpGNXKAQvrQn/vbKyLFyW0QwuzoJLsqBJfHTjU2xpFMmuxx57jJdffpnFixfTo0cPAPLy8sjKyiI9PZ1OnTpFOUIp+ip3wbWFsOTrmuVFm2HCQlj6NfyipwmvI1UVgtsWwOufw56nck053LsE3vkCfn+qCS9JioYPv4Zr3grf/Al+U1YVgplr4X8/h/sHwmltoxqiJB2TQiGY+D688EnNPvS6SvjjMpi3Hv54GjQ14aV60ij+HJs8eTJjx46tTnQBxMfHk5WVRb9+/diwYQPnnnsu3bt3p1evXlxwwQV8+eWXUYxYirxHi8IJrb3t7uw/twreWBfRkGLS9NXhRBfAnqOud/8+Z33NEV+SpMioCsHN79ZMdO0WBHYF4ZYFULErGtFJ0rHttbXhRBfsuw+9YAP8vTjSUSmWNfhkV3FxMatWreLCCy+sVbdmzRr69etHIBDgl7/8JUVFRSxZsoQTTzyRW2+9NQrRStGxbRf8v9KaXxx7i8MkzJEKheCZj2vejdpbAHjuY9dNk6RIe3M9fLGtdqJrtxBQvgte/TSSUUmSIDx18UDJh+dXh9dblOpDg5/GuHbtWgDatq055nzFihWUlpbSr18/0tPTycvLq6477bTTeOSRRw76PVJTU9mxY8cB2yV3H8yJEwsOer8A3ScdWvv9OeOMPCqKCutlX4o9zbIHkP3beXW2CQLvrttB06apkQkqBsWntubkv31WZ5sQ8HklpLbPYtfGutvq4PX85zYAmjZNinIksc3zHBme56Oj3X/8jjbn/ZRA/P67t6GqXdz8p+e49KH/jGBksc9rOjI8z5HheT4K4hPo9Wz5AZtt2gGtu/Zl+6fLIxCUGoNg8PCznw1+ZFfr1q0BKCkpqS4LhULccsstBIPBWovTB4NBHnnkEUaNGhXROKXoOtiFuFyw64gc0oJnnmtJiqiD/oz281mSGiwXGFY9afAju3JycsjOzua2224jMTGRlJQUHnnkERYtWkRycjLdu3ev0f6nP/0pKSkpXH/99Qf9Hlu2bDmodos3wFV1D545ambPLqBv6+i8txq+8l3wndfC65TsTxzQq20i723fHrG4Yk0wBN+bFV5Is65ZisclwTuffUy839X1ZsCL4X+3e/0eVZ7nyPA8Hx2zPoNbF9TdJhCfwD3XXcYl//eyyAR1jPCajgzPc2R4no+OywqguKzuPnRKAnxZtMhF6lVt3rx5DBs27LC2bfAjuxISEnj++efJyMhg3Lhx3HDDDZxzzjkMHz6c3r17Exf37SH84he/oLi4mOeee65GuRTrmifA+R3rvlcdJPxYXx2+uABc0qXuL2mAMZ0x0SVJEZbXDtKb7r9zGwCS4uG8EyIZlSQJDtyHDgCjM30ao+pPo8gI9enTh8LCQioqKigqKuKaa65h0aJFNaYw3nbbbbz33nv8z//8D02bNo1itFJ0XJcDJ6bWTnjtfn3eCTCyfaSjij0/yILBx+2/fkBrGHti5OKRJIUlxMFv+4f/3buDG0d4Zszdp0BKYjSik6Rj23c7Qv43f4vs6++VnJZwdXeketMokl17q6yspKioqDrZ9eGHH/Lb3/6Wzz77jCFDhtC3b19Gjx4d5SilyEpJhMeHweXZ0GKPjvwJzeGXveC/+jkFvj4kxMF9g+D6nPB0xd3aNIWfnAQPngZNvCMlSVHRvw38PRfyMmp2ck9rC48NgTMyohaaJB3T4gMwqT/8nx6Qkfxtecsm8J/d4NEh0KzBL7KkxqRRXk4ffPABVVVV1cmuHj16EAodaGJR5K1/8QE2v/tvut09q0b5J4/9lMpVi2lxyjlkjLkNgC9ffZSv5/2TULCKbnfNJJDgbUcdupRE+OnJ4aTLF5UQHwfHJ5nkqm+JcXBFV/iP7PB5DgFtk8KJMElSdHVPg9+fClt2whmvhMsePC26MUmSwgmvy06EH3SBgS+Fy14daR9aR0ejTHYNGjSoQSa39hTatZPKVYtrlZcXLyAQl0D3387lo99dxM5N6wnt3E5l6RK63f165ANVTEqMgw7Nox1F7IsP1LwzJUlqOFK9byhJDVLcHjfiTXTpaPHSOko2FEylVe6ltcrLV75Dau8RAKT2HE5FyXuULZpBcFs5K+8YwWfP3BnhSCVJkiRJkmKHya6jIBQMUrbwNdJO+U6tuqryTcQntwAgrlkqVeWb2Ln5CwgE6Dbxf9m+fhUVHy+OcMSSJEmSJEmxoVFOY2woKj9ZxiePXlujLK3f2TTNyCZt4Kh9bhPfvCVVFWUABCu3kNjuROKT00jtORyA1B6ns21tEcld+h7V2CVJkiRJkmKRya4j0KzTyXSfVFCr/PN/TmLL0gI2FkylYtVivprxOG1GXgVA824D2TjnGVoOPJ8tH86h1bCLSWzVjo1zpgFQWbqE9H1Mf5QkSZIkSdKBOY3xKMi4+Ha6/WYmXe98leSsvrQZeRU7v17Huun30rzrqYR2bqfoV7kkZ/UhseXxJJ94CqGqXRTdnkdwewXNuw+K9iFIkiRJkiQ1So7sOsq63T0LgMRW7Wh3wc0AdPrJw7XadbzqgUiGJUmSJEmSFJMc2SVJkiRJkqSYYbJLkiRJkiRJMcNklyRJkiRJkmKGa3YdguwW8PjQ6L23JEnRVFBQwJVXXklmZiaZmZk8+eSTNeqnTp1KRkYG+fn53HPPPbzyyiv07duXhx56qEa7L7/8kquvvppNmzZx6aWXcvXVV1NSUsL111/P9u3bufHGGxk1ahR33303M2fOJCsriylTplBWVsbEiRO57777InnYilGHcj3n5uayaNEiVqxYwQknnLDP/fXr14+bbrqJsWPH8uyzz/KrX/2KM888k8cffxyACRMmcPXVV9OxY8ejfmySJB3rHNl1CFISoW/r6PykJEb76CVJgvHjx1NQUEBaWhqFhYU16l566SXOPPNM1q9fz8KFC5k7dy4JCQksWLCgRrvf/OY3PPDAA8yePZurr74agLvuuotnn32W2bNnM2rUKD7//HMWLVrEnDlzOPXUU3nppZdIT09n06ZNbN26NWLHq9h2MNczwL/+9S8uuuii/e7nlVdeIT09vfr1WWedxcyZM2u0+eEPf8hf//rXeoxekiTtj8kuSVKjV1BQQFZWFnl5eYwbN65W/aRJkyguLq5zHz/96U/Jzc3lnnvuqVW3evVqMjIyyMvL4/LLL2f+/PkMHTqUIUOGcMcddwDss2z58uVMnjy5Ho6w4enZsydr166tfr1x40aSkpIIBAIsWLCA4cOHAzBixAjmz59fY9uVK1dy6623MnLkSIqKitixYwdr1qzh8ssv53vf+x7r16+ntLSUHj16ANCrV6/qRMSgQYMoKCiIzEHqmFHX9QzQrl27Ord/+umnufTSS6tft27dmoSEmhMoTjrpJBYuXFiPUUuSpP0x2SVJign7G6ERDAb54IMP6Nq16363XbBgAQkJCcydO5eFCxeyfv36Wm3OO+88CgoKeOqpp+jXrx/z5s3jrbfeorCwkLKysn2W5eTksHDhQkKh0FE55mgqLCwkOzu7+nVJSQmZmZkAbNq0iRYtwvPvU1NT2bRpU41t33zzTSZOnMjDDz/M7bffzldffcXSpUt58sknueGGG/jtb39Lly5dePvttwkGg8yZM4fNmzcDkJmZycqVKyNzkDpm1HU9H8i8efMYMGBAreTWvuzYseOwY5QkSQfPZJckKabsPULj/fffp1u3bnVu88477zBixAgAhg8fznvvvVerzWuvvUZubi5PP/00iYnhueVVVVW0b9+e5OTkfZYBdOnShQ8//LBejq0hmDJlCnl5eXTo0IG+ffvus03Lli0pKysDYMuWLbRs2bJGfY8ePTjxxBPp2rUrmzdvJi0tjV69etGqVStyc3MpKiqibdu2jB49mhEjRrB+/Xratm17lI9Mx6KDuZ4P5NFHH+Wqq66q38AkSdIRMdklSYope4/QKC4upnPnznVuc6CRSBkZGRQVFTFjxgweffRRNmzYwLRp08jJyaFly5bVIzr2VRZrI5F2j6CbOHFijfLs7GxKS0sB6N+/P3PmzAFg9uzZDBw4sEbbzp0789VXX7F+/XqSk5Np3rw5SUlJbN++naVLl1b/97r22mspKCggMzOTc889F4DS0tI6R+lJh+JgrucD+fjjj7nooov4wx/+wL333lvndk2aNDmieCVJ0sEx2SVJigkHM0Jj2bJl5OXl1fj53e9+d8CRSE2bNiU5OZlmzZqRm5vLRx99xGWXXcaKFSv47LPPWLJkCcA+y44V6enpVFRUAOH1jXr37k1ubi7bt29nwIABrFu3jnvvvReAO+64gwsuuIDRo0czYcIEAG666SbOPPNMfv7zn/PLX/4SgAsuuID8/HwqKioYPHgwAG+//TZ5eXmRP0AdU/a8ngHGjh3LjBkzuPTSS3n99deB8DUL4Wm5r776KjfddBM333wzmZmZzJgxg7Fjx/LKK69UryO4YsWKwx49JkmSDs2BFxeQJKkRGD9+fPXC8Hvq2rUr06dPB+Dkk0/e5+Lm7777Ls888wznn38+c+bM4eKLL65Rv3XrVlJSUgiFQixYsKD6CYJxcXGkpqZWj0pq2rRpjTIIj0QaOnRoPR9tdOxOEO7PqFGjmDVrFvn5+UyYMKE6kQXhBNjNN98MQO/evatHfu2Wn59Pfn5+jbLd/91227hxIy1btiQ1NfUIj0Q6tOv5H//4R636P/zhDzVeX3HFFdW/jxw5kpEjR9aof/rpp6s/OyRJ0tHlyC5JUkzr06cPRUVFdbY59dRT2b59O7m5ufTp04fjjz++xkikt956iwEDBjBkyBBGjhzJ/PnzycvL4/TTT+eEE06ga9euvPjii7XKILzQdc+ePY/6cTYEl19+ea2EVX1KT0/n/vvvP2r7l/ZU39fz3XffTadOneptf5Ikaf8c2SVJavTqGqERFxdH7969KS4urnOtp4cffrjG6z1HIu1rlMaYMWNqvd67bPny5fTv359AIHCwhyJJkiTpCJnskiTFvH1Nb4yEnJwccnJyovLekiRJ0rHKaYySJEmSJEmKGSa7JEmSJEmSFDOcxniQtu6EkrLoxpDdAlISoxuDJEmSJElSQ2ay6yCVlMFV86Ibw+NDoW/r6MYgSZIkSZLUkDmNUZIkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZLlB/lBXdnkf5ikICCYkE4hNI6nAS7cdOokWfM6MdmiRJkiRJUsxxZFcEtB87iX7PbaX3k+tp3n0wH93zfarKN0c7LEmSJEmSpJhjsiuC4hKb0uas8QS3bWXb5yXRDkeSJEmSJCnmmOyKoOD2Sr6a+ThxyS1Iat812uFIkiRJkiTFnEaT7NqxYwcTJkygY8eONGvWjBEjRjB//nwCgQAvvPBCtMOr02fTJrD4spYs+VFnKla9T/Yd/yY+uUW0w5IkSZIkSTEqFIKqULSjiI5GsUB9KBRizJgxzJ8/nzvvvJPs7GymTZvG6NGjAejXr1+UI6xb+8vupt3oX0Q7DElqdN7+AqZ9/O3rMf8LY7Lg+52gSXz04oo1S7+GaR99+/q7M+HCzjCmM6QkRisq6fCsr4RnP4YXPvm2bPIHcFkX6JgSvbgkSYqUhRvCfbu568PJrhOah/t1F2ZCUqPIAh25RnGYjz32GC+//DKLFy+mR48eAOTl5ZGVlUV6ejqdOnWKcoSSpPr2t5Xw5xUQF/i2bPVW+P0SeP0z+ONpkGTC64i9vAbuXATscZ7XVcLDy8N1fx0KLZtGLTzpkHxUBlfPg7KdsOeN7P9eDf9eA38aDH3SoxWdJElH3z9XhfvLcQEIfvNluLYc7v8QXlsLjwyB5o0iE3RkGsU0xsmTJzN27NjqRBdAfHw8WVlZ1aO6vv/979OnTx/69etHbm4uixcvjlK0kqQjteCrcKILvv2Shm//eF24AR5dEfGwYs6n5XDnYghS8zzvVroVJr4f6aikwxMMwS/ehS17JbogfI1vr4L/8w5sq4pGdJIkHX0rNsG9S8K/76sPvXwT3L80wkFFSYNPdhUXF7Nq1SouvPDCWnVr1qypTnY9+eSTvP/++yxatIhf/OIX/Od//mekQ5Uk1ZPnPq77CyoETC+FbbsiFVFs+u/V4bUc9icIvLEO1lVEKiLp8L3zJawpD1+3+xIENu+EWZ9FMipJkiLnn6trDNavJQT8f5/C5h0RCiiKGvzgtbVr1wLQtm3bGuUrVqygtLS0OtmVlpZWXbd582bi4g4+j5eamsqOHXX/107uPpgTJxYc9D536z7p0LfZnzPOyKOiqLDe9idJDdXJT31FfLPUOtuU74KM/mdQseKtCEUVe7LvfZdmnXvX2SYE9Pnef7JpztORCeoY0POf2wBo2jQpypHElnZj76HNd28gEL//+c2hql38/IFnufBP4yMYWezzmo4Mz3NkeJ4jw/N8dJz0l49JbN2hzjY7g3Di8NFsWfhyhKI6fMHg/m5hHViDT3a1bt0agJKSEgYOHAiEF6y/5ZZbCAaDNRanv+qqq5gxYwahUIhXX301KvFKko5cIO7gFuM62Hbat0D8wXUDPM9qDMLX84EeORXyepYkxa6D7NtxDHwXBkKhuiYwRN+uXbvIyclh586d3HvvvaSkpPDII4+waNEiNm7cyJYtW2qN4po6dSrPPPMML79cf5nKxRvgqnn1trvD8vhQ6Ns6ujFIUiRc9SZ8sHH/05EAEgLw6kgXTz8Sdy2C/29N3ecZYNpw6JZ2gEY6aANeDP+7YFR044g1r3wKExYeuN0NJ8PY7KMfz7HEazoyPM+R4XmODM/z0XHjOzBvfd19uwDwYj5kJEcqqsM3b948hg0bxptvvsnQoUMPadsGv2ZXQkICzz//PBkZGYwbN44bbriBc845h+HDh9O7d+99Tlf8j//4D2bPns2GDRuiELEk6UiNyar7SzoOOKuDia4jdWHnA5/nXq1MdKlxGJEBLRLrXqskMQ6+60O8JUkx6oB96AAMads4El1HqsEnuwD69OlDYWEhFRUVFBUVcc0117Bo0aLqKYxbt25lzZo11e1feukl0tPTSU/32dKS1Bid1T78sy9xwPHN4OcnRzSkmNSzFYz7ZoTL3gmCOCA5Ae7oE+mopMPTNB5+c0q4I793BzeO8DV+ex9o2SQKwUmSFAGDj4PRmfuuiyP8HXhL3cu1xowGv2bXvlRWVlJUVMQNN9wAQHl5OWPGjKG8vJz4+HjS09N56aWXCATqurcnSWqo4gIwsT90T4NnP4avtofLm8TBOSfANSdBG9czrRfX50DH5vBkSfhJdhA+/yPawTU5kJkS3fikQzHseHh0CPxlBSzYY4D/yS3hR91h6PFRC02SpKMuEIBf9YYTU+EfH8G6ynB5QgBGdoBrT4J2x8CoLmikya4PPviAqqqq6pFdxx9/PG+//XaUo5Ik1af4AFzRFcaeCKu3hp8c07E5pCRGO7LYEgjA9zPhe53C57myCjKaQSuniKqR6tsa/jI03MHfsC18F7tD82hHJUlSZMQF4Add4OIsGPhSuOy170DaMTayuVEmuwYNGkRDXFf/k8d+SuWqxbQ45RwyxtxWXb512Zt8+vdfQCCOVkMu5Pjv31Rdt/7FB9j87r/pdvcsdm3ZSPF/ncW2tUX0e25rNA5BkhqchDjIbhHtKGJfIABZqdGOQqo/7ZqFfyRJOhbF7THR7VhLdEEjWbOrMSgvXkAgLoHuv51LxUcL2blpfXVdk+O70O2eOZz0+7fY9O6/CW6vACC0ayeVqxZXt4tvlkrXu2bSvNtpkQ5fkiRJkiQpJpjsqiflK98htfcIAFJ7Dqei5L3quiat2xOXGE6lBuLiIRA+7RsKptIq99LqdoGERBJSXVRfkiRJkiTpcJnsqidV5ZuITw7Ps4lrlkpV+aZabcoWz6RpxonENUkiFAxStvA10k75ToQjlSRJkiRJil2Ncs2uaKr8ZBmfPHptjbK0fmcT37wlVRVlAAQrt5DY7sQabXZ89Snrnv8tJ97+IgCbCqeTNnBUZIKWJEmSJEk6RpjsOkTNOp1M90kFtcrLi99l45xnaDnwfLZ8OIdWwy6urgvu3M7qP15Bp588Qnyz8DPct60tYsvSAjYWTKVi1WK+mvE4bUZeFanDkCRJkiRJiklOY6wnzbueSmjndop+lUtyVh8SWx7Pzq/XsW76vWx8Yxrb1iyj9JEfU3R7Hjs2rCXj4tvp9puZdL3zVZKz+lYnulZOyKdi1SJWTsinsnRplI9KkiRJkiSpcXFkVz3q9JOHa7xObNWOdhfcDECb/Cv3u123u2ft83dJkiRJkiQdGkd2SZIkSZIkKWaY7JIkSZIkSVLMcBrjQcpuAY8PjX4MkiRJkqTIKygo4MorryQzM5PMzEyefPLJGvVTp04lIyOD/Px87rnnHl555RX69u3LQw89VKPdq6++yl133UVqaipPPPEE7du35/zzz6esrIyEhASee+452rRpw913383MmTPJyspiypQplJWVMXHiRO67775IHrbUKJnsOkgpidC3dbSjkCRJkiRFy/jx47njjjv42c9+RmFhIYMHD66ue+mll3juuedYv349CxcuZO7cudx4440sWLCAAQMGVLebPHkys2fPpqSkhMmTJ/PHP/6R6dOnk5iYyNSpU5k2bRpjxoxh0aJFzJkzhz/96U+89NJLjB49mk2bNrF161ZSUlKicfhSo+E0RkmSpAamoKCArKws8vLyGDduXK36SZMmUVxcXOc+Hn30Uc4880zy8vLYuXNndfmrr75KXl4eeXl5tG7dmsWLF7Nz504uvvhi8vLyuPfeewFYvnw5kydPrt8Dk6QY0bNnT9auXVv9euPGjSQlJREIBFiwYAHDhw8HYMSIEcyfP7/GtgkJCSQlJdGjR4/qusTERAC2bdtGTk4OpaWl9OjRA4BevXpRWFgIwKBBgygoKDjahyc1eia7JEmSGqDx48dTUFBAWlpa9R85AMFgkA8++ICuXbvud9tPPvmEJUuW8Prrr1NQUFD9RxTA2WefTUFBAbNnz6ZLly706dOH6dOnM2TIEAoKCnjvvff48ssvycnJYeHChYRCoaN6nJLUGBUWFpKdnV39uqSkhMzMTAA2bdpEixbhNWhSU1PZtGlTjW137tzJhg0bePPNN9m4cSMQTpYNGTKEBx98kJycHLp06cLbb79NMBhkzpw5bN68GYDMzExWrlwZgSOUGjeTXZIkSQ3Y3qMH3n//fbp161bnNjNmzKC8vJwRI0Zw55137rPNu+++y4ABAwgEAqxatYpevXoBkJOTw7vvvgtAly5d+PDDD+vnQCQpBkyZMoW8vDw6dOhA375999mmZcuWlJWVAbBlyxZatmxZo37ixIlcdNFFPPPMM5x88skApKen89ZbbzFx4kTuv/9+2rZty+jRoxkxYgTr16+nbdu2R/OwpJhjskuSJKkB23v0QHFxMZ07d65zmy+++IJAIMD//u//smrVKhYvXlyrzQsvvMD3vvc9ALp3784bb7xBKBRi7ty5jiCQpP3YPep24sSJNcqzs7MpLS0FoH///syZMweA2bNnM3DgwBpthw0bxuzZs7niiisYNGgQwWCQXbt2AZCWlkZSUhIA1157LQUFBWRmZnLuuecCUFpaWufIXklhLlAvSZLUAE2ZMoVZs2YxbNiw/Y4eWLZsGddee22NsrPPPpu0tLTq9WJOP/10ioqKau1j9uzZ/Nd//RcAo0aNYsaMGZx11lkcd9xxjiCQpEOUnp5ORUUFAO3ataN3797k5ubSu3dvBgwYwLp165g6dSo333wzv/nNbygoKKBDhw48+uijlJeX893vfpe4uDiaNm3KE088AcAFF1xAWVkZubm51Qvhv/322zz44IPROkyp0TDZJUmS1ADtfuLX3rp27cr06dMBOPnkk/e5UPHChQuZNm0aAEuWLOHSSy+tUf/xxx9zwgkn0KRJEwDi4+N55JFHCIVCjBs3rvqPqtLSUoYOHVqfhyVJjdbuh3vsz6hRo5g1axb5+flMmDCBCRMmVNe1a9eOm2++GYBf//rX/PrXv66x7RtvvFFrf7s/63fbuHEjLVu2JDU19QiOQjo2OI1RkiSpEenTpw9FRUV1tjnllFPYtWsXeXl5VFRUMGjQINatW1f9pMU9pzBCeEH7vLw8zjzzTC666CKSk5OB8ILLPXv2PHoHI0kx5PLLLyc/P/+o7T89PZ3777//qO1fiiWO7JIkSWpg6ho9EBcXR+/evSkuLq5z3ZYHHnigxus9RxXceOONNeo6depUa4TY8uXL6d+/P4FA4JDjlyRJiiaTXZIkSY3MvqY31recnBxycnKO+vtIkiTVN6cxSpIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmOGaXYdg604oKYvOe2e3gJTE6Ly3JEmSJElSY2Gy6xCUlMFV86Lz3o8Phb6to/PekiRJkiRJjYXTGCVJkiRJkhQzTHZJkiRJkiQpZpjskiRJkiRJUsxwza6jrOj2PMpXFBJISCQQn0BSh5NoP3YSLfqcGe3QJEmSJEmSYo4juyKg/dhJ9HtuK72fXE/z7oP56J7vU1W+OdphSZIkSZIkxRyTXREUl9iUNmeNJ7htK9s+L4l2OJIkSZIkSTHHZFcEBbdX8tXMx4lLbkFS+67RDkeSJEmSJCnmNIpk144dO5gwYQIdO3akWbNmjBgxgvnz5xMIBHjhhReiHd4BfTZtAosva8mSH3WmYtX7ZN/xb+KTW0Q7LEmSJEmSpJjT4BeoD4VCjBkzhvnz53PnnXeSnZ3NtGnTGD16NAD9+vWLcoQH1v6yu2k3+hfRDiOqtlfBK5/C86uhdCs0jYczMuCSLMg271dvgiF4/TP45yoo2gzxARjcFi7pAn3Sox2ddOiWfg3PfgzzvoCqIHRNgzGd4awO4etbakzWVcK/Vn37+oLX4XudYHQmtGgSvbgk6VgXCsEb6+Bfq78t+8X88N8qpx4XtbAkHYEGn+x67LHHePnll1m8eDE9evQAIC8vj6ysLNLT0+nUqVOUI9SBVOyC6wvhg6/DQwmDQGUVvFAKL34Ck/pDfvtoR9n47QrCHQth1mffnmeAWZ/DjM/gxh7wwxOjGaF0aP61Cn6/BAKBcCIXYMlGeH8jzFwLk0+FhEYxPlkKJ26vKwx/J+72STk8tBz+uxQeGwrtmkUvPkk6VgVDMOl9eOETiNvjRtqc9VCwDn7UDX58UvTik3R4GvyfCZMnT2bs2LHViS6A+Ph4srKyao3quuuuuwgEAixdujTSYaoO/3cpLPk6/Htwj/Ig4S+XO96DT8ujEVlsebIknOiCvc7zN0mC+z+E976KeFjSYflgI0xeAiG+vYbh22v7jfXw+MpoRCYdum274OdvQ+Wu8DW9t3UVcMu7EQ9LkkR45skLn4R/r9Hn+Ob3v64Mj/qS1Lg06GRXcXExq1at4sILL6xVt2bNmhrJroULF/L222+TmZkZyRB1AJu2w8tr9t25h3B5VQj+e3UEg4pBu4LhqV51iePAbaSG4rlVB/6C+ucq2FEVkXCkI/LaZ7B5Z80bEXsKAh9ugg+/jmBQkiSCIXj6I6hrZYQ4YNpHkYpIUn1p0NMY165dC0Dbtm1rlK9YsYLS0tLqZNf27du57rrreOaZZ8jLyzvk90lNTWXHjh0HbJfcfTAnTiw4pH13n3Ro7ffnjDPyqCgqrJd9RVKL0y4g86Zn6mwTAv46ZwW/PKVPZIKKQUld+tF18tt1tgkCr3+yjaa5aZEJSjoCJz/55QEf5FG2E47vO5yKlXVf+1K0dfo/02gx8HsE4vff7QoFg5x9/d188fw9EYxMqh89/7kNgKZNk6IcSWzzPNe/Jsd3ofufltfZJgi8twGSmqcS2nXgvxl1cLyeI6Oxn+dgcH+3Cg+sQY/sat26NQAlJSXVZaFQiFtuuYVgMFid7Pr1r3/N2LFj6dy5czTCVB0CCYkH1S4uoelRjiS2BeIP7jwfbDsp2upKCtRol+Cq3moE4hPDi8/VKeT1LEkRdih944P9u0ZSw9CgR3bl5OSQnZ3NbbfdRmJiIikpKTzyyCMsWrSI5ORkunfvTmFhIQsWLOB3v/vdYb/Pli1bDqrd4g1w1bzDfpsjMnt2AX1bR+e9j0RJGfygoO42cQH4Tp8sPti+PSIxxaJNO+Ds12DX/uaLEh6end0ynvc8z2oExs2B5Zv2P+0Lwp8dKwtn0qZx3qjSMeSRFfC3lfuf0g8QiIvn8Xt+xcgnfxWxuKT6MuDF8L/b7WMcVZ7n+rdtF+S/BtsOsCxCu2bw7qaNB75voYPm9RwZjf08z5s3j2HDhh3Wtg16ZFdCQgLPP/88GRkZjBs3jhtuuIFzzjmH4cOH07t3b+Li4njjjTdYvnw5WVlZdO7cmU8//ZTvfOc7zJgxI9rhC8huAb1a1X2hBUNwUVbEQopJLZvAWR3qPs8h4GLPsxqJMZ0PnOg6ox0mutQofP8AD44OAGmJcEZGRMKRJH0jKQFGdap7zS4I90tMdEmNS4NOdgH06dOHwsJCKioqKCoq4pprrmHRokXVUxhvvfVWPvvsM1avXs3q1as54YQTeO211xg5cmSUI9duv+oNTeNrPsp3T9/tCAPbRDamWHR9DrRO2v//1ANaw/kH+INLaijOPgGGtN13XRzQMhF+3mPf9VJDk5EMPz05/PveX4WBb35+3Q8SG3yvTJJiz9XdoH3yvvvQAaBHS7jEG8ZSo9PoulWVlZUUFRXVeBKjGrZuafD33NoJrVZN4Loc+HVf75TUh+Obhc/ziIyaicXkePhhF/jjaf4hpcYjIQ7+76lweTY032PCfRwwvB08cXq4Yyo1Fpdnw519a1+3J6XBQ4PD17UkKfJaNg33ob9zAiTs0YdOioeLOsMjQ8IjwCQ1Lo3uf9sPPviAqqqq/Sa7Vq9eHdmAdFCyW8CfBsNnFTBqVrjs5ZEmX+pbu2bwu1Phq21w9jczeV/7DjRrdP+nS9AkHn52cviO67CXw2X/30g4zqmLaqS+2wnO7QgrNkPZDmjbDLqkRjsqSVJ6U7j7FLipBxSXhW/En5QGKa5JLzVaje5P4EGDBhEK1bXEa/SVr5zPmik3QihEau8RdBg7sc660K6drLrvh+zc/AVp/c+j3QU3RzH6o2vPO9omuo6ePdcxMtGlxm7Pu6kmutTYxQXg5JbRjkKStC8tm8Kpx0U7Ckn1wT+Dj4LkLv04aXL4sY0rJ5xJVUUZ8ckt9lu3+b1XaH7SEI4fdQMf3/sDdm7+ksQ0P2UlSZIkSZIOlWNrjoJAQni8a6iqisT09sQ1Ta6zbsf6VTTL7AVAUsccKorfjXzQkiRJkiRJMcBk11Gy8Y1pfHh9DvHNWxKIT6izrmmH7mxd+gahUIitH86lqmJzlKKWJEmSJElq3JzGeAQqP1nGJ49eW6Msrd/ZtLvoVtKHX0ar3B/w8e/HULl6Cc0696pus3ddy4GjKFs8g+Jfn0VC2nEkpLWN9KFIkiRJkiTFBJNdR6BZp5PpPqmgVnlw53biEpsSiIsjvlkqgSZJddYF4uPJvOYRQqEQqx8YR8pJgyN4FJIkSZIkSbHDZNdRsHn+i3zx8sMQDJLS43SS2ndl59fr2DB7Kk2P71yrbseXn7DqgcsJBOJoe/4NNdb4kiRJkiRJ0sEz2XUUtBo6hlZDx9QoS2zVjnYX3Fxdv6cmx3Xa5wgxSZIkSZIkHRoXqJckSZIkSVLMMNklSZIkSZKkmOE0xkOQ3QIeHxq99z4WFBQUcOWVV5KZmUlmZiZPPvlkjfqpU6eSkZFBfn4+99xzD6+88gp9+/bloYceqtHu1Vdf5a677iI1NZUnnniC9u3bc/7551NWVkZCQgLPPfccbdq04e6772bmzJlkZWUxZcoUysrKmDhxIvfdd18kD1uSJEk6bPahJakmR3YdgpRE6Ns6Oj8pidE++sgZP348BQUFpKWlUVhYWKPupZde4swzz2T9+vUsXLiQuXPnkpCQwIIFC2q0mzx5MrNnz+a+++5j8uTJAEyfPp033niDK664gmnTpvH555+zaNEi5syZw6mnnspLL71Eeno6mzZtYuvWrRE7XkmSJOlI2YeWpG+Z7FKD1bNnT9auXVv9euPGjSQlJREIBFiwYAHDhw8HYMSIEcyfP7/GtgkJCSQlJdGjR4/qusTEcMZw27Zt5OTkUFpaSo8ePQDo1atXdadg0KBBFBQUHO3DkyRJOiYUFBSQlZVFXl4e48aNq1U/adIkiouL97v9xo0b6d+/PykpKbXqXn31VfLy8sjLy6N169YsXrx4n+2XL19enbyJdfahJclklxqwwsJCsrOzq1+XlJSQmZkJwKZNm2jRIjy3MzU1lU2bNtXYdufOnWzYsIE333yTjRs3AuEv+iFDhvDggw+Sk5NDly5dePvttwkGg8yZM4fNmzcDkJmZycqVKyNwhJIkSceG/Y06CgaDfPDBB3Tt2nW/26ampjJz5kxOO+20WnVnn302BQUFzJ49my5dutCnT599ts/JyWHhwoWEQqH6PbAGyD60JJnsUgM0ZcoU8vLy6NChA3379t1nm5YtW1JWVgbAli1baNmyZY36iRMnctFFF/HMM89w8sknA5Cens5bb73FxIkTuf/++2nbti2jR49mxIgRrF+/nrZt2x7Nw5IkSTrm7T3q6P3336dbt251bpOYmEh6enqdbd59910GDBhAIBDYb/suXbrw4YcfHl7gjYB9aEn6lskuNTi77/xNnDixRnl2djalpaUA9O/fnzlz5gAwe/ZsBg4cWKPtsGHDmD17NldccQWDBg0iGAyya9cuANLS0khKSgLg2muvpaCggMzMTM4991wASktL67y7KEmSpMOz96ij4uJiOnfufMT7feGFF/je975XZ5tYH3lkH1qSvuXTGNVopKenU1FRAUC7du3o3bs3ubm59O7dmwEDBrBu3TqmTp3KzTffzG9+8xsKCgro0KEDjz76KOXl5Xz3u98lLi6Opk2b8sQTTwBwwQUXUFZWRm5uLoMHDwbg7bff5sEHH4zWYUqSJMWcKVOmMGvWLIYNG7bfUUfLli3j2muvrVF29tlnc+uttx5w/7Nnz+a//uu/6iPUmGMfWtKxyGSXGpTdC4zuz6hRo5g1axb5+flMmDCBCRMmVNe1a9eOm2++GYBf//rX/PrXv66x7RtvvFFrf9OnT6/xeuPGjbRs2ZLU1NQjOApJkiTtafz48dxxxx21yrt27VrdHzv55JMPa4Hzjz/+mBNOOIEmTZrU2a60tJShQ4ce8v4bA/vQklST0xjVqFx++eXk5+cftf2np6dz//33H7X9S5Ik6Vt9+vShqKjogO3y8/NZtGgR+fn5LF26lHXr1nHvvfcC+57CuHd7CC/U3rNnz/o/iEbAPrSkY40juyRJkiQdNXWNOoqLi6N3794UFxfXud7TrFmzapXtHo104403HrD98uXL6d+/P4FA4BAilyQ1Via7JEmSJEXNvqY31recnBxycnKO+vtIkhoGpzFKkiRJkiQpZpjskiRJkiRJUsww2SVJkiRJkqSY4ZpdB2nrTigpi24M2S0gJTG6MUiSJEmSJDVkJrsOUkkZXDUvujE8PhT6to5uDJIkSZIkSQ2Z0xglSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMcM2uo6zo9jzKVxQSSEgkEJ9AUoeTaD92Ei36nBnt0CRJkiRJkmKOI7sioP3YSfR7biu9n1xP8+6D+eie71NVvjnaYUmSJEmSJMUck10RFJfYlDZnjSe4bSvbPi+JdjiSJEmSJEkxx2RXBAW3V/LVzMeJS25BUvuu0Q5HkiRJkiQp5jSaZNeOHTuYMGECHTt2pFmzZowYMYL58+cTCAR44YUXoh1enT6bNoHFl7VkyY86U7HqfbLv+DfxyS2iHZYkSZIkSVLMaRQL1IdCIcaMGcP8+fO58847yc7OZtq0aYwePRqAfv36RTnCurW/7G7ajf5FtMOIql1BeGMdTC/9tuyhZXBhZ2ifHLWwpMO29Gv41yp4b0P4dd90GJMFfdKjG5d0ONZVwH+XwuufQcUu6JwCF3SGERmQ0Ghui0mKpJ1BmPUZTF/9bdmjK8KfHcclRSuq2BMMwZvr4b9Xf1v2h6UwpjN0SolWVJLU8DWKZNdjjz3Gyy+/zOLFi+nRowcAeXl5ZGVlkZ6eTqdOnaIcoeqyvQpufhfe+qLmUMKnSuCZj+EPA2Fw26iFJx2yvxfDw8vD13Pwm7IZn8Gra+FH3eDHJ0UzOunQvPsl3Dg//Fkd+qZs43ZYsAFObQP3D4SkRtFbkBQp5bvgZ2/D+xtr9u0eXwlPfwQPngZ9W0ctvJixKwh3LAwnFfc8z89+HL7hNqk/nNk+auFJUoPWKO7XTp48mbFjx1YnugDi4+PJysqqHtXVuXNnTjrpJPr27Uvfvn157bXXohWu9vLHZeFEF3ybGIDwH1U7g3DT/PCoAqkxKPg8nOiCmtdz8JsswV9Xwsy1EQ9LOixfbQsnunbskeiCb6/tBV/BHz6MRmSSGrJ73ocPNoZ/37tvt60Kfv4ObN4Rjchiy19XhhNdUPs8V4Xgtvdg1ZZoRCZJDV+DT3YVFxezatUqLrzwwlp1a9asqTGF8fnnn2fx4sUsXryY73znO5EMU/uxZSf8T+n+63cnvKbX0UZqSP7xUd0fnHHA1I8iFY10ZP6nNPyHaXA/9SHgpU9g0/ZIRiWpIVtfGb6pE9pPfZDwyK+X1kQyqtizrQqe+3j/9SEgFIJ/ropYSJLUqDT4iQlr14aHSLRtW3Oe24oVKygtLa2X9bpSU1PZsaPu20/J3Qdz4sSCQ95390mHvs3+nHFGHhVFhfW2v0hoMfB7ZN78zzrbBEMh/vy/y7mxb8Nee62x6fnPbQA0berCGfUlLrkFPZ78ss42QWDZJkg+7gSqyupuq4Pn9Xx0nPi7Qpp16UcgENhvm10h6Hbu5Wx+87kIRiapoWo14kpOuOYvdbYJhYJM+tc8xv9XfoSiij3Ne+bR5b/qnqkSBKYt/Ixfn5oVmaCkemTfLjIa+3kOBvd3S/bAGvzIrtatwxP+S0pKqstCoRC33HILwWCwRrLrhz/8Ib179+baa69l06ZNkQ5V+xDXpNkB2wQCAeKaukq9Gr64xIP/kjiYa1+KtrimyXUmuqrbeT1L+sbB9e3iCNi3OyIH+7kb8PNZkvapwY/sysnJITs7m9tuu43ExERSUlJ45JFHWLRoEcnJyXTv3h2AuXPn0rFjR7Zv384NN9zA9ddfzz/+8Y+Deo8tWw482X3xBrhq3hEdyhGbPbug0S32uXwT/MecutvEASN6deaD7c6TqU8DXgz/u93zWm92BWHka1C2s+52yfGw8ZNimsRHJq5jgdfz0fHLd6Fg3bdrzu3Pa08/Sp/0RyMTlKQG7e0v4Pq3624TB1yc1587/cw+bGu2wuj/rbtNHNC/YysWe57VCNm3i4zGfp7nzZvHsGHDDmvbBj+yKyEhgeeff56MjAzGjRvHDTfcwDnnnMPw4cPp3bs3cXHhQ+jYsSMATZs25dprr2XevChnpgTASWnQrUXdF1oQuKhzhAKSjkBCHIzOhLrGwQSA72ViokuNwoWd6050xQFZKdC7VaQiktTQDTwOMprV/V0YBC7IjFREsaljCgxofRB9aGcwStI+NfhkF0CfPn0oLCykoqKCoqIirrnmGhYtWlQ9hbG8vJzNmzcD4SmOzz77LH379o1ixNotEIBbe0N83P4vtrx2MKTtfiqlBuY/sqFD8r6v5zigXTO4smuko5IOz8A2MLLDvuvigLgA/KpP+LNckiD8uXD7N58L+/toGNUJepkkP2I39YSm8fvvQw9sA2e1j2hIktRoNIpk194qKyspKiqqTnatX7+evLw8evfuTc+ePVm5ciV//vOfoxylduudDo8NgZNa1ixPiof/OBF+NyDccZIag5ZNYMowyMuo+QEaAHLbwd9yIb1ptKKTDk0gAL/pF07QJu81GrFrC3hkCJzSyKbPSzr6TmsLfzoNuqTWLG+eAFd3/zYZpiPTNS3c5+iVXrO8SRyM6Qz3DQqPOpck1dbg1+zalw8++ICqqqrqZFeXLl1YtGhRlKNSXXqlw1Onw8rNULo1nOjq3waSG+UVqGNd6yT4/anwRSWcOzNc9tJZ4VFdUmOTEAfX5cB/doXcl8Nl/xgenoYuSfsz8Dh4Ng+Wb4a15eE+Xf824T6e6k+3bxJeH28J/yTGQf/WkJIY7cgkqWFrlKmGQYMGEQodYDXdKPjksZ9SuWoxLU45h4wxt1WXB7dX8tHkCwluK6fp8V3o/PO/s339albcMpikDt1p0qYTWTc+tc+yWNMtLfwjxYK2eyS3THSpsWu2R4/ARJekgxEIwMktwz86urqk1h5JJ0nav0aZ7GqIyosXEIhLoPtv5/LR7y5i56b1JLY8HoCyxTNIyRlGxpjbKH34aipLlxKXlEJa//Po/NPHa+xnX2WSJEmSJEk6OM7yriflK98htfcIAFJ7Dqei5L3quibHZxHcVg5A1batxCeHb5mXLXqNol/lsqHg6eq2+yqTJEmSJEnSwXFkVz2pKt9EfGZPAOKapVJVvqm6Likjm63L5vLhdTkkdzmFJsd1JLhzOz0fKQICFN/5HdJOOZvE9IxaZQktXBlYkiRJkiTpYJnsOkSVnyzjk0evrVGW1u9s4pu3pKqiDIBg5RYS251YXb/hf5+k1bBLaHvedaz568/ZuvwtUnKGVNennJzL9nUf0bzbwFplJrskSZIkSZIOnsmuQ9Ss08l0n1RQq7y8+F02znmGlgPPZ8uHc2g17OLqulAwSEJq+JnB8anpVJVvoqpyK/HNUgiFQlSULKDtedfvs0ySJEmSJEkHz2RXPWne9VQ2vP4ERb/KpUW/75DY8nh2fr2ODbOn0mbkVXx87yV8+dqjJDRvRcZFt7FlyWzWTr2NQEIirYZcRGJ6BmWLZtQqkyRJkiRJ0sEz2VWPOv3k4RqvE1u1o90FNwPQ7a4ZNepa9BtJi34jD1gmSZIkSZKkg+fTGCVJkiRJkhQzTHZJkiRJkiQpZjiN8SBlt4DHh0Y/Bqk+FBQUcOWVV5KZmUlmZiZPPvlkjfqpU6eSkZFBfn4+L774Ig888ADBYJCnnnqKTp06Vbf70Y9+xMqVK6mqquJvf/sb3bp14/zzz6esrIyEhASee+45WrZsyU9+8hMef/zxSB+mJEmSJOkYZLLrIKUkQt/W0Y5Cqj/jx4/njjvu4Gc/+xmFhYUMHjy4uu6ll17iueeeo7y8nGeffZbXX3+dQCBQax9//vOfSUxMZO7cufzlL3/hvvvuY/r06SQmJjJ16lSmTZvGz372M4477jg++ugjTjzxxEgeoiRJkiTpGOQ0RukY17NnT9auXVv9euPGjSQlJREIBCgsLCQYDHLWWWdx3XXXEQwGa2ybmJgIwNatW+nZs2eNsm3btpGTkwNAXl4er7zySiQOp8EpKCggKyuLvLw8xo0bV6t+0qRJFBcX73f7jRs30r9/f1JSUvZZv3r1ajIyMsjLy+Pyyy9n586dXHzxxeTl5XHvvfcCsHz5ciZPnlw/ByRJkiQdZUfah66srOTcc89l+PDhXHnllbXq9+5jz58/n6FDhzJkyBDuuOMOwD50Y2eySzrGFRYWkp2dXf26pKSEzMxMAL744gu++uorZsyYQZs2bXjxxRdrbX/mmWdy/fXXc+qppwLhL44hQ4bw4IMPVie7MjMzWblyZQSOpmEaP348BQUFpKWlUVhYWF0eDAb54IMP6Nq16363TU1NZebMmZx22mn7bXPeeedRUFDAU089xfTp0xkyZAgFBQW89957fPnll+Tk5LBw4UJCoVC9HpckSZJ0tBxJH3rGjBkMGzaMN954g8TERJYuXVqjfu8+dr9+/Zg3bx5vvfUWhYWFlJWV2Ydu5Ex2SceoKVOmkJeXR4cOHejbt+8+26SlpZGbm0tcXBynn346RUVFtdq8/vrrTJ8+nTvvvBOA9PR03nrrLSZOnMj9999/FI+g8dl7FN37779Pt27d6twmMTGR9PT0Otu89tpr5Obm8vTTT7Nq1Sp69eoFQE5ODu+++y4AXbp04cMPPzzCI5AkSZIi63D60FlZWZSXlwPhWShpaWk16vfuY++enVJVVUX79u1JTk4G7EM3Zia7pGPU7jslEydOrFGenZ1NaWkpAKeeeirLli0DYMmSJXTu3LlG2+3btwPhpFizZs0IBoPs2rWruiwpKQmA0tLSOu+8HCv2HkVXXFxc65weqoyMDIqKipgxYwaPPvooXbt25Y033iAUCjF37lw2b94MOLpOkiRJjdPh9KGzs7OZO3cuOTk5BAIBOnbseMD3mTZtGjk5ObRs2ZKEhPDy5vahGy8XqJdUQ3p6OhUVFQC0bduWU045heHDh3Pccccxbdo01q1bx9SpU7n55psZPXo0lZWVBAIBHn74YcrLy/nud79LXFwcTZs25YknngDCc+7Hjx8fxaOKrilTpjBr1iyGDRu231F0y5Yt49prr61RdvbZZ3PrrbfWue+mTZtW/56bm8sJJ5zArFmzOOusszjuuONo27btEccvSZIkRdqR9KHT0tK45JJLuO666/j5z3/OW2+9xZAhQ+p8v8suu4wf/OAHjBkzhiVLllTPllDjZLJLOgbl5eWRl5e33/pRo0Yxa9Ys8vPzueWWW7jllluq69q1a8fNN98MwMsvv1xr2zfeeKPG6127dvHFF1/UuBtzrNn95Mu9de3alenTpwNw8sknU1BQcMj73rp1KykpKYRCIRYsWMD111/PI488QigUYty4cdVP2SwtLWXo0KFHdBySJElSpBxJH/rhhx+unqaYnp7Opk2b6nyv7du307RpU+Li4khNTa0xQ8U+dOPkNEZJtVx++eXk5+fXy74SEhKYMmVKvewr1vTp02ef66DtLT8/n0WLFpGfn8/SpUtZt25d9ZMW33rrLQYMGMCQIUMYOXIkO3fuJC8vjzPPPJOLLrqoer2BkpKS6idmSpIkSY3VwfShL7vsMv7+97+Tl5fH4sWLOeuss2r0oaFmH/v3v/89eXl5nH766ZxwwgnVS7DYh268HNklSUdRXaPo4uLi6N27N8XFxXWuaTZr1qxaZbtH140cOZKRI0fWqNv77tby5cvp378/gUDg0IKXJEmSouBI+9CtWrVixowZNcr2nKECtfvYEyZMqPHaPnTjZrJLkqJoX0Oz61tOTg45OTlH/X0kSZKkSLAPrQNxGqMkSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZrtl1CLbuhJKy6Lx3dgtISYzOe0uSJEmSJDUWJrsOQUkZXDUvOu/9+FDo2zo67y1JkiRJktRYOI1RkiRJkiRJMcNklyRJkiRJkmKGyS5JkiRJkiTFDJNdkiRJkiRJihkuUH+UFd2eR/mKQgIJiQTiE0jqcBLtx06iRZ8zox2aJEmSJElSzHFkVwS0HzuJfs9tpfeT62nefTAf3fN9qso3RzssSZIkSZKkmGOyK4LiEpvS5qzxBLdtZdvnJdEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6Id3kEJbq/kq5mPE5fcgqT2XaMdjiRJkiRJUsxpFGt2hUIhxowZw/z587nzzjvJzs5m2rRpjB49GoB+/fpFOcK6fTZtAuv+NZFAQlOSOp5M9h3/Jj65RbTDUoxatgmeX/3t64eXwwWZkJEcrYhi0+qt8N+rv339+yVwUWfokhqtiCQ1dBW74NVP4bW1sGkHtGsG53eCvHaQ0GhuP0qSdPg+LYfppd++nvR+uA/dPS1qISlGNYpk12OPPcbLL7/M4sWL6dGjBwB5eXlkZWWRnp5Op06dohxh3dpfdjftRv8i2mEoxoVC8NByeKqk5pDNJ4phaglM7A/57aMWXkz516pwcmtPz6+Cf66C/9MDLjsxOnFJarg+LYefvAXrKiEAhIBVW2DeF9CrFTx4GqQmRjtKSZKOnpfXwJ2Lw3+37PZCKfy/Uri6e/hHqi+N4j7i5MmTGTt2bHWiCyA+Pp6srKzqUV3btm3jmmuuoWvXrvTq1Yurr746WuFKUfH/SsOJLoDgHuUhoCoEt78HRT4X4Yi9/QVMXhI+r3t8T1ef8/s+hDnrohCYpAZrVxCuK4QvtoVf7/7s2P25sfRrmLAwGpFJkhQZSzbCfy2CYGjffejHisLJMKm+NPhkV3FxMatWreLCCy+sVbdmzZrqZNcvf/lLkpKSWLlyJUuWLOHuu++OdKhS1ARD8ERJeLTAvoQI30F59uNIRhWb9h45t7c4vk06ShJAwTpYWxH+rN6XEPDm+vBIL0mSYtE/PoLA/v5YIfx3zBMlNUd9SUeiwU9jXLt2LQBt27atUb5ixQpKS0vp168fW7du5amnnuLTTz8l8M3/Qccff/xBv0dqaio7duw4YLvk7oM5cWLBwQdfj844I4+KosKovLcavqROPen6h/fqbBME/mflVu45rXVkgopBcUkp9Ji6oc42QWDxRkhu056qLXW31cHr+c/wkJimTZOiHEls8zwfHR1//iRpgy8iEL//blcoFCT3ql/z5f/cG8HIJEmKgECAntO2EEjY/3z9EPDxFmiRmcOO9d6hry+NvW8XDAYP3Gg/GvzIrtatw3+Yl5R8O1QiFApxyy23EAwG6devHx999BGtW7fmrrvuYsCAAeTl5fHmm29GK+Qauk8qcL0uHXVxSSkH165ps6McSWyLS2p+8G2bHnxbSbEtLiml7tvZAMEQcc0O7rNckqTGJJDQpM5E154Opb8t1aXBj+zKyckhOzub2267jcTERFJSUnjkkUdYtGgRycnJdO/encWLF/Pxxx/Tr18/7r33Xt555x3OP/98SkpKaNHiwE893LLl4OYNLN4AV8070iM6PLNnF9DXATnaj6+2wTkzas5/31sA6JASz3vbt0cqrJizKwhnvgrlu+pulxQPX31STFJ8ZOI6Fgx4Mfzvdq/fo8rzfHTctzQ8jbyue5OB+Hge+s2tfO+JWyMWlyRJkfKd12DDAboX8QH4ZOkC0ppEJqZjQWPv282bN49hw4Yd1rYNfmRXQkICzz//PBkZGYwbN44bbriBc845h+HDh9O7d2/i4uLo1KkTCQkJXHrppQAMGjSINm3asHLlyihHL0VGmyQYdjzE1TFwIET4sb46fAlxMKrT/tdGg/CH6nc7YqJLUrXvZ9ad6AJoFg9n+cRcSVKMurBz3fVxhJ8cb6JL9aXBJ7sA+vTpQ2FhIRUVFRQVFXHNNdewaNGi6sXp27RpwxlnnMHMmTMBWLlyJV988QXZ2dnRDFuKqOtzoGncvv+nDgBdUmF0ZqSjij3jssPJxX2d5zigZVO4smuko5LUkHVJhYuz6m5zQw9IbvDj7SVJOjw/yIKOzfffh05OgB93j3RUimWNItm1t8rKSoqKiqqTXQB/+ctfuOeee+jVqxc/+MEPmDp1Ki1btoxekFKEndgCHh8GXfeauRsATj8eHhsCKQc3VV51aJMEfxsGp+xjWnGf9HDd8S6NJmkvv+gJP+pWe9RnqyYwoe+B73hLktSYtWgCfx0Kg9vWrstpCX/LhU4uXal61CjvIX7wwQdUVVXVSHZ16dKFgoKC6AUlNQDd0+DpPPjwa1hZFp73PqANtE+OdmSxJSMZ/jIUVm2B9zeGy3q1CiccJWlf4gLw45PgP7Lh9JfDZfcPDHf6ExrlrUdJkg5NmyT442nwaTm8twGCoXCi66S0aEemWNQok12DBg0iFKprKe6GYf2LD7D53X/T7e5ZNco/eeynVK5aTItTziFjzG0AfPnqo3w975+EglV0u2vmQT+tQtqXHq3CPzq6slLDP5J0sPacqpjbLnpxSJIULSc0D/9IR1OjTHY1BqFdO6lctbhWeXnxAgJxCXT/7Vw++t1F7Ny0ntDO7VSWLqHb3a9HPlBJkiRJkqQY4sD5o2RDwVRa5V5aq7x85Tuk9h4BQGrP4VSUvEfZohkEt5Wz8o4RfPbMnRGOVJIkSZIkKXaY7DoKQsEgZQtfI+2U79SqqyrfRHxyeGGfuGapVJVvYufmLyAQoNvE/2X7+lVUfLw4whFLkiRJkiTFBqcxHoHKT5bxyaPX1ihL63c2TTOySRs4ap/bxDdvSVVFGQDByi0ktjuR+OQ0UnsOByC1x+lsW1tEcpe+RzV2SZIkSZKkWGSy6wg063Qy3ScV1Cr//J+T2LK0gI0FU6lYtZivZjxOm5FXAdC820A2znmGlgPPZ8uHc2g17GISW7Vj45xpAFSWLiF9H9MfJUmSJEmSdGBOYzwKMi6+nW6/mUnXO18lOasvbUZexc6v17Fu+r0073oqoZ3bKfpVLslZfUhseTzJJ55CqGoXRbfnEdxeQfPug6J9CJIkSZIkSY2SI7uOsm53zwIgsVU72l1wMwCdfvJwrXYdr3ogkmFJkiRJkiTFJEd2SZIkSZIkKWaY7JIkSZIkSVLMcBrjIchuAY8Pjd57S5IUTQUFBVx55ZVkZmaSmZnJk08+WaN+6tSpZGRkkJ+fzz333MMrr7xC3759eeihh2q0+/LLL7n66qvZtGkTl156KVdffTUlJSVcf/31bN++nRtvvJFRo0Zx9913M3PmTLKyspgyZQplZWVMnDiR++67L5KHHVGHco5zc3NZtGgRK1as4IQTTtjn/vr168dNN93E2LFjefbZZ/nVr37FmWeeyeOPPw7AhAkTuPrqq+nYseNRPzZJkqRIcWTXIUhJhL6to/OTkhjto5ckCcaPH09BQQFpaWkUFhbWqHvppZc488wzWb9+PQsXLmTu3LkkJCSwYMGCGu1+85vf8MADDzB79myuvvpqAO666y6effZZZs+ezahRo/j8889ZtGgRc+bM4dRTT+Wll14iPT2dTZs2sXXr1ogdbzQczDkG+Ne//sVFF1203/288sorpKenV78+66yzmDlzZo02P/zhD/nrX/9aj9FLkiRFn8kuSVKjV1BQQFZWFnl5eYwbN65W/aRJkyguLq5zHz/96U/Jzc3lnnvuqVW3evVqMjIyyMvL4/LLL2f+/PkMHTqUIUOGcMcddwDss2z58uVMnjy5Ho6w4enZsydr166tfr1x40aSkpIIBAIsWLCA4cOHAzBixAjmz59fY9uVK1dy6623MnLkSIqKitixYwdr1qzh8ssv53vf+x7r16+ntLSUHj16ANCrV6/qpM+gQYMoKCiIzEFGWV3nGKBdu3Z1bv/0009z6aWXVr9u3bo1CQk1B/WfdNJJLFy4sB6jliRJjcXR7kPv9sADD5Cfn09lZSXnnnsuw4cP58orrwTgzTff5LTTTmPIkCH84Q9/AOqnD22yS5IUE/Y3GiYYDPLBBx/QtWvX/W67YMECEhISmDt3LgsXLmT9+vW12px33nkUFBTw1FNP0a9fP+bNm8dbb71FYWEhZWVl+yzLyclh4cKFhEKho3LM0VRYWEh2dnb165KSEjIzMwHYtGkTLVqE59+npqayadOmGtu++eabTJw4kYcffpjbb7+dr776iqVLl/Lkk09yww038Nvf/pYuXbrw9ttvEwwGmTNnDps3bwYgMzOTlStXRuYgo6yuc3wg8+bNY8CAAbWSW/uyY8eOw45RkiQ1bke7D71z504WL14MwIwZMxg2bBhvvPEGiYmJLF26lC5dujBnzhzeeust/v3vf1NRUVEvfWiTXZKkmLL3aJj333+fbt261bnNO++8w4gRIwAYPnw47733Xq02r732Grm5uTz99NMkJobnlldVVdG+fXuSk5P3WQbQpUsXPvzww3o5toZgypQp5OXl0aFDB/r27bvPNi1btqSsrAyALVu20LJlyxr1PXr04MQTT6Rr165s3ryZtLQ0evXqRatWrcjNzaWoqIi2bdsyevRoRowYwfr162nbtu1RPrKG42DO8YE8+uijXHXVVfUbmCRJillHqw89derU6pHmWVlZlJeXA7B161bS0tJo3749TZo0ASA+Pp64uHCaqkuXLqxateqwj8dklyQppuw9Gqa4uJjOnTvXuc2BRiJlZGRQVFTEjBkzePTRR9mwYQPTpk0jJyeHli1bVo+e2VdZrI1E2n33b+LEiTXKs7OzKS0tBaB///7MmTMHgNmzZzNw4MAabTt37sxXX33F+vXrSU5Opnnz5iQlJbF9+3aWLl1a/d/r2muvpaCggMzMTM4991wASktL67zDGAsO5hwfyMcff8xFF13EH/7wB+699946t9vdwZQkSceuo9GHDgaDvPbaa3znO98Bwn2ZuXPnkpOTQyAQqPGAnJkzZ3LiiSeSlJQEhPvQa9asOezjMdklSYoJBzMaZtmyZeTl5dX4+d3vfnfAkUhNmzYlOTmZZs2akZuby0cffcRll13GihUr+Oyzz1iyZAnAPsuOFenp6VRUVADhtaR69+5Nbm4u27dvZ8CAAaxbt457770XgDvuuIMLLriA0aNHM2HCBABuuukmzjzzTH7+85/zy1/+EoALLriA/Px8KioqGDx4MABvv/02eXl5kT/ABmDPcwwwduxYZsyYwaWXXsrrr78OhM8jhKeKvvrqq9x0003cfPPNZGZmMmPGDMaOHcsrr7xSvS7HihUrDnv0mCRJavyOZh96+vTpjBo1qvr1k08+ySWXXMLy5ctp06YNb731FgCffvopv/3tb6vX7KoPB17IQZKkRmD8+PHVC8PvqWvXrkyfPh2Ak08+eZ+Lm7/77rs888wznH/++cyZM4eLL764Rv3WrVtJSUkhFAqxYMGC6icIxsXFkZqaWj0qqWnTpjXKIDwSaejQofV8tNGxu3OzP6NGjWLWrFnk5+czYcKE6kQWhBNgN998MwC9e/euHvm1W35+Pvn5+TXKdv93223jxo20bNmS1NTUIzyShutQzvE//vGPWvV7dxKvuOKK6t9HjhzJyJEja9Q//fTT1dezJEk69hzNPnRRUREFBQVMnTqVxYsXc/7551cvTbH7Kdvbt2/niiuu4JFHHiElJaV629LSUnJycg77uBzZJUmKaX369KGoqKjONqeeeirbt28nNzeXPn36cPzxx9cYifTWW28xYMAAhgwZwsiRI5k/fz55eXmcfvrpnHDCCXTt2pUXX3yxVhmEFxXv2bPnUT/OhuDyyy+vlbCqT+np6dx///1Hbf+NQX2f47vvvptOnTrV2/4kSVJsqI8+9O23387MmTN59dVX6du3L5dffjl///vfycvLY/HixZx11llMmzaNZcuW8eMf/5i8vLzqdcNKSkro0qXLYccfCMXiI6IkSTFlwIvhfxeMqrvd/kycOJFLLrkk4ms9LV++nBdeeIFbb701ou97uI70POvgeJ4lSVIkNPY+dG5uLsOGDePNN9885JkSTmOUJMW8fQ3NjoScnJwjGn4tSZIkRUu0+9Dz5s077H04jVGSJEmSJEkxw2SXJEmSJEmSYobJLkmSJEmSJMUM1+w6SFt3QklZdGPIbgEpidGNQZIkSZIkqSEz2XWQSsrgqsNfG61ePD4U+raObgySJEmSJEkNmdMYJUmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzDDZJUmSJEmSpJjhAvVHWdHteZSvKCSQkEggPoGkDifRfuwkWvQ5M9qhSZIkSZIkxRxHdkVA+7GT6PfcVno/uZ7m3Qfz0T3fp6p8c7TDkiRJkiRJijkmuyIoLrEpbc4aT3DbVrZ9XhLtcCRJkiRJkmKOya4ICm6v5KuZjxOX3IKk9l2jHY4kSZIkSVLMaTTJrh07djBhwgQ6duxIs2bNGDFiBPPnzycQCPDCCy9EO7w6fTZtAosva8mSH3WmYtX7ZN/xb+KTW0Q7LElq8Mp2wNMfffv6D0th9ZboxROrtu2C/yn99vWk9+HDr6MXT6zaFYRZn337esJCmP8lhELRi0mSJMWerTvhn6u+fT35Aygpi1480dAoFqgPhUKMGTOG+fPnc+edd5Kdnc20adMYPXo0AP369YtyhHVrf9ndtBv9i2iHIUmNyrtfwv+ZD5VV35Y9+zE88zFc3T38oyNXUgbXFcKG7d+WvVAK/68URnWE2/tCfCBq4cWMLyrD53nV1m/LXlsLr3wKpx0H954KzRpFr0ySJDVkS7+Gn70NZTu/Lfvv1fCv1fDDLnBDDwgcA327RtGteuyxx3j55ZdZvHgxPXr0ACAvL4+srCzS09Pp1KlTlCOUJNWnNVvhhndgZ7Bm+e4BMI8VQdsk+H5mxEOLKVt2wrVvwaYdNct3n/YX10DrJLguJ+KhxZSqEFz/NpRurVke/OaCfudL+M1i+O2AiIcmSZJiyJfbwjfXKnfVLN/dt3v6YzguCcZmRzy0iGsU0xgnT57M2LFjqxNdAPHx8WRlZdGvXz9Wr15N3759q386d+5Menp6FCOWJB2J51bBjuC3X8x7CwB/K/42WaDD8+81sHHH/s8zhEfSle+qo4EOaN56+HjL/s9ziPD0xk/LIxmVJEmKNdNXQ8Wuuvt2T5bUvqEcixr8yK7i4mJWrVrFgw8+WKtuzZo1XHjhhXTu3JnFixdXl99www3s2nXwPfPU1FR27NhRZ5vk7oM5cWLBQe/zaDjjjDwqigqjGoMkRULO45+SkHbcfutDwGcV0CpnENtWLY5YXLGmy6Q3SM4eSCBu//e+tlVB5zN/QNnb/y+CkcWWE376N1oOvYRA/P67XcFQiEFX3M5XL/4hgpFJkqRY0u3BpTRpl02gjnmKX++A40/9DuVLCyIX2GEKBg8/K9fgk11r164FoG3btjXKV6xYQWlpaa31unbs2MHTTz/Na6+9FrEY69J9UkG0Q5CkRieuWepBtYtPTjvKkcS2+Oat6kx0VbfzPB+R+OS0Ay+OEawivrkPr5EkSYcvPjmtzkTXt+1iv8/R4JNdrVu3BqCkpISBAwcC4QXrb7nlFoLBYK1k14svvkiHDh045ZRTDvo9tmw58KO9Fm+Aq+YdQuBHwezZBfRtHd0YJCkSRr8entJ1oFmKH8ydwQnNIxJSTPrZ2/D2F3UPdQd44alHGXTcoxGJKRb9fgk8v6ru8xyIT+CBO2/lgidujVhckiQptoybA8s2HbgPPfelf3FSywgEdITKyspYsmQJvXr1OuRtG/yaXTk5OWRnZ3Pbbbfxr3/9i1deeYXvfe97LFy4kOTkZLp3r/k4rr/97W/853/+Z5SilSTVhwsy6/6SjgP6pWOi6wh9v9MBEjDA8UkwoE2kIopN3zvAeQZoEgcjO0QkHEmSFKNGH6APHQCyU6F7Ixm036JFC4YOHUqLFoc+Eq3BJ7sSEhJ4/vnnycjIYNy4cdxwww2cc845DB8+nN69exO3x/SLtWvX8sYbb/DDH/4wihFLko7U6Ezo1HzfX1JxQFwAfnpypKOKPae3CycN9zXYPUC4s3RjT4g/Bh5PfTR1T4PzTqi7zU9OgpTEyMQjSZJi09knQPcW++/bBYAbehx4dYVY0OCTXQB9+vShsLCQiooKioqKuOaaa1i0aFGtKYxPPvkk5513XvXUR0lS45SSCI8NhVP2MaKobTP402Do7UN3j1hCHDxwGpzZvnanqEUiTDwF8ttHJbSYM6EvXJIFCXud6Gbx4U7nf5wYlbAkSVIMSYqHPw+BocfXrmvdFP4wEE5rW7suFgVCoVCje3B7ZWUlqampPPLII/zoRz+qLu/WrRsPPvggZ599dr2/Z0NYs+vxobhml6Rjzkdl8PaX4Uckd0uD044Lj+xS/fqsAuasCz99sWPz8KivxEZxS6xx2bgdZn8OZTuhbRKckQHJDX4FVUmS1Nh8shXeXA87gtAlFYa0Dd/oPFY0yu7VBx98QFVVVa2RXStXroxSRGGfPPZTKlctpsUp55Ax5rbq8q3L3uTTv/8CAnG0GnIhx3//puq69S8+wOZ3/023u2exa8tGiv/rLLatLaLfc1ujcQiS1OCc2CL8o6OrfTL8oEu0o4h96U3hws7RjkKSJMW6TilwWUq0o4ieRpnXGzRoEKFQiAEDBkQ7lGrlxQsIxCXQ/bdzqfhoITs3ra+ua3J8F7rdM4eTfv8Wm979N8HtFQCEdu2kctXi6nbxzVLpetdMmnc7LdLhS5IkSZIkxYRGmexqiMpXvkNq7xEApPYcTkXJe9V1TVq3Jy6xCQCBuHgIhE/7hoKptMq9tLpdICGRhFQXoZEkSZIkSTpcJrvqSVX5JuKTw/Ns4pqlUlW+qVabssUzaZpxInFNkggFg5QtfI20U74T4UglSZIkSZJiV6NcsyuaKj9ZxiePXlujLK3f2cQ3b0lVRRkAwcotJLar+VilHV99yrrnf8uJt78IwKbC6aQNHBWZoCVJkiRJko4RJrsOUbNOJ9N9UkGt8vLid9k45xlaDjyfLR/OodWwi6vrgju3s/qPV9DpJ48Q3yy8Qty2tUVsWVrAxoKpVKxazFczHqfNyKsidRiSJEmSJEkxyWmM9aR511MJ7dxO0a9ySc7qQ2LL49n59TrWTb+XjW9MY9uaZZQ+8mOKbs9jx4a1ZFx8O91+M5Oud75Kclbf6kTXygn5VKxaxMoJ+VSWLo3yUUmSJEmSJDUugVAoFIp2EI3B4g1w1bzoxvD4UOjbOroxSJIkSZIkNWSO7JIkSZIkSVLMMNklSZIkSZKkmOE0xoO0dSeUlEU3huwWkJIY3RgkSZIkSZIaMpNdkiRJkiRJihlOY5QkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5Ik6f9v7+7joyrv/P+/JiQEMAgGjSC3wQBGIBBBUTBmBKTeVLeIuLWy4LdYW+9attbiUtmv1rvy89u1a7WoLVsVRduybMUuVsQa8CYakSAoEIKFiFhQpMh9IJn5/TElEBPCXTKTnLyej0cezLnOdSafMx4nc95zXedIkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwmkzYtXfvXqZOnUrXrl1p3bo1w4cPp6ioiFAoxAsvvJDo8uLus90wYzX8dCn8/AMo/gKi0URXJUmKROGtz2DaMrhnKTzzEWwtT3RVkiRJUvMRikYbf0QSjUb5xje+QVFREXfddRdZWVnMmjWLP//5z3z66aeUlZXRrVu3RJcZF9EoPFYCv10NUSApFGuLAH3bw3+cAx1aJbhISWqmPtkJk96BdTti788hoDIKySGY1Be+2TPRFUqSJEnB1yTCrscff5xbbrmFpUuX0rdvXwAqKyvJzMxk586dfPHFFwmuMH6eLIVHVta+Lgno2RZm5kNKkxmzJ0nBsG0vXFMAn++JfQFRm7tz4bKu8axKkiRJan6aRCQybdo0xo0bVxV0AbRo0YLMzExyc3MBWL16Needdx69e/fmvPPOo7S0NFHlNpjdFfBfqw+9PgKs2Q6v/S1uJUmS/mHuethUR9AFMH1VbJqjJEmSpIaTnOgCDqe0tJS1a9fy8MMP11i3fv16xowZA8D3vvc9br75ZsaNG8czzzzDd7/7Xf7yl78c9vm3bdtGx44dqaioIBQK1Xv99and0Kvo9q/P1tknWlnBLb9+hbIHvhGfoiRJAGT9v8W06tqXUNKhv0fauBs6DBzOrlVvxrEySZIkqWlq2bIl27dvP+rtGv3Irg0bNgCQkZFRrX3VqlWUlZWRm5vLZ599xpIlS7jmmmsAuOaaa1iyZAmff/75YZ9/+fLl7N69myYwm5PkEzMO2yfUIpmU9h3jUI0k6WAp7U6tM+jaL7ndKXGoRpIkSWq+Gv3Irg4dOgCwZs0azjnnHCB2wfrJkycTiUTIzc1l/fr1dO7cmRYtWgCxKY6nnXYa69ev55RTjuykoqCggGHDhjXMTtST+Rtgynt190kCRp6by4fl3vpLkuLpm6/BR9tjNw+pyyv/8zsGdohLSZIkSVKz1OjDruzsbLKyspgyZQopKSmkpaUxffp0iouLadOmDX369KG4uDjRZcbFBadCmxawq/LQfSLA1734sSTF3eXd4KEP6+7TqTXkpMenHkmSJKm5avTTGJOTk5k9ezadOnViwoQJTJo0iUsuuYT8/HxycnJISkqia9eubNiwgcrKWApUWVnJp59+SteuwUp9WiXD9X0OvT4J6HUihDvFrSRJ0j9c0Q06tq77D+tN2ZDUuC8PKUmSJDV5jT7sAhgwYACFhYXs2rWLkpISbrzxRoqLi6vuxJiRkcHAgQN57rnnAHjuuefIzc094imMTcm/nA7f6V37yVLfk+DR8yClSfxXlaRgaZsCjw2F7mk116UkwY/7wyVd4l+XJEmS1Nw0yVhk9+7dlJSUVIVdAI899hi//OUv6d27N7/85S957LHHElhhwwmF4LtnwLyL4JbsA+0zzof/Oh/SUxNXmyQ1d11OgN9dCI+ce6Dth33hz6Pg6szE1SVJkiQ1J43+ml21WbZsGZWVldXCrjPOOIN33nkngVXF18mt4Lpe8MjK2PIArwEjSY1CUgjOPejmud86PXG1SJIkSc1Rkwy7hgwZQjR6uPtdSZIkSZIkqblpktMYJUmSJEmSpNoYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMBoMmHX3r17mTp1Kl27dqV169YMHz6coqIiQqEQL7zwQqLLk3QcKiLw6qfw8Ap4ZAW89RlEoomuSpIEsHEXPFkKv/gQZq6Bz3YnuiJJkqS6JSe6gCMRjUYZO3YsRUVF3HXXXWRlZTFr1ixGjx4NQG5uboIrlHSs3tsMU96DL8oPpO9ProHObeDBs6F3u4SWJ0nN1r4I/H/L4I8fQxRoEYLKKPxyBYzNhH/tC8lN5mtTSZLUnDSJsOuJJ55g3rx5LF26lL59+wIQDofJzMwkPT2dbt26JbhCScdi1Va49e3YyC6AyEHr/rYLvvsWPHMBdD4hEdVJUvN23/vwp/UHliv/MeI2AvxubWwE7uSchJQmSZJUpybxfdy0adMYN25cVdAF0KJFCzIzM6tGdf3oRz8iMzOTUCjEBx98kKhSJR2FX6+OBV2RWtZFgJ374JmP4l2VJGnt9upBV21mr4NPd8WlHEmSpKPS6MOu0tJS1q5dy5gxY2qsW79+fVXY9Y1vfINFixbRvXv3eJco6Rhs3QuLNtYedO0XAV5cf2A0gSQpPv53PYSOoN+8wwRikiRJidDopzFu2LABgIyMjGrtq1atoqysrCrsOv/884/r94TDYZKSGn32V0O/3+8BIDW1VYIrkY5Oaucz6P2L9w/bb08lpKWfQmTXtjhUJdUf35/VlHW5+Te0z/smoRYph+wTqdjHfb/8LTf/+tY4ViZJkpqTli1bsn379qPertGnOx06dABgzZo1VW3RaJTJkycTiUS8OL3URFXu2HJE/SL7yons2dnA1UiSDhZ7jz7M2K6kJCq3fxGXeiRJko5Gox/ZlZ2dTVZWFlOmTCElJYW0tDSmT59OcXExbdq0oU+fPvXyewoKChg2bFi9PFc8DZ4b+7e8vDyxhUjH4HtvwpIvDj2VMQm4LDOVJbu9KIyaHt+f1ZSt2ArjF9XdJ5TUgoJH/o2eT/1bXGqSJEk6Uo1+ZFdycjKzZ8+mU6dOTJgwgUmTJnHJJZeQn59PTk5Ok5x6KCnm+j6x29nXNnYgROyW9v+SFeeiJEmc2R6GZhx6bFcIGN4JeraNY1GSJElHqEkkRQMGDKCwsJBdu3ZRUlLCjTfeSHFxsVMYpSZu8Mlw76BYqPVVrZPhP86BrBPjX5ckCe4fBOecUr1t/9v1sFPhbj+GSZKkRqpJhF1ftXv3bkpKSqqFXd///vfp0qULn3zyCSNHjqRv374JrFDSkfpaZ/jzKJh00P+y/5YDL42CczMOvZ0kqWGlpcAj58KMg+4BNKYHPJkHD50T+1JCkiSpMWqSYdeyZcuorKysFnY9/PDDfPLJJ1RUVLBx40Y+/PDDBFYo6Wi0awnjTj+wPKYHnOBJlCQlXCgEA9IPLE/OgX4nxdolSZIaqyZ5OjlkyBCi0Wiiy5AkSZIkSVIj0yRHdkmSJEmSJEm1MeySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmB0WTCrr179zJ16lS6du1K69atGT58OEVFRYRCIV544YVEl6eAqojAwo3wX6vhmTXw1+2Jrkg6Piu2wlOl8NtSePsziEQTXZEkSfGzLwILPoUZq2HWR/DJzkRXJElqCMmJLuBIRKNRxo4dS1FREXfddRdZWVnMmjWL0aNHA5Cbm5vgChVEb26Ce5bC5vIDbb9YAeecDPcOgvTUhJUmHbUNO2HKe/Dh1urtndvAvWdB//SElCVJUty8sgF+tgy+3Heg7T8+hPyOcHcupKUkrjZJUv1qEmHXE088wbx581i6dCl9+/YFIBwOk5mZSXp6Ot26dUtwhQqaxZvhX4sgWsuol8Wb4XtvwpMXQJsm8X+Qmrsv9sD1b8IX5TXX/W0XfO8t+G0e9G4X/9okSYqHgr/FvvSpzaKNcEsh/Pp8SGky814kSXVpEm/n06ZNY9y4cVVBF0CLFi3IzMwkNzeXL774gksvvZQ+ffrQv39/rrzySj7//PMEVqym7hcfAlGobYZXBPjrDvjT+jgXJR2j59fC5j21T1mMEJvS8XhJ3MuSJCkuItHYCC6o/bNdFPhgK7z6aRyLkiQ1qEYfdpWWlrJ27VrGjBlTY9369evJzc0lFArx4x//mJKSEpYvX87pp5/OHXfckYBqFQRrtsGqL2MhwKGEgP8pi1dF0rGLRmHOuto/3O8XIfat9pZaRn5JktTUFX8Bn+6q+29hEvBHP9tJUmA0+klYGzZsACAjI6Na+6pVqygrKyM3N5f09HTC4XDVunPPPZfp06cf1e8Jh8MkJTX67K+Gfr/fA0BqaqsEVxIcbc+6hB7/9sc6+0SBVX/7ktTUjDr76eh4PNe/UHJL+j13+DsrRIHMnHPYs+79hi+qmfB4VpB4PKspa3/Bt+h662/r7BMB3lq5jtThfeJTlCTpiLRs2ZLt24/+TnGNPt3p0KEDAGvWrKlqi0ajTJ48mUgkUuPi9JFIhOnTp3PFFVfEtU4FR+WuLw/bJxqNUrlra8MXIx2naMVeIvuObMjWkRz7kiQ1NZW7th22TzQSoXLH3+NQjSQpHhr9yK7s7GyysrKYMmUKKSkppKWlMX36dIqLi2nTpg19+lT/9uXWW28lLS2NW2655ah+T0FBAcOGDavP0uNi8NzYv+Xlzj+qLxURuPwV+LyOlzQpFOK7Q7tzs697vfJ4bhj/dwm89Mmhp+YmEbs4/eL1XrirPnk8K0g8ntWU7amAr82HnRWH7hNKSuKOr+fyL5M8xiUpCBr9yK7k5GRmz55Np06dmDBhApMmTeKSSy4hPz+fnJycalMPf/SjH1FaWsrvfve7JjklUY1DchL8n96HXp8EtG4BY3rEqyLp+Fx7OiSFYteaq00EmFjHMS9JUlPWKhn+5fRDr08C2reEy73BuyQFRqMf2QUwYMAACgsLq7U98sgj5OfnVy1PmTKF9957j//93/8lNTU13iUqYMb2gM/3wG9LYwHBwRc0bZMM/3kudGydoOKko9S7HTx4NtyxGMoPGt61P/y6rR9c2CkhpUmSFBff7g1flMMf1sXCrYNHO7dvCY+cF/tXkhQMTXL40+7duykpKam6XteHH37IAw88wKeffsrQoUMZOHAgo0ePTnCVaspCIbg5G/5wIXyz54H2yf3hTxfBgPTE1SYdi7yO8L8XwffPPNB2XS94YWT1Y1ySpCBKCsHkHHg2H67scaD9zgGxv4W92yWsNElSA2gSI7u+atmyZVRWVlaFXX379iUaretmwtKxyWwbG/Xy3F9jy2MzE1uPdDzap8L4LHh4RWz55uzE1iNJUrz1aQd35MDsdbHlb3RPaDmSpAbSJMOuIUOGGG5JkiRJkiSphiY5jVGSJEmSJEmqjWGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKjCYTdu3du5epU6fStWtXWrduzfDhwykqKiIUCvHCCy8kujxJkhRn2/bCvPXwh7XwxiaoiCS6IunYVURg0cbY8fznT2DHvkRXJB27aBSWb4HZ6+CPZbBhZ6IrktTcJCe6gCMRjUYZO3YsRUVF3HXXXWRlZTFr1ixGjx4NQG5uboIrlCRJ8VIRgYdXxE6i9h4UcJ2cCj/sB6M6J6w06Zj86WP4zxXw970H2lKT4Js94aZsaBFKXG3S0Vq5Fe4uhjXbD7SFgLxTYepAOCk1QYVJalaaRNj1xBNPMG/ePJYuXUrfvn0BCIfDZGZmkp6eTrdu3RJcoSRJiodoFP69GOZvqLnui3KY8h5EonBxl/jXJh2LP5bBve/XbC+PwFNrYOveWEAgNQVrtsF33oS9ldXbo8RG4N7wJvw2D9JSElKepGakSUxjnDZtGuPGjasKugBatGhBZmZm1aiub3zjGwwYMIDc3Fzy8vJYunRpgqqVJEkN5f0ttQddEDuZCgE//wD2OaVRTcCeCnjow7r7vPAxrPoyPvVIx+uXK2JBV21vwRFg7Q74n7J4VyWpOWr0YVdpaSlr165lzJgxNdatX7++Kux66qmneP/99ykuLuZHP/oR3/72t+NdqiRJamB//LjuDy9RYlPB3tgUr4qkY/eXv8HOirr7JAEvGA6oCfhsN7z1We1B134h4L/XxakgSc1ao5/GuGFD7OvbjIyMau2rVq2irKysKuxq165d1bovv/ySpKSjy/HC4fBRb9MY9Pv9HgBSU1sluJJg83WOD1/n+PB1jg9f54bR857XOOGMoYftN+7WO9j84kNxqKh58HhuGBlX/YSMsXcSquMzaGU0wn/9cQH/fvblcaws+Dym61+bPudx+r0FdfaJAuu3V5Ka2iYuNUlq+lq2bMn27dsP3/ErGn3Y1aFDBwDWrFnDOeecA8QuWD958mQikUi1i9Nff/31zJ8/n2g0yp///OeE1CtJkhpOZNc2opFKQkkt6u63Z0ecKpKOXWTPjjqDrliniMezmoTI7iM7GY3s3dXAlUhSEwi7srOzycrKYsqUKaSkpJCWlsb06dMpLi6mTZs29OnTp6rvb37zGwBmzpzJ7bffzrx584749xQUFDBs2LB6r7+hDZ4b+7e8vDyxhQScr3N8+DrHh69zfPg6N4xDXcz7YEnAstmPcEqrR+JSU3Pg8dwwPtkJo1+NjXY5lFCLZH5505VcfL+vfX3ymK5/kSh841X4265DH9NJwBV92lLs6y6pgTX6eXvJycnMnj2bTp06MWHCBCZNmsQll1xCfn4+OTk5tU49/Jd/+Rdee+01vvjiiwRULEmSGsrXOsPJqZAUOnSfS7vCKc5MUhPQ5QQY3il2HaPaJAGdWsf6SI1dUgiuyzp00BX6R59rMuNZlaTmqtGHXQADBgygsLCQXbt2UVJSwo033khxcXHVFMYdO3awfv36qv4vvvgi6enppKenJ6pkSZLUAFonw6PnQfuW1dv3h1/nngJ39I9/XdKx+vdcGPiPj6xfDXFPbgWPnAct6561KzUao7vHAi+ofqIZAlqE4IHB0KtdbVtKUv1q9NMYa7N7925KSkqYNGkSADt37mTs2LHs3LmTFi1akJ6ezosvvkgoVMfXvpIkqUk6/USYMxxe+gSmLY+15Z8K/9QdzsuInVBJTcUJyfDYsNgdRF8og0X/uJPolBy4uAu0aZKf1tVchUJwy5kw8jSYvS52B12Aib3hG92hY+uEliepGWmSfz6XLVtGZWVl1ciuU089lbfffjvBVUmSpHhJS4GxmQfCrgfPSWw90vFoEYL8jrGf/deSurJHQkuSjssZ7eHOgQfCru+dkchqJDVHTTLsGjJkCNFoXZfylCRJkiRJUnPUJK7ZJUmSJEmSJB0Jwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMu6TgVFBSQmZlJOBxmwoQJNdbPnDmTBQsWADB37lyGDx9OOBzm448/rtbvO9/5Dvn5+Zx//vmsXr0agMsvv5z8/HxGjBjB5s2bqaio4Prrr2/4nZIkSZIkqYky7JLqwcSJEykoKKBdu3YUFhZWW/fiiy8yYsQIdu7cyfPPP8+rr75KQUEB3bp1q9bvV7/6FQsXLuSBBx7gscceA2DOnDksXLiQ6667jlmzZpGcnMwpp5zCRx99FLd9kyRJkiSpKTHskupRv3792LBhQ9Xyli1baNWqFaFQiMLCQiKRCBdddBE333wzkUik2rYpKSkA7Nixg379+lVr27NnD9nZ2QCEw2FeeumleOyOJDV5hxt9e99991FaWlrnc9x6663k5eVx//3311i3bt06OnXqRDgcZvz48RQVFTFs2DCGDh3KnXfeCVBr28qVK5k2bVo97KEkSZK+yrBLqkeFhYVkZWVVLa9Zs4bu3bsD8Nlnn7F582bmz5/PySefzNy5c2tsP2LECG655RbOPvtsIBaWDR06lIcffrgq7OrevXvVNEdJ0uEdavRtJBJh2bJl9OrV65DbLl68mOTkZF5//XWWLFnCpk2bavS57LLLKCgo4OmnnyY3N5c333yTt956i8LCQrZt21ZrW3Z2NkuWLCEajTbIPkuSJDVnhl1SPZgxYwbhcJjOnTszcODAWvu0a9eOvLw8kpKSuOCCCygpKanR59VXX2XOnDncddddAKSnp/PWW29x77338tBDDzXgHkhS8H119O37779P796969zmnXfeYfjw4QDk5+fz3nvv1ejz8ssvk5eXx7PPPls1IreyspLTTjuNNm3a1NoG0LNnTz788MN62TdJkiQdYNgl1YP9owbuvffeau1ZWVmUlZUBcPbZZ7NixQoAli9fTo8ePar1LS8vB2KhWOvWrYlEIlRUVFS1tWrVCoCysrI6RyFIkmr31dG3paWlNd6Lv2rr1q2ceOKJALRt25atW7dWW9+pUydKSkqYP38+jz/+OF988QWzZs0iOzub9u3bk5ycDFBrmyN1JUmSGkZyoguQgiw9PZ1du3YBkJGRwVlnnUV+fj6nnHIKs2bNYuPGjcycOZPbb7+d0aNHs3v3bkKhEI8++ig7d+7k61//OklJSaSmpvLkk08CsevPTJw4MYF7JUlNy4wZM1iwYAHnn3/+IUffrlixgptuuqla28UXX0z79u3Ztm0bANu3b+f000+v1ic1NbXqcV5eHh999BHf+ta3+OY3v8nYsWNZvnw5/fv3r7VNkiRJDcOwSzpO4XCYcDh8yPVXXHEFCxYsYOTIkUyePJnJkydXrevYsSO33347APPmzaux7cKFC6stV1RU8Nlnn1UbmSBJqtvEiROrLgx/sF69ejFnzhwAzjzzTAoKCmr0effdd3nuuee4/PLLWbRoEVdffXW19Tt27CAtLY1oNMrixYu54YYbAEhKSqJt27a0atWK8vJyUlNTq7VBbKTusGHD6nlvJUmS5DRGqYGNHz+ekSNH1stzJScnM2PGjHp5Lklq7gYMGFDr9RMPdvbZZ1NeXk5eXh4DBgzg1FNPZePGjTz44IMAvPXWWwwePJihQ4cyatQoioqKCIfDXHDBBXTp0oVevXoxd+7cGm0Qu4nJ/rvvSpIkqf44skuSJAVWXaNvk5KSyMnJobS0tM5rIT766KPVlg8elTtq1ChGjRpVbf3YsWNrLH+1beXKlQwaNIhQKHSkuyJJkqQjZNglSZKardqmN8ZDdnY22dnZCfndkiRJQec0RkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAaBJh1969e5k6dSpdu3aldevWDB8+nKKiIkKhEC+88EKiy1PArdl24PG2vYmrQ5JU3Z7KA4+XbYFoNHG1SJIkqfFITnQBhxONRhk7dixFRUXcddddZGVlMWvWLEaPHg1Abm5ugitUUJV8CT9bBsv/fqDt4vlweVf4177QqtH/3yNJwRSJwn+thpkfHWj79hvQPQ1+2BeGnZq42iRJkpR4jf50/YknnmDevHksXbqUvn37AhAOh8nMzCQ9PZ1u3boluEIF0eovYeIbsLeyevveCMwpg3U74JHzIKVJjI2UpGD52bLYe/FXfbwDJr0D/+8cyO8Y/7okSZLUODT6U/Vp06Yxbty4qqALoEWLFmRmZtYY1XX33XcTCoX44IMP4l2mAuY/PogFXZFa1kWB976A+RviXZUk6cO/1x50Qez9GeBn70NFbW/gkiRJahYaddhVWlrK2rVrGTNmTI1169evrxZ2LVmyhLfffpvu3bvHs0QF0PodsPiL2oOu/ZKA2eviVJAkqcr/lNX94SUKfF4OhZ/FqyJJkiQ1No16GuOGDbGhMxkZGdXaV61aRVlZWVXYVV5ezs0338xzzz1HOBw+pt8VDodJSmrU2V+t+v1+DwCpqa0SXElwtM29mB5T6r7xQQRY+slWUlO9MEx98niOD1/n+PB1bhg9f/oXTsgedth+37zlDja/+FAcKmoePJ7jx9c6Pnyd48PXWdLxatmyJdu3bz/q7Rp1utOhQwcA1qxZU9UWjUaZPHkykUikKuz693//d8aNG0ePHj0SUaYCJrJ395H1K9/VwJVIkr4qUr6LaOTwcxR9j5YkSWq+GvXIruzsbLKyspgyZQopKSmkpaUxffp0iouLadOmDX369KGwsJDFixfzs5/97Lh+V0FBAcOGHf6b4sZm8NzYv+Xl5YktJEDKK2N3Xdy+79B9koBvnXUak33d65XHc3z4OseHr3PD+P1a+P+W190nBCz53cN0avNwXGpqDjye48fXOj58nePD11lSojTqkV3JycnMnj2bTp06MWHCBCZNmsQll1xCfn4+OTk5JCUlsXDhQlauXElmZiY9evTgk08+4Wtf+xrz589PdPlqolJbwDczD70+BCSF4Oo6+kiSGsalXeDElEN/gAkBwztBpzbxrEqSJEmNSaMOuwAGDBhAYWEhu3btoqSkhBtvvJHi4uKqKYx33HEHn376KevWrWPdunV06dKFl19+mVGjRiW4cjVlE3vDqM6xx0mhA+0hoEUI7h8EmW0TUpokNWtpKfDLc+GElOrt+z/Q9DsJpg6Md1WSJElqTBr1NMba7N69m5KSEiZNmpToUhRgyUlw71lwWZfYXRdLt0HLJLigI4zpDl3TEl2hJDVffU+C2RfCHz+G+Rtgxz7ofAKM7g4jOkHLFomuUJIkSYnU5MKuZcuWUVlZWTWy66vWrVsX34IUWEkhGHZq7EeS1Lh0aBUbhTuxd6IrkSRJUmPT5MKuIUOGEI1GE12GJEmSJEmSGqFGf80uSZIkSZIk6UgZdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJTUBBQQGZmZmEw2EmTJhQY/3MmTNZsGABAPfffz95eXnceuutNfp9/vnnjB49mgsvvJAnnngCgDVr1nDxxRdz4YUXMnfuXADuueceLrjgAiZMmEBFRQVbtmzhhz/8YQPuoSRJ9cOwS5IkSWoiJk6cSEFBAe3ataOwsLDauhdffJERI0awadMmlixZwuuvv05ycjKLFy+u1u+nP/0pv/jFL3jttde44YYbALj77rt5/vnnee2117jiiiv429/+RnFxMYsWLeLss8/mxRdfJD09na1bt7Jjx4647a8kScfCsEuSVM3hRg7cd999lJaWHnL7LVu2MGjQINLS0mpdv27dOjp16kQ4HGb8+PHs27ePq6++mnA4zIMPPgjAypUrmTZtWv3skCQFUL9+/diwYUPV8pYtW2jVqhWhUIjFixeTn58PwPDhwykqKqq27erVq7njjjsYNWoUJSUl7N27l/Xr1zN+/Hj+6Z/+iU2bNlFWVkbfvn0B6N+/f1WwNmTIEAoKCuKzk5IkHSPDLklSDYcaORCJRFi2bBm9evU65LZt27bllVde4dxzzz1kn8suu4yCggKefvpp5syZw9ChQykoKOC9997j888/Jzs7myVLlhCNRut1vyQpKAoLC8nKyqpaXrNmDd27dwdg69atnHjiiUDsPXnr1q3Vtn3jjTe49957efTRR/nJT37C5s2b+eCDD3jqqaeYNGkSDzzwAD179uTtt98mEomwaNEivvzySwC6d+/O6tWr47OTkiQdI8MuSdIhfXXkwPvvv0/v3r3r3CYlJYX09PQ6+7z88svk5eXx7LPPsnbtWvr37w9AdnY27777LgA9e/bkww8/PM49kKRgmTFjBuFwmM6dOzNw4MBa+7Rv355t27YBsH37dtq3b19tfd++fTn99NPp1asXX375Je3ataN///6cdNJJ5OXlUVJSQkZGBqNHj2b48OFs2rSJjIyMBt4zSZLqj2GXJOmQvjpyoLS0lB49ehzXc3bq1ImSkhLmz5/P448/Tq9evVi4cCHRaJTXX3/d0QOSVIf9I2/vvffeau1ZWVmUlZUBMGjQIBYtWgTAa6+9xjnnnFOtb48ePdi8eTObNm2iTZs2nHDCCbRq1Yry8nI++OCDqvf5m266iYKCArp3786ll14KQFlZWZ2jeyVJagySE12AJKnxmTFjBgsWLOD8888/5MiBFStWcNNNN1Vru/jii7njjjvqfO7U1NSqx3l5eXTp0oUFCxZw0UUXccoppzh6QJKOQXp6Ort27QKgY8eO5OTkkJeXR05ODoMHD2bjxo3MnDmT22+/nTvvvJMrr7ySiooKHn74YQBuu+02RowYQYsWLXjyyScBuPLKK9m2bRt5eXmcd955ALz99ttV20iS1FgZdkmSapg4cSJ33nlnjfZevXoxZ84cAM4888xjukjxjh07SEtLIxqNsnjxYm655RamT59ONBplwoQJVSdUZWVlDBs27Lj2Q5KCJBwOEw6HD7n+iiuuYMGCBYwcOZKpU6cyderUqnUdO3bk9ttvByAnJ6dq5Nd+I0eOZOTIkdXa9r/f77dlyxbat29P27Ztj3NPJElqWE5jlCQdsQEDBlBSUnLYfiNHjqS4uJiRI0fywQcfsHHjxqo7Lb711lsMHjyYoUOHMmrUKPbt20c4HGbEiBFcddVVtGnTBohdbLlfv34Nuj+SFCTjx4+vEVjVp/T0dB566KEGe35JkuqLI7skSdXUNXIgKSmJnJwcSktL67xmy4IFC2q07R9RMGrUKEaNGlVt3VdHiK1cuZJBgwYRCoWOrnhJkiRJzZ5hlyTpqNQ2vbG+ZWdnk52d3eC/R5IkSVLwOI1RkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTCaTNi1d+9epk6dSteuXWndujXDhw+nqKiIUCjECy+8kOjyJKlJ2LHvwOMv9iSuDklSTR9tO/C4Mpq4OiRJauqSE13AkYhGo4wdO5aioiLuuususrKymDVrFqNHjwYgNzc3wRVKUuO2uwIeXgFzPz7QdskrMKIT/LAfnNIqcbVJUnP37uex9+iVXx5ou+IVmNgbRneHUChxtUmS1BQ1ibDriSeeYN68eSxdupS+ffsCEA6HyczMJD09nW7duiW4QklqvPZUwk2F8MHf4eCBApEovPopLNsCT10AJxt4SVLcvbEJflhE9TdoYNMeuH8ZbC6HG/okpDRJkpqsJjGNcdq0aYwbN64q6AJo0aIFmZmZVaO6evTowRlnnMHAgQMZOHAgL7/8cqLKlaRG5b/XwfK/1ziPAiACfL4HHi+Jc1GSJCoi8NOlEI3G3o9r80QJrN8Rz6okSWr6Gn3YVVpaytq1axkzZkyNdevXr682hXH27NksXbqUpUuX8rWvfS2eZUpSo/WHtVDXDJgI8L/rq1/PS5LU8F7fBFvKa/8yYr8QMKcsXhVJkhQMjX4a44YNGwDIyMio1r5q1SrKysrq7Xpd4XCYpKRGn/3V0O/3sStMp6Y6/0hNn8dz/Qslp9DvucMPCdgbgc59B7OnbHkcqmoePJ4VJB7PDSPjqilkXD2VUOjQn0Ej0Qi/mv0KPz7rijhWFnwe0/Hh6yzpeLVs2ZLt27cf9XaNPt3p0KEDAGvWrKlqi0ajTJ48mUgkUi3suvbaa8nJyeGmm25i69at8S5VkhqdaKSSaKTyyPpWOLRLkuIpsq+cusfeAtEo0Yq9calHkqSgaPQju7Kzs8nKymLKlCmkpKSQlpbG9OnTKS4upk2bNvTpE7ti5+uvv07Xrl0pLy9n0qRJ3HLLLTzzzDNH/HsKCgoYNmxYQ+1Ggxk8N/ZveXl5YguR6oHHc8O4tRDe+fzQ14MB6Ngaij56nyTv+FVvPJ4VJB7PDWP1l/CthXX3CSW14IGJlzPmHl/7+uQxHR++zpISpdGP7EpOTmb27Nl06tSJCRMmMGnSJC655BLy8/PJycmpmnrYtWtXAFJTU7npppt48803E1m2JDUa155ed9C1v49BlyTFV+92cFaHQ38gTwJOTIFLusSzKkmSmr5GH3YBDBgwgMLCQnbt2kVJSQk33ngjxcXFVVMYd+7cyZdffgnEpjg+//zzDBw4MIEVS1LjcW4G3JIde3zwm/7+x5d3hX/OjHdVkiSA+wdBlxNijw/+ziEEtE6GXwyBNo1+LoYkSY1Lk/zTuXv3bkpKSpg0aRIAmzZtYsyYMVRWVlJZWcmZZ57Jr371q8QWKUmNyHW9YGA6/G7tP6Y0RqHvSTC2B+R3hJCjuiQpIU5uBU9fAHM/hv8pg027oW0KXNwl9h7dsU2iK5QkqelpkmHXsmXLqKysrBrZ1bNnT4qLixNclSQ1bgM7xH4kSY1LWgp86/TYjyRJOn5NMuwaMmQI0Wg00WVIkiRJkiSpkWkS1+ySJEmSJEmSjoRhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYVeAFRQUkJmZSTgcZsKECTXWz5w5kwULFgAwd+5chg8fTjgc5uOPP67W7zvf+Q75+fmcf/75rF69GoDLL7+c/Px8RowYwebNm6moqOD6669v+J2SJEmS1OQdzblKXl4eaWlpfPLJJ4d8vtzcXJ555hkAnn/+eTIzM6udn0ydOpX169fX815IaqwMuwJu4sSJFBQU0K5dOwoLC6ute/HFFxkxYgQ7d+7k+eef59VXX6WgoIBu3bpV6/erX/2KhQsX8sADD/DYY48BMGfOHBYuXMh1113HrFmzSE5O5pRTTuGjjz6K275JkiRJarqO5FwF4A9/+ANXXXXVIZ/npZdeIj09vWr5oosu4pVXXqnW59prr+XXv/51PVYvqTEz7Gom+vXrx4YNG6qWt2zZQqtWrQiFQhQWFhKJRLjooou4+eabiUQi1bZNSUkBYMeOHfTr169a2549e8jOzgYgHA7z0ksvxWN31Ewd7hvA++67j9LS0kNuv2XLFgYNGkRaWlqt69etW0enTp0Ih8OMHz+effv2cfXVVxMOh3nwwQcBWLlyJdOmTaufHZIkSVKd5yoAHTt2rHP7Z599lmuuuaZquUOHDiQnJ1frc8YZZ7BkyZJ6rFpSY2bY1UwUFhaSlZVVtbxmzRq6d+8OwGeffcbmzZuZP38+J598MnPnzq2x/YgRI7jllls4++yzgdgfoKFDh/Lwww9XhV3du3evmuYoNZRDfQMYiURYtmwZvXr1OuS2bdu25ZVXXuHcc889ZJ/LLruMgoICnn76aebMmcPQoUMpKCjgvffe4/PPPyc7O5slS5YQjUbrdb8kSZKaq7rOVQ7nzTffZPDgwTXCrdrs3bv3mGuU1LQYdgXcjBkzCIfDdO7cmYEDB9bap127duTl5ZGUlMQFF1xASUlJjT6vvvoqc+bM4a677gIgPT2dt956i3vvvZeHHnqoAfdAqt1XvwF8//336d27d53bpKSkVBviXpuXX36ZvLw8nn32WdauXUv//v0ByM7O5t133wWgZ8+efPjhh8e5B5IkSc3bkZyrHM7jjz/utYMl1XD4+FtN2sSJE7nzzjtrtGdlZVFWVgbA2WefzdNPPw3A8uXL6dGjR7W+5eXlpKam0q5dO1q3bk0kEiESiZCcnEy7du1o1aoVAGVlZXWOqpHqU2FhIT/4wQ+qlktLS2scu0erU6dOlJSUEAqF+NrXvsYPfvADFi5cyPDhw3n99derwrT9oxj3T+uVJEnS0TuSc5XD+etf/8pVV13Fhg0bSEpKIi8v75Cjwlq2bHlc9UpqOgy7mqn09HR27doFQEZGBmeddRb5+fmccsopzJo1i40bNzJz5kxuv/12Ro8eze7duwmFQjz66KPs3LmTr3/96yQlJZGamsqTTz4JxK6nNHHixATulZqDGTNmsGDBAs4///xDfgO4YsUKbrrppmptF198MXfccUedz52amlr1OC8vjy5durBgwQIuuugiTjnlFDIyMo67fkmSJNXt4HMVgHHjxvGXv/yFjz76iLvuuosRI0Zw22238fOf/5w33ngDgCeffJLk5GS6d+/O/Pnz+elPf8ratWuZMGECTz31FKtWrTrm0WOSmh7DrgALh8OEw+FDrr/iiitYsGABI0eOZPLkyUyePLlqXceOHbn99tsBmDdvXo1tFy5cWG25oqKCzz77rNpce6khHOobwF69ejFnzhwAzjzzTAoKCo76uXfs2EFaWhrRaJTFixdzyy23MH36dKLRKBMmTOC8884DYqMYhw0bdlz7IUmS1JwdzbnKM888U2P9z3/+82rL1113XdXjUaNGMWrUqGrrn332WW644YbjqllS0+E1u5qx8ePHM3LkyHp5ruTkZGbMmFEvzyUdiwEDBtR6vbmvGjlyJMXFxYwcOZIPPviAjRs3Vt1p8a233mLw4MEMHTqUUaNGsW/fPsLhMCNGjOCqq66iTZs2QOyiqU5hlCRJajj1ea4CcM8999CtW7d6ez5JjZsjuyQ1GXV9A5iUlEROTg6lpaV1XjtuwYIFNdr2j2Ks7VvAr44QW7lyJYMGDaq6FbYkSZIkqXEx7JIUGLVNb6xv2dnZZGdnN/jvkSRJkiQdG6cxSpIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAVGkwm79u7dy9SpU+natSutW7dm+PDhFBUVEQqFeOGFFxJdXkJs3nPgcTSauDqk+rCr4sDj8srE1SFJkqTjt2PfgccVkcTVIal5ahJhVzQaZezYsfzmN7/hzjvv5E9/+hOZmZmMHj0agNzc3ARXGF9rtsEP34FL5h9oG/MXePHjxNUkHavt+2DaMhj18oG2i+fDIysMvSRJkpqaLeVwz9Lqn+0umQ+/KTH0khQ/yYku4Eg88cQTzJs3j6VLl9K3b18AwuEwmZmZpKen061btwRXGD+rtsJ33oTyCBw8mGv9Trh7KXy6C757RoKKk47Sjn1w/Rvw1+3Vj+ft++CpNbDs7/DIudCyRcJKlCRJ0hHaUg7XvQ4bd8HBudbf98JjJbBiKzx4DrQIJapCSc1FkxjZNW3aNMaNG1cVdAG0aNGCzMzMqlFde/bs4cYbb6RXr17079+fG264IVHlNphoFP5vcWy0S+Qr0xb3L/56NZR+GffSpGPym9U1g679osCSL+D36+JclCRJko7JL1fUDLoOtmgTzFsf15IkNVONPuwqLS1l7dq1jBkzpsa69evXV4VdP/7xj2nVqhWrV69m+fLl3HPPPfEutcEt/zt8tP3Qfzwg9h909ro4FSQdh/JK+J+y2oOu/ULAH9Z6TTpJkqTGbtte+POGw5+r/H5tvCqS1Jw1+mmMGzZsACAjI6Na+6pVqygrKyM3N5cdO3bw9NNP88knnxAKxcbEnnrqqUf1e8LhMElJjTv7S//a9+h8/X/W2ScCzHx1MXedMyw+RUnHqOVpvenzn8vr7BMFNuyCNu3TiezZGZ/CpHrS7/exu4ikprZKcCXS8fN4VtB4TNe/Nr2HcPp9i+rsEwFWfLGP1NS0+BQlqclr2bIl27dvP+rtGne6A3To0AGANWvWVLVFo1EmT55MJBIhNzeXjz76iA4dOnD33XczePBgwuEwb7zxRqJKbjiVFYftEo1GiR5BPynhjuI4jUa8Ur0kSVJjdqTnINGoV6mX1PAa/ciu7OxssrKymDJlCikpKaSlpTF9+nSKi4tp06YNffr0YenSpfz1r38lNzeXBx98kHfeeYfLL7+cNWvWcOKJJx7R7ykoKGDYsMY9GurjHXDlX+rukxQKMenyc/nu7eXxKUo6RpEoXLEANu4+dJ8koO9JsHi7F6JT0zN4buzf8nLfj9X0eTwraDym69/eytgdtbftO3SfJCCvSypLfN0lNbBGP7IrOTmZ2bNn06lTJyZMmMCkSZO45JJLyM/PJycnh6SkJLp160ZycjLXXHMNAEOGDOHkk09m9erVCa6+fnVLg6EZh/6PFiJ2Z5PR3eNZlXRskkJwTc+6+0Q4fB9JkiQlXssWMDaz7j4R4J8P00eS6kOjD7sABgwYQGFhIbt27aKkpIQbb7yR4uLiqovTn3zyyVx44YW88sorAKxevZrPPvuMrKysRJbdIP7vQOhyQs32JGLhwf2DIKN1vKuSjs03e8Ko02KPD34z2v/4mp5w0WnxrkqSJEnH4vrecN4psce1fbb7Xh84N+OrW0lS/Wv00xhrs3v3bkpKSpg0aVJV22OPPca3v/1tbrvtNlJSUpg5cybt27dPWI0NpUMreOqC2B0X/3tdbApYahJc1DkWDPRpl+gKpSPXIgT3DoJhp8buzLNiK4RCcFY6/HNPCHeMLUuSJKnxS0mCh4bAi+tjn+3WbIt9IT/klNi5ynkGXZLipEmGXcuWLaOysrJqZBdAz549KSgoSFxRcdQ2Bf5Pr9hPJBr7AyI1VUkhuKxr7CcajbUZcEmSJDVNyUmxy6qM7h47VwnhZztJ8dckw64hQ4YQ3X9W3MwZdClI/CAkSZIUHJ6rSEqUJnHNLkmSJEmSJOlIGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIk6bgUFBSQmZlJOBxmwoQJNdbPnDmTBQsWAHD//feTl5fHrbfeWqPf559/zujRo7nwwgt54oknAFizZg0XX3wxF154IXPnzgXgnnvu4YILLmDChAlUVFSwZcsWfvjDHzbgHqo5OZrjOS8vj7S0ND755JNDPl9ubi7PPPMMAM8//zyZmZlcf/31VeunTp3K+vXr63kvJKl5M+ySJEnScZs4cSIFBQW0a9eOwsLCautefPFFRowYwaZNm1iyZAmvv/46ycnJLF68uFq/n/70p/ziF7/gtdde44YbbgDg7rvv5vnnn+e1117jiiuu4G9/+xvFxcUsWrSIs88+mxdffJH09HS2bt3Kjh074ra/CrYjOZ4B/vCHP3DVVVcd8nleeukl0tPTq5YvuugiXnnllWp9rr32Wn7961/XY/WSJMMuSZIS4HAjB+677z5KS0vrfI5bb72VvLw87r///hrr1q1bR6dOnQiHw4wfP56ioiKGDRvG0KFDufPOOwFqbVu5ciXTpk2rhz1Uc9WvXz82bNhQtbxlyxZatWpFKBRi8eLF5OfnAzB8+HCKioqqbbt69WruuOMORo0aRUlJCXv37mX9+vWMHz+ef/qnf2LTpk2UlZXRt29fAPr3718VRAwZMoSCgoL47KSajbqOZ4COHTvWuf2zzz7LNddcU7XcoUMHkpOTq/U544wzWLJkST1WLUky7JIkKUEONXIgEomwbNkyevXqdchtFy9eTHJyMq+//jpLlixh06ZNNfpcdtllFBQU8PTTT5Obm8ubb77JW2+9RWFhIdu2bau1LTs7myVLlhCNRhtknxV8hYWFZGVlVS2vWbOG7t27A7B161ZOPPFEANq2bcvWrVurbfvGG29w77338uijj/KTn/yEzZs388EHH/DUU08xadIkHnjgAXr27Mnbb79NJBJh0aJFfPnllwB0796d1atXx2cn1WzUdTwfzptvvsngwYNrhFu12bt37zHXKEmqybBLkqQE++rIgffff5/evXvXuc0777zD8OHDAcjPz+e9996r0efll18mLy+PZ599lpSUFAAqKys57bTTaNOmTa1tAD179uTDDz+sl31T8zFjxgzC4TCdO3dm4MCBtfZp374927ZtA2D79u20b9++2vq+ffty+umn06tXL7788kvatWtH//79Oemkk8jLy6OkpISMjAxGjx7N8OHD2bRpExkZGQ28Z2qOjuR4PpzHH3+82rW5JEnxY9glSVKCfXXkQGlpKT169Khzm8ONkOnUqRMlJSXMnz+fxx9/nC+++IJZs2aRnZ1N+/btq0Ya1NbmCBkdi/0jFe+9995q7VlZWZSVlQEwaNAgFi1aBMBrr73GOeecU61vjx492Lx5M5s2baJNmzaccMIJtGrVivLycj744IOq/y9uuukmCgoK6N69O5deeikAZWVldY6GlI7GkRzPh/PXv/6Vq666ip///Oc8+OCDdW7XsmXL46pXklSdYZckSQlyJCMHVqxYQTgcrvbzs5/97LAjZFJTU2nTpg2tW7cmLy+Pjz76iG9961usWrWKTz/9lOXLlwPU2ibVp/T0dHbt2gXErm+Uk5NDXl4e5eXlDB48mI0bN/Lggw8CcOedd3LllVcyevRopk6dCsBtt93GiBEj+MEPfsCPf/xjAK688kpGjhzJrl27OO+88wB4++23CYfD8d9BNSsHH88A48aNY/78+VxzzTW8+uqrQOyYhdi03D//+c/cdttt3H777XTv3p358+czbtw4XnrpparrNa5ateqYR49Jkmp3+AnkkiSpQUycOLHqwvAH69WrF3PmzAHgzDPPrPWi2++++y7PPfccl19+OYsWLeLqq6+utn7Hjh2kpaURjUZZvHhx1Z3tkpKSaNu2bdVomdTU1GptEBshM2zYsHreWwXZ/iD2UK644goWLFjAyJEjmTp1alWQBbEA7PbbbwcgJyenauTXfiNHjmTkyJHV2vb//7Hfli1baN++PW3btj3OPZGO7nh+5plnaqz/+c9/Xm35uuuuq3o8atQoRo0aVW39s88+W/UeLUmqH47skiSpkRkwYAAlJSV19jn77LMpLy8nLy+PAQMGcOqpp1YbIfPWW28xePBghg4dyqhRoygqKiIcDnPBBRfQpUsXevXqxdy5c2u0QewCzP369Wvw/VTzMX78+BqBVX1KT0/noYcearDnlw5W38fzPffcQ7du3ert+SRJjuySJCkh6ho5kJSURE5ODqWlpXVeg+jRRx+ttnzwCJnaRg+MHTu2xvJX21auXMmgQYMIhUJHuiuSJElSo2LYJUlSI1Tb9MZ4yM7OJjs7OyG/W5IkSaoPTmOUJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCowmE3bt3buXqVOn0rVrV1q3bs3w4cMpKioiFArxwgsvJLo8SZKqRKMHHu+pSFwdUn37cm+iK5CO3+6D3pcPfr+WJAVHkwi7otEoY8eO5Te/+Q133nknf/rTn8jMzGT06NEA5ObmJrhCSZJiJ01/+hj+ueBA28iXYdoy+GJPwsqSjtn7W+D7bx9YHvln+Nd34MO/J64m6Vh9thvuez92HO937UL48yeJq0mS1DCSE13AkXjiiSeYN28eS5cupW/fvgCEw2EyMzNJT0+nW7duCa5QkiR4eAXM/AhCB7XtqYT/Xgevb4Lf5sEprRJVnXR0Fm2E29+Fgwe+RIE3P4PCz+AXQ+DcjERVJx2dT3fB/3kd/l4OkYPa12yDO5dA2Q747hkJK0+SVM+axMiuadOmMW7cuKqgC6BFixZkZmaSm5vLunXrGDhwYNVPjx49SE9PT2DFkqTmZvHmWNAF1cMBiJ1YfbY7NsJLagp2VcBP3oNINPZzsEgUKqMw5T0or0xMfdLRuu/9mkEXHFj+9Wr4wBGLkhQYjX5kV2lpKWvXruXhhx+usW79+vWMGTOGHj16sHTp0qr2SZMmUVHhRVIkSfHz+7WQFKoZDOwXARZuhE274dTWcS1NOmovfQK76wiyosC2ffDqp3Bp17iVJR2T9Tvgnc/r7pMEzF4H/U6KR0WSpIbW6MOuDRs2AJCRUX2c/KpVqygrK6txva69e/fy7LPP8vLLLx/V7wmHwyQlNYmBbpKkRuiMx9eRkt6pzj5RoO/Iq9i++MX4FCUdo843Ps5J+dcSapFyyD7Ryn3cdP+v+dt//WscK5OOXrvz/5luP3i6zj4R4L+L1vDAuX3r7CdJiq+WLVuyffv2o96u0ac7HTp0AGDNmjVVbdFolMmTJxOJRGqEXXPnzqVz586cddZZca1TktTMRb86OeaQHRu0DKleRCNUv/pcbULeyk5NQ+QI3589niUpMELRaON+V6+oqCA7O5t9+/bx4IMPkpaWxvTp0ykuLmbLli1s37692oisSy+9lIsvvpjvf//7R/T827ZtY/ny5fTv358TTzyxoXZDkhRw/74kdkevuk6pWoTgpVGQnhq3sqRj8qf1cFfx4ftNGwwjTmv4eqTjsXEXXL6g7q8akoDR3eHfBsSrKklSQ2r0I7uSk5OZPXs2nTp1YsKECUyaNIlLLrmE/Px8cnJyqgVdGzZsYOHChVx77bVH/Pwnnngiw4YNM+iSJB2XqzPrDrpCwEWnGXSpabjoNGiXcugPiknAyamQ3zGeVUnHpmOb2LFa14lPFLiqR5wKkiQ1uEYfdgEMGDCAwsJCdu3aRUlJCTfeeCPFxcU1pjA+9dRTXHbZZVVTHyVJipd+J8Et2bHHX/3jGgIy0+D2/vGuSjo2qS3gwXMgJanm8Zz0j/X/7xxIbhKfJCX4txzofELNyblJ/2i4rR/0ahf3siRJDaRJfkTZvXs3JSUlNcKuJ598km9/+9sJqkqS1Nxd1wt+MQTOOug7l/RUuL43/FcetGuZuNqko3VWB3j6gtjdFpP/EQi0TILLu8HMfO9ap6alQyt4Mg/+Ty9of9B78TknwyPnwjd7Jq42SVL9a/TX7KrNO++8w7nnnsu7777L4MGDE12OJEk17KmAvRFISzkwckBqqioisLMCTkh2NJeavkgUduyDli2gVYtEVyNJaghNMuySJEmSJEmSauN3c5IkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYPz/QzTh9vHKr5QAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -378,16 +378,16 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:57.981927Z", - "iopub.status.busy": "2024-11-23T19:54:57.981589Z", - "iopub.status.idle": "2024-11-23T19:54:58.165436Z", - "shell.execute_reply": "2024-11-23T19:54:58.164850Z" + "iopub.execute_input": "2024-12-05T03:21:32.642697Z", + "iopub.status.busy": "2024-12-05T03:21:32.642353Z", + "iopub.status.idle": "2024-12-05T03:21:32.821158Z", + "shell.execute_reply": "2024-12-05T03:21:32.820634Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAGOCAYAAACdRTJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA33ElEQVR4nO3de1yUdd7/8fdwFBRUMBUNdBQlwhNtRZoFY+faDZXsoBTd1ZZbbcveVvaz3LXtaFv3buZWt3dHLTtIB7N0KzesbElWkTykCIqE5KE8JCqCMvP7w5qCYZCvOdcMzev5ePB4xDXDdX158/kSb2YYbS6XyyUAAAAAQJuF+HsBAAAAANDeUKQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMhfl7AYGsofaAdq/7yt/L+MXompqkiJhor7eTd/BhJqzlLW9yBrNhDXJGa5gPaxztZw8TFKlW7F73lRZl3+PvZfxiXDT/fvU4/SSvt5N38GEmrOUtb3IGs2ENckZrmA9rHO1nDxM8tQ8AAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMBQuylSDQ0Nmjp1qhITExUVFaVRo0apuLhYNptN8+fP9/fyAAAAAASRMH8voC1cLpfGjRun4uJiTZs2TcnJyZo7d67GjBkjSUpPT7d0PbbQEJ02LU/9c86WLSREm9/7XMumPKPG+kOWriNYkDeaYyasQc7whtmwBjmjNcyH/7WLR6RmzZqlhQsXavHixbrpppt0zjnnaNasWQoNDVVcXJySkpIsXc+Q28aq54hBmj9qkt448/fqMvBE/eqeqy1dQzAhbzTHTFiDnOENs2ENckZrmA//axdFavr06crNzVVaWpr7WGhoqOx2u/vRqA0bNmj48OEaOHCghg8frvLycp+tZ8CEc7R6xps6sG2X6nfuVeljryv5iizZQtpFnO0OeaM5ZsIa5AxvmA1rkDNaw3z4X8AnXV5ersrKSuXk5HjcVl1d7S5SEydO1C233KINGzbolltu0U033dTma8TExCgyMtLjzeHI8rhvRGy0OvU+QbvWVrqP7VxdqYiYaHVKPMH00wsqDkdWizmTd/ByOJgJKzkcLeftcGR53Jecg4vDwWxYweEgZ3jncDAfVnA4PHOOiYk5pnMFfJGqqamRJHXv3r3J8fXr16uqqkrp6enasWOHSkpKdNVVV0mSrrrqKpWUlOibb7457usJ6xQlSWr47oD7WMN3+yVJ4d/fhuOHvNEcM2ENcoY3zIY1yBmtYT4CQ8AXqfj4eElSRUWF+5jL5dLkyZPldDqVnp6u6upq9e7dW6GhoZKOPO2vV69eqq6ubtM1amtrVV9f7/FWWLjE476H99VJksJjo93HIjp3lCQd+v42tKywcEmLOZN38GImrOUtb3IGs2ENckZrmA9rtJRzbW3tMZ0r4ItUamqqkpOTNWXKFM2bN0+LFi1Sdna2SkpKFB0drZSUFEvX07D3gPbVfKO4tL7uY/GD7GqoPaB91cf/EbBgR95ojpmwBjnDG2bDGuSM1jAfgSHgi1RYWJgKCgqUkJCgvLw85efn66KLLlJmZqaGDBmikJAQJSYmqqamRo2NjZKkxsZGff3110pMTPTJmspf/peG/H6Monp0VWR8rIZNulwVry2Ry+n0yfWCHXmjOWbCGuQMb5gNa5AzWsN8+F+7+Hekhg4dqqKioibHZs6cqczMTElH/n5q2LBheuWVV5Sbm6tXXnlF6enpOuEE3/yx3aoZbyoyLlajl/xNthCbNr/7uVY88JJPrgXyhidmwhrkDG+YDWuQM1rDfPhfuyhSzdXV1amsrEz5+fnuY08//bTy8vL0l7/8RV27dtXs2bN9dn1Xo1PFU59T8dTnfHYN/Ii80RwzYQ1yhjfMhjXIGa1hPvyvXRapVatWqbGx0f3S55J00kknadmyZX5cFQAAAIBg0S6LVEZGhlwul7+XAQAAACBIBfyLTQAAAABAoKFIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIChdlOkGhoaNHXqVCUmJioqKkqjRo1ScXGxbDab5s+f7+/lAQAAAAgiYf5eQFu4XC6NGzdOxcXFmjZtmpKTkzV37lyNGTNGkpSenm7ZWvr+ZrhSb7hYcWl9Vb+rVgWn32zZtYMVmaM5ZsIa5AxvmA1rkDO8YTYCQ7soUrNmzdLChQtVWlqqtLQ0SVJWVpbsdrvi4uKUlJRk2Vrqv9uv9c/9Ux1O6Ky0G39t2XWDGZmjOWbCGuQMb5gNa5AzvGE2AkO7KFLTp09Xbm6uu0RJUmhoqOx2u8LDwyVJt99+u9544w1t3rxZq1ev1qBBg3yylq2frJIkJV14mk/OD09kjuaYCWuQM7xhNqxBzvCG2QgMAf83UuXl5aqsrFROTo7HbdXV1e6n9Y0ePVqffPKJ+vTpY/USAQAAAASZgH9EqqamRpLUvXv3JsfXr1+vqqoqd5EaOXLkMV8jJiZGDQ0NHsf7h3XVnbHHfl405XBkaePh3V5vJ+/g43AwE1ZyOFrOm5zhcDAbVnA4yBneORzMhxUcDs+cIyIiVFtba3yugH9EKj4+XpJUUVHhPuZyuTR58mQ5nU5LX2gCAAAAAKR2UKRSU1OVnJysKVOmaN68eVq0aJGys7NVUlKi6OhopaSk/Oxr1NbWqr6+3uOtsHDJz/8E4FZYuKTFnMk7eDET1vKWNzmD2bAGOaM1zIc1Wsr5WB6NktrBU/vCwsJUUFCgiRMnKi8vT4mJicrPz1dsbKw2btyokBBru6AtJEQh4aGyhYVJNptCI8PlcrnkbDhs6TqCCZmjOWbCGuQMb5gNa5AzvGE2AkPAFylJGjp0qIqKipocmzlzpjIzMy1fS//LztbIx291v3/15le0r3oHr9/vQ2SO5pgJa5AzvGE2rEHO8IbZCAztokg1V1dXp7KyMuXn57uP3XbbbXrzzTe1bds2nXvuuYqPj9fatWuP+7UrXl+iiteXHPfzwjsyR3PMhDXIGd4wG9YgZ3jDbASGgP8bqZasWrVKjY2NTV5oYsaMGdqyZYsOHz6sbdu2+aREAQAAAIDUTh+RysjIkMvl8vcyAAAAAASpdvmIFAAAAAD4E0UKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAy1myLV0NCgqVOnKjExUVFRURo1apSKi4tls9k0f/58fy8PAAAAQBAJ8/cC2sLlcmncuHEqLi7WtGnTlJycrLlz52rMmDGSpPT0dMvWEhIRpjMevEEJIwerQ3ysDmzfrXXPLdL65xZZtoZgQt5ojpmwBjnDG2bDGuSM1jAfgaFdFKlZs2Zp4cKFKi0tVVpamiQpKytLdrtdcXFxSkpKsmwtIaGhqtuxRx9ceZ9qq7Yr7uQ+Ou+Ve3Twmz3avKDIsnUEC/JGc8yENcgZ3jAb1iBntIb5CAzt4ql906dPV25urrtESVJoaKjsdrvS09O1c+dOXXzxxUpJSdHgwYM1duxYffPNNz5Zy+G6eq185FXVbt4muVzatXazqj9Yru6np/rkesGOvNEcM2ENcoY3zIY1yBmtYT4CQ8AXqfLyclVWVionJ8fjturqaqWnp8tms+nOO+9UWVmZVq9erf79++uuu+6yZH22sFD1yEjV7nVVllwv2JE3mmMmrEHO8IbZsAY5ozXMh38EfJGqqamRJHXv3r3J8fXr16uqqkrp6emKi4tTVlaW+7YzzjhDVVVtH6SYmBhFRkZ6vDkcWUf5SOmMB6/XoX112jjv4zZfL1g5HFkt5kzewcvhYCas5HC0nLfDkXXUjyXnXzaHg9mwgsNBzvDO4WA+rOBweOYcExNzTOcK+CIVHx8vSaqoqHAfc7lcmjx5spxOp8cLTTidTj311FO69NJLfb6206bl6YRfpejDCQ/Ieeiwz68X7MgbzTET1iBneMNsWIOc0Rrmw38CvkilpqYqOTlZU6ZM0bx587Ro0SJlZ2erpKRE0dHRSklJaXL/3//+9+rUqZNuvfXWNl+jtrZW9fX1Hm+FhUu8fszpf7lWvc4eovcvv1f1u2qP9dMLKoWFS1rMmbyDFzNhLW95kzOYDWuQM1rDfFijpZxra48tu4B/1b6wsDAVFBRo4sSJysvLU2JiovLz8xUbG6uNGzcqJOTHLnj77bervLxcCxYsaHL8eDv9vuuUMHKQ/nnZNNXv3Ouz6+AI8kZzzIQ1yBneMBvWIGe0hvnwv4AvUpI0dOhQFRU1fSnHmTNnKjMz0/3+lClTtGLFCr333nuKjIz02Vo6nthNJ99wsRoPNuiyZf9wH9++bL0WT3jAZ9cNVuSN5pgJa5AzvGE2rEHOaA3zERjaRZFqrq6uTmVlZcrPz5ckrV27Vg899JAGDhyoESNGSJLsdrveeuut437t/Vu+1QsJlx3386Jl5I3mmAlrkDO8YTasQc5oDfMRGNplkVq1apUaGxvdLzSRlpYml8vl51UBAAAACBbtskhlZGRQnAAAAAD4TcC/ah8AAAAABBqKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYajdFqqGhQVOnTlViYqKioqI0atQoFRcXy2azaf78+f5eHgAAAIAgEubvBbSFy+XSuHHjVFxcrGnTpik5OVlz587VmDFjJEnp6emWrueMh25Q4nmnKjw2Wof21anq3SItv+8lOQ8dtnQdwYK80RwzYQ1yhjfMhjXIGa1hPvyvXRSpWbNmaeHChSotLVVaWpokKSsrS3a7XXFxcUpKSrJ0Peue/6eW/2WODtfVKzIuRlmzJmnIbWNV+tjrlq4jWJA3mmMmrEHO8IbZsAY5ozXMh/+1iyI1ffp05ebmukuUJIWGhsputys8PFySNHr0aFVWViokJESdOnXSE088oWHDhvlkPd9t2PLjOzabXE6XYvol+ORaIG94YiasQc7whtmwBjmjNcyH/wV8kSovL1dlZaVmzJjhcVt1dbVycnIkSS+++KI6d+4sSZo/f76uu+46lZSU+Gxdg28drSH5OQrvGKWDu/bqw/Ev+exaIG94YiasQc7whtmwBjmjNcyHf9lcLpfL34tozZIlS+RwOLRs2TKdfvrp7uPr169XWlqa5syZo/Hjxzf5mNmzZ2vGjBlavnx5m64RExOjhoYGj+P9w7rqztiRrX5s5wG91W/sWSqb/YEObN3VpusFq0f2LtXGw7u93k7ewYeZsJa3vMkZzIY1yBmtYT6s0VLOERERqq2tNT5XwL9qX3x8vCSpoqLCfczlcmny5MlyOp1NXmjihhtuUFJSku6++269+OKLlqzvu/Ia7VpbpbOeuM2S6wU78kZzzIQ1yBneMBvWIGe0hvnwj4AvUqmpqUpOTtaUKVM0b948LVq0SNnZ2SopKVF0dLRSUlLc933mmWf01Vdf6cEHH9Qdd9zR5mvU1taqvr7e462wcEmbPj4kPFSxPCf1qAoLl7SYM3kHL2bCWt7yJmcwG9YgZ7SG+bBGSzkfy6NRUjsoUmFhYSooKFBCQoLy8vKUn5+viy66SJmZmRoyZIhCQjw/hauvvlqFhYXauXPncV9PeEy0ki/PUkRstCSpa2ofDc3P0ddLvjju1wJ5wxMzYQ1yhjfMhjXIGa1hPgJDwL/YhCQNHTpURUVFTY7NnDlTmZmZkqR9+/Zp9+7dSkxMlCQtWLBAcXFxiouLO/6LcbnUL+dsnTYtTyERYTr47V5VLVym0r++dvyvBfKGJ2bCGuQMb5gNa5AzWsN8BIR2UaSaq6urU1lZmfLz8yVJ+/fv17hx47R//36FhoYqLi5OCxYskM1mO+7XPrSvTh9c8Zfjfl60jLzRHDNhDXKGN8yGNcgZrWE+AkO7LFKrVq1SY2Oj+4UmevTooc8//9zPqwIAAAAQLNplkcrIyFCAv2o7AAAAgF+wgH+xCQAAAAAINBQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxSpADPy77co44Hr/b2MFk2omKO4QXZ/LwN+1rF3N02omKPIrp38vRSfYA/6RnteuyT1HJ6mCRVzfHb+C9+4V2kTLzX+uO4Zqbrii//zwYr8hz3oG+157RJ70Grsw7YJ8/cCfsl6jkjTsEmXK35IP0nSzlWbVPro69pWtNbPKzti2KTLFT+0v/51zUNtuv/LyVf7eEU/z4Vv3KseZ6RqwYWTtWt1pfv4tVsLtODCydr5xUY/ru6XY3/NtwE/Cz9gD1rjwjfu1Qm/GijnocNyOZ2q27FHX3+6WmuefFv7t3wrKXDX3t7tWLZOrw39rb+X4RV70BrsQf8J9D0osQ99iUekfOTEc3+l8+beo+rFK/T6KTfp9VNuUvXiFTrvlXt04jmntPgxttDj9+WwhYUet3O1J/V79unUu3P9vQwEAPagtUoefkUvD7hac1Py9NH1f1WHrjG69MNHFdu/l7+XBj9hD1qLPYiWsA99iyLlIxn3X6eKeUu09ql3dKj2gA7VHtDap97RxoKPdfr910mSLit+UkPyc3TxOw8od9PL6ja0vyQpvGMHZc2apAnlczT647+pV9bQo17vh4e8B+aeq8v+85QuXfyoJCnh7CH69fvTNb7sRV36r8eUdOFpkqSkC0/T4NvGqLdjmCZUzNGEijkKiWj9AcprtxYofmh/2UJDNH7DbHVJSTxy7RFpunZrgfr8ergkKap7F13z1asK7xR1bOH9DGWzP1Dc4H7qlemZ2bBJl+uc2f+vybHLip9Un0vOkCQlX56l7ML/0dD/HqcrVj+rK9c8q+QrHIobZNdvPnhE4zfMluPZOxQaFXHUdYRFd9DwR27U5Stn6Yov/k8jH79VEZ07um+/dmuBUm+4WKM//pvGl72oUc9PVmR87FHPm3D2EF26+FGN3zBbV6x+VmfNvK3JOeO/n6Gffj4//VyH/GGsLnnvIU3Y+JIumPdnRcbF6NSpV+vKtc/rsuVPKfH8U4+6hk4nnqBrtxYoMi5GHbp11jXVryk8JvrINa9wNFnHCb8aqCtWPXPUc/oCe9A/e1CSvtuwRZ/c+rgObNul9DuuaLJ2SYobZNdFb9+nK9c+ryvXPq+s/5ukDt06uz8+IjZamU//UePXv6ixnz2hgVef5565o4kf0k8XzPuzrvryeV255lllfP+1lrx/LaSjf39ork17/PqLlV34P5qw8SVlzZqkiNhonfm3mzW+7EWN+fRxnXDKgCbnjOrRRee/9idNqJijX/9zepP97M1Pn+7ULX2Arlzz7I+f0+2XK6/mdXX4/nuLffSZumRh237jezywB9mD7EH/7kGJfejrfUiR8oHY/r0U06eHKt/+zOO2TW8tVWzfnortlyBJSh6Xpc8mPamXk6/WzjVHno5mHz1Sm976VHNPytOqJ97SqOfuVHTPuKNeNywqUt2GJevts/P17kWTFdO3p8598S6tmfm2Xjn5v7TigZeU+dQfFZfWV1/98z9aPeMt1RSW6uXkq/Vy8tVyNhxu0+fnanRq+7J1Shg5WJKUcNZg7a3cqoSRg468P3Kwdq7apEP76tp0vuOp4bsDWj3jTf3q7gnH9PGdk3vr0P46vT7styqa/H8646EbNGzS5Vqc+6AKTvudOif3UkrueUc9T8b916lzcm/NP/d2vXXWHxQZF6Mz/+fmJvdJvtyhD666X/N+NVGSNLLZ7S056/FbtfZ/F2juwGtUcNrvVDb7A6PPz559ppbc9JheG3yDwqIidcm7D+q7ihq9Nvh6rXr8TY147HdGvz06+O13+m7j1+o5/GRJP52F72dj5CBt+8z6pw6wB/23B3+6xq/+WayeI9I8b3M6teKhuXp92G/11lm3KbxTVJMftjIeuF6RXTqpIONmvXfp3eo3emSbrhndM04XFEzT5nc/1+vpN2reab9T5YIiSWr1a3Es2rLHky48Tf/M+bMKTr9Z8UP76ZL3HtLmBUV6JfW/VLVwmYZPv7HJ/QdcOUqlj73uvv3c2Xe16Rc3P9j5xUaFhIepa2ofSUfmorZqu3qe+eNcbFu65pg+X1PsQfYge9C/e1BiH1qxDylSPtDh+9/Y1G3f5XFb3Y7dR+7z/W8nyuZ8qO/Ka+RyOt2Ds+3zL/XVomK5Gp3aVPCJdn9Zpb6/GX7U69pCQrTiwZd1uK5ejXUNsmeP0PZl67R5QZFcjU7VfLRSX32wXP3HZf7sz3Hb0jVNBrX00dfdg9zzzEHa+pl13yiaW/f8IkV26aR+Y88y/tj6Pfv05f++K1ejU1XvfS5bSIgq316quh171PDdftUUlrqfY+yVzaZ+Y89SyUNzVb9zrxr2HtDy++aoz8UZTX4rsuap+Trw9U4d2lenFQ/MUeL5pyoiNrrVUzsPHVZM357qEB+rxoMN2lG83ujzK5v9ofZv+VaHDxzUVx8sl6vRqfJXPpLL6VTlW0sV1a2zOvXuZnTObUtXu2eh54g0lT72uhLO+mEWBmvrZ6uNznc8sAf9uwd/cGDrLkV28XxRkt1fVmnHsnVyHjqs+l21Wj3jLfcPGraQEPW9dIRW/vU1NXy3X/U79+qLx99o0/X65ZytXasrVfbi+2qsP6TGugbtWLZOko7v16KNe3zt0wtUv6tW9Tv36utPVmlf9Q7VfLTyyH57+zN1SU1SSPiPv3nd/G6RdhSvl/PQYa1+4i25nC71buHRdW9cTqe2f75OCSMHKSy6g7oMOFFrn17wk/1o3VywB9mD7EH/7kGJfWhF3hQpHzi4q1aSFNXDs7VHde965D4790qS9td843Gf/VuaHttX/U2bfgNwuK5e9d9fW5KiE+K1r/m5qrYrOiH+qOc6mq1LV6vHGScrIjZasf16qfLtzxQaEabohDgljBykrZ9a/8PzD5wNh1XyyKtKn3xlk2+QbXHw2++avN94sEF1O/a43z9cV3/Uh4g7xMcqNDJc+6p/zH5f1XZJUnSvH7P/6df5h/se7ev80X89oi4DTtToTx7XpYsfNf4mVPfNHvd/N9bVe3xukowfAt+6dLV6njlYnQf0VsPeA6p693PFD+6n8E5R6n7qQL/MAnvQv3vwB9EJcarfXetxPKZPDzmeu0OXr5yl8Rtm65zZdynq+6cVRcbFKDQiXPtrvnXf/6f/3ZpOJ3bT3sqtXtZy/L4Wbd3jdT/5ftLSfgsJDVXYT37b3WTuXC7tr/lW0T3N1ndkPw5SjzNStWPFBtV8tFIJZw5SxxO7qWNCvLYXrzM637FiD7IHPdfCHrRyD0rsQyv2IUXKB/Zu/Fq1X22X/dIRHrfZs0eo9qvt2rvpyDcal9PlcZ+OJ57Q5P1OiSfowDbP3yY053I6m7x/YOtOdfI4V3cd2Lqzxfub2LV2s1xOp07+7a+14z/r5XI6tXXpGg0cf66iu3fVjv+YPVJyvG1641Mdqq3TSdde4D52aP/BJt8wbaEhTZ4Tfrwc3LlXjfWH1Cnxx+x/+O8DW3/8Ov706+y+/Shf511rN2vJjY/p1UHXafl9c3Tm/9ysmL49JUmH9tc1+fyi2vDN7njY9u+16jKgt+zZZ2rrp6vVWH9Iu7/crLSbfqODO/eq9vv/uVmJPej/PWgLDVHSBadp27+/9Lht+PQbVb+rVm9n/VFzB16jf13zsPu2+l21amw4pI4/eWS0YxsfJd235VvF2hNavO1oXwuT7w9t3eOmmsydzaboXvE6sG2n0Tm2Ll2jnmecrF6ZQ7V16eojP7zYbBpwxSh9U7JBjXUNx7w+E+xB9mBz7EFr96DEPrRiH1KkfKT4Ty8o+QqH0m76jcI7RSk8Jlon3/RrJV/uUPHU51v92J5nnKzE80+VLTRE/caepa4n99Hm9z43XkPl/H+rR0aq+lySIVtIiHo7hinxglO1seATSUd+U9Oxd7djfnWWbf9eq5NvvERblx5p+1s/W62Tb7xEO1ZsUGP9oWM653HjcmnFAy9pSH6O+9DO1ZvU7ZQB6jzwRIVEhB15xMoXrybjcmnTW58qffJVioyPVURstE6deo2qFi3TodoD7rulTfyNohPiFNaxg06ZMkHVi1eoYe8Br6cNCQ9T/3GZiujSSXK53Pd1NTq///wq1f+yTNlCQ9Rl4IkaOOGc4/+5taBh7wHt+rJKJ//2p7Owpsls+AN70H97sHNyL42c8XtFJ8Rr5aOvedweHhOthtoDath7QFE9ujbZpy6nU5sXFGnY7ZcronNHRcbFaMjvx7Tpupve/ETxQ/op5ZrzFRIRptCoCHXPSJV09K+F0feHNu5xU30vOUMnnJoiW1ioBt+SrZCwUH398Sqjc+xeV6XGQ4c14EqH+zex29z70dqnmrEH2YPsQf/uQYl96Ot9yL8j5SPV7/9Hi3Mf1ND/vkzD7rhc0pHX7V+c++BRf7isfHup+o/L1Nn/+IP2b92pwhse1YGvzX4jIkm1m7fpo+se0Sn/b4LO/Nst2r/lG31y6wzt+v6PCDcvKFK/0SN15ZrnZLPZ9OqQ69v8B36StPXT1er76+Hubwxbl65RRGzHgHheuCTVFJZq19oq9fr+ucnbPlujshfe10Vv3SdnwyGt/sfbbfrNyrEonvq8TpuWp9EfPSbZbPr64y9U/Kem37A2zvtY5786VdEJ8dpe9KU+++OTRz2vPftMnTYtT6GR4TqwdZf+Pekp7aveIUladvezGvn3WzS+7EV9W7pR5a8WtvhbKF/Y+ulqxaX11fbv/02KrZ+u1imTr/LrLLAHrXXKXVdp2KRxcrlcqtu+W1uXrtY7593u/jdsfqr4zy9oxCM3KqX8PNVW7VDZ7A/U6+wh7tuX3f2sRvx1oi5b9qQO7tyrL59dqISRg4/6P8QDW3fp/XH36tQ/X6NfTZmgxkOHVfn2Uu1Ytu6oXwvT7w9t2eOmyl8rVPqdV+qEU5K1d9NW/euah91PuTWx7bMjfzOw+8sqSUee+jJwwrmWzwV70FrsQfZgS9iHvmVzuVyej+VBkrS9eL0WZd/j72UEBFtIiPJqXtf8UZO0e13VMZ3jovn3q8fpJ3m9PZjybs//SHBMnx7K+fwfennA1T/7lXCYibbz5R4M9Jx7j0rX2f/4g15JvdbfSwk4CSMHK2vWf+uVk//rZ52nvc6GldiD7MGWHK89KLXf+bCSFT+PmuCpfWiTrml95Dx0uMU/RkRw6ZrWVwd3fufXl/UNRsG0B2PsPdVtWLJks6nTiSco/Y4rVDnf8+V7cWQu/PF3iMGIPcgebAl70FqBtg95al87kr3kb+p0oucffFZ/sEKf3Pz3n33+c1++Wz0yPBv6oX0HFRIeqhUPzm31b3iCSb+xZ2n4Ize2eNt7v75be9Z/dUzn7Z6RqvNentLibR9P/Lu2LF5xTOc11dqs9RyRpmVHeV71LxV70BphUZE664nfK7pXvA7V1mnL4hVacf9Lknz/NQhEP/xjn83VLPlC8YPt+vekpy1ekf+wB63BHmyKPdgU+/BHFKl2ZH7WH316/sUTHvDp+X9JNr35qTa9+ekxf/wLCZe1eHzHsnV6OfnqYz7v8eLrWWuv2IPW2P1lld466w8t3haMsxkI3xMCBXvQGuzBptiDTbEPf8RT+wAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAULsoUg0NDZo6daoSExMVFRWlUaNGqbi4WDabTfPnz/f38gAAAAAEmYAvUi6XS+PGjdMzzzyje+65R++++67sdrvGjBkjSUpPT/fLukI7RGjsv5/QhIo5frl+MCJzNMdMWIOc4Q2zYQ1yhjfMhn+F+XsBRzNr1iwtXLhQpaWlSktLkyRlZWXJbrcrLi5OSUlJfllX+h1XaN+WbxXVvYtfrh+MyBzNMRPWIGd4w2xYg5zhDbPhXwH/iNT06dOVm5vrLlGSFBoaKrvd7vFo1L333iubzaY1a9b4dE3xQ/qpt2OY1vzjbZ9eBz8iczTHTFiDnOENs2ENcoY3zIb/BXSRKi8vV2VlpXJycjxuq66ublKkSkpK9Pnnn6tPnz4+XZMtNEQjHp2oz6c8I2fDYZ9eC0eQOZpjJqxBzvCG2bAGOcMbZiMwBHSRqqmpkSR17969yfH169erqqrKXaTq6+t1yy236Kmnnjqm68TExCgyMtLjzeHI8rjvoJuztXN1pbZ/vu6YrhXMHI6sFnNuLW+JzH/JHA5mwkoOR8t5OxxZLd6fnIOHw8FsWMHhIGd453C0fT6YjWPncHjmHBMTc0znCugiFR8fL0mqqKhwH3O5XJo8ebKcTqe7SP3pT39Sbm6u+vbt69P1xPTtqZRrztfy+/iDPquQOZpjJqxBzvCG2bAGOcMbZiNwBPSLTaSmpio5OVlTpkxReHi4OnXqpKeeekorV65UdHS0UlJSVFRUpOXLl+vhhx8+5uvU1ta2eHx78Xotyr7H/X6P009SVLfOGvvZDElSSFiowjtG6cq1z6nw+r/yW4GjKCxcoh6nn+T19uZ5S2T+S8dMWMtb3uQMZsMa5IzWtHU+mI2f52g/e5gI6CIVFhamgoICTZw4UXl5eUpMTFR+fr5iY2O1ceNGhYSE6OOPP9a6detkt9slSVu2bNEFF1yg559/Xueff/5xXU/lgn/r609Xud8/4VcpGvn4LXrn3Nt1cOfe43otHEHmaI6ZsAY5wxtmwxrkDG+YjcAR0EVKkoYOHaqioqImx2bOnKnMzExJ0l133aW77rrLfVvfvn317rvvatCgQcd9LY11DTpQt8v9fv3OvZLLpQNbd7XyUfg5yBzNMRPWIGd4w2xYg5zhDbMROAL6b6RaUldXp7KyMr/9Q7w/ta1orV5OvtrfywgqZI7mmAlrkDO8YTasQc7whtnwn4B/RKq5VatWqbGx0WuR2rx5s7ULAgAAABB02l2RysjIkMvl8vcyAAAAAASxdvfUPgAAAADwN4oUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABhqN0WqoaFBU6dOVWJioqKiojRq1CgVFxfLZrNp/vz5/l4eAAAAgCAS5u8FtIXL5dK4ceNUXFysadOmKTk5WXPnztWYMWMkSenp6ZatZeTfb5F9zEg5Dx12H1vy28dUU1hq2RqCCXmjOWbCGuQMb5gNa5AzWsN8BIZ2UaRmzZqlhQsXqrS0VGlpaZKkrKws2e12xcXFKSkpydL1bHhpsZbd/ayl1wxm5I3mmAlrkDO8YTasQc5oDfPhf+2iSE2fPl25ubnuEiVJoaGhstvtCg8PlyT17dtXHTp0UIcOHdwfc8EFF/hlvQAAAAB+2QK+SJWXl6uyslIzZszwuK26ulo5OTnu9wsKCjRo0CCfr6nf2LPUb8xI1X37nTa98YlWz3xbrkanz68brMgbzTET1iBneMNsWIOc0Rrmw/8CvkjV1NRIkrp3797k+Pr161VVVXVc/j4qJiZGDQ0NHsf7h3XVnbEjmxz78tmFWn7fHB3cVav4If2U+WS+QiMjtPKRV3/2On7pHI4sbTy82+vt5B18HA5mwkoOR8t5kzMcDmbDCg4HOcM7h4P5sILD4ZlzRESEamtrjc8V8K/aFx8fL0mqqKhwH3O5XJo8ebKcTmeTIjVhwgQNGTJEN998s/bs2eOT9exaXamDO/dKLpd2frFRKx99TfbsM31yLZA3PDET1iBneMNsWIOc0RrmIzAEfJFKTU1VcnKypkyZonnz5mnRokXKzs5WSUmJoqOjlZKSIkn69NNP9cUXX+g///mPXC6Xbr311jZfo7a2VvX19R5vhYVLjv7BTpdkO8ZPLsgUFi5pMWfyDl7MhLW85U3OYDasQc5oDfNhjZZyPpZHo6R2UKTCwsJUUFCghIQE5eXlKT8/XxdddJEyMzM1ZMgQhYQc+RQSExMlSZGRkbr55pv12Wef+WQ9fS8dofCYaElS19Q+GjppnDa/W+STa4G84YmZsAY5wxtmwxrkjNYwH4Eh4P9GSpKGDh2qoqKmwzFz5kxlZmZKkvbv36/Dhw+rc+fOcrlcevXVVzVs2DCfrOWkay/Q8Ok3KiQ8VHXb92hjwcda9cRbPrkWyBuemAlrkDO8YTasQc5oDfMRGNpFkWqurq5OZWVlys/PlyRt375dOTk5amxsVGNjo04++WQ9+eSTPrn2P8f+2SfnRcvIG80xE9YgZ3jDbFiDnNEa5iMwtMsitWrVKjU2NrpfaKJfv35auXKln1cFAAAAIFi0yyKVkZEhl8vl72UAAAAACFIB/2ITAAAAABBoKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYKjdFKmGhgZNnTpViYmJioqK0qhRo1RcXCybzab58+f7e3kAAAAAgkiYvxfQFi6XS+PGjVNxcbGmTZum5ORkzZ07V2PGjJEkpaenW76mE885RemTr1Rs/146vK9Oa55eoLVPvWP5OoIFeaM5ZsIa5AxvmA1rkDNaw3z4V7soUrNmzdLChQtVWlqqtLQ0SVJWVpbsdrvi4uKUlJRk6Xp6ZQ7V8L/epKW3zdS2orUKi4pUx97dLF1DMCFvNMdMWIOc4Q2zYQ1yRmuYD/9rF0/tmz59unJzc90lSpJCQ0Nlt9vdj0YdPHhQv/vd7zRgwAANHjxYN954o8/Wk37nlVr19ze0delquRqdOrSvTnvKqn12vWBH3miOmbAGOcMbZsMa5IzWMB/+F/CPSJWXl6uyslIzZszwuK26ulo5OTmSpDvvvFMdOnTQhg0bZLPZtH37dp+sJywqUt2G9VfNRys15tPHFdG5o74pKVfx1Oe1r3qHT64ZzMgbzTET1iBneMNsWIOc0RrmIzAE/CNSNTU1kqTu3bs3Ob5+/XpVVVUpPT1d+/bt0+zZs3XffffJZrNJknr06NHma8TExCgyMtLjzeHI8rhvRJeOsoWEqM8lGfrwqvtVkHGz6r7ZI8ezdxzrpxg0HI6sFnMm7+DlcDATVnI4Ws7b4cjyuC85BxeHg9mwgsNBzvDO4WA+rOBweOYcExNzTOcK+CIVHx8vSaqoqHAfc7lcmjx5spxOp9LT07Vx40bFx8fr3nvv1amnnqqsrCwtXbrUJ+s5tO+gJOnLZxZq35Zv1FjXoJKH5ip+sJ3npfoAeaM5ZsIa5AxvmA1rkDNaw3wEhoAvUqmpqUpOTtaUKVM0b948LVq0SNnZ2SopKVF0dLRSUlLU2NioTZs2KT09XcuXL9f06dM1duxY7d27t03XqK2tVX19vcdbYeESj/seqj1w5CFTl+s4f6a/fIWFS1rMmbyDFzNhLW95kzOYDWuQM1rDfFijpZxra2uP6VwBX6TCwsJUUFCghIQE5eXlKT8/XxdddJEyMzM1ZMgQhYSEKCkpSWFhYbrqqqskSRkZGerWrZs2bNjgkzWVzf5AqTdcouhe8QqNDFf6nVfq2y82an/Ntz65XrAjbzTHTFiDnOENs2ENckZrmA//C/gXm5CkoUOHqqioqMmxmTNnKjMzU5LUrVs3ORwOffjhhzr//PO1YcMG7dixQ8nJyT5Zz+p/zFdE50669INHJFuIdhSvV+H1f/XJtUDe8MRMWIOc4Q2zYQ1yRmuYD/9rF0Wqubq6OpWVlSk/P9997Omnn9Z1112nSZMmKTw8XHPmzFGXLl18swCXSyseeEkrHnjJN+dHU+SN5pgJa5AzvGE2rEHOaA3z4XftskitWrVKjY2N7n9DSpL69eunJUuW+G9RAAAAAIJGuyxSGRkZcvHHdQAAAAD8JOBfbAIAAAAAAg1FCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwFCYvxfQVg0NDbrvvvv0wgsv6Ntvv9Xw4cP18MMPKyMjQ2+//bays7MtWceEijlN3g+NCNee8hq9c84kS64fbMgbzTET1iBneMNsWIOc0RrmIzC0iyLlcrk0btw4FRcXa9q0aUpOTtbcuXM1ZswYSVJ6erpla3k5+eom71/6r8dUOf8zy64fbMgbzTET1iBneMNsWIOc0RrmIzC0iyI1a9YsLVy4UKWlpUpLS5MkZWVlyW63Ky4uTklJSX5ZV7dhyeoy8ERVvFbol+sHG/JGc8yENcgZ3jAb1iBntIb58J92UaSmT5+u3Nxcd4mSpNDQUNntdoWHh2vz5s0aPXq0+7Y9e/Zo79692rVrl0/XNWD8KNV8tFJ123f79Do4grzRHDNhDXKGN8yGNcgZrWE+/CfgX2yivLxclZWVysnJ8biturpa6enp6tu3r0pLS91vo0eP1vjx49t8jZiYGEVGRnq8ORxZXj8mLCpS9uwztWHuv8w/qSDlcGS1mDN5By+Hg5mwksPRct4OR5bXjyHn4OBwMBtWcDjIGd45HMyHFRwOz5xjYmKO6VwB/4hUTU2NJKl79+5Njq9fv15VVVUefx/V0NCgl19+We+//75P19X3N8N1uK5BWxav8Ol1cAR5ozlmwhrkDG+YDWuQM1rDfPhXwD8iFR8fL0mqqKhwH3O5XJo8ebKcTqdHkXrnnXfUu3dvnXLKKW2+Rm1trerr6z3eCguXeP2YARPO0cbXl8jV6DT7hIJYYeGSFnMm7+DFTFjLW97kDGbDGuSM1jAf1mgp59ra2mM6V8AXqdTUVCUnJ2vKlCmaN2+eFi1apOzsbJWUlCg6OlopKSlN7v/cc8/puuuu8+maYvv3UvdTU7ThFR5GtQJ5ozlmwhrkDG+YDWuQM1rDfPhfwD+1LywsTAUFBZo4caLy8vKUmJio/Px8xcbGauPGjQoJ+bEL1tTU6OOPP9acOXNaOePPN+CqUdq+bJ1qK7f59Do4grzRHDNhDXKGN8yGNcgZrWE+/C/gi5QkDR06VEVFRU2OzZw5U5mZmU2Ovfjii7rkkkvcTwf0lRX3v+TT86Mp8kZzzIQ1yBneMBvWIGe0hvnwv4B/al9L6urqVFZW5vH3US+88ILPn9YHAAAAAO3iEanmVq1apcbGRo8itWHDBj+tCAAAAEAwaZdFKiMjQy6Xy9/LAAAAABCk2uVT+wAAAADAnyhSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGDI5uJftvWqofaAdq/7yt/L+MXompqkiJhor7eTd/BhJqzlLW9yBrNhDXJGa5gPaxztZw8TFCkAAAAAMMRT+wAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADA0P8HKTcI9XEca0wAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAGOCAYAAACdRTJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA33ElEQVR4nO3de1yUdd7/8fdwFBRUMBUNdBQlwhNtRZoFY+faDZXsoBTd1ZZbbcveVvaz3LXtaFv3buZWt3dHLTtIB7N0KzesbElWkTykCIqE5KE8JCqCMvP7w5qCYZCvOdcMzev5ePB4xDXDdX158/kSb2YYbS6XyyUAAAAAQJuF+HsBAAAAANDeUKQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMhfl7AYGsofaAdq/7yt/L+MXompqkiJhor7eTd/BhJqzlLW9yBrNhDXJGa5gPaxztZw8TFKlW7F73lRZl3+PvZfxiXDT/fvU4/SSvt5N38GEmrOUtb3IGs2ENckZrmA9rHO1nDxM8tQ8AAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMBQuylSDQ0Nmjp1qhITExUVFaVRo0apuLhYNptN8+fP9/fyAAAAAASRMH8voC1cLpfGjRun4uJiTZs2TcnJyZo7d67GjBkjSUpPT7d0PbbQEJ02LU/9c86WLSREm9/7XMumPKPG+kOWriNYkDeaYyasQc7whtmwBjmjNcyH/7WLR6RmzZqlhQsXavHixbrpppt0zjnnaNasWQoNDVVcXJySkpIsXc+Q28aq54hBmj9qkt448/fqMvBE/eqeqy1dQzAhbzTHTFiDnOENs2ENckZrmA//axdFavr06crNzVVaWpr7WGhoqOx2u/vRqA0bNmj48OEaOHCghg8frvLycp+tZ8CEc7R6xps6sG2X6nfuVeljryv5iizZQtpFnO0OeaM5ZsIa5AxvmA1rkDNaw3z4X8AnXV5ersrKSuXk5HjcVl1d7S5SEydO1C233KINGzbolltu0U033dTma8TExCgyMtLjzeHI8rhvRGy0OvU+QbvWVrqP7VxdqYiYaHVKPMH00wsqDkdWizmTd/ByOJgJKzkcLeftcGR53Jecg4vDwWxYweEgZ3jncDAfVnA4PHOOiYk5pnMFfJGqqamRJHXv3r3J8fXr16uqqkrp6enasWOHSkpKdNVVV0mSrrrqKpWUlOibb7457usJ6xQlSWr47oD7WMN3+yVJ4d/fhuOHvNEcM2ENcoY3zIY1yBmtYT4CQ8AXqfj4eElSRUWF+5jL5dLkyZPldDqVnp6u6upq9e7dW6GhoZKOPO2vV69eqq6ubtM1amtrVV9f7/FWWLjE476H99VJksJjo93HIjp3lCQd+v42tKywcEmLOZN38GImrOUtb3IGs2ENckZrmA9rtJRzbW3tMZ0r4ItUamqqkpOTNWXKFM2bN0+LFi1Sdna2SkpKFB0drZSUFEvX07D3gPbVfKO4tL7uY/GD7GqoPaB91cf/EbBgR95ojpmwBjnDG2bDGuSM1jAfgSHgi1RYWJgKCgqUkJCgvLw85efn66KLLlJmZqaGDBmikJAQJSYmqqamRo2NjZKkxsZGff3110pMTPTJmspf/peG/H6Monp0VWR8rIZNulwVry2Ry+n0yfWCHXmjOWbCGuQMb5gNa5AzWsN8+F+7+Hekhg4dqqKioibHZs6cqczMTElH/n5q2LBheuWVV5Sbm6tXXnlF6enpOuEE3/yx3aoZbyoyLlajl/xNthCbNr/7uVY88JJPrgXyhidmwhrkDG+YDWuQM1rDfPhfuyhSzdXV1amsrEz5+fnuY08//bTy8vL0l7/8RV27dtXs2bN9dn1Xo1PFU59T8dTnfHYN/Ii80RwzYQ1yhjfMhjXIGa1hPvyvXRapVatWqbGx0f3S55J00kknadmyZX5cFQAAAIBg0S6LVEZGhlwul7+XAQAAACBIBfyLTQAAAABAoKFIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIChdlOkGhoaNHXqVCUmJioqKkqjRo1ScXGxbDab5s+f7+/lAQAAAAgiYf5eQFu4XC6NGzdOxcXFmjZtmpKTkzV37lyNGTNGkpSenm7ZWvr+ZrhSb7hYcWl9Vb+rVgWn32zZtYMVmaM5ZsIa5AxvmA1rkDO8YTYCQ7soUrNmzdLChQtVWlqqtLQ0SVJWVpbsdrvi4uKUlJRk2Vrqv9uv9c/9Ux1O6Ky0G39t2XWDGZmjOWbCGuQMb5gNa5AzvGE2AkO7KFLTp09Xbm6uu0RJUmhoqOx2u8LDwyVJt99+u9544w1t3rxZq1ev1qBBg3yylq2frJIkJV14mk/OD09kjuaYCWuQM7xhNqxBzvCG2QgMAf83UuXl5aqsrFROTo7HbdXV1e6n9Y0ePVqffPKJ+vTpY/USAQAAAASZgH9EqqamRpLUvXv3JsfXr1+vqqoqd5EaOXLkMV8jJiZGDQ0NHsf7h3XVnbHHfl405XBkaePh3V5vJ+/g43AwE1ZyOFrOm5zhcDAbVnA4yBneORzMhxUcDs+cIyIiVFtba3yugH9EKj4+XpJUUVHhPuZyuTR58mQ5nU5LX2gCAAAAAKR2UKRSU1OVnJysKVOmaN68eVq0aJGys7NVUlKi6OhopaSk/Oxr1NbWqr6+3uOtsHDJz/8E4FZYuKTFnMk7eDET1vKWNzmD2bAGOaM1zIc1Wsr5WB6NktrBU/vCwsJUUFCgiRMnKi8vT4mJicrPz1dsbKw2btyokBBru6AtJEQh4aGyhYVJNptCI8PlcrnkbDhs6TqCCZmjOWbCGuQMb5gNa5AzvGE2AkPAFylJGjp0qIqKipocmzlzpjIzMy1fS//LztbIx291v3/15le0r3oHr9/vQ2SO5pgJa5AzvGE2rEHO8IbZCAztokg1V1dXp7KyMuXn57uP3XbbbXrzzTe1bds2nXvuuYqPj9fatWuP+7UrXl+iiteXHPfzwjsyR3PMhDXIGd4wG9YgZ3jDbASGgP8bqZasWrVKjY2NTV5oYsaMGdqyZYsOHz6sbdu2+aREAQAAAIDUTh+RysjIkMvl8vcyAAAAAASpdvmIFAAAAAD4E0UKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAy1myLV0NCgqVOnKjExUVFRURo1apSKi4tls9k0f/58fy8PAAAAQBAJ8/cC2sLlcmncuHEqLi7WtGnTlJycrLlz52rMmDGSpPT0dMvWEhIRpjMevEEJIwerQ3ysDmzfrXXPLdL65xZZtoZgQt5ojpmwBjnDG2bDGuSM1jAfgaFdFKlZs2Zp4cKFKi0tVVpamiQpKytLdrtdcXFxSkpKsmwtIaGhqtuxRx9ceZ9qq7Yr7uQ+Ou+Ve3Twmz3avKDIsnUEC/JGc8yENcgZ3jAb1iBntIb5CAzt4ql906dPV25urrtESVJoaKjsdrvS09O1c+dOXXzxxUpJSdHgwYM1duxYffPNNz5Zy+G6eq185FXVbt4muVzatXazqj9Yru6np/rkesGOvNEcM2ENcoY3zIY1yBmtYT4CQ8AXqfLyclVWVionJ8fjturqaqWnp8tms+nOO+9UWVmZVq9erf79++uuu+6yZH22sFD1yEjV7nVVllwv2JE3mmMmrEHO8IbZsAY5ozXMh38EfJGqqamRJHXv3r3J8fXr16uqqkrp6emKi4tTVlaW+7YzzjhDVVVtH6SYmBhFRkZ6vDkcWUf5SOmMB6/XoX112jjv4zZfL1g5HFkt5kzewcvhYCas5HC0nLfDkXXUjyXnXzaHg9mwgsNBzvDO4WA+rOBweOYcExNzTOcK+CIVHx8vSaqoqHAfc7lcmjx5spxOp8cLTTidTj311FO69NJLfb6206bl6YRfpejDCQ/Ieeiwz68X7MgbzTET1iBneMNsWIOc0Rrmw38CvkilpqYqOTlZU6ZM0bx587Ro0SJlZ2erpKRE0dHRSklJaXL/3//+9+rUqZNuvfXWNl+jtrZW9fX1Hm+FhUu8fszpf7lWvc4eovcvv1f1u2qP9dMLKoWFS1rMmbyDFzNhLW95kzOYDWuQM1rDfFijpZxra48tu4B/1b6wsDAVFBRo4sSJysvLU2JiovLz8xUbG6uNGzcqJOTHLnj77bervLxcCxYsaHL8eDv9vuuUMHKQ/nnZNNXv3Ouz6+AI8kZzzIQ1yBneMBvWIGe0hvnwv4AvUpI0dOhQFRU1fSnHmTNnKjMz0/3+lClTtGLFCr333nuKjIz02Vo6nthNJ99wsRoPNuiyZf9wH9++bL0WT3jAZ9cNVuSN5pgJa5AzvGE2rEHOaA3zERjaRZFqrq6uTmVlZcrPz5ckrV27Vg899JAGDhyoESNGSJLsdrveeuut437t/Vu+1QsJlx3386Jl5I3mmAlrkDO8YTasQc5oDfMRGNplkVq1apUaGxvdLzSRlpYml8vl51UBAAAACBbtskhlZGRQnAAAAAD4TcC/ah8AAAAABBqKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYajdFqqGhQVOnTlViYqKioqI0atQoFRcXy2azaf78+f5eHgAAAIAgEubvBbSFy+XSuHHjVFxcrGnTpik5OVlz587VmDFjJEnp6emWrueMh25Q4nmnKjw2Wof21anq3SItv+8lOQ8dtnQdwYK80RwzYQ1yhjfMhjXIGa1hPvyvXRSpWbNmaeHChSotLVVaWpokKSsrS3a7XXFxcUpKSrJ0Peue/6eW/2WODtfVKzIuRlmzJmnIbWNV+tjrlq4jWJA3mmMmrEHO8IbZsAY5ozXMh/+1iyI1ffp05ebmukuUJIWGhsputys8PFySNHr0aFVWViokJESdOnXSE088oWHDhvlkPd9t2PLjOzabXE6XYvol+ORaIG94YiasQc7whtmwBjmjNcyH/wV8kSovL1dlZaVmzJjhcVt1dbVycnIkSS+++KI6d+4sSZo/f76uu+46lZSU+Gxdg28drSH5OQrvGKWDu/bqw/Ev+exaIG94YiasQc7whtmwBjmjNcyHf9lcLpfL34tozZIlS+RwOLRs2TKdfvrp7uPr169XWlqa5syZo/Hjxzf5mNmzZ2vGjBlavnx5m64RExOjhoYGj+P9w7rqztiRrX5s5wG91W/sWSqb/YEObN3VpusFq0f2LtXGw7u93k7ewYeZsJa3vMkZzIY1yBmtYT6s0VLOERERqq2tNT5XwL9qX3x8vCSpoqLCfczlcmny5MlyOp1NXmjihhtuUFJSku6++269+OKLlqzvu/Ia7VpbpbOeuM2S6wU78kZzzIQ1yBneMBvWIGe0hvnwj4AvUqmpqUpOTtaUKVM0b948LVq0SNnZ2SopKVF0dLRSUlLc933mmWf01Vdf6cEHH9Qdd9zR5mvU1taqvr7e462wcEmbPj4kPFSxPCf1qAoLl7SYM3kHL2bCWt7yJmcwG9YgZ7SG+bBGSzkfy6NRUjsoUmFhYSooKFBCQoLy8vKUn5+viy66SJmZmRoyZIhCQjw/hauvvlqFhYXauXPncV9PeEy0ki/PUkRstCSpa2ofDc3P0ddLvjju1wJ5wxMzYQ1yhjfMhjXIGa1hPgJDwL/YhCQNHTpURUVFTY7NnDlTmZmZkqR9+/Zp9+7dSkxMlCQtWLBAcXFxiouLO/6LcbnUL+dsnTYtTyERYTr47V5VLVym0r++dvyvBfKGJ2bCGuQMb5gNa5AzWsN8BIR2UaSaq6urU1lZmfLz8yVJ+/fv17hx47R//36FhoYqLi5OCxYskM1mO+7XPrSvTh9c8Zfjfl60jLzRHDNhDXKGN8yGNcgZrWE+AkO7LFKrVq1SY2Oj+4UmevTooc8//9zPqwIAAAAQLNplkcrIyFCAv2o7AAAAgF+wgH+xCQAAAAAINBQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxSpADPy77co44Hr/b2MFk2omKO4QXZ/LwN+1rF3N02omKPIrp38vRSfYA/6RnteuyT1HJ6mCRVzfHb+C9+4V2kTLzX+uO4Zqbrii//zwYr8hz3oG+157RJ70Grsw7YJ8/cCfsl6jkjTsEmXK35IP0nSzlWbVPro69pWtNbPKzti2KTLFT+0v/51zUNtuv/LyVf7eEU/z4Vv3KseZ6RqwYWTtWt1pfv4tVsLtODCydr5xUY/ru6XY3/NtwE/Cz9gD1rjwjfu1Qm/GijnocNyOZ2q27FHX3+6WmuefFv7t3wrKXDX3t7tWLZOrw39rb+X4RV70BrsQf8J9D0osQ99iUekfOTEc3+l8+beo+rFK/T6KTfp9VNuUvXiFTrvlXt04jmntPgxttDj9+WwhYUet3O1J/V79unUu3P9vQwEAPagtUoefkUvD7hac1Py9NH1f1WHrjG69MNHFdu/l7+XBj9hD1qLPYiWsA99iyLlIxn3X6eKeUu09ql3dKj2gA7VHtDap97RxoKPdfr910mSLit+UkPyc3TxOw8od9PL6ja0vyQpvGMHZc2apAnlczT647+pV9bQo17vh4e8B+aeq8v+85QuXfyoJCnh7CH69fvTNb7sRV36r8eUdOFpkqSkC0/T4NvGqLdjmCZUzNGEijkKiWj9AcprtxYofmh/2UJDNH7DbHVJSTxy7RFpunZrgfr8ergkKap7F13z1asK7xR1bOH9DGWzP1Dc4H7qlemZ2bBJl+uc2f+vybHLip9Un0vOkCQlX56l7ML/0dD/HqcrVj+rK9c8q+QrHIobZNdvPnhE4zfMluPZOxQaFXHUdYRFd9DwR27U5Stn6Yov/k8jH79VEZ07um+/dmuBUm+4WKM//pvGl72oUc9PVmR87FHPm3D2EF26+FGN3zBbV6x+VmfNvK3JOeO/n6Gffj4//VyH/GGsLnnvIU3Y+JIumPdnRcbF6NSpV+vKtc/rsuVPKfH8U4+6hk4nnqBrtxYoMi5GHbp11jXVryk8JvrINa9wNFnHCb8aqCtWPXPUc/oCe9A/e1CSvtuwRZ/c+rgObNul9DuuaLJ2SYobZNdFb9+nK9c+ryvXPq+s/5ukDt06uz8+IjZamU//UePXv6ixnz2hgVef5565o4kf0k8XzPuzrvryeV255lllfP+1lrx/LaSjf39ork17/PqLlV34P5qw8SVlzZqkiNhonfm3mzW+7EWN+fRxnXDKgCbnjOrRRee/9idNqJijX/9zepP97M1Pn+7ULX2Arlzz7I+f0+2XK6/mdXX4/nuLffSZumRh237jezywB9mD7EH/7kGJfejrfUiR8oHY/r0U06eHKt/+zOO2TW8tVWzfnortlyBJSh6Xpc8mPamXk6/WzjVHno5mHz1Sm976VHNPytOqJ97SqOfuVHTPuKNeNywqUt2GJevts/P17kWTFdO3p8598S6tmfm2Xjn5v7TigZeU+dQfFZfWV1/98z9aPeMt1RSW6uXkq/Vy8tVyNhxu0+fnanRq+7J1Shg5WJKUcNZg7a3cqoSRg468P3Kwdq7apEP76tp0vuOp4bsDWj3jTf3q7gnH9PGdk3vr0P46vT7styqa/H8646EbNGzS5Vqc+6AKTvudOif3UkrueUc9T8b916lzcm/NP/d2vXXWHxQZF6Mz/+fmJvdJvtyhD666X/N+NVGSNLLZ7S056/FbtfZ/F2juwGtUcNrvVDb7A6PPz559ppbc9JheG3yDwqIidcm7D+q7ihq9Nvh6rXr8TY147HdGvz06+O13+m7j1+o5/GRJP52F72dj5CBt+8z6pw6wB/23B3+6xq/+WayeI9I8b3M6teKhuXp92G/11lm3KbxTVJMftjIeuF6RXTqpIONmvXfp3eo3emSbrhndM04XFEzT5nc/1+vpN2reab9T5YIiSWr1a3Es2rLHky48Tf/M+bMKTr9Z8UP76ZL3HtLmBUV6JfW/VLVwmYZPv7HJ/QdcOUqlj73uvv3c2Xe16Rc3P9j5xUaFhIepa2ofSUfmorZqu3qe+eNcbFu65pg+X1PsQfYge9C/e1BiH1qxDylSPtDh+9/Y1G3f5XFb3Y7dR+7z/W8nyuZ8qO/Ka+RyOt2Ds+3zL/XVomK5Gp3aVPCJdn9Zpb6/GX7U69pCQrTiwZd1uK5ejXUNsmeP0PZl67R5QZFcjU7VfLRSX32wXP3HZf7sz3Hb0jVNBrX00dfdg9zzzEHa+pl13yiaW/f8IkV26aR+Y88y/tj6Pfv05f++K1ejU1XvfS5bSIgq316quh171PDdftUUlrqfY+yVzaZ+Y89SyUNzVb9zrxr2HtDy++aoz8UZTX4rsuap+Trw9U4d2lenFQ/MUeL5pyoiNrrVUzsPHVZM357qEB+rxoMN2lG83ujzK5v9ofZv+VaHDxzUVx8sl6vRqfJXPpLL6VTlW0sV1a2zOvXuZnTObUtXu2eh54g0lT72uhLO+mEWBmvrZ6uNznc8sAf9uwd/cGDrLkV28XxRkt1fVmnHsnVyHjqs+l21Wj3jLfcPGraQEPW9dIRW/vU1NXy3X/U79+qLx99o0/X65ZytXasrVfbi+2qsP6TGugbtWLZOko7v16KNe3zt0wtUv6tW9Tv36utPVmlf9Q7VfLTyyH57+zN1SU1SSPiPv3nd/G6RdhSvl/PQYa1+4i25nC71buHRdW9cTqe2f75OCSMHKSy6g7oMOFFrn17wk/1o3VywB9mD7EH/7kGJfWhF3hQpHzi4q1aSFNXDs7VHde965D4790qS9td843Gf/VuaHttX/U2bfgNwuK5e9d9fW5KiE+K1r/m5qrYrOiH+qOc6mq1LV6vHGScrIjZasf16qfLtzxQaEabohDgljBykrZ9a/8PzD5wNh1XyyKtKn3xlk2+QbXHw2++avN94sEF1O/a43z9cV3/Uh4g7xMcqNDJc+6p/zH5f1XZJUnSvH7P/6df5h/se7ev80X89oi4DTtToTx7XpYsfNf4mVPfNHvd/N9bVe3xukowfAt+6dLV6njlYnQf0VsPeA6p693PFD+6n8E5R6n7qQL/MAnvQv3vwB9EJcarfXetxPKZPDzmeu0OXr5yl8Rtm65zZdynq+6cVRcbFKDQiXPtrvnXf/6f/3ZpOJ3bT3sqtXtZy/L4Wbd3jdT/5ftLSfgsJDVXYT37b3WTuXC7tr/lW0T3N1ndkPw5SjzNStWPFBtV8tFIJZw5SxxO7qWNCvLYXrzM637FiD7IHPdfCHrRyD0rsQyv2IUXKB/Zu/Fq1X22X/dIRHrfZs0eo9qvt2rvpyDcal9PlcZ+OJ57Q5P1OiSfowDbP3yY053I6m7x/YOtOdfI4V3cd2Lqzxfub2LV2s1xOp07+7a+14z/r5XI6tXXpGg0cf66iu3fVjv+YPVJyvG1641Mdqq3TSdde4D52aP/BJt8wbaEhTZ4Tfrwc3LlXjfWH1Cnxx+x/+O8DW3/8Ov706+y+/Shf511rN2vJjY/p1UHXafl9c3Tm/9ysmL49JUmH9tc1+fyi2vDN7njY9u+16jKgt+zZZ2rrp6vVWH9Iu7/crLSbfqODO/eq9vv/uVmJPej/PWgLDVHSBadp27+/9Lht+PQbVb+rVm9n/VFzB16jf13zsPu2+l21amw4pI4/eWS0YxsfJd235VvF2hNavO1oXwuT7w9t3eOmmsydzaboXvE6sG2n0Tm2Ll2jnmecrF6ZQ7V16eojP7zYbBpwxSh9U7JBjXUNx7w+E+xB9mBz7EFr96DEPrRiH1KkfKT4Ty8o+QqH0m76jcI7RSk8Jlon3/RrJV/uUPHU51v92J5nnKzE80+VLTRE/caepa4n99Hm9z43XkPl/H+rR0aq+lySIVtIiHo7hinxglO1seATSUd+U9Oxd7djfnWWbf9eq5NvvERblx5p+1s/W62Tb7xEO1ZsUGP9oWM653HjcmnFAy9pSH6O+9DO1ZvU7ZQB6jzwRIVEhB15xMoXrybjcmnTW58qffJVioyPVURstE6deo2qFi3TodoD7rulTfyNohPiFNaxg06ZMkHVi1eoYe8Br6cNCQ9T/3GZiujSSXK53Pd1NTq///wq1f+yTNlCQ9Rl4IkaOOGc4/+5taBh7wHt+rJKJ//2p7Owpsls+AN70H97sHNyL42c8XtFJ8Rr5aOvedweHhOthtoDath7QFE9ujbZpy6nU5sXFGnY7ZcronNHRcbFaMjvx7Tpupve/ETxQ/op5ZrzFRIRptCoCHXPSJV09K+F0feHNu5xU30vOUMnnJoiW1ioBt+SrZCwUH398Sqjc+xeV6XGQ4c14EqH+zex29z70dqnmrEH2YPsQf/uQYl96Ot9yL8j5SPV7/9Hi3Mf1ND/vkzD7rhc0pHX7V+c++BRf7isfHup+o/L1Nn/+IP2b92pwhse1YGvzX4jIkm1m7fpo+se0Sn/b4LO/Nst2r/lG31y6wzt+v6PCDcvKFK/0SN15ZrnZLPZ9OqQ69v8B36StPXT1er76+Hubwxbl65RRGzHgHheuCTVFJZq19oq9fr+ucnbPlujshfe10Vv3SdnwyGt/sfbbfrNyrEonvq8TpuWp9EfPSbZbPr64y9U/Kem37A2zvtY5786VdEJ8dpe9KU+++OTRz2vPftMnTYtT6GR4TqwdZf+Pekp7aveIUladvezGvn3WzS+7EV9W7pR5a8WtvhbKF/Y+ulqxaX11fbv/02KrZ+u1imTr/LrLLAHrXXKXVdp2KRxcrlcqtu+W1uXrtY7593u/jdsfqr4zy9oxCM3KqX8PNVW7VDZ7A/U6+wh7tuX3f2sRvx1oi5b9qQO7tyrL59dqISRg4/6P8QDW3fp/XH36tQ/X6NfTZmgxkOHVfn2Uu1Ytu6oXwvT7w9t2eOmyl8rVPqdV+qEU5K1d9NW/euah91PuTWx7bMjfzOw+8sqSUee+jJwwrmWzwV70FrsQfZgS9iHvmVzuVyej+VBkrS9eL0WZd/j72UEBFtIiPJqXtf8UZO0e13VMZ3jovn3q8fpJ3m9PZjybs//SHBMnx7K+fwfennA1T/7lXCYibbz5R4M9Jx7j0rX2f/4g15JvdbfSwk4CSMHK2vWf+uVk//rZ52nvc6GldiD7MGWHK89KLXf+bCSFT+PmuCpfWiTrml95Dx0uMU/RkRw6ZrWVwd3fufXl/UNRsG0B2PsPdVtWLJks6nTiSco/Y4rVDnf8+V7cWQu/PF3iMGIPcgebAl70FqBtg95al87kr3kb+p0oucffFZ/sEKf3Pz3n33+c1++Wz0yPBv6oX0HFRIeqhUPzm31b3iCSb+xZ2n4Ize2eNt7v75be9Z/dUzn7Z6RqvNentLibR9P/Lu2LF5xTOc11dqs9RyRpmVHeV71LxV70BphUZE664nfK7pXvA7V1mnL4hVacf9Lknz/NQhEP/xjn83VLPlC8YPt+vekpy1ekf+wB63BHmyKPdgU+/BHFKl2ZH7WH316/sUTHvDp+X9JNr35qTa9+ekxf/wLCZe1eHzHsnV6OfnqYz7v8eLrWWuv2IPW2P1lld466w8t3haMsxkI3xMCBXvQGuzBptiDTbEPf8RT+wAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAULsoUg0NDZo6daoSExMVFRWlUaNGqbi4WDabTfPnz/f38gAAAAAEmYAvUi6XS+PGjdMzzzyje+65R++++67sdrvGjBkjSUpPT/fLukI7RGjsv5/QhIo5frl+MCJzNMdMWIOc4Q2zYQ1yhjfMhn+F+XsBRzNr1iwtXLhQpaWlSktLkyRlZWXJbrcrLi5OSUlJfllX+h1XaN+WbxXVvYtfrh+MyBzNMRPWIGd4w2xYg5zhDbPhXwH/iNT06dOVm5vrLlGSFBoaKrvd7vFo1L333iubzaY1a9b4dE3xQ/qpt2OY1vzjbZ9eBz8iczTHTFiDnOENs2ENcoY3zIb/BXSRKi8vV2VlpXJycjxuq66ublKkSkpK9Pnnn6tPnz4+XZMtNEQjHp2oz6c8I2fDYZ9eC0eQOZpjJqxBzvCG2bAGOcMbZiMwBHSRqqmpkSR17969yfH169erqqrKXaTq6+t1yy236Kmnnjqm68TExCgyMtLjzeHI8rjvoJuztXN1pbZ/vu6YrhXMHI6sFnNuLW+JzH/JHA5mwkoOR8t5OxxZLd6fnIOHw8FsWMHhIGd453C0fT6YjWPncHjmHBMTc0znCugiFR8fL0mqqKhwH3O5XJo8ebKcTqe7SP3pT39Sbm6u+vbt69P1xPTtqZRrztfy+/iDPquQOZpjJqxBzvCG2bAGOcMbZiNwBPSLTaSmpio5OVlTpkxReHi4OnXqpKeeekorV65UdHS0UlJSVFRUpOXLl+vhhx8+5uvU1ta2eHx78Xotyr7H/X6P009SVLfOGvvZDElSSFiowjtG6cq1z6nw+r/yW4GjKCxcoh6nn+T19uZ5S2T+S8dMWMtb3uQMZsMa5IzWtHU+mI2f52g/e5gI6CIVFhamgoICTZw4UXl5eUpMTFR+fr5iY2O1ceNGhYSE6OOPP9a6detkt9slSVu2bNEFF1yg559/Xueff/5xXU/lgn/r609Xud8/4VcpGvn4LXrn3Nt1cOfe43otHEHmaI6ZsAY5wxtmwxrkDG+YjcAR0EVKkoYOHaqioqImx2bOnKnMzExJ0l133aW77rrLfVvfvn317rvvatCgQcd9LY11DTpQt8v9fv3OvZLLpQNbd7XyUfg5yBzNMRPWIGd4w2xYg5zhDbMROAL6b6RaUldXp7KyMr/9Q7w/ta1orV5OvtrfywgqZI7mmAlrkDO8YTasQc7whtnwn4B/RKq5VatWqbGx0WuR2rx5s7ULAgAAABB02l2RysjIkMvl8vcyAAAAAASxdvfUPgAAAADwN4oUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABhqN0WqoaFBU6dOVWJioqKiojRq1CgVFxfLZrNp/vz5/l4eAAAAgCAS5u8FtIXL5dK4ceNUXFysadOmKTk5WXPnztWYMWMkSenp6ZatZeTfb5F9zEg5Dx12H1vy28dUU1hq2RqCCXmjOWbCGuQMb5gNa5AzWsN8BIZ2UaRmzZqlhQsXqrS0VGlpaZKkrKws2e12xcXFKSkpydL1bHhpsZbd/ayl1wxm5I3mmAlrkDO8YTasQc5oDfPhf+2iSE2fPl25ubnuEiVJoaGhstvtCg8PlyT17dtXHTp0UIcOHdwfc8EFF/hlvQAAAAB+2QK+SJWXl6uyslIzZszwuK26ulo5OTnu9wsKCjRo0CCfr6nf2LPUb8xI1X37nTa98YlWz3xbrkanz68brMgbzTET1iBneMNsWIOc0Rrmw/8CvkjV1NRIkrp3797k+Pr161VVVXVc/j4qJiZGDQ0NHsf7h3XVnbEjmxz78tmFWn7fHB3cVav4If2U+WS+QiMjtPKRV3/2On7pHI4sbTy82+vt5B18HA5mwkoOR8t5kzMcDmbDCg4HOcM7h4P5sILD4ZlzRESEamtrjc8V8K/aFx8fL0mqqKhwH3O5XJo8ebKcTmeTIjVhwgQNGTJEN998s/bs2eOT9exaXamDO/dKLpd2frFRKx99TfbsM31yLZA3PDET1iBneMNsWIOc0RrmIzAEfJFKTU1VcnKypkyZonnz5mnRokXKzs5WSUmJoqOjlZKSIkn69NNP9cUXX+g///mPXC6Xbr311jZfo7a2VvX19R5vhYVLjv7BTpdkO8ZPLsgUFi5pMWfyDl7MhLW85U3OYDasQc5oDfNhjZZyPpZHo6R2UKTCwsJUUFCghIQE5eXlKT8/XxdddJEyMzM1ZMgQhYQc+RQSExMlSZGRkbr55pv12Wef+WQ9fS8dofCYaElS19Q+GjppnDa/W+STa4G84YmZsAY5wxtmwxrkjNYwH4Eh4P9GSpKGDh2qoqKmwzFz5kxlZmZKkvbv36/Dhw+rc+fOcrlcevXVVzVs2DCfrOWkay/Q8Ok3KiQ8VHXb92hjwcda9cRbPrkWyBuemAlrkDO8YTasQc5oDfMRGNpFkWqurq5OZWVlys/PlyRt375dOTk5amxsVGNjo04++WQ9+eSTPrn2P8f+2SfnRcvIG80xE9YgZ3jDbFiDnNEa5iMwtMsitWrVKjU2NrpfaKJfv35auXKln1cFAAAAIFi0yyKVkZEhl8vl72UAAAAACFIB/2ITAAAAABBoKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYKjdFKmGhgZNnTpViYmJioqK0qhRo1RcXCybzab58+f7e3kAAAAAgkiYvxfQFi6XS+PGjVNxcbGmTZum5ORkzZ07V2PGjJEkpaenW76mE885RemTr1Rs/146vK9Oa55eoLVPvWP5OoIFeaM5ZsIa5AxvmA1rkDNaw3z4V7soUrNmzdLChQtVWlqqtLQ0SVJWVpbsdrvi4uKUlJRk6Xp6ZQ7V8L/epKW3zdS2orUKi4pUx97dLF1DMCFvNMdMWIOc4Q2zYQ1yRmuYD/9rF0/tmz59unJzc90lSpJCQ0Nlt9vdj0YdPHhQv/vd7zRgwAANHjxYN954o8/Wk37nlVr19ze0delquRqdOrSvTnvKqn12vWBH3miOmbAGOcMbZsMa5IzWMB/+F/CPSJWXl6uyslIzZszwuK26ulo5OTmSpDvvvFMdOnTQhg0bZLPZtH37dp+sJywqUt2G9VfNRys15tPHFdG5o74pKVfx1Oe1r3qHT64ZzMgbzTET1iBneMNsWIOc0RrmIzAE/CNSNTU1kqTu3bs3Ob5+/XpVVVUpPT1d+/bt0+zZs3XffffJZrNJknr06NHma8TExCgyMtLjzeHI8rhvRJeOsoWEqM8lGfrwqvtVkHGz6r7ZI8ezdxzrpxg0HI6sFnMm7+DlcDATVnI4Ws7b4cjyuC85BxeHg9mwgsNBzvDO4WA+rOBweOYcExNzTOcK+CIVHx8vSaqoqHAfc7lcmjx5spxOp9LT07Vx40bFx8fr3nvv1amnnqqsrCwtXbrUJ+s5tO+gJOnLZxZq35Zv1FjXoJKH5ip+sJ3npfoAeaM5ZsIa5AxvmA1rkDNaw3wEhoAvUqmpqUpOTtaUKVM0b948LVq0SNnZ2SopKVF0dLRSUlLU2NioTZs2KT09XcuXL9f06dM1duxY7d27t03XqK2tVX19vcdbYeESj/seqj1w5CFTl+s4f6a/fIWFS1rMmbyDFzNhLW95kzOYDWuQM1rDfFijpZxra2uP6VwBX6TCwsJUUFCghIQE5eXlKT8/XxdddJEyMzM1ZMgQhYSEKCkpSWFhYbrqqqskSRkZGerWrZs2bNjgkzWVzf5AqTdcouhe8QqNDFf6nVfq2y82an/Ntz65XrAjbzTHTFiDnOENs2ENckZrmA//C/gXm5CkoUOHqqioqMmxmTNnKjMzU5LUrVs3ORwOffjhhzr//PO1YcMG7dixQ8nJyT5Zz+p/zFdE50669INHJFuIdhSvV+H1f/XJtUDe8MRMWIOc4Q2zYQ1yRmuYD/9rF0Wqubq6OpWVlSk/P9997Omnn9Z1112nSZMmKTw8XHPmzFGXLl18swCXSyseeEkrHnjJN+dHU+SN5pgJa5AzvGE2rEHOaA3z4XftskitWrVKjY2N7n9DSpL69eunJUuW+G9RAAAAAIJGuyxSGRkZcvHHdQAAAAD8JOBfbAIAAAAAAg1FCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwFCYvxfQVg0NDbrvvvv0wgsv6Ntvv9Xw4cP18MMPKyMjQ2+//bays7MtWceEijlN3g+NCNee8hq9c84kS64fbMgbzTET1iBneMNsWIOc0RrmIzC0iyLlcrk0btw4FRcXa9q0aUpOTtbcuXM1ZswYSVJ6erpla3k5+eom71/6r8dUOf8zy64fbMgbzTET1iBneMNsWIOc0RrmIzC0iyI1a9YsLVy4UKWlpUpLS5MkZWVlyW63Ky4uTklJSX5ZV7dhyeoy8ERVvFbol+sHG/JGc8yENcgZ3jAb1iBntIb58J92UaSmT5+u3Nxcd4mSpNDQUNntdoWHh2vz5s0aPXq0+7Y9e/Zo79692rVrl0/XNWD8KNV8tFJ123f79Do4grzRHDNhDXKGN8yGNcgZrWE+/CfgX2yivLxclZWVysnJ8biturpa6enp6tu3r0pLS91vo0eP1vjx49t8jZiYGEVGRnq8ORxZXj8mLCpS9uwztWHuv8w/qSDlcGS1mDN5By+Hg5mwksPRct4OR5bXjyHn4OBwMBtWcDjIGd45HMyHFRwOz5xjYmKO6VwB/4hUTU2NJKl79+5Njq9fv15VVVUefx/V0NCgl19+We+//75P19X3N8N1uK5BWxav8Ol1cAR5ozlmwhrkDG+YDWuQM1rDfPhXwD8iFR8fL0mqqKhwH3O5XJo8ebKcTqdHkXrnnXfUu3dvnXLKKW2+Rm1trerr6z3eCguXeP2YARPO0cbXl8jV6DT7hIJYYeGSFnMm7+DFTFjLW97kDGbDGuSM1jAf1mgp59ra2mM6V8AXqdTUVCUnJ2vKlCmaN2+eFi1apOzsbJWUlCg6OlopKSlN7v/cc8/puuuu8+maYvv3UvdTU7ThFR5GtQJ5ozlmwhrkDG+YDWuQM1rDfPhfwD+1LywsTAUFBZo4caLy8vKUmJio/Px8xcbGauPGjQoJ+bEL1tTU6OOPP9acOXNaOePPN+CqUdq+bJ1qK7f59Do4grzRHDNhDXKGN8yGNcgZrWE+/C/gi5QkDR06VEVFRU2OzZw5U5mZmU2Ovfjii7rkkkvcTwf0lRX3v+TT86Mp8kZzzIQ1yBneMBvWIGe0hvnwv4B/al9L6urqVFZW5vH3US+88ILPn9YHAAAAAO3iEanmVq1apcbGRo8itWHDBj+tCAAAAEAwaZdFKiMjQy6Xy9/LAAAAABCk2uVT+wAAAADAnyhSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGDI5uJftvWqofaAdq/7yt/L+MXompqkiJhor7eTd/BhJqzlLW9yBrNhDXJGa5gPaxztZw8TFCkAAAAAMMRT+wAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADA0P8HKTcI9XEca0wAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -430,16 +430,16 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.167581Z", - "iopub.status.busy": "2024-11-23T19:54:58.167168Z", - "iopub.status.idle": "2024-11-23T19:54:58.337315Z", - "shell.execute_reply": "2024-11-23T19:54:58.336836Z" + "iopub.execute_input": "2024-12-05T03:21:32.823312Z", + "iopub.status.busy": "2024-12-05T03:21:32.822906Z", + "iopub.status.idle": "2024-12-05T03:21:32.988913Z", + "shell.execute_reply": "2024-12-05T03:21:32.988306Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAGOCAYAAABhdU6ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxTklEQVR4nO3de1iUdf7/8ddwFBJMMAwNdHSKCBWnrciyYKytddsNjegkxX6rLbfT8v1a2c/NXdu2g3v47q651cW37WTZlrRJtrodNqxsSUo01ATBkJA8lFqOSqDM/P6wpqXhg4jMPQM8H9fFdck9w31/ePm+7+vFeA/avF6vVwAAAAD8hAV7AQAAAECooiwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAACDiGAvIJS1uvdr94ZPgr2MPmNweqqi4mL9tpMzmA1rkLM1yBmd6Wg+mI2eZzoPu4Oy3IndGz7Rsty7g72MPmNy6W809IyT/baTM5gNa5CzNcgZneloPpiNnmc6D7uD2zAAAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABj0mrLc2tqq2bNnKyUlRTExMZo0aZIqKipks9lUWloa7OUBAACgD+oV/4Of1+tVfn6+KioqNGfOHDkcDi1cuFBTp06VJDmdTkvXYwsP0+lzCjU671zZwsK0+R/vaeWsx9TWcsDSdfR15AwTZsMa5GwNcoYJsxEaesUry8XFxVq6dKneeOMN3XjjjTrvvPNUXFys8PBwJSQkKDU11dL1jLvtEh1/1hiVTpqhF8++VceedIK+d/fVlq6hPyBnmDAb1iBna5AzTJiN0NAryvLcuXNVUFCgjIwM37bw8HDZ7Xbfq8obN27UhAkTdNJJJ2nChAmqra0N2HpOnHae1s77u/Zv26WWnXu05g8vyHF5jmxhvSLOXoOcYcJsWIOcrUHOMGE2QkPIp11bW6v6+nrl5eX5PdbY2Ogry9OnT9fNN9+sjRs36uabb9aNN97Y5WPExcUpOjra78PlyvF7blR8rAYOP0671tf7tu1cW6+ouFgNTDnuSL+9fsXlyiFndMjlYjas4HKRsxVcLnKGmcvlPx8uV47f85iNo+Ny+eccFxfXrX2FfFluamqSJCUlJbXbXl1drYaGBjmdTu3YsUOVlZW68sorJUlXXnmlKisr9dlnn/X4eiIGxkiSWr/c79vW+uU+SVLk14/h6JEzTJgNa5CzNcgZJsxG6Aj5spyYmChJqqur823zer2aOXOmPB6PnE6nGhsbNXz4cIWHh0s6dIvGsGHD1NjY2KVjuN1utbS0+H2UlS33e+7Bvc2SpMj4WN+2qEHHSJIOfP0YOlZWtpyc0SFmwxrkbA1yRmc6mg9mo+d1lLPb7e7WvkK+LKenp8vhcGjWrFlatGiRli1bptzcXFVWVio2NlZpaWmWrqd1z37tbfpMCRkjfdsSx9jV6t6vvY09/0p2f0XOMGE2rEHO1iBnmDAboSPky3JERIRKSkqUnJyswsJCFRUVafLkycrOzta4ceMUFhamlJQUNTU1qa2tTZLU1tamTz/9VCkpKQFZU+2z/9K4W6cqZuhgRSfGa/yMy1T3/HJ5PZ6AHK+/ImeYMBvWIGdrkDNMmI3Q0Ct+z3JmZqbKy8vbbZs/f76ys7MlHbqfefz48XruuedUUFCg5557Tk6nU8cdF5gb4Kvm/V3RCfGasvyPsoXZtPmV97TqvmcCcqz+jJxhwmxYg5ytQc4wYTZCQ68oy9/V3NysmpoaFRUV+bY9+uijKiws1K9//WsNHjxYTz/9dMCO723zqGL246qY/XjAjgFyhhmzYQ1ytgY5w4TZCA29sixXVVWpra2t3f/cd/LJJ2vlypVBXBUAAAD6ml5ZlrOysuT1eoO9DAAAAPRxIf8GPwAAACBYKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYNBrynJra6tmz56tlJQUxcTEaNKkSaqoqJDNZlNpaWmwlwcAAIA+KCLYC+gKr9er/Px8VVRUaM6cOXI4HFq4cKGmTp0qSXI6nZatZeSPJyj9+h8qIWOkWna5VXLGTZYduz8hZ3SG+bAGOVuDnGHCbISGXlGWi4uLtXTpUq1Zs0YZGRmSpJycHNntdiUkJCg1NdWytbR8uU/Vj/9TA44bpIwbfmTZcfsbckZnmA9rkLM1yBkmzEZo6BVlee7cuSooKPAVZUkKDw+X3W5XZGSkJOn222/Xiy++qM2bN2vt2rUaM2ZMQNay9e0qSVLqD04PyP5xCDmjM8yHNcjZGuQME2YjNIT8Pcu1tbWqr69XXl6e32ONjY2+WzCmTJmit99+WyNGjLB6iQAAAOijQv6V5aamJklSUlJSu+3V1dVqaGjwleWJEyd2+xhxcXFqbW312z46YrDujO/+ftGey5WjTQd3+20nZ7hczIYVXC5ytoLLRc4wc7n854PZ6Hkul3/OUVFRcrvdR7yvkH9lOTExUZJUV1fn2+b1ejVz5kx5PB5L39wHAACA/iXky3J6erocDodmzZqlRYsWadmyZcrNzVVlZaViY2OVlpZ21Mdwu91qaWnx+ygrW3703wB8ysqWkzM6xGxYg5ytQc7oTEfzwWz0vI5y7s6rylIvuA0jIiJCJSUlmj59ugoLC5WSkqKioiLFx8dr06ZNCguztu/bwsIUFhkuW0SEZLMpPDpSXq9XntaDlq6jryNndIb5sAY5W4OcYcJshIaQL8uSlJmZqfLy8nbb5s+fr+zsbMvXMvrSczXxz7f4Pr9683Pa27iD333Yw8gZnWE+rEHO1iBnmDAboaFXlOXvam5uVk1NjYqKinzbbrvtNv3973/Xtm3bdP755ysxMVHr16/v8WPXvbBcdS8s7/H9oj1yRmeYD2uQszXIGSbMRmgI+XuWO1JVVaW2trZ2b+6bN2+etmzZooMHD2rbtm0BKcoAAADoX3rlK8tZWVnyer3BXgYAAAD6uF75yjIAAABgBcoyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABj0mrLc2tqq2bNnKyUlRTExMZo0aZIqKipks9lUWloa7OUBAACgD4oI9gK6wuv1Kj8/XxUVFZozZ44cDocWLlyoqVOnSpKcTqdlawmLitCZ91+v5IljNSAxXvu379aGx5ep+vFllq2hPyBnmDAb1iBna5AzTJiN0NErynJxcbGWLl2qNWvWKCMjQ5KUk5Mju92uhIQEpaamWraWsPBwNe/4Qq9dca/cDduVcMoIff+5u/XVZ19o85Jyy9bR15EzTJgNa5CzNcgZJsxG6OgVt2HMnTtXBQUFvqIsSeHh4bLb7XI6ndq5c6d++MMfKi0tTWPHjtUll1yizz77LCBrOdjcotW//Zvcm7dJXq92rd+sxtc+UNIZ6QE5Xn9FzjBhNqxBztYgZ5gwG6Ej5MtybW2t6uvrlZeX5/dYY2OjnE6nbDab7rzzTtXU1Gjt2rUaPXq07rrrLkvWZ4sI19CsdO3e0GDJ8forcoYJs2ENcrYGOcOE2QiekC/LTU1NkqSkpKR226urq9XQ0CCn06mEhATl5OT4HjvzzDPV0ND1YYqLi1N0dLTfh8uVc5ivlM68/zod2NusTYve6vLx+iuXK4ec0SGXi9mwgstFzlZwucgZZi6X/3y4XDmH/Tpm48i4XP45x8XFdWtfIV+WExMTJUl1dXW+bV6vVzNnzpTH4/F7c5/H49Ejjzyiiy++OOBrO31OoY77Xppen3afPAcOBvx4/RU5w4TZsAY5W4OcYcJsBFfIl+X09HQ5HA7NmjVLixYt0rJly5Sbm6vKykrFxsYqLS2t3fNvvfVWDRw4ULfcckuXj+F2u9XS0uL3UVa23Pg1Z/z6Jxp27ji9etk9atnl7u6316+UlS0nZ3SI2bAGOVuDnNGZjuaD2eh5HeXsdncvv5D/bRgREREqKSnR9OnTVVhYqJSUFBUVFSk+Pl6bNm1SWNi3ff/2229XbW2tlixZ0m57Tzvj3muVPHGM/nnpHLXs3BOw4/R35AwTZsMa5GwNcoYJsxEaQr4sS1JmZqbKy9v/mpT58+crOzvb9/msWbO0atUq/eMf/1B0dHTA1nLMCUN0yvU/VNtXrbp05V9827evrNYb0+4L2HH7G3KGCbNhDXK2BjnDhNkIHb2iLH9Xc3OzampqVFRUJElav369HnjgAZ100kk666yzJEl2u10vvfRSjx9735bP9WTypT2+X7RHzjBhNqxBztYgZ5gwG6GjV5blqqoqtbW1+d7cl5GRIa/XG+RVAQAAoK/plWU5KyuLcgwAAICAC/nfhgEAAAAEC2UZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAx6TVlubW3V7NmzlZKSopiYGE2aNEkVFRWy2WwqLS0N9vIAAADQB0UEewFd4fV6lZ+fr4qKCs2ZM0cOh0MLFy7U1KlTJUlOp9PS9Zz5wPVK+f5pioyP1YG9zWp4pVwf3PuMPAcOWrqOvo6cYcJsWIOcrUHOMGE2QkOvKMvFxcVaunSp1qxZo4yMDElSTk6O7Ha7EhISlJqaaul6NjzxT33w6wU62Nyi6IQ45RTP0LjbLtGaP7xg6Tr6OnKGCbNhDXK2BjnDhNkIDb2iLM+dO1cFBQW+oixJ4eHhstvtioyMlCRNmTJF9fX1CgsL08CBA/XQQw9p/PjxAVnPlxu3fPuJzSavx6u4UckBOVZ/Rs4wYTasQc7WIGeYMBuhIeTLcm1trerr6zVv3jy/xxobG5WXlydJeuqppzRo0CBJUmlpqa699lpVVlYGbF1jb5micUV5ijwmRl/t2qPXr3omYMfqz8gZJsyGNcjZGuQME2Yj+EK+LDc1NUmSkpKS2m2vrq5WQ0OD737lb4qyJH355ZcKC+v6exfj4uLU2trqt310xGDdGT+xw69ZO3+x1s5frEEnDteoS85R847dXT5ef+Vy5WjTQf+cyBkuF7NhBZeLnK3gcpEzzFwu//lgNnqey+Wfc1RUlNxu9xHvK+R/G0ZiYqIkqa6uzrfN6/Vq5syZ8ng87d7cd/311ys1NVW/+MUv9NRTT1myvi9rm7RrfYPOeeg2S47XX5EzTJgNa5CzNcgZJsxG8IR8WU5PT5fD4dCsWbO0aNEiLVu2TLm5uaqsrFRsbKzS0tJ8z33sscf0ySef6P7779cdd9zR5WO43W61tLT4fZSVLe/S14dFhiuee4gOq6xsOTmjQ8yGNcjZGuSMznQ0H8xGz+so5+68qiz1grIcERGhkpISJScnq7CwUEVFRZo8ebKys7M1bty4Dm+3uPrqq1VWVqadO3f2+Hoi42LluCxHUfGxkqTB6SOUWZSnT5d/2OPH6s/IGSbMhjXI2RrkDBNmI3SE/D3LkpSZmany8vJ22+bPn6/s7GxJ0t69e7V7926lpKRIkpYsWaKEhAQlJCT0/GK8Xo3KO1enzylUWFSEvvp8jxqWrtSa3z3f88fqz8gZJsyGNcjZGuQME2YjZPSKsvxdzc3NqqmpUVFRkSRp3759ys/P1759+xQeHq6EhAQtWbJENputx499YG+zXrv81z2+X7RHzjBhNqxBztYgZ5gwG6GjV5blqqoqtbW1+d7cN3ToUL333ntBXhUAAAD6ml5ZlrOysuT1eoO9DAAAAPRxIf8GPwAAACBYKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoyyFm4p9uVtZ91wV7GR2aVrdACWPswV7GEeut6/7G8RMyNK1uQcD2/4MX71HG9IuP+OuSstJ1+Yf/F4AVBRfnoDXIOTB689olrndW4hzsul753133FseflaHxMy5T4rhRkqSdVR9rze9f0Lby9UFe2SHjZ1ymxMzR+tc1D3Tp+c86rg7wio7cD168R8d97yR5DhyU1+NR844v9Ok7a7Xu4cXat+VzSaG57r5gx8oNej7zp8FeRqc4B61Bztbgehc8oX694xwMLF5ZDpATzv+evr/wbjW+sUovnHqjXjj1RjW+sUrff+5unXDeqR1+jS285/46bBHhPbavUFf54HN69sSrtTCtUG9e9zsNGByni1//veJHDwv20hBEnIPWIGdrcb3Dd3EOBh5lOUCyfnOt6hYt1/pHXtYB934dcO/X+kde1qaSt3TGb66VJF1a8bDGFeXphy/fp4KPn9WQzNGSpMhjBiineIam1S7QlLf+qGE5mYc93jf/dHVSwfm69P1HdPEbv5ckJZ87Tj96da6uqnlKF//rD0r9wemSpNQfnK6xt03VcNd4TatboGl1CxQW1fk/NPxka4kSM0fLFh6mqzY+rWPTUg4d+6wM/WRriUb8aIIkKSbpWF3zyd8UOTCme+EdhS83btHbt/xZ+7ftkvOOy9utW5ISxtg1efG9umL9E7pi/RPK+b8ZGjBkkO/ro+Jjlf3of+uq6qd0ybsP6aSrv6+fbC1RdELcYY+dOG6ULlz0K1350RO6Yt1flfX137Nk/nuQDv3Efd7T/6/dvi6teFgjLjqzw+NExA7QhN/eoMtWF+vyD/9PE/98i6IGHeN7/CdbS5R+3Q+VW/a/mrbpGeUUz1BUfKzO/uNNuqrmKU1958867tQT2+0zZuixuuD5X2pa3QL96J9zfXl15j//uXSI80Rdse6v335Pt1+mwqYXNCAxXpJkn3K2LlratVcUegrnoDXnIDkH51oncb375vvt79c7zsHAn4OU5QCIHz1McSOGqn7xu36PffzSCsWPPF7xo5IlSY78HL0742E967haO9fVS5LsUybq45fe0cKTC1X10Eua9Pidij0+4bDHjYiJ1pDxDi0+t0ivTJ6puJHH6/yn7tK6+Yv13Cn/pVX3PaPsR/5bCRkj9ck/39faeS+pqWyNnnVcrWcdV8vTerBL35+3zaPtKzcoeeJYSVLyOWO1p36rkieOOfT5xLHaWfWxDuxt7tL+epq3zaNP/lmh48/K8H/M49GqBxbqhfE/1Uvn3KbIgTHtLvJZ912n6GMHqiTrJv3j4l9o1JSJXTpm7PEJurBkjja/8p5ecN6gRaf/TPVLyiWp07+H7sj6zbUa5Biu0vNv10vn/FzRCXE6+39vavec1B+crn/m/UolZ9ykxMxRuugfD2jzknI9l/5fali6UhPm3tDu+SdeMUlr/vCC7/Hzn75L4TFRXV7Tzg83KSwyQoPTR0g6NBPuhu06/uxvZ2LbinXd+n67g3PQmnOQnIN7rftmjVzv+u/1jnPQmnOQshwAA77+qbx5+y6/x5p37D70nK9/Aq1Z8Lq+rG2S1+PxDc+29z7SJ8sq5G3z6OOSt7X7owaN/PGEwx7XFhamVfc/q4PNLWprbpU99yxtX7lBm5eUy9vmUdObq/XJax9odH72UX+P21asazesa37/gm+Yjz97jLa+a10x6sj+rbsUfexAv+27P2rQjpUb5DlwUC273Fo77yXfBc4WFqaRF5+l1b97Xq1f7lPLzj368M8vdul4o/LO1a619ap56lW1tRxQW3OrdqzcIEk9+/dgs2nUJeeo8oGFatm5R6179uuDexdoxA+z2v1kvf7RJWrZ5VbLzj369O0q7W3coaY3V8vr8ah+8bs6Nj1VYZHf/mS/+ZVy7aiolufAQa196CV5PV4Nzz78Kwzf8Ho82v7eBiVPHKOI2AE69sQTtP7RJUo+JzgzwTloTd7kHPxrncT1rj9f7zgHrcmashwAX+1yS5Jihvr/dBaTNPjQc3bukSTta/rM7zn7trTftrfxsy79pHewuUUtXx9bkmKTE7X3u/tq2K7Y5MTD7utwtq5Yq6FnnqKo+FjFjxqm+sXvKjwqQrHJCUqeOEZb31l71Mc4GrHJCWrZ7fbbHjdiqFyP36HLVhfrqo1P67yn71LM1/8sGZ0Qp/CoSO1r+tz3/P/8c2cGnjBEe+q3GtbSc38PAxLjFR4dqb2N3+5vb8P2Q8cZ9u3+mj//0vfntuYWNe/4wvf5weYWhYWHK+I/XklpN3Ner/Y1fa7Y449sfVtXrNXxZ4/R0DPTtWPVRjW9uVrJZ4/RMScM0THJidpeseGI9nc0OAetOQfJOfjXOonrXX++3nEOWnMOUpYDYM+mT+X+ZLvsF5/l95g99yy5P9muPR8futB4PV6/5xxzwnHtPh+Ycpz2b/P/qfG7vB5Pu8/3b92pgX77StL+rTs7fP6R2LV+s7wej0756Y+04/1qeT0ebV2xTidddb5ikwZrx/vV3d730bKFhyn1wtO17d8f+T02Ye4Natnl1uKc/9bCk67Rv6550PdYyy632loP6JjhQ3zb/vPPndm75XPF25M7fOxwfw8H9n3V7kJuCw9rd1/hf/pq5x61tRzQwJRv9/fNn/dvPfyMmLSbOZtNscMStX/bziPax9YV63T8madoWHamtq5Ye+jCabPpxMsn6bPKjWprbu32+o4U56A15yA5B/daJ3G9646+dL3jHLTmHKQsB0jFL5+U43KXMm78sSIHxigyLlan3PgjOS5zqWL2E51+7fFnnqKUC06TLTxMoy45R4NPGaHN/3jviNdQX/pvDc1K14iLsmQLC9Nw13ilXHiaNpW8LenQT+PHDB/S7XfFbvv3ep1yw0XauuLQT3Vb312rU264SDtWbVRby4Fu7fNoDXIM08R5tyo2OVGrf/+83+ORcbFqde9X6579ihk6WOOK8nyPeT0ebV5SrvG3X6aoQccoOiFO426d2qXjfvz3t5U4bpTSrrlAYVERCo+JUlJWuqTD/z3sXPuxhpx6ogaddILCoiLknHmFwkzvLvZ69fFL78g580pFJ8YrKj5Wp82+Rg3LVuqAe/8RpvWtkRedqeNOS5MtIlxjb85VWES4Pn2r6oj2sXtDg9oOHNSJV7h8P+lve3fd1zNi/T9Vcw5acw6Sc3CudRLXu+7qa9c7zsHAn4P8nuUAaXz1fb1RcL8y/+dSjb/jMkmHfu/hGwX3+/6yTeoXr9Do/Gyd+5efa9/WnSq7/vfa/+mR/dQrSe7N2/Tmtb/Vqf9vms7+483at+UzvX3LPO36+sb+zUvKNWrKRF2x7nHZbDb9bdx1Xb7pXpK2vrNWI380wXdh2LpinaLij7H8Hr5T77pS42fky+v1qnn7bm1dsVYvf/923+8d/U8Vv3pSZ/32BqXVfl/uhh2qefo1DTt3nO/xlb/4q8763XRduvJhfbVzjz7661IlTxx72JNx/9ZdejX/Hp32q2v0vVnT1HbgoOoXr9COlRsO+/ew7d11qnnyVU1+6V55Wg9o7V8Wd/qTfcXsJ3T6nEJNefMPks2mT9/6UBW/7PyCeDi1z5fJeecVOu5Uh/Z8vFX/uuZBHWxuOeL9bHv30L1luz9qkHTon89OmnZ+UO7r5By0Bjlbi+sd17vv4hwMPJvX6/V/XR6SpO0V1VqWe3ewlxESbGFhKmx6QaWTZmj3hoZu7WNy6W809IyT/baHcs7DJzl17l9+rufSfxLspYSc5IljlVP8P3rulP866n31xtmwWn89B63Wn3PmemcW6OtdqM+GlXriHJTM52F3cBsGumRwxgh5Dhzs8A0CfUmc/XgNGe+QbDYNPOE4Oe+4XPWl/r+SB4dmwv31m20QeP3lHAy2/pQz17uu43pnnVA8B7kNoxfJXf5HDTzB/w0Yja+t0ts3/emo93/+s7/Q0Cz/n8IO7P1KYZHhWnX/QrXu6f59Yr1BREy0znnoVsUOS9QBd7O2vLFKq37zjKTA5x+Kvvkl/N/VtPxDJY61698zHrV4RcHFOWgNcrYG17v2uN59i3OwPcpyL1Ka898B3f8b0+4L6P57g90fNeilc37e4WOBzj8UPeu4OthLCCmcg9YgZ2twvWuP6923OAfb4zYMAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAoFeU5dbWVs2ePVspKSmKiYnRpEmTVFFRIZvNptLS0mAvDwAAAH1UyJdlr9er/Px8PfbYY7r77rv1yiuvyG63a+rUqZIkp9MZlHWFD4jSJf9+yPh/yaNnkDM6w3xYg5ytQc4wYTaCKyLYCzic4uJiLV26VGvWrFFGRoYkKScnR3a7XQkJCUpNTQ3Kupx3XK69Wz5XTNKxQTl+f0HO6AzzYQ1ytgY5w4TZCK6Qf2V57ty5Kigo8BVlSQoPD5fdbvd7Vfmee+6RzWbTunXrArqmxHGjNNw1Xuv+sjigx+nvyBmdYT6sQc7WIGeYMBvBF9Jluba2VvX19crLy/N7rLGxsV1Zrqys1HvvvacRI0YEdE228DCd9fvpem/WY/K0HgzosfozckZnmA9rkLM1yBkmzEZoCOmy3NTUJElKSkpqt726uloNDQ2+stzS0qKbb75ZjzzySLeOExcXp+joaL8PlyvH77ljbsrVzrX12v7ehm4dqz9zuXLIGR1yubo+GxLz0V0uFzlbweUiZ5i5XP7z4XLldPhcZqP7XC7/nOPi4rq1r5Auy4mJiZKkuro63zav16uZM2fK4/H4yvIvf/lLFRQUaOTIkQFdT9zI45V2zQX64F5usA8kckZnmA9rkLM1yBkmzEboCOk3+KWnp8vhcGjWrFmKjIzUwIED9cgjj2j16tWKjY1VWlqaysvL9cEHH+jBBx/s9nHcbneH27dXVGtZ7t2+z4eecbJihgzSJe/OkySFRYQr8pgYXbH+cZVd9zt+8juMsrLlGnrGyX7byRldnQ2J+Tga5GwNckZnOpoPZqPnmc7D7gjpshwREaGSkhJNnz5dhYWFSklJUVFRkeLj47Vp0yaFhYXprbfe0oYNG2S32yVJW7Zs0YUXXqgnnnhCF1xwQY+up37Jv/XpO1W+z4/7Xpom/vlmvXz+7fpq554ePVZ/Rs7oDPNhDXK2BjnDhNkIHSFdliUpMzNT5eXl7bbNnz9f2dnZkqS77rpLd911l++xkSNH6pVXXtGYMWN6fC1tza3a37zL93nLzj2S16v9W3d18lU4UuSMzjAf1iBna5AzTJiN0BHS9yx3pLm5WTU1NUH7z0j+07by9XrWcXWwl9HnkTM6w3xYg5ytQc4wYTaCJ+RfWf6uqqoqtbW1Gcvy5s2brV0QAAAA+qxeV5azsrLk9XqDvQwAAAD0A73uNgwAAADAKpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADDoNWW5tbVVs2fPVkpKimJiYjRp0iRVVFTIZrOptLQ02MsDAABAHxQR7AV0hdfrVX5+vioqKjRnzhw5HA4tXLhQU6dOlSQ5nU7L1jLxTzfLPnWiPAcO+rYt/+kf1FS2xrI19AfkDBNmwxrkbA1yRmeYj9DQK8pycXGxli5dqjVr1igjI0OSlJOTI7vdroSEBKWmplq6no3PvKGVv/irpcfsj8gZJsyGNcjZGuSMzjAfwdcryvLcuXNVUFDgK8qSFB4eLrvdrsjISEnSyJEjNWDAAA0YMMD3NRdeeGFQ1gsAAIC+IeTLcm1trerr6zVv3jy/xxobG5WXl+f7vKSkRGPGjAn4mkZdco5GTZ2o5s+/1Mcvvq218xfL2+YJ+HH7G3KGCbNhDXK2BjmjM8xH8IV8WW5qapIkJSUltdteXV2thoaGHrlfOS4uTq2trX7bR0cM1p3xE9tt++ivS/XBvQv01S63EseNUvbDRQqPjtLq3/7tqNfR17lcOdp0cLffdnKGy8VsWMHlImcruFzkDDOXy38+OpoNifk4Gi6Xf85RUVFyu91HvK+Q/20YiYmJkqS6ujrfNq/Xq5kzZ8rj8bQry9OmTdO4ceN000036YsvvgjIenatrddXO/dIXq92frhJq3//vOy5ZwfkWP0ZOcOE2bAGOVuDnNEZ5iM0hHxZTk9Pl8Ph0KxZs7Ro0SItW7ZMubm5qqysVGxsrNLS0iRJ77zzjj788EO9//778nq9uuWWW7p8DLfbrZaWFr+PsrLlh/9ij1eydfOb62fKypaTMzrEbFiDnK1BzuhMR/PRpdmQmI8j0FHO3XlVWeoFZTkiIkIlJSVKTk5WYWGhioqKNHnyZGVnZ2vcuHEKCzv0LaSkpEiSoqOjddNNN+ndd98NyHpGXnyWIuNiJUmD00coc0a+Nr9SHpBj9WfkDBNmwxrkbA1yRmeYj9AQ8vcsS1JmZqbKy9sPx/z585WdnS1J2rdvnw4ePKhBgwbJ6/Xqb3/7m8aPHx+QtZz8kws1Ye4NCosMV/P2L7Sp5C1VPfRSQI7Vn5EzTJgNa5CzNcgZnWE+QkOvKMvf1dzcrJqaGhUVFUmStm/frry8PLW1tamtrU2nnHKKHn744YAc+5+X/Cog+0V75AwTZsMa5GwNckZnmI/Q0CvLclVVldra2nxv7hs1apRWr14d5FUBAACgr+mVZTkrK0terzfYywAAAEAfF/Jv8AMAAACChbIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAa9piy3trZq9uzZSklJUUxMjCZNmqSKigrZbDaVlpYGe3kAAADogyKCvYCu8Hq9ys/PV0VFhebMmSOHw6GFCxdq6tSpkiSn02n5mk4471Q5Z16h+NHDdHBvs9Y9ukTrH3nZ8nX0deQME2bDGuRsDXKGCbMRfL2iLBcXF2vp0qVas2aNMjIyJEk5OTmy2+1KSEhQamqqpesZlp2pCb+7UStum69t5esVEROtY4YPsXQN/QE5w4TZsAY5W4OcYcJshIZecRvG3LlzVVBQ4CvKkhQeHi673e57Vfmrr77Sz372M5144okaO3asbrjhhoCtx3nnFar604vaumKtvG0eHdjbrC9qGgN2vP6KnGHCbFiDnK1BzjBhNkJDyL+yXFtbq/r6es2bN8/vscbGRuXl5UmS7rzzTg0YMEAbN26UzWbT9u3bA7KeiJhoDRk/Wk1vrtbUd/6sqEHH6LPKWlXMfkJ7G3cE5Jj9ETnDhNmwBjlbg5xhwmyEjpB/ZbmpqUmSlJSU1G57dXW1Ghoa5HQ6tXfvXj399NO69957ZbPZJElDhw7t8jHi4uIUHR3t9+Fy5fg9N+rYY2QLC9OIi7L0+pW/UUnWTWr+7Au5/npHd7/FfsPlyiFndMjlYjas4HKRsxVcLnKGmcvlPx8uV47f85iNo+Ny+eccFxfXrX2FfFlOTEyUJNXV1fm2eb1ezZw5Ux6PR06nU5s2bVJiYqLuuecenXbaacrJydGKFSsCsp4De7+SJH302FLt3fKZ2ppbVfnAQiWOtXMfUQ8iZ5gwG9YgZ2uQM0yYjdAR8mU5PT1dDodDs2bN0qJFi7Rs2TLl5uaqsrJSsbGxSktLU1tbmz7++GM5nU598MEHmjt3ri655BLt2bOnS8dwu91qaWnx+ygrW+733APu/Yf++cPr7eHvtO8rK1tOzugQs2ENcrYGOaMzHc0Hs9HzOsrZ7XZ3a18hX5YjIiJUUlKi5ORkFRYWqqioSJMnT1Z2drbGjRunsLAwpaamKiIiQldeeaUkKSsrS0OGDNHGjRsDsqaap19T+vUXKXZYosKjI+W88wp9/uEm7Wv6PCDH66/IGSbMhjXI2RrkDBNmIzSE/Bv8JCkzM1Pl5eXtts2fP1/Z2dmSpCFDhsjlcun111/XBRdcoI0bN2rHjh1yOBwBWc/av5QqatBAXfzabyVbmHZUVKvsut8F5Fj9GTnDhNmwBjlbg5xhwmyEhl5Rlr+rublZNTU1Kioq8m179NFHde2112rGjBmKjIzUggULdOyxxwZmAV6vVt33jFbd90xg9o9DyBkmzIY1yNka5AwTZiMk9MqyXFVVpba2tnb/c9+oUaO0fPny4C0KAAAAfU6vLMtZWVnycsM7AAAAAizk3+AHAAAABAtlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAQUSwF9BVra2tuvfee/Xkk0/q888/14QJE/Tggw8qKytLixcvVm5uriXrmFa3oN3n4VGR+qK2SS+fN8OS4/cX5AwTZsMa5GwNckZnmI/Q0CvKstfrVX5+vioqKjRnzhw5HA4tXLhQU6dOlSQ5nU7L1vKs4+p2n1/8rz+ovvRdy47fX5AzTJgNa5CzNcgZnWE+QkOvKMvFxcVaunSp1qxZo4yMDElSTk6O7Ha7EhISlJqaGpR1DRnv0LEnnaC658uCcvz+gpxhwmxYg5ytQc7oDPMRPL2iLM+dO1cFBQW+oixJ4eHhstvtioyM1ObNmzVlyhTfY1988YX27NmjXbt2BXRdJ141SU1vrlbz9t0BPU5/R84wYTasQc7WIGd0hvkInpB/g19tba3q6+uVl5fn91hjY6OcTqdGjhypNWvW+D6mTJmiq666qsvHiIuLU3R0tN+Hy5Vj/JqImGjZc8/WxoX/OvJvqp9yuXLIGR1yuZgNK7hc5GwFl4ucYeZy+c+Hy5XT6dcwH0fO5fLPOS4urlv7CvlXlpuamiRJSUlJ7bZXV1eroaHB737l1tZWPfvss3r11VcDuq6RP56gg82t2vLGqoAep78jZ5gwG9YgZ2uQMzrDfARXyL+ynJiYKEmqq6vzbfN6vZo5c6Y8Ho9fWX755Zc1fPhwnXrqqV0+htvtVktLi99HWdly49ecOO08bXphubxtniP7hvqxsrLl5IwOMRvWIGdrkDM609F8dDYbEvPRHR3l7Ha7u7WvkC/L6enpcjgcmjVrlhYtWqRly5YpNzdXlZWVio2NVVpaWrvnP/7447r22msDuqb40cOUdFqaNj7HP4cEEjnDhNmwBjlbg5zRGeYj+EL+NoyIiAiVlJRo+vTpKiwsVEpKioqKihQfH69NmzYpLOzbvt/U1KS33npLCxYs6GSPR+/EKydp+8oNctdvC+hx+jtyhgmzYQ1ytgY5ozPMR/CFfFmWpMzMTJWXl7fbNn/+fGVnZ7fb9tRTT+miiy7y3boRKKt+80xA949DyBkmzIY1yNka5IzOMB/BF/K3YXSkublZNTU1fvcrP/nkkwG/BQMAAAD9R694Zfm7qqqq1NbW5leWN27cGKQVAQAAoC/qlWU5KytLXq832MsAAABAH9crb8MAAAAArEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADm5f/3cOo1b1fuzd8Euxl9BmD01MVFRfrt52cwWxYg5ytQc7oTEfzwWz0PNN52B2UZQAAAMCA2zAAAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAM/j9Py8Lcvt2tVgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAGOCAYAAABhdU6ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxTklEQVR4nO3de1iUdf7/8ddwFBJMMAwNdHSKCBWnrciyYKytddsNjegkxX6rLbfT8v1a2c/NXdu2g3v47q651cW37WTZlrRJtrodNqxsSUo01ATBkJA8lFqOSqDM/P6wpqXhg4jMPQM8H9fFdck9w31/ePm+7+vFeA/avF6vVwAAAAD8hAV7AQAAAECooiwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAACDiGAvIJS1uvdr94ZPgr2MPmNweqqi4mL9tpMzmA1rkLM1yBmd6Wg+mI2eZzoPu4Oy3IndGz7Rsty7g72MPmNy6W809IyT/baTM5gNa5CzNcgZneloPpiNnmc6D7uD2zAAAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABj0mrLc2tqq2bNnKyUlRTExMZo0aZIqKipks9lUWloa7OUBAACgD+oV/4Of1+tVfn6+KioqNGfOHDkcDi1cuFBTp06VJDmdTkvXYwsP0+lzCjU671zZwsK0+R/vaeWsx9TWcsDSdfR15AwTZsMa5GwNcoYJsxEaesUry8XFxVq6dKneeOMN3XjjjTrvvPNUXFys8PBwJSQkKDU11dL1jLvtEh1/1hiVTpqhF8++VceedIK+d/fVlq6hPyBnmDAb1iBna5AzTJiN0NAryvLcuXNVUFCgjIwM37bw8HDZ7Xbfq8obN27UhAkTdNJJJ2nChAmqra0N2HpOnHae1s77u/Zv26WWnXu05g8vyHF5jmxhvSLOXoOcYcJsWIOcrUHOMGE2QkPIp11bW6v6+nrl5eX5PdbY2Ogry9OnT9fNN9+sjRs36uabb9aNN97Y5WPExcUpOjra78PlyvF7blR8rAYOP0671tf7tu1cW6+ouFgNTDnuSL+9fsXlyiFndMjlYjas4HKRsxVcLnKGmcvlPx8uV47f85iNo+Ny+eccFxfXrX2FfFluamqSJCUlJbXbXl1drYaGBjmdTu3YsUOVlZW68sorJUlXXnmlKisr9dlnn/X4eiIGxkiSWr/c79vW+uU+SVLk14/h6JEzTJgNa5CzNcgZJsxG6Aj5spyYmChJqqur823zer2aOXOmPB6PnE6nGhsbNXz4cIWHh0s6dIvGsGHD1NjY2KVjuN1utbS0+H2UlS33e+7Bvc2SpMj4WN+2qEHHSJIOfP0YOlZWtpyc0SFmwxrkbA1yRmc6mg9mo+d1lLPb7e7WvkK+LKenp8vhcGjWrFlatGiRli1bptzcXFVWVio2NlZpaWmWrqd1z37tbfpMCRkjfdsSx9jV6t6vvY09/0p2f0XOMGE2rEHO1iBnmDAboSPky3JERIRKSkqUnJyswsJCFRUVafLkycrOzta4ceMUFhamlJQUNTU1qa2tTZLU1tamTz/9VCkpKQFZU+2z/9K4W6cqZuhgRSfGa/yMy1T3/HJ5PZ6AHK+/ImeYMBvWIGdrkDNMmI3Q0Ct+z3JmZqbKy8vbbZs/f76ys7MlHbqfefz48XruuedUUFCg5557Tk6nU8cdF5gb4Kvm/V3RCfGasvyPsoXZtPmV97TqvmcCcqz+jJxhwmxYg5ytQc4wYTZCQ68oy9/V3NysmpoaFRUV+bY9+uijKiws1K9//WsNHjxYTz/9dMCO723zqGL246qY/XjAjgFyhhmzYQ1ytgY5w4TZCA29sixXVVWpra2t3f/cd/LJJ2vlypVBXBUAAAD6ml5ZlrOysuT1eoO9DAAAAPRxIf8GPwAAACBYKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYNBrynJra6tmz56tlJQUxcTEaNKkSaqoqJDNZlNpaWmwlwcAAIA+KCLYC+gKr9er/Px8VVRUaM6cOXI4HFq4cKGmTp0qSXI6nZatZeSPJyj9+h8qIWOkWna5VXLGTZYduz8hZ3SG+bAGOVuDnGHCbISGXlGWi4uLtXTpUq1Zs0YZGRmSpJycHNntdiUkJCg1NdWytbR8uU/Vj/9TA44bpIwbfmTZcfsbckZnmA9rkLM1yBkmzEZo6BVlee7cuSooKPAVZUkKDw+X3W5XZGSkJOn222/Xiy++qM2bN2vt2rUaM2ZMQNay9e0qSVLqD04PyP5xCDmjM8yHNcjZGuQME2YjNIT8Pcu1tbWqr69XXl6e32ONjY2+WzCmTJmit99+WyNGjLB6iQAAAOijQv6V5aamJklSUlJSu+3V1dVqaGjwleWJEyd2+xhxcXFqbW312z46YrDujO/+ftGey5WjTQd3+20nZ7hczIYVXC5ytoLLRc4wc7n854PZ6Hkul3/OUVFRcrvdR7yvkH9lOTExUZJUV1fn2+b1ejVz5kx5PB5L39wHAACA/iXky3J6erocDodmzZqlRYsWadmyZcrNzVVlZaViY2OVlpZ21Mdwu91qaWnx+ygrW3703wB8ysqWkzM6xGxYg5ytQc7oTEfzwWz0vI5y7s6rylIvuA0jIiJCJSUlmj59ugoLC5WSkqKioiLFx8dr06ZNCguztu/bwsIUFhkuW0SEZLMpPDpSXq9XntaDlq6jryNndIb5sAY5W4OcYcJshIaQL8uSlJmZqfLy8nbb5s+fr+zsbMvXMvrSczXxz7f4Pr9683Pa27iD333Yw8gZnWE+rEHO1iBnmDAboaFXlOXvam5uVk1NjYqKinzbbrvtNv3973/Xtm3bdP755ysxMVHr16/v8WPXvbBcdS8s7/H9oj1yRmeYD2uQszXIGSbMRmgI+XuWO1JVVaW2trZ2b+6bN2+etmzZooMHD2rbtm0BKcoAAADoX3rlK8tZWVnyer3BXgYAAAD6uF75yjIAAABgBcoyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABj0mrLc2tqq2bNnKyUlRTExMZo0aZIqKipks9lUWloa7OUBAACgD4oI9gK6wuv1Kj8/XxUVFZozZ44cDocWLlyoqVOnSpKcTqdlawmLitCZ91+v5IljNSAxXvu379aGx5ep+vFllq2hPyBnmDAb1iBna5AzTJiN0NErynJxcbGWLl2qNWvWKCMjQ5KUk5Mju92uhIQEpaamWraWsPBwNe/4Qq9dca/cDduVcMoIff+5u/XVZ19o85Jyy9bR15EzTJgNa5CzNcgZJsxG6OgVt2HMnTtXBQUFvqIsSeHh4bLb7XI6ndq5c6d++MMfKi0tTWPHjtUll1yizz77LCBrOdjcotW//Zvcm7dJXq92rd+sxtc+UNIZ6QE5Xn9FzjBhNqxBztYgZ5gwG6Ej5MtybW2t6uvrlZeX5/dYY2OjnE6nbDab7rzzTtXU1Gjt2rUaPXq07rrrLkvWZ4sI19CsdO3e0GDJ8forcoYJs2ENcrYGOcOE2QiekC/LTU1NkqSkpKR226urq9XQ0CCn06mEhATl5OT4HjvzzDPV0ND1YYqLi1N0dLTfh8uVc5ivlM68/zod2NusTYve6vLx+iuXK4ec0SGXi9mwgstFzlZwucgZZi6X/3y4XDmH/Tpm48i4XP45x8XFdWtfIV+WExMTJUl1dXW+bV6vVzNnzpTH4/F7c5/H49Ejjzyiiy++OOBrO31OoY77Xppen3afPAcOBvx4/RU5w4TZsAY5W4OcYcJsBFfIl+X09HQ5HA7NmjVLixYt0rJly5Sbm6vKykrFxsYqLS2t3fNvvfVWDRw4ULfcckuXj+F2u9XS0uL3UVa23Pg1Z/z6Jxp27ji9etk9atnl7u6316+UlS0nZ3SI2bAGOVuDnNGZjuaD2eh5HeXsdncvv5D/bRgREREqKSnR9OnTVVhYqJSUFBUVFSk+Pl6bNm1SWNi3ff/2229XbW2tlixZ0m57Tzvj3muVPHGM/nnpHLXs3BOw4/R35AwTZsMa5GwNcoYJsxEaQr4sS1JmZqbKy9v/mpT58+crOzvb9/msWbO0atUq/eMf/1B0dHTA1nLMCUN0yvU/VNtXrbp05V9827evrNYb0+4L2HH7G3KGCbNhDXK2BjnDhNkIHb2iLH9Xc3OzampqVFRUJElav369HnjgAZ100kk666yzJEl2u10vvfRSjx9735bP9WTypT2+X7RHzjBhNqxBztYgZ5gwG6GjV5blqqoqtbW1+d7cl5GRIa/XG+RVAQAAoK/plWU5KyuLcgwAAICAC/nfhgEAAAAEC2UZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAx6TVlubW3V7NmzlZKSopiYGE2aNEkVFRWy2WwqLS0N9vIAAADQB0UEewFd4fV6lZ+fr4qKCs2ZM0cOh0MLFy7U1KlTJUlOp9PS9Zz5wPVK+f5pioyP1YG9zWp4pVwf3PuMPAcOWrqOvo6cYcJsWIOcrUHOMGE2QkOvKMvFxcVaunSp1qxZo4yMDElSTk6O7Ha7EhISlJqaaul6NjzxT33w6wU62Nyi6IQ45RTP0LjbLtGaP7xg6Tr6OnKGCbNhDXK2BjnDhNkIDb2iLM+dO1cFBQW+oixJ4eHhstvtioyMlCRNmTJF9fX1CgsL08CBA/XQQw9p/PjxAVnPlxu3fPuJzSavx6u4UckBOVZ/Rs4wYTasQc7WIGeYMBuhIeTLcm1trerr6zVv3jy/xxobG5WXlydJeuqppzRo0CBJUmlpqa699lpVVlYGbF1jb5micUV5ijwmRl/t2qPXr3omYMfqz8gZJsyGNcjZGuQME2Yj+EK+LDc1NUmSkpKS2m2vrq5WQ0OD737lb4qyJH355ZcKC+v6exfj4uLU2trqt310xGDdGT+xw69ZO3+x1s5frEEnDteoS85R847dXT5ef+Vy5WjTQf+cyBkuF7NhBZeLnK3gcpEzzFwu//lgNnqey+Wfc1RUlNxu9xHvK+R/G0ZiYqIkqa6uzrfN6/Vq5syZ8ng87d7cd/311ys1NVW/+MUv9NRTT1myvi9rm7RrfYPOeeg2S47XX5EzTJgNa5CzNcgZJsxG8IR8WU5PT5fD4dCsWbO0aNEiLVu2TLm5uaqsrFRsbKzS0tJ8z33sscf0ySef6P7779cdd9zR5WO43W61tLT4fZSVLe/S14dFhiuee4gOq6xsOTmjQ8yGNcjZGuSMznQ0H8xGz+so5+68qiz1grIcERGhkpISJScnq7CwUEVFRZo8ebKys7M1bty4Dm+3uPrqq1VWVqadO3f2+Hoi42LluCxHUfGxkqTB6SOUWZSnT5d/2OPH6s/IGSbMhjXI2RrkDBNmI3SE/D3LkpSZmany8vJ22+bPn6/s7GxJ0t69e7V7926lpKRIkpYsWaKEhAQlJCT0/GK8Xo3KO1enzylUWFSEvvp8jxqWrtSa3z3f88fqz8gZJsyGNcjZGuQME2YjZPSKsvxdzc3NqqmpUVFRkSRp3759ys/P1759+xQeHq6EhAQtWbJENputx499YG+zXrv81z2+X7RHzjBhNqxBztYgZ5gwG6GjV5blqqoqtbW1+d7cN3ToUL333ntBXhUAAAD6ml5ZlrOysuT1eoO9DAAAAPRxIf8GPwAAACBYKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoyyFm4p9uVtZ91wV7GR2aVrdACWPswV7GEeut6/7G8RMyNK1uQcD2/4MX71HG9IuP+OuSstJ1+Yf/F4AVBRfnoDXIOTB689olrndW4hzsul753133FseflaHxMy5T4rhRkqSdVR9rze9f0Lby9UFe2SHjZ1ymxMzR+tc1D3Tp+c86rg7wio7cD168R8d97yR5DhyU1+NR844v9Ok7a7Xu4cXat+VzSaG57r5gx8oNej7zp8FeRqc4B61Bztbgehc8oX694xwMLF5ZDpATzv+evr/wbjW+sUovnHqjXjj1RjW+sUrff+5unXDeqR1+jS285/46bBHhPbavUFf54HN69sSrtTCtUG9e9zsNGByni1//veJHDwv20hBEnIPWIGdrcb3Dd3EOBh5lOUCyfnOt6hYt1/pHXtYB934dcO/X+kde1qaSt3TGb66VJF1a8bDGFeXphy/fp4KPn9WQzNGSpMhjBiineIam1S7QlLf+qGE5mYc93jf/dHVSwfm69P1HdPEbv5ckJZ87Tj96da6uqnlKF//rD0r9wemSpNQfnK6xt03VcNd4TatboGl1CxQW1fk/NPxka4kSM0fLFh6mqzY+rWPTUg4d+6wM/WRriUb8aIIkKSbpWF3zyd8UOTCme+EdhS83btHbt/xZ+7ftkvOOy9utW5ISxtg1efG9umL9E7pi/RPK+b8ZGjBkkO/ro+Jjlf3of+uq6qd0ybsP6aSrv6+fbC1RdELcYY+dOG6ULlz0K1350RO6Yt1flfX137Nk/nuQDv3Efd7T/6/dvi6teFgjLjqzw+NExA7QhN/eoMtWF+vyD/9PE/98i6IGHeN7/CdbS5R+3Q+VW/a/mrbpGeUUz1BUfKzO/uNNuqrmKU1958867tQT2+0zZuixuuD5X2pa3QL96J9zfXl15j//uXSI80Rdse6v335Pt1+mwqYXNCAxXpJkn3K2LlratVcUegrnoDXnIDkH51oncb375vvt79c7zsHAn4OU5QCIHz1McSOGqn7xu36PffzSCsWPPF7xo5IlSY78HL0742E967haO9fVS5LsUybq45fe0cKTC1X10Eua9Pidij0+4bDHjYiJ1pDxDi0+t0ivTJ6puJHH6/yn7tK6+Yv13Cn/pVX3PaPsR/5bCRkj9ck/39faeS+pqWyNnnVcrWcdV8vTerBL35+3zaPtKzcoeeJYSVLyOWO1p36rkieOOfT5xLHaWfWxDuxt7tL+epq3zaNP/lmh48/K8H/M49GqBxbqhfE/1Uvn3KbIgTHtLvJZ912n6GMHqiTrJv3j4l9o1JSJXTpm7PEJurBkjja/8p5ecN6gRaf/TPVLyiWp07+H7sj6zbUa5Biu0vNv10vn/FzRCXE6+39vavec1B+crn/m/UolZ9ykxMxRuugfD2jzknI9l/5fali6UhPm3tDu+SdeMUlr/vCC7/Hzn75L4TFRXV7Tzg83KSwyQoPTR0g6NBPuhu06/uxvZ2LbinXd+n67g3PQmnOQnIN7rftmjVzv+u/1jnPQmnOQshwAA77+qbx5+y6/x5p37D70nK9/Aq1Z8Lq+rG2S1+PxDc+29z7SJ8sq5G3z6OOSt7X7owaN/PGEwx7XFhamVfc/q4PNLWprbpU99yxtX7lBm5eUy9vmUdObq/XJax9odH72UX+P21asazesa37/gm+Yjz97jLa+a10x6sj+rbsUfexAv+27P2rQjpUb5DlwUC273Fo77yXfBc4WFqaRF5+l1b97Xq1f7lPLzj368M8vdul4o/LO1a619ap56lW1tRxQW3OrdqzcIEk9+/dgs2nUJeeo8oGFatm5R6179uuDexdoxA+z2v1kvf7RJWrZ5VbLzj369O0q7W3coaY3V8vr8ah+8bs6Nj1VYZHf/mS/+ZVy7aiolufAQa196CV5PV4Nzz78Kwzf8Ho82v7eBiVPHKOI2AE69sQTtP7RJUo+JzgzwTloTd7kHPxrncT1rj9f7zgHrcmashwAX+1yS5Jihvr/dBaTNPjQc3bukSTta/rM7zn7trTftrfxsy79pHewuUUtXx9bkmKTE7X3u/tq2K7Y5MTD7utwtq5Yq6FnnqKo+FjFjxqm+sXvKjwqQrHJCUqeOEZb31l71Mc4GrHJCWrZ7fbbHjdiqFyP36HLVhfrqo1P67yn71LM1/8sGZ0Qp/CoSO1r+tz3/P/8c2cGnjBEe+q3GtbSc38PAxLjFR4dqb2N3+5vb8P2Q8cZ9u3+mj//0vfntuYWNe/4wvf5weYWhYWHK+I/XklpN3Ner/Y1fa7Y449sfVtXrNXxZ4/R0DPTtWPVRjW9uVrJZ4/RMScM0THJidpeseGI9nc0OAetOQfJOfjXOonrXX++3nEOWnMOUpYDYM+mT+X+ZLvsF5/l95g99yy5P9muPR8futB4PV6/5xxzwnHtPh+Ycpz2b/P/qfG7vB5Pu8/3b92pgX77StL+rTs7fP6R2LV+s7wej0756Y+04/1qeT0ebV2xTidddb5ikwZrx/vV3d730bKFhyn1wtO17d8f+T02Ye4Natnl1uKc/9bCk67Rv6550PdYyy632loP6JjhQ3zb/vPPndm75XPF25M7fOxwfw8H9n3V7kJuCw9rd1/hf/pq5x61tRzQwJRv9/fNn/dvPfyMmLSbOZtNscMStX/bziPax9YV63T8madoWHamtq5Ye+jCabPpxMsn6bPKjWprbu32+o4U56A15yA5B/daJ3G9646+dL3jHLTmHKQsB0jFL5+U43KXMm78sSIHxigyLlan3PgjOS5zqWL2E51+7fFnnqKUC06TLTxMoy45R4NPGaHN/3jviNdQX/pvDc1K14iLsmQLC9Nw13ilXHiaNpW8LenQT+PHDB/S7XfFbvv3ep1yw0XauuLQT3Vb312rU264SDtWbVRby4Fu7fNoDXIM08R5tyo2OVGrf/+83+ORcbFqde9X6579ihk6WOOK8nyPeT0ebV5SrvG3X6aoQccoOiFO426d2qXjfvz3t5U4bpTSrrlAYVERCo+JUlJWuqTD/z3sXPuxhpx6ogaddILCoiLknHmFwkzvLvZ69fFL78g580pFJ8YrKj5Wp82+Rg3LVuqAe/8RpvWtkRedqeNOS5MtIlxjb85VWES4Pn2r6oj2sXtDg9oOHNSJV7h8P+lve3fd1zNi/T9Vcw5acw6Sc3CudRLXu+7qa9c7zsHAn4P8nuUAaXz1fb1RcL8y/+dSjb/jMkmHfu/hGwX3+/6yTeoXr9Do/Gyd+5efa9/WnSq7/vfa/+mR/dQrSe7N2/Tmtb/Vqf9vms7+483at+UzvX3LPO36+sb+zUvKNWrKRF2x7nHZbDb9bdx1Xb7pXpK2vrNWI380wXdh2LpinaLij7H8Hr5T77pS42fky+v1qnn7bm1dsVYvf/923+8d/U8Vv3pSZ/32BqXVfl/uhh2qefo1DTt3nO/xlb/4q8763XRduvJhfbVzjz7661IlTxx72JNx/9ZdejX/Hp32q2v0vVnT1HbgoOoXr9COlRsO+/ew7d11qnnyVU1+6V55Wg9o7V8Wd/qTfcXsJ3T6nEJNefMPks2mT9/6UBW/7PyCeDi1z5fJeecVOu5Uh/Z8vFX/uuZBHWxuOeL9bHv30L1luz9qkHTon89OmnZ+UO7r5By0Bjlbi+sd17vv4hwMPJvX6/V/XR6SpO0V1VqWe3ewlxESbGFhKmx6QaWTZmj3hoZu7WNy6W809IyT/baHcs7DJzl17l9+rufSfxLspYSc5IljlVP8P3rulP866n31xtmwWn89B63Wn3PmemcW6OtdqM+GlXriHJTM52F3cBsGumRwxgh5Dhzs8A0CfUmc/XgNGe+QbDYNPOE4Oe+4XPWl/r+SB4dmwv31m20QeP3lHAy2/pQz17uu43pnnVA8B7kNoxfJXf5HDTzB/w0Yja+t0ts3/emo93/+s7/Q0Cz/n8IO7P1KYZHhWnX/QrXu6f59Yr1BREy0znnoVsUOS9QBd7O2vLFKq37zjKTA5x+Kvvkl/N/VtPxDJY61698zHrV4RcHFOWgNcrYG17v2uN59i3OwPcpyL1Ka898B3f8b0+4L6P57g90fNeilc37e4WOBzj8UPeu4OthLCCmcg9YgZ2twvWuP6923OAfb4zYMAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAoFeU5dbWVs2ePVspKSmKiYnRpEmTVFFRIZvNptLS0mAvDwAAAH1UyJdlr9er/Px8PfbYY7r77rv1yiuvyG63a+rUqZIkp9MZlHWFD4jSJf9+yPh/yaNnkDM6w3xYg5ytQc4wYTaCKyLYCzic4uJiLV26VGvWrFFGRoYkKScnR3a7XQkJCUpNTQ3Kupx3XK69Wz5XTNKxQTl+f0HO6AzzYQ1ytgY5w4TZCK6Qf2V57ty5Kigo8BVlSQoPD5fdbvd7Vfmee+6RzWbTunXrArqmxHGjNNw1Xuv+sjigx+nvyBmdYT6sQc7WIGeYMBvBF9Jluba2VvX19crLy/N7rLGxsV1Zrqys1HvvvacRI0YEdE228DCd9fvpem/WY/K0HgzosfozckZnmA9rkLM1yBkmzEZoCOmy3NTUJElKSkpqt726uloNDQ2+stzS0qKbb75ZjzzySLeOExcXp+joaL8PlyvH77ljbsrVzrX12v7ehm4dqz9zuXLIGR1yubo+GxLz0V0uFzlbweUiZ5i5XP7z4XLldPhcZqP7XC7/nOPi4rq1r5Auy4mJiZKkuro63zav16uZM2fK4/H4yvIvf/lLFRQUaOTIkQFdT9zI45V2zQX64F5usA8kckZnmA9rkLM1yBkmzEboCOk3+KWnp8vhcGjWrFmKjIzUwIED9cgjj2j16tWKjY1VWlqaysvL9cEHH+jBBx/s9nHcbneH27dXVGtZ7t2+z4eecbJihgzSJe/OkySFRYQr8pgYXbH+cZVd9zt+8juMsrLlGnrGyX7byRldnQ2J+Tga5GwNckZnOpoPZqPnmc7D7gjpshwREaGSkhJNnz5dhYWFSklJUVFRkeLj47Vp0yaFhYXprbfe0oYNG2S32yVJW7Zs0YUXXqgnnnhCF1xwQY+up37Jv/XpO1W+z4/7Xpom/vlmvXz+7fpq554ePVZ/Rs7oDPNhDXK2BjnDhNkIHSFdliUpMzNT5eXl7bbNnz9f2dnZkqS77rpLd911l++xkSNH6pVXXtGYMWN6fC1tza3a37zL93nLzj2S16v9W3d18lU4UuSMzjAf1iBna5AzTJiN0BHS9yx3pLm5WTU1NUH7z0j+07by9XrWcXWwl9HnkTM6w3xYg5ytQc4wYTaCJ+RfWf6uqqoqtbW1Gcvy5s2brV0QAAAA+qxeV5azsrLk9XqDvQwAAAD0A73uNgwAAADAKpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADDoNWW5tbVVs2fPVkpKimJiYjRp0iRVVFTIZrOptLQ02MsDAABAHxQR7AV0hdfrVX5+vioqKjRnzhw5HA4tXLhQU6dOlSQ5nU7L1jLxTzfLPnWiPAcO+rYt/+kf1FS2xrI19AfkDBNmwxrkbA1yRmeYj9DQK8pycXGxli5dqjVr1igjI0OSlJOTI7vdroSEBKWmplq6no3PvKGVv/irpcfsj8gZJsyGNcjZGuSMzjAfwdcryvLcuXNVUFDgK8qSFB4eLrvdrsjISEnSyJEjNWDAAA0YMMD3NRdeeGFQ1gsAAIC+IeTLcm1trerr6zVv3jy/xxobG5WXl+f7vKSkRGPGjAn4mkZdco5GTZ2o5s+/1Mcvvq218xfL2+YJ+HH7G3KGCbNhDXK2BjmjM8xH8IV8WW5qapIkJSUltdteXV2thoaGHrlfOS4uTq2trX7bR0cM1p3xE9tt++ivS/XBvQv01S63EseNUvbDRQqPjtLq3/7tqNfR17lcOdp0cLffdnKGy8VsWMHlImcruFzkDDOXy38+OpoNifk4Gi6Xf85RUVFyu91HvK+Q/20YiYmJkqS6ujrfNq/Xq5kzZ8rj8bQry9OmTdO4ceN000036YsvvgjIenatrddXO/dIXq92frhJq3//vOy5ZwfkWP0ZOcOE2bAGOVuDnNEZ5iM0hHxZTk9Pl8Ph0KxZs7Ro0SItW7ZMubm5qqysVGxsrNLS0iRJ77zzjj788EO9//778nq9uuWWW7p8DLfbrZaWFr+PsrLlh/9ij1eydfOb62fKypaTMzrEbFiDnK1BzuhMR/PRpdmQmI8j0FHO3XlVWeoFZTkiIkIlJSVKTk5WYWGhioqKNHnyZGVnZ2vcuHEKCzv0LaSkpEiSoqOjddNNN+ndd98NyHpGXnyWIuNiJUmD00coc0a+Nr9SHpBj9WfkDBNmwxrkbA1yRmeYj9AQ8vcsS1JmZqbKy9sPx/z585WdnS1J2rdvnw4ePKhBgwbJ6/Xqb3/7m8aPHx+QtZz8kws1Ye4NCosMV/P2L7Sp5C1VPfRSQI7Vn5EzTJgNa5CzNcgZnWE+QkOvKMvf1dzcrJqaGhUVFUmStm/frry8PLW1tamtrU2nnHKKHn744YAc+5+X/Cog+0V75AwTZsMa5GwNckZnmI/Q0CvLclVVldra2nxv7hs1apRWr14d5FUBAACgr+mVZTkrK0terzfYywAAAEAfF/Jv8AMAAACChbIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAa9piy3trZq9uzZSklJUUxMjCZNmqSKigrZbDaVlpYGe3kAAADogyKCvYCu8Hq9ys/PV0VFhebMmSOHw6GFCxdq6tSpkiSn02n5mk4471Q5Z16h+NHDdHBvs9Y9ukTrH3nZ8nX0deQME2bDGuRsDXKGCbMRfL2iLBcXF2vp0qVas2aNMjIyJEk5OTmy2+1KSEhQamqqpesZlp2pCb+7UStum69t5esVEROtY4YPsXQN/QE5w4TZsAY5W4OcYcJshIZecRvG3LlzVVBQ4CvKkhQeHi673e57Vfmrr77Sz372M5144okaO3asbrjhhoCtx3nnFar604vaumKtvG0eHdjbrC9qGgN2vP6KnGHCbFiDnK1BzjBhNkJDyL+yXFtbq/r6es2bN8/vscbGRuXl5UmS7rzzTg0YMEAbN26UzWbT9u3bA7KeiJhoDRk/Wk1vrtbUd/6sqEHH6LPKWlXMfkJ7G3cE5Jj9ETnDhNmwBjlbg5xhwmyEjpB/ZbmpqUmSlJSU1G57dXW1Ghoa5HQ6tXfvXj399NO69957ZbPZJElDhw7t8jHi4uIUHR3t9+Fy5fg9N+rYY2QLC9OIi7L0+pW/UUnWTWr+7Au5/npHd7/FfsPlyiFndMjlYjas4HKRsxVcLnKGmcvlPx8uV47f85iNo+Ny+eccFxfXrX2FfFlOTEyUJNXV1fm2eb1ezZw5Ux6PR06nU5s2bVJiYqLuuecenXbaacrJydGKFSsCsp4De7+SJH302FLt3fKZ2ppbVfnAQiWOtXMfUQ8iZ5gwG9YgZ2uQM0yYjdAR8mU5PT1dDodDs2bN0qJFi7Rs2TLl5uaqsrJSsbGxSktLU1tbmz7++GM5nU598MEHmjt3ri655BLt2bOnS8dwu91qaWnx+ygrW+733APu/Yf++cPr7eHvtO8rK1tOzugQs2ENcrYGOaMzHc0Hs9HzOsrZ7XZ3a18hX5YjIiJUUlKi5ORkFRYWqqioSJMnT1Z2drbGjRunsLAwpaamKiIiQldeeaUkKSsrS0OGDNHGjRsDsqaap19T+vUXKXZYosKjI+W88wp9/uEm7Wv6PCDH66/IGSbMhjXI2RrkDBNmIzSE/Bv8JCkzM1Pl5eXtts2fP1/Z2dmSpCFDhsjlcun111/XBRdcoI0bN2rHjh1yOBwBWc/av5QqatBAXfzabyVbmHZUVKvsut8F5Fj9GTnDhNmwBjlbg5xhwmyEhl5Rlr+rublZNTU1Kioq8m179NFHde2112rGjBmKjIzUggULdOyxxwZmAV6vVt33jFbd90xg9o9DyBkmzIY1yNka5AwTZiMk9MqyXFVVpba2tnb/c9+oUaO0fPny4C0KAAAAfU6vLMtZWVnycsM7AAAAAizk3+AHAAAABAtlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAQUSwF9BVra2tuvfee/Xkk0/q888/14QJE/Tggw8qKytLixcvVm5uriXrmFa3oN3n4VGR+qK2SS+fN8OS4/cX5AwTZsMa5GwNckZnmI/Q0CvKstfrVX5+vioqKjRnzhw5HA4tXLhQU6dOlSQ5nU7L1vKs4+p2n1/8rz+ovvRdy47fX5AzTJgNa5CzNcgZnWE+QkOvKMvFxcVaunSp1qxZo4yMDElSTk6O7Ha7EhISlJqaGpR1DRnv0LEnnaC658uCcvz+gpxhwmxYg5ytQc7oDPMRPL2iLM+dO1cFBQW+oixJ4eHhstvtioyM1ObNmzVlyhTfY1988YX27NmjXbt2BXRdJ141SU1vrlbz9t0BPU5/R84wYTasQc7WIGd0hvkInpB/g19tba3q6+uVl5fn91hjY6OcTqdGjhypNWvW+D6mTJmiq666qsvHiIuLU3R0tN+Hy5Vj/JqImGjZc8/WxoX/OvJvqp9yuXLIGR1yuZgNK7hc5GwFl4ucYeZy+c+Hy5XT6dcwH0fO5fLPOS4urlv7CvlXlpuamiRJSUlJ7bZXV1eroaHB737l1tZWPfvss3r11VcDuq6RP56gg82t2vLGqoAep78jZ5gwG9YgZ2uQMzrDfARXyL+ynJiYKEmqq6vzbfN6vZo5c6Y8Ho9fWX755Zc1fPhwnXrqqV0+htvtVktLi99HWdly49ecOO08bXphubxtniP7hvqxsrLl5IwOMRvWIGdrkDM609F8dDYbEvPRHR3l7Ha7u7WvkC/L6enpcjgcmjVrlhYtWqRly5YpNzdXlZWVio2NVVpaWrvnP/7447r22msDuqb40cOUdFqaNj7HP4cEEjnDhNmwBjlbg5zRGeYj+EL+NoyIiAiVlJRo+vTpKiwsVEpKioqKihQfH69NmzYpLOzbvt/U1KS33npLCxYs6GSPR+/EKydp+8oNctdvC+hx+jtyhgmzYQ1ytgY5ozPMR/CFfFmWpMzMTJWXl7fbNn/+fGVnZ7fb9tRTT+miiy7y3boRKKt+80xA949DyBkmzIY1yNka5IzOMB/BF/K3YXSkublZNTU1fvcrP/nkkwG/BQMAAAD9R694Zfm7qqqq1NbW5leWN27cGKQVAQAAoC/qlWU5KytLXq832MsAAABAH9crb8MAAAAArEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADm5f/3cOo1b1fuzd8Euxl9BmD01MVFRfrt52cwWxYg5ytQc7oTEfzwWz0PNN52B2UZQAAAMCA2zAAAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAM/j9Py8Lcvt2tVgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -474,16 +474,16 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.339384Z", - "iopub.status.busy": "2024-11-23T19:54:58.338985Z", - "iopub.status.idle": "2024-11-23T19:54:58.470675Z", - "shell.execute_reply": "2024-11-23T19:54:58.470213Z" + "iopub.execute_input": "2024-12-05T03:21:32.991113Z", + "iopub.status.busy": "2024-12-05T03:21:32.990698Z", + "iopub.status.idle": "2024-12-05T03:21:33.121686Z", + "shell.execute_reply": "2024-12-05T03:21:33.121123Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -513,16 +513,16 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.472794Z", - "iopub.status.busy": "2024-11-23T19:54:58.472408Z", - "iopub.status.idle": "2024-11-23T19:54:58.652927Z", - "shell.execute_reply": "2024-11-23T19:54:58.652430Z" + "iopub.execute_input": "2024-12-05T03:21:33.123837Z", + "iopub.status.busy": "2024-12-05T03:21:33.123457Z", + "iopub.status.idle": "2024-12-05T03:21:33.300292Z", + "shell.execute_reply": "2024-12-05T03:21:33.299694Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyUAAAGOCAYAAACJ0KybAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3BklEQVR4nO3de1jUdd7/8ddwFBJUMA0NFKWI8ERbkWXBWFtr7YZKtpUWbbXldrrZ2za7LXdt2w7u4d5dc6uf924HTdqStshWtyNWuiQlmmiCYEhEqOUhR0VQZn5/WNMSzjQSfj4z+HxcF9cVM8P3++bleyZfzAw6PB6PRwAAAABgSZjtAQAAAAAc2yglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrImwPEGpaXfu0c8PHtscIan0yUhQVFxvw7cm0a/nKn5zBbphBzmaQM/xhP8w40r/z+UMpOUI7N3yspXn32B4jqI0r+Y36n3lKwLcn067lK39yBrthBjmbQc7wh/0w40j/zucPL98CAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWBUypaS1tVUzZ85UcnKyYmJiNHbsWJWXl8vhcKikpMT2eAAAAAA6KST+RXePx6NJkyapvLxcs2bNUlpamoqKijRhwgRJUlZWluUJJUd4mM6YVaCh+efJERamzf98Vytn/FVtLQdsjxayyNQMcoYv7IYZ5GwGOcMf9sO+kHimZN68eVqyZIlef/113XTTTTr//PM1b948hYeHKyEhQSkpKbZH1IjbJ+qEs4epZOw0PX/Obep98on63j1X2x4rpJGpGeQMX9gNM8jZDHKGP+yHfSFRSmbPnq0pU6YoMzPTe1l4eLhSU1O9z5Js3LhRo0eP1sknn6zRo0erpqbG6IwnTT5flXP+oX1bdqhl+26t+cNzSvtxrhxhIRFxUCJTM8gZvrAbZpCzGeQMf9gP+4I+6ZqaGtXV1Sk/P7/DdQ0NDd5SMnXqVN1yyy3auHGjbrnlFt10000BnyMuLk7R0dEBfTiduR2+Pio+Vj0HHq8d6+u8l22vrFNUXKx6Jh9/pN9yyHM6cwPOk0y7ntN5+PydztwOtyXnY4vTyW6Y4HSSswlOJznDN6eT/TDB6eyYc1xcXKeOFfSlpLGxUZLUr1+/dpdXVVWpvr5eWVlZ2rZtmyoqKnTllVdKkq688kpVVFTos88+MzJjRM8YSVLrF/u8l7V+sVeSFPnldTgyZGoGOcMXdsMMcjaDnOEP+xEcgr6UJCYmSpJqa2u9l3k8Hk2fPl1ut1tZWVlqaGjQwIEDFR4eLunQS7sGDBighoaGgM7hcrnU0tIS0Edp6bIOX39wT7MkKTI+1ntZVK/jJEkHvrzuWFJauizgPMm06/nKn5zBbphBzmaQM/xhP8w4XM4ul6tTxwr6UpKRkaG0tDTNmDFDixYt0tKlS5WXl6eKigrFxsYqPT3d9ohq3b1Pexo/U0LmYO9licNS1erapz0NZp6t6W7I1Axyhi/shhnkbAY5wx/2IzgEfSmJiIhQcXGxkpKSVFBQoMLCQo0bN045OTkaMWKEwsLClJycrMbGRrW1tUmS2tra9Omnnyo5OdnYnDUL39CI2yYopn8fRSfGa9S0y1X77DJ53G5jM3Q3ZGoGOcMXdsMMcjaDnOEP+2FfSPw7JSNHjlRZWVm7y+bOnaucnBxJh95vMmrUKD3zzDOaMmWKnnnmGWVlZen44829OWntnH8oOiFe45f9UY4whza//K5W3f+0sfN3R2RqBjnDF3bDDHI2g5zhD/thX0iUkm9qbm5WdXW1CgsLvZc99thjKigo0K9//Wv16dNH8+fPNzqTp82t8pmPq3zm40bP252RqRnkDF/YDTPI2Qxyhj/sh30hWUrWrl2rtra2dv+S+ymnnKKVK1danAoAAABAZ4RkKcnOzpbH47E9BgAAAIAuEPRvdAcAAADQvVFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVSFTSlpbWzVz5kwlJycrJiZGY8eOVXl5uRwOh0pKSmyPBwAAAKCTImwPEAiPx6NJkyapvLxcs2bNUlpamoqKijRhwgRJUlZWluUJpcE/Gq2MGy5WQuZgtexwqfjMm22PFNLI0wxyhj/shxnkbAY5wxd2IziERCmZN2+elixZojVr1igzM1OSlJubq9TUVCUkJCglJcXyhFLLF3tV9fi/1OP4Xsq88Ye2xwl55GkGOcMf9sMMcjaDnOELuxEcQqKUzJ49W1OmTPEWEkkKDw9XamqqIiMjJUl33HGHnn/+eW3evFmVlZUaNmyY0Rmb3l4rSUr5wRlGz9tdkacZ5Ax/2A8zyNkMcoYv7EZwCPr3lNTU1Kiurk75+fkdrmtoaPC+dGv8+PF6++23NWjQINMjAgAAAPgOgv6ZksbGRklSv3792l1eVVWl+vp6bykZM2ZMp88RFxen1tbWgG47NKKP7ozv/LmOBU5nrjYd3Bnw7cm0azmdh8+fnOF0shsmOJ3kbILTSc7wzelkP0xwOjvmHBUVJZfLdcTHCvpnShITEyVJtbW13ss8Ho+mT58ut9sdFG9yBwAAANB5QV9KMjIylJaWphkzZmjRokVaunSp8vLyVFFRodjYWKWnp3/nc7hcLrW0tAT0UVq67Lt/U91caemygPMk067nK39yBrthBjmbQc7wh/0w43A5d+ZZEikEXr4VERGh4uJiTZ06VQUFBUpOTlZhYaHi4+O1adMmhYUFR69yhIUpLDJcjogIyeFQeHSkPB6P3K0HbY8WksjTDHKGP+yHGeRsBjnDF3YjOAR9KZGkkSNHqqysrN1lc+fOVU5OjqWJOhp62Xka8+dbvZ9fvfkZ7WnYxu+67iTyNIOc4Q/7YQY5m0HO8IXdCA4hUUq+qbm5WdXV1SosLPRedvvtt+sf//iHtmzZogsuuECJiYlav369sZlqn1um2ueWGTtfd0eeZpAz/GE/zCBnM8gZvrAbwSE4Xvt0hNauXau2trZ2b3KfM2eOPvnkEx08eFBbtmwxWkgAAAAAdF5IPlOSnZ0tj8djewwAAAAAXSAknykBAAAA0H1QSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFUhU0paW1s1c+ZMJScnKyYmRmPHjlV5ebkcDodKSkpsjwcAAACgkyJsDxAIj8ejSZMmqby8XLNmzVJaWpqKioo0YcIESVJWVpbV+cKiInTWAzcoacxw9UiM176tO7Xh8aWqenyp1blCGZmaQc7whd0wg5zNIGf4w34Eh5AoJfPmzdOSJUu0Zs0aZWZmSpJyc3OVmpqqhIQEpaSkWJ0vLDxczdt26dUr7pOrfqsSTh2k7z9zj/Z/tkubF5dZnS1UkakZ5Axf2A0zyNkMcoY/7EdwCImXb82ePVtTpkzxFhJJCg8PV2pqqrKysrR9+3ZdfPHFSk9P1/DhwzVx4kR99tlnxuY72Nyi1b/9u1ybt0gej3as36yGV99XvzMzjM3Q3ZCpGeQMX9gNM8jZDHKGP+xHcAj6UlJTU6O6ujrl5+d3uK6hoUFZWVlyOBy68847VV1drcrKSg0dOlR33XWXhWkPcUSEq392hnZuqLc2Q3dDpmaQM3xhN8wgZzPIGf6wH3YE/cu3GhsbJUn9+vVrd3lVVZXq6+uVlZWlhIQE5ebmeq8766yz9OijjwZ8jri4OLW2tgZ026ERfXRn/Bi/tznrget1YE+zNi16K+AZuhOnM1ebDu4M+PZk2rWczsPnT85wOtkNE5xOcjbB6SRn+OZ0sh8mOJ0dc46KipLL5TriYwX9MyWJiYmSpNraWu9lHo9H06dPl9vt7vAmd7fbrUcffVSXXnqp0Tm/csasAh3/vXS9Nvl+uQ8ctDJDd0OmZpAzfGE3zCBnM8gZ/rAf9gR9KcnIyFBaWppmzJihRYsWaenSpcrLy1NFRYViY2OVnp7e7va33XabevbsqVtvvTXgc7hcLrW0tAT0UVq6zOdxzvz1tRpw3gi9cvm9atlx5A2xuygtXRZwnmTa9XzlT85gN8wgZzPIGf6wH2YcLufOPEsihcDLtyIiIlRcXKypU6eqoKBAycnJKiwsVHx8vDZt2qSwsK971R133KGamhotXry43eUmnHnfdUoaM0z/umyWWrbvNnru7opMzSBn+MJumEHOZpAz/GE/7Av6UiJJI0eOVFlZ+1/JNnfuXOXk5Hg/nzFjhlatWqV//vOfio6ONjrfcSf21ak3XKy2/a26bOVfvJdvXVml1yffb3SW7oJMzSBn+MJumEHOZpAz/GE/gkNIlJJvam5uVnV1tQoLCyVJ69ev14MPPqiTTz5ZZ599tiQpNTVVL7zwgpF59n7yuZ5MuszIuY4VZGoGOcMXdsMMcjaDnOEP+xEcQrKUrF27Vm1tbd43uWdmZsrj8VieCgAAAEBnhGQpyc7OpoQAAAAA3UTQ//YtAAAAAN0bpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFgVMqWktbVVM2fOVHJysmJiYjR27FiVl5fL4XCopKTE9ngAAAAAOinC9gCB8Hg8mjRpksrLyzVr1iylpaWpqKhIEyZMkCRlZWVZnlA668EblPz90xUZH6sDe5pV/3KZ3r/vabkPHLQ9WsgiUzPIGb6wG2aQsxnkDH/YD/tCopTMmzdPS5Ys0Zo1a5SZmSlJys3NVWpqqhISEpSSkmJ5QmnDE//S+79eoIPNLYpOiFPuvGkacftErfnDc7ZHC1lkagY5wxd2wwxyNoOc4Q/7YV9IlJLZs2drypQp3kIiSeHh4UpNTVVkZKQkafz48aqrq1NYWJh69uyphx9+WKNGjTI24xcbP/n6E4dDHrdHcUOSjJ2/OyJTM8gZvrAbZpCzGeQMf9gP+4K+lNTU1Kiurk5z5szpcF1DQ4Py8/MlSU899ZR69eolSSopKdF1112niooKo7MOv3W8RhTmK/K4GO3fsVuvXfW00fN3R2RqBjnDF3bDDHI2g5zhD/thl8Pj8XhsD+HPsmXL5HQ6tXLlSp155pney6uqqpSZmakFCxboqquuavc18+fP15w5c/T+++8HdI64uDi1trYGdNuhEX10Z/wYv7fpddJADZl4rqrnv6p9TTsCOm538tvdy7Xp4M6Ab0+mXctX/uQMdsMMcjaDnOEP+2HG4XKOioqSy+U64mMF/W/fSkxMlCTV1tZ6L/N4PJo+fbrcbne7N7nfcMMNSklJ0d13362nnnrK+Kxf+aKmUTvW1+vch2+3NkN3Q6ZmkDN8YTfMIGczyBn+sB92BH0pycjIUFpammbMmKFFixZp6dKlysvLU0VFhWJjY5Wenu697V//+ld9/PHHeuCBB/SLX/wi4HO4XC61tLQE9FFauiygY4ZFhiv+GH0tYmnpsoDzJNOu5yt/cga7YQY5m0HO8If9MONwOXfmWRIpBEpJRESEiouLlZSUpIKCAhUWFmrcuHHKycnRiBEjFBbW8Vu4+uqrVVpaqu3btxuZMTIuVmmX5yoqPlaS1CdjkEYW5uvTZR8YOX93RKZmkDN8YTfMIGczyBn+sB/BIejf6C5JI0eOVFlZWbvL5s6dq5ycHEnSnj17tHPnTiUnJ0uSFi9erISEBCUkJJgZ0OPRkPzzdMasAoVFRWj/57tVv2Sl1vzuWTPn747I1Axyhi/shhnkbAY5wx/2IyiERCn5pubmZlVXV6uwsFCStHfvXk2aNEl79+5VeHi4EhIStHjxYjkcDiPzHNjTrFd//Gsj5zpWkKkZ5Axf2A0zyNkMcoY/7EdwCMlSsnbtWrW1tXnf5N6/f3+9++67lqcCAAAA0BkhWUqys7MV5L/JGAAAAECAgv6N7gAAAAC6N0oJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKSZAY86dblH3/9bbH8Lpg4d3KuP5i22McNcGW93+aXLtACcNSbY9xxEJ17q+cMDpTk2sXHLXj/+D5e5U59dIj/rp+2Rn68Qf/dxQmsov7oBnkfHSE8uwSj3cmcR8MXITtAY4l8UOSdPrMq9XvjHSFR0ep+bNdanj1fb0366kjOk7a5bnK/NmlKnH+91GaVHp98v1H7dhd7YSzMzVq2uVKHDFEkrR97Uda8/vntKVsveXJDhk17XIljhyqN655MKDbL0y7+ihPdOR+8Py9Ov57J8t94KA8breat+3Sp+9Uat0jL2rvJ59LCs65u4NtKzfo2ZE/tT2GX9wHzSBnM3i8syfYH++4Dx5dPFNi0AULZuiL2k9VfOYtWnjyNXpt8v3a+WG9lVkcEeFWztvVTrzge/p+0T1qeH2VnjvtJj132k1qeH2Vvv/MPTrx/NMO+zWO8K5b++6SYyAqHnpGC0+6WkXpBXrz+t+pR584Xfra7xU/dIDt0WAR90EzyNksHu/wTdwHjz5KiSHRCXGKH5Kk6vmv6uC+/ZLHI1fdFtU+t+ywtz/34ds0qeL/aXLNAl362u800DlKkpQwLFWjZ9+oXicN1OTaBZpcu0DxQ5IkHWrwl7z8gK7c8KTGv/0npead4z3eqGmX64KFdyv7gRt0xfrHlf2b6/zO+59PvV6w8G6d8pMfSJLCe0Tp6roiZT9wg/e2E975swaOzepsNN9J9m+uU+2iZVr/6Es64NqnA659Wv/oS9pU/JbO/PJ7vKz8EY0ozNfFL92vKR8tVN+RQyVJkcf1UO68aZpcs0Dj3/qjBuSO/NbzffWU98lTLtBl7z2qS1//vSQp6bwR+uErs3VV9VO69I0/KOUHZ0iSUn5whobfPkEDnaO8f15hUf6foLy2qViJI4fKER6mqzbOV+/05EPnPjtT1zYVa9APR0uSYvr11jUf/12RPWM6F9538MXGT/T2rX/Wvi07lPWLH7ebWzq0p+NevE9XrH9CV6x/Qrn/N009+vbyfn1UfKxyHvu5rqp6ShNXPKyTr/6+rm0qVnRC3LeeO3HEEF206Fe68sMndMW6v7XbZV9/DtKh+8D58/+n3bEuK39Egy4567DniYjtodG/vVGXr56nH3/wfxrz51sV1es47/XXNhUr4/qLlVf6v5q86WnlzpumqPhYnfPHm3VV9VOa8M6fdfxpJ7U7Zkz/3rrw2V9qcu0C/fBfs715+fOfL7Pom3WSrlj3t6+/pzsuV0Hjc+qRGC9JSh1/ji5ZEthPyLoK90Ez90FytvNYJ/F499X3e6w/3nEfPPr3QUqJIS07XNq1sUHn/PFmpeado7hB/f3evmnFepU4/1tFpxSoesFryp03TdGJ8dqxrk5l0+fpi5pGLUy7WgvTrtbuj5rUOz1ZYx+/U6t//6yeOfUneue2h3XWgze0exAYcN4I7VhXp2dH3KD37g38JWNNyyuVNGa4JKnfGena27RdSWOGSZJiT0hQ3KD+2vruhk6k8t3EDx2guEH9Vffiig7XffTCcsUPPsFb2NIm5WrFtEe0MO1qbV9XJ0lKHT9GH73wjopOKdDah1/Q2MfvVOwJCd963oiYaPUdlaYXzyvUy+OmK27wCbrgqbu0bu6LeubUn2jV/U8r59GfKyFzsD7+13uqnPOCGkvXeP+83K0HA/r+PG1ubV25wZt90rnDtbuuyZt90pjh2r72Ix3Y0xzQ8bqap82tj/9VrhPOzux4ndutVQ8W6blRP9UL596uyJ4x7f5nmn3/9Yru3VPF2Tfrn5ferSHjxwR0ztgTEnRR8SxtfvldPZd1oxad8TPVLS6TJL9/Dp2R/Zvr1CttoEouuEMvnPtfik6I0zn/e3O726T84Az9K/9XKj7zZiWOHKJL/vmgNi8u0zMZP1H9kpUaPfvGdrc/6YqxWvOH57zXXzD/LoXHRAU80/YPNiksMkJ9MgZJOrQTrvqtOuGcr3diy/J1nfp+O4P7oJn7IDnbfaz7akYe747dxzvug2bug5QSg/418Vf6fE2tht8+UROWz1H+u3/R4B+NPuxta//+plq/2CtPm1vV819Vy06Xt3EfTnrBRdr0/Nv6dNkHksej7R9sUl3JCg297Dzvbb6obVRN0RvytLnV1twa8NxbVqxT/7NOlRwOJZ07XDVFbygiNlox/fvohDHD9PmaTYee/TGsx5c/ZWreuqPDdc3bdh66zZc/Uale8Jq+qGmUx+323km3vPuhPl5aLk+bWx8Vv62dH9b7/PP4T46wMK16YKEONreorblVqXlna+vKDdq8uEyeNrca31ytj199X0Mn5Xzn73HL8nXtHhTW/P4574PGCecMU9MKc38BPZx9TTsU3btnh8t3flivbSs3yH3goFp2uFQ55wXv/0gcYWEafOnZWv27Z9X6xV61bN+tD/78fEDnG5J/nnZU1qn6qVfU1nJAbc2t2rbyUCHu0j8Hh0NDJp6rigeL1LJ9t1p379P79y3QoIuz2/2kaP1ji9Wyw6WW7bv16dtrtadhmxrfXC2P2626F1eod0aKwiK//knV5pfLtK28Su4DB1X58AvyuD0amPPtPzH7isft1tZ3NyhpzDBFxPZQ75NO1PrHFivpXDs7wX3QTN7kbP+xTuLx7lh+vOM+aCZrSolB+7fv1qrfPK2Xzp+mZzKuVdWTr+i8RwrVK+0br1F1OJR15xWasHyOrto4X1dVPaXYAYnehT+cnsnH66Qrx+qqqqe8H0Mn5Si2/9dNfG/j552ae3tlnRwOKWHYYCWdM1yfvlPpXd6kc4apaXllp477Xe3f4ZIkxfTv+NOGmH59Dt1m+25J0t7GzzrcZu8n7S/b0/BZQD+5ONjcopYvzy1JsUmJ2vPNY9VvVWxS4rce69s0La9U/7NOVVR8rOKHDFDdiysUHhWh2KQEJY0ZpqZ37GT/ldikBLXsdHW4PG5Qfzkf/4UuXz1PV22cr/Pn36WYL1/OEJ0Qp/CoyHb7GOhu9jyxr3bXNfmYpev+HHokxis8OlJ7Gr4+3p76rYfOM+Dr4zV//oX3v9uaW9S8bZf384PNLQoLD1fEf/xksN3OeTza2/i5Yk84svmallfqhHOGqf9ZGdq2aqMa31ytpHOG6bgT++q4pERtLTf3rCX3QTP3QXK2/1gn8Xh3LD/ecR80cx+klFhyYE+z1j/2klp37/O+hu8rQyaM0dDLc/TmtQ+pKL1ARacUaN+n2+VwOCRJHo+nw/H2Nn6uqidfUdEpBd6PhWlXa9mNf/DexuPu+HUB8Xi0pexDDRqXrbjB/bWjsk5NK9Ypacxwq6Vk96ZP5fp4q1IvPbvDdal5Z8v18Vbt/ujQA/rhvvfjTjy+3ec9k4/Xvi0dfwryTR63u93n+5q2q2eHY/XTvqbth739kdixfrM8brdO/ekPte29KnncbjUtX6eTr7pAsf36aNt7VZ0+9nflCA9TykVnaMu/P+xw3ejZN6plh0sv5v5cRSdfozeuech7XcsOl9paD+i4gX29l/3nf/uz55PPFZ+adNjrvu3P4cDe/e3+h+kID2v3uu//tH/7brW1HFDP5K+P99V/72v69h3xpd3OORyKHZCofVu2H9Exmpav0wlnnaoBOSPVtLzy0P+gHA6d9OOx+qxi4xE9C/pdcR80cx8kZ7uPdRKPd53RnR7vuA+auQ9SSgyJ6nWcTvufq9T75BPliAhXWFSETr76+4qIidL2Dz5qd9vInjFytx7U/u27FRYRrsypl7Zrwc2f7VJMv97tXptZPf9VpV2eo6TzRsgRHqawyAgljhyqPqcO6pL5m5ZXKuP6cdq6csOXi1qpQRdnq0ffXtr2fnWXnKMzyn/5pNJ+7FTmTT9SZM8YRcbF6tSbfqi0y50qn/mE36894axTlXzh6XKEh2nIxHPV59RB2vzPd494hrqSf6t/doYGXZItR1iYBjpHKfmi07Wp+G1Jh366dNzAvp3+LRxb/r1ep954ibf8Na2o1Kk3XqJtqzaqreVAp475XfVKG6Axc25TbFKiVv/+2Q7XR8bFqtW1T6279ymmfx+NKMz3Xudxu7V5cZlG3XG5onodp+iEOI24bUJA5/3oH28rccQQpV9zocKiIhQeE6V+2RmSvv3PYXvlR+p72knqdfKJCouKUNb0KxTm67eZeDz66IV3lDX9SkUnxisqPlanz7xG9UtX6oBr3xGm9bXBl5yl409PlyMiXMNvyVNYRLg+fWvtER1j54Z6tR04qJOucHp/crVlxbovd8T8S1y4D5q5D5Kzncc6ice7zupuj3fcB4/+fZB/p8QQd+tBxRzfW2Ofuksxx/dSW8tB7drYoDeund3hqbjaRcuUdO5w5a98RAf3tah6/qvaVfWx9/qm5eu0rbxKl6/6f3KEhWnxuOna+WG9Sn/6B502/Ur1fuzn8nikXVUfa9UDC7tk/qbllYqKv8H7ILCvaYeat+3S3qYdAb+R6mhoeOU9vT7lAY3878s06heXSzr0e8Nfn/LAtz6DU/ficg2dlKPz/vJf2tu0XaU3/F77Pj2yn+JIkmvzFr153W912v9M1jl/vEV7P/lMb986Rzu+fIPb5sVlGjJ+jK5Y97gcDof+PuL6I8qs6Z1KDf7haG/2TcvXKSr+OOOvsT7tris1atokeTweNW/dqabllXrp+3d4f2//fyr/1ZM6+7c3Kr3m+3LVb1P1/Fc14LwR3utX3v03nf27qbps5SPav323PvzbEiWNGf6tD3r7mnbolUn36vRfXaPvzZistgMHVfficm1bueFb/xy2rFin6idf0bgX7pO79YAq//Ki359Ulc98QmfMKtD4N/8gORz69K0PVP5L///j+TY1z5Yq684rdPxpadr9UZPeuOYhHWxuOeLjbFlx6OWTX/1K8abllTp58gVWXnfPfdAMcjaLxzse776J++DR5/Ac7rVA8GlreZWW5t1je4yjbtyL92nz4jJt+NuSI//akt+o/5mnBHz7YyXTQDjCwlTQ+JxKxk7Tzg2d+zdsfOUfzDkPHJul8/7yX3om41rbowSdpDHDlTvvv/XMqT/5zscKxd0w7Vi9D5p2LOfM451vPN6Z0xX3QenI/87nDy/fQgcRsT0UN6i/XJu32B7lmNMnc5DcBw4e9o1y3Ulc6gnqOypNcjjU88TjlfWLH6uupOOvWsShnXB9+aZTHH3Hyn3QtmMpZx7vAsfjnTnBeB/k5VvHqOG3T9SI2zu+rjW8R5TCwsNV9+IKNZauMT9YEMhb9kf1PLHjGxEbXl2lt2/+03c+/gUL71b/7I4/VTiwZ7/CIsO16oEite7u/Ot4Q0FETLTOffg2xQ5I1AFXsz55fZVW/eZpSUc//2D01T8W9k2Nyz5Q4vBU/XvaY4Ynsov7oBnkbAaPd+3xePc17oPtUUqOUZVz/qHKOf+wPUZQKsn9+VE9/uuT7z+qxw8FOz+s1wvn/tdhrzva+QejhWlX2x4hqHAfNIOczeDxrj0e777GfbA9Xr4FAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMCqkCglra2tmjlzppKTkxUTE6OxY8eqvLxcDodDJSUltscDAAAA8B0EfSnxeDyaNGmS/vrXv+qee+7Ryy+/rNTUVE2YMEGSlJWVZXnC9sJ7RGnivx/W5NoFtkfpNsjUDHKGL+yGGeRsBjnDF3bDrgjbA3ybefPmacmSJVqzZo0yMzMlSbm5uUpNTVVCQoJSUlIsT9he1i9+rD2ffK6Yfr1tj9JtkKkZ5Axf2A0zyNkMcoYv7IZdQf9MyezZszVlyhRvIZGk8PBwpaamdniW5N5775XD4dC6detMjylJShwxRAOdo7TuLy9aOX93RKZmkDN8YTfMIGczyBm+sBv2BXUpqampUV1dnfLz8ztc19DQ0K6UVFRU6N1339WgQYNMjujlCA/T2b+fqndn/FXu1oNWZuhuyNQMcoYv7IYZ5GwGOcMXdiM4BHUpaWxslCT169ev3eVVVVWqr6/3lpKWlhbdcsstevTRRzt1nri4OEVHRwf04XTmHvYYw27O0/bKOm19d0OnZuhOnM7cgPMk067ndB4+f6cz97C3J+djh9PJbpjgdJKzCU4nOcM3pzPw/WA3Os/p7JhzXFxcp44V1KUkMTFRklRbW+u9zOPxaPr06XK73d5S8stf/lJTpkzR4MGDbYypuMEnKP2aC/X+fbwxqquQqRnkDF/YDTPI2Qxyhi/sRvAI6je6Z2RkKC0tTTNmzFBkZKR69uypRx99VKtXr1ZsbKzS09NVVlam999/Xw899FCnz+NyuQK+7dbyKi3Nu6fdZf3PPEUxfXtp4oo5kqSwiHBFHhejK9Y/rtLrf3fMNe/S0mXqf+YpAd+eTLuWr/zJGeyGGeRsBjnDn0D3g934bo7073z+BHUpiYiIUHFxsaZOnaqCggIlJyersLBQ8fHx2rRpk8LCwvTWW29pw4YNSk1NlSR98sknuuiii/TEE0/owgsvNDJn3eJ/69N31no/P/576Rrz51v00gV3aP/23UZm6G7I1Axyhi/shhnkbAY5wxd2I3gEdSmRpJEjR6qsrKzdZXPnzlVOTo4k6a677tJdd93lvW7w4MF6+eWXNWzYMGMztjW3al/zDu/nLdt3Sx6P9jXt8PNV8IdMzSBn+MJumEHOZpAzfGE3gkdQv6fkcJqbm1VdXR10/2jif9pStl4L0662PUa3QqZmkDN8YTfMIGczyBm+sBv2BP0zJd+0du1atbW1+SwlmzdvNjsQAAAAgO8k5EpJdna2PB6P7TEAAAAAdJGQe/kWAAAAgO6FUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKwKmVLS2tqqmTNnKjk5WTExMRo7dqzKy8vlcDhUUlJiezwAAAAAnRRhe4BAeDweTZo0SeXl5Zo1a5bS0tJUVFSkCRMmSJKysrKszjfmT7codcIYuQ8c9F627Kd/UGPpGntDhTgyNYOc4Qu7YQY5m0HO8If9CA4hUUrmzZunJUuWaM2aNcrMzJQk5ebmKjU1VQkJCUpJSbE8obTx6de18u6/2R6jWyFTM8gZvrAbZpCzGeQMf9gP+0KilMyePVtTpkzxFhJJCg8PV2pqqiIjIyVJgwcPVo8ePdSjRw/v11x00UVW5gUAAAAQuKAvJTU1Naqrq9OcOXM6XNfQ0KD8/Hzv58XFxRo2bJjJ8byGTDxXQyaMUfPnX+ij599W5dwX5WlzW5mluyBTM8gZvrAbZpCzGeQMf9gP+4K+lDQ2NkqS+vXr1+7yqqoq1dfXd8n7SeLi4tTa2hrQbYdG9NGd8WPaXfbh35bo/fsWaP8OlxJHDFHOI4UKj47S6t/+/TvPFoqczlxtOrgz4NuTaddyOg+fPznD6WQ3THA6ydkEp5Oc4ZvTyX6Y4HR2zDkqKkoul+uIjxX0v30rMTFRklRbW+u9zOPxaPr06XK73e1KyeTJkzVixAjdfPPN2rVrl7EZd1TWaf/23ZLHo+0fbNLq3z+r1LxzjJ2/OyJTM8gZvrAbZpCzGeQMf9iP4BD0pSQjI0NpaWmaMWOGFi1apKVLlyovL08VFRWKjY1Venq6JOmdd97RBx98oPfee08ej0e33nprwOdwuVxqaWkJ6KO0dNm3H9DtkRyd/Ia7gdLSZQHnSaZdz1f+5Ax2wwxyNoOc4Q/7Ycbhcu7MsyRSCJSSiIgIFRcXKykpSQUFBSosLNS4ceOUk5OjESNGKCzs0LeQnJwsSYqOjtbNN9+sFStWGJtx8KVnKzIuVpLUJ2OQRk6bpM0vlxk7f3dEpmaQM3xhN8wgZzPIGf6wH8Eh6N9TIkkjR45UWVn75Zg7d65ycnIkSXv37tXBgwfVq1cveTwe/f3vf9eoUaOMzXfKtRdp9OwbFRYZruatu7Sp+C2tffgFY+fvjsjUDHKGL+yGGeRsBjnDH/YjOIREKfmm5uZmVVdXq7CwUJK0detW5efnq62tTW1tbTr11FP1yCOPGJvnXxN/ZexcxwoyNYOc4Qu7YQY5m0HO8If9CA4hWUrWrl2rtrY275vchwwZotWrV1ueCgAAAEBnhGQpyc7OlsfjsT0GAAAAgC4Q9G90BwAAANC9UUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVIVNKWltbNXPmTCUnJysmJkZjx45VeXm5HA6HSkpKbI8HAAAAoJMibA8QCI/Ho0mTJqm8vFyzZs1SWlqaioqKNGHCBElSVlaW5QkPOfH805Q1/QrFDx2gg3uate6xxVr/6Eu2xwppZGoGOcMXdsMMcjaDnOEP+2FXSJSSefPmacmSJVqzZo0yMzMlSbm5uUpNTVVCQoJSUlIsTygNyBmp0b+7Sctvn6stZesVEROt4wb2tT1WSCNTM8gZvrAbZpCzGeQMf9gP+0Li5VuzZ8/WlClTvIVEksLDw5Wamup9lmT//v362c9+ppNOOknDhw/XjTfeaHTGrDuv0No/Pa+m5ZXytLl1YE+zdlU3GJ2huyFTM8gZvrAbZpCzGeQMf9gP+4L+mZKamhrV1dVpzpw5Ha5raGhQfn6+JOnOO+9Ujx49tHHjRjkcDm3dutXYjBEx0eo7aqga31ytCe/8WVG9jtNnFTUqn/mE9jRsMzZHd0KmZpAzfGE3zCBnM8gZ/rAfwSHonylpbGyUJPXr16/d5VVVVaqvr1dWVpb27Nmj+fPn67777pPD4ZAk9e/fP+BzxMXFKTo6OqAPpzO3w9dH9T5OjrAwDbokW69d+RsVZ9+s5s92yfm3X3T22w5pTmduwHmSaddzOg+fv9OZ2+G25HxscTrZDROcTnI2wekkZ/jmdLIfJjidHXOOi4vr1LGCvpQkJiZKkmpra72XeTweTZ8+XW63W1lZWdq0aZMSExN177336vTTT1dubq6WL19ubMYDe/ZLkj786xLt+eQztTW3quLBIiUOT+X1iJ1EpmaQM3xhN8wgZzPIGf6wH8Eh6EtJRkaG0tLSNGPGDC1atEhLly5VXl6eKioqFBsbq/T0dLW1temjjz5SVlaW3n//fc2ePVsTJ07U7t27AzqHy+VSS0tLQB+lpcs6fP0B175DT+95PF383Yem0tJlAedJpl3PV/7kDHbDDHI2g5zhD/thxuFydrlcnTpW0JeSiIgIFRcXKykpSQUFBSosLNS4ceOUk5OjESNGKCwsTCkpKYqIiNCVV14pScrOzlbfvn21ceNGY3NWz39VGTdcotgBiQqPjlTWnVfo8w82aW/j58Zm6G7I1Axyhi/shhnkbAY5wx/2w76gf6O7JI0cOVJlZWXtLps7d65ycnIkSX379pXT6dRrr72mCy+8UBs3btS2bduUlpZmbMbKv5QoqldPXfrqbyVHmLaVV6n0+t8ZO393RKZmkDN8YTfMIGczyBn+sB/2hUQp+abm5mZVV1ersLDQe9ljjz2m6667TtOmTVNkZKQWLFig3r17mxvK49Gq+5/WqvufNnfO7o5MzSBn+MJumEHOZpAz/GE/rAvJUrJ27Vq1tbW1+5fchwwZomXLltkbCgAAAECnhGQpyc7Oloc3IwEAAADdQtC/0R0AAABA90YpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFgVYXuAQLW2tuq+++7Tk08+qc8//1yjR4/WQw89pOzsbL344ovKy8uzNtvk2gXtPg+PitSumka9dP40SxOFPjI1g5zhC7thBjmbQc7wh/0IDiFRSjwejyZNmqTy8nLNmjVLaWlpKioq0oQJEyRJWVlZVudbmHZ1u88vfeMPqitZYWma7oFMzSBn+MJumEHOZpAz/GE/gkNIlJJ58+ZpyZIlWrNmjTIzMyVJubm5Sk1NVUJCglJSUixP+LW+o9LU++QTVftsqe1Rug0yNYOc4Qu7YQY5m0HO8If9sCckSsns2bM1ZcoUbyGRpPDwcKWmpioyMlKbN2/W+PHjvdft2rVLu3fv1o4dO4zPetJVY9X45mo1b91p/NzdFZmaQc7whd0wg5zNIGf4w37YE/RvdK+pqVFdXZ3y8/M7XNfQ0KCsrCwNHjxYa9as8X6MHz9eV111VcDniIuLU3R0dEAfTmeuz+NExEQrNe8cbSx648i/0W7E6cwNOE8y7XpO5+HzdzpzfX4NOR8bnE52wwSnk5xNcDrJGb45neyHCU5nx5zj4uI6daygf6aksbFRktSvX792l1dVVam+vr7D+0laW1u1cOFCvfLKK8Zm/MrgH43WweZWffL6KuPn7q7I1Axyhi/shhnkbAY5wx/2w66gf6YkMTFRklRbW+u9zOPxaPr06XK73R1KyUsvvaSBAwfqtNNOC/gcLpdLLS0tAX2Uli7zeZyTJp+vTc8tk6fNfWTfZDdTWros4DzJtOv5yp+cwW6YQc5mkDP8YT/MOFzOLperU8cK+lKSkZGhtLQ0zZgxQ4sWLdLSpUuVl5eniooKxcbGKj09vd3tH3/8cV133XXG54wfOkD9Tk/Xxmd4yq+rkKkZ5Axf2A0zyNkMcoY/7Id9Qf/yrYiICBUXF2vq1KkqKChQcnKyCgsLFR8fr02bNiks7Ote1djYqLfeeksLFizwc8Sj46Qrx2rryg1y1W0xfu7uikzNIGf4wm6YQc5mkDP8YT/sC/pSIkkjR45UWVlZu8vmzp2rnJycdpc99dRTuuSSS7wv+TJp1W+eNn7O7o5MzSBn+MJumEHOZpAz/GE/7Av6l28dTnNzs6qrqzu8n+TJJ5+08tItAAAAAJ0XEs+UfNPatWvV1tbWoZRs3LjR0kQAAAAAOiskS0l2drY8Ho/tMQAAAAB0gZB8+RYAAACA7oNSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArHJ4+FcIj0ira592bvjY9hhBrU9GiqLiYgO+PZl2LV/5kzPYDTPI2Qxyhj/shxlH+nc+fyglAAAAAKzi5VsAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMCq/w9phDO0WxY9YwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyUAAAGOCAYAAACJ0KybAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3BklEQVR4nO3de1jUdd7/8ddwFBJUMA0NFKWI8ERbkWXBWFtr7YZKtpUWbbXldrrZ2za7LXdt2w7u4d5dc6uf924HTdqStshWtyNWuiQlmmiCYEhEqOUhR0VQZn5/WNMSzjQSfj4z+HxcF9cVM8P3++bleyZfzAw6PB6PRwAAAABgSZjtAQAAAAAc2yglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrImwPEGpaXfu0c8PHtscIan0yUhQVFxvw7cm0a/nKn5zBbphBzmaQM/xhP8w40r/z+UMpOUI7N3yspXn32B4jqI0r+Y36n3lKwLcn067lK39yBrthBjmbQc7wh/0w40j/zucPL98CAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWBUypaS1tVUzZ85UcnKyYmJiNHbsWJWXl8vhcKikpMT2eAAAAAA6KST+RXePx6NJkyapvLxcs2bNUlpamoqKijRhwgRJUlZWluUJJUd4mM6YVaCh+efJERamzf98Vytn/FVtLQdsjxayyNQMcoYv7IYZ5GwGOcMf9sO+kHimZN68eVqyZIlef/113XTTTTr//PM1b948hYeHKyEhQSkpKbZH1IjbJ+qEs4epZOw0PX/Obep98on63j1X2x4rpJGpGeQMX9gNM8jZDHKGP+yHfSFRSmbPnq0pU6YoMzPTe1l4eLhSU1O9z5Js3LhRo0eP1sknn6zRo0erpqbG6IwnTT5flXP+oX1bdqhl+26t+cNzSvtxrhxhIRFxUCJTM8gZvrAbZpCzGeQMf9gP+4I+6ZqaGtXV1Sk/P7/DdQ0NDd5SMnXqVN1yyy3auHGjbrnlFt10000BnyMuLk7R0dEBfTiduR2+Pio+Vj0HHq8d6+u8l22vrFNUXKx6Jh9/pN9yyHM6cwPOk0y7ntN5+PydztwOtyXnY4vTyW6Y4HSSswlOJznDN6eT/TDB6eyYc1xcXKeOFfSlpLGxUZLUr1+/dpdXVVWpvr5eWVlZ2rZtmyoqKnTllVdKkq688kpVVFTos88+MzJjRM8YSVLrF/u8l7V+sVeSFPnldTgyZGoGOcMXdsMMcjaDnOEP+xEcgr6UJCYmSpJqa2u9l3k8Hk2fPl1ut1tZWVlqaGjQwIEDFR4eLunQS7sGDBighoaGgM7hcrnU0tIS0Edp6bIOX39wT7MkKTI+1ntZVK/jJEkHvrzuWFJauizgPMm06/nKn5zBbphBzmaQM/xhP8w4XM4ul6tTxwr6UpKRkaG0tDTNmDFDixYt0tKlS5WXl6eKigrFxsYqPT3d9ohq3b1Pexo/U0LmYO9licNS1erapz0NZp6t6W7I1Axyhi/shhnkbAY5wx/2IzgEfSmJiIhQcXGxkpKSVFBQoMLCQo0bN045OTkaMWKEwsLClJycrMbGRrW1tUmS2tra9Omnnyo5OdnYnDUL39CI2yYopn8fRSfGa9S0y1X77DJ53G5jM3Q3ZGoGOcMXdsMMcjaDnOEP+2FfSPw7JSNHjlRZWVm7y+bOnaucnBxJh95vMmrUKD3zzDOaMmWKnnnmGWVlZen44829OWntnH8oOiFe45f9UY4whza//K5W3f+0sfN3R2RqBjnDF3bDDHI2g5zhD/thX0iUkm9qbm5WdXW1CgsLvZc99thjKigo0K9//Wv16dNH8+fPNzqTp82t8pmPq3zm40bP252RqRnkDF/YDTPI2Qxyhj/sh30hWUrWrl2rtra2dv+S+ymnnKKVK1danAoAAABAZ4RkKcnOzpbH47E9BgAAAIAuEPRvdAcAAADQvVFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVSFTSlpbWzVz5kwlJycrJiZGY8eOVXl5uRwOh0pKSmyPBwAAAKCTImwPEAiPx6NJkyapvLxcs2bNUlpamoqKijRhwgRJUlZWluUJpcE/Gq2MGy5WQuZgtexwqfjMm22PFNLI0wxyhj/shxnkbAY5wxd2IziERCmZN2+elixZojVr1igzM1OSlJubq9TUVCUkJCglJcXyhFLLF3tV9fi/1OP4Xsq88Ye2xwl55GkGOcMf9sMMcjaDnOELuxEcQqKUzJ49W1OmTPEWEkkKDw9XamqqIiMjJUl33HGHnn/+eW3evFmVlZUaNmyY0Rmb3l4rSUr5wRlGz9tdkacZ5Ax/2A8zyNkMcoYv7EZwCPr3lNTU1Kiurk75+fkdrmtoaPC+dGv8+PF6++23NWjQINMjAgAAAPgOgv6ZksbGRklSv3792l1eVVWl+vp6bykZM2ZMp88RFxen1tbWgG47NKKP7ozv/LmOBU5nrjYd3Bnw7cm0azmdh8+fnOF0shsmOJ3kbILTSc7wzelkP0xwOjvmHBUVJZfLdcTHCvpnShITEyVJtbW13ss8Ho+mT58ut9sdFG9yBwAAANB5QV9KMjIylJaWphkzZmjRokVaunSp8vLyVFFRodjYWKWnp3/nc7hcLrW0tAT0UVq67Lt/U91caemygPMk067nK39yBrthBjmbQc7wh/0w43A5d+ZZEikEXr4VERGh4uJiTZ06VQUFBUpOTlZhYaHi4+O1adMmhYUFR69yhIUpLDJcjogIyeFQeHSkPB6P3K0HbY8WksjTDHKGP+yHGeRsBjnDF3YjOAR9KZGkkSNHqqysrN1lc+fOVU5OjqWJOhp62Xka8+dbvZ9fvfkZ7WnYxu+67iTyNIOc4Q/7YQY5m0HO8IXdCA4hUUq+qbm5WdXV1SosLPRedvvtt+sf//iHtmzZogsuuECJiYlav369sZlqn1um2ueWGTtfd0eeZpAz/GE/zCBnM8gZvrAbwSE4Xvt0hNauXau2trZ2b3KfM2eOPvnkEx08eFBbtmwxWkgAAAAAdF5IPlOSnZ0tj8djewwAAAAAXSAknykBAAAA0H1QSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFUhU0paW1s1c+ZMJScnKyYmRmPHjlV5ebkcDodKSkpsjwcAAACgkyJsDxAIj8ejSZMmqby8XLNmzVJaWpqKioo0YcIESVJWVpbV+cKiInTWAzcoacxw9UiM176tO7Xh8aWqenyp1blCGZmaQc7whd0wg5zNIGf4w34Eh5AoJfPmzdOSJUu0Zs0aZWZmSpJyc3OVmpqqhIQEpaSkWJ0vLDxczdt26dUr7pOrfqsSTh2k7z9zj/Z/tkubF5dZnS1UkakZ5Axf2A0zyNkMcoY/7EdwCImXb82ePVtTpkzxFhJJCg8PV2pqqrKysrR9+3ZdfPHFSk9P1/DhwzVx4kR99tlnxuY72Nyi1b/9u1ybt0gej3as36yGV99XvzMzjM3Q3ZCpGeQMX9gNM8jZDHKGP+xHcAj6UlJTU6O6ujrl5+d3uK6hoUFZWVlyOBy68847VV1drcrKSg0dOlR33XWXhWkPcUSEq392hnZuqLc2Q3dDpmaQM3xhN8wgZzPIGf6wH3YE/cu3GhsbJUn9+vVrd3lVVZXq6+uVlZWlhIQE5ebmeq8766yz9OijjwZ8jri4OLW2tgZ026ERfXRn/Bi/tznrget1YE+zNi16K+AZuhOnM1ebDu4M+PZk2rWczsPnT85wOtkNE5xOcjbB6SRn+OZ0sh8mOJ0dc46KipLL5TriYwX9MyWJiYmSpNraWu9lHo9H06dPl9vt7vAmd7fbrUcffVSXXnqp0Tm/csasAh3/vXS9Nvl+uQ8ctDJDd0OmZpAzfGE3zCBnM8gZ/rAf9gR9KcnIyFBaWppmzJihRYsWaenSpcrLy1NFRYViY2OVnp7e7va33XabevbsqVtvvTXgc7hcLrW0tAT0UVq6zOdxzvz1tRpw3gi9cvm9atlx5A2xuygtXRZwnmTa9XzlT85gN8wgZzPIGf6wH2YcLufOPEsihcDLtyIiIlRcXKypU6eqoKBAycnJKiwsVHx8vDZt2qSwsK971R133KGamhotXry43eUmnHnfdUoaM0z/umyWWrbvNnru7opMzSBn+MJumEHOZpAz/GE/7Av6UiJJI0eOVFlZ+1/JNnfuXOXk5Hg/nzFjhlatWqV//vOfio6ONjrfcSf21ak3XKy2/a26bOVfvJdvXVml1yffb3SW7oJMzSBn+MJumEHOZpAz/GE/gkNIlJJvam5uVnV1tQoLCyVJ69ev14MPPqiTTz5ZZ599tiQpNTVVL7zwgpF59n7yuZ5MuszIuY4VZGoGOcMXdsMMcjaDnOEP+xEcQrKUrF27Vm1tbd43uWdmZsrj8VieCgAAAEBnhGQpyc7OpoQAAAAA3UTQ//YtAAAAAN0bpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFgVMqWktbVVM2fOVHJysmJiYjR27FiVl5fL4XCopKTE9ngAAAAAOinC9gCB8Hg8mjRpksrLyzVr1iylpaWpqKhIEyZMkCRlZWVZnlA668EblPz90xUZH6sDe5pV/3KZ3r/vabkPHLQ9WsgiUzPIGb6wG2aQsxnkDH/YD/tCopTMmzdPS5Ys0Zo1a5SZmSlJys3NVWpqqhISEpSSkmJ5QmnDE//S+79eoIPNLYpOiFPuvGkacftErfnDc7ZHC1lkagY5wxd2wwxyNoOc4Q/7YV9IlJLZs2drypQp3kIiSeHh4UpNTVVkZKQkafz48aqrq1NYWJh69uyphx9+WKNGjTI24xcbP/n6E4dDHrdHcUOSjJ2/OyJTM8gZvrAbZpCzGeQMf9gP+4K+lNTU1Kiurk5z5szpcF1DQ4Py8/MlSU899ZR69eolSSopKdF1112niooKo7MOv3W8RhTmK/K4GO3fsVuvXfW00fN3R2RqBjnDF3bDDHI2g5zhD/thl8Pj8XhsD+HPsmXL5HQ6tXLlSp155pney6uqqpSZmakFCxboqquuavc18+fP15w5c/T+++8HdI64uDi1trYGdNuhEX10Z/wYv7fpddJADZl4rqrnv6p9TTsCOm538tvdy7Xp4M6Ab0+mXctX/uQMdsMMcjaDnOEP+2HG4XKOioqSy+U64mMF/W/fSkxMlCTV1tZ6L/N4PJo+fbrcbne7N7nfcMMNSklJ0d13362nnnrK+Kxf+aKmUTvW1+vch2+3NkN3Q6ZmkDN8YTfMIGczyBn+sB92BH0pycjIUFpammbMmKFFixZp6dKlysvLU0VFhWJjY5Wenu697V//+ld9/PHHeuCBB/SLX/wi4HO4XC61tLQE9FFauiygY4ZFhiv+GH0tYmnpsoDzJNOu5yt/cga7YQY5m0HO8If9MONwOXfmWRIpBEpJRESEiouLlZSUpIKCAhUWFmrcuHHKycnRiBEjFBbW8Vu4+uqrVVpaqu3btxuZMTIuVmmX5yoqPlaS1CdjkEYW5uvTZR8YOX93RKZmkDN8YTfMIGczyBn+sB/BIejf6C5JI0eOVFlZWbvL5s6dq5ycHEnSnj17tHPnTiUnJ0uSFi9erISEBCUkJJgZ0OPRkPzzdMasAoVFRWj/57tVv2Sl1vzuWTPn747I1Axyhi/shhnkbAY5wx/2IyiERCn5pubmZlVXV6uwsFCStHfvXk2aNEl79+5VeHi4EhIStHjxYjkcDiPzHNjTrFd//Gsj5zpWkKkZ5Axf2A0zyNkMcoY/7EdwCMlSsnbtWrW1tXnf5N6/f3+9++67lqcCAAAA0BkhWUqys7MV5L/JGAAAAECAgv6N7gAAAAC6N0oJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKSZAY86dblH3/9bbH8Lpg4d3KuP5i22McNcGW93+aXLtACcNSbY9xxEJ17q+cMDpTk2sXHLXj/+D5e5U59dIj/rp+2Rn68Qf/dxQmsov7oBnkfHSE8uwSj3cmcR8MXITtAY4l8UOSdPrMq9XvjHSFR0ep+bNdanj1fb0366kjOk7a5bnK/NmlKnH+91GaVHp98v1H7dhd7YSzMzVq2uVKHDFEkrR97Uda8/vntKVsveXJDhk17XIljhyqN655MKDbL0y7+ihPdOR+8Py9Ov57J8t94KA8breat+3Sp+9Uat0jL2rvJ59LCs65u4NtKzfo2ZE/tT2GX9wHzSBnM3i8syfYH++4Dx5dPFNi0AULZuiL2k9VfOYtWnjyNXpt8v3a+WG9lVkcEeFWztvVTrzge/p+0T1qeH2VnjvtJj132k1qeH2Vvv/MPTrx/NMO+zWO8K5b++6SYyAqHnpGC0+6WkXpBXrz+t+pR584Xfra7xU/dIDt0WAR90EzyNksHu/wTdwHjz5KiSHRCXGKH5Kk6vmv6uC+/ZLHI1fdFtU+t+ywtz/34ds0qeL/aXLNAl362u800DlKkpQwLFWjZ9+oXicN1OTaBZpcu0DxQ5IkHWrwl7z8gK7c8KTGv/0npead4z3eqGmX64KFdyv7gRt0xfrHlf2b6/zO+59PvV6w8G6d8pMfSJLCe0Tp6roiZT9wg/e2E975swaOzepsNN9J9m+uU+2iZVr/6Es64NqnA659Wv/oS9pU/JbO/PJ7vKz8EY0ozNfFL92vKR8tVN+RQyVJkcf1UO68aZpcs0Dj3/qjBuSO/NbzffWU98lTLtBl7z2qS1//vSQp6bwR+uErs3VV9VO69I0/KOUHZ0iSUn5whobfPkEDnaO8f15hUf6foLy2qViJI4fKER6mqzbOV+/05EPnPjtT1zYVa9APR0uSYvr11jUf/12RPWM6F9538MXGT/T2rX/Wvi07lPWLH7ebWzq0p+NevE9XrH9CV6x/Qrn/N009+vbyfn1UfKxyHvu5rqp6ShNXPKyTr/6+rm0qVnRC3LeeO3HEEF206Fe68sMndMW6v7XbZV9/DtKh+8D58/+n3bEuK39Egy4567DniYjtodG/vVGXr56nH3/wfxrz51sV1es47/XXNhUr4/qLlVf6v5q86WnlzpumqPhYnfPHm3VV9VOa8M6fdfxpJ7U7Zkz/3rrw2V9qcu0C/fBfs715+fOfL7Pom3WSrlj3t6+/pzsuV0Hjc+qRGC9JSh1/ji5ZEthPyLoK90Ez90FytvNYJ/F499X3e6w/3nEfPPr3QUqJIS07XNq1sUHn/PFmpeado7hB/f3evmnFepU4/1tFpxSoesFryp03TdGJ8dqxrk5l0+fpi5pGLUy7WgvTrtbuj5rUOz1ZYx+/U6t//6yeOfUneue2h3XWgze0exAYcN4I7VhXp2dH3KD37g38JWNNyyuVNGa4JKnfGena27RdSWOGSZJiT0hQ3KD+2vruhk6k8t3EDx2guEH9Vffiig7XffTCcsUPPsFb2NIm5WrFtEe0MO1qbV9XJ0lKHT9GH73wjopOKdDah1/Q2MfvVOwJCd963oiYaPUdlaYXzyvUy+OmK27wCbrgqbu0bu6LeubUn2jV/U8r59GfKyFzsD7+13uqnPOCGkvXeP+83K0HA/r+PG1ubV25wZt90rnDtbuuyZt90pjh2r72Ix3Y0xzQ8bqap82tj/9VrhPOzux4ndutVQ8W6blRP9UL596uyJ4x7f5nmn3/9Yru3VPF2Tfrn5ferSHjxwR0ztgTEnRR8SxtfvldPZd1oxad8TPVLS6TJL9/Dp2R/Zvr1CttoEouuEMvnPtfik6I0zn/e3O726T84Az9K/9XKj7zZiWOHKJL/vmgNi8u0zMZP1H9kpUaPfvGdrc/6YqxWvOH57zXXzD/LoXHRAU80/YPNiksMkJ9MgZJOrQTrvqtOuGcr3diy/J1nfp+O4P7oJn7IDnbfaz7akYe747dxzvug2bug5QSg/418Vf6fE2tht8+UROWz1H+u3/R4B+NPuxta//+plq/2CtPm1vV819Vy06Xt3EfTnrBRdr0/Nv6dNkHksej7R9sUl3JCg297Dzvbb6obVRN0RvytLnV1twa8NxbVqxT/7NOlRwOJZ07XDVFbygiNlox/fvohDHD9PmaTYee/TGsx5c/ZWreuqPDdc3bdh66zZc/Uale8Jq+qGmUx+323km3vPuhPl5aLk+bWx8Vv62dH9b7/PP4T46wMK16YKEONreorblVqXlna+vKDdq8uEyeNrca31ytj199X0Mn5Xzn73HL8nXtHhTW/P4574PGCecMU9MKc38BPZx9TTsU3btnh8t3flivbSs3yH3goFp2uFQ55wXv/0gcYWEafOnZWv27Z9X6xV61bN+tD/78fEDnG5J/nnZU1qn6qVfU1nJAbc2t2rbyUCHu0j8Hh0NDJp6rigeL1LJ9t1p379P79y3QoIuz2/2kaP1ji9Wyw6WW7bv16dtrtadhmxrfXC2P2626F1eod0aKwiK//knV5pfLtK28Su4DB1X58AvyuD0amPPtPzH7isft1tZ3NyhpzDBFxPZQ75NO1PrHFivpXDs7wX3QTN7kbP+xTuLx7lh+vOM+aCZrSolB+7fv1qrfPK2Xzp+mZzKuVdWTr+i8RwrVK+0br1F1OJR15xWasHyOrto4X1dVPaXYAYnehT+cnsnH66Qrx+qqqqe8H0Mn5Si2/9dNfG/j552ae3tlnRwOKWHYYCWdM1yfvlPpXd6kc4apaXllp477Xe3f4ZIkxfTv+NOGmH59Dt1m+25J0t7GzzrcZu8n7S/b0/BZQD+5ONjcopYvzy1JsUmJ2vPNY9VvVWxS4rce69s0La9U/7NOVVR8rOKHDFDdiysUHhWh2KQEJY0ZpqZ37GT/ldikBLXsdHW4PG5Qfzkf/4UuXz1PV22cr/Pn36WYL1/OEJ0Qp/CoyHb7GOhu9jyxr3bXNfmYpev+HHokxis8OlJ7Gr4+3p76rYfOM+Dr4zV//oX3v9uaW9S8bZf384PNLQoLD1fEf/xksN3OeTza2/i5Yk84svmallfqhHOGqf9ZGdq2aqMa31ytpHOG6bgT++q4pERtLTf3rCX3QTP3QXK2/1gn8Xh3LD/ecR80cx+klFhyYE+z1j/2klp37/O+hu8rQyaM0dDLc/TmtQ+pKL1ARacUaN+n2+VwOCRJHo+nw/H2Nn6uqidfUdEpBd6PhWlXa9mNf/DexuPu+HUB8Xi0pexDDRqXrbjB/bWjsk5NK9Ypacxwq6Vk96ZP5fp4q1IvPbvDdal5Z8v18Vbt/ujQA/rhvvfjTjy+3ec9k4/Xvi0dfwryTR63u93n+5q2q2eHY/XTvqbth739kdixfrM8brdO/ekPte29KnncbjUtX6eTr7pAsf36aNt7VZ0+9nflCA9TykVnaMu/P+xw3ejZN6plh0sv5v5cRSdfozeuech7XcsOl9paD+i4gX29l/3nf/uz55PPFZ+adNjrvu3P4cDe/e3+h+kID2v3uu//tH/7brW1HFDP5K+P99V/72v69h3xpd3OORyKHZCofVu2H9Exmpav0wlnnaoBOSPVtLzy0P+gHA6d9OOx+qxi4xE9C/pdcR80cx8kZ7uPdRKPd53RnR7vuA+auQ9SSgyJ6nWcTvufq9T75BPliAhXWFSETr76+4qIidL2Dz5qd9vInjFytx7U/u27FRYRrsypl7Zrwc2f7VJMv97tXptZPf9VpV2eo6TzRsgRHqawyAgljhyqPqcO6pL5m5ZXKuP6cdq6csOXi1qpQRdnq0ffXtr2fnWXnKMzyn/5pNJ+7FTmTT9SZM8YRcbF6tSbfqi0y50qn/mE36894axTlXzh6XKEh2nIxHPV59RB2vzPd494hrqSf6t/doYGXZItR1iYBjpHKfmi07Wp+G1Jh366dNzAvp3+LRxb/r1ep954ibf8Na2o1Kk3XqJtqzaqreVAp475XfVKG6Axc25TbFKiVv/+2Q7XR8bFqtW1T6279ymmfx+NKMz3Xudxu7V5cZlG3XG5onodp+iEOI24bUJA5/3oH28rccQQpV9zocKiIhQeE6V+2RmSvv3PYXvlR+p72knqdfKJCouKUNb0KxTm67eZeDz66IV3lDX9SkUnxisqPlanz7xG9UtX6oBr3xGm9bXBl5yl409PlyMiXMNvyVNYRLg+fWvtER1j54Z6tR04qJOucHp/crVlxbovd8T8S1y4D5q5D5Kzncc6ice7zupuj3fcB4/+fZB/p8QQd+tBxRzfW2Ofuksxx/dSW8tB7drYoDeund3hqbjaRcuUdO5w5a98RAf3tah6/qvaVfWx9/qm5eu0rbxKl6/6f3KEhWnxuOna+WG9Sn/6B502/Ur1fuzn8nikXVUfa9UDC7tk/qbllYqKv8H7ILCvaYeat+3S3qYdAb+R6mhoeOU9vT7lAY3878s06heXSzr0e8Nfn/LAtz6DU/ficg2dlKPz/vJf2tu0XaU3/F77Pj2yn+JIkmvzFr153W912v9M1jl/vEV7P/lMb986Rzu+fIPb5sVlGjJ+jK5Y97gcDof+PuL6I8qs6Z1KDf7haG/2TcvXKSr+OOOvsT7tris1atokeTweNW/dqabllXrp+3d4f2//fyr/1ZM6+7c3Kr3m+3LVb1P1/Fc14LwR3utX3v03nf27qbps5SPav323PvzbEiWNGf6tD3r7mnbolUn36vRfXaPvzZistgMHVfficm1bueFb/xy2rFin6idf0bgX7pO79YAq//Ki359Ulc98QmfMKtD4N/8gORz69K0PVP5L///j+TY1z5Yq684rdPxpadr9UZPeuOYhHWxuOeLjbFlx6OWTX/1K8abllTp58gVWXnfPfdAMcjaLxzse776J++DR5/Ac7rVA8GlreZWW5t1je4yjbtyL92nz4jJt+NuSI//akt+o/5mnBHz7YyXTQDjCwlTQ+JxKxk7Tzg2d+zdsfOUfzDkPHJul8/7yX3om41rbowSdpDHDlTvvv/XMqT/5zscKxd0w7Vi9D5p2LOfM451vPN6Z0xX3QenI/87nDy/fQgcRsT0UN6i/XJu32B7lmNMnc5DcBw4e9o1y3Ulc6gnqOypNcjjU88TjlfWLH6uupOOvWsShnXB9+aZTHH3Hyn3QtmMpZx7vAsfjnTnBeB/k5VvHqOG3T9SI2zu+rjW8R5TCwsNV9+IKNZauMT9YEMhb9kf1PLHjGxEbXl2lt2/+03c+/gUL71b/7I4/VTiwZ7/CIsO16oEite7u/Ot4Q0FETLTOffg2xQ5I1AFXsz55fZVW/eZpSUc//2D01T8W9k2Nyz5Q4vBU/XvaY4Ynsov7oBnkbAaPd+3xePc17oPtUUqOUZVz/qHKOf+wPUZQKsn9+VE9/uuT7z+qxw8FOz+s1wvn/tdhrzva+QejhWlX2x4hqHAfNIOczeDxrj0e777GfbA9Xr4FAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMCqkCglra2tmjlzppKTkxUTE6OxY8eqvLxcDodDJSUltscDAAAA8B0EfSnxeDyaNGmS/vrXv+qee+7Ryy+/rNTUVE2YMEGSlJWVZXnC9sJ7RGnivx/W5NoFtkfpNsjUDHKGL+yGGeRsBjnDF3bDrgjbA3ybefPmacmSJVqzZo0yMzMlSbm5uUpNTVVCQoJSUlIsT9he1i9+rD2ffK6Yfr1tj9JtkKkZ5Axf2A0zyNkMcoYv7IZdQf9MyezZszVlyhRvIZGk8PBwpaamdniW5N5775XD4dC6detMjylJShwxRAOdo7TuLy9aOX93RKZmkDN8YTfMIGczyBm+sBv2BXUpqampUV1dnfLz8ztc19DQ0K6UVFRU6N1339WgQYNMjujlCA/T2b+fqndn/FXu1oNWZuhuyNQMcoYv7IYZ5GwGOcMXdiM4BHUpaWxslCT169ev3eVVVVWqr6/3lpKWlhbdcsstevTRRzt1nri4OEVHRwf04XTmHvYYw27O0/bKOm19d0OnZuhOnM7cgPMk067ndB4+f6cz97C3J+djh9PJbpjgdJKzCU4nOcM3pzPw/WA3Os/p7JhzXFxcp44V1KUkMTFRklRbW+u9zOPxaPr06XK73d5S8stf/lJTpkzR4MGDbYypuMEnKP2aC/X+fbwxqquQqRnkDF/YDTPI2Qxyhi/sRvAI6je6Z2RkKC0tTTNmzFBkZKR69uypRx99VKtXr1ZsbKzS09NVVlam999/Xw899FCnz+NyuQK+7dbyKi3Nu6fdZf3PPEUxfXtp4oo5kqSwiHBFHhejK9Y/rtLrf3fMNe/S0mXqf+YpAd+eTLuWr/zJGeyGGeRsBjnDn0D3g934bo7073z+BHUpiYiIUHFxsaZOnaqCggIlJyersLBQ8fHx2rRpk8LCwvTWW29pw4YNSk1NlSR98sknuuiii/TEE0/owgsvNDJn3eJ/69N31no/P/576Rrz51v00gV3aP/23UZm6G7I1Axyhi/shhnkbAY5wxd2I3gEdSmRpJEjR6qsrKzdZXPnzlVOTo4k6a677tJdd93lvW7w4MF6+eWXNWzYMGMztjW3al/zDu/nLdt3Sx6P9jXt8PNV8IdMzSBn+MJumEHOZpAzfGE3gkdQv6fkcJqbm1VdXR10/2jif9pStl4L0662PUa3QqZmkDN8YTfMIGczyBm+sBv2BP0zJd+0du1atbW1+SwlmzdvNjsQAAAAgO8k5EpJdna2PB6P7TEAAAAAdJGQe/kWAAAAgO6FUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKwKmVLS2tqqmTNnKjk5WTExMRo7dqzKy8vlcDhUUlJiezwAAAAAnRRhe4BAeDweTZo0SeXl5Zo1a5bS0tJUVFSkCRMmSJKysrKszjfmT7codcIYuQ8c9F627Kd/UGPpGntDhTgyNYOc4Qu7YQY5m0HO8If9CA4hUUrmzZunJUuWaM2aNcrMzJQk5ebmKjU1VQkJCUpJSbE8obTx6de18u6/2R6jWyFTM8gZvrAbZpCzGeQMf9gP+0KilMyePVtTpkzxFhJJCg8PV2pqqiIjIyVJgwcPVo8ePdSjRw/v11x00UVW5gUAAAAQuKAvJTU1Naqrq9OcOXM6XNfQ0KD8/Hzv58XFxRo2bJjJ8byGTDxXQyaMUfPnX+ij599W5dwX5WlzW5mluyBTM8gZvrAbZpCzGeQMf9gP+4K+lDQ2NkqS+vXr1+7yqqoq1dfXd8n7SeLi4tTa2hrQbYdG9NGd8WPaXfbh35bo/fsWaP8OlxJHDFHOI4UKj47S6t/+/TvPFoqczlxtOrgz4NuTaddyOg+fPznD6WQ3THA6ydkEp5Oc4ZvTyX6Y4HR2zDkqKkoul+uIjxX0v30rMTFRklRbW+u9zOPxaPr06XK73e1KyeTJkzVixAjdfPPN2rVrl7EZd1TWaf/23ZLHo+0fbNLq3z+r1LxzjJ2/OyJTM8gZvrAbZpCzGeQMf9iP4BD0pSQjI0NpaWmaMWOGFi1apKVLlyovL08VFRWKjY1Venq6JOmdd97RBx98oPfee08ej0e33nprwOdwuVxqaWkJ6KO0dNm3H9DtkRyd/Ia7gdLSZQHnSaZdz1f+5Ax2wwxyNoOc4Q/7Ycbhcu7MsyRSCJSSiIgIFRcXKykpSQUFBSosLNS4ceOUk5OjESNGKCzs0LeQnJwsSYqOjtbNN9+sFStWGJtx8KVnKzIuVpLUJ2OQRk6bpM0vlxk7f3dEpmaQM3xhN8wgZzPIGf6wH8Eh6N9TIkkjR45UWVn75Zg7d65ycnIkSXv37tXBgwfVq1cveTwe/f3vf9eoUaOMzXfKtRdp9OwbFRYZruatu7Sp+C2tffgFY+fvjsjUDHKGL+yGGeRsBjnDH/YjOIREKfmm5uZmVVdXq7CwUJK0detW5efnq62tTW1tbTr11FP1yCOPGJvnXxN/ZexcxwoyNYOc4Qu7YQY5m0HO8If9CA4hWUrWrl2rtrY275vchwwZotWrV1ueCgAAAEBnhGQpyc7OlsfjsT0GAAAAgC4Q9G90BwAAANC9UUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVIVNKWltbNXPmTCUnJysmJkZjx45VeXm5HA6HSkpKbI8HAAAAoJMibA8QCI/Ho0mTJqm8vFyzZs1SWlqaioqKNGHCBElSVlaW5QkPOfH805Q1/QrFDx2gg3uate6xxVr/6Eu2xwppZGoGOcMXdsMMcjaDnOEP+2FXSJSSefPmacmSJVqzZo0yMzMlSbm5uUpNTVVCQoJSUlIsTygNyBmp0b+7Sctvn6stZesVEROt4wb2tT1WSCNTM8gZvrAbZpCzGeQMf9gP+0Li5VuzZ8/WlClTvIVEksLDw5Wamup9lmT//v362c9+ppNOOknDhw/XjTfeaHTGrDuv0No/Pa+m5ZXytLl1YE+zdlU3GJ2huyFTM8gZvrAbZpCzGeQMf9gP+4L+mZKamhrV1dVpzpw5Ha5raGhQfn6+JOnOO+9Ujx49tHHjRjkcDm3dutXYjBEx0eo7aqga31ytCe/8WVG9jtNnFTUqn/mE9jRsMzZHd0KmZpAzfGE3zCBnM8gZ/rAfwSHonylpbGyUJPXr16/d5VVVVaqvr1dWVpb27Nmj+fPn67777pPD4ZAk9e/fP+BzxMXFKTo6OqAPpzO3w9dH9T5OjrAwDbokW69d+RsVZ9+s5s92yfm3X3T22w5pTmduwHmSaddzOg+fv9OZ2+G25HxscTrZDROcTnI2wekkZ/jmdLIfJjidHXOOi4vr1LGCvpQkJiZKkmpra72XeTweTZ8+XW63W1lZWdq0aZMSExN177336vTTT1dubq6WL19ubMYDe/ZLkj786xLt+eQztTW3quLBIiUOT+X1iJ1EpmaQM3xhN8wgZzPIGf6wH8Eh6EtJRkaG0tLSNGPGDC1atEhLly5VXl6eKioqFBsbq/T0dLW1temjjz5SVlaW3n//fc2ePVsTJ07U7t27AzqHy+VSS0tLQB+lpcs6fP0B175DT+95PF383Yem0tJlAedJpl3PV/7kDHbDDHI2g5zhD/thxuFydrlcnTpW0JeSiIgIFRcXKykpSQUFBSosLNS4ceOUk5OjESNGKCwsTCkpKYqIiNCVV14pScrOzlbfvn21ceNGY3NWz39VGTdcotgBiQqPjlTWnVfo8w82aW/j58Zm6G7I1Axyhi/shhnkbAY5wx/2w76gf6O7JI0cOVJlZWXtLps7d65ycnIkSX379pXT6dRrr72mCy+8UBs3btS2bduUlpZmbMbKv5QoqldPXfrqbyVHmLaVV6n0+t8ZO393RKZmkDN8YTfMIGczyBn+sB/2hUQp+abm5mZVV1ersLDQe9ljjz2m6667TtOmTVNkZKQWLFig3r17mxvK49Gq+5/WqvufNnfO7o5MzSBn+MJumEHOZpAz/GE/rAvJUrJ27Vq1tbW1+5fchwwZomXLltkbCgAAAECnhGQpyc7Oloc3IwEAAADdQtC/0R0AAABA90YpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFgVYXuAQLW2tuq+++7Tk08+qc8//1yjR4/WQw89pOzsbL344ovKy8uzNtvk2gXtPg+PitSumka9dP40SxOFPjI1g5zhC7thBjmbQc7wh/0IDiFRSjwejyZNmqTy8nLNmjVLaWlpKioq0oQJEyRJWVlZVudbmHZ1u88vfeMPqitZYWma7oFMzSBn+MJumEHOZpAz/GE/gkNIlJJ58+ZpyZIlWrNmjTIzMyVJubm5Sk1NVUJCglJSUixP+LW+o9LU++QTVftsqe1Rug0yNYOc4Qu7YQY5m0HO8If9sCckSsns2bM1ZcoUbyGRpPDwcKWmpioyMlKbN2/W+PHjvdft2rVLu3fv1o4dO4zPetJVY9X45mo1b91p/NzdFZmaQc7whd0wg5zNIGf4w37YE/RvdK+pqVFdXZ3y8/M7XNfQ0KCsrCwNHjxYa9as8X6MHz9eV111VcDniIuLU3R0dEAfTmeuz+NExEQrNe8cbSx648i/0W7E6cwNOE8y7XpO5+HzdzpzfX4NOR8bnE52wwSnk5xNcDrJGb45neyHCU5nx5zj4uI6daygf6aksbFRktSvX792l1dVVam+vr7D+0laW1u1cOFCvfLKK8Zm/MrgH43WweZWffL6KuPn7q7I1Axyhi/shhnkbAY5wx/2w66gf6YkMTFRklRbW+u9zOPxaPr06XK73R1KyUsvvaSBAwfqtNNOC/gcLpdLLS0tAX2Uli7zeZyTJp+vTc8tk6fNfWTfZDdTWros4DzJtOv5yp+cwW6YQc5mkDP8YT/MOFzOLperU8cK+lKSkZGhtLQ0zZgxQ4sWLdLSpUuVl5eniooKxcbGKj09vd3tH3/8cV133XXG54wfOkD9Tk/Xxmd4yq+rkKkZ5Axf2A0zyNkMcoY/7Id9Qf/yrYiICBUXF2vq1KkqKChQcnKyCgsLFR8fr02bNiks7Ote1djYqLfeeksLFizwc8Sj46Qrx2rryg1y1W0xfu7uikzNIGf4wm6YQc5mkDP8YT/sC/pSIkkjR45UWVlZu8vmzp2rnJycdpc99dRTuuSSS7wv+TJp1W+eNn7O7o5MzSBn+MJumEHOZpAz/GE/7Av6l28dTnNzs6qrqzu8n+TJJ5+08tItAAAAAJ0XEs+UfNPatWvV1tbWoZRs3LjR0kQAAAAAOiskS0l2drY8Ho/tMQAAAAB0gZB8+RYAAACA7oNSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArHJ4+FcIj0ira592bvjY9hhBrU9GiqLiYgO+PZl2LV/5kzPYDTPI2Qxyhj/shxlH+nc+fyglAAAAAKzi5VsAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMCq/w9phDO0WxY9YwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -553,16 +553,16 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.654997Z", - "iopub.status.busy": "2024-11-23T19:54:58.654596Z", - "iopub.status.idle": "2024-11-23T19:54:58.815593Z", - "shell.execute_reply": "2024-11-23T19:54:58.815073Z" + "iopub.execute_input": "2024-12-05T03:21:33.302440Z", + "iopub.status.busy": "2024-12-05T03:21:33.302062Z", + "iopub.status.idle": "2024-12-05T03:21:33.461175Z", + "shell.execute_reply": "2024-12-05T03:21:33.460659Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGOCAYAAAD4oVVpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAziElEQVR4nO3de1hVddr/8c/mKCiooCgaKIoS4YmmIsuCbaexZkIlO4wWTTXldHqYxyZ7LGdsOjpTz8yYU/18mk6mTUmTZKOdsdIhKdFEEwRDIkJNPG0VQdj794e1i2DZltG19xffr+viumStxVo3N/cXP6y9Nzg8Ho9HAAAAMEqQvwsAAADA0SPEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYK8XcBpmlyHdCujV/4u4yA1jM1UWFRkT4fT09hNTPMxrFFn2GF2bDH0f7/+GMIcUdp18YvtCz7Hn+XEdDGFdyvPmec7PPx9BRWM8NsHFv0GVaYDXsc7f+PP4aHUwEAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxkT4pqamjRz5kwlJCQoIiJCY8eOVXFxsRwOhwoKCvxdHgAAgK2M+IsNHo9HkyZNUnFxsWbNmqXk5GQtXLhQEyZMkCSlp6f7uULJERyk02flanDOuXIEBWnLvz7SqhlPqaXxkL9LMxY9hRVmwx70GVaYjcBgxJ24efPmaenSpXrnnXd000036bzzztO8efMUHBysmJgYJSYm+rtEjbh9ovqeNUwFY6fplbNvU4+hJ+kn91zt77KMRk9hhdmwB32GFWYjMBgR4mbPnq0pU6YoLS3Nuy04OFhJSUneu3CbNm3S6NGjNXToUI0ePVoVFRW21jhk8nkqnfNPHdi6U431e7X20ZeVfEWWHEFGtDgg0VNYYTbsQZ9hhdkIDAHf7YqKClVVVSknJ6fNvpqaGm+Imzp1qm655RZt2rRJt9xyi2666SafrxEVFaXw8HCf3pzOrDYfHxYdqW79e2vnhirvtvrSKoVFRapbQu+j/ZSN53Rm+dxPegrJemaczqw2xzIbHed00me0z+lkNuzgdLbf56ioqA6dL+BDXG1trSQpLi6u1faysjJVV1crPT1d27dvV0lJia666ipJ0lVXXaWSkhJ9/fXXttQY0i1CktS054B3W9Oe/ZKk0G/24ejQU1hhNuxBn2GF2QgcAR/iYmNjJUmVlZXebR6PR9OnT5fb7VZ6erpqamrUv39/BQcHSzr8UGu/fv1UU1Pj0zVcLpcaGxt9eissXN7m45v3NUiSQqMjvdvCuneVJB36Zt+JpLBwuc/9pKeQrGeG2Ti26DOsMBv2sOqzy+Xq0PkCPsSlpqYqOTlZM2bM0KJFi7Rs2TJlZ2erpKREkZGRSklJ8XeJatp7QPtqv1ZM2kDvtthhSWpyHdC+GnvuBnY29BRWmA170GdYYTYCR8CHuJCQEOXn5ys+Pl65ubnKy8vTuHHjlJmZqREjRigoKEgJCQmqra1VS0uLJKmlpUVfffWVEhISbKuzYsG7GnHbBEX06anw2GiNmna5Kl9aLo/bbVsNnQ09hRVmwx70GVaYjcBgxO+JGzlypIqKilptmzt3rjIzMyUdfr7cqFGj9OKLL2rKlCl68cUXlZ6ert697XuC5bo5/1R4TLTGL/+zHEEObXn9I61+4AXbrt8Z0VNYYTbsQZ9hhdkIDEaEuB9qaGhQeXm58vLyvNuefPJJ5ebm6g9/+IN69uyp559/3taaPC1uFc98WsUzn7b1up0ZPYUVZsMe9BlWmI3AYGSIW7dunVpaWlr9pYaTTz5Zq1at8mNVAAAA9jEyxGVkZMjj8fi7DAAAAL8J+Bc2AAAAoC1CHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYyJgQ19TUpJkzZyohIUEREREaO3asiouL5XA4VFBQ4O/yAAAAbBXi7wJ84fF4NGnSJBUXF2vWrFlKTk7WwoULNWHCBElSenq6nyuUBv58tFJvuFgxaQPVuNOl/DNu9ndJRqOfOBLmwx70GVaYjcBgRIibN2+eli5dqrVr1yotLU2SlJWVpaSkJMXExCgxMdHPFUqNe/ar7Ok31KV3d6Xd+DN/l2M8+okjYT7sQZ9hhdkIDEaEuNmzZ2vKlCneACdJwcHBSkpKUmhoqCTpjjvu0CuvvKItW7aotLRUw4YNs7XGug/WSZISf3q6rdftrOgnjoT5sAd9hhVmIzAE/HPiKioqVFVVpZycnDb7ampqvA+ljh8/Xh988IEGDBhgd4kAAAC2C/g7cbW1tZKkuLi4VtvLyspUXV3tDXFjxozp8DWioqLU1NTk07GDQ3rqzuiOX+tE4HRmaXPzLp+Pp6dwOtufGWbj2HI66TPa53QyG3ZwOtvvc1hYmFwu11GfL+DvxMXGxkqSKisrvds8Ho+mT58ut9sdEC9qAAAAsFvAh7jU1FQlJydrxowZWrRokZYtW6bs7GyVlJQoMjJSKSkp//E1XC6XGhsbfXorLFz+n39SnVxh4XKf+0lPIVnPDLNxbNFnWGE27GHV547chZMMeDg1JCRE+fn5mjp1qnJzc5WQkKC8vDxFR0dr8+bNCgoKjBzqCApSUGiwHCEhksOh4PBQeTweuZua/V2akegnjoT5sAd9hhVmIzAEfIiTpJEjR6qoqKjVtrlz5yozM9NPFbU1+LJzNeavt3rfv3rLi9pXs53fndNB9BNHwnzYgz7DCrMRGIwIcT/U0NCg8vJy5eXlebfdfvvt+uc//6mtW7fq/PPPV2xsrDZs2GBbTZUvL1fly8ttu15nRz9xJMyHPegzrDAbgSEwHos8SuvWrVNLS0urFzXMmTNHX375pZqbm7V161ZbAxwAAIDdjLwTl5GRIY/H4+8yAAAA/MbIO3EAAAAnOkIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABjImBDX1NSkmTNnKiEhQRERERo7dqyKi4vlcDhUUFDg7/IAAABsFeLvAnzh8Xg0adIkFRcXa9asWUpOTtbChQs1YcIESVJ6erpf6wsKC9GZD96g+DHD1SU2Wge27dLGp5ep7Ollfq3LZPQUVpgNe9BnWGE2AocRIW7evHlaunSp1q5dq7S0NElSVlaWkpKSFBMTo8TERL/WFxQcrIbtu/XWlffJVb1NMacM0AUv3qODX+/WliVFfq3NVPQUVpgNe9BnWGE2AocRD6fOnj1bU6ZM8QY4SQoODlZSUpLS09NVX1+viy++WCkpKRo+fLgmTpyor7/+2rb6mhsateaP/5Bry1bJ49HODVtU89Ynijsj1bYaOht6CivMhj3oM6wwG4Ej4ENcRUWFqqqqlJOT02ZfTU2N0tPT5XA4dOedd6q8vFylpaUaPHiw7rrrLj9Ue5gjJFh9MlK1a2O132robOgprDAb9qDPsMJs+E/AP5xaW1srSYqLi2u1vaysTNXV1UpPT1dMTIyysrK8+84880w98cQTPl8jKipKTU1NPh07OKSn7owec8Rjznzweh3a16DNi973uYbOxOnM0ubmXT4fT0/hdLY/M8zGseV00me0z+lkNuzgdLbf57CwMLlcrqM+X8DfiYuNjZUkVVZWerd5PB5Nnz5dbre7zYsa3G63nnjiCV166aW21vmt02flqvdPUvT25AfkPtTslxo6G3oKK8yGPegzrDAb/hXwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkpKq+Nvu+02devWTbfeeqvP13C5XGpsbPTprbBwueV5zvjDtep37gi9efm9atx59Im6sygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBD6eGhIQoPz9fU6dOVW5urhISEpSXl6fo6Ght3rxZQUHf5dA77rhDFRUVWrJkSavtdjjjvusUP2aY3rhslhrr99p67c6KnsIKs2EP+gwrzEZgCPgQJ0kjR45UUVHrly3PnTtXmZmZ3vdnzJih1atX61//+pfCw8Ntra/rSb10yg0Xq+Vgky5b9Tfv9m2ryvTO5AdsraWzoKewwmzYgz7DCrMROIwIcT/U0NCg8vJy5eXlSZI2bNighx56SEOHDtVZZ50lSUpKStKrr75qSz37v9yhZ+Mvs+VaJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UkJaWJo/H4+eqAAAA7GNkiMvIyCC0AQCAE1rAvzoVAAAAbRHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAxoS4pqYmzZw5UwkJCYqIiNDYsWNVXFwsh8OhgoICf5cHAABgqxB/F+ALj8ejSZMmqbi4WLNmzVJycrIWLlyoCRMmSJLS09P9XKF05kM3KOGC0xQaHalD+xpU/XqRPrnvBbkPNfu7NGPRU1hhNuxBn2GF2QgMRoS4efPmaenSpVq7dq3S0tIkSVlZWUpKSlJMTIwSExP9XKG08Zk39Mkf5qu5oVHhMVHKmjdNI26fqLWPvuzv0oxFT2GF2bAHfYYVZiMwGBHiZs+erSlTpngDnCQFBwcrKSlJoaGhkqTx48erqqpKQUFB6tatmx577DGNGjXKthr3bPryu3ccDnncHkUNirft+p0RPYUVZsMe9BlWmI3AEPAhrqKiQlVVVZozZ06bfTU1NcrJyZEkPffcc+revbskqaCgQNddd51KSkpsrXX4reM1Ii9HoV0jdHDnXr39ixdsvX5nRE9hhdmwB32GFWbD/wI+xNXW1kqS4uLiWm0vKytTdXW19/lw3wY4SdqzZ4+Cgnx/zUZUVJSampp8OnZwSE/dGT2m3X2lcxerdO5idR/SX4MmnqOG7bt8rqEzcTqztLnZ98+dnsLpbH9mmI1jy+mkz2if08ls2MHpbL/PYWFhcrlcR32+gH91amxsrCSpsrLSu83j8Wj69Olyu92tXtRwww03KDExUXfffbeee+4522v91p6KWu3cUK1zHrvdbzV0NvQUVpgNe9BnWGE2/CfgQ1xqaqqSk5M1Y8YMLVq0SMuWLVN2drZKSkoUGRmplJQU77FPPfWUvvjiCz344IP67W9/6/M1XC6XGhsbfXorLFzu0zmDQoMVfYI+P6CwcLnP/aSnkKxnhtk4tugzrDAb9rDqc0fuwkkGhLiQkBDl5+crPj5eubm5ysvL07hx45SZmakRI0a0+7Dp1VdfrcLCQtXX19tSY2hUpJIvz1JYdKQkqWfqAI3My9FXyz+15fqdET2FFWbDHvQZVpiNwBHwz4mTpJEjR6qoqKjVtrlz5yozM1OStG/fPu3atUsJCQmSpCVLligmJkYxMTH2FOjxaFDOuTp9Vq6CwkJ0cMdeVS9dpbV/esme63dG9BRWmA170GdYYTYChhEh7ocaGhpUXl6uvLw8SdL+/fs1adIk7d+/X8HBwYqJidGSJUvkcDhsqefQvga9dcUfbLnWiYKewgqzYQ/6DCvMRuAwMsStW7dOLS0t3hc19OnTRx999JGfqwIAALCPkSEuIyNDHo/H32UAAAD4TcC/sAEAAABtEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gLEmL/coowHrvd3GV7nL7hbqddf7O8yjonJlfMVMyzJ32V0WN/RaZpcOf+4nf+nr9yrtKmXHvXHxWWk6opP/+84VORfgbYWv8/kWTa5dol1aCfWoO+M/LNbpooeFK/TZl6tuNNTFBwepoavd6vmrU/08aznjuo8yZdnKe3Xl6rA+d/HqVLpnckPHLdzH0s/feVe9f7JULkPNcvjdqth+2599WGp1j++WPu/3CFJWpB8tZ+r7Jy2r9qol0b+yt9lHFHfs9I0atrlih0xSJJUv+5zrX3kZW0t2uDnyg4bNe1yxY4crHevecin4wN1llmH/hPo65A1eHxxJ85G58+foT2VXyn/jFu0YOg1envyA9r1WbVfanGEBPvlusdDycMvasGQq7UwJVfvXf8ndekZpUvffkTRg/v5uzT40Unn/0QXLLxHNe+s1sun3qSXT71JNe+s1gUv3qOTzju13Y9xBB+7b4mdaY35gnWIH2INHn+EOJuEx0QpelC8yp9/S80HDkoej1xVW1X58vJ2jz/nsds0qeT/aXLFfF369p/U3zlKkhQzLEmjZ9+o7kP6a3LlfE2unK/oQfGSDv/Ec8nrD+qqjc9q/Ad/UVL22d7zjZp2uc5fcLcyHrxBV254Whn3X3fEer9/a//8BXfr5F/+VJIU3CVMV1ctVMaDN3iPnfDhX9V/bHpHW3NM7dn0pT649a86sHWn0n97hSTp2rp8xY4cLOlw/8Ytvk9XbnhGV254Rln/N01denX3fnxYdKQyn/yNflH2nCaufExDr75A19blKzwm6kevHTtikC5a9Htd9dkzunL931v1OP7cEfrZm7P1i/LndOm7jyrxp6d7942adrnOe/5/Wp3rsuLHNeCSM9u9TkhkF43+4426fM08XfHp/2nMX29VWPeu3v3X1uUr9fqLlV34v5q8+QVlzZumsOhInf3nm/WL8uc04cO/qvepQ1qdM6JPD1340u80uXK+fvbGbG+/juT7Dy/1Sh+iK9f//bvP6Y7LlVv7srrERkuSksafrUuW+vaT7rGScf91qly0XBueeE2HXAd0yHVAG554TZvz39cZ33xtLit+XCPycnTxaw9oyucL1Oubzzu0axdlzZumyRXzNf79P6tf1sgfvd63/Rg65Xxd9vETuvSdRyRZf+0Tf3q6ht8+Qf2do7xrOSjsyA+OfDvLjuAg/WLT8+qRknD42mel6dq6fA342WhJUkRcD13zxT8U2i2iY837D7EOWYcSa9CONUiIs0njTpd2b6rR2X++WUnZZytqQJ8jHl+3coMKnP+thSfnqnz+28qaN03hsdHaub5KRdPnaU9FrRYkX60FyVdr7+d16pGSoLFP36k1j7ykF0/5pT687TGd+dANrb4J9Dt3hHaur9JLI27Qx/f6/hBu3YpSxY8ZLkmKOz1F++vqFT9mmCQpsm+Mogb00baPNnagK8eHp8WtL94oVt+z0truc7u1+qGFennUr/TqObcrtFtEq2/yGQ9cr/Ae3ZSfcbP+dendGjR+jE/XjOwbo4vyZ2nL6x/p5fQbtej0X6tqSZEkKWpgX53/3F1aP3exXjzll1r9wAvKfOI3ikkb2KHPL+P+69Q9ub8Kzr9Dr57zXwqPidLZ/3tzq2MSf3q63sj5vfLPuFmxIwfpkn89pC1LivRi6i9VvXSVRs++sdXxQ64cq7WPvuzdf/7zdyk4Isznmuo/3ayg0BD1TB0gSYo/Z7hc1dvU9+zDcxI/Zri2rljfoc+3I6IH91PUgD6qWryyzb7PX12h6IF9vT/8JE/K0sppj2tB8tWqX18lSUoaP0afv/qhFp6cq3WPvaqxT9+pyL4xP3rdkIhw9RqVrMXn5un1cdOP+LX/4o2PVTrnVdUWrvWuZXdTs0+fn6fFrW2rNnrXZfw5w7W3qs67LuPHDFf9us91aF+DT+c7HliHJ/Y6ZA3aswYJcTZ6Y+LvtWNtpYbfPlETVsxRzkd/08Cfj2732Mp/vKemPfvlaXGr/Pm31LjL5f0JpT0puRdp8ysf6Kvln0oej+o/3ayqgpUafNm53mP2VNaqYuG78rS41dLQ5HPdW1euV58zT5EcDsWfM1wVC99VSGS4Ivr0VN8xw7Rj7ebDdxcDyIG6nQrv0a3N9l2fVWv7qo1yH2pW406XSue86v0G5wgK0sBLz9KaP72kpj371Vi/V5/+9RWfrjco51ztLK1S+XNvqqXxkFoamrR91eFgm5R9lrat2qgtS4rkaXGr9r01+uKtTzR4UubRf2IOhwZNPEclDy1UY/1eNe09oE/um68BF2e0+olvw5NL1LjTpcb6vfrqg3XaV7Ndte+tkcftVtXileqRmqig0O9+4tzyepG2F5fJfahZpY+9Ko/bo/6ZP/6T77c8bre2fbRR8WOGKSSyi3oMOUkbnlyi+HMOf4Pre/Yw1a20L8R1+eaOTcO2nW32NWzfdfiYb+5OlM9/W3sqauVxu73fwLd+9Jm+WFYsT4tbn+d/oF2fVVuu1e9zBAVp9YML1NzQqJaGpmP7tf+BrSvWt/oPY+0jL3v/Q7G731ZYhyfuOmQN2tNrXthgo4P1e7X6/he0+v4XFNotQkOnXKBzH8/Tro0/eF6cw6H0316hgZeepYi4HpLbo5BuXbwD355uCb0Vf/YwDc75LrQ5QoJU+95a7/v7a3d0qO760io5HFLMsIGKP3u4PprxlLon91f8mGGKP3uY6laUdui8x1NkfIwad7nabI8a0Een/f4a9U4fopCuXeRwOLzfdMNjohQcFtqqT772rNtJvbS3qs6illjt+/LrVtv2VW9Ttx+5G9ueLrHRCg4P1b6a7863r3rb4ev0i9WeTV9Kkhp27PHub2loVMP23d73mxsaFRQcrJCIMDUdOvwNc//36/N4tL92hyL7xh5VbXUrStX37GHas/krbV+9SbXvrVHa1J+r60m91DU+VtuK7btbe3Dn4a99RJ8Y7an8qtW+iLieh4+p3ytJ2l/b+msj/aAfkvbVfO3TXYDmhkY17vxu7o7l1/6H6laUakRejsKiIxU9qJ+qFq/UqXddpcj4GMWPGaZ/T3vyP77Gf4p1eOKuQ9agPWuQO3F+cmhfgzY8+Zqa9h7wPqb+rUETxmjw5Zl679qHtTAlVwtPztWBr+rlcDgkSR6Pp8359tfuUNmzb2rhybnetwXJV2v5jY96j/G4236cTzwebS36TAPGZShqYB/tLK1S3cr1ih8zPCBDnCM4SIkXna6t//6szb7Rs29U406XFmf9RguHXqN3r3nYu69xp0stTYfUtX8v77bv//tI9n25Q9FJ8e3uO1BXr24n9W61rVtCnA7U1UuSDu0/qJDvPWTiCA5q9fyg7ztYv1ctjYfULeG783377wN1bX/i9VXX79fncCiyX6wObK0/qnPUrVivvmeeon6ZI1W3ovTwN06HQ0OuGKuvSzYd1d3f/9TezV/J9cU2JV16Vpt9SdlnyfXFNu39/PB/9u2ti65tvl69dWDrj/fX43a3ev/HvvY/PP5o7NywRR63W6f86mfa/nGZPG636las19BfnK/IuJ7a/nFZh899LLAOj15nWoesQXvWICHOJmHdu+rU//mFegw9SY6QYAWFhWjo1RcoJCJM9Z9+3urY0G4Rcjc162D9XgWFBCtt6qWKjP/up7GGr3crIq5Hq+dKlD//lpIvz1T8uSPkCA5SUGiIYkcOVs9TBhyT+utWlCr1+nHatmrjN4NaqgEXZ6hLr+7a/kn5MbnGsdA9uZ/GzLlNkfGxWvPIS232h0ZFqsl1QE17DyiiT0+NyMvx7vO43dqypEij7rhcYd27KjwmSiNum+DTdT//5weKHTFIKddcqKCwEAVHhCkuI1WSVFXwb/XJSNWASzLkCApSf+coJVx0mjbnfyBJqi/9XL1OHaLuQ09SUFiI0qdfqSCrV1V5PPr81Q+VPv0qhcdGKyw6UqfNvEbVy1bpkOvAUXbrOwMvOVO9T0uRIyRYw2/JVlBIsL56f91RnWPXxmq1HGrWkCudqvvwcLDfunK9TrnxEtXZ+Hy4bxX/7lklX+FU2k0/V2i3CIVGReqUm36m5MudKp75zBE/tu+ZpyjhwtPkCA7SoInnqOcpA7TlXx8ddQ0/9rVv2LFHXfv36vAr8rb+e8M3/T3c77qVpTrlxku0ffUmtTQe6tA5jwXWYcd0tnXIGjz+a5CHU23ibmpWRO8eGvvcXYro3V0tjc3avalG7147u82t3spFyxV/znDlrHpczQcaVf78W9pd9oV3f92K9dpeXKbLV/8/OYKCtGTcdO36rFqFv3pUp06/Sj2e/I08Hml32Rda/eCCY1J/3YpShUXf4P0mcKBupxq279b+up0+PxH0eDn1rqs0atokeTweNWzbpboVpXrtgju8v5/q+4p//6zO+uONSqm4QK7q7Sp//i31O3eEd/+qu/+us/40VZetelwH6/fqs78vVfyY4T+6GA/U7dSbk+7Vab+/Rj+ZMVkth5pVtXiFtq/aKNeWrXrvuj/q1P+ZrLP/fIv2f/m1Prh1jnZ+8wTerSvXq/zZNzXu1fvkbjqk0r8tPuJPnMUzn9Hps3I1/r1HJYdDX73/qYp/d+RviD+m4qVCpd95pXqfmqy9n9fp3WseVnND41GfZ+vKw88R+fZX59StKNXQyef75flZNW9+rHemPKiR/32ZRv32ckmHf0fVO1Me/NG7x1WLV2jwpEyd+7f/0v66ehXe8IgOfHV0d0Qk/ejXfsuSIg0aP0ZXrn9aDodD/xhx/VGtp7oPSzXwZ6O967JuxXqFRXf1S79Zh6zDH2INHn8OT3uPzcHStuIyLcu+x99lHHfjFt+nLUuKtPHvS4/+YwvuV58zTvb5+EDuaf+x6Tr3b/+lF1Ov9XcpASd+zHBlzftvvXjKL//jc1nNTCDPht0cQUHKrX1ZBWOntX0erY9M7TPr0NqxWoemzoadjuca7CgeTkUbIZFdFDWgj1xbtvq7FNtFJfVVr1HJksOhbif1Vvpvr1BVQduXyEPqmTZArm+ezI3jr2faALkPNbf7JPDOhnXoO9ahfQJxDfJw6glq+O0TNeL2ts8zCe4SpqDgYFUtXqnawrX2F+ZnIRHhOuex2xTZL1aHXA368p3VWn3/C5Kk7OV/VreT2j7Buuat1frg5r/YXKk9rP5WZO3yTxU7PCkgXgFpp+M9A+cvuFt9Mtr+lH5o30EFhQZr9YML1bS348+5MgXrsDXW4XdYg60R4k5QpXP+qdI5//R3GQFn12fVevWc/2p3X0HWb2yuxv8C7e8E+tvxngFT/mbx8cY6bI11+B3WYGs8nAoAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCAjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBdwIc4j8ejSZMm6amnntI999yj119/XUlJSZow4fDf/UxPT/dzha0FdwnTxH8/Zvm37nB06CeOhPmwB32GFWbDvwL+b6fOmzdPS5cu1dq1a5WWliZJysrKUlJSkmJiYpSYmOjnCltL/+0V2vflDkXE9fB3KZ0C/cSRMB/2oM+wwmz4V8DfiZs9e7amTJniDXCSFBwcrKSkpDZ34e699145HA6tX7/e7jIlSbEjBqm/c5TW/22xX67f2dBPHAnzYQ/6DCvMhv8FdIirqKhQVVWVcnJy2uyrqalpFeJKSkr00UcfacCAAXaW6OUIDtJZj0zVRzOekrup2S81dCb0E0fCfNiDPsMKsxEYAjrE1dbWSpLi4uJabS8rK1N1dbU3xDU2NuqWW27RE0880aHrREVFKTw83Kc3pzOr3XMMuzlb9aVV2vbRxg7V0Jk4nVk+99Oqp/TzxOJ0tj8zTmdWu8czHx3jdNJntM/pZDbs4HS23+eoqKgOnS+gQ1xsbKwkqbKy0rvN4/Fo+vTpcrvd3hD3u9/9TlOmTNHAgQP9UaaiBvZVyjUX6pP7eGLnsUA/cSTMhz3oM6wwG4EjoF/YkJqaquTkZM2YMUOhoaHq1q2bnnjiCa1Zs0aRkZFKSUlRUVGRPvnkEz388MMdvo7L5fL52G3FZVqWfU+rbX3OOFkRvbpr4so5kqSgkGCFdo3QlRueVuH1fzrhflIpLFyuPmec7PPxP+wp/TzxWM0M6+3Yos+wwmzY42j/f/wxAR3iQkJClJ+fr6lTpyo3N1cJCQnKy8tTdHS0Nm/erKCgIL3//vvauHGjkpKSJElffvmlLrroIj3zzDO68MILbamzasm/9dWH67zv9/5Jisb89Ra9dv4dOli/15YaOhP6iSNhPuxBn2GF2QgcAR3iJGnkyJEqKipqtW3u3LnKzMyUJN1111266667vPsGDhyo119/XcOGDbOtxpaGJh1o2Ol9v7F+r+Tx6EDdziN8FKzQTxwJ82EP+gwrzEbgCOjnxLWnoaFB5eXlAfdLfr9va9EGLUi+2t9ldBr0E0fCfNiDPsMKs+E/AX8n7ofWrVunlpYWyxC3ZcsWewsCAADwA+NCXEZGhjwej7/LAAAA8CvjHk4FAAAAIQ4AAMBIhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADGRMiGtqatLMmTOVkJCgiIgIjR07VsXFxXI4HCooKPB3eQAAALYK8XcBvvB4PJo0aZKKi4s1a9YsJScna+HChZowYYIkKT093a/1jfnLLUqaMEbuQ83ebct/9ahqC9f6ryjD0VNYYTbsQZ9hhdkIHEaEuHnz5mnp0qVau3at0tLSJElZWVlKSkpSTEyMEhMT/VyhtOmFd7Tq7r/7u4xOhZ7CCrNhD/oMK8xGYDAixM2ePVtTpkzxBjhJCg4OVlJSkkJDQyVJAwcOVJcuXdSlSxfvx1x00UV+qRcAAOB4C/gQV1FRoaqqKs2ZM6fNvpqaGuXk5Hjfz8/P17Bhw+wsz2vQxHM0aMIYNezYo89f+UClcxfL0+L2Sy2dBT2FFWbDHvQZVpiNwBDwIa62tlaSFBcX12p7WVmZqqurj8nz4aKiotTU1OTTsYNDeurO6DGttn3296X65L75OrjTpdgRg5T5eJ6Cw8O05o//+I9rM5HTmaXNzbt8Pp6ewulsf2aYjWPL6aTPaJ/TyWzYwelsv89hYWFyuVxHfb6Af3VqbGysJKmystK7zePxaPr06XK73a1C3OTJkzVixAjdfPPN2r17t2017iyt0sH6vZLHo/pPN2vNIy8pKfts267fGdFTWGE27EGfYYXZCBwBH+JSU1OVnJysGTNmaNGiRVq2bJmys7NVUlKiyMhIpaSkSJI+/PBDffrpp/r444/l8Xh06623+nwNl8ulxsZGn94KC5f/+AndHsnRwU+4EygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBIS4kJET5+fmKj49Xbm6u8vLyNG7cOGVmZmrEiBEKCjr8KSQkJEiSwsPDdfPNN2vlypW21Tjw0rMUGhUpSeqZOkAjp03SlteLbLt+Z0RPYYXZsAd9hhVmI3AE/HPiJGnkyJEqKmo9IHPnzlVmZqYkaf/+/Wpublb37t3l8Xj0j3/8Q6NGjbKtvpOvvUijZ9+ooNBgNWzbrc3572vdY6/adv3OiJ7CCrNhD/oMK8xG4DAixP1QQ0ODysvLlZeXJ0natm2bcnJy1NLSopaWFp1yyil6/PHHbavnjYm/t+1aJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UMGjQIK1Zs8bPVQEAANjHyBCXkZEhj8fj7zIAAAD8JuBf2AAAAIC2CHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBViL8L8IXH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6u8LCTzjtV6dOvVPTgfmre16D1Ty7Rhide83dZRqOnsMJs2IM+wwqz4X9GhLh58+Zp6dKlWrt2rdLS0iRJWVlZSkpKUkxMjBITE/1codQvc6RG/+kmrbh9rrYWbVBIRLi69u/l77KMRk9hhdmwB32GFWYjMBjxcOrs2bM1ZcoUb4CTpODgYCUlJXnvwh08eFC//vWvNWTIEA0fPlw33nijrTWm33ml1v3lFdWtKJWnxa1D+xq0u7zG1ho6G3oKK8yGPegzrDAbgSHg78RVVFSoqqpKc+bMabOvpqZGOTk5kqQ777xTXbp00aZNm+RwOLRt2zbbagyJCFevUYNV+94aTfjwrwrr3lVfl1SoeOYz2lez3bY6OhN6CivMhj3oM6wwG4Ej4O/E1dbWSpLi4uJabS8rK1N1dbXS09O1b98+Pf/887rvvvvkcDgkSX369PH5GlFRUQoPD/fpzenMavPxYT26yhEUpAGXZOjtq+5XfsbNavh6t5x//21HP22jOZ1ZPveTnkKynhmnM6vNscxGxzmd9BntczqZDTs4ne33OSoqqkPnC/gQFxsbK0mqrKz0bvN4PJo+fbrcbrfS09O1efNmxcbG6t5779Vpp52mrKwsrVixwrYaD+07KEn67Kml2vfl12ppaFLJQwsVOzyJ5wh0ED2FFWbDHvQZVpiNwBHwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkqKWlpa9Pnnnys9PV2ffPKJZs+erYkTJ2rv3r0+XcPlcqmxsdGnt8LC5W0+/pDrwOFbyB7PMf7szVRYuNznftJTSNYzw2wcW/QZVpgNe1j12eVydeh8AR/iQkJClJ+fr/j4eOXm5iovL0/jxo1TZmamRowYoaCgICUmJiokJERXXXWVJCkjI0O9evXSpk2bbKuz/Pm3lHrDJYrsF6vg8FCl33mldny6Wftrd9hWQ2dDT2GF2bAHfYYVZiMwBPwLGyRp5MiRKioqarVt7ty5yszMlCT16tVLTqdTb7/9ti688EJt2rRJ27dvV3Jysm01lv6tQGHdu+nSt/4oOYK0vbhMhdf/ybbrd0b0FFaYDXvQZ1hhNgKDESHuhxoaGlReXq68vDzvtieffFLXXXedpk2bptDQUM2fP189evSwryiPR6sfeEGrH3jBvmt2dvQUVpgNe9BnWGE2AoKRIW7dunVqaWlp9ZcaBg0apOXLl/uvKAAAABsZGeIyMjLk4QmVAADgBBbwL2wAAABAW4Q4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAIf4uwFdNTU2677779Oyzz2rHjh0aPXq0Hn74YWVkZGjx4sXKzs72W22TK+e3ej84LFS7K2r12nnT/FSR+egprDAb9qDPsMJsBA4jQpzH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6tb0Hy1a3ev/TdR1VVsNJP1XQO9BRWmA170GdYYTYChxEhbt68eVq6dKnWrl2rtLQ0SVJWVpaSkpIUExOjxMREP1f4nV6jktVj6EmqfKnQ36V0GvQUVpgNe9BnWGE2/MuIEDd79mxNmTLFG+AkKTg4WElJSQoNDdWWLVs0fvx4777du3dr79692rlzp+21DvnFWNW+t0YN23bZfu3Oip7CCrNhD/oMK8yGfwV8iKuoqFBVVZXmzJnTZl9NTY1ycnI0cOBArV271rs9Ly9Pzc3NPl8jKipKTU1NPh07OKSn7owe0+6+kIhwJWWfrQ9vn+vztTsjpzNLm5t9X9D0FE5n+zPDbBxbTid9RvucTmbDDk5n+30OCwuTy+U66vMFfIirra2VJMXFxbXaXlZWpurq6jbPh2tqatKCBQv05ptv2lbjtwb+fLSaG5r05Turbb92Z0VPYYXZsAd9hhVmw/8C/leMxMbGSpIqKyu92zwej6ZPny63290mxL322mvq37+/Tj31VJ+v4XK51NjY6NNbYeFyy/MMmXyeNr+8XJ4W99F9kp1MYeFyn/tJTyFZzwyzcWzRZ1hhNuxh1eeO3IWTDAhxqampSk5O1owZM7Ro0SItW7ZM2dnZKikpUWRkpFJSUlod//TTT+u6666zvc7owf0Ud1qKNr34ru3X7qzoKawwG/agz7DCbASGgH84NSQkRPn5+Zo6dapyc3OVkJCgvLw8RUdHa/PmzQoK+i6H1tbW6v3339f8+fOPcMbjY8hVY7Vt1Ua5qrbafu3Oip7CCrNhD/oMK8xGYAj4ECdJI0eOVFFRUattc+fOVWZmZqttzz33nC655BLvQ7B2Wn3/C7Zfs7Ojp7DCbNiDPsMKsxEYAv7h1PY0NDSovLy8zfPhnn32Wb88lAoAAGA3I+7E/dC6devU0tLSJsRt2rTJTxUBAADYy8gQl5GRIY/H4+8yAAAA/MbIh1MBAABOdIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADCQw8NvzT0qTa4D2rXxC3+XEdB6piYqLCrS5+PpKaxmhtk4tugzrDAb9jja/x9/DCEOAADAQDycCgAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAG+v9cNHJlWUDfYgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGOCAYAAAD4oVVpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAziElEQVR4nO3de1hVddr/8c/mKCiooCgaKIoS4YmmIsuCbaexZkIlO4wWTTXldHqYxyZ7LGdsOjpTz8yYU/18mk6mTUmTZKOdsdIhKdFEEwRDIkJNPG0VQdj794e1i2DZltG19xffr+viumStxVo3N/cXP6y9Nzg8Ho9HAAAAMEqQvwsAAADA0SPEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYK8XcBpmlyHdCujV/4u4yA1jM1UWFRkT4fT09hNTPMxrFFn2GF2bDH0f7/+GMIcUdp18YvtCz7Hn+XEdDGFdyvPmec7PPx9BRWM8NsHFv0GVaYDXsc7f+PP4aHUwEAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxkT4pqamjRz5kwlJCQoIiJCY8eOVXFxsRwOhwoKCvxdHgAAgK2M+IsNHo9HkyZNUnFxsWbNmqXk5GQtXLhQEyZMkCSlp6f7uULJERyk02flanDOuXIEBWnLvz7SqhlPqaXxkL9LMxY9hRVmwx70GVaYjcBgxJ24efPmaenSpXrnnXd000036bzzztO8efMUHBysmJgYJSYm+rtEjbh9ovqeNUwFY6fplbNvU4+hJ+kn91zt77KMRk9hhdmwB32GFWYjMBgR4mbPnq0pU6YoLS3Nuy04OFhJSUneu3CbNm3S6NGjNXToUI0ePVoVFRW21jhk8nkqnfNPHdi6U431e7X20ZeVfEWWHEFGtDgg0VNYYTbsQZ9hhdkIDAHf7YqKClVVVSknJ6fNvpqaGm+Imzp1qm655RZt2rRJt9xyi2666SafrxEVFaXw8HCf3pzOrDYfHxYdqW79e2vnhirvtvrSKoVFRapbQu+j/ZSN53Rm+dxPegrJemaczqw2xzIbHed00me0z+lkNuzgdLbf56ioqA6dL+BDXG1trSQpLi6u1faysjJVV1crPT1d27dvV0lJia666ipJ0lVXXaWSkhJ9/fXXttQY0i1CktS054B3W9Oe/ZKk0G/24ejQU1hhNuxBn2GF2QgcAR/iYmNjJUmVlZXebR6PR9OnT5fb7VZ6erpqamrUv39/BQcHSzr8UGu/fv1UU1Pj0zVcLpcaGxt9eissXN7m45v3NUiSQqMjvdvCuneVJB36Zt+JpLBwuc/9pKeQrGeG2Ti26DOsMBv2sOqzy+Xq0PkCPsSlpqYqOTlZM2bM0KJFi7Rs2TJlZ2erpKREkZGRSklJ8XeJatp7QPtqv1ZM2kDvtthhSWpyHdC+GnvuBnY29BRWmA170GdYYTYCR8CHuJCQEOXn5ys+Pl65ubnKy8vTuHHjlJmZqREjRigoKEgJCQmqra1VS0uLJKmlpUVfffWVEhISbKuzYsG7GnHbBEX06anw2GiNmna5Kl9aLo/bbVsNnQ09hRVmwx70GVaYjcBgxO+JGzlypIqKilptmzt3rjIzMyUdfr7cqFGj9OKLL2rKlCl68cUXlZ6ert697XuC5bo5/1R4TLTGL/+zHEEObXn9I61+4AXbrt8Z0VNYYTbsQZ9hhdkIDEaEuB9qaGhQeXm58vLyvNuefPJJ5ebm6g9/+IN69uyp559/3taaPC1uFc98WsUzn7b1up0ZPYUVZsMe9BlWmI3AYGSIW7dunVpaWlr9pYaTTz5Zq1at8mNVAAAA9jEyxGVkZMjj8fi7DAAAAL8J+Bc2AAAAoC1CHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYyJgQ19TUpJkzZyohIUEREREaO3asiouL5XA4VFBQ4O/yAAAAbBXi7wJ84fF4NGnSJBUXF2vWrFlKTk7WwoULNWHCBElSenq6nyuUBv58tFJvuFgxaQPVuNOl/DNu9ndJRqOfOBLmwx70GVaYjcBgRIibN2+eli5dqrVr1yotLU2SlJWVpaSkJMXExCgxMdHPFUqNe/ar7Ok31KV3d6Xd+DN/l2M8+okjYT7sQZ9hhdkIDEaEuNmzZ2vKlCneACdJwcHBSkpKUmhoqCTpjjvu0CuvvKItW7aotLRUw4YNs7XGug/WSZISf3q6rdftrOgnjoT5sAd9hhVmIzAE/HPiKioqVFVVpZycnDb7ampqvA+ljh8/Xh988IEGDBhgd4kAAAC2C/g7cbW1tZKkuLi4VtvLyspUXV3tDXFjxozp8DWioqLU1NTk07GDQ3rqzuiOX+tE4HRmaXPzLp+Pp6dwOtufGWbj2HI66TPa53QyG3ZwOtvvc1hYmFwu11GfL+DvxMXGxkqSKisrvds8Ho+mT58ut9sdEC9qAAAAsFvAh7jU1FQlJydrxowZWrRokZYtW6bs7GyVlJQoMjJSKSkp//E1XC6XGhsbfXorLFz+n39SnVxh4XKf+0lPIVnPDLNxbNFnWGE27GHV547chZMMeDg1JCRE+fn5mjp1qnJzc5WQkKC8vDxFR0dr8+bNCgoKjBzqCApSUGiwHCEhksOh4PBQeTweuZua/V2akegnjoT5sAd9hhVmIzAEfIiTpJEjR6qoqKjVtrlz5yozM9NPFbU1+LJzNeavt3rfv3rLi9pXs53fndNB9BNHwnzYgz7DCrMRGIwIcT/U0NCg8vJy5eXlebfdfvvt+uc//6mtW7fq/PPPV2xsrDZs2GBbTZUvL1fly8ttu15nRz9xJMyHPegzrDAbgSEwHos8SuvWrVNLS0urFzXMmTNHX375pZqbm7V161ZbAxwAAIDdjLwTl5GRIY/H4+8yAAAA/MbIO3EAAAAnOkIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABjImBDX1NSkmTNnKiEhQRERERo7dqyKi4vlcDhUUFDg7/IAAABsFeLvAnzh8Xg0adIkFRcXa9asWUpOTtbChQs1YcIESVJ6erpf6wsKC9GZD96g+DHD1SU2Wge27dLGp5ep7Ollfq3LZPQUVpgNe9BnWGE2AocRIW7evHlaunSp1q5dq7S0NElSVlaWkpKSFBMTo8TERL/WFxQcrIbtu/XWlffJVb1NMacM0AUv3qODX+/WliVFfq3NVPQUVpgNe9BnWGE2AocRD6fOnj1bU6ZM8QY4SQoODlZSUpLS09NVX1+viy++WCkpKRo+fLgmTpyor7/+2rb6mhsateaP/5Bry1bJ49HODVtU89Ynijsj1bYaOht6CivMhj3oM6wwG4Ej4ENcRUWFqqqqlJOT02ZfTU2N0tPT5XA4dOedd6q8vFylpaUaPHiw7rrrLj9Ue5gjJFh9MlK1a2O132robOgprDAb9qDPsMJs+E/AP5xaW1srSYqLi2u1vaysTNXV1UpPT1dMTIyysrK8+84880w98cQTPl8jKipKTU1NPh07OKSn7owec8Rjznzweh3a16DNi973uYbOxOnM0ubmXT4fT0/hdLY/M8zGseV00me0z+lkNuzgdLbf57CwMLlcrqM+X8DfiYuNjZUkVVZWerd5PB5Nnz5dbre7zYsa3G63nnjiCV166aW21vmt02flqvdPUvT25AfkPtTslxo6G3oKK8yGPegzrDAb/hXwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkpKq+Nvu+02devWTbfeeqvP13C5XGpsbPTprbBwueV5zvjDtep37gi9efm9atx59Im6sygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBD6eGhIQoPz9fU6dOVW5urhISEpSXl6fo6Ght3rxZQUHf5dA77rhDFRUVWrJkSavtdjjjvusUP2aY3rhslhrr99p67c6KnsIKs2EP+gwrzEZgCPgQJ0kjR45UUVHrly3PnTtXmZmZ3vdnzJih1atX61//+pfCw8Ntra/rSb10yg0Xq+Vgky5b9Tfv9m2ryvTO5AdsraWzoKewwmzYgz7DCrMROIwIcT/U0NCg8vJy5eXlSZI2bNighx56SEOHDtVZZ50lSUpKStKrr75qSz37v9yhZ+Mvs+VaJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UkJaWJo/H4+eqAAAA7GNkiMvIyCC0AQCAE1rAvzoVAAAAbRHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAxoS4pqYmzZw5UwkJCYqIiNDYsWNVXFwsh8OhgoICf5cHAABgqxB/F+ALj8ejSZMmqbi4WLNmzVJycrIWLlyoCRMmSJLS09P9XKF05kM3KOGC0xQaHalD+xpU/XqRPrnvBbkPNfu7NGPRU1hhNuxBn2GF2QgMRoS4efPmaenSpVq7dq3S0tIkSVlZWUpKSlJMTIwSExP9XKG08Zk39Mkf5qu5oVHhMVHKmjdNI26fqLWPvuzv0oxFT2GF2bAHfYYVZiMwGBHiZs+erSlTpngDnCQFBwcrKSlJoaGhkqTx48erqqpKQUFB6tatmx577DGNGjXKthr3bPryu3ccDnncHkUNirft+p0RPYUVZsMe9BlWmI3AEPAhrqKiQlVVVZozZ06bfTU1NcrJyZEkPffcc+revbskqaCgQNddd51KSkpsrXX4reM1Ii9HoV0jdHDnXr39ixdsvX5nRE9hhdmwB32GFWbD/wI+xNXW1kqS4uLiWm0vKytTdXW19/lw3wY4SdqzZ4+Cgnx/zUZUVJSampp8OnZwSE/dGT2m3X2lcxerdO5idR/SX4MmnqOG7bt8rqEzcTqztLnZ98+dnsLpbH9mmI1jy+mkz2if08ls2MHpbL/PYWFhcrlcR32+gH91amxsrCSpsrLSu83j8Wj69Olyu92tXtRwww03KDExUXfffbeee+4522v91p6KWu3cUK1zHrvdbzV0NvQUVpgNe9BnWGE2/CfgQ1xqaqqSk5M1Y8YMLVq0SMuWLVN2drZKSkoUGRmplJQU77FPPfWUvvjiCz344IP67W9/6/M1XC6XGhsbfXorLFzu0zmDQoMVfYI+P6CwcLnP/aSnkKxnhtk4tugzrDAb9rDqc0fuwkkGhLiQkBDl5+crPj5eubm5ysvL07hx45SZmakRI0a0+7Dp1VdfrcLCQtXX19tSY2hUpJIvz1JYdKQkqWfqAI3My9FXyz+15fqdET2FFWbDHvQZVpiNwBHwz4mTpJEjR6qoqKjVtrlz5yozM1OStG/fPu3atUsJCQmSpCVLligmJkYxMTH2FOjxaFDOuTp9Vq6CwkJ0cMdeVS9dpbV/esme63dG9BRWmA170GdYYTYChhEh7ocaGhpUXl6uvLw8SdL+/fs1adIk7d+/X8HBwYqJidGSJUvkcDhsqefQvga9dcUfbLnWiYKewgqzYQ/6DCvMRuAwMsStW7dOLS0t3hc19OnTRx999JGfqwIAALCPkSEuIyNDHo/H32UAAAD4TcC/sAEAAABtEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gLEmL/coowHrvd3GV7nL7hbqddf7O8yjonJlfMVMyzJ32V0WN/RaZpcOf+4nf+nr9yrtKmXHvXHxWWk6opP/+84VORfgbYWv8/kWTa5dol1aCfWoO+M/LNbpooeFK/TZl6tuNNTFBwepoavd6vmrU/08aznjuo8yZdnKe3Xl6rA+d/HqVLpnckPHLdzH0s/feVe9f7JULkPNcvjdqth+2599WGp1j++WPu/3CFJWpB8tZ+r7Jy2r9qol0b+yt9lHFHfs9I0atrlih0xSJJUv+5zrX3kZW0t2uDnyg4bNe1yxY4crHevecin4wN1llmH/hPo65A1eHxxJ85G58+foT2VXyn/jFu0YOg1envyA9r1WbVfanGEBPvlusdDycMvasGQq7UwJVfvXf8ndekZpUvffkTRg/v5uzT40Unn/0QXLLxHNe+s1sun3qSXT71JNe+s1gUv3qOTzju13Y9xBB+7b4mdaY35gnWIH2INHn+EOJuEx0QpelC8yp9/S80HDkoej1xVW1X58vJ2jz/nsds0qeT/aXLFfF369p/U3zlKkhQzLEmjZ9+o7kP6a3LlfE2unK/oQfGSDv/Ec8nrD+qqjc9q/Ad/UVL22d7zjZp2uc5fcLcyHrxBV254Whn3X3fEer9/a//8BXfr5F/+VJIU3CVMV1ctVMaDN3iPnfDhX9V/bHpHW3NM7dn0pT649a86sHWn0n97hSTp2rp8xY4cLOlw/8Ytvk9XbnhGV254Rln/N01denX3fnxYdKQyn/yNflH2nCaufExDr75A19blKzwm6kevHTtikC5a9Htd9dkzunL931v1OP7cEfrZm7P1i/LndOm7jyrxp6d7942adrnOe/5/Wp3rsuLHNeCSM9u9TkhkF43+4426fM08XfHp/2nMX29VWPeu3v3X1uUr9fqLlV34v5q8+QVlzZumsOhInf3nm/WL8uc04cO/qvepQ1qdM6JPD1340u80uXK+fvbGbG+/juT7Dy/1Sh+iK9f//bvP6Y7LlVv7srrERkuSksafrUuW+vaT7rGScf91qly0XBueeE2HXAd0yHVAG554TZvz39cZ33xtLit+XCPycnTxaw9oyucL1Oubzzu0axdlzZumyRXzNf79P6tf1sgfvd63/Rg65Xxd9vETuvSdRyRZf+0Tf3q6ht8+Qf2do7xrOSjsyA+OfDvLjuAg/WLT8+qRknD42mel6dq6fA342WhJUkRcD13zxT8U2i2iY837D7EOWYcSa9CONUiIs0njTpd2b6rR2X++WUnZZytqQJ8jHl+3coMKnP+thSfnqnz+28qaN03hsdHaub5KRdPnaU9FrRYkX60FyVdr7+d16pGSoLFP36k1j7ykF0/5pT687TGd+dANrb4J9Dt3hHaur9JLI27Qx/f6/hBu3YpSxY8ZLkmKOz1F++vqFT9mmCQpsm+Mogb00baPNnagK8eHp8WtL94oVt+z0truc7u1+qGFennUr/TqObcrtFtEq2/yGQ9cr/Ae3ZSfcbP+dendGjR+jE/XjOwbo4vyZ2nL6x/p5fQbtej0X6tqSZEkKWpgX53/3F1aP3exXjzll1r9wAvKfOI3ikkb2KHPL+P+69Q9ub8Kzr9Dr57zXwqPidLZ/3tzq2MSf3q63sj5vfLPuFmxIwfpkn89pC1LivRi6i9VvXSVRs++sdXxQ64cq7WPvuzdf/7zdyk4Isznmuo/3ayg0BD1TB0gSYo/Z7hc1dvU9+zDcxI/Zri2rljfoc+3I6IH91PUgD6qWryyzb7PX12h6IF9vT/8JE/K0sppj2tB8tWqX18lSUoaP0afv/qhFp6cq3WPvaqxT9+pyL4xP3rdkIhw9RqVrMXn5un1cdOP+LX/4o2PVTrnVdUWrvWuZXdTs0+fn6fFrW2rNnrXZfw5w7W3qs67LuPHDFf9us91aF+DT+c7HliHJ/Y6ZA3aswYJcTZ6Y+LvtWNtpYbfPlETVsxRzkd/08Cfj2732Mp/vKemPfvlaXGr/Pm31LjL5f0JpT0puRdp8ysf6Kvln0oej+o/3ayqgpUafNm53mP2VNaqYuG78rS41dLQ5HPdW1euV58zT5EcDsWfM1wVC99VSGS4Ivr0VN8xw7Rj7ebDdxcDyIG6nQrv0a3N9l2fVWv7qo1yH2pW406XSue86v0G5wgK0sBLz9KaP72kpj371Vi/V5/+9RWfrjco51ztLK1S+XNvqqXxkFoamrR91eFgm5R9lrat2qgtS4rkaXGr9r01+uKtTzR4UubRf2IOhwZNPEclDy1UY/1eNe09oE/um68BF2e0+olvw5NL1LjTpcb6vfrqg3XaV7Ndte+tkcftVtXileqRmqig0O9+4tzyepG2F5fJfahZpY+9Ko/bo/6ZP/6T77c8bre2fbRR8WOGKSSyi3oMOUkbnlyi+HMOf4Pre/Yw1a20L8R1+eaOTcO2nW32NWzfdfiYb+5OlM9/W3sqauVxu73fwLd+9Jm+WFYsT4tbn+d/oF2fVVuu1e9zBAVp9YML1NzQqJaGpmP7tf+BrSvWt/oPY+0jL3v/Q7G731ZYhyfuOmQN2tNrXthgo4P1e7X6/he0+v4XFNotQkOnXKBzH8/Tro0/eF6cw6H0316hgZeepYi4HpLbo5BuXbwD355uCb0Vf/YwDc75LrQ5QoJU+95a7/v7a3d0qO760io5HFLMsIGKP3u4PprxlLon91f8mGGKP3uY6laUdui8x1NkfIwad7nabI8a0Een/f4a9U4fopCuXeRwOLzfdMNjohQcFtqqT772rNtJvbS3qs6illjt+/LrVtv2VW9Ttx+5G9ueLrHRCg4P1b6a7863r3rb4ev0i9WeTV9Kkhp27PHub2loVMP23d73mxsaFRQcrJCIMDUdOvwNc//36/N4tL92hyL7xh5VbXUrStX37GHas/krbV+9SbXvrVHa1J+r60m91DU+VtuK7btbe3Dn4a99RJ8Y7an8qtW+iLieh4+p3ytJ2l/b+msj/aAfkvbVfO3TXYDmhkY17vxu7o7l1/6H6laUakRejsKiIxU9qJ+qFq/UqXddpcj4GMWPGaZ/T3vyP77Gf4p1eOKuQ9agPWuQO3F+cmhfgzY8+Zqa9h7wPqb+rUETxmjw5Zl679qHtTAlVwtPztWBr+rlcDgkSR6Pp8359tfuUNmzb2rhybnetwXJV2v5jY96j/G4236cTzwebS36TAPGZShqYB/tLK1S3cr1ih8zPCBDnCM4SIkXna6t//6szb7Rs29U406XFmf9RguHXqN3r3nYu69xp0stTYfUtX8v77bv//tI9n25Q9FJ8e3uO1BXr24n9W61rVtCnA7U1UuSDu0/qJDvPWTiCA5q9fyg7ztYv1ctjYfULeG783377wN1bX/i9VXX79fncCiyX6wObK0/qnPUrVivvmeeon6ZI1W3ovTwN06HQ0OuGKuvSzYd1d3f/9TezV/J9cU2JV16Vpt9SdlnyfXFNu39/PB/9u2ti65tvl69dWDrj/fX43a3ev/HvvY/PP5o7NywRR63W6f86mfa/nGZPG636las19BfnK/IuJ7a/nFZh899LLAOj15nWoesQXvWICHOJmHdu+rU//mFegw9SY6QYAWFhWjo1RcoJCJM9Z9+3urY0G4Rcjc162D9XgWFBCtt6qWKjP/up7GGr3crIq5Hq+dKlD//lpIvz1T8uSPkCA5SUGiIYkcOVs9TBhyT+utWlCr1+nHatmrjN4NaqgEXZ6hLr+7a/kn5MbnGsdA9uZ/GzLlNkfGxWvPIS232h0ZFqsl1QE17DyiiT0+NyMvx7vO43dqypEij7rhcYd27KjwmSiNum+DTdT//5weKHTFIKddcqKCwEAVHhCkuI1WSVFXwb/XJSNWASzLkCApSf+coJVx0mjbnfyBJqi/9XL1OHaLuQ09SUFiI0qdfqSCrV1V5PPr81Q+VPv0qhcdGKyw6UqfNvEbVy1bpkOvAUXbrOwMvOVO9T0uRIyRYw2/JVlBIsL56f91RnWPXxmq1HGrWkCudqvvwcLDfunK9TrnxEtXZ+Hy4bxX/7lklX+FU2k0/V2i3CIVGReqUm36m5MudKp75zBE/tu+ZpyjhwtPkCA7SoInnqOcpA7TlXx8ddQ0/9rVv2LFHXfv36vAr8rb+e8M3/T3c77qVpTrlxku0ffUmtTQe6tA5jwXWYcd0tnXIGjz+a5CHU23ibmpWRO8eGvvcXYro3V0tjc3avalG7147u82t3spFyxV/znDlrHpczQcaVf78W9pd9oV3f92K9dpeXKbLV/8/OYKCtGTcdO36rFqFv3pUp06/Sj2e/I08Hml32Rda/eCCY1J/3YpShUXf4P0mcKBupxq279b+up0+PxH0eDn1rqs0atokeTweNWzbpboVpXrtgju8v5/q+4p//6zO+uONSqm4QK7q7Sp//i31O3eEd/+qu/+us/40VZetelwH6/fqs78vVfyY4T+6GA/U7dSbk+7Vab+/Rj+ZMVkth5pVtXiFtq/aKNeWrXrvuj/q1P+ZrLP/fIv2f/m1Prh1jnZ+8wTerSvXq/zZNzXu1fvkbjqk0r8tPuJPnMUzn9Hps3I1/r1HJYdDX73/qYp/d+RviD+m4qVCpd95pXqfmqy9n9fp3WseVnND41GfZ+vKw88R+fZX59StKNXQyef75flZNW9+rHemPKiR/32ZRv32ckmHf0fVO1Me/NG7x1WLV2jwpEyd+7f/0v66ehXe8IgOfHV0d0Qk/ejXfsuSIg0aP0ZXrn9aDodD/xhx/VGtp7oPSzXwZ6O967JuxXqFRXf1S79Zh6zDH2INHn8OT3uPzcHStuIyLcu+x99lHHfjFt+nLUuKtPHvS4/+YwvuV58zTvb5+EDuaf+x6Tr3b/+lF1Ov9XcpASd+zHBlzftvvXjKL//jc1nNTCDPht0cQUHKrX1ZBWOntX0erY9M7TPr0NqxWoemzoadjuca7CgeTkUbIZFdFDWgj1xbtvq7FNtFJfVVr1HJksOhbif1Vvpvr1BVQduXyEPqmTZArm+ezI3jr2faALkPNbf7JPDOhnXoO9ahfQJxDfJw6glq+O0TNeL2ts8zCe4SpqDgYFUtXqnawrX2F+ZnIRHhOuex2xTZL1aHXA368p3VWn3/C5Kk7OV/VreT2j7Buuat1frg5r/YXKk9rP5WZO3yTxU7PCkgXgFpp+M9A+cvuFt9Mtr+lH5o30EFhQZr9YML1bS348+5MgXrsDXW4XdYg60R4k5QpXP+qdI5//R3GQFn12fVevWc/2p3X0HWb2yuxv8C7e8E+tvxngFT/mbx8cY6bI11+B3WYGs8nAoAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCAjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBdwIc4j8ejSZMm6amnntI999yj119/XUlJSZow4fDf/UxPT/dzha0FdwnTxH8/Zvm37nB06CeOhPmwB32GFWbDvwL+b6fOmzdPS5cu1dq1a5WWliZJysrKUlJSkmJiYpSYmOjnCltL/+0V2vflDkXE9fB3KZ0C/cSRMB/2oM+wwmz4V8DfiZs9e7amTJniDXCSFBwcrKSkpDZ34e699145HA6tX7/e7jIlSbEjBqm/c5TW/22xX67f2dBPHAnzYQ/6DCvMhv8FdIirqKhQVVWVcnJy2uyrqalpFeJKSkr00UcfacCAAXaW6OUIDtJZj0zVRzOekrup2S81dCb0E0fCfNiDPsMKsxEYAjrE1dbWSpLi4uJabS8rK1N1dbU3xDU2NuqWW27RE0880aHrREVFKTw83Kc3pzOr3XMMuzlb9aVV2vbRxg7V0Jk4nVk+99Oqp/TzxOJ0tj8zTmdWu8czHx3jdNJntM/pZDbs4HS23+eoqKgOnS+gQ1xsbKwkqbKy0rvN4/Fo+vTpcrvd3hD3u9/9TlOmTNHAgQP9UaaiBvZVyjUX6pP7eGLnsUA/cSTMhz3oM6wwG4EjoF/YkJqaquTkZM2YMUOhoaHq1q2bnnjiCa1Zs0aRkZFKSUlRUVGRPvnkEz388MMdvo7L5fL52G3FZVqWfU+rbX3OOFkRvbpr4so5kqSgkGCFdo3QlRueVuH1fzrhflIpLFyuPmec7PPxP+wp/TzxWM0M6+3Yos+wwmzY42j/f/wxAR3iQkJClJ+fr6lTpyo3N1cJCQnKy8tTdHS0Nm/erKCgIL3//vvauHGjkpKSJElffvmlLrroIj3zzDO68MILbamzasm/9dWH67zv9/5Jisb89Ra9dv4dOli/15YaOhP6iSNhPuxBn2GF2QgcAR3iJGnkyJEqKipqtW3u3LnKzMyUJN1111266667vPsGDhyo119/XcOGDbOtxpaGJh1o2Ol9v7F+r+Tx6EDdziN8FKzQTxwJ82EP+gwrzEbgCOjnxLWnoaFB5eXlAfdLfr9va9EGLUi+2t9ldBr0E0fCfNiDPsMKs+E/AX8n7ofWrVunlpYWyxC3ZcsWewsCAADwA+NCXEZGhjwej7/LAAAA8CvjHk4FAAAAIQ4AAMBIhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADGRMiGtqatLMmTOVkJCgiIgIjR07VsXFxXI4HCooKPB3eQAAALYK8XcBvvB4PJo0aZKKi4s1a9YsJScna+HChZowYYIkKT093a/1jfnLLUqaMEbuQ83ebct/9ahqC9f6ryjD0VNYYTbsQZ9hhdkIHEaEuHnz5mnp0qVau3at0tLSJElZWVlKSkpSTEyMEhMT/VyhtOmFd7Tq7r/7u4xOhZ7CCrNhD/oMK8xGYDAixM2ePVtTpkzxBjhJCg4OVlJSkkJDQyVJAwcOVJcuXdSlSxfvx1x00UV+qRcAAOB4C/gQV1FRoaqqKs2ZM6fNvpqaGuXk5Hjfz8/P17Bhw+wsz2vQxHM0aMIYNezYo89f+UClcxfL0+L2Sy2dBT2FFWbDHvQZVpiNwBDwIa62tlaSFBcX12p7WVmZqqurj8nz4aKiotTU1OTTsYNDeurO6DGttn3296X65L75OrjTpdgRg5T5eJ6Cw8O05o//+I9rM5HTmaXNzbt8Pp6ewulsf2aYjWPL6aTPaJ/TyWzYwelsv89hYWFyuVxHfb6Af3VqbGysJKmystK7zePxaPr06XK73a1C3OTJkzVixAjdfPPN2r17t2017iyt0sH6vZLHo/pPN2vNIy8pKfts267fGdFTWGE27EGfYYXZCBwBH+JSU1OVnJysGTNmaNGiRVq2bJmys7NVUlKiyMhIpaSkSJI+/PBDffrpp/r444/l8Xh06623+nwNl8ulxsZGn94KC5f/+AndHsnRwU+4EygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBIS4kJET5+fmKj49Xbm6u8vLyNG7cOGVmZmrEiBEKCjr8KSQkJEiSwsPDdfPNN2vlypW21Tjw0rMUGhUpSeqZOkAjp03SlteLbLt+Z0RPYYXZsAd9hhVmI3AE/HPiJGnkyJEqKmo9IHPnzlVmZqYkaf/+/Wpublb37t3l8Xj0j3/8Q6NGjbKtvpOvvUijZ9+ooNBgNWzbrc3572vdY6/adv3OiJ7CCrNhD/oMK8xG4DAixP1QQ0ODysvLlZeXJ0natm2bcnJy1NLSopaWFp1yyil6/PHHbavnjYm/t+1aJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UMGjQIK1Zs8bPVQEAANjHyBCXkZEhj8fj7zIAAAD8JuBf2AAAAIC2CHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBViL8L8IXH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6u8LCTzjtV6dOvVPTgfmre16D1Ty7Rhide83dZRqOnsMJs2IM+wwqz4X9GhLh58+Zp6dKlWrt2rdLS0iRJWVlZSkpKUkxMjBITE/1codQvc6RG/+kmrbh9rrYWbVBIRLi69u/l77KMRk9hhdmwB32GFWYjMBjxcOrs2bM1ZcoUb4CTpODgYCUlJXnvwh08eFC//vWvNWTIEA0fPlw33nijrTWm33ml1v3lFdWtKJWnxa1D+xq0u7zG1ho6G3oKK8yGPegzrDAbgSHg78RVVFSoqqpKc+bMabOvpqZGOTk5kqQ777xTXbp00aZNm+RwOLRt2zbbagyJCFevUYNV+94aTfjwrwrr3lVfl1SoeOYz2lez3bY6OhN6CivMhj3oM6wwG4Ej4O/E1dbWSpLi4uJabS8rK1N1dbXS09O1b98+Pf/887rvvvvkcDgkSX369PH5GlFRUQoPD/fpzenMavPxYT26yhEUpAGXZOjtq+5XfsbNavh6t5x//21HP22jOZ1ZPveTnkKynhmnM6vNscxGxzmd9BntczqZDTs4ne33OSoqqkPnC/gQFxsbK0mqrKz0bvN4PJo+fbrcbrfS09O1efNmxcbG6t5779Vpp52mrKwsrVixwrYaD+07KEn67Kml2vfl12ppaFLJQwsVOzyJ5wh0ED2FFWbDHvQZVpiNwBHwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkqKWlpa9Pnnnys9PV2ffPKJZs+erYkTJ2rv3r0+XcPlcqmxsdGnt8LC5W0+/pDrwOFbyB7PMf7szVRYuNznftJTSNYzw2wcW/QZVpgNe1j12eVydeh8AR/iQkJClJ+fr/j4eOXm5iovL0/jxo1TZmamRowYoaCgICUmJiokJERXXXWVJCkjI0O9evXSpk2bbKuz/Pm3lHrDJYrsF6vg8FCl33mldny6Wftrd9hWQ2dDT2GF2bAHfYYVZiMwBPwLGyRp5MiRKioqarVt7ty5yszMlCT16tVLTqdTb7/9ti688EJt2rRJ27dvV3Jysm01lv6tQGHdu+nSt/4oOYK0vbhMhdf/ybbrd0b0FFaYDXvQZ1hhNgKDESHuhxoaGlReXq68vDzvtieffFLXXXedpk2bptDQUM2fP189evSwryiPR6sfeEGrH3jBvmt2dvQUVpgNe9BnWGE2AoKRIW7dunVqaWlp9ZcaBg0apOXLl/uvKAAAABsZGeIyMjLk4QmVAADgBBbwL2wAAABAW4Q4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAIf4uwFdNTU2677779Oyzz2rHjh0aPXq0Hn74YWVkZGjx4sXKzs72W22TK+e3ej84LFS7K2r12nnT/FSR+egprDAb9qDPsMJsBA4jQpzH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6tb0Hy1a3ev/TdR1VVsNJP1XQO9BRWmA170GdYYTYChxEhbt68eVq6dKnWrl2rtLQ0SVJWVpaSkpIUExOjxMREP1f4nV6jktVj6EmqfKnQ36V0GvQUVpgNe9BnWGE2/MuIEDd79mxNmTLFG+AkKTg4WElJSQoNDdWWLVs0fvx4777du3dr79692rlzp+21DvnFWNW+t0YN23bZfu3Oip7CCrNhD/oMK8yGfwV8iKuoqFBVVZXmzJnTZl9NTY1ycnI0cOBArV271rs9Ly9Pzc3NPl8jKipKTU1NPh07OKSn7owe0+6+kIhwJWWfrQ9vn+vztTsjpzNLm5t9X9D0FE5n+zPDbBxbTid9RvucTmbDDk5n+30OCwuTy+U66vMFfIirra2VJMXFxbXaXlZWpurq6jbPh2tqatKCBQv05ptv2lbjtwb+fLSaG5r05Turbb92Z0VPYYXZsAd9hhVmw/8C/leMxMbGSpIqKyu92zwej6ZPny63290mxL322mvq37+/Tj31VJ+v4XK51NjY6NNbYeFyy/MMmXyeNr+8XJ4W99F9kp1MYeFyn/tJTyFZzwyzcWzRZ1hhNuxh1eeO3IWTDAhxqampSk5O1owZM7Ro0SItW7ZM2dnZKikpUWRkpFJSUlod//TTT+u6666zvc7owf0Ud1qKNr34ru3X7qzoKawwG/agz7DCbASGgH84NSQkRPn5+Zo6dapyc3OVkJCgvLw8RUdHa/PmzQoK+i6H1tbW6v3339f8+fOPcMbjY8hVY7Vt1Ua5qrbafu3Oip7CCrNhD/oMK8xGYAj4ECdJI0eOVFFRUattc+fOVWZmZqttzz33nC655BLvQ7B2Wn3/C7Zfs7Ojp7DCbNiDPsMKsxEYAv7h1PY0NDSovLy8zfPhnn32Wb88lAoAAGA3I+7E/dC6devU0tLSJsRt2rTJTxUBAADYy8gQl5GRIY/H4+8yAAAA/MbIh1MBAABOdIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADCQw8NvzT0qTa4D2rXxC3+XEdB6piYqLCrS5+PpKaxmhtk4tugzrDAb9jja/x9/DCEOAADAQDycCgAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAG+v9cNHJlWUDfYgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -593,16 +593,16 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.817888Z", - "iopub.status.busy": "2024-11-23T19:54:58.817340Z", - "iopub.status.idle": "2024-11-23T19:54:58.949058Z", - "shell.execute_reply": "2024-11-23T19:54:58.948464Z" + "iopub.execute_input": "2024-12-05T03:21:33.463262Z", + "iopub.status.busy": "2024-12-05T03:21:33.462859Z", + "iopub.status.idle": "2024-12-05T03:21:33.614941Z", + "shell.execute_reply": "2024-12-05T03:21:33.614363Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -630,16 +630,16 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.951381Z", - "iopub.status.busy": "2024-11-23T19:54:58.950864Z", - "iopub.status.idle": "2024-11-23T19:54:59.115489Z", - "shell.execute_reply": "2024-11-23T19:54:59.114842Z" + "iopub.execute_input": "2024-12-05T03:21:33.617371Z", + "iopub.status.busy": "2024-12-05T03:21:33.616925Z", + "iopub.status.idle": "2024-12-05T03:21:33.887906Z", + "shell.execute_reply": "2024-12-05T03:21:33.887267Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGOCAYAAAD4oVVpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAziElEQVR4nO3de1hVddr/8c/mKCiooCgaKIoS4YmmIsuCbaexZkIlO4wWTTXldHqYxyZ7LGdsOjpTz8yYU/18mk6mTUmTZKOdsdIhKdFEEwRDIkJNPG0VQdj794e1i2DZltG19xffr+viumStxVo3N/cXP6y9Nzg8Ho9HAAAAMEqQvwsAAADA0SPEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYK8XcBpmlyHdCujV/4u4yA1jM1UWFRkT4fT09hNTPMxrFFn2GF2bDH0f7/+GMIcUdp18YvtCz7Hn+XEdDGFdyvPmec7PPx9BRWM8NsHFv0GVaYDXsc7f+PP4aHUwEAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxkT4pqamjRz5kwlJCQoIiJCY8eOVXFxsRwOhwoKCvxdHgAAgK2M+IsNHo9HkyZNUnFxsWbNmqXk5GQtXLhQEyZMkCSlp6f7uULJERyk02flanDOuXIEBWnLvz7SqhlPqaXxkL9LMxY9hRVmwx70GVaYjcBgxJ24efPmaenSpXrnnXd000036bzzztO8efMUHBysmJgYJSYm+rtEjbh9ovqeNUwFY6fplbNvU4+hJ+kn91zt77KMRk9hhdmwB32GFWYjMBgR4mbPnq0pU6YoLS3Nuy04OFhJSUneu3CbNm3S6NGjNXToUI0ePVoVFRW21jhk8nkqnfNPHdi6U431e7X20ZeVfEWWHEFGtDgg0VNYYTbsQZ9hhdkIDAHf7YqKClVVVSknJ6fNvpqaGm+Imzp1qm655RZt2rRJt9xyi2666SafrxEVFaXw8HCf3pzOrDYfHxYdqW79e2vnhirvtvrSKoVFRapbQu+j/ZSN53Rm+dxPegrJemaczqw2xzIbHed00me0z+lkNuzgdLbf56ioqA6dL+BDXG1trSQpLi6u1faysjJVV1crPT1d27dvV0lJia666ipJ0lVXXaWSkhJ9/fXXttQY0i1CktS054B3W9Oe/ZKk0G/24ejQU1hhNuxBn2GF2QgcAR/iYmNjJUmVlZXebR6PR9OnT5fb7VZ6erpqamrUv39/BQcHSzr8UGu/fv1UU1Pj0zVcLpcaGxt9eissXN7m45v3NUiSQqMjvdvCuneVJB36Zt+JpLBwuc/9pKeQrGeG2Ti26DOsMBv2sOqzy+Xq0PkCPsSlpqYqOTlZM2bM0KJFi7Rs2TJlZ2erpKREkZGRSklJ8XeJatp7QPtqv1ZM2kDvtthhSWpyHdC+GnvuBnY29BRWmA170GdYYTYCR8CHuJCQEOXn5ys+Pl65ubnKy8vTuHHjlJmZqREjRigoKEgJCQmqra1VS0uLJKmlpUVfffWVEhISbKuzYsG7GnHbBEX06anw2GiNmna5Kl9aLo/bbVsNnQ09hRVmwx70GVaYjcBgxO+JGzlypIqKilptmzt3rjIzMyUdfr7cqFGj9OKLL2rKlCl68cUXlZ6ert697XuC5bo5/1R4TLTGL/+zHEEObXn9I61+4AXbrt8Z0VNYYTbsQZ9hhdkIDEaEuB9qaGhQeXm58vLyvNuefPJJ5ebm6g9/+IN69uyp559/3taaPC1uFc98WsUzn7b1up0ZPYUVZsMe9BlWmI3AYGSIW7dunVpaWlr9pYaTTz5Zq1at8mNVAAAA9jEyxGVkZMjj8fi7DAAAAL8J+Bc2AAAAoC1CHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYyJgQ19TUpJkzZyohIUEREREaO3asiouL5XA4VFBQ4O/yAAAAbBXi7wJ84fF4NGnSJBUXF2vWrFlKTk7WwoULNWHCBElSenq6nyuUBv58tFJvuFgxaQPVuNOl/DNu9ndJRqOfOBLmwx70GVaYjcBgRIibN2+eli5dqrVr1yotLU2SlJWVpaSkJMXExCgxMdHPFUqNe/ar7Ok31KV3d6Xd+DN/l2M8+okjYT7sQZ9hhdkIDEaEuNmzZ2vKlCneACdJwcHBSkpKUmhoqCTpjjvu0CuvvKItW7aotLRUw4YNs7XGug/WSZISf3q6rdftrOgnjoT5sAd9hhVmIzAE/HPiKioqVFVVpZycnDb7ampqvA+ljh8/Xh988IEGDBhgd4kAAAC2C/g7cbW1tZKkuLi4VtvLyspUXV3tDXFjxozp8DWioqLU1NTk07GDQ3rqzuiOX+tE4HRmaXPzLp+Pp6dwOtufGWbj2HI66TPa53QyG3ZwOtvvc1hYmFwu11GfL+DvxMXGxkqSKisrvds8Ho+mT58ut9sdEC9qAAAAsFvAh7jU1FQlJydrxowZWrRokZYtW6bs7GyVlJQoMjJSKSkp//E1XC6XGhsbfXorLFz+n39SnVxh4XKf+0lPIVnPDLNxbNFnWGE27GHV547chZMMeDg1JCRE+fn5mjp1qnJzc5WQkKC8vDxFR0dr8+bNCgoKjBzqCApSUGiwHCEhksOh4PBQeTweuZua/V2akegnjoT5sAd9hhVmIzAEfIiTpJEjR6qoqKjVtrlz5yozM9NPFbU1+LJzNeavt3rfv3rLi9pXs53fndNB9BNHwnzYgz7DCrMRGIwIcT/U0NCg8vJy5eXlebfdfvvt+uc//6mtW7fq/PPPV2xsrDZs2GBbTZUvL1fly8ttu15nRz9xJMyHPegzrDAbgSEwHos8SuvWrVNLS0urFzXMmTNHX375pZqbm7V161ZbAxwAAIDdjLwTl5GRIY/H4+8yAAAA/MbIO3EAAAAnOkIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABjImBDX1NSkmTNnKiEhQRERERo7dqyKi4vlcDhUUFDg7/IAAABsFeLvAnzh8Xg0adIkFRcXa9asWUpOTtbChQs1YcIESVJ6erpf6wsKC9GZD96g+DHD1SU2Wge27dLGp5ep7Ollfq3LZPQUVpgNe9BnWGE2AocRIW7evHlaunSp1q5dq7S0NElSVlaWkpKSFBMTo8TERL/WFxQcrIbtu/XWlffJVb1NMacM0AUv3qODX+/WliVFfq3NVPQUVpgNe9BnWGE2AocRD6fOnj1bU6ZM8QY4SQoODlZSUpLS09NVX1+viy++WCkpKRo+fLgmTpyor7/+2rb6mhsateaP/5Bry1bJ49HODVtU89Ynijsj1bYaOht6CivMhj3oM6wwG4Ej4ENcRUWFqqqqlJOT02ZfTU2N0tPT5XA4dOedd6q8vFylpaUaPHiw7rrrLj9Ue5gjJFh9MlK1a2O132robOgprDAb9qDPsMJs+E/AP5xaW1srSYqLi2u1vaysTNXV1UpPT1dMTIyysrK8+84880w98cQTPl8jKipKTU1NPh07OKSn7owec8Rjznzweh3a16DNi973uYbOxOnM0ubmXT4fT0/hdLY/M8zGseV00me0z+lkNuzgdLbf57CwMLlcrqM+X8DfiYuNjZUkVVZWerd5PB5Nnz5dbre7zYsa3G63nnjiCV166aW21vmt02flqvdPUvT25AfkPtTslxo6G3oKK8yGPegzrDAb/hXwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkpKq+Nvu+02devWTbfeeqvP13C5XGpsbPTprbBwueV5zvjDtep37gi9efm9atx59Im6sygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBD6eGhIQoPz9fU6dOVW5urhISEpSXl6fo6Ght3rxZQUHf5dA77rhDFRUVWrJkSavtdjjjvusUP2aY3rhslhrr99p67c6KnsIKs2EP+gwrzEZgCPgQJ0kjR45UUVHrly3PnTtXmZmZ3vdnzJih1atX61//+pfCw8Ntra/rSb10yg0Xq+Vgky5b9Tfv9m2ryvTO5AdsraWzoKewwmzYgz7DCrMROIwIcT/U0NCg8vJy5eXlSZI2bNighx56SEOHDtVZZ50lSUpKStKrr75qSz37v9yhZ+Mvs+VaJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UkJaWJo/H4+eqAAAA7GNkiMvIyCC0AQCAE1rAvzoVAAAAbRHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAxoS4pqYmzZw5UwkJCYqIiNDYsWNVXFwsh8OhgoICf5cHAABgqxB/F+ALj8ejSZMmqbi4WLNmzVJycrIWLlyoCRMmSJLS09P9XKF05kM3KOGC0xQaHalD+xpU/XqRPrnvBbkPNfu7NGPRU1hhNuxBn2GF2QgMRoS4efPmaenSpVq7dq3S0tIkSVlZWUpKSlJMTIwSExP9XKG08Zk39Mkf5qu5oVHhMVHKmjdNI26fqLWPvuzv0oxFT2GF2bAHfYYVZiMwGBHiZs+erSlTpngDnCQFBwcrKSlJoaGhkqTx48erqqpKQUFB6tatmx577DGNGjXKthr3bPryu3ccDnncHkUNirft+p0RPYUVZsMe9BlWmI3AEPAhrqKiQlVVVZozZ06bfTU1NcrJyZEkPffcc+revbskqaCgQNddd51KSkpsrXX4reM1Ii9HoV0jdHDnXr39ixdsvX5nRE9hhdmwB32GFWbD/wI+xNXW1kqS4uLiWm0vKytTdXW19/lw3wY4SdqzZ4+Cgnx/zUZUVJSampp8OnZwSE/dGT2m3X2lcxerdO5idR/SX4MmnqOG7bt8rqEzcTqztLnZ98+dnsLpbH9mmI1jy+mkz2if08ls2MHpbL/PYWFhcrlcR32+gH91amxsrCSpsrLSu83j8Wj69Olyu92tXtRwww03KDExUXfffbeee+4522v91p6KWu3cUK1zHrvdbzV0NvQUVpgNe9BnWGE2/CfgQ1xqaqqSk5M1Y8YMLVq0SMuWLVN2drZKSkoUGRmplJQU77FPPfWUvvjiCz344IP67W9/6/M1XC6XGhsbfXorLFzu0zmDQoMVfYI+P6CwcLnP/aSnkKxnhtk4tugzrDAb9rDqc0fuwkkGhLiQkBDl5+crPj5eubm5ysvL07hx45SZmakRI0a0+7Dp1VdfrcLCQtXX19tSY2hUpJIvz1JYdKQkqWfqAI3My9FXyz+15fqdET2FFWbDHvQZVpiNwBHwz4mTpJEjR6qoqKjVtrlz5yozM1OStG/fPu3atUsJCQmSpCVLligmJkYxMTH2FOjxaFDOuTp9Vq6CwkJ0cMdeVS9dpbV/esme63dG9BRWmA170GdYYTYChhEh7ocaGhpUXl6uvLw8SdL+/fs1adIk7d+/X8HBwYqJidGSJUvkcDhsqefQvga9dcUfbLnWiYKewgqzYQ/6DCvMRuAwMsStW7dOLS0t3hc19OnTRx999JGfqwIAALCPkSEuIyNDHo/H32UAAAD4TcC/sAEAAABtEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gLEmL/coowHrvd3GV7nL7hbqddf7O8yjonJlfMVMyzJ32V0WN/RaZpcOf+4nf+nr9yrtKmXHvXHxWWk6opP/+84VORfgbYWv8/kWTa5dol1aCfWoO+M/LNbpooeFK/TZl6tuNNTFBwepoavd6vmrU/08aznjuo8yZdnKe3Xl6rA+d/HqVLpnckPHLdzH0s/feVe9f7JULkPNcvjdqth+2599WGp1j++WPu/3CFJWpB8tZ+r7Jy2r9qol0b+yt9lHFHfs9I0atrlih0xSJJUv+5zrX3kZW0t2uDnyg4bNe1yxY4crHevecin4wN1llmH/hPo65A1eHxxJ85G58+foT2VXyn/jFu0YOg1envyA9r1WbVfanGEBPvlusdDycMvasGQq7UwJVfvXf8ndekZpUvffkTRg/v5uzT40Unn/0QXLLxHNe+s1sun3qSXT71JNe+s1gUv3qOTzju13Y9xBB+7b4mdaY35gnWIH2INHn+EOJuEx0QpelC8yp9/S80HDkoej1xVW1X58vJ2jz/nsds0qeT/aXLFfF369p/U3zlKkhQzLEmjZ9+o7kP6a3LlfE2unK/oQfGSDv/Ec8nrD+qqjc9q/Ad/UVL22d7zjZp2uc5fcLcyHrxBV254Whn3X3fEer9/a//8BXfr5F/+VJIU3CVMV1ctVMaDN3iPnfDhX9V/bHpHW3NM7dn0pT649a86sHWn0n97hSTp2rp8xY4cLOlw/8Ytvk9XbnhGV254Rln/N01denX3fnxYdKQyn/yNflH2nCaufExDr75A19blKzwm6kevHTtikC5a9Htd9dkzunL931v1OP7cEfrZm7P1i/LndOm7jyrxp6d7942adrnOe/5/Wp3rsuLHNeCSM9u9TkhkF43+4426fM08XfHp/2nMX29VWPeu3v3X1uUr9fqLlV34v5q8+QVlzZumsOhInf3nm/WL8uc04cO/qvepQ1qdM6JPD1340u80uXK+fvbGbG+/juT7Dy/1Sh+iK9f//bvP6Y7LlVv7srrERkuSksafrUuW+vaT7rGScf91qly0XBueeE2HXAd0yHVAG554TZvz39cZ33xtLit+XCPycnTxaw9oyucL1Oubzzu0axdlzZumyRXzNf79P6tf1sgfvd63/Rg65Xxd9vETuvSdRyRZf+0Tf3q6ht8+Qf2do7xrOSjsyA+OfDvLjuAg/WLT8+qRknD42mel6dq6fA342WhJUkRcD13zxT8U2i2iY837D7EOWYcSa9CONUiIs0njTpd2b6rR2X++WUnZZytqQJ8jHl+3coMKnP+thSfnqnz+28qaN03hsdHaub5KRdPnaU9FrRYkX60FyVdr7+d16pGSoLFP36k1j7ykF0/5pT687TGd+dANrb4J9Dt3hHaur9JLI27Qx/f6/hBu3YpSxY8ZLkmKOz1F++vqFT9mmCQpsm+Mogb00baPNnagK8eHp8WtL94oVt+z0truc7u1+qGFennUr/TqObcrtFtEq2/yGQ9cr/Ae3ZSfcbP+dendGjR+jE/XjOwbo4vyZ2nL6x/p5fQbtej0X6tqSZEkKWpgX53/3F1aP3exXjzll1r9wAvKfOI3ikkb2KHPL+P+69Q9ub8Kzr9Dr57zXwqPidLZ/3tzq2MSf3q63sj5vfLPuFmxIwfpkn89pC1LivRi6i9VvXSVRs++sdXxQ64cq7WPvuzdf/7zdyk4Isznmuo/3ayg0BD1TB0gSYo/Z7hc1dvU9+zDcxI/Zri2rljfoc+3I6IH91PUgD6qWryyzb7PX12h6IF9vT/8JE/K0sppj2tB8tWqX18lSUoaP0afv/qhFp6cq3WPvaqxT9+pyL4xP3rdkIhw9RqVrMXn5un1cdOP+LX/4o2PVTrnVdUWrvWuZXdTs0+fn6fFrW2rNnrXZfw5w7W3qs67LuPHDFf9us91aF+DT+c7HliHJ/Y6ZA3aswYJcTZ6Y+LvtWNtpYbfPlETVsxRzkd/08Cfj2732Mp/vKemPfvlaXGr/Pm31LjL5f0JpT0puRdp8ysf6Kvln0oej+o/3ayqgpUafNm53mP2VNaqYuG78rS41dLQ5HPdW1euV58zT5EcDsWfM1wVC99VSGS4Ivr0VN8xw7Rj7ebDdxcDyIG6nQrv0a3N9l2fVWv7qo1yH2pW406XSue86v0G5wgK0sBLz9KaP72kpj371Vi/V5/+9RWfrjco51ztLK1S+XNvqqXxkFoamrR91eFgm5R9lrat2qgtS4rkaXGr9r01+uKtTzR4UubRf2IOhwZNPEclDy1UY/1eNe09oE/um68BF2e0+olvw5NL1LjTpcb6vfrqg3XaV7Ndte+tkcftVtXileqRmqig0O9+4tzyepG2F5fJfahZpY+9Ko/bo/6ZP/6T77c8bre2fbRR8WOGKSSyi3oMOUkbnlyi+HMOf4Pre/Yw1a20L8R1+eaOTcO2nW32NWzfdfiYb+5OlM9/W3sqauVxu73fwLd+9Jm+WFYsT4tbn+d/oF2fVVuu1e9zBAVp9YML1NzQqJaGpmP7tf+BrSvWt/oPY+0jL3v/Q7G731ZYhyfuOmQN2tNrXthgo4P1e7X6/he0+v4XFNotQkOnXKBzH8/Tro0/eF6cw6H0316hgZeepYi4HpLbo5BuXbwD355uCb0Vf/YwDc75LrQ5QoJU+95a7/v7a3d0qO760io5HFLMsIGKP3u4PprxlLon91f8mGGKP3uY6laUdui8x1NkfIwad7nabI8a0Een/f4a9U4fopCuXeRwOLzfdMNjohQcFtqqT772rNtJvbS3qs6illjt+/LrVtv2VW9Ttx+5G9ueLrHRCg4P1b6a7863r3rb4ev0i9WeTV9Kkhp27PHub2loVMP23d73mxsaFRQcrJCIMDUdOvwNc//36/N4tL92hyL7xh5VbXUrStX37GHas/krbV+9SbXvrVHa1J+r60m91DU+VtuK7btbe3Dn4a99RJ8Y7an8qtW+iLieh4+p3ytJ2l/b+msj/aAfkvbVfO3TXYDmhkY17vxu7o7l1/6H6laUakRejsKiIxU9qJ+qFq/UqXddpcj4GMWPGaZ/T3vyP77Gf4p1eOKuQ9agPWuQO3F+cmhfgzY8+Zqa9h7wPqb+rUETxmjw5Zl679qHtTAlVwtPztWBr+rlcDgkSR6Pp8359tfuUNmzb2rhybnetwXJV2v5jY96j/G4236cTzwebS36TAPGZShqYB/tLK1S3cr1ih8zPCBDnCM4SIkXna6t//6szb7Rs29U406XFmf9RguHXqN3r3nYu69xp0stTYfUtX8v77bv//tI9n25Q9FJ8e3uO1BXr24n9W61rVtCnA7U1UuSDu0/qJDvPWTiCA5q9fyg7ztYv1ctjYfULeG783377wN1bX/i9VXX79fncCiyX6wObK0/qnPUrVivvmeeon6ZI1W3ovTwN06HQ0OuGKuvSzYd1d3f/9TezV/J9cU2JV16Vpt9SdlnyfXFNu39/PB/9u2ti65tvl69dWDrj/fX43a3ev/HvvY/PP5o7NywRR63W6f86mfa/nGZPG636las19BfnK/IuJ7a/nFZh899LLAOj15nWoesQXvWICHOJmHdu+rU//mFegw9SY6QYAWFhWjo1RcoJCJM9Z9+3urY0G4Rcjc162D9XgWFBCtt6qWKjP/up7GGr3crIq5Hq+dKlD//lpIvz1T8uSPkCA5SUGiIYkcOVs9TBhyT+utWlCr1+nHatmrjN4NaqgEXZ6hLr+7a/kn5MbnGsdA9uZ/GzLlNkfGxWvPIS232h0ZFqsl1QE17DyiiT0+NyMvx7vO43dqypEij7rhcYd27KjwmSiNum+DTdT//5weKHTFIKddcqKCwEAVHhCkuI1WSVFXwb/XJSNWASzLkCApSf+coJVx0mjbnfyBJqi/9XL1OHaLuQ09SUFiI0qdfqSCrV1V5PPr81Q+VPv0qhcdGKyw6UqfNvEbVy1bpkOvAUXbrOwMvOVO9T0uRIyRYw2/JVlBIsL56f91RnWPXxmq1HGrWkCudqvvwcLDfunK9TrnxEtXZ+Hy4bxX/7lklX+FU2k0/V2i3CIVGReqUm36m5MudKp75zBE/tu+ZpyjhwtPkCA7SoInnqOcpA7TlXx8ddQ0/9rVv2LFHXfv36vAr8rb+e8M3/T3c77qVpTrlxku0ffUmtTQe6tA5jwXWYcd0tnXIGjz+a5CHU23ibmpWRO8eGvvcXYro3V0tjc3avalG7147u82t3spFyxV/znDlrHpczQcaVf78W9pd9oV3f92K9dpeXKbLV/8/OYKCtGTcdO36rFqFv3pUp06/Sj2e/I08Hml32Rda/eCCY1J/3YpShUXf4P0mcKBupxq279b+up0+PxH0eDn1rqs0atokeTweNWzbpboVpXrtgju8v5/q+4p//6zO+uONSqm4QK7q7Sp//i31O3eEd/+qu/+us/40VZetelwH6/fqs78vVfyY4T+6GA/U7dSbk+7Vab+/Rj+ZMVkth5pVtXiFtq/aKNeWrXrvuj/q1P+ZrLP/fIv2f/m1Prh1jnZ+8wTerSvXq/zZNzXu1fvkbjqk0r8tPuJPnMUzn9Hps3I1/r1HJYdDX73/qYp/d+RviD+m4qVCpd95pXqfmqy9n9fp3WseVnND41GfZ+vKw88R+fZX59StKNXQyef75flZNW9+rHemPKiR/32ZRv32ckmHf0fVO1Me/NG7x1WLV2jwpEyd+7f/0v66ehXe8IgOfHV0d0Qk/ejXfsuSIg0aP0ZXrn9aDodD/xhx/VGtp7oPSzXwZ6O967JuxXqFRXf1S79Zh6zDH2INHn8OT3uPzcHStuIyLcu+x99lHHfjFt+nLUuKtPHvS4/+YwvuV58zTvb5+EDuaf+x6Tr3b/+lF1Ov9XcpASd+zHBlzftvvXjKL//jc1nNTCDPht0cQUHKrX1ZBWOntX0erY9M7TPr0NqxWoemzoadjuca7CgeTkUbIZFdFDWgj1xbtvq7FNtFJfVVr1HJksOhbif1Vvpvr1BVQduXyEPqmTZArm+ezI3jr2faALkPNbf7JPDOhnXoO9ahfQJxDfJw6glq+O0TNeL2ts8zCe4SpqDgYFUtXqnawrX2F+ZnIRHhOuex2xTZL1aHXA368p3VWn3/C5Kk7OV/VreT2j7Buuat1frg5r/YXKk9rP5WZO3yTxU7PCkgXgFpp+M9A+cvuFt9Mtr+lH5o30EFhQZr9YML1bS348+5MgXrsDXW4XdYg60R4k5QpXP+qdI5//R3GQFn12fVevWc/2p3X0HWb2yuxv8C7e8E+tvxngFT/mbx8cY6bI11+B3WYGs8nAoAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCAjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBdwIc4j8ejSZMm6amnntI999yj119/XUlJSZow4fDf/UxPT/dzha0FdwnTxH8/Zvm37nB06CeOhPmwB32GFWbDvwL+b6fOmzdPS5cu1dq1a5WWliZJysrKUlJSkmJiYpSYmOjnCltL/+0V2vflDkXE9fB3KZ0C/cSRMB/2oM+wwmz4V8DfiZs9e7amTJniDXCSFBwcrKSkpDZ34e699145HA6tX7/e7jIlSbEjBqm/c5TW/22xX67f2dBPHAnzYQ/6DCvMhv8FdIirqKhQVVWVcnJy2uyrqalpFeJKSkr00UcfacCAAXaW6OUIDtJZj0zVRzOekrup2S81dCb0E0fCfNiDPsMKsxEYAjrE1dbWSpLi4uJabS8rK1N1dbU3xDU2NuqWW27RE0880aHrREVFKTw83Kc3pzOr3XMMuzlb9aVV2vbRxg7V0Jk4nVk+99Oqp/TzxOJ0tj8zTmdWu8czHx3jdNJntM/pZDbs4HS23+eoqKgOnS+gQ1xsbKwkqbKy0rvN4/Fo+vTpcrvd3hD3u9/9TlOmTNHAgQP9UaaiBvZVyjUX6pP7eGLnsUA/cSTMhz3oM6wwG4EjoF/YkJqaquTkZM2YMUOhoaHq1q2bnnjiCa1Zs0aRkZFKSUlRUVGRPvnkEz388MMdvo7L5fL52G3FZVqWfU+rbX3OOFkRvbpr4so5kqSgkGCFdo3QlRueVuH1fzrhflIpLFyuPmec7PPxP+wp/TzxWM0M6+3Yos+wwmzY42j/f/wxAR3iQkJClJ+fr6lTpyo3N1cJCQnKy8tTdHS0Nm/erKCgIL3//vvauHGjkpKSJElffvmlLrroIj3zzDO68MILbamzasm/9dWH67zv9/5Jisb89Ra9dv4dOli/15YaOhP6iSNhPuxBn2GF2QgcAR3iJGnkyJEqKipqtW3u3LnKzMyUJN1111266667vPsGDhyo119/XcOGDbOtxpaGJh1o2Ol9v7F+r+Tx6EDdziN8FKzQTxwJ82EP+gwrzEbgCOjnxLWnoaFB5eXlAfdLfr9va9EGLUi+2t9ldBr0E0fCfNiDPsMKs+E/AX8n7ofWrVunlpYWyxC3ZcsWewsCAADwA+NCXEZGhjwej7/LAAAA8CvjHk4FAAAAIQ4AAMBIhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADGRMiGtqatLMmTOVkJCgiIgIjR07VsXFxXI4HCooKPB3eQAAALYK8XcBvvB4PJo0aZKKi4s1a9YsJScna+HChZowYYIkKT093a/1jfnLLUqaMEbuQ83ebct/9ahqC9f6ryjD0VNYYTbsQZ9hhdkIHEaEuHnz5mnp0qVau3at0tLSJElZWVlKSkpSTEyMEhMT/VyhtOmFd7Tq7r/7u4xOhZ7CCrNhD/oMK8xGYDAixM2ePVtTpkzxBjhJCg4OVlJSkkJDQyVJAwcOVJcuXdSlSxfvx1x00UV+qRcAAOB4C/gQV1FRoaqqKs2ZM6fNvpqaGuXk5Hjfz8/P17Bhw+wsz2vQxHM0aMIYNezYo89f+UClcxfL0+L2Sy2dBT2FFWbDHvQZVpiNwBDwIa62tlaSFBcX12p7WVmZqqurj8nz4aKiotTU1OTTsYNDeurO6DGttn3296X65L75OrjTpdgRg5T5eJ6Cw8O05o//+I9rM5HTmaXNzbt8Pp6ewulsf2aYjWPL6aTPaJ/TyWzYwelsv89hYWFyuVxHfb6Af3VqbGysJKmystK7zePxaPr06XK73a1C3OTJkzVixAjdfPPN2r17t2017iyt0sH6vZLHo/pPN2vNIy8pKfts267fGdFTWGE27EGfYYXZCBwBH+JSU1OVnJysGTNmaNGiRVq2bJmys7NVUlKiyMhIpaSkSJI+/PBDffrpp/r444/l8Xh06623+nwNl8ulxsZGn94KC5f/+AndHsnRwU+4EygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBIS4kJET5+fmKj49Xbm6u8vLyNG7cOGVmZmrEiBEKCjr8KSQkJEiSwsPDdfPNN2vlypW21Tjw0rMUGhUpSeqZOkAjp03SlteLbLt+Z0RPYYXZsAd9hhVmI3AE/HPiJGnkyJEqKmo9IHPnzlVmZqYkaf/+/Wpublb37t3l8Xj0j3/8Q6NGjbKtvpOvvUijZ9+ooNBgNWzbrc3572vdY6/adv3OiJ7CCrNhD/oMK8xG4DAixP1QQ0ODysvLlZeXJ0natm2bcnJy1NLSopaWFp1yyil6/PHHbavnjYm/t+1aJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UMGjQIK1Zs8bPVQEAANjHyBCXkZEhj8fj7zIAAAD8JuBf2AAAAIC2CHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBViL8L8IXH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6u8LCTzjtV6dOvVPTgfmre16D1Ty7Rhide83dZRqOnsMJs2IM+wwqz4X9GhLh58+Zp6dKlWrt2rdLS0iRJWVlZSkpKUkxMjBITE/1codQvc6RG/+kmrbh9rrYWbVBIRLi69u/l77KMRk9hhdmwB32GFWYjMBjxcOrs2bM1ZcoUb4CTpODgYCUlJXnvwh08eFC//vWvNWTIEA0fPlw33nijrTWm33ml1v3lFdWtKJWnxa1D+xq0u7zG1ho6G3oKK8yGPegzrDAbgSHg78RVVFSoqqpKc+bMabOvpqZGOTk5kqQ777xTXbp00aZNm+RwOLRt2zbbagyJCFevUYNV+94aTfjwrwrr3lVfl1SoeOYz2lez3bY6OhN6CivMhj3oM6wwG4Ej4O/E1dbWSpLi4uJabS8rK1N1dbXS09O1b98+Pf/887rvvvvkcDgkSX369PH5GlFRUQoPD/fpzenMavPxYT26yhEUpAGXZOjtq+5XfsbNavh6t5x//21HP22jOZ1ZPveTnkKynhmnM6vNscxGxzmd9BntczqZDTs4ne33OSoqqkPnC/gQFxsbK0mqrKz0bvN4PJo+fbrcbrfS09O1efNmxcbG6t5779Vpp52mrKwsrVixwrYaD+07KEn67Kml2vfl12ppaFLJQwsVOzyJ5wh0ED2FFWbDHvQZVpiNwBHwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkqKWlpa9Pnnnys9PV2ffPKJZs+erYkTJ2rv3r0+XcPlcqmxsdGnt8LC5W0+/pDrwOFbyB7PMf7szVRYuNznftJTSNYzw2wcW/QZVpgNe1j12eVydeh8AR/iQkJClJ+fr/j4eOXm5iovL0/jxo1TZmamRowYoaCgICUmJiokJERXXXWVJCkjI0O9evXSpk2bbKuz/Pm3lHrDJYrsF6vg8FCl33mldny6Wftrd9hWQ2dDT2GF2bAHfYYVZiMwBPwLGyRp5MiRKioqarVt7ty5yszMlCT16tVLTqdTb7/9ti688EJt2rRJ27dvV3Jysm01lv6tQGHdu+nSt/4oOYK0vbhMhdf/ybbrd0b0FFaYDXvQZ1hhNgKDESHuhxoaGlReXq68vDzvtieffFLXXXedpk2bptDQUM2fP189evSwryiPR6sfeEGrH3jBvmt2dvQUVpgNe9BnWGE2AoKRIW7dunVqaWlp9ZcaBg0apOXLl/uvKAAAABsZGeIyMjLk4QmVAADgBBbwL2wAAABAW4Q4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAIf4uwFdNTU2677779Oyzz2rHjh0aPXq0Hn74YWVkZGjx4sXKzs72W22TK+e3ej84LFS7K2r12nnT/FSR+egprDAb9qDPsMJsBA4jQpzH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6tb0Hy1a3ev/TdR1VVsNJP1XQO9BRWmA170GdYYTYChxEhbt68eVq6dKnWrl2rtLQ0SVJWVpaSkpIUExOjxMREP1f4nV6jktVj6EmqfKnQ36V0GvQUVpgNe9BnWGE2/MuIEDd79mxNmTLFG+AkKTg4WElJSQoNDdWWLVs0fvx4777du3dr79692rlzp+21DvnFWNW+t0YN23bZfu3Oip7CCrNhD/oMK8yGfwV8iKuoqFBVVZXmzJnTZl9NTY1ycnI0cOBArV271rs9Ly9Pzc3NPl8jKipKTU1NPh07OKSn7owe0+6+kIhwJWWfrQ9vn+vztTsjpzNLm5t9X9D0FE5n+zPDbBxbTid9RvucTmbDDk5n+30OCwuTy+U66vMFfIirra2VJMXFxbXaXlZWpurq6jbPh2tqatKCBQv05ptv2lbjtwb+fLSaG5r05Turbb92Z0VPYYXZsAd9hhVmw/8C/leMxMbGSpIqKyu92zwej6ZPny63290mxL322mvq37+/Tj31VJ+v4XK51NjY6NNbYeFyy/MMmXyeNr+8XJ4W99F9kp1MYeFyn/tJTyFZzwyzcWzRZ1hhNuxh1eeO3IWTDAhxqampSk5O1owZM7Ro0SItW7ZM2dnZKikpUWRkpFJSUlod//TTT+u6666zvc7owf0Ud1qKNr34ru3X7qzoKawwG/agz7DCbASGgH84NSQkRPn5+Zo6dapyc3OVkJCgvLw8RUdHa/PmzQoK+i6H1tbW6v3339f8+fOPcMbjY8hVY7Vt1Ua5qrbafu3Oip7CCrNhD/oMK8xGYAj4ECdJI0eOVFFRUattc+fOVWZmZqttzz33nC655BLvQ7B2Wn3/C7Zfs7Ojp7DCbNiDPsMKsxEYAv7h1PY0NDSovLy8zfPhnn32Wb88lAoAAGA3I+7E/dC6devU0tLSJsRt2rTJTxUBAADYy8gQl5GRIY/H4+8yAAAA/MbIh1MBAABOdIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADCQw8NvzT0qTa4D2rXxC3+XEdB6piYqLCrS5+PpKaxmhtk4tugzrDAb9jja/x9/DCEOAADAQDycCgAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAG+v9cNHJlWUDfYgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGOCAYAAAD4oVVpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAziElEQVR4nO3de1hVddr/8c/mKCiooCgaKIoS4YmmIsuCbaexZkIlO4wWTTXldHqYxyZ7LGdsOjpTz8yYU/18mk6mTUmTZKOdsdIhKdFEEwRDIkJNPG0VQdj794e1i2DZltG19xffr+viumStxVo3N/cXP6y9Nzg8Ho9HAAAAMEqQvwsAAADA0SPEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYK8XcBpmlyHdCujV/4u4yA1jM1UWFRkT4fT09hNTPMxrFFn2GF2bDH0f7/+GMIcUdp18YvtCz7Hn+XEdDGFdyvPmec7PPx9BRWM8NsHFv0GVaYDXsc7f+PP4aHUwEAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxkT4pqamjRz5kwlJCQoIiJCY8eOVXFxsRwOhwoKCvxdHgAAgK2M+IsNHo9HkyZNUnFxsWbNmqXk5GQtXLhQEyZMkCSlp6f7uULJERyk02flanDOuXIEBWnLvz7SqhlPqaXxkL9LMxY9hRVmwx70GVaYjcBgxJ24efPmaenSpXrnnXd000036bzzztO8efMUHBysmJgYJSYm+rtEjbh9ovqeNUwFY6fplbNvU4+hJ+kn91zt77KMRk9hhdmwB32GFWYjMBgR4mbPnq0pU6YoLS3Nuy04OFhJSUneu3CbNm3S6NGjNXToUI0ePVoVFRW21jhk8nkqnfNPHdi6U431e7X20ZeVfEWWHEFGtDgg0VNYYTbsQZ9hhdkIDAHf7YqKClVVVSknJ6fNvpqaGm+Imzp1qm655RZt2rRJt9xyi2666SafrxEVFaXw8HCf3pzOrDYfHxYdqW79e2vnhirvtvrSKoVFRapbQu+j/ZSN53Rm+dxPegrJemaczqw2xzIbHed00me0z+lkNuzgdLbf56ioqA6dL+BDXG1trSQpLi6u1faysjJVV1crPT1d27dvV0lJia666ipJ0lVXXaWSkhJ9/fXXttQY0i1CktS054B3W9Oe/ZKk0G/24ejQU1hhNuxBn2GF2QgcAR/iYmNjJUmVlZXebR6PR9OnT5fb7VZ6erpqamrUv39/BQcHSzr8UGu/fv1UU1Pj0zVcLpcaGxt9eissXN7m45v3NUiSQqMjvdvCuneVJB36Zt+JpLBwuc/9pKeQrGeG2Ti26DOsMBv2sOqzy+Xq0PkCPsSlpqYqOTlZM2bM0KJFi7Rs2TJlZ2erpKREkZGRSklJ8XeJatp7QPtqv1ZM2kDvtthhSWpyHdC+GnvuBnY29BRWmA170GdYYTYCR8CHuJCQEOXn5ys+Pl65ubnKy8vTuHHjlJmZqREjRigoKEgJCQmqra1VS0uLJKmlpUVfffWVEhISbKuzYsG7GnHbBEX06anw2GiNmna5Kl9aLo/bbVsNnQ09hRVmwx70GVaYjcBgxO+JGzlypIqKilptmzt3rjIzMyUdfr7cqFGj9OKLL2rKlCl68cUXlZ6ert697XuC5bo5/1R4TLTGL/+zHEEObXn9I61+4AXbrt8Z0VNYYTbsQZ9hhdkIDEaEuB9qaGhQeXm58vLyvNuefPJJ5ebm6g9/+IN69uyp559/3taaPC1uFc98WsUzn7b1up0ZPYUVZsMe9BlWmI3AYGSIW7dunVpaWlr9pYaTTz5Zq1at8mNVAAAA9jEyxGVkZMjj8fi7DAAAAL8J+Bc2AAAAoC1CHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYyJgQ19TUpJkzZyohIUEREREaO3asiouL5XA4VFBQ4O/yAAAAbBXi7wJ84fF4NGnSJBUXF2vWrFlKTk7WwoULNWHCBElSenq6nyuUBv58tFJvuFgxaQPVuNOl/DNu9ndJRqOfOBLmwx70GVaYjcBgRIibN2+eli5dqrVr1yotLU2SlJWVpaSkJMXExCgxMdHPFUqNe/ar7Ok31KV3d6Xd+DN/l2M8+okjYT7sQZ9hhdkIDEaEuNmzZ2vKlCneACdJwcHBSkpKUmhoqCTpjjvu0CuvvKItW7aotLRUw4YNs7XGug/WSZISf3q6rdftrOgnjoT5sAd9hhVmIzAE/HPiKioqVFVVpZycnDb7ampqvA+ljh8/Xh988IEGDBhgd4kAAAC2C/g7cbW1tZKkuLi4VtvLyspUXV3tDXFjxozp8DWioqLU1NTk07GDQ3rqzuiOX+tE4HRmaXPzLp+Pp6dwOtufGWbj2HI66TPa53QyG3ZwOtvvc1hYmFwu11GfL+DvxMXGxkqSKisrvds8Ho+mT58ut9sdEC9qAAAAsFvAh7jU1FQlJydrxowZWrRokZYtW6bs7GyVlJQoMjJSKSkp//E1XC6XGhsbfXorLFz+n39SnVxh4XKf+0lPIVnPDLNxbNFnWGE27GHV547chZMMeDg1JCRE+fn5mjp1qnJzc5WQkKC8vDxFR0dr8+bNCgoKjBzqCApSUGiwHCEhksOh4PBQeTweuZua/V2akegnjoT5sAd9hhVmIzAEfIiTpJEjR6qoqKjVtrlz5yozM9NPFbU1+LJzNeavt3rfv3rLi9pXs53fndNB9BNHwnzYgz7DCrMRGIwIcT/U0NCg8vJy5eXlebfdfvvt+uc//6mtW7fq/PPPV2xsrDZs2GBbTZUvL1fly8ttu15nRz9xJMyHPegzrDAbgSEwHos8SuvWrVNLS0urFzXMmTNHX375pZqbm7V161ZbAxwAAIDdjLwTl5GRIY/H4+8yAAAA/MbIO3EAAAAnOkIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABjImBDX1NSkmTNnKiEhQRERERo7dqyKi4vlcDhUUFDg7/IAAABsFeLvAnzh8Xg0adIkFRcXa9asWUpOTtbChQs1YcIESVJ6erpf6wsKC9GZD96g+DHD1SU2Wge27dLGp5ep7Ollfq3LZPQUVpgNe9BnWGE2AocRIW7evHlaunSp1q5dq7S0NElSVlaWkpKSFBMTo8TERL/WFxQcrIbtu/XWlffJVb1NMacM0AUv3qODX+/WliVFfq3NVPQUVpgNe9BnWGE2AocRD6fOnj1bU6ZM8QY4SQoODlZSUpLS09NVX1+viy++WCkpKRo+fLgmTpyor7/+2rb6mhsateaP/5Bry1bJ49HODVtU89Ynijsj1bYaOht6CivMhj3oM6wwG4Ej4ENcRUWFqqqqlJOT02ZfTU2N0tPT5XA4dOedd6q8vFylpaUaPHiw7rrrLj9Ue5gjJFh9MlK1a2O132robOgprDAb9qDPsMJs+E/AP5xaW1srSYqLi2u1vaysTNXV1UpPT1dMTIyysrK8+84880w98cQTPl8jKipKTU1NPh07OKSn7owec8Rjznzweh3a16DNi973uYbOxOnM0ubmXT4fT0/hdLY/M8zGseV00me0z+lkNuzgdLbf57CwMLlcrqM+X8DfiYuNjZUkVVZWerd5PB5Nnz5dbre7zYsa3G63nnjiCV166aW21vmt02flqvdPUvT25AfkPtTslxo6G3oKK8yGPegzrDAb/hXwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkpKq+Nvu+02devWTbfeeqvP13C5XGpsbPTprbBwueV5zvjDtep37gi9efm9atx59Im6sygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBD6eGhIQoPz9fU6dOVW5urhISEpSXl6fo6Ght3rxZQUHf5dA77rhDFRUVWrJkSavtdjjjvusUP2aY3rhslhrr99p67c6KnsIKs2EP+gwrzEZgCPgQJ0kjR45UUVHrly3PnTtXmZmZ3vdnzJih1atX61//+pfCw8Ntra/rSb10yg0Xq+Vgky5b9Tfv9m2ryvTO5AdsraWzoKewwmzYgz7DCrMROIwIcT/U0NCg8vJy5eXlSZI2bNighx56SEOHDtVZZ50lSUpKStKrr75qSz37v9yhZ+Mvs+VaJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UkJaWJo/H4+eqAAAA7GNkiMvIyCC0AQCAE1rAvzoVAAAAbRHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAxoS4pqYmzZw5UwkJCYqIiNDYsWNVXFwsh8OhgoICf5cHAABgqxB/F+ALj8ejSZMmqbi4WLNmzVJycrIWLlyoCRMmSJLS09P9XKF05kM3KOGC0xQaHalD+xpU/XqRPrnvBbkPNfu7NGPRU1hhNuxBn2GF2QgMRoS4efPmaenSpVq7dq3S0tIkSVlZWUpKSlJMTIwSExP9XKG08Zk39Mkf5qu5oVHhMVHKmjdNI26fqLWPvuzv0oxFT2GF2bAHfYYVZiMwGBHiZs+erSlTpngDnCQFBwcrKSlJoaGhkqTx48erqqpKQUFB6tatmx577DGNGjXKthr3bPryu3ccDnncHkUNirft+p0RPYUVZsMe9BlWmI3AEPAhrqKiQlVVVZozZ06bfTU1NcrJyZEkPffcc+revbskqaCgQNddd51KSkpsrXX4reM1Ii9HoV0jdHDnXr39ixdsvX5nRE9hhdmwB32GFWbD/wI+xNXW1kqS4uLiWm0vKytTdXW19/lw3wY4SdqzZ4+Cgnx/zUZUVJSampp8OnZwSE/dGT2m3X2lcxerdO5idR/SX4MmnqOG7bt8rqEzcTqztLnZ98+dnsLpbH9mmI1jy+mkz2if08ls2MHpbL/PYWFhcrlcR32+gH91amxsrCSpsrLSu83j8Wj69Olyu92tXtRwww03KDExUXfffbeee+4522v91p6KWu3cUK1zHrvdbzV0NvQUVpgNe9BnWGE2/CfgQ1xqaqqSk5M1Y8YMLVq0SMuWLVN2drZKSkoUGRmplJQU77FPPfWUvvjiCz344IP67W9/6/M1XC6XGhsbfXorLFzu0zmDQoMVfYI+P6CwcLnP/aSnkKxnhtk4tugzrDAb9rDqc0fuwkkGhLiQkBDl5+crPj5eubm5ysvL07hx45SZmakRI0a0+7Dp1VdfrcLCQtXX19tSY2hUpJIvz1JYdKQkqWfqAI3My9FXyz+15fqdET2FFWbDHvQZVpiNwBHwz4mTpJEjR6qoqKjVtrlz5yozM1OStG/fPu3atUsJCQmSpCVLligmJkYxMTH2FOjxaFDOuTp9Vq6CwkJ0cMdeVS9dpbV/esme63dG9BRWmA170GdYYTYChhEh7ocaGhpUXl6uvLw8SdL+/fs1adIk7d+/X8HBwYqJidGSJUvkcDhsqefQvga9dcUfbLnWiYKewgqzYQ/6DCvMRuAwMsStW7dOLS0t3hc19OnTRx999JGfqwIAALCPkSEuIyNDHo/H32UAAAD4TcC/sAEAAABtEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gLEmL/coowHrvd3GV7nL7hbqddf7O8yjonJlfMVMyzJ32V0WN/RaZpcOf+4nf+nr9yrtKmXHvXHxWWk6opP/+84VORfgbYWv8/kWTa5dol1aCfWoO+M/LNbpooeFK/TZl6tuNNTFBwepoavd6vmrU/08aznjuo8yZdnKe3Xl6rA+d/HqVLpnckPHLdzH0s/feVe9f7JULkPNcvjdqth+2599WGp1j++WPu/3CFJWpB8tZ+r7Jy2r9qol0b+yt9lHFHfs9I0atrlih0xSJJUv+5zrX3kZW0t2uDnyg4bNe1yxY4crHevecin4wN1llmH/hPo65A1eHxxJ85G58+foT2VXyn/jFu0YOg1envyA9r1WbVfanGEBPvlusdDycMvasGQq7UwJVfvXf8ndekZpUvffkTRg/v5uzT40Unn/0QXLLxHNe+s1sun3qSXT71JNe+s1gUv3qOTzju13Y9xBB+7b4mdaY35gnWIH2INHn+EOJuEx0QpelC8yp9/S80HDkoej1xVW1X58vJ2jz/nsds0qeT/aXLFfF369p/U3zlKkhQzLEmjZ9+o7kP6a3LlfE2unK/oQfGSDv/Ec8nrD+qqjc9q/Ad/UVL22d7zjZp2uc5fcLcyHrxBV254Whn3X3fEer9/a//8BXfr5F/+VJIU3CVMV1ctVMaDN3iPnfDhX9V/bHpHW3NM7dn0pT649a86sHWn0n97hSTp2rp8xY4cLOlw/8Ytvk9XbnhGV254Rln/N01denX3fnxYdKQyn/yNflH2nCaufExDr75A19blKzwm6kevHTtikC5a9Htd9dkzunL931v1OP7cEfrZm7P1i/LndOm7jyrxp6d7942adrnOe/5/Wp3rsuLHNeCSM9u9TkhkF43+4426fM08XfHp/2nMX29VWPeu3v3X1uUr9fqLlV34v5q8+QVlzZumsOhInf3nm/WL8uc04cO/qvepQ1qdM6JPD1340u80uXK+fvbGbG+/juT7Dy/1Sh+iK9f//bvP6Y7LlVv7srrERkuSksafrUuW+vaT7rGScf91qly0XBueeE2HXAd0yHVAG554TZvz39cZ33xtLit+XCPycnTxaw9oyucL1Oubzzu0axdlzZumyRXzNf79P6tf1sgfvd63/Rg65Xxd9vETuvSdRyRZf+0Tf3q6ht8+Qf2do7xrOSjsyA+OfDvLjuAg/WLT8+qRknD42mel6dq6fA342WhJUkRcD13zxT8U2i2iY837D7EOWYcSa9CONUiIs0njTpd2b6rR2X++WUnZZytqQJ8jHl+3coMKnP+thSfnqnz+28qaN03hsdHaub5KRdPnaU9FrRYkX60FyVdr7+d16pGSoLFP36k1j7ykF0/5pT687TGd+dANrb4J9Dt3hHaur9JLI27Qx/f6/hBu3YpSxY8ZLkmKOz1F++vqFT9mmCQpsm+Mogb00baPNnagK8eHp8WtL94oVt+z0truc7u1+qGFennUr/TqObcrtFtEq2/yGQ9cr/Ae3ZSfcbP+dendGjR+jE/XjOwbo4vyZ2nL6x/p5fQbtej0X6tqSZEkKWpgX53/3F1aP3exXjzll1r9wAvKfOI3ikkb2KHPL+P+69Q9ub8Kzr9Dr57zXwqPidLZ/3tzq2MSf3q63sj5vfLPuFmxIwfpkn89pC1LivRi6i9VvXSVRs++sdXxQ64cq7WPvuzdf/7zdyk4Isznmuo/3ayg0BD1TB0gSYo/Z7hc1dvU9+zDcxI/Zri2rljfoc+3I6IH91PUgD6qWryyzb7PX12h6IF9vT/8JE/K0sppj2tB8tWqX18lSUoaP0afv/qhFp6cq3WPvaqxT9+pyL4xP3rdkIhw9RqVrMXn5un1cdOP+LX/4o2PVTrnVdUWrvWuZXdTs0+fn6fFrW2rNnrXZfw5w7W3qs67LuPHDFf9us91aF+DT+c7HliHJ/Y6ZA3aswYJcTZ6Y+LvtWNtpYbfPlETVsxRzkd/08Cfj2732Mp/vKemPfvlaXGr/Pm31LjL5f0JpT0puRdp8ysf6Kvln0oej+o/3ayqgpUafNm53mP2VNaqYuG78rS41dLQ5HPdW1euV58zT5EcDsWfM1wVC99VSGS4Ivr0VN8xw7Rj7ebDdxcDyIG6nQrv0a3N9l2fVWv7qo1yH2pW406XSue86v0G5wgK0sBLz9KaP72kpj371Vi/V5/+9RWfrjco51ztLK1S+XNvqqXxkFoamrR91eFgm5R9lrat2qgtS4rkaXGr9r01+uKtTzR4UubRf2IOhwZNPEclDy1UY/1eNe09oE/um68BF2e0+olvw5NL1LjTpcb6vfrqg3XaV7Ndte+tkcftVtXileqRmqig0O9+4tzyepG2F5fJfahZpY+9Ko/bo/6ZP/6T77c8bre2fbRR8WOGKSSyi3oMOUkbnlyi+HMOf4Pre/Yw1a20L8R1+eaOTcO2nW32NWzfdfiYb+5OlM9/W3sqauVxu73fwLd+9Jm+WFYsT4tbn+d/oF2fVVuu1e9zBAVp9YML1NzQqJaGpmP7tf+BrSvWt/oPY+0jL3v/Q7G731ZYhyfuOmQN2tNrXthgo4P1e7X6/he0+v4XFNotQkOnXKBzH8/Tro0/eF6cw6H0316hgZeepYi4HpLbo5BuXbwD355uCb0Vf/YwDc75LrQ5QoJU+95a7/v7a3d0qO760io5HFLMsIGKP3u4PprxlLon91f8mGGKP3uY6laUdui8x1NkfIwad7nabI8a0Een/f4a9U4fopCuXeRwOLzfdMNjohQcFtqqT772rNtJvbS3qs6illjt+/LrVtv2VW9Ttx+5G9ueLrHRCg4P1b6a7863r3rb4ev0i9WeTV9Kkhp27PHub2loVMP23d73mxsaFRQcrJCIMDUdOvwNc//36/N4tL92hyL7xh5VbXUrStX37GHas/krbV+9SbXvrVHa1J+r60m91DU+VtuK7btbe3Dn4a99RJ8Y7an8qtW+iLieh4+p3ytJ2l/b+msj/aAfkvbVfO3TXYDmhkY17vxu7o7l1/6H6laUakRejsKiIxU9qJ+qFq/UqXddpcj4GMWPGaZ/T3vyP77Gf4p1eOKuQ9agPWuQO3F+cmhfgzY8+Zqa9h7wPqb+rUETxmjw5Zl679qHtTAlVwtPztWBr+rlcDgkSR6Pp8359tfuUNmzb2rhybnetwXJV2v5jY96j/G4236cTzwebS36TAPGZShqYB/tLK1S3cr1ih8zPCBDnCM4SIkXna6t//6szb7Rs29U406XFmf9RguHXqN3r3nYu69xp0stTYfUtX8v77bv//tI9n25Q9FJ8e3uO1BXr24n9W61rVtCnA7U1UuSDu0/qJDvPWTiCA5q9fyg7ztYv1ctjYfULeG783377wN1bX/i9VXX79fncCiyX6wObK0/qnPUrVivvmeeon6ZI1W3ovTwN06HQ0OuGKuvSzYd1d3f/9TezV/J9cU2JV16Vpt9SdlnyfXFNu39/PB/9u2ti65tvl69dWDrj/fX43a3ev/HvvY/PP5o7NywRR63W6f86mfa/nGZPG636las19BfnK/IuJ7a/nFZh899LLAOj15nWoesQXvWICHOJmHdu+rU//mFegw9SY6QYAWFhWjo1RcoJCJM9Z9+3urY0G4Rcjc162D9XgWFBCtt6qWKjP/up7GGr3crIq5Hq+dKlD//lpIvz1T8uSPkCA5SUGiIYkcOVs9TBhyT+utWlCr1+nHatmrjN4NaqgEXZ6hLr+7a/kn5MbnGsdA9uZ/GzLlNkfGxWvPIS232h0ZFqsl1QE17DyiiT0+NyMvx7vO43dqypEij7rhcYd27KjwmSiNum+DTdT//5weKHTFIKddcqKCwEAVHhCkuI1WSVFXwb/XJSNWASzLkCApSf+coJVx0mjbnfyBJqi/9XL1OHaLuQ09SUFiI0qdfqSCrV1V5PPr81Q+VPv0qhcdGKyw6UqfNvEbVy1bpkOvAUXbrOwMvOVO9T0uRIyRYw2/JVlBIsL56f91RnWPXxmq1HGrWkCudqvvwcLDfunK9TrnxEtXZ+Hy4bxX/7lklX+FU2k0/V2i3CIVGReqUm36m5MudKp75zBE/tu+ZpyjhwtPkCA7SoInnqOcpA7TlXx8ddQ0/9rVv2LFHXfv36vAr8rb+e8M3/T3c77qVpTrlxku0ffUmtTQe6tA5jwXWYcd0tnXIGjz+a5CHU23ibmpWRO8eGvvcXYro3V0tjc3avalG7147u82t3spFyxV/znDlrHpczQcaVf78W9pd9oV3f92K9dpeXKbLV/8/OYKCtGTcdO36rFqFv3pUp06/Sj2e/I08Hml32Rda/eCCY1J/3YpShUXf4P0mcKBupxq279b+up0+PxH0eDn1rqs0atokeTweNWzbpboVpXrtgju8v5/q+4p//6zO+uONSqm4QK7q7Sp//i31O3eEd/+qu/+us/40VZetelwH6/fqs78vVfyY4T+6GA/U7dSbk+7Vab+/Rj+ZMVkth5pVtXiFtq/aKNeWrXrvuj/q1P+ZrLP/fIv2f/m1Prh1jnZ+8wTerSvXq/zZNzXu1fvkbjqk0r8tPuJPnMUzn9Hps3I1/r1HJYdDX73/qYp/d+RviD+m4qVCpd95pXqfmqy9n9fp3WseVnND41GfZ+vKw88R+fZX59StKNXQyef75flZNW9+rHemPKiR/32ZRv32ckmHf0fVO1Me/NG7x1WLV2jwpEyd+7f/0v66ehXe8IgOfHV0d0Qk/ejXfsuSIg0aP0ZXrn9aDodD/xhx/VGtp7oPSzXwZ6O967JuxXqFRXf1S79Zh6zDH2INHn8OT3uPzcHStuIyLcu+x99lHHfjFt+nLUuKtPHvS4/+YwvuV58zTvb5+EDuaf+x6Tr3b/+lF1Ov9XcpASd+zHBlzftvvXjKL//jc1nNTCDPht0cQUHKrX1ZBWOntX0erY9M7TPr0NqxWoemzoadjuca7CgeTkUbIZFdFDWgj1xbtvq7FNtFJfVVr1HJksOhbif1Vvpvr1BVQduXyEPqmTZArm+ezI3jr2faALkPNbf7JPDOhnXoO9ahfQJxDfJw6glq+O0TNeL2ts8zCe4SpqDgYFUtXqnawrX2F+ZnIRHhOuex2xTZL1aHXA368p3VWn3/C5Kk7OV/VreT2j7Buuat1frg5r/YXKk9rP5WZO3yTxU7PCkgXgFpp+M9A+cvuFt9Mtr+lH5o30EFhQZr9YML1bS348+5MgXrsDXW4XdYg60R4k5QpXP+qdI5//R3GQFn12fVevWc/2p3X0HWb2yuxv8C7e8E+tvxngFT/mbx8cY6bI11+B3WYGs8nAoAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCAjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBdwIc4j8ejSZMm6amnntI999yj119/XUlJSZow4fDf/UxPT/dzha0FdwnTxH8/Zvm37nB06CeOhPmwB32GFWbDvwL+b6fOmzdPS5cu1dq1a5WWliZJysrKUlJSkmJiYpSYmOjnCltL/+0V2vflDkXE9fB3KZ0C/cSRMB/2oM+wwmz4V8DfiZs9e7amTJniDXCSFBwcrKSkpDZ34e699145HA6tX7/e7jIlSbEjBqm/c5TW/22xX67f2dBPHAnzYQ/6DCvMhv8FdIirqKhQVVWVcnJy2uyrqalpFeJKSkr00UcfacCAAXaW6OUIDtJZj0zVRzOekrup2S81dCb0E0fCfNiDPsMKsxEYAjrE1dbWSpLi4uJabS8rK1N1dbU3xDU2NuqWW27RE0880aHrREVFKTw83Kc3pzOr3XMMuzlb9aVV2vbRxg7V0Jk4nVk+99Oqp/TzxOJ0tj8zTmdWu8czHx3jdNJntM/pZDbs4HS23+eoqKgOnS+gQ1xsbKwkqbKy0rvN4/Fo+vTpcrvd3hD3u9/9TlOmTNHAgQP9UaaiBvZVyjUX6pP7eGLnsUA/cSTMhz3oM6wwG4EjoF/YkJqaquTkZM2YMUOhoaHq1q2bnnjiCa1Zs0aRkZFKSUlRUVGRPvnkEz388MMdvo7L5fL52G3FZVqWfU+rbX3OOFkRvbpr4so5kqSgkGCFdo3QlRueVuH1fzrhflIpLFyuPmec7PPxP+wp/TzxWM0M6+3Yos+wwmzY42j/f/wxAR3iQkJClJ+fr6lTpyo3N1cJCQnKy8tTdHS0Nm/erKCgIL3//vvauHGjkpKSJElffvmlLrroIj3zzDO68MILbamzasm/9dWH67zv9/5Jisb89Ra9dv4dOli/15YaOhP6iSNhPuxBn2GF2QgcAR3iJGnkyJEqKipqtW3u3LnKzMyUJN1111266667vPsGDhyo119/XcOGDbOtxpaGJh1o2Ol9v7F+r+Tx6EDdziN8FKzQTxwJ82EP+gwrzEbgCOjnxLWnoaFB5eXlAfdLfr9va9EGLUi+2t9ldBr0E0fCfNiDPsMKs+E/AX8n7ofWrVunlpYWyxC3ZcsWewsCAADwA+NCXEZGhjwej7/LAAAA8CvjHk4FAAAAIQ4AAMBIhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADGRMiGtqatLMmTOVkJCgiIgIjR07VsXFxXI4HCooKPB3eQAAALYK8XcBvvB4PJo0aZKKi4s1a9YsJScna+HChZowYYIkKT093a/1jfnLLUqaMEbuQ83ebct/9ahqC9f6ryjD0VNYYTbsQZ9hhdkIHEaEuHnz5mnp0qVau3at0tLSJElZWVlKSkpSTEyMEhMT/VyhtOmFd7Tq7r/7u4xOhZ7CCrNhD/oMK8xGYDAixM2ePVtTpkzxBjhJCg4OVlJSkkJDQyVJAwcOVJcuXdSlSxfvx1x00UV+qRcAAOB4C/gQV1FRoaqqKs2ZM6fNvpqaGuXk5Hjfz8/P17Bhw+wsz2vQxHM0aMIYNezYo89f+UClcxfL0+L2Sy2dBT2FFWbDHvQZVpiNwBDwIa62tlaSFBcX12p7WVmZqqurj8nz4aKiotTU1OTTsYNDeurO6DGttn3296X65L75OrjTpdgRg5T5eJ6Cw8O05o//+I9rM5HTmaXNzbt8Pp6ewulsf2aYjWPL6aTPaJ/TyWzYwelsv89hYWFyuVxHfb6Af3VqbGysJKmystK7zePxaPr06XK73a1C3OTJkzVixAjdfPPN2r17t2017iyt0sH6vZLHo/pPN2vNIy8pKfts267fGdFTWGE27EGfYYXZCBwBH+JSU1OVnJysGTNmaNGiRVq2bJmys7NVUlKiyMhIpaSkSJI+/PBDffrpp/r444/l8Xh06623+nwNl8ulxsZGn94KC5f/+AndHsnRwU+4EygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBIS4kJET5+fmKj49Xbm6u8vLyNG7cOGVmZmrEiBEKCjr8KSQkJEiSwsPDdfPNN2vlypW21Tjw0rMUGhUpSeqZOkAjp03SlteLbLt+Z0RPYYXZsAd9hhVmI3AE/HPiJGnkyJEqKmo9IHPnzlVmZqYkaf/+/Wpublb37t3l8Xj0j3/8Q6NGjbKtvpOvvUijZ9+ooNBgNWzbrc3572vdY6/adv3OiJ7CCrNhD/oMK8xG4DAixP1QQ0ODysvLlZeXJ0natm2bcnJy1NLSopaWFp1yyil6/PHHbavnjYm/t+1aJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UMGjQIK1Zs8bPVQEAANjHyBCXkZEhj8fj7zIAAAD8JuBf2AAAAIC2CHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBViL8L8IXH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6u8LCTzjtV6dOvVPTgfmre16D1Ty7Rhide83dZRqOnsMJs2IM+wwqz4X9GhLh58+Zp6dKlWrt2rdLS0iRJWVlZSkpKUkxMjBITE/1codQvc6RG/+kmrbh9rrYWbVBIRLi69u/l77KMRk9hhdmwB32GFWYjMBjxcOrs2bM1ZcoUb4CTpODgYCUlJXnvwh08eFC//vWvNWTIEA0fPlw33nijrTWm33ml1v3lFdWtKJWnxa1D+xq0u7zG1ho6G3oKK8yGPegzrDAbgSHg78RVVFSoqqpKc+bMabOvpqZGOTk5kqQ777xTXbp00aZNm+RwOLRt2zbbagyJCFevUYNV+94aTfjwrwrr3lVfl1SoeOYz2lez3bY6OhN6CivMhj3oM6wwG4Ej4O/E1dbWSpLi4uJabS8rK1N1dbXS09O1b98+Pf/887rvvvvkcDgkSX369PH5GlFRUQoPD/fpzenMavPxYT26yhEUpAGXZOjtq+5XfsbNavh6t5x//21HP22jOZ1ZPveTnkKynhmnM6vNscxGxzmd9BntczqZDTs4ne33OSoqqkPnC/gQFxsbK0mqrKz0bvN4PJo+fbrcbrfS09O1efNmxcbG6t5779Vpp52mrKwsrVixwrYaD+07KEn67Kml2vfl12ppaFLJQwsVOzyJ5wh0ED2FFWbDHvQZVpiNwBHwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkqKWlpa9Pnnnys9PV2ffPKJZs+erYkTJ2rv3r0+XcPlcqmxsdGnt8LC5W0+/pDrwOFbyB7PMf7szVRYuNznftJTSNYzw2wcW/QZVpgNe1j12eVydeh8AR/iQkJClJ+fr/j4eOXm5iovL0/jxo1TZmamRowYoaCgICUmJiokJERXXXWVJCkjI0O9evXSpk2bbKuz/Pm3lHrDJYrsF6vg8FCl33mldny6Wftrd9hWQ2dDT2GF2bAHfYYVZiMwBPwLGyRp5MiRKioqarVt7ty5yszMlCT16tVLTqdTb7/9ti688EJt2rRJ27dvV3Jysm01lv6tQGHdu+nSt/4oOYK0vbhMhdf/ybbrd0b0FFaYDXvQZ1hhNgKDESHuhxoaGlReXq68vDzvtieffFLXXXedpk2bptDQUM2fP189evSwryiPR6sfeEGrH3jBvmt2dvQUVpgNe9BnWGE2AoKRIW7dunVqaWlp9ZcaBg0apOXLl/uvKAAAABsZGeIyMjLk4QmVAADgBBbwL2wAAABAW4Q4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAIf4uwFdNTU2677779Oyzz2rHjh0aPXq0Hn74YWVkZGjx4sXKzs72W22TK+e3ej84LFS7K2r12nnT/FSR+egprDAb9qDPsMJsBA4jQpzH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6tb0Hy1a3ev/TdR1VVsNJP1XQO9BRWmA170GdYYTYChxEhbt68eVq6dKnWrl2rtLQ0SVJWVpaSkpIUExOjxMREP1f4nV6jktVj6EmqfKnQ36V0GvQUVpgNe9BnWGE2/MuIEDd79mxNmTLFG+AkKTg4WElJSQoNDdWWLVs0fvx4777du3dr79692rlzp+21DvnFWNW+t0YN23bZfu3Oip7CCrNhD/oMK8yGfwV8iKuoqFBVVZXmzJnTZl9NTY1ycnI0cOBArV271rs9Ly9Pzc3NPl8jKipKTU1NPh07OKSn7owe0+6+kIhwJWWfrQ9vn+vztTsjpzNLm5t9X9D0FE5n+zPDbBxbTid9RvucTmbDDk5n+30OCwuTy+U66vMFfIirra2VJMXFxbXaXlZWpurq6jbPh2tqatKCBQv05ptv2lbjtwb+fLSaG5r05Turbb92Z0VPYYXZsAd9hhVmw/8C/leMxMbGSpIqKyu92zwej6ZPny63290mxL322mvq37+/Tj31VJ+v4XK51NjY6NNbYeFyy/MMmXyeNr+8XJ4W99F9kp1MYeFyn/tJTyFZzwyzcWzRZ1hhNuxh1eeO3IWTDAhxqampSk5O1owZM7Ro0SItW7ZM2dnZKikpUWRkpFJSUlod//TTT+u6666zvc7owf0Ud1qKNr34ru3X7qzoKawwG/agz7DCbASGgH84NSQkRPn5+Zo6dapyc3OVkJCgvLw8RUdHa/PmzQoK+i6H1tbW6v3339f8+fOPcMbjY8hVY7Vt1Ua5qrbafu3Oip7CCrNhD/oMK8xGYAj4ECdJI0eOVFFRUattc+fOVWZmZqttzz33nC655BLvQ7B2Wn3/C7Zfs7Ojp7DCbNiDPsMKsxEYAv7h1PY0NDSovLy8zfPhnn32Wb88lAoAAGA3I+7E/dC6devU0tLSJsRt2rTJTxUBAADYy8gQl5GRIY/H4+8yAAAA/MbIh1MBAABOdIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADCQw8NvzT0qTa4D2rXxC3+XEdB6piYqLCrS5+PpKaxmhtk4tugzrDAb9jja/x9/DCEOAADAQDycCgAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAG+v9cNHJlWUDfYgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -677,10 +677,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:59.117512Z", - "iopub.status.busy": "2024-11-23T19:54:59.117159Z", - "iopub.status.idle": "2024-11-23T19:54:59.298528Z", - "shell.execute_reply": "2024-11-23T19:54:59.297999Z" + "iopub.execute_input": "2024-12-05T03:21:33.890102Z", + "iopub.status.busy": "2024-12-05T03:21:33.889904Z", + "iopub.status.idle": "2024-12-05T03:21:33.958944Z", + "shell.execute_reply": "2024-12-05T03:21:33.958377Z" } }, "outputs": [ @@ -736,16 +736,16 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:59.300614Z", - "iopub.status.busy": "2024-11-23T19:54:59.300411Z", - "iopub.status.idle": "2024-11-23T19:54:59.762100Z", - "shell.execute_reply": "2024-11-23T19:54:59.761498Z" + "iopub.execute_input": "2024-12-05T03:21:33.961315Z", + "iopub.status.busy": "2024-12-05T03:21:33.960784Z", + "iopub.status.idle": "2024-12-05T03:21:34.407442Z", + "shell.execute_reply": "2024-12-05T03:21:34.406774Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZeklEQVR4nOzdeXxU1f3/8dfMJGQhCyRsCYQsBGJYQlJRZJNhkUKtICJ1QxFRrEotVlF/LBYVtGix1lZBC1iggqjFAn5RNhMRiEaFALJkAyJb2CFkISGZ+f0xMjAmhADJTGbyfj4eeZB77rlzP/dyc+fezz3nXIPVarUiIiIiIiIiIiLiAYyuDkBERERERERERKSmKNklIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hZJeIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hZJeIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hZJeIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaXqwOoy0rPFHFy50+uDsNjNI5vTYNA/8vWKzgH2flOCKgSsUEQ4O2adYuIiIiIiIjItVOyqwond/7E50MmuToMjzFo6VSa33jdZetl58PDG5wQUCVm94DEUNesW0RERERERESunboxioiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hAerFI2RMNFO4KxWDlzcGkxe+La8jfMQ0gjr3c3VoIiIiIiIiIuJEatklHiN8xDSSFheQMO8wDeO6kfPK7ZQXnnZ1WCIiIiIiIiLiREp2iccxevvQ5JbRWM4WcPZQtqvDEREREREREREnUrJLPI6lpJhjq2dj9A/CN7ytq8MRERERERERESdym2RXaWkpkydPJiIiAj8/P/r27UtaWhoGg4GlS5e6OjypAw4unEz6vY3Y9kgURXu2EDvpM0z+Qa4OyyUKzsGOU5BxGsosro7Gc50th12nbD9ny1wdjci1sVohJx9+PAknSlwdjci1yyuyHc/7C10diYi4i6Iy2HkKdp2G0nJXRyMi18ItBqi3Wq0MHz6ctLQ0pkyZQmxsLAsXLmTo0KEAJCUlOTUeg8nIDVNG0mbYzRiMRvb+3zd8O2E25SXnnBqHOAq/92VaDH3G1WG41MkSeGcX/N8+KP05ydW4AdwVDQ+2BS+3SW/XbWfL4N0MWJILhT8nuRp6wZDW8Oh1tt9F3IXVCv/7CeZlwf4iW5kRMIfB4/EQFeDS8ESu2ObjMHMXbDp+oax9IxgTBz2buywsEanDzpyznTeW/WR7mAkQ5A3DouDhduBjcml4InIV3OKW7L333mPFihWkp6fToUMHAMxmM9HR0YSEhNC6dWunxpPw5B206N6RpX2fpvxcGf3+/RzXT7qftMlznRqHyMVOlMCor+FQEVzcmOtkKczKsLX0ev1GMBlcFaFnOFsOj6XaWgtYLyovLINFu203V+/1AH+3OLuKwD92wvxsuPjUYAFSDsG3R2FuT2hTPxvJihtafxieTrMlcS+28xQ89S38ORF+69zLRhGp4wrOwcPrYfcZx2u7/HPwfhZsOwFv3QQNlPAScStu0c5j+vTpjBgxwp7oAjCZTERHR9tbdWVmZtKtWzfatWtHt27dyMrKqrV42t7Xj21vLaEo7wQlx/NJn/ERsXeZMRjdYneKh3p7Z8VE18XWHYYV+5wakkdamAPbfpHoOs+KrevofL0XQdzEjycvHK+/PKYtQHEZvJzu5KBErlJJObywCSzWit+F1p9/pm6BU6UuCE5E6qzZmRUTXRf7/jh8steZEYlITajz2ZmsrCz27NnDsGHDKszbt2+fPdn1+9//nieeeILMzEyeeOIJHn300VqJp0GQPwEtm3Ji+x572fFte2gQ6E9ARNNaWafI5Zw5B5/vv3SiC2x/7B/tqaKCXFa5FT7eW3UdK/DfvRorTdzDf/dWfSFgAX48BZmnnROPyLX48pCtJcalblgByqzw2U9OC0lE6riScvg0t+rzhgHbNfQvW4yKSN1W5zvaHDhwAIBmzZo5lO/atYvc3FySkpI4cuQImzZtYvXq1QDcc889jB07lqNHj9K06eUTUIGBgZSWVnzM18arMc8G9XQo8wrwA6D0dJG9rPS0beRT75/nSeX69DGTU3bysvX847rRZmrKFX123LQrq38pffqYKcpIrZHPcia/tjcS+8rXVdaxADtOlOHj09A5QXkgU1BT2s/Zf9l6J0uhUas2nDt++boirtT2jc34RrS/bL2bf/cIJ1PmOyEikasXNvI1Qgc9gcF06ctba/k5prz7CaPfetB5gYlIneUTHke7v2+tso4V25iWfsGNsZYUVVlXRGqW1WrFy8uLvLw8goKubFyNOt+yKzQ0FIDs7Av9gqxWK8899xwWi4WkpCT27dtHy5YtMZlsHalNJhPh4eHs21fzfbbKCooB8A7yt5c1CLYlD879PE/E6cqr9ypAq0Wvlbkmluq/clH7WtyBVecO8SC24/lyA1MadDyLiJ31Cq7t0LlDxOmsVivFxcVs27btipet8y274uPjiY2NZcKECXh7exMQEMDMmTPZvHkz/v7+xMXFsXnz5mtax5kzZyotP5y2i8+HTHIoK80vouDAUUI6RJGfcxCA0I7RlJ4pomDf0WuKw9MlJ6fQ/MbrLlsv/Tg8vMEJAVUiOTmFxFDXrPtalJbDwFW27huXYjRAj5Y+bCopcV5gHsZqhXtSIKeKcR0MQOsA+O7QXgx6GYDUcX/fDv/JuXz3jS3L5tLCTy9hkbot9Qj84Zuq6xhMXvx93Ah+O2OEc4ISkTqt3AqDV8Phs5euYwQ6NIbvC/KdFpeI2GzYsIGePXtevmIl6nzLLi8vLz755BPCwsIYOXIk48aNY9CgQfTu3ZuEhASMRiMREREcOHCA8nJbtr28vJyDBw8SERFRKzFlfbCWhD8Mxa95Y3xCg0h8+ndkL07BatEgPeIaDUwwPLrqOhYr3B3jnHg8lcEA97apOjFgBe6JRokucQvDoqo+Vo1A7xbQQr30xQ10bQoRDS99cWsEgr3hlnBnRiUidZnJAPdc5vrYwuXriEjdU+eTXQCdO3cmNTWVoqIiMjIyeOyxx9i8ebN9cPpmzZqRmJjIokWLAFi0aBFJSUnVGq/ramx9awl53+zk9pS/MWzjPziVtZ8fpv2nVtYlUl0Pt4NuPx/yF9+7nv8jf6QddGv2y6XkSt0WAUMjbb9ffAI9//utreCOKCcHJXKVWjWEl5Jsx29lFwRRATCps7OjErk6RgPMuBGCGlTszGgEfEzwt662f0VEzrunDfT/OQle2bXdPTFKkou4ozrfjbEyxcXFZGRkMG7cOHvZrFmzGDlyJC+99BKNGzdm/vzaG0jXWm4hbfJc0iarS4ezFexYz/73nwGDkcbdh9H89qft846tmcuxVbPxatSM6HELsJafI+cvd4DFgneTVkSPW4DB5LlXuN5G20X8sp9sb4zJ/rl3btemthZdPZq7Nj5PYTDAhAS4sQl8uAe2nLCVd2gMd0XDr1uqVZe4l4GtbK1hFu6GlbZ3whDmZ2v1dWcUBHi7MjqRKxMTCAt7287Py36CUz+/f+jOaLg3xpbgFRG5mMkA066Hns3go72w45StPCnUdg1tbqFrOxF35JbJrq1bt1JeXm5v2QVw3XXX8e2337owKnGGBs1jaPfKOozeDciY2Iemgx7D6OOPtbyM41/OI+4v6zn9wwqOrZ5N04GPEvPsx3gHN+XAB5M5s3UtQUkDXL0JtcrLaGtVdEcUdFlmK/tHN1dG5JkMBrilpe3n/H5+v5drYxK5Fh0a2y70zye7lt/i2nhErkUzP3iyve3n/Dn62U6ujUlE6jaTAX7b2vZz/rzxbg/XxiQi18YtujH+UteuXbFarXTp0sXVoYiTNQgNx+jdAACD0QQG2yFcln+MBk1bYzAa8YvsRGFGKkYff7yDm15UV49kRERERERERDydWya7RPLTV+MT1gZjA18AvIKaUnIoG0vpWQq2r6O88LS97rlThzmzdS2Bnfq6KlwRERERERERcRIlu8TtlB7bT94nr9Jq1Ax7mcFkovnQ8WS9OJDivVvwamQboMpaXsbetx6i9aPvePR4XSIiIiIiIiJi45Zjdkn9ZTlXwt6/P0jr38/E5BfgMK9xtzto3O0OTm74GGt5GQD75vyJUPP9+EVpsA4RERERERGR+kDJLnErJ75ayNl9O8id+SgALUdMoyRvN6F97uenWY9z9kAGvhHtiRj9JiV5uzm2ejbFuVs5unIWLYaOJ7jLrS7eAhERERERERGpTUp2iVtp0n8UTfqPcigLiLe9KqX1799xKPdpEcOvPi5yWmwiIiIiIiIi4noas0tERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DA1QL3VObBDM7uG6dYuIiIiIiIiI+1KyS+qcAG9IDHV1FCIiIiIiIiLijtSNUaSeSklJITo6GrPZzMiRIyvMnzZtGllZWZdcfv369dx00010796dGTNmVJi/d+9ewsLCMJvNPPDAA3zxxReYzWbMZjOhoaGkp6ezc+dOpk+fXqPbJSIiIiIiIvWbkl0i9djo0aNJSUkhODiY1NRUe7nFYmHr1q20bdv2ksvGxMSwbt06Nm7cyGeffUZRUVGFOrfeeispKSnMnz+fgQMHkpKSQnJyMjExMXTu3Jn4+Hg2bdqE1Wqtle0TERERERGR+kfJLhGhY8eOHDhwwD69ZcsW2rVrV+Uy4eHhNGjQAACTyYTRWPF0snLlSnr16sUHH3xgL/vuu+/o0qULBoMBsCXNtm/fXhObISIiIiIiIqJkl4hAamoqsbGx9umsrCyioqKqtezq1atp06YNvr6+DuVhYWFkZGSwatUq3n33XY4fPw7A0qVLGTJkiL1eZGQkmZmZ174RIiIiIiIiImiAepF6bc6cOaxZs4aePXuSmJhYaZ0dO3bw+OOPO5QNHDiQ559/nv379/Pqq6+ybNmyCsv5+PjYf+/Vqxc5OTmEhoaSnJzMn//85xrdDhEREREREZHzlOwSqcdGjx7NpEmTKpS3bduWJUuWANC+fXtSUlIq1CkpKeHBBx9k5syZBAQEVJhfUFBAQEAAVquV77//nrFjx7J7925atWpl7/4IkJubS48ePWpuo0RERERERKReUzdGEamgc+fOZGRkVFln4cKF7Nixg0cffRSz2cyBAwfIy8vj9ddfB2Djxo106dKF7t27M2DAAMLCwip0YQTIzs6mY8eOtbYtIiIiIiIiUr+oZZdIPWU2mzGbzZXOMxqNJCQkkJWVdck3Mo4aNYpRo0ZVKB8/fjwAAwYMYMCAAQ7znnrqKYfpnTt3cv3119sHqxcRERERERG5Vkp2iUilKuveWNPi4+OJj4+v9fWIiIiIiIhI/aFujCIiIiIiIiIi4jGU7BIREREREREREY+hboxS5xScg+x816w7NggCvF2zbhERERERERG5dkp2SZ2TnQ8Pb3DNumf3gMRQ16xbRERERERERK6dujGKiIiIiIiIiIjHULJLREREREREREQ8hpJdIiIiIiIiIiLiMZTsEhERERERERERj6EB6sUjZEw0U7grFYOXNwaTF74tryN8xDSCOvdzdWgiIiIiIiIi4kRq2SUeI3zENJIWF5Aw7zAN47qR88rtlBeednVYIiIiIiIiIuJESnaJxzF6+9DkltFYzhZw9lC2q8MRERERERERESdSsks8jqWkmGOrZ2P0D8I3vK2rwxERERERERERJ3KbZFdpaSmTJ08mIiICPz8/+vbtS1paGgaDgaVLl7o6PKkDDi6cTPq9jdj2SBRFe7YQO+kzTP5Brg7LJUrLL/xutbouDpGaYLVCXhHsL4SS8svXF6nrTpbATwVQcM7VkYiIuzhbDvsKIK9Y13bi/ixWOPjztd05i6ujEU/lFgPUW61Whg8fTlpaGlOmTCE2NpaFCxcydOhQAJKSkpwWS9Rt3Yh/+DeEdIii5MQZPrnxcaetW6oWfu/LtBj6jKvDcKmCczA3Cz7NvVA2dC3c0waGR4HR4LLQRK6Y1Qr/zYWFOfBToa2soRfc3hpGt4OgBq6NT+RKfXfUdo7+7pht2miAvmHwcDuIrZ/PZkTkMk6WwJxMWPYTFP38wCc6AEbEwuAIMOjaTtxIuRU+3G37OVRsKwv2hjui4KG24OcW2QlxF25xOL333nusWLGC9PR0OnToAIDZbCY6OpqQkBBat27ttFhKTheya+4X+DYNpsOY3zptvSKXc+YcPLwedp+Bix/4HSiC17fBjpPw5yQlvMQ9WK0wbQv87ye4+JAtLIOFu2HDEZjTE4KV8BI38cV+mLzJ8Xi2WOHLg7D+MMzsBp1CXBaeiNRBx8/CQ+ttLWAuvrbbWwAvp0N2PvypgxJe4h7KrTDhe1h7yPG78PQ5+HcWfHME3u0B/m6RoRB34BbdGKdPn86IESPsiS4Ak8lEdHS0vVXXM888Q3R0NAaDgR9//LHWYjm0bit7lm6gcP/RWluHyNV4Z2fFRBdcmP6//bD6oLOjErk6KXm2RBdUfkz/VABv7XB2VCJX52QJTNlsO3Z/2VvDgq3r+f/7wXYjICJy3owf4VDRpa/tFu2Gb3VLIm5i+U+2RBdUfkzvOg3/ynB2VOLJ6nyyKysriz179jBs2LAK8/bt22dPdt1+++2sW7eOyMhIZ4co4nKFZbB8X8UvjosZgcW7nRWRyLX5aE/VX1AW4PP9kF/qrIhErt7Sn6CsihO0Bds4PKlHnBaSiNRxx8/aEgNVDWdkNMDiPU4LSeSafLTHsUXXL1mxDcWi8VmlptT5RoIHDhwAoFmzZg7lu3btIjc3157s6tmz51WvIzAwkNLSindMbbwa82zQ1X+uOOrTx0xO2cnL1vOP60abqSlX9Nlx066s/qX06WOmKCO1Rj7LmfxibyD21fVV1rEAW46ew8cnwDlB1RMdPzoLgI+Pr4sj8Swd/nMSo49/lXVKLRB5Yz+KdlZ97Ev16XiuHa3Hf0TQ9b/FYDJdso7VUs494//CkcUvOTEyz6djWtxVQOKviZ64rMo6FiskZx3D5+aWToqqftB5oxaYvOj0YeFlqxWUQdO4JEr2qfm+2FgsV/8Ggzrfsis0NBSA7Oxse5nVauW5557DYrE4dXB6kTrLWt2TgPrIiHuwVveY1iupxB1YLFTr/KvjWUTO07WdeJIr+X7Td6HUkDrfsis+Pp7Y2FgmTJiAt7c3AQEBzJw5k82bN+Pv709cXNw1r+PMmTOVlh9O28XnQyZd8+eLTXJyCs1vvO6y9dKPw8MbnBBQJZKTU0gMdc26r8XZMvj1Klt3xksxAte3aMAPJSVOi6s+6PLzQ9cS7dca9cdvIPWo7an1pfiaYP8PX9Kwzn+TuQ8dz7VjYQ68sb3qOgajif++MYkbF+i6oybpmBZ3daoUBq6sugu0ERh4XVPSdXzXKJ03aseD62DHqaq75jZqAMez0vGu801yxFk2bNhw1b346vxh5OXlxSeffEJYWBgjR45k3LhxDBo0iN69e5OQkIDR6NxNMBiNmHy8MXh5gcGAyccbYwPdaYlr+XrB0Miq+8FbgLuinRWRyLW5K6bqRJcBGNwaJbrELfw2AnyMlz5HG4HWDeGGJs6MSkTqskYNYFCry1/b/U7XduIm7o6pOtEFMDwKJbqkxrjFodS5c2dSU1MpKioiIyODxx57jM2bN7ukC2ObO2/m/r2L6POvpwlo1ZT79y7ijvVvOT0OkV/6fRx0alyx/Pwf+T0x0LuFU0MSuWrdm8EDsbbfK/uiui4YxsY7NSSRqxbUAP7SBUyGisezEWjoDa/dAIaq7mpFpN75U0doE1gx4XX+PDImDn7lhj0SpH76dUu4vbXt94u/C88f3zc0gVFtnR2VeDK3fCZeXFxMRkYG48aNs5c9+eSTLFmyhLy8PPr3709oaCjbt1+mz8BVyP4oheyPUmr8c6V6CjPT2DfnKbBaCUzoS8sRU+3zMiaaASg7fZSgxFto9eDrZEw0YzB5YfIPJubZjzA28NyBJn294J3u8OFu+HgPHLaNrUl8I1ui69ctdSMl7uUP8dC+EXyQA9t+frdFU1/bU797YsDPLb/BpL7q1QLe7wXzs2H1QVuZr8nW6uv+NtCyoWvjE5G6J9AbZveERbvh471w4udedZ1D4L42YA5zaXgiV8RggImdITEEFu6GzHxbeZi/rYXiXdFq1SU1yy1vFbZu3Up5eblDy6633nqLt95SCytP5x+TxHXTbQN6ZU7uR3lRPib/IODCGxkPzP9/BHbqg8HLm7hXvsJg8uLQ4pfJ37yKRl0Huyp0p/A1wYNtbS1iCstsrQj83fKvXMR2UdQ/3PZzfvyM/7vF9qp1EXcU3whe7QKrfz6eUwaBly7sRaQKAd7wSByMbgc3LreV/Usvixc3ZTDAb1vbfs5f2y3tpwfyUjvc8ja4a9euWPWWhnrJ4OUNgLW8HO+QcIw+/hXqnPkxhbB7XrTVN9kOcavVgk9YG+cF6mJGg+1poIinUaJLPIkSXSJSXfr+E0+lRJfUFl1mids58dVCto+Nx9SwkT2Zdd7ZQ9k0aBqJ0bsBAMU/7WDn0zeQn76aBk0iXBGuiIiIiIiIiDiRkl3idkJ630uHt3dx7sRBivduc5h3+tulNOo6xD7t17o98TO+o3GP4Rz/cp6zQxURERERERERJ1OyS9yK5ZxtZE6D0YjJLxDDLwacP/3DCoKv/w0A1rJz9u6uJv/gCnVFRERERERExPO45ZhdUn+dTlvGkRVvg8VCQIebsZwt5HjyAkL73E9Z/jEMJm9MDYMBKDmaS+4/RoPBiFdAY6L/9B8XRy8iIiIiIiIitU3JLnErjXsMp3GP4Q5l/jGJAHgFNaHtlC/s5b5hscS98pUzwxMRERERERERF1M3RhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxNEC91DmxQTC7h+vWLVJTUlJSGDVqFJGRkURGRjJv3jyH+QsWLCAsLIz+/fvTq1cvNm/ezK5du2jVqpVDvU2bNvGHP/wBLy8v3n77bTp27MgjjzxCZmYm5eXlzJ07l3bt2jFq1Cjmzp2LwWBw5maKiIiIiIjUKUp2SZ0T4A2Joa6OQqRmjB49mkmTJvHkk0+SmppKt27d7POWL1/O4sWLAfj44495/vnnK/2Ml156iSVLlmAymXjiiSdYvHgx77zzDt7e3nz99dfMmjWLN954g65du5KcnEzfvn2dsm0iIiIiIiJ1kboxiog4QceOHTlw4IB9+sSJE/j6+tpbYbVo0eKSyxYWFtK8eXOaNGnC3r17AfD29gagoKCAjh07AtCnTx9WrFhRS1tQt6WkpBAdHY3ZbGbkyJEV5k+bNo2srKxLLp+WlkaPHj3o3r07kyZNcpj3xRdfYDabMZvNhIaGkp6eTnFxMb/5zW/o3bs3o0aNAmDnzp1Mnz69ZjdMRERERESumJJdIiJOkJqaSmxsrH06OzubyMjIai0bGBhIVlYWu3fvZvv27fbyfv36MXbsWG644QYAIiMjyczMrNnA3cjo0aNJSUkhODiY1NRUe7nFYmHr1q20bdv2kssmJSWxYcMGNm7cSGpqKvn5+fZ5AwcOJCUlheTkZGJiYujcuTOrVq2iZ8+efPXVV3h7e/Pjjz8SHx/Ppk2bsFqttbqdIiIiIiJSNSW7RERq0Zw5czCbzbRs2ZLExMSr+oxp06bx+OOPM3nyZHr16mUvX7t2LUuWLGHKlCk1E6yH+GUrui1bttCuXbsqlznfUq68vJzw8HD8/f0r1Pnuu+/o0qULBoOB6OhoCgsLAVvruuDgYABiYmIcEpIiIiIiIuJ8SnaJiNSi862Npk6d6lAeGxtLbm5utT4jPj6e1atX8+qrrxIXFwdASUkJAMHBwfj5+QGQm5tbZeul+uKXreiysrKIioq67HILFy4kPj6eRo0a4eVVcUjLpUuXMmTIEMD2//f1118THx+PwWAgIiICUOs6EREREZG6QMkuEREXCAkJoaioyD49YsQIVq1axT333MPatWsBePrppwF477336NOnD3/84x+ZOHEiAEOHDqVPnz489NBD9rLk5GQGDRrk5C2pO6rTim7Hjh328bfO//zlL38B4N5772XXrl0cPHiQbdu2VVj24sH/582bx1133cXOnTtp0qQJGzdurLXtEhERERGRK6O3MYqI1JLzyZRLGTx4MGvWrKF///785z//qTB/xowZAIwZM4YxY8Y4zKtsIPpvv/22Qr365PybL3+pbdu2LFmyBID27duTkpJSoU5JSQk+Pj4YjUYCAwPx9fV1mL97925atWpFgwYNANs4YCEhIYAtcXnq1CnA1rquR48eNbhVIiIiIiJypdSyS0TERR544AH69+9fY5/3/vvvYzTqtP5LnTt3JiMjo8o6y5Ytw2w2c/PNN9OqVSvatm1LXl4er7/+OuDYhRFsrcDef/99zGYz6enp3HLLLYDtxQPn344pIiIiIiKuoZZdIiLi9qpqRWc0GklISCArK+uSY5oNHz6c4cOHO5S1aNGC8ePHA/DUU085zGvcuDGrVq1yKNu5cyfXX389BoPhKrdCRERERERqgpJdIiLi8Srr3ljT4uPjiY+Pr/X1iIiIiIhI1dTfRUREREREREREPIaSXSIiIiIiIiIi4jHUjVHqnIJzkJ3vmnXHBkGAt2vWLSIiIiIiIiLXTskuqXOy8+HhDa5Z9+wekBjqmnWLiIiIiIiIyLVTN0YREREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hpJdIiIiIiIiIiLiMTRAvXiEjIlmCnelYvDyxmDywrfldYSPmEZQ536uDk1EREREREREnEgtu8RjhI+YRtLiAhLmHaZhXDdyXrmd8sLTrg5LRERERERERJxIyS7xOEZvH5rcMhrL2QLOHsp2dTgiIiIiIiIi4kRKdonHsZQUc2z1bIz+QfiGt3V1OCIiIiIiIiLiRG6T7CotLWXy5MlERETg5+dH3759SUtLw2AwsHTpUleHJ3XAwYWTSb+3EdseiaJozxZiJ32GyT/I1WGJB7NaK/9dao9F+1lEpE4ps8CpEjhb5upIRETkl4rK4FQplNfDa2i3GKDearUyfPhw0tLSmDJlCrGxsSxcuJChQ4cCkJSU5LRYjA28uOmVhwnr2Qnf0CCKDp9k59zP2TX3c6fFIJULv/dlWgx9xtVhSD1QboVP98KHey6UDfsS7oqBYZHg5TaPEeo2qxVWH4SFORfKbl0Nw6Lgvhjwc4tvMBERz3TsLMzPhqU/QWEZGIDuzeD+WOjSxNXRiYjUb1/lwX+yYfMJ23TjBrZr6BFtIMDbpaE5jVvcKrz33nusWLGC9PR0OnToAIDZbCY6OpqQkBBat27ttFiMJhPFR06x6u6XOZN7mJD2kdyyaBJnj55i7/JUp8UhIq5RboUJ38PaQ7YL+/P2FcLr2+DbI/DaDUp41YS3dsCCHMcmyEfPwqxd8NUhmNUDGrrFt5iIiGc5WASj19sSXucbC1iB1KOw8QhMToTBzrs8FxGRi8zNhHd2gfGim5WTpTAnE9YehH/1hEYNXBefs7jF7dj06dMZMWKEPdEFYDKZiI6OJikpiePHj/Ob3/yGuLg4OnXqxB133MHRo0drJZay4hI2v/YhZ/bmgdXKie172bfqe5rdGF8r6xORumXJXluiCy5c4F/8+7rDji2+5OpsOGxLdAFYKpm/6zT8c4dTQxIRkZ+9sAmOn3X8HgRbV3MrMDUdDhS6IDARkXpu6wlbogsqDv9hBXIL4K/bnB6WS9T5ZFdWVhZ79uxh2LBhFebt27ePpKQkDAYDzz77LBkZGWzbto02bdrw/PPPOyU+g5eJ5l3jObkz1ynrExHXsVph0W7HFl2/ZAAW79bYUtfqoz2OT6N+yQos32frOiMiIs6TnQ/pJyp/EHGeFViiS2MREaf7aE/VSR4LtmFCjp91VkSuU+c7gBw4cACAZs2aOZTv2rWL3NxckpKSCAkJwWw22+fddNNNzJw5s9rrCAwMpLS0tEJ5G6/GPBvUs8plb3plNOcKisn5+Ktqr6++6tPHTE7ZycvW84/rRpupKVf02XHTrqz+pfTpY6YoQ91RpXKmwFDazz1YZR0rcKgYAsOjKTtRdV25tA4LTmD0bVhlnbPl0Or6vhTt2uCkqDxfx49sVz4+Pr4ujsSzaT87j/Z1zQsZ8CgtH3mryjpW4J0V3/BMUm/nBFVP6Hh2Du1n59B+rh3XvbsX75CwKuuUWyGu7x2c+eH/nBTV1bNYqnq0UrU637IrNDQUgOzsbHuZ1Wrlueeew2KxVBic3mKxMHPmTAYPHlzrsd0wZSRNr49j9X3TsJxT8wIRj2eoqk1Xhcq1Fka9UN19fUX/JyIics2qed416HtQRMT5dA1tV+dbdsXHxxMbG8uECRPw9vYmICCAmTNnsnnzZvz9/YmLi3Oo/4c//IGAgADGjh1b7XWcOXOm0vLDabv4fMikSufd+NKDhPXsxBfDX6TkROXLi6Pk5BSa33jdZeulH4eHXdRQIzk5hcRQ16xb6j6LFYasgbziiuOUXKypL3x7cDcmz/8OqTWPbYQfjlXdTaaBEXLT1hJUDwbYdJYuy2z/lpSUuDYQD6f97Dza1zVv5ym4f13VdQzAwwO78qdntN9rko5n59B+dg7t59rx7HeQklf1kCpGYMea/9LMz2lhXbUNGzbQs2fVve0upc637PLy8uKTTz4hLCyMkSNHMm7cOAYNGkTv3r1JSEjAaLywCc888wxZWVksXrzYobym3fjyQ4T1SrAluo7n19p6RKRuMRrgrpiqE10Aw6NQousa3RVddaLLAAxqhRJdIiJOFt8I2jeqelxFsL3iXkREnOt30ZdPdJnDcItE17Wq8y27ADp37kxqquM4Sv/85z/p3fvCOAATJkzghx9+4P/+7//w8fGptVgatmpC+4d/Q/nZUu789m17+eFvd7Hmvmm1tl4RqRvujoZvj9her16ZLqEwoo1zY/JEvVvA0Ej4NNeW2Lr4O9sARAbAk+1dFJyISD33UhI8tB4Kzjk+mDBim366o+08LSIiztWlCdzfxvZW88quoZv7wbOdXBSck7lFsuuXiouLycjIYNy4cQBs376dV199lXbt2tG9e3cAoqOj+fTTT2t83YX7j/HvsDtr/HOl+srOnCDrz7dw9kAGSYsLHObteXMkJXk5GL19iBo3nwahLTl7KJt9747Fcq6E5oOfolHX2h/PTTyXlxHe6Aof5MDiPXD05zeZNPGBO6PhgTbQwOTaGD2BwQATEuC6YFi42/aaZIAAL1sSbFRbteoSEXGVqEBYcDPMyYLP98O5nzNeHRvDg23h5haujU9EpD57sj3EBsGCbMj+ecQlPxMMaQ0PtYOQ2msbVKe4ZbJr69atlJeX2wen79ChA1br5ToWiacw+QXS9sXV7H7tdxXmhd/zIj7No8jfspajK96m5f2vcOjDF4l+5kO8Aho5P1jxSN5G28X8/bFw5Ofxu5r52hJhUnMMBls3mDsi4chZ281UM18lE0VE6oKWDeGFRHimI9y8wlY2t5dLQxIREWzX0LdGwG9awQ3LbWWrB4JvPbuGdstkV9euXZXcqscMXt54BYZUOs+neZStjtEEGLCcK6X02D72vvkAGAxEPvEe3o2aOy9Y8WgmA4T5uzoKz2cw2Jpci4hI3ePvlncTIiKe7+IXLta3RBe4wQD1IlfKarFw6JNXaHLLaMryj1Gc+yNR4+bR/LZx5H3yqqvDExEREREREZFapGSXeJyDH0wmpNfd+LSIwdQwGL/ITngFNCagQy/OHshwdXgiIiIiIiIiUouU7BKPcnLjfykrOEGT/g8BYPJtiLGBL5ZzJRTn/kiDZlGuDVBEREREREREapWSXeKWMif3p2jPZjIn96dgx3rylrwOwP65f6J4zxYyJpo59NE0AJoPeZrMyf3YN/uPtLjjWVeGLSIiIiIiIiK1TENKiltq9/Iah+mA9j0B6DQ7t0LdoMT+BCX2d0pcIiIiIiIiIuJaatklIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIYGqJc6JzYIZvdw3bpFRKRyKSkpjBo1isjISCIjI5k3b57D/AULFhAWFkb//v155ZVX+Pzzz0lMTOQf//iHQ72jR48yZswYTp06xT333MOYMWNYuXIlL774Io0bN2bhwoUEBwfz7bffMmHCBCwWC9OnTyc2NpapU6fyxhtvOHOzReQaVPe8ERERwUMPPYTRaKRLly787W9/c6j3xhtvMGPGDB577DEmTZoEwN13301eXh5nzpwhIiKC//3vf4waNYq5c+diMBicto0iIlL3KNkldU6ANySGujoKERGpzOjRo5k0aRJPPvkkqampdOvWzT5v+fLlLF68mMOHD7Np0ya+/vprnnrqKb7//nu6dOlir/fSSy/x5ptvEhkZaS+bMWMGa9euZdWqVfzrX//i6aefZsaMGaxYsQIfHx97vVOnTlFQUEBAQIBzNlhErll1zhsnTpxg5cqVBAQEcP/995OZmUm7du3s9UaMGEFiYiIbN260l3344YcAvPvuu/bkVteuXUlOTqZv375O2joREamL1I1RRERErljHjh05cOCAffrEiRP4+vpiMBj4/vvv6d27NwB9+/YlLS3NYdnMzEyef/55BgwYQEZGBoWFhQQGBuLn52evn5OTQ3FxMYMHD+a+++6jsLAQsN3IpqSkOG07XSElJYXo6GjMZjMjR46sMH/atGlkZWVdcvm9e/cSFhaG2WzmgQceqDD/3Llz/O53v8NsNvP6669XmAbYuXMn06dPr7mNEqHq80ZoaKg9iW0ymSq0zGrWrBlGY+W3LsuXL+e2224DoE+fPqxYsaKWtkBERNyFkl0iIiJyxVJTU4mNjbVPZ2dn21tqnTp1iqAgW7/wwMBATp065bDs+vXrmTp1Km+//TYTJ050qB8QEMDp06c5cuQIOTk5LFu2jP79+/Ovf/0LgMjISDIzM52wha41evRoUlJSCA4OJjU11V5usVjYunUrbdu2rXL5W2+9lZSUFObPn19h3pIlS+jevTspKSn88MMPFaaPHj1KfHw8mzZtwmq11vi2Sf1V1XnjvO3bt3Ps2LHLHuPnFRQUcObMGcLCwoD6c44QEZGqKdklIiIi1TZnzhzMZjMtW7YkMTGx0jqNGjUiPz8fgDNnztCoUSOH+R06dKBNmza0bduW06dPO9QvKCggODiY4OBgunbtio+PDzfffDMZGRm1uVl11i9bwmzZssWha9elrFy5kl69evHBBx9UmLdnzx46deoEQHx8PDk5OQ7T3333HQAxMTFs3769JjZD6rnqnDcA8vPzGTt2LO+99161P3vlypUMHDiwBqIUERFPomSXiIiIVNv5FkdTp051KI+NjSU3NxeA66+/nnXr1gGQnJzMjTfe6FA3KiqKY8eOcfjwYfz9/WnYsCFnzpzh7Nmz9vrt2rXj0KFDWK1Wtm3bRlRUFAC5ubnVbvHhCX7ZEiYrK8u+Ly4lLCyMjIwMVq1axbvvvsvx48cd5sfFxfHVV19htVr5+uuviY6Odpg+ffo0oBYyUnOqc96wWq089NBDvPTSS4SHh1f7s5cuXcqQIUPs0/XtHCEiIpXTAPUiIiJyzUJCQigqKgKgRYsWJCQk0KtXLxISEujSpQt5eXksWLCA8ePHM2nSJO644w7Kysp46623APjTn/5Enz597G9j9Pb25r777uPmm2/G39+fRYsWAfDNN9/Yl/Fkc+bMYc2aNfTs2fOSLWF27NjB448/7lA2cOBAnn/+eft0r169yMnJITT0wptfBg8ezKpVq7jlllto2rQpzZo1Y926dQ7TIs5w8XkjJSWFL7/8kmPHjgG2l1a0bNnSft6YP38+f//73zl9+jT5+fm89tprlJeXk5mZSfv27e2fmZyczKBBg1yyPSIiUnco2SUiIiLVYjabMZvNl5w/ePBg1qxZQ//+/Zk8eTKTJ0+2z2vRogXjx48HICEhwd7y67yBAwdW6Ip0//33c//999unT5w4QaNGjQgMDKyBranbzr+97pfatm3LkiVLAGjfvn2lg/Wff1ul1Wrl+++/Z+zYsQ7zTSYTM2fOxGq1MnLkSLp160a/fv0cpsHWQqZHjx41v3FSr1zJeePEiRMV5p8/bzzwwAMVXrhgMpn45ptvHMq+/fZbxowZc+2Bi4iIW1M3RhEREakRDzzwAP3796+1zw8JCeFvf/tbrX2+O+jcufNlxy/buHEjXbp0oXv37gwYMICwsDDy8vLsb1r86aefMJvN9OvXjzvvvJNjx445TPv7+wO2wcM7duxY69sk9VtNnzfef//9S761UURE6g+17BIRERGpQ6pqCWM0GklISCArK+uS4xINGDCAAQMGOJRd3LKudevWFVqE/XJ6586dXH/99RgMhqvaBhERERFXUrJLRERExI1U1r2xpsXHxxMfH1/r6xERERGpDWrjKyIiIiIiIiIiHkPJLhERERERERER8Rjqxih1TsE5yM53zbpjgyDA2zXrFhEREREREZFrp2SX1DnZ+fDwBtese3YPSAx1zbpFRERERERE5NqpG6OIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGBqgXjxCxkQzhbtSMXh5YzB54dvyOsJHTCOocz9XhyYiIiIiIiIiTqSWXeIxwkdMI2lxAQnzDtMwrhs5r9xOeeFpV4clIiIiIiIiIk6kZJd4HKO3D01uGY3lbAFnD2W7OhwRERERERERcSIlu8TjWEqKObZ6Nkb/IHzD27o6HBERERERERFxIrdJdpWWljJ58mQiIiLw8/Ojb9++pKWlYTAYWLp0qavDkzrg4MLJpN/biG2PRFG0Zwuxkz7D5B/k6rBERERERERExIncYoB6q9XK8OHDSUtLY8qUKcTGxrJw4UKGDh0KQFJSklPjuenVh4m4pQveQf6cKygm97NUvn/5P1jOlTk1DnEUfu/LtBj6jKvDEBFxOz+ehIU5F6Z/uxqGRcHwKAjwdlVUnmfvGfhg94XpW76AIa3h7hho4uu6uESuRn4pfLQH/pt7oWzyJrgvBq5r5LKwREREADdJdr333nusWLGC9PR0OnToAIDZbCY6OpqQkBBat27t1Hh2vv8F37+0gLLiEnxCAjG/9zQJT95B+oyPnBqHiIjItVqxD6ZsBgwXyvKK4e2dtnn/6gGNfFwWnsf4/hg8+Q2UWS6UnSyFedmw/Of93DrAdfGJXIljZ+Hh9bC/yLF85X5YdQBeuR76hbsmNhEREXCTbozTp09nxIgR9kQXgMlkIjo62t6q6/bbb6dz584kJSXRq1cv0tPTay2e05n7KSsusU0YDFgtVgJjwmptfSIiIrVhfyFMSQcLYLFWnJ9bAFO3ODsqz1NYBk+n2RJdll/Ms2JLej37HVgr+T8QqYv+vBkOFlUsP38umfgDHCl2elgiIiJ2dT7ZlZWVxZ49exg2bFiFefv27bMnu+bNm8eWLVvYvHkzzzzzDA899FCtxtVp7O3cl72Ae36cS0iHSHa891mtrk9ERKSm/Xdv1QkWC/BVHuRVclMr1ff5PlvC65eJrvMsVsg+A1tOODUskauytwC+PXrp49kKlFvh09xLVBAREXGCOt+N8cCBAwA0a9bMoXzXrl3k5ubak13BwcH2eadPn8ZorH4eLzAwkNLS0grlbbwa82xQz0qX2fbP/7Htn/8juG1LYu7oRfGRk9VeX33Vp4+ZnLLL7yf/uG60mZpyRZ8dN+3K6l9Knz5mijJSa+SzRETqutjXv8MvKqHKOlag85CHOLXuA+cE5YFaP72IoBsGYzBd+rLLarFw2x+nceTjqU6MzPN1/OgsAD4+GhStpoTc8ggtx/yzyjoWq5U3l3/Dk53NzgmqntDx7Bzaz86h/ewc7r6fLZZLPVq5vDrfsis0NBSA7Oxse5nVauW5557DYrE4DE7/8MMP07p1ayZOnMi8efOcEt/prAOc2J5Lr3886ZT1iYiI1JSqki8O9YymWo7Ewxm9wGC4TCWr9rO4heqcNwwGg45nERFxqTrfsis+Pp7Y2FgmTJiAt7c3AQEBzJw5k82bN+Pv709cXJy97uzZswFYsGAB48ePZ8WKFdVax5kzZyotP5y2i8+HTLrs8kZvE0Eas+uykpNTaH7jdZetl34cHt7ghIAqkZycQmKoa9YtIuJsL26G/9t36e5I56376F+0C/6XU2LyRLMzYFZG1XUMRhPzpk+gz/wJzgmqnuiyzPZvSUmJawPxIFtPwEPrq65jBEbeciPPPa39XpN0PDuH9rNzaD87h7vv5w0bNtCzZ+W97S6nzrfs8vLy4pNPPiEsLIyRI0cybtw4Bg0aRO/evUlISKi0u+L9999PcnIyx48fr/F4vAP9if2dmQZB/gA0jo+k87hhHEzRCL4iIuJehkVVnegyAp0aQ7vgKirJZd0eCcYqGnYZgVAf6NXcaSGJXLVOjaFNYNU3ERZs5xcRERFXqfMtuwA6d+5MaqrjOEr//Oc/6d27NwAFBQWcPHmSiIgIAJYvX05ISAghISE1H4zVSsywm7lhykiMDbw4eyyf3BXfkv764ppfl4iISC3q2BhGxsK8bDBgG5/rPCPg7wWTOrsoOA/SxBee6wSvbrXt14sTjEZsibCpvwKvOv8IUsTWI/fFX8Ej66Gk3PF4Pn8e+X0cxAa5KEARERHcJNn1S8XFxWRkZDBu3DgACgsLGT58OIWFhZhMJkJCQli+fDmGy46PceXOFRSz6q6XavxzRUREXGFsPEQ0tCW89hXayowG6NsCHouHyADXxucphkXZWm/NzoRdpy+U39gUfn+dLfEo4i6uC4Z/94KZu2xvbD2fKI8MgFFt4dYIl4YnIiLinsmurVu3Ul5ebh+cvnnz5nzzzTcujkqcoTAzjX1zngKrlcCEvrQcceGtVYeX/52T6xaByYuoP/4br4AQcv5yB1gseDdpRfS4BRhMGixVRORiBoOtm92Q1rC3AIrLIcwPGvu4OjLPYw6z/ewvhNOl0NQXmvm5OiqRq9MmCP56Ixw/C4fP2lqCRjasxrsYREREnMAtk11du3bFarVevqJ4HP+YJK6bbhu9PnNyP8qL8jH529rJn1y3iLjXUinclcqxL2YRfu9LxDz7Md7BTTnwwWTObF1LUNIAV4YvIlJnGQwQHejqKOqHVg1tPyKeINTX9iMiIlKXuGWyS+ovg5c3ANbycrxDwjH6+NvneTeJwHquhPKi05gCQjD6+NvnG4wmPWoUERERERERqQc0FKq4nRNfLWT72HhMDRthMF3I1wa078n2J+L5adZjhPZ90F5+7tRhzmxdS2Cnvi6IVkREREREREScSckucTshve+lw9u7OHfiIMV7twFQXpTPqY3/peOsLNr8v0859OEUAKzlZex96yFaP/qOxusSERERERERqQeU7BK3YjlXAoDBaMTkF4ihwflBIgwYfRtiMHlhCgihvPAUAPvm/IlQ8/34RXVyTcAiIiIiIiIi4lQas0vcyum0ZRxZ8TZYLAR0uBnL2UKOJy8gtM/9NIzrxq7neoClnIhH3qIkbzfHVs+mOHcrR1fOosXQ8QR3udXVmyAiIiIiIiIitUjJLnErjXsMp3GP4Q5l/jGJAITf/QLhd7/gMO9XHxc5KzQRERERERERqQPUjVFERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoTG76piebz7BucKzfDtxjqtDqeC+7AV8fvsLnPhxT62uJzYIZveo1VVUuW4RERHxfCkpKYwaNYrIyEgiIyOZN2+ew/wFCxYQFhZG//79WbZsGW+++SYWi4X58+fTunVre70tW7bw+OOP06BBA+bPn09ERAQAeXl5REdHk5WVRatWrRg1ahRz587FYDA4dTtFRNxNdc/PcXFx3HXXXXh5edGmTZsK59hHHnmEzMxMysvLmTt3Lu3atePvf/87ixYtwsvLi3//+99ERUXx+9//ntmzZzt7M6WWKdlVi1p070Di078jNCEGgONbd5P+14/IS93u4shsEp/+HaGd27D2gVerVf+D2PtrOSKbAG9IDHXKqkRERKQeGz16NJMmTeLJJ58kNTWVbt262ectX76cxYsXU1hYyIcffsjatWsrTVS99NJLfPrppxw6dIjp06fzz3/+E4B//OMfdO3a1V6va9euJCcn07dv39rfMBERN1ed87PFYmHDhg0YDAZGjx7Ntm3bSEhIsNd755138Pb25uuvv2bWrFm88cYbLFq0iNTUVFJTU5k1axZ//etfadq0KTk5ObRp08YVmyq1RN0Ya0mr/tdzy8JJ7FvzAx/96lE++tWj7FvzA7csmkSrfr+qdBmDqeb+Owxephr7LBERERFP1rFjRw4cOGCfPnHiBL6+vhgMBlJTU7FYLNxyyy088cQTWCwWh2ULCwtp1qwZnTt3Jjs7G4BTp05x7NgxoqKi7PX69OnDihUrnLI9IiKeoqrzs8lksj+E8PHxITw83GFZb29vAAoKCujYsSMAERERlJSUcPr0aUJCQgAwm818/vnnztgccSIlu2pJ16kPkf1xCttnLuPcmSLOnSli+8xl5HzyFTdOfQiAO9PeIWHcMH6zbBojdn9Ak862TLJ3Q1/M7z3NfVkLuP2rvxFu7nzZ9bXo1oH7shfQbkR/7vxuJoPX/BWAsJsT+O3K6dybMY/Ba2fQeuANALQeeAOdnhxKyz6J3Je9gPuyF2BsUHVDvwcPfUJo5zYYTEbuzZxPozhbM/0W3Tvw4KFPiPytLdvu16wRD/z0Id4Bfle380REREScKDU1ldjYWPt0dnY2kZGRABw5coRjx46xatUqmjRpwrJlyxyWvTj5df73t99+m9///vcO9SIjI8nMzKytTRAR8UhVnZ8BvvzySxISEsjLyyM4OLjC8v369WPs2LHccIPtPrhnz57Ex8fz2GOP8eCDDwI6P3sqJbtqQVCbcAIjm7PnfxsqzNv96XqColoQFBMGQOxwMxuefocPYu/n+M9jYUXf3pPdn37NwutGsvUfn9J37rP4twi57Hq9/HxokhjL/24ex2eDniMwqgX95z3Pj//8H4vaj+KHaf+h98ynCOkQxU9ffMe2tz7lQHI6H8Tezwex92MpLavW9lnLLRz+didhPTsBENarE/l7DhHW05YtD+vZieNbd3OuoLhanyciIiLiCnPmzMFsNtOyZUsSExMrrRMcHEyvXr0wGo3cfPPNZGRkOMw3Go0OvxcXF7Njxw6SkpJqM3QREY9WnfMzQN++fdm6dSuRkZF88cUXFeavXbuWJUuWMGXKFPLz8/nvf/9LVlYWn376KVOmTKm9DRCXU7KrFviGBAJQfPhEhXnFR07a6oTaRkLPWLCa01kHsFos9mRT3jc7+OnzNKzlFnZ/so6TO3KJuq1bhc/6JYPRyA+vfEBZcQnlxaVED+nO4W93snd5KtZyCwe+3MxPq76nzfDe17yNeet/dEhupf/1I3vyq0WPjhza8OM1r0NERESkNo0ePZqUlBSmTp3qUB4bG0tubi4AN9xwAzt27ABg27ZtDl0TAfz9/Tl69Chbt24lNjaWvXv3kpOTw8CBA1m9ejVPPPEEALm5ubRt27b2N0pExANU5/xcWlpqLw8ODsbX19ehbklJiX2en58fBoOBhg0b4uXlRUhICKdOnQJ0fvZUGqC+Fpw9cQYAv+YhnM4+6DDPr1ljW53j+QAUHjhaYfnC/Y5lBfuOVqtlV1lxCSU/rxvAPyyUgl9+Vu5hAiKbV2MrqnZo/TYSxg2jQZA/QTHh7PnfBn71/D34h4UQ1rMjG5+edc3rEBEREXGFkJAQioqKAGjWrBm/+tWv6N27N02bNmXhwoXk5eWxYMECxo8fz+TJk7n99tvx9va2v6nxm2++AeDBBx+036glJyczaNAgl22TiIgnuPj8nJaWxoQJEzAajcTGxtKvXz+H8/PQoUMpLi7GYDDw9ttvExgYSLdu3ejRowfl5eW89dZbgO3tj6NHj3blZkktULKrFuTnHOTMT4eJHtydvF+0cIoe0p0zPx0mf/chAKwWa4XlG7Zq6jAdENGUo5su34fY+osBU4sOHadFtw6/+KxmFB06Xmn9K3Fi+16sFgvtH/ktR77bhdVi4dD6H2l3b3/8mzXmyHe7rvqzRURERGqb2WzGbDZfcv7gwYNZs2YN/fv357nnnuO5556zz2vRogXjx48HICkpiQ0bKg5dAfDvf//b/vu3337LmDFjaiR2ERFPdiXn53Xr1jnMu/j8XNlLQV544QVeeOEF+3RZWRlHjhxxGBdMPIO6MdaStBf+Texdfejw6G14B/jhHehP+0d/S+zv+pA2+f0ql21xU3siBnTBYDISc0cvGrePZO//fXPFMexZupHmXeOJvLUrBqORln0Sifh1F3I+sZ0Qio+dpmHLJlf9Fsi8jdtpP+ZWDq3fBsChDdtoP+ZWjvyQSXnJuav6TBEREZG64IEHHqB///419nnvv/++w/heIiJydWry/Ozl5cWcOXNq5LOkblHLrlqyb+V3rBnxCp3/dCeJ438HwPGtu1kz4hV7cuhS9vxvPW2G9+bmt/9I4aHjJD/8V4oOHr/iGM7szePLh17jV//vPnr87QkK9x9l3di3OPHzQPh7l6cSc3tP7v5xLgaDgQ8TRld7kHqAQ19vI+q33Ti03tZ67dD6H2kQ1FDjdYmIiIiIiIiIyyjZVYsOrd9WZWLrkxsfr1C2ftzbV7WuvNTtfBB7f4XyA8npHEhOr3SZ0lMFfDHsz9X6fMPPTyIvToZlzF9FxvxV9uniwyf5d9idVxC1iIiIiIiIiEjNUltqqZbGHSKxnCurdEB9EREREREREZG6Qi273MiQlL8R0KpJhfJ9q35g3eNvXvPn9/9gIs27Xleh/FzBWYzeJn54ZSGl+UXXvB4RERERERERkdqiZJcbWWp+qlY/f81902r180VEREREREREapuSXVLnFJyD7HzXrDs2CAK8XbNuEREREREREbl2SnZJnZOdDw9vcM26Z/eAxFDXrFtERERERERErp0GqBcREREREREREY+hZJeIiIiIiIiIiHgMJbtERERERERERMRjaMwu8QgZE80U7krF4OWNweSFb8vrCB8xjaDO/VwdmoiIiIiIiIg4kVp2iccIHzGNpMUFJMw7TMO4buS8cjvlhaddHZaIiIiIiIiIOJGSXeJxjN4+NLllNJazBZw9lO3qcERERERERETEiZTsEo9jKSnm2OrZGP2D8A1v6+pwRERERERERMSJ3CLZVVpayuTJk4mIiMDPz4++ffuSlpaGwWBg6dKlrg5P6oiDCyeTfm8jtj0SRdGeLcRO+gyTf5CrwxIRERERERERJ6rzA9RbrVaGDx9OWloaU6ZMITY2loULFzJ06FAAkpKSXBKXybcBQ76cgV+zRnwQe79LYhBH4fe+TIuhz7g6DJeyWGHtQfhoD2ScBpMBujWDu2Kgc4iro/MsqUds+3nTcdt05xD4XTT0aAYGg2tjE7lSe87A4j2w5iCcLYfWDeGOKPhtBPiaXB2dyJU5VQpL9sLSny6UvbMThkdDU1+XhSUiIsAPx2zXHOc9thGGR0GfMF1DS82q88mu9957jxUrVpCenk6HDh0AMJvNREdHExISQuvWrV0SV9L4uyjYfwy/Zo1csn6RXyqzwKRNtptVI2D5uXzNIVh1EJ7qAPe1cWWEnsFqhbd2wIIcx/38zVHYeATujoanO+rLWtzHV3nw3He2ZPn54zkrH/6yFZb9BO90gwBvl4YoUm37C2HMBjhy1rH8/Sz4ZC/M7A5xwS4JTUSk3puTCTN3gfGi6+QfjsF3x+DWVvDnJMd5IteizndjnD59OiNGjLAnugBMJhPR0dEVWnW9+OKLGAwGfvzxx1qNKTQhhpZ9Evnx7f/V6npErsS8bFuiCy7csILtBhbgb9ttXyZybVYesCW6oPL9/OEe+Gyf08MSuSp5RfD891BudTyefz6c2XnKlvQScQdWKzydBsfOVjIPKDgHf/wGzlkqzhcRkdq14bAt0QUXrpvhwvXH/+2HD3c7PSzxYHU62ZWVlcWePXsYNmxYhXn79u1zSHZt2rSJb775hsjIyFqNyWAy0v2vv+ebCbOxlJbV6rpEqqvMcvkvByP6AqkJC3dXfeI0AB/k2G66ROq6Jbm288elDlcrtpahlSUPROqaH45DzhnHxO3FLMCxEkg+5MyoREQEYNHuy7faWrjbMREmci3qdDfGAwcOANCsWTOH8l27dpGbm2tPdpWUlPDEE0+waNEizGbzFa8nMDCQ0tLSCuVtvBrzbFBPh7KOjw/h+LY9HP5mJy26daiwjFxanz5mcspOXraef1w32kxNuaLPjpt2ZfUvpU8fM0UZqTXyWc7kG5NE2+nfVFnHAqz96Sw+vdR/42oZGzaiw78PV1nHCmSfgYAWrSk7VXVdEVeLfT0N38gEDFX0u7VYocNvH+TU14ucGJnIlWtx3zSaDH4Kg/HSA81Zy8t4bMZC9r/9iBMjE6kZHT+yPXnw8dHgc7VJ+7kWGI10/LAQg6HqtjZ5xdAoJoGSgxlOCszzufvxbLFcfXPsOt2yKzQ0FIDs7Gx7mdVq5bnnnsNisdiTXS+88AIjRowgKiqqVuMJjGpB3AMD+P7lBbW6HpErZTBVb0Cd6taTyl3J/jN4NajFSERqhsHUoMpEl72ejmdxAwYvb7Be/qJYx7OIiHMZjF6XTXTZ63rpfkVqRp1u2RUfH09sbCwTJkzA29ubgIAAZs6cyebNm/H39ycuLo7U1FS+//57/vKXv1z1es6cOVNp+eG0XXw+ZJJ9uvmN1+HXJJg7NrwFgNHLhHdDP+7ePpfk0a9z+JudVx1DfZCcnELzG6+7bL304/DwBicEVInk5BQSQ12z7mtxqhQGroSyKpr9GoDYRiZ+KClxWlyeptxq288nKzYEdRDkDSf3ZeNdpx8niMDEH2D1wct3GVi76D06NH7POUGJXKVlP8FL6VXXMZi8mPjI3Yx67W6nxCRSk7oss/1bomu5WqX9XDtuXwMHii49dAKAjxEO7vyBhnU6S+Fe3P143rBhAz179rx8xUrU6VsxLy8vPvnkE8LCwhg5ciTjxo1j0KBB9O7dm4SEBIxGI1999RU7d+4kOjqaqKgo9u/fz69//WtWrVpV4/HsWb6R/3Yfy7L+z7Cs/zNseHoW54rOsqz/MxzdlFXj6xOprkYN4JaWVf9BW4HfRTsrIs9kMsCdUbbE4aUYgKGRKNElbuHOqKoTXUagXRC0b+SkgESuwYBw8DdVfY42GWBwhNNCEhGRnw2PrjrRZQRujUCJLqkxdf52rHPnzqSmplJUVERGRgaPPfYYmzdvtndhfP755zl48CB79+5l7969tGrVipUrVzJgwIAaj6W8uJSiQyfsPyXH88FqpejQCQ1WLy43Nh5CfS/9R90lFG5r7dSQPNKIWGgTWPnNlBGIDIAH2zo7KpGrkxgCwy7xXhcjtqTtpESoRk9HEZfz9YLJibbff3nInp/+U0fbd6WIiDjXnVGQ0PjS19DN/eDROCcHJR6tzie7fqm4uJiMjAyHNzG6Sl7qdj6Ivd/VYYgAti+I93tB3zDHN534m+C+GPj7TWptVBMaesG/esLtkdDgov3pbbQ9jZrTEwI11IC4CYMBnkuAJ9tDiI/jvOubwJxeatUl7uWWlvC3rhAb5Fge0RCmXQ93qYWziIhL+Jjg7W62nia+F71HxGSwnbvf76WHEVKz3K6R4NatWykvL79ksmvv3r3ODUicqmDHeva//wwYjDTuPozmtz9tn3dszVyOrZqNV6NmRI9bgLX8HDl/uQMsFrybtCJ63AIMpku/ockTtPCDv9wAx87CwJ978q78Nfi53V963RboDRM72xIEfT63lX0xAII15rG4IaMBHoiFe2Pgps9sZf/rB60aujYukavVszn0aAY5Z2zfh40aQFywWiiKiLianxeM7wSPx8POU7ahFGKDKj5wE6kJbncL3LVrV6zWy4ykKx6rQfMY2r2yDqN3AzIm9qHpoMcw+vhjLS/j+JfziPvLek7/sIJjq2fTdOCjxDz7Md7BTTnwwWTObF1LUFLNd2+ti5pc9FREia7ac3ELLiW6xN15XdRSUYkucXcGg+0G6pctvERExPUaekGXJq6OQjydOjWJW2kQGo7R25ZVMBhN8PMrbMvyj9GgaWsMRiN+kZ0ozEjF6OOPd3DTi+rqka6IiIiIiIiIp1OyS9xSfvpqfMLaYGxga8LkFdSUkkPZWErPUrB9HeWFp+11z506zJmtawns1NdV4YqIiIiIiIiIkyjZJW6n9Nh+8j55lVajZtjLDCYTzYeOJ+vFgRTv3YJXo+YAWMvL2PvWQ7R+9B2PH69LRERERERERNxwzC6p3yznStj79wdp/fuZmPwCHOY17nYHjbvdwckNH2MtLwNg35w/EWq+H7+oTq4IV0REREREREScTMkucSsnvlrI2X07yJ35KAAtR0yjJG83oX3u56dZj3P2QAa+Ee2JGP0mJXm7ObZ6NsW5Wzm6chYtho4nuMutLt4CEREREREREalNSnaJW2nSfxRN+o9yKAuI7wFA69+/41Du0yKGX31c5LTYRERERERERMT1NGaXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkNjdkmdExsEs3u4bt0iIiIiIu4kJSWFUaNGERkZSWRkJPPmzXOYv2DBAsLCwujfvz8A//vf/xg/fjxZWVkO9V544QW++uorSkpKeOONN+jevTtPPPEEr732Gg0bNnTa9tRV1d3PcXFx3HXXXXh5edGmTRvmzp2LwWCw13vkkUfIzMykvLycuXPn0q5dO/7+97+zaNEivLy8+Pe//01UVBS///3vmT17trM3U8QjqGWX1DkB3pAY6pqfAG9Xb72IiIiIyJUbPXo0KSkpBAcHk5qa6jBv+fLl9OvXzz793//+l4iIiAqfMXnyZL766is+/vhj/vrXvwJw2223sXjx4toN3o1UZz+Hh4ezYcMG1q1bh9FoZNu2bQ713nnnHb766iteffVVZs2aBcCiRYtITU3ltddeY9asWXh5edG0aVNycnKctm0inkTJLpF6KiUlhejoaMxmMyNHjqwwf9q0aRWe9l1s/fr13HTTTXTv3p0ZM2ZUmL93717CwsIwm8088MADfPHFF5jNZsxmM6GhoaSnp7Nz506mT59eo9slIiIiUp917NiRAwcO2KdPnDiBr6+vvWXRl19+Sc+ePTEaK94KenvbnvwWFBTQqVMnAG6++WZWrlzphMjdS1X72WQy2fe3j48P4eHhDstevJ87duwIQEREBCUlJZw+fZqQkBAAzGYzn3/+uTM2R8TjKNklUo9d6smUxWJh69attG3b9pLLxsTEsG7dOjZu3Mhnn31GUVFRhTq33norKSkpzJ8/n4EDB5KSkkJycjIxMTF07tyZ+Ph4Nm3ahNVqrZXtExEREalvUlNTiY2NtU9nZ2cTGRlpn547d26lDzrPu//++7nlllvo06cPAP7+/pw8ebL2AnZTl9vPX375JQkJCeTl5REcHFxh+X79+jF27FhuuOEGAHr27El8fDyPPfYYDz74IACRkZFkZmbW7oaIeCglu0SkwpOpLVu20K5duyqXCQ8Pp0GDBgCYTKZKnw6uXLmSXr168cEHH9jLvvvuO7p06WJ/2hUTE8P27dtrYjNERERE6q05c+ZgNptp2bIliYmJldb5/vvvad++Pb6+vpf8nAULFpCWlsYLL7xQS5G6t+rsZ4C+ffuydetWIiMj+eKLLyrMX7t2LUuWLGHKlCnk5+fz3//+l6ysLD799FOmTJlSexsgUk8o2SUiFZ5MZWVlERUVVa1lV69eTZs2bSpcNIWFhZGRkcGqVat49913OX78OABLly5lyJAh9np6YiUiIiJy7c632J86dapDeWxsLLm5uQD8+OOPrF69moEDB5Kens60adMc6paUlAAQEBBgH5C+qKiIRo0a1f4GuInq7OfS0lJ7eXBwcIXr5PP7OTg4GD8/PwwGAw0bNsTLy4uQkBBOnToFQG5ubpU9LUTk0vQ2RpF6bM6cOaxZs4aePXte8snUjh07ePzxxx3KBg4cyPPPP8/+/ft59dVXWbZsWYXlfHx87L/36tWLnJwcQkNDSU5O5s9//nONboeIiIiIVC4kJMQ+3MSDDz5o7yLXv39/Jk6cCMDTTz/NjBkzeOyxx9i9ezfl5eW8+uqrAKxbt44BAwa4JHZ3cvF+TktLY8KECRiNRmJjY+nXrx95eXksWLCA8ePHM3ToUIqLizEYDLz99tsEBgbSrVs3evToQXl5OW+99RZgG2N39OjRrtwsEbelZJdIPTZ69GgmTZpUobxt27YsWbIEgPbt25OSklKhTklJCQ8++CAzZ84kICCgwvyCggICAgKwWq18//33jB07lt27d9OqVSt790ewPbHq0aNHzW2UiIiISD1z/iVAlzJ48GDWrFlD//797WVr1qyx/37+ZUNz586tsOzy5cv1QqGfXcl+XrduncO8Fi1aMH78eABWrFhRYdkXXnjBoetoWVkZR44cceh9ISLVp26MIlJB586dycjIqLLOwoUL2bFjB48++ihms5kDBw6Ql5fH66+/DsDGjRvp0qUL3bt3Z8CAAYSFhVXowgi2wTzPv4VGRERERGreAw884JDouhJvv/12pQ82paJr2c+/5OXlxZw5c2rks0TqI7XsEqmnqnoyZTQaSUhIICsr65LjBIwaNYpRo0ZVKD//xGrAgAEVmrw/9dRTDtM7d+7k+uuvtw9WLyIiIiIiInKtlOwSkUpV1r2xpsXHxxMfH1/r6xEREREREZH6Q90YRURERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8Rgas0vqnIJzkJ3vmnXHBkGAt2vWLSIiIiIiIiLXTskuqXOy8+HhDa5Z9+wekBjqmnWLiIiIiIiIyLVTN0YREREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hsbsEo+QMdFM4a5UDF7eGExe+La8jvAR0wjq3M/VoYmIiIiIiIiIE6lll3iM8BHTSFpcQMK8wzSM60bOK7dTXnja1WGJiIiIiIiIiBMp2SUex+jtQ5NbRmM5W8DZQ9muDkdEREREREREnEjJLvE4lpJijq2ejdE/CN/wtq4OR0REREREREScyG2SXaWlpUyePJmIiAj8/Pzo27cvaWlpGAwGli5d6urwpA44uHAy6fc2YtsjURTt2ULspM8w+Qe5OiwRERERERERcSK3GKDearUyfPhw0tLSmDJlCrGxsSxcuJChQ4cCkJSU5LRYer75BNFDe2I5V2YvS3lkBgeS050Wg1Qu/N6XaTH0GVeH4VJWK3x7FD7Ze6HsL1vhziiIVd5P3NCeM/DxXlh/GMosEBdsO567NwODwdXRiVyZUyXwv5/gi/1wqhRa+MOQ1jCoJfi6xRWZiDibxWr7Dvzv3gtlM36E4VHQOsBVUXmmTcfh4z0Xpl9Kh99FwXWNXBSQiFwTt7i0eu+991ixYgXp6el06NABALPZTHR0NCEhIbRu3dqp8WT+Zw3fTpzj1HWKXI7FCq9uhU9zwXhREmDJXtsF0qRE202ViLtYsQ+mpANWsPxcduwsfH0Ybm0FLySBSQkvcRPZ+fDYRjhZeqHseAn8eBIW7YZZ3SHEx3XxiUjdU2aBSZtgzUHH7jgf7rYlZaZdD/3CXRaex7Ba4a0dsCDHcT9/9hMs+wn+1AHubeOy8ETkKrlFN8bp06czYsQIe6ILwGQyER0dbW/VFRUVxXXXXUdiYiKJiYmsXLnSVeGKuMSi3bZEF9gSX+dZACswNR22nXBBYCJXYddpmLLZdixbLio///v/7YcFev+EuInScvjDN3C61LH8/Kl67xn4f987PSwRqeP+lWlLdIHjd6EVKLfChB9sLaDl2izfZ0t0QeXXHG9sh2+OODsqEblWdT7ZlZWVxZ49exg2bFiFefv27XPowvjJJ5+Qnp5Oeno6v/71r2stppg7enHPjve5fd2bJPzxDgymOr8bxcOVW+E/OVXXMQAf7qm6jkhdsXj35et8kGN76i1S1609BEfPOt5EXcwC/HAcMk87MyoRqcvOllf9XWjF1iLpI13bXROr1fbwrKqG4kZs1xwi4l7qfDfGAwcOANCsWTOH8l27dpGbm1sj43UFBgZSWlpaobyNV2OeDerpULZjzgq+f3kBZ0+cITQhht7vjMPk04DNr314zXF4uj59zOSUnbxsPf+4brSZmnJFnx037crqX0qfPmaKMlJr5LOcyTcqgbavf1dlHQvw+e4i/tq9sXOCqic6fnQWAB8fXxdH4lnav5+HKaDqY/VkKTRJ6EVxVpqTovJ8Op5rR8S4BQTfdAcG06Uvu6xWC31//yJHl/zFiZGJSF3VsKOZmD9X3VPFAizcdJAXboh2TlAeyLtpJNe9k1llHQuw8YgF34ZBWMvOOScwkRri7td2FsvVP9mu802SQkNDAcjOvtBfxWq18txzz2GxWBySXffddx8JCQk8/vjjnDp1qlbiObFtD2eP54PVyvEtOWz+62Kih/SolXWJVJexgV+16hm8NSCMuAdDg+p9IVf32BdxJWMDv8u/UcFixeij41lEbKp9bafvwWtS7f1sMGLw0nW0iDup8y274uPjiY2NZcKECXh7exMQEMDMmTPZvHkz/v7+xMXFAfD1118TERFBSUkJ48aNY+zYsfznP/+p1jrOnKm8s/vhtF18PmRS1QtbrFW3exW75OQUmt943WXrpR+Hhzc4IaBKJCenkBjqmnVfixMlMHCV41hdv2QAooJM/FBS4rS46oMuy2z/lmi/1qh7UyAr/8KYRpUxADs3rKK5rvNrjI7n2vHWDls3mSqPZ5OJWS8/z2/+/bzT4hKRumtfAQz9suo6RuD6iMak65x91YrKoP8XUHqZxiOhPlB06rjeBC1ux92v7TZs2EDPnj0vX7ESdb5ll5eXF5988glhYWGMHDmScePGMWjQIHr37k1CQgJGo20TIiIiAPDx8eHxxx9nw4bayZZEDe6Od6A/AI3jI+n89HD2fuZ+3d7Es4T4QJ8WVf9BW4E7o5wUkMg1ujOq6sSAEejZHCW6xC0MbX35xG2AF/TVW9VE5GcRAdAltOprOwtwp3owXhN/L7g1our9bACGR12+ga6I1C11vmUXQOfOnUlNdUwo/fOf/6R3794AFBYWUlZWRnBwMFarlQ8//JDExMRaieW6B39Nt+ljMHqbKD58ipxPvmLrPz6tlXWJXIk/tIfvjkFBWcUWXgagfSO4vbUrIhO5cr+NsL1xceuJikkCowH8TfDH9i4JTeSKRQTAqLbwflbFeQZsx/jzCeBrcnZkIlKXPd0RHloPJeWVv+DixiZwi5Lk1+yRdrD+MByv5EUiRiAqAO6OcUVkInIt3CLZ9UvFxcVkZGQwbtw4AA4fPsywYcMoLy+nvLyc9u3b884779TKur+448+18rki16pVQ3i/F/xlqy3pdZ6XAQa1gmc6ga9b/sVLfdTABP+8yfa678/2wbmLrj4TQ2yJgahA18UncqUevw4aN7AlvE5e9E6clv7wZHu16hKRitoGw5yeMH0bbDlxobyBEYa0hj92AK8630+n7mvmB+/3hFe3wsYjFx6yGQ22ZOKznSDA26UhishVcMtb361bt1JeXm4fnD4mJobNmze7OCpxhsLMNPbNeQqsVgIT+tJyxFT7vIyJZgDKTh8lKPEWWj34OhkTzRhMXpj8g4l59iOM1Rz02l1FBsDM7vBTAWTm2xJdiSHQSONpihvy84KJnWFsPPT7wlb2SV/bE1YRd2MwwL1t4HfRcNNntrLZPaBziLrGiMiltfs54bX7jO3H2wjXhyr5UtNa+MPfb4KDRbDzlK3VbUIINPHsWwcRj+aWya6uXbtitVY1+oV4Kv+YJK6bbhuPLXNyP8qL8jH5BwEQNy0FgAPz/x+Bnfpg8PIm7pWvMJi8OLT4ZfI3r6JR18GuCt2pWgfYfkQ8QXCDC78r0SXu7uJWGO74QhQRcY2YQNuP1K5wf9uPiLg/NXwVt2Lwsj3GspaX4x0SjtGn4rfRmR9TCOhottU32fK5VqsFn7A2TotTRERERERERFxDyS5xOye+Wsj2sfGYGjayJ7POO3somwZNIzF625qCFP+0g51P30B++moaNIlwRbgiIiIiIiIi4kRKdonbCel9Lx3e3sW5Ewcp3rvNYd7pb5fSqOsQ+7Rf6/bEz/iOxj2Gc/zLec4OVUREREREREScTMkucSuWcyUAGIxGTH6BGH4x4PzpH1YQfP1vALCWnbOP7WbyD65QV0REREREREQ8j1sOUC/11+m0ZRxZ8TZYLAR0uBnL2UKOJy8gtM/9lOUfw2DyxtQwGICSo7nk/mM0GIx4BTQm+k//cXH0IiIiIiIiIlLblOwSt9K4x3Aa9xjuUOYfkwiAV1AT2k75wl7uGxZL3CtfOTM8EREREREREXExdWMUERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEY2jMLqlzYoNgdg/XrVukpqSkpDBq1CgiIyOJjIxk3rx5DvMXLFhAWFgY/fv3p1evXmzevJldu3bRqlUrh3qbNm3iD3/4A15eXrz99tt07NiRRx55hMzMTMrLy5k7dy7t2rVj1KhRzJ07F4PB4MzNFBERERERN1Pde5W4uDjuuusuvLy8aNOmTYX7jaNHjzJmzBhOnTrFPffcw5gxY+rEfYmSXVLnBHhDYqiroxCpGaNHj2bSpEk8+eSTpKam0q1bN/u85cuXs3jxYgA+/vhjnn/++Uo/46WXXmLJkiWYTCaeeOIJFi9ezDvvvIO3tzdff/01s2bN4o033qBr164kJyfTt29fp2ybiIiIiIi4r+rcq1gsFjZs2IDBYGD06NFs27aNhIQEe72XXnqJN998k8jISHtZXbgvUTdGEREn6NixIwcOHLBPnzhxAl9fX/vTjhYtWlxy2cLCQpo3b06TJk3Yu3cvAN7e3gAUFBTQsWNHAPr06cOKFStqaQvqtpSUFKKjozGbzYwcObLC/GnTppGVlXXJ5dPS0ujRowfdu3dn0qRJDvO++OILzGYzZrOZ0NBQ0tPTKS4u5je/+Q29e/dm1KhRAOzcuZPp06fX7IaJiIiIiNSyqu5VTCaT/Z7Fx8eH8PBwh2UzMzN5/vnnGTBgABkZGUDduC9RsktExAlSU1OJjY21T2dnZzs8/ahKYGAgWVlZ7N69m+3bt9vL+/Xrx9ixY7nhhhsAiIyMJDMzs2YDdyOjR48mJSWF4OBgUlNT7eUWi4WtW7fStm3bSy6blJTEhg0b2LhxI6mpqeTn59vnDRw4kJSUFJKTk4mJiaFz586sWrWKnj178tVXX+Ht7c2PP/5IfHw8mzZtwmq11up2ioiIiIjUpMvdq3z55ZckJCSQl5dHcHCww7Lr169n6tSpvP3220ycOBGoG/clSnaJiNSiOXPmYDabadmyJYmJiVf1GdOmTePxxx9n8uTJ9OrVy16+du1alixZwpQpU2omWA/xyydTW7ZsoV27dlUuc76lXHl5OeHh4fj7+1eo891339GlSxcMBgPR0dEUFhYCttZ157/0Y2JiHBKSIiIiIiJ1VXXvVfr27cvWrVuJjIzkiy++cJjXoUMH2rRpQ9u2bTl9+nQtR1x9SnaJiNSi862Npk6d6lAeGxtLbm5utT4jPj6e1atX8+qrrxIXFwdASUkJAMHBwfj5+QGQm5tbZeul+uKXT6aysrKIioq67HILFy4kPj6eRo0a4eVVcUjLpUuXMmTIEMD2//f1118THx+PwWAgIiICqBtPsUREREREqqM69yqlpaX28uDgYHx9fR3qRkVFcezYMQ4fPmx/YFwX7kuU7BIRcYGQkBCKiors0yNGjGDVqlXcc889rF27FoCnn34agPfee48+ffrwxz/+0d40eOjQofTp04eHHnrIXpacnMygQYOcvCV1R3WeTO3YscM+/tb5n7/85S8A3HvvvezatYuDBw+ybdu2CstePMjmvHnzuOuuu9i5cydNmjRh48aNtbZdIiIiIiLOdPG9SlpaGjfffDNms5n9+/fTr18/8vLyeP311wGYNGkSd9xxB0OHDmXy5MlA3bgv0dsYRURqyflkyqUMHjyYNWvW0L9/f/7zn/9UmD9jxgwAxowZw5gxYxzmVTbg47fffluhXn1y/m0yv9S2bVuWLFkCQPv27UlJSalQp6SkBB8fH4xGI4GBgRWeWO3evZtWrVrRoEEDwDYOWEhICGC7GDh16hRge4rVo0ePGtwqEREREZGadyX3KuvWrXOY16JFC8aPHw9AQkJChfl14b5ELbtERFzkgQceoH///jX2ee+//z5Go07rv9S5c2f7m2EuZdmyZZjNZm6++WZatWpF27ZtHZ5YXdyFEWytwN5//33MZjPp6enccsstgG0wz/NvxxQRERERcVfXcq9SF+5L1LJLRETcXlVPpoxGIwkJCWRlZV1y7IDhw4czfPhwh7KLn1g99dRTDvMaN27MqlWrHMp27tzJ9ddfb381s4iIiIiIuIaSXSIi4vEq695Y0+Lj44mPj6/19YiIiIiISNXU30VERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoTG7pM4pOAfZ+a5Zd2wQBHi7Zt0iIiIiIiIicu2U7JI6JzsfHt7gmnXP7gGJoa5Zt4iIiIiIiIhcO3VjFBERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DA9SLR8iYaKZwVyoGL28MJi98W15H+IhpBHXu5+rQRERERERERMSJ1LJLPEb4iGkkLS4gYd5hGsZ1I+eV2ykvPO3qsERERERERETEiZTsEo9j9PahyS2jsZwt4OyhbFeHIyIiIiIiIiJO5DbJrtLSUiZPnkxERAR+fn707duXtLQ0DAYDS5cudXV4UodYSoo5tno2Rv8gfMPbujocEREREREREXEitxizy2q1Mnz4cNLS0pgyZQqxsbEsXLiQoUOHApCUlOT0mFr1+xVJz91NUJtwygqK+XHWcrbPXOb0OOSCgwsnk/fxVAxePvhGtCd20meY/INcHZZ4qL0F8N+9F6Zf2wZ3RkFMoKsi8kyHi+HT3AvTUzbDsEjo2BgMBtfFJSJ11zkLfHkIlv8ER89Cowbwmwj4dTj4usWVr4iIyLU5dhaW/nRheuIPMCwKkkLqzzW0W3zlv/fee6xYsYL09HQ6dOgAgNlsJjo6mpCQEFq3bu3UeMJ7d6bb64+y/sl/kpe6HS8/Hxq2bOLUGKSi8HtfpsXQZ1wdhtQDH++xJbcu9ske+GgP/KkD3NvGNXF5mq/y4PnvocxyoWzFPvhsH9wTY9vX9eXLWkSq51QJPJEKGfm27gsWbP/+cBzez4RZ3aGFv4uDFBERqUVpR+FPaXC2/ELZ6oOw8gDcFgGTEsFUD66h3aIb4/Tp0xkxYoQ90QVgMpmIjo62t+o6e/Ysjz32GG3btqVTp06MGTOm1uJJevZutr75Xw6t34a13MK5gmJOZeyrtfWJSN3xzRGYvg2s2H7OO5+PeWM7rMtzQWAeJicfnvvOluiqbD8v2g2L97giMhGpy577HrLybb+fP1+c//dgETz5DVislS0pIiLi/g4VwVPfQkm5Y/n5777l+2BupvPjcoU6n+zKyspiz549DBs2rMK8ffv22ZNdzz77LL6+vmRmZrJt2zZefvnlWonHy8+HJolt8GvaiKFf/527ts6m77+fIyCiWa2sT0TqlvnZVZ84jT/XkWuzeI/tS7mqe9J52VCum1YR+dnOU7YWXJZLzLcAuwsg9YgTgxIREXGiT/ZCqaXqa+iFuysmwzxRne/GeODAAQCaNXNMJu3atYvc3FySkpIoKChg/vz57N+/H8PPfVqaN29e7XUEBgZSWlpaobyNV2OeDerpUNagUUMMRiORt3Zl9T1TKT5+mhtfGkWfOeNZPmD8lW5evdKnj5mcspOXrecf1402U1NqO5xK9eljpigj1SXrlrrP6BtAhwXHq6xjAdJPgH+TcMrPVF1XLi1+7iG8AkOqrHP0LIR26E5xzg9OisrzdfzoLAA+Pr4ujsSzaT/XjuZ3T6Hp0GcxGE2XrGMtL+P+afM48O7jToxMRETEOdr9cyc+zWOqrHPmHITf9BsKtq51UlRXz2K51COsy6vzLbtCQ0MByM6+0FTCarXy3HPPYbFYSEpKIicnh9DQUF588UW6dOmC2Wxm/fr1tRLPuQLbBeqO2Sso2H+U8uJSNr26kNBO0Rq3y4XipqVovC6pdUbfhtWv61P9ulKR0ad6g+oYfQNqORIRcRdG3wCwXv6iWOcNERHxVKZqfsddyX2Nu6rzLbvi4+OJjY1lwoQJeHt7ExAQwMyZM9m8eTP+/v7ExcWRnp7O7t27SUpK4vXXX+fbb7/ltttuIzs7m6Cgy7+N78yZM5WWH07bxedDJjmUnTtTRMG+I2BV35krlZycQvMbr7tsvfTj8PAGJwRUieTkFBJDXbNuqfvKLNDvCygsq7qerwmO/ZSF76UbF8hlDP/S9sbLy51pt69fRZgGm64xXX5+qXBJSYlrA/Fw2s+1Y/EeeH1b1XWMJi/+NOouHn/tLucEJSIi4kSjv4ZtJy/dpf+8jZ99TNtgp4R0TTZs2EDPnj0vX7ESdb5ll5eXF5988glhYWGMHDmScePGMWjQIHr37k1CQgJGo5HWrVvj5eXFPffcA0DXrl1p0qQJmZm1M/JaxvxVxD98K/7hoZh8vEl69m6Obcmh8MCxWlmfiNQNXkYY3BqqenmJEfhtBEp0XaNhUVUnuozATU1RoktE7Aa1hAbVuLId4tyXeIuIiDjNHVFVJ7qMQPtGuEWi61rV+WQXQOfOnUlNTaWoqIiMjAwee+wxNm/ebB+cvkmTJvTp04fVq1cDkJmZyZEjR4iNja2VeLa9vZQDX25m8KrXGL7pPfybh5A8+vVaWZeI1C0jY6GJb+UnTyPQyAdGtXV2VJ5nSGtoF1R5YtEINDDBH9o7OyoRqcuCGsAT8VXXuT8WWnp+zw0REamnBrSExJDKr6ENgNEAf+rg7Khcwy2SXb9UXFxMRkaGPdkFMGvWLF555RU6derE3XffzYIFC2jUqFHtBGC18sO0//Bhx9F82GEUX46arlZdIvVEE1+Y2xN+VUl3184htnnN/Zwfl6fx84JZ3aFPWMUv65hAeLc7xNWDJ1IicmXuawPPd4Igb8dyfxM8fh384TLJMBEREXfmbYS3boJBrWyJrYu1DoB3ulNvhu2p82N2VWbr1q2Ul5c7JLtiYmJISUlxXVDiNGVnTpD151s4eyCDpMUFDvP2vDmSkrwcjN4+RI2bT4PQlpw9lM2+d8diOVdC88FP0ajrYBdFLp4izB9m9YA9Z2DLCVtZp8bQ5vJDBMoVCGoAr90AecXw3VE4Z4F2wdChERiq6ksqIvXandG2Lucbj8Az39nKVv0afN3yqldEROTK+HvBS7+CJ9vDN0egxAJtAm0P5uvTNbRbfu137doVqwaIr7dMfoG0fXE1u1/7XYV54fe8iE/zKPK3rOXoirdpef8rHPrwRaKf+RCvgEbOD1Y8WnSg7UdqVws/uE1j7IjIFWhgAnPYhWklukREpL5p4gu/rcfX0G7ZjVHqN4OXN16BIZXO82keZatjNAEGLOdKKT22j71vPkD2tCGcO3XYeYGKiIiIiIiIiNMp2SUex2qxcOiTV2hyy2jK8o9RnPsjUePm0fy2ceR98qqrwxMRERERERGRWqRkl3icgx9MJqTX3fi0iMHUMBi/yE54BTQmoEMvzh7IcHV4IiIiIiIiIlKLlOwSj3Jy438pKzhBk/4PAWDybYixgS+WcyUU5/5Ig2ZRrg1QRERERERERGqVkl3iljIn96doz2YyJ/enYMd68pa8DsD+uX+ieM8WMiaaOfTRNACaD3mazMn92Df7j7S441lXhi0iIiIiIiIitUzvphG31O7lNQ7TAe17AtBpdm6FukGJ/QlK7O+UuERERERERETEtdSyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hMbukzokNgtk9XLduERGpXEpKCqNGjSIyMpLIyEjmzZvnMH/BggWEhYXRv39/XnnlFT7//HMSExP5xz/+4VDv6NGjjBkzhlOnTnHPPfcwZswYVq5cyYsvvkjjxo1ZuHAhwcHBfPvtt0yYMAGLxcL06dOJjY1l6tSpvPHGG87cbPFQ1T2eIyIieOihhzAajXTp0oW//e1vDvXeeOMNZsyYwWOPPcakSZMAuPvuu8nLy+PMmTNERETwv//9j1GjRjF37lwMBoPTtlFERKS+UrJL6pwAb0gMdXUUIiJSmdGjRzNp0iSefPJJUlNT6datm33e8uXLWbx4MYcPH2bTpk18/fXXPPXUU3z//fd06dLFXu+ll17izTffJDIy0l42Y8YM1q5dy6pVq/jXv/7F008/zYwZM1ixYgU+Pj72eqdOnaKgoICAgADnbLB4tOoczydOnGDlypUEBARw//33k5mZSbt27ez1RowYQWJiIhs3brSXffjhhwC8++679uRW165dSU5Opm/fvk7aOhERkfpL3RhFRETkinXs2JEDBw7Yp0+cOIGvry8Gg4Hvv/+e3r17A9C3b1/S0tIcls3MzOT5559nwIABZGRkUFhYSGBgIH5+fvb6OTk5FBcXM3jwYO677z4KCwsBW8IgJSXFadvpCikpKURHR2M2mxk5cmSF+dOmTSMrK+uSy+/du5ewsDDMZjMPPPBAhfnnzp3jd7/7HWazmddff73CNMDOnTuZPn16zW1UHVfV8RwaGmpPrppMpgots5o1a4bRWPkl9fLly7ntttsA6NOnDytWrKilLRAREZGLKdklIiIiVyw1NZXY2Fj7dHZ2tr2l1qlTpwgKsvULDwwM5NSpUw7Lrl+/nqlTp/L2228zceJEh/oBAQGcPn2aI0eOkJOTw7Jly+jfvz//+te/AIiMjCQzM9MJW+hao0ePJiUlheDgYFJTU+3lFouFrVu30rZt2yqXv/XWW0lJSWH+/PkV5i1ZsoTu3buTkpLCDz/8UGH66NGjxMfHs2nTJqxWa41vW11U1fF83vbt2zl27Nhl9/15BQUFnDlzhrCwMKD+HLsiIiJ1gZJdIiIiUm1z5szBbDbTsmVLEhMTK63TqFEj8vPzAThz5gyNGjVymN+hQwfatGlD27ZtOX36tEP9goICgoODCQ4OpmvXrvj4+HDzzTeTkZFRm5tVZ/2yxdGWLVscutBdysqVK+nVqxcffPBBhXl79uyhU6dOAMTHx5OTk+Mw/d133wEQExPD9u3ba2Iz6qzqHM8A+fn5jB07lvfee6/an71y5UoGDhxYA1GKiIjIlVKyS0RERKrtfIujqVOnOpTHxsaSm5sLwPXXX8+6desASE5O5sYbb3SoGxUVxbFjxzh8+DD+/v40bNiQM2fOcPbsWXv9du3acejQIaxWK9u2bSMqKgqA3Nzcares8QS/bHGUlZVl3xeXEhYWRkZGBqtWreLdd9/l+PHjDvPj4uL46quvsFqtfP3110RHRztMnz59GqgfLZGqczxbrVYeeughXnrpJcLDw6v92UuXLmXIkCH26fp27IqIiLiSBqgXERGRaxYSEkJRUREALVq0ICEhgV69epGQkECXLl3Iy8tjwYIFjB8/nkmTJnHHHXdQVlbGW2+9BcCf/vQn+vTpY38bo7e3N/fddx8333wz/v7+LFq0CIBvvvnGvownmzNnDmvWrKFnz56XbHG0Y8cOHn/8cYeygQMH8vzzz9une/XqRU5ODqGhF978MnjwYFatWsUtt9xC06ZNadasGevWrXOYru8uPp5TUlL48ssvOXbsGGB7mULLli3tx/P8+fP5+9//zunTp8nPz+e1116jvLyczMxM2rdvb//M5ORkBg0a5JLtERERqW8M1voyGMNVOJy2i8+HTHJ1GB5j0NKpNL/xOleHISIil9Blme3f7wdf3fLz588nPDyc/v3711xQFzlx4gQvv/wyf/vb32rl853lcvs5JSWF9evXM2lSxWuQzZs3s2TJEl5++eVLfv75t1VarVYGDhzIv//9b/u4URezWq2MHDmSWbNm4e/vX2H6//2//8e9995r7+Lojq7lmK7p43nUqFHMmTPnkoPZi4iIiKMNGzbQs2dP1q9fT48ePa5oWX3bioiISI144IEHai3RBbbWNu6e6LpWnTt3vuz4ZRs3bqRLly50796dAQMGEBYWRl5env1Niz/99BNms5l+/fpx5513cuzYMYdpf39/wDZIe8eOHWt9m+qqmj6e33//fSW6REREnETdGEVERETqELPZjNlsrnSe0WgkISGBrKysS47/NGDAAAYMGOBQ1qJFC8aPHw9A69atSUlJcZj/y+mdO3dy/fXXYzAYrmobRERERFxJyS4RERERN1JZ98aaFh8fT3x8fK2vR0RERKQ2qC21iIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkNjdkmdU3AOsvNds+7YIAjwds26RUREREREROTaKdkldU52Pjy8wTXrnt0DEkNds24RERERERERuXbqxigiIiIiIiIiIh5DyS4REREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hgaoF4+QMdFM4a5UDF7eGExe+La8jvAR0wjq3M/VoYmIiIiIiIiIE6lll3iM8BHTSFpcQMK8wzSM60bOK7dTXnja1WGJiIiIiIiIiBMp2SUex+jtQ5NbRmM5W8DZQ9muDkdEREREREREnEjJLvE4lpJijq2ejdE/CN/wtq4OR0REREREREScyG2SXaWlpUyePJmIiAj8/Pzo27cvaWlpGAwGli5d6rQ47ste4PDzwE8fMnjtDKetXy7t4MLJpN/biG2PRFG0Zwuxkz7D5B/k6rBEROq8s2Xwv9wL09O2wPaTrovHU5VZYM3BC9OTN0HaUbBaXReTJ7JYIfUITPzhQlnyIdv+FxERkfrBLQaot1qtDB8+nLS0NKZMmUJsbCwLFy5k6NChACQlJTktlg9i73eYHrx2BnuWbnDa+uXSwu99mRZDn3F1GCIibiU7H55IheMlF8qW5sKnuTA4AiYmgsngsvA8xpFi237eU3ChbOUB+Hw/3NQUXr8B/NziqqxuKzgHT30Lm0+A8aLjdvx30DYI/nkThPq6Lj4RERFxDre4rHrvvfdYsWIF6enpdOjQAQCz2Ux0dDQhISG0bt3aJXE1SYylUbtWZC9Odsn6RURErsWZc/D4RjhV6lh+vgHMsn22xMAT8U4PzaOUW2HsN5Bb4Fhu+blF17dH4aV0eLWL00PzOJM2QfoJ2++WX7SYy8mHp9JgXi8wKIErIiLi0dwi2TV9+nRGjBhhT3QBmEwmoqOj8fb2Zu/evdx+++32eadOnSI/P58TJ07Ualxt7+3LgS83U3xYfT1ERMT9fLYPTpRWXWfRbniwLTR0iyuGumnDYdh95tLzrdi6Nz5RCK0aOi0sj5OdD+sPX3q+BdhxCr4/Bjc0dVZUIiIi4gp1/tI1KyuLPXv28NZbb1WYt2/fPoYNG0ZUVBTp6en28nHjxlFWVlbtdQQGBlJaWvFqv41XY54N6lnpMl5+PkQP6cHXT/6z2uup7/r0MZNTdvnEoH9cN9pMTantcCrVp4+ZooxUl6xbRMTZYqZ9hX/sjRiMlx7C82w5RPW7m/xvPnViZJ6l1R/m0qjHXRhMl77sslitdH1wIseWaRzQq9Xsd5NpNmxClceztbyM3734Pgf/NdaJkYmIiMjVsFiufsDNOp/sOnDgAADNmjVzKN+1axe5ubkVxusqLS3lgw8+YOXKlbUaV9Rt3SgrLmX/mh8uX1lqXdy0FFeHICLidkwNG1eZGLDX8w92QjSey+QffPl+c5ZyTA31UpVrYfIPBms5Vb9/yaqX14iIiNQDdT7ZFRoaCkB2djY33ngjYBuw/rnnnsNisVRIdi1btoyWLVvyq1/9qtrrOHOm8r4Fh9N28fmQSZXOa3tfP3I+SsFarlf7VFdycgrNb7zusvXSj8PDLhrzPzk5hcRQ16xbRMTZnvwGvjlyYYyuS1k6/126Nn3XKTF5ote2wSd7qt7PBpMXb055njv+/bzT4vI0H+TA37ZXXcdo8uaPD97FH167yzlBiYiIyFXLz89n27ZtdOrU6YqXvfzjXBeLj48nNjaWCRMm8PHHH/P5558zZMgQNm3ahL+/P3FxcQ71586dy0MPPVSrMQW1CadZlzgyF62t1fWIiIjUpttbXyYBAzT3hS5NnBWRZxpymf0M0MAIA1r+//buPD6q+t7/+GuysBm2oCxqgEAQAwikUFABGZBSl4qiUjcUt2utrZZr3X4KXmvRltrFa7VainXBpbdSLdpaQSxRVCQiIIIQAgIiCiKRPQTIzO+PKcEQCFsykzm8no9HHuR8z3dmPmf8OjN5z/d8T1zKCawzj4e0/UygiwLnJOa6RpIk6SA1atSIPn360KjRwc/KrvVhV1paGhMnTqRVq1aMGDGCkSNHcuaZZ9K/f3+6du1KyjdOv1i1ahVvvvkml112WY3W1OGSgayZuZBNy1bX6ONIklSTTmsJeZmxUGtPIWLBwH93gVSvXHdYOjaGs4+vus/1J0JGenzqCarMunD1CVX3uaANtM2ITz2SJClxav1pjADdunVjxoyKi4Y//PDD9O/fv0LbU089xdlnn11+6mNN+WDMMzV6/5IkxUNaCjx4Mvx8LrzxeSzc2qVROtx6Egw6NlHVBcvo7rEw62/LYec3nuj6qfCDE+GydomqLFj+64TY7K4/F8UurrBLWgguaQc/7pS42iRJUvwkRdi1p5KSEgoLCxk5cmSF9ieffHKvV21UcGxZXMDKx/8bolEadh3IccPHlO9b88r/8vVbz0NqGm1/8iRpGZks/eX5EImQfvTxZI+cQCg1NYHVS1Ltc1Qa/LInfL4V3lodCwiyjorN+kqv9fO/k0daSiw8vOYEmPYFbNwBzevBgFbQICk/jdVOoVBsdtf3s2PP81el0KRO7HluUifR1UmSpHhJyo9X8+bNo6ysrNLi9IsXL05QRYqXBu3yOHFsbPX6xaNPp2zrxvKrKn391vN0/NUMtiyawVevPcaxl95Lu9teIL3xMax6djSb5r1Bo7zBiSxfkmqtYxvAxc4uqnGZdeGCtomuIvgy0l2bS5KkI1lShl29e/cmGo3uv6MCJ5QWW9AkWlZGeuaxpNRtUL4v/egsojtKKdu6gdSMTFLqNijfH0pJ3f9l3yVJkiRJUtLzBAUlneI3n2PBj3NJPaoJodTdeW1Gp74s+FEunz72Q5oNvLK8fcf6NWya9wYNTxqYgGolSZIkSVI8GXYp6WT2v5TOjyxiR/HnlCz/CICyrRtZ/+7f6PJYEe3/30t88Zd7AIiW7WT5Q1fT+gd/cL0uSZIkSZKOAIZdSiqRHaUAhFJSSK3fkFCdev/ZEyKl3lGEUtNIzcikbMt6AFY+fjPNwpdTv+1JiSlYkiRJkiTFVVKu2aUj14aCl/ny1UcgEiGj82lEtm1h3bQJNBtwOUd1PIVFt/eBSBlZ//UQpas/4avXx1OyYh5rJz9Gy6G30rjn2Yk+BEmSJEmSVIMMu5RUmvYZRtM+wyq0NWjXHYBjL76bYy++u8K+b72wNV6lSZIkSZKkWsDTGCVJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBUYoGo1GE11EbbV901a+XvhpossIjKa5ranTsMF++23eAUs2xqGgvchpBBnpiXlsSZIkSZJ0+Ay7JEmSJEmSFBiexihJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwEhLdAGSJEmSJOnItX3TVr5e+GmiywiMprmtqdOwQaLLSCjDLkmSJEmSlDBfL/yUf507KtFlBMaZk8bQoteJiS4joTyNUZIkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgIjacKu7du3M3r0aLKysqhfvz4DBw6koKCAUCjEpEmTEl2eAmrDdnhuKfx8LoydB2+vgbJooquSJEWj8GEx/GY+3DsXxhfC6pJEVyVJkqpTKDWFXj+/iks+foJLFz3Fqb/5Ial10xNdlpJAWqILOBDRaJRhw4ZRUFDAPffcQ05ODs899xxDhw4FIC8vL8EVKoheXA4PzIcdEUgNQRR4YTlkHQW/6w1tMxJcoCQdodaXwi3vw9zi2Ld2oRBEovDHQrg8B36cCymhRFcpSZIOV9ebzqflqV2YNPCnlO3YyelP3k6PUZdTMPrPiS5NtVxSzOwaN24cr776KlOnTuUHP/gBp59+OuPGjSM1NZXMzExat26d6BIVMK+vgvvnxYIuiM3mivxnRteqrXD9O7E/tiRJ8bUzAj9+D+YVx7YjxF6jo8R+nl4C4xcnsEBJklRtOlx2Oh899CJbVxdTum4jc3/zV3IuChNKSYooQwmUFCNk7NixDB8+nM6dO5e3paamkp2dXT6ra/HixZxyyimccMIJnHLKKRQVFSWqXCW5aBT+sAj2NSkgEoWvSuGlT+NaliSJ2OnkizbEQq59eaoINu+IW0mSJKkG1GnUgIzjjqF4wbLytnUfLaNOwwZkZB2TwMqUDGr9aYxFRUUsW7aMhx56qNK+lStXcsEFFwBw/fXX86Mf/Yjhw4fzzDPP8IMf/IB///vf+73/jRs30rJlS3bu3Eko5DkPgvrte5Dzy3er7BONRvjtG0u5vkuXOFUlSQJo/dO/0Ojb5xBK3fdHmNIItD/7Gta/+UwcK5MkSYeqfVpTbmvUt0JbWkZ9ALZv2Fretn3DFgDS/7NPezdgQJilO79OdBnVok6dOmzatOmgb1frZ3atWrUKgObNm1doX7RoEStWrCAvL48vv/yS2bNnc8kllwBwySWXMHv2bNauXbvf+//oo48oKSkhGnXVccWkNW6+3z6hUMoB9ZMkVa+0Ji2qDLrK+/kaLUlSUtu5OXblmfRGDcrb6jQ+CoAdm70qjapW62d2NWvWDIAlS5bQq1cvILZg/e23304kEiEvL4+VK1dy3HHHkZqaCsROcTz22GNZuXIlxxxzYNMb8/Pz6dOnT80chJLKgq9hxPT998tu3pg5pS7cJUnxdOv78OYXVZ/GCPDH3/6C773wi7jUJEmSDs+agkX869xRFdq2b9zK5lVryezclo1LPwegWZdstm/ayuaV+5/YciSbNi2fFr1OTHQZCVXrw67c3FxycnK48847SU9PJyMjg0cffZQ5c+bQoEEDOnbsyJw5cxJdpgKkUxNofRSs3BJb7HhfhnhdBEmKu7OPh2lfVN2nXiqEW8anHkmSVHOKnn2DrjcOZc3MhUR2ltH9p99nyf/lE43s72svHelqfdiVlpbGxIkTuf766xkxYgRZWVmMHDmSRo0asXTpUlJSUsjKymLVqlWUlZWRmppKWVkZn3/+OVlZWYkuX0koFIIbcuGOWXvfnwI0qwfntYlrWZIkoG+L2JcSi9bve3bXlTmQkR7HoiRJUo2Y99CL1M1sxHn5vyOUEmL5P97jg/tck1P7V+vDLoBu3boxY8aMCm0PP/ww/fv3B2LreXXv3p3nn3+e4cOH8/zzz5OXl3fApzBKexp0LIzqBr/6CLbv8dfU8UfBg72hSZ3E1CZJR7K0FHjoZLi1AOYU724P/efnihy45oREVSdJkqpTtCxCweg/UzD6z4kuRUkmKcKuPZWUlFBYWMjIkSPL2x577DFGjBjBvffeS9OmTXn66acTV6AC4bw2MLAVvPoZ/Hp+rO2hk+HkYyDFC3dKUsI0qQPj+sCC9XDlf9ZY/OGJ8L0saO7FmSRJko54SRl2zZs3j7KyMvLy8srbTjzxRGbOnJnAqhREjerAxe12h12nenEvSaoVQiHo0nT39tXO5pIkSdJ/JGXY1bt3b6LRqpYOlyRJkiRJ0pEoJdEFSJIkSZIkSdXFsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAVG0oRd27dvZ/To0WRlZVG/fn0GDhxIQUEBoVCISZMmJbo8Sar1IlF470t4+GP43wXw+irYEUl0VZIkgK9L4flP4MEFMH4xrNic6IokKfHannMKZ076OZctmcCFBX9IdDlKImmJLuBARKNRhg0bRkFBAffccw85OTk899xzDB06FIC8vLwEVyhJtdvSjXDr+/Dplt3fckSApnVgTA/ofUwiq5OkI1c0CuMK4Yki2BmF1FDsy4nHFsHpreCePKifFJ/YJan6lW7YwqI/v0a9YxrT+brvJbocJZGkeOscN24cr776KnPnzqVz584AhMNhsrOzyczMpHXr1gmuUJJqr9UlcN07sGlHbPubk7k2bIefvAfj+0KXpgkpT5KOaI8vhj8t3r1dFt39+7+/gK074aGTIRSKf22SlGhfvDUPgNZnfDvBlSjZJMVpjGPHjmX48OHlQRdAamoq2dnZ5bO6brnlFrKzswmFQsyfPz9RpUpSrfP8Uti4o2LItUuE2AyCPy6Kd1WSpE074M9F+94fBWashTnFcStJkqRAqPVhV1FREcuWLeOCCy6otG/lypXlYdd5553HW2+9RZs2beJdoiTVWtEoTPo09gfTvkSA99bCV9viVZUkCWDq57B9P2snpoTglU/jU48kSUFR609jXLVqFQDNmzev0L5o0SJWrFhRHnb17dv3sB4nHA6TklLrsz8lSJe/xlKAunXrJbgS6eCE0urQ5flN++0XBdp368W25R/WfFFSNfL1Wcms+YV30XzYKEJVfAYti0R57pWp3H+ya9VICq72aU25rdHh/U2v3QYMCLN059eJLqNa1KlTh02b9v/3zJ5qfbrTrFkzAJYsWVLeFo1Guf3224lEIi5OL0lViO7cTqR06wH1LdvseTKSFE9lm4urDLoAiJRRtnldfAqSJCkgav3MrtzcXHJycrjzzjtJT08nIyODRx99lDlz5tCgQQM6duxYLY+Tn59Pnz59quW+FDw9X479W1pamthCpENw34cwacXe1+yC2LceXZrCrFVL9tFDqr18fVYy+2obnPV6bO3EfQmlpvHkTy+m768ujl9hkhRnawoW8a9zR1VqD6WkkJKeSigtDUIhUuumE41GiWzfmYAqk8e0afm06HViostIqFofdqWlpTFx4kSuv/56RowYQVZWFiNHjqRRo0YsXbrUUw8laT8uawevroQdkb0HXlHgv6rnewNJ0kE4uh5c2Bb+umzv+1OADo3hlOZ73y9JQdf+wtPo+78/Lt++fPnzbF75JRN73ZDAqpQMan3YBdCtWzdmzJhRoe3hhx+mf//+CapIkpJH24axy9b/tAA27/ElWFoIRnX3DylJSpSbO8OWHfDPz2Lh1je/lDixCTzYG1JDCSpOkhJsyV/zWfLX/ESXoSSUlNOiSkpKKCwsrLBe10033cTxxx/PZ599xqBBg+jcuXMCK5Sk2qXH0fCvwTCq2+62mzrBa4Phe1mJq0uSjnRpKfCzb8FfwnBxu93tj5wCT/aDzLoJK02SpKSVlGHXvHnzKCsrqxB2PfTQQ3z22Wfs3LmT1atXs2DBggRWKEm1T/00OK/N7u0rcqCJf0RJUq2Q0whu7rJ7u/cxkOKMLkmSDklSnMa4p969exONVrGSpyRJkiRJko5ISTmzS5IkSZIkSdobwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYSRN2bd++ndGjR5OVlUX9+vUZOHAgBQUFhEIhJk2alOjyJB2GaBTeXwtPFsFTRTD/61iblKyWb4ZnlsKfF0P+F7AzkuiKJEmKn7IovLMGniiCCUugcEOiK1IySqmTxqm/vp4L3nuEy4omMPTthzjx6jMTXZaSRFqiCzgQ0WiUYcOGUVBQwD333ENOTg7PPfccQ4cOBSAvLy/BFUo6VAvXw10fwKdbKrZ3bAy/6AGtMxJSlnRI1m+Hu2fDu19WbM+sA3d1h/4tE1KWJElxM3td7L1wdUnF9u6ZcF8PaFE/MXUp+aSkplLy5XqmXPxzNq1YQ2anNnzn+VFsW7ue5a/MSHR5quWSYmbXuHHjePXVV5k6dSo/+MEPOP300xk3bhypqalkZmbSunXrRJco6RB8sgmuewc+21J5X9FGuPZt+LKk8j6pNtpWBje8C+99WXnf19vhloLKIZgkSUEy/2v40Yy9f36bVxz7bLdhe/zrUnLaWVLKnF/9hU3LV0M0SvGC5aycMovmvXITXZqSQFKEXWPHjmX48OF07ty5vC01NZXs7Gzy8vJYt24dZ511Fh07duSkk07i/PPPZ+3atQmsWNKB+FMhlJbB3s7wikRjAcGzS+NelnRIXvsMFm/c+3jedVbugws8RVeSFFx/WAhlkX18tgO+KIGJy+NclAIjlJZKi965fL1wRaJLURKo9WFXUVERy5Yt44ILLqi0b+XKleTl5REKhbjtttsoLCzko48+on379txxxx0JqFbSgdq4Hd74Yu8fhnaJAn//NBZ8SbXdSysgVMX+KLHZjAtdt0SSFECrt0LBV1V/toPY+6V0KE6+/xp2bC5h6QtvJroUJYFav2bXqlWrAGjevHmF9kWLFrFixQry8vLIzMwkHA6X7zv55JN59NFHD+pxwuEwKSm1PvtTgnT56zYA6tatl+BKgqPucSdywoMf7rfflp1wVOYxRLZujENVRwbHc83I/dNK0po032+//kMuYuPMv9d8QUcIx7OCxjGtZNWg4ym0H5O/335fbCmjbt0GNV+Qkkr7tKbc1qjvPvd/+54RHNOjI5OH3UNkx844VpacBgwIs3Tn14kuo1rUqVOHTZs2HfTtan2606xZMwCWLFlS3haNRrn99tuJRCKVFqePRCI8+uijDBkyJK51Sjo4ZVsPbHpLtGwnkdKtNVyNdPjKtq4negDnKJZtcWqXJCl4DvSzXaTk4P9o1ZGt171XcuxpXZn8/Z9RWuz40YGp9TO7cnNzycnJ4c477yQ9PZ2MjAweffRR5syZQ4MGDejYsWOF/jfeeCMZGRn8+Mc/PqjHyc/Pp0+fPtVZugKk58uxf0tLSxNbSMBcPT22kOm+prunAKdnpfHB1r2sYK9D5niuGeMKYz9VaVoH1rz/Gum1/qum5OF4VtA4ppWsolG4cBp8unn3WpV7SgEu7NyEOxzf2sOagkX869xRldp7/fxqWvXtwmsX3kPpOs/0OFDTpuXToteJiS4joWp92JWWlsbEiRO5/vrrGTFiBFlZWYwcOZJGjRqxdOnSCqce3nLLLRQVFfHKK694SqKUBK4+AUbO3Pu+EBAKwfD2cS1JOmTnt4HnP4EtO/Yd4I7ogEGXJCmQQiG49gQYPXsf+4G0FLg4O65lKYkddfzRdLr2LMq2befCmY+Ut6+ZuYipl92XwMqUDGp92AXQrVs3ZsyYUaHt4Ycfpn///uXbd955Jx988AH//Oc/qVu3brxLlHQI+raA/9cVxs6LfQP4zW8B01Lgvm9B56aJqk46OEfXg4dPhpvegw07drenEAu/hreHy9olqjpJkmremcfDmhJ4eGEs3PrmZ7t6qfDAt6Ftw0RVp2Sz5bOveLLVhYkuQ0kqKb9fLikpobCwsHy9rgULFvCLX/yCzz//nFNPPZXu3bszdOjQBFcp6UBc0BZeHhSb5bXLj3Phn9+BgccmrCzpkHRuCi9/Jxbi7jIsG/4ShpGdY996S5IUZFd2gJcGVpydf3Pn2Ge7k/d/HRdJqhZJMbNrT/PmzaOsrKw87OrcufMBLQosqXZq2QB+eCI8vji2fWWHxNYjHY6j0mIh7i/mxbZvPSmh5UiSFHdZGfCTzjBhaWz7UpelkBRnSRl29e7d23BLkiRJkiRJlSTlaYySJEmSJEnS3hh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwEiasGv79u2MHj2arKws6tevz8CBAykoKCAUCjFp0qRElxd3ZVF490t4YRn8cyWs357oiiRJUhBt2wlTP4995vj351BaluiKpEMXiULB2th4/sensG5boiuSDs/SjfDi8tjPko2Jrqb6nfyLaxk26zEuXfw0w2b/kV73XklKelqiy1ISSIpREo1GGTZsGAUFBdxzzz3k5OTw3HPPMXToUADy8vISXGF8/ftzeGA+rP3Gm3NaCM5vC//dGdKTJsKUJEm1VTQKTy2BJ4pgy87d7RlpcF1HuKQdhEKJq086WO9+Cb/4EL4o2d2WGoKzj4fbToJ6SfGXkRSzagvcMwfmFFds754J9+TB8Uclpq7qtvCJ15h17wR2lpRSN7Mh4XE/petN5zP3N39NdGmq5ZLiJX3cuHG8+uqrzJ07l86dOwMQDofJzs4mMzOT1q1bJ7jC+Hnjc7hjVuX2nVH46zL4sgQe+LYfPiVJ0uF5dBH8uahy++ad8NsFsK0Mrj4h/nVJh+K9L2HkzFiI+01lUXhlZSwA+/3JkOaXxkoCa7fBNW9DcWnlffOK4arpMKE/tKwf/9qq24bFn+3eCIWIRqI0bNcqcQUpaSTFy/nYsWMZPnx4edAFkJqaSnZ2dvmsrvPOO49u3bqRl5dHv379mDt3boKqrTk7I/Drj2K/R/fRJ381zPoqbiVJkqQAWl0Sm9FVlXGFe/9DS6ptotHYWRHR6N4/Q0eB97+Ct1bHuzLp0DxVFHv9jexlXwTYsB2e3M9reDI56cfncdmSCVwy/89kdm7Dx+P+keiSlARqfdhVVFTEsmXLuOCCCyrtW7lyZXnY9dRTT/Hhhx8yZ84cbrnlFq6++up4l1rj3lsLa0v3HXQBpITgpRVxK0mSJAXQK5/uv8/OKLy6suZrkQ7XvK9hxeb9fIYGXvQztJLAjgi8/Oneg65dIsA/VsZm4AbBRw//nWdzLuel035C4dNTKPny60SXpCRQ609jXLVqFQDNmzev0L5o0SJWrFhRHnY1bty4fN+GDRtISTm4HC8cDh/0beKt2Rk3cOw1v6uyTyQKf58+m9/0OSVOVR0Zuvw1tkBa3br1ElxJsPk8x4fPc3z4PMeHz3PNOP5H42nS72JCqen77BPduYPRv/sz14y/KY6VBZ9juvo1Oe1Ssm58oso+EeCt+cuoGz4xPkUdIRzP1S+tSUty/7T/ZHZbGRzdOocdXyXHtxLt05pyW6O+VfbZULSK4gUr6Pf7m5h84T3xKSxJDRgQZunOYISCderUYdOmTQd9u1ofdjVr1gyAJUuW0KtXLyC2YP3tt99OJBKpsDj9tddey5QpU4hGo7z22msJqbcmlW3b/3/gaKSMSMnBDwRJkqRdIts2A/tZADQl5T/9pNotUrL/cRqNRijzM7SSQKR0y4H33XbgfZNFSnoqjVyzSweg1oddubm55OTkcOedd5Kenk5GRgaPPvooc+bMoUGDBnTs2LG87/jx4wGYMGECt956K6+++uoBP05+fj59+vSp9vqrU3EpnDUldtrAvoRSUrn3kv58/04X0ahOPV+O/Vta6vNak3ye48PnOT58nuPD57lmvL8Wfjij6j6hlFT++euf0uXxn8anqCOEY7r6bdkJ351c9SldoVAKN5/RlWtu8nmvTo7nmnHDu7F1mvd1KmNKCLo1hVnrvohrXYdjTcEi/nXuqApt6Q0b0ObMXnz6WgHbN26laW4buo28gM/zP0xQlclj2rR8WvQ6smeq1u7z9oC0tDQmTpxIq1atGDFiBCNHjuTMM8+kf//+dO3ada+nHl5++eVMmzaNdevWJaDimpNZF4ZUceHJlBA0rQNnHR+/miRJUvD0PBo6Nt73B8UUYpe379wkjkVJh+ioNLgoe9/7U/7T57wj5wLvSnJX5Oxnza4ojOgQt3JqTjRKuwtO44L3HuGyJRMY+MRtfPbGHGbe9XiiK1MSqPUzuwC6devGjBkVv158+OGH6d+/PwCbN2/m66+/JisrC4BXXnmFzMxMMjMz415rTftpF/hyG7y9JhZuRb4xy6tROjx8CmTse3kNSZKk/QqF4MHe8MN3Yfk3zgBLIfYHVvtG8Ktvx/pJyeCHJ8IXJTBlVeXP0PXT4KGToZnLSilJnNwc7ugKY+fFtncN510vyT/tAn1bJKKy6rVjcwlTLro30WUoSSVF2LWnkpISCgsLGTlyJABbtmxh2LBhbNmyhdTUVDIzM3nllVcIBfATWN1U+G0vKFgbu2LMv/8zM/WWLnB2FjQ06JIkSdXgmHrwbH9443O4e06srfcx8L3WMLAVpNf68wOk3dJS4L5vwfltYlcunxy7BhY/6QTntIYmdRJbn3SwLmwL3z4a/rYcnvsk1nZxO7igDbRtmMjKpNohKcOuefPmUVZWVr44fYsWLXjvvfcSXFX8pIRiaf7JzXefB39xu8TWJEmSgqduKpyVtTvs+r0Xe1YSC4Vip+j2PHp32HV5TmJrkg5Hmwy4ucvusOunXRJbj1SbJGXY1bt3b6LRKlZplyRJkiRJ0hHJCeiSJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLklJIT8/n+zsbMLhMCNGjKi0f8KECUydOhWA+++/n379+nHjjTdW6rd27VqGDh3KgAEDGDduHACTJ0/m1FNP5eyzz2bDhg0UFxcTDoc57bTTuPTSSykrK6O4uJibb765Zg9SkiRJUlz0ffBH9L7vmkSXsVeXLZlAZpfsRJeR1Ay7JCWNa665hvz8fBo3bsyMGTMq7HvllVc4/fTTWbNmDbNnz2b69OmkpaUxa9asCv3uvfdeHnzwQaZNm8Z1110HwG9+8xveeOMNrrvuOv70pz9Rr149XnjhBd566y3at2/PG2+8QWZmJuvXr2fz5s1xO15JkiRJ+9fy1M6c8befcVnRBC4rmsAZf/sZLU/pnOiyynX/6fc5/en/d8D9n825nOL5y2qwouAz7JKUdLp06cKqVavKt4uLi6lXrx6hUIhZs2bRv39/AAYOHEhBQUGF2y5evJg77riDwYMHU1hYyJYtW2jYsCH169cv79+gQQOOOeYYAFJTUwmFQgD07t2b/Pz8+BykJCWR/c2+ve+++ygqKqryPm688Ub69evH/fffv88+Dz74IIMGDaKkpISzzjqL/v37c9VVVwFQUFBAnz59OPXUUxk1ahQACxcuZOzYsYdxZJKk2u74QT34znOjWDn1A/76rR/w12/9gJVTP+A7z4/i+NO/tdfbhFKrLwoJpaVW232p+hh2SUo6M2bMICcnp3x7yZIltGnTBoD169fTqFEjABo2bMj69esr3Pbtt99mzJgxPPLII9x1110V+mdkZLBhw4byvmvWrOGNN95g4MCBALRp04bFixfX5KFJUtLa1+zbSCTCvHnz6NChwz5vO2vWLNLS0pg+fTqzZ89mzZo1lfrs2LGDuXPnAjBlyhT69u3Lm2++SXp6OvPnzycvL4933nmHd999lxkzZrBx40Zyc3OZPXs20Wi02o9XklQ79B5zNUteyGfBoy+zY9NWdmzayoJHX2bpxDfpNeZqAC4s+ANdR17AWS/fx/BPnuXobu0BSD+qHuFxP+Wyogmc9+bvODbcbb+P1/KUzly2ZAInDB/Ehe8/ypCpvwag1Wld+d7ksVxa+BRD3vgNrc/4NgCtz/g2J900lOMGdOeyJRO4bMkEUuqkVfkYV34xkWbd2hNKTeHSxU/TpGNW7LFP7cyVX0ykzfdOAaB+8yZc8elfSM+of2hPXoAZdklKGo8//jjhcJjjjjuO7t2777VPkyZN2LhxIwCbNm2iSZMmFfZ37tyZ9u3b06FDBzZs2FCh/+bNm2ncuDEAO3fu5Oqrr+YPf/gDqal+WyNJB2rP2bcffvghJ5xwQpW3mTlzZvkXC/379+eDDz6o1GfChAlccsklAGRnZ7NlyxZg92t3eno6AGVlZRx77LE0aNAAgHbt2rFgwYLDPzBJUq3TqP2xNGzTgmV/f6fSvk9eeptGbVvSqF0rAHKGhXnnp3/g2ZzLWfefUwSzz+vLJy9N57kTRzDv9y8x8M+30aBl5n4fN61+XY7unsPfTxvJP868nYZtWzLoqTuY//Dfeb7TVXxw3zP0f/S/yezclk9fe5+PHnqJVdPm8mzO5TybczmR7TsP6PiiZRHWzFxIq74nAdCq30lsXPYFrfp2iW33PYl18z5hx+aSA7q/I4lhl6SksWvWwJgxYyq05+TksGLFCgB69OjBW2+9BcC0adPo1atXhb5t27blq6++Ys2aNTRo0ICjjjqKTZs2sW3btgr9b775Zi6//HJOOumk8tuuWLGiypkJkqTKs2+Liopo27ZtlbfZ36zcSCTC5MmT+e53vwvEXvenT59Obm4uoVCIrKzYN97PPfccubm5NGnShLS02LfmzsqVpOCql9kQgJI1xZX2lXz5daxPs9j7S+GE19lQtIpoJFIeNq1+72M+/VcB0bIIn0x8i68/XkHbc07Z7+OGUlL44P5n2VlSSlnJdrLPPZU1Mxey/JUZRMsirPr3HD6dMov2w/of9jGufnt+hXBr7q//Wh5+tezThS/emX/YjxFEhl2Skl5mZiZbt24FoGXLlnTt2pV+/fpRWlpKz549Wb16NQ888AAAo0aN4vzzz2fo0KGMHj0aiAVbAwYM4LHHHuPaa6/lk08+Yfz48Tz22GOEw2H++c9/AvDee+8RDocTcoySVNsdyOzbjz/+mHA4XOHnl7/85X5n5b744osMGTKkfPupp57ioosuYuHChRx99NG8++67AFx66aUsWrSIzz//nI8++qhGjlOSVHtsK94EQP0WlWdj1W/eNNZnXez9ZcuqtZX6bPmsYtvmlWsPaGbXzpJSSv/z2AANWjVj8573tWINDVo12+997c8Xb39Ei5M7UadRAxq1O5Zlf3+H1DppNGiVSau+Xfhiuu93e1P1iaKSVEvs+qNoX4YMGcLUqVMZNGgQo0ePLg+yIBaA3XrrrQB07dq1fObXLmeccQZnnHFG+XaTJk3Kw7NdiouLadKkCQ0bNqyGo5Gk4LnmmmvKF4b/pg4dOvDiiy8C0KlTp71e6OP999/n+eef55xzzuGtt97i+9//foX9hYWF5OfnM2HCBObOncs555xD8+bNAcqvlltaWkrdunVJSUmhYcOG1KtXD4jNyu3Tp081H60kqTbYuPRzNn26huwhp7J6jxlO2eeeyqZP17Dxky8AiEYqr9941PHHVNjOyDqGtbP3Pxs4GolU2N76xbpKV3/MyGrO1i/W7bX/wShesJxoJEKn//oeX76/iGgkwhdvz+eESwfRoHlTvnx/0SHfd5A5s0tSIFxxxRUMGjSoxu4/MzOT3/3udzV2/5IUVN26daOwsLDKPt/+9rcpLS2lX79+dOvWjRYtWlSYlXvXXXfx+uuv89prr9G9e3euuOIKnnjiCcLhMHPnzuU73/kOL7/8MuFwmNNOO43jjz++/LTzJUuW0KVLlxo/TklSYhTc/SQ5Fw2g8w/OIT2jPukNG9DpB98j5/sDKBj9RJW3bXlyJ7IG9ySUmkK78/vRtFMblv/zvYOuYdmkd2nRO5c2Z/cmlJLCcQO6k/XdniydGPuSveSrDRx13NGHfBXI1e8uoNN1Z/PF27FZXF+88xGdrjubLz9YTFnpjkO6z6BzZpckSZIOS1Wzb1NSUujatStFRUVVrnv4yCOPVNj+5qzcb5o6dSoQuyLjNw0bNoxhw4ZVaFu4cCE9evQgFAodyGFIkpLQysnvM3X4/XS7+UK63xqbGbxu3idMHX5/eTi0L8v+/jbth/XntEd+wpYv1jHt2l+z9fN1B13DpuWr+ffVv+Jb/+8y+vzuR2z5bC1v/fghiv+zEP7yV2bQ7ry+XDz/z4RCIf7S9ZoDXqQe4IvpH9H2e6fwxdux2WtfvD2fOo2Ocr2uKhh2SZIkqUbt7fTGeMjNzSU3Nzchjy1Jip8v3v6oymBrYq8bKrW9PfKRvfTcv9UzFvBszuWV2ldNm8uqaXP3epvt6zfz2gX/c0D3H0qJzf76ZhhW+PQUCp/e/SVPyZqvebLVhQdR9ZHH0xglSZIkSZJqgaad2xDZsXOvC+rrwDmzS5IkSZIk6T/Ozf8dGccfXal95ZQPeOuGBw/7/gc9exctep9YqX3H5m2kpKfywf3PsX3j1r3cUgfKsEuSJEmSJOk/JoX/u0bvf+pl99Xo/cvTGCVJkiRJkhQghl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGEkRdm3fvp3Ro0eTlZVF/fr1GThwIAUFBYRCISZNmpTo8iRVg8+27P597bbE1SFJqmhnZPfvs76CsmjiapEkHZlS69Xh/Hd/z2VLJiS6FCWJWh92RaNRhg0bxvjx4xk1ahT/+Mc/yM7OZujQoQDk5eUluEJJh+OLrXDjDBj6xu62s6fAHbNgfWni6pIkwYvL4ezXd29f/y5873X4x6cJK0mSdATKu/UiNn/2VaLLUBJJS3QB+zNu3DheffVV5s6dS+fOnQEIh8NkZ2eTmZlJ69atE1yhpEP1ZQlcNR2KS+GbEwUiwL8/hyUb4Yl+0DA9URVK0pHrqSL4/cLK7Wu3wT1zYUsZXJQd97IkSUeYZl3bcdyA7rz/s6cZ8PgtiS5HSaLWz+waO3Ysw4cPLw+6AFJTU8nOzq40q+tnP/sZoVCI+fPnx7tMSYfgT4tjQVdkL/siwPLN8Pwn8a5KkvTVNnhkUdV9HlwAG7fHpx5J0pEplJrCqb++nvfuHE9k+85El6MkUqvDrqKiIpYtW8YFF1xQad/KlSsrhF2zZ8/mvffeo02bNvEsUdIh2roT/rly70HXN01cDlHXh5GkuHplJUT289q7IwKvfhafeiRJR6YuN5zLuo+Wsea9vUw1lqpQq09jXLVqFQDNmzev0L5o0SJWrFhRHnaVlpbyox/9iOeff55wOHxIjxUOh0lJqdXZ3151+WtsJe+6desluJJg83mufnWP7cgJ/ztvv/2KS6FB06OJlGyKQ1VHBsdzfPg8x4fPc804/kd/oknfSwil7fs88ujOHfy/3/yZEeNvimNlweeYjg+f5/jweY6PIDzP7dOaclujvhXaGrZtSccrBvPyd25NUFXJa8CAMEt3fp3oMqpFnTp12LTp4P8WrNVhV7NmzQBYsmQJvXr1AmIL1t9+++1EIpHysOvuu+9m+PDhtG3bNlGlSjpIke0lB9QvGo0Q3eHlGSUpniLbt0EoVHWnUIhI6db4FCRJOuK06HUi9Y9uzPnvPARASloq6UfV5+IFf2baNQ8420tVqtVhV25uLjk5Odx5552kp6eTkZHBo48+ypw5c2jQoAEdO3ZkxowZzJo1i1/+8peH9Vj5+fn06dOnmiqPn54vx/4tLfWydTXJ57n6RaNwUT4s21RxcfpvSgF6N0/hgy2b41hZ8Dme48PnOT58nmvGO2vgJzOr7hNKTeOlsf/Nt8b/d3yKOkI4puPD5zk+fJ7jIwjP85qCRfzr3FEV2pa98i6fT999JsgxPTrS939/xMuDbmHbuo3xLjGpTJuWT4teJya6jISq1eftpaWlMXHiRFq1asWIESMYOXIkZ555Jv3796dr166kpKTw5ptvsnDhQrKzs2nbti2fffYZ3/3ud5kyZUqiy5dUhVAIrsjZd9AFsfW8Lmsfr4okSbuc0hzaZuz7g2IK0LEx5GXGsypJ0pGkrGQ7W78oLv8pXbcRolG2flHsYvXar1oddgF069aNGTNmsHXrVgoLC/nhD3/InDlzyk9hvOOOO/j8889Zvnw5y5cv5/jjj2fy5MkMHjw4wZVL2p+zj4erOsR+/+aL0a7fb+kCJzff81aSpJqWEoL/7Q3N68e2d53QuOvf446C3/ba/5mOkiRVl9UzFvBszuWJLkNJolafxrg3JSUlFBYWMnLkyESXIukwhULwo1zo0xxeWA7zimNtvY+BC9vGZg1IkhLjuKPgL2H4x8rY1XPXlcIx9eCcLDgzC45Kuk+RkiTpSJF0H1PmzZtHWVlZ+cyuPS1fvjy+BUk6bN2bxX4kSbVLRjpc3C72I0mSlCySLuzq3bs30WhVq/xIkiRJkiTpSFXr1+ySJEmSJEmSDpRhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSQmQn59PdnY24XCYESNGVNo/YcIEpk6dCsD9999Pv379uPHGGyv1e+211zjllFMYPHgwn3/+OQADBgwgHA4TDof5+OOPWb16dfl2+/btefDBBykuLubmm2+u2YOUJEmSEsCwS5KkBLnmmmvIz8+ncePGzJgxo8K+V155hdNPP501a9Ywe/Zspk+fTlpaGrNmzarQb+zYsUybNo3f/va3jB07FoDU1FTy8/PJz8+nU6dOtGzZsny7V69enHXWWWRmZrJ+/Xo2b94ct+OVJEmS4sGwS5KkBOvSpQurVq0q3y4uLqZevXqEQiFmzZpF//79ARg4cCAFBQUVbpuWlka9evXo3Llz+b5oNEo4HObaa69l27Zt5X137NjBsmXLOOGEEwDo3bs3+fn5NXx0kpR89jf79r777qOoqGi/9/Pggw8yaNCgSu3FxcX06NGDjIyMvW4DLFy4sPxLDEnSwTHskiQpwWbMmEFOTk759pIlS2jTpg0A69evp1GjRgA0bNiQ9evXV7jtjh07WLduHW+//TbFxcUATJw4kfz8fHJzc3n88cfL++bn5xMOh8u327Rpw+LFi2voqCQpue1r9m0kEmHevHl06NChytvv2LGDuXPn7nVfw4YNef311zn55JP3ug2Qm5vL7NmziUajh38wknSEMeySJClBHn/8ccLhMMcddxzdu3ffa58mTZqwceNGADZt2kSTJk0q7B8zZgwXXnghzz//PJ06dQKgadOmAAwZMoQFCxaU93355Zc599xzq/9AJCnA9px9++GHH5bPkK3KhAkTuOSSS/a6Lz09nczMzH1u79KuXbsKr+OSpANj2CVJUoLsmjUwZsyYCu05OTmsWLECgB49evDWW28BMG3aNHr16lWhb9++fZk2bRpXXnklvXv3BmKhGMRmjGVnZ5f3nTlzZnkfgBUrVux3ZoIkHen2nH1bVFRE27Ztq7xNJBJh8uTJfPe73z2sx3YGriQdmrREFyBJkirKzMxk69atALRs2ZKuXbvSr18/unbtSs+ePVm9ejUTJkzg1ltv5d577yU/P5/jjjuOP/7xjwAMGjSIOnXq0KRJE5555hkA5syZQ7du3UhJ2f0913vvvcdDDz0U/wOUpCTw+OOPM3XqVPr27bvP2bcff/wxN9xwQ4W2M844g5ycHIYMGRKHKiVJe2PYJUlSAoTD4QrrZ+1pyJAhTJ06lUGDBjF69GhGjx5dvq9ly5bceuutANx9993cfffdFW47c+bMSveXl5fHn/70p/Lt4uJimjRpQsOGDQ/zSCQpmK655hpGjRpVqb1Dhw68+OKLAHTq1GmvF/q47777yM/PZ8KECcydO5fx48dz7bXXHnQNK1asoE+fPgd9O0k60nkaoyRJtdAVV1yx1yt4VZfMzEx+97vf1dj9S1JQdevWjcLCwir73HXXXbz++uu89tprdO/enWuvvZbVq1fzwAMPlPcZNGgQc+bMYdCgQcyfP7/SNsQuWNKlS5caPR5JCiJndkmSJEnSN1Q1+zYlJYWuXbtSVFR0QOseTp06Fag4K/eb7fvaXrhwIT169CAUCh1k9ZIkwy5JkiRJOgh7O72xuuXm5pKbm1vjjyNJQeRpjJIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBkTRh1/bt2xk9ejRZWVnUr1+fgQMHUlBQQCgUYtKkSYkuT5KkcqVlu3//Ymvi6pAkVfbZlt2/74gkrg5JVev74I+4fMXzXLZkQvnPcQO6J7osJYm0RBdwIKLRKMOGDaOgoIB77rmHnJwcnnvuOYYOHQpAXl5egiuUJAl2RuDxxfCXZbvbhkyF3sfAzV2gXcPE1SZJR7rFG+B3C+D9r3a3nTEZLm0PV3aA1FDiapO0d4ufmcrMux5PdBlKQkkRdo0bN45XX32VuXPn0rlzZwDC4TDZ2dlkZmbSunXrBFcoSTrSRaIwajZM/bxiexQoWAtXTYc/94X2jRJSniQd0RZtgGvfhu1lFds37IBHF8Gnm+GePAgZeElSICTFaYxjx45l+PDh5UEXQGpqKtnZ2eWzutq2bcuJJ55I9+7d6d69O5MnT05UuZKkI9BbqysHXbtEgJIyeOCjuJYkSfqPX3wYC7r2ddbiPz+Dgq/2sVNSwrQ7vx+XfPwE5731IF1/cj6h1KSIMFQL1PqZXUVFRSxbtoyHHnqo0r6VK1dywQUXlG9PnDiRLl26xLM8SZIAmLgcUkKxGV57E4nCrHWwYjO0yYhraZJ0RFu8ARasr7pPSggmLouddi6pdvj48VeZ9fMJbCveRLOu7ej/h5Gk1q3DnF/9JdGlKQnU+rBr1apVADRv3rxC+6JFi1ixYkW1rdcVDodJSUm+lLjLX7cBULduvQRXEmw+zwoSx3PNOPFPn5LepMV++/U8cxgbC16OQ0VHBsezgsYxXf2a9LuErJuerLJPJAqvzf2Eh/rlxqeoI4TjOT6C8Dy3T2vKbY36Vmgr/mj3IqjrPlzKnF//H3m3XGTYdQAGDAizdOfXiS6jWtSpU4dNmzYd9O1qfbrTrFkzAJYsWVLeFo1Guf3224lEIhXCrssuu4yuXbtyww03sH79+niXKkk6gkV3lB5Yv507argSSdI3RQ749fnA+klKkEgUXFdPB6jWz+zKzc0lJyeHO++8k/T0dDIyMnj00UeZM2cODRo0oGPHjgBMnz6drKwsSktLGTlyJD/+8Y955plnDvhx8vPz6dOnT00dRo3p+Z/JAaWlvjnXJJ9nBYnjuWaMnQd/W77v9WAA6qbA8rf+TkZ6vKoKPsezgsYxXf3Wl8IZU2DnPk4zh9jfz9eFc7nJ571aOZ7jIwjP85qCRfzr3FEV2toOOZVV0+ayY9NWmua2odtPh7H8HzMSVGFymTYtnxa9Tkx0GQlV68OutLQ0Jk6cyPXXX8+IESPIyspi5MiRNGrUiKVLl5afepiVlQVA3bp1ueGGGxgyZEgiy5YkHWGGZcPfVhC7/OJehIChbTDokqQ4a1IXzs6Clz/d+0t0CEgNwflt4l2ZpKqceOV3OWXsdaSkp1KyZj1LJ77JvN+/lOiylCRqfdgF0K1bN2bMqJjgPvzww/Tv3x+ALVu2sHPnTho3bkw0GuUvf/kL3bt3T0ClkqQjVbuGcG8e3D0HiO6e4ZVC7PdvHw03dkpcfZJ0JLulS+wCIXOLd78uQ+z3lBD8oiccf1QCC5RUyWvn/0+iS1ASS4qwa08lJSUUFhYycuRIANasWcMFF1xAWVkZZWVldOrUiT/84Q+JLVKSdMQ543ho3xD+uhymfQHbI7EQ7MK2cMZxkFbrV8qUpGCqnwZ/OAX+tSp2yvnyzVAvBQYeC9/Pjr1WS5KCIynDrnnz5lFWVla+OH27du2YM2dOgquSJAk6NIa7usV+JEm1R51UOLd17EeSFGxJGXb17t2baLSKFSYlSZIkSZJ0RPKECkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXdJjy8/PJzs4mHA4zYsSISvsnTJjA1KlTAbj//vvp168fN954Y6V+a9euZejQoQwYMIBx48YBMHnyZE499VTOPvtsNmzYQHFxMeFwmNNOO41LL72UsrIyiouLufnmm2v2IHVEqa4x/dprr3HKKacwePBgPv/8cwAGDBhAOBwmHA7z8ccfs3r16vLt9u3b8+CDDzqmJUmSJB0Wwy6pGlxzzTXk5+fTuHFjZsyYUWHfK6+8wumnn86aNWuYPXs206dPJy0tjVmzZlXod++99/Lggw8ybdo0rrvuOgB+85vf8MYbb3Ddddfxpz/9iXr16vHCCy/w1ltv0b59e9544w0yMzNZv349mzdvjtvxKviqY0yPHTuWadOm8dvf/paxY8cCkJqaSn5+Pvn5+XTq1ImWLVuWb/fq1YuzzjrLMS1JkiTpsBh2SdWoS5curFq1qny7uLiYevXqEQqFmDVrFv379wdg4MCBFBQUVLjt4sWLueOOOxg8eDCFhYVs2bKFhg0bUr9+/fL+DRo04JhjjgFioUEoFAKgd+/e5Ofnx+cgdUQ5nDGdlpZGvXr16Ny5c/m+aDRKOBzm2muvZdu2beV9d+zYwbJlyzjhhBMAx7QkSVJ12d+s/fvuu4+ioqJ93r64uJgePXqQkZGx1/3Lly+nVatWhMNhrrjiCkpKSjjrrLPo378/V111FQALFy4s//JTigfDLqkazZgxg5ycnPLtJUuW0KZNGwDWr19Po0aNAGjYsCHr16+vcNu3336bMWPG8Mgjj3DXXXdV6J+RkcGGDRvK+65Zs4Y33niDgQMHAtCmTRsWL15ck4emI9ThjOkdO3awbt063n77bYqLiwGYOHEi+fn55Obm8vjjj5f3zc/PJxwOl287piVJkqrPvmbtRyIR5s2bR4cOHfZ524YNG/L6669z8skn77PP2WefTX5+Pk8//TRTpkyhb9++vPnmm6SnpzN//nxyc3OZPXs20Wi0Wo9L2hfDLqkaPP7444TDYY477ji6d+++1z5NmjRh48aNAGzatIkmTZpU2N+5c2fat29Phw4d2LBhQ4X+mzdvpnHjxgDs3LmTq6++mj/84Q+kpqbW2DHpyFYdY3rMmDFceOGFPP/883Tq1AmApk2bAjBkyBAWLFhQ3vfll1/m3HPPrf4DkSRJUrk9Z+1/+OGH5TPr9yU9PZ3MzMwq+0yePJl+/frx7LPPkp2dzZYtW4CKf8e0a9euwuc/qSYZdknVYNc3JWPGjKnQnpOTw4oVKwDo0aMHb731FgDTpk2jV69eFfq2bduWr776ijVr1tCgQQOOOuooNm3axLZt2yr0v/nmm7n88ss56aSTym+7YsWKKr+NkQ5WdYzpvn37Mm3aNK688kp69+4NxEIxiM0Yy87OLu87c+bM8j7gmJYkSaoJe87aLyoqom3btod1n61ataKwsJApU6bwxz/+kWbNmjF9+nRyc3MJhUJkZWUBztxXfBl2STUoMzOTrVu3AtCyZUu6du1Kv379KC0tpWfPnqxevZoHHngAgFGjRnH++eczdOhQRo8eDcSCrQEDBvDYY49x7bXX8sknnzB+/Hgee+wxwuEw//znPwF47733KpwCJtWUgxnT9957LwMHDuT3v/89N910EwCDBg2iX79+vPDCC+UXYpgzZw7dunUjJWX3W5JjWpIkqfocyKz9jz/+uPwq2bt+fvnLX+73vuvWrUuDBg2oX78+/fr1Y/z48Vx00UUsXLiQo48+mnfffbeaj0bav7REFyAlu11vBPsyZMgQpk6dyqBBgxg9enR5kAWxsODWW28FoGvXruWzZHY544wzOOOMM8q3mzRpUh407FJcXEyTJk1o2LBhNRyNVH1j+u677+buu++ucNuZM2dWur+8vDz+9Kc/lW87piVJkqrXNddcw6hRoyq1d+jQgRdffBGATp06HdIFgjZv3kxGRgbRaJRZs2Zx2mmnlZ/2uOsq2xCbud+nT59DPgbpYDizS6phV1xxBYMGDaqx+8/MzOR3v/tdjd2/tCfHtCRJUjB069aNwsLC/fYbNGgQc+bMYdCgQcyfP7/CbP53332Xnj17cuqppzJ48GBuuOEGnnjiCcLhMHPnzuU73/kOELvQUZcuXWr0eKRdnNklSZIkSVJAVTVrPyUlha5du1JUVFTleqlTp06t1LZrNv/gwYMZPHhwhX1TpkypsL1w4UJ69OhBKBQ6yOqlQ2PYJUmSJEnSEWpvpzdWt9zcXHJzc2v8caRdPI1RkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTCSJuzavn07o0ePJisri/r16zNw4EAKCgoIhUJMmjQp0eUpwDZs3/37zkji6pCqw/ay3b9v2Zm4OiRJknT4tn3js902P9tJ5dISXcCBiEajDBs2jIKCAu655x5ycnJ47rnnGDp0KAB5eXkJrlBBtLoE/rAQpqza3XbO63BJexjeHlJCiatNOljby+DxInhh2e62wa/B97LghlxoXCdxtUmSJOnglOyEPxbCSyt2tw2eDOe2gR+eCA2S4i/9A3P86d8i7/aLadT+WHZuLmH+Y6+w4NGXE12Warmk+F9g3LhxvPrqq8ydO5fOnTsDEA6Hyc7OJjMzk9atWye4QgXN6q0wYjp8XQrfnMy1thQe+hiWbISf5UHIwEtJYGcE/rsAZq6t2F4agRdXwKx18Oe+Bl6SJEnJYNtO+OG7sGA9RL/RvrUM/vIJzF0Hf+wTjMDr2P7dOOWBH/D2TQ+zesYC0urX5ajjjk50WUoCSXEa49ixYxk+fHh50AWQmppKdnZ2+ayubdu28cMf/pAOHTpw0kkncd111yWqXAXAr+dXDrq+6dXP4M3VcS1JOmQvragcdO0SBT7dDI8timtJkiRJOkTPfALz11cMunaJAos2wNNL4lxUDcm77WLmPfg3vnj7I6JlEXZsLmF94cpEl6UkUOvDrqKiIpYtW8YFF1xQad/KlSvLw67bbruNevXqsXjxYj766CN+/vOfx7tUBcSXJbEgq6rluVJC8MLyeFUkHZ6/LoOqJiFGgVdWxqbDS5IkqfYqi8LEZVX3iQJ/W5786w2n1a/L0d3bU/+YJgyd/r9cNG88A5+8nYys5okuTUmg1k9sXLUqtmBS8+YVB/SiRYtYsWIFeXl5bN68maeffprPPvuM0H/OK2vRosVBPU44HCYlpdZnf5V0+es2AOrWrZfgSoIjo/t3yb6r6nPAI1F455Ni6oZbxakq6RClpnHSX7bst9u2MmiZ24Ntn86PQ1FS9fF9UEHjmFaQOJ6rX1rj5uSO3//Mpq+3Q+Pj2rGzeNV++9YG7dOaclujvhXa6jQ5ilBKCm3O7s3rl4yhZN0Get17FQMev5VXBt+aoEqTw4ABYZbu/DrRZVSLOnXqsGnTpoO+Xa1Pd5o1awbAkiW752FGo1Fuv/12IpEIeXl5LF26lGbNmvGzn/2Mnj17Eg6HefvttxNVspJd5ACnt0TK9t9HSrRohGj0wL7WizqmJUmSarVo2UFMxU/yz3Y7NsfC0o/Hv8rmz9ZSVrKd2b94jmYnZbtul/ar1s/sys3NJScnhzvvvJP09HQyMjJ49NFHmTNnDg0aNKBjx47MnTuXTz75hLy8PB544AFmzpzJOeecw5IlS2jUqNEBPU5+fj59+vSp4aOpfj3/MwGptLQ0sYUEyOYd8N3JscW79yUFGNL5GOb6vCsJ/OAdmLOu6lNzj64L7xXNJa3WfwUiVeT7oILGMa0gcTxXv2gULsmHpZv2vmYXxJavaJMB769ekTQX1FpTsIh/nTuqQtuOTVvZvPLL2EHroEyblk+LXicmuoyEqvV/1qSlpTFx4kRatWrFiBEjGDlyJGeeeSb9+/ena9eupKSk0Lp1a9LS0rjkkksA6N27N0cffTSLFy9OcPVKRhnpsUv2VvW+EAG+nx2viqTDc0m7qoMugIvaYdAlSZJUy4VCcGn7fQddENt3SbtgXDm+8Okp5F57Ng2ObUZq3XTybruYrz5cypZVXyW6NNVytX5mF0C3bt2YMWNGhbaHH36Y/v37A3D00UczYMAAXn/9dQYPHszixYv58ssvycnJSUS5CoCbcmHxBphbHAu9dr2ZpIRi63Xd0gW6NE1khdKBC7eCK3PgySWxbzh2BV+7fg+3hMvbJ64+SZIkHbhzsuCjr2NX3N7bZ7tzsmBom8TVV50+emQSdRpnMGTKryCUwpcFi5h2zQOJLktJICnCrj2VlJRQWFjIyJEjy9see+wxrr76an7605+Snp7OhAkTaNKkScJqVHKrlwaPnAKTPo1dyW7FZkgNQd8WcHE76Okp4koyP+4EXTPh/5bBrK9ioe0JjWMzFM/Oio1vSZIk1X6hENzZFXodHftsN6841t6laWy2/uBjgzGrC4BolA/ue4YP7nsm0ZUoySRl2DVv3jzKysrIy8srb2vXrh35+fmJK0qBUzc1FgR8PzsWDIQI0JuGjkintYz9RKOx2YopjmdJkqSkFArBd46L/exa0sq/VaTdkjLs6t27N1EXqVMcGQooSEKhqtekkyRJUvIw5JIqczliSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYVeA5efnk52dTTgcZsSIEZX2T5gwgalTpxKNRhk+fDj9+/fn3HPPZfv27RX6ffjhh/Tp04cBAwawcuVKAG655RaOOeYYnnnmmfJ+V111FdFotGYPSpIkSZIkqQqGXQF3zTXXkJ+fT+PGjZkxY0aFfa+88gqnn3468+bNo0GDBrz55pv07t2bKVOmVOh377338tJLL/Hggw8yduxYAG699VYeeOCBCv169+7NtGnTavaAJEmSJEmSqmDYdYTo0qULq1atKt8uLi6mXr16hEIhjj32WMrKygDYsGEDmZmZFW67ZcsWmjdvTrdu3ViyZAkALVq0qPQYAwYM4NVXX63Bo5Ak6eDsb5bzfffdR1FRUZX3ceONN9KvXz/uv//+ffZ58MEHGTRoECUlJZx11ln079+fq666CoCCggL69OnDqaeeyqhRowBYuHBh+RdI0oGqjvEMu8frnoqLi+nRowcZGRl73QbHrqrX4Y7pvY3Rb1q+fDmtWrUiHA5zxRVX7PU12jEtBZNh1xFixowZ5OTklG8vWbKENm3aAJCZmcmGDRvIzc3lvffe4+STT65w20gkstff99SmTRsWL15czZVLknR49jXLORKJMG/ePDp06LDP286aNYu0tDSmT5/O7NmzWbNmTaU+O3bsYO7cuQBMmTKFvn378uabb5Kens78+fPJy8vjnXfe4d1332XGjBls3LiR3NxcZs+e7en/OmiHM56h4njdU8OGDXn99dfLPwvuuQ04dlXtDmdM722M7unss88mPz+fp59+eq+v0Y5pKZgMuwLu8ccfJxwOc9xxx9G9e/e99pkyZQrZ2dksXLiQ8847j7/85S8V9qekpOz1d0mSksmes5w//PBDTjjhhCpvM3PmTAYOHAhA//79+eCDDyr1mTBhApdccgkA2dnZbNmyBYDNmzfTuHFj0tPTASgrK+PYY4+lQYMGALRr144FCxYc/oHpiHQo4xkqjtc9paenV5jhv+f2Lo5d1YRDGdP7GqPfNHnyZPr168ezzz6719docExLQWRyEXC7vikZM2ZMhfacnBxWrFgBxL412fUmkZmZyfr16yv0bdCgAWvXrmXevHkVZoftacWKFfv9NlGSpETZc5ZzUVERbdu2rfI269evp1GjRkBsBsGe75GRSITJkyfz3e9+F4i9v06fPp3c3FxCoRBZWVkAPPfcc+Tm5tKkSRPS0tIAZ0Tr8BzKeN5zvB4qx65qwqGM6f1p1aoVhYWFTJkyhT/+8Y80a9Zsr6/RjmkpeNISXYASIzMzk61btwIwePDg8hlgaWlpvPDCC6xevZoJEyZw6623Mnr0aM477zzS09N5+umnAXjggQd48sknCYVCfPnll9x8881MmzaNM888M5GHJUlSJY8//jhTp06lb9+++5zl/PHHH3PDDTdUaDvjjDNo0qQJGzduBGDTpk20b9++Qp8XX3yRIUOGlG8/9dRTXHTRRfzoRz/iJz/5Ce+++y6nnnoql156KRdffDHDhg3jo48+4qSTTqreg9QR43DGc05OToXxKtUGhzOm77jjjirvu27duuW/9+vXj/Hjx+/1NVpS8Bh2BVg4HCYcDu9z/5AhQ5g6dSqDBg3ixRdfrLT/1ltvBShfa2TPfbv27zJz5kyuu+66wy9ckqRqdM0115QvDP9NHTp0KH//69SpE/n5+ZX6vP/++zz//POcc845vPXWW3z/+9+vsL+wsJD8/HwmTJjA3LlzOeecc2jevDmwe7Z0aWkpdevWJSUlhYYNG1KvXj0gNiO6T58+1Xy0CrrDGc/33XdfhfE6fvx4rr322oOuwbGr6nQ4Y3p/Nm/eTEZGBtFolFmzZnHaaaft9YwWx7QUPJ7GeAS74oor9nolnkP1xBNPuKaXJClpdOvWjcLCwir7fPvb36a0tJR+/frRrVs3WrRowerVq3nggQcAuOuuu3j99dd57bXX6N69O1dccQVPPPEE4XCYuXPn8p3vfIeXX36ZcDjMaaedxvHHH19+yv+SJUvo0qVLjR+njgwHMp73HK/XXntthfEMMGjQIObMmcOgQYOYP39+pW1w7Co+DmRMQ+Ux+80x/e6779KzZ09OPfVUBg8ezA033FDpNRoc01IQhaJH+GUn3nnnHfr27cvbb7+dlGl+z5dj/85yRrok6Qh0uO+DY8aM4aKLLor7mpMLFy5k0qRJ+z0FR0eewxnT8RjPjl0djGR4jXZM1w5rChbxr3Mrz/DToTlz0hha9Dox0WUklKcxSpKkI9beTp2Jh9zcXHJzcxPy2AqueIxnx67iyTEt6VB5zpkkSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYCRN2LV9+3ZGjx5NVlYW9evXZ+DAgRQUFBAKhZg0aVKiy0uILTsTXYEkSbXD5h2JrkA6fI5jBcn2st2/R6KJq0PSkSkt0QUciGg0yrBhwygoKOCee+4hJyeH5557jqFDhwKQl5eX4Arj67Mt8PhieG3V7rYr34IrO0C4VeLqkiQpXqavhieKdm8Peg2+cxz81wnQOiNxdUmH4pNNML4Q3vhid9t1b8PVJ8DJzRNXl3QoNu+I/a3y0ordbUPfgEvbw7C2kBJKWGlKMpctmVBhO7VOOuuLVvHy6T9NUEVKJkkRdo0bN45XX32VuXPn0rlzZwDC4TDZ2dlkZmbSunXrBFcYP8s2wTVvx95EIt9o/3g93PI+/HdnuKx9oqqTJKnmvbAMxn5UcXr6zihMXhULwcb3hZxGCStPOigfr4cfvAOlZRU/280thhvfg7u7wzlHzkddJblNO2J/qyzbBN+czPX5VnjgI/j4a/ifPAMvHZhncy6vsD3kjd+wbNI7CapGySYpTmMcO3Ysw4cPLw+6AFJTU8nOziYvL4/ly5fTvXv38p+2bduSmZmZwIprzv/Mgc07K34Ygt3bv1sAyzfFuypJkuLjsy3wq49iv1d6L4zC1p1w1wcQ9ZQZJYFIFO6cVTnogth2FPj5h7B2WwKKkw7BIwsrB12we/ufn8Hrn8e7KgXB0d1zaHLC8Sz5v2mJLkVJotaHXUVFRSxbtowLLrig0r6VK1eSl5dH27ZtmTt3bvnPeeedx6WXXpqAamvWwvWxb/+qOuc9BPxtxb73S5KUzF7cz3tcBFi6CeZ9HZdypMNSsBY+21o56PqmSBT+7mc7JYHNO+CVTysHXd+UAvx1WbwqUpB0uHQgq/49h5I1vsHrwNT60xhXrYotTNW8ecUFCxYtWsSKFSsqrde1fft2nn32WSZPnnxQjxMOh0lJqd3ZX+bgH3Dcfz1UZZ8o8PjkAu7s0S8+RUmSFEfZ97xORufT9tvvzGtvZd0/q37PlBLtmPPvoMXF/0MotO/PoNFIhAeen8yPf3Fe/AqTDkH9Dr3IuX96lX0iwNwvt1O3bsP4FKWk0T6tKbc16rvXfWn165J9bh+m3/RwnKtKXgMGhFm6MxjBYJ06ddi06eBPX6vd6Q7QrFkzAJYsWVLeFo1Guf3224lEIpXCrpdffpnjjjuOb33rW3GtMy6iVX3v981+nrshSQqoaITogbzP+V6oZOBnOwXJAY5nh7MOVttzTmFnyXY+m/pBoktREglFD+gTY+Ls3LmT3NxcduzYwQMPPEBGRgaPPvooc+bMobi4mE2bNlWYkXXWWWdxxhlncNNNNx3Q/W/cuJGPPvqIk046iUaNavdqtks3wkX5VfcJASNy4Med4lGRJEnx9cdFMH5x1afJADxzGpzYJB4VSYdu7jq49gDWWr6pE1yRU/P1SIdj20747hTYsnPffVJC8O2j4ZFT4leXksOagkX869xRe9135qSf8+XMRXxw/7Nxrip5nTlpDC16nZjoMhKq1s/sSktLY+LEibRq1YoRI0YwcuRIzjzzTPr370/Xrl0rBF2rVq3izTff5LLLLjvg+2/UqBF9+vSp9UEXQPtG8K1mVf9HCwFD28SrIkmS4mtom6qv4pUCdGli0KXk0C0T2jfc95gOAXVSYEhWXMuSDkm9tNhrdFUXWoxE4fvZcStJAdCo/bE079mRxc+/kehSlGRqfdgF0K1bN2bMmMHWrVspLCzkhz/8IXPmzKl0CuNTTz3F2WefXX7qYxDdmwdH16v8JpJCrO3u7nDcUfGvS5KkeGheH36WF3vf2zMgCAFN68KYHomoTDp4oRCM7QmN0vfy2S4U+7m/BzSpm5DypIN2fUc4qWnl9l1/dF7WDk5rEdeSlOQ6XDKQNTMXsmnZ6kSXoiRT6xeo35uSkhIKCwsZOXJkhfYnn3yShx4K9mK0LRvAhNPgmaXw0grYvDP24ahPC7g8JzbzS5KkIDvjeGjVACYsgTdXx05pPCoNzm0dey88pl6iK5QOXNuGsdNuJyyFlz+FkrJYyDWwJQzPgS57CQ6k2qpeGvzhVPi/T+CF5bC6JNbeqSlc2g6+c2ws5JUO1Adjnkl0CUpStX7Nrr2ZOXMmJ598Mu+//z49e/ZMdDkJUxaFLTugbmrsR5KkI832MthWBkelQ6p/QCnJ7YzE1juqnwp1/GynJBeNxsZzagjqJ+UUC8VTVWt26eC5ZleSzuzq3bv3gV2JKeBSQ9CoTqKrkCQpceoYCihA0lKgsZ/tFBChEGSkJ7oKSUeqpFizS5IkSZIkSToQhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGKFoNBpNdBGSJEmSJOnItH3TVr5e+GmiywiMprmtqdOwQaLLSCjDLkmSJEmSJAWGpzFKkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCoz/D53cowO4BIp9AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUdElEQVR4nOzde1zUVf7H8dfMgFwERDAVEAHFC2oIq2neEpWsfm2amW0X01K7W2tbZmvaWqmttlpb2cVNN7Usy63M1jItWS9RZN5NuXghw1uKCshNmfn9MYmOXBWYG+/n48FD5pwzcz7fr1++853PnHO+BovFYkFERERERERERMQNGB0dgIiIiIiIiIiISG1RsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DQ9HB+DMinPzObHrF0eH4TYax7Skgb9vle3yzkBGjh0CKkd0APh5OqZvEREREREREak5JbsqcWLXL3w5eJKjw3AbNyybSrNu7atsl5EDYzbYIaByvNML4oId07eIiIiIiIiI1JymMYqIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oQXqxS2kPpPA6d3JGDw8MZg88A5rT+jwaQR0HuDo0ERERERERETEjjSyS9xG6PBpxC/JI3bBERq268Ge6TdTcvqUo8MSERERERERETtSskvcjtHTiybXjsZcmEfhoQxHhyMiIiIiIiIidqRkl7gdc1EBx1a9g9E3AO/QNo4OR0RERERERETsyGWSXcXFxUyePJnw8HB8fHzo378/KSkpGAwGli1b5ujwxAkcXDyZLXcGsv2+SPL3bSV60heYfAMcHZZD5J2Bn09C6ik4a3Z0NO6rsAR2n7T+FJ51dDQiNWOxwJ4c2HECsoscHY1IzR3Otx7Pv552dCQi4iryz8Kuk7D7FBSXODoaEakJl1ig3mKxMGzYMFJSUpgyZQrR0dEsXryYIUOGABAfH2/XeAwmI1dNGUnroddgMBrZ/9/v+WHiO5QUnbFrHGIr9M4XaD7kSUeH4VAniuCN3fDfA1D8e5KrcQP4UxTc0wY8XCa97dwKz8LbqfBJJpz+PcnV0AMGt4QH2lt/F3EVFgt89gssSIdf861lRiAhBB6OgUg/h4Yncsk2H4c3d8Om4+fLOgTC/e2gdzOHhSUiTiz3jPW88fkv1i8zAQI8YWgkjGkLXiaHhicil8ElPpLNnTuXFStWsGXLFjp27AhAQkICUVFRBAUF0bJlS7vGE/vYLTTv2Yll/Z+g5MxZBrw7gS6T7iZl8ny7xiFyoewiuHcdHMqHCwdznSiGt1KtI71e6gYmg6MidA+FJfBQsnW0gOWC8tNn4YO91g9Xc3uBr0ucXUXgtV2wMAMuPDWYgaRD8MNvML83tK6fg2TFBa0/Ak+kWJO4F9p1Eh7/Af4WB3+072WjiDi5vDMwZj3szbW9tss5A/9Oh+3Z8OrV0EAJLxGX4hLjPGbMmMHw4cNLE10AJpOJqKio0lFdaWlp9OjRg7Zt29KjRw/S09PrLJ42dw1g+6ufkH84m6LjOWyZ9RHRf0rAYHSJ3Sluas6usomuC609AisO2DUkt7R4D2y/KNF1jgXr1NGFui+CuIgdJ84frxcf02ag4Cy8sMXOQYlcpqISeHYTmC1l3wstv/9M3Qonix0QnIg4rXfSyia6LrTxOCzdb8+IRKQ2OH12Jj09nX379jF06NAydQcOHChNdj344IM88sgjpKWl8cgjj/DAAw/USTwNAnzxC7uC7J37SsuOb99HA39f/MKvqJM+RaqSewa+/LXiRBdY/9g/2ldJA6lSiQU+3l95Gwvwn/1aK01cw3/2V34hYAZ2nIS0U/aJR6Qmvj1kHYlR0QdWgLMW+OIXu4UkIk6uqAQ+zaz8vGHAeg198YhREXFuTj/RJisrC4CmTZvalO/evZvMzEzi4+M5evQomzZtYtWqVQDccccdjB07lt9++40rrqg6AeXv709xcdmv+Vp7NOapgN42ZR5+PgAUn8ovLSs+ZV351PP3Oilfv34J7Dl7osp2vu160Hpq0iW9drtpl9a+Iv36JZCfmlwrr2VPPm26ET19XaVtzMDP2Wfx8mpon6DckCngCjrM+7XKdieKIbBFa84cr7qtiCO1mb0Z7/AOVba75rb7OJG00A4RiVy+kJEzCb7hEQymii9vLSVnmPL2Uka/eo/9AhMRp+UV2o62/9xWaRsL1jUtfRo1xlKUX2lbEaldFosFDw8PDh8+TEDApa2r4fQju4KDgwHIyDg/L8hisTBhwgTMZjPx8fEcOHCAsLAwTCbrRGqTyURoaCgHDtT+nK2zeQUAeAb4lpY1aGRNHpz5vU7E7kqqdytAi1m3lakRc/Vvuah9La7AonOHuBHr8VzVwpQGHc8iUspyCdd26NwhYncWi4WCggK2b99+yc91+pFdMTExREdHM3HiRDw9PfHz8+PNN99k8+bN+Pr60q5dOzZv3lyjPnJzc8stP5Kymy8HT7IpK87JJy/rN4I6RpKz5yAAwZ2iKM7NJ+/AbzWKw92tWZNEs27tq2y35TiM2WCHgMqxZk0SccGO6bsmikvg+q+t0zcqYjRArzAvNhUV2S8wN2OxwB1JsKeSdR0MQEs/+PHQfgy6GYA4uX/uhPf2VD19Y+vn82nuo5uwiHNLPgqPfl95G4PJg3+OG84fZw23T1Ai4tRKLDBoFRwprLiNEejYGDbm5dgtLhGx2rBhA7179666YTmcfmSXh4cHS5cuJSQkhJEjRzJu3DhuuOEG+vbtS2xsLEajkfDwcLKysigpsWbbS0pKOHjwIOHh4XUSU/r73xD76BB8mjXGKziAuCduI2NJEhazFukRx2hggmFRlbcxW+D2VvaJx10ZDHBn68oTAxbgjiiU6BKXMDSy8mPVCPRtDs01S19cQPcrILxhxRe3RqCRJ1wbas+oRMSZmQxwRxXXx2aqbiMizsfpk10AnTt3Jjk5mfz8fFJTU3nooYfYvHlz6eL0TZs2JS4ujg8++ACADz74gPj4+Gqt13U5tr36CYe/38XNSS8z9LvXOJn+Kz9Ne69O+hKprjFtocfvh/yFn13P/ZHf1xZ6NL34WXKpbgqHIRHW3y88gZ77/cYWcEuknYMSuUwtGsLz8dbjt7wLgkg/mNTZ3lGJXB6jAWZ1g4AGZSczGgEvE7zc3fqviMg5d7SGxN+T4OVd293RSklyEVfk9NMYy1NQUEBqairjxo0rLXvrrbcYOXIkzz//PI0bN2bhwrpbSNdSYiZl8nxSJmtKhyOczc0m/W/XUpiVSvySPJu6/H1b+eWthzF4NCBq3EIaXBHOsdXzOfb1O3gENiVq3CJMvv4OirxueRqtF/Gf/2K9Y0zG77Nzu19hHdHVq5lj43MXBgNMjIVuTeDDfbA121resTH8KQquC9OoLnEt17ewjoZZvBdWWu8JQ4iPddTXrZHg5+nI6EQuTSt/WNzXen7+/Bc4+fv9h26NgjtbWRO8IiIXMhlgWhfo3RQ+2g8/n7SWxwdbr6ETmuvaTsQVuWSya9u2bZSUlJSO7AJo3749P/zwgwOjEnsx+fjT5rlV7J15W5m6Q0uep/VfP+XMiUMc/mQG4WNe4fi3C2j39/Wc+mkFx1a9Q7PBjzsgavvwMFpHFd0SCV0/t5a91sOREbkngwGuDbP+nNvP/+7j2JhEaqJjY+uF/rlk1/JrHRuPSE009YHHOlh/zp2jn7rSsTGJiHMzGeCPLa0/584bb/dybEwiUjMumezq3r07Fktlq+aIOzN4eOLhH1RunbnwNJ6BTfEMbErRoQzO5hyjwRUtMRiN+ERcSfaahYD7JrtERERERERE6juXWLNLpLosFrPN7x4BV1B0KANzcSF5O9dScvqUA6MTERERERERkbqmZJe4FYPBaPO7wWSi2ZDxpD93PQX7t+IRqIWrRERERERERNyZS05jFKmI0cuXM6d+48yJQ3iFRAPQuMctNO5xCyc2fIyl5KyDIxQRERERERGRuqRkl7iktMmJ5O/bTNrkRELvmELe7mSa3zKekD9NZs/0mzF4eBI1znpHzl/eepjCrFS8wzsQPvoVxwYuIiIiIiIiInVKyS5xSW1fWG3z2K9DbwB8W8XTfsYGm7qWD75ht7hERERERERExLG0ZpeIiIiIiIiIiLgNJbtERERERERERMRtKNklIiIiIiIiIiJuQ8kuERERERERERFxG1qgXpxOdAC808txfdcHSUlJ3HvvvURERBAREcGCBQts6hctWkRISAjh4eGMGjUKo9FI165defnll23azZ49m1mzZvHQQw8xadKkCsseeeQRZs6cScOGDe2zgSIiIiIiIlJvKdklTsfPE+KCHR2F+xs9ejSTJk3iscceIzk5mR49epTWLV++nCVLlpCdnc3KlSvx8/Pj7rvvJi0tjbZt25a2Gz58OHFxcXz33XeVlt10000sWbKEUaNG2WfjREREREREpN7SNEaReq5Tp05kZWWVPs7Ozsbb2xuDwUBwcDB+fn4AmEwmDAaDzXObNm2K0Wissuyaa65h5cqVdbQFIiIiIiIiIucp2SVSzyUnJxMdHV36OCMjg4iICJs2O3fu5NixY7Rp0+ay+vD19eXEiRM1ilNERERERESkOpTsEqmn5s2bR0JCAmFhYcTFxVXYLicnh7FjxzJ37lz7BSciIiIiIiJymbRml0g9dW7NrotFR0eTmZkJgMViYdSoUTz//POEhoZedl/5+fkEBgZe9vNFREREREREqkvJLhGxERQURH5+PmC9a+O3337LsWPHAJg1axZhYWEsWrSI8ePHs3DhQv75z39y6tQpcnJymDlzZrlla9euZeDAgY7cLBEREREREaknlOwSqYcSEhJISEiosH7QoEGsXr2axMREsrOzy9SPHz8egBEjRjBixAibuvLKli9fzowZM2oeuIiIiIiIiEgVlOwSkTIuTlbV1Jw5c2r19UREREREREQqogXqRURERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNvQAvXidPLOQEaOY/qODgA/T8f0LSIiIiIiIiI1p2SXOJ2MHBizwTF9v9ML4oId07eIiIiIiIiI1JymMYqIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oQXqxS2kPpPA6d3JGDw8MZg88A5rT+jwaQR0HuDo0ERERERERETEjjSyS9xG6PBpxC/JI3bBERq268Ge6TdTcvqUo8MSERERERERETtSskvcjtHTiybXjsZcmEfhoQxHhyMiIiIiIiIidqRkl7gdc1EBx1a9g9E3AO/QNo4OR0RERERERETsyGWSXcXFxUyePJnw8HB8fHzo378/KSkpGAwGli1b5ujwxAkcXDyZLXcGsv2+SPL3bSV60heYfAMcHZZDFJec/91icVwcIrXBYoHD+fDraSgqqbq9iLM7UQS/5EHeGUdHIiKuorAEDuTB4QJd24nrM1vg4O/XdmfMjo5G3JVLLFBvsVgYNmwYKSkpTJkyhejoaBYvXsyQIUMAiI+Pt1sskTf1IGbM/xHUMZKi7FyWdnvYbn1L5ULvfIHmQ550dBgOlXcG5qfDp5nny4Z8A3e0hmGRYDQ4LDSRS2axwH8yYfEe+OW0tayhB9zcEka3hYAGjo1P5FL9+Jv1HP3jMetjowH6h8CYthBdP7+bEZEqnCiCeWnw+S+Q//sXPlF+MDwaBoWDQdd24kJKLPDhXuvPoQJrWSNPuCUSRrUBH5fIToircInDae7cuaxYsYItW7bQsWNHABISEoiKiiIoKIiWLVvaLZaiU6fZPf8rvK9oRMf7/2i3fkWqknsGxqyHvblw4Rd+Wfnw0nb4+QT8LV4JL3ENFgtM2wqf/QIXHrKnz8LivbDhKMzrDY2U8BIX8dWvMHmT7fFstsC3B2H9EXizB1wZ5LDwRMQJHS+EUeutI2AuvLbbnwcvbIGMHPhLRyW8xDWUWGDiRvjmkO174akz8G46fH8U3u4Fvi6RoRBX4BLTGGfMmMHw4cNLE10AJpOJqKio0lFdTz75JFFRURgMBnbs2FFnsRxau419yzZw+tff6qwPkcvxxq6yiS44//i/v8Kqg/aOSuTyJB22Jrqg/GP6lzx49Wd7RyVyeU4UwZTN1mP34tkaZqxTz//6k/WDgIjIObN2wKH8iq/tPtgLP+gjibiI5b9YE11Q/jG9+xT8K9XeUYk7c/pkV3p6Ovv27WPo0KFl6g4cOFCa7Lr55ptZu3YtERER9g5RxOFOn4XlB8q+cVzICCzZa6+IRGrmo32Vv0GZgS9/hZxie0UkcvmW/QJnKzlBm7Guw5N81G4hiYiTO15oTQxUtpyR0QBL9tktJJEa+Wif7Yiui1mwLsWi9Vmltjj9IMGsrCwAmjZtalO+e/duMjMzS5NdvXv3vuw+/P39KS4u+4mptUdjngq4/NcVW/36JbDn7Ikq2/m260HrqUmX9Nrtpl1a+4r065dAfmpyrbyWPflEX0X0i+srbWMGtv52Bi8vP/sEVU90+qgQAC8vbwdH4l46vncCo5dvpW2KzRDRbQD5uyo/9qX6dDzXjZbjPyKgyx8xmEwVtrGYS7hj/N85uuR5O0bm/nRMi6vyi7uOqGc+r7SN2QJr0o/hdU2YnaKqH3TeqAMmD6788HSVzfLOwhXt4ik6oOH7YmU2X/4dDJx+ZFdwcDAAGRkZpWUWi4UJEyZgNpvtuji9iNOyVPckoDky4hos1T2mdUsqcQVmM9U6/+p4FpFzdG0n7uRS3t/0Xii1xOlHdsXExBAdHc3EiRPx9PTEz8+PN998k82bN+Pr60u7du1q3Edubm655UdSdvPl4Ek1fn2xWrMmiWbd2lfZbstxGLPBDgGVY82aJOKCHdN3TRSeheu+tk5nrIgR6NK8AT8VFdktrvqg6+9fuhZpv9aqP38Pyb9Zv7WuiLcJfv3pWxo6/TuZ69DxXDcW74HZOytvYzCa+M/sSXRbpOuO2qRjWlzVyWK4fmXlU6CNwPXtr2CLju9apfNG3bhnLfx8svKpuYEN4Hj6FjydfkiO2MuGDRsuexaf0x9GHh4eLF26lJCQEEaOHMm4ceO44YYb6Nu3L7GxsRiN9t0Eg9GIycsTg4cHGAyYvDwxNtAnLXEsbw8YElH5PHgz8Kcoe0UkUjN/alV5ossADGqJEl3iEv4YDl7Gis/RRqBlQ7iqiT2jEhFnFtgAbmhR9bXdbbq2Exdxe6vKE10AwyJRoktqjUscSp07dyY5OZn8/HxSU1N56KGH2Lx5s0OmMLa+9Rru3v8B/f71BH4truDu/R9wy/pX7R6HyMUebAdXNi5bfu6P/I5W0Le5XUMSuWw9m8KIaOvv5b1RtW8EY2PsGpLIZQtoAH/vCiZD2ePZCDT0hJlXgaGyT7UiUu/8pRO09i+b8Dp3Hrm/HfzBBWckSP10XRjc3NL6+4XvheeO76uawL1t7B2VuDOX/E68oKCA1NRUxo0bV1r22GOP8cknn3D48GESExMJDg5m584q5gxchoyPksj4KKnWX1eq52xuNul/u5bCrFTil+TZ1B1ZNpsjn83iihseIuQ26zSQzNfvo/BgGhZzCZGPzsc7rK0jwrYLbw94oyd8uBc+3gdHrGtrEhNoTXRdF6YPUuJaHo2BDoHw/h7Y/vu9La7wtn7rd0cr8HHJdzCpr/o0h3/3gYUZsOqgtczbZB31dXdrCGvo2PhExPn4e8I7veGDvfDxfsj+fVZd5yC4qzUkhDg0PJFLYjDAM50hLggW74W0HGt5iK91hOKfojSqS2qXS35U2LZtGyUlJTYju1599VVefVUjrNydycefNs+tYu/M28rUBfUdjk9UHKd3f1da1vLBNzB4eJK7cx2/ffUW4aNn2zNcu/M2wT1trCNiTp+1jiLwdcm/chHrRVFiqPXn3PoZ/73Weqt1EVcUEwgvdoVVvx/PSTeAhy7sRaQSfp5wXzsY3Ra6LbeW/Us3ixcXZTDAH1taf85d2y0boC/kpW645Mfg7t27Y9FdGuolg4cnHv5B5dZ5Bjal8ICxTHsAc2EePhGd6jw+Z2E0WL8NFHE3SnSJO1GiS0SqS+9/4q6U6JK64pLJLpFLkTZ5AEVH9xP9188cHYqIiIiIiIiI1DF9pyhur+0L39D66U84+OEUR4ciIiIiIiIiInVMyS5xa+Yz1pU8Tb6NMDbwcXA0IiIiIiIiIlLXNI1RXE7a5ETy920mbXIioXdMIW93Ms1vGc/xbxdy9It/UnL6FCX5ObS4ZyZ7XhyCuagAg8FA+ANzHB26iIiIiIiIiNQxJbvE5bR9YbXNY78O1lvSBPcfQXD/ETZ1bZ5dYbe4RERERERERMTxNI1RRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0tUC9OJzoA3unluL5FaktSUhL33nsvERERREREsGDBApv6RYsWERISQmJiIn369GHz5s3s3r2bFi1a2LSbMmUKy5Yto1GjRtx///3ceeedzJ49m1mzZvHQQw8xadIkAB555BFmzpxJw4YN7baNzuJS9vX06dP58ssviYuL47XXXrNpd99995GWlkZJSQnz58+nbdu2ZGRkMHbsWIqKinj88ccZNGgQ48eP57vvvsPb25uPPvoIg8HA1KlTmT17tj03W0REREREyqFklzgdP0+IC3Z0FCK1Y/To0UyaNInHHnuM5ORkevToUVq3fPlylixZAsDHH3/M008/XeHrvPbaa/Tu3bv08fDhw4mLi+O7774rLbvppptYsmQJo0aNqoMtcX7V2ddHjhxh06ZNrFu3jscff5yNGzfStWvX0nZvvPEGnp6erFu3jrfeeovZs2fz3HPP8eGHHxIYGAjAqVOn2Lp1Kxs2bGDx4sV88MEHjB07lpMnT5KXl4efn5+9N11ERERERC6gaYwiInbQqVMnsrKySh9nZ2fj7e2NwWAAoHnz5pU+f9y4cdx4443s378fgKZNm2I02p7Cr7nmGlauXFm7gbugyvb1xo0b6du3LwD9+/cnJSXF5rmenp4A5OXl0alTJ4qLizlw4AAjRoxg8ODBHDlyBF9fXxo1aoTZbObUqVMEBQUB0L17d5KSkuyzkSIiIiIiUiElu0RE7CA5OZno6OjSxxkZGURERFTruX/+85/ZuHEjU6ZMYcKECRW28/X15cSJEzWO1dVVtq9PnjxJQIB1vrK/vz8nT54s8/wBAwYwduxYrrrqKo4dO8aOHTtYsGAB48aN48UXX8TT05MWLVrQvn17XnvtNYYMGQJAREQEaWlpdb+BIiIiIiJSKSW7RETq0Lx580hISCAsLIy4uLjLeo3GjRsDcNVVV3H8+PFajM69VGdfBwYGkpOTA0Bubm7p1MQLffPNN3zyySdMmTKFRo0aceWVV9K4cWP69OlDamoqu3btIisri9TUVKZNm8bLL79ch1slIiIiIiKXSskuEZE6NHr0aJKSkpg6dapNeXR0NJmZmdV6jdzcXAD27t1b6eLz+fn55SZv6ovq7OsuXbqwdu1aANasWUO3bt1s2hYVFQHQqFEjfHx8aNiwId7e3hQVFbFjxw4iIyMxm800btwYg8FAUFBQ6eiwzMxM2rRpU8dbKSIiIiIiVdEC9SIiDhAUFER+fn7p4+HDh/Ptt9+yZ88epkyZwoABA3jiiSeYNWsWEyZMYOvWrRiNRubMmQPAwoUL+ec//8mpU6fIyclh5syZrF27loEDBzpqk5zWhfu6efPmxMbG0qdPH2JjY+natSuHDx9m0aJFjB8/niFDhlBQUIDBYCjd10888QQDBgzAZDLx7rvvEhUVhcVi4ZprrsFisZTe+fH777/n1Vdfddh2ioiIiIiIlcFisVgcHYSzOpKymy8HT3J0GG7jhmVTadatvaPDEKlVXT+3/rtx0KU/d+HChYSGhpKYmFgrsTzyyCPMmDHDLe8GWJP9DLW/ry+WnZ3NCy+84PJTGmu6n6V6tJ/tR/ta3ImOZ/vQfrYP7Wepjg0bNtC7d2/Wr19Pr169Lum5GtklIuIgI0aMqNXXOzcSScqq7X19saCgIJdPdImIiIiIuAut2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchhaoF6eTdwYychzTd3QA+Hk6pm8RERERERERqTklu8TpZOTAmA2O6fudXhAX7Ji+RURERERERKTmNI1RRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0tUC9uIfWZBE7vTsbg4YnB5IF3WHtCh08joPMAR4cmIiIiIiIiInakkV3iNkKHTyN+SR6xC47QsF0P9ky/mZLTpxwdloiIiIiIiIjYkZJd4naMnl40uXY05sI8Cg9lODocEREREREREbEjJbvE7ZiLCji26h2MvgF4h7ZxdDgiIiIiIiIiYkcuk+wqLi5m8uTJhIeH4+PjQ//+/UlJScFgMLBs2TJHhydO4ODiyWy5M5Dt90WSv28r0ZO+wOQb4OiwxI1ZLOX/LnXHrP0sIuJUzprhZBEUnnV0JCIicrH8s3CyGErq4TW0SyxQb7FYGDZsGCkpKUyZMoXo6GgWL17MkCFDAIiPj7dbLMYGHlw9fQwhva/EOziA/CMn2DX/S3bP/9JuMUj5Qu98geZDnnR0GFIPlFjg0/3w4b7zZUO/hT+1gqER4OEyXyM4N4sFVh2ExXvOl924CoZGwl2twMcl3sFERNzTsUJYmAHLfoHTZ8EA9GwKd0dD1yaOjk5EpH7732F4LwM2Z1sfN25gvYYe3hr8PB0amt24xEeFuXPnsmLFCrZs2ULHjh0BSEhIICoqiqCgIFq2bGm3WIwmEwVHT/L17S+Qm3mEoA4RXPvBJAp/O8n+5cl2i0NEHKPEAhM3wjeHrBf25xw4DS9thx+OwsyrlPCqDa/+DIv22A5B/q0Q3toN/zsEb/WChi7xLiYi4l4O5sPo9daE17nBAhYg+Tf47ihMjoNB9rs8FxGRC8xPgzd2g/GCDysnimFeGnxzEP7VGwIbOC4+e3GJj2MzZsxg+PDhpYkuAJPJRFRUFPHx8Rw/fpz/+7//o127dlx55ZXccsst/Pbbb3USy9mCIjbP/JDc/YfBYiF7534OfL2Rpt1i6qQ/EXEun+y3Jrrg/AX+hb+vPWI74ksuz4Yj1kQXgLmc+t2n4PWf7RqSiIj87tlNcLzQ9n0QrFPNLcDULZB12gGBiYjUc9uyrYkuKLv8hwXIzIN/bLd7WA7h9Mmu9PR09u3bx9ChQ8vUHThwgPj4eAwGA0899RSpqals376d1q1b8/TTT9slPoOHiWbdYzixK9Mu/YmI41gs8MFe2xFdFzMAS/Zqbama+mif7bdRF7MAyw9Yp86IiIj9ZOTAluzyv4g4xwJ8oktjERG7+2hf5UkeM9ZlQo4X2isix3H6CSBZWVkANG3a1KZ89+7dZGZmEh8fT1BQEAkJCaV1V199NW+++Wa1+/D396e4uLhMeWuPxjwV0LvS5149fTRn8grY8/H/qt1ffdWvXwJ7zp6osp1vux60npp0Sa/dbtqlta9Iv34J5KdqOqqUz+QfTIf5ByttYwEOFYB/aBRnsytvKxXruCgbo3fDStsUlkCLLv3J373BTlG5v04fWa98vLy8HRyJe9N+th/t69oXNPABwu57tdI2FuCNFd/zZHxf+wRVT+h4tg/tZ/vQfq4b7d/ej2dQSKVtSizQrv8t5P70XztFdfnM5sq+Wqmc04/sCg4OBiAjI6O0zGKxMGHCBMxmc5nF6c1mM2+++SaDBg2q89iumjKSK7q0Y9Vd0zCf0fACEbdnqGxMV5nGdRZGvVDdfX1J/yciIlJj1TzvGvQ+KCJif7qGLuX0I7tiYmKIjo5m4sSJeHp64ufnx5tvvsnmzZvx9fWlXbt2Nu0fffRR/Pz8GDt2bLX7yM3NLbf8SMpuvhw8qdy6bs/fQ0jvK/lq2HMUZZf/fLG1Zk0Szbq1r7LdluMwxkEDNdasSSIu2DF9i/MzW2DwajhcUHadkgtd4Q0/HNyLyf3fQ+rMQ9/BT8cqnybTwAiZKd8QUA8W2LSXrp9b/y0qKnJsIG5O+9l+tK9r366TcPfaytsYgDHXd+cvT2q/1yYdz/ah/Wwf2s9146kfIelw5UuqGIGfV/+Hpj52C+uybdiwgd69K59tVxGnH9nl4eHB0qVLCQkJYeTIkYwbN44bbriBvn37Ehsbi9F4fhOefPJJ0tPTWbJkiU15bev2wihC+sRaE13Hc+qsHxFxLkYD/KlV5YkugGGRKNFVQ3+KqjzRZQBuaIESXSIidhYTCB0CK19XEay3uBcREfu6LarqRFdCCC6R6Koppx/ZBdC5c2eSk23XUXr99dfp2/f8OgATJ07kp59+4r///S9eXl51FkvDFk3oMOb/KCks5tYf5pSWH/lhN6vvmlZn/YqIc7g9Cn44ar29enm6BsPw1vaNyR31bQ5DIuDTTGti68L3bAMQ4QePdXBQcCIi9dzz8TBqPeSdsf1iwoj18ROdrOdpERGxr65N4O7W1rual3cN3cwHnrrSQcHZmUskuy5WUFBAamoq48aNA2Dnzp28+OKLtG3blp49ewIQFRXFp59+Wut9n/71GO+G3FrrryvVczothQPzHgeLBf/Y/oQNn1pal/pMP879Obd84A18WnZg70u3k7N5JdGTluPX4fKGP4pcyMMIs7vD+3tgyT747fc7mTTxglujYERraGBybIzuwGCAibHQvhEs3mu9TTKAn4c1CXZvG43qEhFxlEh/WHQNzEuHL3+FM79nvDo1hnvawDXNHRufiEh99lgHiA6ARRmQ8fuKSz4mGNwSRrWFoLobG+RUXDLZtW3bNkpKSkoXp+/YsSMWS1UTi8Qd+LaKp/0M64JeaZMHUJKfg8k3AACD0UTbF1bbtA8f8wq/ffWW3eMU9+ZptF7M3x0NR39fv6uptzURJrXHYLBOg7klAo4WWj9MNfVWMlFExBmENYRn4+DJTnDNCmvZ/D4ODUlERLBeQ98YDv/XAq5abi1bdT1417NraJdMdnXv3l3JrXrK4OEJgKWkBM+gUIxevhfUWkh9JgGv5tG0fOB1jA288Wysrxal7pgMEOJbdTupGYPBOuRaREScj69LfpoQEXF/F95wsb4lusAFFqgXuVj2/xazc2wMpoaBGEznr7BaTVhKu2lJ+ITHcGzVPAdGKCIiIiIiIiKOomSXuJygvnfScc5uzmQfpGD/9tJyD7/GADTqNojCAzsdFZ6IiIiIiIiIOJCSXeJSzGeKADAYjZh8/DE08C6tK8m3rr53encyDZpGOSQ+EREREREREXEszbIXl3Iq5XOOrpgDZjN+Ha/BXHia42sWEdzvbtKeTcTo2QBTw0CiHn8PgAPzn+Dk959yauN/aXrTOIIT7nLwFoiIiIiIiIhIXVKyS1xK417DaNxrmE2Zb6s4AGL+8UOZ9uGjZhE+apY9QhMRERERERERJ6BpjCIiIiIiIiIi4jaU7BIREREREREREbehZJeIiIiIiIiIiLgNJbtERERERERERMRtaIF6cTrRAfBOL8f1LSIi5UtKSuLee+8lIiKCiIgIFixYYFO/aNEiQkJCSExMZPr06Xz55ZfExcXx2muv2bQbOXIke/bswcvLi4ULFxIWFsaTTz7JggULePnllxk+fDgA/fr1w2KxAPDGG2/Qtm1bHnzwQd555x37bLCI1Fh1zxvh4eGMGjUKo9FI165defnll23affXVVzz33HP4+/vz7rvvEhoaysCBAykoKCAgIIAlS5bg7e2tc4SIiAAa2SVOyM8T4oId8+Pn6eitFxFxbqNHjyYpKYlGjRqRnJxsU7d8+XIGDBjAkSNH2LRpE+vWrcPDw4ONGzfatHvuuedYv349EydOZM6cOQCMHz+el156yaadyWQiKSmJpKQkOnTogIeHB1dccQV79uyp240UkVpVnfNGkyZNWLlyJevWrePYsWOkpaXZtJsxYwZr1qxh9uzZzJgxA4C5c+eybt06brnlFhYvXqxzhIiIlFKyS0RERC5Zp06dyMrKKn2cnZ2Nt7c3BoOBjRs30rdvXwD69+9PSkqKzXMjIyMBazLLYDAA0KxZszJ9WCwWEhISGDNmDIWFhQAkJCTw5Zdf1sUmOY2kpCSioqJISEhg5MiRZeqnTZtGenp6pa/x6KOP0qdPH6ZPn16mLjs7my5duuDn5wfA+vXrufrqq+nZsyezZs0CYP/+/YSEhJCQkMCIESMA2LVrV2mSQeRyVHbeCA4OLj0mLzw3nOPh4YG3tzcdO3YsPaeUdy6pD+cIERGpmpJdIiIicsmSk5OJjo4ufZyRkUFERAQAJ0+eJCDAOi/c39+fkydPlnm+2Wxm+vTpjB49usI+li5dSlJSEjExMcybNw+AiIiIMiM+3FFFI2HMZjPbtm2jTZs2FT5348aNeHh4sG7dOjZt2sSRI0ds6v39/Vm1ahVXX301AK1atWLt2rV89913fPHFF+Tn5wNw4403kpSUxMKFCwGIiYlh06ZNpVNLRS5VZeeNc3bu3MmxY8fKHONnzpzh+PHjrF+/nuzs7NLy/Px8/vWvf3HbbbcB9eccISIilVOyS0RERKpt3rx5JCQkEBYWRlxcXLltAgMDycnJASA3N5fAwMAybSZPnsztt99Oq1atKuyrcePGAAwaNIidO3fWOHZXdPFImK1bt9K2bdtKn/PDDz/Qv39/APr27ctPP/1kU+/p6UlQUFDp49DQUBo0aABYR8gYjdbLw5UrV9KnTx/ef//90ratWrWqt/8Xcvmqc94AyMnJYezYscydO7dM3dSpU7n11lv54IMP6NChQ2n5gw8+yJQpU2jUqFFdhC4iIi5KyS4RERGptnMjjqZOnWpTHh0dTWZmJgBdunRh7dq1AKxZs4Zu3brZtP3Pf/5DdnY2o0aNqrSv3NxcwDoaJCoqCoDMzMxKRzW5m4tHwqSnp5dO3apIdUbWlWfVqlW0bt0ab29vQkJCSE1N5euvv+btt9/m+PHjgEbNyOWpznnDYrEwatQonn/+eUJDQ8u8Ru/evVmzZg333HMP3bt3B2D27Nl06NCBa6+9trRdfTtHiIhI+XQ3RhEREamxoKCg0ulvzZs3JzY2lj59+hAbG0vXrl05fPgwixYtYvz48fzlL38hLCyMhIQErr32Wp555hleeukl3n33XQwGA0ePHuUvf/kLiYmJNGjQgMDAQN577z3Aup5VZVMf3cW8efNYvXo1vXv3rnAkzM8//8zDDz9sU3b99deXGVnXunXrKvv79ddfefHFF/n8888B8PLyKq3r06cPe/bsITg4+DK3RqR8F543kpKS+Pbbbzl27BgAs2bNIiwsrPS88fzzz5OUlERYWBhvv/02xcXF/PWvf6VHjx589dVX3H333aVJtfpwjhARkcop2SUiIiLVkpCQQEJCQoX1gwYNYvXq1SQmJjJ58mQmT55cWte8eXPGjx8PUDqS40Ljx48vrT/nhx9+sHl89uxZjh49ajPSyV2NHj2aSZMmlSlv06YNn3zyCQAdOnQgKSmpTJsff/yRDz74gJtuuom1a9eWrmVUkaKiIu655x7efPPN0gXC8/Ly8PPzw2KxsHHjRsaOHQtY/+969epVw62T+uRSzhsXrsV1zrnzwrPPPsuzzz5rU1dUVGTzuD6dI0REpHKaxigiIiK1YsSIESQmJtbZ63t4eJQuVF9fde7cmdTU1ErbXHXVVRQVFdGnTx86d+5Ms2bNOHz4MC+99FJpm8TERDZv3kxiYiJz587l559/5oEHHiAhIYGsrCy+++47unbtSs+ePRk4cCAhISGAdUHxTp061ek2Sv1Sm+cNnSNEROQcjewSERERcSKVjYQxGo3ExsaSnp5e6bpEc+bMsXl84cg6gNWrV9vUP/roozaPw8LCGDhwoE3Zrl276NKlCwaDoTqbISIiIuIwSnaJiIiIuJDypjfaQ0xMDDExMQ7pW0RERORSaBqjiIiIiIiIiIi4DSW7RERERERERETEbWgaozidvDOQkeOYvqMDwM/TMX2LiIiIiIiISM0p2SVOJyMHxmxwTN/v9IK4YMf0LSIiIiIiIiI1p2mMIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG1ogXpxC6nPJHB6dzIGD08MJg+8w9oTOnwaAZ0HODo0EREREREREbEjjewStxE6fBrxS/KIXXCEhu16sGf6zZScPuXosERERERERETEjpTsErdj9PSiybWjMRfmUXgow9HhiIiIiIiIiIgdKdklbsdcVMCxVe9g9A3AO7SNo8MRERERERERETtymWRXcXExkydPJjw8HB8fH/r3709KSgoGg4Fly5Y5OjxxAgcXT2bLnYFsvy+S/H1biZ70BSbfAEeHJSIiIiIiIiJ25BIL1FssFoYNG0ZKSgpTpkwhOjqaxYsXM2TIEADi4+PtGs/VL44h/NqueAb4ciavgMwvktn4wnuYz5y1axxiK/TOF2g+5ElHhyEi4nJ2nIDFe84//uMqGBoJwyLBz9NRUbmf/bnw/t7zj6/9Cga3hNtbQRNvx8UlcjlyiuGjffCfzPNlkzfBXa2gfaDDwhIREQFcJNk1d+5cVqxYwZYtW+jYsSMACQkJREVFERQURMuWLe0az65/f8XG5xdxtqAIryB/EuY+Qexjt7Bl1kd2jUNERKSmVhyAKZsBw/mywwUwZ5e17l+9INDLYeG5jY3H4LHv4az5fNmJYliQAct/388t/RwXn8ilOFYIY9bDr/m25St/ha+zYHoXGBDqmNhERETARaYxzpgxg+HDh5cmugBMJhNRUVGlo7puvvlmOnfuTHx8PH369GHLli11Fs+ptF85W1BkfWAwYDFb8G8VUmf9iYiI1IVfT8OULWAGzJay9Zl5MHWrvaNyP6fPwhMp1kSX+aI6C9ak11M/gqWc/wMRZ/S3zXAwv2z5uXPJMz/B0QK7hyUiIlLK6ZNd6enp7Nu3j6FDh5apO3DgQGmya8GCBWzdupXNmzfz5JNPMmrUqDqN68qxN3NXxiLu2DGfoI4R/Dz3izrtT0REpLb9Z3/lCRYz8L/DcLicD7VSfV8esCa8Lk50nWO2QEYubM22a1gil2V/HvzwW8XHswUoscCnmRU0EBERsQOnn8aYlZUFQNOmTW3Kd+/eTWZmZmmyq1GjRqV1p06dwmisfh7P39+f4uLiMuWtPRrzVEDvcp+z/fXP2P76ZzRqE0arW/pQcPREtfurr/r1S2DP2ar3k2+7HrSemnRJr91u2qW1r0i/fgnkpybXymuJiDi76Jd+xCcyttI2FqDz4FGcXPu+fYJyQy2f+ICAqwZhMFV82WUxm7npz9M4+vFUO0bm/jp9VAiAl5cWRastQdfeR9j9r1faxmyx8Mry73msc4J9gqondDzbh/azfWg/24er72ezuaKvVqrm9CO7goODAcjIyCgts1gsTJgwAbPZbLM4/ZgxY2jZsiXPPPMMCxYssEt8p9KzyN6ZSZ/XHrNLfyIiIrWlsuSLTTujqY4jcXNGDzAYqmhk0X4Wl1Cd84bBYNDxLCIiDuX0I7tiYmKIjo5m4sSJeHp64ufnx5tvvsnmzZvx9fWlXbt2pW3feecdABYtWsT48eNZsWJFtfrIzc0tt/xIym6+HDypyucbPU0EaM2uKq1Zk0Szbu2rbLflOIzZYIeAyrFmTRJxwY7pW0TE3p7bDP89UPF0pHPWfvQv2jb6l11ickfvpMJbqZW3MRhNLJgxkX4LJ9onqHqi6+fWf4uKihwbiBvZlg2j1lfexgiMvLYbE57Qfq9NOp7tQ/vZPrSf7cPV9/OGDRvo3bv82XZVcfqRXR4eHixdupSQkBBGjhzJuHHjuOGGG+jbty+xsbHlTle8++67WbNmDcePH6/1eDz9fYm+LYEGAb4ANI6JoPO4oRxM0gq+IiLiWoZGVp7oMgJXNoa2jSppJFW6OQKMlQzsMgLBXtCnmd1CErlsVzaG1v6Vf4gwYz2/iIiIOIrTj+wC6Ny5M8nJtusovf766/Tt2xeAvLw8Tpw4QXh4OADLly8nKCiIoKCg2g/GYqHV0Gu4aspIjA08KDyWQ+aKH9jy0pLa70tERKQOdWoMI6NhQQYYsK7PdY4R8PWASZ0dFJwbaeINE66EF7dZ9+uFCUYj1kTY1D+Ah9N/BSlinZH73B/gvvVQVGJ7PJ87jzzYDqIDHBSgiIgILpLsulhBQQGpqamMGzcOgNOnTzNs2DBOnz6NyWQiKCiI5cuXY6hyfYxLdyavgK//9Hytv66IiIgjjI2B8IbWhNeB09YyowH6N4eHYiDCz7HxuYuhkdbRW++kwe5T58u7XQEPtrcmHkVcRftG8G4feHO39Y6t5xLlEX5wbxu4Mdyh4YmIiLhmsmvbtm2UlJSULk7frFkzvv/+ewdHJfZyNjeb9L9dS2FWKvFL8mzqzpz6jV/m3M/Z0ycJuuYOrrjufgoPZXDg7bGYzxTRbNDjBHYf5KDIRUScj8FgnWY3uCXsz4OCEgjxgcZejo7M/SSEWH9+PQ2niuEKb2jq4+ioRC5P6wD4Rzc4XghHCq0jQSMaVuNeDCIiInbgksmu7t27Y7FYqm4obsnk40+b51axd+ZtZeoOLXmeFmNewatpxPmyD58j6skP8fALtGOUIiKuxWCAKH9HR1E/tGho/RFxB8He1h8RERFnotUhxOUYPDzx8C9/PbairDSyFj5N2t8GUvhrKuYzxRQfO8D+V0aQMW0wZ04esXO0IiIiIiIiImJPLjmyS6QiebvW0+Gf27BYzGQt/Cvh971KQeYOOr2VTsHeLRxe+iLhY15xdJgiIiIiIiIiUkc0skvcinfLjniFtMY7tA0l+acwNWyET8SVePg1xq9jHwqzUh0dooiIiIiIiIjUIY3sErfi1TSSsznHsJhLMHr5YvJuiLGBN+YzRRQe2EWDppGODlFERERERERE6pCSXeKS0iYnkr9vM2mTEwm9Ywp5u5Npfst4mt82iT0v3oKl5Czh970KQLPBT5A2eQAGo4nIP7/r2MBFREREREREpE4p2SUuqe0Lq20e+3XoDYBvZCztXlxrUxcQl0hAXKLdYhMRERERERERx9GaXSIiIiIiIiIi4jaU7BIREREREREREbehZJeIiIiIiIiIiLgNrdnlZHq/8ghnThfywzPzHB1KGXdlLOLLm58le8e+Ou0nOgDe6VWnXVTat4iIiLi/pKQk7r33XiIiIoiIiGDBggU29YsWLSIkJITExET69OnD5s2b2b17Ny1atLBpt3btWsaPHw/AxIkTGTx4MPfddx9paWmUlJQwf/582rZty7333sv8+fMxGAx220YREZH6SsmuOtS8Z0finriN4NhWABzftpct//iIw8k7HRyZVdwTtxHcuTXfjHixWu3fj767jiOy8vOEuGC7dCUiIiL12OjRo5k0aRKPPfYYycnJ9OjRo7Ru+fLlLFmyBICPP/6Yp59+utzXePnll/n0008JCgrixhtvZPDgwbzxxht4enqybt063nrrLWbPnk337t1Zs2YN/fv3t8u2iYiI1GeaxlhHWiR24drFkziw+ic++sMDfPSHBziw+ieu/WASLQb8odznGEy1999h8DDV2muJiIiIuLNOnTqRlZVV+jg7Oxtvb+/SUVjNmzev8Llt2rTh1KlTnD59Gn9/fwA8PT0ByMvLo1OnTgD069ePFStW1NUmiIi4laSkJKKiokhISGDkyJFl6qdNm0Z6enqFz8/OzqZLly74+flVq37//v2EhISQkJDAiBEjANi1axczZsyoha0RR1Cyq450nzqKjI+T2Pnm55zJzedMbj473/ycPUv/R7epowC4NeUNYscN5f8+n8bwve/TpHNrADwbepMw9wnuSl/Ezf97mdCEzlX217xHR+7KWETb4Ync+uObDFr9DwBCronljytncGfqAgZ9M4uW118FQMvrr+LKx4YQ1i+OuzIWcVfGIowNKh/od8+hpQR3bo3BZOTOtIUEtgu39t2zI/ccWkrEH63fhvo0DWTELx/i6edzeTtPRERExI6Sk5OJjo4ufZyRkUFERES1njt48GCuu+46OnfuzIMPPlhaPmDAAMaOHctVV1mvvSIiIkhLS6vdwEVE3Njo0aNJSkqiUaNGJCcnl5abzWa2bdtGmzZtKnyuv78/q1at4uqrr652/Y033khSUhILFy4EICYmhk2bNmGxWGppi8SelOyqAwGtQ/GPaMa+zzaUqdv76XoCIpsT0CoEgOhhCWx44g3ej76b47+vhRV1c2/2frqOxe1Hsu21T+k//yl8mwdV2a+HjxdN4qL57JpxfHHDBPwjm5O44Gl2vP4ZH3S4l5+mvUffNx8nqGMkv3z1I9tf/ZSsNVt4P/pu3o++G3Px2Wptn6XEzJEfdhHS+0oAQvpcSc6+Q4T0tn5zGdL7So5v28uZvIJqvZ6IiIiII8ybN4+EhATCwsKIi4u7rNeYPHkyP/74Y5kRAN988w2ffPIJU6ZMqZ1gRUTqqYtH327dupW2bdtW+hxPT0+Cgir+DF1e/cqVK+nTpw/vv/9+aVmrVq3YudM5liGSS6NkVx3wDrIOYS84kl2mruDoCWubYOtK6KmLVnEqPQuL2VyabDr8/c/88mUKlhIze5eu5cTPmUTe1KPMa13MYDTy0/T3OVtQRElBMVGDe3Lkh13sX56MpcRM1reb+eXrjbQe1rfG23h4/Q6b5NaWf3xUmvxq3qsThzbsqHEfIiIiInXp3KiBqVOn2pRHR0eTmZlZrdcwmUwEBATg6+tLUVERQOm/jRo1wsfHOtI9MzOz0lEIIiJSvotH36anpxMZGVmrfYSEhJCamsrXX3/N22+/zfHjxwGNynVlSnbVgcLsXAB8mpXNJPs0bWxtczwHgNNZv5Vpc/pX27K8A79Va2TX2YIiin7vG8A3JJi8i18r8wi+ITVf/f3Q+u00u7oDDQJ8CWgVyr7PNmBq4IFvSBAhvTtxaN32GvchIiIi4ghBQUHk5+eXPh4+fDhff/01d9xxB9988w0ATzzxBADjxo2jX79+9OzZk1GjrEtVDBkyhH79+jFq1CieeeYZANasWcMNN9xg5y0REXFd1Rl9+/PPP5OQkGDz8/e///2S+/Ly8sLX1xcfHx/69OnDnj17ahi9OJruxlgHcvYcJPeXI0QN6snhi0Y4RQ3uSe4vR8jZewgAi7ns/N+GLa6weewXfgW/bao6m2wxm20e5x86TvMeHS96rabkHzpebvtLkb1zPxazmQ73/ZGjP+7GYjZzaP0O2t6ZiG/Txhz9cfdlv7aIiIhIXTv3oagigwYNYvXq1SQmJvLee++VqZ81axZgXePlxhtvtKkrbyH6H374gfvvv79mQYuI1CPn7ph7sTZt2vDJJ58A0KFDB5KSkmrcV15eHn5+flgsFjZu3MjYsWMB66jcXr161fj1xf40squOpDz7LtF/6kfHB27C088HT39fOjzwR6Jv60fK5H9X+tzmV3cgfGBXDCYjrW7pQ+MOEez/7/eXHMO+Zd/RrHsMETd2x2A0EtYvjvDrurJn6VoACo6domFYk8u+C+Th73bS4f4bObTeOorr0IbtdLj/Ro7+lEZJ0ZnLek0RERERZzBixAgSExNr7fX+/e9/YzTq0ltEpKY6d+5Mampqle0SExPZvHkziYmJ7Nixg8OHD/PSSy+VWz9//ny6du1Kz549GThwICEh1jW2MzIySu+qK65FI7vqyIGVP7J6+HQ6/+VW4sbfBsDxbXtZPXx6aXKoIvs+W0/rYX25Zs6fOX3oOGvG/IP8g8cvOYbc/Yf5dtRM/vDXu+j18iOc/vU31o59lezfF8LfvzyZVjf35vYd8zEYDHwYO7rai9QDHFq3ncg/9uDQeuvotUPrd9AgoKHW6xIREREREZHLVtnoW6PRSGxsLOnp6ZWuhbh69eoyZePHj6+w/rHHHrN5vGvXLrp06YLBYLiEyMVZKNlVhw6t315pYmtpt4fLlK0fN+ey+jqcvJP3o+8uU561ZgtZa7aU+5zik3l8NfRv1Xp9w+/fRF6YDEtd+DWpC78ufVxw5ATvhtx6CVGLiIiIiIiIXJrypjfWtpiYGGJiYuq8H6kbGkst1dK4YwTmM2fLXVBfRERERERERMRZaGSXCxmc9DJ+LZqUKT/w9U+sffiVGr9+4vvP0Kx7+zLlZ/IKMXqa+Gn6Yopz8st5poiIiIiIiIiIc1Cyy4UsS3i8Tl9/9V3T6vT1RURERERERETqmpJd4nTyzkBGjmP6jg4AP0/H9C0iIiIiIiIiNadklzidjBwYs8Exfb/TC+KCHdO3iIiIiIiIiNScFqgXERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbWjNLnELqc8kcHp3MgYPTwwmD7zD2hM6fBoBnQc4OjQRERERERERsSON7BK3ETp8GvFL8ohdcISG7XqwZ/rNlJw+5eiwRERERERERMSOlOwSt2P09KLJtaMxF+ZReCjD0eGIiIiIiIiIiB0p2SVux1xUwLFV72D0DcA7tI2jwxERERERERERO3KJZFdxcTGTJ08mPDwcHx8f+vfvT0pKCgaDgWXLljk6PHESBxdPZsudgWy/L5L8fVuJnvQFJt8AR4clIiIiIiIiInbk9AvUWywWhg0bRkpKClOmTCE6OprFixczZMgQAOLj4x0Sl8m7AYO/nYVP00Dej77bITGIrdA7X6D5kCcdHYZDmS3wzUH4aB+kngKTAXo0hT+1gs5Bjo7OvSQfte7nTcetjzsHwW1R0KspGAyOjU3kUu3LhSX7YPVBKCyBlg3hlkj4Yzh4mxwdncilOVkMn+yHZb+cL3tjFwyLgiu8HRaWiIgAPx2zXnOc89B3MCwS+oXoGlpql9Mnu+bOncuKFSvYsmULHTt2BCAhIYGoqCiCgoJo2bKlQ+KKH/8n8n49hk/TQIf0L3Kxs2aYtMn6YdUImH8vX30Ivj4Ij3eEu1o7MkL3YLHAqz/Doj22+/n73+C7o3B7FDzRSW/W4jr+dxgm/GhNlp87ntNz4O/b4PNf4I0e4Ofp0BBFqu3X03D/BjhaaFv+73RYuh/e7AntGjkkNBGRem9eGry5G4wXXCf/dAx+PAY3toC/xdvWidSE009jnDFjBsOHDy9NdAGYTCaioqLKjOp67rnnMBgM7Nixo05jCo5tRVi/OHbM+axO+xG5FAsyrIkuOP+BFawfYAFe3ml9M5GaWZllTXRB+fv5w33wxQG7hyVyWQ7nw9MbocRiezz/fjiz66Q16SXiCiwWeCIFjhWWUwfknYE/fw9nzGXrRUSkbm04Yk10wfnrZjh//fHfX+HDvXYPS9yYUye70tPT2bdvH0OHDi1Td+DAAZtk16ZNm/j++++JiIio05gMJiM9//Eg3098B3Px2TrtS6S6zpqrfnMwojeQ2rB4b+UnTgPw/h7rhy4RZ/dJpvX8UdHhasE6MrS85IGIs/npOOzJtU3cXsgMHCuCNYfsGZWIiAB8sLfqUVuL99omwkRqwqmnMWZlZQHQtGlTm/Ldu3eTmZlZmuwqKirikUce4YMPPiAhIeGS+/H396e4uLhMeWuPxjwV0NumrNPDgzm+fR9Hvt9F8x4dyzxHKtavXwJ7zp6osp1vux60npp0Sa/dbtqlta9Iv34J5Kcm18pr2ZN3q3jazPi+0jZm4JtfCvHqo/kbl8vYMJCO7x6ptI0FyMgFv+YtOXuy8rYijhb9UgreEbEYKpl3a7ZAxz/ew8l1H9gxMpFL1/yuaTQZ9DgGY8ULzVlKzvLQrMX8Ouc+O0YmUjs6fWT95sHLS4vP1SXt5zpgNNLpw9MYDJWPtTlcAIGtYik6mGqnwNyfqx/PZvPlD8d26pFdwcHBAGRkZJSWWSwWJkyYgNlsLk12PfvsswwfPpzIyMg6jcc/sjntRgxk4wuL6rQfkUtlMFVvQZ3qtpPyXcr+M3g0qMNIRGqHwdSg0kRXaTsdz+ICDB6eYKn6oljHs4iIfRmMHlUmukrbeujzitQOpx7ZFRMTQ3R0NBMnTsTT0xM/Pz/efPNNNm/ejK+vL+3atSM5OZmNGzfy97///bL7yc3NLbf8SMpuvhw8qfRxs27t8WnSiFs2vAqA0cOEZ0Mfbt85nzWjX+LI97suO4b6YM2aJJp1a19luy3HYcwGOwRUjjVrkogLdkzfNXGyGK5fCWcrGfZrAKIDTfxUVGS3uNxNicW6n0+UHQhqI8ATThzIwNOpv04QgWd+glUHq54y8M0Hc+nYeK59ghK5TJ//As9vqbyNweTBM/fdzr0zb7dLTCK1qevn1n+LdC1Xp7Sf68bNqyErv+KlEwC8jHBw1080dOoshWtx9eN5w4YN9O7du+qG5XDqj2IeHh4sXbqUkJAQRo4cybhx47jhhhvo27cvsbGxGI1G/ve//7Fr1y6ioqKIjIzk119/5brrruPrr7+u9Xj2Lf+O//Qcy+eJT/J54pNseOItzuQX8nnik/y2Kb3W+xOprsAGcG1Y5X/QFuC2KHtF5J5MBrg10po4rIgBGBKBEl3iEm6NrDzRZQTaBkCHQDsFJFIDA0PB11T5OdpkgEHhdgtJRER+Nyyq8kSXEbgxHCW6pNY4/cexzp07k5ycTH5+PqmpqTz00ENs3ry5dArj008/zcGDB9m/fz/79++nRYsWrFy5koEDB9Z6LCUFxeQfyi79KTqeAxYL+YeytVi9ONzYGAj2rviPumsw3NTSriG5peHR0Nq//A9TRiDCD+5pY++oRC5PXBAMreC+LkasSdtJcVCNmY4iDuftAZPjrL9ffMiee/yXTtb3ShERsa9bIyG2ccXX0M184IF2dg5K3JrTJ7suVlBQQGpqqs2dGB3lcPJO3o++29FhiADWN4h/94H+IbZ3OvE1wV2t4J9Xa7RRbWjoAf/qDTdHQIML9qen0fpt1Lze4K+lBsRFGAwwIRYe6wBBXrZ1XZrAvD4a1SWu5doweLk7RAfYloc3hGld4E8a4Swi4hBeJpjTwzrTxPuC+4iYDNZz97/76MsIqV0uN0hw27ZtlJSUVJjs2r9/v30DErs7m5tN+t+upTArlfgleTZ1+fu28stbD2PwaEDUuIU0uCKcY6vnc+zrd/AIbErUuEWYfP0dFHnda+4Df78KjhXC9b/P5F15Hfi43F+6c/P3hGc6WxME/b60ln01EBppzWNxQUYDjIiGO1vB1V9Yyz4bAC0aOjYukcvVuxn0agp7cq3vh4ENoF0jjVAUEXE0Hw8YfyU8HAO7TlqXUogOKPuFm0htcLmPwN27d8diqWIlXXFrJh9/2jy3ir0zbytTd2jJ87T+66ecOXGIw5/MIHzMKxz/dgHt/r6eUz+t4Niqd2g2+HEHRG1fTS74VkSJrrpz4QguJbrE1XlcMFJRiS5xdQaD9QPUxSO8RETE8Rp6QNcmjo5C3J0mNYnLMXh44uEfVG6dufA0noFN8Y3qTNGhDM7mHKPBFS0xGI34RFzJ6dRkO0crIiIiIiIiIvakZJe4FYvFbPO7R8AVFB3KwFxcSN7OtZScPuXA6ERERERERESkrinZJW7FYDDa/G4wmWg2ZDzpz11Pwf6teAQ2c2B0IiIiIiIiIlLXtJqPuBWjly9nTv3GmROH8AqJBqBxj1to3OMWTmz4GEvJWQdHKCIiIiIiIiJ1SckucUlpkxPJ37eZtMmJhN4xhbzdyTS/ZTwhf5rMnuk3Y/DwJGrcQgB+eethCrNS8Q7vQPjoVxwbuIiIiIiIiIjUKSW7xCW1fWG1zWO/Dr0B8G0VT/sZG2zqWj74ht3iEhERERERERHH0ppdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA2t2SVOJzoA3unluL7rg6SkJO69914iIiKIiIhgwYIFNvWLFi0iJCSE8PBwRo0ahdFopGvXrrz88ss27WbPns2sWbN46KGHmDRpUoVljzzyCDNnzqRhw4b22UARERGReqS613aJiYn06dOHzZs3s3v3blq0aGHTbsqUKSxbtoxGjRpx//33c+edd+o6TkRckkZ2idPx84S4YMf8+Hk6euvtZ/To0SQlJdGoUSOSk5Nt6pYvX86AAQNo0qQJK1euZN26dRw7doy0tDSbdsOHD2fRokVVlt10000sWbKkbjZERERERKp1bQfw8ccfc+utt1b4Oq+99hpJSUnceeedgK7jRMQ1KdklUs916tSJrKys0sfZ2dl4e3tjMBgIDg7Gz88PAJPJhMFgsHlu06ZNMRqNVZZdc801rFy5so62QERERETOqezaDqB58+aVPn/cuHHceOON7N+/H9B13MWSkpKIiooiISGBkSNHlqmfNm0a6enpFT4/OzubLl26lF5jV1W/f/9+QkJCSEhIYMSIEQDs2rWLGTNm1MLWiLgvJbtE6rnk5GSio6NLH2dkZBAREWHTZufOnRw7dow2bdpcVh++vr6cOHGiRnGKiIiISNWqc21XkT//+c9s3LiRKVOmMGHCBEDXceWpaBSd2Wxm27ZtlV4z+/v7s2rVKq6++upq1994440kJSWxcOFCAGJiYti0aRMWi6WWtkjE/SjZJVJPzZs3j4SEBMLCwoiLi6uwXU5ODmPHjmXu3Ln2C05ERERELkl1r+0q07hxYwCuuuoqjh8/XovRuaeLR9Ft3bqVtm3bVvocT09PgoKCLql+5cqV9OnTh/fff7+0rFWrVuzcufMyIxdxf1qgXqSeGj16dOkC8heKjo4mMzMTAIvFwqhRo3j++ecJDQ297L7y8/MJDAy87OeLiIiISOWqc21XldzcXPz9/dm7d2/pgvS6jqtYcnIyf/7zn0sfp6enExkZWat9hISEkJqaisFg4LrrruP6668nODiYiIgI0tLS6NSpU632J+IulOwSERtBQUHk5+cD1jUJvv32W44dOwbArFmzCAsLY9GiRYwfP56FCxfyz3/+k1OnTpGTk8PMmTPLLVu7di0DBw505GaJiIiI1EsXXtuB9WZC3377LXv27GHKlCkMGDCAJ554glmzZjFhwgS2bt2K0Whkzpw5ALqOK8e8efNYvXo1vXv3rnAU3c8//8zDDz9sU3b99dfz9NNPX1JfXl5epb/36dOHPXv2EBwcfMkxi9Q3SnaJ1EMJCQkkJCRUWD9o0CBWr15NYmIi2dnZZerHjx8PwIgRI0oXyjynvLLly5drEU0RERGROnIp13bvvfdemfpZs2YB8MYbb5Sp03VcWRWNomvTpg2ffPIJAB06dCApKanGfeXl5eHn54fFYmHjxo2MHTsWgMzMTHr16lXj1xdxV1qzS0TKGDFiBImJibX2enPmzKnwjjMiIiIiUrdqcm2n67jq69y5M6mpqVW2S0xMZPPmzSQmJrJjxw4OHz7MSy+9VG79/Pnz6dq1Kz179mTgwIGEhIQA1hsPaAqjSMU0sktERERERESkGiobRWc0GomNjSU9Pb3SOzKuXr26TNm5mRPl1T/22GM2j3ft2kWXLl0wGAyXELlI/aJkl4iIiIiIiEgtKG96Y22LiYkhJiamzvsRcWWaxigiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjb0Jpd4nTyzkBGjmP6jg4AP0/H9C0iIiIiIiIiNadklzidjBwYs8Exfb/TC+KCHdO3iIiIiIiIiNScpjGKiIiIiIiIiIjbULJLRERERERERETchpJdIiIiIiIiIiLiNrRml7iF1GcSOL07GYOHJwaTB95h7QkdPo2AzgMcHZqIiIiIiIiI2JFGdonbCB0+jfglecQuOELDdj3YM/1mSk6fcnRYIiIiIiIiImJHSnaJ2zF6etHk2tGYC/MoPJTh6HBERERERERExI6U7BK3Yy4q4NiqdzD6BuAd2sbR4YiIiIiIiIiIHblMsqu4uJjJkycTHh6Oj48P/fv3JyUlBYPBwLJlyxwdnjiBg4sns+XOQLbfF0n+vq1ET/oCk2+Ao8MSERERERERETtyiQXqLRYLw4YNIyUlhSlTphAdHc3ixYsZMmQIAPHx8XaLpfcrjxA1pDfmM2dLy5Lum0XWmi12i0HKF3rnCzQf8qSjw3AoiwV++A2W7j9f9vdtcGskRCvvJy5oXy58vB/WH4GzZmjXyHo892wKBoOjoxO5NCeL4LNf4Ktf4WQxNPeFwS3hhjDwdokrMhGxN7PF+h74n/3ny2btgGGR0NLPUVG5p03H4eN95x8/vwVui4T2gQ4KSERqxCUurebOncuKFSvYsmULHTt2BCAhIYGoqCiCgoJo2bKlXeNJe281Pzwzz659ilTFbIEXt8GnmWC8IAnwyX7rBdKkOOuHKhFXseIATNkCWMD8e9mxQlh3BG5sAc/Gg0kJL3ERGTnw0Hdwovh82fEi2HECPtgLb/WEIC/HxScizuesGSZtgtUHbafjfLjXmpSZ1gUGhDosPLdhscCrP8OiPbb7+Ytf4PNf4C8d4c7WDgtPRC6TS0xjnDFjBsOHDy9NdAGYTCaioqJKR3VFRkbSvn174uLiiIuLY+XKlY4KV8QhPthrTXSBNfF1jhmwAFO3wPZsBwQmchl2n4Ipm63HsvmC8nO///dXWKT7T4iLKC6BR7+HU8W25edO1ftz4a8b7R6WiDi5f6VZE11g+15oAUosMPEn6whoqZnlB6yJLij/mmP2Tvj+qL2jEpGacvpkV3p6Ovv27WPo0KFl6g4cOGAzhXHp0qVs2bKFLVu2cN1119VZTK1u6cMdP/+bm9e+Quyfb8FgcvrdKG6uxALv7am8jQH4cF/lbUScxZK9Vbd5f4/1W28RZ/fNIfit0PZD1IXMwE/HIe2UPaMSEWdWWFL5e6EF64ikj3RtVyMWi/XLs8oGihuxXnOIiGtx+mmMWVlZADRt2tSmfPfu3WRmZtbKel3+/v4UFxeXKW/t0ZinAnrblP08bwUbX1hEYXYuwbGt6PvGOExeDdg888Max+Hu+vVLYM/ZE1W2823Xg9ZTky7ptdtNu7T2FenXL4H81ORaeS178o6Mpc1LP1baxgx8uTeff/RsbJ+g6olOHxUC4OXl7eBI3EuHfx/G5Ff5sXqiGJrE9qEgPcVOUbk/Hc91I3zcIhpdfQsGU8WXXRaLmf4PPsdvn/zdjpGJiLNq2CmBVn+rfKaKGVi86SDPXhVln6DckOcVEbR/I63SNmbgu6NmvBsGYDl7xj6BidQSV7+2M5sv/5ttpx+SFBwcDEBGxvn5KhaLhQkTJmA2m22SXXfddRexsbE8/PDDnDx5sk7iyd6+j8LjOWCxcHzrHjb/YwlRg3vVSV8i1WVs4FOtdgZPLQgjrsHQoHpvyNU99kUcydjAp+o7KpgtGL10PIuIVbWv7fQ+WCPV3s8GIwYPXUeLuBKnH9kVExNDdHQ0EydOxNPTEz8/P9588002b96Mr68v7dq1A2DdunWEh4dTVFTEuHHjGDt2LO+99161+sjNLX+y+5GU3Xw5eFLlTzZbKh/3KqXWrEmiWbf2VbbbchzGbLBDQOVYsyaJuGDH9F0T2UVw/de2a3VdzABEBpj4qajIbnHVB10/t/5bpP1aq+5MgvSc82salccA7NrwNc10nV9rdDzXjVd/tk6TqfR4Npl464Wn+b93n7ZbXCLivA7kwZBvK29jBLqEN2aLztmXLf8sJH4FxVUMHgn2gvyTx3UnaHE5rn5tt2HDBnr37l11w3I4/cguDw8Pli5dSkhICCNHjmTcuHHccMMN9O3bl9jYWIxG6yaEh4cD4OXlxcMPP8yGDXWTLYkc1BNPf18AGsdE0PmJYez/wvWmvYl7CfKCfs0r/4O2ALdG2ikgkRq6NbLyxIAR6N0MJbrEJQxpWXXi1s8D+uuuaiLyu3A/6Bpc+bWdGbhVMxhrxNcDbgyvfD8bgGGRVQ/QFRHn4vQjuwA6d+5McrJtQun111+nb9++AJw+fZqzZ8/SqFEjLBYLH374IXFxcXUSS/t7rqPHjPsxepooOHKSPUv/x7bXPq2TvkQuxaMd4MdjkHe27AgvA9AhEG5u6YjIRC7dH8Otd1zcll02SWA0gK8J/tzBIaGJXLJwP7i3Dfw7vWydAesx/nQseJvsHZmIOLMnOsGo9VBUUv4NLro1gWuVJK+x+9rC+iNwvJwbiRiBSD+4vZUjIhORmnCJZNfFCgoKSE1NZdy4cQAcOXKEoUOHUlJSQklJCR06dOCNN96ok76/uuVvdfK6IjXVoiH8uw/8fZs16XWOhwFuaAFPXgneLvkXL/VRAxO8frX1dt9fHIAzF1x9xgVZEwOR/o6LT+RSPdweGjewJrxOXHBPnDBfeKyDRnWJSFltGsG83jBjO2zNPl/ewAiDW8KfO4KH08/TcX5NfeDfveHFbfDd0fNfshkN1mTiU1eCn6dDQxSRy+CSH323bdtGSUlJ6eL0rVq1YvPmzQ6OSuzhbG426X+7lsKsVOKX5NnUHVk2myOfzeKKGx4i5DbrWmuZr99H4cE0LOYSIh+dj3dYW0eEbTcRfvBmT/glD9JyrImuuCAI1Hqa4oJ8POCZzjA2BgZ8ZS1b2t/6DauIqzEY4M7WcFsUXP2FteydXtA5SFNjRKRibX9PeO3Ntf54GqFLsJIvta25L/zzajiYD7tOWkfdxgZBE9e8gZ2I4KLJru7du2OxVLb6hbgrk48/bZ5bxd6Zt5WpC+o7HJ+oOE7v/q60rOWDb2Dw8CR35zp+++otwkfPtme4DtPSz/oj4g4aNTj/uxJd4uouHIXhijdEERHHaOVv/ZG6Fepr/RER16eBr+JSDB6eePgHlVvnGdgUg8FYpj2AuTAPn4hOdR6fiIiIiIiIiDiWS47sErkUaZMHUHR0P9F//czRoYiIiIiIiIhIHdPILnF7bV/4htZPf8LBD6c4OhQRERERERERqWNKdolbM58pAsDk2whjAx8HRyMiIiIiIiIidU3TGMXlpE1OJH/fZtImJxJ6xxTydifT/JbxHP92IUe/+Cclp09Rkp9Di3tmsufFIZiLCjAYDIQ/MMfRoYuIiIiIiIhIHVOyS1xO2xdW2zz269AbgOD+IwjuP8Kmrs2zK+wWl4iIiIiIiIg4nqYxioiIiIiIiIiI21CyS0RERERERERE3IaSXSIiIiIiIiIi4ja0Zpc4negAeKeX4/oWqS1JSUnce++9REREEBERwYIFC2zqFy1aREhICImJifTp04fNmzeze/duWrRoYdNuypQpLFu2jEaNGnH//fdz5513Mnv2bGbNmsVDDz3EpEmTAHjkkUeYOXMmDRs2tNs2OotL2dfTp0/nyy+/JC4ujtdee82m3X333UdaWholJSXMnz+ftm3bkpGRwdixYykqKuLxxx9n0KBBjB8/nu+++w5vb28++ugjDAYDU6dOZfbs2fbcbBERERGRy3Ip188An332GePHjyc9Pd2m3YEDBxgxYgTFxcW88cYbdO7cmY8//piXXnoJo9HIK6+8wtVXX829997L/PnzMRgMdtk+jewSp+PnCXHBjvnx83T01ou7GT16NElJSTRq1Ijk5GSbuuXLlzNgwAAAPv74Y2699dYKX+e1114jKSmJO++8E4Dhw4ezaNEimzY33XQTS5YsqeUtcB3V2ddHjhxh06ZNrFu3Dg8PDzZu3GjT7o033uB///sfL774Im+99RYAzz33HB9++CFr1qxh0KBBnDp1iq1bt7JhwwZGjx7NBx98QFBQECdPniQvL89u2ysiIiIiUhPV/awC8J///Ifw8PAyrzFjxgxeeeUVPvvsM55//nkA5syZw9q1a/nkk0/4xz/+AUD37t1Zs2ZNHW6NLSW7RETsoFOnTmRlZZU+zs7Oxtvbu/SbjebNm1f6/HHjxnHjjTeyf/9+AJo2bYrRaHsKv+aaa1i5cmXtBu6CKtvXGzdupG/fvgD079+flJQUm+d6eloz3nl5eXTq1Ini4uLSb6sGDx7MkSNH8PX1pVGjRpjNZk6dOkVQUBBgfQNPSkqyz0aKiIiIiNSSqj6rfPvtt/Tu3bvM5w+AjIwMOnfuzBVXXMHp06cBiIyM5PTp0zbXyv369WPFihV22BorJbtEROwgOTmZ6Ojo0scZGRlERERU67l//vOf2bhxI1OmTGHChAkVtvP19eXEiRM1jtXVVbavT548SUCAdb6yv78/J0+eLPP8AQMGMHbsWK666iqOHTvGjh07WLBgAePGjePFF1/E09OTFi1a0L59e1577TWGDBkCQEREBGlpaXW/gSIiIiIitaiqzyrz589n5MiR5T7XbDaX+f2mm24iPj6exMREHnnkEcD+18pKdomI1KF58+aRkJBAWFgYcXFxl/UajRs3BuCqq67i+PHjtRide6nOvg4MDCQnJweA3NxcAgMDy7T55ptv+OSTT5gyZQqNGjXiyiuvpHHjxvTp04fU1FR27dpFVlYWqampTJs2jZdffrkOt0pEREREpG5U5/p548aNdOjQAW9v73LrLxztde73GTNmsGvXLn788UcmT55c63FXh5JdIiJ16Nw8+KlTp9qUR0dHk5mZWa3XyM3NBWDv3r2VLj6fn59fbvKmvqjOvu7SpQtr164FYM2aNXTr1s2mbVFREQCNGjXCx8eHhg0b4u3tTVFRETt27CAyMhKz2Uzjxo0xGAyla3UBZGZm0qZNmzreShERERGR2lGd6+cdO3awatUqrr/+erZs2cK0adNs2rZu3Zpt27Zx7Nix0s8q3t7e+Pj4EBAQUDq10d7Xyrobo4iIAwQFBZGfn1/6ePjw4Xz77bfs2bOHKVOmMGDAAJ544glmzZrFhAkT2Lp1K0ajkTlz5gCwcOFC/vnPf3Lq1ClycnKYOXMma9euZeDAgY7aJKd14b5u3rw5sbGx9OnTh9jYWLp27crhw4dZtGgR48ePZ8iQIRQUFGAwGEr39RNPPMGAAQMwmUy8++67REVFYbFYuOaaa7BYLKV3rvn+++959dVXHbadIiIiIiK14cLr53vuuYd77rkHgMTERJ555hkAm88qI0aM4MyZM7z++usAjBgxgp49e2I2m/nb3/4GWL9ovuGGG+y2DQaLxWKxW28u5kjKbr4cPMnRYbiNG5ZNpVm39o4OQ6RWdf3c+u/GQZf+3IULFxIaGlp6O9+aeuSRR5gxYwZ+fn618nrOpCb7GWp/X18sOzubF154weWnNNZ0P0v1aD+LiIiIPTjTZ5V7772XefPmlbvIfUU2bNhA7969Wb9+Pb169bqk/jSyS0TEQUaMGFGrr3duJJKUVdv7+mJBQUEun+gSERERETmntq+f//3vf9fq61VFa3aJiIiIiIiIiIjbULJLRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA3djVGcTt4ZyMhxTN/RAeDn6Zi+RURERERERKTmlOwSp5ORA2M2OKbvd3pBXLBj+hYRERERERGRmtM0RhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2tEC9uIXUZxI4vTsZg4cnBpMH3mHtCR0+jYDOAxwdmoiIiIiIiIjYkUZ2idsIHT6N+CV5xC44QsN2Pdgz/WZKTp9ydFgiIiIiIiIiYkdKdonbMXp60eTa0ZgL8yg8lOHocERERERERETEjlwm2VVcXMzkyZMJDw/Hx8eH/v37k5KSgsFgYNmyZY4OT5yIuaiAY6vewegbgHdoG0eHIyIiIiIiIiJ25BJrdlksFoYNG0ZKSgpTpkwhOjqaxYsXM2TIEADi4+PtHlOLAX8gfsLtBLQO5WxeATveWs7ONz+3exxy3sHFkzn88VQMHl54h3cgetIXmHwDHB2WuKn9efCf/ecfz9wOt0ZCK39HReSejhTAp5nnH0/ZDEMjoFNjMBgcF5eIOK8zZvj2ECz/BX4rhMAG8H/hcF0oeLvEla+IiEjNHCuEZb+cf/zMTzA0EuKD6s81tEu85c+dO5cVK1awZcsWOnbsCEBCQgJRUVEEBQXRsmVLu8YT2rczPV56gPWPvc7h5J14+HjRMKyJXWOQskLvfIHmQ550dBhSD3y8z5rcutDSffDRPvhLR7iztWPicjf/OwxPb4Sz5vNlKw7AFwfgjlbWfV1f3qxFpHpOFsEjyZCaY52+YMb670/H4d9p8FZPaO7r4CBFRETqUMpv8JcUKCw5X7bqIKzMgpvCYVIcmOrBNbRLTGOcMWMGw4cPL010AZhMJqKiokpHdRUWFvLQQw/Rpk0brrzySu6///46iyf+qdvZ9sp/OLR+O5YSM2fyCjiZeqDO+hMR5/H9UZixHSxYf845l4+ZvRPWHnZAYG5mTw5M+NGa6CpvP3+wF5bsc0RkIuLMJmyE9Bzr7+fOF+f+PZgPj30PZkt5zxQREXF9h/Lh8R+gqMS2/Nx73/IDMD/N/nE5gtMnu9LT09m3bx9Dhw4tU3fgwIHSZNdTTz2Ft7c3aWlpbN++nRdeeKFO4vHw8aJJXGt8rghkyLp/8qdt79D/3Qn4hTetk/5ExLkszKj8xGn8vY3UzJJ91jflyj6TLsiAEn1oFZHf7TppHcFlrqDeDOzNg+SjdgxKRETEjpbuh2Jz5dfQi/eWTYa5I6efxpiVlQVA06a2yaTdu3eTmZlJfHw8eXl5LFy4kF9//RXD73NamjVrVu0+/P39KS4uLlPe2qMxTwX0tilrENgQg9FIxI3dWXXHVAqOn6Lb8/fSb954lg8cf6mbV6/065fAnrMnqmzn264Hracm1XU45erXL4H81GSH9C3Oz+jtR8dFxyttYwa2ZINvk1BKcitvKxWLmX8ID/+gStv8VgjBHXtSsOcnO0Xl/jp9VAiAl5e3gyNxb9rPdaPZ7VO4YshTGIymCttYSs5y97QFZL39sB0jExERsY+2r+/Cq1mrStvknoHQq/+PvG3f2Cmqy2c2V/QVVtWcfmRXcHAwABkZ54dKWCwWJkyYgNlsJj4+nj179hAcHMxzzz1H165dSUhIYP369XUSz5k86wXqz++sIO/X3ygpKGbTi4sJvjJK63Y5ULtpSVqvS+qc0bth9dt6Vb+tlGX0qt6iOkZvvzqORERchdHbDyxVXxTrvCEiIu7KVM33uEv5XOOqnH5kV0xMDNHR0UycOBFPT0/8/Px488032bx5M76+vrRr144tW7awd+9e4uPjeemll/jhhx+46aabyMjIICCg6rvx5ebmllt+JGU3Xw6eZFN2JjefvANHwaK5M5dqzZokmnVrX2W7LcdhzAY7BFSONWuSiAt2TN/i/M6aYcBXcPps5e28TXDsl3S8Kx5cIFUY9q31jpdVnWl3rv+aEC02XWu6/n5T4aKiIscG4ua0n+vGkn3w0vbK2xhNHvzl3j/x8Mw/2ScoEREROxq9DrafqHhK/znfffExbRrZJaQa2bBhA7179666YTmcfmSXh4cHS5cuJSQkhJEjRzJu3DhuuOEG+vbtS2xsLEajkZYtW+Lh4cEdd9wBQPfu3WnSpAlpaXWz8lrqwq+JGXMjvqHBmLw8iX/qdo5t3cPprGN10p+IOAcPIwxqCZXdvMQI/DEcJbpqaGhk5YkuI3D1FSjRJSKlbgiDBtW4sh1s35t4i4iI2M0tkZUnuoxAh0BcItFVU06f7ALo3LkzycnJ5Ofnk5qaykMPPcTmzZtLF6dv0qQJ/fr1Y9WqVQCkpaVx9OhRoqOj6ySe7XOWkfXtZgZ9PZNhm+bi2yyINaNfqpO+RMS5jIyGJt7lnzyNQKAX3NvG3lG5n8EtoW1A+YlFI9DABI92sHdUIuLMAhrAIzGVt7k7GsLcf+aGiIjUUwPDIC6o/GtoA2A0wF862jsqx3CJZNfFCgoKSE1NLU12Abz11ltMnz6dK6+8kttvv51FixYRGBhYNwFYLPw07T0+7DSaDzvey7f3ztCoLpF6ook3zO8NfyhnumvnIGtdMx/7x+VufDzgrZ7QL6Tsm3Urf3i7J7SrB99Iiciluas1PH0lBHjalvua4OH28GgVyTARERFX5mmEV6+GG1pYE1sXaukHb/Sk3izb4/RrdpVn27ZtlJSU2CS7WrVqRVJSkuOCErs4nZbCgXmPg8WCf2x/woZPLa1LfaYf5yY+tXzgDXxadmDvS7eTs3kl0ZOW49fh8ub6ilwsxBfe6gX7cmFrtrXsysbQuuolAuUSBDSAmVfB4QL48Tc4Y4a2jaBjIBgqm0sqIvXarVHWKeffHYUnf7SWfX0deLvkVa+IiMil8fWA5/8Aj3WA749CkRla+1u/mK9P19Au+bbfvXt3LFogvl7ybRVP+xnW1evTJg+gJD8Hk681w2Awmmj7wmqb9uFjXuG3r96ye5xSP0T5W3+kbjX3gZu0xo6IXIIGJkgIOf9YiS4REalvmnjDH+vxNbRLTmOU+svgYZ2XYCkpwTMoFKPXhatTW0h9JoH9r43BXFwIgGfj5g6IUkREREREREQcRckucTnZ/1vMzrExmBoGYjCd/6q21YSltJuWhE94DMdWzXNghCIiIiIiIiLiKEp2icsJ6nsnHefs5kz2QQr2by8t9/BrDECjboMoPLDTUeGJiIiIiIiIiAMp2SUuxXymCACD0YjJxx9DA+/SupL8XABO706mQdMoh8QnIiIiIiIiIo6l5TrFpZxK+ZyjK+aA2Yxfx2swF57m+JpFBPe7m7RnEzF6NsDUMJCox98D4MD8Jzj5/aec2vhfmt40juCEuxy8BSIiIiIiIiJSl5TsEpfSuNcwGvcaZlPm2yoOgJh//FCmffioWYSPmmWP0ERERERERETECWgao4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5Da3aJ04kOgHd6Oa5vEREpX1JSEvfeey8RERFERESwYMECm/pFixYREhJCYmIi06dP58svvyQuLo7XXnvNpt3IkSPZs2cPXl5eLFy4kLCwMJ588kkWLFjAyy+/zPDhwwHo168fFosFgDfeeIO2bdvy4IMP8s4779hng8WtVfd4Dg8PZ9SoURiNRrp27crLL79s0+6rr77iueeew9/fn3fffZfQ0FAGDhxIQUEBAQEBLFmyBG9vbx27IiIidqSRXeJ0/DwhLtgxP36ejt56ERHnNnr0aJKSkmjUqBHJyck2dcuXL2fAgAEcOXKETZs2sW7dOjw8PNi4caNNu+eee47169czceJE5syZA8D48eN56aWXbNqZTCaSkpJISkqiQ4cOeHh4cMUVV7Bnz5663UipN6pzPDdp0oSVK1eybt06jh07Rlpamk27GTNmsGbNGmbPns2MGTMAmDt3LuvWreOWW25h8eLFOnZFRETsTMkuERERuWSdOnUiKyur9HF2djbe3t4YDAY2btxI3759Aejfvz8pKSk2z42MjASsySyDwQBAs2bNyvRhsVhISEhgzJgxFBYWApCQkMCXX35ZF5vkNJKSkoiKiiIhIYGRI0eWqZ82bRrp6emVvsajjz5Knz59mD59epm67OxsunTpgp+fHwDr16/n6quvpmfPnsyaZb2D8f79+wkJCSEhIYERI0YAsGvXrtJkjrup7HgODg4u3VcXHrPneHh44O3tTceOHUuP9fKO8fpw7IqIiDgLJbtERETkkiUnJxMdHV36OCMjg4iICABOnjxJQIB1Xri/vz8nT54s83yz2cz06dMZPXp0hX0sXbqUpKQkYmJimDdvHgARERFlRta4o4pGHJnNZrZt20abNm0qfO7GjRvx8PBg3bp1bNq0iSNHjtjU+/v7s2rVKq6++moAWrVqxdq1a/nuu+/44osvyM/PB+DGG28kKSmJhQsXAhATE8OmTZtKp5a6k8qO53N27tzJsWPHyuz7M2fOcPz4cdavX092dnZpeX5+Pv/617+47bbbgPpz7IqIiDgDJbtERESk2ubNm0dCQgJhYWHExcWV2yYwMJCcnBwAcnNzCQwMLNNm8uTJ3H777bRq1arCvho3bgzAoEGD2LlzZ41jd0UXjzjaunUrbdu2rfQ5P/zwA/379wegb9++/PTTTzb1np6eBAUFlT4ODQ2lQYMGgHUkktFovTxcuXIlffr04f333y9t26pVK7f6v6jO8QyQk5PD2LFjmTt3bpm6qVOncuutt/LBBx/QoUOH0vIHH3yQKVOm0KhRo7oIXURERCqhZJeIiIhU27kRR1OnTrUpj46OJjMzE4AuXbqwdu1aANasWUO3bt1s2v7nP/8hOzubUaNGVdpXbm4uYB11ExUVBUBmZmalo5rczcUjjtLT00unyFWkOiPryrNq1Spat26Nt7c3ISEhpKam8vXXX/P2229z/PhxwP1GJ1XneLZYLIwaNYrnn3+e0NDQMq/Ru3dv1qxZwz333EP37t0BmD17Nh06dODaa68tbVffjl0RERFH0t0YRUREpMaCgoJKp781b96c2NhY+vTpQ2xsLF27duXw4cMsWrSI8ePH85e//IWwsDASEhK49tpreeaZZ3jppZd49913MRgMHD16lL/85S8kJibSoEEDAgMDee+99wDrelaVTX10F/PmzWP16tX07t27whFHP//8Mw8//LBN2fXXX19mZF3r1q2r7O/XX3/lxRdf5PPPPwfAy8urtK5Pnz7s2bOH4ODgy9wa13Ph8ZyUlMS3337LsWPHAJg1axZhYWGlx/Pzzz9PUlISYWFhvP322xQXF/PXv/6VHj168NVXX3H33XeXJtXqw7ErIiLiDJTsEhERkWpJSEggISGhwvpBgwaxevVqEhMTmTx5MpMnTy6ta968OePHjwcoHTFzofHjx5fWn/PDDz/YPD579ixHjx61GenkrkaPHs2kSZPKlLdp04ZPPvkEgA4dOpCUlFSmzY8//sgHH3zATTfdxNq1a0vXjKpIUVER99xzD2+++WbpQux5eXn4+flhsVjYuHEjY8eOBaz/d7169arh1jmHSzmeL1yL65xzx+uzzz7Ls88+a1NXVFRk87g+HbsiIiLOQNMYRUREpFaMGDGCxMTEOnt9Dw+P0oXq66vOnTuTmppaaZurrrqKoqIi+vTpQ+fOnWnWrBmHDx/mpZdeKm2TmJjI5s2bSUxMZO7cufz888888MADJCQkkJWVxXfffUfXrl3p2bMnAwcOJCQkBLAu3N6pU6c63UZnUZvHs45dERER+9LILhEREREnUtmII6PRSGxsLOnp6ZWu/zRnzhybxxeOrANYvXq1Tf2jjz5q8zgsLIyBAwfalO3atYsuXbpgMBiqsxkiIiIiDqNkl4iIiIgLKW96oz3ExMQQExPjkL5FRERELoWmMYqIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2tGaXOJ28M5CR45i+owPAz9MxfYuIiIiIiIhIzSnZJU4nIwfGbHBM3+/0grhgx/QtIiIiIiIiIjWnaYwiIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbWiBenELqc8kcHp3MgYPTwwmD7zD2hM6fBoBnQc4OjQRERERERERsSON7BK3ETp8GvFL8ohdcISG7XqwZ/rNlJw+5eiwRERERERERMSOlOwSt2P09KLJtaMxF+ZReCjD0eGIiIiIiIiIiB0p2SVux1xUwLFV72D0DcA7tI2jwxERERERERERO3KZZFdxcTGTJ08mPDwcHx8f+vfvT0pKCgaDgWXLltktjrsyFtn8jPjlQwZ9M8tu/UvFDi6ezJY7A9l+XyT5+7YSPekLTL4Bjg5LRMTpFZ6FzzLPP562FXaecFw87uqsGVYfPP948iZI+Q0sFsfF5I7MFkg+Cs/8dL5szSHr/hcREZH6wSUWqLdYLAwbNoyUlBSmTJlCdHQ0ixcvZsiQIQDEx8fbLZb3o++2eTzom1nsW7bBbv1LxULvfIHmQ550dBgiIi4lIwceSYbjRefLlmXCp5kwKByeiQOTwWHhuY2jBdb9vC/vfNnKLPjyV7j6CnjpKvBxiasy55Z3Bh7/ATZng/GC43b8j9AmAF6/GoK9HRefiIiI2IdLXFbNnTuXFStWsGXLFjp27AhAQkICUVFRBAUF0bJlS4fE1SQumsC2LchYssYh/YuIiNRE7hl4+Ds4WWxbfm4AzOcHrImBR2LsHppbKbHA2O8hM8+23Pz7iK4ffoPnt8CLXe0emtuZtAm2ZFt/N180Ym5PDjyeAgv6gEEJXBEREbfmEsmuGTNmMHz48NJEF4DJZCIqKgpPT0/279/PzTffXFp38uRJcnJyyM7OrtO42tzZn6xvN1NwRHM9RETE9XxxALKLK2/zwV64pw00dIkrBue04Qjsza243oJ1euMjp6FFQ7uF5XYycmD9kYrrzcDPJ2HjMbjqCntFJSIiIo7g9Jeu6enp7Nu3j1dffbVM3YEDBxg6dCiRkZFs2bKltHzcuHGcPXu22n34+/tTXFz2ar+1R2OeCuhd7nM8fLyIGtyLdY+9Xu1+6rt+/RLYc7bqxKBvux60nppU1+GUq1+/BPJTkx3St4iIvbWa9j98o7thMFa8hGdhCUQOuJ2c7z+1Y2TupcWj8wns9ScMpoovu8wWC93veYZjn2sd0MvV9LbJNB06sdLj2VJyltue+zcH/zXWjpGJiIjI5TCbL3/BTadPdmVlZQHQtGlTm/Ldu3eTmZlZZr2u4uJi3n//fVauXFmncUXe1IOzBcX8uvqnqhtLnWs3LcnRIYiIuBxTw8aVJgZK2/k2skM07svk26jqeXPmEkwNdVOVmjD5NgJLCZXff8mim9eIiIjUA06f7AoODgYgIyODbt26AdYF6ydMmIDZbC6T7Pr8888JCwvjD3/4Q7X7yM0tf27BkZTdfDl4Url1be4awJ6PkrCU6NY+1bVmTRLNurWvst2W4zDGQWv+r1mTRFywY/oWEbG3x76H74+eX6OrIssWvk33K962S0zuaOZ2WLqv8v1sMHnwypSnueXdp+0Wl7t5fw+8vLPyNkaTJ3++5088OvNP9glKRERELltOTg7bt2/nyiuvvOTnVv11roPFxMQQHR3NxIkT+fjjj/nyyy8ZPHgwmzZtwtfXl3bt2tm0nz9/PqNGjarTmAJah9K0azvSPvimTvsRERGpSze3rCIBAzTzhq5N7BWRexpcxX4GaGCEgWF2Ccdt3dACPKoYQGcBbnLMfY1ERETkEgUEBNCrVy8CAi59VLbTJ7s8PDxYunQpISEhjBw5knHjxnHDDTfQt29fYmNjMV4w/SIrK4v//e9/3HXXXXUaU5s7+nPkh13k7jtcp/2IiIjUpWuaQ3yQNal1MQPWxMDjncCkO9fVSLtGcGOLyts82B78PO0Tj7sK8oJRbStvMzQCIv3sE4+IiIg4jtNPYwTo3Lkzycm2i4a//vrr9O3b16ZswYIF3HjjjaVTH+vKT1Pfq9PXFxERsQcPI7xyNbywBb45aE1unRPgCeOvhMRQR0XnXibHWZNZ/9kPZy/Y0T4meKA93NXKUZG5l/vaWkd3zU+33lzhHA8D3NEKxnZwXGwiIiJiPy6R7LpYQUEBqampjBs3zqb83XffLfeujeJezuZmk/63aynMSiV+SZ5N3ZlTv/HLnPs5e/okQdfcwRXX3U/hoQwOvD0W85kimg16nMDugxwUuYiI82noAX/vCgfzYe1ha4IgvKF11Jen04//dh0eRmvycHRbWHMIcs5AU2/oFwK+Lnk15pwMBuvortuirPv5WBEENrDu58AGjo5ORERE7MUlL6+2bdtGSUlJmcXp09LSHBSR2JPJx582z61i78zbytQdWvI8Lca8glfTiPNlHz5H1JMf4uEXaMcoRURcS6gv3K7RRXUuyAuGRjo6Cvfn56m1uUREROozl0x2de/eHYvFUnVDcUsGD088/IPKrSvKSiNr4dOczT1Oy/teo0GzKIqPHWD/KyPAYCDikbl4Bjazc8QiIiIiIiIiYi8umewSqUjervV0+Oc2LBYzWQv/Svh9r1KQuYNOb6VTsHcLh5e+SPiYVxwdpoiIiIiIiIjUEa3GIW7Fu2VHvEJa4x3ahpL8U5gaNsIn4ko8/Brj17EPhVmpjg5RREREREREROqQRnaJW/FqGsnZnGNYzCUYvXwxeTfE2MAb85kiCg/sokHTSEeHKCIiIiIiIiJ1SMkucUlpkxPJ37eZtMmJhN4xhbzdyTS/ZTzNb5vEnhdvwVJylvD7rHfmbDb4CdImD8BgNBH553cdG7iIiIiIiIiI1Cklu8QltX1htc1jvw69AfCNjKXdi2tt6gLiEgmIS7RbbCIiIiIiIiLiOFqzS0RERERERERE3IaSXSIiIiIiIiIi4jaU7BIREREREREREbdhsFgsFkcH4ayKc/M5sesXR4fhNhrHtKSBv2+V7fLOQEaOHQIqR3QA+Hk6pm8RERERERERqTklu0RERERERERExG1oGqOIiIiI/H97dx7fVJ3vf/yddAMsW4vsBQpFKFRKFSlQSsMiIziiCIgIiojXbRwHr+vPAS/uwzjOeB0dRkZERdCrjAo4CJUlAlIpW6UsLS2UAmUHgW60tMnvj0igdAXanOb09Xw8+qDn+z1JPicem5x3vt9vAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEzD1+gCAAAAAABA3VWYnadfdu4zugzTaBreTv4NGxhdhqEIuwAAAAAAgGF+2blP390+1egyTGPYwlfVondXo8swFNMYAQAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDS8JuwqLCzUtGnTFBISovr162vQoEFKTEyUxWLRwoULjS4PJnW6UJq/W3olSZqxVVp7RCp2Gl0VAMDplH4+Kb21TXo5SfogVTqcb3RVAACgOll8rOr9yiSN2zFH96R8rH5vPSqfAD+jy4IX8DW6gKpwOp0aM2aMEhMTNX36dIWFhWn+/PkaOXKkJCkqKsrgCmFGX+2V3twmnXNIPhbJKenLvVLINdLfoqUOgQYXCAB11KkC6ekNUtJJ16d2FovkcErvp0r3hkmPh0tWi9FVAgCAq9XjiTvVsl+EFg56SsXnijT4o+d049R7lTjtQ6NLQy3nFSO7Zs2apSVLlmj58uV6+OGHNXjwYM2aNUs+Pj4KCgpSu3btjC4RJvN9lvT6VlfQJblGczl+HdGVlSc98qPrYgsA4FlFDunxn6StJ13bDrn+Rjvl+vkkXfpgl4EFAgCAatN5/GAlv/OV8g6fVMGJM0p66wuFjbXJYvWKKAMG8oozZMaMGZowYYK6d+/ubvPx8VFoaKh7VNeuXbvUt29fXXfdderbt6/S0tKMKhdezumU/pEilTcowOGUjhdIX+/zaFkAALmmk6ecdoVc5fk4Tco557GSAABADfBv1ECBba7Vye0Z7rYTyRnyb9hAgSHXGlgZvEGtn8aYlpamjIwMvfPOO6X69u/fr1GjRkmSHnnkEf3ud7/ThAkT9Omnn+rhhx/WypUrK73/M2fOqGXLlioqKpLFwpwHSPU73aiwP62rcB+n06G/rtitRyIiPFQVAECS2j31uRrddJssPuW/hSlwSJ1unaxTP3zqwcoAAMCV6uTbVM826l+izTewviSp8HSeu63wdK4kye/XPpRt4ECbdhf9YnQZ1cLf31/Z2dmXfbtaP7IrKytLktS8efMS7SkpKcrMzFRUVJSOHj2qzZs3a9y4cZKkcePGafPmzTp27Fil95+cnKz8/Hw5naw6Dhffxs0r3cdisVZpPwBA9fJt0qLCoMu9H3+jAQDwakU5rm+e8WvUwN3m3/gaSdK5HL6VBhWr9SO7goODJUnp6enq3bu3JNeC9c8995wcDoeioqK0f/9+tWnTRj4+PpJcUxxbt26t/fv369prqza80W63KyYmpmYOAl5l+y/SxDWV7xfavLG2FLBwFwB40jMbpB8OVTyNUZLe/+sb+u2Xb3ikJgAAcHWOJKbou9unlmgrPJOnnKxjCureQWd2H5QkBUeEqjA7Tzn7Kx/YUpetWmVXi95djS7DULU+7AoPD1dYWJheeOEF+fn5KTAwUDNnztSWLVvUoEEDdenSRVu2bDG6TJhItyZSu2uk/bmuxY7LM4LvRQAAj7u1rbTqUMX71PORbC09Uw8AAKg5afNWqMfvR+rI+p1yFBWr51N3Kf3/7HI6KvvYC3VdrQ+7fH19tWDBAj3yyCOaOHGiQkJCNGXKFDVq1Ei7d++W1WpVSEiIsrKyVFxcLB8fHxUXF+vgwYMKCQkxunx4IYtFeixcen5j2f1WScH1pDvae7QsAICk/i1cH0qknCp/dNf9YVKgnweLAgAANWLrO18pIKiR7rD/TRarRXu//UmbXmNNTlSu1oddkhQZGamEhIQSbe+++67i4uIkudbz6tmzpz777DNNmDBBn332maKioqo8hRG41JDW0tRI6c/JUuElV1Ntr5Hejpaa+BtTGwDUZb5W6Z0+0jOJ0paTF9otv/7cFyZNvs6o6gAAQHVyFjuUOO1DJU770OhS4GW8Iuy6VH5+vlJTUzVlyhR32z//+U9NnDhRL7/8spo2bapPPvnEuAJhCne0lwa1kpYckP6yzdX2Th+pz7WSlS/uBADDNPGXZsVI209J9/+6xuKjXaXfhkjN+XImAACAOs8rw66tW7equLhYUVFR7rauXbtq/fr1BlYFM2rkL93d8ULY1Y8v9wKAWsFikSKaXth+gNFcAAAA+JVXhl3R0dFyOitaOhwAAAAAAAB1kdXoAgAAAAAAAIDqQtgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMw2vCrsLCQk2bNk0hISGqX7++Bg0apMTERFksFi1cuNDo8gCg1nM4pZ+OSu/ukP53u/R9lnTOYXRVAABJ+qVA+myP9PZ26YNdUmaO0RUBgPE63NZXwxa+ovHpczU68R9GlwMv4mt0AVXhdDo1ZswYJSYmavr06QoLC9P8+fM1cuRISVJUVJTBFQJA7bb7jPTMBmlf7oVPORySmvpLr94oRV9rZHUAUHc5ndKsVGlOmlTklHwsrg8n/pkiDW4lTY+S6nvFO3YAqH4Fp3OV8uFS1bu2sbo/9Fujy4EX8YqXzlmzZmnJkiVKSkpS9+7dJUk2m02hoaEKCgpSu3btDK4QAGqvw/nSQz9K2edc2xcP5jpdKP3hJ+mD/lJEU0PKA4A6bfYu6V+7LmwXOy/8vvKQlFckvdNHslg8XxsAGO3Q6q2SpHa33GRwJfA2XjGNccaMGZowYYI76JIkHx8fhYaGukd1Pf300woNDZXFYtG2bduMKhUAap3PdktnzpUMuc5zyDWC4P0UT1cFAMg+J32YVn6/U1LCMWnLSY+VBACAKdT6sCstLU0ZGRkaNWpUqb79+/e7w6477rhDq1evVvv27T1dIgDUWk6ntHCf64KpPA5JPx2Tjp/1VFUAAElaflAqrGTtRKtFWrzPM/UAAGAWtX4aY1ZWliSpefPmJdpTUlKUmZnpDrv69+9/VY9js9lktdb67A8GifjClQIEBNQzuBLg8lh8/RXxWXal+zkldYrsrbN7f675ooBqxN9neLPmo/+o5mOmylLBe9Bih1PzFy/X631YqwaAeXXybapnG13dNT0uGDjQpt1FvxhdRrXw9/dXdnbl1zOXqvXpTnBwsCQpPT3d3eZ0OvXcc8/J4XCwOD0AVMBZVChHQV6V9i3OYZ4MAHhScc7JCoMuSZKjWMU5JzxTEAAAJlHrR3aFh4crLCxML7zwgvz8/BQYGKiZM2dqy5YtatCggbp06VItj2O32xUTE1Mt9wXz6bXI9W9BQYGxhQBX4LWfpYWZZa/ZJbk+9YhoKm3MSi9nD6D24u8zvNnxs9Lw711rJ5bH4uOrj566W/3/fLfnCgMADzuSmKLvbp9aqt1itcrq5yOLr69kscgnwE9Op1OOwiIDqvQeq1bZ1aJ3V6PLMFStD7t8fX21YMECPfLII5o4caJCQkI0ZcoUNWrUSLt372bqIQBUYnxHacl+6Zyj7MDLKem/qudzAwDAZWhWTxrdQfoio+x+q6TOjaW+zcvuBwCz6zR6gPr/7+Pu7Xv3fqac/Ue1oPdjBlYFb1Drwy5JioyMVEJCQom2d999V3FxcQZVBADeo0ND19fWP5Uo5VzyIZivRZrakwspADDKf3eXcs9J/zngCrcu/lCiaxPp7WjJx2JQcQBgsPQv7Er/wm50GfBCXjksKj8/X6mpqSXW63riiSfUtm1bHThwQEOGDFH37t0NrBAAapcbm0nfDZWmRl5oe6KbtHSo9NsQ4+oCgLrO1yq9dIP0uU26u+OF9vf6Sh/FSkEBhpUGAIDX8sqwa+vWrSouLi4Rdr3zzjs6cOCAioqKdPjwYW3fvt3ACgGg9qnvK93R/sL2fWFSEy6iAKBWCGsk/XfEhe3oayUrI7oAALgiXjGN8VLR0dFyOitYyRMAAAAAAAB1kleO7AIAAAAAAADKQtgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMw2vCrsLCQk2bNk0hISGqX7++Bg0apMTERFksFi1cuNDo8gBcBadT2nBM+ihN+jhN2vaLqw3wVntzpE93Sx/ukuyHpCKH0RUBAOA5xU7pxyPSnDRpbrqUetroiuCNrP6+6veXRzTqp/c0Pm2uRq59R10fGGZ0WfASvkYXUBVOp1NjxoxRYmKipk+frrCwMM2fP18jR46UJEVFRRlcIYArtfOU9MdN0r7cku1dGktv3Ci1CzSkLOCKnCqUXtwsrTtasj3IX/pjTymupSFlAQDgMZtPuF4LD+eXbO8ZJL12o9SivjF1wftYfXyUf/SU4u9+RdmZRxTUrb1u/myqzh47pb2LE4wuD7WcV4zsmjVrlpYsWaLly5fr4Ycf1uDBgzVr1iz5+PgoKChI7dq1M7pEAFdgT7b00I/SgdzSfWlnpAfXSkfzS/cBtdHZYumxddJPR0v3/VIoPZ1YOgQDAMBMtv0i/S6h7PdvW0+63tudLvR8XfBORfkF2vLnz5W997DkdOrk9r3aH79RzXuHG10avIBXhF0zZszQhAkT1L17d3ebj4+PQkNDFRUVpRMnTmj48OHq0qWLrr/+et155506duyYgRUDqIp/pUoFxVJZM7wcTldAMG+3x8sCrsjSA9KuM2Wfz+dn5b69nSm6AADz+sdOqdhRzns7SYfypQV7PVwUTMPi66MW0eH6ZWem0aXAC9T6sCstLU0ZGRkaNWpUqb79+/crKipKFotFzz77rFJTU5WcnKxOnTrp+eefN6BaAFV1plBacajsN0PnOSV9s88VfAG13deZkqWCfqdcoxl3sm4JAMCEDudJiccrfm8nuV4vgSvR5/XJOpeTr91f/mB0KfACtX7NrqysLElS8+bNS7SnpKQoMzNTUVFRCgoKks1mc/f16dNHM2fOvKzHsdlsslprffYHg0R8cVaSFBBQz+BKzCOgTVdd9/bPle6XWyRdE3StHHlnPFBV3cD5XDPC/7Vfvk2aV7pf3IixOrP+m5ovqI7gfIbZcE7DWzXo0ledXrVXut+h3GIFBDSo+YLgVTr5NtWzjfqX23/T9Im69sYuWjZmuhznijxYmXcaONCm3UW/GF1GtfD391d2dvZl367WpzvBwcGSpPT0dHeb0+nUc889J4fDUWpxeofDoZkzZ2rEiBEerRPA5SnOq9rwFmdxkRwFeTVcDXD1ivNOyVmFOYrFuQztAgCYT1Xf2znyL/+iFXVb75fvV+sBPbTsrpdUcJLzB1VT60d2hYeHKywsTC+88IL8/PwUGBiomTNnasuWLWrQoIG6dOlSYv/f//73CgwM1OOPP35Zj2O32xUTE1OdpcNEei1y/VtQUGBsISbzwBrXQqblDXe3Shoc4qtNeWWsYI8rxvlcM2alun4q0tRfOrJhqfxq/UdN3oPzGWbDOQ1v5XRKo1dJ+3IurFV5Kauk0d2b6HnOb1ziSGKKvrt9aqn23q88oFb9I7R09HQVnGCmR1WtWmVXi95djS7DULU+7PL19dWCBQv0yCOPaOLEiQoJCdGUKVPUqFEj7d69u8TUw6efflppaWlavHgxUxIBL/DAddKU9WX3WSRZLNKETh4tCbhid7aXPtsj5Z4rP8Cd2FkEXQAAU7JYpAevk6ZtLqdfkq9VujvUo2XBi13Ttpm6PThcxWcLNXr9e+72I+tTtHz8awZWBm9Q68MuSYqMjFRCQkKJtnfffVdxcXHu7RdeeEGbNm3Sf/7zHwUEBHi6RABXoH8L6f/1kGZsdX0CePGngL5W6bUbpO5NjaoOuDzN6knv9pGe+Ek6fe5Cu1Wu8GtCJ2l8R6OqAwCg5g1rKx3Jl97d6Qq3Ln5vV89HevMmqUNDo6qDt8k9cFwftRptdBnwUl75+XJ+fr5SU1Pd63Vt375db7zxhg4ePKh+/fqpZ8+eGjlypMFVAqiKUR2kRUNco7zOezxc+s/N0qDWhpUFXJHuTaVFN7tC3PPGhEqf26Qp3V2fegMAYGb3d5a+HlRydP5/d3e9t+tT+fe4AEC18IqRXZfaunWriouL3WFX9+7dq7QoMIDaqWUD6dGu0uxdru37OxtbD3A1rvF1hbhvbHVtP3O9oeUAAOBxIYHSH7pLc3e7tu9hWQoAHuaVYVd0dDThFgAAAAAAAErxymmMAAAAAAAAQFkIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGl4TdhVWFioadOmKSQkRPXr19egQYOUmJgoi8WihQsXGl2exxU7pXVHpS8zpP/sl04VGl0RAAAwo7NF0vKDrvccKw9KBcVGVwRcOYdTSjzmOp+/3SedOGt0RcDV2X1G+mqv6yf9jNHVVL8+bzyoMRv/qXt2faIxm99X75fvl9XP1+iy4AW84ixxOp0aM2aMEhMTNX36dIWFhWn+/PkaOXKkJCkqKsrgCj1r5UHpzW3SsYtenH0t0p0dpCe7S35eE2ECAIDayumUPk6X5qRJuUUX2gN9pYe6SOM6ShaLcfUBl2vdUemNn6VD+RfafCzSrW2lZ6+X6nnFlRHgkpUrTd8ibTlZsr1nkDQ9Smp7jTF1Vbedc5Zq48tzVZRfoICghrLNeko9nrhTSW99YXRpqOW84k/6rFmztGTJEiUlJal79+6SJJvNptDQUAUFBaldu3YGV+g5Kw5Kz28s3V7klL7IkI7mS2/exJtPAABwdWamSB+mlW7PKZL+ul06Wyw9cJ3n6wKuxE9HpSnrXSHuxYqd0uL9rgDs730kXz40hhc4dlaavFY6WVC6b+tJadIaaW6c1LK+52urbqd3HbiwYbHI6XCqYcdWxhUEr+EVf85nzJihCRMmuIMuSfLx8VFoaKh7VNcdd9yhyMhIRUVFKTY2VklJSQZVW3OKHNJfkl2/O8vZx35Y2njcYyUBAAATOpzvGtFVkVmpZV9oAbWN0+maFeF0lv0e2ilpw3Fp9WFPVwZcmY/TXH9/HWX0OSSdLpQ+quRvuDe5/vE7ND59rsZt+1BB3dtrx6xvjS4JXqDWh11paWnKyMjQqFGjSvXt37/fHXZ9/PHH+vnnn7VlyxY9/fTTeuCBBzxdao376Zh0rKD8oEuSrBbp60yPlQQAAExo8b7K9ylySkv213wtwNXa+ouUmVPJe2hJX/EeGl7gnENatK/soOs8h6Rv97tG4JpB8rvfaF7Yvfp6wB+U+km88o/+YnRJ8AK1fhpjVlaWJKl58+Yl2lNSUpSZmekOuxo3buzuO336tKzWy8vxbDbbZd/G04JveUytJ/+twn0cTumbNZv1VkxfD1VVN0R84VogLSCgnsGVmBvPs2fwPHsGz7Nn8DzXjLa/+0BNYu+Wxcev3H2cRec07W8favIHT3iwMvPjnK5+TQbco5Dfz6lwH4ek1dsyFGDr6pmi6gjO5+rn26Slwv9VeTJ7tlhq1i5M5457x6cSnXyb6tlG/Svc53Ralk5uz1Ts35/QstHTPVOYlxo40KbdReYIBf39/ZWdnX3Zt6v1YVdwcLAkKT09Xb1795bkWrD+ueeek8PhKLE4/YMPPqj4+Hg5nU4tXbrUkHprUvHZyv8DOx3FcuRf/okAAABwnuNsjqRKFgC1Wn/dD6jdHPmVn6dOp0PFvIeGF3AU5FZ937NV39dbWP181Ig1u1AFtT7sCg8PV1hYmF544QX5+fkpMDBQM2fO1JYtW9SgQQN16dLFve8HH3wgSZo7d66eeeYZLVmypMqPY7fbFRMTU+31V6eTBdLweNe0gfJYrD56eVyc7nqBRTSqU69Frn8LCnheaxLPs2fwPHsGz7Nn8DzXjA3HpEcTKt7HYvXRf/7ylCJmP+WZouoIzunql1sk/WZZxVO6LBar/vuWHpr8BM97deJ8rhmPrXOt01zeVEarRYpsKm08ccijdV2NI4kp+u72qSXa/Bo2UPthvbVvaaIKz+SpaXh7RU4ZpYP2nw2q0nusWmVXi951e6Rq7Z63J8nX11cLFixQq1atNHHiRE2ZMkXDhg1TXFycevToUebUw3vvvVerVq3SiRMnDKi45gQFSCMq+OJJq0Vq6i8Nb+u5mgAAgPn0aiZ1aVz+G0WrXF9v372JB4sCrtA1vtLY0PL7rb/uc0fd+YJ3eLn7wipZs8spTezssXJqjtOpjqMGaNRP72l8+lwNmvOsDqzYovV/nG10ZfACtX5klyRFRkYqIaHkx4vvvvuu4uLiJEk5OTn65ZdfFBISIklavHixgoKCFBQU5PFaa9pTEdLRs9LaI65wy3HRKK9GftK7faXA8pfXAAAAqJTFIr0dLT26Ttp70Qwwq1wXWJ0aSX++ybUf4A0e7Sodypfis0q/h67vK73TRwpmWSl4iT7Nped7SDO2urbPn87n/yQ/FSH1b2FEZdXrXE6+4se+bHQZ8FJeEXZdKj8/X6mpqZoyZYokKTc3V2PGjFFubq58fHwUFBSkxYsXy2LCd2ABPtJfe0uJx1zfGLPy15GpT0dIt4ZIDQm6AABANbi2njQvTlpxUHpxi6st+lrpt+2kQa0kv1o/PwC4wNcqvXaDdGd71zeXL3N9B5b+0E26rZ3UxN/Y+oDLNbqDdFMz6d97pfl7XG13d5RGtZc6NDSyMqB28Mqwa+vWrSouLnYvTt+iRQv99NNPBlflOVaLK83v0/zCPPi7OxpbEwAAMJ8AH2l4yIWw6+982TO8mMXimqLbq9mFsOveMGNrAq5G+0DpvyMuhF1PRRhbD1CbeGXYFR0dLaezglXaAQAAAAAAUCcxAB0AAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAgKtit9sVGhoqm82miRMnluqfO3euli9frtTUVMXExCg2NlZPPvlkmfd19uxZtWrVSmvXrpUk3X///erbt69sNptWrlwpSZo0aZKcTmfNHRAAwPT6v/07Rb822egyyjQ+fa6CIkKNLsOrEXYBAADgqk2ePFl2u12NGzdWQkJCib7Fixdr8ODBatasmZYtW6Y1a9bo+PHj2rVrV6n7mTNnjrp161ai7csvv5TdbtegQYMkSdHR0Vq1alXNHQwAwKu07Nddt/z7JY1Pm6vxaXN1y79fUsu+3Y0uy63nU3dp8Cf/r8r7zwu7Vye3ZdRgReZH2AXAa1Q2cuC1115TWlpaubdfu3at+vTpo379+umtt94q1b937161atVKNptN9913nyTp/fff1+DBg2Wz2XTu3Dnt3LlTM2bMqL6DAgCTiYiIUFZWlnv75MmTqlevniwWi4KDgxUYGChJ8vHxkcViKXHb4uJirV27VrGxse42i8WisWPH6q677tLJkyclSQMHDtSSJUs8cDQAgNqu7ZAbdfP8qdq/fJO+uOFhfXHDw9q/fJNu/myq2g6+oczbWHyqLwqx+PpU232h+hB2AfAq5Y0ccDgc2rp1qzp37lzubTt27KjVq1dr3bp1+vbbb5WXl1dqn1tvvVV2u12ffPKJ9u3bp+TkZK1YsUJ2u11+fn4KDw/X5s2bmT4DAOVISEhQWFiYezs9PV3t27cvsc/27dt1/PjxUn+zP//8c40ePbpE21//+lf9+OOPGjt2rN544w1JUvv27cscFQYAqHuiX31A6V/atX3mIp3LztO57Dxtn7lIuxf8oN6vPiBJGp34D/WYMkrDF72mCXvmqVlkJ0mS3zX1ZJv1lManzdUdP/xNrW2RlT5ey77dNT59rq6bMESjN8zUiOV/kSS1GtBDv102Q/ekfqwRK95Su1tukiS1u+UmXf/ESLUZ2FPj0+dqfPpcWf19K3yM+w8tUHBkJ1l8rLpn1ydq0iXE9dj9uuv+QwvU/rd9JUn1mzfRffs+l19g/St78kyMsAuAV7p05MDPP/+s6667rsLbtG7dWv7+/pJcIwqs1tJ/ApctW6bY2FjNmzdP8fHxys3N1aBBgzR9+nT3Ph07dtT27dur50AAwCRmz54tm82mNm3aqGfPnuXud+bMGT3++OOaNWtWiXan06lvvvlGt99+e4n2pk2bSpJGjBjB314AQAmNOrVWw/YtlPHNj6X69ny9Vo06tFSjjq0kSWFjbPrxqX9oXti9OvHrFMHQO/prz9drNL/rRG39+9ca9OGzatAyqNLH9a0foGY9w/TNgCn6dthzatihpYZ8/Ly2vfuNPus2SZte+1RxM59UUPcO2rd0g5Lf+VpZq5I0L+xezQu7V47Coiodn7PYoSPrd6pV/+slSa1ir9eZjENq1T/Ctd3/ep3YukfncvKrdH91CWEXAK906ciBtLQ0dejQoUq3/f7779WpUyfVq1evRHurVq2Umpqq+Ph4vf/++zpy5IgsFotWrlypjIwMJSUlSWJEAQCU5fzI21dffbVEe1hYmDIzMyW5Aq0HHnhAL7/8slq3bl1iv5ycHO3Zs0fDhw/Xp59+qqefflpnz55Vdna2JNff/dBQ12K9mZmZFY7kBQDUDfWCGkqS8o+cLNWXf/QX1z7BjSRJqXO/1+m0LDkdDnfYdPinHdr3XaKcxQ7tWbBav+zIVIfb+lb6uBarVZten6ei/AIV5xcq9PZ+OrJ+p/YuTpCz2KGslVu0L36jOo2Ju+pjPLx2W4lwK+kvX7jDr5YxETr047arfgwzqnjsHADUMrNnz9by5cvVv3//ckcO7NixQ4899liJtltuuUXPP/+8Dhw4oDfeeEOLFi0qdbuAgAD377GxsSoqKlJcnOsFasCAAUpNTa1wtAIAoLSgoCD3tHG73a6VK1fq+PHjkqS33npLbdq00dy5c/XMM89o06ZNkqTp06dryJAhqlevnsaNG6djx44pICBAH330kSRp1apVGjZsmCHHAwCoPc6edH0gUr9FkE6nHyzRV7+5a2Tw2RNnJEm5WcdK3T73QMm2nP3HqjSyqyi/QAW/PrYkNWgVrJxL7yvziALbt6jCUVTs0Npk9ZgySv6NGqhRx9bK+OZH3fD8ODVoFaRW/SO07ql/XvVjmBFhFwCvMnnyZE2dOrVUe+fOnfXVV19Jkrp16ya73V5qn4KCAt1///2aOXOme4Hki+Xk5CgwMFBOp1MbN27Uiy++qK+//lqSlJycrHHjxklyjSiIiYmpxqMCAO9ms9lks9nK7R8xYoSWL1+uIUOGuBeZv9gzzzxTYvviqePn/w5fbP369XrooYeuuF4AgDmc2X1Q2fuOKHREPx2+ZIRT6O39lL3viM7sOSRJcjpKr7l7TdtrS2wHhlyrY5srn8HhdDhKbOcdOlHq2x8DQ5or79CJMve/HCe375XT4VC3//qtjm5IkdPh0KG123TdPUPUoHlTHd2QcsX3bWZMYwRgCpGRkUpNTa1wn/nz52vHjh16+OGHZbPZlJWVpcOHD+vNN9+UJK1bt069evVSv379NHToUMXExKioqEg2m015eXmKjo6W5FpsOSIiosaPCQDM4r777tOQIUOq7f7mzJlT5rqLAIC6J/HFjxQ2dqC6P3yb/ALry69hA3V7+LcKu2ugEqfNqfC2Lft0U8jQXrL4WNXxzlg17dZee//z02XXkLFwnVpEh6v9rdGyWK1qM7CnQn7TS7sXrJYk5R8/rWvaNLvib4E8vG67uj10qw6tTZYkHfoxWd0eulVHN+1SccG5K7pPs2NkFwCvUdHIAavVqh49eigtLa3cdVwmTZqkSZMmlWo/P6Jg6NChGjp0aIm+t99+u8T2zp07deONN8pisVz+AQAAAACoVvuXbdDyCa8r8r9Hq+czd0mSTmzdo+UTXneHQ+XJ+GatOo2J04D3/qDcQye06sG/KO/gicuuIXvvYa184M+64f+NV8zffqfcA8e0+vF3dPLXhfD3Lk5Qxzv66+5tH8pisejzHpOrvEi9JB1ak6wOv+2rQ2tdo9cOrd0m/0bXsF5XBQi7AJhGWdMbq1t4eLjCw8Nr/HEAAAAAVM2htckVBlsLej9Wqm3tlPeu6LEOJ2zXvLB7S7VnrUpS1qqkMm9TeCpHS0f9T5Xu3/LryOWLw7DUT+KV+km8ezv/yC/6qNXoy6i67mH8NwAAAAAAQC3QtHt7Oc4VlbmgPqqOkV0AAAAAAAC/ut3+NwW2bVaqfX/8Jq1+7O2rvv8h8/6oFtFdS7Wfyzkrq5+PNr0+X4Vn8q76ceoywi4AAAAAAIBfLbQ9WaP3v3z8azV6/2AaIwAAAAAAAEyEsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMwyvCrsLCQk2bNk0hISGqX7++Bg0apMTERFksFi1cuNDo8gBUgwO5F34/dta4OgAAJRU5Lvy+8bhU7DSuFgBA3eRTz193rvu7xqfPNboUeIlaH3Y5nU6NGTNGH3zwgaZOnapvv/1WoaGhGjlypCQpKirK4AoBXI1DedLvE6SRKy603RovPb9ROlVgXF0AAOmrvdKt31/YfmSd9NvvpW/3GVYSAKAOinpmrHIOHDe6DHgRX6MLqMysWbO0ZMkSJSUlqXv37pIkm82m0NBQBQUFqV27dgZXCOBKHc2XJq2RThZIFw8UcEhaeVBKPyPNiZUa+hlVIQDUXR+nSX/fWbr92FlpepKUWyyNDfV4WQCAOia4R0e1GdhTG176RANnP210OfAStX5k14wZMzRhwgR30CVJPj4+Cg0NLTWq66WXXpLFYtG2bds8XSaAK/CvXa6gy1FGn0PS3hzpsz2ergoAcPys9F5Kxfu8vV06U+iZegAAdZPFx6p+f3lEP73wgRyFRUaXAy9Sq8OutLQ0ZWRkaNSoUaX69u/fXyLs2rx5s3766Se1b9/ekyUCuEJ5RdJ/9pcddF1swV7JyfowAOBRi/dLjkr+9p5zSEsOeKYeAEDdFPHY7TqRnKEjP5Ux1BioQK2expiVlSVJat68eYn2lJQUZWZmusOugoIC/e53v9Nnn30mm812RY9ls9lktdbq7K9MEV+4VvIOCKhncCXmxvNc/QJad9F1/7u10v1OFkgNmjaTIz/bA1XVDZzPnsHz7Bk8zzWj7e/+pSb9x8niW/48cmfROf2/tz7UxA+e8GBl5sc57Rk8z57B8+wZZnieO/k21bON+pdoa9ihpbrcN1SLbn7GoKq818CBNu0u+sXoMqqFv7+/srMv/1qwVoddwcHBkqT09HT17t1bkmvB+ueee04Oh8Mddr344ouaMGGCOnToYFSpAC6TozC/Svs5nQ45z/H1jADgSY7Cs5LFUvFOFoscBXmeKQgAUOe06N1V9Zs11p0/viNJsvr6yO+a+rp7+4daNflNRnuhQrU67AoPD1dYWJheeOEF+fn5KTAwUDNnztSWLVvUoEEDdenSRQkJCdq4caP+9Kc/XdVj2e12xcTEVFPlntNrkevfggK+tq4m8TxXP6dTGmuXMrJLLk5/Mauk6OZWbcrN8WBl5sf57Bk8z57B81wzfjwi/WF9xftYfHz19YwndcMHT3qmqDqCc9ozeJ49g+fZM8zwPB9JTNF3t08t0ZaxeJ0OrrkwE+TaG7uo///+TouGPK2zJ854ukSvsmqVXS16dzW6DEPV6nl7vr6+WrBggVq1aqWJEydqypQpGjZsmOLi4tSjRw9ZrVb98MMP2rlzp0JDQ9WhQwcdOHBAv/nNbxQfH290+QAqYLFI94WVH3RJrvW8xnfyVEUAgPP6Npc6BJb/RtEqqUtjKSrIk1UBAOqS4vxC5R066f4pOHFGcjqVd+gki9WjUrU67JKkyMhIJSQkKC8vT6mpqXr00Ue1ZcsW9xTG559/XgcPHtTevXu1d+9etW3bVsuWLdPQoUMNrhxAZW5tK03q7Pr94j9G539/OkLq0/zSWwEAaprVIv1vtNS8vmv7/ITG8/+2uUb6a+/KZzoCAFBdDids17ywe40uA16iVk9jLEt+fr5SU1M1ZcoUo0sBcJUsFul34VJMc+nLvdLWk6626Gul0R1cowYAAMZoc430uU36dr/r23NPFEjX1pNuC5GGhUjXeN27SAAAUFd43duUrVu3qri42D2y61J79+71bEEArlrPYNcPAKB2CfST7u7o+gEAAPAWXhd2RUdHy+msaJUfAAAAAAAA1FW1fs0uAAAAAAAAoKoIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAPAwu92u0NBQ2Ww2TZw4sVT/3LlztXz5cklSbGysAgMDdeDAgVL7ff755woNDdWDDz5YYdu0adO0f//+GjgSAAAAoPYh7AIAwACTJ0+W3W5X48aNlZCQUKJv8eLFGjx4sCTpyy+/1OjRo8u8j5tvvlnff/99pW3jx4/Xv/71r2qsHgAAAKi9CLsAADBQRESEsrKy3NsnT55UvXr1ZLFYJEktW7Ys97bBwcHy9fWttK1r167avHlzNVYNAOZW2Qjc1157TWlpaRXex+9//3vFxsbq9ddfL9Gen5+v4cOHKy4uTpMmTZIkLV26VDabTTabTcHBwUpKSpIkvf/++xo8eLBsNpvOnTunnTt3asaMGdVzkABgYoRdAAAYKCEhQWFhYe7t9PR0tW/fvtofp7CwsNrvEwDMrLwRuA6HQ1u3blXnzp3Lve3GjRvl6+urNWvWaPPmzTpy5Ii7Lz4+Xv3799cPP/wgPz8/bdu2TbfccovsdrtWrVqljh07KjIyUvv27VNycrJWrFghu90uPz8/hYeHa/PmzXI6nTV67ADg7Qi7AAAwwOzZs2Wz2dSmTRv17NnT6HIAAOW4dATuzz//rOuuu67C26xfv16DBg2SJMXFxWnTpk3uvtDQUOXm5kqScnJy1LhxY3ffhg0b1KtXL1ksFsXHxys3N1eDBg3S9OnT3ft07NhR27dvr45DAwDTIuwCAMAA50cMvPrqqyXaw8LClJmZWe2P5+/vX+33CQB1waUjcNPS0tShQ4cKb3Pq1Ck1atRIktSwYUOdOnXK3RcWFqY1a9YoPDxcFotFISEh7r6FCxfq9ttvlyQdPXpUFotFK1euVEZGhntqY/v27bVr167qOTgAMCnCLgAAapGgoCDl5eW5tydMmKD4+HiNGzdOK1askCQ99dRTklxTYSZMmKDvvvvOvaZMWW0pKSmMHgOAy1SVEbg7duxwr7V1/udPf/qTmjRpojNnzkiSsrOz1aRJE/dtPv74Y40dO1Y7d+5Us2bNtG7dOnffqlWr3CPCGjdurLi4OEnSgAEDlJqaWjMHCgAm5Fv5LgAAoDqdvyAqz4gRI7R8+XINGTJEn376aan+t956S5I0dOhQDR06tERfWW3z5s3TQw89dPWFA0AdMnnyZE2dOrVUe+fOnfXVV19Jkrp16ya73V5qnw0bNuizzz7TbbfdptWrV+uuu+5y9zkcDgUFBUlyfcBxftTXnj171LZtW/dI3L59+2r+/PmSpOTkZI0bN06SlJmZqZiYmGo7TgAwI0Z2AQBQy9x3330aMmRItd3fK6+8onbt2lXb/QFAXRYZGVnpKKubbrpJBQUFio2NVWRkpFq0aKHDhw/rzTff1D333KM5c+bIZrMpKSlJN998s6SSUxgl6YYbblBRUZFsNpvy8vIUHR0tyfVFJhERETV3gABgAozsAgAAAICLVDQC12q1qkePHkpLS6vwGxnfe++9EtstW7bUM888I8k15fxSTz75ZKm2t99+u8T2zp07deONN8pisVRyBABQtxF2AQAAAMBlKGt6oyeEh4crPDzckMcGAG/CNEYAAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0/CasKuwsFDTpk1TSEiI6tevr0GDBikxMVEWi0ULFy40ujwAANwKii/8fijPuDoAAKUdyL3w+zmHcXUAqFj/t3+nezM/0/j0ue6fNgN7Gl0WvISv0QVUhdPp1JgxY5SYmKjp06crLCxM8+fP18iRIyVJUVFRBlcIAIBU5JBm75I+z7jQNmK5FH2t9N8RUseGxtUGAHXdrtPS37ZLG45faLtlmXRPJ+n+zpKPxbjaAJRt16fLtf6Ps40uA17IK8KuWbNmacmSJUpKSlL37t0lSTabTaGhoQoKClK7du0MrhAAUNc5nNLUzdLygyXbnZISj0mT1kgf9pc6NTKkPACo01JOSw+ulQqLS7afPifNTJH25UjToyQLgRcAmIJXTGOcMWOGJkyY4A66JMnHx0ehoaHuUV0dOnRQ165d1bNnT/Xs2VPLli0zqlwAQB20+nDpoOs8h6T8YunNZI+WBAD41Rs/u4Ku8mYt/ueAlHi8nE4Ahul4Z6zG7ZijO1a/rR5/uFMWH6+IMFAL1PqRXWlpacrIyNA777xTqm///v0aNWqUe3vBggWKiIjwZHkAAEiSFuyVrBbXCK+yOJzSxhNSZo7UPtCjpQFAnbbrtLT9VMX7WC3SggzXtHMAtcOO2Uu08ZW5OnsyW8E9OiruH1PkE+CvLX/+3OjS4AVqfdiVlZUlSWrevHmJ9pSUFGVmZlbbel02m01Wq/elxBFfnJUkBQTUM7gSc+N5hplwPteMrv/aJ78mLSrdr9ewMTqTuMgDFdUNnM8wG87p6tckdpxCnviown0cTmlp0h69ExvumaLqCM5nzzDD89zJt6mebdS/RNvJ5AuLoJ74ebe2/OX/FPX0WMKuKhg40KbdRb8YXUa18Pf3V3Z29mXfrtanO8HBwZKk9PR0d5vT6dRzzz0nh8NRIuwaP368evTooccee0ynTp3ydKkAgDrMea6gavsVnavhSgAAF3NU+e9z1fYDYBCHU2JdPVRRrR/ZFR4errCwML3wwgvy8/NTYGCgZs6cqS1btqhBgwbq0qWLJGnNmjUKCQlRQUGBpkyZoscff1yffvpplR/HbrcrJiampg6jxvT6dXBAQQEvzjWJ5xlmwvlcM2Zslf69t/z1YCQpwCrtXf2NAv08VZX5cT7DbDinq9+pAumWeKmonGnmkuv6+SFbuJ7gea9WnM+eYYbn+Uhiir67fWqJtg4j+ilrVZLOZeepaXh7RT41Rnu/TTCoQu+yapVdLXp3NboMQ9X6sMvX11cLFizQI488ookTJyokJERTpkxRo0aNtHv3bvfUw5CQEElSQECAHnvsMY0YMcLIsgEAdcyYUOnfmXJ9/WIZLJJGthdBFwB4WJMA6dYQadG+sv9EWyT5WKQ723u6MgAV6Xr/b9R3xkOy+vko/8gp7V7wg7b+/Wujy4KXqPVhlyRFRkYqIaFkgvvuu+8qLi5OkpSbm6uioiI1btxYTqdTn3/+uXr27GlApQCAuqpjQ+nlKOnFLZKcF0Z4WeX6/aZm0u+7GVcfANRlT0e4viAk6eSFv8uS63erRXqjl9T2GgMLBFDK0jv/x+gS4MW8Iuy6VH5+vlJTUzVlyhRJ0pEjRzRq1CgVFxeruLhY3bp10z/+8Q9jiwQA1Dm3tJU6NZS+2CutOiQVOlwh2OgO0i1tJN9av1ImAJhTfV/pH32l77JcU8735kj1rNKg1tJdoa6/1QAA8/DKsGvr1q0qLi52L07fsWNHbdmyxeCqAACQOjeW/hjp+gEA1B7+PtLt7Vw/AABz88qwKzo6Wk5nBStMAgAAAAAAoE5iQgUAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwDgZrfbFRoaKpvNpokTJ5bqnzt3rpYvXy5Jio2NVWBgoA4cOFBqv88//1yhoaF68MEHK2ybNm2a9u/fXwNHAgAAAKCuIuwCAJQwefJk2e12NW7cWAkJCSX6Fi9erMGDB0uSvvzyS40ePbrM+7j55pv1/fffV9o2fvx4/etf/6rG6gEAAADUdYRdQDWobDTMa6+9prS0tHJvv3btWvXp00f9+vXTW2+9Vap/7969atWqlWw2m+677z5J0vvvv6/BgwfLZrPp3Llz2rlzp2bMmFF9B4U6LyIiQllZWe7tkydPql69erJYLJKkli1blnvb4OBg+fr6VtrWtWtXbd68uRqrBgAAwMWu9lolMTFRMTEx6tevn6ZOnVppf1nXNlyrwNMIu4BqUt5oGIfDoa1bt6pz587l3rZjx45avXq11q1bp2+//VZ5eXml9rn11ltlt9v1ySefaN++fUpOTtaKFStkt9vl5+en8PBwbd68WU6ns0aOD3VPQkKCwsLC3Nvp6elq3759tT9OYWFhtd8nAAAALriaa5WoqCj9+OOPWrdunRISEnTmzJkK+9u1a1fq2oZrFXgaYRdQzS4dDfPzzz/ruuuuq/A2rVu3lr+/vyTJx8dHVmvp/zWXLVum2NhYzZs3T/Hx8crNzdWgQYM0ffp09z4dO3bU9u3bq+dAUGfNnj1bNptNbdq0Uc+ePY0uBwAAANXkSq5V/Pz8JEnFxcVq3bq1GjRoUGF/edc2XKvAkwi7gGp26WiYtLQ0dejQoUq3/f7779WpUyfVq1evRHurVq2Umpqq+Ph4vf/++zpy5IgsFotWrlypjIwMJSUlSZLat2+vXbt2VdehoI46/8nfq6++WqI9LCxMmZmZ1f54598MAQAAoGZd6bXK/PnzFR4eriZNmpRalqK8/kuvbbhWgScRdgHVpCqjYXbs2CGbzVbi509/+pMk6cCBA3rjjTfKXLMrICBADRo0UP369RUbG6uioiLFxcVJkgYMGKDU1NQaOy7gvKCgoBJTbCdMmKD4+HiNGzdOK1askCQ99dRTkqT4+HhNmDBB3333nXttiLLaUlJSGD0GAABQw672WuWee+5RSkqKDh48qOTk5FK3vbS/omsbwBNKR7IArsjkyZPLXLCxc+fO+uqrryRJ3bp1k91uL7VPQUGB7r//fs2cOVOBgYGl+nNychQYGCin06mNGzfqxRdf1Ndffy1JSk5O1rhx4yRJmZmZiomJqcajQl1z/o1NeUaMGKHly5dryJAh+vTTT0v1n39DM3ToUA0dOrREX1lt8+bN00MPPXT1hQMAAKBcV3utEhAQIKvVqoYNG5aahXJpv7+/f5nXNlyrwJMY2QXUsMjIyEpHXs2fP187duzQww8/LJvNpqysLB0+fFhvvvmmJGndunXq1auX+vXrp6FDhyomJkZFRUWy2WzKy8tTdHS0JNcC4hERETV+TKi77rvvPg0ZMqTa7u+VV15Ru3btqu3+AAAAUHVVuVZZtGiRbDabBgwYoLZt26pz584lrlUu7V+3bl2paxuJaxV4FiO7gGpQ0WgYq9WqHj16KC0trdxvOZk0aZImTZpUqv2ZZ56RVPaImLfffrvE9s6dO3XjjTfKYrFc/gEAAAAAMKWrvVYZM2aMxowZU6KtZcuW7muVsvovvbbhWgWeRtgFeEBZQ4arW3h4uMLDw2v8cQAAAACYB9cqMCOmMQIAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYhteEXYWFhZo2bZpCQkJUv359DRo0SImJibJYLFq4cKHR5cHEThde+L3IYVwdQHUoLL7we26RcXUAAADg6p296L3dWd7bAW6+RhdQFU6nU2PGjFFiYqKmT5+usLAwzZ8/XyNHjpQkRUVFGVwhzOhwvvSPnVJ81oW2276XxnWSJnSSrBbjagMuV2GxNDtN+jLjQtvQpdJvQ6THwqXG/sbVBgAAgMuTXyS9nyp9nXmhbegy6fb20qNdpQZecaVfNW0H36Co5+5Wo06tVZSTr23/XKztMxcZXRZqOa/4X2DWrFlasmSJkpKS1L17d0mSzWZTaGiogoKC1K5dO4MrhNkczpMmrpF+KZAuHsx1rEB6Z4eUfkZ6KUqyEHjBCxQ5pCcTpfXHSrYXOKSvMqWNJ6QP+xN4AQAAeIOzRdKj66TtpyTnRe15xdLne6SkE9L7MeYIvFrHRarvmw9r7RPv6nDCdvnWD9A1bZoZXRa8gFdMY5wxY4YmTJjgDrokycfHR6Ghoe5RXWfPntWjjz6qzp076/rrr9dDDz1kVLkwgb9sKx10XWzJAemHwx4tCbhiX2eWDrrOc0ralyP9M8WjJQEAAOAKfbpH2naqZNB1nlNSymnpk3QPF1VDop69W1vf/rcOrU2Ws9ihczn5OpW63+iy4AVqfdiVlpamjIwMjRo1qlTf/v373WHXs88+q3r16mnXrl1KTk7WK6+84ulSYRJH811BVkXLc1kt0pd7PVURcHW+yJAqGoTolLR4v2s4PAAAAGqvYqe0IKPifZyS/r3X+9cb9q0foGY9O6n+tU00cs3/auzWDzToo+cUGNLc6NLgBWr9wMasLNeCSc2blzyhU1JSlJmZqaioKOXk5OiTTz7RgQMHZPl1XlmLFi0u63FsNpus1lqf/ZUS8cVZSVJAQD2DKzGPwJ6/UegfK54D7nBKP+45qQBbKw9VBVwhH19d/3lupbudLZZaht+os/u2eaAooPrwOgiz4ZyGmXA+Vz/fxs0V/kHlI5t+KZQat+moopNZle5bG3TybapnG/Uv0ebf5BpZrFa1vzVa3497VfknTqv3y5M0cPYzWjz0GYMq9Q4DB9q0u+gXo8uoFv7+/srOzr7s29X6dCc4OFiSlJ5+YRym0+nUc889J4fDoaioKO3evVvBwcF66aWX1KtXL9lsNq1du9aokuHtHFUc3uIornwfwGhOh5zOqn2s5+ScBgAAqNWcxZcxFN/L39udy3GFpTs+WKKcA8dUnF+ozW/MV/D1oazbhUrV+pFd4eHhCgsL0wsvvCA/Pz8FBgZq5syZ2rJlixo0aKAuXbooKSlJe/bsUVRUlN58802tX79et912m9LT09WoUaMqPY7dbldMTEwNH0316/XrAKSCggJjCzGRnHPSb5a5Fu8uj1XSiO7XKonnHV7g4R+lLScqnprbLED6KS1JvrX+IxCgJF4HYTac0zATzufq53RK4+zS7uyy1+ySXMtXtA+UNhzO9Jov1DqSmKLvbp9aou1cdp5y9h91HTQuy6pVdrXo3dXoMgxV6y9rfH19tWDBArVq1UoTJ07UlClTNGzYMMXFxalHjx6yWq1q166dfH19NW7cOElSdHS0mjVrpl27dhlcPbxRoJ/rK3srel1wSLor1FMVAVdnXMeKgy5JGttRBF0AAAC1nMUi3dOp/KBLcvWN62iOb45P/SRe4Q/eqgatg+UT4KeoZ+/W8Z93KzfruNGloZar9SO7JCkyMlIJCQkl2t59913FxcVJkpo1a6aBAwfq+++/19ChQ7Vr1y4dPXpUYWFhRpQLE3giXNp1Wko66Qq9zr+YWC2u9bqejpAimhpZIVB1tlbS/WHSR+muTzjOB1/nf7e1lO7tZFx9AAAAqLrbQqTkX1zfuF3We7vbQqSR7Y2rrzolv7dQ/o0DNSL+z5LFqqOJKVo1+U2jy4IX8Iqw61L5+flKTU3VlClT3G3//Oc/9cADD+ipp56Sn5+f5s6dqyZNmhhWI7xbPV/pvb7Swn2ub7LLzJF8LFL/FtLdHaVeTBGHl3m8m9QjSPq/DGnjcVdoe11j1wjFW0Nc5zcAAABqP4tFeqGH1LuZ673d1pOu9oimrtH6Q1ubY1SXJMnp1KbXPtWm1z41uhJ4Ga8Mu7Zu3ari4mJFRUW52zp27Ci73W5cUTCdAB9XEHBXqCsYsMhELxqokwa0dP04na7RilbOZwAAAK9ksUg3t3H9nF/SimsV4AKvDLuio6PlZJE6eBChAMzEYql4TToAAAB4D0IuoDSWIwYAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2mZjdbldoaKhsNpsmTpxYqn/u3Llavny5JKlp06ay2WwaOnRoqf2OHTumkSNHauDAgZo1a5YkyWazyWazqXv37poyZYqKior04IMP1uwBAQBwmar6WpiamqqYmBjFxsbqySefLPO+zp49q1atWmnt2rWSpPvvv199+/aVzWbTypUrJUmTJk2S0+msuQMCAABApQi7TG7y5Mmy2+1q3LixEhISSvQtXrxYgwcPliTdeOONstvtio+PL3UfL7/8st5++22tWrVKDz30kCTXxYPdbteIESM0fPhw+fr66tprr9Xu3btr/qAAALgMVXktbNasmZYtW6Y1a9bo+PHj2rVrV6n7mTNnjrp161ai7csvv5TdbtegQYMkSdHR0Vq1alXNHQwAAAAqRdhVR0RERCgrK8u9ffLkSdWrV08Wi0WS9PPPPys2NlZvvfVWqdvu2rVLzz//vIYOHarU1NQSfXa7XTabTZJrtNd3331XcwcBAMBVqOi1MDg4WIGBgZIkHx8f9+vjecXFxVq7dq1iY2PdbRaLRWPHjtVdd92lkydPSpIGDhyoJUuWeOBoUFdVNlrxtddeU1paWoX38fvf/16xsbF6/fXXS7Tn5+dr+PDhiouL06RJkyRJS5cudY/oDw4OVlJSkiTp/fff1+DBg2Wz2XTu3Dnt3LlTM2bMqJ6DRJ1xtedzYmKiYmJi1K9fP02dOrXS/rVr16pPnz7q16+f+7qHcxcwJ8KuOiIhIUFhYWHu7fT0dLVv3969vWvXLtntdq1du1bbtm0rcdu1a9fq1Vdf1Xvvvac//vGPpe7D399fktS+ffsyPwkHAKA2qOy1UJK2b9+u48ePq3PnziXaP//8c40ePbpE21//+lf9+OOPGjt2rN544w1JvBbCM8obrehwOLR169ZS5+/FNm7cKF9fX61Zs0abN2/WkSNH3H3x8fHq37+/fvjhB/n5+Wnbtm265ZZbZLfbtWrVKnXs2FGRkZHat2+fkpOTtWLFCtntdvn5+Sk8PFybN29mGi8u29Wcz1FRUfrxxx+1bt06JSQk6MyZMxX2t2vXTqtXr9a6dev07bffKi8vj3MXMCnCLpObPXu2bDab2rRpo549e5a7X9OmTeXj46Phw4drx44dJfq6d++uTp06qXPnzjp9+rS7feHChbr99ttrqnQAAKpFVV8Lz5w5o8cff9y9PuV5TqdT33zzTanXvKZNm0qSRowYoe3bt1d73UBlLh2t+PPPP+u6666r8Dbr1693T7uNi4vTpk2b3H2hoaHKzc2VJOXk5Khx48buvg0bNqhXr16yWCyKj49Xbm6uBg0apOnTp7v36dixI/8v4Ipdyfns5+cnyTX6tnXr1mrQoEGF/a1bt3Z/UO/j4yOr1XU5zLkLmA9hl8md/6Tk1VdfLdEeFhamzMxMSVJeXp6Ki4sluT71Dg0NLbFvhw4ddPz4cR05cqTEC8iSJUs0fPhw93ZmZmaFn7wAAGCEqrwWOp1OPfDAA3r55ZfVunXrEvvl5ORoz549Gj58uD799FM9/fTTOnv2rLKzsyWVfO3ktRCedOloxbS0NHXo0KHC25w6dUqNGjWSJDVs2FCnTp1y94WFhWnNmjUKDw+XxWJRSEiIu+/iDzmPHj0qi8WilStXKiMjwz21kZGNuBpXcj5L0vz58xUeHq4mTZrI19e3Sv3ff/+9OnXqpHr16kni3AXMiLCrjgoKClJeXp4kaffu3erdu7f69++vJk2a6KabbtLhw4f15ptvSpKmTp2qO++8UyNHjtS0adMkScePH5efn1+JT/zsdruGDRvm+YMBAOAKXPxaaLfbtXLlSk2bNk02m02bNm1yvxY2bNhQmzZt0tKlSzVhwgT95S9/Ub169XTfffepf//+eumll/T8889LklatWsVrIWpcVUYr7tixw73W1vmfP/3pT2rSpIl7qld2draaNGnivs3HH3+ssWPHaufOnWrWrJnWrVvn7lu1apV7RFjjxo0VFxcnSRowYECpNV2By3E157Mk3XPPPUpJSdHBgweVnJxc6raX9h84cEBvvPFGmWsVAzCP0tE3TOP8C0F5RowYoeXLl2vIkCElhrBLUsuWLfXMM89Iknr06KHVq1eX6G/WrJmWLl3q3i4qKtLRo0dLfBoDAIDRLue18Pwi8xc7/1p43sVTtr7++utS+69fv979zcVATZk8eXKZi3F37txZX331lSSpW7dustvtpfbZsGGDPvvsM912221avXq17rrrLnefw+FQUFCQJFcYfH7U1549e9S2bVv39K++fftq/vz5kqTk5GSNGzdOkmtkY0xMTLUdJ+qGqzmfCwoKFBAQIKvVqoYNG7pHapXX7+/vr/vvv18zZ850fymJxLkLmBEju+qw++67T0OGDKmW+/L19dXs2bOr5b4AAPCU6nwtlKQ5c+a414ABPC0yMrLSUVY33XSTCgoKFBsbq8jISLVo0cI9ivGee+7RnDlzZLPZlJSUpJtvvllS6XVab7jhBhUVFclmsykvL0/R0dGSXF/6EBERUXMHiDqlKufzokWLZLPZNGDAALVt21adO3cuMUPl0v5169Zpx44devjhh2Wz2dxrhHHuAubDyC4AAADAS1Q0WtFqtapHjx5KS0urcO249957r8T2xSP64+PjS+3/5JNPlmp7++23S2zv3LlTN954oywWSyVHAFxwtefzmDFjNGbMmBJtF5/PZfVPmjSpxDbnLmBOhF0AAACASZQ1HcwTwsPDFR4ebshjw7w8cT5z7gLmxDh7AAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANPwmrCrsLBQ06ZNU0hIiOrXr69BgwYpMTFRFotFCxcuNLo8Q+QWGV0BAAC1Q845oysArh7nMcyksPjC7w6ncXUAqJt8jS6gKpxOp8aMGaPExERNnz5dYWFhmj9/vkaOHClJioqKMrhCzzqQK83eJS3NutB2/2rp/s6SrZVxdQEA4ClrDktz0i5sD1kq3dxG+q/rpHaBxtUFXIk92dIHqdKKQxfaHlorPXCd1Ke5cXUBVyLnnOta5evMC20jV0j3dJLGdJCsFsNKg5cZnz63xLaPv59OpWVp0eCnDKoI3sQrwq5Zs2ZpyZIlSkpKUvfu3SVJNptNoaGhCgoKUrt27Qyu0HMysqXJa10vIo6L2neckp7eID3ZXRrfyajqAACoeV9mSDOSSw5PL3JKy7JcIdgH/aWwRoaVB1yWHaekh3+UCopLvrdLOin9/ifpxZ7SbXXnrS68XPY517VKRrZ08WCug3nSm8nSjl+k/4ki8ELVzAu7t8T2iBVvKWPhjwZVA2/jFdMYZ8yYoQkTJriDLkny8fFRaGiooqKitHfvXvXs2dP906FDBwUFBRlYcc35ny1STlHJN0PShe2/bZf2Znu6KgAAPONArvTnZNfvpV4LnVJekfTHTZKTKTPwAg6n9MLG0kGX5Np2SnrlZ+nYWQOKA67AeztLB13She3/HJC+P+jpqmAGzXqGqcl1bZX+f6uMLgVeotaHXWlpacrIyNCoUaNK9e3fv19RUVHq0KGDkpKS3D933HGH7rnnHgOqrVk7T7k+/atozrtF0r8zy+8HAMCbfVXJa5xD0u5saesvHikHuCqJx6QDeaWDros5nNI3vLeDF8g5Jy3eVzrouphV0hcZnqoIZtL5nkHKWrlF+Ud4gUfV1PppjFlZroWpmjcvuWBBSkqKMjMzS63XVVhYqHnz5mnZsmWX9Tg2m01Wa+3O/oKGPqw2//VOhfs4Jc1elqgXboz1TFEAAHhQ6PTvFdh9QKX7DXvwGZ34T8WvmYDRrr3zebW4+39ksZT/HtTpcOjNz5bp8Tfu8FxhwBWo37m3wl5fU+E+DklJRwsVENDQM0XBa3TybapnG/Uvs8+3foBCb4/Rmife9XBV3mvgQJt2F5kjGPT391d29uVPX6vd6Y6k4OBgSVJ6erq7zel06rnnnpPD4SgVdi1atEht2rTRDTfc4NE6PcJZ0ed+F+/H3A0AgEk5HXJW5XWO10J4A97bwUyqeD5zOuNydbitr4ryC3Vg+SajS4EXsTir9I7ROEVFRQoPD9e5c+f05ptvKjAwUDNnztSWLVt08uRJZWdnlxiRNXz4cN1yyy164oknqnT/Z86cUXJysq6//no1alS7V7PdfUYaa694H4ukiWHS4908UREAAJ71for0wa6Kp8lI0qcDpK5NPFERcOWSTkgPVmGt5Se6SfeF1Xw9wNU4WyT9Jl7KLSp/H6tFuqmZ9F5fz9UF73AkMUXf3T61zL5hC1/R0fUp2vT6PA9X5b2GLXxVLXp3NboMQ9X6kV2+vr5asGCBWrVqpYkTJ2rKlCkaNmyY4uLi1KNHjxJBV1ZWln744QeNHz++yvffqFEjxcTE1PqgS5I6NZJuCK74P5pF0sj2nqoIAADPGtm+4m/xskqKaELQBe8QGSR1alj+OW2R5G+VRoR4tCzgitTzdf2NruiLFh1O6a5Qj5UEE2jUqbWa9+qiXZ+tMLoUeJlaH3ZJUmRkpBISEpSXl6fU1FQ9+uij2rJlS6kpjB9//LFuvfVW99RHM3o5SmpWr/SLiFWuthd7Sm2u8XxdAAB4QvP60ktRrte9SwMCi6SmAdKrNxpRGXD5LBZpRi+pkV8Z7+0srp/Xb5SaBBhSHnDZHukiXd+0dPv5i87xHaUBLTxaErxc53GDdGT9TmVnHDa6FHiZWr9AfVny8/OVmpqqKVOmlGj/6KOP9M475l6MtmUDae4A6dPd0teZUk6R681RTAvp3jDXyC8AAMzslrZSqwbS3HTph8OuKY3X+Eq3t3O9Fl5bz+gKgarr0NA17XbubmnRPim/2BVyDWopTQiTIsoIDoDaqp6v9I9+0v/tkb7cKx3Od7V3ayrd01G6ubUr5AWqatOrnxpdArxUrV+zqyzr169Xnz59tGHDBvXq1cvocgxT7JRyz0kBPq4fAADqmsJi6WyxdI2f5MMFFLxckcO13lF9H8mf93bwck6n63z2sUj1vXKIBTypojW7cPlYs8tLR3ZFR0dX7ZuYTM7HIjXyN7oKAACM408oABPxtUqNeW8Hk7BYpEA/o6sAUFd5xZpdAAAAAAAAQFUQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpWJxOp9PoIgAAAAAAQN1UmJ2nX3buM7oM02ga3k7+DRsYXYahCLsAAAAAAABgGkxjBAAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAa/x/TOtcjO/zeqQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -776,16 +776,16 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:59.764142Z", - "iopub.status.busy": "2024-11-23T19:54:59.763943Z", - "iopub.status.idle": "2024-11-23T19:55:00.023968Z", - "shell.execute_reply": "2024-11-23T19:55:00.023389Z" + "iopub.execute_input": "2024-12-05T03:21:34.409586Z", + "iopub.status.busy": "2024-12-05T03:21:34.409139Z", + "iopub.status.idle": "2024-12-05T03:21:34.667420Z", + "shell.execute_reply": "2024-12-05T03:21:34.666812Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAGOCAYAAADGoW0OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTkElEQVR4nO3deXyU5b3//9dkY5GwBGURWQJBZJGlInEBMwFaRSuISKuVylGs9tjqoVprD5V+aV1aaj1ajkt/VGstLq1SFe3BilgCqIGIgCiyBTFiKqggECAkJDO/P6YEY9hJZiaZ1/PxSMl93dfc9+eejneu971NIBwOh5EkSZIkNXhJsS5AkiRJkhQdBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShApsS4gnpWX7OaLVR/FuowGo1XPTqSlN411GZIkSapDjqFrV22PoQ2Ah/DFqo94edTtsS6jwRgx607aDjot1mVIkiSpDjmGrl21PYb2ElBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEPUmAJaXlzN58mQ6duxIkyZNGDp0KAUFBQQCAWbNmhXr8tRAbS+Hp9bDHcth6gp4fTNUhmNdlXRs9obg1WK4+x24czn87UPYXRHrqiRJUjSlxLqAIxEOhxk7diwFBQVMmTKFrKwsnnrqKUaPHg3AgAEDolpPIDmJM6eMp9uY8wgkJfHh/y1i8aRHqCzbG9U6VLee+xDueS8yaE4OQBh49kPoeALclw1dmsW4QOkorPwCbi6ALWWRzzPACx/B/SvhFwNg6MmxrU+S1PA5ho4P9eIM4PTp05k9ezZz587l+uuvZ9iwYUyfPp3k5GQyMjLo1KlTVOvpe9OltDunD7OG3sLfzr2Rlqeewhm3fzeqNahuvVoMd6+IhD+InPUL/fvMX/Fu+P4bsK0sdvVJR+PjXXBDPnzx789sZXj/mew9lfDTJbDk89jVJ0lKDI6h40O9CIBTp05l3Lhx9O7du6otOTmZzMzMqrN/a9eu5eyzz+bUU0/l7LPPZt26dXVWT/crh/HutOfYvWkrZVt2sPzeZ8j6dpBAUr14O3UY4TA8tBoCB5kfCsPnZfD8R1EtSzpmT66H0goIHWDeviua/7AmmhVJkhKRY+j4EPeXgK5bt44NGzYwbdq0GvM2btzImDFjAPj+97/PD37wA8aNG8cTTzzB9ddfzz//+c8jWkd6ejrl5eU12rultOInzQdXa0tr3pRmHU5i68oNVW1b3t1AWnpTmnU8iZKizUezeQklNzfI+oovYl3GYTXpdgZZv37zkH3C4RD/89p6vt+nT5Sqko5drz9/TnKT9IPODwFvb4ET2nelYmtx9AqTJDVIjqFrV27ugcfQaWlplJSUHPXy4j5uFxdHBiNt2rSp1r569WqKiooYMGAAn376KUuXLuWKK64A4IorrmDp0qV89tlntV5PSrMmAJRv313VVr59FwCp/56n+i2lRZvD9gkEko6onxRrgZS0Q4a/L0tpfmIdVyNJSlSOoeNH3J8BbN26NQCFhYUMGjQIiDwU5rbbbiMUCjFgwAA2btxIhw4dSE5OBiKXh5588sls3LiRk0466bDrOFhy3lywmpdH3V6trWJnKQCpzZtS+tk2ANJanADA3n/P04HNm5dH20GnxbqMw1r5BYxfePh+mW1asKzMGwEV38JhyJkNuysP33fd8gLa+DdYknScHEPXrtoeQ8f9GcCePXuSlZXFpEmTePbZZ3n55ZcZNWoUS5cupWnTpvTo0SOq9ZTv2M3O4s/I6N2lqq11n0zKS3azc2Ptn3FU9PVqCZ1OOPg9gPuMjO6zh6RjEgjANzsdemefBAxsjeFPklRnHEPHj7gPgCkpKcycOZP27dszfvx4Jk6cyIgRI8jJyaFv374kJSXRsWNHiouLqayMHOKurKzkX//6Fx07dqyTmtY9+Rp9bxxNk7ataNS6Of1v+RaFf80jHDrQIxZU3wQCcEPP/Q/H+Kok4KTGcEnnaFYlHbvvdIUmKQfe4Qf+/T/Xxf/JeUlSPecYOj7E/SWgAP369SM/P79a2wMPPEBOTg4QuT+wf//+PP3004wbN46nn36aAQMGHNHln8dixbTnaJTRnEvy7iOQFODDvy/i7bueqJN1KTaGnwy394PfvAvlX9knnXIC3J8NLdNiU5t0tE45AR4+B24pgM/2VJ/XJBl++TX4WuvY1CZJShyOoeNDIBwOH+xER9wqLS0lPT2dhx9+mO9973tA5KEw48eP54svvqBVq1b8+c9/Pu7LQw90/bKO3YhZd9aLewC/bEc5zP4YfvteZHraWXDWSZB0uOtDpThUEYL5m+C2JZHp2/vB+R0iZwclSaotjqFrV22Poevln/0VK1ZQWVlZ9R2AAKeddhqLFy+OYVVqiJqnweVd9wfAc3zwp+qxlCQYdvL+aS9jliQp8dTLAJidnU09PHEpSZIkSTEV9w+BkSRJkiTVDgOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoHSc8vLyyMzMJBgMMn78+BrzZ8yYwdy5cwEYMmQIzZo14+OPP67Rb+PGjeTm5nLuuefyzjvvADB+/HgGDx7MsGHDKC4uBuDqq68mHA7X4RZJkiSpoTIASrVgwoQJ5OXl0aJFC/Lz86vNe+mllxg2bBgAzz77LJdddtkBlzF16lTuv/9+XnjhBX75y18C8Itf/ILXX3+dSZMm8eCDDwKQnZ3NvHnz6nBrJEmS1FAZAKVa1KdPn6ozdQBbt26lcePGBAIBANq1a3fQ1xYWFtKvXz9OOukkdu3aBUCXLl0ASE5OrlpGbm4us2fPrqMtkCRJUkNmAJRqUX5+PllZWVXThYWFdO7c+YheGwqFDvr73XffzYQJEwDo3Lkza9euraWKJUmSlEgMgFItePTRRwkGg3To0IH+/fsf0zKSkpIO+PvkyZO5/PLL6dq16/GWKUmSpASXEusCpIZgwoQJ3H777TXas7KyKCoqOqJldOvWjRUrVnDyySdzwgknAPC3v/2NrVu3ctddd1X1Kyoqonv37rVTuCRJkhKKZwClOpSRkcHu3burpseNG8ecOXO44ooreO211wC45ZZbALjtttu46aabGDVqVFWYvPnmm3nnnXcIBoNVIXDevHmMGDEiylsiSZKkhsAzgNJxCgaDBIPBg84fOXIkc+fOZfjw4TzxxBM15t97770AdOrUiby8vGrzDnT2cPHixVx33XXHVbMkSZISkwFQqmNXXXVVrS7vscceq9XlSZIkKXF4CagkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQliHoTAMvLy5k8eTIdO3akSZMmDB06lIKCAgKBALNmzYp1eWqg9lTA3z/aP/3OVgiHY1dPQ1URgtf+BdPehwfehzc/hZDvs6TD+KAE/rAG7l8Jf90A28tjXZEkxb+UWBdwJMLhMGPHjqWgoIApU6aQlZXFU089xejRowEYMGBA1GrpcvHZ9Lz2QjJ6d6FsawkzB90QtXUruuYUw13vwK6K/W0TXoeeLeCeM6Fd09jV1pC8/TlMehu2lO0/IvWnQujQNPI+n9oipuVJikM798LPl8KCzRAAkgJQGY4Ewet7wPgsCARiXaWkL3MMHT/qRQCcPn06s2fPZvny5fTu3RuAYDBIZmYmGRkZdOrUKWq1lG3fxeo//oPGJ7Wg93XfjNp6FV0LN8HP3j7wvDXb4bo34ckcSE+Nbl0NzeptcOOiyBlAgNCX5n2yG65/E544DzqcEIvqJMWjUBh+tBiWb41Mh4mEP4C9IXhgFaQEYFxWzEqUdACOoeNHvbgEdOrUqYwbN64q/AEkJyeTmZlZdfbvxz/+MZmZmQQCAd577706q+WTBSvYMOsNdn38WZ2tQ7EVDsP/rvr37weYHwL+tRtmfXSAmToqf1gbCX+hA8wLAbv2whPro12VpHiW/yks23rg/fM+09dAacUhOkiKOsfQ8SPuA+C6devYsGEDY8aMqTFv48aNVQHwkksuYcGCBXTu3DnaJaqBWbMjcl/JoQYXAeCFomhV1DBtK4cFmw4c/vYJAS9t3H90X5L+vvHwg5fdlZC3KSrlSFK9E/eXgBYXFwPQpk2bau2rV6+mqKioKgAOHjz4mNeRnp5OeXnNO8e7pbTiJ82PfbmqLjc3yPqKL2JdxmGlf20EXf77hUP2CQPrN2+nUaM2h+yng2vU4TROvf+dw/bbUwnNMk4itHtHFKpKDH2e2QNAo0aNY1yJdPS63jGPE04757D9rv3Rf/P5i/8ThYokfZVj6NqVm3vgMXRaWholJSVHvby4PwPYunVrAAoLC6vawuEwt912G6FQKKoPgFFiqCjZctg+4XCYip2H76eDq9y59Yj6hfaWEdqzq46rkVRfVOz4nHDl4a/vrDyCfbkkJaK4PwPYs2dPsrKymDRpEqmpqTRr1oyHH36YZcuW0bRpU3r06HHc6zhYct5csJqXR91+3MtXxLx5ebQddFqsyzisUBhGzYVNpQe/DDQQCHDjeV25rqwsqrU1NN9/A5ZuOfhloEnARZmNWFq6O5plNXgDX4z8W+bnV/XQq8Xw3wd5SNc+aUmw9sXpNE+bHp2iJFXjGLp21fYYOu7PAKakpDBz5kzat2/P+PHjmThxIiNGjCAnJ4e+ffuSlBTdTQgkJZHcKJVASgoEAiQ3SiUpLe5ztI5CUiDyGPGDhb8koEUqXOrtpsft2n+/zwd6WnsASEmC7/okP0lfEmwPXZsdegBzeVdonha1kiQdAcfQ8aNevOv9+vUjPz+/WtsDDzxATk5O1Gvpdtl5DP7dD6umv/vh0+zc+KnfZdLAfLMTfFEO//v+lwJKIHJ2MKMRTDsLTvT2qeM28ES48wyYsizy+PYva5ICvxkIWc1jU5uk+JSaBA+eAzctgnVfujU4icjVBJd2hh/0jFV1kg7GMXT8qBcB8KtKS0tZs2YNEydOrGq76aabeO6559i0aRPDhw+ndevWrFy5stbXXfhMHoXP5NX6chV/vpsF53eIfN3D+pLIoOPcNjC0PaQlx7q6huP8DnDWSZGnfd7/7/9k/7svXHAKnFAv91CS6tpJjSPfxbros0gQBLiyG4zsBJnpsa1N0oE5ho4f9XJ4tWLFCiorK6s9AGbatGlMmzYthlWpIWrTBL53/LeZ6jBapMG4bvsD4JguMS1HUj2QFIBzvvQg5v/qffC+kqT96mUAzM7OJhz2i8EkSZIk6WjE/UNgJEmSJEm1wwAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKKleyMvLIzMzk2AwyPjx42vMnzFjBnPnzgXg7rvvZsiQIdx44401+n3ve98jJyeHwYMHs3btWgD++Mc/cs4553DJJZdQUlLC3r17Offcc8nJyWHkyJHs2bOHrVu3cvPNN9ftRkqSJNUxA6CkemPChAnk5eXRokUL8vPzq8176aWXGDZsGJs3b2bp0qUsXLiQlJQUlixZUq3fQw89xPz58/nVr37F73//eyoqKnj88cd5/fXXufbaa3nkkUdITU1l/vz5zJ8/nzPPPJM5c+aQkZHBtm3b2LlzZzQ3WZIkqVYZACXVO3369KG4uLhqeuvWrTRu3JhAIMCSJUvIyckBYOjQoRQUFFR7bWpqKgA7d+6kT58+fP7553Tq1ImkpCROP/30qmCZkpICQCgUolu3bgBkZ2eTl5dX15snSZJUZwyAkuqd/Px8srKyqqYLCwvp3LkzANu2baN58+YApKens23bthqvHzZsGD/84Q8588wzOemkkygsLGTPnj0sWLCA7du3A/D+++9z5pln8uqrr9KxY0cAOnfuXHXZqCRJUn1kAJRUbzz66KMEg0E6dOhA//79D9inZcuW7NixA4CSkhJatmxZo89rr73Gc889x5QpU0hOTubWW2/lggsu4J133qFt27YA9OrVi7feeouxY8fy+OOP19UmSZIkRZUBUFK9se8ewDvvvLNae1ZWFkVFRQCcccYZLFiwAIB58+YxaNCgan3LysoAaNGiBU2aNAHg0ksvJS8vj+zsbEaMGMHevXsJh8NV/Ro3bgxAUVER3bt3r7sNlCRJqmMpsS5Ako5XRkYGu3fvBqBdu3b07duXIUOG0LdvXwYOHMimTZuYMWMGt956K6NHj6a0tJRAIMCDDz4IwA033MCaNWvo1asX999/Pxs2bGDChAkkJSXRqlUrnnjiCQAWLVrEtGnTYradkiRJx8sAKKleCAaDBIPBg84fOXIkc+fOZfjw4UyePJnJkydXzWvXrh233norALNnz67x2oceeqjadFZWFvPnz6/WtnXrVlq2bEl6evpxbIUkSVJsGQAlNQhXXXVVnS4/IyOD++67r07XIUmSVNe8B1CSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZISRL0JgOXl5UyePJmOHTvSpEkThg4dSkFBAYFAgFmzZsW6PEnHIRyGtz7bP/3eF5E2qb76cCc8sR7+uBbyPoGKUKwrko7dtnJ47kN4dC28UAQle2NdkaTjkRLrAo5EOBxm7NixFBQUMGXKFLKysnjqqacYPXo0AAMGDIhaLUlpKZx197W0H3w6jVs3Z/fmL1j1x5dZ/ceXo1aD1JCs2gY/exs+2rW/7T8WQo8W8KszoFOzmJUmHbVt5fDzpfDmp9XbM9LgZ/0hp11MypKOSWUYHloFT66Hii8dlPvNuzA+C77XA5ICsatP9Ytj6PhRLwLg9OnTmT17NsuXL6d3794ABINBMjMzycjIoFOnTlGrJSk5mdJPtzHn8jsoKdpMRq/OfP3p29nz2TY+fCk/anVIDcEHJXDdG1BWWXPeuh1w7evwRA60aRL92qSjtacSbngTCnfUnPdFOfy4AH53FpzTJvq1Scfif96Dv26o2V4egj+sjfx7Y6/o16X6yTF0/KgXl4BOnTqVcePGVYU/gOTkZDIzMxkwYABbtmzhwgsvpEePHpx++ulceumlfPbZZ4dY4rGrKC1j2W/+QsmHmyAcZuvKD9k4ZwltBvWsk/VJDdkf1kTC34GujguFI4PmJ9dHvSzpmPzjY1i748Cf530nT+5f6eXNqh8+3gXPHCD8fdmMQvhsT3TqUf3nGDp+xH0AXLduHRs2bGDMmDE15m3cuJEBAwYQCAT4yU9+wpo1a3j33Xfp1q0bP/3pT6NSXyAlmbbZPfliVVFU1ic1FDvK4bVPDjxY3icMvPBRJAxK8e75IjjU1XBhIme9V22PVkXSsXtp4+H7hID/O4J+0oE4ho6duL8EtLi4GIA2bapfM7N69WqKiooYMGAAGRkZBIPBqnlnnXUWDz/88BGvIz09nfLy8hrt3VJa8ZPmgw/52rPunsDenaWsf3b+Ea8vUeXmBllf8UWsy1CcaNThNE69/53D9ttVASdknERo9wGuq9Mx6fNM5JB9o0aNY1xJw9LzDxtJaXn46ztzRn6bHYtfqPuCEoSf57pxyg8eoeWQywkkpx60T7hiL7/43WNc/4cbo1iZ6gPH0LUrN/fAY+i0tDRKSkqOenlxfwawdevWABQWFla1hcNhbrvtNkKhUI0HwIRCIR5++GFGjhxZ57WdOWU8J53Rg1evvIvQ3oo6X5/UkFTuPrLTIOHKCkJlu+u4Gun4Ve7eRvgIru+s3OUpQMW/yt07OPQ5bSApicpd26JRjhoYx9CxFQgfyV+rGKqoqKBnz57s3buXe+65h2bNmvHwww+zbNkytm7dSklJCUlJ+3PsD37wA4qLi3nuueeqtR+LzQWreXnU7QecN+iX/0H7wafzj7G/oGyLZyaOxIhZd9J20GmxLkNx5JqFka98ONhloEnAsJPhVwOjWVXDN/DFyL9L6v44WUKZvibycyit0mD2NyA17g+/1h9+nuvG8i1w7RuH7/dkTuSpzdKXOYauXbU9ho77P0EpKSnMnDmT9u3bM378eCZOnMiIESPIycmhb9++1ULej3/8Y9atW8df//rX4w5/hzLojmtoP6SvH1zpOF1z6sHDXwAIBGBct2hWJB27SztDeuqh/7CO7274U/3QLwP6Zxz88xwAzj7J8Kej4xg6PsT9PYAA/fr1Iz+/+uNhH3jgAXJycqqmJ02axNtvv83//d//0ahRozqr5YRTTqTXtRdSuaecyxY/WNW+efFq5l55V52tV2qIBreF/+4LU1dEHpDx5csRUpLgrq9B71axqk46Oic2hgfOgpsWwfYvfVF2EpEDHeO6wZVdY1WddHQCAfjtoMjn+f1t+9uTApEHc/XLgLu9OkNHwTF0/KgXAfCrSktLWbNmDRMnTgRg5cqV/OpXv+LUU0/lnHPOASAzM5Pnn3++1te96+PP+VP7y2p9uVKiGtMFzm0Dz38EK7+IHFU+40QY2Qky6u5YjlQnereCF78e+UqIX62ItI3NhNGdIat5bGuTjlbLNHhsCOR/ChMXR9q+cTJc1BGyT/JL4HV0HEPHj3oZAFesWEFlZWXVA2B69+59RDfeS4pP7ZrCf3p7qBqIE1IiBzb2BcBbT49pOdJxSQ5ErtbY584zYleLpNpRLwNgdna2gU+SJEmSjpK3okuSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSFGV5eXlkZmYSDAYZP358jfkzZsxg7ty5AAwZMoRmzZrx8ccf1+i3YMECsrOzyc7OZtasWQA8++yzDBo0iLPOOotFixYBcPXVVxMOh+twiyRJ9YUBUJKkGJgwYQJ5eXm0aNGC/Pz8avNeeuklhg0bBkQC3WWXXXbAZdx33308//zzzJ8/n2nTpgHw4IMPsmDBAp577jl++9vfApCdnc28efPqcGskSfWFAVCSpBjq06cPxcXFVdNbt26lcePGBAIBANq1a3fQ13bv3p3t27eza9cu0tPTAejSpQu7du1i+/btZGRkAJCbm8vs2bPrcCskSfVFSqwLkCQpkeXn5/Nf//VfVdOFhYV07tz5iF47atQozj//fEKhEI888ggAF198MQMGDKCysrIq9HXu3Jm1a9fWfvGSpHrHM4CSJMXAo48+SjAYpEOHDvTv3/+YljF58mTeeustVq1axdSpUwGYOnUqq1at4q233mLy5Mm1WLEkqSHwDKAkSTEwYcIEbr/99hrtWVlZFBUVHdEykpOTad68OWlpaZSVlQHQuHFjmjRpQjgcZteuXQAUFRXRvXv32iteklRveQZQkqQ4kpGRwe7du6umx40bx5w5c7jiiit47bXXALjlllsAmDhxIrm5uZxzzjlcc801AFx11VWcc845DB06lJtvvhmAefPmMWLEiChviSQpHnkGUJKkKAsGgwSDwYPOHzlyJHPnzmX48OE88cQTNebfe++9AFx00UVcdNFF1eZde+21XHvttdXaFi9ezHXXXXf8hUuS6j0DoCRJceaqq66q1eU99thjtbo8SVL95SWgkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCDqTQAsLy9n8uTJdOzYkSZNmjB06FAKCgoIBALMmjUr1uVJklTlsz37f3/7cwiHY1eLpPqhIgQLNsGzG+AfH8POvbGuSA1VSqwLOBLhcJixY8dSUFDAlClTyMrK4qmnnmL06NEADBgwIKr1nPWra+n49YGkNm/K3p2lFP09nyV3PEFob0VU65AkxZddFfDrd+CV4v1t178JHU+An/WDgSfGrjZJ8evvH8Hv3ocvyve3NUqCy7vCDT0hORC72mqTY+j4UC8C4PTp05k9ezbLly+nd+/eAASDQTIzM8nIyKBTp05RrWfVY/9gyS9nUFFaRqOMdILTb6HvTZey/N5nolqHJCl+lFfCTYtgxVb46gm/4l3ww3x46Bz4WuuYlCcpTr1QBHe+U7O9LASPF8K2cpjcP+pl1QnH0PGhXlwCOnXqVMaNG1cV/gCSk5PJzMysOvt3ySWX0K9fPwYMGMCQIUNYvnx5ndWzfe3HVJSWRSYCAcKhMOld29fZ+iRJ8e/Vf8E7Bwh/ACEgFIb/eS/aVUmKZ3sq4L6Vh+4z6yNYvT069dQ1x9DxIe7PAK5bt44NGzYwbdq0GvM2btzImDFjAHj88cdp0aIFALNmzeKaa65h6dKldVbX6T+8hL4Tx5B6QhP2bN3Bq995os7WJUmKf899GDmqGjrI/BCRQdza7XBqi+jVJSl+/fOTyKXjh5IEzCqC0/pGpaQ65xg69uI+ABYXR26kaNOmTbX21atXU1RUVHUGcF/4A9i+fTtJSUd+cjM9PZ3y8vIa7d1SWvGT5oMP+Jp3H3iBdx94gRbdO9D10iGUfvrFEa8vUeXmBllf4fskxVqfZyJPKGnUqHGMK2lYev5hIykt2xy237nf/BY7Cnx4WW3x8xwdvs91o81lP6PN2NsJHGLcWhkO8ccX5vLzMy+OYmXHxzF07crNPfAYOi0tjZKSkqNeXtxfAtq6deRmicLCwqq2cDjMbbfdRigUqvYAmGuvvZZOnTrxs5/9jMcffzwq9W1fV8zWlUUM+d+borI+SVJ8qizdQfgIHvcZ2rMrCtVIqg9Ce3YeMvxFOoUI7dkZnYKiyDF07MT9GcCePXuSlZXFpEmTSE1NpVmzZjz88MMsW7aMpk2b0qNHj6q+jzzyCAAzZszg1ltvZfbs2Ue0joMl580Fq3l51O2HfX1SajLNvX75sObNy6PtoNNiXYaU8Aa+GPm3rKwstoU0MA+ugj+tO/A9gPukp8K/Fv0fjZKjVlaD5+c5Onyf68bHu2D0a4febwSSU/jfGy7lgrvrz3vvGLp21fYYOu7PAKakpDBz5kzat2/P+PHjmThxIiNGjCAnJ4e+ffse8FLP7373u8ybN48tW7bUej2p6U3J+laQtOZNAWjVszP9Jo7hX3kHeHyTJClhjOkMjZIP/Yf1yq4Y/iRVOeUEGNoeDvYtD0lA+yaRPvWdY+j4EfdnAAH69etHfn5+tbYHHniAnJwcAHbu3MkXX3xBx44dAXjppZfIyMggIyOj9osJh+k65jzOnDKepLQU9ny+g6LZi1l+z19rf12SpHqjXVO4Pxt+tBhKK/e373swzMhOcM2psapOUrz6+QDYWgbLtkJSIPLE4H1ObAwPnA1pDeHAkWPouFEvAuBXlZaWsmbNGiZOnAjArl27GDt2LLt27SI5OZmMjAxeeuklAoHa/9bMvTtLmfPtX9b6ciVJ9d/AE2HWcHjxI5i/CfZUQlbzyNnBfhlQB3+WJNVzJ6TA78+F1zdHnva5YHOkfVJfuOAUaFovR+s1OYaOH/XyI7VixQoqKyurHgDTtm1bFi1aFOOqJEmCjEbwH90jP5J0JJIDkNMu8rPvfstLu8S0JDVg9TIAZmdnH9GT1iRJkiRJ+8X9Q2AkSZIkSbXDAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAYZwbf/wOy75oQ6zIO6MrCGWT0yYx1GZIkSVI1jqGPXEqsC2jI2p3Tm/63fIvWfbsCsGXFByz/7TNsyl8Z48oi+t/yLVr368ZrV/3qiPo/mfXdOq5IkiRJic4xdN3yDGAdOWX4GXz9qdvZOPdtnvna9TzztevZOPdtvv707Zwy7GsHfE0gufb+7wikJNfasiQllry8PDIzMwkGg4wfP77G/Lvuuot169Ydchk33ngjQ4YM4e67767W/o9//INgMEgwGKR169YsX768at7999/P8OHDASgtLeXCCy8kJyeHq6++GoBVq1YxderU49w6SVI8cwxd9wyAdST7zmsofDaPlQ+/yN6S3ewt2c3Kh19k/cz5DLrzGgAuK3iIvhPHcOGLdzHugyc5sV83AFJPaExw+i1cuW4Gl8y/j5OD/Q67vnZn9+bKwhmcOm44l731MCPn/haA9uf15ZuvTOU7ax5n5Gv30umCMwHodMGZnH7TaDrk9ufKwhlcWTiDpLRDnxD+j09m0rpfNwLJSXxn7Z9p2aNjZN3n9OY/PplJ52+eDUCTNi256qO/kNqsybG9eZJibsKECeTl5dGiRQvy8/Or2kOhECtWrKB79+4Hfe2SJUtISUlh4cKFLF26lM2bN1fNu+CCC8jLy2PevHl07dqVfv0i+7e9e/dWC4Nz5sxh8ODBzJ8/n9TUVN577z169uzJ0qVLCYfDtb/BkqS44Bi67sfQBsA60LzbyaR3bsuGF96oMe+D51+neZd2NO/aHoCssUHeuOUhnsz6Llve2wBA5iWD+eD5hTx12nhW/O/zDP3jT2jaLuOw601p0ogT+2fxwnkT+fuI20jv0o7hj/+U9x54gad7Xc3bdz1BzsM/IqN3Fz76x1u8O+15iuct58ms7/Jk1ncJlVcc0faFK0NsXryK9oNPB6D9kNPZseET2g/uE5kefDpbVnzA3p2lR7Q8SfGrT58+FBcXV02/8847nHrqqYd8zeLFixk6dCgAOTk5vP322zX6vPXWWwwcOJBAIADAjBkzuOKKK6rmZ2ZmsmvXLgB27txJixYtAOjatSsrV8bHJUCSpNrlGDo6Y2gDYB1onJEOQOnmrTXmlX76RaRP6+YArJnxKtvXFRMOhao+PJsWvc9HLxcQrgzxwcwFfPF+EV0uPvuw6w0kJfH23U9SUVpGZWk5maPOYfPiVXz4Uj7hyhDF/1zGR3OW0G1sznFv46bX36v2YV3+22eqPsztzu3DJ2+8d9zrkBR7+fn5ZGVlVU2vW7eOLl26HPI127Zto3nzyD4uPT2dbdu21egza9YsRo0aBUTOKr7yyiucf/75VfOzsrJYuHAhPXv2JBAI0LFj5Ghp586dWbt27XFulSQpHjmGjs4Y2gBYB/ZsLQGgSduaRxyatGkV6bNlBwC7ij+r0WfXx9Xbdm787IiOXlSUllH273UDNG3fmp1fXVbRZpq2b33YZR3OJ6+/S9uzepHWvCnNu57MhhfeIDkthabtM2g/uA+fLHz3uNchKXYeffRRgsEgHTp0oH///gfs8/7771fdz7fv59e//jUtW7Zkx47IPq6kpISWLVvWeO28efOqzhI+99xzjBw5str8xx9/nG9/+9usWrWKE088kTfffLNWt0+SFH8cQ0dnDO1TQOvAjvX/ouSjzWSOPIdNX0nxmaPOoeSjzez44BMAwqGa97KccMpJ1aabdTyJz5Ye/oh3OBSqNr37ky20O7v3V5bVht2fbDlg/6OxdeWHhEMhen3vm3z61mrCoRCfvP4ep35nOE3btOLTt1Yf87Ilxd6ECRO4/fbba7R3796d5557DoBevXqRl5dXo89bb73F008/zcUXX8yCBQv41re+VW3+Bx98wCmnnEJaWhoAa9asIS8vjxkzZrB8+XIeeeQRQqEQGRmRP9oZGRlVZxGLioo499xza3FLJUnxwjF0dMbQngGsIwU//xNZ386l9/UXk9qsCanpTel1/TfJ+lYuBZMfO+Rr253Vi47fGEggOYmulw6hVa/OfPh/i466hg2z3qRtdk86X5RNICmJDrn96Xj+QNbPXABA6efbOaHDicf85KRNb66k13UX8cnrkSMVn7zxLr2uu4hP315LZdneY1qmpPjWr18/1qxZc8g+Z555JmVlZQwZMoR+/frRtm1bNm3axD333ANUv/wT4Gc/+xmvvvoq//jHP+jfvz/XXnst3/nOd3jssccIBoMsX76cr3/96wAUFhbSp0+futtASVJMOYau+zG0ZwDryMZX3mLuuLvpd/Nl9L81cvR7y4oPmDvu7qr/sw9mwwuv021sDuc9+F/s+mQL8679Lbv/teWoayj5cBP/vOY3fO2/r+Tc+37Aro8/Y8EPp7H13zfKfvhSPl0vGczl7/2RQCDAX/pOOOKbWAE+WfguXb55Np+8HjlC88nr75HW/ATv/5PquX2Xcx5IUlISffv2Zd26dYd8EuiDDz5Ybbpdu3bceuutAPzoRz866Ovmzp0LQKtWrZgzZ061eatWreKMM86oenCMJKnhcQxd9wJhn6d9UJsLVvPyqJqXQCWiQFIS44ufYdbQW/hiVdExLWPErDtpO+i0Wq5M0tEa+GLk3yUjD91Pqg/8PEeH73P0NIT32jH0fvE4hvYSUB2RVr07E9pbccAbbiVJkiTVFI9jaC8BrUdG5d1Hs1NOrNG+cc7bLLjh/uNe/vAnf0bb7JpHF/bu3ENSajJv3/0U5Tt2H/d6JEmSpGhxDF2dAbAemRU8+H0ztWHulXfV6fIlSZKkaHMMXZ2XgEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoKoFwGwvLycyZMn07FjR5o0acLQoUMpKCggEAgwa9asWJenBq5wB7xSDPM+gR3lsa5GOj6f79n/+8adsatDkiTFRkqsCziccDjM2LFjKSgoYMqUKWRlZfHUU08xevRoAAYMGBCTupIbpzHqn/fSpE1Lnsz6bkxqUN1asx1+vQLe/WJ/W1oSXNwRftQbGsf9fz3SfjvKYeq78Oq/9reN/idknwT/3RdOOSF2tUmSEodj6NiL+yHs9OnTmT17NsuXL6d3794ABINBMjMzycjIoFOnTjGpa8Ct32bnx5/TpE3LmKxfdWvtdpjwOpRXVm8vD8FzRfDhTnjgbEitF+fQleh2VcB1b8AHJRD6yry3PoerF8Kfz4P2TWNSniQpgTiGjr24H75OnTqVcePGVYU/gOTkZDIzM2uc/fvFL35BIBDgvffeq9OaWvftSofc/rz34At1uh7Fzv+8Fwl/Xx0sA4SBt7fAnOJoVyUdm2c3QOEBwh9AKAzby+H3q6NeliQpwTiGjg9xHQDXrVvHhg0bGDNmTI15GzdurBYAly5dyqJFi+jcuXOd1hRITuKc336fRZMeIVReUafrUmxs3AlLthx4sLxPEjDzwygVJB2nZzccen6IyH2uJXujUo4kKQE5ho4fcX0JaHFx5BRLmzZtqrWvXr2aoqKiqgBYVlbGD37wA55++mmCweBRryc9PZ3y8ppP9+iW0oqfNB9cra3PDaPY8u4GNi9aRbuze9d4jQ4uNzfI+oovDtct5tIHXECXSYd+uFAIWP7xNho1ahudoqRjFEhJpc/Th3/aS0UYTulzJns+XBGFqqTa0+eZyJONGjVqHONKGjbf5+hpCO+1Y+jalZt74DF0WloaJSUlR728uD4D2Lp1awAKCwur2sLhMLfddhuhUKgqAP785z9n3LhxdOnSpU7rSe/Sjh5XfYMld8yo0/UotkLlpUfWr2x3HVciHb9wZQXhysrDdwRCZUf22Zck6Wg4ho4vcX0GsGfPnmRlZTFp0iRSU1Np1qwZDz/8MMuWLaNp06b06NGD/Px8lixZwq9//etjXs/BkvPmgtW8POr2qum2g06jyYktuPSNaQAkpSSTekITLl/5R+ZNuIfNi1Ydcw2JYN68PNoOOi3WZRxWWSVcMOfQl8MlAd/52sncVlYWtbqkY3VLASzcHLnf70ACRJ4C+taG9wgEolqadNwGvhj5t8z9cZ3yfY6ehvBeO4auXbU9ho7rAJiSksLMmTP5/ve/z/jx4+nYsSMTJ06kefPmrF+/nqSkJObPn8+qVavIzMwE4OOPP+b888/nscce4xvf+Eat1rPhpTf518L9l0eddEYPBv/uB7w4/Mfs2bKjVtel2GmUDJdnwh/WHnh+AEgKwLcyo1qWdMyu7AYLNh18fhj4bjcMf5KkOuEYOr7EdQAE6NevH/n5+dXaHnjgAXJycgD46U9/yk9/+tOqeV26dOHvf/87ffr0qfVaKkvL2V26tWq6bMsOCIfZ/cnWQ7xK9dGEU6FoV+RJn0mB/WdOAkByAO4+AzLTY1qidMS+1hp+2jfyvZYB9j/gKOnfv3+nK4yu2+dnSZISmGPo+BL3AfCrSktLWbNmDRMnTox1KWzKX+kXWDZQKUlw59fgolMiT/tcuDnSfmU3GNMZOjaLaXnSURvTBfplRJ4IuugzqAzD6a3gsi5wxomxrk6SlEgcQ8dWvQuAK1asoLKyssZ3AO7z4YcfRrcgNVhJATi3beRn3/X4E31oleqxrObw3/1iXYUkSYqlehcAs7OzCYcP8iQDSZIkSdJBxfXXQEiSJEmSao8BUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVA6Tnl5eWRmZhIMBhk/fnyN+TNmzGDu3LkADBkyhGbNmvHxxx/X6Ldx40Zyc3M599xzeeeddwAYP348gwcPZtiwYRQXFwNw9dVXEw6H63CLJEmS1FAZAKVaMGHCBPLy8mjRogX5+fnV5r300ksMGzYMgGeffZbLLrvsgMuYOnUq999/Py+88AK//OUvAfjFL37B66+/zqRJk3jwwQcByM7OZt68eXW4NZIkSWqoDIBSLerTp0/VmTqArVu30rhxYwKBAADt2rU76GsLCwvp168fJ510Ert27QKgS5cuACQnJ1ctIzc3l9mzZ9fRFkhSw3K4qzTuuusu1q1bd8hl3HjjjQwZMoS77767WntpaSkXXnghOTk5XH311Qft/49//INgMEgwGKR169YsX76cVatWMXXq1FrYQkk6OgZAqRbl5+eTlZVVNV1YWEjnzp2P6LWhUOigv999991MmDABgM6dO7N27dpaqliSGr6DXaURCoVYsWIF3bt3P+hrlyxZQkpKCgsXLmTp0qVs3ry5at6cOXMYPHgw8+fPJzU1lffee++A/S+44ALy8vKYN28eXbt2pV+/fvTs2ZOlS5d6Sb+kqDMASrXg0UcfJRgM0qFDB/r3739My0hKSjrg75MnT+byyy+na9eux1umJCW0r16l8c4773Dqqace8jWLFy9m6NChAOTk5PD2229XzcvMzKy6YmPnzp20aNHikP3feustBg4cWHVFR9euXVm5cmXtbJwkHSEDoFQL9h1dvvPOO6u1Z2VlUVRUdETL6NatGytWrODzzz/nhBNOAOBvf/sbW7du5ZprrqnqV1RUdMij1ZKkA/vqVRrr1q2rutT+YLZt20bz5s0BSE9PZ9u2bVXzsrKyWLhwIT179iQQCNCxY8dD9p81axajRo2qmvaKDkmxYACU6lBGRga7d++umh43bhxz5szhiiuu4LXXXgPglltuAeC2227jpptuYtSoUdx+++0A3HzzzbzzzjsEg0HuuusuAObNm8eIESOivCWSVH8dyVUa77//ftV9evt+fv3rX9OyZUt27NgBQElJCS1btqx6zeOPP863v/1tVq1axYknnsibb755yP7z5s2rOjsoSbGSEusCpPpu30DhYEaOHMncuXMZPnw4TzzxRI359957LwCdOnUiLy+v2rwDnT1cvHgx11133XHVLEmJZMKECVUH1r6se/fuPPfccwD06tWrxj4YIpdtPv3001x88cUsWLCAb33rW1XzQqEQGRkZQOSA37Zt2xg0aNAB+3/wwQeccsoppKWlVb2+qKiIc889tzY3VZIOyzOAUh276qqrGD58eK0t77HHHqt2j6Ak6dj069ePNWvWHLLPmWeeSVlZGUOGDKFfv360bduWTZs2cc899/Cd73yHxx57jGAwyPLly/n6179+wP5Q8/JPiDworE+fPnW2fZJ0IJ4BlCRJDdahrtJISkqib9++rFu37pD3Vu/7HtZ92rVrx6233gpEngR6uP4AP/rRj6pNr1q1ijPOOKPqgTCSFC0GQEmSlLAOdGloNPTs2ZOePXvGZN2SEpvXkUmSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoKoNwGwvLycyZMn07FjR5o0acLQoUMpKCggEAgwa9asWJenBmzT7v2/76mMXR0N3dYyWPQpFHwGJXtjXY2k+qAitP/3D0tiV4ck1ScpsS7gSITDYcaOHUtBQQFTpkwhKyuLp556itGjRwMwYMCAqNUy+P4fkDl6MKG9FVVted+7l+J5y6NWg6KjaCf8z3vw5qf7285/Bb6VCdf3gJR6c/gkvm3ZA/+zEub+CyrDkba0JPhmR7ipFzRLjW19kuJPOAzPfAh/Wru/7bJ5cHor+K9e0L91zEqTdBCOoeNHvQiA06dPZ/bs2SxfvpzevXsDEAwGyczMJCMjg06dOkW1nrVPzGXxzx6N6joVXUU74eqFsHMvhL/UvqsCHlsH63fAPYMgORCzEhuEL8rgmtfhk93wpQP5lIfg+SJ4fxv84VxoUi/2VJKi5X9XwZ8La7av/AK+/yb871lw5knRr0vSoTmGjg/14hzG1KlTGTduXFX4A0hOTiYzM7Pq7F+XLl047bTT6N+/P/379+eVV16JVblqAO59LxL+QgeZv2Az/PNfUS2pQfrDWvjX7gO/z2Fg9Xb464ZoVyUpnq3bfuDwB5F9SSgMv1we+VeSVFPcH1dft24dGzZsYNq0aTXmbdy4kTFjxlRNz5w5kz59+tR5TV0vHULX0YMp/Xw7H/xtAe8+8ALhyoNFBdU3n+yG/E+rn/n7qiTgmQ3w9Q7Rqqrh2VMBL3506PcZIu/z+CwIeLZVEvBcUWQffLC/uiHgk1JY/Bmc3SaKhUk6LMfQ8SHuA2BxcTEAbdpU34uvXr2aoqKiWrn/Lz09nfLy8hrt3VJa8ZPmg6u1vf/obJbcMYM9W0to3bcrOQ9NJLlRGst+85fjrqOhy80Nsr7ii1iXcVjpAy6gy6RDP1goBLz10Rc0atQuOkU1QI1O7sGpv1tx2H6f7oGmLVsT2rMzClVJinddf/lPTuh57mH7Xfaft/H53++v+4ISRJ9n9gDQqFHjGFfS8DWE99oxdO3KzT3wGDotLY2SkqN/AlbcXwLaunXkTu7Cwv3Xe4TDYW677TZCoVC1AHjllVfSt29fbrjhBrZt21Yn9Wx9dwN7tuyAcJgt76xn2W//Suaow/8hUv0R2lt2RP3CFTUPGujIhSqO7H0GCFf6WFBJEaG9ewiHDn/GwH20FF8cQ8ePuD8D2LNnT7Kyspg0aRKpqak0a9aMhx9+mGXLltG0aVN69OgBwMKFC+nYsSNlZWVMnDiRH/7whzzxxBNHtI6DJefNBat5edTth35xKAxemnZE5s3Lo+2g02JdxmGVVkSe9rn7EF/5kASM7duW28uOPMSounAYLv0nfLzr4JeBJgEDWsOSnTuiWZqkOPbEerh/5eH7LXryPjo1u6/uC0oQA1+M/Fvm37061xDea8fQtau2x9BxfwYwJSWFmTNn0r59e8aPH8/EiRMZMWIEOTk59O3bl6SkyCZ07NgRgEaNGnHDDTfwxhtv1Ek9XUaeQ2p6UwBa9exMv1vG8uHf8+tkXYqNJikwpsvh+43NrPNSGrRAAK7sduh7AEPAd7pFqyJJ9cHFHaFp8sEHMEnAuW2gU7NoViXpcBxDx4+4PwMI0K9fP/Lzq39AHnjgAXJycgDYtWsXFRUVtGjRgnA4zF/+8hf69+9fJ7Wc9h/nc/bU60hKTaZ08zbWz5zPiv99vk7Wpdi5oSd8UAJvfFr9YQP7Bhw/7w89WsSmtoZkTOfIE/3+9pWHOiQFIgcGr+8BOd5mKelLWqTB/2TDxMVQVrn/IFKAyO+Z6fCL6H09sKQj5Bg6ftSLAPhVpaWlrFmzhokTJwKwefNmxowZQ2VlJZWVlfTq1YuHHnqoTtb9j0v/X50sV/ElNQnuHRT5cvJnN0BhSaTtvHaRL4I/zfBXKwIB+GlfGNw28rTP/M8i7cF/v88DT4xtfZLi08AT4a9BePZDeKU48h2tJzeB0V3+fYawXo5upIbNMXT8qJe7yBUrVlBZWVn1AJiuXbuybNmyGFelhiYlCS44JfKjuhMIwJB2kZ999z385szY1iQp/nU4ASb2jvxIko5cvQyA2dnZhMN+w6skSZIkHY24fwiMJEmSJKl2GAAlSZIkKUEYACVJkiQpQRgAJUmSJClBGAAlSZIkKUEYACVJkiQpQRgAJUmSJClBGAAlSZIkKUEYACVJkiQpQRgAJdULeXl5ZGZmEgwGGT9+fI35M2bMYO7cuQDcfffdDBkyhBtvvLFGv+9973vk5OQwePBg1q5dC8Af//hHzjnnHC655BJKSkrYu3cv5557Ljk5OYwcOZI9e/awdetWbr755rrdSEmqp2prH/3ZZ58xevRocnNzmT59OgC5ubkEg0GCwSDvv/8+mzZtqpru1q0b999/v/to6SgYACXVGxMmTCAvL48WLVqQn59fbd5LL73EsGHD2Lx5M0uXLmXhwoWkpKSwZMmSav0eeugh5s+fz69+9St+//vfU1FRweOPP87rr7/OtddeyyOPPEJqairz589n/vz5nHnmmcyZM4eMjAy2bdvGzp07o7nJklRv1MY++pe//CX3338/8+bN47rrrgMgOTmZvLw88vLy6NWrF+3atauaHjRoEBdeeKH7aOkoGAAl1Tt9+vShuLi4anrr1q00btyYQCDAkiVLyMnJAWDo0KEUFBRUe21qaioAO3fupE+fPnz++ed06tSJpKQkTj/99KpBS0pKCgChUIhu3boBkJ2dTV5eXl1vniTVa8ezj167di0//elP+cY3vsGaNWsACIfDBINBrr32Wvbs2VPVd+/evWzYsIFTTz0VcB8tHSkDoKR6Jz8/n6ysrKrpwsJCOnfuDMC2bdto3rw5AOnp6Wzbtq3G64cNG8YPf/hDzjzzTE466SQKCwvZs2cPCxYsYPv27QC8//77nHnmmbz66qt07NgRgM6dO1ddNipJOrDj2Ue//vrr3HnnnTz44IP87Gc/A2DmzJnk5eXRs2dPHn300aq+eXl5BIPBqmn30dKRMQBKqjceffRRgsEgHTp0oH///gfs07JlS3bs2AFASUkJLVu2rNHntdde47nnnmPKlCkkJydz6623csEFF/DOO+/Qtm1bAHr16sVbb73F2LFjefzxx+tqkySpwaiNfXTv3r3p1q0b3bt3rzog16pVKwBGjhzJypUrq/q++OKLjBo1qvY3RGrgDICS6o1995fceeed1dqzsrIoKioC4IwzzmDBggUAzJs3j0GDBlXrW1ZWBkCLFi1o0qQJAJdeeil5eXlkZ2czYsQI9u7dSzgcrurXuHFjAIqKiujevXvdbaAk1WO1sY/u0qULn3/+OZs3b6Zp06ZAJChC5MxiZmZmVd/FixeTnZ1dNe0+WjoyKbEuQJKOV0ZGBrt37wagXbt29O3blyFDhtC3b18GDhzIpk2bmDFjBrfeeiujR4+mtLSUQCDAgw8+CMANN9zAmjVr6NWrF/fffz8bNmxgwoQJJCUl0apVK5544gkAFi1axLRp02K2nZJUHx3NPvr222/n0ksvpaKiomp/O3z4cNLS0mjZsmXV/njZsmX069ePpKT95zLcR0tHJhDed5hbNWwuWM3Lo26PdRkNxohZd9J20GmxLkNxbOCLkX+XjDz61/75z3/m5JNPZvjw4bVb1L9t3bqVO+64g/vuu69Oli9J8ex49s/gPvpoHO97HQ8cQ9eu2h5DewZQUoNw1VVX1enyMzIyGsTAQpJiwX20FD+8B1CSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZISRL0JgOXl5UyePJmOHTvSpEkThg4dSkFBAYFAgFmzZsW6PEnHaXfF/t/LKmNXR0NXXgmrt8HKL2BXxWG7S1I1/9od6wokHa+UWBdwJMLhMGPHjqWgoIApU6aQlZXFU089xejRowEYMGBA1Gs6ZdjXGHDb5TTvdjIVO0t57/cvsfLhF6Neh1TfleyFh1bBSxv3t10wB8Z0hu/1gEbJsautISmvhEfXwbMbYMfeSFujJPhmR7ihJ7RIi219kuJT/qfw/63ePz1yLvTLgO/3gDNPil1dqr8cQ8devQiA06dPZ/bs2SxfvpzevXsDEAwGyczMJCMjg06dOkW1npNz+nH2Pdfz+k0PsCl/JSlNGnFChxOjWoPUEOzcC9e+Dh+UQPhL7SV74fFCWPEFPHAWpBkCj0tFCH5UAIs/q95eFoLnimDJFvjjYEOgpOr+8TFMXgqBr7S/uxV+kA9Tz4Tc9jEpTfWUY+j4UC8uAZ06dSrjxo2rCn8AycnJZGZmVp3927NnD//5n/9J9+7dOf3007nuuuvqrJ4BP7mcFff/jU9ef5dwZYi9O0vZtmbj4V8oqZpH1tYMf/uEgaVb4JkPo1xUA/R8Uc3wt08Y+Ggn/H71gedLSkwle+GXyyP7iNBX5oWItP+/pVDqpeQ6Co6h40PcB8B169axYcMGxowZU2Pexo0bqwLgT37yExo3bszatWt59913ueOOO+qknpQmjTixfzeanNSS0Qt/x7dXPMLQP91Gs45t6mR9UkNVVhkJJgcKf/sEiFyyGD5UJx3WMxtqHsH/sjCRS3AdyEna5/82QvlXk9+XhIHdlfBKcdRKUj3nGDp+xP0loMXFkT1LmzbVPxyrV6+mqKiIAQMGsHPnTv785z/z8ccfEwhEhjlt27Y94nWkp6dTXl5eo71bSit+0nxwtba0licQSEqi80XZvHrFnZRu2c6gX15N7qO38tI3bj3azUsoublB1ld8EesyFCfSTj6VHr9795B9wkDxbmjaMoPQnl3RKayhSU7h9L8c/r3bUwntep7Bno/ei0JRkuJdhxum0+q87xBITj1on3DlXn409RG+/ejE6BWWAPo8sweARo0ax7iSY+cYunbl5h54DJ2WlkZJSclRLy/uzwC2bt0agMLCwqq2cDjMbbfdRigUYsCAAaxfv57WrVvzi1/8goEDBxIMBnn99dfrpJ69OyP/Ub7/yGx2fvwZlaXlLP3VU7Q+PdNrmKWjUXnkp5vCIR8LeszCIcLhQxzGr9bV91nSv1VWcOhrBwAC7jd0xBxDx4+4PwPYs2dPsrKymDRpEqmpqTRr1oyHH36YZcuW0bRpU3r06MHy5cv54IMPGDBgAPfccw+LFy/m4osvprCwkObNmx92HQdLzpsLVvPyqNurte0t2c3OjZ96TdoxmDcvj7aDTot1GYoToXDkaXKbSg/eJwno3QqWlGyPWl0N0fVvwLItNe/j+bITG8GidctJifvDgpKiYU4xTHr70H0CySnMmPJDhvz+h9EpKkEM/PcDMcvKymJbyHFwDF27ansMHfd/6lNSUpg5cybt27dn/PjxTJw4kREjRpCTk0Pfvn1JSkqiU6dOpKSkcMUVVwCQnZ3NiSeeyNq1a+ukpjV/nkPPay+i6cmtSW6UyoCfXM7n76xnV/HndbI+qSFKCsAVXQ/dJ8Th++jwruh66PAH8O2uGP4kVcltD60bHXygmAS0bwLnHPkdN5Jj6DgR92cAAfr160d+fn61tgceeICcnBwATjzxRHJzc3n11Vf5xje+wdq1a/n000/Jysqqk3refXAWaS2aMXLObyCQxKcFq5k34Z46WZfUkF3eNfKF5HP+FRlM7Asp+36/oit8/eTY1ddQBNvDf2TBnwoP/D4H28F3u8WuPknxJzUJ7suG/3wTdldUf2BXAGiWGpmffLirRKUvcQwdH+pFAPyq0tJS1qxZw8SJE6vafv/733PNNddwyy23kJqayowZM2jZsmXdFBAO8/ZdT/D2XU/UzfKlBJEcgDvPgHPbRp5U+f42CATgaxmRM1LBdpFpHb8f9oK+GfDXDfu/EuLUFvCtTLioo4M4STX1aglPB+HpDyJPBd2xF1qkwshOkX10uyaxrlD1jmPouFAvA+CKFSuorKys+goIgK5du5KXlxe7oiQdk6RAJIBc1HH/bQGGvrpxXrvIz777S57IiW09kuLfyU3hlj6Rn1A4ss+WVL/VywCYnZ1N2BtIpQbH4CdJ8cvwJzUM3vIvSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSaqSl5dHZmYmwWCQ8ePH15g/Y8YM5s6dC8CQIUNo1qwZH3/8cY1+CxYsIDs7m+zsbGbNmgXAs88+y6BBgzjrrLNYtGgRAFdffTXhcLgOt0iSGo6j2UfffffdDBkyhBtvvLFGv8svv5xgMMgZZ5zBJZdcAsDvfvc7zjrrLAYPHkxhYSEAixcvZtiwYeTm5lJQUMDWrVu5+eab624DFRUGQElSNRMmTCAvL48WLVqQn59fbd5LL73EsGHDgEigu+yyyw64jPvuu4/nn3+e+fPnM23aNAAefPBBFixYwHPPPcdvf/tbALKzs5k3b14dbo0kNSxHso/evHkzS5cuZeHChaSkpLBkyZJq/f7yl7+Ql5fHddddx4UXXgjA008/TX5+Pr/5zW/4/e9/Tzgc5t5772X27NnMmzePQYMGkZGRwbZt29i5c2fUtle1zwAoSTqgPn36UFxcXDW9detWGjduTCAQAKBdu3YHfW337t3Zvn07u3btIj09HYAuXbqwa9cutm/fTkZGBgC5ubnMnj27DrdCkhqmQ+2jlyxZQk5ODgBDhw6loKDggMt46aWXuPjiiwHo2LEjZWVlVfvo9evXU1paysiRI7nyyivZtWsXEDlwl5eXV7cbpzqVEusCJEnxKT8/n//6r/+qmi4sLKRz585H9NpRo0Zx/vnnEwqFeOSRRwC4+OKLGTBgAJWVlVWhr3Pnzqxdu7b2i5ekBu5Q++ht27bRvHlzANLT09m2bVuN1+/cuZOSkhLat28PwODBg+nZsyfhcJg333yTDz/8kPXr17Ns2TKeeuop/vCHPzBx4kQ6d+7M+++/X/cbqDrjGUBJUjWPPvoowWCQDh060L9//2NaxuTJk3nrrbdYtWoVU6dOBWDq1KmsWrWKt956i8mTJ9dixZKUOI5kH92yZUt27NgBQElJCS1btqzR55VXXuGCCy4AYMeOHfztb39j3bp1PP/880yZMoUWLVqQnZ1No0aNOO+881izZk1dbZKizAAoSapm3/0ld955Z7X2rKwsioqKjmgZycnJNG/enKZNm1JWVgZA48aNadKkCc2bN6+6lKioqIju3bvX7gZIUgN2JPvoM844gwULFgBU3b/3VbNmzWLUqFEABAIBTjjhBFJSUqru8zv11FP55JNPCIfDvPvuu3Tp0gVwv90QGAAlSUckIyOD3bt3V02PGzeOOXPmcMUVV/Daa68BcMsttwAwceJEcnNzOeecc7jmmmsAuOqqqzjnnHMYOnRo1VPk5s2bx4gRI6K8JZLU8Hx5H92uXTv69u3LkCFDKCsrY+DAgWzatIl77rkHgMrKStauXUuvXr2AyGWiZ599Nueeey7f/va3+fGPf0xqaipXXnkl5513Hg8//DDf+973AFi0aBHBYDAm26jaEQj7/O2D2lywmpdH3R7rMhqMEbPupO2g02JdhpTwBr4Y+XfJyKN/7Z///GdOPvlkhg8fXiu1XH311Tz66KMkJXk8UpIgvvbRX7V161buuOMO7rvvvkP2cwxdu2p7DO1DYCRJR+yqq66q1eU99thjtbo8SUpktb2P/qqMjIzDhj/FPw+5SpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEpSAgmF9/++NxS7OiRJNe3cG+sKlAhSYl3AkSovL+eOO+7gT3/6E59//jlnn302v/71r8nOzuaFF15g1KhRUanjysIZ1aaT01LZtq6YF4fdEpX1S9KxqAzD0x/AXz/Y33b+KzCmC1zdHZrWm78GktTwfFACj6yB1z7Z33bd63DNqXBWm9jVVZscQ8ePevEnPxwOM3bsWAoKCpgyZQpZWVk89dRTjB49GoABAwZErZYns75bbXrka/eyYdYbUVu/JB2tyjBMWlJ9YAGwYy/8aR3kfwrTzzUESlIsvL8Nrn8DyirhyxdmLN8KNy6Cn/eHizvFqLha5Bg6ftSLP/fTp09n9uzZLF++nN69ewMQDAbJzMwkIyODTp1i81/Fif2zaHnqKRT+dV5M1i9JR+LvG2uGv33CwJrtMH0NTOwd1bIkKeGF/n2A7qvhD/ZP3/FO5CzgSY2jXV3dcQwdW/UiAE6dOpVx48ZVhT+A5ORkMjMzSU1N5cMPP+SSSy6pmrdt2zZ27NjB1q1b67Su7t8ZSvE/l1G6+Ys6XY8kHY+/fgABImHvQMLA80Xw/dOgcXIUC5OkBFfwGXy8+9B9QmF4oQi+1yM6NUWDY+jYivsAuG7dOjZs2MC0adNqzNu4cSNjxoyhS5cuLF++vKp94sSJVFRUHPE60tPTKS8vr9HeLaUVP2k++ICvSWnSiMxR57LwpgeOeD2JLjc3yPoK/0OXoio5hdP/suuw3XZVQJvTvkbZRyujUJQkCeCkS39K28v/H4HAwZ/LGA6FuOfpV/jhry6JXmHHyTF07crNPfAYOi0tjZKSkqNeXtwHwOLiYgDatKl+B+zq1aspKiqqcf9feXk5Tz75JK+88kqd1tXl4rOpKC3n47lv1+l6JOm4hA923u84+0qSjl/4CB/H3ID2z46hYy/uA2Dr1q0BKCwsZNCgQUDkoTC33XYboVCoRgB88cUX6dChA1/72teOeB0HS86bC1bz8qjbDziv+5XDWP9MHuFKn6N+pObNy6PtoNNiXYaUcK5eCCu/qHl/yZe1TIMta5eR6pcDSVLULN8C1x7mOSiBpCRu/+6FXPWLsugUVQscQ9eu2h5Dx/2f+p49e5KVlcWkSZN49tlnefnllxk1ahRLly6ladOm9OhR/YLoP/7xj1xzzTV1WlPzbifTZmAP1j79Wp2uR5Jqw+VdDx3+AC7rguFPkqKsXwZ0S4ekwIHnB4C0JBjZMapl1RnH0PEh7v/cp6SkMHPmTNq3b8/48eOZOHEiI0aMICcnh759+5KUtH8TiouLmT9/PldeeWWd1tT9iqFsXryKkg2b6nQ9klQbvnEyXNo58vuXd/r7xhtnngjXdI92VZKkQACmDoTmqfv3yfskBSI/d58BLRvFpLxa5xg6PsT9JaAA/fr1Iz8/v1rbAw88QE5OTrW2xx9/nIsuuqjqstG68vadT9Tp8iWpNgUC8N99oW8G/OUDWL090n5yUxibCd/O9OyfJMVKl3R44jyYsR5e/AhKKyPBb2g7GJcFfVrFusLa4xg6PtSLAPhVpaWlrFmzhokTJ1Zr/9Of/nTAp4VKUqILBOCbHSM/uysijxU/ISXSLkmKrXZN4dbT4Ue9I09lbpIMaX4tj+pIvQyAK1asoLKyssYDYNauXRujiiSp/mhaL/f8ktTwpSRBi7RYV6GGrl4OA7Kzswk3oMfhSpIkSVI0eNeHJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJYhA2G9UP6jykt18seqjWJfRYLTq2Ym09KaxLkOSJEl1yDF07artMbQBUJIkSZIShJeASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKC+P8B265KgcvKqCMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAGOCAYAAADGoW0OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTkElEQVR4nO3deXyU5b3//9dkY5GwBGURWQJBZJGlInEBMwFaRSuISKuVylGs9tjqoVprD5V+aV1aaj1ajkt/VGstLq1SFe3BilgCqIGIgCiyBTFiKqggECAkJDO/P6YEY9hJZiaZ1/PxSMl93dfc9+eejneu971NIBwOh5EkSZIkNXhJsS5AkiRJkhQdBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShApsS4gnpWX7OaLVR/FuowGo1XPTqSlN411GZIkSapDjqFrV22PoQ2Ah/DFqo94edTtsS6jwRgx607aDjot1mVIkiSpDjmGrl21PYb2ElBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEPUmAJaXlzN58mQ6duxIkyZNGDp0KAUFBQQCAWbNmhXr8tRAbS+Hp9bDHcth6gp4fTNUhmNdlXRs9obg1WK4+x24czn87UPYXRHrqiRJUjSlxLqAIxEOhxk7diwFBQVMmTKFrKwsnnrqKUaPHg3AgAEDolpPIDmJM6eMp9uY8wgkJfHh/y1i8aRHqCzbG9U6VLee+xDueS8yaE4OQBh49kPoeALclw1dmsW4QOkorPwCbi6ALWWRzzPACx/B/SvhFwNg6MmxrU+S1PA5ho4P9eIM4PTp05k9ezZz587l+uuvZ9iwYUyfPp3k5GQyMjLo1KlTVOvpe9OltDunD7OG3sLfzr2Rlqeewhm3fzeqNahuvVoMd6+IhD+InPUL/fvMX/Fu+P4bsK0sdvVJR+PjXXBDPnzx789sZXj/mew9lfDTJbDk89jVJ0lKDI6h40O9CIBTp05l3Lhx9O7du6otOTmZzMzMqrN/a9eu5eyzz+bUU0/l7LPPZt26dXVWT/crh/HutOfYvWkrZVt2sPzeZ8j6dpBAUr14O3UY4TA8tBoCB5kfCsPnZfD8R1EtSzpmT66H0goIHWDeviua/7AmmhVJkhKRY+j4EPeXgK5bt44NGzYwbdq0GvM2btzImDFjAPj+97/PD37wA8aNG8cTTzzB9ddfzz//+c8jWkd6ejrl5eU12rultOInzQdXa0tr3pRmHU5i68oNVW1b3t1AWnpTmnU8iZKizUezeQklNzfI+oovYl3GYTXpdgZZv37zkH3C4RD/89p6vt+nT5Sqko5drz9/TnKT9IPODwFvb4ET2nelYmtx9AqTJDVIjqFrV27ugcfQaWlplJSUHPXy4j5uFxdHBiNt2rSp1r569WqKiooYMGAAn376KUuXLuWKK64A4IorrmDp0qV89tlntV5PSrMmAJRv313VVr59FwCp/56n+i2lRZvD9gkEko6onxRrgZS0Q4a/L0tpfmIdVyNJSlSOoeNH3J8BbN26NQCFhYUMGjQIiDwU5rbbbiMUCjFgwAA2btxIhw4dSE5OBiKXh5588sls3LiRk0466bDrOFhy3lywmpdH3V6trWJnKQCpzZtS+tk2ANJanADA3n/P04HNm5dH20GnxbqMw1r5BYxfePh+mW1asKzMGwEV38JhyJkNuysP33fd8gLa+DdYknScHEPXrtoeQ8f9GcCePXuSlZXFpEmTePbZZ3n55ZcZNWoUS5cupWnTpvTo0SOq9ZTv2M3O4s/I6N2lqq11n0zKS3azc2Ptn3FU9PVqCZ1OOPg9gPuMjO6zh6RjEgjANzsdemefBAxsjeFPklRnHEPHj7gPgCkpKcycOZP27dszfvx4Jk6cyIgRI8jJyaFv374kJSXRsWNHiouLqayMHOKurKzkX//6Fx07dqyTmtY9+Rp9bxxNk7ataNS6Of1v+RaFf80jHDrQIxZU3wQCcEPP/Q/H+Kok4KTGcEnnaFYlHbvvdIUmKQfe4Qf+/T/Xxf/JeUlSPecYOj7E/SWgAP369SM/P79a2wMPPEBOTg4QuT+wf//+PP3004wbN46nn36aAQMGHNHln8dixbTnaJTRnEvy7iOQFODDvy/i7bueqJN1KTaGnwy394PfvAvlX9knnXIC3J8NLdNiU5t0tE45AR4+B24pgM/2VJ/XJBl++TX4WuvY1CZJShyOoeNDIBwOH+xER9wqLS0lPT2dhx9+mO9973tA5KEw48eP54svvqBVq1b8+c9/Pu7LQw90/bKO3YhZd9aLewC/bEc5zP4YfvteZHraWXDWSZB0uOtDpThUEYL5m+C2JZHp2/vB+R0iZwclSaotjqFrV22Poevln/0VK1ZQWVlZ9R2AAKeddhqLFy+OYVVqiJqnweVd9wfAc3zwp+qxlCQYdvL+aS9jliQp8dTLAJidnU09PHEpSZIkSTEV9w+BkSRJkiTVDgOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoHSc8vLyyMzMJBgMMn78+BrzZ8yYwdy5cwEYMmQIzZo14+OPP67Rb+PGjeTm5nLuuefyzjvvADB+/HgGDx7MsGHDKC4uBuDqq68mHA7X4RZJkiSpoTIASrVgwoQJ5OXl0aJFC/Lz86vNe+mllxg2bBgAzz77LJdddtkBlzF16lTuv/9+XnjhBX75y18C8Itf/ILXX3+dSZMm8eCDDwKQnZ3NvHnz6nBrJEmS1FAZAKVa1KdPn6ozdQBbt26lcePGBAIBANq1a3fQ1xYWFtKvXz9OOukkdu3aBUCXLl0ASE5OrlpGbm4us2fPrqMtkCRJUkNmAJRqUX5+PllZWVXThYWFdO7c+YheGwqFDvr73XffzYQJEwDo3Lkza9euraWKJUmSlEgMgFItePTRRwkGg3To0IH+/fsf0zKSkpIO+PvkyZO5/PLL6dq16/GWKUmSpASXEusCpIZgwoQJ3H777TXas7KyKCoqOqJldOvWjRUrVnDyySdzwgknAPC3v/2NrVu3ctddd1X1Kyoqonv37rVTuCRJkhKKZwClOpSRkcHu3burpseNG8ecOXO44ooreO211wC45ZZbALjtttu46aabGDVqVFWYvPnmm3nnnXcIBoNVIXDevHmMGDEiylsiSZKkhsAzgNJxCgaDBIPBg84fOXIkc+fOZfjw4TzxxBM15t97770AdOrUiby8vGrzDnT2cPHixVx33XXHVbMkSZISkwFQqmNXXXVVrS7vscceq9XlSZIkKXF4CagkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQliHoTAMvLy5k8eTIdO3akSZMmDB06lIKCAgKBALNmzYp1eWqg9lTA3z/aP/3OVgiHY1dPQ1URgtf+BdPehwfehzc/hZDvs6TD+KAE/rAG7l8Jf90A28tjXZEkxb+UWBdwJMLhMGPHjqWgoIApU6aQlZXFU089xejRowEYMGBA1GrpcvHZ9Lz2QjJ6d6FsawkzB90QtXUruuYUw13vwK6K/W0TXoeeLeCeM6Fd09jV1pC8/TlMehu2lO0/IvWnQujQNPI+n9oipuVJikM798LPl8KCzRAAkgJQGY4Ewet7wPgsCARiXaWkL3MMHT/qRQCcPn06s2fPZvny5fTu3RuAYDBIZmYmGRkZdOrUKWq1lG3fxeo//oPGJ7Wg93XfjNp6FV0LN8HP3j7wvDXb4bo34ckcSE+Nbl0NzeptcOOiyBlAgNCX5n2yG65/E544DzqcEIvqJMWjUBh+tBiWb41Mh4mEP4C9IXhgFaQEYFxWzEqUdACOoeNHvbgEdOrUqYwbN64q/AEkJyeTmZlZdfbvxz/+MZmZmQQCAd577706q+WTBSvYMOsNdn38WZ2tQ7EVDsP/rvr37weYHwL+tRtmfXSAmToqf1gbCX+hA8wLAbv2whPro12VpHiW/yks23rg/fM+09dAacUhOkiKOsfQ8SPuA+C6devYsGEDY8aMqTFv48aNVQHwkksuYcGCBXTu3DnaJaqBWbMjcl/JoQYXAeCFomhV1DBtK4cFmw4c/vYJAS9t3H90X5L+vvHwg5fdlZC3KSrlSFK9E/eXgBYXFwPQpk2bau2rV6+mqKioKgAOHjz4mNeRnp5OeXnNO8e7pbTiJ82PfbmqLjc3yPqKL2JdxmGlf20EXf77hUP2CQPrN2+nUaM2h+yng2vU4TROvf+dw/bbUwnNMk4itHtHFKpKDH2e2QNAo0aNY1yJdPS63jGPE04757D9rv3Rf/P5i/8ThYokfZVj6NqVm3vgMXRaWholJSVHvby4PwPYunVrAAoLC6vawuEwt912G6FQKKoPgFFiqCjZctg+4XCYip2H76eDq9y59Yj6hfaWEdqzq46rkVRfVOz4nHDl4a/vrDyCfbkkJaK4PwPYs2dPsrKymDRpEqmpqTRr1oyHH36YZcuW0bRpU3r06HHc6zhYct5csJqXR91+3MtXxLx5ebQddFqsyzisUBhGzYVNpQe/DDQQCHDjeV25rqwsqrU1NN9/A5ZuOfhloEnARZmNWFq6O5plNXgDX4z8W+bnV/XQq8Xw3wd5SNc+aUmw9sXpNE+bHp2iJFXjGLp21fYYOu7PAKakpDBz5kzat2/P+PHjmThxIiNGjCAnJ4e+ffuSlBTdTQgkJZHcKJVASgoEAiQ3SiUpLe5ztI5CUiDyGPGDhb8koEUqXOrtpsft2n+/zwd6WnsASEmC7/okP0lfEmwPXZsdegBzeVdonha1kiQdAcfQ8aNevOv9+vUjPz+/WtsDDzxATk5O1Gvpdtl5DP7dD6umv/vh0+zc+KnfZdLAfLMTfFEO//v+lwJKIHJ2MKMRTDsLTvT2qeM28ES48wyYsizy+PYva5ICvxkIWc1jU5uk+JSaBA+eAzctgnVfujU4icjVBJd2hh/0jFV1kg7GMXT8qBcB8KtKS0tZs2YNEydOrGq76aabeO6559i0aRPDhw+ndevWrFy5stbXXfhMHoXP5NX6chV/vpsF53eIfN3D+pLIoOPcNjC0PaQlx7q6huP8DnDWSZGnfd7/7/9k/7svXHAKnFAv91CS6tpJjSPfxbros0gQBLiyG4zsBJnpsa1N0oE5ho4f9XJ4tWLFCiorK6s9AGbatGlMmzYthlWpIWrTBL53/LeZ6jBapMG4bvsD4JguMS1HUj2QFIBzvvQg5v/qffC+kqT96mUAzM7OJhz2i8EkSZIk6WjE/UNgJEmSJEm1wwAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKKleyMvLIzMzk2AwyPjx42vMnzFjBnPnzgXg7rvvZsiQIdx44401+n3ve98jJyeHwYMHs3btWgD++Mc/cs4553DJJZdQUlLC3r17Offcc8nJyWHkyJHs2bOHrVu3cvPNN9ftRkqSJNUxA6CkemPChAnk5eXRokUL8vPzq8176aWXGDZsGJs3b2bp0qUsXLiQlJQUlixZUq3fQw89xPz58/nVr37F73//eyoqKnj88cd5/fXXufbaa3nkkUdITU1l/vz5zJ8/nzPPPJM5c+aQkZHBtm3b2LlzZzQ3WZIkqVYZACXVO3369KG4uLhqeuvWrTRu3JhAIMCSJUvIyckBYOjQoRQUFFR7bWpqKgA7d+6kT58+fP7553Tq1ImkpCROP/30qmCZkpICQCgUolu3bgBkZ2eTl5dX15snSZJUZwyAkuqd/Px8srKyqqYLCwvp3LkzANu2baN58+YApKens23bthqvHzZsGD/84Q8588wzOemkkygsLGTPnj0sWLCA7du3A/D+++9z5pln8uqrr9KxY0cAOnfuXHXZqCRJUn1kAJRUbzz66KMEg0E6dOhA//79D9inZcuW7NixA4CSkhJatmxZo89rr73Gc889x5QpU0hOTubWW2/lggsu4J133qFt27YA9OrVi7feeouxY8fy+OOP19UmSZIkRZUBUFK9se8ewDvvvLNae1ZWFkVFRQCcccYZLFiwAIB58+YxaNCgan3LysoAaNGiBU2aNAHg0ksvJS8vj+zsbEaMGMHevXsJh8NV/Ro3bgxAUVER3bt3r7sNlCRJqmMpsS5Ako5XRkYGu3fvBqBdu3b07duXIUOG0LdvXwYOHMimTZuYMWMGt956K6NHj6a0tJRAIMCDDz4IwA033MCaNWvo1asX999/Pxs2bGDChAkkJSXRqlUrnnjiCQAWLVrEtGnTYradkiRJx8sAKKleCAaDBIPBg84fOXIkc+fOZfjw4UyePJnJkydXzWvXrh233norALNnz67x2oceeqjadFZWFvPnz6/WtnXrVlq2bEl6evpxbIUkSVJsGQAlNQhXXXVVnS4/IyOD++67r07XIUmSVNe8B1CSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZISRL0JgOXl5UyePJmOHTvSpEkThg4dSkFBAYFAgFmzZsW6PEnHIRyGtz7bP/3eF5E2qb76cCc8sR7+uBbyPoGKUKwrko7dtnJ47kN4dC28UAQle2NdkaTjkRLrAo5EOBxm7NixFBQUMGXKFLKysnjqqacYPXo0AAMGDIhaLUlpKZx197W0H3w6jVs3Z/fmL1j1x5dZ/ceXo1aD1JCs2gY/exs+2rW/7T8WQo8W8KszoFOzmJUmHbVt5fDzpfDmp9XbM9LgZ/0hp11MypKOSWUYHloFT66Hii8dlPvNuzA+C77XA5ICsatP9Ytj6PhRLwLg9OnTmT17NsuXL6d3794ABINBMjMzycjIoFOnTlGrJSk5mdJPtzHn8jsoKdpMRq/OfP3p29nz2TY+fCk/anVIDcEHJXDdG1BWWXPeuh1w7evwRA60aRL92qSjtacSbngTCnfUnPdFOfy4AH53FpzTJvq1Scfif96Dv26o2V4egj+sjfx7Y6/o16X6yTF0/KgXl4BOnTqVcePGVYU/gOTkZDIzMxkwYABbtmzhwgsvpEePHpx++ulceumlfPbZZ4dY4rGrKC1j2W/+QsmHmyAcZuvKD9k4ZwltBvWsk/VJDdkf1kTC34GujguFI4PmJ9dHvSzpmPzjY1i748Cf530nT+5f6eXNqh8+3gXPHCD8fdmMQvhsT3TqUf3nGDp+xH0AXLduHRs2bGDMmDE15m3cuJEBAwYQCAT4yU9+wpo1a3j33Xfp1q0bP/3pT6NSXyAlmbbZPfliVVFU1ic1FDvK4bVPDjxY3icMvPBRJAxK8e75IjjU1XBhIme9V22PVkXSsXtp4+H7hID/O4J+0oE4ho6duL8EtLi4GIA2bapfM7N69WqKiooYMGAAGRkZBIPBqnlnnXUWDz/88BGvIz09nfLy8hrt3VJa8ZPmgw/52rPunsDenaWsf3b+Ea8vUeXmBllf8UWsy1CcaNThNE69/53D9ttVASdknERo9wGuq9Mx6fNM5JB9o0aNY1xJw9LzDxtJaXn46ztzRn6bHYtfqPuCEoSf57pxyg8eoeWQywkkpx60T7hiL7/43WNc/4cbo1iZ6gPH0LUrN/fAY+i0tDRKSkqOenlxfwawdevWABQWFla1hcNhbrvtNkKhUI0HwIRCIR5++GFGjhxZ57WdOWU8J53Rg1evvIvQ3oo6X5/UkFTuPrLTIOHKCkJlu+u4Gun4Ve7eRvgIru+s3OUpQMW/yt07OPQ5bSApicpd26JRjhoYx9CxFQgfyV+rGKqoqKBnz57s3buXe+65h2bNmvHwww+zbNkytm7dSklJCUlJ+3PsD37wA4qLi3nuueeqtR+LzQWreXnU7QecN+iX/0H7wafzj7G/oGyLZyaOxIhZd9J20GmxLkNx5JqFka98ONhloEnAsJPhVwOjWVXDN/DFyL9L6v44WUKZvibycyit0mD2NyA17g+/1h9+nuvG8i1w7RuH7/dkTuSpzdKXOYauXbU9ho77P0EpKSnMnDmT9u3bM378eCZOnMiIESPIycmhb9++1ULej3/8Y9atW8df//rX4w5/hzLojmtoP6SvH1zpOF1z6sHDXwAIBGBct2hWJB27SztDeuqh/7CO7274U/3QLwP6Zxz88xwAzj7J8Kej4xg6PsT9PYAA/fr1Iz+/+uNhH3jgAXJycqqmJ02axNtvv83//d//0ahRozqr5YRTTqTXtRdSuaecyxY/WNW+efFq5l55V52tV2qIBreF/+4LU1dEHpDx5csRUpLgrq9B71axqk46Oic2hgfOgpsWwfYvfVF2EpEDHeO6wZVdY1WddHQCAfjtoMjn+f1t+9uTApEHc/XLgLu9OkNHwTF0/KgXAfCrSktLWbNmDRMnTgRg5cqV/OpXv+LUU0/lnHPOASAzM5Pnn3++1te96+PP+VP7y2p9uVKiGtMFzm0Dz38EK7+IHFU+40QY2Qky6u5YjlQnereCF78e+UqIX62ItI3NhNGdIat5bGuTjlbLNHhsCOR/ChMXR9q+cTJc1BGyT/JL4HV0HEPHj3oZAFesWEFlZWXVA2B69+59RDfeS4pP7ZrCf3p7qBqIE1IiBzb2BcBbT49pOdJxSQ5ErtbY584zYleLpNpRLwNgdna2gU+SJEmSjpK3okuSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSFGV5eXlkZmYSDAYZP358jfkzZsxg7ty5AAwZMoRmzZrx8ccf1+i3YMECsrOzyc7OZtasWQA8++yzDBo0iLPOOotFixYBcPXVVxMOh+twiyRJ9YUBUJKkGJgwYQJ5eXm0aNGC/Pz8avNeeuklhg0bBkQC3WWXXXbAZdx33308//zzzJ8/n2nTpgHw4IMPsmDBAp577jl++9vfApCdnc28efPqcGskSfWFAVCSpBjq06cPxcXFVdNbt26lcePGBAIBANq1a3fQ13bv3p3t27eza9cu0tPTAejSpQu7du1i+/btZGRkAJCbm8vs2bPrcCskSfVFSqwLkCQpkeXn5/Nf//VfVdOFhYV07tz5iF47atQozj//fEKhEI888ggAF198MQMGDKCysrIq9HXu3Jm1a9fWfvGSpHrHM4CSJMXAo48+SjAYpEOHDvTv3/+YljF58mTeeustVq1axdSpUwGYOnUqq1at4q233mLy5Mm1WLEkqSHwDKAkSTEwYcIEbr/99hrtWVlZFBUVHdEykpOTad68OWlpaZSVlQHQuHFjmjRpQjgcZteuXQAUFRXRvXv32iteklRveQZQkqQ4kpGRwe7du6umx40bx5w5c7jiiit47bXXALjlllsAmDhxIrm5uZxzzjlcc801AFx11VWcc845DB06lJtvvhmAefPmMWLEiChviSQpHnkGUJKkKAsGgwSDwYPOHzlyJHPnzmX48OE88cQTNebfe++9AFx00UVcdNFF1eZde+21XHvttdXaFi9ezHXXXXf8hUuS6j0DoCRJceaqq66q1eU99thjtbo8SVL95SWgkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCDqTQAsLy9n8uTJdOzYkSZNmjB06FAKCgoIBALMmjUr1uVJklTlsz37f3/7cwiHY1eLpPqhIgQLNsGzG+AfH8POvbGuSA1VSqwLOBLhcJixY8dSUFDAlClTyMrK4qmnnmL06NEADBgwIKr1nPWra+n49YGkNm/K3p2lFP09nyV3PEFob0VU65AkxZddFfDrd+CV4v1t178JHU+An/WDgSfGrjZJ8evvH8Hv3ocvyve3NUqCy7vCDT0hORC72mqTY+j4UC8C4PTp05k9ezbLly+nd+/eAASDQTIzM8nIyKBTp05RrWfVY/9gyS9nUFFaRqOMdILTb6HvTZey/N5nolqHJCl+lFfCTYtgxVb46gm/4l3ww3x46Bz4WuuYlCcpTr1QBHe+U7O9LASPF8K2cpjcP+pl1QnH0PGhXlwCOnXqVMaNG1cV/gCSk5PJzMysOvt3ySWX0K9fPwYMGMCQIUNYvnx5ndWzfe3HVJSWRSYCAcKhMOld29fZ+iRJ8e/Vf8E7Bwh/ACEgFIb/eS/aVUmKZ3sq4L6Vh+4z6yNYvT069dQ1x9DxIe7PAK5bt44NGzYwbdq0GvM2btzImDFjAHj88cdp0aIFALNmzeKaa65h6dKldVbX6T+8hL4Tx5B6QhP2bN3Bq995os7WJUmKf899GDmqGjrI/BCRQdza7XBqi+jVJSl+/fOTyKXjh5IEzCqC0/pGpaQ65xg69uI+ABYXR26kaNOmTbX21atXU1RUVHUGcF/4A9i+fTtJSUd+cjM9PZ3y8vIa7d1SWvGT5oMP+Jp3H3iBdx94gRbdO9D10iGUfvrFEa8vUeXmBllf4fskxVqfZyJPKGnUqHGMK2lYev5hIykt2xy237nf/BY7Cnx4WW3x8xwdvs91o81lP6PN2NsJHGLcWhkO8ccX5vLzMy+OYmXHxzF07crNPfAYOi0tjZKSkqNeXtxfAtq6deRmicLCwqq2cDjMbbfdRigUqvYAmGuvvZZOnTrxs5/9jMcffzwq9W1fV8zWlUUM+d+borI+SVJ8qizdQfgIHvcZ2rMrCtVIqg9Ce3YeMvxFOoUI7dkZnYKiyDF07MT9GcCePXuSlZXFpEmTSE1NpVmzZjz88MMsW7aMpk2b0qNHj6q+jzzyCAAzZszg1ltvZfbs2Ue0joMl580Fq3l51O2HfX1SajLNvX75sObNy6PtoNNiXYaU8Aa+GPm3rKwstoU0MA+ugj+tO/A9gPukp8K/Fv0fjZKjVlaD5+c5Onyf68bHu2D0a4febwSSU/jfGy7lgrvrz3vvGLp21fYYOu7PAKakpDBz5kzat2/P+PHjmThxIiNGjCAnJ4e+ffse8FLP7373u8ybN48tW7bUej2p6U3J+laQtOZNAWjVszP9Jo7hX3kHeHyTJClhjOkMjZIP/Yf1yq4Y/iRVOeUEGNoeDvYtD0lA+yaRPvWdY+j4EfdnAAH69etHfn5+tbYHHniAnJwcAHbu3MkXX3xBx44dAXjppZfIyMggIyOj9osJh+k65jzOnDKepLQU9ny+g6LZi1l+z19rf12SpHqjXVO4Pxt+tBhKK/e373swzMhOcM2psapOUrz6+QDYWgbLtkJSIPLE4H1ObAwPnA1pDeHAkWPouFEvAuBXlZaWsmbNGiZOnAjArl27GDt2LLt27SI5OZmMjAxeeuklAoHa/9bMvTtLmfPtX9b6ciVJ9d/AE2HWcHjxI5i/CfZUQlbzyNnBfhlQB3+WJNVzJ6TA78+F1zdHnva5YHOkfVJfuOAUaFovR+s1OYaOH/XyI7VixQoqKyurHgDTtm1bFi1aFOOqJEmCjEbwH90jP5J0JJIDkNMu8rPvfstLu8S0JDVg9TIAZmdnH9GT1iRJkiRJ+8X9Q2AkSZIkSbXDAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAYZwbf/wOy75oQ6zIO6MrCGWT0yYx1GZIkSVI1jqGPXEqsC2jI2p3Tm/63fIvWfbsCsGXFByz/7TNsyl8Z48oi+t/yLVr368ZrV/3qiPo/mfXdOq5IkiRJic4xdN3yDGAdOWX4GXz9qdvZOPdtnvna9TzztevZOPdtvv707Zwy7GsHfE0gufb+7wikJNfasiQllry8PDIzMwkGg4wfP77G/Lvuuot169Ydchk33ngjQ4YM4e67767W/o9//INgMEgwGKR169YsX768at7999/P8OHDASgtLeXCCy8kJyeHq6++GoBVq1YxderU49w6SVI8cwxd9wyAdST7zmsofDaPlQ+/yN6S3ewt2c3Kh19k/cz5DLrzGgAuK3iIvhPHcOGLdzHugyc5sV83AFJPaExw+i1cuW4Gl8y/j5OD/Q67vnZn9+bKwhmcOm44l731MCPn/haA9uf15ZuvTOU7ax5n5Gv30umCMwHodMGZnH7TaDrk9ufKwhlcWTiDpLRDnxD+j09m0rpfNwLJSXxn7Z9p2aNjZN3n9OY/PplJ52+eDUCTNi256qO/kNqsybG9eZJibsKECeTl5dGiRQvy8/Or2kOhECtWrKB79+4Hfe2SJUtISUlh4cKFLF26lM2bN1fNu+CCC8jLy2PevHl07dqVfv0i+7e9e/dWC4Nz5sxh8ODBzJ8/n9TUVN577z169uzJ0qVLCYfDtb/BkqS44Bi67sfQBsA60LzbyaR3bsuGF96oMe+D51+neZd2NO/aHoCssUHeuOUhnsz6Llve2wBA5iWD+eD5hTx12nhW/O/zDP3jT2jaLuOw601p0ogT+2fxwnkT+fuI20jv0o7hj/+U9x54gad7Xc3bdz1BzsM/IqN3Fz76x1u8O+15iuct58ms7/Jk1ncJlVcc0faFK0NsXryK9oNPB6D9kNPZseET2g/uE5kefDpbVnzA3p2lR7Q8SfGrT58+FBcXV02/8847nHrqqYd8zeLFixk6dCgAOTk5vP322zX6vPXWWwwcOJBAIADAjBkzuOKKK6rmZ2ZmsmvXLgB27txJixYtAOjatSsrV8bHJUCSpNrlGDo6Y2gDYB1onJEOQOnmrTXmlX76RaRP6+YArJnxKtvXFRMOhao+PJsWvc9HLxcQrgzxwcwFfPF+EV0uPvuw6w0kJfH23U9SUVpGZWk5maPOYfPiVXz4Uj7hyhDF/1zGR3OW0G1sznFv46bX36v2YV3+22eqPsztzu3DJ2+8d9zrkBR7+fn5ZGVlVU2vW7eOLl26HPI127Zto3nzyD4uPT2dbdu21egza9YsRo0aBUTOKr7yyiucf/75VfOzsrJYuHAhPXv2JBAI0LFj5Ghp586dWbt27XFulSQpHjmGjs4Y2gBYB/ZsLQGgSduaRxyatGkV6bNlBwC7ij+r0WfXx9Xbdm787IiOXlSUllH273UDNG3fmp1fXVbRZpq2b33YZR3OJ6+/S9uzepHWvCnNu57MhhfeIDkthabtM2g/uA+fLHz3uNchKXYeffRRgsEgHTp0oH///gfs8/7771fdz7fv59e//jUtW7Zkx47IPq6kpISWLVvWeO28efOqzhI+99xzjBw5str8xx9/nG9/+9usWrWKE088kTfffLNWt0+SFH8cQ0dnDO1TQOvAjvX/ouSjzWSOPIdNX0nxmaPOoeSjzez44BMAwqGa97KccMpJ1aabdTyJz5Ye/oh3OBSqNr37ky20O7v3V5bVht2fbDlg/6OxdeWHhEMhen3vm3z61mrCoRCfvP4ep35nOE3btOLTt1Yf87Ilxd6ECRO4/fbba7R3796d5557DoBevXqRl5dXo89bb73F008/zcUXX8yCBQv41re+VW3+Bx98wCmnnEJaWhoAa9asIS8vjxkzZrB8+XIeeeQRQqEQGRmRP9oZGRlVZxGLioo499xza3FLJUnxwjF0dMbQngGsIwU//xNZ386l9/UXk9qsCanpTel1/TfJ+lYuBZMfO+Rr253Vi47fGEggOYmulw6hVa/OfPh/i466hg2z3qRtdk86X5RNICmJDrn96Xj+QNbPXABA6efbOaHDicf85KRNb66k13UX8cnrkSMVn7zxLr2uu4hP315LZdneY1qmpPjWr18/1qxZc8g+Z555JmVlZQwZMoR+/frRtm1bNm3axD333ANUv/wT4Gc/+xmvvvoq//jHP+jfvz/XXnst3/nOd3jssccIBoMsX76cr3/96wAUFhbSp0+futtASVJMOYau+zG0ZwDryMZX3mLuuLvpd/Nl9L81cvR7y4oPmDvu7qr/sw9mwwuv021sDuc9+F/s+mQL8679Lbv/teWoayj5cBP/vOY3fO2/r+Tc+37Aro8/Y8EPp7H13zfKfvhSPl0vGczl7/2RQCDAX/pOOOKbWAE+WfguXb55Np+8HjlC88nr75HW/ATv/5PquX2Xcx5IUlISffv2Zd26dYd8EuiDDz5Ybbpdu3bceuutAPzoRz866Ovmzp0LQKtWrZgzZ061eatWreKMM86oenCMJKnhcQxd9wJhn6d9UJsLVvPyqJqXQCWiQFIS44ufYdbQW/hiVdExLWPErDtpO+i0Wq5M0tEa+GLk3yUjD91Pqg/8PEeH73P0NIT32jH0fvE4hvYSUB2RVr07E9pbccAbbiVJkiTVFI9jaC8BrUdG5d1Hs1NOrNG+cc7bLLjh/uNe/vAnf0bb7JpHF/bu3ENSajJv3/0U5Tt2H/d6JEmSpGhxDF2dAbAemRU8+H0ztWHulXfV6fIlSZKkaHMMXZ2XgEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoKoFwGwvLycyZMn07FjR5o0acLQoUMpKCggEAgwa9asWJenBq5wB7xSDPM+gR3lsa5GOj6f79n/+8adsatDkiTFRkqsCziccDjM2LFjKSgoYMqUKWRlZfHUU08xevRoAAYMGBCTupIbpzHqn/fSpE1Lnsz6bkxqUN1asx1+vQLe/WJ/W1oSXNwRftQbGsf9fz3SfjvKYeq78Oq/9reN/idknwT/3RdOOSF2tUmSEodj6NiL+yHs9OnTmT17NsuXL6d3794ABINBMjMzycjIoFOnTjGpa8Ct32bnx5/TpE3LmKxfdWvtdpjwOpRXVm8vD8FzRfDhTnjgbEitF+fQleh2VcB1b8AHJRD6yry3PoerF8Kfz4P2TWNSniQpgTiGjr24H75OnTqVcePGVYU/gOTkZDIzM2uc/fvFL35BIBDgvffeq9OaWvftSofc/rz34At1uh7Fzv+8Fwl/Xx0sA4SBt7fAnOJoVyUdm2c3QOEBwh9AKAzby+H3q6NeliQpwTiGjg9xHQDXrVvHhg0bGDNmTI15GzdurBYAly5dyqJFi+jcuXOd1hRITuKc336fRZMeIVReUafrUmxs3AlLthx4sLxPEjDzwygVJB2nZzccen6IyH2uJXujUo4kKQE5ho4fcX0JaHFx5BRLmzZtqrWvXr2aoqKiqgBYVlbGD37wA55++mmCweBRryc9PZ3y8ppP9+iW0oqfNB9cra3PDaPY8u4GNi9aRbuze9d4jQ4uNzfI+oovDtct5tIHXECXSYd+uFAIWP7xNho1ahudoqRjFEhJpc/Th3/aS0UYTulzJns+XBGFqqTa0+eZyJONGjVqHONKGjbf5+hpCO+1Y+jalZt74DF0WloaJSUlR728uD4D2Lp1awAKCwur2sLhMLfddhuhUKgqAP785z9n3LhxdOnSpU7rSe/Sjh5XfYMld8yo0/UotkLlpUfWr2x3HVciHb9wZQXhysrDdwRCZUf22Zck6Wg4ho4vcX0GsGfPnmRlZTFp0iRSU1Np1qwZDz/8MMuWLaNp06b06NGD/Px8lixZwq9//etjXs/BkvPmgtW8POr2qum2g06jyYktuPSNaQAkpSSTekITLl/5R+ZNuIfNi1Ydcw2JYN68PNoOOi3WZRxWWSVcMOfQl8MlAd/52sncVlYWtbqkY3VLASzcHLnf70ACRJ4C+taG9wgEolqadNwGvhj5t8z9cZ3yfY6ehvBeO4auXbU9ho7rAJiSksLMmTP5/ve/z/jx4+nYsSMTJ06kefPmrF+/nqSkJObPn8+qVavIzMwE4OOPP+b888/nscce4xvf+Eat1rPhpTf518L9l0eddEYPBv/uB7w4/Mfs2bKjVtel2GmUDJdnwh/WHnh+AEgKwLcyo1qWdMyu7AYLNh18fhj4bjcMf5KkOuEYOr7EdQAE6NevH/n5+dXaHnjgAXJycgD46U9/yk9/+tOqeV26dOHvf/87ffr0qfVaKkvL2V26tWq6bMsOCIfZ/cnWQ7xK9dGEU6FoV+RJn0mB/WdOAkByAO4+AzLTY1qidMS+1hp+2jfyvZYB9j/gKOnfv3+nK4yu2+dnSZISmGPo+BL3AfCrSktLWbNmDRMnTox1KWzKX+kXWDZQKUlw59fgolMiT/tcuDnSfmU3GNMZOjaLaXnSURvTBfplRJ4IuugzqAzD6a3gsi5wxomxrk6SlEgcQ8dWvQuAK1asoLKyssZ3AO7z4YcfRrcgNVhJATi3beRn3/X4E31oleqxrObw3/1iXYUkSYqlehcAs7OzCYcP8iQDSZIkSdJBxfXXQEiSJEmSao8BUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVA6Tnl5eWRmZhIMBhk/fnyN+TNmzGDu3LkADBkyhGbNmvHxxx/X6Ldx40Zyc3M599xzeeeddwAYP348gwcPZtiwYRQXFwNw9dVXEw6H63CLJEmS1FAZAKVaMGHCBPLy8mjRogX5+fnV5r300ksMGzYMgGeffZbLLrvsgMuYOnUq999/Py+88AK//OUvAfjFL37B66+/zqRJk3jwwQcByM7OZt68eXW4NZIkSWqoDIBSLerTp0/VmTqArVu30rhxYwKBAADt2rU76GsLCwvp168fJ510Ert27QKgS5cuACQnJ1ctIzc3l9mzZ9fRFkhSw3K4qzTuuusu1q1bd8hl3HjjjQwZMoS77767WntpaSkXXnghOTk5XH311Qft/49//INgMEgwGKR169YsX76cVatWMXXq1FrYQkk6OgZAqRbl5+eTlZVVNV1YWEjnzp2P6LWhUOigv999991MmDABgM6dO7N27dpaqliSGr6DXaURCoVYsWIF3bt3P+hrlyxZQkpKCgsXLmTp0qVs3ry5at6cOXMYPHgw8+fPJzU1lffee++A/S+44ALy8vKYN28eXbt2pV+/fvTs2ZOlS5d6Sb+kqDMASrXg0UcfJRgM0qFDB/r3739My0hKSjrg75MnT+byyy+na9eux1umJCW0r16l8c4773Dqqace8jWLFy9m6NChAOTk5PD2229XzcvMzKy6YmPnzp20aNHikP3feustBg4cWHVFR9euXVm5cmXtbJwkHSEDoFQL9h1dvvPOO6u1Z2VlUVRUdETL6NatGytWrODzzz/nhBNOAOBvf/sbW7du5ZprrqnqV1RUdMij1ZKkA/vqVRrr1q2rutT+YLZt20bz5s0BSE9PZ9u2bVXzsrKyWLhwIT179iQQCNCxY8dD9p81axajRo2qmvaKDkmxYACU6lBGRga7d++umh43bhxz5szhiiuu4LXXXgPglltuAeC2227jpptuYtSoUdx+++0A3HzzzbzzzjsEg0HuuusuAObNm8eIESOivCWSVH8dyVUa77//ftV9evt+fv3rX9OyZUt27NgBQElJCS1btqx6zeOPP863v/1tVq1axYknnsibb755yP7z5s2rOjsoSbGSEusCpPpu30DhYEaOHMncuXMZPnw4TzzxRI359957LwCdOnUiLy+v2rwDnT1cvHgx11133XHVLEmJZMKECVUH1r6se/fuPPfccwD06tWrxj4YIpdtPv3001x88cUsWLCAb33rW1XzQqEQGRkZQOSA37Zt2xg0aNAB+3/wwQeccsoppKWlVb2+qKiIc889tzY3VZIOyzOAUh276qqrGD58eK0t77HHHqt2j6Ak6dj069ePNWvWHLLPmWeeSVlZGUOGDKFfv360bduWTZs2cc899/Cd73yHxx57jGAwyPLly/n6179+wP5Q8/JPiDworE+fPnW2fZJ0IJ4BlCRJDdahrtJISkqib9++rFu37pD3Vu/7HtZ92rVrx6233gpEngR6uP4AP/rRj6pNr1q1ijPOOKPqgTCSFC0GQEmSlLAOdGloNPTs2ZOePXvGZN2SEpvXkUmSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoKoNwGwvLycyZMn07FjR5o0acLQoUMpKCggEAgwa9asWJenBmzT7v2/76mMXR0N3dYyWPQpFHwGJXtjXY2k+qAitP/3D0tiV4ck1ScpsS7gSITDYcaOHUtBQQFTpkwhKyuLp556itGjRwMwYMCAqNUy+P4fkDl6MKG9FVVted+7l+J5y6NWg6KjaCf8z3vw5qf7285/Bb6VCdf3gJR6c/gkvm3ZA/+zEub+CyrDkba0JPhmR7ipFzRLjW19kuJPOAzPfAh/Wru/7bJ5cHor+K9e0L91zEqTdBCOoeNHvQiA06dPZ/bs2SxfvpzevXsDEAwGyczMJCMjg06dOkW1nrVPzGXxzx6N6joVXUU74eqFsHMvhL/UvqsCHlsH63fAPYMgORCzEhuEL8rgmtfhk93wpQP5lIfg+SJ4fxv84VxoUi/2VJKi5X9XwZ8La7av/AK+/yb871lw5knRr0vSoTmGjg/14hzG1KlTGTduXFX4A0hOTiYzM7Pq7F+XLl047bTT6N+/P/379+eVV16JVblqAO59LxL+QgeZv2Az/PNfUS2pQfrDWvjX7gO/z2Fg9Xb464ZoVyUpnq3bfuDwB5F9SSgMv1we+VeSVFPcH1dft24dGzZsYNq0aTXmbdy4kTFjxlRNz5w5kz59+tR5TV0vHULX0YMp/Xw7H/xtAe8+8ALhyoNFBdU3n+yG/E+rn/n7qiTgmQ3w9Q7Rqqrh2VMBL3506PcZIu/z+CwIeLZVEvBcUWQffLC/uiHgk1JY/Bmc3SaKhUk6LMfQ8SHuA2BxcTEAbdpU34uvXr2aoqKiWrn/Lz09nfLy8hrt3VJa8ZPmg6u1vf/obJbcMYM9W0to3bcrOQ9NJLlRGst+85fjrqOhy80Nsr7ii1iXcVjpAy6gy6RDP1goBLz10Rc0atQuOkU1QI1O7sGpv1tx2H6f7oGmLVsT2rMzClVJinddf/lPTuh57mH7Xfaft/H53++v+4ISRJ9n9gDQqFHjGFfS8DWE99oxdO3KzT3wGDotLY2SkqN/AlbcXwLaunXkTu7Cwv3Xe4TDYW677TZCoVC1AHjllVfSt29fbrjhBrZt21Yn9Wx9dwN7tuyAcJgt76xn2W//Suaow/8hUv0R2lt2RP3CFTUPGujIhSqO7H0GCFf6WFBJEaG9ewiHDn/GwH20FF8cQ8ePuD8D2LNnT7Kyspg0aRKpqak0a9aMhx9+mGXLltG0aVN69OgBwMKFC+nYsSNlZWVMnDiRH/7whzzxxBNHtI6DJefNBat5edTth35xKAxemnZE5s3Lo+2g02JdxmGVVkSe9rn7EF/5kASM7duW28uOPMSounAYLv0nfLzr4JeBJgEDWsOSnTuiWZqkOPbEerh/5eH7LXryPjo1u6/uC0oQA1+M/Fvm37061xDea8fQtau2x9BxfwYwJSWFmTNn0r59e8aPH8/EiRMZMWIEOTk59O3bl6SkyCZ07NgRgEaNGnHDDTfwxhtv1Ek9XUaeQ2p6UwBa9exMv1vG8uHf8+tkXYqNJikwpsvh+43NrPNSGrRAAK7sduh7AEPAd7pFqyJJ9cHFHaFp8sEHMEnAuW2gU7NoViXpcBxDx4+4PwMI0K9fP/Lzq39AHnjgAXJycgDYtWsXFRUVtGjRgnA4zF/+8hf69+9fJ7Wc9h/nc/bU60hKTaZ08zbWz5zPiv99vk7Wpdi5oSd8UAJvfFr9YQP7Bhw/7w89WsSmtoZkTOfIE/3+9pWHOiQFIgcGr+8BOd5mKelLWqTB/2TDxMVQVrn/IFKAyO+Z6fCL6H09sKQj5Bg6ftSLAPhVpaWlrFmzhokTJwKwefNmxowZQ2VlJZWVlfTq1YuHHnqoTtb9j0v/X50sV/ElNQnuHRT5cvJnN0BhSaTtvHaRL4I/zfBXKwIB+GlfGNw28rTP/M8i7cF/v88DT4xtfZLi08AT4a9BePZDeKU48h2tJzeB0V3+fYawXo5upIbNMXT8qJe7yBUrVlBZWVn1AJiuXbuybNmyGFelhiYlCS44JfKjuhMIwJB2kZ999z385szY1iQp/nU4ASb2jvxIko5cvQyA2dnZhMN+w6skSZIkHY24fwiMJEmSJKl2GAAlSZIkKUEYACVJkiQpQRgAJUmSJClBGAAlSZIkKUEYACVJkiQpQRgAJUmSJClBGAAlSZIkKUEYACVJkiQpQRgAJdULeXl5ZGZmEgwGGT9+fI35M2bMYO7cuQDcfffdDBkyhBtvvLFGv+9973vk5OQwePBg1q5dC8Af//hHzjnnHC655BJKSkrYu3cv5557Ljk5OYwcOZI9e/awdetWbr755rrdSEmqp2prH/3ZZ58xevRocnNzmT59OgC5ubkEg0GCwSDvv/8+mzZtqpru1q0b999/v/to6SgYACXVGxMmTCAvL48WLVqQn59fbd5LL73EsGHD2Lx5M0uXLmXhwoWkpKSwZMmSav0eeugh5s+fz69+9St+//vfU1FRweOPP87rr7/OtddeyyOPPEJqairz589n/vz5nHnmmcyZM4eMjAy2bdvGzp07o7nJklRv1MY++pe//CX3338/8+bN47rrrgMgOTmZvLw88vLy6NWrF+3atauaHjRoEBdeeKH7aOkoGAAl1Tt9+vShuLi4anrr1q00btyYQCDAkiVLyMnJAWDo0KEUFBRUe21qaioAO3fupE+fPnz++ed06tSJpKQkTj/99KpBS0pKCgChUIhu3boBkJ2dTV5eXl1vniTVa8ezj167di0//elP+cY3vsGaNWsACIfDBINBrr32Wvbs2VPVd+/evWzYsIFTTz0VcB8tHSkDoKR6Jz8/n6ysrKrpwsJCOnfuDMC2bdto3rw5AOnp6Wzbtq3G64cNG8YPf/hDzjzzTE466SQKCwvZs2cPCxYsYPv27QC8//77nHnmmbz66qt07NgRgM6dO1ddNipJOrDj2Ue//vrr3HnnnTz44IP87Gc/A2DmzJnk5eXRs2dPHn300aq+eXl5BIPBqmn30dKRMQBKqjceffRRgsEgHTp0oH///gfs07JlS3bs2AFASUkJLVu2rNHntdde47nnnmPKlCkkJydz6623csEFF/DOO+/Qtm1bAHr16sVbb73F2LFjefzxx+tqkySpwaiNfXTv3r3p1q0b3bt3rzog16pVKwBGjhzJypUrq/q++OKLjBo1qvY3RGrgDICS6o1995fceeed1dqzsrIoKioC4IwzzmDBggUAzJs3j0GDBlXrW1ZWBkCLFi1o0qQJAJdeeil5eXlkZ2czYsQI9u7dSzgcrurXuHFjAIqKiujevXvdbaAk1WO1sY/u0qULn3/+OZs3b6Zp06ZAJChC5MxiZmZmVd/FixeTnZ1dNe0+WjoyKbEuQJKOV0ZGBrt37wagXbt29O3blyFDhtC3b18GDhzIpk2bmDFjBrfeeiujR4+mtLSUQCDAgw8+CMANN9zAmjVr6NWrF/fffz8bNmxgwoQJJCUl0apVK5544gkAFi1axLRp02K2nZJUHx3NPvr222/n0ksvpaKiomp/O3z4cNLS0mjZsmXV/njZsmX069ePpKT95zLcR0tHJhDed5hbNWwuWM3Lo26PdRkNxohZd9J20GmxLkNxbOCLkX+XjDz61/75z3/m5JNPZvjw4bVb1L9t3bqVO+64g/vuu69Oli9J8ex49s/gPvpoHO97HQ8cQ9eu2h5DewZQUoNw1VVX1enyMzIyGsTAQpJiwX20FD+8B1CSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZISRL0JgOXl5UyePJmOHTvSpEkThg4dSkFBAYFAgFmzZsW6PEnHaXfF/t/LKmNXR0NXXgmrt8HKL2BXxWG7S1I1/9od6wokHa+UWBdwJMLhMGPHjqWgoIApU6aQlZXFU089xejRowEYMGBA1Gs6ZdjXGHDb5TTvdjIVO0t57/cvsfLhF6Neh1TfleyFh1bBSxv3t10wB8Z0hu/1gEbJsautISmvhEfXwbMbYMfeSFujJPhmR7ihJ7RIi219kuJT/qfw/63ePz1yLvTLgO/3gDNPil1dqr8cQ8devQiA06dPZ/bs2SxfvpzevXsDEAwGyczMJCMjg06dOkW1npNz+nH2Pdfz+k0PsCl/JSlNGnFChxOjWoPUEOzcC9e+Dh+UQPhL7SV74fFCWPEFPHAWpBkCj0tFCH5UAIs/q95eFoLnimDJFvjjYEOgpOr+8TFMXgqBr7S/uxV+kA9Tz4Tc9jEpTfWUY+j4UC8uAZ06dSrjxo2rCn8AycnJZGZmVp3927NnD//5n/9J9+7dOf3007nuuuvqrJ4BP7mcFff/jU9ef5dwZYi9O0vZtmbj4V8oqZpH1tYMf/uEgaVb4JkPo1xUA/R8Uc3wt08Y+Ggn/H71gedLSkwle+GXyyP7iNBX5oWItP+/pVDqpeQ6Co6h40PcB8B169axYcMGxowZU2Pexo0bqwLgT37yExo3bszatWt59913ueOOO+qknpQmjTixfzeanNSS0Qt/x7dXPMLQP91Gs45t6mR9UkNVVhkJJgcKf/sEiFyyGD5UJx3WMxtqHsH/sjCRS3AdyEna5/82QvlXk9+XhIHdlfBKcdRKUj3nGDp+xP0loMXFkT1LmzbVPxyrV6+mqKiIAQMGsHPnTv785z/z8ccfEwhEhjlt27Y94nWkp6dTXl5eo71bSit+0nxwtba0licQSEqi80XZvHrFnZRu2c6gX15N7qO38tI3bj3azUsoublB1ld8EesyFCfSTj6VHr9795B9wkDxbmjaMoPQnl3RKayhSU7h9L8c/r3bUwntep7Bno/ei0JRkuJdhxum0+q87xBITj1on3DlXn409RG+/ejE6BWWAPo8sweARo0ax7iSY+cYunbl5h54DJ2WlkZJSclRLy/uzwC2bt0agMLCwqq2cDjMbbfdRigUYsCAAaxfv57WrVvzi1/8goEDBxIMBnn99dfrpJ69OyP/Ub7/yGx2fvwZlaXlLP3VU7Q+PdNrmKWjUXnkp5vCIR8LeszCIcLhQxzGr9bV91nSv1VWcOhrBwAC7jd0xBxDx4+4PwPYs2dPsrKymDRpEqmpqTRr1oyHH36YZcuW0bRpU3r06MHy5cv54IMPGDBgAPfccw+LFy/m4osvprCwkObNmx92HQdLzpsLVvPyqNurte0t2c3OjZ96TdoxmDcvj7aDTot1GYoToXDkaXKbSg/eJwno3QqWlGyPWl0N0fVvwLItNe/j+bITG8GidctJifvDgpKiYU4xTHr70H0CySnMmPJDhvz+h9EpKkEM/PcDMcvKymJbyHFwDF27ansMHfd/6lNSUpg5cybt27dn/PjxTJw4kREjRpCTk0Pfvn1JSkqiU6dOpKSkcMUVVwCQnZ3NiSeeyNq1a+ukpjV/nkPPay+i6cmtSW6UyoCfXM7n76xnV/HndbI+qSFKCsAVXQ/dJ8Th++jwruh66PAH8O2uGP4kVcltD60bHXygmAS0bwLnHPkdN5Jj6DgR92cAAfr160d+fn61tgceeICcnBwATjzxRHJzc3n11Vf5xje+wdq1a/n000/Jysqqk3refXAWaS2aMXLObyCQxKcFq5k34Z46WZfUkF3eNfKF5HP+FRlM7Asp+36/oit8/eTY1ddQBNvDf2TBnwoP/D4H28F3u8WuPknxJzUJ7suG/3wTdldUf2BXAGiWGpmffLirRKUvcQwdH+pFAPyq0tJS1qxZw8SJE6vafv/733PNNddwyy23kJqayowZM2jZsmXdFBAO8/ZdT/D2XU/UzfKlBJEcgDvPgHPbRp5U+f42CATgaxmRM1LBdpFpHb8f9oK+GfDXDfu/EuLUFvCtTLioo4M4STX1aglPB+HpDyJPBd2xF1qkwshOkX10uyaxrlD1jmPouFAvA+CKFSuorKys+goIgK5du5KXlxe7oiQdk6RAJIBc1HH/bQGGvrpxXrvIz777S57IiW09kuLfyU3hlj6Rn1A4ss+WVL/VywCYnZ1N2BtIpQbH4CdJ8cvwJzUM3vIvSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSaqSl5dHZmYmwWCQ8ePH15g/Y8YM5s6dC8CQIUNo1qwZH3/8cY1+CxYsIDs7m+zsbGbNmgXAs88+y6BBgzjrrLNYtGgRAFdffTXhcLgOt0iSGo6j2UfffffdDBkyhBtvvLFGv8svv5xgMMgZZ5zBJZdcAsDvfvc7zjrrLAYPHkxhYSEAixcvZtiwYeTm5lJQUMDWrVu5+eab624DFRUGQElSNRMmTCAvL48WLVqQn59fbd5LL73EsGHDgEigu+yyyw64jPvuu4/nn3+e+fPnM23aNAAefPBBFixYwHPPPcdvf/tbALKzs5k3b14dbo0kNSxHso/evHkzS5cuZeHChaSkpLBkyZJq/f7yl7+Ql5fHddddx4UXXgjA008/TX5+Pr/5zW/4/e9/Tzgc5t5772X27NnMmzePQYMGkZGRwbZt29i5c2fUtle1zwAoSTqgPn36UFxcXDW9detWGjduTCAQAKBdu3YHfW337t3Zvn07u3btIj09HYAuXbqwa9cutm/fTkZGBgC5ubnMnj27DrdCkhqmQ+2jlyxZQk5ODgBDhw6loKDggMt46aWXuPjiiwHo2LEjZWVlVfvo9evXU1paysiRI7nyyivZtWsXEDlwl5eXV7cbpzqVEusCJEnxKT8/n//6r/+qmi4sLKRz585H9NpRo0Zx/vnnEwqFeOSRRwC4+OKLGTBgAJWVlVWhr3Pnzqxdu7b2i5ekBu5Q++ht27bRvHlzANLT09m2bVuN1+/cuZOSkhLat28PwODBg+nZsyfhcJg333yTDz/8kPXr17Ns2TKeeuop/vCHPzBx4kQ6d+7M+++/X/cbqDrjGUBJUjWPPvoowWCQDh060L9//2NaxuTJk3nrrbdYtWoVU6dOBWDq1KmsWrWKt956i8mTJ9dixZKUOI5kH92yZUt27NgBQElJCS1btqzR55VXXuGCCy4AYMeOHfztb39j3bp1PP/880yZMoUWLVqQnZ1No0aNOO+881izZk1dbZKizAAoSapm3/0ld955Z7X2rKwsioqKjmgZycnJNG/enKZNm1JWVgZA48aNadKkCc2bN6+6lKioqIju3bvX7gZIUgN2JPvoM844gwULFgBU3b/3VbNmzWLUqFEABAIBTjjhBFJSUqru8zv11FP55JNPCIfDvPvuu3Tp0gVwv90QGAAlSUckIyOD3bt3V02PGzeOOXPmcMUVV/Daa68BcMsttwAwceJEcnNzOeecc7jmmmsAuOqqqzjnnHMYOnRo1VPk5s2bx4gRI6K8JZLU8Hx5H92uXTv69u3LkCFDKCsrY+DAgWzatIl77rkHgMrKStauXUuvXr2AyGWiZ599Nueeey7f/va3+fGPf0xqaipXXnkl5513Hg8//DDf+973AFi0aBHBYDAm26jaEQj7/O2D2lywmpdH3R7rMhqMEbPupO2g02JdhpTwBr4Y+XfJyKN/7Z///GdOPvlkhg8fXiu1XH311Tz66KMkJXk8UpIgvvbRX7V161buuOMO7rvvvkP2cwxdu2p7DO1DYCRJR+yqq66q1eU99thjtbo8SUpktb2P/qqMjIzDhj/FPw+5SpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEpSAgmF9/++NxS7OiRJNe3cG+sKlAhSYl3AkSovL+eOO+7gT3/6E59//jlnn302v/71r8nOzuaFF15g1KhRUanjysIZ1aaT01LZtq6YF4fdEpX1S9KxqAzD0x/AXz/Y33b+KzCmC1zdHZrWm78GktTwfFACj6yB1z7Z33bd63DNqXBWm9jVVZscQ8ePevEnPxwOM3bsWAoKCpgyZQpZWVk89dRTjB49GoABAwZErZYns75bbXrka/eyYdYbUVu/JB2tyjBMWlJ9YAGwYy/8aR3kfwrTzzUESlIsvL8Nrn8DyirhyxdmLN8KNy6Cn/eHizvFqLha5Bg6ftSLP/fTp09n9uzZLF++nN69ewMQDAbJzMwkIyODTp1i81/Fif2zaHnqKRT+dV5M1i9JR+LvG2uGv33CwJrtMH0NTOwd1bIkKeGF/n2A7qvhD/ZP3/FO5CzgSY2jXV3dcQwdW/UiAE6dOpVx48ZVhT+A5ORkMjMzSU1N5cMPP+SSSy6pmrdt2zZ27NjB1q1b67Su7t8ZSvE/l1G6+Ys6XY8kHY+/fgABImHvQMLA80Xw/dOgcXIUC5OkBFfwGXy8+9B9QmF4oQi+1yM6NUWDY+jYivsAuG7dOjZs2MC0adNqzNu4cSNjxoyhS5cuLF++vKp94sSJVFRUHPE60tPTKS8vr9HeLaUVP2k++ICvSWnSiMxR57LwpgeOeD2JLjc3yPoK/0OXoio5hdP/suuw3XZVQJvTvkbZRyujUJQkCeCkS39K28v/H4HAwZ/LGA6FuOfpV/jhry6JXmHHyTF07crNPfAYOi0tjZKSkqNeXtwHwOLiYgDatKl+B+zq1aspKiqqcf9feXk5Tz75JK+88kqd1tXl4rOpKC3n47lv1+l6JOm4hA923u84+0qSjl/4CB/H3ID2z46hYy/uA2Dr1q0BKCwsZNCgQUDkoTC33XYboVCoRgB88cUX6dChA1/72teOeB0HS86bC1bz8qjbDziv+5XDWP9MHuFKn6N+pObNy6PtoNNiXYaUcK5eCCu/qHl/yZe1TIMta5eR6pcDSVLULN8C1x7mOSiBpCRu/+6FXPWLsugUVQscQ9eu2h5Dx/2f+p49e5KVlcWkSZN49tlnefnllxk1ahRLly6ladOm9OhR/YLoP/7xj1xzzTV1WlPzbifTZmAP1j79Wp2uR5Jqw+VdDx3+AC7rguFPkqKsXwZ0S4ekwIHnB4C0JBjZMapl1RnH0PEh7v/cp6SkMHPmTNq3b8/48eOZOHEiI0aMICcnh759+5KUtH8TiouLmT9/PldeeWWd1tT9iqFsXryKkg2b6nQ9klQbvnEyXNo58vuXd/r7xhtnngjXdI92VZKkQACmDoTmqfv3yfskBSI/d58BLRvFpLxa5xg6PsT9JaAA/fr1Iz8/v1rbAw88QE5OTrW2xx9/nIsuuqjqstG68vadT9Tp8iWpNgUC8N99oW8G/OUDWL090n5yUxibCd/O9OyfJMVKl3R44jyYsR5e/AhKKyPBb2g7GJcFfVrFusLa4xg6PtSLAPhVpaWlrFmzhokTJ1Zr/9Of/nTAp4VKUqILBOCbHSM/uysijxU/ISXSLkmKrXZN4dbT4Ue9I09lbpIMaX4tj+pIvQyAK1asoLKyssYDYNauXRujiiSp/mhaL/f8ktTwpSRBi7RYV6GGrl4OA7Kzswk3oMfhSpIkSVI0eNeHJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJYhA2G9UP6jykt18seqjWJfRYLTq2Ym09KaxLkOSJEl1yDF07artMbQBUJIkSZIShJeASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKC+P8B265KgcvKqCMAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb b/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb index b1e2042f7..845039d0d 100644 --- a/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb @@ -26,10 +26,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:02.539595Z", - "iopub.status.busy": "2024-11-23T19:55:02.539403Z", - "iopub.status.idle": "2024-11-23T19:55:03.242180Z", - "shell.execute_reply": "2024-11-23T19:55:03.241625Z" + "iopub.execute_input": "2024-12-05T03:21:37.291915Z", + "iopub.status.busy": "2024-12-05T03:21:37.291726Z", + "iopub.status.idle": "2024-12-05T03:21:38.024215Z", + "shell.execute_reply": "2024-12-05T03:21:38.023670Z" } }, "outputs": [ @@ -74,10 +74,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.244302Z", - "iopub.status.busy": "2024-11-23T19:55:03.244015Z", - "iopub.status.idle": "2024-11-23T19:55:03.250926Z", - "shell.execute_reply": "2024-11-23T19:55:03.250362Z" + "iopub.execute_input": "2024-12-05T03:21:38.026436Z", + "iopub.status.busy": "2024-12-05T03:21:38.025967Z", + "iopub.status.idle": "2024-12-05T03:21:38.032743Z", + "shell.execute_reply": "2024-12-05T03:21:38.032274Z" } }, "outputs": [ @@ -120,10 +120,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.253007Z", - "iopub.status.busy": "2024-11-23T19:55:03.252691Z", - "iopub.status.idle": "2024-11-23T19:55:03.256946Z", - "shell.execute_reply": "2024-11-23T19:55:03.256468Z" + "iopub.execute_input": "2024-12-05T03:21:38.034620Z", + "iopub.status.busy": "2024-12-05T03:21:38.034422Z", + "iopub.status.idle": "2024-12-05T03:21:38.038774Z", + "shell.execute_reply": "2024-12-05T03:21:38.038313Z" } }, "outputs": [ @@ -157,10 +157,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.258734Z", - "iopub.status.busy": "2024-11-23T19:55:03.258541Z", - "iopub.status.idle": "2024-11-23T19:55:03.262475Z", - "shell.execute_reply": "2024-11-23T19:55:03.262029Z" + "iopub.execute_input": "2024-12-05T03:21:38.040973Z", + "iopub.status.busy": "2024-12-05T03:21:38.040442Z", + "iopub.status.idle": "2024-12-05T03:21:38.044870Z", + "shell.execute_reply": "2024-12-05T03:21:38.044379Z" } }, "outputs": [ @@ -199,10 +199,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.264358Z", - "iopub.status.busy": "2024-11-23T19:55:03.264171Z", - "iopub.status.idle": "2024-11-23T19:55:03.270003Z", - "shell.execute_reply": "2024-11-23T19:55:03.269530Z" + "iopub.execute_input": "2024-12-05T03:21:38.046998Z", + "iopub.status.busy": "2024-12-05T03:21:38.046581Z", + "iopub.status.idle": "2024-12-05T03:21:38.052906Z", + "shell.execute_reply": "2024-12-05T03:21:38.052316Z" } }, "outputs": [ @@ -245,10 +245,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.271785Z", - "iopub.status.busy": "2024-11-23T19:55:03.271598Z", - "iopub.status.idle": "2024-11-23T19:55:03.277353Z", - "shell.execute_reply": "2024-11-23T19:55:03.276829Z" + "iopub.execute_input": "2024-12-05T03:21:38.054945Z", + "iopub.status.busy": "2024-12-05T03:21:38.054590Z", + "iopub.status.idle": "2024-12-05T03:21:38.060386Z", + "shell.execute_reply": "2024-12-05T03:21:38.059903Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.279400Z", - "iopub.status.busy": "2024-11-23T19:55:03.279007Z", - "iopub.status.idle": "2024-11-23T19:55:03.283837Z", - "shell.execute_reply": "2024-11-23T19:55:03.283351Z" + "iopub.execute_input": "2024-12-05T03:21:38.062114Z", + "iopub.status.busy": "2024-12-05T03:21:38.061929Z", + "iopub.status.idle": "2024-12-05T03:21:38.067001Z", + "shell.execute_reply": "2024-12-05T03:21:38.066524Z" } }, "outputs": [ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_12_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_12_0.png index 715d5034a..e7f3a6f18 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_12_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_12_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_14_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_14_0.png index 2eb8f2ca4..e3b94963d 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_14_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_14_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_16_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_16_0.png index f66b57115..5aa2d9476 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_16_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_16_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_18_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_18_0.png index 7feaf3811..e45ff7a31 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_18_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_18_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_1_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_1_0.png index bb906b388..89fd24c81 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_1_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_1_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_20_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_20_0.png index 7c801ae76..7b5aae3f6 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_20_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_20_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_22_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_22_0.png index 564993e99..5581a5a76 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_22_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_22_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_24_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_24_0.png index b8e44d7d0..7489edf45 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_24_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_24_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_26_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_26_0.png index 767c0c548..19b61ddf4 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_26_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_26_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_28_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_28_0.png index 564993e99..5581a5a76 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_28_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_28_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_30_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_30_0.png index 767c0c548..19b61ddf4 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_30_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_30_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png index aa951e989..e59fb4340 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_36_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_36_0.png index 69776d49d..8d710a982 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_36_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_36_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_3_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_3_0.png index f3c3c1bc0..18a5ab647 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_3_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_3_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_5_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_5_0.png index 6784dd55e..03dbf369d 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_5_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_5_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_7_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_7_0.png index b97dcc835..af356aa3d 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_7_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_7_0.png differ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_9_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_9_0.png index a5024ae91..9fe4ea05a 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_9_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_9_0.png differ diff --git a/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb index 1585819a9..e51384ae0 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:05.112707Z", - "iopub.status.busy": "2024-11-23T19:55:05.112520Z", - "iopub.status.idle": "2024-11-23T19:55:06.109047Z", - "shell.execute_reply": "2024-11-23T19:55:06.108455Z" + "iopub.execute_input": "2024-12-05T03:21:40.045206Z", + "iopub.status.busy": "2024-12-05T03:21:40.044764Z", + "iopub.status.idle": "2024-12-05T03:21:41.054600Z", + "shell.execute_reply": "2024-12-05T03:21:41.054000Z" } }, "outputs": [ @@ -36,7 +36,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Parsing /tmp/tmp8q_mmkkf\n", + "Parsing /tmp/tmpm19br8hy\n", "converged SCF energy = -75.6787887956314\n" ] }, @@ -59,7 +59,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Overwritten attributes get_ovlp get_hcore of \n", + "Overwritten attributes get_hcore get_ovlp of \n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable\n", " warnings.warn(msg)\n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute intor_symmetric because it is not JSON-serializable\n", @@ -125,10 +125,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:06.112309Z", - "iopub.status.busy": "2024-11-23T19:55:06.111597Z", - "iopub.status.idle": "2024-11-23T19:55:06.116560Z", - "shell.execute_reply": "2024-11-23T19:55:06.115973Z" + "iopub.execute_input": "2024-12-05T03:21:41.057868Z", + "iopub.status.busy": "2024-12-05T03:21:41.057140Z", + "iopub.status.idle": "2024-12-05T03:21:41.062181Z", + "shell.execute_reply": "2024-12-05T03:21:41.061615Z" } }, "outputs": [], @@ -168,10 +168,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:06.118875Z", - "iopub.status.busy": "2024-11-23T19:55:06.118324Z", - "iopub.status.idle": "2024-11-23T19:55:06.121641Z", - "shell.execute_reply": "2024-11-23T19:55:06.121216Z" + "iopub.execute_input": "2024-12-05T03:21:41.064499Z", + "iopub.status.busy": "2024-12-05T03:21:41.064099Z", + "iopub.status.idle": "2024-12-05T03:21:41.067400Z", + "shell.execute_reply": "2024-12-05T03:21:41.066875Z" } }, "outputs": [], @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:06.123784Z", - "iopub.status.busy": "2024-11-23T19:55:06.123300Z", - "iopub.status.idle": "2024-11-23T19:55:06.265022Z", - "shell.execute_reply": "2024-11-23T19:55:06.264382Z" + "iopub.execute_input": "2024-12-05T03:21:41.069298Z", + "iopub.status.busy": "2024-12-05T03:21:41.068913Z", + "iopub.status.idle": "2024-12-05T03:21:41.192191Z", + "shell.execute_reply": "2024-12-05T03:21:41.191651Z" } }, "outputs": [ @@ -238,10 +238,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:06.267411Z", - "iopub.status.busy": "2024-11-23T19:55:06.266893Z", - "iopub.status.idle": "2024-11-23T19:55:14.163945Z", - "shell.execute_reply": "2024-11-23T19:55:14.163398Z" + "iopub.execute_input": "2024-12-05T03:21:41.194514Z", + "iopub.status.busy": "2024-12-05T03:21:41.194006Z", + "iopub.status.idle": "2024-12-05T03:21:49.107340Z", + "shell.execute_reply": "2024-12-05T03:21:49.106740Z" } }, "outputs": [ @@ -253,10 +253,10 @@ " message: STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT\n", " success: False\n", " status: 1\n", - " fun: -75.68381563261545\n", - " x: [-1.603e-01 6.410e-03 ... 5.747e-02 -1.005e-01]\n", + " fun: -75.68381556798737\n", + " x: [-1.603e-01 6.418e-03 ... 5.747e-02 -1.005e-01]\n", " nit: 3\n", - " jac: [ 2.160e-04 1.108e-04 ... -4.748e-03 7.404e-03]\n", + " jac: [ 2.132e-04 1.108e-04 ... -4.749e-03 7.439e-03]\n", " nfev: 112\n", " njev: 7\n", " hess_inv: <15x15 LbfgsInvHessProduct with dtype=float64>\n" diff --git a/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb index 8799ca533..fdd6d7e17 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb @@ -29,10 +29,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:15.694998Z", - "iopub.status.busy": "2024-11-23T19:55:15.694382Z", - "iopub.status.idle": "2024-11-23T19:55:16.383537Z", - "shell.execute_reply": "2024-11-23T19:55:16.382968Z" + "iopub.execute_input": "2024-12-05T03:21:50.640522Z", + "iopub.status.busy": "2024-12-05T03:21:50.640134Z", + "iopub.status.idle": "2024-12-05T03:21:51.341324Z", + "shell.execute_reply": "2024-12-05T03:21:51.340747Z" } }, "outputs": [ @@ -41,8 +41,8 @@ "text/plain": [ "FermionOperator({\n", " (cre_a(0), des_a(3)): 0.5,\n", - " (cre_a(3), des_a(0)): -0.25,\n", - " (cre_b(1), des_b(5), cre_a(4)): 1+1j\n", + " (cre_b(1), des_b(5), cre_a(4)): 1+1j,\n", + " (cre_a(3), des_a(0)): -0.25\n", "})" ] }, @@ -76,17 +76,17 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.385771Z", - "iopub.status.busy": "2024-11-23T19:55:16.385313Z", - "iopub.status.idle": "2024-11-23T19:55:16.389265Z", - "shell.execute_reply": "2024-11-23T19:55:16.388797Z" + "iopub.execute_input": "2024-12-05T03:21:51.343521Z", + "iopub.status.busy": "2024-12-05T03:21:51.343223Z", + "iopub.status.idle": "2024-12-05T03:21:51.347243Z", + "shell.execute_reply": "2024-12-05T03:21:51.346758Z" } }, "outputs": [ { "data": { "text/plain": [ - "'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j})'" + "'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 3), (False, False, 0)): -0.25+0j})'" ] }, "execution_count": 2, @@ -110,10 +110,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.391084Z", - "iopub.status.busy": "2024-11-23T19:55:16.390722Z", - "iopub.status.idle": "2024-11-23T19:55:16.395134Z", - "shell.execute_reply": "2024-11-23T19:55:16.394542Z" + "iopub.execute_input": "2024-12-05T03:21:51.349301Z", + "iopub.status.busy": "2024-12-05T03:21:51.348918Z", + "iopub.status.idle": "2024-12-05T03:21:51.353277Z", + "shell.execute_reply": "2024-12-05T03:21:51.352826Z" } }, "outputs": [ @@ -121,16 +121,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", - " (des_a(3), des_b(3)): 0.0625,\n", - " (cre_a(3), des_a(0)): -0.5,\n", + " (cre_b(2)): 0-0.25j,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", + " (des_a(3), des_b(3)): 0.0625,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", + " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", " (cre_a(0), des_a(3)): 1,\n", + " (cre_a(3), des_a(0)): -0.5,\n", " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", - " (cre_b(2)): 0-0.25j,\n", - " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", + " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625\n", "})" ] @@ -170,10 +170,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.397211Z", - "iopub.status.busy": "2024-11-23T19:55:16.396857Z", - "iopub.status.idle": "2024-11-23T19:55:16.400481Z", - "shell.execute_reply": "2024-11-23T19:55:16.400009Z" + "iopub.execute_input": "2024-12-05T03:21:51.355312Z", + "iopub.status.busy": "2024-12-05T03:21:51.354859Z", + "iopub.status.idle": "2024-12-05T03:21:51.358956Z", + "shell.execute_reply": "2024-12-05T03:21:51.358362Z" } }, "outputs": [ @@ -181,16 +181,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): -1,\n", - " (des_a(3), des_b(3)): 0-1.25j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", + " (cre_b(2)): -5,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", + " (des_a(3), des_b(3)): 0-1.25j,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", + " (cre_a(0), des_a(3), cre_b(2)): 2,\n", " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", - " (cre_b(2)): -5,\n", - " (cre_a(0), des_a(3), cre_b(2)): 2,\n", + " (cre_a(3), des_a(0), cre_b(2)): -1,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j\n", "})" ] @@ -220,10 +220,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.402390Z", - "iopub.status.busy": "2024-11-23T19:55:16.402033Z", - "iopub.status.idle": "2024-11-23T19:55:16.405878Z", - "shell.execute_reply": "2024-11-23T19:55:16.405407Z" + "iopub.execute_input": "2024-12-05T03:21:51.360954Z", + "iopub.status.busy": "2024-12-05T03:21:51.360624Z", + "iopub.status.idle": "2024-12-05T03:21:51.364593Z", + "shell.execute_reply": "2024-12-05T03:21:51.364003Z" } }, "outputs": [ @@ -231,16 +231,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(0), des_a(3)): 0-6j,\n", " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", - " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", - " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", - " (cre_b(2), cre_a(3), des_a(0)): -1,\n", - " (cre_b(2)): -5,\n", " (cre_a(3), des_a(0)): 0+3j,\n", - " (des_b(3), des_a(3)): 0+1.25j,\n", + " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", " (cre_b(2), cre_a(0), des_a(3)): 2,\n", - " (cre_b(1), cre_a(4), des_b(5)): -12+12j\n", + " (des_b(3), des_a(3)): 0+1.25j,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_b(2), cre_a(3), des_a(0)): -1,\n", + " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", + " (cre_b(1), cre_a(4), des_b(5)): -12+12j,\n", + " (cre_b(2)): -5\n", "})" ] }, @@ -265,10 +265,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.407755Z", - "iopub.status.busy": "2024-11-23T19:55:16.407420Z", - "iopub.status.idle": "2024-11-23T19:55:16.410688Z", - "shell.execute_reply": "2024-11-23T19:55:16.410095Z" + "iopub.execute_input": "2024-12-05T03:21:51.366539Z", + "iopub.status.busy": "2024-12-05T03:21:51.366208Z", + "iopub.status.idle": "2024-12-05T03:21:51.369122Z", + "shell.execute_reply": "2024-12-05T03:21:51.368636Z" } }, "outputs": [ @@ -298,10 +298,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.412782Z", - "iopub.status.busy": "2024-11-23T19:55:16.412451Z", - "iopub.status.idle": "2024-11-23T19:55:16.416844Z", - "shell.execute_reply": "2024-11-23T19:55:16.416359Z" + "iopub.execute_input": "2024-12-05T03:21:51.370816Z", + "iopub.status.busy": "2024-12-05T03:21:51.370632Z", + "iopub.status.idle": "2024-12-05T03:21:51.374623Z", + "shell.execute_reply": "2024-12-05T03:21:51.374039Z" } }, "outputs": [ @@ -341,10 +341,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.418767Z", - "iopub.status.busy": "2024-11-23T19:55:16.418490Z", - "iopub.status.idle": "2024-11-23T19:55:16.424844Z", - "shell.execute_reply": "2024-11-23T19:55:16.424360Z" + "iopub.execute_input": "2024-12-05T03:21:51.376696Z", + "iopub.status.busy": "2024-12-05T03:21:51.376269Z", + "iopub.status.idle": "2024-12-05T03:21:51.382038Z", + "shell.execute_reply": "2024-12-05T03:21:51.381553Z" } }, "outputs": [ @@ -353,7 +353,7 @@ "text/plain": [ "array([0. +0.j , 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", - " 0.00380274+0.03040046j, 0. +0.j ,\n", + " 0.13782298-0.09230004j, 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", " 0. +0.j ])" ] @@ -380,10 +380,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.426716Z", - "iopub.status.busy": "2024-11-23T19:55:16.426421Z", - "iopub.status.idle": "2024-11-23T19:55:16.438095Z", - "shell.execute_reply": "2024-11-23T19:55:16.437516Z" + "iopub.execute_input": "2024-12-05T03:21:51.384119Z", + "iopub.status.busy": "2024-12-05T03:21:51.383694Z", + "iopub.status.idle": "2024-12-05T03:21:51.394533Z", + "shell.execute_reply": "2024-12-05T03:21:51.394082Z" } }, "outputs": [ diff --git a/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb index 9e5b7d2c7..e80c1f706 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:18.251781Z", - "iopub.status.busy": "2024-11-23T19:55:18.251301Z", - "iopub.status.idle": "2024-11-23T19:55:19.238761Z", - "shell.execute_reply": "2024-11-23T19:55:19.238152Z" + "iopub.execute_input": "2024-12-05T03:21:53.113886Z", + "iopub.status.busy": "2024-12-05T03:21:53.113685Z", + "iopub.status.idle": "2024-12-05T03:21:54.115496Z", + "shell.execute_reply": "2024-12-05T03:21:54.114824Z" } }, "outputs": [ @@ -27,22 +27,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "converged SCF energy = -77.8266321248745\n" + "converged SCF energy = -77.8266321248744\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Parsing /tmp/tmphnas021m\n", - "converged SCF energy = -77.8266321248745\n" + "Parsing /tmp/tmpqg7_8pjf\n", + "converged SCF energy = -77.8266321248744\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CASCI E = -77.8742165643863 E(CI) = -4.02122442107772 S^2 = 0.0000000\n" + "CASCI E = -77.8742165643863 E(CI) = -4.02122442107773 S^2 = 0.0000000\n" ] }, { @@ -57,7 +57,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Overwritten attributes get_ovlp get_hcore of \n", + "Overwritten attributes get_hcore get_ovlp of \n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable\n", " warnings.warn(msg)\n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute intor_symmetric because it is not JSON-serializable\n", @@ -123,10 +123,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:19.241589Z", - "iopub.status.busy": "2024-11-23T19:55:19.241237Z", - "iopub.status.idle": "2024-11-23T19:55:19.314166Z", - "shell.execute_reply": "2024-11-23T19:55:19.313605Z" + "iopub.execute_input": "2024-12-05T03:21:54.118487Z", + "iopub.status.busy": "2024-12-05T03:21:54.117857Z", + "iopub.status.idle": "2024-12-05T03:21:54.189316Z", + "shell.execute_reply": "2024-12-05T03:21:54.188746Z" } }, "outputs": [ @@ -134,14 +134,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(CCSD) = -77.87421536374032 E_corr = -0.04758323886585004\n" + "E(CCSD) = -77.87421536374029 E_corr = -0.04758323886585067\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialization: -77.87160024816272\n" + "Energy at initialization: -77.87160024816282\n" ] }, { @@ -189,10 +189,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:19.317172Z", - "iopub.status.busy": "2024-11-23T19:55:19.316598Z", - "iopub.status.idle": "2024-11-23T19:57:06.161792Z", - "shell.execute_reply": "2024-11-23T19:57:06.161192Z" + "iopub.execute_input": "2024-12-05T03:21:54.192242Z", + "iopub.status.busy": "2024-12-05T03:21:54.191660Z", + "iopub.status.idle": "2024-12-05T03:23:41.886254Z", + "shell.execute_reply": "2024-12-05T03:23:41.885678Z" } }, "outputs": [ @@ -204,10 +204,10 @@ " message: STOP: TOTAL NO. of ITERATIONS REACHED LIMIT\n", " success: False\n", " status: 1\n", - " fun: -77.87387390155982\n", - " x: [-1.152e+00 -1.873e-04 ... 3.359e-04 1.286e-01]\n", + " fun: -77.87387392946924\n", + " x: [-1.152e+00 2.429e-04 ... 2.427e-04 1.287e-01]\n", " nit: 10\n", - " jac: [-2.132e-05 -5.684e-06 ... 5.684e-06 1.990e-05]\n", + " jac: [-3.126e-05 -2.416e-05 ... 4.263e-06 0.000e+00]\n", " nfev: 949\n", " njev: 13\n", " hess_inv: <72x72 LbfgsInvHessProduct with dtype=float64>\n" @@ -251,10 +251,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:06.165527Z", - "iopub.status.busy": "2024-11-23T19:57:06.164965Z", - "iopub.status.idle": "2024-11-23T19:57:43.051910Z", - "shell.execute_reply": "2024-11-23T19:57:43.050998Z" + "iopub.execute_input": "2024-12-05T03:23:41.889131Z", + "iopub.status.busy": "2024-12-05T03:23:41.888857Z", + "iopub.status.idle": "2024-12-05T03:24:18.451311Z", + "shell.execute_reply": "2024-12-05T03:24:18.450673Z" } }, "outputs": [ @@ -266,10 +266,10 @@ " message: CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n", " success: True\n", " status: 0\n", - " fun: -77.87363426182905\n", - " x: [-1.152e+00 1.697e-04 ... 3.521e-02 2.560e-01]\n", + " fun: -77.87363426554221\n", + " x: [-1.152e+00 -3.455e-05 ... 3.518e-02 2.561e-01]\n", " nit: 5\n", - " jac: [-7.105e-06 -1.421e-06 ... -8.527e-06 -8.527e-06]\n", + " jac: [-1.990e-05 4.547e-05 ... 5.684e-06 -5.684e-06]\n", " nfev: 329\n", " njev: 7\n", " hess_inv: <46x46 LbfgsInvHessProduct with dtype=float64>\n" @@ -314,10 +314,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:43.055520Z", - "iopub.status.busy": "2024-11-23T19:57:43.054466Z", - "iopub.status.idle": "2024-11-23T19:57:54.012108Z", - "shell.execute_reply": "2024-11-23T19:57:54.011459Z" + "iopub.execute_input": "2024-12-05T03:24:18.455061Z", + "iopub.status.busy": "2024-12-05T03:24:18.454107Z", + "iopub.status.idle": "2024-12-05T03:24:37.881300Z", + "shell.execute_reply": "2024-12-05T03:24:37.880651Z" } }, "outputs": [ @@ -328,29 +328,29 @@ "Number of parameters: 46\n", " message: Convergence: Relative reduction of objective function <= ftol.\n", " success: True\n", - " fun: -77.8736343056548\n", - " x: [-1.152e+00 4.963e-04 ... 3.485e-02 2.558e-01]\n", + " fun: -77.87363428118711\n", + " x: [-1.152e+00 7.876e-04 ... 3.488e-02 2.557e-01]\n", " nit: 3\n", - " jac: [ 1.798e-06 5.476e-06 ... -2.140e-06 -6.677e-06]\n", - " nfev: 454\n", + " jac: [ 7.816e-07 1.160e-05 ... -1.013e-06 -8.020e-06]\n", + " nfev: 529\n", " njev: 4\n", - " nlinop: 270\n", + " nlinop: 345\n", "\n", "Iteration 1\n", - " Energy: -77.87362341166545\n", - " Norm of gradient: 0.002907344016239031\n", - " Regularization hyperparameter: 0.0018390767492681105\n", - " Variation hyperparameter: 0.9730726623356802\n", + " Energy: -77.87363196954891\n", + " Norm of gradient: 0.0010575938908307025\n", + " Regularization hyperparameter: 0.001761897637537816\n", + " Variation hyperparameter: 0.9990810043136625\n", "Iteration 2\n", - " Energy: -77.87363428471433\n", - " Norm of gradient: 0.00010902640032211794\n", - " Regularization hyperparameter: 0.0018390767492681105\n", - " Variation hyperparameter: 0.9730726623356802\n", + " Energy: -77.8736342801622\n", + " Norm of gradient: 6.770421184784103e-05\n", + " Regularization hyperparameter: 0.001761897637537816\n", + " Variation hyperparameter: 0.9990810043136625\n", "Iteration 3\n", - " Energy: -77.8736343056548\n", - " Norm of gradient: 2.4744468844114535e-05\n", - " Regularization hyperparameter: 0.02739024656128614\n", - " Variation hyperparameter: 0.9377013345330008\n" + " Energy: -77.87363428118711\n", + " Norm of gradient: 5.91431234347536e-05\n", + " Regularization hyperparameter: 1.826121241130568\n", + " Variation hyperparameter: 0.9998395119356727\n" ] } ], diff --git a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb index 30f0bd597..482021668 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:55.557278Z", - "iopub.status.busy": "2024-11-23T19:57:55.557089Z", - "iopub.status.idle": "2024-11-23T19:57:56.242295Z", - "shell.execute_reply": "2024-11-23T19:57:56.241750Z" + "iopub.execute_input": "2024-12-05T03:24:39.456445Z", + "iopub.status.busy": "2024-12-05T03:24:39.456253Z", + "iopub.status.idle": "2024-12-05T03:24:40.155805Z", + "shell.execute_reply": "2024-12-05T03:24:40.155276Z" } }, "outputs": [], @@ -54,16 +54,16 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.244784Z", - "iopub.status.busy": "2024-11-23T19:57:56.244319Z", - "iopub.status.idle": "2024-11-23T19:57:56.821661Z", - "shell.execute_reply": "2024-11-23T19:57:56.821082Z" + "iopub.execute_input": "2024-12-05T03:24:40.158319Z", + "iopub.status.busy": "2024-12-05T03:24:40.157923Z", + "iopub.status.idle": "2024-12-05T03:24:40.783095Z", + "shell.execute_reply": "2024-12-05T03:24:40.782523Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -103,10 +103,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.824256Z", - "iopub.status.busy": "2024-11-23T19:57:56.823520Z", - "iopub.status.idle": "2024-11-23T19:57:56.883146Z", - "shell.execute_reply": "2024-11-23T19:57:56.882541Z" + "iopub.execute_input": "2024-12-05T03:24:40.785611Z", + "iopub.status.busy": "2024-12-05T03:24:40.784914Z", + "iopub.status.idle": "2024-12-05T03:24:40.838801Z", + "shell.execute_reply": "2024-12-05T03:24:40.838179Z" } }, "outputs": [ @@ -160,17 +160,17 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.885057Z", - "iopub.status.busy": "2024-11-23T19:57:56.884722Z", - "iopub.status.idle": "2024-11-23T19:57:56.888849Z", - "shell.execute_reply": "2024-11-23T19:57:56.888244Z" + "iopub.execute_input": "2024-12-05T03:24:40.840795Z", + "iopub.status.busy": "2024-12-05T03:24:40.840596Z", + "iopub.status.idle": "2024-12-05T03:24:40.845007Z", + "shell.execute_reply": "2024-12-05T03:24:40.844439Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -195,17 +195,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.890700Z", - "iopub.status.busy": "2024-11-23T19:57:56.890393Z", - "iopub.status.idle": "2024-11-23T19:57:56.895403Z", - "shell.execute_reply": "2024-11-23T19:57:56.894793Z" + "iopub.execute_input": "2024-12-05T03:24:40.846845Z", + "iopub.status.busy": "2024-12-05T03:24:40.846651Z", + "iopub.status.idle": "2024-12-05T03:24:40.851609Z", + "shell.execute_reply": "2024-12-05T03:24:40.851021Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -242,17 +242,17 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.897430Z", - "iopub.status.busy": "2024-11-23T19:57:56.897075Z", - "iopub.status.idle": "2024-11-23T19:57:56.901506Z", - "shell.execute_reply": "2024-11-23T19:57:56.900937Z" + "iopub.execute_input": "2024-12-05T03:24:40.853466Z", + "iopub.status.busy": "2024-12-05T03:24:40.853274Z", + "iopub.status.idle": "2024-12-05T03:24:40.858068Z", + "shell.execute_reply": "2024-12-05T03:24:40.857469Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -279,17 +279,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.903502Z", - "iopub.status.busy": "2024-11-23T19:57:56.903229Z", - "iopub.status.idle": "2024-11-23T19:57:56.907610Z", - "shell.execute_reply": "2024-11-23T19:57:56.907106Z" + "iopub.execute_input": "2024-12-05T03:24:40.860035Z", + "iopub.status.busy": "2024-12-05T03:24:40.859691Z", + "iopub.status.idle": "2024-12-05T03:24:40.864104Z", + "shell.execute_reply": "2024-12-05T03:24:40.863518Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -315,17 +315,17 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.909495Z", - "iopub.status.busy": "2024-11-23T19:57:56.909134Z", - "iopub.status.idle": "2024-11-23T19:57:56.913579Z", - "shell.execute_reply": "2024-11-23T19:57:56.913000Z" + "iopub.execute_input": "2024-12-05T03:24:40.865967Z", + "iopub.status.busy": "2024-12-05T03:24:40.865637Z", + "iopub.status.idle": "2024-12-05T03:24:40.869985Z", + "shell.execute_reply": "2024-12-05T03:24:40.869528Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -354,17 +354,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.928670Z", - "iopub.status.busy": "2024-11-23T19:57:56.928162Z", - "iopub.status.idle": "2024-11-23T19:57:56.933298Z", - "shell.execute_reply": "2024-11-23T19:57:56.932684Z" + "iopub.execute_input": "2024-12-05T03:24:40.872043Z", + "iopub.status.busy": "2024-12-05T03:24:40.871604Z", + "iopub.status.idle": "2024-12-05T03:24:40.876834Z", + "shell.execute_reply": "2024-12-05T03:24:40.876270Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -391,17 +391,17 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.935084Z", - "iopub.status.busy": "2024-11-23T19:57:56.934909Z", - "iopub.status.idle": "2024-11-23T19:57:56.940301Z", - "shell.execute_reply": "2024-11-23T19:57:56.939776Z" + "iopub.execute_input": "2024-12-05T03:24:40.878795Z", + "iopub.status.busy": "2024-12-05T03:24:40.878432Z", + "iopub.status.idle": "2024-12-05T03:24:40.883674Z", + "shell.execute_reply": "2024-12-05T03:24:40.883188Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 10, @@ -428,17 +428,17 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.942082Z", - "iopub.status.busy": "2024-11-23T19:57:56.941762Z", - "iopub.status.idle": "2024-11-23T19:57:56.947655Z", - "shell.execute_reply": "2024-11-23T19:57:56.947044Z" + "iopub.execute_input": "2024-12-05T03:24:40.885608Z", + "iopub.status.busy": "2024-12-05T03:24:40.885242Z", + "iopub.status.idle": "2024-12-05T03:24:40.890580Z", + "shell.execute_reply": "2024-12-05T03:24:40.890136Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 11, diff --git a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb index 99df22564..f1cee1268 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:58.903571Z", - "iopub.status.busy": "2024-11-23T19:57:58.902843Z", - "iopub.status.idle": "2024-11-23T19:57:59.602615Z", - "shell.execute_reply": "2024-11-23T19:57:59.602074Z" + "iopub.execute_input": "2024-12-05T03:24:42.786996Z", + "iopub.status.busy": "2024-12-05T03:24:42.786810Z", + "iopub.status.idle": "2024-12-05T03:24:43.473452Z", + "shell.execute_reply": "2024-12-05T03:24:43.472896Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:59.605375Z", - "iopub.status.busy": "2024-11-23T19:57:59.604731Z", - "iopub.status.idle": "2024-11-23T19:57:59.668481Z", - "shell.execute_reply": "2024-11-23T19:57:59.667873Z" + "iopub.execute_input": "2024-12-05T03:24:43.476028Z", + "iopub.status.busy": "2024-12-05T03:24:43.475564Z", + "iopub.status.idle": "2024-12-05T03:24:43.538662Z", + "shell.execute_reply": "2024-12-05T03:24:43.538071Z" } }, "outputs": [ @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:59.670719Z", - "iopub.status.busy": "2024-11-23T19:57:59.670375Z", - "iopub.status.idle": "2024-11-23T19:57:59.947118Z", - "shell.execute_reply": "2024-11-23T19:57:59.946606Z" + "iopub.execute_input": "2024-12-05T03:24:43.540921Z", + "iopub.status.busy": "2024-12-05T03:24:43.540416Z", + "iopub.status.idle": "2024-12-05T03:24:43.825014Z", + "shell.execute_reply": "2024-12-05T03:24:43.824381Z" } }, "outputs": [ @@ -174,7 +174,7 @@ "text": [ "norb = 14\n", "nelec = (3, 3)\n", - "E(CCSD) = -108.9630419334855 E_corr = -0.1278053627110062\n" + "E(CCSD) = -108.9630419334856 E_corr = -0.1278053627110059\n" ] }, { @@ -188,10 +188,10 @@ "data": { "text/plain": [ "{'0000000000011100000000000111': 9924,\n", - " '0000000000110100000000001101': 14,\n", + " '0000000000110100000000001101': 16,\n", " '0000000001110000000000000111': 10,\n", " '0000000000011100000000011100': 10,\n", - " '0000000001011000000000010110': 9,\n", + " '0000000001011000000000010110': 10,\n", " '0001000001010000000000000111': 5,\n", " '0000000001011000100000000110': 4,\n", " '0100000000100100000000000111': 3,\n", @@ -276,10 +276,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:59.949109Z", - "iopub.status.busy": "2024-11-23T19:57:59.948909Z", - "iopub.status.idle": "2024-11-23T19:58:00.487395Z", - "shell.execute_reply": "2024-11-23T19:58:00.486807Z" + "iopub.execute_input": "2024-12-05T03:24:43.827282Z", + "iopub.status.busy": "2024-12-05T03:24:43.826768Z", + "iopub.status.idle": "2024-12-05T03:24:44.368732Z", + "shell.execute_reply": "2024-12-05T03:24:44.368099Z" } }, "outputs": [ @@ -294,7 +294,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "SCF energy = -75.3484557083881\n" + "SCF energy = -75.3484557063616\n" ] }, { @@ -312,7 +312,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(UCCSD) = -75.45619739102422 E_corr = -0.1077416826361168\n" + "E(UCCSD) = -75.4561973913865 E_corr = -0.1077416850249517\n" ] }, { diff --git a/dev/.doctrees/nbsphinx/how-to-guides_qiskit-circuits_3_0.png b/dev/.doctrees/nbsphinx/how-to-guides_qiskit-circuits_3_0.png index 564993e99..5581a5a76 100644 Binary files a/dev/.doctrees/nbsphinx/how-to-guides_qiskit-circuits_3_0.png and b/dev/.doctrees/nbsphinx/how-to-guides_qiskit-circuits_3_0.png differ diff --git a/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb b/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb index 2bd1cd40c..ff0fcf662 100644 --- a/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb +++ b/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.037383Z", - "iopub.status.busy": "2024-11-23T19:58:02.037166Z", - "iopub.status.idle": "2024-11-23T19:58:02.793850Z", - "shell.execute_reply": "2024-11-23T19:58:02.793227Z" + "iopub.execute_input": "2024-12-05T03:24:45.923610Z", + "iopub.status.busy": "2024-12-05T03:24:45.923421Z", + "iopub.status.idle": "2024-12-05T03:24:46.676204Z", + "shell.execute_reply": "2024-12-05T03:24:46.675632Z" } }, "outputs": [ @@ -80,10 +80,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.797626Z", - "iopub.status.busy": "2024-11-23T19:58:02.796713Z", - "iopub.status.idle": "2024-11-23T19:58:02.801783Z", - "shell.execute_reply": "2024-11-23T19:58:02.801229Z" + "iopub.execute_input": "2024-12-05T03:24:46.679398Z", + "iopub.status.busy": "2024-12-05T03:24:46.678465Z", + "iopub.status.idle": "2024-12-05T03:24:46.683627Z", + "shell.execute_reply": "2024-12-05T03:24:46.683009Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.803810Z", - "iopub.status.busy": "2024-11-23T19:58:02.803453Z", - "iopub.status.idle": "2024-11-23T19:58:02.807598Z", - "shell.execute_reply": "2024-11-23T19:58:02.807096Z" + "iopub.execute_input": "2024-12-05T03:24:46.685803Z", + "iopub.status.busy": "2024-12-05T03:24:46.685344Z", + "iopub.status.idle": "2024-12-05T03:24:46.689861Z", + "shell.execute_reply": "2024-12-05T03:24:46.689405Z" } }, "outputs": [ @@ -172,10 +172,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.809387Z", - "iopub.status.busy": "2024-11-23T19:58:02.809068Z", - "iopub.status.idle": "2024-11-23T19:58:02.813266Z", - "shell.execute_reply": "2024-11-23T19:58:02.812785Z" + "iopub.execute_input": "2024-12-05T03:24:46.691839Z", + "iopub.status.busy": "2024-12-05T03:24:46.691484Z", + "iopub.status.idle": "2024-12-05T03:24:46.695294Z", + "shell.execute_reply": "2024-12-05T03:24:46.694799Z" } }, "outputs": [ @@ -208,10 +208,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.815065Z", - "iopub.status.busy": "2024-11-23T19:58:02.814744Z", - "iopub.status.idle": "2024-11-23T19:58:02.818817Z", - "shell.execute_reply": "2024-11-23T19:58:02.818331Z" + "iopub.execute_input": "2024-12-05T03:24:46.697235Z", + "iopub.status.busy": "2024-12-05T03:24:46.696822Z", + "iopub.status.idle": "2024-12-05T03:24:46.700442Z", + "shell.execute_reply": "2024-12-05T03:24:46.699970Z" } }, "outputs": [ @@ -242,10 +242,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.820654Z", - "iopub.status.busy": "2024-11-23T19:58:02.820333Z", - "iopub.status.idle": "2024-11-23T19:58:02.838713Z", - "shell.execute_reply": "2024-11-23T19:58:02.838243Z" + "iopub.execute_input": "2024-12-05T03:24:46.702448Z", + "iopub.status.busy": "2024-12-05T03:24:46.702098Z", + "iopub.status.idle": "2024-12-05T03:24:46.720392Z", + "shell.execute_reply": "2024-12-05T03:24:46.719899Z" } }, "outputs": [ @@ -253,7 +253,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Maximum error in a tensor entry: 0.036685417309835655\n" + "Maximum error in a tensor entry: 0.03668541730983477\n" ] } ], @@ -302,10 +302,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.840711Z", - "iopub.status.busy": "2024-11-23T19:58:02.840256Z", - "iopub.status.idle": "2024-11-23T19:58:02.844392Z", - "shell.execute_reply": "2024-11-23T19:58:02.843910Z" + "iopub.execute_input": "2024-12-05T03:24:46.722271Z", + "iopub.status.busy": "2024-12-05T03:24:46.721943Z", + "iopub.status.idle": "2024-12-05T03:24:46.726146Z", + "shell.execute_reply": "2024-12-05T03:24:46.725562Z" } }, "outputs": [], @@ -360,10 +360,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.846206Z", - "iopub.status.busy": "2024-11-23T19:58:02.846018Z", - "iopub.status.idle": "2024-11-23T19:58:02.849659Z", - "shell.execute_reply": "2024-11-23T19:58:02.849172Z" + "iopub.execute_input": "2024-12-05T03:24:46.728062Z", + "iopub.status.busy": "2024-12-05T03:24:46.727724Z", + "iopub.status.idle": "2024-12-05T03:24:46.731309Z", + "shell.execute_reply": "2024-12-05T03:24:46.730691Z" } }, "outputs": [], @@ -400,10 +400,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.851650Z", - "iopub.status.busy": "2024-11-23T19:58:02.851148Z", - "iopub.status.idle": "2024-11-23T19:58:02.949707Z", - "shell.execute_reply": "2024-11-23T19:58:02.949177Z" + "iopub.execute_input": "2024-12-05T03:24:46.733244Z", + "iopub.status.busy": "2024-12-05T03:24:46.732809Z", + "iopub.status.idle": "2024-12-05T03:24:46.833048Z", + "shell.execute_reply": "2024-12-05T03:24:46.832493Z" } }, "outputs": [], @@ -439,10 +439,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.952503Z", - "iopub.status.busy": "2024-11-23T19:58:02.951738Z", - "iopub.status.idle": "2024-11-23T19:58:03.001559Z", - "shell.execute_reply": "2024-11-23T19:58:03.001064Z" + "iopub.execute_input": "2024-12-05T03:24:46.836109Z", + "iopub.status.busy": "2024-12-05T03:24:46.835316Z", + "iopub.status.idle": "2024-12-05T03:24:46.884721Z", + "shell.execute_reply": "2024-12-05T03:24:46.884124Z" } }, "outputs": [ @@ -450,7 +450,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9402435115135145\n" + "Fidelity of Trotter-evolved state with exact state: 0.940243511515908\n" ] } ], @@ -480,10 +480,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:03.003522Z", - "iopub.status.busy": "2024-11-23T19:58:03.003173Z", - "iopub.status.idle": "2024-11-23T19:58:03.212664Z", - "shell.execute_reply": "2024-11-23T19:58:03.212168Z" + "iopub.execute_input": "2024-12-05T03:24:46.886638Z", + "iopub.status.busy": "2024-12-05T03:24:46.886293Z", + "iopub.status.idle": "2024-12-05T03:24:47.094658Z", + "shell.execute_reply": "2024-12-05T03:24:47.094144Z" } }, "outputs": [ @@ -491,7 +491,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212854200015\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212854201858\n" ] } ], @@ -521,10 +521,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:03.214394Z", - "iopub.status.busy": "2024-11-23T19:58:03.214206Z", - "iopub.status.idle": "2024-11-23T19:58:03.345675Z", - "shell.execute_reply": "2024-11-23T19:58:03.345130Z" + "iopub.execute_input": "2024-12-05T03:24:47.096768Z", + "iopub.status.busy": "2024-12-05T03:24:47.096400Z", + "iopub.status.idle": "2024-12-05T03:24:47.227776Z", + "shell.execute_reply": "2024-12-05T03:24:47.227137Z" } }, "outputs": [ @@ -532,7 +532,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212854200257\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212854202294\n" ] } ], @@ -563,10 +563,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:03.347712Z", - "iopub.status.busy": "2024-11-23T19:58:03.347256Z", - "iopub.status.idle": "2024-11-23T19:58:03.451353Z", - "shell.execute_reply": "2024-11-23T19:58:03.450834Z" + "iopub.execute_input": "2024-12-05T03:24:47.230002Z", + "iopub.status.busy": "2024-12-05T03:24:47.229543Z", + "iopub.status.idle": "2024-12-05T03:24:47.329290Z", + "shell.execute_reply": "2024-12-05T03:24:47.328789Z" } }, "outputs": [ @@ -574,7 +574,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9996731164188843\n" + "Fidelity of Trotter-evolved state with exact state: 0.9996731164188969\n" ] } ], diff --git a/dev/.doctrees/tutorials/double-factorized-trotter.doctree b/dev/.doctrees/tutorials/double-factorized-trotter.doctree index 64970e680..0367c2ead 100644 Binary files a/dev/.doctrees/tutorials/double-factorized-trotter.doctree and b/dev/.doctrees/tutorials/double-factorized-trotter.doctree differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_12_0.png b/dev/_images/explanations_qiskit-gate-decompositions_12_0.png index 715d5034a..e7f3a6f18 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_12_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_12_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_14_0.png b/dev/_images/explanations_qiskit-gate-decompositions_14_0.png index 2eb8f2ca4..e3b94963d 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_14_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_14_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_16_0.png b/dev/_images/explanations_qiskit-gate-decompositions_16_0.png index f66b57115..5aa2d9476 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_16_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_16_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_18_0.png b/dev/_images/explanations_qiskit-gate-decompositions_18_0.png index 7feaf3811..e45ff7a31 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_18_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_18_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_1_0.png b/dev/_images/explanations_qiskit-gate-decompositions_1_0.png index bb906b388..89fd24c81 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_1_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_1_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_20_0.png b/dev/_images/explanations_qiskit-gate-decompositions_20_0.png index 7c801ae76..7b5aae3f6 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_20_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_20_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_22_0.png b/dev/_images/explanations_qiskit-gate-decompositions_22_0.png index 564993e99..5581a5a76 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_22_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_22_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_24_0.png b/dev/_images/explanations_qiskit-gate-decompositions_24_0.png index b8e44d7d0..7489edf45 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_24_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_24_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_26_0.png b/dev/_images/explanations_qiskit-gate-decompositions_26_0.png index 767c0c548..19b61ddf4 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_26_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_26_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_28_0.png b/dev/_images/explanations_qiskit-gate-decompositions_28_0.png index 564993e99..5581a5a76 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_28_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_28_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_30_0.png b/dev/_images/explanations_qiskit-gate-decompositions_30_0.png index 767c0c548..19b61ddf4 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_30_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_30_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_34_0.png b/dev/_images/explanations_qiskit-gate-decompositions_34_0.png index aa951e989..e59fb4340 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_34_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_34_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_36_0.png b/dev/_images/explanations_qiskit-gate-decompositions_36_0.png index 69776d49d..8d710a982 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_36_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_36_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_3_0.png b/dev/_images/explanations_qiskit-gate-decompositions_3_0.png index f3c3c1bc0..18a5ab647 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_3_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_3_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_5_0.png b/dev/_images/explanations_qiskit-gate-decompositions_5_0.png index 6784dd55e..03dbf369d 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_5_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_5_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_7_0.png b/dev/_images/explanations_qiskit-gate-decompositions_7_0.png index b97dcc835..af356aa3d 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_7_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_7_0.png differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_9_0.png b/dev/_images/explanations_qiskit-gate-decompositions_9_0.png index a5024ae91..9fe4ea05a 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_9_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_9_0.png differ diff --git a/dev/_images/how-to-guides_qiskit-circuits_3_0.png b/dev/_images/how-to-guides_qiskit-circuits_3_0.png index 564993e99..5581a5a76 100644 Binary files a/dev/_images/how-to-guides_qiskit-circuits_3_0.png and b/dev/_images/how-to-guides_qiskit-circuits_3_0.png differ diff --git a/dev/explanations/hamiltonians.html b/dev/explanations/hamiltonians.html index 505110e20..694bb0631 100644 --- a/dev/explanations/hamiltonians.html +++ b/dev/explanations/hamiltonians.html @@ -377,7 +377,7 @@

Operator action via SciPy LinearOperators
-np.float64(-99.55717072551543)
+np.float64(-99.55717072551569)
 

Time evolution by the Hamiltonian can be computed using expm_multiply:

@@ -395,7 +395,7 @@

Operator action via SciPy LinearOperators
-/tmp/ipykernel_4180/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.
+/tmp/ipykernel_4129/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.
   evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)
 
diff --git a/dev/explanations/hamiltonians.ipynb b/dev/explanations/hamiltonians.ipynb index b0d2e95e2..bb2c53292 100644 --- a/dev/explanations/hamiltonians.ipynb +++ b/dev/explanations/hamiltonians.ipynb @@ -33,10 +33,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:47.528743Z", - "iopub.status.busy": "2024-11-23T19:54:47.528209Z", - "iopub.status.idle": "2024-11-23T19:54:48.279687Z", - "shell.execute_reply": "2024-11-23T19:54:48.279124Z" + "iopub.execute_input": "2024-12-05T03:21:22.212599Z", + "iopub.status.busy": "2024-12-05T03:21:22.212405Z", + "iopub.status.idle": "2024-12-05T03:21:22.936360Z", + "shell.execute_reply": "2024-12-05T03:21:22.935726Z" } }, "outputs": [], @@ -68,10 +68,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:48.282326Z", - "iopub.status.busy": "2024-11-23T19:54:48.281811Z", - "iopub.status.idle": "2024-11-23T19:54:48.285084Z", - "shell.execute_reply": "2024-11-23T19:54:48.284596Z" + "iopub.execute_input": "2024-12-05T03:21:22.938787Z", + "iopub.status.busy": "2024-12-05T03:21:22.938491Z", + "iopub.status.idle": "2024-12-05T03:21:22.941593Z", + "shell.execute_reply": "2024-12-05T03:21:22.941110Z" } }, "outputs": [], @@ -99,10 +99,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:48.287086Z", - "iopub.status.busy": "2024-11-23T19:54:48.286703Z", - "iopub.status.idle": "2024-11-23T19:54:48.290119Z", - "shell.execute_reply": "2024-11-23T19:54:48.289660Z" + "iopub.execute_input": "2024-12-05T03:21:22.943786Z", + "iopub.status.busy": "2024-12-05T03:21:22.943290Z", + "iopub.status.idle": "2024-12-05T03:21:22.946565Z", + "shell.execute_reply": "2024-12-05T03:21:22.946108Z" } }, "outputs": [], @@ -127,10 +127,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:48.292227Z", - "iopub.status.busy": "2024-11-23T19:54:48.291721Z", - "iopub.status.idle": "2024-11-23T19:54:48.296429Z", - "shell.execute_reply": "2024-11-23T19:54:48.295877Z" + "iopub.execute_input": "2024-12-05T03:21:22.948362Z", + "iopub.status.busy": "2024-12-05T03:21:22.948174Z", + "iopub.status.idle": "2024-12-05T03:21:22.952632Z", + "shell.execute_reply": "2024-12-05T03:21:22.952065Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:48.299720Z", - "iopub.status.busy": "2024-11-23T19:54:48.298733Z", - "iopub.status.idle": "2024-11-23T19:54:48.327813Z", - "shell.execute_reply": "2024-11-23T19:54:48.327091Z" + "iopub.execute_input": "2024-12-05T03:21:22.954753Z", + "iopub.status.busy": "2024-12-05T03:21:22.954540Z", + "iopub.status.idle": "2024-12-05T03:21:22.979586Z", + "shell.execute_reply": "2024-12-05T03:21:22.979023Z" } }, "outputs": [ { "data": { "text/plain": [ - "np.float64(-99.55717072551543)" + "np.float64(-99.55717072551569)" ] }, "execution_count": 5, @@ -191,10 +191,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:48.361339Z", - "iopub.status.busy": "2024-11-23T19:54:48.360877Z", - "iopub.status.idle": "2024-11-23T19:54:49.044195Z", - "shell.execute_reply": "2024-11-23T19:54:49.043526Z" + "iopub.execute_input": "2024-12-05T03:21:23.014517Z", + "iopub.status.busy": "2024-12-05T03:21:23.013952Z", + "iopub.status.idle": "2024-12-05T03:21:23.722545Z", + "shell.execute_reply": "2024-12-05T03:21:23.721915Z" } }, "outputs": [ @@ -202,7 +202,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_4180/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", + "/tmp/ipykernel_4129/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", " evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)\n" ] } @@ -224,10 +224,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:49.048819Z", - "iopub.status.busy": "2024-11-23T19:54:49.047782Z", - "iopub.status.idle": "2024-11-23T19:54:49.643700Z", - "shell.execute_reply": "2024-11-23T19:54:49.643044Z" + "iopub.execute_input": "2024-12-05T03:21:23.725922Z", + "iopub.status.busy": "2024-12-05T03:21:23.725125Z", + "iopub.status.idle": "2024-12-05T03:21:24.323558Z", + "shell.execute_reply": "2024-12-05T03:21:24.322918Z" } }, "outputs": [], diff --git a/dev/explanations/orbital-rotation.ipynb b/dev/explanations/orbital-rotation.ipynb index 82e0aedc9..1226b7570 100644 --- a/dev/explanations/orbital-rotation.ipynb +++ b/dev/explanations/orbital-rotation.ipynb @@ -62,10 +62,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:52.726981Z", - "iopub.status.busy": "2024-11-23T19:54:52.726791Z", - "iopub.status.idle": "2024-11-23T19:54:53.439598Z", - "shell.execute_reply": "2024-11-23T19:54:53.438907Z" + "iopub.execute_input": "2024-12-05T03:21:27.401921Z", + "iopub.status.busy": "2024-12-05T03:21:27.401472Z", + "iopub.status.idle": "2024-12-05T03:21:28.119716Z", + "shell.execute_reply": "2024-12-05T03:21:28.119137Z" } }, "outputs": [], diff --git a/dev/explanations/qiskit-gate-decompositions.ipynb b/dev/explanations/qiskit-gate-decompositions.ipynb index acee395e0..62f857fbb 100644 --- a/dev/explanations/qiskit-gate-decompositions.ipynb +++ b/dev/explanations/qiskit-gate-decompositions.ipynb @@ -16,16 +16,16 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:54.866707Z", - "iopub.status.busy": "2024-11-23T19:54:54.866178Z", - "iopub.status.idle": "2024-11-23T19:54:56.485108Z", - "shell.execute_reply": "2024-11-23T19:54:56.484517Z" + "iopub.execute_input": "2024-12-05T03:21:29.543343Z", + "iopub.status.busy": "2024-12-05T03:21:29.542995Z", + "iopub.status.idle": "2024-12-05T03:21:31.111710Z", + "shell.execute_reply": "2024-12-05T03:21:31.111147Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAGOCAYAAAADwN1HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAw2ElEQVR4nO3de1xUdf7H8fdwFQRUULyCjo4RoiJdJM2CsavVakiYt6Jt27Lrsj9L+7m5a/fc6rebudmP7WaWbcWuki1227DSSEoh1ASBkJC8X1GREWZ+f9hOS2BcncvvvJ6PB4+Hc86Z8/3Mdz7De86Zg2NyOBwOAQBgAD7uLgAAAFch9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAw/dxfgTWw1x3Vw63fuLgNnSI/YaAWEBrdqW3qhc51u7plntOV12RqEXhsc3PqdVk96wN1l4AyZkP2Ieo8+u1Xb0gud63RzzzyjLa/L1uD0JgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGF4TejabTfPnz1dUVJSCgoI0fvx45efny2QyKTs7293lAQC8gFf8jywOh0NpaWnKz8/XggULZLFYtHz5cqWkpEiSEhIS3FqfyddH5y9I15DUi2Xy8dH2f36h9fNeUEPdSbfWBdejF1yDeUZ7ecWRXmZmpnJycvTRRx/ptttu0yWXXKLMzEz5+voqPDxc0dHRbq1v5D2T1WfscGWPn62/X3i3up81QOc+cINba4J70AuuwTyjvbwi9BYuXKiZM2cqLi7OuczX11dms9l5lLdt2zaNGTNGZ511lsaMGaPS0lKX1Td0xiXatOgfOr7rgOr2H1Hh02/Jcn2yTD5eMb3oRPSCazDPaC+P75DS0lJVVFQoNTW1ybqqqipn6M2aNUt33nmntm3bpjvvvFO33XZbq8cIDQ1VYGBgiz9Wa3KT+waEBSukfy8d2FLhXLZ/U4UCQoMVEtWrrQ8XbmS1JreqD+iFzme1Nj/3Vmtyk22ZZ2OxWpvvjdDQ0Hbtz+NDr7q6WpIUGRnZaHlxcbEqKyuVkJCgPXv2aOPGjZo2bZokadq0adq4caP27t17xuvzCwmSJNkOH3cusx0+Jkny/2EdjIFecA3mGR3h8aEXEREhSSorK3Muczgcmjt3rux2uxISElRVVaX+/fvL19dX0qlTn/369VNVVVWrxqipqVFdXV2LP7m5a5rct/5orSTJP+zH73sK6NZVknTyh3XwDrm5a1rVB/RC5zvd3DPPOF1v1NTUtGt/Hh96sbGxslgsmjdvnt5++22tXr1akyZN0saNGxUcHKyYmBi31mc7clxHq/cqPG6Qc1nEcLNsNcd1tOrMH2nCc9ALrsE8oyM8PvT8/PyUlZWlvn37Kj09XRkZGZowYYKSkpI0cuRI+fj4KCoqStXV1WpoaJAkNTQ06Pvvv1dUVJRLaix9/V8aeXeKgnr3UGBEmEbNnqKyN9fIYbe7ZHx4DnrBNZhntJdX/J1efHy88vLyGi1bvHixkpKSJJ36vG/UqFF64403NHPmTL3xxhtKSEhQr16u+VC7aNE/FBgepmvX/EkmH5O2v/uFNjz6mkvGhmehF1yDeUZ7eUXo/VRtba1KSkqUkZHhXPb8888rPT1dDz30kHr06KFXX33VZfU4GuzKn/+S8ue/5LIx4ZnoBddgntFeXhl6RUVFamhoaPQ/sZx99tlav369G6sCAHg6rwy9xMREORwOd5cBAPAyHn8hCwAAnYXQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhuE1oWez2TR//nxFRUUpKChI48ePV35+vkwmk7Kzs91dHgDAC/i5u4DWcDgcSktLU35+vhYsWCCLxaLly5crJSVFkpSQkODW+gb9Yoxib7lK4XGDVHegRlmj73BrPXAP+sA1mGd0hFeEXmZmpnJyclRYWKi4uDhJUnJyssxms8LDwxUdHe3W+uoOH1PxS++pS69uirv1GrfWAvehD1yDeUZHeMXpzYULF2rmzJnOwJMkX19fmc1m51HevffeK7PZLJPJpM2bN7u0vp2fFqkie52O7djr0nHhWegD12Ce0REeH3qlpaWqqKhQampqk3VVVVXO0Lv22mv16aefauDAga4uEQDgJTz+9GZ1dbUkKTIystHy4uJiVVZWOkNv3Lhx7R4jNDRUNputxe2G+PXQnLD2jwPPZrUmq7z+YKu2pRc6l9Xa/Nwzz7Bam++NgIAA1dTUtHl/Hn+kFxERIUkqKytzLnM4HJo7d67sdrvbL2IBAHgPjz/Si42NlcVi0bx58+Tv76+QkBAtWbJEBQUFCg4OVkxMTIfHaO27hd35xVo96YEOjwfPlJu7Rr1Hn92qbemFznW6uWee0ZbXZWt4fOj5+fkpKytLs2bNUnp6uqKiopSRkaGwsDCVl5fLx8f9B6smHx/5+PvK5OcnmUzyDfSXw+GQ3Vbv7tLgQvSBazDP6AiPDz1Jio+PV15eXqNlixcvVlJSkpsqamzIdRdr3DN3OW/fsP0NHa3aw98PGQx94BrMMzrCK0Lvp2pra1VSUqKMjAznsnvuuUf/+Mc/tGvXLl166aWKiIjQli1bXFJP2VtrVPbWGpeMBc9FH7gG84yOcP+5wXYoKipSQ0NDo4tYFi1apB07dqi+vl67du1yWeABALyHVx7pJSYmyuFwuLsMAICX8cojPQAA2oPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhuE1oWez2TR//nxFRUUpKChI48ePV35+vkwmk7Kzs91dHgDAC/i5u4DWcDgcSktLU35+vhYsWCCLxaLly5crJSVFkpSQkOC22nwC/HTBY7eo77gR6hIRpuO7D2rrS6tV/NJqt9UE96AXXIN5Rkd4RehlZmYqJydHhYWFiouLkyQlJyfLbDYrPDxc0dHRbqvNx9dXtXsO6YOpD6umcrfChw3UZW88oBN7D2n7qjy31QXXoxdcg3lGR3jF6c2FCxdq5syZzsCTJF9fX5nNZiUkJGj//v266qqrFBMToxEjRmjy5Mnau3evS2qrr61TwR//pprtuySHQwe2bFfVB18pcnSsS8aH56AXXIN5Rkd4fOiVlpaqoqJCqampTdZVVVUpISFBJpNJc+bMUUlJiTZt2qQhQ4bo/vvvd0O1ksnPV70TY3Vwa6VbxofnoBdcg3lGW3j86c3q6mpJUmRkZKPlxcXFqqysVEJCgsLDw5WcnOxcd8EFF2jJkiWtHiM0NFQ2m63F7Yb49dCcsHE/u80Fj/1KJ4/WqvztT1o9PjyD1Zqs8vqDrdqWXuhcVmvzc888w2ptvjcCAgJUU1PT5v15/JFeRESEJKmsrMy5zOFwaO7cubLb7U0uYrHb7VqyZIkmTpzo0jol6fwF6ep1bow+nPGo7CfrXT4+PAe94BrMM9rK44/0YmNjZbFYNG/ePPn7+yskJERLlixRQUGBgoODFRMT02j7u+++WyEhIbrrrrtaPUZr3y3szi/W6kkPNLtu9EM3qe+4EXov7UHVHWj7uw+4X27uGvUefXartqUXOtfp5p55Rltel63h8aHn5+enrKwszZo1S+np6YqKilJGRobCwsJUXl4uH58fD1bvvfdelZaWatWqVY2Wn2mjH75ZfccN13vXLVDd/iMuGxeeh15wDeYZ7eXxoSdJ8fHxystrfCny4sWLlZSU5Lw9b948bdiwQf/85z8VGBjostq6DuipYbdcpYYTNl23/i/O5bvXF+ujGY+6rA64H73gGswzOsIrQu+namtrVVJSooyMDEnSli1b9Pjjj+uss87S2LFjJUlms1krVqw447Uc27FPr/S97oyPA89HL7gG84yO8MrQKyoqUkNDg/Milri4ODkcDjdXBQDwdF4ZeomJiYQcAKDNPP5PFgAA6CyEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAyvCT2bzab58+crKipKQUFBGj9+vPLz82UymZSdne3u8gAAXsDP3QW0hsPhUFpamvLz87VgwQJZLBYtX75cKSkpkqSEhAS31nfB47co6rLz5B8WrJNHa1X5bp6+evg12U/Wu7UuuB694BrMM9rLK0IvMzNTOTk5KiwsVFxcnCQpOTlZZrNZ4eHhio6Odmt9W19+T189tEz1tXUKDA9VcuZsjbxnsgqffsutdcH16AXXYJ7RXl4RegsXLtTMmTOdgSdJvr6+MpvN8vf3lyRde+21qqiokI+Pj0JCQvTss89q1KhRLqnv8LYdP94wmeSwOxQ6uK9LxoZnoRdcg3lGe3l86JWWlqqiokKLFi1qsq6qqkqpqamSpKVLl6pbt26SpOzsbN18883auHGjy+occde1GpmRKv+uQTpx4Ig+nP6ay8aGZ6EXXIN5Rnt4fOhVV1dLkiIjIxstLy4uVmVlpfPzvH8HniQdPnxYPj6tv0YnNDRUNputxe2G+PXQnLBxza7btHilNi1eqW5D+2vw5ItUu+dgq8eHZ7Bak1Ve37rnjV7oXFZr83PPPMNqbb43AgICVFNT0+b9efzVmxEREZKksrIy5zKHw6G5c+fKbrc3uojllltuUXR0tH73u99p6dKlLq9Vkg6XVuvAlkpd9Ow9bhkfnoNecA3mGW3h8Ud6sbGxslgsmjdvnvz9/RUSEqIlS5aooKBAwcHBiomJcW77wgsvSJKWLVum++67Tzk5Oa0ao7XvFnbnF2v1pAda3M7H31dhfL7gdXJz16j36LNbtS290LlON/fMM9ryumwNjz/S8/PzU1ZWlvr27av09HRlZGRowoQJSkpK0siRI5s9jXnDDTcoNzdX+/fvP+P1+YcGyzIlWQFhwZKkHrEDFZ+Rqu/XfH3Gx4ZnoRdcg3lGR3j8kZ4kxcfHKy8vr9GyxYsXKykpSZJ09OhRHTx4UFFRUZKkVatWKTw8XOHh4We+OIdDg1Mv1vkL0uUT4KcT+46oMme9Cp9888yPDc9CL7gG84wO8IrQ+6na2lqVlJQoIyNDknTs2DGlpaXp2LFj8vX1VXh4uFatWiWTyXTGazl5tFYfXP/QGR8Hno9ecA3mGR3hlaFXVFSkhoYG50UsvXv31hdffOHmqgAAns4rQy8xMVEOh8PdZQAAvIzHX8gCAEBnIfQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9NBhAy45R6lf/EUzypZp0MSxHdrXTTuzFBE/pE336dq/p2aULVNgj5AOje3pxv35TiU++it3l9GsGWXLFD7c7O4y2sWba5ekPmPiNKNs2Rnb/5V/f1Bxsya2+X6RibG6/uu/noGKOsYr/xsyb3Xl3x9U1YcbtOX5dxotn168VB//8o/albelzfu0TElW3O0TlW39r84qs81GP/RLff2nLJW9meuW8Y9V79PrlhvcMnZ79Rkbp1Gzpyhi5GBJ0v6ib1X41Fvt6oEzYdTsKYqIH6J/3fh4q7b31Pm/8u8Pqte5Z8l+sl4Ou121ew7p+882afNzK3Vsxz5Jnlu7t9uzfqvejP+1u8togiM9L2by8+3U7dorJDpSB4u/O6Nj/H8y4NJzddnyB1T10Qa9dc5teuuc21T10QZd9sYDGnDJOc3ex+TbeS/VM90PnmbjE2/o9aE3aHlMuj7+1ZPq0iNUEz98SmFD+rm7NLgBoedBuvbvqcv+Nl9Tt7ykaVtf0WV/m69Qcx/n+nF/vlPj/nynkpb8VtNLlmr47RM1ZuGt6ja0v2aULdOMsmUKG9xXlinJmpT7P4r/rzRNKfyrLll6v6RTRxdXv/uYpm19Rdd++meZJ13YaPyB14zRxI+e0vSSpfrFB0+q77gRP1tvYI8QzShbJh8/X01Y8ZBmlC2Tf2iw/IK7aMwfb9WUgkxd//VfNe6ZuxTQravzfkG9uuuixfdoSuFfNb14qa5c8ZB8uwQ02X9IVKRSPntGI+6Z/LN1hAzopZt2ZikwPFRdenbTjVVvyj/01BeMWq63Njpl2uvcs3R90Qs/u78zLfGRm1X29hptWfKOTtYc18ma49qy5B2VZ32i0Y/cLEm6Lv85jcxI1VXvPKqZ376unj/U79+1i5IzZ2tG6TJd+8mf1C85vsXx/n3666yZl+q6L5do4kdPSZL6XjxS17y/UNNLlmriv55W9JXnS5KirzxfI+5JUX/rKGdf+QT8/Emhf8+xyddH07e9qu4xp77bss/YON20M0sDrxkjSQqK7K4bv/ub/EOC2jd5HXR42w59etczOr7rgBLuu75R7ZIUPtysCSsf1tQtL2vqlpeV/NfZ6tKzm/P+AWHBSnr+t5pevFST1z2rs264zNl7LYkYOVhXvP0HTfvmZU3d/KISf3iupdM/F9Kpo+5LXv3vRvu6Lv85Dbz6gmbHaen1d9POLMX+6ipNyv0fzSh/TcmZsxUQFqwL/3SHppcsVcpnz6jXOUMb7TOod3dd/ubvNaNsma55b2GrPoL4z9OuPROGaurmF398TPdOUXr1W+oSESZJMl97oa7Oad1ZhY4i9DyIyWTSN5nv6u1zZ+ntc2epdvdBXbz4N422MU+6UGVvr9Hys2/SNy/8U3lzM3W4tFqvW27Q65YbdOTbnZKkbpb+MvmYlDX6duXe8qS6x0Rp/EtzVPDUm3pj2C/12d3P6oLHb3E2b7/keCU+crM+v/d5LT/7Jm18YrmsL92n4H4Rp6237uBR56mh1Sm/1+uWG3Sy5rgSH7lZ3Sz9lX3pvVpx0W8UGB6qC//njn8/SF3y6v1y1DdoZVKG3oj7pTY+vlwOu73RvsNHmDVhxUPa9OwKbVr0j1bP4Yl9h3W4/Hv1GTNMktT3ohE6UrHTGeB9xw3XrnXuO4UYNqSfQgf2VsXKdU3WfbtircIG9VHY4L6SJEtastbNfk6vW27Q/s0VkiTzteP07YrPtPzsdBU9u0LjX5qj4D4tf1myX1Cgeo6yaOXFGXp3wlyFDuqjS5fer82LV+qNYb/UhkdfU9KS3yo8bpC+e+9LbVq0QtW5hc6+stvqW/X4HA127V6/9cf5ds7/8FO3x43Q/qJvdfJobav2dyY4Guz67r189Rkb13Sd3a4Njy/XW6N+rRUX3SP/kKBG4ZT46K8U2D1EWYl36J8Tf6fB145r1ZjBfcJ1RdYCbX/3C72VcKvePv92Vaw69cXYP/dctMfPvv5+EH3l+Xov9Q/KGn2HIuIH6+p/Pq7tq/L0RuwvVZmzXmMW3tpo+6FTx6vw6bec6y999X75BjV9o3o6+78ul4+/n3rEDpR0qi9qKnerz4U/9sWutZvb9XjbitBzsYQ512t68dJGP/9+F3Z0x15Vf1yghhM21R8/ocIn31Svc4bKLyjQef/vP9uk6o8LJIdDDbW2045Tf+yEvv6fLNlt9WqotSkm/QqV//1Tfb/ma8nh0P6vy1WRvU5DrrtYkhT7q6u05flV2ldYJjkcqv64QHvyizXoh3forWYyafDki7Tx8eWq239EtiPH9dXDyzTwqkT5hwSp5yiLusdEKe+//yrb4WNyNNi1J7+40S/VfheP1KXL5unzOf+rsrfWtG18SbvWbnL+ku0zNk6FT7+lvhed+iXc58IR2rluU5v32Vm6/HBEULv7QJN1tXsOntrmh3e/Jcs+1OHSajnsduf87PriG323Ol+OBru+zfpUB7+p1KBftPwcmXx8tOGx11VfW6eGWpvMk8Zq9/qt2r4qT44Gu6o/LtB3H3ylIWlJHX6Mu9ZubhRyhU+95QzBPhcO1851rvnl9nOO7zygwO5NL3w6+E2l9qzfKvvJetUdqNGmRSucv5hNPj4aNHGsCp58U7bDx1S3/4i+fubvrRpvcOrFOrCpQiVL31dD3Uk11Nq0Z/1WSerc56KF19+/bXl+leoO1Khu/xF9/2mRjlbtUfXHBXLY7apYuU7dY6Pl4//j0f32d/NOvU5P1mvTsyvksDvUP6nlswz/5rDbtfuLreo7brj8gruo+9AB2vL8qv94XbquL7iQxcUK/vhmsxeySFJgeKhGP3iT+oyJk39YsPTDdwYGRoSqfkedJOlY9d5WjXN894FGR08hUb3U98LhGpJ6sXOZyc9H1R8X/rA+UqPui1N8RuqP6/19dWjbjjY9vi4RYfIN9NfRqh/rPFq5W5IU3C9CIQN66viuAz8b2MNuuUq7vyw5Fe7tsHPtJo26b6q6De0v25Hjqnz3C41+6Gb5hwQp8ryzlHff8+3ab2c4caBGkhTUO1yHy75vtC4ossepbfYfkdT8c31sR+NlR6v2tupIr762TnU/jC1JwX0jdPSn+6rcrZCBvVvxKH7ezrWbNDIjVQFhwQob3E8VK9fpnPunKbhvuPqOG67PZ7tv/v8tuG+46g7WNFkeOrC3zvvDjeqVMFR+XbvIZDI5wyIwPFS+Af46Vr3Puf1//vvnhAzoqSMVO09TS+c9Fy29/g7/8Hqu3XfYub6htk61ew45b9fX1snH11d+QQGynTz1ZqtR3zkcOla9T8F9Tn8WqDk7125SnwuH63D599qzYZuqPy5Q3KxfqOuAnuraN0K787e29eG2C6HnQc6dN0MB3UO06sq5OrHvsEIG9NJ1Xy6RSSbnNg574y/PPd2X6f50u2PV+1T8yvv66qFXm93+WPU+lSx9X8Uvv9ehx3Bi/xE11J1USFQvHd916mgmJKqXpFPvrv27Bim4T7h8uwSo4UTzwffpXYt0zn9P19inb9fn9z7vDP/W2vX5FnUf2l/mSRdq52eb1FB3Uge/2a64236hE/uPqOaHXwLucKT8e9V8t1vmiWO16yfvbM2Txqrmu93OU9Q/fQ4lqeuAXo1uh0T10t6N21oc96enj4/v3K8+Yxqf3guJitTxnfub3b4tDmzZLofdrmG/vkZ7viyWw27XzrWbddb0SxUc2UN7vixu9747g8nXR9FXnK9dn3/TZN2Yhbfq6I69Wpn8W9kOH1OfMXG68h8PSpLqDtSowXZSXfv3dPZ21/49WzXm0R37NGB8QrPrWnouTh47Ib//OJVo8vVp9Dnjf2rp9ddejfrOZFJwvwgd37W/TfvYuXazRs2eoprK3dq5dtOpoDeZNPT68dq7cdvPvhHuTJze9CD+IUGqP3ZCtsPHFNCtqxL+e3qL96nde0hBkd1bPL9e8uoHskxJUt+LR8rk6yMffz9FxA9Rj2GnzrFvfTFHw2+fqJ6jLJLJJN9Af/UeM0yhbX236XDo2xWfKWHuNAVGhCkgLFjnzb9RlavX62TNce0rLNOh0h264LFbFBAWLJOvjyJHn93oQgnbkeP6YMpD6j50gMY9c5dMPm1rU9uR4zrwTaWG/fpq7Vx76lTmznWbNezWH2+7U/7vX5HleqvibvuF/EOC5B8arGG3XSPLFKvy57/8s/ftc8EwRV1+nky+Pho8+SL1GDZQ2//5RZtrqMj+XL0TYzXw6kSZfHzU3zpKUVecp/KsTyWdOhLo2r9nu68a3fX5lkbzvXPdJg279Wrt2bBNDXUn27XPztDN0k/jFt2t4L4RKnjqzSbr/UODZas5LtuR4wrq3UMj/+PMh8Nu1/ZVeRp17xQFdOuqwPBQjbw7pVXjfvuPTxUxcrBibrxcPgF+8g0KUGRirKSWn4v9m75Vz3OGqttZA+QT4KeEuVPlc7orcFt4/bXXoKsvUK/zYmTy89WIOyfJx89X339S1KZ9HNxaqYaT9Ro61aqdn53qi13O16XrTnkTeh6k4Mk3FTKgl6ZtfVnX5Dyh79cUtnifnWs3a09+saZs+F9NL17a6GrP/3Twm0rl/vppjfqvNE3d9KKmFP5V5//+RufnhdUfFyh/wVJd8MSvNX3rK7ruq+c14q6Udl3enj//ZdVs36VrP35aKWsXyXbkmD6fveTUSodD/7rxCfkFBSpl7SJN2/Kyzpk7rUmwnTxaqw+mPqyQqF66aPE9bf7lu/OzTfIL7qLdP/zd287PNikgrKtHfJ5U9f6X+mjmY4q64jxNKczUlIL/VfQV5+ujmY+p6oOvfva+FSvXakhakqYXL9XIjFTl3vKUjn/ftnfcklSzfZc+vvmPGvmb6zSt+BWdN/8GfXrXIh344YKZ7avyZDt0VFM3v6TpxUtbvHrzp5zz/cMvs51rN7tt/s+5f5pmlC7T9G2vavzLc3XyyDG9c9m9OlL+fZNt8//wivonxWtG6au6bPkDqsxZ32j9+t+9qJM1tbpu/XO6etVjqlydL0ktBvnxnQf0ftqDMqeM09SiF3Vd/hINuubU1ZctPRe71m1WySvva8KKh3Xd+udUu+eQ8yiuOT/7+mun0jdzlTBnqqYXv6JBE8fqXzc+ofraujbvZ9e6zbKfrNfBbyolnTrl6eq+MDlOd34MTezOL9bqSQ+4uwz8ROjA3kr94i96fegNHboqcEL2I+o9+uxWbUsv/Mjk46P06reUPX62Dm6tbNc+Tjf3nj7P/ccn6OK//EZvxN7k7lI8Tt9xI5Sc+V96Y9gvO7SftrwuW4MjPXi9HnGDdGL/YbdeBm9kPeIGyn6yvtUXWXmzUHMf50cAIQN6KeG+61WR3fTPT3CqL9z5+fnpcCELWjRpzZ8UMqDpB/ZVH2zQp3f82e019Bkbp/UtfBb2/92Zfo4uff136p3Y9N32yaMn5OPvqw2PLZftSPs/M/IWfkGBuujZuxXcL0Ina2q146MN2vDIa5I843Xiaqf7Pz+r13ytiBFmj7hS96cIPbQoO/m37i7BI2rwZGd6fj6a8egZ3b+3OPhNpVZc9Jtm1xmxR73x/y3l9CYAwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMLwi9Gw2m+bPn6+oqCgFBQVp/Pjxys/Pl8lkUnZ2trvLAwB4CY8PPYfDobS0NL3wwgt64IEH9O6778psNisl5dT3WCUkNP/FjO7g2yVAkz9/9rT/Hx2Mg15wDeYZbeXx//dmZmamcnJyVFhYqLi4U98unJycLLPZrPDwcEVHR7u5wh8l3He9ju7Yp6DI7u4uBW5GL7gG84y28vgjvYULF2rmzJnOwJMkX19fmc3mJkd5Dz74oEwmkzZvdv0XVUaMHKz+1lHa/JeVLh8bnoVecA3mGe3h0aFXWlqqiooKpaamNllXVVXVKPQ2btyoL774QgMHDnRliZIkk6+Pxj41S1/Me0F2W73Lx4fnoBdcg3lGe3l06FVXV0uSIiMjGy0vLi5WZWWlM/Tq6up05513asmSJe0aJzQ0VIGBgS3+WK3Jzd5/+B2TtH9ThXZ/sbVd48MzWK3JreoDeqHzWa3Nz73Vmtzs9syzcVitzfdGaGhou/bn0aEXEREhSSorK3Muczgcmjt3rux2uzP0fv/732vmzJkaNGiQy2sMHdRHMTderq8e5oN0o6MXXIN5Rkd49IUssbGxslgsmjdvnvz9/RUSEqIlS5aooKBAwcHBiomJUV5enr766is98cQT7R6npqamVdvtzi/W6kkPNFrWe/TZCurZTZPXLZIk+fj5yr9rkKZueUm5v3qSd6JeJDd3jXqPbvrt4M2hFzrX6eaeeUZbXpet4dGh5+fnp6ysLM2aNUvp6emKiopSRkaGwsLCVF5eLh8fH33yySfaunWrzGazJGnHjh264oor9PLLL+vyyy8/4zVWrPpc339W5Lzd69wYjXvmTr1z6b06sf/IGR8fnoNecA3mGR3h0aEnSfHx8crLy2u0bPHixUpKSpIk3X///br//vud6wYNGqR3331Xw4cPd0l9DbU2Ha894Lxdt/+I5HDo+M4DP3Mv/H9EL7gG84yO8OjP9JpTW1urkpISj/qj9P+0K2+LXrfc4O4y4AHoBddgntEWHn+k91NFRUVqaGg4beht377dtQUBALyG14VeYmKiHA6Hu8sAAHghrzu9CQBAexF6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMLwm9Gw2m+bPn6+oqCgFBQVp/Pjxys/Pl8lkUnZ2trvLAwB4AT93F9AaDodDaWlpys/P14IFC2SxWLR8+XKlpKRIkhISEtxW27g/3ylzyjjZT9Y7l6359dOqzi10W01wD3rBNZhndIRXhF5mZqZycnJUWFiouLg4SVJycrLMZrPCw8MVHR3t1vq2vfaR1v/uRbfWAM9AL7gG84z28orQW7hwoWbOnOkMPEny9fWV2WyWv7+/JGnQoEHq0qWLunTp4rzPFVdc4ZZ6AQCeyeNDr7S0VBUVFVq0aFGTdVVVVUpNTXXezsrK0vDhw11ZniRp8OSLNDhlnGr3Hda3f/9UmxavlKPB7vI64H70gmswz2gvjw+96upqSVJkZGSj5cXFxaqsrOyUz/NCQ0Nls9la3G6IXw/NCRvXaNk3L+boq4eX6cSBGkWMHKyk5zLkGxiggj/+rcN1wbWs1mSV1x9s1bb0QueyWpufe+YZVmvzvREQEKCampo278/jr96MiIiQJJWVlTmXORwOzZ07V3a7vVHozZgxQyNHjtQdd9yhQ4cOuaS+A5sqdGL/Ecnh0P6vy1Xw1JsyT7rQJWPDs9ALrsE8oyM8PvRiY2NlsVg0b948vf3221q9erUmTZqkjRs3Kjg4WDExMZKkzz77TF9//bW+/PJLORwO3XXXXa0eo6amRnV1dS3+5OauaXlndodkaueDhVvl5q5pVR/QC53vdHPPPON0vdGeozzJC0LPz89PWVlZ6tu3r9LT05WRkaEJEyYoKSlJI0eOlI/PqYcQFRUlSQoMDNQdd9yhdevWuaS+QRPHyj80WJLUI3ag4menafu7eS4ZG56FXnAN5hkd4fGf6UlSfHy88vIaN/XixYuVlJQkSTp27Jjq6+vVrVs3ORwO/e1vf9OoUaNcUtvZN12hMQtvlY+/r2p3H1J51icqenaFS8aGZ6EXXIN5Rkd4Rej9VG1trUpKSpSRkSFJ2r17t1JTU9XQ0KCGhgYNGzZMzz33nEtqeW/yH1wyDjwfveAazDM6witDr6ioSA0NDc6LWAYPHqyCggI3VwUA8HReGXqJiYlyOBzuLgMA4GU8/kIWAAA6C6EHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMw2tCz2azaf78+YqKilJQUJDGjx+v/Px8mUwmZWdnu7s8AIAX8HN3Aa3hcDiUlpam/Px8LViwQBaLRcuXL1dKSookKSEhwc0VSgMuOUcJc6cqbEg/1R+t1ebnV2nLknfcXRbcgF5wDeYZ7eEVoZeZmamcnBwVFhYqLi5OkpScnCyz2azw8HBFR0e7tb5+SfEa8+RtWnvPYu3K2yK/oEB17d/TrTXBPegF12Ce0V5ecXpz4cKFmjlzpjPwJMnX11dms9l5lHfixAndfvvtGjp0qEaMGKFbb73VZfUlzJmqoj//XTvXbpKjwa6TR2t1qKTKZePDc9ALrsE8o708/kivtLRUFRUVWrRoUZN1VVVVSk1NlSTNmTNHXbp00bZt22QymbR7926X1OcXFKieo4ao+uMCpXz2jAK6ddXejaXKn/+yjlbtcUkN8Az0gmswz+gIjz/Sq66uliRFRkY2Wl5cXKzKykolJCTo6NGjevXVV/Xwww/LZDJJknr37t3qMUJDQxUYGNjij9Wa3OS+Ad27yuTjo4FXJ+rDaY8oK/EO1e49JOuL97X3IcNNrNbkVvUBvdD5rNbm595qTW6yLfNsLFZr870RGhrarv15fOhFRERIksrKypzLHA6H5s6dK7vdroSEBJWXlysiIkIPPvigzjvvPCUnJ2vt2rUuqe/k0ROSpG9eyNHRHXvVUGvTxseXK2KEmc8YDIZecA3mGR3h8aEXGxsri8WiefPm6e2339bq1as1adIkbdy4UcHBwYqJiVFDQ4O+/fZbJSQk6KuvvtLChQs1efJkHTlypFVj1NTUqK6ursWf3Nw1Te57sub4qVMqDkcnP3K4Wm7umlb1Ab3Q+U4398wzTtcbNTU17dqfx4een5+fsrKy1LdvX6WnpysjI0MTJkxQUlKSRo4cKR8fH0VHR8vPz0/Tpk2TJCUmJqpnz57atm2bS2osefUDxd5ytYL7Rcg30F8Jc6Zq39flOla9zyXjw3PQC67BPKO9PP5CFkmKj49XXl5eo2WLFy9WUlKSJKlnz56yWq368MMPdfnll2vbtm3as2ePLBaLS+rb9JdsBXQL0cQP/iiZfLQnv1i5v3rSJWPDs9ALrsE8o728IvR+qra2ViUlJcrIyHAue/7553XzzTdr9uzZ8vf317Jly9S9e3fXFORwaMOjr2nDo6+5Zjx4LnrBNZhntJNXhl5RUZEaGhoa/U8sgwcP1po1a9xXFADA43ll6CUmJsrBh9gAgDby+AtZAADoLIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYfu4uoLVsNpsefvhhvfLKK9q3b5/GjBmjJ554QomJiVq5cqUmTZrklrpmlC1rdNs3wF+HSqv1ziWz3VIP3IdecA3mGR3hFaHncDiUlpam/Px8LViwQBaLRcuXL1dKSookKSEhwW21vW65odHtif96WhXZ69xUDdyJXnAN5hkd4RWhl5mZqZycHBUWFiouLk6SlJycLLPZrPDwcEVHR7u5wlN6jrKo+1kDVPZmrrtLgZvRC67BPKOtvCL0Fi5cqJkzZzoDT5J8fX1lNpvl7++v7du369prr3WuO3TokI4cOaIDBw64tM6h08er+uMC1e4+6NJx4XnoBddgntFWHh96paWlqqio0KJFi5qsq6qqUmpqqgYNGqTCwkLn8oyMDNXX17d6jNDQUNlstha3G+LXQ3PCxjW7zi8oUOZJF+qzexa3elx4Fqs1WeX1rfvlSS90Lqu1+blnnmG1Nt8bAQEBqqmpafP+PD70qqurJUmRkZGNlhcXF6uysrLJ53k2m02vv/663n//fZfVKEmDfjFG9bU27fhog0vHheehF1yDeUZ7ePyfLEREREiSysrKnMscDofmzp0ru93eJPTeeecd9e/fX+ecc06rx6ipqVFdXV2LP7m5a067j6EzLlH5W2vkaLC37QHCY+TmrmlVH9ALne90c88843S90Z6jPMkLjvRiY2NlsVg0b948+fv7KyQkREuWLFFBQYGCg4MVExPTaPuXXnpJN998s0trDBvST5HnxWhtxl9cOi48D73gGswz2svjQ8/Pz09ZWVmaNWuW0tPTFRUVpYyMDIWFham8vFw+Pj8erFZXV+uTTz7RsmXLfmaPnW/otPHavX6raip2uXRceB56wTWYZ7SXx4eeJMXHxysvL6/RssWLFyspKanRsqVLl+rqq692nhJ1lQ2PvObS8eC56AXXYJ7RXh7/mV5zamtrVVJS0uTzvFdeecXlpzYBAN7DK470fqqoqEgNDQ1NQm/btm1uqggA4A28MvQSExPlcDjcXQYAwMt45elNAADag9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGYXLwV96tZqs5roNbv3N3GThDesRGKyA0uFXb0gud63RzzzyjLa/L1iD0AACGwelNAIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIbxf8EaXFXFzzfDAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAGOCAYAAAADwN1HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAw2ElEQVR4nO3de1xUdf7H8fdwFQRUULyCjo4RoiJdJM2CsavVakiYt6Jt27Lrsj9L+7m5a/fc6rebudmP7WaWbcWuki1227DSSEoh1ASBkJC8X1GREWZ+f9hOS2BcncvvvJ6PB4+Hc86Z8/3Mdz7De86Zg2NyOBwOAQBgAD7uLgAAAFch9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAw/dxfgTWw1x3Vw63fuLgNnSI/YaAWEBrdqW3qhc51u7plntOV12RqEXhsc3PqdVk96wN1l4AyZkP2Ieo8+u1Xb0gud63RzzzyjLa/L1uD0JgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGF4TejabTfPnz1dUVJSCgoI0fvx45efny2QyKTs7293lAQC8gFf8jywOh0NpaWnKz8/XggULZLFYtHz5cqWkpEiSEhIS3FqfyddH5y9I15DUi2Xy8dH2f36h9fNeUEPdSbfWBdejF1yDeUZ7ecWRXmZmpnJycvTRRx/ptttu0yWXXKLMzEz5+voqPDxc0dHRbq1v5D2T1WfscGWPn62/X3i3up81QOc+cINba4J70AuuwTyjvbwi9BYuXKiZM2cqLi7OuczX11dms9l5lLdt2zaNGTNGZ511lsaMGaPS0lKX1Td0xiXatOgfOr7rgOr2H1Hh02/Jcn2yTD5eMb3oRPSCazDPaC+P75DS0lJVVFQoNTW1ybqqqipn6M2aNUt33nmntm3bpjvvvFO33XZbq8cIDQ1VYGBgiz9Wa3KT+waEBSukfy8d2FLhXLZ/U4UCQoMVEtWrrQ8XbmS1JreqD+iFzme1Nj/3Vmtyk22ZZ2OxWpvvjdDQ0Hbtz+NDr7q6WpIUGRnZaHlxcbEqKyuVkJCgPXv2aOPGjZo2bZokadq0adq4caP27t17xuvzCwmSJNkOH3cusx0+Jkny/2EdjIFecA3mGR3h8aEXEREhSSorK3Muczgcmjt3rux2uxISElRVVaX+/fvL19dX0qlTn/369VNVVVWrxqipqVFdXV2LP7m5a5rct/5orSTJP+zH73sK6NZVknTyh3XwDrm5a1rVB/RC5zvd3DPPOF1v1NTUtGt/Hh96sbGxslgsmjdvnt5++22tXr1akyZN0saNGxUcHKyYmBi31mc7clxHq/cqPG6Qc1nEcLNsNcd1tOrMH2nCc9ALrsE8oyM8PvT8/PyUlZWlvn37Kj09XRkZGZowYYKSkpI0cuRI+fj4KCoqStXV1WpoaJAkNTQ06Pvvv1dUVJRLaix9/V8aeXeKgnr3UGBEmEbNnqKyN9fIYbe7ZHx4DnrBNZhntJdX/J1efHy88vLyGi1bvHixkpKSJJ36vG/UqFF64403NHPmTL3xxhtKSEhQr16u+VC7aNE/FBgepmvX/EkmH5O2v/uFNjz6mkvGhmehF1yDeUZ7eUXo/VRtba1KSkqUkZHhXPb8888rPT1dDz30kHr06KFXX33VZfU4GuzKn/+S8ue/5LIx4ZnoBddgntFeXhl6RUVFamhoaPQ/sZx99tlav369G6sCAHg6rwy9xMREORwOd5cBAPAyHn8hCwAAnYXQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhuE1oWez2TR//nxFRUUpKChI48ePV35+vkwmk7Kzs91dHgDAC/i5u4DWcDgcSktLU35+vhYsWCCLxaLly5crJSVFkpSQkODW+gb9Yoxib7lK4XGDVHegRlmj73BrPXAP+sA1mGd0hFeEXmZmpnJyclRYWKi4uDhJUnJyssxms8LDwxUdHe3W+uoOH1PxS++pS69uirv1GrfWAvehD1yDeUZHeMXpzYULF2rmzJnOwJMkX19fmc1m51HevffeK7PZLJPJpM2bN7u0vp2fFqkie52O7djr0nHhWegD12Ce0REeH3qlpaWqqKhQampqk3VVVVXO0Lv22mv16aefauDAga4uEQDgJTz+9GZ1dbUkKTIystHy4uJiVVZWOkNv3Lhx7R4jNDRUNputxe2G+PXQnLD2jwPPZrUmq7z+YKu2pRc6l9Xa/Nwzz7Bam++NgIAA1dTUtHl/Hn+kFxERIUkqKytzLnM4HJo7d67sdrvbL2IBAHgPjz/Si42NlcVi0bx58+Tv76+QkBAtWbJEBQUFCg4OVkxMTIfHaO27hd35xVo96YEOjwfPlJu7Rr1Hn92qbemFznW6uWee0ZbXZWt4fOj5+fkpKytLs2bNUnp6uqKiopSRkaGwsDCVl5fLx8f9B6smHx/5+PvK5OcnmUzyDfSXw+GQ3Vbv7tLgQvSBazDP6AiPDz1Jio+PV15eXqNlixcvVlJSkpsqamzIdRdr3DN3OW/fsP0NHa3aw98PGQx94BrMMzrCK0Lvp2pra1VSUqKMjAznsnvuuUf/+Mc/tGvXLl166aWKiIjQli1bXFJP2VtrVPbWGpeMBc9FH7gG84yOcP+5wXYoKipSQ0NDo4tYFi1apB07dqi+vl67du1yWeABALyHVx7pJSYmyuFwuLsMAICX8cojPQAA2oPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhuE1oWez2TR//nxFRUUpKChI48ePV35+vkwmk7Kzs91dHgDAC/i5u4DWcDgcSktLU35+vhYsWCCLxaLly5crJSVFkpSQkOC22nwC/HTBY7eo77gR6hIRpuO7D2rrS6tV/NJqt9UE96AXXIN5Rkd4RehlZmYqJydHhYWFiouLkyQlJyfLbDYrPDxc0dHRbqvNx9dXtXsO6YOpD6umcrfChw3UZW88oBN7D2n7qjy31QXXoxdcg3lGR3jF6c2FCxdq5syZzsCTJF9fX5nNZiUkJGj//v266qqrFBMToxEjRmjy5Mnau3evS2qrr61TwR//pprtuySHQwe2bFfVB18pcnSsS8aH56AXXIN5Rkd4fOiVlpaqoqJCqampTdZVVVUpISFBJpNJc+bMUUlJiTZt2qQhQ4bo/vvvd0O1ksnPV70TY3Vwa6VbxofnoBdcg3lGW3j86c3q6mpJUmRkZKPlxcXFqqysVEJCgsLDw5WcnOxcd8EFF2jJkiWtHiM0NFQ2m63F7Yb49dCcsHE/u80Fj/1KJ4/WqvztT1o9PjyD1Zqs8vqDrdqWXuhcVmvzc888w2ptvjcCAgJUU1PT5v15/JFeRESEJKmsrMy5zOFwaO7cubLb7U0uYrHb7VqyZIkmTpzo0jol6fwF6ep1bow+nPGo7CfrXT4+PAe94BrMM9rK44/0YmNjZbFYNG/ePPn7+yskJERLlixRQUGBgoODFRMT02j7u+++WyEhIbrrrrtaPUZr3y3szi/W6kkPNLtu9EM3qe+4EXov7UHVHWj7uw+4X27uGvUefXartqUXOtfp5p55Rltel63h8aHn5+enrKwszZo1S+np6YqKilJGRobCwsJUXl4uH58fD1bvvfdelZaWatWqVY2Wn2mjH75ZfccN13vXLVDd/iMuGxeeh15wDeYZ7eXxoSdJ8fHxystrfCny4sWLlZSU5Lw9b948bdiwQf/85z8VGBjostq6DuipYbdcpYYTNl23/i/O5bvXF+ujGY+6rA64H73gGswzOsIrQu+namtrVVJSooyMDEnSli1b9Pjjj+uss87S2LFjJUlms1krVqw447Uc27FPr/S97oyPA89HL7gG84yO8MrQKyoqUkNDg/Milri4ODkcDjdXBQDwdF4ZeomJiYQcAKDNPP5PFgAA6CyEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAyvCT2bzab58+crKipKQUFBGj9+vPLz82UymZSdne3u8gAAXsDP3QW0hsPhUFpamvLz87VgwQJZLBYtX75cKSkpkqSEhAS31nfB47co6rLz5B8WrJNHa1X5bp6+evg12U/Wu7UuuB694BrMM9rLK0IvMzNTOTk5KiwsVFxcnCQpOTlZZrNZ4eHhio6Odmt9W19+T189tEz1tXUKDA9VcuZsjbxnsgqffsutdcH16AXXYJ7RXl4RegsXLtTMmTOdgSdJvr6+MpvN8vf3lyRde+21qqiokI+Pj0JCQvTss89q1KhRLqnv8LYdP94wmeSwOxQ6uK9LxoZnoRdcg3lGe3l86JWWlqqiokKLFi1qsq6qqkqpqamSpKVLl6pbt26SpOzsbN18883auHGjy+occde1GpmRKv+uQTpx4Ig+nP6ay8aGZ6EXXIN5Rnt4fOhVV1dLkiIjIxstLy4uVmVlpfPzvH8HniQdPnxYPj6tv0YnNDRUNputxe2G+PXQnLBxza7btHilNi1eqW5D+2vw5ItUu+dgq8eHZ7Bak1Ve37rnjV7oXFZr83PPPMNqbb43AgICVFNT0+b9efzVmxEREZKksrIy5zKHw6G5c+fKbrc3uojllltuUXR0tH73u99p6dKlLq9Vkg6XVuvAlkpd9Ow9bhkfnoNecA3mGW3h8Ud6sbGxslgsmjdvnvz9/RUSEqIlS5aooKBAwcHBiomJcW77wgsvSJKWLVum++67Tzk5Oa0ao7XvFnbnF2v1pAda3M7H31dhfL7gdXJz16j36LNbtS290LlON/fMM9ryumwNjz/S8/PzU1ZWlvr27av09HRlZGRowoQJSkpK0siRI5s9jXnDDTcoNzdX+/fvP+P1+YcGyzIlWQFhwZKkHrEDFZ+Rqu/XfH3Gx4ZnoRdcg3lGR3j8kZ4kxcfHKy8vr9GyxYsXKykpSZJ09OhRHTx4UFFRUZKkVatWKTw8XOHh4We+OIdDg1Mv1vkL0uUT4KcT+46oMme9Cp9888yPDc9CL7gG84wO8IrQ+6na2lqVlJQoIyNDknTs2DGlpaXp2LFj8vX1VXh4uFatWiWTyXTGazl5tFYfXP/QGR8Hno9ecA3mGR3hlaFXVFSkhoYG50UsvXv31hdffOHmqgAAns4rQy8xMVEOh8PdZQAAvIzHX8gCAEBnIfQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9NBhAy45R6lf/EUzypZp0MSxHdrXTTuzFBE/pE336dq/p2aULVNgj5AOje3pxv35TiU++it3l9GsGWXLFD7c7O4y2sWba5ekPmPiNKNs2Rnb/5V/f1Bxsya2+X6RibG6/uu/noGKOsYr/xsyb3Xl3x9U1YcbtOX5dxotn168VB//8o/albelzfu0TElW3O0TlW39r84qs81GP/RLff2nLJW9meuW8Y9V79PrlhvcMnZ79Rkbp1Gzpyhi5GBJ0v6ib1X41Fvt6oEzYdTsKYqIH6J/3fh4q7b31Pm/8u8Pqte5Z8l+sl4Ou121ew7p+882afNzK3Vsxz5Jnlu7t9uzfqvejP+1u8togiM9L2by8+3U7dorJDpSB4u/O6Nj/H8y4NJzddnyB1T10Qa9dc5teuuc21T10QZd9sYDGnDJOc3ex+TbeS/VM90PnmbjE2/o9aE3aHlMuj7+1ZPq0iNUEz98SmFD+rm7NLgBoedBuvbvqcv+Nl9Tt7ykaVtf0WV/m69Qcx/n+nF/vlPj/nynkpb8VtNLlmr47RM1ZuGt6ja0v2aULdOMsmUKG9xXlinJmpT7P4r/rzRNKfyrLll6v6RTRxdXv/uYpm19Rdd++meZJ13YaPyB14zRxI+e0vSSpfrFB0+q77gRP1tvYI8QzShbJh8/X01Y8ZBmlC2Tf2iw/IK7aMwfb9WUgkxd//VfNe6ZuxTQravzfkG9uuuixfdoSuFfNb14qa5c8ZB8uwQ02X9IVKRSPntGI+6Z/LN1hAzopZt2ZikwPFRdenbTjVVvyj/01BeMWq63Njpl2uvcs3R90Qs/u78zLfGRm1X29hptWfKOTtYc18ma49qy5B2VZ32i0Y/cLEm6Lv85jcxI1VXvPKqZ376unj/U79+1i5IzZ2tG6TJd+8mf1C85vsXx/n3666yZl+q6L5do4kdPSZL6XjxS17y/UNNLlmriv55W9JXnS5KirzxfI+5JUX/rKGdf+QT8/Emhf8+xyddH07e9qu4xp77bss/YON20M0sDrxkjSQqK7K4bv/ub/EOC2jd5HXR42w59etczOr7rgBLuu75R7ZIUPtysCSsf1tQtL2vqlpeV/NfZ6tKzm/P+AWHBSnr+t5pevFST1z2rs264zNl7LYkYOVhXvP0HTfvmZU3d/KISf3iupdM/F9Kpo+5LXv3vRvu6Lv85Dbz6gmbHaen1d9POLMX+6ipNyv0fzSh/TcmZsxUQFqwL/3SHppcsVcpnz6jXOUMb7TOod3dd/ubvNaNsma55b2GrPoL4z9OuPROGaurmF398TPdOUXr1W+oSESZJMl97oa7Oad1ZhY4i9DyIyWTSN5nv6u1zZ+ntc2epdvdBXbz4N422MU+6UGVvr9Hys2/SNy/8U3lzM3W4tFqvW27Q65YbdOTbnZKkbpb+MvmYlDX6duXe8qS6x0Rp/EtzVPDUm3pj2C/12d3P6oLHb3E2b7/keCU+crM+v/d5LT/7Jm18YrmsL92n4H4Rp6237uBR56mh1Sm/1+uWG3Sy5rgSH7lZ3Sz9lX3pvVpx0W8UGB6qC//njn8/SF3y6v1y1DdoZVKG3oj7pTY+vlwOu73RvsNHmDVhxUPa9OwKbVr0j1bP4Yl9h3W4/Hv1GTNMktT3ohE6UrHTGeB9xw3XrnXuO4UYNqSfQgf2VsXKdU3WfbtircIG9VHY4L6SJEtastbNfk6vW27Q/s0VkiTzteP07YrPtPzsdBU9u0LjX5qj4D4tf1myX1Cgeo6yaOXFGXp3wlyFDuqjS5fer82LV+qNYb/UhkdfU9KS3yo8bpC+e+9LbVq0QtW5hc6+stvqW/X4HA127V6/9cf5ds7/8FO3x43Q/qJvdfJobav2dyY4Guz67r189Rkb13Sd3a4Njy/XW6N+rRUX3SP/kKBG4ZT46K8U2D1EWYl36J8Tf6fB145r1ZjBfcJ1RdYCbX/3C72VcKvePv92Vaw69cXYP/dctMfPvv5+EH3l+Xov9Q/KGn2HIuIH6+p/Pq7tq/L0RuwvVZmzXmMW3tpo+6FTx6vw6bec6y999X75BjV9o3o6+78ul4+/n3rEDpR0qi9qKnerz4U/9sWutZvb9XjbitBzsYQ512t68dJGP/9+F3Z0x15Vf1yghhM21R8/ocIn31Svc4bKLyjQef/vP9uk6o8LJIdDDbW2045Tf+yEvv6fLNlt9WqotSkm/QqV//1Tfb/ma8nh0P6vy1WRvU5DrrtYkhT7q6u05flV2ldYJjkcqv64QHvyizXoh3forWYyafDki7Tx8eWq239EtiPH9dXDyzTwqkT5hwSp5yiLusdEKe+//yrb4WNyNNi1J7+40S/VfheP1KXL5unzOf+rsrfWtG18SbvWbnL+ku0zNk6FT7+lvhed+iXc58IR2rluU5v32Vm6/HBEULv7QJN1tXsOntrmh3e/Jcs+1OHSajnsduf87PriG323Ol+OBru+zfpUB7+p1KBftPwcmXx8tOGx11VfW6eGWpvMk8Zq9/qt2r4qT44Gu6o/LtB3H3ylIWlJHX6Mu9ZubhRyhU+95QzBPhcO1851rvnl9nOO7zygwO5NL3w6+E2l9qzfKvvJetUdqNGmRSucv5hNPj4aNHGsCp58U7bDx1S3/4i+fubvrRpvcOrFOrCpQiVL31dD3Uk11Nq0Z/1WSerc56KF19+/bXl+leoO1Khu/xF9/2mRjlbtUfXHBXLY7apYuU7dY6Pl4//j0f32d/NOvU5P1mvTsyvksDvUP6nlswz/5rDbtfuLreo7brj8gruo+9AB2vL8qv94XbquL7iQxcUK/vhmsxeySFJgeKhGP3iT+oyJk39YsPTDdwYGRoSqfkedJOlY9d5WjXN894FGR08hUb3U98LhGpJ6sXOZyc9H1R8X/rA+UqPui1N8RuqP6/19dWjbjjY9vi4RYfIN9NfRqh/rPFq5W5IU3C9CIQN66viuAz8b2MNuuUq7vyw5Fe7tsHPtJo26b6q6De0v25Hjqnz3C41+6Gb5hwQp8ryzlHff8+3ab2c4caBGkhTUO1yHy75vtC4ossepbfYfkdT8c31sR+NlR6v2tupIr762TnU/jC1JwX0jdPSn+6rcrZCBvVvxKH7ezrWbNDIjVQFhwQob3E8VK9fpnPunKbhvuPqOG67PZ7tv/v8tuG+46g7WNFkeOrC3zvvDjeqVMFR+XbvIZDI5wyIwPFS+Af46Vr3Puf1//vvnhAzoqSMVO09TS+c9Fy29/g7/8Hqu3XfYub6htk61ew45b9fX1snH11d+QQGynTz1ZqtR3zkcOla9T8F9Tn8WqDk7125SnwuH63D599qzYZuqPy5Q3KxfqOuAnuraN0K787e29eG2C6HnQc6dN0MB3UO06sq5OrHvsEIG9NJ1Xy6RSSbnNg574y/PPd2X6f50u2PV+1T8yvv66qFXm93+WPU+lSx9X8Uvv9ehx3Bi/xE11J1USFQvHd916mgmJKqXpFPvrv27Bim4T7h8uwSo4UTzwffpXYt0zn9P19inb9fn9z7vDP/W2vX5FnUf2l/mSRdq52eb1FB3Uge/2a64236hE/uPqOaHXwLucKT8e9V8t1vmiWO16yfvbM2Txqrmu93OU9Q/fQ4lqeuAXo1uh0T10t6N21oc96enj4/v3K8+Yxqf3guJitTxnfub3b4tDmzZLofdrmG/vkZ7viyWw27XzrWbddb0SxUc2UN7vixu9747g8nXR9FXnK9dn3/TZN2Yhbfq6I69Wpn8W9kOH1OfMXG68h8PSpLqDtSowXZSXfv3dPZ21/49WzXm0R37NGB8QrPrWnouTh47Ib//OJVo8vVp9Dnjf2rp9ddejfrOZFJwvwgd37W/TfvYuXazRs2eoprK3dq5dtOpoDeZNPT68dq7cdvPvhHuTJze9CD+IUGqP3ZCtsPHFNCtqxL+e3qL96nde0hBkd1bPL9e8uoHskxJUt+LR8rk6yMffz9FxA9Rj2GnzrFvfTFHw2+fqJ6jLJLJJN9Af/UeM0yhbX236XDo2xWfKWHuNAVGhCkgLFjnzb9RlavX62TNce0rLNOh0h264LFbFBAWLJOvjyJHn93oQgnbkeP6YMpD6j50gMY9c5dMPm1rU9uR4zrwTaWG/fpq7Vx76lTmznWbNezWH2+7U/7vX5HleqvibvuF/EOC5B8arGG3XSPLFKvy57/8s/ftc8EwRV1+nky+Pho8+SL1GDZQ2//5RZtrqMj+XL0TYzXw6kSZfHzU3zpKUVecp/KsTyWdOhLo2r9nu68a3fX5lkbzvXPdJg279Wrt2bBNDXUn27XPztDN0k/jFt2t4L4RKnjqzSbr/UODZas5LtuR4wrq3UMj/+PMh8Nu1/ZVeRp17xQFdOuqwPBQjbw7pVXjfvuPTxUxcrBibrxcPgF+8g0KUGRirKSWn4v9m75Vz3OGqttZA+QT4KeEuVPlc7orcFt4/bXXoKsvUK/zYmTy89WIOyfJx89X339S1KZ9HNxaqYaT9Ro61aqdn53qi13O16XrTnkTeh6k4Mk3FTKgl6ZtfVnX5Dyh79cUtnifnWs3a09+saZs+F9NL17a6GrP/3Twm0rl/vppjfqvNE3d9KKmFP5V5//+RufnhdUfFyh/wVJd8MSvNX3rK7ruq+c14q6Udl3enj//ZdVs36VrP35aKWsXyXbkmD6fveTUSodD/7rxCfkFBSpl7SJN2/Kyzpk7rUmwnTxaqw+mPqyQqF66aPE9bf7lu/OzTfIL7qLdP/zd287PNikgrKtHfJ5U9f6X+mjmY4q64jxNKczUlIL/VfQV5+ujmY+p6oOvfva+FSvXakhakqYXL9XIjFTl3vKUjn/ftnfcklSzfZc+vvmPGvmb6zSt+BWdN/8GfXrXIh344YKZ7avyZDt0VFM3v6TpxUtbvHrzp5zz/cMvs51rN7tt/s+5f5pmlC7T9G2vavzLc3XyyDG9c9m9OlL+fZNt8//wivonxWtG6au6bPkDqsxZ32j9+t+9qJM1tbpu/XO6etVjqlydL0ktBvnxnQf0ftqDMqeM09SiF3Vd/hINuubU1ZctPRe71m1WySvva8KKh3Xd+udUu+eQ8yiuOT/7+mun0jdzlTBnqqYXv6JBE8fqXzc+ofraujbvZ9e6zbKfrNfBbyolnTrl6eq+MDlOd34MTezOL9bqSQ+4uwz8ROjA3kr94i96fegNHboqcEL2I+o9+uxWbUsv/Mjk46P06reUPX62Dm6tbNc+Tjf3nj7P/ccn6OK//EZvxN7k7lI8Tt9xI5Sc+V96Y9gvO7SftrwuW4MjPXi9HnGDdGL/YbdeBm9kPeIGyn6yvtUXWXmzUHMf50cAIQN6KeG+61WR3fTPT3CqL9z5+fnpcCELWjRpzZ8UMqDpB/ZVH2zQp3f82e019Bkbp/UtfBb2/92Zfo4uff136p3Y9N32yaMn5OPvqw2PLZftSPs/M/IWfkGBuujZuxXcL0Ina2q146MN2vDIa5I843Xiaqf7Pz+r13ytiBFmj7hS96cIPbQoO/m37i7BI2rwZGd6fj6a8egZ3b+3OPhNpVZc9Jtm1xmxR73x/y3l9CYAwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMLwi9Gw2m+bPn6+oqCgFBQVp/Pjxys/Pl8lkUnZ2trvLAwB4CY8PPYfDobS0NL3wwgt64IEH9O6778psNisl5dT3WCUkNP/FjO7g2yVAkz9/9rT/Hx2Mg15wDeYZbeXx//dmZmamcnJyVFhYqLi4U98unJycLLPZrPDwcEVHR7u5wh8l3He9ju7Yp6DI7u4uBW5GL7gG84y28vgjvYULF2rmzJnOwJMkX19fmc3mJkd5Dz74oEwmkzZvdv0XVUaMHKz+1lHa/JeVLh8bnoVecA3mGe3h0aFXWlqqiooKpaamNllXVVXVKPQ2btyoL774QgMHDnRliZIkk6+Pxj41S1/Me0F2W73Lx4fnoBdcg3lGe3l06FVXV0uSIiMjGy0vLi5WZWWlM/Tq6up05513asmSJe0aJzQ0VIGBgS3+WK3Jzd5/+B2TtH9ThXZ/sbVd48MzWK3JreoDeqHzWa3Nz73Vmtzs9syzcVitzfdGaGhou/bn0aEXEREhSSorK3Muczgcmjt3rux2uzP0fv/732vmzJkaNGiQy2sMHdRHMTderq8e5oN0o6MXXIN5Rkd49IUssbGxslgsmjdvnvz9/RUSEqIlS5aooKBAwcHBiomJUV5enr766is98cQT7R6npqamVdvtzi/W6kkPNFrWe/TZCurZTZPXLZIk+fj5yr9rkKZueUm5v3qSd6JeJDd3jXqPbvrt4M2hFzrX6eaeeUZbXpet4dGh5+fnp6ysLM2aNUvp6emKiopSRkaGwsLCVF5eLh8fH33yySfaunWrzGazJGnHjh264oor9PLLL+vyyy8/4zVWrPpc339W5Lzd69wYjXvmTr1z6b06sf/IGR8fnoNecA3mGR3h0aEnSfHx8crLy2u0bPHixUpKSpIk3X///br//vud6wYNGqR3331Xw4cPd0l9DbU2Ha894Lxdt/+I5HDo+M4DP3Mv/H9EL7gG84yO8OjP9JpTW1urkpISj/qj9P+0K2+LXrfc4O4y4AHoBddgntEWHn+k91NFRUVqaGg4beht377dtQUBALyG14VeYmKiHA6Hu8sAAHghrzu9CQBAexF6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMLwm9Gw2m+bPn6+oqCgFBQVp/Pjxys/Pl8lkUnZ2trvLAwB4AT93F9AaDodDaWlpys/P14IFC2SxWLR8+XKlpKRIkhISEtxW27g/3ylzyjjZT9Y7l6359dOqzi10W01wD3rBNZhndIRXhF5mZqZycnJUWFiouLg4SVJycrLMZrPCw8MVHR3t1vq2vfaR1v/uRbfWAM9AL7gG84z28orQW7hwoWbOnOkMPEny9fWV2WyWv7+/JGnQoEHq0qWLunTp4rzPFVdc4ZZ6AQCeyeNDr7S0VBUVFVq0aFGTdVVVVUpNTXXezsrK0vDhw11ZniRp8OSLNDhlnGr3Hda3f/9UmxavlKPB7vI64H70gmswz2gvjw+96upqSVJkZGSj5cXFxaqsrOyUz/NCQ0Nls9la3G6IXw/NCRvXaNk3L+boq4eX6cSBGkWMHKyk5zLkGxiggj/+rcN1wbWs1mSV1x9s1bb0QueyWpufe+YZVmvzvREQEKCampo278/jr96MiIiQJJWVlTmXORwOzZ07V3a7vVHozZgxQyNHjtQdd9yhQ4cOuaS+A5sqdGL/Ecnh0P6vy1Xw1JsyT7rQJWPDs9ALrsE8oyM8PvRiY2NlsVg0b948vf3221q9erUmTZqkjRs3Kjg4WDExMZKkzz77TF9//bW+/PJLORwO3XXXXa0eo6amRnV1dS3+5OauaXlndodkaueDhVvl5q5pVR/QC53vdHPPPON0vdGeozzJC0LPz89PWVlZ6tu3r9LT05WRkaEJEyYoKSlJI0eOlI/PqYcQFRUlSQoMDNQdd9yhdevWuaS+QRPHyj80WJLUI3ag4menafu7eS4ZG56FXnAN5hkd4fGf6UlSfHy88vIaN/XixYuVlJQkSTp27Jjq6+vVrVs3ORwO/e1vf9OoUaNcUtvZN12hMQtvlY+/r2p3H1J51icqenaFS8aGZ6EXXIN5Rkd4Rej9VG1trUpKSpSRkSFJ2r17t1JTU9XQ0KCGhgYNGzZMzz33nEtqeW/yH1wyDjwfveAazDM6witDr6ioSA0NDc6LWAYPHqyCggI3VwUA8HReGXqJiYlyOBzuLgMA4GU8/kIWAAA6C6EHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMw2tCz2azaf78+YqKilJQUJDGjx+v/Px8mUwmZWdnu7s8AIAX8HN3Aa3hcDiUlpam/Px8LViwQBaLRcuXL1dKSookKSEhwc0VSgMuOUcJc6cqbEg/1R+t1ebnV2nLknfcXRbcgF5wDeYZ7eEVoZeZmamcnBwVFhYqLi5OkpScnCyz2azw8HBFR0e7tb5+SfEa8+RtWnvPYu3K2yK/oEB17d/TrTXBPegF12Ce0V5ecXpz4cKFmjlzpjPwJMnX11dms9l5lHfixAndfvvtGjp0qEaMGKFbb73VZfUlzJmqoj//XTvXbpKjwa6TR2t1qKTKZePDc9ALrsE8o708/kivtLRUFRUVWrRoUZN1VVVVSk1NlSTNmTNHXbp00bZt22QymbR7926X1OcXFKieo4ao+uMCpXz2jAK6ddXejaXKn/+yjlbtcUkN8Az0gmswz+gIjz/Sq66uliRFRkY2Wl5cXKzKykolJCTo6NGjevXVV/Xwww/LZDJJknr37t3qMUJDQxUYGNjij9Wa3OS+Ad27yuTjo4FXJ+rDaY8oK/EO1e49JOuL97X3IcNNrNbkVvUBvdD5rNbm595qTW6yLfNsLFZr870RGhrarv15fOhFRERIksrKypzLHA6H5s6dK7vdroSEBJWXlysiIkIPPvigzjvvPCUnJ2vt2rUuqe/k0ROSpG9eyNHRHXvVUGvTxseXK2KEmc8YDIZecA3mGR3h8aEXGxsri8WiefPm6e2339bq1as1adIkbdy4UcHBwYqJiVFDQ4O+/fZbJSQk6KuvvtLChQs1efJkHTlypFVj1NTUqK6ursWf3Nw1Te57sub4qVMqDkcnP3K4Wm7umlb1Ab3Q+U4398wzTtcbNTU17dqfx4een5+fsrKy1LdvX6WnpysjI0MTJkxQUlKSRo4cKR8fH0VHR8vPz0/Tpk2TJCUmJqpnz57atm2bS2osefUDxd5ytYL7Rcg30F8Jc6Zq39flOla9zyXjw3PQC67BPKO9PP5CFkmKj49XXl5eo2WLFy9WUlKSJKlnz56yWq368MMPdfnll2vbtm3as2ePLBaLS+rb9JdsBXQL0cQP/iiZfLQnv1i5v3rSJWPDs9ALrsE8o728IvR+qra2ViUlJcrIyHAue/7553XzzTdr9uzZ8vf317Jly9S9e3fXFORwaMOjr2nDo6+5Zjx4LnrBNZhntJNXhl5RUZEaGhoa/U8sgwcP1po1a9xXFADA43ll6CUmJsrBh9gAgDby+AtZAADoLIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIZB6AEADIPQAwAYBqEHADAMQg8AYBiEHgDAMAg9AIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYfu4uoLVsNpsefvhhvfLKK9q3b5/GjBmjJ554QomJiVq5cqUmTZrklrpmlC1rdNs3wF+HSqv1ziWz3VIP3IdecA3mGR3hFaHncDiUlpam/Px8LViwQBaLRcuXL1dKSookKSEhwW21vW65odHtif96WhXZ69xUDdyJXnAN5hkd4RWhl5mZqZycHBUWFiouLk6SlJycLLPZrPDwcEVHR7u5wlN6jrKo+1kDVPZmrrtLgZvRC67BPKOtvCL0Fi5cqJkzZzoDT5J8fX1lNpvl7++v7du369prr3WuO3TokI4cOaIDBw64tM6h08er+uMC1e4+6NJx4XnoBddgntFWHh96paWlqqio0KJFi5qsq6qqUmpqqgYNGqTCwkLn8oyMDNXX17d6jNDQUNlstha3G+LXQ3PCxjW7zi8oUOZJF+qzexa3elx4Fqs1WeX1rfvlSS90Lqu1+blnnmG1Nt8bAQEBqqmpafP+PD70qqurJUmRkZGNlhcXF6uysrLJ53k2m02vv/663n//fZfVKEmDfjFG9bU27fhog0vHheehF1yDeUZ7ePyfLEREREiSysrKnMscDofmzp0ru93eJPTeeecd9e/fX+ecc06rx6ipqVFdXV2LP7m5a067j6EzLlH5W2vkaLC37QHCY+TmrmlVH9ALne90c88843S90Z6jPMkLjvRiY2NlsVg0b948+fv7KyQkREuWLFFBQYGCg4MVExPTaPuXXnpJN998s0trDBvST5HnxWhtxl9cOi48D73gGswz2svjQ8/Pz09ZWVmaNWuW0tPTFRUVpYyMDIWFham8vFw+Pj8erFZXV+uTTz7RsmXLfmaPnW/otPHavX6raip2uXRceB56wTWYZ7SXx4eeJMXHxysvL6/RssWLFyspKanRsqVLl+rqq692nhJ1lQ2PvObS8eC56AXXYJ7RXh7/mV5zamtrVVJS0uTzvFdeecXlpzYBAN7DK470fqqoqEgNDQ1NQm/btm1uqggA4A28MvQSExPlcDjcXQYAwMt45elNAADag9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGYXLwV96tZqs5roNbv3N3GThDesRGKyA0uFXb0gud63RzzzyjLa/L1iD0AACGwelNAIBhEHoAAMMg9AAAhkHoAQAMg9ADABgGoQcAMAxCDwBgGIQeAMAwCD0AgGEQegAAwyD0AACGQegBAAyD0AMAGAahBwAwDEIPAGAYhB4AwDAIPQCAYRB6AADDIPQAAIbxf8EaXFXFzzfDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -81,16 +81,16 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:56.487374Z", - "iopub.status.busy": "2024-11-23T19:54:56.486867Z", - "iopub.status.idle": "2024-11-23T19:54:56.679667Z", - "shell.execute_reply": "2024-11-23T19:54:56.679039Z" + "iopub.execute_input": "2024-12-05T03:21:31.113976Z", + "iopub.status.busy": "2024-12-05T03:21:31.113487Z", + "iopub.status.idle": "2024-12-05T03:21:31.316959Z", + "shell.execute_reply": "2024-12-05T03:21:31.316364Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK4AAAGOCAYAAAAO1zhsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAY1UlEQVR4nO3dfViUdb7H8c/MMDwpoKAS2ggoiiggtOUjJVjpWicfs3LVZdfcIimvOWupx2qPmtW2btcWWbpdZSk+VGsWUVZagYpHcRVIJJSHwIAAFUQBkcc5f7BMgKQDyj33l/m8rss/YIDfV663t7cg89WYTCYTiITRWnsAoq5guCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJDtrDyBNXeVlXMj8ydpjqFrfgMGwd3Hu1jMYbiddyPwJX854ztpjqNq0uHXwHDOiW8/grQKJxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRxIRbV1eH559/HgaDAU5OTpg8eTKOHj0KjUaDuLg4a49HChPxnTOTyYS5c+fi6NGjWL16Nfz8/LBjxw7MmjULABAaGmrlCQGNTos7Vkdi6Jy7oNFqkf/FESSvegeNtfXWHq1HEhHu22+/jT179iAtLQ2jRo0CAISHh8PX1xfu7u4YPHiwlScEgpfOxi0TAhE3eRka6xtw9/sr8JvnFuLo85utPVqPJOJW4ZVXXsGCBQvM0QKATqeDr6+v+WqblZWF8ePHY/jw4Rg/fjyys7MVnXHY/LuRHrMbl0vKUVt2CWmvfgS/h8Oh0Yr4FIuj+s9qdnY28vLyMGfOnKseKygoMIcbFRWF6OhoZGVlITo6Go8//rjFZ7i4uMDBwcGiXxER4Ve9v72rM3oP6o/yjDzz68rS82Dv4ozehv6d/S2LFxERbvHn08XFpUtnqD7coqIiAMCAAQPavP7UqVM4c+YMQkNDcfbsWaSkpGDevHkAgHnz5iElJQXnzp1TZEa73k4AgLqLl82vq7tYDQDQ/+cxurlUH66HhwcAICcnx/w6k8mEFStWoKmpCaGhoSgoKMCgQYOg0+kANN9GDBw4EAUFBRadUVlZidraWot+JSQkXvX+DVU1AAC96y//B9XerRcAoP4/j9mShIREiz+flZWVXTpD9f84CwgIgJ+fH1atWgW9Xo/evXtj48aNSE1NhbOzM/z9/ZGammrVGesuXUZV0Tm4j/LBpdyfAQAegb6oq7yMqgJlrvq2RvXh2tnZYdeuXYiKikJkZCQMBgOMRiNcXV2Rm5sLrVYLg8GAoqIiNDY2QqfTobGxET///DMMBoNic2Zv/xbBT81CaXImmhoaEbLsIeR8mAhTU5NiM9gS1YcLAKNHj8bhw4fbvG7Dhg2YNGkSgOb735CQEOzcuRMLFizAzp07ERoaiv79lfuH0YmY3XBwd8XMxH9Ao9Ug//MjOP7iNsXOtzUiwm2vpqYGp0+fhtFoNL9u06ZNiIyMxNq1a9G3b19s3bpV0ZlMjU04+vxmft1WISLDPXHiBBobG9t8x2zEiBFITk624lSkJJHhjh07FiaTydpjkBWp/sthRB1huCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkhiwuUSampNxDOSS1hC7fPAeAQsvg/uo3xQW16JXWOWWHukHk1EuBKWUNderMapzV/Bsb8bRj32X9Yep8cTcatgyRLqp59+Gr6+vtBoNDh58qTiMxYfOIG8uEOoLuRCPiWoPlxLl1DPnDkTBw4cgLe3t9IjkhWo/lbBkiXUABAWFtblM1xcXFBXV2fR2w6164vlrl0/yxZERIQjt+GCRW9rb2/fpX2+qr/iWrKEmmyP6q+4liyhvlGd+RNfevQUvpzx3A2f2ZMlJCTCc8yIbj1D9eFasoRaDTRaLbR6HTR2doBGA52DHiaTCU11DdYerUdSfbjA9ZdQq8HQB+9C2OtPml9emL8TVQVn+fXcbiIi3PY6WkK9dOlS7N69GyUlJbjnnnvg4eGBjIwMxWbK+SgROR8lKnaerVPH37Od1NES6piYGBQWFqKhoQElJSWKRkvKE3nF5RJqEnnFJWK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSGLC5RJqak3EM5KrfQm11t4O415aDK+wIDh6uOJy6QVkbv4SpzZ/adW5ejIR4ap9CbVWp0PN2QrsfeQFVJ4phftIb9y78zlcOVeB/PjD1/8A1GkibhWut4S6rKwM9913H/z9/REUFITZs2fj3DnllkE31NQi9W8foDK/BDCZUJ6Rj4K9xzBgTIBiM9ga1YdryRJqjUaD5cuX4/Tp00hPT8fQoUOxcuVKK0zbTGOng+fYAFzIPGO1GXo61d8qWLKE2t3dHeHh4ebHxo0bh40bN1p8xs1eQj3upUdRX1WD3H/tt3iGniQigkuoO72EuqmpCRs3bsT06dMVnbPFHasj0f83/tg3/0U01XMdanfRmFS+MKyhoQEBAQGor6/H+vXr2yyhLi8vR2VlZZt9vtHR0SgqKsLu3bu7Zc/vtZZQj1n7B3iFBeGruWtQW3bppp8txbS4dVxC3Zkl1E8//TSys7MRHx+v+HLqMS8sgldYIL56cLVNR6sU1YcLWLaEetWqVTh+/Di++OILODg4KDpfr1v7YeTi+9B4pQ4PJr9pfn1p8il8M/9FRWexFSLCba/9EuqMjAy8/PLLGD58OCZMmAAA8PX1xSeffKLIPNWF5/G+14OKnEXNRIbbfgn1qFGjuNvXxogMl0uoSfVfDiPqCMMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEEhMul1BTayKekVztS6gBYNzLi2G493boXZ1RX1WDM58fxrEXtnHXWTcREa7al1ADQOZ7X+HY2lg01NTCwd0F4W8vQ/DS2Uh79SNrj9YjiQj3Wkuo9Xo9AGDmzJnIy8uDVqtF79698cYbbyAkJESxGS9mFf7ygkYDU5MJLkO8FDvf1qg+3JYl1DExMVc9VlBQYF5OvWXLFri5uQEA4uLisGjRIqSkpCg6a9CTMxFsnAN9LydcKb+Efb/bpuj5tkT14VqyhBqAOVoAuHjxYqc2S96sJdTpGz5F+oZP4TZsEIbMvhM1Zy1bxNzTRERwCXWnllAvXrwYgwcPxrPPPostW7YoPmuLi9lFKM84gzvfWGq1GXo61V9xAwIC4Ofnh1WrVkGv17dZQu3s7Ax/f3/z277zzjsAgNjYWDzzzDPYs2ePRWd05k/8tZZQt6bV6+Bqo/e4CQmJ3b6EWvVX3JYl1F5eXoiMjITRaMS0adMwadIkBAcHd3hLsHDhQiQkJKCsrEyRGfUuzvB7KBz2rs4AgL4B3hhtnIOfE79X5HxbpPorLnD9JdRVVVW4cOECDAYDACA+Ph7u7u5wd3dXZkCTCUPm3IU7VkdCa2+HK+cv4cyeZKSt/1CZ822QiHDba7+Eurq6GnPnzkV1dTV0Oh3c3d0RHx8PjUajyDz1VTXY+/BaRc6iZiLDbb+E2tPTE0eOHLHyVKQkkeFyCTWp/h9nRB1huCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCoR9lo0xr74qLXHMLtn+7MIePQ+a4/xq0R+y1cq1yFeuP35hRhwhz90DvaoOVeBgr3H8O/VnftP734PhWPUE9MRF/HnbpoU+Gb+i932sW8Ghquge2JX4cyeZByIjkFDTS1cfDzheUf3/ofrX6Ox08HU0GiVs28G3iooxMHdBa5DvHB66140XL4CmEyozCtBzkeJHb79nW88hbkp/8T87FhM37cegyJCAADugb4Y/8pjcBs2CPNzYjE/J9b8kxa3TBiF+z9/CfMy38fMA6/Bd8ZE88cLWfYQ7tn+LMa+tBiPZGzG2HWLrjnvbz9eg1FR0wE03zaM+ONvAQA6R3sszNuBsS8tNr/trIOvY9BkZZ/bguEqpLa8EhVZBZj4jyXwnTERLt6e13z74kMZiIv4M3aMiMTp2H0If3sZHDxcUX4yD4dXvI2L2UXY7rcQ2/0W4tKPxejjb8DkzcuR+vcPsXPkH3HwqTcw7uXF8Bg91PwxB94VjPKTefgweDH+vcby25PipHR4hQUBAAbc4Y/q4jJ4hQUCAJxvcYeLtydKj2R24bPSdQxXQV/N/l+cT8tB0NLZmJUUgzlH3oTPA+M7fNucD75D3cVqmBqbcHrrXtReqES/VhG25x85FbkfH2j+cSGTCWXf5yIv7hCGPniX+W0u5hQhe8e3MDU2obHGsp9qBoCSQyfhOW4koNHA684gZO/4FnbODnDy7ItbwgJxPi23+W8RBfEeV0FXyi7h+LptOL5uG/S9nTB8wb246y0jLmSeafuGGg1Cn3kYPtMnwGlAH6DJBLvejnD0cP3Vj93b0B9eEwMxdM4voWrstCj6Ls38cnXR+S7NXZaeB40GcA/0gdfEIBxZ9Q7c/AbBKywQXhMDUZyU3qWPeyMYrpXUV9UgY9NnCHpqFvr4G9o8NmRWGIY+NAn7HnkBF3OLAZMJDx59y/yjSB39J/rqovM49f7XOLZ266+eaWrq4n++N5lQcvgHeE8bCxcfT5Sn56H40El4hQXBa2Igkoxvdu3j3gDeKijE3q0Xbvuf36HP8FuhsdNBa2+H4QvvhZ2TPcq+/7HN2+p7O6GprgFXyi5Ba6fDqKjpcPbyMD9ec64CTgP6QOdkb37d6a174ffQJHjdFQyNTgut3g4eo4ei70jvmzJ/cVI6Ah6dhtLkTJiamlCclA7v+8bCsZ8bzh47fVPO6AxecRXSVNcAp/59MHnLSjj1d0NjbQMqsgrw7R9eQVXhuTZvm/OvRHjdGYQ5yW+h4XItTm/di4pTP5kfL046ibNHT+Gh4/+ERqtF/LQVuPDDGST86VXctmIe+mz6b5hMQMWpn3D8pe03Zf7ipHTYuy5GcdJJAMDl4nLUnK1AdXE5muqUf0ZKjYk/vNUplj4hiHTTPn0B+fGHkfmuZU+q0uZ949bxCUFIeXbOjnDx9kRlfom1R/lVvFWwUUFLZyN46ayrXq9ztIdWp0Pep4dQlJCm/GAWYrg2Kj1mN9Jjdlt7jC7jrQKJxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JJCJcLqCm9lT/LV8JC6hb0znaY8Z3r8JpQB9s91to7XF6LNWHK2EBdWuhzzyMqsLzzT9yQ91G9bcK11pA3f5qu2bNGmg0Gpw8eVLpMQEAHsFDMCgiBCff/NQq59sSVYfbsoC6ZdF0awUFBW3CTUlJwZEjR+DtfXN+VKWzNDotJvw9CkdWvWOVnwiwNaq+VbB0AXVtbS2io6Oxc+dOhIeHd/qcm7GEOnDJDJSl56H0SCZuGT+qg/e0HRERNr6E2tIF1H/5y1+wYMEC+Pj4WGNMuPjcAv/fT8GxF2Ktcr4tUvUV15IF1IcPH8axY8fw17/+tcvn3OgSas8xI+DUzw2zD8UAALR2Ouh7OeGRjM1IeHS94s/yYm1KLKFWdbgtC6ijoqIQGRkJg8EAo9EIV1dX5ObmQqvVYv/+/cjMzISvry8AoLCwEFOnTsV7772HKVOmKDJnXvz/4eeDJ8wv9/+NP8Jej8Zn9zyNK2WXFJnB1qg6XOD6C6hXrlyJlStXmh/z8fHB559/jsDAQMVmbKypw+WacvPLtWWXAJMJl4vLr/FedCNUfY/bkZYF1Gr7xkNrJYcz+M2Hbqb6K2577RdQt5efn6/sQGQV4sLlAmoCBN4qEAEMl4RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEklMuFxETa2JeEZytS+iDnstGr6zwtBU/8tGycQ/vYqihDTrDdXDiQhXwiLqrG3fIPnZd609hs0QEe61FlHr9XoAzWuiHB0d4ejoaH6fqVOnWmVe6n6qD7dlEXVMTMxVjxUUFLRZUL1r1y5F95u1NmT2nRgyKww15y/ix48PIH3DpzA1NlllFlug+nAtXUR9I250CfUP7+7BsRdicaW8Eh7BQzDpLSN0DvZI/dsHNzybRBERNr6EGrB8ETUAzJ8/H8HBwViyZAkqKioUm7E8Pa959anJhLLvc5H69w/hO2OiYufbItVfcS1ZRA0ABw8ehMFgQG1tLYxGI5588kls27bNojNudAn1VZpMgMbiD9njKLGEWvVX3JZF1F5eXoiMjITRaMS0adMwadIkBAcHQ6tt/i0YDAYAgIODA5YsWYJDhw4pNqPP9AnQuzgDAPoGeGP0srnI//zwdd6LboTqr7jA9RdRV1dXo6GhAW5ubjCZTPjggw8QEhKi2Hwj/jAV4195DFq9DjWlFcjdtR8n3vhEsfNtkYhw22tZRG00GgEApaWlmDNnDhobG9HY2IiRI0firbfeUmyer2b/r2JnUTOR4bZfRD1kyBCkpqZaeSpSkshwuYiaVP+PM6KOMFwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkMeFyCTW1JuIZydW+hLrFrXffhtAVj8B16EA0VNXg5KZ4ZGz8zNpj9UgiwpWwhHrgpNEYv/5xJC3dgJLDGbBzckCvQf2sPVaPJeJW4VpLqFuutleuXMETTzyBYcOGISgoCI899piiM4YufwQnXvsYxUnpMDU2ob6qBhWnCxSdwZao/opr6RLq5cuXw9HREVlZWdBoNCgtLVVsRjsnB/QLGYqi71Ix6+DrsHfrhXMp2Tj6/HuoKjir2By2RPXhWrKEuqqqClu3bkVhYSE0muZdpJ6enhafcaNLqO379IJGq4X3/WOxb9461JRdxJi1f0TEu88gfsozFs/RU0REcAm1RUuoc3Nz4eHhgTVr1uD2229HeHg4kpKSFJuxvuoKAOCHd/agqvAcGmvqkPLyDngE+fI+t5uo/opryRLqtLQ0/PjjjwgNDcX69euRnJyMBx54ADk5OXB1db3uGTe6hLq+8nLzLQF3rwHgEmoAli2hHjx4MOzs7DBv3jwAzQv8+vXrh6ysLMXmPL11LwIW3w/ngR7QOegRuvwRnP8+F9VF5xWbwZao/ooLXH8Jdb9+/RAREYF9+/ZhypQpyMrKwtmzZ+Hn56fYjOlvxsHerTem7/0boNHi7NFTSHh0vWLn2xoR4bbXfgk1AGzatAmLFi3CsmXLoNfrERsbiz59+ig3lMmE4y9uw/EXtyl3pg0TGW77JdRA8yLqxMRE6w1FihIZLpdQk+r/cUbUEYZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJDHhqnl7+vyc2Da/fv/TB5j+7atWnamnE/FU+mrfnr7db2Gbl6d/+yry4g5ZaRrbICJcCdvTW/QL8UOf4bci58MEa4/So4kI91rb0/V6PfLz8zFz5kzzYxUVFbh06RLKy8sVn3XY7yaj6LtU1JRatsuWukb14VqyPd3HxwdpaWnm1xuNRjQ0NFh8xo0uoW5h5+QA3xkTcXDpBovP7okiIrp/CbXqw7Vke3prdXV12L59O77++mvFZmzh88B4NNTUofCb44qfbWtU/1UFS7ant/bZZ59h0KBBuO222yw+o7KyErW1tRb9SkhI/NWPM2z+3cj9KBGmxqbO/SZ7mISERIs/n1252gICrriWbE9vbfPmzVi0aJHic7oOHYgBt/sjyfim4mfbItWH27I9PSoqCpGRkTAYDDAajXB1dUVubi602l/+0igqKsL+/fsRGxur+JzD5k1GaXImKvNKFD/bFqk+XOD629NbbNmyBffff7/59kJJx9dx+bSSVH+P25GW7ent72/ff/99q9wmkPJEXHHb62h7OgBkZWVZaSJSmshwuT2dRN4qEDFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJI2JX8nvlLrKy7iQ+ZO1x1C1vgGDYe/i3K1nMFwSibcKJBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLon0/8fmscPw8ZCuAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK4AAAGOCAYAAAAO1zhsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAY1UlEQVR4nO3dfViUdb7H8c/MMDwpoKAS2ggoiiggtOUjJVjpWicfs3LVZdfcIimvOWupx2qPmtW2btcWWbpdZSk+VGsWUVZagYpHcRVIJJSHwIAAFUQBkcc5f7BMgKQDyj33l/m8rss/YIDfV663t7cg89WYTCYTiITRWnsAoq5guCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJDtrDyBNXeVlXMj8ydpjqFrfgMGwd3Hu1jMYbiddyPwJX854ztpjqNq0uHXwHDOiW8/grQKJxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRxIRbV1eH559/HgaDAU5OTpg8eTKOHj0KjUaDuLg4a49HChPxnTOTyYS5c+fi6NGjWL16Nfz8/LBjxw7MmjULABAaGmrlCQGNTos7Vkdi6Jy7oNFqkf/FESSvegeNtfXWHq1HEhHu22+/jT179iAtLQ2jRo0CAISHh8PX1xfu7u4YPHiwlScEgpfOxi0TAhE3eRka6xtw9/sr8JvnFuLo85utPVqPJOJW4ZVXXsGCBQvM0QKATqeDr6+v+WqblZWF8ePHY/jw4Rg/fjyys7MVnXHY/LuRHrMbl0vKUVt2CWmvfgS/h8Oh0Yr4FIuj+s9qdnY28vLyMGfOnKseKygoMIcbFRWF6OhoZGVlITo6Go8//rjFZ7i4uMDBwcGiXxER4Ve9v72rM3oP6o/yjDzz68rS82Dv4ozehv6d/S2LFxERbvHn08XFpUtnqD7coqIiAMCAAQPavP7UqVM4c+YMQkNDcfbsWaSkpGDevHkAgHnz5iElJQXnzp1TZEa73k4AgLqLl82vq7tYDQDQ/+cxurlUH66HhwcAICcnx/w6k8mEFStWoKmpCaGhoSgoKMCgQYOg0+kANN9GDBw4EAUFBRadUVlZidraWot+JSQkXvX+DVU1AAC96y//B9XerRcAoP4/j9mShIREiz+flZWVXTpD9f84CwgIgJ+fH1atWgW9Xo/evXtj48aNSE1NhbOzM/z9/ZGammrVGesuXUZV0Tm4j/LBpdyfAQAegb6oq7yMqgJlrvq2RvXh2tnZYdeuXYiKikJkZCQMBgOMRiNcXV2Rm5sLrVYLg8GAoqIiNDY2QqfTobGxET///DMMBoNic2Zv/xbBT81CaXImmhoaEbLsIeR8mAhTU5NiM9gS1YcLAKNHj8bhw4fbvG7Dhg2YNGkSgOb735CQEOzcuRMLFizAzp07ERoaiv79lfuH0YmY3XBwd8XMxH9Ao9Ug//MjOP7iNsXOtzUiwm2vpqYGp0+fhtFoNL9u06ZNiIyMxNq1a9G3b19s3bpV0ZlMjU04+vxmft1WISLDPXHiBBobG9t8x2zEiBFITk624lSkJJHhjh07FiaTydpjkBWp/sthRB1huCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkhiwuUSampNxDOSS1hC7fPAeAQsvg/uo3xQW16JXWOWWHukHk1EuBKWUNderMapzV/Bsb8bRj32X9Yep8cTcatgyRLqp59+Gr6+vtBoNDh58qTiMxYfOIG8uEOoLuRCPiWoPlxLl1DPnDkTBw4cgLe3t9IjkhWo/lbBkiXUABAWFtblM1xcXFBXV2fR2w6164vlrl0/yxZERIQjt+GCRW9rb2/fpX2+qr/iWrKEmmyP6q+4liyhvlGd+RNfevQUvpzx3A2f2ZMlJCTCc8yIbj1D9eFasoRaDTRaLbR6HTR2doBGA52DHiaTCU11DdYerUdSfbjA9ZdQq8HQB+9C2OtPml9emL8TVQVn+fXcbiIi3PY6WkK9dOlS7N69GyUlJbjnnnvg4eGBjIwMxWbK+SgROR8lKnaerVPH37Od1NES6piYGBQWFqKhoQElJSWKRkvKE3nF5RJqEnnFJWK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSGLC5RJqak3EM5KrfQm11t4O415aDK+wIDh6uOJy6QVkbv4SpzZ/adW5ejIR4ap9CbVWp0PN2QrsfeQFVJ4phftIb9y78zlcOVeB/PjD1/8A1GkibhWut4S6rKwM9913H/z9/REUFITZs2fj3DnllkE31NQi9W8foDK/BDCZUJ6Rj4K9xzBgTIBiM9ga1YdryRJqjUaD5cuX4/Tp00hPT8fQoUOxcuVKK0zbTGOng+fYAFzIPGO1GXo61d8qWLKE2t3dHeHh4ebHxo0bh40bN1p8xs1eQj3upUdRX1WD3H/tt3iGniQigkuoO72EuqmpCRs3bsT06dMVnbPFHasj0f83/tg3/0U01XMdanfRmFS+MKyhoQEBAQGor6/H+vXr2yyhLi8vR2VlZZt9vtHR0SgqKsLu3bu7Zc/vtZZQj1n7B3iFBeGruWtQW3bppp8txbS4dVxC3Zkl1E8//TSys7MRHx+v+HLqMS8sgldYIL56cLVNR6sU1YcLWLaEetWqVTh+/Di++OILODg4KDpfr1v7YeTi+9B4pQ4PJr9pfn1p8il8M/9FRWexFSLCba/9EuqMjAy8/PLLGD58OCZMmAAA8PX1xSeffKLIPNWF5/G+14OKnEXNRIbbfgn1qFGjuNvXxogMl0uoSfVfDiPqCMMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEYrgkEsMlkRguicRwSSSGSyIxXBKJ4ZJIDJdEEhMul1BTayKekVztS6gBYNzLi2G493boXZ1RX1WDM58fxrEXtnHXWTcREa7al1ADQOZ7X+HY2lg01NTCwd0F4W8vQ/DS2Uh79SNrj9YjiQj3Wkuo9Xo9AGDmzJnIy8uDVqtF79698cYbbyAkJESxGS9mFf7ygkYDU5MJLkO8FDvf1qg+3JYl1DExMVc9VlBQYF5OvWXLFri5uQEA4uLisGjRIqSkpCg6a9CTMxFsnAN9LydcKb+Efb/bpuj5tkT14VqyhBqAOVoAuHjxYqc2S96sJdTpGz5F+oZP4TZsEIbMvhM1Zy1bxNzTRERwCXWnllAvXrwYgwcPxrPPPostW7YoPmuLi9lFKM84gzvfWGq1GXo61V9xAwIC4Ofnh1WrVkGv17dZQu3s7Ax/f3/z277zzjsAgNjYWDzzzDPYs2ePRWd05k/8tZZQt6bV6+Bqo/e4CQmJ3b6EWvVX3JYl1F5eXoiMjITRaMS0adMwadIkBAcHd3hLsHDhQiQkJKCsrEyRGfUuzvB7KBz2rs4AgL4B3hhtnIOfE79X5HxbpPorLnD9JdRVVVW4cOECDAYDACA+Ph7u7u5wd3dXZkCTCUPm3IU7VkdCa2+HK+cv4cyeZKSt/1CZ822QiHDba7+Eurq6GnPnzkV1dTV0Oh3c3d0RHx8PjUajyDz1VTXY+/BaRc6iZiLDbb+E2tPTE0eOHLHyVKQkkeFyCTWp/h9nRB1huCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCoR9lo0xr74qLXHMLtn+7MIePQ+a4/xq0R+y1cq1yFeuP35hRhwhz90DvaoOVeBgr3H8O/VnftP734PhWPUE9MRF/HnbpoU+Gb+i932sW8Ghquge2JX4cyeZByIjkFDTS1cfDzheUf3/ofrX6Ox08HU0GiVs28G3iooxMHdBa5DvHB66140XL4CmEyozCtBzkeJHb79nW88hbkp/8T87FhM37cegyJCAADugb4Y/8pjcBs2CPNzYjE/J9b8kxa3TBiF+z9/CfMy38fMA6/Bd8ZE88cLWfYQ7tn+LMa+tBiPZGzG2HWLrjnvbz9eg1FR0wE03zaM+ONvAQA6R3sszNuBsS8tNr/trIOvY9BkZZ/bguEqpLa8EhVZBZj4jyXwnTERLt6e13z74kMZiIv4M3aMiMTp2H0If3sZHDxcUX4yD4dXvI2L2UXY7rcQ2/0W4tKPxejjb8DkzcuR+vcPsXPkH3HwqTcw7uXF8Bg91PwxB94VjPKTefgweDH+vcby25PipHR4hQUBAAbc4Y/q4jJ4hQUCAJxvcYeLtydKj2R24bPSdQxXQV/N/l+cT8tB0NLZmJUUgzlH3oTPA+M7fNucD75D3cVqmBqbcHrrXtReqES/VhG25x85FbkfH2j+cSGTCWXf5yIv7hCGPniX+W0u5hQhe8e3MDU2obHGsp9qBoCSQyfhOW4koNHA684gZO/4FnbODnDy7ItbwgJxPi23+W8RBfEeV0FXyi7h+LptOL5uG/S9nTB8wb246y0jLmSeafuGGg1Cn3kYPtMnwGlAH6DJBLvejnD0cP3Vj93b0B9eEwMxdM4voWrstCj6Ls38cnXR+S7NXZaeB40GcA/0gdfEIBxZ9Q7c/AbBKywQXhMDUZyU3qWPeyMYrpXUV9UgY9NnCHpqFvr4G9o8NmRWGIY+NAn7HnkBF3OLAZMJDx59y/yjSB39J/rqovM49f7XOLZ266+eaWrq4n++N5lQcvgHeE8bCxcfT5Sn56H40El4hQXBa2Igkoxvdu3j3gDeKijE3q0Xbvuf36HP8FuhsdNBa2+H4QvvhZ2TPcq+/7HN2+p7O6GprgFXyi5Ba6fDqKjpcPbyMD9ec64CTgP6QOdkb37d6a174ffQJHjdFQyNTgut3g4eo4ei70jvmzJ/cVI6Ah6dhtLkTJiamlCclA7v+8bCsZ8bzh47fVPO6AxecRXSVNcAp/59MHnLSjj1d0NjbQMqsgrw7R9eQVXhuTZvm/OvRHjdGYQ5yW+h4XItTm/di4pTP5kfL046ibNHT+Gh4/+ERqtF/LQVuPDDGST86VXctmIe+mz6b5hMQMWpn3D8pe03Zf7ipHTYuy5GcdJJAMDl4nLUnK1AdXE5muqUf0ZKjYk/vNUplj4hiHTTPn0B+fGHkfmuZU+q0uZ949bxCUFIeXbOjnDx9kRlfom1R/lVvFWwUUFLZyN46ayrXq9ztIdWp0Pep4dQlJCm/GAWYrg2Kj1mN9Jjdlt7jC7jrQKJxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JJCJcLqCm9lT/LV8JC6hb0znaY8Z3r8JpQB9s91to7XF6LNWHK2EBdWuhzzyMqsLzzT9yQ91G9bcK11pA3f5qu2bNGmg0Gpw8eVLpMQEAHsFDMCgiBCff/NQq59sSVYfbsoC6ZdF0awUFBW3CTUlJwZEjR+DtfXN+VKWzNDotJvw9CkdWvWOVnwiwNaq+VbB0AXVtbS2io6Oxc+dOhIeHd/qcm7GEOnDJDJSl56H0SCZuGT+qg/e0HRERNr6E2tIF1H/5y1+wYMEC+Pj4WGNMuPjcAv/fT8GxF2Ktcr4tUvUV15IF1IcPH8axY8fw17/+tcvn3OgSas8xI+DUzw2zD8UAALR2Ouh7OeGRjM1IeHS94s/yYm1KLKFWdbgtC6ijoqIQGRkJg8EAo9EIV1dX5ObmQqvVYv/+/cjMzISvry8AoLCwEFOnTsV7772HKVOmKDJnXvz/4eeDJ8wv9/+NP8Jej8Zn9zyNK2WXFJnB1qg6XOD6C6hXrlyJlStXmh/z8fHB559/jsDAQMVmbKypw+WacvPLtWWXAJMJl4vLr/FedCNUfY/bkZYF1Gr7xkNrJYcz+M2Hbqb6K2577RdQt5efn6/sQGQV4sLlAmoCBN4qEAEMl4RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEklMuFxETa2JeEZytS+iDnstGr6zwtBU/8tGycQ/vYqihDTrDdXDiQhXwiLqrG3fIPnZd609hs0QEe61FlHr9XoAzWuiHB0d4ejoaH6fqVOnWmVe6n6qD7dlEXVMTMxVjxUUFLRZUL1r1y5F95u1NmT2nRgyKww15y/ix48PIH3DpzA1NlllFlug+nAtXUR9I250CfUP7+7BsRdicaW8Eh7BQzDpLSN0DvZI/dsHNzybRBERNr6EGrB8ETUAzJ8/H8HBwViyZAkqKioUm7E8Pa959anJhLLvc5H69w/hO2OiYufbItVfcS1ZRA0ABw8ehMFgQG1tLYxGI5588kls27bNojNudAn1VZpMgMbiD9njKLGEWvVX3JZF1F5eXoiMjITRaMS0adMwadIkBAcHQ6tt/i0YDAYAgIODA5YsWYJDhw4pNqPP9AnQuzgDAPoGeGP0srnI//zwdd6LboTqr7jA9RdRV1dXo6GhAW5ubjCZTPjggw8QEhKi2Hwj/jAV4195DFq9DjWlFcjdtR8n3vhEsfNtkYhw22tZRG00GgEApaWlmDNnDhobG9HY2IiRI0firbfeUmyer2b/r2JnUTOR4bZfRD1kyBCkpqZaeSpSkshwuYiaVP+PM6KOMFwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkMeFyCTW1JuIZydW+hLrFrXffhtAVj8B16EA0VNXg5KZ4ZGz8zNpj9UgiwpWwhHrgpNEYv/5xJC3dgJLDGbBzckCvQf2sPVaPJeJW4VpLqFuutleuXMETTzyBYcOGISgoCI899piiM4YufwQnXvsYxUnpMDU2ob6qBhWnCxSdwZao/opr6RLq5cuXw9HREVlZWdBoNCgtLVVsRjsnB/QLGYqi71Ix6+DrsHfrhXMp2Tj6/HuoKjir2By2RPXhWrKEuqqqClu3bkVhYSE0muZdpJ6enhafcaNLqO379IJGq4X3/WOxb9461JRdxJi1f0TEu88gfsozFs/RU0REcAm1RUuoc3Nz4eHhgTVr1uD2229HeHg4kpKSFJuxvuoKAOCHd/agqvAcGmvqkPLyDngE+fI+t5uo/opryRLqtLQ0/PjjjwgNDcX69euRnJyMBx54ADk5OXB1db3uGTe6hLq+8nLzLQF3rwHgEmoAli2hHjx4MOzs7DBv3jwAzQv8+vXrh6ysLMXmPL11LwIW3w/ngR7QOegRuvwRnP8+F9VF5xWbwZao/ooLXH8Jdb9+/RAREYF9+/ZhypQpyMrKwtmzZ+Hn56fYjOlvxsHerTem7/0boNHi7NFTSHh0vWLn2xoR4bbXfgk1AGzatAmLFi3CsmXLoNfrERsbiz59+ig3lMmE4y9uw/EXtyl3pg0TGW77JdRA8yLqxMRE6w1FihIZLpdQk+r/cUbUEYZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJIZLIjFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJDHhqnl7+vyc2Da/fv/TB5j+7atWnamnE/FU+mrfnr7db2Gbl6d/+yry4g5ZaRrbICJcCdvTW/QL8UOf4bci58MEa4/So4kI91rb0/V6PfLz8zFz5kzzYxUVFbh06RLKy8sVn3XY7yaj6LtU1JRatsuWukb14VqyPd3HxwdpaWnm1xuNRjQ0NFh8xo0uoW5h5+QA3xkTcXDpBovP7okiIrp/CbXqw7Vke3prdXV12L59O77++mvFZmzh88B4NNTUofCb44qfbWtU/1UFS7ant/bZZ59h0KBBuO222yw+o7KyErW1tRb9SkhI/NWPM2z+3cj9KBGmxqbO/SZ7mISERIs/n1252gICrriWbE9vbfPmzVi0aJHic7oOHYgBt/sjyfim4mfbItWH27I9PSoqCpGRkTAYDDAajXB1dUVubi602l/+0igqKsL+/fsRGxur+JzD5k1GaXImKvNKFD/bFqk+XOD629NbbNmyBffff7/59kJJx9dx+bSSVH+P25GW7ent72/ff/99q9wmkPJEXHHb62h7OgBkZWVZaSJSmshwuT2dRN4qEDFcEonhkkgMl0RiuCQSwyWRGC6JxHBJJI2JX8nvlLrKy7iQ+ZO1x1C1vgGDYe/i3K1nMFwSibcKJBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLonEcEkkhksiMVwSieGSSAyXRGK4JBLDJZEYLon0/8fmscPw8ZCuAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -119,16 +119,16 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:56.681821Z", - "iopub.status.busy": "2024-11-23T19:54:56.681532Z", - "iopub.status.idle": "2024-11-23T19:54:56.792485Z", - "shell.execute_reply": "2024-11-23T19:54:56.791980Z" + "iopub.execute_input": "2024-12-05T03:21:31.319255Z", + "iopub.status.busy": "2024-12-05T03:21:31.318854Z", + "iopub.status.idle": "2024-12-05T03:21:31.426366Z", + "shell.execute_reply": "2024-12-05T03:21:31.425800Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAR6UlEQVR4nO3de2xUdd7H8Xev2G6rYQiyCgMdLZda6EWJoIJTjK4SVFAkxvVSY7wATdjGNEq66MLquo9h94mrpNXGyEUBEeKNWi5/PBQe2CJiL1JS21pB26LIY4sWqJRpf88fbkd6kc7UDuec8nkl/cOZMueb9N1zptPO1zBjjEEuaOFWDyDWUwSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAgEirB3CSH0+0caC22ZJjTxo7lIvjokPy2IogCAdqm5mWWWjJsXevvp0b0keE5LF1ORBFIIpAUASCIhAUgaAIBEUgOCiCtrY2nnnmGdxuNzExMdx0003s27ePsLAwPvjgA6vHczRHRGCMYd68ebz++ussWbKEwsJCPB4Pd911FwDp6ekWT9hTdFQ4le/eTe5jqV1uX/ncdIry/mDRVL1zxMvGBQUFFBUVUV5eTnJyMgAZGRl4PB5cLhejR4+2eMKe2s508NCfd7Jr1SwKd9bzWU0Ts2eM4Q7vaCbNfc/q8bpwxJngxRdf5IEHHvAHABAREYHH4/GfBWpqarjuuusYN24c1113HbW1tVaN61da9T3/WH2ANX+7kZEjYin4yw1kvVDCN8dOWT1aF7aPoLa2lkOHDjF37twe99XX1/sjmD9/PllZWdTU1JCVlcUTTzwR8DHi4+MZMmRInx8ZMzKCnv/5gnJ87YayDXPYse8bNmz9MujHAMiYkdHnfPHx8f16bNtH0NjYCMCll17a5fbPP/+cr776ivT0dL777jtKS0u57777ALjvvvsoLS3l2LFj533e7nw+w7/LjzLcFcPKD2qsHqdXto9g2LBhAHzxxRf+24wxPP3003R0dJCenk59fT0jR44kIiIC+PlScfnll1NfXx/QMVpaWjh9+nSfH8U7ioOef9rVI3h49lheWXeQfz09lYuGRAT9GADFO4r7nK+lpaVfj237CJKSkkhMTCQ3N5eNGzeyZcsWZs+eTWlpKbGxsYwfP97qEX/V72IiWfXcjSx+aT9/enEv3zX9xAuLJls9Vg+2jyAyMpJNmzZx2WWXkZmZSXZ2NjNnzsTr9ZKSkkJ4eDhut5vGxkba29sBaG9v58iRI7jdbktn/2fOFA41tpC3oQpj4OElu3j07nFMv+b3ls7Vne0jAEhNTaWkpIRTp05RXV3NggULKCsr8z8pvPTSS0lLS2P9+vUArF+/nvT0dIYPH27ZzLdNG8W9t3p45Nn/9d/2ZUMLi1/az8q/Tic2xj4/nYc58f980traSnx8PPn5+Tz22GPAz08UMzMzaW5uZujQoaxZs2bALxV7yo4Oyj8vs0+OQfjss89ob2/v8krhhAkT+Pjjjy2cyrkcGcGUKVNw4AnMthzxnEBCSxGIIhBFICgCQREIikBQBIJDXza2ymB9a7oiEF0ORBEIikBQBIIiEBSBoAgERSAoAkERCIpAUASCQ//k3CqD9beIiiAIWnAtg5YiEEUgikBQBIIiEBSBoAgEB0WgBdeh44gItOA6tBzxsrEWXIeWI84EgSy4zsnJwePxEBYWRmVlpVWjdqEF1wMk0AXXc+bMYdeuXYwZM+Z8j3hOA7XgOpRsfzkIZME1wLRp0/p9jPj4eNra2vr8vI6YK2B0TlCP3bng+po/Jv+mBdcZMzIIbz13QNHR0f3ab2z7M0EgC67tbKAWXIeS7c8EZy+4joqKIi4ujvz8fMrKygZswXWg3z3BbjQ9e8F1/jtV7Fw5ixcWTebJ5cEv3SzeUXzh/j1BIAuu7copC65tfyaAXxZcn23FihV4vV6LJupb54LrlHt++XHw7AXXKfe8x6lWn4UT/sK+30bn0NraSnV1dZfnA4sWLWLUqFE0NDRw8803d/lx0gpbdzcwdNpb1H97ssvteRuqSJy10TYBgEMj6G3B9csvv0xDQwM+n49vv/2WgwcPWjihszjictCdFlwPLEeeCWRgKQJRBKIIBEUgKAJBEQiKQNBu46AM1remKwLR5UAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCA6KQAuuQ8cRm0o6F1zv27ePpUuXkpiYyLp162y94NpRjAO8+uqrJjIy0lRWVvpv8/l8xu12G5fLZeFkg4MjzgTnWnAdFRXF999/z4MPPkhdXR3R0dGMHTuW1157jeHDh1s4tXPY/jlBIAuuw8LCeOqpp6iurubAgQNceeWVLF682IJpncn2Z4JAFly7XC4yMjL8902dOpX8/PyAjxHogmu704Lr/+jo6CA/P58777zzvM7pZLZ/V7LP5yMpKYkzZ86wfPnyLguum5qaaGlp6bLfOCsri8bGRt59911b7z22E9tfDjoXXM+fP5/MzEzcbjfZ2dlcfPHF1NXVdflC5+TkUFtby+bNmxVAEGx/Jvg1ycnJeL1e8vLyAMjNzaWkpISPPvqI2NhYi6dzFkd+u3RfcH3w4EH+/ve/c+TIEa6//nrS0tL8LyRJ32x/OehN9wXXycnJ2nX8Gzj2ciADx5GXAxlYikAUgSgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBwUgRZch44j1tUYLbgOLcu2KgdBC65DyxFngr4WXAPMmTOHQ4cOER4eTlxcHK+88gppaWkWTewwVlfYl5qaGgOYzZs397jP4/GYnJwcY4wxx48f99/+/vvvm/T09PM2o9PZ/kwQyIJrgEsuucR/3w8//BDURtMLfcG17SM4e8H1tddeC/z6gutHH32U7du3Y4xh69atlszrRLbfYxjsgmuAN998k/Xr11NUVGTR1M5i+wgAKioqmD9/PhUVFf4F13v27KGuro6SkpJe/01MTAwNDQ3+M4n8OttfDgBSU1N7fLFXrFiB1+sF4MSJEzQ3N+N2uwHYvHkzLpcLl8t13md1IkdE0F3nguvs7GwATp48ybx58zh58iQRERG4XC42b95MWFiYtYM6hCMj6L7gesSIEezdu9fiqZzLEc8JJLQc8wskCR1FIIpAFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOPR9B1b58UQbB2qbLTn2pLFDuTguOiSPrQiCcKC2mWmZhZYce/fq27khfURIHluXA1EEoggERSAoAkERCIpAUASCQyLQcuvQsn0E5j/LrV9//XWWLFlCYWEhHo/H9suto6PCqXz3bnIfS+1y+8rnplOU9weLpuqd7V82LigooKioiPLycv9u44yMDDweDy6Xi9GjR1s8Ye/aznTw0J93smvVLAp31vNZTROzZ4zhDu9oJs19z+rxurD9meBcy627nwWWLVtGWFgYlZWV53vMXpVWfc8/Vh9gzd9uZOSIWAr+cgNZL5TwzbFTVo/Wha0jqK2t5dChQ8ydO7fHffX19V0iKC0tZe/evYwZM+Z8jtin5wvK8bUbyjbMYce+b9iw9UurR+rB1hEEutz69OnTZGVlkZ+f36/jxMfHM2TIkD4/MmZkBP3YPp/h3+VHGe6KYeUHNf2aDyBjRkaf88XHx/frsW0dwdnLrTv1ttz62Wef5YEHHiAhIcGKMc9p2tUjeHj2WF5Zd5B/PT2Vi4ZEWD1SD7aOICkpicTERHJzc9m4cSNbtmxh9uzZlJaWEhsby/jx4ykpKWH//v0sXLiw38dpaWnh9OnTfX4U7ygO6nF/FxPJquduZPFL+/nTi3v5ruknXlg0uV8zFu8o7nO+/qy5B5tHEBkZyaZNm7jsssvIzMwkOzubmTNn4vV6SUlJITw8nJ07d1JVVYXH4yEhIYGGhgZuvfVWtm/fbvX4/DNnCocaW8jbUIUx8PCSXTx69zimX/N7q0frwpEbTZOTk/F6veTl5fW4LyEhgcLCQiZOnDjgx91TdjTgvyy6bdoo1v9XBin3vEf9tyf9ty+8N4knH5pIyj3vcarVF/Cx9ZdFZ+lcbm3XF4k6bd3dwNBpb3UJACBvQxWJszYGFUCo2f7Fou66L7fu7vDhw+d3oEHAcRFMmTIFB17BbM1xlwMZeIpAFIEoAkERCIpAUASCIhAc+rsDqwzWt6YrAtHlQBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOPBPzq00WH+LqAiCoAXXMmgpAlEEoggERSAoAkERCIpAcFAEWnIdOo6IwIlLrrXgeoA5ccm1FlwPsECWXCckJDBhwgTS0tJIS0tj27ZtVo3r55QF17Y/E3QuuX755Zd73FdfX99l+fWmTZtCsr/wt3i+oJzbbxxN2YY5/I9NF1zbPoJAl1z/FvHx8bS1tfX5eR0xV8DonKAeu3PB9TV/TP7NC67DW88dUHR0dL9W29r+chDokmuA+++/n5SUFBYuXMjx48fP96i9csKCa9u/K9nn85GUlMSZM2dYvnw5cXFx5OfnU1ZWRlNTEy0tLYSHh1NfX4/b7eb06dNkZ2fT0tLCW2+9NaCzBLPWFn5ecF2x6S7+e00l+e9UsXPlLPYf/D+eXP5x0Me+oP+eIJAl1wButxuAIUOGsHDhQvbs2WPl2IBzFlzb/jkBQGpqKiUlJV1uW7FiBV6vF4CTJ0/i8/m45JJLMMbw9ttvk5aWZsGkv7ht2ijuvdVDyj2//Dj4ZUMLi1/az8q/Tg96wXUoOSKC7jqXXGdnZwNw9OhR5s6dS3t7O+3t7Vx11VW9bkA/nzoXXHeXt6GKvA1VFkz06xwZQfcl11dccQVlZWUWT+VcjoxAS64Hlu2fGEroKQJRBKIIBEUgKAJBEQiKQHDAbxHtZLC+NV0RiC4HoggERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBwUARacB06jthU0rnget++fSxdupTExETWrVtn6wXXjmIc4NVXXzWRkZGmsrLSf5vP5zNut9u4XC4LJxscHHE5CGTB9U8//cSCBQsYO3YskyZN4vHHH7dqXMex/eUg0AXXTz31FBdddBE1NTWEhYVx9OjR8z2qY9k+gkAWXJ84cYI1a9bQ0NBAWFgYACNGBL4CNtAF13Z3QS+4rqurY9iwYSxbtozJkyeTkZHB7t27rRrZeax+UtKXM2fOmMTERDNmzBjzzjvvmKKiInPHHXeYUaNGmdjYWNPe3m4+/fRTA5i1a9caY4zZu3evGT58uPnhhx8snt4ZbB+BMcaUl5ebqVOnmpiYGDNu3DiTl5dn7r//fjN16lRjjDHHjh0zkZGRpqOjw/9vkpKSzCeffGLVyI7iiAh6c9VVV5kFCxb4//uWW24x27ZtM8YYU11dbYYNG2aam5stms5ZHBnBqVOnTEREhCkoKPDfVldXZ7xer5k4caJJT083RUVFFk7oLLb/6aA33Rdcw89LrouLi60bysG0rkbs/yOihJ4iEEUgikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSA4KAJtOQ8dR+wsMtpyHloWL84KiLach5YjzgTn2nIeFRXF4cOHmTNnjv++48eP8+OPP9LU1GTBtM5j+wgC2XKekJBAeXm5//bs7Gx8Pl/Ax7jQF1zbPoJAtpyfra2tjbVr17Jt27bzNqPT2T6Cs7ecX3vttUDPLedn+/DDDxk5ciRXX311wMfoz3fPYGL7CJKSkkhMTCQ3N5eoqCji4uLIz8+nrKyM2NhYxo8f3+Xz33jjDR555BGLpnUmR2w0raioYP78+VRUVOB2u8nOzmbPnj3U1dVRUlLi/7zGxkbGjRvH119/7T+DSN9sfyYASE1N7fLFBlixYgVer7fLbatXr2bWrFkKIEiOecXwbK2trVRXV/d4PrBq1SpdCvrBEWeC7nrbcg5QU1Nj0UTO5ojnBBJajrwcyMBSBKIIRBEIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikCA/wds6/AW8VpamwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAR6UlEQVR4nO3de2xUdd7H8Xev2G6rYQiyCgMdLZda6EWJoIJTjK4SVFAkxvVSY7wATdjGNEq66MLquo9h94mrpNXGyEUBEeKNWi5/PBQe2CJiL1JS21pB26LIY4sWqJRpf88fbkd6kc7UDuec8nkl/cOZMueb9N1zptPO1zBjjEEuaOFWDyDWUwSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAgEirB3CSH0+0caC22ZJjTxo7lIvjokPy2IogCAdqm5mWWWjJsXevvp0b0keE5LF1ORBFIIpAUASCIhAUgaAIBEUgOCiCtrY2nnnmGdxuNzExMdx0003s27ePsLAwPvjgA6vHczRHRGCMYd68ebz++ussWbKEwsJCPB4Pd911FwDp6ekWT9hTdFQ4le/eTe5jqV1uX/ncdIry/mDRVL1zxMvGBQUFFBUVUV5eTnJyMgAZGRl4PB5cLhejR4+2eMKe2s508NCfd7Jr1SwKd9bzWU0Ts2eM4Q7vaCbNfc/q8bpwxJngxRdf5IEHHvAHABAREYHH4/GfBWpqarjuuusYN24c1113HbW1tVaN61da9T3/WH2ANX+7kZEjYin4yw1kvVDCN8dOWT1aF7aPoLa2lkOHDjF37twe99XX1/sjmD9/PllZWdTU1JCVlcUTTzwR8DHi4+MZMmRInx8ZMzKCnv/5gnJ87YayDXPYse8bNmz9MujHAMiYkdHnfPHx8f16bNtH0NjYCMCll17a5fbPP/+cr776ivT0dL777jtKS0u57777ALjvvvsoLS3l2LFj533e7nw+w7/LjzLcFcPKD2qsHqdXto9g2LBhAHzxxRf+24wxPP3003R0dJCenk59fT0jR44kIiIC+PlScfnll1NfXx/QMVpaWjh9+nSfH8U7ioOef9rVI3h49lheWXeQfz09lYuGRAT9GADFO4r7nK+lpaVfj237CJKSkkhMTCQ3N5eNGzeyZcsWZs+eTWlpKbGxsYwfP97qEX/V72IiWfXcjSx+aT9/enEv3zX9xAuLJls9Vg+2jyAyMpJNmzZx2WWXkZmZSXZ2NjNnzsTr9ZKSkkJ4eDhut5vGxkba29sBaG9v58iRI7jdbktn/2fOFA41tpC3oQpj4OElu3j07nFMv+b3ls7Vne0jAEhNTaWkpIRTp05RXV3NggULKCsr8z8pvPTSS0lLS2P9+vUArF+/nvT0dIYPH27ZzLdNG8W9t3p45Nn/9d/2ZUMLi1/az8q/Tic2xj4/nYc58f980traSnx8PPn5+Tz22GPAz08UMzMzaW5uZujQoaxZs2bALxV7yo4Oyj8vs0+OQfjss89ob2/v8krhhAkT+Pjjjy2cyrkcGcGUKVNw4AnMthzxnEBCSxGIIhBFICgCQREIikBQBIJDXza2ymB9a7oiEF0ORBEIikBQBIIiEBSBoAgERSAoAkERCIpAUASCQ//k3CqD9beIiiAIWnAtg5YiEEUgikBQBIIiEBSBoAgEB0WgBdeh44gItOA6tBzxsrEWXIeWI84EgSy4zsnJwePxEBYWRmVlpVWjdqEF1wMk0AXXc+bMYdeuXYwZM+Z8j3hOA7XgOpRsfzkIZME1wLRp0/p9jPj4eNra2vr8vI6YK2B0TlCP3bng+po/Jv+mBdcZMzIIbz13QNHR0f3ab2z7M0EgC67tbKAWXIeS7c8EZy+4joqKIi4ujvz8fMrKygZswXWg3z3BbjQ9e8F1/jtV7Fw5ixcWTebJ5cEv3SzeUXzh/j1BIAuu7copC65tfyaAXxZcn23FihV4vV6LJupb54LrlHt++XHw7AXXKfe8x6lWn4UT/sK+30bn0NraSnV1dZfnA4sWLWLUqFE0NDRw8803d/lx0gpbdzcwdNpb1H97ssvteRuqSJy10TYBgEMj6G3B9csvv0xDQwM+n49vv/2WgwcPWjihszjictCdFlwPLEeeCWRgKQJRBKIIBEUgKAJBEQiKQNBu46AM1remKwLR5UAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCA6KQAuuQ8cRm0o6F1zv27ePpUuXkpiYyLp162y94NpRjAO8+uqrJjIy0lRWVvpv8/l8xu12G5fLZeFkg4MjzgTnWnAdFRXF999/z4MPPkhdXR3R0dGMHTuW1157jeHDh1s4tXPY/jlBIAuuw8LCeOqpp6iurubAgQNceeWVLF682IJpncn2Z4JAFly7XC4yMjL8902dOpX8/PyAjxHogmu704Lr/+jo6CA/P58777zzvM7pZLZ/V7LP5yMpKYkzZ86wfPnyLguum5qaaGlp6bLfOCsri8bGRt59911b7z22E9tfDjoXXM+fP5/MzEzcbjfZ2dlcfPHF1NXVdflC5+TkUFtby+bNmxVAEGx/Jvg1ycnJeL1e8vLyAMjNzaWkpISPPvqI2NhYi6dzFkd+u3RfcH3w4EH+/ve/c+TIEa6//nrS0tL8LyRJ32x/OehN9wXXycnJ2nX8Gzj2ciADx5GXAxlYikAUgSgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBwUgRZch44j1tUYLbgOLcu2KgdBC65DyxFngr4WXAPMmTOHQ4cOER4eTlxcHK+88gppaWkWTewwVlfYl5qaGgOYzZs397jP4/GYnJwcY4wxx48f99/+/vvvm/T09PM2o9PZ/kwQyIJrgEsuucR/3w8//BDURtMLfcG17SM4e8H1tddeC/z6gutHH32U7du3Y4xh69atlszrRLbfYxjsgmuAN998k/Xr11NUVGTR1M5i+wgAKioqmD9/PhUVFf4F13v27KGuro6SkpJe/01MTAwNDQ3+M4n8OttfDgBSU1N7fLFXrFiB1+sF4MSJEzQ3N+N2uwHYvHkzLpcLl8t13md1IkdE0F3nguvs7GwATp48ybx58zh58iQRERG4XC42b95MWFiYtYM6hCMj6L7gesSIEezdu9fiqZzLEc8JJLQc8wskCR1FIIpAFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOPR9B1b58UQbB2qbLTn2pLFDuTguOiSPrQiCcKC2mWmZhZYce/fq27khfURIHluXA1EEoggERSAoAkERCIpAUASCQyLQcuvQsn0E5j/LrV9//XWWLFlCYWEhHo/H9suto6PCqXz3bnIfS+1y+8rnplOU9weLpuqd7V82LigooKioiPLycv9u44yMDDweDy6Xi9GjR1s8Ye/aznTw0J93smvVLAp31vNZTROzZ4zhDu9oJs19z+rxurD9meBcy627nwWWLVtGWFgYlZWV53vMXpVWfc8/Vh9gzd9uZOSIWAr+cgNZL5TwzbFTVo/Wha0jqK2t5dChQ8ydO7fHffX19V0iKC0tZe/evYwZM+Z8jtin5wvK8bUbyjbMYce+b9iw9UurR+rB1hEEutz69OnTZGVlkZ+f36/jxMfHM2TIkD4/MmZkBP3YPp/h3+VHGe6KYeUHNf2aDyBjRkaf88XHx/frsW0dwdnLrTv1ttz62Wef5YEHHiAhIcGKMc9p2tUjeHj2WF5Zd5B/PT2Vi4ZEWD1SD7aOICkpicTERHJzc9m4cSNbtmxh9uzZlJaWEhsby/jx4ykpKWH//v0sXLiw38dpaWnh9OnTfX4U7ygO6nF/FxPJquduZPFL+/nTi3v5ruknXlg0uV8zFu8o7nO+/qy5B5tHEBkZyaZNm7jsssvIzMwkOzubmTNn4vV6SUlJITw8nJ07d1JVVYXH4yEhIYGGhgZuvfVWtm/fbvX4/DNnCocaW8jbUIUx8PCSXTx69zimX/N7q0frwpEbTZOTk/F6veTl5fW4LyEhgcLCQiZOnDjgx91TdjTgvyy6bdoo1v9XBin3vEf9tyf9ty+8N4knH5pIyj3vcarVF/Cx9ZdFZ+lcbm3XF4k6bd3dwNBpb3UJACBvQxWJszYGFUCo2f7Fou66L7fu7vDhw+d3oEHAcRFMmTIFB17BbM1xlwMZeIpAFIEoAkERCIpAUASCIhAc+rsDqwzWt6YrAtHlQBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOPBPzq00WH+LqAiCoAXXMmgpAlEEoggERSAoAkERCIpAcFAEWnIdOo6IwIlLrrXgeoA5ccm1FlwPsECWXCckJDBhwgTS0tJIS0tj27ZtVo3r55QF17Y/E3QuuX755Zd73FdfX99l+fWmTZtCsr/wt3i+oJzbbxxN2YY5/I9NF1zbPoJAl1z/FvHx8bS1tfX5eR0xV8DonKAeu3PB9TV/TP7NC67DW88dUHR0dL9W29r+chDokmuA+++/n5SUFBYuXMjx48fP96i9csKCa9u/K9nn85GUlMSZM2dYvnw5cXFx5OfnU1ZWRlNTEy0tLYSHh1NfX4/b7eb06dNkZ2fT0tLCW2+9NaCzBLPWFn5ecF2x6S7+e00l+e9UsXPlLPYf/D+eXP5x0Me+oP+eIJAl1wButxuAIUOGsHDhQvbs2WPl2IBzFlzb/jkBQGpqKiUlJV1uW7FiBV6vF4CTJ0/i8/m45JJLMMbw9ttvk5aWZsGkv7ht2ijuvdVDyj2//Dj4ZUMLi1/az8q/Tg96wXUoOSKC7jqXXGdnZwNw9OhR5s6dS3t7O+3t7Vx11VW9bkA/nzoXXHeXt6GKvA1VFkz06xwZQfcl11dccQVlZWUWT+VcjoxAS64Hlu2fGEroKQJRBKIIBEUgKAJBEQiKQHDAbxHtZLC+NV0RiC4HoggERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBwUARacB06jthU0rnget++fSxdupTExETWrVtn6wXXjmIc4NVXXzWRkZGmsrLSf5vP5zNut9u4XC4LJxscHHE5CGTB9U8//cSCBQsYO3YskyZN4vHHH7dqXMex/eUg0AXXTz31FBdddBE1NTWEhYVx9OjR8z2qY9k+gkAWXJ84cYI1a9bQ0NBAWFgYACNGBL4CNtAF13Z3QS+4rqurY9iwYSxbtozJkyeTkZHB7t27rRrZeax+UtKXM2fOmMTERDNmzBjzzjvvmKKiInPHHXeYUaNGmdjYWNPe3m4+/fRTA5i1a9caY4zZu3evGT58uPnhhx8snt4ZbB+BMcaUl5ebqVOnmpiYGDNu3DiTl5dn7r//fjN16lRjjDHHjh0zkZGRpqOjw/9vkpKSzCeffGLVyI7iiAh6c9VVV5kFCxb4//uWW24x27ZtM8YYU11dbYYNG2aam5stms5ZHBnBqVOnTEREhCkoKPDfVldXZ7xer5k4caJJT083RUVFFk7oLLb/6aA33Rdcw89LrouLi60bysG0rkbs/yOihJ4iEEUgikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSA4KAJtOQ8dR+wsMtpyHloWL84KiLach5YjzgTn2nIeFRXF4cOHmTNnjv++48eP8+OPP9LU1GTBtM5j+wgC2XKekJBAeXm5//bs7Gx8Pl/Ax7jQF1zbPoJAtpyfra2tjbVr17Jt27bzNqPT2T6Cs7ecX3vttUDPLedn+/DDDxk5ciRXX311wMfoz3fPYGL7CJKSkkhMTCQ3N5eoqCji4uLIz8+nrKyM2NhYxo8f3+Xz33jjDR555BGLpnUmR2w0raioYP78+VRUVOB2u8nOzmbPnj3U1dVRUlLi/7zGxkbGjRvH119/7T+DSN9sfyYASE1N7fLFBlixYgVer7fLbatXr2bWrFkKIEiOecXwbK2trVRXV/d4PrBq1SpdCvrBEWeC7nrbcg5QU1Nj0UTO5ojnBBJajrwcyMBSBKIIRBEIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikCA/wds6/AW8VpamwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -156,16 +156,16 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:56.794444Z", - "iopub.status.busy": "2024-11-23T19:54:56.794245Z", - "iopub.status.idle": "2024-11-23T19:54:56.905202Z", - "shell.execute_reply": "2024-11-23T19:54:56.904726Z" + "iopub.execute_input": "2024-12-05T03:21:31.428468Z", + "iopub.status.busy": "2024-12-05T03:21:31.428270Z", + "iopub.status.idle": "2024-12-05T03:21:31.537726Z", + "shell.execute_reply": "2024-12-05T03:21:31.537172Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAATAElEQVR4nO3df2xV9f3H8Wd/265X4yXYMbil15ViBUqrRGos3suyTRk6KmiMX401RjagibtZGiUdczid+Rq2xU3SkoaMH1NYhcgcXQX/+PLjCytU7A8o6dquoms7v8hs0QtUym0/3z9cK/2hva1tzzn19Uj6h/fCPe+Ep+fce9v7boQxxiBfa5FWDyDWUwSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAgGirB3CSTy50caqpw5Jjz5t1Pdcmxo7LYyuCETjV1EFOXpklxz6y7R7uyEoal8fW5UAUgSgCQREIikBQBIIiEBSB4KAIurq6+PnPf47H4yE+Pp7vfOc7VFZWEhERwRtvvGH1eI7miAiMMTzwwANs3ryZdevWUVZWhtfr5b777gMgKyvL4gkHi42JpO715RSunN/v9i3PLaK86PsWTTU0R7xtXFJSQnl5OTU1NcyZMwcAv9+P1+vF7XaTnJxs8YSDdV3p4dGfHeLw1qWUHWrhZGM7yxbP5F5fMvNW7LF6vH4ccSZ48cUXeeSRR/oCAIiKisLr9fadBRobG7n99ttJS0vj9ttvp6mpyapx+1TVf8Svt51i+6/uZHpSAiW/uIP8Fyr44Nwlq0frx/YRNDU1cebMGVasWDHovpaWlr4IVq1aRX5+Po2NjeTn5/PjH/847GO4XC7i4uKG/fIv9o94/udLagh1G6pLczlQ+QGl+94d8WMA+Bf7h53P5XKN6rFtH0FbWxsAN9xwQ7/b//73v/P++++TlZXFhx9+SFVVFQ899BAADz30EFVVVZw7d27C5x0oFDL8reYsU93xbHmj0epxhmT7CKZMmQLAP/7xj77bjDE8/fTT9PT0kJWVRUtLC9OnTycqKgr47FLxrW99i5aWlrCOEQwGuXz58rBfBw8cHPH8Obck8diyWby84zS/ezqba+KiRvwYAAcPHBx2vmAwOKrHtn0E6enppKamUlhYyK5du3jzzTdZtmwZVVVVJCQkMHv2bKtH/ELfiI9m63N3svalE/zkxWN82P4pLzy5wOqxBrF9BNHR0ezevZtp06aRl5dHIBBgyZIl+Hw+MjIyiIyMxOPx0NbWRnd3NwDd3d3861//wuPxWDr7bwoWcqYtSFFpPcbAY+sO88TyNBbd+k1L5xrI9hEAzJ8/n4qKCi5dukRDQwOrV6+murq670nhDTfcQGZmJjt37gRg586dZGVlMXXqVMtmvjtnBg/e5eXxZ/6377Z3W4OsfekEW365iIR4+7w6j3Dibz7p7OzE5XJRXFzMypUrgc+eKObl5dHR0cH111/P9u3bx/xScbT67KT88TL75DgCJ0+epLu7u987hTfddBPHjx+3cCrncmQECxcuxIEnMNtyxHMCGV+KQBSBKAJBEQiKQFAEgiIQHPq2sVUm60fTFYHociCKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBAdFoAXX48cRm0p6F1xXVlayfv16UlNT2bFjh60XXDuKcYBNmzaZ6OhoU1dX13dbKBQyHo/HuN1uCyebHBxxOQhnwXVBQQFer5eIiAjq6uqsGtWRbB9BuAuuc3NzOXz4MDNnzpzoER3P9s8JwllwDZCTkzPqY7hcLrq6ukY/pE3ExsaOar+x7c8E4Sy4lq/G9meCqxdcx8TEkJiYSHFxMdXV1WO24Hq028EnC9tH0LvgetWqVeTl5eHxeAgEAlx77bU0NzcTGWn7k5nt2T4C+HzB9dU2btyIz+ezaKLJxZH/G3V2dtLQ0NDv+cCTTz7JjBkzaG1t5bvf/W6/l5Py5Ry5qeT48eNkZ2fz9ttvs2CB/X6JhNM4MgIZW468HMjYUgSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIJDPoFkF5P11+QqghE41dRBTl6ZJcc+su0e7shKGpfH1uVAFIEoAkERCIpAUASCIhAUgeCgCLTgevw4IgLznwXXmzdvZt26dZSVleH1em294Do2JpK615dTuHJ+v9u3PLeI8qLvWzTV0BzxtnFJSQnl5eXU1NT0LaTy+/14vV7cbjfJyckWTzhY15UeHv3ZIQ5vXUrZoRZONrazbPFM7vUlM2/FHqvH68cRZ4LhFlx/9NFH/OAHP2D27NnMmzeP5cuXc+7cOQsn/kxV/Uf8etsptv/qTqYnJVDyizvIf6GCD85dsnq0fmwfQTgLriMiInjqqadoaGjg1KlTfPvb32bt2rUWTDvY8yU1hLoN1aW5HKj8gNJ971o90iC2jyCcBddutxu/3993X3Z2Nu+//37Yx3C5XMTFxQ375V/sH+6hBgmFDH+rOctUdzxb3mgc8d/v5V/sH3Y+l8s1qse2fQQjXXDd09NDcXExP/zhDyd0zi+Sc0sSjy2bxcs7TvO7p7O5Ji7K6pEGsf0ew1AoRHp6OleuXGHDhg39Fly3t7cTDAb77TfOz8+nra2N119/fcz3Hh+tPjuinyf4Rnw0tbvv47fb6yh+rZ5DW5Zy4vS/+emG4yM+9tf65wl6F1xPmzaNvLw8AoEAS5YswefzkZGR0e8fuqCggKamJkpLS22x+Po3BQs50xakqLQeY+CxdYd5Ynkai279ptWj9eOIl4jhLLguLCzknXfe4a9//StxcXETPeIgd+fM4MG7vGTc//nLwXdbg6x96QRbfrmIjPv3cKkzZOGEn7P95WAonZ2duFwuiouLWblyJadPn2bu3LmkpaURHx8PgNfrZc+esX09PtLLwVgaz8uBI84EA508eZLu7u6+J4Vz5szBgS3bhiMjWLhwof7Rx5D1z57EcopAFIEoAkERCIpAUASCIhAc+raxVSbrR9MVgehyIIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgEB0WgBdfjxxGbSnoXXFdWVrJ+/XpSU1PZsWOHrRdcO4pxgE2bNpno6GhTV1fXd1soFDIej8e43W4LJ5scHHEm+LIF1zExMQDk5uZy5swZIiMjSUxM5OWXXyYzM9OiiR3G6gqH09jYaACzd+/eQfd5vV5TUFBgjDHm/Pnzfbf/+c9/NllZWRM2o9PZ/kwQzoJrgOuuu67vvo8//nhEG01dLhddXV1jMK21YmNjCQaDI/57to/g6gXXt912G/DFC66feOIJ3nrrLYwx7Nu3z5J5ncj2n0oe6YJrgD/+8Y/s3LmT8vJyi6Z2FttHAFBbW8uqVauora3F4/EQCAQ4evQozc3Ng3Ye94qPj6e1tbXvTCJfzPaXAxh+wfWFCxfo6OjA4/EAsHfvXtxuN263e8JndSJHRDBQZ2cnDQ0NBAIBAC5evMgDDzzAxYsXiYqKwu12s3fvXiIiIqwd1CEcGcHABddJSUkcO3bM4qmcyxHPCWR8OeYbSDJ+FIEoAlEEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgeDQzx1YZbL+mlxFMAKnmjrIySuz5NhHtt3DHVlJ4/LYuhyIIhBFICgCQREIikBQBIIiEBwSgZZbjy/bR2D+s9x68+bNrFu3jrKyMrxer+2XW8fGRFL3+nIKV87vd/uW5xZRXvR9i6Yamu3fNi4pKaG8vJyampq+3cZ+vx+v14vb7SY5OdniCYfWdaWHR392iMNbl1J2qIWTje0sWzyTe33JzFuxx+rx+rH9meDLllsPPAs8++yzREREUFdXN9FjDqmq/iN+ve0U2391J9OTEij5xR3kv1DBB+cuWT1aP7aOoKmpiTNnzrBixYpB97W0tPSLoKqqimPHjjFz5syJHHFYz5fUEOo2VJfmcqDyA0r3vWv1SIPYOoJwl1tfvnyZ/Px8iouLR3Ucl8tFXFzcsF/+xf4RP3YoZPhbzVmmuuPZ8kbjqOYD8C/2Dzufy+Ua1WPbOoKrl1v3Gmq59TPPPMMjjzxCSkqKFWN+qZxbknhs2Sxe3nGa3z2dzTVxUVaPNIitI0hPTyc1NZXCwkJ27drFm2++ybJly6iqqiIhIYHZs2dTUVHBiRMnWLNmzaiPEwwGuXz58rBfBw8cHNHjfiM+mq3P3cnal07wkxeP8WH7p7zw5IJRzXjwwMFh5xvNmnuweQTR0dHs3r2badOmkZeXRyAQYMmSJfh8PjIyMoiMjOTQoUPU19fj9XpJSUmhtbWVu+66i7feesvq8flNwULOtAUpKq3HGHhs3WGeWJ7Golu/afVo/Thyo+mcOXPw+XwUFRUNui8lJYWysjLmzp075sc9Wn027J8sujtnBjv/20/G/Xto+b+LfbeveTCdnz46l4z793CpMxT2sfWTRVfpXW5t1zeJeu070sr1Oa/0CwCgqLSe1KW7RhTAeLP9m0UDDVxuPdB77703sQNNAo6LYOHChTjwCmZrjrscyNhTBKIIRBEIikBQBIIiEBSB4NDvHVhlsn40XRGILgeiCARFICgCQREIikBQBIIiEBSBoAgERSAoAsGBP3Jupcn6XURFMAJacC2TliIQRSCKQFAEgiIQFIGgCAQHRaAl1+PHERE4ccm1FlyPMScuudaC6zEWzpLrlJQUbrrpJjIzM8nMzGT//v1WjdvHKQuubX8m6F1y/fvf/37QfS0tLf2WX+/evXtc9hd+Fc+X1HDPnclUl+byPzZdcG37CMJdcv1VuFwuurq6hv1zPfE3QnLBiB67d8H1rf815ysvuI7s/PKAYmNjR7Xa1vaXg3CXXAM8/PDDZGRksGbNGs6fPz/Row7JCQuubf+p5FAoRHp6OleuXGHDhg0kJiZSXFxMdXU17e3tBINBIiMjaWlpwePxcPnyZQKBAMFgkFdeeWVMZxnJWlv4bMF17e77+O32Oopfq+fQlqWcOP1vfrrh+IiP/bX+eYJwllwDeDweAOLi4lizZg1Hjx61cmzAOQuubf+cAGD+/PlUVFT0u23jxo34fD4ALl68SCgU4rrrrsMYw5/+9CcyMzMtmPRzd+fM4MG7vGTc//nLwXdbg6x96QRbfrloxAuux5MjIhiod8l1IBAA4OzZs6xYsYLu7m66u7u5+eabh9yAPpF6F1wPVFRaT1FpvQUTfTFHRjBwyfWNN95IdXW1xVM5lyMj0JLrsWX7J4Yy/hSBKAJRBIIiEBSBoAgERSA44LuIdjJZP5quCESXA1EEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOCgCLbgeP47YVNK74LqyspL169eTmprKjh07bL3g2lGMA2zatMlER0eburq6vttCoZDxeDzG7XZbONnk4IjLQTgLrj/99FNWr17NrFmzmDdvHj/60Y+sGtdxbH85CHfB9VNPPcU111xDY2MjERERnD17dqJHdSzbRxDOgusLFy6wfft2WltbiYiIACApKfwVsOEuuLa7r/WC6+bmZqZMmcKzzz7LggUL8Pv9HDlyxKqRncfqJyXDuXLliklNTTUzZ840r732mikvLzf33nuvmTFjhklISDDd3d3mnXfeMYB59dVXjTHGHDt2zEydOtV8/PHHFk/vDLaPwBhjampqTHZ2tomPjzdpaWmmqKjIPPzwwyY7O9sYY8y5c+dMdHS06enp6fs76enp5u2337ZqZEdxRARDufnmm83q1av7/vt73/ue2b9/vzHGmIaGBjNlyhTT0dFh0XTO4sgILl26ZKKiokxJSUnfbc3Nzcbn85m5c+earKwsU15ebuGEzmL7VwdDGbjgGj5bcn3w4EHrhnIwrasR+79ElPGnCEQRiCIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIDopAW87HjyN2FhltOR9fFi/OCou2nI8vR5wJvmzLeUxMDO+99x65ubl9950/f55PPvmE9vZ2C6Z1HttHEM6W85SUFGpqavpuDwQChEKhsI/xdV9wbfsIwtlyfrWuri5effVV9u/fP2EzOp3tI7h6y/ltt90GDN5yfrW//OUvTJ8+nVtuuSXsY4zm/57JxPYRpKenk5qaSmFhITExMSQmJlJcXEx1dTUJCQnMnj2735//wx/+wOOPP27RtM7kiI2mtbW1rFq1itraWjweD4FAgKNHj9Lc3ExFRUXfn2trayMtLY1//vOffWcQGZ7tzwQA8+fP7/ePDbBx40Z8Pl+/27Zt28bSpUsVwAg55h3Dq3V2dtLQ0DDo+cDWrVt1KRgFR5wJBhpqyzlAY2OjRRM5myOeE8j4cuTlQMaWIhBFIIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUAQC/D8vRNssQh2iGQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAATAElEQVR4nO3df2xV9f3H8Wd/265X4yXYMbil15ViBUqrRGos3suyTRk6KmiMX401RjagibtZGiUdczid+Rq2xU3SkoaMH1NYhcgcXQX/+PLjCytU7A8o6dquoms7v8hs0QtUym0/3z9cK/2hva1tzzn19Uj6h/fCPe+Ep+fce9v7boQxxiBfa5FWDyDWUwSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAgGirB3CSTy50caqpw5Jjz5t1Pdcmxo7LYyuCETjV1EFOXpklxz6y7R7uyEoal8fW5UAUgSgCQREIikBQBIIiEBSB4KAIurq6+PnPf47H4yE+Pp7vfOc7VFZWEhERwRtvvGH1eI7miAiMMTzwwANs3ryZdevWUVZWhtfr5b777gMgKyvL4gkHi42JpO715RSunN/v9i3PLaK86PsWTTU0R7xtXFJSQnl5OTU1NcyZMwcAv9+P1+vF7XaTnJxs8YSDdV3p4dGfHeLw1qWUHWrhZGM7yxbP5F5fMvNW7LF6vH4ccSZ48cUXeeSRR/oCAIiKisLr9fadBRobG7n99ttJS0vj9ttvp6mpyapx+1TVf8Svt51i+6/uZHpSAiW/uIP8Fyr44Nwlq0frx/YRNDU1cebMGVasWDHovpaWlr4IVq1aRX5+Po2NjeTn5/PjH/847GO4XC7i4uKG/fIv9o94/udLagh1G6pLczlQ+QGl+94d8WMA+Bf7h53P5XKN6rFtH0FbWxsAN9xwQ7/b//73v/P++++TlZXFhx9+SFVVFQ899BAADz30EFVVVZw7d27C5x0oFDL8reYsU93xbHmj0epxhmT7CKZMmQLAP/7xj77bjDE8/fTT9PT0kJWVRUtLC9OnTycqKgr47FLxrW99i5aWlrCOEQwGuXz58rBfBw8cHPH8Obck8diyWby84zS/ezqba+KiRvwYAAcPHBx2vmAwOKrHtn0E6enppKamUlhYyK5du3jzzTdZtmwZVVVVJCQkMHv2bKtH/ELfiI9m63N3svalE/zkxWN82P4pLzy5wOqxBrF9BNHR0ezevZtp06aRl5dHIBBgyZIl+Hw+MjIyiIyMxOPx0NbWRnd3NwDd3d3861//wuPxWDr7bwoWcqYtSFFpPcbAY+sO88TyNBbd+k1L5xrI9hEAzJ8/n4qKCi5dukRDQwOrV6+murq670nhDTfcQGZmJjt37gRg586dZGVlMXXqVMtmvjtnBg/e5eXxZ/6377Z3W4OsfekEW365iIR4+7w6j3Dibz7p7OzE5XJRXFzMypUrgc+eKObl5dHR0cH111/P9u3bx/xScbT67KT88TL75DgCJ0+epLu7u987hTfddBPHjx+3cCrncmQECxcuxIEnMNtyxHMCGV+KQBSBKAJBEQiKQFAEgiIQHPq2sVUm60fTFYHociCKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBAdFoAXX48cRm0p6F1xXVlayfv16UlNT2bFjh60XXDuKcYBNmzaZ6OhoU1dX13dbKBQyHo/HuN1uCyebHBxxOQhnwXVBQQFer5eIiAjq6uqsGtWRbB9BuAuuc3NzOXz4MDNnzpzoER3P9s8JwllwDZCTkzPqY7hcLrq6ukY/pE3ExsaOar+x7c8E4Sy4lq/G9meCqxdcx8TEkJiYSHFxMdXV1WO24Hq028EnC9tH0LvgetWqVeTl5eHxeAgEAlx77bU0NzcTGWn7k5nt2T4C+HzB9dU2btyIz+ezaKLJxZH/G3V2dtLQ0NDv+cCTTz7JjBkzaG1t5bvf/W6/l5Py5Ry5qeT48eNkZ2fz9ttvs2CB/X6JhNM4MgIZW468HMjYUgSiCEQRCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIJDPoFkF5P11+QqghE41dRBTl6ZJcc+su0e7shKGpfH1uVAFIEoAkERCIpAUASCIhAUgeCgCLTgevw4IgLznwXXmzdvZt26dZSVleH1em294Do2JpK615dTuHJ+v9u3PLeI8qLvWzTV0BzxtnFJSQnl5eXU1NT0LaTy+/14vV7cbjfJyckWTzhY15UeHv3ZIQ5vXUrZoRZONrazbPFM7vUlM2/FHqvH68cRZ4LhFlx/9NFH/OAHP2D27NnMmzeP5cuXc+7cOQsn/kxV/Uf8etsptv/qTqYnJVDyizvIf6GCD85dsnq0fmwfQTgLriMiInjqqadoaGjg1KlTfPvb32bt2rUWTDvY8yU1hLoN1aW5HKj8gNJ971o90iC2jyCcBddutxu/3993X3Z2Nu+//37Yx3C5XMTFxQ375V/sH+6hBgmFDH+rOctUdzxb3mgc8d/v5V/sH3Y+l8s1qse2fQQjXXDd09NDcXExP/zhDyd0zi+Sc0sSjy2bxcs7TvO7p7O5Ji7K6pEGsf0ew1AoRHp6OleuXGHDhg39Fly3t7cTDAb77TfOz8+nra2N119/fcz3Hh+tPjuinyf4Rnw0tbvv47fb6yh+rZ5DW5Zy4vS/+emG4yM+9tf65wl6F1xPmzaNvLw8AoEAS5YswefzkZGR0e8fuqCggKamJkpLS22x+Po3BQs50xakqLQeY+CxdYd5Ynkai279ptWj9eOIl4jhLLguLCzknXfe4a9//StxcXETPeIgd+fM4MG7vGTc//nLwXdbg6x96QRbfrmIjPv3cKkzZOGEn7P95WAonZ2duFwuiouLWblyJadPn2bu3LmkpaURHx8PgNfrZc+esX09PtLLwVgaz8uBI84EA508eZLu7u6+J4Vz5szBgS3bhiMjWLhwof7Rx5D1z57EcopAFIEoAkERCIpAUASCIhAc+raxVSbrR9MVgehyIIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgEB0WgBdfjxxGbSnoXXFdWVrJ+/XpSU1PZsWOHrRdcO4pxgE2bNpno6GhTV1fXd1soFDIej8e43W4LJ5scHHEm+LIF1zExMQDk5uZy5swZIiMjSUxM5OWXXyYzM9OiiR3G6gqH09jYaACzd+/eQfd5vV5TUFBgjDHm/Pnzfbf/+c9/NllZWRM2o9PZ/kwQzoJrgOuuu67vvo8//nhEG01dLhddXV1jMK21YmNjCQaDI/57to/g6gXXt912G/DFC66feOIJ3nrrLYwx7Nu3z5J5ncj2n0oe6YJrgD/+8Y/s3LmT8vJyi6Z2FttHAFBbW8uqVauora3F4/EQCAQ4evQozc3Ng3Ye94qPj6e1tbXvTCJfzPaXAxh+wfWFCxfo6OjA4/EAsHfvXtxuN263e8JndSJHRDBQZ2cnDQ0NBAIBAC5evMgDDzzAxYsXiYqKwu12s3fvXiIiIqwd1CEcGcHABddJSUkcO3bM4qmcyxHPCWR8OeYbSDJ+FIEoAlEEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgeDQzx1YZbL+mlxFMAKnmjrIySuz5NhHtt3DHVlJ4/LYuhyIIhBFICgCQREIikBQBIIiEBwSgZZbjy/bR2D+s9x68+bNrFu3jrKyMrxer+2XW8fGRFL3+nIKV87vd/uW5xZRXvR9i6Yamu3fNi4pKaG8vJyampq+3cZ+vx+v14vb7SY5OdniCYfWdaWHR392iMNbl1J2qIWTje0sWzyTe33JzFuxx+rx+rH9meDLllsPPAs8++yzREREUFdXN9FjDqmq/iN+ve0U2391J9OTEij5xR3kv1DBB+cuWT1aP7aOoKmpiTNnzrBixYpB97W0tPSLoKqqimPHjjFz5syJHHFYz5fUEOo2VJfmcqDyA0r3vWv1SIPYOoJwl1tfvnyZ/Px8iouLR3Ucl8tFXFzcsF/+xf4RP3YoZPhbzVmmuuPZ8kbjqOYD8C/2Dzufy+Ua1WPbOoKrl1v3Gmq59TPPPMMjjzxCSkqKFWN+qZxbknhs2Sxe3nGa3z2dzTVxUVaPNIitI0hPTyc1NZXCwkJ27drFm2++ybJly6iqqiIhIYHZs2dTUVHBiRMnWLNmzaiPEwwGuXz58rBfBw8cHNHjfiM+mq3P3cnal07wkxeP8WH7p7zw5IJRzXjwwMFh5xvNmnuweQTR0dHs3r2badOmkZeXRyAQYMmSJfh8PjIyMoiMjOTQoUPU19fj9XpJSUmhtbWVu+66i7feesvq8flNwULOtAUpKq3HGHhs3WGeWJ7Golu/afVo/Thyo+mcOXPw+XwUFRUNui8lJYWysjLmzp075sc9Wn027J8sujtnBjv/20/G/Xto+b+LfbeveTCdnz46l4z793CpMxT2sfWTRVfpXW5t1zeJeu070sr1Oa/0CwCgqLSe1KW7RhTAeLP9m0UDDVxuPdB77703sQNNAo6LYOHChTjwCmZrjrscyNhTBKIIRBEIikBQBIIiEBSB4NDvHVhlsn40XRGILgeiCARFICgCQREIikBQBIIiEBSBoAgERSAoAsGBP3Jupcn6XURFMAJacC2TliIQRSCKQFAEgiIQFIGgCAQHRaAl1+PHERE4ccm1FlyPMScuudaC6zEWzpLrlJQUbrrpJjIzM8nMzGT//v1WjdvHKQuubX8m6F1y/fvf/37QfS0tLf2WX+/evXtc9hd+Fc+X1HDPnclUl+byPzZdcG37CMJdcv1VuFwuurq6hv1zPfE3QnLBiB67d8H1rf815ysvuI7s/PKAYmNjR7Xa1vaXg3CXXAM8/PDDZGRksGbNGs6fPz/Row7JCQuubf+p5FAoRHp6OleuXGHDhg0kJiZSXFxMdXU17e3tBINBIiMjaWlpwePxcPnyZQKBAMFgkFdeeWVMZxnJWlv4bMF17e77+O32Oopfq+fQlqWcOP1vfrrh+IiP/bX+eYJwllwDeDweAOLi4lizZg1Hjx61cmzAOQuubf+cAGD+/PlUVFT0u23jxo34fD4ALl68SCgU4rrrrsMYw5/+9CcyMzMtmPRzd+fM4MG7vGTc//nLwXdbg6x96QRbfrloxAuux5MjIhiod8l1IBAA4OzZs6xYsYLu7m66u7u5+eabh9yAPpF6F1wPVFRaT1FpvQUTfTFHRjBwyfWNN95IdXW1xVM5lyMj0JLrsWX7J4Yy/hSBKAJRBIIiEBSBoAgERSA44LuIdjJZP5quCESXA1EEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgOCgCLbgeP47YVNK74LqyspL169eTmprKjh07bL3g2lGMA2zatMlER0eburq6vttCoZDxeDzG7XZbONnk4IjLQTgLrj/99FNWr17NrFmzmDdvHj/60Y+sGtdxbH85CHfB9VNPPcU111xDY2MjERERnD17dqJHdSzbRxDOgusLFy6wfft2WltbiYiIACApKfwVsOEuuLa7r/WC6+bmZqZMmcKzzz7LggUL8Pv9HDlyxKqRncfqJyXDuXLliklNTTUzZ840r732mikvLzf33nuvmTFjhklISDDd3d3mnXfeMYB59dVXjTHGHDt2zEydOtV8/PHHFk/vDLaPwBhjampqTHZ2tomPjzdpaWmmqKjIPPzwwyY7O9sYY8y5c+dMdHS06enp6fs76enp5u2337ZqZEdxRARDufnmm83q1av7/vt73/ue2b9/vzHGmIaGBjNlyhTT0dFh0XTO4sgILl26ZKKiokxJSUnfbc3Nzcbn85m5c+earKwsU15ebuGEzmL7VwdDGbjgGj5bcn3w4EHrhnIwrasR+79ElPGnCEQRiCIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIDopAW87HjyN2FhltOR9fFi/OCou2nI8vR5wJvmzLeUxMDO+99x65ubl9950/f55PPvmE9vZ2C6Z1HttHEM6W85SUFGpqavpuDwQChEKhsI/xdV9wbfsIwtlyfrWuri5effVV9u/fP2EzOp3tI7h6y/ltt90GDN5yfrW//OUvTJ8+nVtuuSXsY4zm/57JxPYRpKenk5qaSmFhITExMSQmJlJcXEx1dTUJCQnMnj2735//wx/+wOOPP27RtM7kiI2mtbW1rFq1itraWjweD4FAgKNHj9Lc3ExFRUXfn2trayMtLY1//vOffWcQGZ7tzwQA8+fP7/ePDbBx40Z8Pl+/27Zt28bSpUsVwAg55h3Dq3V2dtLQ0DDo+cDWrVt1KRgFR5wJBhpqyzlAY2OjRRM5myOeE8j4cuTlQMaWIhBFIIpAUASCIhAUgaAIBEUgKAJBEQiKQFAEgiIQFIGgCARFICgCQREIikBQBIIiEBSBoAgERSAoAkERCIpAUAQC/D8vRNssQh2iGQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -196,16 +196,16 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:56.907545Z", - "iopub.status.busy": "2024-11-23T19:54:56.907023Z", - "iopub.status.idle": "2024-11-23T19:54:57.094728Z", - "shell.execute_reply": "2024-11-23T19:54:57.094210Z" + "iopub.execute_input": "2024-12-05T03:21:31.540008Z", + "iopub.status.busy": "2024-12-05T03:21:31.539516Z", + "iopub.status.idle": "2024-12-05T03:21:31.747721Z", + "shell.execute_reply": "2024-12-05T03:21:31.746610Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAGOCAYAAAC5Y1UnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABR80lEQVR4nO3deViU5f748fcMw7A0gIDiCjKKC6IouSCJgpS5VCou2UnLOr/Tsdyy1TLXbDnmt3JLz7Eyy7T0aIapqWWa4kExlUADBEXEDQ1cBkFGhvn9gY2NYMqIPDPweV1X19Xc9zNzf3iuGz/cz/PM51aZzWYzQgghRCWplQ5ACCGEY5IEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRNJIEIIIWwiCUQIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE43SATiSSwVGUjLOKzJ2uxbeeOq0iowtKs9oKOR86nGlw7Ab3sEBaD3clQ5DVDFJIJWQknGeyJHrFRk7/vOH6RZWX5GxReWdTz3O9wMmKx2G3egb9xb1u7RWOgxRxeQSlhBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYxGESiNFoZMqUKfj7++Pm5kZMTAyJiYmoVCri4uKUDk8IIWodh0ggZrOZoUOH8sknnzB58mTWr1+PXq8nNjYWgLCwMIUjLE/rrObgN4OY9Ex7q/bPZnZn48IHFYpKKCnwkQj6xs1keOYyhiQuVDocIe6YQ5QyWbx4MRs3biQpKYmQkBAAoqOj0ev1+Pj4EBAQoHCE5RmvlvLkGz+zY+lDrP85h+TD+Qzo2ZRHogJoN3it0uEJBRRfvEzakk241vMi5J8PKx2OEHfMIVYgs2bNYsSIEZbkAeDk5IRer7esPg4fPkxERAQtW7YkIiKCjIwMpcK12J+ax/99nsIXb/egcX13Fk/rxph3Ejh9rlDp0IQCTu9IJituF5dPnFM6FCGqhN2vQDIyMsjKymLevHnl+nJychg8eDAAzz77LGPGjGHEiBF8+eWXjBo1ip9++um2xvDw8MBoNN7yuFK3ZhDwcqXif2txEg/3CODAyoH8lHialZuOVur9f4juGY26yLb3iurXXOPNq56RSodhN3r2jOZIiTKVrMWtabVaDAZDpd9n9yuQkydPAuDn52fVnpaWRnZ2NmFhYZw9e5b9+/fzt7/9DYC//e1v7N+/n3PnlP9Lr6TEzP+Scqnn48ZncYeVDkcIIaqM3a9AfH19AcjMzKRLly5A2U31iRMnUlpaSlhYGDk5OTRu3BgnJyeg7PJWo0aNyMnJoV69ercc43Yz764DuZUu5x55b32eGtCC+SsOMXdiVzoM/ZYrxaZKfQbA9m3bpZy7A8lNTJNy7n+ybdt2KedeA9n9CiQ4OJigoCAmTZrEf//7X77//nsGDBjA/v37cXd3p1WrVkqHeFP3uGlYOrMHr835hedn7eZs/hXeGd9J6bCEEKJK2H0C0Wg0rF69moYNGzJy5EgmTJhA3759iYqKIjQ0FLVajb+/PydPnsRkKvvL3mQycerUKfz9/RWN/f2Xw8k6aWDhylTMZnhq8g7+Magl3Ts2UDQuoQyVWo2TizMqjQZUKpxcnFFr7f4igBA35RCzt3379iQkJFi1LViwgKioKKDs/kiHDh346quvGDFiBF999RVhYWG3dfnqbukT2YRhvfWEDrn+yO7REwZem/MLn73ZndAhayksKlEsPlH9mg/pQeTcsZbXTxz7ioKcs6zuMlrBqISwnUMkkBsVFRWRnp7OhAkTLG3//ve/GTlyJG+++Sbe3t588cUXygUIbIo/gXfkl+XaF65MZeHKVAUiEkrLXLWdzFXblQ5DiCrjkAkkOTkZk8lk9Q301q1bs2fPHgWjEkKI2sUhE0h4eDhms1npMIQQolaz+5voQggh7JMkECGEEDaRBCKEHQnoF07MZxOVDqPSun0wmhbDH1A6DFHNJIEIYS9UKjpNHkHSB6tQazUM2P4hoc8Psjokcs4YHlj+BgD1I9owPGMZHvrr3yty9fVkWMqn6Ad0q9S4fePeotOUJ6yaPQIbMDxjGfW7BjM8Yxk+IYFW/e3GD2LAtg9QazUkz11D2CvD5HsttYwkECHsRJOYMEouXyE/JYtSYwnx4+fTbvwgvNs0BSCgT2ea9OrErhfL9hLJTfiNwyu20n3uOFTqsl/liNmjOBN/kKy4XRWOMSRxIbomN3w/ymwmfvx8Wo54AL8/yo2oVETOHUP6F1vI3Z1K8tw1RM4bh9q5LEHUaR1A6LhYdo6dR6mxBEN2LpeOniLw4Yi7cGaEvZIEIoSd8O/TmdO7Dlpe5yUf5dCidXSfNw73hj5EzH6WPZM+oSj3elXb/e+uwMVbR9vR/Ql6NJp6YS1IeP3jSo9tyM5l39vLiZwzBo2bCyGjHkHr4c7+WV8BkPJRHFcLigh7ZRgqjRPd540lZcFa8g8ds3zGqZ0p+PfubPsJEA5H1ptC2AmfkEAyVmy1avt1zhqa9OpI/x9mc7qClYXpipGd4+bTe810zCUmfn5uDsYLBTaNn/7FFvx7d6bHogk0iGjDpkHTKDVeq5ZwbZXyyJb38NA3wFR8lZT531q9/+LhHIKGRtk0tnBMsgIRwk64eOm4aiiyajOXmDi3Nx1XXy8yV26r8H0XMk5w9VIhRkMhp3Yk31EMu174iIaRbfnt4w1WqwsoW6Xsn/U1AX26sHP8fMylpVb9RkMRLnV0dzS+cCyyAqmEdi28if9cma1I27XwVmRcUX2KLxbg7OFm1eYXHkzQsJ6kfrqRLm8+zbper2C6Yr35WZcZT3E+PQdXHw/avzCEpNkrLX362Egi3n3G8trZw43+P70PpWVfxE1ZsJaUBd9a+ovOXqA438D51OMVxngh9TimYiOGrDPl+rQebhTbuPoRjkkSSCV46rSyJ4e4a/IPHcMrqLHltcbdlcg5Y9j39nLSPt9M37Vvcu/rj7N32lLLMY1jwmj6UFfiYl5E63kPD214h5zNe8lLLtu9MmttPFlr4y3HD0lcyKZB0yi4C9vqerX0J//gsSr/XGG/5BKWEHYiZ/MvNLivreV15+lPUnD8LGlLN5Xdg3h+AS0fv5/6XYMB0NbR0e3959gzZQmFp/O5kJ5D8pw1RM4dq8jjtI0i23F8y95qH1coRxKIEHbixNb9OOtc8Wmrp3FMGPr+3SyP7ML1J6W6fVj2pFTEu89wbn8GR1fvsBxzcOG6a09LPVatsesC/PBs3ojs7xJufbCoMVRmqUooRJWzdUvbgH7hBA2N4qen37sLUd093T4Yzdl9h8lY/mOF/X3j3pItbWsguQcihB05vnEPxzc63rYEf14pidpDLmEJIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibyFNYQtghbR0dD66cglfzRiwPeqJcf8snehH4yH2ondRsHvYmao0TPT95GY27C4bsXHa9ULmnovy6tKbz1Ccxl5rJ3rCbQ//57i/7GvfsQLuxsUBZafctj84oVztL1HyyAhHCDl0tKGLLsJmc25dRru+exnXxvvaP9qbB0zCXmGgU1Z7cxLSyCrolJuq08q/UeIbsXL6PncrG/m/QpFdHnNy0f9l3clsSmwZPY9PgaRQcz5XkUUtJAhHCDplLTDcty94oqj0adxd6/3caHV56FICC42fRuLsA4OzuitFQWKnxinLPU3q1rHS72VRqKbZ4q766HYL4/dcjlRpL1BxyCasSLhUYSck4f+sD74J2Lbzx1GlvfeAtGA2FN620Wht5Bweg9XBXOoxKca3rBWbYPHQGkXPH4hMSyMWjp6gfHszAHXPIS8mi8FSeTZ/dsEcohuwzmIqv3laff5/O5GxWrv6VzGdr1T2fJYFUQkrGeSJHrldk7PjPH66SSsDnU4/bVGKjpnLEEhtXLxVyJuEQALm7f8OzeSPqdWzJsbj/kbZ0E11mPk29Tq0490t6ufd6tWxiVd4d4OS2A6Qs+Bb3hj6Ejotl68hZ5d53s76G97Xl1/f/W4U/XeXIfLZW3fNZEogQDubsvnSaxXYHyv7iPLp2F64+nhRfMABQfL4Arac7Kic12jo6ivMuWd578fAJNg2eVu4z1VoNkXPGkvDax5QUXrmtPl2AH5dP51kub4naR+6BCGGnHlw5FZ+2eh5cORW/Lq0Jea4/APkpWag1avqsmYGTmwu/H8jg6NqdBD0WQ581M/BpG8ipHcno/P3o8MKQ2xqrWWx36rRswn3vjaLPmhm4N/DBrV4dQp7rX2EfQECfLopevhLKkxWIEHZqy7A3rV6fTUyz/H/i1KVWfcaLl/nhsZlWbT4hTTm2YfdtjZW5cluFW+YeWrTO0n+j3xYrczlX2A9JIELUUNkbHK+qr3AscglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExpZVAw0LC1M4wvK0zmr2rxzIiu+P8M7Hv1raP5vZnfq+bvQbvUXB6KwFPhJB8D/64RMSSHG+gdVdRisdUo2lclLTefpImg/ugUqt5tiG3eyZ9EmFpUOEbWQ+Vx+HSCCLFy9m48aNJCUlERISAkB0dDR6vR4fHx8CAgIUjrA849VSnnzjZ3YsfYj1P+eQfDifAT2b8khUAO0Gr1U6PCvFFy+TtmQTrvW8CPnnw0qHU6OFjh9Eg/vaEhfzEqarJdy/dCIdJz9B4pQlSodWY8h8rj4OcQlr1qxZjBgxwpI8AJycnNDr9ZbVx8svv4xer0elUnHw4EGlQrWyPzWP//s8hS/e7kHj+u4sntaNMe8kcPpc5Sql3m2ndySTFbeLyyfOKR1Kjddi+P2kzPuGwjP5FOddIun9VQQNi0aldohfRYcg87n62P2szcjIICsri8GDB5fry8nJsSSQgQMHsmPHDpo2bVrdIf6ltxYnUWIyc2DlQLYlnmblpqNKhyQUovV0R9e4HvmHsixteSlZaD3c0fnXUzAyIWxj95ewTp48CYCfn59Ve1paGtnZ2ZYEEhkZafMYHh4eGI3GWx5X6tYMAl6u1GeXlJj5X1IuHR8P4bO4w7aGSHTPaNRFd558mmu8edXT9nNV0/TsGc2Rkqov0V/Redbo3AAwXry+AjVevAyA87W+mqpnz+o7z7VZz562nWetVovBYKj0++x+BeLr6wtAZmampc1sNjNx4kRKS0vt8gb6n0XeW5+nBrRg/opDzJ3YFVcXJ6VDEgopKSgCwNnz+n4NWq97gLIdCIVwNHa/AgkODiYoKIhJkybh7OyMTqdj0aJFHDhwAHd3d1q1anXHY9xu5t11ILdS+4Hc46Zh6cwevDbnFxatSuXnzx7infGdeHF25WsUbd+2vUr2A8lNTJP9E/5k27btd2X/hIrOs/FSIQUnz+ETEsilI6cA8G2rx2gopCCnZl+vr87zXJvdrfN8M3a/AtFoNKxevZqGDRsycuRIJkyYQN++fYmKiiI0NBS1Hd98fP/lcLJOGli4MhWzGZ6avIN/DGpJ944NlA7NikqtxsnFGZVGAyoVTi7OqLV2/7eFQ8pYvpXQcbG41ffGxdeTDi89SubK7ZhLS5UOrcaQ+Vx9HOKstm/fnoSEBKu2BQsWEBUVpVBEt9YnsgnDeusJHXL9kd2jJwy8NucXPnuzO6FD1lJYZB8b8TQf0oPIuWMtr5849hUFOWfl+fm7IHneN7j4eDJw+4eo1CqOrd/Nvre/VDqsGkXmc/VxiARyo6KiItLT05kwYYKlbfz48XzzzTecOXOGBx54AF9fXw4dOqRYjJviT+AdWf4fhoUrU1m4MlWBiG4uc9V2MldtVzqMWsFsKiVxyhL53sddJPO5+tjv9Z+/kJycjMlksrqBPm/ePE6cOEFJSQlnzpxRNHkIIURt4JArkPDwcMxms9JhCCFEreaQKxAhhBDKkwQihBDCJpJAxG0J6BdOzGcTlQ6j0rp9MJoWwx9QOgxhh2RO3zlJIOLWVCo6TR5B0gerUGs1DNj+IaHPD7I6JHLOGB5Y/gYA9SPaMDxjGR766993cfX1ZFjKp+gHdKvUuH3j3qLTlCesmj0CGzA8Yxn1uwYzPGMZPiGBVv3txg9iwLYPUGs1JM9dQ9grw+R7AMKazOkqIQlE3FKTmDBKLl8hPyWLUmMJ8ePn0278ILzblBWuDOjTmSa9OrHrxYUA5Cb8xuEVW+k+d5ylymzE7FGciT9IVtyuCscYkrgQXZMbCgqazcSPn0/LEQ/g98e3a1UqIueOIf2LLeTuTiV57hoi541D7Vz2y1SndQCh42LZOXYepcYSDNm5XDp6isCHI+7CmRGOSuZ01ZAEIm7Jv09nTu+6XiI/L/kohxato/u8cbg39CFi9rPsmfQJRbnXi7jtf3cFLt462o7uT9Cj0dQLa0HC6x9XemxDdi773l5O5JwxaNxcCBn1CFoPd/bP+gqAlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AqHFkTlcN5ddAwu75hASSsWKrVduvc9bQpFdH+v8wm9MV/BVmumJk57j59F4zHXOJiZ+fm4PxQoFN46d/sQX/3p3psWgCDSLasGnQNEqN177Ff+0vuke2vIeHvgGm4qukzP/W6v0XD+cQNNR+qxaI6idzumrICkTckouXjqsG62qx5hIT5/am4+rrRebKbRW+70LGCa5eKsRoKOTUjuQ7imHXCx/RMLItv328weovMSj7i27/rK8J6NOFnePnl6srZTQU4VJHd0fji5pF5nTVkBVIJbRr4U3858pskdmuhbci4wIUXyzA2cN6vwq/8GCChvUk9dONdHnzadb1egXTFes9VbrMeIrz6Tm4+njQ/oUhJM1eaenTx0YS8e4zltfOHm70/+l9KC37gmjKgrWkLPjW0l909gLF+QbOpx6vMMYLqccxFRsxZJ0p16f1cKPYxr8UbeUdHEDfuLeqdUx75h1sX9tOy5yuGpJAKsFTp62SkuqOJv/QMbyCGltea9xdiZwzhn1vLyft8830Xfsm977+OHunLbUc0zgmjKYPdSUu5kW0nvfw0IZ3yNm8l7zksk2xstbGk7U23nL8kMSFbBo0jYK7sA2pV0t/8g8eq/LP/StaD/dqLastKkfmdNWQS1jilnI2/0KD+9paXnee/iQFx8+StnRT2fXa5xfQ8vH7qd81GABtHR3d3n+OPVOWUHg6nwvpOSTPWUPk3LGKPHrYKLIdx7fsrfZxhf2SOV01JIGIWzqxdT/OOld82uppHBOGvn83y+ONcP2pkm4flj1VEvHuM5zbn8HR1TssxxxcuO7akyWPVWvsugA/PJs3Ivu7hFsfLGoNmdNVQ2WWqoS1iq07uAX0CydoaBQ/Pf3eXYjq7un2wWjO7jtMxvIfK+zvG/eWXGpyYHeyI2FNnNPVPZ/lHoi4Lcc37uH4xspvxau0P/9VKcSfyZy+c3IJSwghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2ESewhKVoq2j48GVU/Bq3ojlQdZ7Gqg0TvT46Hnc6nqR8+M+Di1aR90OQXSe8RQqlYrTu1I4MOvrKhvPyVVLz09eRuPugiE7l10vLKwwBiFu5q/mV0V9dzqf/bq0pvPUJzGXmsnesJtD//nOql/XpB791r/DpSOnKDj5O/Hj51v62jzzEE0e6MiWYW/a+NNWPVmBiEq5WlDElmEzObcvo1xf037hnPslnU2Dp1E3tDkuvp7kHczi+wGT2dj/Dep1bIWzzq2CT7VtvEZR7clNTCurZFpiok4r/wpjEOJm/mp+VdR3p/PZkJ3L97FT2dj/DZr06oiTm7bcMSd+3MemwdOskodK41Rukyl7IAlEVIq5xHTTEtYeAX6WwnAXMk5Qt31zzCUmAFRqNUW5+ZQUFVfZeAXHz6JxdwHA2d0Vo6GwwhiEuJm/ml8V9d3pfC7KPU/p1bKy7WZTqaXQ4p81ju5A329n0mxQd0tb8yFRHP02vtyxSpNLWKLKXDxyivoRbTgdn0L98GAuHT0FlFUp7fDSo5zanlT2S1NFLh07Tf3wYAbumENeShaFp/JuGkN1MxoKb1pltTbyDg5A6+GudBhVoirmc8MeoRiyz2AqvmrVXnj2PN90Hw9m6PXVZE5uO0Dxhcs0jm7Pz89+SNvnBlTFj1BlJIGIKpOz+RcaRbXnwZVTuZJ3iSu/XwKuVSn9dhfRH79EndYBXEgr/w+rV8smVqWwAU5uO2BV/vpGQUOjORb3P9KWbqLLzKep16nVTWOobudTj9tcYqMmqkklY+50Prs39CF0XCxbR84q9z7LplJA7p5UPJo2oMF9dcnZ8kvV/yBVQBKIqDLm0lJ2v1a2xWfkvHGc3ZeOWqsp+6UwmykpKMJUbETlpEZbR0dx3vV/3C8ePsGmwdMqNZ5Krab4ggGA4vMFaD3dK4xBiKpyp/NZrdUQOWcsCa99TEnhlXL9GndXS3vd9s1JW/I9jaJCaRARQvMhPfBpG0iLx+8vt5uiUuQeiKi0B1dOxaetngdXTsWvS2tCnusPwD2N69JnzQx6/3ca2esTMBUZ8X+wM33WzKDP2je5fDoPQ9YZdP5+dHhhiE3j1Wnlj1u9OoQ815+ja3cS9FgMfdbMwKdtIKd2JFcYgxB/5Wbz+ca+Oq3873g+N4vtTp2WTbjvvVH0WTMD9wY+lvkM4Ne5FQ9vmkW/797m1PZfKTp7geS537DlsZn88Pjb5B88ZjfJA6Qab61zJ9VLq0rTh8K5km8gN+E3ReOAu3dpxR7Osz2pyee5Nsznm5FLWKLaZW9wvAqoQtxMbZ7PcglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExsYCEBYWpnCEjk/lpKbz9JE0H9wDlVrNsQ272TPpk3KlFoTtAh+JIPgf/fAJCaQ438DqLqOVDqnGkvlcPRxiBbJ48WI2btzIjz/+yKhRo7j//vtZvHgxTk5O+Pj4EBAQoHSIDi90/CAa3NeWuJiXWNNtHHVaNqHj5Cdu/UZx24ovXiZtySb2/+srpUOp8WQ+Vw+HSCCzZs1ixIgRhISEWNqcnJzQ6/WEhYWRl5dHv379aNWqFe3atWPQoEGcO3dOwYgdT4vh95My7xsKz+RTnHeJpPdXETQsGpXaIaaIQzi9I5msuF1cPiFz826T+Vw97P5sZmRkkJWVxeDBg8v15eTkEBYWhkql4tVXXyU9PZ2UlBSaN2/Oa6+9pkC0jknr6Y6ucT3yD2VZ2vJSstB6uKPzr6dgZEJUnszn6mP390BOnjwJgJ+fn1V7Wloa2dnZhIWF4ePjQ3R0tKWva9euLFq06LbH8PDwwGisHTWTmmu8edUz0qpNc21THOPFQkub8eJlgEpvmONoevaM5kjJ+Sr/3IrOc23Ws2f1nWeZz5U/z1qtFoPBUOn32f0KxNfXF4DMzExLm9lsZuLEiZSWlpa7gV5aWsqiRYvo378/4vaUFBQB4Ox5fb8Grdc9QNmubEI4EpnP1cfuVyDBwcEEBQUxadIknJ2d0el0LFq0iAMHDuDu7k6rVq2sjh83bhw6nY6xY8fe9hi2ZF5HVVHxOeOlQgpOnsMnJJBLR8o2YPJtq8doKKQgp2Zfr9+2bXuNLfJnT6rzPMt8lmKKFhqNhtWrV/Pss88ycuRI/P39mTBhAp6enhw5cgT1n26Kvfzyy2RkZPDdd99ZtYtby1i+ldBxseTuSaW0xESHlx4lc+V2zKVVt4NgbadSq1E7O6HSaEClwsnFGbPZbLWJkKgaMp+rh90nEID27duTkJBg1bZgwQKioqIsrydNmsS+ffvYsGEDLi4u1R2iw0ue9w0uPp4M3P4hKrWKY+t3s+/tL5UOq0ZpPqQHkXOvr4yfOPYVBTln5fsgd4HM5+rhEAnkRkVFRaSnpzNhwgQADh06xLvvvkvLli257777ANDr9axdu1bBKB2L2VRK4pQlJE5ZonQoNVbmqu1krtqudBi1gszn6uGQCSQ5ORmTyWS5gR4SEoLsiyWEENXLIRNIeHi4JAwhhFCY3GkWQghhE0kgQgghbCIJRAg7EtAvnJjPJiodRqV1+2A0LYY/oHQYoppJAhHCXqhUdJo8gqQPVqHWahiw/UNCnx9kdUjknDE8sPwNAOpHtGF4xjI89A0s/a6+ngxL+RT9gG6VGrdv3Ft0mmJdrdYjsAHDM5ZRv2swwzOW4RMSaNXfbvwgBmz7ALVWQ/LcNYS9Mgy11iFvqwobSQIRwk40iQmj5PIV8lOyKDWWED9+Pu3GD8K7TVMAAvp0pkmvTux6cSEAuQm/cXjFVrrPHWepMhsxexRn4g+SFberwjGGJC5E1+SGgoJmM/Hj59NyxAP4/fEtZpWKyLljSP9iC7m7U0meu4bIeeNQO5cliDqtAwgdF8vOsfMoNZZgyM7l0tFTBD4ccRfOjLBXkkCEsBP+fTpzetdBy+u85KMcWrSO7vPG4d7Qh4jZz7Jn0icU5V4vlrf/3RW4eOtoO7o/QY9GUy+sBQmvf1zpsQ3Zuex7ezmRc8agcXMhZNQjaD3c2T+rbO+SlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AcDiy3hTCTviEBJKxYqtV269z1tCkV0f6/zCb0xWsLExXjOwcN5/ea6ZjLjHx83NzMF4osGn89C+24N+7Mz0WTaBBRBs2DZp2vczKtVXKI1vew0PfAFPxVVLmf2v1/ouHcwgaGlX+g0WNJSsQIeyEi5eOqwbrarHmEhPn9qbj6utF5sptFb7vQsYJrl4qxGgo5NSO5DuKYdcLH9Ewsi2/fbzBanUBZauU/bO+JqBPF3aOn1+urpTRUIRLHd0djS8ci6xAahnv4AD6xr2ldBh2wzvYfrZDLr5YgLOH9X4VfuHBBA3rSeqnG+ny5tOs6/UKpivWe9d0mfEU59NzcPXxoP0LQ0iavdLSp4+NJOLdZyyvnT3c6P/T+1Ba9kXclAVrSVnwraW/6OwFivMNnE89XmGMF1KPYyo2Ysg6U65P6+FGsY2rH1vJfLZW3fNZEkgto/Vwr9Zyz+L25R86hldQY8trjbsrkXPGsO/t5aR9vpm+a9/k3tcfZ++0pZZjGseE0fShrsTFvIjW8x4e2vAOOZv3kpd8FICstfFkrY23HD8kcSGbBk2j4C5sq+vV0p/8g8eq/HP/isxnZcklLCHsRM7mX2hwX1vL687Tn6Tg+FnSlm4quwfx/AJaPn4/9bsGA6Cto6Pb+8+xZ8oSCk/ncyE9h+Q5a4icO1aRx2kbRbbj+Ja91T6uUI4kECHsxImt+3HWueLTVk/jmDD0/btZHtmF609Kdfuw7EmpiHef4dz+DI6u3mE55uDCddeelnqsWmPXBfjh2bwR2d8l3PpgUWOozFKVUIgqZ+uOhAH9wgkaGsVPT793F6K6e7p9MJqz+w6TsfzHCvv7xr0ll5pqILkHIoQdOb5xD8c37lE6jEr780pJ1B5yCUsIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQDkRbR8fDm2cxPHNZhf0uvp70XPIKvVdPp+WIsg2eOk19kscOfkqzwd3/8rOjFr3A31KXXi/p/iet/96Xh9a/Q7/v3qZBt7YVvFvURvIYrxAO5GpBEVuGzST6Py9W2N/hhSEkTv2Myyd+t7QdXBjHhbSKa1v9WeLUz2j15IMV9p3Y8gtpS77HWedGz09e5syfys6L2ktWIEI4EHOJ6S/LtXs2b0THSSPo9fUUPJs3AuDK7xdv67OLzl24ad8ftbNKS0ygUt1+wKJGkwQiRA3i16U1B2Z9xe7XP+be1/5W5Z8fOmEwGV9tvfWBolaQBCJEDXIhPQdDdi6GrDNoPdyr9LMb9+yAe31vsr6teLtcUftIAhGiBinIOYeLjweudb0oKTLe9Di3+t6V+lyPpvUJeW4Au1//5E5DFDWIJBAhHMyDK6fi01bPgyunUqeVP2716hDyXH8AkuesoeenrxCz5FV+nbMagJDn+hMyegDtxsbSZtTDAER+OLrc53aa9iTNh0bRZcZTNBvU3dIG0P7FobjXr0Ov5W8Qvfil6vgxhQOQarxC3AW2VuOtFioVXWaMJHHq0mobUqrx1kyyAhGitjGbqzV5iJpLEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0cJoEYjUamTJmCv78/bm5uxMTEkJiYiEqlIi4uTunwhBCi1nGIYopms5mhQ4eSmJjI9OnTCQoKYsWKFcTGxgIQFhamcIRC3B6Vk5rO00fSfHAPVGo1xzbsZs+kTzAVX1U6NCEqzSESyOLFi9m4cSNJSUmEhIQAEB0djV6vx8fHh4CAAIUjFOL2hI4fRIP72hIX8xKmqyXcv3QiHSc/QeKUJUqHJkSlOcQlrFmzZjFixAhL8gBwcnJCr9dbVh8DBw6kffv2hIWF0b17d5KSkhSKVoibazH8flLmfUPhmXyK8y6R9P4qgoZFo1I7xK+iEFbsftZmZGSQlZXF4MGDy/Xl5ORYEsjnn3/Or7/+yoEDB3j55Zf5+9//Xt2hCvGXtJ7u6BrXI/9QlqUtLyULrYc7Ov96CkYmhG3s/hLWyZMnAfDz87NqT0tLIzs725JAvLy8LH0XL15EXYm/6Dw8PDAab154TojKaq7x5lXPSKs2jc4NAOPFQkub8eJlAJyv9dVUPXtGc6TkvNJhiJvQarUYDIZKv8/uE4ivry8AmZmZdOnSBSi7qT5x4kRKS0utbqD/4x//YMuWLZjNZjZt2qRIvELcTElBEQDOnu6WzZu0XvcAZTsNCuFo7D6BBAcHExQUxKRJk3B2dkan07Fo0SIOHDiAu7s7rVq1shz7ySdlpaaXLVvGK6+8wsaNG29rDFsyrxB/paJiisZLhRScPIdPSCCXjpwCwLetHqOhkIKcc0qEWW22bdsuxRRrILu/B6LRaFi9ejUNGzZk5MiRTJgwgb59+xIVFUVoaGiFl6qeeOIJtm3bRl5engIRC3FzGcu3EjouFrf63rj4etLhpUfJXLkdc2mp0qEJUWl2vwIBaN++PQkJCVZtCxYsICoqCoCCggLOnz+Pv78/AN999x0+Pj74+PhUe6xC/JXked/g4uPJwO0folKrOLZ+N/ve/lLpsISwiUMkkBsVFRWRnp7OhAkTALh8+TJDhw7l8uXLODk54ePjw3fffYdKpVI2UCFuYDaVkjhliXzvQ9QIDplAkpOTMZlMlhvo9evXZ/fu3QpHJYQQtYtDJpDw8HBkI0UhhFCW3d9EF0IIYZ8kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsojLLN/KEqHJGQyHnU48rHYbd8A4OQOvhrnQYoopJAhFCCGETuYQlhBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRON0gE4kksFRlIyzisydrsW3njqtIqMLSpPqvFak2q8NZMkkEpIyThP5Mj1iowd//nDdAurr8jYovLOpx7n+wGTlQ7DbvSNe4v6XVorHYaoYnIJSwghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFs4hAJxGg0MmXKFPz9/XFzcyMmJobExERUKhVxcXFKhyeEELWS3ScQs9nM0KFD+eSTT5g8eTLr169Hr9cTGxsLQFhYmMIRVkzrrObgN4OY9Ex7q/bPZnZn48IHFYpKKCnwkQj6xs1keOYyhiQuVDocIe6Y3ZcyWbx4MRs3biQpKYmQkBAAoqOj0ev1+Pj4EBAQoHCEFTNeLeXJN35mx9KHWP9zDsmH8xnQsymPRAXQbvBapcMTCii+eJm0JZtwredFyD8fVjocIe6Y3a9AZs2axYgRIyzJA8DJyQm9Xl9u9TFjxgxUKhUHDx6s7jArtD81j//7PIUv3u5B4/ruLJ7WjTHvJHD6XKHSoQkFnN6RTFbcLi6fOKd0KEJUCbtOIBkZGWRlZTF48OByfTk5OVYJZP/+/ezevZumTZtWZ4i39NbiJEpMZg6sHMi2xNOs3HRU6ZCEEKJK2PUlrJMnTwLg5+dn1Z6WlkZ2drYlgRQXFzNmzBi++uoroqOjKz2Oh4cHRqPxlseVujWDgJcr9dklJWb+l5RLx8dD+CzucKVj+0N0z2jURZJ8HEVzjTevekYqHYbd6NkzmiMlymyFIG5Nq9ViMBgq/T67XoH4+voCkJmZaWkzm81MnDiR0tJSSwKZOnUqI0aMIDAwUIkw/1LkvfV5akAL5q84xNyJXXF1cVI6JCGEqBJ2vQIJDg4mKCiISZMm4ezsjE6nY9GiRRw4cAB3d3datWpFQkICv/zyC//6179sHud2M++uA7mV2g/kHjcNS2f24LU5v7BoVSo/f/YQ74zvxIuz91Q6xu3btst+IA4kNzFN9gP5k23btst+IDWQXa9ANBoNq1evpmHDhowcOZIJEybQt29foqKiCA0NRa1W8/PPP5OamoperycwMJATJ07Qu3dvtmzZonT4vP9yOFknDSxcmYrZDE9N3sE/BrWke8cGSocmFKBSq3FycUal0YBKhZOLM2qtXf8NJ8RfsvvZ2759exISEqzaFixYQFRUFACvvfYar732mqUvMDCQ9evX07Zt22qN80Z9IpswrLee0CHXH9k9esLAa3N+4bM3uxM6ZC2FRSUKRiiqW/MhPYicO9by+oljX1GQc5bVXUYrGJUQtrP7BHKjoqIi0tPTmTBhgtKh/KVN8SfwjvyyXPvClaksXJmqQERCaZmrtpO5arvSYQhRZRwugSQnJ2MymW76DfRjx45Vb0BCCFFLOVwCCQ8Px2w2Kx2GEELUenZ9E10IIYT9kgQihBDCJpJAhLAjAf3CiflsotJhVFq3D0bTYvgDSochqpkkECHshUpFp8kjSPpgFWqthgHbPyT0+UFWh0TOGcMDy98AoH5EG4ZnLMNDf/17Ra6+ngxL+RT9gG6VGrdv3Ft0mvKEVbNHYAOGZyyjftdghmcswyck0Kq/3fhBDNj2AWqthuS5awh7ZZh8r6WWkQQihJ1oEhNGyeUr5KdkUWosIX78fNqNH4R3m7ICoQF9OtOkVyd2vVi2l0huwm8cXrGV7nPHoVKX/SpHzB7FmfiDZMXtqnCMIYkL0TWpZ91oNhM/fj4tRzyA3x/fFlepiJw7hvQvtpC7O5XkuWuInDcOtXNZgqjTOoDQcbHsHDuPUmMJhuxcLh09ReDDEXfhzAh7JQlECDvh36czp3dd34ogL/kohxato/u8cbg39CFi9rPsmfQJRbnXixLuf3cFLt462o7uT9Cj0dQLa0HC6x9XemxDdi773l5O5JwxaNxcCBn1CFoPd/bP+gqAlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AcDiy3hTCTviEBJKxYqtV269z1tCkV0f6/zCb0xWsLExXjOwcN5/ea6ZjLjHx83NzMF4osGn89C+24N+7Mz0WTaBBRBs2DZpGqfFatYRrq5RHtryHh74BpuKrpMz/1ur9Fw/nEDQ0yqaxhWOSFYgQdsLFS8dVQ5FVm7nExLm96bj6epG5cluF77uQcYKrlwoxGgo5tSP5jmLY9cJHNIxsy28fb7BaXUDZKmX/rK8J6NOFnePnYy4tteo3GopwqaO7o/GFY5EVSCW0a+FN/OfKbEXaroW3IuOK6lN8sQBnDzerNr/wYIKG9ST10410efNp1vV6BdMV671rusx4ivPpObj6eND+hSEkzV5p6dPHRhLx7jOW184ebvT/6X0oLfsybsqCtaQs+NbSX3T2AsX5Bs6nHq8wxgupxzEVGzFknSnXp/Vwo9jG1Y9wTJJAKsFTp5WS6uKuyT90DK+gxpbXGndXIueMYd/by0n7fDN9177Jva8/zt5pSy3HNI4Jo+lDXYmLeRGt5z08tOEdcjbvJS+5bPOxrLXxZK2Ntxw/JHEhmwZNo+AubKvr1dKf/IPHqvxzhf2SS1hC2Imczb/Q4L7rVaQ7T3+SguNnSVu6qewexPMLaPn4/dTvGgyAto6Obu8/x54pSyg8nc+F9ByS56whcu5YRR6nbRTZjuNb9lb7uEI5kkCEsBMntu7HWeeKT1s9jWPC0PfvZnlkF64/KdXtw7InpSLefYZz+zM4unqH5ZiDC9dde1rqsWqNXRfgh2fzRmR/l3Drg0WNoTJLZUIhqpytOxIG9AsnaGgUPz393l2I6u7p9sFozu47TMbyHyvs7xv3luxIWAPJPRAh7MjxjXs4vrHyWx4r7c8rJVF7yCUsIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCKP8Qphh/y6tKbz1Ccxl5rJ3rCbQ//5ztKnraPjwZVT8GreiOVBT9zy+Mpo88xDNHmgI1uGvWnVXrdDEJ1nPIVKpeL0rhQOzPoagJZP9CLwkftQO6nZPOxNzCUmG39i4YgkgQhhhwzZuXwfO5XSqyX0Xj2dtC82YyoqK6J4taCILcNmEv2fF2/r+Nul0jiV23XwD3kHsyxfjHxw1TScdW5ove7Bu3UAWx6dYdsPKRyeJJBKuFRgJCXj/K0PvAvatfDGU6e9488xGgpvWmm1NvIODkDr4a50GOX8edMos6nUUj0Xykq837jnx18df7uaD4ni6LfxtH1uQLm+P1YWKrWaotx8SoqKCex/Hxp3F3r/dxq5u1NJen9Vpce8UzKfrVX3fJYEUgkpGeeJHLlekbHjP3+4SioBn089blOJjZrK3ktsNOwRiiH7DKbiq3fleAuVisbR7fn52Q8rTCBQVhq+w0uPcmp7EmZTKa51vcAMm4fOIHLuWHxCAsvtIXK3yXy2Vt3zWRKIEHbKvaEPoeNi2TpyVpUd79WyidX+IAAntx3gUtYZcrb88pefn7U2nqxvdxH98UvUaR3A1UuFnEk4BEDu7t/wbN6o2hOIUJYkECHskFqrIXLOWBJe+5iSwis2Ha9yUqOto6M475LluIuHT7Bp8LRy7w99fhANIkJoPqQHPm0DafH4/Vbb66q1mrLtbc1mSgqKMBUbObsvnWax3YGySydH1+4q97miZpPHeIWwQ81iu1OnZRPue28UfdbMwL2BDyHP9bf0P7hyKj5t9Ty4cip1WvlXeLzO348OLwy5rfGS537Dlsdm8sPjb5N/8BgZK7biVq+OZUz/BzvTZ80M+qx9k8un8zBknSE/JQu1Rk2fNTNwcnPh9wMZd+VcCPslKxAh7FDmym3l9kA/tGid5f9vfMz2QnpOueObPhTOsQ27Kz32H59ddO6CZczs9Qlkry+/10fi1KWV/nxRc0gCEaKGyt7geGXhhWORS1hCCCFsIglECCGETSSBCCGEsInDJBCj0ciUKVPw9/fHzc2NmJgYEhMTUalUxMXFKR2eEELUOg5xE91sNjN06FASExOZPn06QUFBrFixgtjYWADCwsIUjrA8rbOa/SsHsuL7I7zz8a+W9s9mdqe+rxv9Rm9RMDprgY9EEPyPfviEBFKcb2B1l9FKh1RjqZzUdJ4+kuaDe6BSqzm2YTd7Jn1S+W+Oi5uS+Vx9HCKBLF68mI0bN5KUlERISAgA0dHR6PV6fHx8CAgIUDjC8oxXS3nyjZ/ZsfQh1v+cQ/LhfAb0bMojUQG0G7xW6fCsFF+8TNqSTbjW8yLknw8rHU6NFjp+EA3ua0tczEuYrpZw/9KJdJz8BIlTligdWo0h87n6OMQlrFmzZjFixAhL8gBwcnJCr9dbVh+BgYG0bt2aDh060KFDBzZv3qxUuBb7U/P4v89T+OLtHjSu787iad0Y804Cp88VKh2aldM7ksmK28XlE+eUDqXGazH8flLmfUPhmXyK8y6R9P4qgoZFo1I7xK+iQ5D5XH3sftZmZGSQlZXF4MGDy/Xl5ORYXb5avXo1SUlJJCUl0bt37+oM86beWpxEicnMgZUD2ZZ4mpWbjiodklCI1tMdXeN65B/KsrTlpWSh9XBH519PwciEsI3dX8I6efIkAH5+flbtaWlpZGdnV8n9Dw8PD4zGW++dUOrWDAJertRnl5SY+V9SLh0fD+GzuMO2hkh0z2jURXeefJprvHnVM/KOP6em6NkzmiMlVV+iv6LzrNG5AWC8eH0Farx4GQDna301Vc+e1Xeea7OePW07z1qtFoPBUOn32f0KxNfXF4DMzExLm9lsZuLEiZSWllolkOHDhxMaGsro0aO5cOFCdYdaoch76/PUgBbMX3GIuRO74uripHRIQiElBUUAOHte369B63UPULZJlBCOxu4TSHBwMEFBQUyaNIn//ve/fP/99wwYMID9+/fj7u5Oq1atANi5cye//vore/fuxWw2M3bs2Nsew2AwUFxcfMv/tm/bXqnY73HTsHRmD16b8wvPz9rN2fwrvDO+U6U+4w/bt22/rRhv9d+2Sv4MNd22Kjqvt3OejZcKKTh5zmrXP9+2eoyGQgpyavb1+uo8z7WZrefZltUHOEAC0Wg0rF69moYNGzJy5EgmTJhA3759iYqKIjQ0FPW1m4/+/v4AuLi4MHr0aHbtUr609Psvh5N10sDClamYzfDU5B38Y1BLundsoHRoVlRqNU4uzqg0GlCpcHJxRq21+6ubDilj+VZCx8XiVt8bF19POrz0KJkrt2MuLVU6tBpD5nP1cYiz2r59exISrCuBLliwgKioKAAuX75MSUkJXl5emM1mvv76azp06KBApNf1iWzCsN56Qodcf2T36AkDr835hc/e7E7okLUUFpUoGOF1zYf0IHLu9RXbE8e+oiDnrDw/fxckz/sGFx9PBm7/EJVaxbH1u9n39pdKh1WjyHyuPg6RQG5UVFREeno6EyZMACA3N5fBgwdjMpkwmUy0adOGhQsXKhrjpvgTeEeW/4dh4cpUFq5MVSCim8tctZ3MVduVDqNWMJtKSZyyRL73cRfJfK4+DplAkpOTMZlMlhvozZo148CBAwpHJYQQtYtDJpDw8HDMZrPSYQghRK1m9zfRhRBC2CdJIEIIIWwiCUTcloB+4cR8NlHpMCqt2wejaTH8AaXDEHZI5vSdkwQibk2lotPkESR9sAq1VsOA7R8S+vwgq0Mi54zhgeVvAFA/og3DM5bhob/+fRdXX0+GpXyKfkC3So3bN+4tOk15wqrZI7ABwzOWUb9rMMMzlll9MQ+g3fhBDNj2AWqthuS5awh7ZZh8D0BYkzldJSSBiFtqEhNGyeUr5KdkUWosIX78fNqNH4R3m6YABPTpTJNendj1Ytmj07kJv3F4xVa6zx1nqTIbMXsUZ+IPkhVX8Rc8hyQuRNfkhoKCZjPx4+fTcsQD+HVpXdamUhE5dwzpX2whd3cqyXPXEDlvHGrnsl+mOq0DCB0Xy86x8yg1lmDIzuXS0VMEPhxxF86McFQyp6uGJBBxS/59OnN610HL67zkoxxatI7u88bh3tCHiNnPsmfSJxTlXi/itv/dFbh462g7uj9Bj0ZTL6wFCa9/XOmxDdm57Ht7OZFzxqBxcyFk1CNoPdzZP+srAFI+iuNqQRFhrwxDpXGi+7yxpCxYS/6hY5bPOLUzBf/enW0/AaLGkTldNZRfAwm75xMSSMaKrVZtv85ZQ5NeHen/w2xOV/BXmOmKkZ3j5tN7zXTMJSZ+fm4OxgsFNo2f/sUW/Ht3pseiCTSIaMOmQdMoNV77Fv+1v+ge2fIeHvoGmIqvkjL/W6v3XzycQ9DQKJvGFjWTzOmqISsQcUsuXjquGqyrxZpLTJzbm46rrxeZK7dV+L4LGSe4eqkQo6GQUzuS7yiGXS98RMPItvz28Qarv8Sg7C+6/bO+JqBPF3aOn1+urpTRUIRLHd0djS9qFpnTVUNWIJXQroU38Z8rs0VmuxbeiowLUHyxAGcP6/0q/MKDCRrWk9RPN9LlzadZ1+sVTFes91TpMuMpzqfn4OrjQfsXhpA0e6WlTx8bScS7z1heO3u40f+n96G07AuiKQvWkrLgW0t/0dkLFOcbOJ96vMIYL6Qex1RsxJB1plyf1sONYhv/UrSVd3AAfePeqtYx7Zl3sH1tOy1zumpIAqkET52WbmH1lQ6j2uUfOoZXUGPLa427K5FzxrDv7eWkfb6Zvmvf5N7XH2fvtKWWYxrHhNH0oa7ExbyI1vMeHtrwDjmb95KXXLYpVtbaeLLWxluOH5K4kE2DplFwF7Yh9WrpT/7BY1X+uX9F6+FO/T9ukgq7I3O6asglLHFLOZt/ocF9bS2vO09/koLjZ0lbuqnseu3zC2j5+P3U7xoMgLaOjm7vP8eeKUsoPJ3PhfQckuesIXLuWEUePWwU2Y7jW/ZW+7jCfsmcrhqSQMQtndi6H2edKz5t9TSOCUPfv5vl8Ua4/lRJtw/LniqJePcZzu3P4OjqHZZjDi5cd+3JkseqNXZdgB+ezRuR/V3CrQ8WtYbM6aqhMktVwlolNzGN7wdMrvT7AvqFEzQ0ip+efu8uRHX3dPtgNGf3HSZj+Y8V9veNe0suNTkwW+cz1Mw5Xd3zWe6BiNtyfOMejm/co3QYlfbnvyqF+DOZ03dOLmEJIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibyFNYwmZ+XVrTeeqTmEvNZG/YzaH/fGfVH/yPfjQbGEmpyUT88x9hOFa+JAOU7XXQJCaM/INZ7Jm8xKqvcc8OtH9xKFcvXyH++QUU5Z6n19dT0LhqMRoK+XnUh6i1GmI+fQXUKgpP5bFzXPnaQULcTN0OQXSe8RQqlYrTu1I4MOtrq/5G0e3p8OKjFF8sYMfouVw1FDJwxxyunLsIwE//b/ZNiyqGv/V3fNrqOfHTAVLmfVOu361eHQbv+Yhvuo2j8HR+ubldUnjltsdSgqxAhM0M2bl8HzuVjf3foEmvjji5aa36mw2MZMPDk/hl5pe0evLBCj/Dta4Xvu30fD9wCqWmUnzbN7fqbztmIJuHTGfvtKW0GzsQgISX/833A6dwfOMemg2KxFRsZNs/32dT7FQM2bk07N7urvy8ombKO5jF9wMms7H/G9Tr2ApnnXWNrJBn+7P50Rkc/vJHWl7bCbDwdD6bBk9j0+BpN/0H3bd9c0pNpXw/cAq+7fS41vUqd0zr/9eX3w9kWl7fOLdvdyylSAIRNivKPU/p1bIS1GZTqaVo3B8un8rDycUZraf7TQu/1W3fnDMJvwFwOj6Fuh2CrPrNJSZMxVe5kJ5j6fujtpDZVIrZDKYiI8V5l/7UJt+NFbfPXGICQKVWU5SbT0lRsaVP4+bC1YIiTFeMZfMzrGwOutXzos/aN+k4ecRNP7deWAtOx6cAcCbhN3xDm1n1az3dcfXxoCDnrKXtxrl9u2MpRS5hiTvWsEcohuwzmIqvWrXnJqYycMccVCoVGx55o8L3ar3u4aqhEICSgitove6x6lc7a3Dx1uHV0t+qfLWTm5YWwx/gxxHvWNpc63rRsHs7fv1wdVX9aDYzGgpvWmW1NvIODkDr4a50GDelj42kw0uPcmp7UtkfQ9dYzc/LV9B6lv0M38dOxXjxMl1m/p0m99/Lia37y32m1sudq+llJeNLCorKze3WT/ch/YsfaPOPflbtN87t2xlLKZJAxB1xb+hD6LhYto6cZdXurHOj6UNd+ea+cXgHN6XDy4+S8Mp/yr3fePEyuqZlFY41OleMFy9b9e+f9RXRH7/MxYwTXMg4YWmPmDWKpPdXWX65VU5qun04moTXPraL+x/nU4/bXGKjJrL3kjFZa+PJ+nYX0R+/RJ3WAVxIK0v+xouXcb6W+DT3uGK8VGhpB8j54Rd82+or/EfdeLHQcjlMo3Oj6E/3AJ1ctXi19Cd5bvn7IjfO7dsZSylyCUvYTK3VEDlnLAmvfUxJ4RWrPrPZTElhMWZTKcUXDGg9y/76cqtvva9JXvJRGnRtA0DDbm35PSnTqv9sYhqbh0wnc+V2ft+fAUCbUQ9z8XAOp/+0oU/n6U9xdPUOyy++ELfLUk3XbKakoAhT8fU9QEqKinHWueHk4lw2Pw9kotI4Wd7j17ElhuNll6BunNvnDmTQsFtZxd8GXdtYyr4D6Pzr4dm0Pr1WvEHDHqF0fadsH5Eb5/bNxrIXsgIRNmsW2506LZtw33ujANgxZi6uvp7UCQ7g6OodnPslnb5xb6F2Ulueror8cDQ/PP625TOKzl0gPzWbvt/OJP+3bPJ+PYJbvTo0G9KDQ4vW0f6FITS4L4TCM/n879X/oHbW0PH14Zzbd5jGPcM4svpnTu86SMvh9+PTpimtnnyQgwvj7OqvNGHf/B/sTPDTfUCtInf3bxiyzuATEmiZx7/95zt6r56O8eJldoyeg9bTnV5fTaaksJjLp/JInvcNKic19703iq0j/2X53LxfjxA0rCd9v53Jye1JXPn9otXnbnh4EgCRc8awf9ZXFc7t45v3lhvLnkg13lrmTqqX3ikXHw9aj+xtF/co/nC3Lq0oeZ7tUU0/z76hzajTyp8j//1Z0TikGq+osYrzDXaVPISoKnnJR60uUdUWcg9ECCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExsYCEBYWpnCEjk/lpKbz9JE0H9wDlVrNsQ272TPpk3LlSYTtAh+JIPgf/fAJCaQ438DqLqOVDqnGkvlcPRxiBbJ48WI2btzIjz/+yKhRo7j//vtZvHgxTk5O+Pj4EBAQoHSIDi90/CAa3NeWuJiXWNNtHHVaNqHj5CeUDqtGKb54mbQlm9j/r6+UDqXGk/lcPRwigcyaNYsRI0YQEhJiaXNyckKv11tWH1euXOG5556jRYsWtGvXjn/+859KheuQWgy/n5R531B4Jp/ivEskvb+KoGHRqNQOMUUcwukdyWTF7eLytYqr4u6R+Vw97P4SVkZGBllZWcybN69cX05ODoMHDwbg1VdfxdXVlcOHD6NSqcjNza3uUB2W1tMdXeN65B/KsrTlpWSh9XBH518PQ7acS+E4ZD5XH7tPICdPngTAz8/Pqj0tLY3s7GzCwsIoKCjgiy++4MSJE6hUKgDq169/22N4eHhgNBpvfWAN0FzjzauekVZtmmsVQ40XCy1tf1QAvXFznZqmZ89ojpScr/LPreg812Y9e1bfeZb5XPnzrNVqMRgMlX6f3a/nfH19AcjMvF6l1Ww2M3HiREpLSwkLC+PIkSP4+voyY8YMOnXqRHR0NPHx8UqF7HBKCsr2LHD2vL5fwx97F1y91ieEo5D5XH3sfgUSHBxMUFAQkyZNwtnZGZ1Ox6JFizhw4ADu7u60atWKpKQkjh49SlhYGLNnz2bPnj088sgjZGZm4unpecsxbMm8jqqi4nPGS4UUnDyHT0ggl46cAsC3rR6joZCCnJp9vX7btu01usifvajO8yzzufqKKdr9CkSj0bB69WoaNmzIyJEjmTBhAn379iUqKorQ0FDUajUBAQFoNBr+9re/ARAeHk7dunU5fPiwwtE7jozlWwkdF4tbfW9cfD3p8NKjZK7cbhebM9UUKrUaJxdnVBoNqFQ4uThf34tCVCmZz9XDIWZv+/btSUhIsGpbsGABUVFRANStW5eePXvyww8/8OCDD3L48GHOnj1LUFBQRR8nKpA87xtcfDwZuP1DVGoVx9bvZt/bXyodVo3SfEgPIueOtbx+4thXFOScle+D3AUyn6uHQySQGxUVFZGens6ECRMsbf/+97/5+9//zksvvYSzszPLli2jTp06isXoaMymUhKnLCFxyhKlQ6mxMldtJ3PVdqXDqBVkPlcPh0wgycnJmEwmq2+gN2vWjO3btysXlBBC1DIOmUDCw8ORjRSFEEJZdn8TXQghhH2SBCKEEMImkkCEsCMB/cKJ+Wyi0mFUWrcPRtNi+ANKhyGqmSQQIeyFSkWnySNI+mAVaq2GAds/JPT5QVaHRM4ZwwPL3wCgfkQbhmcsw0PfwNLv6uvJsJRP0Q/oVqlx+8a9Racp1tVqPQIbMDxjGfW7BjM8Yxk+IYFW/e3GD2LAtg9QazUkz11D2CvD5HsttYwkECHsRJOYMEouXyE/JYtSYwnx4+fTbvwgvNs0BSCgT2ea9OrErhcXApCb8BuHV2yl+9xxliqzEbNHcSb+IFlxuyocY0jiQnRN6lk3ms3Ej59PyxEP4PfHt5hVKiLnjiH9iy3k7k4lee4aIueNQ+1cliDqtA4gdFwsO8fOo9RYgiE7l0tHTxH4cMRdODPCXkkCEcJO+PfpzOldBy2v85KPcmjROrrPG4d7Qx8iZj/LnkmfUJR7vVje/ndX4OKto+3o/gQ9Gk29sBYkvP5xpcc2ZOey7+3lRM4Zg8bNhZBRj6D1cGf/rLK9S1I+iuNqQRFhrwxDpXGi+7yxpCxYS/6hY5bPOLUzBf/enW0/AcLhyHpTCDvhExJIxoqtVm2/zllDk14d6f/DbE5XsLIwXTGyc9x8eq+ZjrnExM/PzcF4ocCm8dO/2IJ/7870WDSBBhFt2DRoGqXGkrLOa6uUR7a8h4e+Aabiq6TM/9bq/RcP5xA0NMqmsYVjkhWIEHbCxUvHVYN1tVhziYlze9Nx9fUic+W2Ct93IeMEVy8VYjQUcmpH8h3FsOuFj2gY2ZbfPt5gtbqAslXK/llfE9CnCzvHzy9XV8poKMKlju6OxheORVYgQtiJ4osFOHtY71fhFx5M0LCepH66kS5vPs26Xq9gumK9d02XGU9xPj0HVx8P2r8whKTZKy19+thIIt59xvLa2cON/j+9D6VlX8RNWbCWlAXfWvqLzl6gON/A+dTjFcZ4IfU4pmIjhqwz5fq0Hm4U27j6EY5JEkgt4x0cQN+4t5QOw254BwcoHYJF/qFjeAU1trzWuLsSOWcM+95eTtrnm+m79k3uff1x9k5bajmmcUwYTR/qSlzMi2g97+GhDe+Qs3kveclHAchaG0/W2ut74wxJXMimQdMouAvb6nq19Cf/4LEq/9y/IvPZWnXPZ0kgtYzWw71a9wsQty9n8y+EvfqY5XXn6U9ScPwsaUs3ARD//AL6//h/HP9+D7m7U9HW0dHt/efYM2UJhafzKTydT/KcNUTOHct3vV+9fv+imjSKbMfhr7be+sAqJPNZWXIPRAg7cWLrfpx1rvi01dM4Jgx9/26WR3bh+pNS3T4se1Iq4t1nOLc/g6Ord1iOObhw3bWnpR6raIi7Rhfgh2fzRmR/l3Drg0WNoTJLVUIhqpytOxIG9AsnaGgUPz393l2I6u7p9sFozu47TMbyHyvs7xv3lqwUaiC5hCWEHTm+cQ/HN+5ROoxK+/NKSdQecglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm8hjvELYmfC3/o5PWz0nfjpAyrxvLO0qjRM9Pnoet7pe5Py4j0OL1tG4ZwfajY0Fyvbo2PLoDNz86pRru7Ew4l+p2yGIzjOeQqVScXpXCgdmff2XMeia1KPf+ne4dOQUBSd/J378/Ko5EcLuSQIRwo74tm9OqamU7wdOIfrjl3Ct68WV3y8C0LRfOOd+See3jzcQtegFXHw9ObktiZPbkgB4+Pt/lSWKQ5Rvq4S8g1mWL0E+uGoazjo3rhYU3TQGgBM/7uN/L//7jn9+4VjkEpYQdqReWAtOx6cAcCbhN3xDm1n6PAL8LFVyL2ScoG775pa+uh2C+P3XI1afVVHb7TCXmABQqdUU5eZTUlR8yxgaR3eg77czaTaoe6XHE45LEogQdkTr5W75a7+koAit1z2WvotHTlE/og0A9cOD0Xq6W/r8+3QmZ/Neq8+qqO126WMjGbhjDsaLlzGbru/7UVEMhWfP80338Wx5bCYtn+iFi7fsCVJbSAIRwo4YLxbirCvbE0Sjc8N48bKlL2fzL7j6evLgyqlcybvEld8vWfoa3teW0/EHrT6rorY/eLVsQp81M6z+azd2oKU/a208a7s/j1sDH+q0vl4ivKIYSo0lmIqMmK4Yyd2TikfTBlVxKoQDkHsgQtiRcwcyaBYbyYkf9tGgaxuOrfufpc9cWsru18r2O4+cN46z+9KBskq4l0/nUXr1evn2G9tUTmq0dXQU55UlnYuHT7Bp8LQKY1BrNWWl4M1mSgqKMBVf38Cqohg07q6UFF4BoG775qQt+b6qToewc5JAhLAjeb8eIWhYT/p+O5OT25NQqVSEPNefQ4vWcU/junSfNw5zaSm/fbwBU1HZP+wBfbqUu1R1Y5vO3482/+jHnslLbhmD/4OdCX66D6hV5O7+DUPWGdzq1aHZkB4cW/e/cjE0imrPva8/TunVErLX76bo7IUqPSfCfkk5dyHuAlvLud8tTR8K50q+gdyE3xQZX8q510yyAhGiFsje4Hgl4oX9k5voQgghbCIJRAghhE0kgQghhLCJJBAhhBA2cZgEYjQamTJlCv7+/ri5uRETE0NiYiIqlYq4uDilwxPitqic1HSZ+TR/++0zHk/7nPvefw4nF2elwxLCJg6RQMxmM0OHDuWTTz5h8uTJrF+/Hr1eT2xsWcXRsLAwhSMU4vaEjh9Eg/vaEhfzEmu6jaNOyyZ0nPyE0mEJYROHeIx38eLFbNy4kaSkJEJCQgCIjo5Gr9fj4+NDQEDALT5BCPvQYvj97Jv5JYVn8gFIen8V0YtfYu+0pZhLS2/xbiHsi0MkkFmzZjFixAhL8gBwcnJCr9fj7OzMsWPHGDhwoKXvwoULXLp0ifz8fAWiFaJiWk93dI3rkX8oy9KWl5KF1sMdnX89DNm5CkYnROXZfQLJyMggKyuLefPmlevLyclh8ODBBAYGkpSUZGmfMGECJSUl5Y6/GQ8PD4xG460PFOI2Ndd486pnpFWb5lqRROPFQkvbH8US/yigWFP17BnNkZLzSochbkKr1WIwGCr9PrtPICdPngTAz8/Pqj0tLY3s7Oxy9z+MRiPLly9n8+bN1RajELej5FqZdmdPd4rOXQCwlGv/o4S7EI7E7hOIr68vAJmZmXTp0gUou6k+ceJESktLyyWQdevW0bhxY+69997bHsOWzCvEX6moFpbxUiEFJ8/hExLIpSOnAPBtq8doKKQg55wSYVabbdu2Sy2sGsjuE0hwcDBBQUFMmjQJZ2dndDodixYt4sCBA7i7u9OqVSur45csWcLf//53haIV4q9lLN9K6LhYcvekUlpiosNLj5K5crvcQBcOye4TiEajYfXq1Tz77LOMHDkSf39/JkyYgKenJ0eOHEGtvv4k8smTJ/n5559ZtmyZghELcXPJ877BxceTgds/RKVWcWz9bva9/aXSYQlhE7tPIADt27cnISHBqm3BggVERUVZtX3++ec89NBDlsteQtgbs6mUxClLSJxy6305hLB3DvFFwhsVFRWRnp5e7v7H0qVL5fKVEEJUE4dYgdwoOTkZk8lULoEcPnxYoYiEEKL2ccgEEh4ejmykKIQQynLIS1hCCCGUJwlECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYROVWb6RJ0SVMxoKOZ96XOkw7IZ3cABaD3elwxBVTBKIEEIIm8glLCGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRNJIEIIIWwiCUQIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2OT/A6NV7/Feb03ZAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAGOCAYAAAC5Y1UnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABR80lEQVR4nO3deViU5f748fcMw7A0gIDiCjKKC6IouSCJgpS5VCou2UnLOr/Tsdyy1TLXbDnmt3JLz7Eyy7T0aIapqWWa4kExlUADBEXEDQ1cBkFGhvn9gY2NYMqIPDPweV1X19Xc9zNzf3iuGz/cz/PM51aZzWYzQgghRCWplQ5ACCGEY5IEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRNJIEIIIWwiCUQIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE43SATiSSwVGUjLOKzJ2uxbeeOq0iowtKs9oKOR86nGlw7Ab3sEBaD3clQ5DVDFJIJWQknGeyJHrFRk7/vOH6RZWX5GxReWdTz3O9wMmKx2G3egb9xb1u7RWOgxRxeQSlhBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYxGESiNFoZMqUKfj7++Pm5kZMTAyJiYmoVCri4uKUDk8IIWodh0ggZrOZoUOH8sknnzB58mTWr1+PXq8nNjYWgLCwMIUjLE/rrObgN4OY9Ex7q/bPZnZn48IHFYpKKCnwkQj6xs1keOYyhiQuVDocIe6YQ5QyWbx4MRs3biQpKYmQkBAAoqOj0ev1+Pj4EBAQoHCE5RmvlvLkGz+zY+lDrP85h+TD+Qzo2ZRHogJoN3it0uEJBRRfvEzakk241vMi5J8PKx2OEHfMIVYgs2bNYsSIEZbkAeDk5IRer7esPg4fPkxERAQtW7YkIiKCjIwMpcK12J+ax/99nsIXb/egcX13Fk/rxph3Ejh9rlDp0IQCTu9IJituF5dPnFM6FCGqhN2vQDIyMsjKymLevHnl+nJychg8eDAAzz77LGPGjGHEiBF8+eWXjBo1ip9++um2xvDw8MBoNN7yuFK3ZhDwcqXif2txEg/3CODAyoH8lHialZuOVur9f4juGY26yLb3iurXXOPNq56RSodhN3r2jOZIiTKVrMWtabVaDAZDpd9n9yuQkydPAuDn52fVnpaWRnZ2NmFhYZw9e5b9+/fzt7/9DYC//e1v7N+/n3PnlP9Lr6TEzP+Scqnn48ZncYeVDkcIIaqM3a9AfH19AcjMzKRLly5A2U31iRMnUlpaSlhYGDk5OTRu3BgnJyeg7PJWo0aNyMnJoV69ercc43Yz764DuZUu5x55b32eGtCC+SsOMXdiVzoM/ZYrxaZKfQbA9m3bpZy7A8lNTJNy7n+ybdt2KedeA9n9CiQ4OJigoCAmTZrEf//7X77//nsGDBjA/v37cXd3p1WrVkqHeFP3uGlYOrMHr835hedn7eZs/hXeGd9J6bCEEKJK2H0C0Wg0rF69moYNGzJy5EgmTJhA3759iYqKIjQ0FLVajb+/PydPnsRkKvvL3mQycerUKfz9/RWN/f2Xw8k6aWDhylTMZnhq8g7+Magl3Ts2UDQuoQyVWo2TizMqjQZUKpxcnFFr7f4igBA35RCzt3379iQkJFi1LViwgKioKKDs/kiHDh346quvGDFiBF999RVhYWG3dfnqbukT2YRhvfWEDrn+yO7REwZem/MLn73ZndAhayksKlEsPlH9mg/pQeTcsZbXTxz7ioKcs6zuMlrBqISwnUMkkBsVFRWRnp7OhAkTLG3//ve/GTlyJG+++Sbe3t588cUXygUIbIo/gXfkl+XaF65MZeHKVAUiEkrLXLWdzFXblQ5DiCrjkAkkOTkZk8lk9Q301q1bs2fPHgWjEkKI2sUhE0h4eDhms1npMIQQolaz+5voQggh7JMkECGEEDaRBCKEHQnoF07MZxOVDqPSun0wmhbDH1A6DFHNJIEIYS9UKjpNHkHSB6tQazUM2P4hoc8Psjokcs4YHlj+BgD1I9owPGMZHvrr3yty9fVkWMqn6Ad0q9S4fePeotOUJ6yaPQIbMDxjGfW7BjM8Yxk+IYFW/e3GD2LAtg9QazUkz11D2CvD5HsttYwkECHsRJOYMEouXyE/JYtSYwnx4+fTbvwgvNs0BSCgT2ea9OrErhfL9hLJTfiNwyu20n3uOFTqsl/liNmjOBN/kKy4XRWOMSRxIbomN3w/ymwmfvx8Wo54AL8/yo2oVETOHUP6F1vI3Z1K8tw1RM4bh9q5LEHUaR1A6LhYdo6dR6mxBEN2LpeOniLw4Yi7cGaEvZIEIoSd8O/TmdO7Dlpe5yUf5dCidXSfNw73hj5EzH6WPZM+oSj3elXb/e+uwMVbR9vR/Ql6NJp6YS1IeP3jSo9tyM5l39vLiZwzBo2bCyGjHkHr4c7+WV8BkPJRHFcLigh7ZRgqjRPd540lZcFa8g8ds3zGqZ0p+PfubPsJEA5H1ptC2AmfkEAyVmy1avt1zhqa9OpI/x9mc7qClYXpipGd4+bTe810zCUmfn5uDsYLBTaNn/7FFvx7d6bHogk0iGjDpkHTKDVeq5ZwbZXyyJb38NA3wFR8lZT531q9/+LhHIKGRtk0tnBMsgIRwk64eOm4aiiyajOXmDi3Nx1XXy8yV26r8H0XMk5w9VIhRkMhp3Yk31EMu174iIaRbfnt4w1WqwsoW6Xsn/U1AX26sHP8fMylpVb9RkMRLnV0dzS+cCyyAqmEdi28if9cma1I27XwVmRcUX2KLxbg7OFm1eYXHkzQsJ6kfrqRLm8+zbper2C6Yr35WZcZT3E+PQdXHw/avzCEpNkrLX362Egi3n3G8trZw43+P70PpWVfxE1ZsJaUBd9a+ovOXqA438D51OMVxngh9TimYiOGrDPl+rQebhTbuPoRjkkSSCV46rSyJ4e4a/IPHcMrqLHltcbdlcg5Y9j39nLSPt9M37Vvcu/rj7N32lLLMY1jwmj6UFfiYl5E63kPD214h5zNe8lLLtu9MmttPFlr4y3HD0lcyKZB0yi4C9vqerX0J//gsSr/XGG/5BKWEHYiZ/MvNLivreV15+lPUnD8LGlLN5Xdg3h+AS0fv5/6XYMB0NbR0e3959gzZQmFp/O5kJ5D8pw1RM4dq8jjtI0i23F8y95qH1coRxKIEHbixNb9OOtc8Wmrp3FMGPr+3SyP7ML1J6W6fVj2pFTEu89wbn8GR1fvsBxzcOG6a09LPVatsesC/PBs3ojs7xJufbCoMVRmqUooRJWzdUvbgH7hBA2N4qen37sLUd093T4Yzdl9h8lY/mOF/X3j3pItbWsguQcihB05vnEPxzc63rYEf14pidpDLmEJIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibyFNYQtghbR0dD66cglfzRiwPeqJcf8snehH4yH2ondRsHvYmao0TPT95GY27C4bsXHa9ULmnovy6tKbz1Ccxl5rJ3rCbQ//57i/7GvfsQLuxsUBZafctj84oVztL1HyyAhHCDl0tKGLLsJmc25dRru+exnXxvvaP9qbB0zCXmGgU1Z7cxLSyCrolJuq08q/UeIbsXL6PncrG/m/QpFdHnNy0f9l3clsSmwZPY9PgaRQcz5XkUUtJAhHCDplLTDcty94oqj0adxd6/3caHV56FICC42fRuLsA4OzuitFQWKnxinLPU3q1rHS72VRqKbZ4q766HYL4/dcjlRpL1BxyCasSLhUYSck4f+sD74J2Lbzx1GlvfeAtGA2FN620Wht5Bweg9XBXOoxKca3rBWbYPHQGkXPH4hMSyMWjp6gfHszAHXPIS8mi8FSeTZ/dsEcohuwzmIqv3laff5/O5GxWrv6VzGdr1T2fJYFUQkrGeSJHrldk7PjPH66SSsDnU4/bVGKjpnLEEhtXLxVyJuEQALm7f8OzeSPqdWzJsbj/kbZ0E11mPk29Tq0490t6ufd6tWxiVd4d4OS2A6Qs+Bb3hj6Ejotl68hZ5d53s76G97Xl1/f/W4U/XeXIfLZW3fNZEogQDubsvnSaxXYHyv7iPLp2F64+nhRfMABQfL4Arac7Kic12jo6ivMuWd578fAJNg2eVu4z1VoNkXPGkvDax5QUXrmtPl2AH5dP51kub4naR+6BCGGnHlw5FZ+2eh5cORW/Lq0Jea4/APkpWag1avqsmYGTmwu/H8jg6NqdBD0WQ581M/BpG8ipHcno/P3o8MKQ2xqrWWx36rRswn3vjaLPmhm4N/DBrV4dQp7rX2EfQECfLopevhLKkxWIEHZqy7A3rV6fTUyz/H/i1KVWfcaLl/nhsZlWbT4hTTm2YfdtjZW5cluFW+YeWrTO0n+j3xYrczlX2A9JIELUUNkbHK+qr3AscglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExpZVAw0LC1M4wvK0zmr2rxzIiu+P8M7Hv1raP5vZnfq+bvQbvUXB6KwFPhJB8D/64RMSSHG+gdVdRisdUo2lclLTefpImg/ugUqt5tiG3eyZ9EmFpUOEbWQ+Vx+HSCCLFy9m48aNJCUlERISAkB0dDR6vR4fHx8CAgIUjrA849VSnnzjZ3YsfYj1P+eQfDifAT2b8khUAO0Gr1U6PCvFFy+TtmQTrvW8CPnnw0qHU6OFjh9Eg/vaEhfzEqarJdy/dCIdJz9B4pQlSodWY8h8rj4OcQlr1qxZjBgxwpI8AJycnNDr9ZbVx8svv4xer0elUnHw4EGlQrWyPzWP//s8hS/e7kHj+u4sntaNMe8kcPpc5Sql3m2ndySTFbeLyyfOKR1Kjddi+P2kzPuGwjP5FOddIun9VQQNi0aldohfRYcg87n62P2szcjIICsri8GDB5fry8nJsSSQgQMHsmPHDpo2bVrdIf6ltxYnUWIyc2DlQLYlnmblpqNKhyQUovV0R9e4HvmHsixteSlZaD3c0fnXUzAyIWxj95ewTp48CYCfn59Ve1paGtnZ2ZYEEhkZafMYHh4eGI3GWx5X6tYMAl6u1GeXlJj5X1IuHR8P4bO4w7aGSHTPaNRFd558mmu8edXT9nNV0/TsGc2Rkqov0V/Redbo3AAwXry+AjVevAyA87W+mqpnz+o7z7VZz562nWetVovBYKj0++x+BeLr6wtAZmampc1sNjNx4kRKS0vt8gb6n0XeW5+nBrRg/opDzJ3YFVcXJ6VDEgopKSgCwNnz+n4NWq97gLIdCIVwNHa/AgkODiYoKIhJkybh7OyMTqdj0aJFHDhwAHd3d1q1anXHY9xu5t11ILdS+4Hc46Zh6cwevDbnFxatSuXnzx7infGdeHF25WsUbd+2vUr2A8lNTJP9E/5k27btd2X/hIrOs/FSIQUnz+ETEsilI6cA8G2rx2gopCCnZl+vr87zXJvdrfN8M3a/AtFoNKxevZqGDRsycuRIJkyYQN++fYmKiiI0NBS1Hd98fP/lcLJOGli4MhWzGZ6avIN/DGpJ944NlA7NikqtxsnFGZVGAyoVTi7OqLV2/7eFQ8pYvpXQcbG41ffGxdeTDi89SubK7ZhLS5UOrcaQ+Vx9HOKstm/fnoSEBKu2BQsWEBUVpVBEt9YnsgnDeusJHXL9kd2jJwy8NucXPnuzO6FD1lJYZB8b8TQf0oPIuWMtr5849hUFOWfl+fm7IHneN7j4eDJw+4eo1CqOrd/Nvre/VDqsGkXmc/VxiARyo6KiItLT05kwYYKlbfz48XzzzTecOXOGBx54AF9fXw4dOqRYjJviT+AdWf4fhoUrU1m4MlWBiG4uc9V2MldtVzqMWsFsKiVxyhL53sddJPO5+tjv9Z+/kJycjMlksrqBPm/ePE6cOEFJSQlnzpxRNHkIIURt4JArkPDwcMxms9JhCCFEreaQKxAhhBDKkwQihBDCJpJAxG0J6BdOzGcTlQ6j0rp9MJoWwx9QOgxhh2RO3zlJIOLWVCo6TR5B0gerUGs1DNj+IaHPD7I6JHLOGB5Y/gYA9SPaMDxjGR766993cfX1ZFjKp+gHdKvUuH3j3qLTlCesmj0CGzA8Yxn1uwYzPGMZPiGBVv3txg9iwLYPUGs1JM9dQ9grw+R7AMKazOkqIQlE3FKTmDBKLl8hPyWLUmMJ8ePn0278ILzblBWuDOjTmSa9OrHrxYUA5Cb8xuEVW+k+d5ylymzE7FGciT9IVtyuCscYkrgQXZMbCgqazcSPn0/LEQ/g98e3a1UqIueOIf2LLeTuTiV57hoi541D7Vz2y1SndQCh42LZOXYepcYSDNm5XDp6isCHI+7CmRGOSuZ01ZAEIm7Jv09nTu+6XiI/L/kohxato/u8cbg39CFi9rPsmfQJRbnXi7jtf3cFLt462o7uT9Cj0dQLa0HC6x9XemxDdi773l5O5JwxaNxcCBn1CFoPd/bP+gqAlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AqHFkTlcN5ddAwu75hASSsWKrVduvc9bQpFdH+v8wm9MV/BVmumJk57j59F4zHXOJiZ+fm4PxQoFN46d/sQX/3p3psWgCDSLasGnQNEqN177Ff+0vuke2vIeHvgGm4qukzP/W6v0XD+cQNNR+qxaI6idzumrICkTckouXjqsG62qx5hIT5/am4+rrRebKbRW+70LGCa5eKsRoKOTUjuQ7imHXCx/RMLItv328weovMSj7i27/rK8J6NOFnePnl6srZTQU4VJHd0fji5pF5nTVkBVIJbRr4U3858pskdmuhbci4wIUXyzA2cN6vwq/8GCChvUk9dONdHnzadb1egXTFes9VbrMeIrz6Tm4+njQ/oUhJM1eaenTx0YS8e4zltfOHm70/+l9KC37gmjKgrWkLPjW0l909gLF+QbOpx6vMMYLqccxFRsxZJ0p16f1cKPYxr8UbeUdHEDfuLeqdUx75h1sX9tOy5yuGpJAKsFTp62SkuqOJv/QMbyCGltea9xdiZwzhn1vLyft8830Xfsm977+OHunLbUc0zgmjKYPdSUu5kW0nvfw0IZ3yNm8l7zksk2xstbGk7U23nL8kMSFbBo0jYK7sA2pV0t/8g8eq/LP/StaD/dqLastKkfmdNWQS1jilnI2/0KD+9paXnee/iQFx8+StnRT2fXa5xfQ8vH7qd81GABtHR3d3n+OPVOWUHg6nwvpOSTPWUPk3LGKPHrYKLIdx7fsrfZxhf2SOV01JIGIWzqxdT/OOld82uppHBOGvn83y+ONcP2pkm4flj1VEvHuM5zbn8HR1TssxxxcuO7akyWPVWvsugA/PJs3Ivu7hFsfLGoNmdNVQ2WWqoS1iq07uAX0CydoaBQ/Pf3eXYjq7un2wWjO7jtMxvIfK+zvG/eWXGpyYHeyI2FNnNPVPZ/lHoi4Lcc37uH4xspvxau0P/9VKcSfyZy+c3IJSwghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2ESewhKVoq2j48GVU/Bq3ojlQdZ7Gqg0TvT46Hnc6nqR8+M+Di1aR90OQXSe8RQqlYrTu1I4MOvrKhvPyVVLz09eRuPugiE7l10vLKwwBiFu5q/mV0V9dzqf/bq0pvPUJzGXmsnesJtD//nOql/XpB791r/DpSOnKDj5O/Hj51v62jzzEE0e6MiWYW/a+NNWPVmBiEq5WlDElmEzObcvo1xf037hnPslnU2Dp1E3tDkuvp7kHczi+wGT2dj/Dep1bIWzzq2CT7VtvEZR7clNTCurZFpiok4r/wpjEOJm/mp+VdR3p/PZkJ3L97FT2dj/DZr06oiTm7bcMSd+3MemwdOskodK41Rukyl7IAlEVIq5xHTTEtYeAX6WwnAXMk5Qt31zzCUmAFRqNUW5+ZQUFVfZeAXHz6JxdwHA2d0Vo6GwwhiEuJm/ml8V9d3pfC7KPU/p1bKy7WZTqaXQ4p81ju5A329n0mxQd0tb8yFRHP02vtyxSpNLWKLKXDxyivoRbTgdn0L98GAuHT0FlFUp7fDSo5zanlT2S1NFLh07Tf3wYAbumENeShaFp/JuGkN1MxoKb1pltTbyDg5A6+GudBhVoirmc8MeoRiyz2AqvmrVXnj2PN90Hw9m6PXVZE5uO0Dxhcs0jm7Pz89+SNvnBlTFj1BlJIGIKpOz+RcaRbXnwZVTuZJ3iSu/XwKuVSn9dhfRH79EndYBXEgr/w+rV8smVqWwAU5uO2BV/vpGQUOjORb3P9KWbqLLzKep16nVTWOobudTj9tcYqMmqkklY+50Prs39CF0XCxbR84q9z7LplJA7p5UPJo2oMF9dcnZ8kvV/yBVQBKIqDLm0lJ2v1a2xWfkvHGc3ZeOWqsp+6UwmykpKMJUbETlpEZbR0dx3vV/3C8ePsGmwdMqNZ5Krab4ggGA4vMFaD3dK4xBiKpyp/NZrdUQOWcsCa99TEnhlXL9GndXS3vd9s1JW/I9jaJCaRARQvMhPfBpG0iLx+8vt5uiUuQeiKi0B1dOxaetngdXTsWvS2tCnusPwD2N69JnzQx6/3ca2esTMBUZ8X+wM33WzKDP2je5fDoPQ9YZdP5+dHhhiE3j1Wnlj1u9OoQ815+ja3cS9FgMfdbMwKdtIKd2JFcYgxB/5Wbz+ca+Oq3873g+N4vtTp2WTbjvvVH0WTMD9wY+lvkM4Ne5FQ9vmkW/797m1PZfKTp7geS537DlsZn88Pjb5B88ZjfJA6Qab61zJ9VLq0rTh8K5km8gN+E3ReOAu3dpxR7Osz2pyee5Nsznm5FLWKLaZW9wvAqoQtxMbZ7PcglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExsYCEBYWpnCEjk/lpKbz9JE0H9wDlVrNsQ272TPpk3KlFoTtAh+JIPgf/fAJCaQ438DqLqOVDqnGkvlcPRxiBbJ48WI2btzIjz/+yKhRo7j//vtZvHgxTk5O+Pj4EBAQoHSIDi90/CAa3NeWuJiXWNNtHHVaNqHj5Cdu/UZx24ovXiZtySb2/+srpUOp8WQ+Vw+HSCCzZs1ixIgRhISEWNqcnJzQ6/WEhYWRl5dHv379aNWqFe3atWPQoEGcO3dOwYgdT4vh95My7xsKz+RTnHeJpPdXETQsGpXaIaaIQzi9I5msuF1cPiFz826T+Vw97P5sZmRkkJWVxeDBg8v15eTkEBYWhkql4tVXXyU9PZ2UlBSaN2/Oa6+9pkC0jknr6Y6ucT3yD2VZ2vJSstB6uKPzr6dgZEJUnszn6mP390BOnjwJgJ+fn1V7Wloa2dnZhIWF4ePjQ3R0tKWva9euLFq06LbH8PDwwGisHTWTmmu8edUz0qpNc21THOPFQkub8eJlgEpvmONoevaM5kjJ+Sr/3IrOc23Ws2f1nWeZz5U/z1qtFoPBUOn32f0KxNfXF4DMzExLm9lsZuLEiZSWlpa7gV5aWsqiRYvo378/4vaUFBQB4Ox5fb8Grdc9QNmubEI4EpnP1cfuVyDBwcEEBQUxadIknJ2d0el0LFq0iAMHDuDu7k6rVq2sjh83bhw6nY6xY8fe9hi2ZF5HVVHxOeOlQgpOnsMnJJBLR8o2YPJtq8doKKQgp2Zfr9+2bXuNLfJnT6rzPMt8lmKKFhqNhtWrV/Pss88ycuRI/P39mTBhAp6enhw5cgT1n26Kvfzyy2RkZPDdd99ZtYtby1i+ldBxseTuSaW0xESHlx4lc+V2zKVVt4NgbadSq1E7O6HSaEClwsnFGbPZbLWJkKgaMp+rh90nEID27duTkJBg1bZgwQKioqIsrydNmsS+ffvYsGEDLi4u1R2iw0ue9w0uPp4M3P4hKrWKY+t3s+/tL5UOq0ZpPqQHkXOvr4yfOPYVBTln5fsgd4HM5+rhEAnkRkVFRaSnpzNhwgQADh06xLvvvkvLli257777ANDr9axdu1bBKB2L2VRK4pQlJE5ZonQoNVbmqu1krtqudBi1gszn6uGQCSQ5ORmTyWS5gR4SEoLsiyWEENXLIRNIeHi4JAwhhFCY3GkWQghhE0kgQgghbCIJRAg7EtAvnJjPJiodRqV1+2A0LYY/oHQYoppJAhHCXqhUdJo8gqQPVqHWahiw/UNCnx9kdUjknDE8sPwNAOpHtGF4xjI89A0s/a6+ngxL+RT9gG6VGrdv3Ft0mmJdrdYjsAHDM5ZRv2swwzOW4RMSaNXfbvwgBmz7ALVWQ/LcNYS9Mgy11iFvqwobSQIRwk40iQmj5PIV8lOyKDWWED9+Pu3GD8K7TVMAAvp0pkmvTux6cSEAuQm/cXjFVrrPHWepMhsxexRn4g+SFberwjGGJC5E1+SGgoJmM/Hj59NyxAP4/fEtZpWKyLljSP9iC7m7U0meu4bIeeNQO5cliDqtAwgdF8vOsfMoNZZgyM7l0tFTBD4ccRfOjLBXkkCEsBP+fTpzetdBy+u85KMcWrSO7vPG4d7Qh4jZz7Jn0icU5V4vlrf/3RW4eOtoO7o/QY9GUy+sBQmvf1zpsQ3Zuex7ezmRc8agcXMhZNQjaD3c2T+rbO+SlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AcDiy3hTCTviEBJKxYqtV269z1tCkV0f6/zCb0xWsLExXjOwcN5/ea6ZjLjHx83NzMF4osGn89C+24N+7Mz0WTaBBRBs2DZp2vczKtVXKI1vew0PfAFPxVVLmf2v1/ouHcwgaGlX+g0WNJSsQIeyEi5eOqwbrarHmEhPn9qbj6utF5sptFb7vQsYJrl4qxGgo5NSO5DuKYdcLH9Ewsi2/fbzBanUBZauU/bO+JqBPF3aOn1+urpTRUIRLHd0djS8ci6xAahnv4AD6xr2ldBh2wzvYfrZDLr5YgLOH9X4VfuHBBA3rSeqnG+ny5tOs6/UKpivWe9d0mfEU59NzcPXxoP0LQ0iavdLSp4+NJOLdZyyvnT3c6P/T+1Ba9kXclAVrSVnwraW/6OwFivMNnE89XmGMF1KPYyo2Ysg6U65P6+FGsY2rH1vJfLZW3fNZEkgto/Vwr9Zyz+L25R86hldQY8trjbsrkXPGsO/t5aR9vpm+a9/k3tcfZ++0pZZjGseE0fShrsTFvIjW8x4e2vAOOZv3kpd8FICstfFkrY23HD8kcSGbBk2j4C5sq+vV0p/8g8eq/HP/isxnZcklLCHsRM7mX2hwX1vL687Tn6Tg+FnSlm4quwfx/AJaPn4/9bsGA6Cto6Pb+8+xZ8oSCk/ncyE9h+Q5a4icO1aRx2kbRbbj+Ja91T6uUI4kECHsxImt+3HWueLTVk/jmDD0/btZHtmF609Kdfuw7EmpiHef4dz+DI6u3mE55uDCddeelnqsWmPXBfjh2bwR2d8l3PpgUWOozFKVUIgqZ+uOhAH9wgkaGsVPT793F6K6e7p9MJqz+w6TsfzHCvv7xr0ll5pqILkHIoQdOb5xD8c37lE6jEr780pJ1B5yCUsIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQDkRbR8fDm2cxPHNZhf0uvp70XPIKvVdPp+WIsg2eOk19kscOfkqzwd3/8rOjFr3A31KXXi/p/iet/96Xh9a/Q7/v3qZBt7YVvFvURvIYrxAO5GpBEVuGzST6Py9W2N/hhSEkTv2Myyd+t7QdXBjHhbSKa1v9WeLUz2j15IMV9p3Y8gtpS77HWedGz09e5syfys6L2ktWIEI4EHOJ6S/LtXs2b0THSSPo9fUUPJs3AuDK7xdv67OLzl24ad8ftbNKS0ygUt1+wKJGkwQiRA3i16U1B2Z9xe7XP+be1/5W5Z8fOmEwGV9tvfWBolaQBCJEDXIhPQdDdi6GrDNoPdyr9LMb9+yAe31vsr6teLtcUftIAhGiBinIOYeLjweudb0oKTLe9Di3+t6V+lyPpvUJeW4Au1//5E5DFDWIJBAhHMyDK6fi01bPgyunUqeVP2716hDyXH8AkuesoeenrxCz5FV+nbMagJDn+hMyegDtxsbSZtTDAER+OLrc53aa9iTNh0bRZcZTNBvU3dIG0P7FobjXr0Ov5W8Qvfil6vgxhQOQarxC3AW2VuOtFioVXWaMJHHq0mobUqrx1kyyAhGitjGbqzV5iJpLEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0cJoEYjUamTJmCv78/bm5uxMTEkJiYiEqlIi4uTunwhBCi1nGIYopms5mhQ4eSmJjI9OnTCQoKYsWKFcTGxgIQFhamcIRC3B6Vk5rO00fSfHAPVGo1xzbsZs+kTzAVX1U6NCEqzSESyOLFi9m4cSNJSUmEhIQAEB0djV6vx8fHh4CAAIUjFOL2hI4fRIP72hIX8xKmqyXcv3QiHSc/QeKUJUqHJkSlOcQlrFmzZjFixAhL8gBwcnJCr9dbVh8DBw6kffv2hIWF0b17d5KSkhSKVoibazH8flLmfUPhmXyK8y6R9P4qgoZFo1I7xK+iEFbsftZmZGSQlZXF4MGDy/Xl5ORYEsjnn3/Or7/+yoEDB3j55Zf5+9//Xt2hCvGXtJ7u6BrXI/9QlqUtLyULrYc7Ov96CkYmhG3s/hLWyZMnAfDz87NqT0tLIzs725JAvLy8LH0XL15EXYm/6Dw8PDAab154TojKaq7x5lXPSKs2jc4NAOPFQkub8eJlAJyv9dVUPXtGc6TkvNJhiJvQarUYDIZKv8/uE4ivry8AmZmZdOnSBSi7qT5x4kRKS0utbqD/4x//YMuWLZjNZjZt2qRIvELcTElBEQDOnu6WzZu0XvcAZTsNCuFo7D6BBAcHExQUxKRJk3B2dkan07Fo0SIOHDiAu7s7rVq1shz7ySdlpaaXLVvGK6+8wsaNG29rDFsyrxB/paJiisZLhRScPIdPSCCXjpwCwLetHqOhkIKcc0qEWW22bdsuxRRrILu/B6LRaFi9ejUNGzZk5MiRTJgwgb59+xIVFUVoaGiFl6qeeOIJtm3bRl5engIRC3FzGcu3EjouFrf63rj4etLhpUfJXLkdc2mp0qEJUWl2vwIBaN++PQkJCVZtCxYsICoqCoCCggLOnz+Pv78/AN999x0+Pj74+PhUe6xC/JXked/g4uPJwO0folKrOLZ+N/ve/lLpsISwiUMkkBsVFRWRnp7OhAkTALh8+TJDhw7l8uXLODk54ePjw3fffYdKpVI2UCFuYDaVkjhliXzvQ9QIDplAkpOTMZlMlhvo9evXZ/fu3QpHJYQQtYtDJpDw8HBkI0UhhFCW3d9EF0IIYZ8kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsojLLN/KEqHJGQyHnU48rHYbd8A4OQOvhrnQYoopJAhFCCGETuYQlhBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFsIglECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRON0gE4kksFRlIyzisydrsW3njqtIqMLSpPqvFak2q8NZMkkEpIyThP5Mj1iowd//nDdAurr8jYovLOpx7n+wGTlQ7DbvSNe4v6XVorHYaoYnIJSwghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2EQSiBBCCJtIAhFCCGETSSBCCCFs4hAJxGg0MmXKFPz9/XFzcyMmJobExERUKhVxcXFKhyeEELWS3ScQs9nM0KFD+eSTT5g8eTLr169Hr9cTGxsLQFhYmMIRVkzrrObgN4OY9Ex7q/bPZnZn48IHFYpKKCnwkQj6xs1keOYyhiQuVDocIe6Y3ZcyWbx4MRs3biQpKYmQkBAAoqOj0ev1+Pj4EBAQoHCEFTNeLeXJN35mx9KHWP9zDsmH8xnQsymPRAXQbvBapcMTCii+eJm0JZtwredFyD8fVjocIe6Y3a9AZs2axYgRIyzJA8DJyQm9Xl9u9TFjxgxUKhUHDx6s7jArtD81j//7PIUv3u5B4/ruLJ7WjTHvJHD6XKHSoQkFnN6RTFbcLi6fOKd0KEJUCbtOIBkZGWRlZTF48OByfTk5OVYJZP/+/ezevZumTZtWZ4i39NbiJEpMZg6sHMi2xNOs3HRU6ZCEEKJK2PUlrJMnTwLg5+dn1Z6WlkZ2drYlgRQXFzNmzBi++uoroqOjKz2Oh4cHRqPxlseVujWDgJcr9dklJWb+l5RLx8dD+CzucKVj+0N0z2jURZJ8HEVzjTevekYqHYbd6NkzmiMlymyFIG5Nq9ViMBgq/T67XoH4+voCkJmZaWkzm81MnDiR0tJSSwKZOnUqI0aMIDAwUIkw/1LkvfV5akAL5q84xNyJXXF1cVI6JCGEqBJ2vQIJDg4mKCiISZMm4ezsjE6nY9GiRRw4cAB3d3datWpFQkICv/zyC//6179sHud2M++uA7mV2g/kHjcNS2f24LU5v7BoVSo/f/YQ74zvxIuz91Q6xu3btst+IA4kNzFN9gP5k23btst+IDWQXa9ANBoNq1evpmHDhowcOZIJEybQt29foqKiCA0NRa1W8/PPP5OamoperycwMJATJ07Qu3dvtmzZonT4vP9yOFknDSxcmYrZDE9N3sE/BrWke8cGSocmFKBSq3FycUal0YBKhZOLM2qtXf8NJ8RfsvvZ2759exISEqzaFixYQFRUFACvvfYar732mqUvMDCQ9evX07Zt22qN80Z9IpswrLee0CHXH9k9esLAa3N+4bM3uxM6ZC2FRSUKRiiqW/MhPYicO9by+oljX1GQc5bVXUYrGJUQtrP7BHKjoqIi0tPTmTBhgtKh/KVN8SfwjvyyXPvClaksXJmqQERCaZmrtpO5arvSYQhRZRwugSQnJ2MymW76DfRjx45Vb0BCCFFLOVwCCQ8Px2w2Kx2GEELUenZ9E10IIYT9kgQihBDCJpJAhLAjAf3CiflsotJhVFq3D0bTYvgDSochqpkkECHshUpFp8kjSPpgFWqthgHbPyT0+UFWh0TOGcMDy98AoH5EG4ZnLMNDf/17Ra6+ngxL+RT9gG6VGrdv3Ft0mvKEVbNHYAOGZyyjftdghmcswyck0Kq/3fhBDNj2AWqthuS5awh7ZZh8r6WWkQQihJ1oEhNGyeUr5KdkUWosIX78fNqNH4R3m7ICoQF9OtOkVyd2vVi2l0huwm8cXrGV7nPHoVKX/SpHzB7FmfiDZMXtqnCMIYkL0TWpZ91oNhM/fj4tRzyA3x/fFlepiJw7hvQvtpC7O5XkuWuInDcOtXNZgqjTOoDQcbHsHDuPUmMJhuxcLh09ReDDEXfhzAh7JQlECDvh36czp3dd34ogL/kohxato/u8cbg39CFi9rPsmfQJRbnXixLuf3cFLt462o7uT9Cj0dQLa0HC6x9XemxDdi773l5O5JwxaNxcCBn1CFoPd/bP+gqAlI/iuFpQRNgrw1BpnOg+bywpC9aSf+iY5TNO7UzBv3dn20+AcDiy3hTCTviEBJKxYqtV269z1tCkV0f6/zCb0xWsLExXjOwcN5/ea6ZjLjHx83NzMF4osGn89C+24N+7Mz0WTaBBRBs2DZpGqfFatYRrq5RHtryHh74BpuKrpMz/1ur9Fw/nEDQ0yqaxhWOSFYgQdsLFS8dVQ5FVm7nExLm96bj6epG5cluF77uQcYKrlwoxGgo5tSP5jmLY9cJHNIxsy28fb7BaXUDZKmX/rK8J6NOFnePnYy4tteo3GopwqaO7o/GFY5EVSCW0a+FN/OfKbEXaroW3IuOK6lN8sQBnDzerNr/wYIKG9ST10410efNp1vV6BdMV671rusx4ivPpObj6eND+hSEkzV5p6dPHRhLx7jOW184ebvT/6X0oLfsybsqCtaQs+NbSX3T2AsX5Bs6nHq8wxgupxzEVGzFknSnXp/Vwo9jG1Y9wTJJAKsFTp5WS6uKuyT90DK+gxpbXGndXIueMYd/by0n7fDN9177Jva8/zt5pSy3HNI4Jo+lDXYmLeRGt5z08tOEdcjbvJS+5bPOxrLXxZK2Ntxw/JHEhmwZNo+AubKvr1dKf/IPHqvxzhf2SS1hC2Imczb/Q4L7rVaQ7T3+SguNnSVu6qewexPMLaPn4/dTvGgyAto6Obu8/x54pSyg8nc+F9ByS56whcu5YRR6nbRTZjuNb9lb7uEI5kkCEsBMntu7HWeeKT1s9jWPC0PfvZnlkF64/KdXtw7InpSLefYZz+zM4unqH5ZiDC9dde1rqsWqNXRfgh2fzRmR/l3Drg0WNoTJLZUIhqpytOxIG9AsnaGgUPz393l2I6u7p9sFozu47TMbyHyvs7xv3luxIWAPJPRAh7MjxjXs4vrHyWx4r7c8rJVF7yCUsIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCKP8Qphh/y6tKbz1Ccxl5rJ3rCbQ//5ztKnraPjwZVT8GreiOVBT9zy+Mpo88xDNHmgI1uGvWnVXrdDEJ1nPIVKpeL0rhQOzPoagJZP9CLwkftQO6nZPOxNzCUmG39i4YgkgQhhhwzZuXwfO5XSqyX0Xj2dtC82YyoqK6J4taCILcNmEv2fF2/r+Nul0jiV23XwD3kHsyxfjHxw1TScdW5ove7Bu3UAWx6dYdsPKRyeJJBKuFRgJCXj/K0PvAvatfDGU6e9488xGgpvWmm1NvIODkDr4a50GOX8edMos6nUUj0Xykq837jnx18df7uaD4ni6LfxtH1uQLm+P1YWKrWaotx8SoqKCex/Hxp3F3r/dxq5u1NJen9Vpce8UzKfrVX3fJYEUgkpGeeJHLlekbHjP3+4SioBn089blOJjZrK3ktsNOwRiiH7DKbiq3fleAuVisbR7fn52Q8rTCBQVhq+w0uPcmp7EmZTKa51vcAMm4fOIHLuWHxCAsvtIXK3yXy2Vt3zWRKIEHbKvaEPoeNi2TpyVpUd79WyidX+IAAntx3gUtYZcrb88pefn7U2nqxvdxH98UvUaR3A1UuFnEk4BEDu7t/wbN6o2hOIUJYkECHskFqrIXLOWBJe+5iSwis2Ha9yUqOto6M475LluIuHT7Bp8LRy7w99fhANIkJoPqQHPm0DafH4/Vbb66q1mrLtbc1mSgqKMBUbObsvnWax3YGySydH1+4q97miZpPHeIWwQ81iu1OnZRPue28UfdbMwL2BDyHP9bf0P7hyKj5t9Ty4cip1WvlXeLzO348OLwy5rfGS537Dlsdm8sPjb5N/8BgZK7biVq+OZUz/BzvTZ80M+qx9k8un8zBknSE/JQu1Rk2fNTNwcnPh9wMZd+VcCPslKxAh7FDmym3l9kA/tGid5f9vfMz2QnpOueObPhTOsQ27Kz32H59ddO6CZczs9Qlkry+/10fi1KWV/nxRc0gCEaKGyt7geGXhhWORS1hCCCFsIglECCGETSSBCCGEsInDJBCj0ciUKVPw9/fHzc2NmJgYEhMTUalUxMXFKR2eEELUOg5xE91sNjN06FASExOZPn06QUFBrFixgtjYWADCwsIUjrA8rbOa/SsHsuL7I7zz8a+W9s9mdqe+rxv9Rm9RMDprgY9EEPyPfviEBFKcb2B1l9FKh1RjqZzUdJ4+kuaDe6BSqzm2YTd7Jn1S+W+Oi5uS+Vx9HCKBLF68mI0bN5KUlERISAgA0dHR6PV6fHx8CAgIUDjC8oxXS3nyjZ/ZsfQh1v+cQ/LhfAb0bMojUQG0G7xW6fCsFF+8TNqSTbjW8yLknw8rHU6NFjp+EA3ua0tczEuYrpZw/9KJdJz8BIlTligdWo0h87n6OMQlrFmzZjFixAhL8gBwcnJCr9dbVh+BgYG0bt2aDh060KFDBzZv3qxUuBb7U/P4v89T+OLtHjSu787iad0Y804Cp88VKh2aldM7ksmK28XlE+eUDqXGazH8flLmfUPhmXyK8y6R9P4qgoZFo1I7xK+iQ5D5XH3sftZmZGSQlZXF4MGDy/Xl5ORYXb5avXo1SUlJJCUl0bt37+oM86beWpxEicnMgZUD2ZZ4mpWbjiodklCI1tMdXeN65B/KsrTlpWSh9XBH519PwciEsI3dX8I6efIkAH5+flbtaWlpZGdnV8n9Dw8PD4zGW++dUOrWDAJertRnl5SY+V9SLh0fD+GzuMO2hkh0z2jURXeefJprvHnVM/KOP6em6NkzmiMlVV+iv6LzrNG5AWC8eH0Farx4GQDna301Vc+e1Xeea7OePW07z1qtFoPBUOn32f0KxNfXF4DMzExLm9lsZuLEiZSWllolkOHDhxMaGsro0aO5cOFCdYdaoch76/PUgBbMX3GIuRO74uripHRIQiElBUUAOHte369B63UPULZJlBCOxu4TSHBwMEFBQUyaNIn//ve/fP/99wwYMID9+/fj7u5Oq1atANi5cye//vore/fuxWw2M3bs2Nsew2AwUFxcfMv/tm/bXqnY73HTsHRmD16b8wvPz9rN2fwrvDO+U6U+4w/bt22/rRhv9d+2Sv4MNd22Kjqvt3OejZcKKTh5zmrXP9+2eoyGQgpyavb1+uo8z7WZrefZltUHOEAC0Wg0rF69moYNGzJy5EgmTJhA3759iYqKIjQ0FPW1m4/+/v4AuLi4MHr0aHbtUr609Psvh5N10sDClamYzfDU5B38Y1BLundsoHRoVlRqNU4uzqg0GlCpcHJxRq21+6ubDilj+VZCx8XiVt8bF19POrz0KJkrt2MuLVU6tBpD5nP1cYiz2r59exISrCuBLliwgKioKAAuX75MSUkJXl5emM1mvv76azp06KBApNf1iWzCsN56Qodcf2T36AkDr835hc/e7E7okLUUFpUoGOF1zYf0IHLu9RXbE8e+oiDnrDw/fxckz/sGFx9PBm7/EJVaxbH1u9n39pdKh1WjyHyuPg6RQG5UVFREeno6EyZMACA3N5fBgwdjMpkwmUy0adOGhQsXKhrjpvgTeEeW/4dh4cpUFq5MVSCim8tctZ3MVduVDqNWMJtKSZyyRL73cRfJfK4+DplAkpOTMZlMlhvozZo148CBAwpHJYQQtYtDJpDw8HDMZrPSYQghRK1m9zfRhRBC2CdJIEIIIWwiCUTcloB+4cR8NlHpMCqt2wejaTH8AaXDEHZI5vSdkwQibk2lotPkESR9sAq1VsOA7R8S+vwgq0Mi54zhgeVvAFA/og3DM5bhob/+fRdXX0+GpXyKfkC3So3bN+4tOk15wqrZI7ABwzOWUb9rMMMzlll9MQ+g3fhBDNj2AWqthuS5awh7ZZh8D0BYkzldJSSBiFtqEhNGyeUr5KdkUWosIX78fNqNH4R3m6YABPTpTJNendj1Ytmj07kJv3F4xVa6zx1nqTIbMXsUZ+IPkhVX8Rc8hyQuRNfkhoKCZjPx4+fTcsQD+HVpXdamUhE5dwzpX2whd3cqyXPXEDlvHGrnsl+mOq0DCB0Xy86x8yg1lmDIzuXS0VMEPhxxF86McFQyp6uGJBBxS/59OnN610HL67zkoxxatI7u88bh3tCHiNnPsmfSJxTlXi/itv/dFbh462g7uj9Bj0ZTL6wFCa9/XOmxDdm57Ht7OZFzxqBxcyFk1CNoPdzZP+srAFI+iuNqQRFhrwxDpXGi+7yxpCxYS/6hY5bPOLUzBf/enW0/AaLGkTldNZRfAwm75xMSSMaKrVZtv85ZQ5NeHen/w2xOV/BXmOmKkZ3j5tN7zXTMJSZ+fm4OxgsFNo2f/sUW/Ht3pseiCTSIaMOmQdMoNV77Fv+1v+ge2fIeHvoGmIqvkjL/W6v3XzycQ9DQKJvGFjWTzOmqISsQcUsuXjquGqyrxZpLTJzbm46rrxeZK7dV+L4LGSe4eqkQo6GQUzuS7yiGXS98RMPItvz28Qarv8Sg7C+6/bO+JqBPF3aOn1+urpTRUIRLHd0djS9qFpnTVUNWIJXQroU38Z8rs0VmuxbeiowLUHyxAGcP6/0q/MKDCRrWk9RPN9LlzadZ1+sVTFes91TpMuMpzqfn4OrjQfsXhpA0e6WlTx8bScS7z1heO3u40f+n96G07AuiKQvWkrLgW0t/0dkLFOcbOJ96vMIYL6Qex1RsxJB1plyf1sONYhv/UrSVd3AAfePeqtYx7Zl3sH1tOy1zumpIAqkET52WbmH1lQ6j2uUfOoZXUGPLa427K5FzxrDv7eWkfb6Zvmvf5N7XH2fvtKWWYxrHhNH0oa7ExbyI1vMeHtrwDjmb95KXXLYpVtbaeLLWxluOH5K4kE2DplFwF7Yh9WrpT/7BY1X+uX9F6+FO/T9ukgq7I3O6asglLHFLOZt/ocF9bS2vO09/koLjZ0lbuqnseu3zC2j5+P3U7xoMgLaOjm7vP8eeKUsoPJ3PhfQckuesIXLuWEUePWwU2Y7jW/ZW+7jCfsmcrhqSQMQtndi6H2edKz5t9TSOCUPfv5vl8Ua4/lRJtw/LniqJePcZzu3P4OjqHZZjDi5cd+3JkseqNXZdgB+ezRuR/V3CrQ8WtYbM6aqhMktVwlolNzGN7wdMrvT7AvqFEzQ0ip+efu8uRHX3dPtgNGf3HSZj+Y8V9veNe0suNTkwW+cz1Mw5Xd3zWe6BiNtyfOMejm/co3QYlfbnvyqF+DOZ03dOLmEJIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibyFNYwmZ+XVrTeeqTmEvNZG/YzaH/fGfVH/yPfjQbGEmpyUT88x9hOFa+JAOU7XXQJCaM/INZ7Jm8xKqvcc8OtH9xKFcvXyH++QUU5Z6n19dT0LhqMRoK+XnUh6i1GmI+fQXUKgpP5bFzXPnaQULcTN0OQXSe8RQqlYrTu1I4MOtrq/5G0e3p8OKjFF8sYMfouVw1FDJwxxyunLsIwE//b/ZNiyqGv/V3fNrqOfHTAVLmfVOu361eHQbv+Yhvuo2j8HR+ubldUnjltsdSgqxAhM0M2bl8HzuVjf3foEmvjji5aa36mw2MZMPDk/hl5pe0evLBCj/Dta4Xvu30fD9wCqWmUnzbN7fqbztmIJuHTGfvtKW0GzsQgISX/833A6dwfOMemg2KxFRsZNs/32dT7FQM2bk07N7urvy8ombKO5jF9wMms7H/G9Tr2ApnnXWNrJBn+7P50Rkc/vJHWl7bCbDwdD6bBk9j0+BpN/0H3bd9c0pNpXw/cAq+7fS41vUqd0zr/9eX3w9kWl7fOLdvdyylSAIRNivKPU/p1bIS1GZTqaVo3B8un8rDycUZraf7TQu/1W3fnDMJvwFwOj6Fuh2CrPrNJSZMxVe5kJ5j6fujtpDZVIrZDKYiI8V5l/7UJt+NFbfPXGICQKVWU5SbT0lRsaVP4+bC1YIiTFeMZfMzrGwOutXzos/aN+k4ecRNP7deWAtOx6cAcCbhN3xDm1n1az3dcfXxoCDnrKXtxrl9u2MpRS5hiTvWsEcohuwzmIqvWrXnJqYycMccVCoVGx55o8L3ar3u4aqhEICSgitove6x6lc7a3Dx1uHV0t+qfLWTm5YWwx/gxxHvWNpc63rRsHs7fv1wdVX9aDYzGgpvWmW1NvIODkDr4a50GDelj42kw0uPcmp7UtkfQ9dYzc/LV9B6lv0M38dOxXjxMl1m/p0m99/Lia37y32m1sudq+llJeNLCorKze3WT/ch/YsfaPOPflbtN87t2xlLKZJAxB1xb+hD6LhYto6cZdXurHOj6UNd+ea+cXgHN6XDy4+S8Mp/yr3fePEyuqZlFY41OleMFy9b9e+f9RXRH7/MxYwTXMg4YWmPmDWKpPdXWX65VU5qun04moTXPraL+x/nU4/bXGKjJrL3kjFZa+PJ+nYX0R+/RJ3WAVxIK0v+xouXcb6W+DT3uGK8VGhpB8j54Rd82+or/EfdeLHQcjlMo3Oj6E/3AJ1ctXi19Cd5bvn7IjfO7dsZSylyCUvYTK3VEDlnLAmvfUxJ4RWrPrPZTElhMWZTKcUXDGg9y/76cqtvva9JXvJRGnRtA0DDbm35PSnTqv9sYhqbh0wnc+V2ft+fAUCbUQ9z8XAOp/+0oU/n6U9xdPUOyy++ELfLUk3XbKakoAhT8fU9QEqKinHWueHk4lw2Pw9kotI4Wd7j17ElhuNll6BunNvnDmTQsFtZxd8GXdtYyr4D6Pzr4dm0Pr1WvEHDHqF0fadsH5Eb5/bNxrIXsgIRNmsW2506LZtw33ujANgxZi6uvp7UCQ7g6OodnPslnb5xb6F2Ulueror8cDQ/PP625TOKzl0gPzWbvt/OJP+3bPJ+PYJbvTo0G9KDQ4vW0f6FITS4L4TCM/n879X/oHbW0PH14Zzbd5jGPcM4svpnTu86SMvh9+PTpimtnnyQgwvj7OqvNGHf/B/sTPDTfUCtInf3bxiyzuATEmiZx7/95zt6r56O8eJldoyeg9bTnV5fTaaksJjLp/JInvcNKic19703iq0j/2X53LxfjxA0rCd9v53Jye1JXPn9otXnbnh4EgCRc8awf9ZXFc7t45v3lhvLnkg13lrmTqqX3ikXHw9aj+xtF/co/nC3Lq0oeZ7tUU0/z76hzajTyp8j//1Z0TikGq+osYrzDXaVPISoKnnJR60uUdUWcg9ECCGETSSBCCGEsIkkECGEEDaRBCKEEMImDpNAjEYjU6ZMwd/fHzc3N2JiYkhMTESlUhEXF6d0eEIIUes4xFNYZrOZoUOHkpiYyPTp0wkKCmLFihXExsYCEBYWpnCEjk/lpKbz9JE0H9wDlVrNsQ272TPpk3LlSYTtAh+JIPgf/fAJCaQ438DqLqOVDqnGkvlcPRxiBbJ48WI2btzIjz/+yKhRo7j//vtZvHgxTk5O+Pj4EBAQoHSIDi90/CAa3NeWuJiXWNNtHHVaNqHj5CeUDqtGKb54mbQlm9j/r6+UDqXGk/lcPRwigcyaNYsRI0YQEhJiaXNyckKv11tWH1euXOG5556jRYsWtGvXjn/+859KheuQWgy/n5R531B4Jp/ivEskvb+KoGHRqNQOMUUcwukdyWTF7eLytYqr4u6R+Vw97P4SVkZGBllZWcybN69cX05ODoMHDwbg1VdfxdXVlcOHD6NSqcjNza3uUB2W1tMdXeN65B/KsrTlpWSh9XBH518PQ7acS+E4ZD5XH7tPICdPngTAz8/Pqj0tLY3s7GzCwsIoKCjgiy++4MSJE6hUKgDq169/22N4eHhgNBpvfWAN0FzjzauekVZtmmsVQ40XCy1tf1QAvXFznZqmZ89ojpScr/LPreg812Y9e1bfeZb5XPnzrNVqMRgMlX6f3a/nfH19AcjMvF6l1Ww2M3HiREpLSwkLC+PIkSP4+voyY8YMOnXqRHR0NPHx8UqF7HBKCsr2LHD2vL5fwx97F1y91ieEo5D5XH3sfgUSHBxMUFAQkyZNwtnZGZ1Ox6JFizhw4ADu7u60atWKpKQkjh49SlhYGLNnz2bPnj088sgjZGZm4unpecsxbMm8jqqi4nPGS4UUnDyHT0ggl46cAsC3rR6joZCCnJp9vX7btu01usifvajO8yzzufqKKdr9CkSj0bB69WoaNmzIyJEjmTBhAn379iUqKorQ0FDUajUBAQFoNBr+9re/ARAeHk7dunU5fPiwwtE7jozlWwkdF4tbfW9cfD3p8NKjZK7cbhebM9UUKrUaJxdnVBoNqFQ4uThf34tCVCmZz9XDIWZv+/btSUhIsGpbsGABUVFRANStW5eePXvyww8/8OCDD3L48GHOnj1LUFBQRR8nKpA87xtcfDwZuP1DVGoVx9bvZt/bXyodVo3SfEgPIueOtbx+4thXFOScle+D3AUyn6uHQySQGxUVFZGens6ECRMsbf/+97/5+9//zksvvYSzszPLli2jTp06isXoaMymUhKnLCFxyhKlQ6mxMldtJ3PVdqXDqBVkPlcPh0wgycnJmEwmq2+gN2vWjO3btysXlBBC1DIOmUDCw8ORjRSFEEJZdn8TXQghhH2SBCKEEMImkkCEsCMB/cKJ+Wyi0mFUWrcPRtNi+ANKhyGqmSQQIeyFSkWnySNI+mAVaq2GAds/JPT5QVaHRM4ZwwPL3wCgfkQbhmcsw0PfwNLv6uvJsJRP0Q/oVqlx+8a9Racp1tVqPQIbMDxjGfW7BjM8Yxk+IYFW/e3GD2LAtg9QazUkz11D2CvD5HsttYwkECHsRJOYMEouXyE/JYtSYwnx4+fTbvwgvNs0BSCgT2ea9OrErhcXApCb8BuHV2yl+9xxliqzEbNHcSb+IFlxuyocY0jiQnRN6lk3ms3Ej59PyxEP4PfHt5hVKiLnjiH9iy3k7k4lee4aIueNQ+1cliDqtA4gdFwsO8fOo9RYgiE7l0tHTxH4cMRdODPCXkkCEcJO+PfpzOldBy2v85KPcmjROrrPG4d7Qx8iZj/LnkmfUJR7vVje/ndX4OKto+3o/gQ9Gk29sBYkvP5xpcc2ZOey7+3lRM4Zg8bNhZBRj6D1cGf/rLK9S1I+iuNqQRFhrwxDpXGi+7yxpCxYS/6hY5bPOLUzBf/enW0/AcLhyHpTCDvhExJIxoqtVm2/zllDk14d6f/DbE5XsLIwXTGyc9x8eq+ZjrnExM/PzcF4ocCm8dO/2IJ/7870WDSBBhFt2DRoGqXGkrLOa6uUR7a8h4e+Aabiq6TM/9bq/RcP5xA0NMqmsYVjkhWIEHbCxUvHVYN1tVhziYlze9Nx9fUic+W2Ct93IeMEVy8VYjQUcmpH8h3FsOuFj2gY2ZbfPt5gtbqAslXK/llfE9CnCzvHzy9XV8poKMKlju6OxheORVYgQtiJ4osFOHtY71fhFx5M0LCepH66kS5vPs26Xq9gumK9d02XGU9xPj0HVx8P2r8whKTZKy19+thIIt59xvLa2cON/j+9D6VlX8RNWbCWlAXfWvqLzl6gON/A+dTjFcZ4IfU4pmIjhqwz5fq0Hm4U27j6EY5JEkgt4x0cQN+4t5QOw254BwcoHYJF/qFjeAU1trzWuLsSOWcM+95eTtrnm+m79k3uff1x9k5bajmmcUwYTR/qSlzMi2g97+GhDe+Qs3kveclHAchaG0/W2ut74wxJXMimQdMouAvb6nq19Cf/4LEq/9y/IvPZWnXPZ0kgtYzWw71a9wsQty9n8y+EvfqY5XXn6U9ScPwsaUs3ARD//AL6//h/HP9+D7m7U9HW0dHt/efYM2UJhafzKTydT/KcNUTOHct3vV+9fv+imjSKbMfhr7be+sAqJPNZWXIPRAg7cWLrfpx1rvi01dM4Jgx9/26WR3bh+pNS3T4se1Iq4t1nOLc/g6Ord1iOObhw3bWnpR6raIi7Rhfgh2fzRmR/l3Drg0WNoTJLVUIhqpytOxIG9AsnaGgUPz393l2I6u7p9sFozu47TMbyHyvs7xv3lqwUaiC5hCWEHTm+cQ/HN+5ROoxK+/NKSdQecglLCCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm8hjvELYmfC3/o5PWz0nfjpAyrxvLO0qjRM9Pnoet7pe5Py4j0OL1tG4ZwfajY0Fyvbo2PLoDNz86pRru7Ew4l+p2yGIzjOeQqVScXpXCgdmff2XMeia1KPf+ne4dOQUBSd/J378/Ko5EcLuSQIRwo74tm9OqamU7wdOIfrjl3Ct68WV3y8C0LRfOOd+See3jzcQtegFXHw9ObktiZPbkgB4+Pt/lSWKQ5Rvq4S8g1mWL0E+uGoazjo3rhYU3TQGgBM/7uN/L//7jn9+4VjkEpYQdqReWAtOx6cAcCbhN3xDm1n6PAL8LFVyL2ScoG775pa+uh2C+P3XI1afVVHb7TCXmABQqdUU5eZTUlR8yxgaR3eg77czaTaoe6XHE45LEogQdkTr5W75a7+koAit1z2WvotHTlE/og0A9cOD0Xq6W/r8+3QmZ/Neq8+qqO126WMjGbhjDsaLlzGbru/7UVEMhWfP80338Wx5bCYtn+iFi7fsCVJbSAIRwo4YLxbirCvbE0Sjc8N48bKlL2fzL7j6evLgyqlcybvEld8vWfoa3teW0/EHrT6rorY/eLVsQp81M6z+azd2oKU/a208a7s/j1sDH+q0vl4ivKIYSo0lmIqMmK4Yyd2TikfTBlVxKoQDkHsgQtiRcwcyaBYbyYkf9tGgaxuOrfufpc9cWsru18r2O4+cN46z+9KBskq4l0/nUXr1evn2G9tUTmq0dXQU55UlnYuHT7Bp8LQKY1BrNWWl4M1mSgqKMBVf38Cqohg07q6UFF4BoG775qQt+b6qToewc5JAhLAjeb8eIWhYT/p+O5OT25NQqVSEPNefQ4vWcU/junSfNw5zaSm/fbwBU1HZP+wBfbqUu1R1Y5vO3482/+jHnslLbhmD/4OdCX66D6hV5O7+DUPWGdzq1aHZkB4cW/e/cjE0imrPva8/TunVErLX76bo7IUqPSfCfkk5dyHuAlvLud8tTR8K50q+gdyE3xQZX8q510yyAhGiFsje4Hgl4oX9k5voQgghbCIJRAghhE0kgQghhLCJJBAhhBA2cZgEYjQamTJlCv7+/ri5uRETE0NiYiIqlYq4uDilwxPitqic1HSZ+TR/++0zHk/7nPvefw4nF2elwxLCJg6RQMxmM0OHDuWTTz5h8uTJrF+/Hr1eT2xsWcXRsLAwhSMU4vaEjh9Eg/vaEhfzEmu6jaNOyyZ0nPyE0mEJYROHeIx38eLFbNy4kaSkJEJCQgCIjo5Gr9fj4+NDQEDALT5BCPvQYvj97Jv5JYVn8gFIen8V0YtfYu+0pZhLS2/xbiHsi0MkkFmzZjFixAhL8gBwcnJCr9fj7OzMsWPHGDhwoKXvwoULXLp0ifz8fAWiFaJiWk93dI3rkX8oy9KWl5KF1sMdnX89DNm5CkYnROXZfQLJyMggKyuLefPmlevLyclh8ODBBAYGkpSUZGmfMGECJSUl5Y6/GQ8PD4xG460PFOI2Ndd486pnpFWb5lqRROPFQkvbH8US/yigWFP17BnNkZLzSochbkKr1WIwGCr9PrtPICdPngTAz8/Pqj0tLY3s7Oxy9z+MRiPLly9n8+bN1RajELej5FqZdmdPd4rOXQCwlGv/o4S7EI7E7hOIr68vAJmZmXTp0gUou6k+ceJESktLyyWQdevW0bhxY+69997bHsOWzCvEX6moFpbxUiEFJ8/hExLIpSOnAPBtq8doKKQg55wSYVabbdu2Sy2sGsjuE0hwcDBBQUFMmjQJZ2dndDodixYt4sCBA7i7u9OqVSur45csWcLf//53haIV4q9lLN9K6LhYcvekUlpiosNLj5K5crvcQBcOye4TiEajYfXq1Tz77LOMHDkSf39/JkyYgKenJ0eOHEGtvv4k8smTJ/n5559ZtmyZghELcXPJ877BxceTgds/RKVWcWz9bva9/aXSYQlhE7tPIADt27cnISHBqm3BggVERUVZtX3++ec89NBDlsteQtgbs6mUxClLSJxy6305hLB3DvFFwhsVFRWRnp5e7v7H0qVL5fKVEEJUE4dYgdwoOTkZk8lULoEcPnxYoYiEEKL2ccgEEh4ejmykKIQQynLIS1hCCCGUJwlECCGETSSBCCGEsIkkECGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYROVWb6RJ0SVMxoKOZ96XOkw7IZ3cABaD3elwxBVTBKIEEIIm8glLCGEEDaRBCKEEMImkkCEEELYRBKIEEIIm0gCEUIIYRNJIEIIIWwiCUQIIYRNJIEIIYSwiSQQIYQQNpEEIoQQwiaSQIQQQthEEogQQgibSAIRQghhE0kgQgghbCIJRAghhE0kgQghhLCJJBAhhBA2kQQihBDCJpJAhBBC2OT/A6NV7/Feb03ZAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -250,16 +250,16 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:57.096772Z", - "iopub.status.busy": "2024-11-23T19:54:57.096575Z", - "iopub.status.idle": "2024-11-23T19:54:57.318338Z", - "shell.execute_reply": "2024-11-23T19:54:57.317709Z" + "iopub.execute_input": "2024-12-05T03:21:31.750916Z", + "iopub.status.busy": "2024-12-05T03:21:31.750536Z", + "iopub.status.idle": "2024-12-05T03:21:31.980425Z", + "shell.execute_reply": "2024-12-05T03:21:31.979904Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGOCAYAAABYCEB2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuPklEQVR4nO3deVxU5f7A8c8MM8Mim+CCCwiKIqIo5RKKgltqi4pL3luWt3vrWrlkt7qVhktpXfNXqVneq95uy82yXMLSXDLJ5aKUiuACggLihgrKDgMz8/sDG53ABYQ5A3zfr5evl3OeM+f5zvFxvvOcOfN8VSaTyYQQQgghbJJa6QCEEEIIcXOSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGEapQOoz/T5RVw5flrpMGxG00AfdC5OSochakjGsyVbH88FZZCap1z//q7grFWu/8ZEEvVduHL8ND+Mel3pMGzGiOj5tOzdWekwRA3JeLZk6+M5NQ+e2qtc/6v6QQ9P5fpvTOTStxBCCGHDJFELIYQQNkwStRBCCGHDJFELIYQQNkxuJhNCiEYkeVYEhUmxqDRaVHYaHNp0pvXEBbh2H6x0aOImZEYthBCNTOuJCwhZU0Dwp1k0CQjl5FujMRTmKh2WuAlJ1EII0UiptfY0G/oXjCUFlJxPVToccROSqIUQopEylhZzefsq1E6uOLTuqHQ44ibqTaLW6/VERUXh7e2No6MjgwYNIi4uDpVKRXR0tNLhCSFEvXFudRTxj7qT+LQvRWmH8X/9e+ycXJUOS9xEvbiZzGQyMX78eOLi4pg7dy7+/v6sXr2ayMhIAEJCQhSO8Drfh0MJfOoBPIJ8Kc3JZ23v55QOSYgak/HcMLV+9E28Il9SOgxxh+pFol6xYgWbN28mPj6eoKAgACIiIvDz88PDwwMfHx+FI7yuNLeQpI+34NDcjaC/PqR0OELcFRnPQiivXiTqhQsXMnHiRHOSBrCzs8PPzw+ttmJV+BMnTjBp0iSys7Px9PTks88+o2NH63/ncn5XAgA+w3tZvW8hapuMZyGUZ/OJOiUlhbS0NJYuXVqpLTMzk7FjxwLwzDPPMGXKFCZOnMh///tfJk+ezE8//XRHfbi4uKDX66sdWwdNU/7uGlbt5zVUAwdGcLL8itJhiBqS8Wxp4EDbHs9OAaF0mB+jWP8DB0ZQlByrWP/1kU6nIz8/v9rPs/lEffbsWQBatGhhsT0pKYmMjAxCQkK4ePEiBw8eZPv27QD88Y9/ZOrUqVy6dInmzZtbPWYhhLBVAQtilA5BVJPNJ2pPz4o6aqmpqfTu3RuouLnslVdewWg0EhISQmZmJm3atMHOzg6ouCzeunVrMjMz7yhR1+QTDkBWXJKUBbzBzp0xNl0WUNyajGdLtj6e47OVLXO5c2eMlLm0EptP1IGBgfj7+zNz5ky0Wi3Ozs4sX76cQ4cO4eTkREBAAIcOHVI6TCGEEKJO2Hyi1mg0rF27lmeeeYZJkybh7e3NjBkzcHV15eTJk6jVary9vTl79iwGgwE7OzsMBgPnzp3D29vb6vGq1GrUWjtUGg2oVNjZazGZTBj15VaPRYi7JeNZCOXZfKIG6N69O7GxljctLFu2jPDwcKDi++sePXrw5ZdfMnHiRL788ktCQkIU+X66w7gBhC2Zan78ePqXFGRelN+finpJxrMQyqsXifr3iouLSU5OZsaMGeZt//znP5k0aRJvvPEGTZs25bPPPlMkttSvY0j9OkaRvoWobTKe66/y/BxS5gyl5GwyIWsKLNqK0g5z+p/PodLo8JvxGbrm3pScTyXzX1MxlpXScuQLuPcZqVDk4vfqZaJOSEjAYDBYrEjWuXNn9u/fr2BUQghhO+wcXeg4bzun3nmkUtv5NW/Q4bUNlF05z4X1C/GZvIzzX83D76Wv0Di7Wz9YcUv1MlH36dMHk8mkdBhCCGGzVBotGhePKtuMJYVo3VugdW9B6flUjGV69JczSV/8BKhUtJuyAq17SytHLG6m3hTlEEIIUTtMJqPF38vzLlOccQTfGZ/S8uEZXFj7toLRid+TRC2EEI2MSqW2+LtdEzcc23VD49wU56D+lJxNVjA68XuSqBXg80AfBv3nFaXDqLZ+7z1Hx8eGKB2GsEEypusXtb0TZbmXKEpPwL6VP3YOTVDrHDCWlVKccQRdC1+lQxQ3kERtbSoVPV+fSPx7X6PWaRgV8z7Bz4+x2CVs8RSGfDELgJahXXgs5XNc/LzM7Q6erkxI/Dd+o/pVq98R0fPpGfW4xWYXXy8eS/mclvcF8ljK53gE+Vq0d5s+hlE730Ot05CwZB0hL09ArauXtzaIuiJj2madiBpCUdohTkQNoeDYHi6sXwRAqwlRnHxrNJkrp+M15u8AtBz1IieiBpO56nnzNmEbJFFbWdtBIZQXlpCTmIZRX86e6R/QbfoYmnZpB1RUKWo7tCd7//YRAFmxxzixegf9l0xDpa745wpdNJkLe46QFl31+oHj4j7Cue3vfkNuMrFn+gd0mjiEFr8ti6hSEbZkCsmfbSNr33ESlqwjbOk01NqKNy33zj4ET4tk99SlGPXl5GdkkXfqHL4PhdbBmRH1lYxp29XpzR/p8d9sOr35I85dwvAa8zIATu1D6LxwLwELYtA1rygT7NpjCJ3/sYeAt37GvqWfkmGL35FEbWXew3txfu8R8+PshFMcXb6R/kun4dTKg9BFz7B/5iqKs65X7Tn49mrsmzrT9bmR+D8SQfOQjsS+trLafednZHFgwReELZ6CxtGeoMkPo3Nx4uDCLwFI/DCasoJiQl6egEpjR/+lU0lctoGco+nmY5zbnYj3MCl5KK6TMS1E3WqY13tsmEeQLymrd1hsO7x4HW2H3svI7Ys4X8WswlCiZ/e0Dxi2bi6mcgM/P7sY/VXLBQzuVPJn2/Ae1osBy2fgFdqFLWPmXF8O8toM5eFt7+Di54WhtIzED761eH7uiUz8x4fXqG/RMMmYFqJuyYzayuzdnCnLL7bYZio3cOmXZBw83Uhds7PK511NOUNZXhH6/CLO7Uq4qxj2vvAhrcK6cmzlJouZBVTMUA4u/Aqf4b3ZPf0DTEajRbs+vxh7d+e76l80LDKmhahbMqO2stLcArQujhbbWvQJxH/CQI7/ezO933iSjUNfxlCit9in97w/cSU5EwcPF7q/MI74RWvMbX6RYYS+/bT5sdbFkZE/vQvGikVhEpdtIHHZt+b24otXKc3J58rx01XGePX4aQylevLTLlRq07k4UlrDmY9omGRMK8PfFVZV4967uuhfWIckaivLOZqOm38b82ONkwNhi6dwYMEXJH26lREb3uCe1x7llzmfmPdpMyiEdg/eR/Sgv6FzbcKDm94ic+svZCecAiBtwx7SNuwx7z8u7iO2jJlDwZlLtR6/Wydvco6k1/pxRf0lY1oZzlqkHnQjIZe+rSxz66949e1qftxr7hMUnL5I0idbKr5Pe34ZnR4dTMv7AgHQuTvT791n2R/1MUXnc7ianEnC4nWELZmqyE9KWod14/S2X6zer7BdMqaFqFuSqK3szI6DaJ0d8OjqR5tBIfiN7Gf+2Qpcv4u13/sVd7GGvv00lw6mcGrtLvM+Rz7aeO1O1j9YNXZnnxa4dmhNxnext99ZNBoypoWoWyqTVLeosay4JH4Y9Xq1n+fzQB/8x4fz05Pv1EFUdaffe89x8cAJUr74scr2EdHzafnb71lFvVPT8QwNc0zLeBa2Qr6jVsDpzfs5vbn+leS8cZYkxI1kTAtRd+TStxBCCGHDJFELIYQQNkwStRBCCGHDJFELIYQQNkwStRBCCGHD5K5vG9Bn/p/x6OrHmZ8Okbh0vUVb4FMP0H50GEaDgT3Pf0h++gX8H4mg42NDKDxzid3PL8NUbgAqygn2jHqC9f2m1aivnrOfwP+RcOLmfMKpdbsBGLZ2LiqVCoDY11aSe+JMbb500cC06N2ZXrOfwGQ0kbFpH0f/9R0AbQb2oNvUSKCi1OS2R+ZxJTmTAR8+j2MzNzJ/PMDR5Rur3V+zHv70mvcnVCoV5/cmcmjhV+Y2OwcdA1e9hMbJnvyMLPa+UHGHd6fHh+L7cF/Udmq2TnjD/P9HCFslM2qFeXbvgNFg5IfRUXh288OhmZtFe/vRYWx6aCa/vvlfAp64H5XGjvZjB/DDqNe5dCgFnxvK87V78D4Kz12ucV9HPorm1zc+t9hmMhjZMnYOW8bOkSQtbis/I4sfImezeeQs2g69FztHHQBnd8abx1HB6SxyjqbT7oE+XPo1mS1j59AsuAP2ntVfPDr7SBo/jHqdzSNn0fzeALTO19ccbx3enay4pIpqWuUG3AO8adKmGU2vfVDYMnaOJGlRL0iiVljzkI6c35MIwIXYY3gGt7doLzyXjZ29Fp2rE6VXC3Br34qcY+kAnN9zhGYh/gB49etKVlwSJuPN16+5XV8ll3MrP0mlYvi6efT9v2ews9fW9GWKRqI46wrGsooSkyaD0VxE4zfNevhz+fBJAFx8WpiLaFxNOUOz7h2q3d9viValVlOclUN5cam5reD0RTRO9gBonRzQ5xfROrw7Gid7hn0zhx4vPlL9FyiEAuTSt8J0bk6UJVeUCCwvKEbn1sSiPSvuOKN3LUalUrHp4Vm4+LQwlxS8cf+OfxzE/15cju9DoTXuqyoxT/8f+txCgiY/TMc/Dq5Yv9nK9PlFN62K1Bg1DfRB5+KkdBi31GpAMPkZFzCUllls9x7ei8ytFetq5548R8vQLpzfk0jLPoHknTpXo778IsPo8eIjnIuJr/hwcE1e+nla9glk9K7FZCemUXQuu+Iqkgm2jp9H2JKpeAT5ViqLWddkPFuqjfFcUAapebUUUA35u1YUSqkLkqgVps8tMl+u0zg7Upx+vQyf1tmRdg/ex/q+02ga2I4eLz3C8ZWbzCUFNc6O6HML8ezegasnzlR6U6xOXzd/TiEAp7f9QtBfH6rRa7xbV46frvHSlg2RrS9t6dTKg+BpkeyYtLBSW6u+XTn87jdARTGP1uHduX/NbEqy8yi5XPU7rVunthYlLwHO7jxkLnOZtmEPad/uJWLli7h39uFqUkUS9B8fQXr0/0j6ZAu933yS5j0DKMsr4kLsUQCy9h3DtUNrqydqGc+WamM8p+bBU3trKaAaWtWv7qqZSaJW2KVDKbSPDOPM9gN43deF9I3/M7eZTCbKi0oxGYyUXs1H59qEvLQLeAS2A6BVv65cPpRK0wBvWg8Ixuu+QDy6+hL8/BgSlqzHsWVTirOu3FFfN6Np4kB5YQktegaQf/pi7Z8A0aCodRrCFk8l9tWVlBeVWLQ5+7Sg8Hz29UvjRiP7Xl0JQNjSaVw8kIzKTo3O3ZnS7OtJO/fEGbaMnXPT/oz6cjCZKC8oxlB6vea1Sq2m9Go+AKVXCtC5OnHxQDLtI/sDFTO5UxsUfncX4g7Id9QKyz58ErVOy4hv3yTnWDoll3PxCPKl/bgBlBeWcOnXZEZEzyfin3/j6PKNGMvKOfXtXkZEz6dFzwAyt/1K6tcxbB03l+2PLiDnSDoJS9ajslPT953Jd9wXQNCzIwl6bhTdpkbSZXLF7HnY13MY8e2b+D4Uyon/Vl2MQ4jftI/sj3untvR9ZzLD183DycuDoGdHAuAzvLf5sjdAkzbNGL5uHsO+mUPG97EYivU4e7egxwvj7rg/7/t7MXzdPIZveIPC89mUF5SY+zu1YTf+fxjE8HXz8Ojqy7ldCeQkpqHWqBm+bh52jvZcPpRSuydAiDog1bPuwt1UG6prnsHtcQ/w5uQ3P1utz7q6JGvL51kJDfk8t3uwDyU5+WTFHlM0DmjY59mW1MZ5js+WS9+iHspOOEV2wimlwxCiWjI21b8KXELUNUnUQgghGqXkWREUJsWi0mhR2WlwaNOZ1hMX4Np9sNKhWZDvqIUQQjRarScuIGRNAcGfZtEkIJSTb43GUFjFmhIKkkQthBCi0VNr7Wk29C8YSwooOZ+qdDgWJFELIYRo9IylxVzevgq1kysOrTsqHY6FepOo9Xo9UVFReHt74+joyKBBg4iLi0OlUhEdHa10eEIIIeqhc6ujiH/UncSnfSlKO4z/699j51T9defrUr24mcxkMjF+/Hji4uKYO3cu/v7+rF69msjIimo8ISEhCkdoSWWnptfcSXQYOwCVWk36pn3sn7nqtiuHiTvn+3AogU89gEeQL6U5+azt/ZzSITVYMp6tQ86zMlo/+iZekS8pHcYt1YsZ9YoVK9i8eTM//vgjkydPZvDgwaxYsQI7Ozs8PDzw8fFROkQLwdPH4NW3K9GDXmRdv2m4d2rLva8/rnRYDUppbiFJH2/h4D++VDqUBk/Gs3XIeRY3Uy8S9cKFC5k4cSJBQUHmbXZ2dvj5+Zln0y+99BJ+fn6oVCqOHDmiVKgAdHxsMIlL11N0IYfS7Dzi3/0a/wkRqNT14nTXC+d3JZAWvZfCM5eUDqXBk/FsHXKexc3Y/AhISUkhLS2NsWPHVmrLzMw0J+rRo0eza9cu2rVrZ+0QLehcnXBu05yco2nmbdmJaehcnHD2bq5gZEJUn4xn65DzLG7F5r+jPnv2LAAtWrSw2J6UlERGRoY5UYeFhdW4DxcXF/R6/e13/J0Omqb83dWyX8216lT63CLztt8qUN1Y1L4hGjgwgpPlV263W7VVdZ4bs4EDrXeeZTzLea5rAwfe/Xl2Cgilw/yYaj8vYEH1n3MzAwdGUJQce8t9dDod+fn51T62zc+oPT0rFk9NTb3+uzaTycQrr7yC0Wi0uRvJygsq6j1rXa/XV/2t7nPZtTYh6gsZz9Yh51ncis3PqAMDA/H392fmzJlotVqcnZ1Zvnw5hw4dwsnJiYCAgLvuoyafcKDqxfX1eUUUnL2ER5AveSfPAeDZ1Q99fhEFmQ37+9SdO2OkiIEVWPM8y3iW81zXauM820JRjp07Y+qsKIfNz6g1Gg1r166lVatWTJo0iRkzZjBixAjCw8MJDg5GbYM3WqR8sYPgaZE4tmyKvacrPV58hNQ1MZiMRqVDazBUajV29lpUGg2oVNjZa1HrbP5zZ70k49k65DyLm6kX72zdu3cnNtby2v+yZcsIDw9XKKJbS1i6HnsPV0bHvI9KrSL9+30cWPBfpcNqUDqMG0DYkqnmx4+nf0lB5kX5PXUdkPFsHXKexc3Ui0T9e8XFxSQnJzNjxgzztunTp7N+/XouXLjAkCFD8PT05OjRo4rEZzIYiYv6mLiojxXpvzFI/TqG1K9jlA6jUZDxbB1ynsXN2N514zuQkJCAwWCwuJFs6dKlnDlzhvLyci5cuKBYkhZCCGGbTq+YRvJr/Tn/zVtVtmdtXMyJqCEA5B7cQvKsCJJnRRA/0ZOiU/GU5+dw/G/3cmiCszXDrp8z6j59+mAymZQOQwghRD1RmPIrKrWGgLd3c/If4yi7moXWvaW53VReRnFavPmx2z3DcbtnOCaTiaSXeuPo1x0M5XSct51T7zxi1djr5YxaCCGEqI7CE/txCR4EgEvXcIpSD1i0Z8d8TtP+f6z0vKKUX3Dy74lKpUKl0aJx8bBKvDeSRC2EEKLBMxReNVfFUju6YCi8am4zGY3kHdyK2z3DKj3v6v5o3PuMslaYVaqXl76FuBM+D/TBf3wEPz25UOlQqqXfe89x8cAJUr74UelQhI2RMX17xaePcfpflr/+cAsZjl0TdwxFeQAYi/PRenUwt1+NXY9b75FVHi8/cSet/jCn7gK+AzKjFg2TSkXP1ycS/97XqHUaRsW8T/DzYyx2CVs8hSFfzAKgZWgXHkv5HBc/L3O7g6crExL/jd+oftXqd0T0fHpGWVY9cvH14rGUz2l5XyCPpXyOR5CvRXu36WMYtfM91DoNCUvWEfLyBPlduLAkY/qOOPp0IWBBjMUfr3Gv0qRTb/ITdwKQf3QXTv73mp9TcjaZ7J8+IWXucIrS4rm8bRUApRdOoWvWFrVWV+dx34okatEgtR0UQnlhCTmJaRj15eyZ/gHdpo+haZeKoi0+w3vRdmhP9v7tIwCyYo9xYvUO+i+ZZq5WFLpoMhf2HCEtuuolj8bFfYRz298VTDCZ2DP9AzpNHEKL31ZbUqkIWzKF5M+2kbXvOAlL1hG2dBpqbcWblntnH4KnRbJ76lKM+nLyM7LIO3UO34dC6+DMiPpKxvTdadKxF6ayUpJf64+TX3e07i0pu3KBC+sX0eqRWXR6Yzsd527Bya8Hze5/Cqi47O3W2/Ky94moIRSlHeJE1BCKM6xTqVEStWiQvIf34vze6/+JshNOcXT5RvovnYZTKw9CFz3D/pmrKM66Xgzg4NursW/qTNfnRuL/SATNQzoS+9rKavedn5HFgQVfELZ4ChpHe4ImP4zOxYmDCytqZyd+GE1ZQTEhL09ApbGj/9KpJC7bQM7RdPMxzu1OxHtYr5qfANHgyJi+ez7PfEjA27tp9UjFEq7apl54jXnZYp9Ob16/PN9y1At4RjxWqb3Hf7Pp9OaPOLbrWvdBI99RiwbKI8iXlNU7LLYdXryOtkPvZeT2RZyvYlZhKNGze9oHDFs3F1O5gZ+fXYz+akGN+k/+bBvew3oxYPkMvEK7sGXMHIz68orGazOUh7e9g4ufF4bSMhI/+Nbi+bknMvEfb5sr7wllyJhuvGRGLRokezdnyvItqw6Zyg1c+iUZB083UtfsrPJ5V1POUJZXhD6/iHO7Eu4qhr0vfEirsK4cW7nJYmYBFTOUgwu/wmd4b3ZP/6DSes76/GLs3a27qIKwbTKmGy+ZUd+FpoE+jIier3QYNqNpoI/SIZiV5hagdbGs49uiTyD+EwZy/N+b6f3Gk2wc+jKGEss65L3n/YkryZk4eLjQ/YVxxC9aY27ziwwj9O2nzY+1Lo6M/OldMFYsvpO4bAOJy741txdfvEppTj5Xjp+uMsarx09jKNWTn3ahUpvOxZHSGs58akrGsyVbGs8gY/pW/F1hVTXuj6urGOqKJOq7oHNxqpMyeOLu5RxNx82/jfmxxsmBsMVTOLDgC5I+3cqIDW9wz2uP8sucT8z7tBkUQrsH7yN60N/QuTbhwU1vkbn1F7ITTgGQtmEPaRv2mPcfF/cRW8bMoeBM7ZchdOvkTc6R9Fo/7q3IeLZtMqZvzllLnZWYtAVy6Vs0SJlbf8Wr7/UbPXrNfYKC0xdJ+mRLxfdpzy+j06ODaXlfIAA6d2f6vfss+6M+puh8DleTM0lYvI6wJVMV+ZlU67BunN72i9X7FbZLxnTjJYlaNEhndhxE6+yAR1c/2gwKwW9kP/PPVuD6Xaz93q+4izX07ae5dDCFU2t3mfc58tHGa3ey/sGqsTv7tMC1Q2syvou9/c6i0ZAx3XipTFLdQti4rLgkfhj1erWfV7GKUzg/PflOHURVd263itOI6Plyiboeq+l4hoY5pmU83558Ry0arNOb93N6836lw6i2G2dJQtxIxnTjJJe+hRBCCBsmiVoIIYSwYZKohRBCCBsmiVoIIYSwYZKohRBCCBsmd32LRknn7sz9a6Jw69CaL/wfr9Te7qFQuj43Eowm4mb/h0sHU6o8TvjyF2gd0Z0dk/7Bxbgkizav0CDuW/g0Redz2DbhDQD8H4mg69TRlFzK5fS2Xzj2r+9r/8WJBqvP/D/j0dWPMz8dInHpevN2lcaOAR8+j2MzNzJ/PMDR5RtxbtucB75/i7yT5yg4e5k90z+47bi/nRa9O9Nr9hOYjCYyNu3j6L++s2j/fRxZscfoNe9PqFQqzu9N5NDCr+76HDRGMqMWjVJZQTHbJrzJpQNVJ+DAJ4ezJXI2P/1lEUHPjrzpceJm/4fjqzZX2ZZ9JI3vhr5caXvCknVsGTtHkrSoFs/uHTAajPwwOgrPbn44NHMzt7V7oA+Xfk1my9g5NAvugL1nxcLTZ348wJaxc9gz/QPg9uP+dvIzsvghcjabR86i7dB7sXPUWbT/Po78zIv8MOp1No+cRfN7A9A6O97kyOJWJFGLRslUbrhlub+CzItonOzRuTrdspBA8aWrN20ryy/CUFpWaXu3KaMZ9s0cPIJ8qxOyaOSah3Tk/J5EAC7EHsMzuL25zcWnhblQxtWUMzTr3gGANhE9GPHtm7Qf0x+4/bi/neKsKxjLKkpbmgxGc/GO28WhUqspzsqhvLi0xn03ZnLp+y7o84tuWkWmMWoa6IPOxUnpMGpF5vZfeXj7IlRqNT9OfKvWjpvxQxypX8fg3LY5/d5/jq3j59Xase+WjGdLtjaedW5OlCVXlLksLyhG59bE3JZ78hwtQ7twfk8iLfsEknfqHEUXr7C+/3QwwdAvX+fszkOUXqmd6lWtBgSTn3Gh0gfRquLwiwyjx4uPcC4mviK515GCMkjNq7PD35K/a0VhkLoiifouXDl+usZLATZEDWkpwK5TRvNt/xloXZ0IXfhXfvrTwlo5bll+EQAFZy5hMtrW6r0yni3Z2njW5xaZLx1rnB0pTr9eSjJz66+0Du/O/WtmU5KdR8nlPIz6cnN71v7juLTzovRK6h315daprUX5S4CzOw+RuOxbnFp5EDwtkh2TKv+fqCqO83sSSft2LxErX8S9sw9Xk+rmw2BqHjy1t04OfVur+tVt9S5J1EJUwVBaRnmJHlQqNE4OADi2bEpx1pW7Oq6miQPlhSXo3JooUsFI1F+XDqXQPjKMM9sP4HVfF9I3/s/cZjIa2ffqSgDClk7j4oFkNE4OlBeVANCseweSPv6hyuOq7NTo3J0pzb4+Hc09cYYtY+dU2let0xC2eCqxr640H/tGv4/j8uGT1xpMlBcUYyjVV3qOuD35jlo0WvevmY1HVz/uXzMb9wBvHJu7m28cO/nNzzz43QKGrZ3DsWt3toa9/1ylY/Sc8wQdxofTe96fzN8D9pzzBABNu7Qz9zH0y4qZapenH+SB7xYw9ItZxP/f19Z4maKByD58ErVOy4hv3yTnWDoqlco8Xpu0acbwdfMY9s0cMr6PxVCsp0WvAB7aspAHvlvAuZjDFF+8ClQe987eLejxwrg7iqF9ZH/cO7Wl7zuTGb5uHk5eHhb/b34fR+vw7gxfN4/hG96g8Hw2+WkXbtODqIpUz7oLd1MFpyGqq0uFNnGeVSp6z5tE3OxPlI2DBn6ebUhjOc/tHuxDSU4+WbHHFOm/ts5zfLZc+haicTOZbCJJC1HbMjbVv2pcjY0kaiGEEI1S8qwICpNiUWm0qOw0OLTpTOuJC3DtPljp0CzId9RCCCEardYTFxCypoDgT7NoEhDKybdGYyjMVTosC5KohRBCNHpqrT3Nhv4FY0kBJefv7Gds1iKJWgghRKNnLC3m8vZVqJ1ccWjdUelwLNSbRK3X64mKisLb2xtHR0cGDRpEXFwcKpWK6OhopcMTQghRD51bHUX8o+4kPu1LUdph/F//HjsnV6XDslAvbiYzmUyMHz+euLg45s6di7+/P6tXryYyMhKAkJAQhSO8zvfhUAKfegCPIF9Kc/JZ27vyb29F7VDZqek1dxIdxg5ApVaTvmkf+2euqnJ9bVFzcp6tQ947lNH60TfxinxJ6TBuqV7MqFesWMHmzZv58ccfmTx5MoMHD2bFihXY2dnh4eGBj4+P0iGaleYWkvTxFg7+40ulQ2nwgqePwatvV6IHvci6ftNw79SWe1+vfuk+cWtynq1D3jvEzdSLRL1w4UImTpxIUFCQeZudnR1+fn6EhISQnZ3NAw88QEBAAN26dWPMmDFcunRJkVjP70ogLXovhWeU6b8x6fjYYBKXrqfoQg6l2XnEv/s1/hMiUKnrxbCuN+Q8W4e8d4ibsfn/aSkpKaSlpTF27NhKbZmZmYSEhKBSqfj73/9OcnIyiYmJdOjQgVdffVWBaIW16FydcG7TnJyjaeZt2Ylp6FyccPZurmBkDYucZyGUZ/PfUZ89exaAFi1aWGxPSkoiIyODkJAQPDw8iIiIMLfdd999LF++/I77cHFxQa+v/mLxHTRN+btrWLWf11ANHBjByfK7K1pRlarOs+ZaFSF9bpF5mz63EKDBF6cfOFDOszUMHGi989yYDRxYO+fZKSCUDvNjqvWcgAXV2/9mBg6MoCg59rb76XQ68vPzq318m59Re3pWLKCamnr9d20mk4lXXnkFo9FY6UYyo9HI8uXLGTlypFXjFNZVXlBRl1frer1e8G/1ecuutYm7J+dZCOXZ/Iw6MDAQf39/Zs6ciVarxdnZmeXLl3Po0CGcnJwICAiw2H/atGk4OzszderUO+6jJp9wwPYW11fazp0xVitioM8rouDsJTyCfMk7eQ4Az65+6POLKMhs2N/xyXm2Dmue58asts6zkkU5du6MadxFOTQaDWvXruWZZ55h0qRJeHt7M2PGDFxdXTl58iTqG25oeemll0hJSeG7776z2G5NKrUatdYOlUYDKhV29lpMJpNFEXdRO1K+2EHwtEiy9h/HWG6gx4uPkLomBpPRqHRoDYqcZ+uQ9w5xMzafqAG6d+9ObKzl9f9ly5YRHh5ufjxz5kwOHDjApk2bsLe3t3aIZh3GDSBsyfXZ/OPpX1KQeVF+E1kHEpaux97DldEx76NSq0j/fh8HFvxX6bAaHDnP1iHvHeJm6kWi/r3i4mKSk5OZMWMGAEePHuXtt9+mU6dO9O3bFwA/Pz82bNhg9dhSv44h9esYq/fbGJkMRuKiPiYu6mOlQ2nQ5Dxbh7x3iJupl4k6ISEBg8FgvpEsKCgIk8mkcFRCCCFsXcGxPZz5z0ugUtO071hajn7R3FZ4Io7Mf78AJhMuwYNoM3H+Lfe3lnqZqPv06SOJWQghRLXpWran01u7UGt1JM8aSPMRz6K2r/hVg1P7EDovrLgj7UTUYAxFebfc31rqZaIWQgghakLn2dr8d5XaDlTXbzxWabQAmAwGtB6tUds7WRTo+P3+1mLzv6MWQgghalte/HbsW3VArXOw2J7z82qOTg3Erok7KjvNbfe3BknUCvB5oA+D/vOK0mFUW7/3nqPjY0OUDkPYIBnTwtYUnz5G8qwIiz8X1v4DAP3lM1xY+zZtn3y30vM8wh8l6MMkynLOUZyeeNv9rUEStbWpVPR8fSLx732NWqdhVMz7BD8/xmKXsMVTGPLFLABahnbhsZTPcfHzMrc7eLoyIfHf+I3qV61+R0TPp2eUZdUjF18vHkv5nJb3BfJYyud4BPlatHebPoZRO99DrdOQsGQdIS9PQK2Tb0zEDWRMCxvk6NOFgAUxFn+8xr2KsayU9CV/wueZ5dg5Ols8x1hWClT8pt3O0QWVzuGW+1uLJGorazsohPLCEnIS0zDqy9kz/QO6TR9D0y7tAPAZ3ou2Q3uy928fAZAVe4wTq3fQf8k0c7Wi0EWTubDnCGnRVS/DMy7uI5zb/q5ggsnEnukf0GniEFr8tgqQSkXYkikkf7aNrH3HSViyjrCl01BrK9603Dv7EDwtkt1Tl2LUl5OfkUXeqXP4PhRaB2dG1FcypkV9kvPzakoyj5GxfDLJsyLQZ5+l7MoFLqxfRG7cxorZ92sD0Hq2xaF1xyr3tzZJ1FbmPbwX5/ceMT/OTjjF0eUb6b90Gk6tPAhd9Az7Z66iOOv6IvUH316NfVNnuj43Ev9HImge0pHY11ZWu+/8jCwOLPiCsMVT0DjaEzT5YXQuThxcWFH/NvHDaMoKigl5eQIqjR39l04lcdkGco6mm49xbnci3sN61fwEiAZHxrSoT5oNeZLgT86ZZ9k6zzZom3rhNeZlmvYbX7H97V20mTj/pvtbm1zvsTKPIF9SVu+w2HZ48TraDr2XkdsXcb6KWYWhRM/uaR8wbN1cTOUGfn52MfqrBTXqP/mzbXgP68WA5TPwCu3CljFzri9ReG2G8vC2d3Dx88JQWkbiB99aPD/3RCb+48MrH1g0WjKmhahbMqO2Mns3Z8ryLasOmcoNXPolGQdPN1LX7KzyeVdTzlCWV4Q+v4hzuxLuKoa9L3xIq7CuHFu5yWJmARUzlIMLv8JneG92T/+g0nrO+vxi7N2V+Z5G2CYZ00LULZlRW1lpbgFaF8s6vi36BOI/YSDH/72Z3m88ycahL2MosayP3Xven7iSnImDhwvdXxhH/KI15ja/yDBC337a/Fjr4sjIn94FY8WiMInLNpC47Ftze/HFq5Tm5HPl+OkqY7x6/DSGUj35aRcqtelcHCmt4cynppoG+jAier5V+7RlTQN9lA7Bgozp6pHxbKm2xrO/K6yqxr2Itcnf9fb73A1J1FaWczQdN//r33FonBwIWzyFAwu+IOnTrYzY8Ab3vPYov8z5xLxPm0EhtHvwPqIH/Q2daxMe3PQWmVt/ITvhFABpG/aQtmGPef9xcR+xZcwcCs7UfhlCt07e5BxJr/Xj3orOxalOyg2K2iFjunpkPNcNZy11WmpSSXLp28oyt/6KV9+u5se95j5BwemLJH2ypeL7tOeX0enRwbS8LxAAnbsz/d59lv1RH1N0PoeryZkkLF5H2JKpivykpHVYN05v+8Xq/QrbJWNaiLolidrKzuw4iNbZAY+ufrQZFILfyH7mn63A9btY+71fcRdr6NtPc+lgCqfW7jLvc+SjjdfuZP2DVWN39mmBa4fWZHwXe/udRaMhY1qIuqUySXWLGsuKS+KHUa9X+3k+D/TBf3w4Pz35Th1EVXf6vfccFw+cIOWLH6tsHxE9Xy7p1WM1Hc/QMMe0jGdhK+Q7agWc3ryf05v3Kx1Gtd04SxLiRjKmhag7culbCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGFy17eCdO7O3L8mCrcOrfnC//FK7Z0eH4rvw31R26nZOuENAAZ8+DyOzdzI/PEAR5dvrFG/XZ5+kLZD7mXbtWPeqM/8P+PR1Y8zPx0icel62gzsQbepkUBFicBtj8yrtJayEL/Xondnes1+ApPRRMamfRz913cW7YM/fRWtiyPGciM/P/Meajs7wv/5AgBOrT1J+vgHjq3cVOm4t/s/E7ZkKi6+LTGUVpTbLLqQg4uvF/e99RfUOi3HVnxP5rZf6+ZFC1FHJFErqKygmG0T3iTiX3+r1NakTTOaXkuMv/Ed2ZdLvyZzbOUmwpe/gL2nK6XZedXqU6WxwyPIt8o2z+4dMBqM/DA6ioiVL+LQzI2zO+M5uzMegId++IckaXFH8jOy+CFyNsaycoatnUvSZ1sxFF9f6/unvyzCVG6g/bgBtI/sz/F/b2bL2DkADPhoBmd2HKzyuLf6PwMQv2gNBWcu0SqsG52fHM7Bt1fT48Xx/PzM++jzimr/hQphBXLpW0GmcsNNS/u1Du+OxsmeYd/MoceLjwDg4tPCXHTgasoZmnXvUO0+O4wL59S3e6psax7SkfN7EgG4EHsMz+D25rZmPfy5fPhktfsTjVNx1hWMZRWlJk0Go7mYxm9M5QYA7Ox1XE05Y96u0tjh4tOCvFPnqzzurf7PAOa1wE0GIyaTCbVWQ5PWzQhbOo1B/3kFh2Zud/W6hFCCzKhtlEMzNzDB1vHzCFsyFY8gX3JPnqNlaBfO70mkZZ9A8k6dq95BVSraRHTn52fep+uzoyo169ycKEuuKFdYXlCMzq2Juc17eC8yt8p6yKJ6Wg0IJj/jAobSMovtOndnhnz2GlpnB7Y/tsC83atvEBf+d/TuOlWp6Pb8GGL//i/sPVxw7+zN+r7T8AjyJXh6JHGzP7m749uIgjJIrd4FtVrl71pRCEPUPUnUNqosr4gLsRVvWFn7jlWsR/z9PlqHd+f+NbMpyc6j5HLV/0vdOrW1KBEIcHbnIfLSLtzy+zl9bhFa54pyhRpnR4rTr5cEbNW3K4ff/eZuX5ZoRJxaeRA8LZIdkxZWatNfLWDzyFl4D+tFl78+xK/zPgPA5/6enNpQ9RWfOxXyyh9I+3YvBacvonG058rx0+hzC8naf5yuU0bf1bFtSWoePLVXuf5X9Wu41apsjSRqG3XxQDLtI/sDFfVaT23Yi8loZN+rKwEIWzqNiweSUdmp0bk7W3xXnXvijPn7vhsFPz8Gr9AgOowbgEdXXzo+OpiU1TvM7ZcOpdA+Mowz2w/gdV8X0jf+D6goXFB4Ptt8KVOI21HrNIQtnkrsqyspLyqxbFSpUKlVmAxGyvKKLGbbze7pyP6o/5gfO7ZsSnHWlTvut92DfbB3d+bQV18CUF5ciqG0DLVOg3vHthRkXry7FyaEAuQ7aoXdv2Y2Hl39uH/NbFr07kzQsyMByElMQ61RM3zdPOwc7bl8KIUmbZoxfN08hn0zh4zvYzEU63H2bkGPF8bdUV8JS9az7Q9vsv3RBeQcSSdl9Q4cm7ub+8w+fBK1TsuIb98k51g6JZdzAfAZ3lsue4tqaR/ZH/dOben7zmSGr5uHk5cHHkG+tB83wHzvxbC1c+k2bTRJ//4BAI+uflw5lgHX6gSp7NT0fWdypWPf+H/GPcDbYgz3mvsnPLr4MnzdPIKfHwPA0X9uZNg3c+j95pMc+TDaSmdAiNoj1bPuwt1UG6ot7R7sQ0lOPlmxxxSNA6TaUH1nC+P5Rp7B7XEP8ObkNz8r0r+tj+f4bLn03VjIpe96LmNT/atYJMSdyE44RXbCKaXDEEJxkqiFEKIRSZ4VQWFSLCqNFpWdBoc2nWk9cQGu3QcrHZq4CfmOWgghGpnWExcQsqaA4E+zaBIQysm3RmMozFU6LHETkqiFEKKRUmvtaTb0LxhLCig5n6p0OOImJFELIUQjZSwt5vL2VaidXHFo3VHpcMRN1JtErdfriYqKwtvbG0dHRwYNGkRcXBwqlYroaPnJhRBC3Klzq6OIf9SdxKd9KUo7jP/r32Pn5Kp0WOIm6sXNZCaTifHjxxMXF8fcuXPx9/dn9erVREZWVHUKCQlROEJLKjs1veZOosPYAajUatI37WP/zFWVllEUwtb5PhxK4FMP4BHkS2lOPmt7P6d0SKIWtH70TbwiX1I6DHGH6kWiXrFiBZs3byY+Pp6goCAAIiIi8PPzw8PDAx8fH4UjtBQ8fQxefbsSPehFDGXlDP7kFe59/XHioj5WOjQhqqU0t5Ckj7fg0NyNoL8+pHQ4QjRK9eLS98KFC5k4caI5SQPY2dnh5+dnnk2PHj2a7t27ExISQv/+/YmPj1coWuj42GASl66n6EIOpdl5xL/7Nf4TIlCp68XpFsLs/K4E0qL3UnitKpUQwvpsPnOkpKSQlpbG2LFjK7VlZmaaE/Wnn37K4cOHOXToEC+99BJ//vOfrR0qADpXJ5zbNCfnaJp5W3ZiGjoXJ5y9mysSkxBCiPrL5i99nz17FoAWLVpYbE9KSiIjI8OcqN3crteZzc3NRV2N2auLiwt6vf72O/5OB01T/u4aZrFNc636lD73epF6fW4hgLkyVUM1cGAEJ8vvvICCsC1VjefGbOBA2x7PTgGhdJgfU+3nBSyo/nOqMnBgBEXJsbVyrMZCp9ORn59f7efZfKL29KxYTDY1NZXevXsDFTeXvfLKKxiNRosbyZ566im2bduGyWRiy5YtisRbXlBRz1nr6kTxpasA5rrOZdfahBBCiDtl84k6MDAQf39/Zs6ciVarxdnZmeXLl3Po0CGcnJwICAgw77tq1SoAPv/8c15++WU2b958R33U5BMOVF3EQJ9XRMHZS3gE+ZJ38hwAnl390OcXUZDZsL/n27kzxqaLGIhbs7WiHEqz9fGsdFGOnTtjpCiHldj8d9QajYa1a9fSqlUrJk2axIwZMxgxYgTh4eEEBwdXeYn78ccfZ+fOnWRnZysQMaR8sYPgaZE4tmyKvacrPV58hNQ1MZiMRkXiEaKmVGo1dvZaVBoNqFTY2WtR62z+870QDUq9+B/XvXt3YmMtvwtZtmwZ4eHhABQUFHDlyhW8vb0B+O677/Dw8MDDw8PqsQIkLF2PvYcro2PeR6VWkf79Pg4s+K8isQhxNzqMG0DYkqnmx4+nf0lB5kX5PbUQVlQvEvXvFRcXk5yczIwZMwAoLCxk/PjxFBYWYmdnh4eHB9999x0qlUqR+EwGI3FRH8vvpkW9l/p1DKlfxygdhhCNWr1M1AkJCRgMBvONZC1btmTfvn0KRyWEEELUvnqZqPv06YPJZFI6DCGEqDdOr5hGcVo8rveMoNX4mebtxtJiTi4ci7GkEPuW7fF9/j9VbhPKsfmbyYQQQtydwpRfUak1BLy9m6KTBym7mmVuy4vfhnNgGAFv/YxKo6U440iV24RyJFELIUQDV3hiPy7BgwBw6RpOUeoBc5uupR/GkopFmQwlBdg5uVW5TShHErUQQjRwhsKr5jKWakcXDIVXzW0OrfwpOLabo1MCUaFC19y7ym1COfXyO2ohhBCVFZ8+xul/Wf50zi1kOHZN3DEU5QFgLM5H69XB3J7906c0DZtAiwenkLnyeQqO/4/i9MOVtjkH9rXqaxHXSaIWQogGwtGnS5VreRem/ELOri9x7/0w+Ud30TTsEXObyWhE41Kx5oSdiweGwqtVbhPKkUvfQgjRwDXp2AtTWSnJr/XHya87WveWlF25wIX1i/AIf5TLO/5D8qwIik/F49pjaJXbhHJkRi2EEI2AzzMfWjzWNvXCa8zLAHSat82iTePctNI2oRyZUQshhBA2TGWSlUNqTJ9fxJXjp5UOw2Y0DfRB5+KkdBiihmQ8W7L18VxQBql5yvXv7wrOWuX6b0wkUQshhBA2TC59CyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhw6Qe9V2QakOWbL3akLg1Gc+WbH08S/WsxkMS9V24cvw0P4x6XekwbMaI6Pm07N1Z6TBEDcl4tmTr4zk1D57aq1z/q/pBD0/l+m9M5NK3EEIIYcMkUQshhBA2TBK1EEIIYcMkUQshhBA2TG4mE0KIRiR5VgSFSbGoNFpUdhoc2nSm9cQFuHYfrHRo4iZkRi2EEI1M64kLCFlTQPCnWTQJCOXkW6MxFOYqHZa4CUnUQgjRSKm19jQb+heMJQWUnE9VOhxxE5KohRCikTKWFnN5+yrUTq44tO6odDjiJupFotbr9URFReHt7Y2joyODBg0iLi4OlUpFdHS00uEJIUS9cm51FPGPupP4tC9FaYfxf/177JxclQ5L3ITN30xmMpkYP348cXFxzJ07F39/f1avXk1kZCQAISEhCkdoyffhUAKfegCPIF9Kc/JZ2/s5pUMSosZkPDdMrR99E6/Il5QOQ9whm0/UK1asYPPmzcTHxxMUFARAREQEfn5+eHh44OPjo3CElkpzC0n6eAsOzd0I+utDSocjxF2R8SyE8mz+0vfChQuZOHGiOUkD2NnZ4efnV2k2PW/ePFQqFUeOHLF2mGbndyWQFr2XwjOXFItBiNoi41kI5dl0ok5JSSEtLY2xY8dWasvMzLRI1AcPHmTfvn20a9fOmiEKIYQQdcqmL32fPXsWgBYtWlhsT0pKIiMjw5yoS0tLmTJlCl9++SURERHV7sfFxQW9Xl/t53XQNOXvrmHVfl5DNXBgBCfLrygdhqghGc+WBg607fHsFBBKh/kx1X5ewILqP6cqAwdGUJQcWyvHaix0Oh35+fnVfp5Nz6g9PStqqKWmXv99n8lk4pVXXsFoNJoT9ezZs5k4cSK+vr5KhCmEEELUGZueUQcGBuLv78/MmTPRarU4OzuzfPlyDh06hJOTEwEBAcTGxvLrr7/yj3/8o8b91OQTDkBWXJLU773Bzp0xNl2/V9yajGdLtj6e47OVrUe9c2eM1KO2EpueUWs0GtauXUurVq2YNGkSM2bMYMSIEYSHhxMcHIxarebnn3/m+PHj+Pn54evry5kzZxg2bBjbtm1TJGaVWo2dvRaVRgMqFXb2WtQ6m/48JMRNyXgWQnk2/z+ue/fuxMZafg+ybNkywsPDAXj11Vd59dVXzW2+vr58//33dO3a1apx/qbDuAGELZlqfvx4+pcUZF6U35+KeknGsxDKs/lE/XvFxcUkJyczY8YMpUOpUurXMaR+HaN0GELUChnPQijPpi99VyUhIQGDwXDTFcnS09MVm00LIYStKM/P4fjf7uXQBOdKbUVph0l6pR/Jswaiv5QJQMn5VFLmDid51kCu7t9o7XDFLdS7GXWfPn0wmUxKhyGEEDbNztGFjvO2c+qdRyq1nV/zBh1e20DZlfNcWL8Qn8nLOP/VPPxe+gqNs7v1gxW3VO8StRBCiNtTabRoXDyqbDOWFKJ1b4HWvQWl51MxlunRX84kffEToFLRbsoKtO4trRyxuJl6d+lbCCHE3TGZjBZ/L8+7THHGEXxnfErLh2dwYe3bCkYnfk8StQJ8HujDoP+8onQY1dbvvefo+NgQpcMQNkjGdP2iUqkt/m7XxA3Hdt3QODfFOag/JWeTFYxO/J4kamtTqej5+kTi3/satU7DqJj3CX5+jMUuYYunMOSLWQC0DO3CYymf4+LnZW538HRlQuK/8RvVr1r9joieT8+oxy02u/h68VjK57S8L5DHUj7HI8jXor3b9DGM2vkeap2GhCXrCHl5gvyOVliSMV3vqO2dKMu9RFF6Avat/LFzaIJa54CxrJTijCPoWvgqHaK4gSRqK2s7KITywhJyEtMw6svZM/0Duk0fQ9MuFcVEfIb3ou3Qnuz920cAZMUe48TqHfRfMg2VuuKfK3TRZC7sOUJadNXLEo2L+wjnts0tN5pM7Jn+AZ0mDqHFb6stqVSELZlC8mfbyNp3nIQl6whbOg21tuJNy72zD8HTItk9dSlGfTn5GVnknTqH70OhdXBmRH0lY9p2nYgaQlHaIU5EDaHg2B4urF8EQKsJUZx8azSZK6fjNebvALQc9SInogaTuep58zZhGyRRW5n38F6c33u9DGd2wimOLt9I/6XTcGrlQeiiZ9g/cxXFWdeLARx8ezX2TZ3p+txI/B+JoHlIR2JfW1ntvvMzsjiw4AvCFk9B42hP0OSH0bk4cXDhlwAkfhhNWUExIS9PQKWxo//SqSQu20DO0XTzMc7tTsR7WK+anwDR4MiYtl2d3vyRHv/NptObP+LcJQyvMS8D4NQ+hM4L9xKwIAZdcx8AXHsMofM/9hDw1s/Yt/RTMmzxO43reo8N8AjyJWX1Dotthxevo+3Qexm5fRHnq5hVGEr07J72AcPWzcVUbuDnZxejv1pQo/6TP9uG97BeDFg+A6/QLmwZMwejvryi8doM5eFt7+Di54WhtIzED761eH7uiUz8x4fXqG/RMMmYFqJuyYzayuzdnCnLL7bYZio3cOmXZBw83Uhds7PK511NOUNZXhH6/CLO7Uq4qxj2vvAhrcK6cmzlJouZBVTMUA4u/Aqf4b3ZPf0DTEajRbs+vxh798oLKIjGS8a0EHVLZtRWVppbgNbF0WJbiz6B+E8YyPF/b6b3G0+ycejLGEos62P3nvcnriRn4uDhQvcXxhG/aI25zS8yjNC3nzY/1ro4MvKnd8FYsTBM4rINJC771txefPEqpTn5XDl+usoYrx4/jaFUT37ahUptOhdHSms48xENk4xpZfi7wqpq3HtXF/0L65BEbWU5R9Nx829jfqxxciBs8RQOLPiCpE+3MmLDG9zz2qP8MucT8z5tBoXQ7sH7iB70N3SuTXhw01tkbv2F7IRTAKRt2EPahj3m/cfFfcSWMXMoOHOp1uN36+RNzpH0Wj+uqL9kTCvDWYuUmWwk5NK3lWVu/RWvvtfXIu819wkKTl8k6ZMtFd+nPb+MTo8OpuV9gQDo3J3p9+6z7I/6mKLzOVxNziRh8TrClkxV5CclrcO6cXrbL1bvV9guGdNC1C1J1FZ2ZsdBtM4OeHT1o82gEPxG9jP/bAWu38Xa7/2Ku1hD336aSwdTOLV2l3mfIx9tvHYn6x+sGruzTwtcO7Qm47vY2+8sGg0Z00LULZVJKlzUWFZcEj+Mer3az/N5oA/+48P56cl36iCqutPvvee4eOAEKV/8WGX7iOj5tPzt96yi3qnpeIaGOaZlPAtbId9RK+D05v2c3rxf6TCq7cZZkhA3kjEtRN2RS99CCCGEDZNELYQQQtgwSdRCCCGEDZNELYQQQtgwSdRCCCGEDZNEbQP6zP8zI759k27Tx1RqC3zqAR78/i1GRL+Ji29F/V7/RyIYET2fAR8+j0pjZ97XZ3gvxuz9oMZ99Zz9BH848m/aj+1v3jZs7VyGr5vH8HXzcOvUtqYvUQghRA3Jz7MU5tm9A0aDkR9GRxGx8kUcmrlRcjnX3N5+dBibHppJ854BBDxxPwfe+oL2Ywfww6jXCXzqAXyG9SJj0z4A2j14H4XnLte4ryMfRXM1yXKtZJPByNYJb9TyqxYNVYvenek1+wlMRhMZm/Zx9F/fAdBmYA+6TY0EKmpCb3tkHleSMxnw4fM4NnMj88cDHF2+sdr9NevhT695f0KlUnF+byKHFn5lbrNz0DFw1UtonOzJz8hi7wsVP8Xq9PhQfB/ui9pOzdYJb2AqN9TCKxei7siMWmHNQzpyfk8iABdij+EZ3N6ivfBcNnb2WnSuTpReLcCtfStyjqUDcH7PEZqF+APg1a8rWXFJmIw3X7/mdn3dmLTNVCqGr5tH3/97Bjt7bU1fpmgk8jOy+CFyNptHzqLt0Huxc9QBcHZnPFvGzmHL2DkUnM4i52g67R7ow6Vfk9kydg7Ngjtg71n9Kg/ZR9L4YdTrbB45i+b3BqB1vl4cpHV4d7LikirKXpYbcA/wpkmbZjS99kFhy9g5kqRFvSAzaoXp3JwoS64oEVheUIzOrYlFe1bccUbvWoxKpWLTw7Nw8WlhLil44/4d/ziI/724HN+HQmvcV1Vinv4/9LmFBE1+mI5/HFyxfrOV6fOLbloVqTFqGuiDzsVJ6TCqVJx1xfx3k8Fornb1m2Y9/Ll8+CQALj4tuBxf8ferKWdo1r0DZ386VK3+fku0KrWa4qwcyotLzW0Fpy+aP8hqnRzQ5xfRJqIHGid7hn0zh6x9x4l/9+vqv8i7JOPZUm2M54IySM2rpYBqyN+1olBKXZBErTB9bpF5FqBxdqQ4/XoZPq2zI+0evI/1fafRNLAdPV56hOMrN5lLCmqcHdHnFuLZvQNXT5zBUFpW475u/pxCAE5v+4Wgvz5Uo9d4t64cP13jpS0bovqwtGWrAcHkZ1yoNCa9h/cic2tFAYzck+doGdqF83sSadknkLxT52rUl19kGD1efIRzMfEVHw6uyUs/T8s+gYzetZjsxDSKzmXj0MwNTLB1/DzClkzFI8i3Uv3quibj2VJtjOfUPHhqby0FVEOr+tVdNTO59K2wS4dSaNWvovKQ131dzGX+AEwmE+VFpZgMRkqv5qNzbUJe2gU8AtsB0KpfVy4fSqVpgDetBwQzdPUsPLr6Evx8xY1iji2b3nFfN6Np4gBAi54B5J++ePcvWDR4Tq08CJ4WyS9zP6vU1qpvV87vOQJUVN1y8HTl/jWzKcnOo+Ry1VMit05tzTc0/van29TR5va0DXvY0P95HL08cO/sY97uPz6C9Oj/8e2AGZTm5NG8ZwBleUVciD0KQNa+Y7h2aF2Lr1yIuiEzaoVlHz6J/4SBjPj2Tc7GxFNyORePIF/cA304tXYXl35NZkT0fNR2ava//jHGsnJOfbuXEdHzKTqXze7pH2AsKyf16xgA7l8zm4Ql61HZqen7zmR2TPrHHfcV9OxI/CcMBJMJh2ZuHPvX9wz7eg7GsnL0uYXsmrpUobMk6gu1TkPY4qnEvrqS8qISizZnnxYUns/GWFYOgMloZN+rKwEIWzqNiweSUdmp0bk7U5p9PWnnnjjDlrFzbtqfUV8OJhPlBcUYSvXmNpVaTenVfABKrxSgc3Xi4oFk2kdW/KqhaaAPpzYoPA0T4g5IorYB+2eusnicczTdfDnu8PtrOfz+Wov21K9+IvWrn6o81rZrd2h7BPmS/n3l0n236uvo8o2V7rzd9OBrd/w6hGgf2R/3Tm3p+85kAHZNWYJfZBhHl2/EZ3hv82VvgCZtmtF/6TRMRiPHVm7CUKzHxdeLLk89wP7XP76j/rzv70Xgk8NBrSJr3zHKC0oIenYkR5dv5NSG3YT/628EPH4/pbkFJCxdj6ncgP/4cIavm0fuqXNcPpRSJ+dBiNokibqByk44dUeXtoWoTalrdpK6ZqfFtt8+/B1b8b3F9sKzlyvNlD2C2pF+7eeGdyLj+1gyfveB9Lf+9LmFbP/Dm5WeEzf7kzs+vhC2QBK1EMJmZGyqf6UyRf2VPCuCwqRYVBotKjsNDm0603riAly7D1Y6NAtyM5kQQohGq/XEBYSsKSD40yyaBIRy8q3RGAqrWFNCQZKohRBCNHpqrT3Nhv4FY0kBJedTlQ7HgiRqIYQQjZ6xtJjL21ehdnLFoXVHpcOxUG8StV6vJyoqCm9vbxwdHRk0aBBxcXGoVCqio6OVDk8IIUQ9dG51FPGPupP4tC9FaYfxf/177Jyqv5xtXaoXN5OZTCbGjx9PXFwcc+fOxd/fn9WrVxMZWbHIf0hIiMIRWlLZqek1dxIdxg5ApVaTvmkf+2euuu3KYeLO+T4cSuBTD+AR5EtpTj5rez+ndEgNloxn65DzrIzWj76JV+RLSodxS/ViRr1ixQo2b97Mjz/+yOTJkxk8eDArVqzAzs4ODw8PfHx8bn8QKwqePgavvl2JHvQi6/pNw71TW+59/XGlw2pQSnMLSfp4Cwf/8aXSoTR4Mp6tQ86zuJl6kagXLlzIxIkTCQoKMm+zs7PDz8/PPJv29fWlc+fO9OjRgx49erB161alwqXjY4NJXLqeogs5lGbnEf/u1/hPiEClrhenu144vyuBtOi9FJ65pHQoDZ6MZ+uQ8yxuxuZHQEpKCmlpaYwdO7ZSW2ZmpsVl77Vr1xIfH098fDzDhg2zZphmOlcnnNs0J+domnlbdmIaOhcnnL2bKxKTEDUl49k65DyLW7H576jPnj0LQIsWLSy2JyUlkZGRUSvfT7u4uKDX62+/4+900DTl765hFts016pT6XOLzNt+q0B1Y63chmjgwAhOll+53W7VVtV5bswGDrTeeZbxLOe5rg0cePfn2SkglA7zY6r9vIAF1X/OzQwcGEFRcuVlm2+k0+nIz8+v9rFtfkbt6VlRNyw19frv2kwmE6+88gpGo9EiUT/22GMEBwfz3HPPcfXqVWuHClTUeQbQul6vr/pb3eeya21C1Bcynq1DzrO4FZufUQcGBuLv78/MmTPRarU4OzuzfPlyDh06hJOTEwEBAQDs3r0bb29vSktLmTFjBlOnTuW///3vHfVRk084AFlxSZXqyurziig4ewmPIF/yTlbU1/Xs6oc+v4iCzIb9ferOnTF1Uie5qvPcmFnzPMt4lvNc12rjPMdnK1+PeufOmMZbj1qj0bB27VpatWrFpEmTmDFjBiNGjCA8PJzg4GDU12608Pb2BsDe3p7nnnuOvXuV+1dL+WIHwdMicWzZFHtPV3q8+Aipa2IwGY23f7K4Iyq1Gjt7LSqNBlQq7Oy1qHU2/7mzXpLxbB1ynsXN1It3tu7duxMba3ntf9myZYSHhwNQWFhIeXk5bm5umEwmvvrqK3r06KFApBUSlq7H3sOV0THvo1KrSP9+HwcW3NnsXtyZDuMGELZkqvnx4+lfUpB5UX5PXQdkPFuHnGdxM/UiUf9ecXExycnJzJgxA4CsrCzGjh2LwWDAYDDQpUsXPvroI8XiMxmMxEV9TFzUndXUFdWX+nUMqV/HKB1GoyDj2TrkPIubqZeJOiEhAYPBYL6RrH379hw6dEjhqIQQQojaVy8TdZ8+fTCZTEqHIYQQoh45vWIaxWnxuN4zglbjZ1Zqz9q4mNxfvqfTmz+Se3ALF9b9A4DijEQ6vbEDXXMfUuYMpeRsMiFrCqwWt83fTCaEEELcrcKUX1GpNQS8vZuikwcpu5pl0W4qL6M4Ld782O2e4QQsiKHT/J3Yt2yPo1937Bxd6DhvO0063WfV2CVRCyGEaPAKT+zHJXgQAC5dwylKPWDRnh3zOU37/7HS84pSfsHJvycqlQqVRovGxcMq8d5IErVosHwe6MOg/7yidBjV1u+95+j42BClwxA2SMZ0zRkKr5rLV6odXTAUXjW3mYxG8g5uxe2eyktPX90fjXufUdYKs0qSqEXDpFLR8/WJxL/3NWqdhlEx7xP8/BiLXcIWT2HIF7MAaBnahcdSPsfFz8vc7uDpyoTEf+M3ql+1+h0RPZ+eUZZVj1x8vXgs5XNa3hfIYymf4xHka9HebfoYRu18D7VOQ8KSdYS8PEF+Fy4syZi+I8Wnj5E8K8Liz4W1/8CuiTuGojwAjMX52DVxNz/naux63HqPrPJ4+Yk7cek2qM7jvhVJ1KJBajsohPLCEnIS0zDqy9kz/QO6TR9D0y7tAPAZ3ou2Q3uy928VP+PLij3GidU76L9kmrlaUeiiyVzYc4S06KoXzxkX9xHObX9XMMFkYs/0D+g0cQgtflttSaUibMkUkj/bRta+4yQsWUfY0mmotRVvWu6dfQieFsnuqUsx6svJz8gi79Q5fB8KrYMzI+orGdN3xtGnCwELYiz+eI17lSadepOfuBOA/KO7cPK/1/yckrPJZP/0CSlzh1OUFs/lbasAKL1wCl2ztqi1ujqP+1YkUYsGyXt4L87vPWJ+nJ1wiqPLN9J/6TScWnkQuugZ9s9cRXHW9WIAB99ejX1TZ7o+NxL/RyJoHtKR2NdWVrvv/IwsDiz4grDFU9A42hM0+WF0Lk4cXFhROzvxw2jKCooJeXkCKo0d/ZdOJXHZBnKOppuPcW53It7DetX8BIgGR8b03WnSsRemslKSX+uPk193tO4tKbtygQvrF9HqkVl0emM7HeduwcmvB83ufwqouOzt1tvysveJqCEUpR3iRNQQijOOVNVVrZNra6JB8gjyJWX1Dotthxevo+3Qexm5fRHnq5hVGEr07J72AcPWzcVUbuDnZxejv1qzn2Akf7YN72G9GLB8Bl6hXdgyZg5GfXlF47UZysPb3sHFzwtDaRmJH3xr8fzcE5n4jw+vUd+iYZIxffd8nvnQ4rG2qRdeY1622NbpzR/Nf2856oVKx7ix3VpkRi0aJHs3Z8ryLasOmcoNXPolGQdPN1LX7KzyeVdTzlCWV4Q+v4hzuxLuKoa9L3xIq7CuHFu5yWJmARUzlIMLv8JneG92T/+g0nrO+vxi7N2d76p/0bDImG68ZEZ9F5oG+jAier7SYdiMpoE+SodgVppbgNbFso5viz6B+E8YyPF/b6b3G0+ycejLGEos65D3nvcnriRn4uDhQvcXxhG/aI25zS8yjNC3nzY/1ro4MvKnd8FYsfhO4rINJC771txefPEqpTn5XDl+usoYrx4/jaFUT37ahUptOhdHSms486kpGc+WbGk8g4zpW/F3hVXVuD+urmKoK5Ko74LOxalOyuCJu5dzNB03/zbmxxonB8IWT+HAgi9I+nQrIza8wT2vPcovcz4x79NmUAjtHryP6EF/Q+fahAc3vUXm1l/ITjgFQNqGPaRt2GPef1zcR2wZM4eCM7VfhtCtkzc5R9Jr/bi3IuPZtsmYvjlnLXVWYtIWyKVv0SBlbv0Vr75dzY97zX2CgtMXSfpkS8X3ac8vo9Ojg2l5XyAAOndn+r37LPujPqbofA5XkzNJWLyOsCVTFfmZVOuwbpze9ovV+xW2S8Z04yWJWjRIZ3YcROvsgEdXP9oMCsFvZD/zz1bg+l2s/d6vuIs19O2nuXQwhVNrd5n3OfLRxmt3sv7BqrE7+7TAtUNrMr6Lvf3OotGQMd14qUxS3ULYuKy4JH4Y9Xq1n+fzQB/8x4fz05Pv1EFUdaffe89x8cAJUr6o+u7SEdHz5RJ1PVbT8QwNc0zLeL49+Y5aNFinN+/n9Ob9SodRbTfOkoS4kYzpxkkufQshhBA2TBK1EEIIYcMkUQshhBA2TBK1EEIIYcMkUQshhBA2TBK1aJR07s48tHUhj6V+XmV7u4dCeXDz2zz4/Vs0v6fjTY8TvvwF/nj8k+vl/27gFRrE6F2LuX/NbPM2/0ciGL1rMcPXzaPL5Ifu/oUIIRo8+XmWaJTKCorZNuFNIv71tyrbA58czpbI2ejcnekz/8/EPP1ulfvFzf4PAU/cX2Vb9pE0vhv6MoM/e81ie8KSdZxat/vuXoBolPrM/zMeXf0489MhEpeuN29XaewY8OHzODZzI/PHAxxdvhHnts154Pu3yDt5joKzl9kz/QN07s7cvyYKtw6t+cL/8Wr336J3Z3rNfgKT0UTGpn0c/dd3Fu2/jyMr9hi95v0JlUrF+b2JHFr41V2fg8ZIZtSiUTKVG25Z7q8g8yIaJ3t0rk63LCRQfOnqTdvK8oswlJZV2t5tymiGfTMHjyDf6oQsGjnP7h0wGoz8MDoKz25+ODRzM7e1e6APl35NZsvYOTQL7oC9Z0WFiDM/HmDL2Dnsmf4BcP0D6qUDKTWKIT8jix8iZ7N55CzaDr0XO0edRfvv48jPvMgPo15n88hZNL83AK2z402OLG5FZtR3QZ9fdNMqMo1R00AfdC5OSodRKzK3/8rD2xehUqv5ceJbtXbcjB/iSP06Bue2zen3/nNsHT+v1o59t2Q8W7K18dw8pCPn9yQCcCH2GJ7B7Tn70yEAXHxacDn+JFBR1rJZ9w7knjhDm4gejPj2TZI/28ap9btv+wH1doqzrpj/bjIYzVW2flNVHGd/OoRKraY4K4fy4tIa9307BWWQmldnh78lf9eKwiB1RRL1Xbhy/HSNlwJsiBrSUoBdp4zm2/4z0Lo6Ebrwr/z0p4W1ctyy/CIACs5cwmS0rdV7ZTxbsrXxrHNzoiy5oh51eUExOrcm5rbck+doGdqF83sSadknkLxT5yi6eIX1/aeDCYZ++Tpndx6i9ErtlJlsNSCY/IwLla4YVRWHX2QYPV58hHMx8RXJvY6k5sFTe+vs8Le0ql/dVu+SRC1EFQylZZSX6EGlQuPkAIBjy6YWM4qa0DRxoLywBJ1bE0UqGIn6S59bZL50rHF2pDj9es3nzK2/0jq8O/evmU1Jdh4ll/Mw6svN7Vn7j+PSzovSK6l31Jdbp7YWdaoBzu48ROKyb3Fq5UHwtEh2TKr84bWqOM7vSSTt271ErHwR984+XE2SqzbVJe8UotG6f81sPLr6cf+a2cTN/g+lOfm0HzeAo8s3cvKbn3nwuwWgVnH43W8ACHv/ObY/usDiGD3nPEG7EX1oO+Qejq3cxKn1u+k55wl+nfcZTbu0o9ecSXh09WPol6+z/Y/z6fL0g7QdfA8qlYoDb69W4mWLeurSoRTaR4ZxZvsBvO7rQvrG/5nbTEYj+15dCUDY0mlcPJCMxsmB8qISAJp170DSxz9UeVyVnRqduzOl2devG+eeOMOWsXMq7avWaQhbPJXYV1eaj32j38dx+fDJaw0myguKMZTqa/biGzlJ1KLR2jbhjUrbji7fCEDK6h2krN5xvUGlIjf1bKX9f533Gb/O+6zSNoArxzIq9ZGweB0Ji9fdbeiiEco+fBL/CQMZ8e2bnI2JR6VSEfTsSI4u30iTNs3ov3QaJqORYys3YSjW0zq8O/e89ijGsnIyvt9H8cWrQOUPqIbSMro89QD7X//4tjG0j+yPe6e29H1nMgC7pizBZDCaP+D+Po7W4d0JfHI4qFVk7TtGftqF2/QgqiKJWog7YTIRN/sTpaMQjdz+massHv/2wbLw7OVKM+BzPx/m3M+HKx3j9x8e2z3Yh/RN++6o/9Q1O0lds7PS9lvFkfG91KC+W5KohRCiEcvYVP/KZjY2kqiFEEI0SsmzIihMikWl0aKy0+DQpjOtJy7AtftgpUOzIAueCCGEaLRaT1xAyJoCgj/NoklAKCffGo2hMFfpsCxIohZCCNHoqbX2NBv6F4wlBZScv7OfsVlLvUnUer2eqKgovL29cXR0ZNCgQcTFxaFSqYiOjlY6PCGEEPWYsbSYy9tXoXZyxaH1zQvxKKFefEdtMpkYP348cXFxzJ07F39/f1avXk1kZCQAISEhCkd4ne/DoQQ+9QAeQb6U5uSztvdzSofUYKns1PSaO4kOYwegUqtJ37SP/TNXVbm+tqg5Oc/WIe8dyji3OooL38xHpbHHwbsL/q9/j52Tq9JhWagXiXrFihVs3ryZ+Ph4goKCAIiIiMDPzw8PDw98fHwUjvC60txCkj7egkNzN4L+KmUM61Lw9DF49e1K9KAXMZSVM/iTV7j39ceJi7r970HFnZPzbB3y3qGM1o++iVfkS0qHcUv14tL3woULmThxojlJA9jZ2eHn52eeTZeUlPDss8/SsWNHunXrxl//+ldFYj2/K4G06L0UnrmkSP+NScfHBpO4dD1FF3Iozc4j/t2v8Z8QgUpdL4Z1vSHn2TrkvUPcjM3PqFNSUkhLS2Pp0qWV2jIzMxk7diwAf//733FwcODEiROoVCqysrKsHaqwIp2rE85tmpNzNM28LTsxDZ2LE87ezcnPkH//2iDnWQjl2XyiPnu2YtnGFi1aWGxPSkoiIyODkJAQCgoK+Oyzzzhz5gwqlQqAli1b3nEfLi4u6PXVX4O2g6Ypf3cNq/bzGqqBAyM4WX53RSuqUtV51lwrTqDPLTJv0+cWAjT4mrcDB8p5toaBA613nhuzgQNr5zw7BYTSYX7MXR+nJgYOjKAo+fYrsOl0OvLz86t9fJu/duXpWVE7LDX1+u3yJpOJV155BaPRSEhICCdPnsTT05N58+bRs2dPIiIi2LNnj1IhCysoL6go96d1vV4v+Leyf2XX2sTdk/MsGrKABTE2//001IMZdWBgIP7+/sycOROtVouzszPLly/n0KFDODk5ERAQQHx8PKdOnSIkJIRFixaxf/9+Hn74YVJTU3F1vf3dezX5hAOQFZck9XtvsHNnTJ3U763qPOvziig4ewmPIF/yTp4DwLOrH/r8IgoyG/Z3fHKercOa57kxq63zHJ+tXD3qnTtj6rQetc3PqDUaDWvXrqVVq1ZMmjSJGTNmMGLECMLDwwkODkatVuPj44NGo+GPf/wjAH369KFZs2acOHHC6vGq1Grs7LWoNBpQqbCz10rd4TqS8sUOgqdF4tiyKfaervR48RFS18RgMtZdcfrGSM6zdch7h7iZejEKunfvTmys5fX/ZcuWER4eDkCzZs0YOHAg27dv5/777+fEiRNcvHgRf39/q8faYdwAwpZMNT9+PP1LCjIvym8i60DC0vXYe7gyOuZ9VGoV6d/v48CC/yodVoMj59k65L1D3Ey9SNS/V1xcTHJyMjNmzDBv++c//8mf//xnXnzxRbRaLZ9//jnu7u5Wjy316xhSv46xer+NkclgJC7qY/k9bx2T82wd8t4hbqZeJuqEhAQMBoPFimTt27cnJiZGuaCEEEKIOlAvE3WfPn0wmUxKhyGEEKKeKTi2hzP/eQlUapr2HUvL0S+a2wpPxJH57xfAZMIleBBtJs6/5f7WYvM3kwkhhBC1RdeyPZ3e2kXnd/7H1V++x1h6fY0Ap/YhdF64l87v/I/C5FgMRXm33N9a6uWMWgghhKgJnWdr899VajtQXZ+vqjRaAEwGA1qP1qjtnSwKdPx+f2uRGbUCfB7ow6D/vKJ0GNXW773n6PjYEKXDEDZIxrSob/Lit2PfqgNqnYPF9pyfV3N0aiB2TdxR2Wluu781SKK2NpWKnq9PJP69r1HrNIyKeZ/g58dY7BK2eApDvpgFQMvQLjyW8jkufl7mdgdPVyYk/hu/Uf2q1e+I6Pn0jHrcYrOLrxePpXxOy/sCeSzlczyCfC3au00fw6id76HWaUhYso6QlyfIbzuFJRnTwgYVnz5G8qwIiz8X1v4DAP3lM1xY+zZtn3y30vM8wh8l6MMkynLOUZyeeNv9rUEStZW1HRRCeWEJOYlpGPXl7Jn+Ad2mj6Fpl3YA+AzvRduhPdn7t48AyIo9xonVO+i/ZJq5WlHooslc2HOEtOiql+EZF/cRzm2bW240mdgz/QM6TRxCi99WAVKpCFsyheTPtpG17zgJS9YRtnQaam3Fm5Z7Zx+Cp0Wye+pSjPpy8jOyyDt1Dt+HQuvgzIj6Ssa0sEWOPl0IWBBj8cdr3KsYy0pJX/InfJ5Zjp2js8VzjGWlwLXFZxxdUOkcbrm/tUiitjLv4b04v/eI+XF2wimOLt9I/6XTcGrlQeiiZ9g/cxXFWdcXqT/49mrsmzrT9bmR+D8SQfOQjsS+trLafednZHFgwReELZ6CxtGeoMkPo3Nx4uDCLwFI/DCasoJiQl6egEpjR/+lU0lctoGco+nmY5zbnYj3sF41PwGiwZExLeqTnJ9XU5J5jIzlk0meFYE++yxlVy5wYf0icuM2Vsy+XxuA1rMtDq07Vrm/tcn1HivzCPIlZfUOi22HF6+j7dB7Gbl9EeermFUYSvTsnvYBw9bNxVRu4OdnF6O/WlCj/pM/24b3sF4MWD4Dr9AubBkzB6O+vKLx2gzl4W3v4OLnhaG0jMQPvrV4fu6JTPzHh9eob9EwyZgW9UmzIU/SbMiTlbZ7jXkZgKb9xt/R/tYkM2ors3dzpizfsuqQqdzApV+ScfB0I3XNziqfdzXlDGV5Rejzizi3K+GuYtj7woe0CuvKsZWbLGYWUDFDObjwK3yG92b39A8qreeszy/G3l2Zyz/CNsmYFqJuyYzaykpzC9C6WNbxbdEnEP8JAzn+7830fuNJNg59GUOJZX3s3vP+xJXkTBw8XOj+wjjiF60xt/lFhhH69tPmx1oXR0b+9C4YKxaFSVy2gcRl35rbiy9epTQnnyvHT1cZ49XjpzGU6slPu1CpTefiSGkNZz6iYZIxLUTdkkRtZTlH03Hzb2N+rHFyIGzxFA4s+IKkT7cyYsMb3PPao/wy5xPzPm0GhdDuwfuIHvQ3dK5NeHDTW2Ru/YXshFMApG3YQ9qG6/W3x8V9xJYxcyg4U/tlCN06eZNzJL3Wj3srTQN9GBE936p92rKmgT5Kh2BBxnT1yHi2VFvj2d8VVlXjRwO1yf/21ZTviiRqK8vc+ishf/+D+XGvuU9QcPoiSZ9sAWDP88sY+eP/cfqH/WTtO47O3Zl+7z7L/qiPKTqfQ9H5HBIWryNsyVS+G/b369/FWUnrsG6c+HLH7XesRToXpzqpCyxqh4zp6pHxXDectdRpTWglyXfUVnZmx0G0zg54dPWjzaAQ/Eb2M/9sBa7fxdrv/Yq7WEPffppLB1M4tXaXeZ8jH228difrH6rqos44+7TAtUNrMr6Lvf3OotGQMS1E3VKZpLpFjWXFJfHDqNer/TyfB/rgPz6cn558pw6iqjv93nuOiwdOkPLFj1W2j4ieLzOFeqym4xka5piW8SxshVz6VsDpzfs5vXm/0mFU242zJCFuJGNaiLojl76FEEIIGyaJWgghhLBhkqiFEEIIGyaJWgghhLBhkqiFEEIIGyZ3fQshal2L3p3pNfsJTEYTGZv2cfRf31m0D/70VbQujhjLjfz8zHuo7ewI/+cLADi19iTp4x84tnJTpePq3J25f00Ubh1a84X/45Xaw5ZMxcW3JYbSinKbRRdycPH14r63/oJap+XYiu/J3PZr3bxoIeqIJGoF3e5Np9PjQ/F9uC9qOzVbJ7wBwIAPn8exmRuZPx7g6PKNNeq3y9MP0nbIvWy7dswb9Zn/Zzy6+nHmp0MkLl1Pm4E96DY1Eqio5bvtkXmVih4I8Xv5GVn8EDkbY1k5w9bOJemzrRiKr6/1/dNfFmEqN9B+3ADaR/bn+L83s2XsHAAGfDSDMzsOVnncsoJitk14k4h//a3K9vhFayg4c4lWYd3o/ORwDr69mh4vjufnZ95Hn1dU+y9UCCuQRK2gW73pNGnTjKbXEuNvfEf25dKvyRxbuYnw5S9g7+lKaXZetfpUaezwCPKtss2zeweMBiM/jI4iYuWLODRz4+zOeM7ujAfgoR/+IUla3JEba0+bDEZzMQ3ztnIDAHb2Oq6mnDFvV2nscPFpQd6p81Ue11RuuGU5zN/WAjcZjJhMJtRaDU1aNyNs6TQwwf9e/icll3Nr/LqEUIIkagXd6k2ndXh3NE72DPtmDln7jhP/7te4+LTgcvxJoKJEYLPuHTj706Fq9dlhXDinvt1D12dHVWprHtKR83sSAbgQewzP4Pbm4zfr4c/lwyer1ZcQrQYEk59xAUNpmcV2nbszQz57Da2zA9sfW2De7tU3iAv/O3p3napUdHt+DLF//xf2Hi64d/Zmfd9peAT5Ejw9krjZn9zd8W1EQRmkVu9zeq3yd61YX1vUPUnUNsqhmRuYYOv4eYQtmYpHkC+5J8/RMrQL5/ck0rJPIHmnzlXvoCoVbSK68/Mz71eZqHVuTpQlV9QVLi8oRufWxNzmPbwXmVt/uavXJBoXp1YeBE+LZMekhZXa9FcL2DxyFt7DetHlrw/x67zPAPC5vyenbqiaVRMhr/yBtG/3UnD6IhpHe64cP40+t5Cs/cfpOmX0XR3blqTmwVN7let/Vb+GWwTD1kiitlFleUVciK2YWWTtO1ZROOD7fbQO7879a2ZTkp1HyeWqP067dWprUcsX4OzOQ+SlXbjljTT63CK0zhV1hTXOjhSnX6/d26pvVw6/+83dvizRSKh1GsIWTyX21ZWUF5VYNqpUqNQqTAYjZXlFFrPtZvd0ZH/Uf8yPHVs2tbiMfjvtHuyDvbszh776EoDy4lIMpWWodRrcO7alIPPi3b0wIRQgidpGXTyQTPvI/kBFvdZTG/ZiMhrZ9+pKAMKWTuPigWRUdmp07s4W31XnnjhjvjHnRsHPj8ErNIgO4wbg0dWXjo8OJmX19fJ+lw6l0D4yjDPbD+B1XxfSN/4PqKgwVHg+G2OZdcsPivqrfWR/3Du1pe87kwHYNWUJDp6uuAf6cPqHOIZ8/homowmjvow9z38IgEdXP64cy4BrdYJUdmr6vjOZHZP+YXHs+9fMxqOrH/evmU3c7P9QmpNP+3EDOLp8I73m/omi8zkMXzePc7sOk7BkPUf/uZFh38zBZDCa+xKiPpHqWXfhbqoN/ea3N52cI2nEv/s1ze/tZL6bu/cbf8IjyI/cU+eIfflfNGnTjP5Lp2EyGjm2chOZ237FxdeLLk89wP7XP652v9smvIFjc3fzmxxAn7eewqNLO87GxJOweB0AXf76ECWXczm1fvctjynVhuq32hjPtckzuD3uAd6c/OZnRfq39fEcny2XvhsLSdR3wRbe2No92IeSnHyyYo8pGgfY/hubuDVbGM+2xNbHsyTqxkMufddzGZvqX2lBIYQQd04StRBCNCLJsyIoTIpFpdGistPg0KYzrScuwLX7YKVDEzcha30LIUQj03riAkLWFBD8aRZNAkI5+dZoDIWyEIytkkQthBCNlFprT7Ohf8FYUkDJ+VSlwxE3IYlaCCEaKWNpMZe3r0Lt5IpD645KhyNuot4kar1eT1RUFN7e3jg6OjJo0CDi4uJQqVRER0crHZ4FlZ2a3m8+yR+P/YdHkz6l77vPYmcva+2J+sf34VBGRL/JY6mfMy7uI6XDEbXk3Ooo4h91J/FpX4rSDuP/+vfYObkqHZa4iXpxM5nJZGL8+PHExcUxd+5c/P39Wb16NZGRFVWdQkJCFI7QUvD0MXj17Ur0oBcxlJUz+JNXuPf1x4mLqt5vnYVQWmluIUkfb8GhuRtBf31I6XBELWn96Jt4Rb6kdBjiDtWLRL1ixQo2b95MfHw8QUFBAERERODn54eHhwc+Pj4KR2ip42ODOfDmfym6kANA/LtfE7HiRX6Z8wkmo1Hh6IS4c+d3JQDgM7yXwpEI0XjVi0S9cOFCJk6caE7SAHZ2dvj5+aHVaklPT2f06NHmtqtXr5KXl0dOTo7VY9W5OuHcpjk5R9PM27IT09C5OOHs3Zz8jCyrxySEEKL+svlEnZKSQlpaGkuXLq3UlpmZydixY/H19SU+Pt68fcaMGZSX3/m61C4uLuj1+tvv+DsdNE35u2uYxTbNtaIW+tzrRer1uYUA5oIXDdXAgRGcLL/zAgrCtlQ1nhuzgQNtezw7BYTSYX6MYv0PHBhBUXKsYv3XRzqdjvz8/Go/z+YT9dmzZwFo0aKFxfakpCQyMjIqfT+t1+v54osv2Lp1q9VivFF5QUWZSK2rE8WXrgKYy0WWXWsTQgilBCyIUToEUU02n6g9PSsWk01NTaV3795Axc1lr7zyCkajsVKi3rhxI23atOGee+654z5q8gkHql4bWZ9XRMHZS3gE+ZJ3sqJetGdXP/T5RRRkXqpRP/XFzp0xNr02srg1Wevbkq2PZ6XX+t65M0bW+rYSm0/UgYGB+Pv7M3PmTLRaLc7OzixfvpxDhw7h5OREQECAxf4ff/wxf/7znxWKtkLKFzsInhZJ1v7jGMsN9HjxEVLXxMiNZKLeUanVqLV2qDQaUKmws9diMpkw6qXkqRDWYvOJWqPRsHbtWp555hkmTZqEt7c3M2bMwNXVlZMnT6JWX/8p+NmzZ/n555/5/PPPFYwYEpaux97DldEx76NSq0j/fh8HFvxX0ZiEqIkO4wYQtmSq+fHj6V9SkHmRtb2fUzAqIRoXm0/UAN27dyc21vKmhWXLlhEeHm6x7dNPP+XBBx80Xy5XislgJC7qY/ndtKj3Ur+OIfXrGKXDEKJRqzcrk92ouLiY5OTkSt9Pf/LJJ4pf9hZCCCFqU72YUf9eQkICBoOhUqI+ceKEQhEJIYRtO71iGsVp8bjeM4JW42eatxtLizm5cCzGkkLsW7bH9/n/VLlNKKdezqj79OmDyWSiZ8+eSocihBA2rzDlV1RqDQFv76bo5EHKrl5feCkvfhvOgWEEvPUzKo2W4owjVW4TyqmXiVoIIcSdKzyxH5fgQQC4dA2nKPWAuU3X0g9jScWiTIaSAuyc3KrcJpQjiVoIIRo4Q+FVc3UstaMLhsKr5jaHVv4UHNvN0SmBqFCha+5d5TahnHr5HbUQQojKik8f4/S/LH865xYyHLsm7hiK8gAwFuej9epgbs/+6VOahk2gxYNTyFz5PAXH/0dx+uFK25wD+1r1tYjrJFELIUQD4ejTpcolQgtTfiFn15e4936Y/KO7aBr2iLnNZDSicfEAwM7FA0Ph1Sq3CeXIpW8hhGjgmnTshamslOTX+uPk1x2te0vKrlzgwvpFeIQ/yuUd/yF5VgTFp+Jx7TG0ym1COTKjFkKIRsDnmQ8tHmubeuE15mUAOs3bZtGmcW5aaZtQjsyohRBCCBsmiVoIIYSwYSqTyWRSOoj6Sp9fxJXjp5UOw2Y0DfRB5+KkdBiihmQ8W7L18VxQBql5yvXv7wrOWuX6b0wkUQshhBA2TC59CyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDbs/wG/9MfSpua4WQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGOCAYAAABYCEB2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuPklEQVR4nO3deVxU5f7A8c8MM8Mim+CCCwiKIqIo5RKKgltqi4pL3luWt3vrWrlkt7qVhktpXfNXqVneq95uy82yXMLSXDLJ5aKUiuACggLihgrKDgMz8/sDG53ABYQ5A3zfr5evl3OeM+f5zvFxvvOcOfN8VSaTyYQQQgghbJJa6QCEEEIIcXOSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGEapQOoz/T5RVw5flrpMGxG00AfdC5OSochakjGsyVbH88FZZCap1z//q7grFWu/8ZEEvVduHL8ND+Mel3pMGzGiOj5tOzdWekwRA3JeLZk6+M5NQ+e2qtc/6v6QQ9P5fpvTOTStxBCCGHDJFELIYQQNkwStRBCCGHDJFELIYQQNkxuJhNCiEYkeVYEhUmxqDRaVHYaHNp0pvXEBbh2H6x0aOImZEYthBCNTOuJCwhZU0Dwp1k0CQjl5FujMRTmKh2WuAlJ1EII0UiptfY0G/oXjCUFlJxPVToccROSqIUQopEylhZzefsq1E6uOLTuqHQ44ibqTaLW6/VERUXh7e2No6MjgwYNIi4uDpVKRXR0tNLhCSFEvXFudRTxj7qT+LQvRWmH8X/9e+ycXJUOS9xEvbiZzGQyMX78eOLi4pg7dy7+/v6sXr2ayMhIAEJCQhSO8Drfh0MJfOoBPIJ8Kc3JZ23v55QOSYgak/HcMLV+9E28Il9SOgxxh+pFol6xYgWbN28mPj6eoKAgACIiIvDz88PDwwMfHx+FI7yuNLeQpI+34NDcjaC/PqR0OELcFRnPQiivXiTqhQsXMnHiRHOSBrCzs8PPzw+ttmJV+BMnTjBp0iSys7Px9PTks88+o2NH63/ncn5XAgA+w3tZvW8hapuMZyGUZ/OJOiUlhbS0NJYuXVqpLTMzk7FjxwLwzDPPMGXKFCZOnMh///tfJk+ezE8//XRHfbi4uKDX66sdWwdNU/7uGlbt5zVUAwdGcLL8itJhiBqS8Wxp4EDbHs9OAaF0mB+jWP8DB0ZQlByrWP/1kU6nIz8/v9rPs/lEffbsWQBatGhhsT0pKYmMjAxCQkK4ePEiBw8eZPv27QD88Y9/ZOrUqVy6dInmzZtbPWYhhLBVAQtilA5BVJPNJ2pPz4o6aqmpqfTu3RuouLnslVdewWg0EhISQmZmJm3atMHOzg6ouCzeunVrMjMz7yhR1+QTDkBWXJKUBbzBzp0xNl0WUNyajGdLtj6e47OVLXO5c2eMlLm0EptP1IGBgfj7+zNz5ky0Wi3Ozs4sX76cQ4cO4eTkREBAAIcOHVI6TCGEEKJO2Hyi1mg0rF27lmeeeYZJkybh7e3NjBkzcHV15eTJk6jVary9vTl79iwGgwE7OzsMBgPnzp3D29vb6vGq1GrUWjtUGg2oVNjZazGZTBj15VaPRYi7JeNZCOXZfKIG6N69O7GxljctLFu2jPDwcKDi++sePXrw5ZdfMnHiRL788ktCQkIU+X66w7gBhC2Zan78ePqXFGRelN+finpJxrMQyqsXifr3iouLSU5OZsaMGeZt//znP5k0aRJvvPEGTZs25bPPPlMkttSvY0j9OkaRvoWobTKe66/y/BxS5gyl5GwyIWsKLNqK0g5z+p/PodLo8JvxGbrm3pScTyXzX1MxlpXScuQLuPcZqVDk4vfqZaJOSEjAYDBYrEjWuXNn9u/fr2BUQghhO+wcXeg4bzun3nmkUtv5NW/Q4bUNlF05z4X1C/GZvIzzX83D76Wv0Di7Wz9YcUv1MlH36dMHk8mkdBhCCGGzVBotGhePKtuMJYVo3VugdW9B6flUjGV69JczSV/8BKhUtJuyAq17SytHLG6m3hTlEEIIUTtMJqPF38vzLlOccQTfGZ/S8uEZXFj7toLRid+TRC2EEI2MSqW2+LtdEzcc23VD49wU56D+lJxNVjA68XuSqBXg80AfBv3nFaXDqLZ+7z1Hx8eGKB2GsEEypusXtb0TZbmXKEpPwL6VP3YOTVDrHDCWlVKccQRdC1+lQxQ3kERtbSoVPV+fSPx7X6PWaRgV8z7Bz4+x2CVs8RSGfDELgJahXXgs5XNc/LzM7Q6erkxI/Dd+o/pVq98R0fPpGfW4xWYXXy8eS/mclvcF8ljK53gE+Vq0d5s+hlE730Ot05CwZB0hL09ArauXtzaIuiJj2madiBpCUdohTkQNoeDYHi6sXwRAqwlRnHxrNJkrp+M15u8AtBz1IieiBpO56nnzNmEbJFFbWdtBIZQXlpCTmIZRX86e6R/QbfoYmnZpB1RUKWo7tCd7//YRAFmxxzixegf9l0xDpa745wpdNJkLe46QFl31+oHj4j7Cue3vfkNuMrFn+gd0mjiEFr8ti6hSEbZkCsmfbSNr33ESlqwjbOk01NqKNy33zj4ET4tk99SlGPXl5GdkkXfqHL4PhdbBmRH1lYxp29XpzR/p8d9sOr35I85dwvAa8zIATu1D6LxwLwELYtA1rygT7NpjCJ3/sYeAt37GvqWfkmGL35FEbWXew3txfu8R8+PshFMcXb6R/kun4dTKg9BFz7B/5iqKs65X7Tn49mrsmzrT9bmR+D8SQfOQjsS+trLafednZHFgwReELZ6CxtGeoMkPo3Nx4uDCLwFI/DCasoJiQl6egEpjR/+lU0lctoGco+nmY5zbnYj3MCl5KK6TMS1E3WqY13tsmEeQLymrd1hsO7x4HW2H3svI7Ys4X8WswlCiZ/e0Dxi2bi6mcgM/P7sY/VXLBQzuVPJn2/Ae1osBy2fgFdqFLWPmXF8O8toM5eFt7+Di54WhtIzED761eH7uiUz8x4fXqG/RMMmYFqJuyYzayuzdnCnLL7bYZio3cOmXZBw83Uhds7PK511NOUNZXhH6/CLO7Uq4qxj2vvAhrcK6cmzlJouZBVTMUA4u/Aqf4b3ZPf0DTEajRbs+vxh7d+e76l80LDKmhahbMqO2stLcArQujhbbWvQJxH/CQI7/ezO933iSjUNfxlCit9in97w/cSU5EwcPF7q/MI74RWvMbX6RYYS+/bT5sdbFkZE/vQvGikVhEpdtIHHZt+b24otXKc3J58rx01XGePX4aQylevLTLlRq07k4UlrDmY9omGRMK8PfFVZV4967uuhfWIckaivLOZqOm38b82ONkwNhi6dwYMEXJH26lREb3uCe1x7llzmfmPdpMyiEdg/eR/Sgv6FzbcKDm94ic+svZCecAiBtwx7SNuwx7z8u7iO2jJlDwZlLtR6/Wydvco6k1/pxRf0lY1oZzlqkHnQjIZe+rSxz66949e1qftxr7hMUnL5I0idbKr5Pe34ZnR4dTMv7AgHQuTvT791n2R/1MUXnc7ianEnC4nWELZmqyE9KWod14/S2X6zer7BdMqaFqFuSqK3szI6DaJ0d8OjqR5tBIfiN7Gf+2Qpcv4u13/sVd7GGvv00lw6mcGrtLvM+Rz7aeO1O1j9YNXZnnxa4dmhNxnext99ZNBoypoWoWyqTVLeosay4JH4Y9Xq1n+fzQB/8x4fz05Pv1EFUdaffe89x8cAJUr74scr2EdHzafnb71lFvVPT8QwNc0zLeBa2Qr6jVsDpzfs5vbn+leS8cZYkxI1kTAtRd+TStxBCCGHDJFELIYQQNkwStRBCCGHDJFELIYQQNkwStRBCCGHD5K5vG9Bn/p/x6OrHmZ8Okbh0vUVb4FMP0H50GEaDgT3Pf0h++gX8H4mg42NDKDxzid3PL8NUbgAqygn2jHqC9f2m1aivnrOfwP+RcOLmfMKpdbsBGLZ2LiqVCoDY11aSe+JMbb500cC06N2ZXrOfwGQ0kbFpH0f/9R0AbQb2oNvUSKCi1OS2R+ZxJTmTAR8+j2MzNzJ/PMDR5Rur3V+zHv70mvcnVCoV5/cmcmjhV+Y2OwcdA1e9hMbJnvyMLPa+UHGHd6fHh+L7cF/Udmq2TnjD/P9HCFslM2qFeXbvgNFg5IfRUXh288OhmZtFe/vRYWx6aCa/vvlfAp64H5XGjvZjB/DDqNe5dCgFnxvK87V78D4Kz12ucV9HPorm1zc+t9hmMhjZMnYOW8bOkSQtbis/I4sfImezeeQs2g69FztHHQBnd8abx1HB6SxyjqbT7oE+XPo1mS1j59AsuAP2ntVfPDr7SBo/jHqdzSNn0fzeALTO19ccbx3enay4pIpqWuUG3AO8adKmGU2vfVDYMnaOJGlRL0iiVljzkI6c35MIwIXYY3gGt7doLzyXjZ29Fp2rE6VXC3Br34qcY+kAnN9zhGYh/gB49etKVlwSJuPN16+5XV8ll3MrP0mlYvi6efT9v2ews9fW9GWKRqI46wrGsooSkyaD0VxE4zfNevhz+fBJAFx8WpiLaFxNOUOz7h2q3d9viValVlOclUN5cam5reD0RTRO9gBonRzQ5xfROrw7Gid7hn0zhx4vPlL9FyiEAuTSt8J0bk6UJVeUCCwvKEbn1sSiPSvuOKN3LUalUrHp4Vm4+LQwlxS8cf+OfxzE/15cju9DoTXuqyoxT/8f+txCgiY/TMc/Dq5Yv9nK9PlFN62K1Bg1DfRB5+KkdBi31GpAMPkZFzCUllls9x7ei8ytFetq5548R8vQLpzfk0jLPoHknTpXo778IsPo8eIjnIuJr/hwcE1e+nla9glk9K7FZCemUXQuu+Iqkgm2jp9H2JKpeAT5ViqLWddkPFuqjfFcUAapebUUUA35u1YUSqkLkqgVps8tMl+u0zg7Upx+vQyf1tmRdg/ex/q+02ga2I4eLz3C8ZWbzCUFNc6O6HML8ezegasnzlR6U6xOXzd/TiEAp7f9QtBfH6rRa7xbV46frvHSlg2RrS9t6dTKg+BpkeyYtLBSW6u+XTn87jdARTGP1uHduX/NbEqy8yi5XPU7rVunthYlLwHO7jxkLnOZtmEPad/uJWLli7h39uFqUkUS9B8fQXr0/0j6ZAu933yS5j0DKMsr4kLsUQCy9h3DtUNrqydqGc+WamM8p+bBU3trKaAaWtWv7qqZSaJW2KVDKbSPDOPM9gN43deF9I3/M7eZTCbKi0oxGYyUXs1H59qEvLQLeAS2A6BVv65cPpRK0wBvWg8Ixuu+QDy6+hL8/BgSlqzHsWVTirOu3FFfN6Np4kB5YQktegaQf/pi7Z8A0aCodRrCFk8l9tWVlBeVWLQ5+7Sg8Hz29UvjRiP7Xl0JQNjSaVw8kIzKTo3O3ZnS7OtJO/fEGbaMnXPT/oz6cjCZKC8oxlB6vea1Sq2m9Go+AKVXCtC5OnHxQDLtI/sDFTO5UxsUfncX4g7Id9QKyz58ErVOy4hv3yTnWDoll3PxCPKl/bgBlBeWcOnXZEZEzyfin3/j6PKNGMvKOfXtXkZEz6dFzwAyt/1K6tcxbB03l+2PLiDnSDoJS9ajslPT953Jd9wXQNCzIwl6bhTdpkbSZXLF7HnY13MY8e2b+D4Uyon/Vl2MQ4jftI/sj3untvR9ZzLD183DycuDoGdHAuAzvLf5sjdAkzbNGL5uHsO+mUPG97EYivU4e7egxwvj7rg/7/t7MXzdPIZveIPC89mUF5SY+zu1YTf+fxjE8HXz8Ojqy7ldCeQkpqHWqBm+bh52jvZcPpRSuydAiDog1bPuwt1UG6prnsHtcQ/w5uQ3P1utz7q6JGvL51kJDfk8t3uwDyU5+WTFHlM0DmjY59mW1MZ5js+WS9+iHspOOEV2wimlwxCiWjI21b8KXELUNUnUQgghGqXkWREUJsWi0mhR2WlwaNOZ1hMX4Np9sNKhWZDvqIUQQjRarScuIGRNAcGfZtEkIJSTb43GUFjFmhIKkkQthBCi0VNr7Wk29C8YSwooOZ+qdDgWJFELIYRo9IylxVzevgq1kysOrTsqHY6FepOo9Xo9UVFReHt74+joyKBBg4iLi0OlUhEdHa10eEIIIeqhc6ujiH/UncSnfSlKO4z/699j51T9defrUr24mcxkMjF+/Hji4uKYO3cu/v7+rF69msjIimo8ISEhCkdoSWWnptfcSXQYOwCVWk36pn3sn7nqtiuHiTvn+3AogU89gEeQL6U5+azt/ZzSITVYMp6tQ86zMlo/+iZekS8pHcYt1YsZ9YoVK9i8eTM//vgjkydPZvDgwaxYsQI7Ozs8PDzw8fFROkQLwdPH4NW3K9GDXmRdv2m4d2rLva8/rnRYDUppbiFJH2/h4D++VDqUBk/Gs3XIeRY3Uy8S9cKFC5k4cSJBQUHmbXZ2dvj5+Zln0y+99BJ+fn6oVCqOHDmiVKgAdHxsMIlL11N0IYfS7Dzi3/0a/wkRqNT14nTXC+d3JZAWvZfCM5eUDqXBk/FsHXKexc3Y/AhISUkhLS2NsWPHVmrLzMw0J+rRo0eza9cu2rVrZ+0QLehcnXBu05yco2nmbdmJaehcnHD2bq5gZEJUn4xn65DzLG7F5r+jPnv2LAAtWrSw2J6UlERGRoY5UYeFhdW4DxcXF/R6/e13/J0Omqb83dWyX8216lT63CLztt8qUN1Y1L4hGjgwgpPlV263W7VVdZ4bs4EDrXeeZTzLea5rAwfe/Xl2Cgilw/yYaj8vYEH1n3MzAwdGUJQce8t9dDod+fn51T62zc+oPT0rFk9NTb3+uzaTycQrr7yC0Wi0uRvJygsq6j1rXa/XV/2t7nPZtTYh6gsZz9Yh51ncis3PqAMDA/H392fmzJlotVqcnZ1Zvnw5hw4dwsnJiYCAgLvuoyafcKDqxfX1eUUUnL2ER5AveSfPAeDZ1Q99fhEFmQ37+9SdO2OkiIEVWPM8y3iW81zXauM820JRjp07Y+qsKIfNz6g1Gg1r166lVatWTJo0iRkzZjBixAjCw8MJDg5GbYM3WqR8sYPgaZE4tmyKvacrPV58hNQ1MZiMRqVDazBUajV29lpUGg2oVNjZa1HrbP5zZ70k49k65DyLm6kX72zdu3cnNtby2v+yZcsIDw9XKKJbS1i6HnsPV0bHvI9KrSL9+30cWPBfpcNqUDqMG0DYkqnmx4+nf0lB5kX5PXUdkPFsHXKexc3Ui0T9e8XFxSQnJzNjxgzztunTp7N+/XouXLjAkCFD8PT05OjRo4rEZzIYiYv6mLiojxXpvzFI/TqG1K9jlA6jUZDxbB1ynsXN2N514zuQkJCAwWCwuJFs6dKlnDlzhvLyci5cuKBYkhZCCGGbTq+YRvJr/Tn/zVtVtmdtXMyJqCEA5B7cQvKsCJJnRRA/0ZOiU/GU5+dw/G/3cmiCszXDrp8z6j59+mAymZQOQwghRD1RmPIrKrWGgLd3c/If4yi7moXWvaW53VReRnFavPmx2z3DcbtnOCaTiaSXeuPo1x0M5XSct51T7zxi1djr5YxaCCGEqI7CE/txCR4EgEvXcIpSD1i0Z8d8TtP+f6z0vKKUX3Dy74lKpUKl0aJx8bBKvDeSRC2EEKLBMxReNVfFUju6YCi8am4zGY3kHdyK2z3DKj3v6v5o3PuMslaYVaqXl76FuBM+D/TBf3wEPz25UOlQqqXfe89x8cAJUr74UelQhI2RMX17xaePcfpflr/+cAsZjl0TdwxFeQAYi/PRenUwt1+NXY9b75FVHi8/cSet/jCn7gK+AzKjFg2TSkXP1ycS/97XqHUaRsW8T/DzYyx2CVs8hSFfzAKgZWgXHkv5HBc/L3O7g6crExL/jd+oftXqd0T0fHpGWVY9cvH14rGUz2l5XyCPpXyOR5CvRXu36WMYtfM91DoNCUvWEfLyBPlduLAkY/qOOPp0IWBBjMUfr3Gv0qRTb/ITdwKQf3QXTv73mp9TcjaZ7J8+IWXucIrS4rm8bRUApRdOoWvWFrVWV+dx34okatEgtR0UQnlhCTmJaRj15eyZ/gHdpo+haZeKoi0+w3vRdmhP9v7tIwCyYo9xYvUO+i+ZZq5WFLpoMhf2HCEtuuolj8bFfYRz298VTDCZ2DP9AzpNHEKL31ZbUqkIWzKF5M+2kbXvOAlL1hG2dBpqbcWblntnH4KnRbJ76lKM+nLyM7LIO3UO34dC6+DMiPpKxvTdadKxF6ayUpJf64+TX3e07i0pu3KBC+sX0eqRWXR6Yzsd527Bya8Hze5/Cqi47O3W2/Ky94moIRSlHeJE1BCKM6xTqVEStWiQvIf34vze6/+JshNOcXT5RvovnYZTKw9CFz3D/pmrKM66Xgzg4NursW/qTNfnRuL/SATNQzoS+9rKavedn5HFgQVfELZ4ChpHe4ImP4zOxYmDCytqZyd+GE1ZQTEhL09ApbGj/9KpJC7bQM7RdPMxzu1OxHtYr5qfANHgyJi+ez7PfEjA27tp9UjFEq7apl54jXnZYp9Ob16/PN9y1At4RjxWqb3Hf7Pp9OaPOLbrWvdBI99RiwbKI8iXlNU7LLYdXryOtkPvZeT2RZyvYlZhKNGze9oHDFs3F1O5gZ+fXYz+akGN+k/+bBvew3oxYPkMvEK7sGXMHIz68orGazOUh7e9g4ufF4bSMhI/+Nbi+bknMvEfb5sr7wllyJhuvGRGLRokezdnyvItqw6Zyg1c+iUZB083UtfsrPJ5V1POUJZXhD6/iHO7Eu4qhr0vfEirsK4cW7nJYmYBFTOUgwu/wmd4b3ZP/6DSes76/GLs3a27qIKwbTKmGy+ZUd+FpoE+jIier3QYNqNpoI/SIZiV5hagdbGs49uiTyD+EwZy/N+b6f3Gk2wc+jKGEss65L3n/YkryZk4eLjQ/YVxxC9aY27ziwwj9O2nzY+1Lo6M/OldMFYsvpO4bAOJy741txdfvEppTj5Xjp+uMsarx09jKNWTn3ahUpvOxZHSGs58akrGsyVbGs8gY/pW/F1hVTXuj6urGOqKJOq7oHNxqpMyeOLu5RxNx82/jfmxxsmBsMVTOLDgC5I+3cqIDW9wz2uP8sucT8z7tBkUQrsH7yN60N/QuTbhwU1vkbn1F7ITTgGQtmEPaRv2mPcfF/cRW8bMoeBM7ZchdOvkTc6R9Fo/7q3IeLZtMqZvzllLnZWYtAVy6Vs0SJlbf8Wr7/UbPXrNfYKC0xdJ+mRLxfdpzy+j06ODaXlfIAA6d2f6vfss+6M+puh8DleTM0lYvI6wJVMV+ZlU67BunN72i9X7FbZLxnTjJYlaNEhndhxE6+yAR1c/2gwKwW9kP/PPVuD6Xaz93q+4izX07ae5dDCFU2t3mfc58tHGa3ey/sGqsTv7tMC1Q2syvou9/c6i0ZAx3XipTFLdQti4rLgkfhj1erWfV7GKUzg/PflOHURVd263itOI6Plyiboeq+l4hoY5pmU83558Ry0arNOb93N6836lw6i2G2dJQtxIxnTjJJe+hRBCCBsmiVoIIYSwYZKohRBCCBsmiVoIIYSwYZKohRBCCBsmd32LRknn7sz9a6Jw69CaL/wfr9Te7qFQuj43Eowm4mb/h0sHU6o8TvjyF2gd0Z0dk/7Bxbgkizav0CDuW/g0Redz2DbhDQD8H4mg69TRlFzK5fS2Xzj2r+9r/8WJBqvP/D/j0dWPMz8dInHpevN2lcaOAR8+j2MzNzJ/PMDR5RtxbtucB75/i7yT5yg4e5k90z+47bi/nRa9O9Nr9hOYjCYyNu3j6L++s2j/fRxZscfoNe9PqFQqzu9N5NDCr+76HDRGMqMWjVJZQTHbJrzJpQNVJ+DAJ4ezJXI2P/1lEUHPjrzpceJm/4fjqzZX2ZZ9JI3vhr5caXvCknVsGTtHkrSoFs/uHTAajPwwOgrPbn44NHMzt7V7oA+Xfk1my9g5NAvugL1nxcLTZ348wJaxc9gz/QPg9uP+dvIzsvghcjabR86i7dB7sXPUWbT/Po78zIv8MOp1No+cRfN7A9A6O97kyOJWJFGLRslUbrhlub+CzItonOzRuTrdspBA8aWrN20ryy/CUFpWaXu3KaMZ9s0cPIJ8qxOyaOSah3Tk/J5EAC7EHsMzuL25zcWnhblQxtWUMzTr3gGANhE9GPHtm7Qf0x+4/bi/neKsKxjLKkpbmgxGc/GO28WhUqspzsqhvLi0xn03ZnLp+y7o84tuWkWmMWoa6IPOxUnpMGpF5vZfeXj7IlRqNT9OfKvWjpvxQxypX8fg3LY5/d5/jq3j59Xase+WjGdLtjaedW5OlCVXlLksLyhG59bE3JZ78hwtQ7twfk8iLfsEknfqHEUXr7C+/3QwwdAvX+fszkOUXqmd6lWtBgSTn3Gh0gfRquLwiwyjx4uPcC4mviK515GCMkjNq7PD35K/a0VhkLoiifouXDl+usZLATZEDWkpwK5TRvNt/xloXZ0IXfhXfvrTwlo5bll+EQAFZy5hMtrW6r0yni3Z2njW5xaZLx1rnB0pTr9eSjJz66+0Du/O/WtmU5KdR8nlPIz6cnN71v7juLTzovRK6h315daprUX5S4CzOw+RuOxbnFp5EDwtkh2TKv+fqCqO83sSSft2LxErX8S9sw9Xk+rmw2BqHjy1t04OfVur+tVt9S5J1EJUwVBaRnmJHlQqNE4OADi2bEpx1pW7Oq6miQPlhSXo3JooUsFI1F+XDqXQPjKMM9sP4HVfF9I3/s/cZjIa2ffqSgDClk7j4oFkNE4OlBeVANCseweSPv6hyuOq7NTo3J0pzb4+Hc09cYYtY+dU2let0xC2eCqxr640H/tGv4/j8uGT1xpMlBcUYyjVV3qOuD35jlo0WvevmY1HVz/uXzMb9wBvHJu7m28cO/nNzzz43QKGrZ3DsWt3toa9/1ylY/Sc8wQdxofTe96fzN8D9pzzBABNu7Qz9zH0y4qZapenH+SB7xYw9ItZxP/f19Z4maKByD58ErVOy4hv3yTnWDoqlco8Xpu0acbwdfMY9s0cMr6PxVCsp0WvAB7aspAHvlvAuZjDFF+8ClQe987eLejxwrg7iqF9ZH/cO7Wl7zuTGb5uHk5eHhb/b34fR+vw7gxfN4/hG96g8Hw2+WkXbtODqIpUz7oLd1MFpyGqq0uFNnGeVSp6z5tE3OxPlI2DBn6ebUhjOc/tHuxDSU4+WbHHFOm/ts5zfLZc+haicTOZbCJJC1HbMjbVv2pcjY0kaiGEEI1S8qwICpNiUWm0qOw0OLTpTOuJC3DtPljp0CzId9RCCCEardYTFxCypoDgT7NoEhDKybdGYyjMVTosC5KohRBCNHpqrT3Nhv4FY0kBJefv7Gds1iKJWgghRKNnLC3m8vZVqJ1ccWjdUelwLNSbRK3X64mKisLb2xtHR0cGDRpEXFwcKpWK6OhopcMTQghRD51bHUX8o+4kPu1LUdph/F//HjsnV6XDslAvbiYzmUyMHz+euLg45s6di7+/P6tXryYyMhKAkJAQhSO8zvfhUAKfegCPIF9Kc/JZ27vyb29F7VDZqek1dxIdxg5ApVaTvmkf+2euqnJ9bVFzcp6tQ947lNH60TfxinxJ6TBuqV7MqFesWMHmzZv58ccfmTx5MoMHD2bFihXY2dnh4eGBj4+P0iGaleYWkvTxFg7+40ulQ2nwgqePwatvV6IHvci6ftNw79SWe1+vfuk+cWtynq1D3jvEzdSLRL1w4UImTpxIUFCQeZudnR1+fn6EhISQnZ3NAw88QEBAAN26dWPMmDFcunRJkVjP70ogLXovhWeU6b8x6fjYYBKXrqfoQg6l2XnEv/s1/hMiUKnrxbCuN+Q8W4e8d4ibsfn/aSkpKaSlpTF27NhKbZmZmYSEhKBSqfj73/9OcnIyiYmJdOjQgVdffVWBaIW16FydcG7TnJyjaeZt2Ylp6FyccPZurmBkDYucZyGUZ/PfUZ89exaAFi1aWGxPSkoiIyODkJAQPDw8iIiIMLfdd999LF++/I77cHFxQa+v/mLxHTRN+btrWLWf11ANHBjByfK7K1pRlarOs+ZaFSF9bpF5mz63EKDBF6cfOFDOszUMHGi989yYDRxYO+fZKSCUDvNjqvWcgAXV2/9mBg6MoCg59rb76XQ68vPzq318m59Re3pWLKCamnr9d20mk4lXXnkFo9FY6UYyo9HI8uXLGTlypFXjFNZVXlBRl1frer1e8G/1ecuutYm7J+dZCOXZ/Iw6MDAQf39/Zs6ciVarxdnZmeXLl3Po0CGcnJwICAiw2H/atGk4OzszderUO+6jJp9wwPYW11fazp0xVitioM8rouDsJTyCfMk7eQ4Az65+6POLKMhs2N/xyXm2Dmue58asts6zkkU5du6MadxFOTQaDWvXruWZZ55h0qRJeHt7M2PGDFxdXTl58iTqG25oeemll0hJSeG7776z2G5NKrUatdYOlUYDKhV29lpMJpNFEXdRO1K+2EHwtEiy9h/HWG6gx4uPkLomBpPRqHRoDYqcZ+uQ9w5xMzafqAG6d+9ObKzl9f9ly5YRHh5ufjxz5kwOHDjApk2bsLe3t3aIZh3GDSBsyfXZ/OPpX1KQeVF+E1kHEpaux97DldEx76NSq0j/fh8HFvxX6bAaHDnP1iHvHeJm6kWi/r3i4mKSk5OZMWMGAEePHuXtt9+mU6dO9O3bFwA/Pz82bNhg9dhSv44h9esYq/fbGJkMRuKiPiYu6mOlQ2nQ5Dxbh7x3iJupl4k6ISEBg8FgvpEsKCgIk8mkcFRCCCFsXcGxPZz5z0ugUtO071hajn7R3FZ4Io7Mf78AJhMuwYNoM3H+Lfe3lnqZqPv06SOJWQghRLXpWran01u7UGt1JM8aSPMRz6K2r/hVg1P7EDovrLgj7UTUYAxFebfc31rqZaIWQgghakLn2dr8d5XaDlTXbzxWabQAmAwGtB6tUds7WRTo+P3+1mLzv6MWQgghalte/HbsW3VArXOw2J7z82qOTg3Erok7KjvNbfe3BknUCvB5oA+D/vOK0mFUW7/3nqPjY0OUDkPYIBnTwtYUnz5G8qwIiz8X1v4DAP3lM1xY+zZtn3y30vM8wh8l6MMkynLOUZyeeNv9rUEStbWpVPR8fSLx732NWqdhVMz7BD8/xmKXsMVTGPLFLABahnbhsZTPcfHzMrc7eLoyIfHf+I3qV61+R0TPp2eUZdUjF18vHkv5nJb3BfJYyud4BPlatHebPoZRO99DrdOQsGQdIS9PQK2Tb0zEDWRMCxvk6NOFgAUxFn+8xr2KsayU9CV/wueZ5dg5Ols8x1hWClT8pt3O0QWVzuGW+1uLJGorazsohPLCEnIS0zDqy9kz/QO6TR9D0y7tAPAZ3ou2Q3uy928fAZAVe4wTq3fQf8k0c7Wi0EWTubDnCGnRVS/DMy7uI5zb/q5ggsnEnukf0GniEFr8tgqQSkXYkikkf7aNrH3HSViyjrCl01BrK9603Dv7EDwtkt1Tl2LUl5OfkUXeqXP4PhRaB2dG1FcypkV9kvPzakoyj5GxfDLJsyLQZ5+l7MoFLqxfRG7cxorZ92sD0Hq2xaF1xyr3tzZJ1FbmPbwX5/ceMT/OTjjF0eUb6b90Gk6tPAhd9Az7Z66iOOv6IvUH316NfVNnuj43Ev9HImge0pHY11ZWu+/8jCwOLPiCsMVT0DjaEzT5YXQuThxcWFH/NvHDaMoKigl5eQIqjR39l04lcdkGco6mm49xbnci3sN61fwEiAZHxrSoT5oNeZLgT86ZZ9k6zzZom3rhNeZlmvYbX7H97V20mTj/pvtbm1zvsTKPIF9SVu+w2HZ48TraDr2XkdsXcb6KWYWhRM/uaR8wbN1cTOUGfn52MfqrBTXqP/mzbXgP68WA5TPwCu3CljFzri9ReG2G8vC2d3Dx88JQWkbiB99aPD/3RCb+48MrH1g0WjKmhahbMqO2Mns3Z8ryLasOmcoNXPolGQdPN1LX7KzyeVdTzlCWV4Q+v4hzuxLuKoa9L3xIq7CuHFu5yWJmARUzlIMLv8JneG92T/+g0nrO+vxi7N2V+Z5G2CYZ00LULZlRW1lpbgFaF8s6vi36BOI/YSDH/72Z3m88ycahL2MosayP3Xven7iSnImDhwvdXxhH/KI15ja/yDBC337a/Fjr4sjIn94FY8WiMInLNpC47Ftze/HFq5Tm5HPl+OkqY7x6/DSGUj35aRcqtelcHCmt4cynppoG+jAier5V+7RlTQN9lA7Bgozp6pHxbKm2xrO/K6yqxr2Itcnf9fb73A1J1FaWczQdN//r33FonBwIWzyFAwu+IOnTrYzY8Ab3vPYov8z5xLxPm0EhtHvwPqIH/Q2daxMe3PQWmVt/ITvhFABpG/aQtmGPef9xcR+xZcwcCs7UfhlCt07e5BxJr/Xj3orOxalOyg2K2iFjunpkPNcNZy11WmpSSXLp28oyt/6KV9+u5se95j5BwemLJH2ypeL7tOeX0enRwbS8LxAAnbsz/d59lv1RH1N0PoeryZkkLF5H2JKpivykpHVYN05v+8Xq/QrbJWNaiLolidrKzuw4iNbZAY+ufrQZFILfyH7mn63A9btY+71fcRdr6NtPc+lgCqfW7jLvc+SjjdfuZP2DVWN39mmBa4fWZHwXe/udRaMhY1qIuqUySXWLGsuKS+KHUa9X+3k+D/TBf3w4Pz35Th1EVXf6vfccFw+cIOWLH6tsHxE9Xy7p1WM1Hc/QMMe0jGdhK+Q7agWc3ryf05v3Kx1Gtd04SxLiRjKmhag7culbCCGEsGGSqIUQQggbJolaCCGEsGGSqIUQQggbJolaCCGEsGFy17eCdO7O3L8mCrcOrfnC//FK7Z0eH4rvw31R26nZOuENAAZ8+DyOzdzI/PEAR5dvrFG/XZ5+kLZD7mXbtWPeqM/8P+PR1Y8zPx0icel62gzsQbepkUBFicBtj8yrtJayEL/Xondnes1+ApPRRMamfRz913cW7YM/fRWtiyPGciM/P/Meajs7wv/5AgBOrT1J+vgHjq3cVOm4t/s/E7ZkKi6+LTGUVpTbLLqQg4uvF/e99RfUOi3HVnxP5rZf6+ZFC1FHJFErqKygmG0T3iTiX3+r1NakTTOaXkuMv/Ed2ZdLvyZzbOUmwpe/gL2nK6XZedXqU6WxwyPIt8o2z+4dMBqM/DA6ioiVL+LQzI2zO+M5uzMegId++IckaXFH8jOy+CFyNsaycoatnUvSZ1sxFF9f6/unvyzCVG6g/bgBtI/sz/F/b2bL2DkADPhoBmd2HKzyuLf6PwMQv2gNBWcu0SqsG52fHM7Bt1fT48Xx/PzM++jzimr/hQphBXLpW0GmcsNNS/u1Du+OxsmeYd/MoceLjwDg4tPCXHTgasoZmnXvUO0+O4wL59S3e6psax7SkfN7EgG4EHsMz+D25rZmPfy5fPhktfsTjVNx1hWMZRWlJk0Go7mYxm9M5QYA7Ox1XE05Y96u0tjh4tOCvFPnqzzurf7PAOa1wE0GIyaTCbVWQ5PWzQhbOo1B/3kFh2Zud/W6hFCCzKhtlEMzNzDB1vHzCFsyFY8gX3JPnqNlaBfO70mkZZ9A8k6dq95BVSraRHTn52fep+uzoyo169ycKEuuKFdYXlCMzq2Juc17eC8yt8p6yKJ6Wg0IJj/jAobSMovtOndnhnz2GlpnB7Y/tsC83atvEBf+d/TuOlWp6Pb8GGL//i/sPVxw7+zN+r7T8AjyJXh6JHGzP7m749uIgjJIrd4FtVrl71pRCEPUPUnUNqosr4gLsRVvWFn7jlWsR/z9PlqHd+f+NbMpyc6j5HLV/0vdOrW1KBEIcHbnIfLSLtzy+zl9bhFa54pyhRpnR4rTr5cEbNW3K4ff/eZuX5ZoRJxaeRA8LZIdkxZWatNfLWDzyFl4D+tFl78+xK/zPgPA5/6enNpQ9RWfOxXyyh9I+3YvBacvonG058rx0+hzC8naf5yuU0bf1bFtSWoePLVXuf5X9Wu41apsjSRqG3XxQDLtI/sDFfVaT23Yi8loZN+rKwEIWzqNiweSUdmp0bk7W3xXnXvijPn7vhsFPz8Gr9AgOowbgEdXXzo+OpiU1TvM7ZcOpdA+Mowz2w/gdV8X0jf+D6goXFB4Ptt8KVOI21HrNIQtnkrsqyspLyqxbFSpUKlVmAxGyvKKLGbbze7pyP6o/5gfO7ZsSnHWlTvut92DfbB3d+bQV18CUF5ciqG0DLVOg3vHthRkXry7FyaEAuQ7aoXdv2Y2Hl39uH/NbFr07kzQsyMByElMQ61RM3zdPOwc7bl8KIUmbZoxfN08hn0zh4zvYzEU63H2bkGPF8bdUV8JS9az7Q9vsv3RBeQcSSdl9Q4cm7ub+8w+fBK1TsuIb98k51g6JZdzAfAZ3lsue4tqaR/ZH/dOben7zmSGr5uHk5cHHkG+tB83wHzvxbC1c+k2bTRJ//4BAI+uflw5lgHX6gSp7NT0fWdypWPf+H/GPcDbYgz3mvsnPLr4MnzdPIKfHwPA0X9uZNg3c+j95pMc+TDaSmdAiNoj1bPuwt1UG6ot7R7sQ0lOPlmxxxSNA6TaUH1nC+P5Rp7B7XEP8ObkNz8r0r+tj+f4bLn03VjIpe96LmNT/atYJMSdyE44RXbCKaXDEEJxkqiFEKIRSZ4VQWFSLCqNFpWdBoc2nWk9cQGu3QcrHZq4CfmOWgghGpnWExcQsqaA4E+zaBIQysm3RmMozFU6LHETkqiFEKKRUmvtaTb0LxhLCig5n6p0OOImJFELIUQjZSwt5vL2VaidXHFo3VHpcMRN1JtErdfriYqKwtvbG0dHRwYNGkRcXBwqlYroaPnJhRBC3Klzq6OIf9SdxKd9KUo7jP/r32Pn5Kp0WOIm6sXNZCaTifHjxxMXF8fcuXPx9/dn9erVREZWVHUKCQlROEJLKjs1veZOosPYAajUatI37WP/zFWVllEUwtb5PhxK4FMP4BHkS2lOPmt7P6d0SKIWtH70TbwiX1I6DHGH6kWiXrFiBZs3byY+Pp6goCAAIiIi8PPzw8PDAx8fH4UjtBQ8fQxefbsSPehFDGXlDP7kFe59/XHioj5WOjQhqqU0t5Ckj7fg0NyNoL8+pHQ4QjRK9eLS98KFC5k4caI5SQPY2dnh5+dnnk2PHj2a7t27ExISQv/+/YmPj1coWuj42GASl66n6EIOpdl5xL/7Nf4TIlCp68XpFsLs/K4E0qL3UnitKpUQwvpsPnOkpKSQlpbG2LFjK7VlZmaaE/Wnn37K4cOHOXToEC+99BJ//vOfrR0qADpXJ5zbNCfnaJp5W3ZiGjoXJ5y9mysSkxBCiPrL5i99nz17FoAWLVpYbE9KSiIjI8OcqN3crteZzc3NRV2N2auLiwt6vf72O/5OB01T/u4aZrFNc636lD73epF6fW4hgLkyVUM1cGAEJ8vvvICCsC1VjefGbOBA2x7PTgGhdJgfU+3nBSyo/nOqMnBgBEXJsbVyrMZCp9ORn59f7efZfKL29KxYTDY1NZXevXsDFTeXvfLKKxiNRosbyZ566im2bduGyWRiy5YtisRbXlBRz1nr6kTxpasA5rrOZdfahBBCiDtl84k6MDAQf39/Zs6ciVarxdnZmeXLl3Po0CGcnJwICAgw77tq1SoAPv/8c15++WU2b958R33U5BMOVF3EQJ9XRMHZS3gE+ZJ38hwAnl390OcXUZDZsL/n27kzxqaLGIhbs7WiHEqz9fGsdFGOnTtjpCiHldj8d9QajYa1a9fSqlUrJk2axIwZMxgxYgTh4eEEBwdXeYn78ccfZ+fOnWRnZysQMaR8sYPgaZE4tmyKvacrPV58hNQ1MZiMRkXiEaKmVGo1dvZaVBoNqFTY2WtR62z+870QDUq9+B/XvXt3YmMtvwtZtmwZ4eHhABQUFHDlyhW8vb0B+O677/Dw8MDDw8PqsQIkLF2PvYcro2PeR6VWkf79Pg4s+K8isQhxNzqMG0DYkqnmx4+nf0lB5kX5PbUQVlQvEvXvFRcXk5yczIwZMwAoLCxk/PjxFBYWYmdnh4eHB9999x0qlUqR+EwGI3FRH8vvpkW9l/p1DKlfxygdhhCNWr1M1AkJCRgMBvONZC1btmTfvn0KRyWEEELUvnqZqPv06YPJZFI6DCGEqDdOr5hGcVo8rveMoNX4mebtxtJiTi4ci7GkEPuW7fF9/j9VbhPKsfmbyYQQQtydwpRfUak1BLy9m6KTBym7mmVuy4vfhnNgGAFv/YxKo6U440iV24RyJFELIUQDV3hiPy7BgwBw6RpOUeoBc5uupR/GkopFmQwlBdg5uVW5TShHErUQQjRwhsKr5jKWakcXDIVXzW0OrfwpOLabo1MCUaFC19y7ym1COfXyO2ohhBCVFZ8+xul/Wf50zi1kOHZN3DEU5QFgLM5H69XB3J7906c0DZtAiwenkLnyeQqO/4/i9MOVtjkH9rXqaxHXSaIWQogGwtGnS5VreRem/ELOri9x7/0w+Ud30TTsEXObyWhE41Kx5oSdiweGwqtVbhPKkUvfQgjRwDXp2AtTWSnJr/XHya87WveWlF25wIX1i/AIf5TLO/5D8qwIik/F49pjaJXbhHJkRi2EEI2AzzMfWjzWNvXCa8zLAHSat82iTePctNI2oRyZUQshhBA2TGWSlUNqTJ9fxJXjp5UOw2Y0DfRB5+KkdBiihmQ8W7L18VxQBql5yvXv7wrOWuX6b0wkUQshhBA2TC59CyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhw6Qe9V2QakOWbL3akLg1Gc+WbH08S/WsxkMS9V24cvw0P4x6XekwbMaI6Pm07N1Z6TBEDcl4tmTr4zk1D57aq1z/q/pBD0/l+m9M5NK3EEIIYcMkUQshhBA2TBK1EEIIYcMkUQshhBA2TG4mE0KIRiR5VgSFSbGoNFpUdhoc2nSm9cQFuHYfrHRo4iZkRi2EEI1M64kLCFlTQPCnWTQJCOXkW6MxFOYqHZa4CUnUQgjRSKm19jQb+heMJQWUnE9VOhxxE5KohRCikTKWFnN5+yrUTq44tO6odDjiJupFotbr9URFReHt7Y2joyODBg0iLi4OlUpFdHS00uEJIUS9cm51FPGPupP4tC9FaYfxf/177JxclQ5L3ITN30xmMpkYP348cXFxzJ07F39/f1avXk1kZCQAISEhCkdoyffhUAKfegCPIF9Kc/JZ2/s5pUMSosZkPDdMrR99E6/Il5QOQ9whm0/UK1asYPPmzcTHxxMUFARAREQEfn5+eHh44OPjo3CElkpzC0n6eAsOzd0I+utDSocjxF2R8SyE8mz+0vfChQuZOHGiOUkD2NnZ4efnV2k2PW/ePFQqFUeOHLF2mGbndyWQFr2XwjOXFItBiNoi41kI5dl0ok5JSSEtLY2xY8dWasvMzLRI1AcPHmTfvn20a9fOmiEKIYQQdcqmL32fPXsWgBYtWlhsT0pKIiMjw5yoS0tLmTJlCl9++SURERHV7sfFxQW9Xl/t53XQNOXvrmHVfl5DNXBgBCfLrygdhqghGc+WBg607fHsFBBKh/kx1X5ewILqP6cqAwdGUJQcWyvHaix0Oh35+fnVfp5Nz6g9PStqqKWmXv99n8lk4pVXXsFoNJoT9ezZs5k4cSK+vr5KhCmEEELUGZueUQcGBuLv78/MmTPRarU4OzuzfPlyDh06hJOTEwEBAcTGxvLrr7/yj3/8o8b91OQTDkBWXJLU773Bzp0xNl2/V9yajGdLtj6e47OVrUe9c2eM1KO2EpueUWs0GtauXUurVq2YNGkSM2bMYMSIEYSHhxMcHIxarebnn3/m+PHj+Pn54evry5kzZxg2bBjbtm1TJGaVWo2dvRaVRgMqFXb2WtQ6m/48JMRNyXgWQnk2/z+ue/fuxMZafg+ybNkywsPDAXj11Vd59dVXzW2+vr58//33dO3a1apx/qbDuAGELZlqfvx4+pcUZF6U35+KeknGsxDKs/lE/XvFxcUkJyczY8YMpUOpUurXMaR+HaN0GELUChnPQijPpi99VyUhIQGDwXDTFcnS09MVm00LIYStKM/P4fjf7uXQBOdKbUVph0l6pR/Jswaiv5QJQMn5VFLmDid51kCu7t9o7XDFLdS7GXWfPn0wmUxKhyGEEDbNztGFjvO2c+qdRyq1nV/zBh1e20DZlfNcWL8Qn8nLOP/VPPxe+gqNs7v1gxW3VO8StRBCiNtTabRoXDyqbDOWFKJ1b4HWvQWl51MxlunRX84kffEToFLRbsoKtO4trRyxuJl6d+lbCCHE3TGZjBZ/L8+7THHGEXxnfErLh2dwYe3bCkYnfk8StQJ8HujDoP+8onQY1dbvvefo+NgQpcMQNkjGdP2iUqkt/m7XxA3Hdt3QODfFOag/JWeTFYxO/J4kamtTqej5+kTi3/satU7DqJj3CX5+jMUuYYunMOSLWQC0DO3CYymf4+LnZW538HRlQuK/8RvVr1r9joieT8+oxy02u/h68VjK57S8L5DHUj7HI8jXor3b9DGM2vkeap2GhCXrCHl5gvyOVliSMV3vqO2dKMu9RFF6Avat/LFzaIJa54CxrJTijCPoWvgqHaK4gSRqK2s7KITywhJyEtMw6svZM/0Duk0fQ9MuFcVEfIb3ou3Qnuz920cAZMUe48TqHfRfMg2VuuKfK3TRZC7sOUJadNXLEo2L+wjnts0tN5pM7Jn+AZ0mDqHFb6stqVSELZlC8mfbyNp3nIQl6whbOg21tuJNy72zD8HTItk9dSlGfTn5GVnknTqH70OhdXBmRH0lY9p2nYgaQlHaIU5EDaHg2B4urF8EQKsJUZx8azSZK6fjNebvALQc9SInogaTuep58zZhGyRRW5n38F6c33u9DGd2wimOLt9I/6XTcGrlQeiiZ9g/cxXFWdeLARx8ezX2TZ3p+txI/B+JoHlIR2JfW1ntvvMzsjiw4AvCFk9B42hP0OSH0bk4cXDhlwAkfhhNWUExIS9PQKWxo//SqSQu20DO0XTzMc7tTsR7WK+anwDR4MiYtl2d3vyRHv/NptObP+LcJQyvMS8D4NQ+hM4L9xKwIAZdcx8AXHsMofM/9hDw1s/Yt/RTMmzxO43reo8N8AjyJWX1Dotthxevo+3Qexm5fRHnq5hVGEr07J72AcPWzcVUbuDnZxejv1pQo/6TP9uG97BeDFg+A6/QLmwZMwejvryi8doM5eFt7+Di54WhtIzED761eH7uiUz8x4fXqG/RMMmYFqJuyYzayuzdnCnLL7bYZio3cOmXZBw83Uhds7PK511NOUNZXhH6/CLO7Uq4qxj2vvAhrcK6cmzlJouZBVTMUA4u/Aqf4b3ZPf0DTEajRbs+vxh798oLKIjGS8a0EHVLZtRWVppbgNbF0WJbiz6B+E8YyPF/b6b3G0+ycejLGEos62P3nvcnriRn4uDhQvcXxhG/aI25zS8yjNC3nzY/1ro4MvKnd8FYsTBM4rINJC771txefPEqpTn5XDl+usoYrx4/jaFUT37ahUptOhdHSms48xENk4xpZfi7wqpq3HtXF/0L65BEbWU5R9Nx829jfqxxciBs8RQOLPiCpE+3MmLDG9zz2qP8MucT8z5tBoXQ7sH7iB70N3SuTXhw01tkbv2F7IRTAKRt2EPahj3m/cfFfcSWMXMoOHOp1uN36+RNzpH0Wj+uqL9kTCvDWYuUmWwk5NK3lWVu/RWvvtfXIu819wkKTl8k6ZMtFd+nPb+MTo8OpuV9gQDo3J3p9+6z7I/6mKLzOVxNziRh8TrClkxV5CclrcO6cXrbL1bvV9guGdNC1C1J1FZ2ZsdBtM4OeHT1o82gEPxG9jP/bAWu38Xa7/2Ku1hD336aSwdTOLV2l3mfIx9tvHYn6x+sGruzTwtcO7Qm47vY2+8sGg0Z00LULZVJKlzUWFZcEj+Mer3az/N5oA/+48P56cl36iCqutPvvee4eOAEKV/8WGX7iOj5tPzt96yi3qnpeIaGOaZlPAtbId9RK+D05v2c3rxf6TCq7cZZkhA3kjEtRN2RS99CCCGEDZNELYQQQtgwSdRCCCGEDZNELYQQQtgwSdRCCCGEDZNEbQP6zP8zI759k27Tx1RqC3zqAR78/i1GRL+Ji29F/V7/RyIYET2fAR8+j0pjZ97XZ3gvxuz9oMZ99Zz9BH848m/aj+1v3jZs7VyGr5vH8HXzcOvUtqYvUQghRA3Jz7MU5tm9A0aDkR9GRxGx8kUcmrlRcjnX3N5+dBibHppJ854BBDxxPwfe+oL2Ywfww6jXCXzqAXyG9SJj0z4A2j14H4XnLte4ryMfRXM1yXKtZJPByNYJb9TyqxYNVYvenek1+wlMRhMZm/Zx9F/fAdBmYA+6TY0EKmpCb3tkHleSMxnw4fM4NnMj88cDHF2+sdr9NevhT695f0KlUnF+byKHFn5lbrNz0DFw1UtonOzJz8hi7wsVP8Xq9PhQfB/ui9pOzdYJb2AqN9TCKxei7siMWmHNQzpyfk8iABdij+EZ3N6ivfBcNnb2WnSuTpReLcCtfStyjqUDcH7PEZqF+APg1a8rWXFJmIw3X7/mdn3dmLTNVCqGr5tH3/97Bjt7bU1fpmgk8jOy+CFyNptHzqLt0Huxc9QBcHZnPFvGzmHL2DkUnM4i52g67R7ow6Vfk9kydg7Ngjtg71n9Kg/ZR9L4YdTrbB45i+b3BqB1vl4cpHV4d7LikirKXpYbcA/wpkmbZjS99kFhy9g5kqRFvSAzaoXp3JwoS64oEVheUIzOrYlFe1bccUbvWoxKpWLTw7Nw8WlhLil44/4d/ziI/724HN+HQmvcV1Vinv4/9LmFBE1+mI5/HFyxfrOV6fOLbloVqTFqGuiDzsVJ6TCqVJx1xfx3k8Fornb1m2Y9/Ll8+CQALj4tuBxf8ferKWdo1r0DZ386VK3+fku0KrWa4qwcyotLzW0Fpy+aP8hqnRzQ5xfRJqIHGid7hn0zh6x9x4l/9+vqv8i7JOPZUm2M54IySM2rpYBqyN+1olBKXZBErTB9bpF5FqBxdqQ4/XoZPq2zI+0evI/1fafRNLAdPV56hOMrN5lLCmqcHdHnFuLZvQNXT5zBUFpW475u/pxCAE5v+4Wgvz5Uo9d4t64cP13jpS0bovqwtGWrAcHkZ1yoNCa9h/cic2tFAYzck+doGdqF83sSadknkLxT52rUl19kGD1efIRzMfEVHw6uyUs/T8s+gYzetZjsxDSKzmXj0MwNTLB1/DzClkzFI8i3Uv3quibj2VJtjOfUPHhqby0FVEOr+tVdNTO59K2wS4dSaNWvovKQ131dzGX+AEwmE+VFpZgMRkqv5qNzbUJe2gU8AtsB0KpfVy4fSqVpgDetBwQzdPUsPLr6Evx8xY1iji2b3nFfN6Np4gBAi54B5J++ePcvWDR4Tq08CJ4WyS9zP6vU1qpvV87vOQJUVN1y8HTl/jWzKcnOo+Ry1VMit05tzTc0/van29TR5va0DXvY0P95HL08cO/sY97uPz6C9Oj/8e2AGZTm5NG8ZwBleUVciD0KQNa+Y7h2aF2Lr1yIuiEzaoVlHz6J/4SBjPj2Tc7GxFNyORePIF/cA304tXYXl35NZkT0fNR2ava//jHGsnJOfbuXEdHzKTqXze7pH2AsKyf16xgA7l8zm4Ql61HZqen7zmR2TPrHHfcV9OxI/CcMBJMJh2ZuHPvX9wz7eg7GsnL0uYXsmrpUobMk6gu1TkPY4qnEvrqS8qISizZnnxYUns/GWFYOgMloZN+rKwEIWzqNiweSUdmp0bk7U5p9PWnnnjjDlrFzbtqfUV8OJhPlBcUYSvXmNpVaTenVfABKrxSgc3Xi4oFk2kdW/KqhaaAPpzYoPA0T4g5IorYB+2eusnicczTdfDnu8PtrOfz+Wov21K9+IvWrn6o81rZrd2h7BPmS/n3l0n236uvo8o2V7rzd9OBrd/w6hGgf2R/3Tm3p+85kAHZNWYJfZBhHl2/EZ3hv82VvgCZtmtF/6TRMRiPHVm7CUKzHxdeLLk89wP7XP76j/rzv70Xgk8NBrSJr3zHKC0oIenYkR5dv5NSG3YT/628EPH4/pbkFJCxdj6ncgP/4cIavm0fuqXNcPpRSJ+dBiNokibqByk44dUeXtoWoTalrdpK6ZqfFtt8+/B1b8b3F9sKzlyvNlD2C2pF+7eeGdyLj+1gyfveB9Lf+9LmFbP/Dm5WeEzf7kzs+vhC2QBK1EMJmZGyqf6UyRf2VPCuCwqRYVBotKjsNDm0603riAly7D1Y6NAtyM5kQQohGq/XEBYSsKSD40yyaBIRy8q3RGAqrWFNCQZKohRBCNHpqrT3Nhv4FY0kBJedTlQ7HgiRqIYQQjZ6xtJjL21ehdnLFoXVHpcOxUG8StV6vJyoqCm9vbxwdHRk0aBBxcXGoVCqio6OVDk8IIUQ9dG51FPGPupP4tC9FaYfxf/177Jyqv5xtXaoXN5OZTCbGjx9PXFwcc+fOxd/fn9WrVxMZWbHIf0hIiMIRWlLZqek1dxIdxg5ApVaTvmkf+2euuu3KYeLO+T4cSuBTD+AR5EtpTj5rez+ndEgNloxn65DzrIzWj76JV+RLSodxS/ViRr1ixQo2b97Mjz/+yOTJkxk8eDArVqzAzs4ODw8PfHx8bn8QKwqePgavvl2JHvQi6/pNw71TW+59/XGlw2pQSnMLSfp4Cwf/8aXSoTR4Mp6tQ86zuJl6kagXLlzIxIkTCQoKMm+zs7PDz8/PPJv29fWlc+fO9OjRgx49erB161alwqXjY4NJXLqeogs5lGbnEf/u1/hPiEClrhenu144vyuBtOi9FJ65pHQoDZ6MZ+uQ8yxuxuZHQEpKCmlpaYwdO7ZSW2ZmpsVl77Vr1xIfH098fDzDhg2zZphmOlcnnNs0J+domnlbdmIaOhcnnL2bKxKTEDUl49k65DyLW7H576jPnj0LQIsWLSy2JyUlkZGRUSvfT7u4uKDX62+/4+900DTl765hFts016pT6XOLzNt+q0B1Y63chmjgwAhOll+53W7VVtV5bswGDrTeeZbxLOe5rg0cePfn2SkglA7zY6r9vIAF1X/OzQwcGEFRcuVlm2+k0+nIz8+v9rFtfkbt6VlRNyw19frv2kwmE6+88gpGo9EiUT/22GMEBwfz3HPPcfXqVWuHClTUeQbQul6vr/pb3eeya21C1Bcynq1DzrO4FZufUQcGBuLv78/MmTPRarU4OzuzfPlyDh06hJOTEwEBAQDs3r0bb29vSktLmTFjBlOnTuW///3vHfVRk084AFlxSZXqyurziig4ewmPIF/yTlbU1/Xs6oc+v4iCzIb9ferOnTF1Uie5qvPcmFnzPMt4lvNc12rjPMdnK1+PeufOmMZbj1qj0bB27VpatWrFpEmTmDFjBiNGjCA8PJzg4GDU12608Pb2BsDe3p7nnnuOvXuV+1dL+WIHwdMicWzZFHtPV3q8+Aipa2IwGY23f7K4Iyq1Gjt7LSqNBlQq7Oy1qHU2/7mzXpLxbB1ynsXN1It3tu7duxMba3ntf9myZYSHhwNQWFhIeXk5bm5umEwmvvrqK3r06KFApBUSlq7H3sOV0THvo1KrSP9+HwcW3NnsXtyZDuMGELZkqvnx4+lfUpB5UX5PXQdkPFuHnGdxM/UiUf9ecXExycnJzJgxA4CsrCzGjh2LwWDAYDDQpUsXPvroI8XiMxmMxEV9TFzUndXUFdWX+nUMqV/HKB1GoyDj2TrkPIubqZeJOiEhAYPBYL6RrH379hw6dEjhqIQQQojaVy8TdZ8+fTCZTEqHIYQQoh45vWIaxWnxuN4zglbjZ1Zqz9q4mNxfvqfTmz+Se3ALF9b9A4DijEQ6vbEDXXMfUuYMpeRsMiFrCqwWt83fTCaEEELcrcKUX1GpNQS8vZuikwcpu5pl0W4qL6M4Ld782O2e4QQsiKHT/J3Yt2yPo1937Bxd6DhvO0063WfV2CVRCyGEaPAKT+zHJXgQAC5dwylKPWDRnh3zOU37/7HS84pSfsHJvycqlQqVRovGxcMq8d5IErVosHwe6MOg/7yidBjV1u+95+j42BClwxA2SMZ0zRkKr5rLV6odXTAUXjW3mYxG8g5uxe2eyktPX90fjXufUdYKs0qSqEXDpFLR8/WJxL/3NWqdhlEx7xP8/BiLXcIWT2HIF7MAaBnahcdSPsfFz8vc7uDpyoTEf+M3ql+1+h0RPZ+eUZZVj1x8vXgs5XNa3hfIYymf4xHka9HebfoYRu18D7VOQ8KSdYS8PEF+Fy4syZi+I8Wnj5E8K8Liz4W1/8CuiTuGojwAjMX52DVxNz/naux63HqPrPJ4+Yk7cek2qM7jvhVJ1KJBajsohPLCEnIS0zDqy9kz/QO6TR9D0y7tAPAZ3ou2Q3uy928VP+PLij3GidU76L9kmrlaUeiiyVzYc4S06KoXzxkX9xHObX9XMMFkYs/0D+g0cQgtflttSaUibMkUkj/bRta+4yQsWUfY0mmotRVvWu6dfQieFsnuqUsx6svJz8gi79Q5fB8KrYMzI+orGdN3xtGnCwELYiz+eI17lSadepOfuBOA/KO7cPK/1/yckrPJZP/0CSlzh1OUFs/lbasAKL1wCl2ztqi1ujqP+1YkUYsGyXt4L87vPWJ+nJ1wiqPLN9J/6TScWnkQuugZ9s9cRXHW9WIAB99ejX1TZ7o+NxL/RyJoHtKR2NdWVrvv/IwsDiz4grDFU9A42hM0+WF0Lk4cXFhROzvxw2jKCooJeXkCKo0d/ZdOJXHZBnKOppuPcW53It7DetX8BIgGR8b03WnSsRemslKSX+uPk193tO4tKbtygQvrF9HqkVl0emM7HeduwcmvB83ufwqouOzt1tvysveJqCEUpR3iRNQQijOOVNVVrZNra6JB8gjyJWX1Dotthxevo+3Qexm5fRHnq5hVGEr07J72AcPWzcVUbuDnZxejv1qzn2Akf7YN72G9GLB8Bl6hXdgyZg5GfXlF47UZysPb3sHFzwtDaRmJH3xr8fzcE5n4jw+vUd+iYZIxffd8nvnQ4rG2qRdeY1622NbpzR/Nf2856oVKx7ix3VpkRi0aJHs3Z8ryLasOmcoNXPolGQdPN1LX7KzyeVdTzlCWV4Q+v4hzuxLuKoa9L3xIq7CuHFu5yWJmARUzlIMLv8JneG92T/+g0nrO+vxi7N2d76p/0bDImG68ZEZ9F5oG+jAier7SYdiMpoE+SodgVppbgNbFso5viz6B+E8YyPF/b6b3G0+ycejLGEos65D3nvcnriRn4uDhQvcXxhG/aI25zS8yjNC3nzY/1ro4MvKnd8FYsfhO4rINJC771txefPEqpTn5XDl+usoYrx4/jaFUT37ahUptOhdHSms486kpGc+WbGk8g4zpW/F3hVXVuD+urmKoK5Ko74LOxalOyuCJu5dzNB03/zbmxxonB8IWT+HAgi9I+nQrIza8wT2vPcovcz4x79NmUAjtHryP6EF/Q+fahAc3vUXm1l/ITjgFQNqGPaRt2GPef1zcR2wZM4eCM7VfhtCtkzc5R9Jr/bi3IuPZtsmYvjlnLXVWYtIWyKVv0SBlbv0Vr75dzY97zX2CgtMXSfpkS8X3ac8vo9Ojg2l5XyAAOndn+r37LPujPqbofA5XkzNJWLyOsCVTFfmZVOuwbpze9ovV+xW2S8Z04yWJWjRIZ3YcROvsgEdXP9oMCsFvZD/zz1bg+l2s/d6vuIs19O2nuXQwhVNrd5n3OfLRxmt3sv7BqrE7+7TAtUNrMr6Lvf3OotGQMd14qUxS3ULYuKy4JH4Y9Xq1n+fzQB/8x4fz05Pv1EFUdaffe89x8cAJUr6o+u7SEdHz5RJ1PVbT8QwNc0zLeL49+Y5aNFinN+/n9Ob9SodRbTfOkoS4kYzpxkkufQshhBA2TBK1EEIIYcMkUQshhBA2TBK1EEIIYcMkUQshhBA2TBK1aJR07s48tHUhj6V+XmV7u4dCeXDz2zz4/Vs0v6fjTY8TvvwF/nj8k+vl/27gFRrE6F2LuX/NbPM2/0ciGL1rMcPXzaPL5Ifu/oUIIRo8+XmWaJTKCorZNuFNIv71tyrbA58czpbI2ejcnekz/8/EPP1ulfvFzf4PAU/cX2Vb9pE0vhv6MoM/e81ie8KSdZxat/vuXoBolPrM/zMeXf0489MhEpeuN29XaewY8OHzODZzI/PHAxxdvhHnts154Pu3yDt5joKzl9kz/QN07s7cvyYKtw6t+cL/8Wr336J3Z3rNfgKT0UTGpn0c/dd3Fu2/jyMr9hi95v0JlUrF+b2JHFr41V2fg8ZIZtSiUTKVG25Z7q8g8yIaJ3t0rk63LCRQfOnqTdvK8oswlJZV2t5tymiGfTMHjyDf6oQsGjnP7h0wGoz8MDoKz25+ODRzM7e1e6APl35NZsvYOTQL7oC9Z0WFiDM/HmDL2Dnsmf4BcP0D6qUDKTWKIT8jix8iZ7N55CzaDr0XO0edRfvv48jPvMgPo15n88hZNL83AK2z402OLG5FZtR3QZ9fdNMqMo1R00AfdC5OSodRKzK3/8rD2xehUqv5ceJbtXbcjB/iSP06Bue2zen3/nNsHT+v1o59t2Q8W7K18dw8pCPn9yQCcCH2GJ7B7Tn70yEAXHxacDn+JFBR1rJZ9w7knjhDm4gejPj2TZI/28ap9btv+wH1doqzrpj/bjIYzVW2flNVHGd/OoRKraY4K4fy4tIa9307BWWQmldnh78lf9eKwiB1RRL1Xbhy/HSNlwJsiBrSUoBdp4zm2/4z0Lo6Ebrwr/z0p4W1ctyy/CIACs5cwmS0rdV7ZTxbsrXxrHNzoiy5oh51eUExOrcm5rbck+doGdqF83sSadknkLxT5yi6eIX1/aeDCYZ++Tpndx6i9ErtlJlsNSCY/IwLla4YVRWHX2QYPV58hHMx8RXJvY6k5sFTe+vs8Le0ql/dVu+SRC1EFQylZZSX6EGlQuPkAIBjy6YWM4qa0DRxoLywBJ1bE0UqGIn6S59bZL50rHF2pDj9es3nzK2/0jq8O/evmU1Jdh4ll/Mw6svN7Vn7j+PSzovSK6l31Jdbp7YWdaoBzu48ROKyb3Fq5UHwtEh2TKr84bWqOM7vSSTt271ErHwR984+XE2SqzbVJe8UotG6f81sPLr6cf+a2cTN/g+lOfm0HzeAo8s3cvKbn3nwuwWgVnH43W8ACHv/ObY/usDiGD3nPEG7EX1oO+Qejq3cxKn1u+k55wl+nfcZTbu0o9ecSXh09WPol6+z/Y/z6fL0g7QdfA8qlYoDb69W4mWLeurSoRTaR4ZxZvsBvO7rQvrG/5nbTEYj+15dCUDY0mlcPJCMxsmB8qISAJp170DSxz9UeVyVnRqduzOl2devG+eeOMOWsXMq7avWaQhbPJXYV1eaj32j38dx+fDJaw0myguKMZTqa/biGzlJ1KLR2jbhjUrbji7fCEDK6h2krN5xvUGlIjf1bKX9f533Gb/O+6zSNoArxzIq9ZGweB0Ji9fdbeiiEco+fBL/CQMZ8e2bnI2JR6VSEfTsSI4u30iTNs3ov3QaJqORYys3YSjW0zq8O/e89ijGsnIyvt9H8cWrQOUPqIbSMro89QD7X//4tjG0j+yPe6e29H1nMgC7pizBZDCaP+D+Po7W4d0JfHI4qFVk7TtGftqF2/QgqiKJWog7YTIRN/sTpaMQjdz+massHv/2wbLw7OVKM+BzPx/m3M+HKx3j9x8e2z3Yh/RN++6o/9Q1O0lds7PS9lvFkfG91KC+W5KohRCiEcvYVP/KZjY2kqiFEEI0SsmzIihMikWl0aKy0+DQpjOtJy7AtftgpUOzIAueCCGEaLRaT1xAyJoCgj/NoklAKCffGo2hMFfpsCxIohZCCNHoqbX2NBv6F4wlBZScv7OfsVlLvUnUer2eqKgovL29cXR0ZNCgQcTFxaFSqYiOjlY6PCGEEPWYsbSYy9tXoXZyxaH1zQvxKKFefEdtMpkYP348cXFxzJ07F39/f1avXk1kZCQAISEhCkd4ne/DoQQ+9QAeQb6U5uSztvdzSofUYKns1PSaO4kOYwegUqtJ37SP/TNXVbm+tqg5Oc/WIe8dyji3OooL38xHpbHHwbsL/q9/j52Tq9JhWagXiXrFihVs3ryZ+Ph4goKCAIiIiMDPzw8PDw98fHwUjvC60txCkj7egkNzN4L+KmUM61Lw9DF49e1K9KAXMZSVM/iTV7j39ceJi7r970HFnZPzbB3y3qGM1o++iVfkS0qHcUv14tL3woULmThxojlJA9jZ2eHn52eeTZeUlPDss8/SsWNHunXrxl//+ldFYj2/K4G06L0UnrmkSP+NScfHBpO4dD1FF3Iozc4j/t2v8Z8QgUpdL4Z1vSHn2TrkvUPcjM3PqFNSUkhLS2Pp0qWV2jIzMxk7diwAf//733FwcODEiROoVCqysrKsHaqwIp2rE85tmpNzNM28LTsxDZ2LE87ezcnPkH//2iDnWQjl2XyiPnu2YtnGFi1aWGxPSkoiIyODkJAQCgoK+Oyzzzhz5gwqlQqAli1b3nEfLi4u6PXVX4O2g6Ypf3cNq/bzGqqBAyM4WX53RSuqUtV51lwrTqDPLTJv0+cWAjT4mrcDB8p5toaBA613nhuzgQNr5zw7BYTSYX7MXR+nJgYOjKAo+fYrsOl0OvLz86t9fJu/duXpWVE7LDX1+u3yJpOJV155BaPRSEhICCdPnsTT05N58+bRs2dPIiIi2LNnj1IhCysoL6go96d1vV4v+Leyf2XX2sTdk/MsGrKABTE2//001IMZdWBgIP7+/sycOROtVouzszPLly/n0KFDODk5ERAQQHx8PKdOnSIkJIRFixaxf/9+Hn74YVJTU3F1vf3dezX5hAOQFZck9XtvsHNnTJ3U763qPOvziig4ewmPIF/yTp4DwLOrH/r8IgoyG/Z3fHKercOa57kxq63zHJ+tXD3qnTtj6rQetc3PqDUaDWvXrqVVq1ZMmjSJGTNmMGLECMLDwwkODkatVuPj44NGo+GPf/wjAH369KFZs2acOHHC6vGq1Grs7LWoNBpQqbCz10rd4TqS8sUOgqdF4tiyKfaervR48RFS18RgMtZdcfrGSM6zdch7h7iZejEKunfvTmys5fX/ZcuWER4eDkCzZs0YOHAg27dv5/777+fEiRNcvHgRf39/q8faYdwAwpZMNT9+PP1LCjIvym8i60DC0vXYe7gyOuZ9VGoV6d/v48CC/yodVoMj59k65L1D3Ey9SNS/V1xcTHJyMjNmzDBv++c//8mf//xnXnzxRbRaLZ9//jnu7u5Wjy316xhSv46xer+NkclgJC7qY/k9bx2T82wd8t4hbqZeJuqEhAQMBoPFimTt27cnJiZGuaCEEEKIOlAvE3WfPn0wmUxKhyGEEKKeKTi2hzP/eQlUapr2HUvL0S+a2wpPxJH57xfAZMIleBBtJs6/5f7WYvM3kwkhhBC1RdeyPZ3e2kXnd/7H1V++x1h6fY0Ap/YhdF64l87v/I/C5FgMRXm33N9a6uWMWgghhKgJnWdr899VajtQXZ+vqjRaAEwGA1qP1qjtnSwKdPx+f2uRGbUCfB7ow6D/vKJ0GNXW773n6PjYEKXDEDZIxrSob/Lit2PfqgNqnYPF9pyfV3N0aiB2TdxR2Wluu781SKK2NpWKnq9PJP69r1HrNIyKeZ/g58dY7BK2eApDvpgFQMvQLjyW8jkufl7mdgdPVyYk/hu/Uf2q1e+I6Pn0jHrcYrOLrxePpXxOy/sCeSzlczyCfC3au00fw6id76HWaUhYso6QlyfIbzuFJRnTwgYVnz5G8qwIiz8X1v4DAP3lM1xY+zZtn3y30vM8wh8l6MMkynLOUZyeeNv9rUEStZW1HRRCeWEJOYlpGPXl7Jn+Ad2mj6Fpl3YA+AzvRduhPdn7t48AyIo9xonVO+i/ZJq5WlHooslc2HOEtOiql+EZF/cRzm2bW240mdgz/QM6TRxCi99WAVKpCFsyheTPtpG17zgJS9YRtnQaam3Fm5Z7Zx+Cp0Wye+pSjPpy8jOyyDt1Dt+HQuvgzIj6Ssa0sEWOPl0IWBBj8cdr3KsYy0pJX/InfJ5Zjp2js8VzjGWlwLXFZxxdUOkcbrm/tUiitjLv4b04v/eI+XF2wimOLt9I/6XTcGrlQeiiZ9g/cxXFWdcXqT/49mrsmzrT9bmR+D8SQfOQjsS+trLafednZHFgwReELZ6CxtGeoMkPo3Nx4uDCLwFI/DCasoJiQl6egEpjR/+lU0lctoGco+nmY5zbnYj3sF41PwGiwZExLeqTnJ9XU5J5jIzlk0meFYE++yxlVy5wYf0icuM2Vsy+XxuA1rMtDq07Vrm/tcn1HivzCPIlZfUOi22HF6+j7dB7Gbl9EeermFUYSvTsnvYBw9bNxVRu4OdnF6O/WlCj/pM/24b3sF4MWD4Dr9AubBkzB6O+vKLx2gzl4W3v4OLnhaG0jMQPvrV4fu6JTPzHh9eob9EwyZgW9UmzIU/SbMiTlbZ7jXkZgKb9xt/R/tYkM2ors3dzpizfsuqQqdzApV+ScfB0I3XNziqfdzXlDGV5Rejzizi3K+GuYtj7woe0CuvKsZWbLGYWUDFDObjwK3yG92b39A8qreeszy/G3l2Zyz/CNsmYFqJuyYzaykpzC9C6WNbxbdEnEP8JAzn+7830fuNJNg59GUOJZX3s3vP+xJXkTBw8XOj+wjjiF60xt/lFhhH69tPmx1oXR0b+9C4YKxaFSVy2gcRl35rbiy9epTQnnyvHT1cZ49XjpzGU6slPu1CpTefiSGkNZz6iYZIxLUTdkkRtZTlH03Hzb2N+rHFyIGzxFA4s+IKkT7cyYsMb3PPao/wy5xPzPm0GhdDuwfuIHvQ3dK5NeHDTW2Ru/YXshFMApG3YQ9qG6/W3x8V9xJYxcyg4U/tlCN06eZNzJL3Wj3srTQN9GBE936p92rKmgT5Kh2BBxnT1yHi2VFvj2d8VVlXjRwO1yf/21ZTviiRqK8vc+ishf/+D+XGvuU9QcPoiSZ9sAWDP88sY+eP/cfqH/WTtO47O3Zl+7z7L/qiPKTqfQ9H5HBIWryNsyVS+G/b369/FWUnrsG6c+HLH7XesRToXpzqpCyxqh4zp6pHxXDectdRpTWglyXfUVnZmx0G0zg54dPWjzaAQ/Eb2M/9sBa7fxdrv/Yq7WEPffppLB1M4tXaXeZ8jH228difrH6rqos44+7TAtUNrMr6Lvf3OotGQMS1E3VKZpLpFjWXFJfHDqNer/TyfB/rgPz6cn558pw6iqjv93nuOiwdOkPLFj1W2j4ieLzOFeqym4xka5piW8SxshVz6VsDpzfs5vXm/0mFU242zJCFuJGNaiLojl76FEEIIGyaJWgghhLBhkqiFEEIIGyaJWgghhLBhkqiFEEIIGyZ3fQshal2L3p3pNfsJTEYTGZv2cfRf31m0D/70VbQujhjLjfz8zHuo7ewI/+cLADi19iTp4x84tnJTpePq3J25f00Ubh1a84X/45Xaw5ZMxcW3JYbSinKbRRdycPH14r63/oJap+XYiu/J3PZr3bxoIeqIJGoF3e5Np9PjQ/F9uC9qOzVbJ7wBwIAPn8exmRuZPx7g6PKNNeq3y9MP0nbIvWy7dswb9Zn/Zzy6+nHmp0MkLl1Pm4E96DY1Eqio5bvtkXmVih4I8Xv5GVn8EDkbY1k5w9bOJemzrRiKr6/1/dNfFmEqN9B+3ADaR/bn+L83s2XsHAAGfDSDMzsOVnncsoJitk14k4h//a3K9vhFayg4c4lWYd3o/ORwDr69mh4vjufnZ95Hn1dU+y9UCCuQRK2gW73pNGnTjKbXEuNvfEf25dKvyRxbuYnw5S9g7+lKaXZetfpUaezwCPKtss2zeweMBiM/jI4iYuWLODRz4+zOeM7ujAfgoR/+IUla3JEba0+bDEZzMQ3ztnIDAHb2Oq6mnDFvV2nscPFpQd6p81Ue11RuuGU5zN/WAjcZjJhMJtRaDU1aNyNs6TQwwf9e/icll3Nr/LqEUIIkagXd6k2ndXh3NE72DPtmDln7jhP/7te4+LTgcvxJoKJEYLPuHTj706Fq9dlhXDinvt1D12dHVWprHtKR83sSAbgQewzP4Pbm4zfr4c/lwyer1ZcQrQYEk59xAUNpmcV2nbszQz57Da2zA9sfW2De7tU3iAv/O3p3napUdHt+DLF//xf2Hi64d/Zmfd9peAT5Ejw9krjZn9zd8W1EQRmkVu9zeq3yd61YX1vUPUnUNsqhmRuYYOv4eYQtmYpHkC+5J8/RMrQL5/ck0rJPIHmnzlXvoCoVbSK68/Mz71eZqHVuTpQlV9QVLi8oRufWxNzmPbwXmVt/uavXJBoXp1YeBE+LZMekhZXa9FcL2DxyFt7DetHlrw/x67zPAPC5vyenbqiaVRMhr/yBtG/3UnD6IhpHe64cP40+t5Cs/cfpOmX0XR3blqTmwVN7let/Vb+GWwTD1kiitlFleUVciK2YWWTtO1ZROOD7fbQO7879a2ZTkp1HyeWqP067dWprUcsX4OzOQ+SlXbjljTT63CK0zhV1hTXOjhSnX6/d26pvVw6/+83dvizRSKh1GsIWTyX21ZWUF5VYNqpUqNQqTAYjZXlFFrPtZvd0ZH/Uf8yPHVs2tbiMfjvtHuyDvbszh776EoDy4lIMpWWodRrcO7alIPPi3b0wIRQgidpGXTyQTPvI/kBFvdZTG/ZiMhrZ9+pKAMKWTuPigWRUdmp07s4W31XnnjhjvjHnRsHPj8ErNIgO4wbg0dWXjo8OJmX19fJ+lw6l0D4yjDPbD+B1XxfSN/4PqKgwVHg+G2OZdcsPivqrfWR/3Du1pe87kwHYNWUJDp6uuAf6cPqHOIZ8/homowmjvow9z38IgEdXP64cy4BrdYJUdmr6vjOZHZP+YXHs+9fMxqOrH/evmU3c7P9QmpNP+3EDOLp8I73m/omi8zkMXzePc7sOk7BkPUf/uZFh38zBZDCa+xKiPpHqWXfhbqoN/ea3N52cI2nEv/s1ze/tZL6bu/cbf8IjyI/cU+eIfflfNGnTjP5Lp2EyGjm2chOZ237FxdeLLk89wP7XP652v9smvIFjc3fzmxxAn7eewqNLO87GxJOweB0AXf76ECWXczm1fvctjynVhuq32hjPtckzuD3uAd6c/OZnRfq39fEcny2XvhsLSdR3wRbe2No92IeSnHyyYo8pGgfY/hubuDVbGM+2xNbHsyTqxkMufddzGZvqX2lBIYQQd04StRBCNCLJsyIoTIpFpdGistPg0KYzrScuwLX7YKVDEzcha30LIUQj03riAkLWFBD8aRZNAkI5+dZoDIWyEIytkkQthBCNlFprT7Ohf8FYUkDJ+VSlwxE3IYlaCCEaKWNpMZe3r0Lt5IpD645KhyNuot4kar1eT1RUFN7e3jg6OjJo0CDi4uJQqVRER0crHZ4FlZ2a3m8+yR+P/YdHkz6l77vPYmcva+2J+sf34VBGRL/JY6mfMy7uI6XDEbXk3Ooo4h91J/FpX4rSDuP/+vfYObkqHZa4iXpxM5nJZGL8+PHExcUxd+5c/P39Wb16NZGRFVWdQkJCFI7QUvD0MXj17Ur0oBcxlJUz+JNXuPf1x4mLqt5vnYVQWmluIUkfb8GhuRtBf31I6XBELWn96Jt4Rb6kdBjiDtWLRL1ixQo2b95MfHw8QUFBAERERODn54eHhwc+Pj4KR2ip42ODOfDmfym6kANA/LtfE7HiRX6Z8wkmo1Hh6IS4c+d3JQDgM7yXwpEI0XjVi0S9cOFCJk6caE7SAHZ2dvj5+aHVaklPT2f06NHmtqtXr5KXl0dOTo7VY9W5OuHcpjk5R9PM27IT09C5OOHs3Zz8jCyrxySEEKL+svlEnZKSQlpaGkuXLq3UlpmZydixY/H19SU+Pt68fcaMGZSX3/m61C4uLuj1+tvv+DsdNE35u2uYxTbNtaIW+tzrRer1uYUA5oIXDdXAgRGcLL/zAgrCtlQ1nhuzgQNtezw7BYTSYX6MYv0PHBhBUXKsYv3XRzqdjvz8/Go/z+YT9dmzZwFo0aKFxfakpCQyMjIqfT+t1+v54osv2Lp1q9VivFF5QUWZSK2rE8WXrgKYy0WWXWsTQgilBCyIUToEUU02n6g9PSsWk01NTaV3795Axc1lr7zyCkajsVKi3rhxI23atOGee+654z5q8gkHql4bWZ9XRMHZS3gE+ZJ3sqJetGdXP/T5RRRkXqpRP/XFzp0xNr02srg1Wevbkq2PZ6XX+t65M0bW+rYSm0/UgYGB+Pv7M3PmTLRaLc7OzixfvpxDhw7h5OREQECAxf4ff/wxf/7znxWKtkLKFzsInhZJ1v7jGMsN9HjxEVLXxMiNZKLeUanVqLV2qDQaUKmws9diMpkw6qXkqRDWYvOJWqPRsHbtWp555hkmTZqEt7c3M2bMwNXVlZMnT6JWX/8p+NmzZ/n555/5/PPPFYwYEpaux97DldEx76NSq0j/fh8HFvxX0ZiEqIkO4wYQtmSq+fHj6V9SkHmRtb2fUzAqIRoXm0/UAN27dyc21vKmhWXLlhEeHm6x7dNPP+XBBx80Xy5XislgJC7qY/ndtKj3Ur+OIfXrGKXDEKJRqzcrk92ouLiY5OTkSt9Pf/LJJ4pf9hZCCCFqU72YUf9eQkICBoOhUqI+ceKEQhEJIYRtO71iGsVp8bjeM4JW42eatxtLizm5cCzGkkLsW7bH9/n/VLlNKKdezqj79OmDyWSiZ8+eSocihBA2rzDlV1RqDQFv76bo5EHKrl5feCkvfhvOgWEEvPUzKo2W4owjVW4TyqmXiVoIIcSdKzyxH5fgQQC4dA2nKPWAuU3X0g9jScWiTIaSAuyc3KrcJpQjiVoIIRo4Q+FVc3UstaMLhsKr5jaHVv4UHNvN0SmBqFCha+5d5TahnHr5HbUQQojKik8f4/S/LH865xYyHLsm7hiK8gAwFuej9epgbs/+6VOahk2gxYNTyFz5PAXH/0dx+uFK25wD+1r1tYjrJFELIUQD4ejTpcolQgtTfiFn15e4936Y/KO7aBr2iLnNZDSicfEAwM7FA0Ph1Sq3CeXIpW8hhGjgmnTshamslOTX+uPk1x2te0vKrlzgwvpFeIQ/yuUd/yF5VgTFp+Jx7TG0ym1COTKjFkKIRsDnmQ8tHmubeuE15mUAOs3bZtGmcW5aaZtQjsyohRBCCBsmiVoIIYSwYSqTyWRSOoj6Sp9fxJXjp5UOw2Y0DfRB5+KkdBiihmQ8W7L18VxQBql5yvXv7wrOWuX6b0wkUQshhBA2TC59CyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDZMErUQQghhwyRRCyGEEDbs/wG/9MfSpua4WQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -292,16 +292,16 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:57.320321Z", - "iopub.status.busy": "2024-11-23T19:54:57.320120Z", - "iopub.status.idle": "2024-11-23T19:54:57.456391Z", - "shell.execute_reply": "2024-11-23T19:54:57.455881Z" + "iopub.execute_input": "2024-12-05T03:21:31.982569Z", + "iopub.status.busy": "2024-12-05T03:21:31.982186Z", + "iopub.status.idle": "2024-12-05T03:21:32.116976Z", + "shell.execute_reply": "2024-12-05T03:21:32.116336Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAa20lEQVR4nO2df1AUZ5rHPzMw/B5ANCq6g6D8EDUqakj0wgJZo7EsPfey5pKYFFc5b2M0u0Wyblxx9cwlJtm1diunqVWze7kkxpCts7xTk5TiXokmF2M0wq0/BySoqAEVRIYZhGHo+8NjZGAYB2Hobnk+VVbJPDPdT1d9eN+Xnu5vGxRFURAGNEa1GxDURyQQRAJBJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBAQCQQgWO0GtEyjE842qN1FV5KjIcrUd9sTCXxwtgEW/4/aXXTlT38Dkwf33fZkOhBEAkEkEBAJBGRhGHCsq3KwnzmEIdiEISiYsJFjGfHMOqIn/Ujt1tzISNAPjHhmHRl/bmTiBzVEpk2n4o0FuOw31G7LjUjQjxhNoQx59B9pu9nIze/Pqt2OG5GgH2lrbuLavj9hjIgmbESK2u240Y0ELS0trF69GovFQnh4OI888gjffPMNBoOBnTt3qt2eTy5/vJrSp2M5/k+JOCr/l+Rff0pQRLTabbnRxcJQURQWLlzIN998w9q1a0lOTubjjz/mxz/+MQAZGRkqd+ibEU+/xvAfL1e7jW7RhQTvvvsun3/+OaWlpYwfPx6AnJwckpKSiIuLIyEhQeUO9Y0upoPf/OY3PPPMM24BAIKCgkhKSnKPAmVlZUyfPp3U1FSmT59OeXm5Wu3qDs1LUF5eTmVlJY8//niXWlVVlVuCJUuWsGzZMsrKyli2bBnPP/+83/swm82EhoZ2+Zebm9M3B9HH5ObmeO3XbDbf1fY0Px1cunQJgKFDh3q8fubMGc6fP09GRgZXrlzh2LFj7Nu3D4CnnnqKF198katXr3Lffff1e88dSVtXrOr+/UHzI8Hgwbe+Mz179vbf1YqisGLFCtra2sjIyKCqqoqRI0cSFBQE3JoqRowYQVVVlV/7sNlsNDc3d/m3f39xnx9PX7B/f7HXfm02211tT/MjQXp6OsnJyRQUFGAymYiKimLTpk2UlJQQERFBWloaJSUlarepazQvQXBwMNu3b2fJkiXk5eVhsVjIz88nOjqaiooKjEYjFouFS5cu4XK5CAoKwuVycfnyZSwWi9rt6wLNTwcAkyZN4tChQzgcDqxWKy+88AIlJSXuReHQoUOZPHkyhYWFABQWFpKRkaH6ekAv6EKCzjQ1NWG1Wj1OEm3evJmNGzeSmprKxo0b2bx5s4od6gvNTwfe+Otf/4rL5fKQYOzYsRw+fFiVfi68+zOaKkuJnjKH+IUFPmvNNec4s2I6YSPTCBmSQNJLH7rfW7PrbW4c+ZTU1/6C0uqk8veLcN64QszUuQz/u18GrH9djgQPPvggiqIwbdo0tVvBXn4UgzGYtDe/wFFxDGd9zR1rMVPnkrau2EMApdVJU2Wp++frh3YQOXYGaeuKcVR8i/PG1YAdgy4l0BL2ssOYJz4CgHlCNo6z396x1lCyF+vKLGqLt7nfW1u8lUFZT7l/bqmpJHzU/QCEWdJxlB8J2DGIBL3EZa93fyNoDDfjstf7rJni4pmwyUrK2iKu7d1Ca0MtSlsbDcf2EjNltvuzoSPTaDxxAEVRaDz5BS5H4C5C0eWaQA2aLpziwpalHq/FZDxGUGQsLsetO1TammyYho9x173VjKZQdz1qXBbN1RW0XL1ATOZ8j23HZs6nobSI8jWPEhxzH8ExnmdM+xKRwE/CE8Z5PQVsLz9C3cFCYjPnYTt5kEEPP+GuRaZmdqm5mhoJCo9CURQcZ48ydO6LNJTuw3aimLrirTgqS7lW9CeGzFrMqBc2oSgK597OI2rs9IAdm0wHvSQy5QEUZzPWlVlEJE3CFDsM5/Vqqnes91qzn/mK0y9Pw7piBtEZszDFxRP/xCpS/2UfKWv3EJE0mSGzFtNy9QLWVTmUr/4Rg2b8BGNoRMCOwSBPSO2e0lq5DU0YIIgEgkwHvhgot6aLBIJMB4JIICASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAJyeVmPUPNbxb7+5rAjIkEPUDPwuq+vJuqITAeCSCCIBAIigYAsDAOOBFwLgARcCx2QgGtBAq57iwRcBw5dLAwl4Dqw6EICCbgOLLqYDvwJuF6+fDlJSUkYDAZOnDihVqu6RPMS+BtwvWDBAg4ePMioUaP6u0Xdo/npwJ+Aa4CHH374rvdhNptpaWm54/si0qYz5vXiHm27rwKuc3NzcFgP+XxPSEjIXeUba34k8CfgWugdmh8J/Am47i3+/vaomVyyf39xwK4n0LwE/gRcC71D8xLA7YDrjrzzzjtkZ2er1NG9hS5/jbwFXP/85z/nBz/4ARcvXmTmzJkef072N622Ok6/PJWSv4/qUvtu/ZNYV+Vw+uWpnH1jQf835wVdjASd8RZwvWHDBjZs2KBiV7cJCjeT8uo+vvvtE11qo3/5CQBX92wBg6G/W/OKLiVoD7jWKoZgE8HmOJ/vuXFkN6OW/bGfOvKNLqcDveNqasTVZMMUF692K4BIoAoNJXuJnvKY2m24EQlUoP7wTmIz/1btNtyIBAGibPVMHJUllK2eSeOpL6nesR4AxeWi+XIZ4QnjVO7wNpJj2APUPGModyAJAUUkEEQCQdYEPeJevTVdJBBkOhBEAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBDQ6SXn/cVAeUyuSOADNQOtfdHXl5rJdCCIBIJIICASCMjCMOBIwLUASMC10AEJuBYk4Lq3SMB14NDFwlACrgOLLiSQgOvAogsJfAVcm0wmamtrefbZZ6moqCAkJISUlBS2bNnCfffdp2LX+kHzawJ/Aq4NBgOvvPIKVquV48ePM2bMGH71q1+p0K0+0bwE/gRcx8XFkZOT46499NBDnD9/3u99mM1mQkNDu/zLzc25wyfvTNq64j5fD+Tm5njt12w239X2NC9BTwOu29ra2LRpE/Pnz+/XPvWM5u9Kbm1tJT09HafTyfr16z0Cruvq6rDZbB75xsuWLePSpUvs2LGj17nHasbT+KKvryfQ/MKwJwHXy5cvp7y8nN27d0vwdQ/QvATgX8B1QUEB3377LZ999hmhoaH93aKu0eWvS+eA65MnT/Lmm29y+fJlZsyYweTJk90nkoQ7o4uRoDOdA67Hjx+vatbxhXd/RlNlKdFT5hC/sMBnrfHUl1z89+VgMDJoxuMMW/ALWm11lP/zo9y8ZCXjz40ANNec48yK6YSNTCNkSAJJL30YsP51ORK0B1xPmzZN7Vawlx/FYAwm7c0vcFQcw1lf47MWMmw0qW8cZOxvv6L+yKe0NTvcqeiRqQ95bDtm6lzS1hUHVADQqQRawl52GPPERwAwT8jGcfZbn7WQwSMwmkIAMBiDwGDsNhW9oWQv1pVZ1BZvC+gxiAS9xGWvd38jaAw347LX+1VrKN1HaPwYjCFhXrdriotnwiYrKWuLuLZ3C60NtQE7Bl2uCdSg6cIpLmxZ6vFaTMZjBEXG4nLcukOlrcmGafgYd727Wsu1i1Rvf5Mxq3Z1uz+j6fZfOFHjsmiuriA4OjC5tiKBn4QnjPP6jEN7+RHqDhYSmzkP28mDDHr49tNOIlMzu9TanM2c+9d/IGHJJoLCuz4epx1XUyNB4VEoioLj7FGGzn0xEIcFyHTQayJTHkBxNmNdmUVE0iRMscNwXq+mesd6r7W6Ax9zs+oU5zc9j3VVDi21t74b6ZiK3nT+BPYzX3H65WlYV8wgOmNWQB+QofnTxmoyUE4by0ggiASCTAc+GSi3posEgkwHgkggIBIIiAQCIoGASCAgEgiIBAIigYBIICASCIgEAnJ5WY+4Vx+TKxL0ADUDr/v6aqKOyHQgiASCSCAgEgjIwjDgSMC1AEjAtdABCbgWJOC6t0jAdeDQxcJQAq4Diy4kkIDrwKILCe4UcA2wYMECKisrMRqNREVFsXHjRiZPnqxSx/pC8xK0B1xv2LChS62qqsodfP3BBx8QExMDwM6dO3nuuec4duxYv/aqVzQvgT8B14BbAIAbN270KNHUbDbT0tJyx/dFpE1nzOvFfm8X8Jpucjfk5ubgsB7y+Z6QkBBsNluPt615CToGXGdmZgLdB1wvXryYoqIiFEVhz549qvSrRzR/V3JPA64Btm7dSmFhIZ9//nmf9qJmcsmAvp6gPeA6Pj6evLw88vPzmTNnDtnZ2UycONHrsP/ss8+yf/9+amsDF/t2L6H56QDuHHDd2NjI9evXsVgsAOzevZu4uDji4roGRApd0YUEnWkPuM7PzwfAbrezcOFC7HY7QUFBxMXFsXv3bgwGg7qN6gRdStA54HrYsGF8/fXXqvXTXcC1dVUucGvJlfD8HwhPGMd365+koWQvyb/eTdS4hwGwWw9z6aMClLY2fpD3GyJTM/u1f11K0B5wrQU6hlhXvPUTnPU1mGKHAbeyi1Nf+4vH+y2L3+bqns3unxVFoWbn70he87lHiml/ovmFodbxFXANCtZVOZzbuJi2lpsAmAYN9/h8c3UFbS1NVLw+n8rfLcJ1095frbsRCXqJrxDr0Su2k7aumHBLOtf2/ZvXz7fWX6H5+wrG/HoX5kkzuVb0x/5o2wORoJd0DrEOiox114KjBgEQkzmfm1Unu/l8DJGpD2I0hWIe/0NuXrIGvOfOiAS9JDI1E9vx/QDYTh4kInmqu+Zy3DqFaz9ziJChSV4/HzYiFef171EUhabzxwkdmhjwnjujy4WhlohMeYDa/34f68osojNm46z7noaSIgbnPkvZmpkYTSEERcaS9NJHAFS99wvqv/5Pbhz9jKHz8hmcs4i47EWUFfwQY0gEScsL+/0YNH/aWEvIaWPhnkUkEGQ66An36q3pIoEg04EgEgiIBAIigYBIICASCIgEAiKBgEggIBIIiAQCIoGAXFnkk4HymFyRwAdqBlr7oq+vMpLpQBAJBJFAQCQQkIVhwJGAawGQgGuhAxJwLUjAdW/Qc7g1SMB1r9F7uDVIwHWvkXDrwKP56cBXuHXnUeDVV1/FYDBw4sSJ/m5T12hagvZw6/YQ645UVVV5SHDs2DG+/vprRo0a1Z8t3hNoejrwN9y6ubmZZcuWUVhYSE5OTo/3013A9d0EWnemrwKuO5Kb6z3s+m4DrjU9EnQMt27HW7j1mjVreOaZZ0hMTFSjTd2j6ZEgPT2d5ORkCgoKMJlMHuHWERERpKWlcejQIY4ePcpbb7111/vp7rdHzWQSX+zfXzxwrifwJ9z6wIEDnD59mqSkJBITE7l48SKzZ8+mqKhI7fZ1gy7zCcaPH092djZ/+MMfutQSExP59NNPmTBhQq/3o9WRYMBfWdQebq2Hk0R6QdNrAm90DrfuzLlz5/q3oXsA3UmgpXDrdrpLOfdWa645x5kV0wkbmUbIkASSXvrQ/d6aXW9z48inpL72F5RWJ5W/X4TzxhVips5l+N/9MmD962460BodU84dFcdw1tfcsRYzdS5p64o9BFBanTRVlrp/vn5oB5FjZ5C2rhhHxbc4b1wN2DGIBL3EV8p5d7WGkr1YV2ZRW7zN/d7a4q0MynrK/XNLTSXho+4HIMySjqP8SMCOQSToJb5Szr3VTHHxTNhkJWVtEdf2bqG1oRalrY2GY3uJmTLb/dnQkWk0njiAoig0nvwClyNwVyLpbk2gFk0XTnFhy1KP12IyHuuScm4aPsZd91br+GCLqHFZNFdX0HL1AjGZ8z22HZs5n4bSIsrXPEpwzH0Ex3ieOu9LRAI/CU8Y5/V7AHv5EeoOFhKbOQ/byYMMevgJdy0yNbNLzdXUSFB4FIqi4Dh7lKFzX6ShdB+2E8XUFW/FUVnKtaI/MWTWYka9sAlFUTj3dh5RY6cH7NhkOuglkSkPoDibsa7MIiJpEqbYYTivV1O9Y73Xmv3MV5x+eRrWFTOIzpiFKS6e+CdWkfov+0hZu4eIpMkMmbWYlqsXsK7KoXz1jxg04ycYQyMCdgy6PGPYX8gZQ2HAICOBDwbKrekigSDTgSASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAIigYBcWdQj7tXH5IoEPUDNwOu+vpCkIzIdCCKBIBIIiAQCsjAMOBJwLQAScC10QAKuBQm47i16DrmWgOs+QO8h1xJw3QdIyHVg0YUEvkKuTaZb36okJiYSFhZGWFiY+zOzZ8/2uj3BE81L0B5yvWHDhi61qqoqj/Dr7du390l+4UBD8xL4G3LdG7oLuO7M3QRe91XAdW6u91DrjtyTAdfgf8g1wKJFi5g4cSJLly6lvr6+v1vVLZq/K7m1tZX09HScTifr16/3CLmuq6vDZrNhNBqpqqrCYrHQ3NxMfn4+NpuNjz76qE97UTO0IpDXE2h+OmgPuV6yZAl5eXlYLBby8/OJjo6moqICo/HWYGaxWAAIDQ1l6dKlzJ8/39dmhQ5oXgKASZMmceiQ53z4zjvvkJ2dDYDdbqe1tZWYmBgUReGTTz5h8uTJKnSqTzS/JvBG55DrmpoacnJymDhxIhMmTKCsrMxrArrgHV2MBJ3pHHI9evRoSkpKVO7qNq22Osr/+VFuXrKS8edGj9p365/EWV99K9dwiIXkgv9Sp8kO6FICLYZcdyQo3EzKq/v47rdPdKmN/uUnAFzdswUMhv5uzSu6nA60jiHYRLA5zud7bhzZTewD8/qpI9+IBCrgamrE1WTDFBevdiuASKAKDSV7iZ7ymNptuBEJVKD+8E5iM/9W7TbciAQBomz1TByVJZStnknjqS+p3rEeAMXlovlyGeEJ41Tu8DaaP22sJe7V08YyEggigSDTQY+4V29NFwkEmQ4EkUBAJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkEdHrJeX8xUB6TKxL4QM1Aa1/IU9OFPkckEEQCQSQQEAkE5K+DgCMp5wIgKedCByTlvJfoOeC6Ha2mnOtiTaD3gOvLH6+m+j9exxAcSphlnKSc3w16D7jWesq5LqYDXwHX7aPAzZs3eeGFF0hJSeH+++/npz/9qVrt6g7NjwT+Bly/8sorhIWFUVZWhsFgoKampr9b1S2al8CfgOvGxkY+/PBDLl68iOH/E8GGDRvm9z66C7i+m0Dr/iA313vY9YAOuK6oqGDw4MG8+uqrTJs2jZycHL788ku1WvYgbV2xptcDoIO7kv0JuC4tLWXq1Kls27aNp59+msOHDzNv3jzOnj1LdPTdr8LVTCbxxYC7nqA94Do+Pp68vDzy8/OZM2cO2dnZTJw4EaPRSEJCAsHBwTz11FPArbDLIUOGUFZWpnL3+kDzawK4c8D1kCFDyM3NZd++fcyaNYuysjKuXLlCcnKyGu3qDs2PBN7oHHANsHnzZt544w3uv/9+nnzySbZu3UpsbKx6TeoIXYwEnekccA23Qq6Li4vVa0rH6FICrQVcX3j3ZzRVlhI9ZQ7xCwt81hpPfcnFf18OBiODZjzOsAW/8JqK3lxzjjMrphM2Mo2QIQkkvfRhwPrX5XSgJezlRzEYg0l78wscFcdw1tf4rIUMG03qGwcZ+9uvqD/yKW3NDncqemTqQx7bjpk6l7R1xQEVAESCXmMvO4x54iMAmCdk4zj7rc9ayOARGE0hABiMQWAwdpuK3lCyF+vKLGqLtwX0GESCXuKy17u/ETSGm3HZ6/2qNZTuIzR+DMaQMK/bNcXFM2GTlZS1RVzbu4XWhtqAHYMu1wRq0HThFBe2LPV4LSbjMYIiY3E5bt2m1NZkwzR8jLveXa3l2kWqt7/JmFW7ut2f0RTq/n/UuCyaqysIjg5Mrq1I4CfhCeO8PujSXn6EuoOFxGbOw3byIIMevv20k8jUzC61Nmcz5/71H0hYsomg8Khu9+dqaiQoPApFUXCcPcrQuS8G4rAAmQ56TWTKAyjOZqwrs4hImoQpdhjO69VU71jvtVZ34GNuVp3i/Kbnsa7KoaX21hdkHVPRm86fwH7mK06/PA3rihlEZ8wK6AMyNP/dgZrIdwfCgEEkEGQ68MVAyScQCQSZDgSRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBCQK4t6xL36mFyRoAeoGXjd1xeSdESmA0EkEEQCAZFAQCQQkL8OAo4EXAuABFwLHZCAa0GzAde6kUDPKeeXP15N6dOxHP+nRByV/ysB13eD3lPOtR5wrQsJ9J5yrnV0IYGvlHOTycS5c+dYsGCBu1ZfX09DQwN1dXUqdKs/NC+BPynniYmJlJaWul/Pz8+ntbXV7310F3DdGTUDr3NzvYdad+RuA641L4E/KecdaWlpYdu2bezdu7ffevSFt3QTraF5CTqmnGdmZgJdU847smvXLkaOHMmUKVP83oe/vz1qhlbs318csOsJNC9Beno6ycnJFBQUYDKZPFLOIyIiSEtL83j/e++9x3PPPadSt/pE8xK0p5wvWbKEvLw8LBYL+fn5REdHU1FRgdF4+1THpUuXOHDgAFu3blWxY/2heQngzinn7XzwwQfMnTvXPYUI/qGbM4Yd8ZZyDvD++++rMhVcePdnWFdm8f1/vOHxunVVLtZVOVhX5dB04RQA361/ktKnB9F46vaTWezWw5St/hHWVbnYy77p195BJyNBZ7ylnAOqPOSiY35xxVs/wVlfgyn21vOXDMYgUl/7i8f7LYvf5uqeze6fFUWhZufvSF7zuUeAZX+iy5GgPeV82rRparfiM9sYFKyrcji3cTFtLTcBMA0a7vH55uoK2lqaqHh9PpW/W4Trpr2/WnejSwm0hK/84tErtpO2rphwSzrX9v2b18+31l+h+fsKxvx6F+ZJM7lW9Mf+aNsDkaCXdM4vDoqMddeCowYBEJM5n5tVJ7v5fAyRqQ9iNIViHv9Dbl6yBrznzogEvSQyNRPb8f0A2E4eJCJ5qrvmctw6CWU/c4iQoUlePx82IhXn9e9RFIWm88cJHZoY8J47o8uFoZaITHmA2v9+H+vKLKIzZuOs+56GkiIG5z5L2ZqZGE0hBEXGkvTSRwBUvfcL6r/+T24c/Yyh8/IZnLOIuOxFlBX8EGNIBEnLC/v9GCTHsAeoedpYbkMTAopIIIgEgqwJesS9mk8gEggyHQgigYBIICASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAIigYBIICASCIgEAiKBgEggAP8H4pXcnXUJHCMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIEAAAGOCAYAAACwgWAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAa20lEQVR4nO2df1AUZ5rHPzMw/B5ANCq6g6D8EDUqakj0wgJZo7EsPfey5pKYFFc5b2M0u0Wyblxx9cwlJtm1diunqVWze7kkxpCts7xTk5TiXokmF2M0wq0/BySoqAEVRIYZhGHo+8NjZGAYB2Hobnk+VVbJPDPdT1d9eN+Xnu5vGxRFURAGNEa1GxDURyQQRAJBJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBAQCQQgWO0GtEyjE842qN1FV5KjIcrUd9sTCXxwtgEW/4/aXXTlT38Dkwf33fZkOhBEAkEkEBAJBGRhGHCsq3KwnzmEIdiEISiYsJFjGfHMOqIn/Ujt1tzISNAPjHhmHRl/bmTiBzVEpk2n4o0FuOw31G7LjUjQjxhNoQx59B9pu9nIze/Pqt2OG5GgH2lrbuLavj9hjIgmbESK2u240Y0ELS0trF69GovFQnh4OI888gjffPMNBoOBnTt3qt2eTy5/vJrSp2M5/k+JOCr/l+Rff0pQRLTabbnRxcJQURQWLlzIN998w9q1a0lOTubjjz/mxz/+MQAZGRkqd+ibEU+/xvAfL1e7jW7RhQTvvvsun3/+OaWlpYwfPx6AnJwckpKSiIuLIyEhQeUO9Y0upoPf/OY3PPPMM24BAIKCgkhKSnKPAmVlZUyfPp3U1FSmT59OeXm5Wu3qDs1LUF5eTmVlJY8//niXWlVVlVuCJUuWsGzZMsrKyli2bBnPP/+83/swm82EhoZ2+Zebm9M3B9HH5ObmeO3XbDbf1fY0Px1cunQJgKFDh3q8fubMGc6fP09GRgZXrlzh2LFj7Nu3D4CnnnqKF198katXr3Lffff1e88dSVtXrOr+/UHzI8Hgwbe+Mz179vbf1YqisGLFCtra2sjIyKCqqoqRI0cSFBQE3JoqRowYQVVVlV/7sNlsNDc3d/m3f39xnx9PX7B/f7HXfm02211tT/MjQXp6OsnJyRQUFGAymYiKimLTpk2UlJQQERFBWloaJSUlarepazQvQXBwMNu3b2fJkiXk5eVhsVjIz88nOjqaiooKjEYjFouFS5cu4XK5CAoKwuVycfnyZSwWi9rt6wLNTwcAkyZN4tChQzgcDqxWKy+88AIlJSXuReHQoUOZPHkyhYWFABQWFpKRkaH6ekAv6EKCzjQ1NWG1Wj1OEm3evJmNGzeSmprKxo0b2bx5s4od6gvNTwfe+Otf/4rL5fKQYOzYsRw+fFiVfi68+zOaKkuJnjKH+IUFPmvNNec4s2I6YSPTCBmSQNJLH7rfW7PrbW4c+ZTU1/6C0uqk8veLcN64QszUuQz/u18GrH9djgQPPvggiqIwbdo0tVvBXn4UgzGYtDe/wFFxDGd9zR1rMVPnkrau2EMApdVJU2Wp++frh3YQOXYGaeuKcVR8i/PG1YAdgy4l0BL2ssOYJz4CgHlCNo6z396x1lCyF+vKLGqLt7nfW1u8lUFZT7l/bqmpJHzU/QCEWdJxlB8J2DGIBL3EZa93fyNoDDfjstf7rJni4pmwyUrK2iKu7d1Ca0MtSlsbDcf2EjNltvuzoSPTaDxxAEVRaDz5BS5H4C5C0eWaQA2aLpziwpalHq/FZDxGUGQsLsetO1TammyYho9x173VjKZQdz1qXBbN1RW0XL1ATOZ8j23HZs6nobSI8jWPEhxzH8ExnmdM+xKRwE/CE8Z5PQVsLz9C3cFCYjPnYTt5kEEPP+GuRaZmdqm5mhoJCo9CURQcZ48ydO6LNJTuw3aimLrirTgqS7lW9CeGzFrMqBc2oSgK597OI2rs9IAdm0wHvSQy5QEUZzPWlVlEJE3CFDsM5/Vqqnes91qzn/mK0y9Pw7piBtEZszDFxRP/xCpS/2UfKWv3EJE0mSGzFtNy9QLWVTmUr/4Rg2b8BGNoRMCOwSBPSO2e0lq5DU0YIIgEgkwHvhgot6aLBIJMB4JIICASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAJyeVmPUPNbxb7+5rAjIkEPUDPwuq+vJuqITAeCSCCIBAIigYAsDAOOBFwLgARcCx2QgGtBAq57iwRcBw5dLAwl4Dqw6EICCbgOLLqYDvwJuF6+fDlJSUkYDAZOnDihVqu6RPMS+BtwvWDBAg4ePMioUaP6u0Xdo/npwJ+Aa4CHH374rvdhNptpaWm54/si0qYz5vXiHm27rwKuc3NzcFgP+XxPSEjIXeUba34k8CfgWugdmh8J/Am47i3+/vaomVyyf39xwK4n0LwE/gRcC71D8xLA7YDrjrzzzjtkZ2er1NG9hS5/jbwFXP/85z/nBz/4ARcvXmTmzJkef072N622Ok6/PJWSv4/qUvtu/ZNYV+Vw+uWpnH1jQf835wVdjASd8RZwvWHDBjZs2KBiV7cJCjeT8uo+vvvtE11qo3/5CQBX92wBg6G/W/OKLiVoD7jWKoZgE8HmOJ/vuXFkN6OW/bGfOvKNLqcDveNqasTVZMMUF692K4BIoAoNJXuJnvKY2m24EQlUoP7wTmIz/1btNtyIBAGibPVMHJUllK2eSeOpL6nesR4AxeWi+XIZ4QnjVO7wNpJj2APUPGModyAJAUUkEEQCQdYEPeJevTVdJBBkOhBEAgGRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBDQ6SXn/cVAeUyuSOADNQOtfdHXl5rJdCCIBIJIICASCMjCMOBIwLUASMC10AEJuBYk4Lq3SMB14NDFwlACrgOLLiSQgOvAogsJfAVcm0wmamtrefbZZ6moqCAkJISUlBS2bNnCfffdp2LX+kHzawJ/Aq4NBgOvvPIKVquV48ePM2bMGH71q1+p0K0+0bwE/gRcx8XFkZOT46499NBDnD9/3u99mM1mQkNDu/zLzc25wyfvTNq64j5fD+Tm5njt12w239X2NC9BTwOu29ra2LRpE/Pnz+/XPvWM5u9Kbm1tJT09HafTyfr16z0Cruvq6rDZbB75xsuWLePSpUvs2LGj17nHasbT+KKvryfQ/MKwJwHXy5cvp7y8nN27d0vwdQ/QvATgX8B1QUEB3377LZ999hmhoaH93aKu0eWvS+eA65MnT/Lmm29y+fJlZsyYweTJk90nkoQ7o4uRoDOdA67Hjx+vatbxhXd/RlNlKdFT5hC/sMBnrfHUl1z89+VgMDJoxuMMW/ALWm11lP/zo9y8ZCXjz40ANNec48yK6YSNTCNkSAJJL30YsP51ORK0B1xPmzZN7Vawlx/FYAwm7c0vcFQcw1lf47MWMmw0qW8cZOxvv6L+yKe0NTvcqeiRqQ95bDtm6lzS1hUHVADQqQRawl52GPPERwAwT8jGcfZbn7WQwSMwmkIAMBiDwGDsNhW9oWQv1pVZ1BZvC+gxiAS9xGWvd38jaAw347LX+1VrKN1HaPwYjCFhXrdriotnwiYrKWuLuLZ3C60NtQE7Bl2uCdSg6cIpLmxZ6vFaTMZjBEXG4nLcukOlrcmGafgYd727Wsu1i1Rvf5Mxq3Z1uz+j6fZfOFHjsmiuriA4OjC5tiKBn4QnjPP6jEN7+RHqDhYSmzkP28mDDHr49tNOIlMzu9TanM2c+9d/IGHJJoLCuz4epx1XUyNB4VEoioLj7FGGzn0xEIcFyHTQayJTHkBxNmNdmUVE0iRMscNwXq+mesd6r7W6Ax9zs+oU5zc9j3VVDi21t74b6ZiK3nT+BPYzX3H65WlYV8wgOmNWQB+QofnTxmoyUE4by0ggiASCTAc+GSi3posEgkwHgkggIBIIiAQCIoGASCAgEgiIBAIigYBIICASCIgEAnJ5WY+4Vx+TKxL0ADUDr/v6aqKOyHQgiASCSCAgEgjIwjDgSMC1AEjAtdABCbgWJOC6t0jAdeDQxcJQAq4Diy4kkIDrwKILCe4UcA2wYMECKisrMRqNREVFsXHjRiZPnqxSx/pC8xK0B1xv2LChS62qqsodfP3BBx8QExMDwM6dO3nuuec4duxYv/aqVzQvgT8B14BbAIAbN270KNHUbDbT0tJyx/dFpE1nzOvFfm8X8Jpucjfk5ubgsB7y+Z6QkBBsNluPt615CToGXGdmZgLdB1wvXryYoqIiFEVhz549qvSrRzR/V3JPA64Btm7dSmFhIZ9//nmf9qJmcsmAvp6gPeA6Pj6evLw88vPzmTNnDtnZ2UycONHrsP/ss8+yf/9+amsDF/t2L6H56QDuHHDd2NjI9evXsVgsAOzevZu4uDji4roGRApd0YUEnWkPuM7PzwfAbrezcOFC7HY7QUFBxMXFsXv3bgwGg7qN6gRdStA54HrYsGF8/fXXqvXTXcC1dVUucGvJlfD8HwhPGMd365+koWQvyb/eTdS4hwGwWw9z6aMClLY2fpD3GyJTM/u1f11K0B5wrQU6hlhXvPUTnPU1mGKHAbeyi1Nf+4vH+y2L3+bqns3unxVFoWbn70he87lHiml/ovmFodbxFXANCtZVOZzbuJi2lpsAmAYN9/h8c3UFbS1NVLw+n8rfLcJ1095frbsRCXqJrxDr0Su2k7aumHBLOtf2/ZvXz7fWX6H5+wrG/HoX5kkzuVb0x/5o2wORoJd0DrEOiox114KjBgEQkzmfm1Unu/l8DJGpD2I0hWIe/0NuXrIGvOfOiAS9JDI1E9vx/QDYTh4kInmqu+Zy3DqFaz9ziJChSV4/HzYiFef171EUhabzxwkdmhjwnjujy4WhlohMeYDa/34f68osojNm46z7noaSIgbnPkvZmpkYTSEERcaS9NJHAFS99wvqv/5Pbhz9jKHz8hmcs4i47EWUFfwQY0gEScsL+/0YNH/aWEvIaWPhnkUkEGQ66An36q3pIoEg04EgEgiIBAIigYBIICASCIgEAiKBgEggIBIIiAQCIoGAXFnkk4HymFyRwAdqBlr7oq+vMpLpQBAJBJFAQCQQkIVhwJGAawGQgGuhAxJwLUjAdW/Qc7g1SMB1r9F7uDVIwHWvkXDrwKP56cBXuHXnUeDVV1/FYDBw4sSJ/m5T12hagvZw6/YQ645UVVV5SHDs2DG+/vprRo0a1Z8t3hNoejrwN9y6ubmZZcuWUVhYSE5OTo/3013A9d0EWnemrwKuO5Kb6z3s+m4DrjU9EnQMt27HW7j1mjVreOaZZ0hMTFSjTd2j6ZEgPT2d5ORkCgoKMJlMHuHWERERpKWlcejQIY4ePcpbb7111/vp7rdHzWQSX+zfXzxwrifwJ9z6wIEDnD59mqSkJBITE7l48SKzZ8+mqKhI7fZ1gy7zCcaPH092djZ/+MMfutQSExP59NNPmTBhQq/3o9WRYMBfWdQebq2Hk0R6QdNrAm90DrfuzLlz5/q3oXsA3UmgpXDrdrpLOfdWa645x5kV0wkbmUbIkASSXvrQ/d6aXW9z48inpL72F5RWJ5W/X4TzxhVips5l+N/9MmD962460BodU84dFcdw1tfcsRYzdS5p64o9BFBanTRVlrp/vn5oB5FjZ5C2rhhHxbc4b1wN2DGIBL3EV8p5d7WGkr1YV2ZRW7zN/d7a4q0MynrK/XNLTSXho+4HIMySjqP8SMCOQSToJb5Szr3VTHHxTNhkJWVtEdf2bqG1oRalrY2GY3uJmTLb/dnQkWk0njiAoig0nvwClyNwVyLpbk2gFk0XTnFhy1KP12IyHuuScm4aPsZd91br+GCLqHFZNFdX0HL1AjGZ8z22HZs5n4bSIsrXPEpwzH0Ex3ieOu9LRAI/CU8Y5/V7AHv5EeoOFhKbOQ/byYMMevgJdy0yNbNLzdXUSFB4FIqi4Dh7lKFzX6ShdB+2E8XUFW/FUVnKtaI/MWTWYka9sAlFUTj3dh5RY6cH7NhkOuglkSkPoDibsa7MIiJpEqbYYTivV1O9Y73Xmv3MV5x+eRrWFTOIzpiFKS6e+CdWkfov+0hZu4eIpMkMmbWYlqsXsK7KoXz1jxg04ycYQyMCdgy6PGPYX8gZQ2HAICOBDwbKrekigSDTgSASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAIigYBcWdQj7tXH5IoEPUDNwOu+vpCkIzIdCCKBIBIIiAQCsjAMOBJwLQAScC10QAKuBQm47i16DrmWgOs+QO8h1xJw3QdIyHVg0YUEvkKuTaZb36okJiYSFhZGWFiY+zOzZ8/2uj3BE81L0B5yvWHDhi61qqoqj/Dr7du390l+4UBD8xL4G3LdG7oLuO7M3QRe91XAdW6u91DrjtyTAdfgf8g1wKJFi5g4cSJLly6lvr6+v1vVLZq/K7m1tZX09HScTifr16/3CLmuq6vDZrNhNBqpqqrCYrHQ3NxMfn4+NpuNjz76qE97UTO0IpDXE2h+OmgPuV6yZAl5eXlYLBby8/OJjo6moqICo/HWYGaxWAAIDQ1l6dKlzJ8/39dmhQ5oXgKASZMmceiQ53z4zjvvkJ2dDYDdbqe1tZWYmBgUReGTTz5h8uTJKnSqTzS/JvBG55DrmpoacnJymDhxIhMmTKCsrMxrArrgHV2MBJ3pHHI9evRoSkpKVO7qNq22Osr/+VFuXrKS8edGj9p365/EWV99K9dwiIXkgv9Sp8kO6FICLYZcdyQo3EzKq/v47rdPdKmN/uUnAFzdswUMhv5uzSu6nA60jiHYRLA5zud7bhzZTewD8/qpI9+IBCrgamrE1WTDFBevdiuASKAKDSV7iZ7ymNptuBEJVKD+8E5iM/9W7TbciAQBomz1TByVJZStnknjqS+p3rEeAMXlovlyGeEJ41Tu8DaaP22sJe7V08YyEggigSDTQY+4V29NFwkEmQ4EkUBAJBAQCQREAgGRQEAkEBAJBEQCAZFAQCQQEAkEdHrJeX8xUB6TKxL4QM1Aa1/IU9OFPkckEEQCQSQQEAkE5K+DgCMp5wIgKedCByTlvJfoOeC6Ha2mnOtiTaD3gOvLH6+m+j9exxAcSphlnKSc3w16D7jWesq5LqYDXwHX7aPAzZs3eeGFF0hJSeH+++/npz/9qVrt6g7NjwT+Bly/8sorhIWFUVZWhsFgoKampr9b1S2al8CfgOvGxkY+/PBDLl68iOH/E8GGDRvm9z66C7i+m0Dr/iA313vY9YAOuK6oqGDw4MG8+uqrTJs2jZycHL788ku1WvYgbV2xptcDoIO7kv0JuC4tLWXq1Kls27aNp59+msOHDzNv3jzOnj1LdPTdr8LVTCbxxYC7nqA94Do+Pp68vDzy8/OZM2cO2dnZTJw4EaPRSEJCAsHBwTz11FPArbDLIUOGUFZWpnL3+kDzawK4c8D1kCFDyM3NZd++fcyaNYuysjKuXLlCcnKyGu3qDs2PBN7oHHANsHnzZt544w3uv/9+nnzySbZu3UpsbKx6TeoIXYwEnekccA23Qq6Li4vVa0rH6FICrQVcX3j3ZzRVlhI9ZQ7xCwt81hpPfcnFf18OBiODZjzOsAW/8JqK3lxzjjMrphM2Mo2QIQkkvfRhwPrX5XSgJezlRzEYg0l78wscFcdw1tf4rIUMG03qGwcZ+9uvqD/yKW3NDncqemTqQx7bjpk6l7R1xQEVAESCXmMvO4x54iMAmCdk4zj7rc9ayOARGE0hABiMQWAwdpuK3lCyF+vKLGqLtwX0GESCXuKy17u/ETSGm3HZ6/2qNZTuIzR+DMaQMK/bNcXFM2GTlZS1RVzbu4XWhtqAHYMu1wRq0HThFBe2LPV4LSbjMYIiY3E5bt2m1NZkwzR8jLveXa3l2kWqt7/JmFW7ut2f0RTq/n/UuCyaqysIjg5Mrq1I4CfhCeO8PujSXn6EuoOFxGbOw3byIIMevv20k8jUzC61Nmcz5/71H0hYsomg8Khu9+dqaiQoPApFUXCcPcrQuS8G4rAAmQ56TWTKAyjOZqwrs4hImoQpdhjO69VU71jvtVZ34GNuVp3i/Kbnsa7KoaX21hdkHVPRm86fwH7mK06/PA3rihlEZ8wK6AMyNP/dgZrIdwfCgEEkEGQ68MVAyScQCQSZDgSRQEAkEBAJBEQCAZFAQCQQEAkERAIBkUBAJBCQK4t6xL36mFyRoAeoGXjd1xeSdESmA0EkEEQCAZFAQCQQkL8OAo4EXAuABFwLHZCAa0GzAde6kUDPKeeXP15N6dOxHP+nRByV/ysB13eD3lPOtR5wrQsJ9J5yrnV0IYGvlHOTycS5c+dYsGCBu1ZfX09DQwN1dXUqdKs/NC+BPynniYmJlJaWul/Pz8+ntbXV7310F3DdGTUDr3NzvYdad+RuA641L4E/KecdaWlpYdu2bezdu7ffevSFt3QTraF5CTqmnGdmZgJdU847smvXLkaOHMmUKVP83oe/vz1qhlbs318csOsJNC9Beno6ycnJFBQUYDKZPFLOIyIiSEtL83j/e++9x3PPPadSt/pE8xK0p5wvWbKEvLw8LBYL+fn5REdHU1FRgdF4+1THpUuXOHDgAFu3blWxY/2heQngzinn7XzwwQfMnTvXPYUI/qGbM4Yd8ZZyDvD++++rMhVcePdnWFdm8f1/vOHxunVVLtZVOVhX5dB04RQA361/ktKnB9F46vaTWezWw5St/hHWVbnYy77p195BJyNBZ7ylnAOqPOSiY35xxVs/wVlfgyn21vOXDMYgUl/7i8f7LYvf5uqeze6fFUWhZufvSF7zuUeAZX+iy5GgPeV82rRparfiM9sYFKyrcji3cTFtLTcBMA0a7vH55uoK2lqaqHh9PpW/W4Trpr2/WnejSwm0hK/84tErtpO2rphwSzrX9v2b18+31l+h+fsKxvx6F+ZJM7lW9Mf+aNsDkaCXdM4vDoqMddeCowYBEJM5n5tVJ7v5fAyRqQ9iNIViHv9Dbl6yBrznzogEvSQyNRPb8f0A2E4eJCJ5qrvmctw6CWU/c4iQoUlePx82IhXn9e9RFIWm88cJHZoY8J47o8uFoZaITHmA2v9+H+vKLKIzZuOs+56GkiIG5z5L2ZqZGE0hBEXGkvTSRwBUvfcL6r/+T24c/Yyh8/IZnLOIuOxFlBX8EGNIBEnLC/v9GCTHsAeoedpYbkMTAopIIIgEgqwJesS9mk8gEggyHQgigYBIICASCIgEAiKBgEggIBIIiAQCIoGASCAgEgiIBAIigYBIICASCIgEAiKBgEggAP8H4pXcnXUJHCMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -334,16 +334,16 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:57.458521Z", - "iopub.status.busy": "2024-11-23T19:54:57.458064Z", - "iopub.status.idle": "2024-11-23T19:54:57.979688Z", - "shell.execute_reply": "2024-11-23T19:54:57.979027Z" + "iopub.execute_input": "2024-12-05T03:21:32.119328Z", + "iopub.status.busy": "2024-12-05T03:21:32.118738Z", + "iopub.status.idle": "2024-12-05T03:21:32.640450Z", + "shell.execute_reply": "2024-12-05T03:21:32.639847Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADD7ElEQVR4nOzde3hU1b34//fkAiEkBAIiASEEAxi5C4JcIhEj9VJpUdFqOaIHa+ulrX6t1ar0aAVb6rdqtdZqpVWpqK2H71H78wJ4iCBGEQEFgZAoRERBBSGQhFtmfn+MREIg3MJMMrxfz5OHzFpr7/ns7XZm5bPXWjsQCoVCSJIkSZIkSTEgLtoBSJIkSZIkSfXFZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUMxKiHUBjsnUnlJRF572zW0BKYnTeW5IkSZIkqbEw2XUISsrgqnnRee/Hh0Lf1tF5b0mSJEmSpMbCaYySJEmSJEmKGSa7JEmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzHCB+qOs6PY8ylcUEkhIJBCfQFKHk2g/dhIt+pwZ7dAkSZIkSZJijiO7IqD92En0e24rvZ9cT/Pug/nonu9TVb452mFJkiRJkiTFHJNdERSX2JQ2Z40nuG0r2z4viXY4kiRJkiRJMcdkVwQFt1fy1czHiUtuQVL7rtEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6IdXp0+mzaBxZe1ZMmPOlOx6n2y7/g38cktoh1WVGzaDh9+DSVlEAxFO5rYtXUnLNsERZthVzDa0UhHZlcQVm4OX9NbdkY7GunIrdkKS7+G9ZXRjkRSY1G2I9yHLt4MVfahJemAGsUC9aFQiDFjxjB//nzuvPNOsrOzmTZtGqNHjwagX79+UY6wbu0vu5t2o38R7TCi6tNyeHg5vP75t0mujGZweTZc1BkCgaiGFzO+3g5/XgH/3xrY8U2Sq1UTuCQLrugKCY0mvS2Fk1xTP4JnP4YN28NlTeLgOx3guhxokxTd+KRDVfA5PFYEK8u+LRvYBq45CXqlRy8uSQ3X+spwH3rGWtj1TR/6uCT4YRe47ESIsw8tSfvUKJJdjz32GC+//DKLFy+mR48eAOTl5ZGVlUV6ejqdOnWKcoSqy+qt8J9zw6ON9hxktK4SJi+B0q1wU08TXkdq43a4ci58XlHzPH+9A/5SFB4Vc+9AiPc8qxEIhuCOhTDrs5rlO4LhZO67X8ETuSa81Hg8vxp+9wHs/RG84Cv40Tx48DQYeFw0IpPUUK2rgCvmhvt4e/btvtwGDyyD4jK4s599aEnal0YxzmPy5MmMHTu2OtEFEB8fT1ZWVvWorpUrVzJ48GC6devG4MGDKS4ujla42ss979dOdAHsHoH97CpYtDHSUcWeh5fXTnTtac56eHlNREOSDtvMz2onunYLAl9Uwh8/jGhI0mH7chv8fkn4971nHwUJJ3cnLHTauaSa/u/S2omuPf1/n4b7d5Kk2hp8squ4uJhVq1Zx4YUX1qpbs2ZNdbLrJz/5Cddddx0rV67kuuuu48c//nGkQ9U+rN4CCzfs/0sawsOvn18VsZBi0pad8MqnBzjPwD89z2ok/rWq7i+oIOGE2KbtkYpIOnwvlNa9TmWQ8FTduf7RKukbX1TCG+sO3Lf7l307SdqnQCgUatBLHBYUFHDGGWfwzjvvMHDgwOryFStW0KNHD6ZOnUp+fj7dunVjw4YNxMfHU1VVRevWrSkuLua44w48JyA1NZUdO3YcsF1y98GcOLHgSA7nsH10Rx4VRYVRee8jkTbsEjr9/KkDttu+7mNW/jQnAhHFpmZdB5J9z9wDtgtV7WLpD5pHICLpyPT4x9fENU0+YLuP/yuf8mUHvvalaOp0879oMeA8AnHx+20TClbx5fTJrH/urghGJqmhSu13Np1vO/BDuHZt2cDy/2wfgYgkKfJCoRAJCQmsW7eOFi0O7SF/DX5kV+vWrQEoKSmpLguFQtxyyy0Eg0H69evHmjVr6NChA/Hx4U5kfHw87du3Z80a52xFXdWug2sXrDq6ccS6gzzPIc+zGomDvVa9ptUoBHfBAe8tBryeJVUL2YeWJEKhEJWVlSxZsuSQt23wC9Tn5OSQnZ3NbbfdRmJiIikpKTzyyCMsWrSI5ORkunfvzqJFi47oPbZs2XJQ7RZvgKvmHdFbHbbZswvo2zo6730kvtoG586se/pGHHD50K7cvN35SIdrRxWcPQPKdu6/TVwAhnZoykLPsxqBm+cfePpG8wT4/L3ZJDX4bzId655fBb87QB8tEBfHS3+cQN9/TIhMUJIatK07YeRr3z5de1/igFE92rLYvp2kGDVv3jyGDRt2WNs2+JFdCQkJPP/882RkZDBu3DhuuOEGzjnnHIYPH07v3r2Ji4ujY8eOrF27lqqq8J2NqqoqPvvsMzp27Bjl6NUmCc5qX/vpU3u7qHMkooldTeJhTFbdbYIh+EGXyMQjHalLutSd6AK4IBMTXWoUzukIKQn773TFBaBrC+iTHtGwJDVgKYnwvU5196GDwMUH6P9J0rGqwSe7APr06UNhYSEVFRUUFRVxzTXXsGjRourF6du2bUvfvn155plnAHjmmWfo16/fQa3XpaPvll6Q/c302j2/sOO+eX1HX8hKjXxcseaqbjD4m0t+7/MM8KNuMLhtpKOSDs+ANnD9N8v4xe1xQe/+dUBr+MlJEQ9LOizNE+D/DoTEuNodrwDQqgn8fgAEDnRnSNIx5WcnQ69W4d9r9O2+eXFTT+jZKuJhSVKj0CiSXXurrKykqKioOtkF8Je//IWHHnqIbt268dBDD/GXv/wlihFqTy2awJRhcMPJ0H6P9abPbB8uH9UperHFksQ4uH8Q3NYbTtwjeTjoOPjjIPixiQE1Mld0hT+d9m0SF8KJ8Vt7wUODoen+1/qWGpwBbeDpPBid+W1Zqybh6/zp4dAxJWqhSWqgmiXAn4fAL3pCpz2eL5R7PPxlCFzqiH1J2q8G/zTGfXnnnXc47bTTePfddxkwYEDE3vdg1+wqXzmfNVNuhFCI1N4j6DB2Yp11oV07WXXfD9m5+QvS+p9HuwturrXPx4fSKNfs2pcBL4b/XTAqunHEOs+zYonXs2KJ17Okw+Fnh6Rjze41u958802GDh16SNs2ytVOBg0aREPO0SV36cdJk8NZsZUTzqSqooz45Bb7rdv83is0P2kIx4+6gY/v/QE7N39JYppTMCVJkiRJkg5Vo5zG2NAFEhIBCFVVkZjenrimyXXW7Vi/imaZvQBI6phDRfG7kQ9akiRJkiQpBpjsOko2vjGND6/PIb55SwLxCXXWNe3Qna1L3yAUCrH1w7lUVWyOUtSSJEmSJEmNW6OcxthQVH6yjE8evbZGWVq/s2l30a2kD7+MVrk/4OPfj6Fy9RKade5V3WbvupYDR1G2eAbFvz6LhLTjSEjzkXmSJEmSJEmHw2TXEWjW6WS6TyqoVR7cuZ24xKYE4uKIb5ZKoElSnXWB+Hgyr3mEUCjE6gfGkXLS4AgehSRJkiRJUuww2XUUbJ7/Il+8/DAEg6T0OJ2k9l3Z+fU6NsyeStPjO9eq2/HlJ6x64HICgTjann9DjTW+JEmSJEmSdPBMdh0FrYaOodXQMTXKElu1o90FN1fX76nJcZ32OUJMkiRJkiRJh8YF6iVJkiRJkhQzTHZJkiRJkiQpZpjskiRJkiRJUsxwza5DkN0CHh8avfc+FhQUFHDllVeSmZlJZmYmTz75ZI36qVOnkpGRQX5+Pvfccw+vvPIKffv25aGHHqrR7tVXX+Wuu+4iNTWVJ554gvbt23P++edTVlZGQkICzz33HG3atOHuu+9m5syZZGVlMWXKFMrKypg4cSL33XdfJA9bkiRJkiTVE5NdhyAlEfq2jnYUsW/8+PHccccd/OxnP6OwsJDBgwdX17300ks899xzrF+/noULFzJ37lxuvPFGFixYwIABA6rbTZ48mdmzZ1NSUsLkyZP54x//yPTp00lMTGTq1KlMmzaNMWPGsGjRIubMmcOf/vQnXnrpJUaPHs2mTZvYunUrKSkp0Th8SZIkSZJ0BJzGqAarZ8+erF27tvr1xo0bSUpKIhAIsGDBAoYPHw7AiBEjmD9/fo1tExISSEpKokePHtV1iYmJAGzbto2cnBxKS0vp0aMHAL169aKwsBCAQYMGUVBQcLQPT5IkSZIkHQWO7FKDVVhYyM9//vPq1yUlJWRmZgKwadMmWrQIz+1MTU1l06ZNNbbduXMnGzZsYNmyZWzcuBEIJ8u++93vsmXLFl555RWaNGnC22+/TTAYZM6cOWzevBmAzMxMli1bFoEjlCRJkiRJ9c2RXWpwpkyZQl5eHh06dKBv3777bNOyZUvKysoA2LJlCy1btqxRP3HiRC666CKeeeYZTj75ZADS09N56623mDhxIvfffz9t27Zl9OjRjBgxgvXr19O2bdujeViSJEmSJCkCTHapwRk/fjwFBQVMnDixRnl2djalpaUA9O/fnzlz5gAwe/ZsBg4cWKPtsGHDmD17NldccQWDBg0iGAyya9cuANLS0khKSgLg2muvpaCggMzMTM4991wASktL6dq161E9RkmSJEmSdHQ4jVGNRnp6OhUVFQC0a9eO3r17k5ubS+/evRkwYADr1q1j6tSp3HzzzfzmN7+hoKCADh068Oijj1JeXs53v/td4uLiaNq0KU888QQAF1xwAWVlZeTm5lYvhP/222/z4IMPRuswJUmSJEnSEQiEQqFQtIPQsWXAi+F/F4w69G2feuop2rdvT35+fv0G9Y2NGzdy9913c//99x+V/UfSkZxnqaHxelYs8XqWdDj87JB0rJk3bx7Dhg3jzTffZOjQoYe0rSO71KhcfvnlR3X/6enpMZHokiRJkiTpWOWaXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMcIH6g7R1J5SURTeG7BaQkhjdGCRJkiRJkhoyk10HqaQMrpoX3RgeHwp9W0c3BkmSJEmSpIbMaYySJEmSJEmKGSa7JEmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzHCB+qOs6PY8ylcUEkhIJBCfQFKHk2g/dhIt+pwZ7dAkSZIkSZJijiO7IqD92En0e24rvZ9cT/Pug/nonu9TVb452mFJkiRJkiTFHJNdERSX2JQ2Z40nuG0r2z4viXY4kiRJkiRJMcdkVwQFt1fy1czHiUtuQVL7rtEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6IdXp0+mzaBxZe1ZMmPOlOx6n2y7/g38cktoh1WVGzbFe0IpPpTFYK15eGfXcFoRyMduS+3wSdbodLPakkHqWJX+HPjq23RjkQ6cruC8Gk5fFYR7udJarwaxQL1oVCIMWPGMH/+fO68806ys7OZNm0ao0ePBqBfv35RjrBu7S+7m3ajfxHtMKLqi0qYshL+vebbsssK4PJsOPuEqIUlHZadQZhaAv9aBV9uD5e1bgpjOsN/ZEPT+KiGJx2yWZ/Bk8Ww/JvlJJvEwbknwFXdoF1ydGOT1DB9Wh7u2726Nvy9CNCrFVzRFYa3i25s0qHatgueKIH/Xg1f7wiXtWsGl2TBpV0godEMEZG0W6NIdj322GO8/PLLLF68mB49egCQl5dHVlYW6enpdOrUKcoRqi6fV8CVc2Hjdthz8EtJGdyxEEq3wo9Pilp40iHZGYQb34G3v6xZvmE7/KUI3v0KHjoNmpjwUiPx92J4eHnNod47gvDiJ/DGOvh7LpzQPGrhSWqAVm2B8W/C1p01+3Yffg03zYebeoYTBFJjsG0X/KQwfP3uOZhrXSX8cRks3gCTTzXhJTU2jeJ/2cmTJzN27NjqRBdAfHw8WVlZ1aO6fvGLX5CVlUUgEGDp0qXRClX7MOn92oku+Pb1X1fC0q8jHZV0eJ77uHaia0/vbYB/fBS5eKQjUbQ5nOiCfX9Gb94Bv1kc4aAkNXi/Xghbd+2/b3ff0vDNTKkxmFJcO9G1pzfWw/98EtGQJNWDBp/sKi4uZtWqVVx44YW16tasWVOd7Pr+97/PnDlzyMzMjHSIqsOn5eHEQF3LGcURng4mNXTBEDy3CgIHaPev1a7zoMbh+dV1dwSCwMIN4VEckgSwfFN4ynPwAN9zz6+ORDTSkdkZhOmr95/ognC/758fQ8i+ndSoNPhpjGvXrgWgbdu2NcpXrFhBaWlpdbJr2LBhh/0eqamp7Nixo842yd0Hc+LEgkPed/dJh77N/pxxRh4VRYX1tr9ISBt6MZ1umFpnmyAwfcFH/G7wyZEJ6hjR85/hlWKbNk2KciSxI75FG06esvaA7b7cBi3ad2HXxgO31cHxej46ut63kKSOPQ7Y7rSLrmJTQd2f5Tp4Xs9qzNK/8xM6XPXHOtuEgCmvvsNt/U+PTFDHCD876l+T9t3o/scldbYJAR9vhWYtWhLaURmZwCQBEAwe/lPAGvzIrtatWwNQUlJSXRYKhbjlllsIBoMNfnH6Y17oIC9Ob5WoMTikD1uvaTV8oYO9pv2MlrTbQfbtQn4PqjGwbyfFrAY/sisnJ4fs7Gxuu+02EhMTSUlJ4ZFHHmHRokUkJyfTvXv3I36PLVsOPD9j8Qa4at4Rv9URmT27gL6toxvDoVpXCefPrPurIQ74wWnZ3L59e6TCOiYMeDH873bPa70JheCi2eFHrO/vmg4QfnrP/M9WEXeg+Y46aF7PR8e9S8LTyA/U1X/v/03hhOZTIhLTscDrWY1ZSRn8oKDuNgHgunNP4/pfeI3XJz876t+uIJw3M/ygof2JA7qmwYItmyMWl6SwefPmHfYsvgY/sishIYHnn3+ejIwMxo0bxw033MA555zD8OHD6d27N3FxDf4QjmntmoUfP32gNWHGdI5QQNIRCATgB1l1J29DwA+6YKJLjcJFnQ98M2JIW5/GKOlb2S2gb3rdfbsAcEHnCAUkHYGEOBiTVXebIHDpAdpIangaRaaoT58+FBYWUlFRQVFREddccw2LFi1yCmMj8ave0KF57UW9d198/6cHdEuLdFTS4bmgM+S3D/++5zW9+/fhx8MldojUSGSlwi29wr/v3SEIAMc3gwl9IxyUpAbv7lOgddK++3YBwp8b7ZMjH5d0OMZlw2nHhX/fV9/uux3hvI6RjkrSkWoUya69VVZWUlRUVCPZ9bOf/YwTTjiBTz/9lPz8fHr0OPCCu4qM1knwRC5c2RXSEr8tP/U4eOg0uOzE6MUmHar4AEzqH07iZqV8W94pBX7ZCyafGr5LKDUWF2XBnwfDoOO+LWuRCJdnw1Onw3GugyxpLxnJMPV0+OGJ0HyPRVGGHg+PDoXzO0UvNulQJcbBA4PCN+A77JGkzW4RTtz+um94dL+kxqXBr9m1Lx988AFVVVU1kl0PPvggDz74YBSjgk8e+ymVqxbT4pRzyBhzW3V5cHslH02+kOC2cpoe34XOP/8729evZsUtg0nq0J0mbTqRdeNT+yyLFWlN4Noc+PFJsHUnNI2DpEZ59UnhhNeFneGCTDj1pXDZ82fYEVLjNfC48M/u9WBmnh2+ziVpf9okwQ094Kcnw6BvvgvvHxTdmKTDlRAXvgF/aZdv+3bThtu3kxqzRpluGDRoEKEG9mSo8uIFBOIS6P7buXz0u4vYuWk9iS2PB6Bs8QxScoaRMeY2Sh++msrSpcQlpZDW/zw6//TxGvvZV1ksiQ+EE19SLNizA2RnSLHERJekg+XnhWKJfTspdjjZpp6Ur3yH1N4jAEjtOZyKkveq65ocn0VwWzkAVdu2Ep8cXqCqbNFrFP0qlw0FT1e33VeZJEmSJEmSDk6jHNnVEFWVbyI+sycAcc1SqSrfVF2XlJHN1mVz+fC6HJK7nEKT4zoS3Lmdno8UAQGK7/wOaaecTWJ6Rq2yhBato3I8kiRJkiRJjZHJrkNU+ckyPnn02hplaf3OJr55S6oqygAIVm4hsd23q65v+N8naTXsEtqedx1r/vpzti5/i5ScIdX1KSfnsn3dRzTvNrBWmckuSZIkSZKkg2ey6xA163Qy3ScV1CovL36XjXOeoeXA89ny4RxaDbu4ui4UDJKQmg5AfGo6VeWbqKrcSnyzFEKhEBUlC2h73vX7LJMkSZIkSdLBM9lVT5p3PZUNrz9B0a9yadHvOyS2PJ6dX69jw+yptBl5FR/fewlfvvYoCc1bkXHRbWxZMpu1U28jkJBIqyEXkZieQdmiGbXKJEmSJEmSdPBMdtWjTj95uMbrxFbtaHfBzQB0u2tGjboW/UbSot/IA5ZJkiRJkiTp4Pk0RkmSJEmSJMUMk12SJEmSJEmKGSa7JEmSJEmSFDNcs+sgZbeAx4dGPwapPhQUFHDllVeSmZlJZmYmTz75ZI36qVOnkpGRQX5+Pi+++CIPPPAAwWCQp556ik6dOlW3+9GPfsTKlSupqqrib3/7G926deP888+nrKyMhIQEnnvuOVq2bMlPfvITHn/88UgfpiRJkiTpGGSy6yClJELf1tGOQqo/48eP54477uBnP/sZhYWFDB48uLrupZde4rnnnqO8vJxnn32W119/nUAgUGsff/7zn0lMTGTu3Ln85S9/4b777mP69OkkJiYydepUpk2bxs9+9jOOO+44PvroI0488cRIHqIkSZIk6RjkNEbpGNezZ0/Wrl1b/Xrjxo0kJSURCAQoLCwkGAxy1llncd111xEMBmtsm5iYCMDWrVvp2bNnjbJt27aRk5MDQF5eHq+88kokDqfBKSgoICsri7y8PMaNG1erftKkSRQXF+93+40bN9K/f39SUlL2Wb969WoyMjLIy8vj8ssvZ+fOnVx88cXk5eVx7733ArB8+XImT55cPwckSZIkSQ2cyS7pGFdYWEh2dnb165KSEjIzMwH44osv+Oqrr5gxYwZt2rThxRdfrLX9mWeeyfXXX8+pp54KhJMzQ4YM4cEHH6xOdmVmZrJy5coIHE3DNH78eAoKCkhLS6OwsLC6PBgM8sEHH9C1a9f9bpuamsrMmTM57bTT9tvmvPPOo6CggKeeeorp06czZMgQCgoKeO+99/jyyy/Jyclh4cKFhEKhej0uSZIkSWqITHZJx6gpU6aQl5dHhw4d6Nu37z7bpKWlkZubS1xcHKeffjpFRUW12rz++utMnz6dO++8E4D09HTeeustJk6cyP33338Uj6Dx2XsU3fvvv0+3bt3q3CYxMZH09PQ627z22mvk5uby9NNPs2rVKnr16gVATk4O7777LgBdunThww8/PMIjkCRJkqSGz2SXdIzaPdpo4sSJNcqzs7MpLS0F4NRTT2XZsmUALFmyhM6dO9dou337diCcFGvWrBnBYJBdu3ZVlyUlJQFQWlpa5+ilY8Xeo+iKi4trndNDlZGRQVFRETNmzODRRx+la9euvPHGG4RCIebOncvmzZsBR9dJkiRJOna4QL2kGtLT06moqACgbdu2nHLKKQwfPpzjjjuOadOmsW7dOqZOncrNN9/M6NGjqaysJBAI8PDDD1NeXs53v/td4uLiaNq0KU888QQQXrdq/PjxUTyq6JoyZQqzZs1i2LBh+x1Ft2zZMq699toaZWeffTa33nprnftu2rRp9e+5ubmccMIJzJo1i7POOovjjjuOtm3bHnH8kiRJktSYmOySjkF5eXnk5eXtt37UqFHMmjWL/Px8brnlFm655Zbqunbt2nHzzTcD8PLLL9fa9o033qjxeteuXXzxxRc1RjQda3Y/+XJvXbt2Zfr06QCcfPLJFBQUHPK+t27dSkpKCqFQiAULFnD99dfzyCOPEAqFGDduXPVTNktLSxk6dOgRHYckSZIkNQZOY5RUy+WXX05+fn697CshIYEpU6bUy75iTZ8+ffa5Dtre8vPzWbRoEfn5+SxdupR169ZVP2nxrbfeYsCAAQwZMoSRI0eyc+dO8vLyOPPMM7noootITk4Gwg8e2P3ETEmSJEmKZY7skqSjqK5RdHFxcfTu3Zvi4uI61zSbNWtWrbLdo+tGjhzJyJEja9TtPUJs+fLl9O/fn0AgcGjBS5IkSVIjZLJLkqJoX9Mb61tOTg45OTlH/X0kSZIkqSFwGqMkSZIkSZJihskuSZIkSZIkxQynMR6CrTuhpCw6753dAlISo/PekiRJkiRJjYXJrkNQUgZXzYvOez8+FPq2js57S5IkSZIkNRZOY5QkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihgvUH2VFt+dRvqKQQEIigfgEkjqcRPuxk2jR58xohyZJkiRJkhRzHNkVAe3HTqLfc1vp/eR6mncfzEf3fJ+q8s3RDkuSJEmSJCnmmOyKoLjEprQ5azzBbVvZ9nlJtMORJEmSJEmKOSa7Iii4vZKvZj5OXHILktp3jXY4kiRJkiRJMafRJLt27NjBhAkT6NixI82aNWPEiBHMnz+fQCDACy+8EO3w6vTZtAksvqwlS37UmYpV75N9x7+JT24R7bAUw4KhaEdwbAiF9v27JCn6dgZh03bYURXtSCRJewqFYOtOKNthH1pHT6NYoD4UCjFmzBjmz5/PnXfeSXZ2NtOmTWP06NEA9OvXL8oR1q39ZXfTbvQvoh2GjgHbquDZj+Gfq74t+4834LIT4ewOEAhEL7ZYUhWC/7cant3jPF/4v3BJF7gwExIazW0ESYo9pVvhqRJ45VPYEYT4AOS3h8uzoXtatKOTpGNXKAQvrQn/vbKyLFyW0QwuzoJLsqBJfHTjU2xpFMmuxx57jJdffpnFixfTo0cPAPLy8sjKyiI9PZ1OnTpFOUIp+ip3wbWFsOTrmuVFm2HCQlj6NfyipwmvI1UVgtsWwOufw56nck053LsE3vkCfn+qCS9JioYPv4Zr3grf/Al+U1YVgplr4X8/h/sHwmltoxqiJB2TQiGY+D688EnNPvS6SvjjMpi3Hv54GjQ14aV60ij+HJs8eTJjx46tTnQBxMfHk5WVRb9+/diwYQPnnnsu3bt3p1evXlxwwQV8+eWXUYxYirxHi8IJrb3t7uw/twreWBfRkGLS9NXhRBfAnqOud/8+Z33NEV+SpMioCsHN79ZMdO0WBHYF4ZYFULErGtFJ0rHttbXhRBfsuw+9YAP8vTjSUSmWNfhkV3FxMatWreLCCy+sVbdmzRr69etHIBDgl7/8JUVFRSxZsoQTTzyRW2+9NQrRStGxbRf8v9KaXxx7i8MkzJEKheCZj2vejdpbAHjuY9dNk6RIe3M9fLGtdqJrtxBQvgte/TSSUUmSIDx18UDJh+dXh9dblOpDg5/GuHbtWgDatq055nzFihWUlpbSr18/0tPTycvLq6477bTTeOSRRw76PVJTU9mxY8cB2yV3H8yJEwsOer8A3ScdWvv9OeOMPCqKCutlX4o9zbIHkP3beXW2CQLvrttB06apkQkqBsWntubkv31WZ5sQ8HklpLbPYtfGutvq4PX85zYAmjZNinIksc3zHBme56Oj3X/8jjbn/ZRA/P67t6GqXdz8p+e49KH/jGBksc9rOjI8z5HheT4K4hPo9Wz5AZtt2gGtu/Zl+6fLIxCUGoNg8PCznw1+ZFfr1q0BKCkpqS4LhULccsstBIPBWovTB4NBHnnkEUaNGhXROKXoOtiFuFyw64gc0oJnnmtJiqiD/oz281mSGiwXGFY9afAju3JycsjOzua2224jMTGRlJQUHnnkERYtWkRycjLdu3ev0f6nP/0pKSkpXH/99Qf9Hlu2bDmodos3wFV1D545ambPLqBv6+i8txq+8l3wndfC65TsTxzQq20i723fHrG4Yk0wBN+bFV5Is65ZisclwTuffUy839X1ZsCL4X+3e/0eVZ7nyPA8Hx2zPoNbF9TdJhCfwD3XXcYl//eyyAR1jPCajgzPc2R4no+OywqguKzuPnRKAnxZtMhF6lVt3rx5DBs27LC2bfAjuxISEnj++efJyMhg3Lhx3HDDDZxzzjkMHz6c3r17Exf37SH84he/oLi4mOeee65GuRTrmifA+R3rvlcdJPxYXx2+uABc0qXuL2mAMZ0x0SVJEZbXDtKb7r9zGwCS4uG8EyIZlSQJDtyHDgCjM30ao+pPo8gI9enTh8LCQioqKigqKuKaa65h0aJFNaYw3nbbbbz33nv8z//8D02bNo1itFJ0XJcDJ6bWTnjtfn3eCTCyfaSjij0/yILBx+2/fkBrGHti5OKRJIUlxMFv+4f/3buDG0d4Zszdp0BKYjSik6Rj23c7Qv43f4vs6++VnJZwdXeketMokl17q6yspKioqDrZ9eGHH/Lb3/6Wzz77jCFDhtC3b19Gjx4d5SilyEpJhMeHweXZ0GKPjvwJzeGXveC/+jkFvj4kxMF9g+D6nPB0xd3aNIWfnAQPngZNvCMlSVHRvw38PRfyMmp2ck9rC48NgTMyohaaJB3T4gMwqT/8nx6Qkfxtecsm8J/d4NEh0KzBL7KkxqRRXk4ffPABVVVV1cmuHj16EAodaGJR5K1/8QE2v/tvut09q0b5J4/9lMpVi2lxyjlkjLkNgC9ffZSv5/2TULCKbnfNJJDgbUcdupRE+OnJ4aTLF5UQHwfHJ5nkqm+JcXBFV/iP7PB5DgFtk8KJMElSdHVPg9+fClt2whmvhMsePC26MUmSwgmvy06EH3SBgS+Fy14daR9aR0ejTHYNGjSoQSa39hTatZPKVYtrlZcXLyAQl0D3387lo99dxM5N6wnt3E5l6RK63f165ANVTEqMgw7Nox1F7IsP1LwzJUlqOFK9byhJDVLcHjfiTXTpaPHSOko2FEylVe6ltcrLV75Dau8RAKT2HE5FyXuULZpBcFs5K+8YwWfP3BnhSCVJkiRJkmKHya6jIBQMUrbwNdJO+U6tuqryTcQntwAgrlkqVeWb2Ln5CwgE6Dbxf9m+fhUVHy+OcMSSJEmSJEmxoVFOY2woKj9ZxiePXlujLK3f2TTNyCZt4Kh9bhPfvCVVFWUABCu3kNjuROKT00jtORyA1B6ns21tEcld+h7V2CVJkiRJkmKRya4j0KzTyXSfVFCr/PN/TmLL0gI2FkylYtVivprxOG1GXgVA824D2TjnGVoOPJ8tH86h1bCLSWzVjo1zpgFQWbqE9H1Mf5QkSZIkSdKBOY3xKMi4+Ha6/WYmXe98leSsvrQZeRU7v17Huun30rzrqYR2bqfoV7kkZ/UhseXxJJ94CqGqXRTdnkdwewXNuw+K9iFIkiRJkiQ1So7sOsq63T0LgMRW7Wh3wc0AdPrJw7XadbzqgUiGJUmSJEmSFJMc2SVJkiRJkqSYYbJLkiRJkiRJMcNklyRJkiRJkmKGa3YdguwW8PjQ6L23JEnRVFBQwJVXXklmZiaZmZk8+eSTNeqnTp1KRkYG+fn53HPPPbzyyiv07duXhx56qEa7L7/8kquvvppNmzZx6aWXcvXVV1NSUsL111/P9u3bufHGGxk1ahR33303M2fOJCsriylTplBWVsbEiRO57777InnYilGHcj3n5uayaNEiVqxYwQknnLDP/fXr14+bbrqJsWPH8uyzz/KrX/2KM888k8cffxyACRMmcPXVV9OxY8ejfmySJB3rHNl1CFISoW/r6PykJEb76CVJgvHjx1NQUEBaWhqFhYU16l566SXOPPNM1q9fz8KFC5k7dy4JCQksWLCgRrvf/OY3PPDAA8yePZurr74agLvuuotnn32W2bNnM2rUKD7//HMWLVrEnDlzOPXUU3nppZdIT09n06ZNbN26NWLHq9h2MNczwL/+9S8uuuii/e7nlVdeIT09vfr1WWedxcyZM2u0+eEPf8hf//rXeoxekiTtj8kuSVKjV1BQQFZWFnl5eYwbN65W/aRJkyguLq5zHz/96U/Jzc3lnnvuqVW3evVqMjIyyMvL4/LLL2f+/PkMHTqUIUOGcMcddwDss2z58uVMnjy5Ho6w4enZsydr166tfr1x40aSkpIIBAIsWLCA4cOHAzBixAjmz59fY9uVK1dy6623MnLkSIqKitixYwdr1qzh8ssv53vf+x7r16+ntLSUHj16ANCrV6/qRMSgQYMoKCiIzEHqmFHX9QzQrl27Ord/+umnufTSS6tft27dmoSEmhMoTjrpJBYuXFiPUUuSpP0x2SVJign7G6ERDAb54IMP6Nq16363XbBgAQkJCcydO5eFCxeyfv36Wm3OO+88CgoKeOqpp+jXrx/z5s3jrbfeorCwkLKysn2W5eTksHDhQkKh0FE55mgqLCwkOzu7+nVJSQmZmZkAbNq0iRYtwvPvU1NT2bRpU41t33zzTSZOnMjDDz/M7bffzldffcXSpUt58sknueGGG/jtb39Lly5dePvttwkGg8yZM4fNmzcDkJmZycqVKyNzkDpm1HU9H8i8efMYMGBAreTWvuzYseOwY5QkSQfPZJckKabsPULj/fffp1u3bnVu88477zBixAgAhg8fznvvvVerzWuvvUZubi5PP/00iYnhueVVVVW0b9+e5OTkfZYBdOnShQ8//LBejq0hmDJlCnl5eXTo0IG+ffvus03Lli0pKysDYMuWLbRs2bJGfY8ePTjxxBPp2rUrmzdvJi0tjV69etGqVStyc3MpKiqibdu2jB49mhEjRrB+/Xratm17lI9Mx6KDuZ4P5NFHH+Wqq66q38AkSdIRMdklSYope4/QKC4upnPnznVuc6CRSBkZGRQVFTFjxgweffRRNmzYwLRp08jJyaFly5bVIzr2VRZrI5F2j6CbOHFijfLs7GxKS0sB6N+/P3PmzAFg9uzZDBw4sEbbzp0789VXX7F+/XqSk5Np3rw5SUlJbN++naVLl1b/97r22mspKCggMzOTc889F4DS0tI6R+lJh+JgrucD+fjjj7nooov4wx/+wL333lvndk2aNDmieCVJ0sEx2SVJigkHM0Jj2bJl5OXl1fj53e9+d8CRSE2bNiU5OZlmzZqRm5vLRx99xGWXXcaKFSv47LPPWLJkCcA+y44V6enpVFRUAOH1jXr37k1ubi7bt29nwIABrFu3jnvvvReAO+64gwsuuIDRo0czYcIEAG666SbOPPNMfv7zn/PLX/4SgAsuuID8/HwqKioYPHgwAG+//TZ5eXmRP0AdU/a8ngHGjh3LjBkzuPTSS3n99deB8DUL4Wm5r776KjfddBM333wzmZmZzJgxg7Fjx/LKK69UryO4YsWKwx49JkmSDs2BFxeQJKkRGD9+fPXC8Hvq2rUr06dPB+Dkk0/e5+Lm7777Ls888wznn38+c+bM4eKLL65Rv3XrVlJSUgiFQixYsKD6CYJxcXGkpqZWj0pq2rRpjTIIj0QaOnRoPR9tdOxOEO7PqFGjmDVrFvn5+UyYMKE6kQXhBNjNN98MQO/evatHfu2Wn59Pfn5+jbLd/91227hxIy1btiQ1NfUIj0Q6tOv5H//4R636P/zhDzVeX3HFFdW/jxw5kpEjR9aof/rpp6s/OyRJ0tHlyC5JUkzr06cPRUVFdbY59dRT2b59O7m5ufTp04fjjz++xkikt956iwEDBjBkyBBGjhzJ/PnzycvL4/TTT+eEE06ga9euvPjii7XKILzQdc+ePY/6cTYEl19+ea2EVX1KT0/n/vvvP2r7l/ZU39fz3XffTadOneptf5Ikaf8c2SVJavTqGqERFxdH7969KS4urnOtp4cffrjG6z1HIu1rlMaYMWNqvd67bPny5fTv359AIHCwhyJJkiTpCJnskiTFvH1Nb4yEnJwccnJyovLekiRJ0rHKaYySJEmSJEmKGSa7JEmSJEmSFDOcxniQtu6EkrLoxpDdAlISoxuDJEmSJElSQ2ay6yCVlMFV86Ibw+NDoW/r6MYgSZIkSZLUkDmNUZIkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZLlB/lBXdnkf5ikICCYkE4hNI6nAS7cdOokWfM6MdmiRJkiRJUsxxZFcEtB87iX7PbaX3k+tp3n0wH93zfarKN0c7LEmSJEmSpJhjsiuC4hKb0uas8QS3bWXb5yXRDkeSJEmSJCnmmOyKoOD2Sr6a+ThxyS1Iat812uFIkiRJkiTFnEaT7NqxYwcTJkygY8eONGvWjBEjRjB//nwCgQAvvPBCtMOr02fTJrD4spYs+VFnKla9T/Yd/yY+uUW0w5IkSZIkSTEqFIKqULSjiI5GsUB9KBRizJgxzJ8/nzvvvJPs7GymTZvG6NGjAejXr1+UI6xb+8vupt3oX0Q7DElqdN7+AqZ9/O3rMf8LY7Lg+52gSXz04oo1S7+GaR99+/q7M+HCzjCmM6QkRisq6fCsr4RnP4YXPvm2bPIHcFkX6JgSvbgkSYqUhRvCfbu568PJrhOah/t1F2ZCUqPIAh25RnGYjz32GC+//DKLFy+mR48eAOTl5ZGVlUV6ejqdOnWKcoSSpPr2t5Xw5xUQF/i2bPVW+P0SeP0z+ONpkGTC64i9vAbuXATscZ7XVcLDy8N1fx0KLZtGLTzpkHxUBlfPg7KdsOeN7P9eDf9eA38aDH3SoxWdJElH3z9XhfvLcQEIfvNluLYc7v8QXlsLjwyB5o0iE3RkGsU0xsmTJzN27NjqRBdAfHw8WVlZ1aO6vv/979OnTx/69etHbm4uixcvjlK0kqQjteCrcKILvv2Shm//eF24AR5dEfGwYs6n5XDnYghS8zzvVroVJr4f6aikwxMMwS/ehS17JbogfI1vr4L/8w5sq4pGdJIkHX0rNsG9S8K/76sPvXwT3L80wkFFSYNPdhUXF7Nq1SouvPDCWnVr1qypTnY9+eSTvP/++yxatIhf/OIX/Od//mekQ5Uk1ZPnPq77CyoETC+FbbsiFVFs+u/V4bUc9icIvLEO1lVEKiLp8L3zJawpD1+3+xIENu+EWZ9FMipJkiLnn6trDNavJQT8f5/C5h0RCiiKGvzgtbVr1wLQtm3bGuUrVqygtLS0OtmVlpZWXbd582bi4g4+j5eamsqOHXX/107uPpgTJxYc9D536z7p0LfZnzPOyKOiqLDe9idJDdXJT31FfLPUOtuU74KM/mdQseKtCEUVe7LvfZdmnXvX2SYE9Pnef7JpztORCeoY0POf2wBo2jQpypHElnZj76HNd28gEL//+c2hql38/IFnufBP4yMYWezzmo4Mz3NkeJ4jw/N8dJz0l49JbN2hzjY7g3Di8NFsWfhyhKI6fMHg/m5hHViDT3a1bt0agJKSEgYOHAiEF6y/5ZZbCAaDNRanv+qqq5gxYwahUIhXX301KvFKko5cIO7gFuM62Hbat0D8wXUDPM9qDMLX84EeORXyepYkxa6D7NtxDHwXBkKhuiYwRN+uXbvIyclh586d3HvvvaSkpPDII4+waNEiNm7cyJYtW2qN4po6dSrPPPMML79cf5nKxRvgqnn1trvD8vhQ6Ns6ujFIUiRc9SZ8sHH/05EAEgLw6kgXTz8Sdy2C/29N3ecZYNpw6JZ2gEY6aANeDP+7YFR044g1r3wKExYeuN0NJ8PY7KMfz7HEazoyPM+R4XmODM/z0XHjOzBvfd19uwDwYj5kJEcqqsM3b948hg0bxptvvsnQoUMPadsGv2ZXQkICzz//PBkZGYwbN44bbriBc845h+HDh9O7d+99Tlf8j//4D2bPns2GDRuiELEk6UiNyar7SzoOOKuDia4jdWHnA5/nXq1MdKlxGJEBLRLrXqskMQ6+60O8JUkx6oB96AAMads4El1HqsEnuwD69OlDYWEhFRUVFBUVcc0117Bo0aLqKYxbt25lzZo11e1feukl0tPTSU/32dKS1Bid1T78sy9xwPHN4OcnRzSkmNSzFYz7ZoTL3gmCOCA5Ae7oE+mopMPTNB5+c0q4I793BzeO8DV+ex9o2SQKwUmSFAGDj4PRmfuuiyP8HXhL3cu1xowGv2bXvlRWVlJUVMQNN9wAQHl5OWPGjKG8vJz4+HjS09N56aWXCATqurcnSWqo4gIwsT90T4NnP4avtofLm8TBOSfANSdBG9czrRfX50DH5vBkSfhJdhA+/yPawTU5kJkS3fikQzHseHh0CPxlBSzYY4D/yS3hR91h6PFRC02SpKMuEIBf9YYTU+EfH8G6ynB5QgBGdoBrT4J2x8CoLmikya4PPviAqqqq6pFdxx9/PG+//XaUo5Ik1af4AFzRFcaeCKu3hp8c07E5pCRGO7LYEgjA9zPhe53C57myCjKaQSuniKqR6tsa/jI03MHfsC18F7tD82hHJUlSZMQF4Add4OIsGPhSuOy170DaMTayuVEmuwYNGkRDXFf/k8d+SuWqxbQ45RwyxtxWXb512Zt8+vdfQCCOVkMu5Pjv31Rdt/7FB9j87r/pdvcsdm3ZSPF/ncW2tUX0e25rNA5BkhqchDjIbhHtKGJfIABZqdGOQqo/7ZqFfyRJOhbF7THR7VhLdEEjWbOrMSgvXkAgLoHuv51LxUcL2blpfXVdk+O70O2eOZz0+7fY9O6/CW6vACC0ayeVqxZXt4tvlkrXu2bSvNtpkQ5fkiRJkiQpJpjsqiflK98htfcIAFJ7Dqei5L3quiat2xOXGE6lBuLiIRA+7RsKptIq99LqdoGERBJSXVRfkiRJkiTpcJnsqidV5ZuITw7Ps4lrlkpV+aZabcoWz6RpxonENUkiFAxStvA10k75ToQjlSRJkiRJil2Ncs2uaKr8ZBmfPHptjbK0fmcT37wlVRVlAAQrt5DY7sQabXZ89Snrnv8tJ97+IgCbCqeTNnBUZIKWJEmSJEk6RpjsOkTNOp1M90kFtcrLi99l45xnaDnwfLZ8OIdWwy6urgvu3M7qP15Bp588Qnyz8DPct60tYsvSAjYWTKVi1WK+mvE4bUZeFanDkCRJkiRJiklOY6wnzbueSmjndop+lUtyVh8SWx7Pzq/XsW76vWx8Yxrb1iyj9JEfU3R7Hjs2rCXj4tvp9puZdL3zVZKz+lYnulZOyKdi1SJWTsinsnRplI9KkiRJkiSpcXFkVz3q9JOHa7xObNWOdhfcDECb/Cv3u123u2ft83dJkiRJkiQdGkd2SZIkSZIkKWaY7JIkSZIkSVLMcBrjQcpuAY8PjX4MkiRJkqTIKygo4MorryQzM5PMzEyefPLJGvVTp04lIyOD/Px87rnnHl555RX69u3LQw89VKPdq6++yl133UVqaipPPPEE7du35/zzz6esrIyEhASee+452rRpw913383MmTPJyspiypQplJWVMXHiRO67775IHrbUKJnsOkgpidC3dbSjkCRJkiRFy/jx47njjjv42c9+RmFhIYMHD66ue+mll3juuedYv349CxcuZO7cudx4440sWLCAAQMGVLebPHkys2fPpqSkhMmTJ/PHP/6R6dOnk5iYyNSpU5k2bRpjxoxh0aJFzJkzhz/96U+89NJLjB49mk2bNrF161ZSUlKicfhSo+E0RkmSpAamoKCArKws8vLyGDduXK36SZMmUVxcXOc+Hn30Uc4880zy8vLYuXNndfmrr75KXl4eeXl5tG7dmsWLF7Nz504uvvhi8vLyuPfeewFYvnw5kydPrt8Dk6QY0bNnT9auXVv9euPGjSQlJREIBFiwYAHDhw8HYMSIEcyfP7/GtgkJCSQlJdGjR4/qusTERAC2bdtGTk4OpaWl9OjRA4BevXpRWFgIwKBBgygoKDjahyc1eia7JEmSGqDx48dTUFBAWlpa9R85AMFgkA8++ICuXbvud9tPPvmEJUuW8Prrr1NQUFD9RxTA2WefTUFBAbNnz6ZLly706dOH6dOnM2TIEAoKCnjvvff48ssvycnJYeHChYRCoaN6nJLUGBUWFpKdnV39uqSkhMzMTAA2bdpEixbhNWhSU1PZtGlTjW137tzJhg0bePPNN9m4cSMQTpYNGTKEBx98kJycHLp06cLbb79NMBhkzpw5bN68GYDMzExWrlwZgSOUGjeTXZIkSQ3Y3qMH3n//fbp161bnNjNmzKC8vJwRI0Zw55137rPNu+++y4ABAwgEAqxatYpevXoBkJOTw7vvvgtAly5d+PDDD+vnQCQpBkyZMoW8vDw6dOhA375999mmZcuWlJWVAbBlyxZatmxZo37ixIlcdNFFPPPMM5x88skApKen89ZbbzFx4kTuv/9+2rZty+jRoxkxYgTr16+nbdu2R/OwpJhjskuSJKkB23v0QHFxMZ07d65zmy+++IJAIMD//u//smrVKhYvXlyrzQsvvMD3vvc9ALp3784bb7xBKBRi7ty5jiCQpP3YPep24sSJNcqzs7MpLS0FoH///syZMweA2bNnM3DgwBpthw0bxuzZs7niiisYNGgQwWCQXbt2AZCWlkZSUhIA1157LQUFBWRmZnLuuecCUFpaWufIXklhLlAvSZLUAE2ZMoVZs2YxbNiw/Y4eWLZsGddee22NsrPPPpu0tLTq9WJOP/10ioqKau1j9uzZ/Nd//RcAo0aNYsaMGZx11lkcd9xxjiCQpEOUnp5ORUUFAO3ataN3797k5ubSu3dvBgwYwLp165g6dSo333wzv/nNbygoKKBDhw48+uijlJeX893vfpe4uDiaNm3KE088AcAFF1xAWVkZubm51Qvhv/322zz44IPROkyp0TDZJUmS1ADtfuLX3rp27cr06dMBOPnkk/e5UPHChQuZNm0aAEuWLOHSSy+tUf/xxx9zwgkn0KRJEwDi4+N55JFHCIVCjBs3rvqPqtLSUoYOHVqfhyVJjdbuh3vsz6hRo5g1axb5+flMmDCBCRMmVNe1a9eOm2++GYBf//rX/PrXv66x7RtvvFFrf7s/63fbuHEjLVu2JDU19QiOQjo2OI1RkiSpEenTpw9FRUV1tjnllFPYtWsXeXl5VFRUMGjQINatW1f9pMU9pzBCeEH7vLw8zjzzTC666CKSk5OB8ILLPXv2PHoHI0kx5PLLLyc/P/+o7T89PZ3777//qO1fiiWO7JIkSWpg6ho9EBcXR+/evSkuLq5z3ZYHHnigxus9RxXceOONNeo6depUa4TY8uXL6d+/P4FA4JDjlyRJiiaTXZIkSY3MvqY31recnBxycnKO+vtIkiTVN6cxSpIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmOGaXYdg604oKYvOe2e3gJTE6Ly3JEmSJElSY2Gy6xCUlMFV86Lz3o8Phb6to/PekiRJkiRJjYXTGCVJkiRJkhQzTHZJkiRJkiQpZpjskiRJkiRJUsxwza6jrOj2PMpXFBJISCQQn0BSh5NoP3YSLfqcGe3QJEmSJEmSYo4juyKg/dhJ9HtuK72fXE/z7oP56J7vU1W+OdphSZIkSZIkxRyTXREUl9iUNmeNJ7htK9s+L4l2OJIkSZIkSTHHZFcEBbdX8tXMx4lLbkFS+67RDkeSJEmSJCnmNIpk144dO5gwYQIdO3akWbNmjBgxgvnz5xMIBHjhhReiHd4BfTZtAosva8mSH3WmYtX7ZN/xb+KTW0Q7LEmSJEmSpJjT4BeoD4VCjBkzhvnz53PnnXeSnZ3NtGnTGD16NAD9+vWLcoQH1v6yu2k3+hfRDiOqtlfBK5/C86uhdCs0jYczMuCSLMg271dvgiF4/TP45yoo2gzxARjcFi7pAn3Sox2ddOiWfg3PfgzzvoCqIHRNgzGd4awO4etbakzWVcK/Vn37+oLX4XudYHQmtGgSvbgk6VgXCsEb6+Bfq78t+8X88N8qpx4XtbAkHYEGn+x67LHHePnll1m8eDE9evQAIC8vj6ysLNLT0+nUqVOUI9SBVOyC6wvhg6/DQwmDQGUVvFAKL34Ck/pDfvtoR9n47QrCHQth1mffnmeAWZ/DjM/gxh7wwxOjGaF0aP61Cn6/BAKBcCIXYMlGeH8jzFwLk0+FhEYxPlkKJ26vKwx/J+72STk8tBz+uxQeGwrtmkUvPkk6VgVDMOl9eOETiNvjRtqc9VCwDn7UDX58UvTik3R4GvyfCZMnT2bs2LHViS6A+Ph4srKyao3quuuuuwgEAixdujTSYaoO/3cpLPk6/Htwj/Ig4S+XO96DT8ujEVlsebIknOiCvc7zN0mC+z+E976KeFjSYflgI0xeAiG+vYbh22v7jfXw+MpoRCYdum274OdvQ+Wu8DW9t3UVcMu7EQ9LkkR45skLn4R/r9Hn+Ob3v64Mj/qS1Lg06GRXcXExq1at4sILL6xVt2bNmhrJroULF/L222+TmZkZyRB1AJu2w8tr9t25h3B5VQj+e3UEg4pBu4LhqV51iePAbaSG4rlVB/6C+ucq2FEVkXCkI/LaZ7B5Z80bEXsKAh9ugg+/jmBQkiSCIXj6I6hrZYQ4YNpHkYpIUn1p0NMY165dC0Dbtm1rlK9YsYLS0tLqZNf27du57rrreOaZZ8jLyzvk90lNTWXHjh0HbJfcfTAnTiw4pH13n3Ro7ffnjDPyqCgqrJd9RVKL0y4g86Zn6mwTAv46ZwW/PKVPZIKKQUld+tF18tt1tgkCr3+yjaa5aZEJSjoCJz/55QEf5FG2E47vO5yKlXVf+1K0dfo/02gx8HsE4vff7QoFg5x9/d188fw9EYxMqh89/7kNgKZNk6IcSWzzPNe/Jsd3ofufltfZJgi8twGSmqcS2nXgvxl1cLyeI6Oxn+dgcH+3Cg+sQY/sat26NQAlJSXVZaFQiFtuuYVgMFid7Pr1r3/N2LFj6dy5czTCVB0CCYkH1S4uoelRjiS2BeIP7jwfbDsp2upKCtRol+Cq3moE4hPDi8/VKeT1LEkRdih944P9u0ZSw9CgR3bl5OSQnZ3NbbfdRmJiIikpKTzyyCMsWrSI5ORkunfvTmFhIQsWLOB3v/vdYb/Pli1bDqrd4g1w1bzDfpsjMnt2AX1bR+e9j0RJGfygoO42cQH4Tp8sPti+PSIxxaJNO+Ds12DX/uaLEh6end0ynvc8z2oExs2B5Zv2P+0Lwp8dKwtn0qZx3qjSMeSRFfC3lfuf0g8QiIvn8Xt+xcgnfxWxuKT6MuDF8L/b7WMcVZ7n+rdtF+S/BtsOsCxCu2bw7qaNB75voYPm9RwZjf08z5s3j2HDhh3Wtg16ZFdCQgLPP/88GRkZjBs3jhtuuIFzzjmH4cOH07t3b+Li4njjjTdYvnw5WVlZdO7cmU8//ZTvfOc7zJgxI9rhC8huAb1a1X2hBUNwUVbEQopJLZvAWR3qPs8h4GLPsxqJMZ0PnOg6ox0mutQofP8AD44OAGmJcEZGRMKRJH0jKQFGdap7zS4I90tMdEmNS4NOdgH06dOHwsJCKioqKCoq4pprrmHRokXVUxhvvfVWPvvsM1avXs3q1as54YQTeO211xg5cmSUI9duv+oNTeNrPsp3T9/tCAPbRDamWHR9DrRO2v//1ANaw/kH+INLaijOPgGGtN13XRzQMhF+3mPf9VJDk5EMPz05/PveX4WBb35+3Q8SG3yvTJJiz9XdoH3yvvvQAaBHS7jEG8ZSo9PoulWVlZUUFRXVeBKjGrZuafD33NoJrVZN4Loc+HVf75TUh+Obhc/ziIyaicXkePhhF/jjaf4hpcYjIQ7+76lweTY032PCfRwwvB08cXq4Yyo1Fpdnw519a1+3J6XBQ4PD17UkKfJaNg33ob9zAiTs0YdOioeLOsMjQ8IjwCQ1Lo3uf9sPPviAqqqq/Sa7Vq9eHdmAdFCyW8CfBsNnFTBqVrjs5ZEmX+pbu2bwu1Phq21w9jczeV/7DjRrdP+nS9AkHn52cviO67CXw2X/30g4zqmLaqS+2wnO7QgrNkPZDmjbDLqkRjsqSVJ6U7j7FLipBxSXhW/En5QGKa5JLzVaje5P4EGDBhEK1bXEa/SVr5zPmik3QihEau8RdBg7sc660K6drLrvh+zc/AVp/c+j3QU3RzH6o2vPO9omuo6ePdcxMtGlxm7Pu6kmutTYxQXg5JbRjkKStC8tm8Kpx0U7Ckn1wT+Dj4LkLv04aXL4sY0rJ5xJVUUZ8ckt9lu3+b1XaH7SEI4fdQMf3/sDdm7+ksQ0P2UlSZIkSZIOlWNrjoJAQni8a6iqisT09sQ1Ta6zbsf6VTTL7AVAUsccKorfjXzQkiRJkiRJMcBk11Gy8Y1pfHh9DvHNWxKIT6izrmmH7mxd+gahUIitH86lqmJzlKKWJEmSJElq3JzGeAQqP1nGJ49eW6Msrd/ZtLvoVtKHX0ar3B/w8e/HULl6Cc0696pus3ddy4GjKFs8g+Jfn0VC2nEkpLWN9KFIkiRJkiTFBJNdR6BZp5PpPqmgVnlw53biEpsSiIsjvlkqgSZJddYF4uPJvOYRQqEQqx8YR8pJgyN4FJIkSZIkSbHDZNdRsHn+i3zx8sMQDJLS43SS2ndl59fr2DB7Kk2P71yrbseXn7DqgcsJBOJoe/4NNdb4kiRJkiRJ0sEz2XUUtBo6hlZDx9QoS2zVjnYX3Fxdv6cmx3Xa5wgxSZIkSZIkHRoXqJckSZIkSVLMMNklSZIkSZKkmOE0xkOQ3QIeHxq99z4WFBQUcOWVV5KZmUlmZiZPPvlkjfqpU6eSkZFBfn4+99xzD6+88gp9+/bloYceqtHu1Vdf5a677iI1NZUnnniC9u3bc/7551NWVkZCQgLPPfccbdq04e6772bmzJlkZWUxZcoUysrKmDhxIvfdd18kD1uSJEk6bPahJakmR3YdgpRE6Ns6Oj8pidE++sgZP348BQUFpKWlUVhYWKPupZde4swzz2T9+vUsXLiQuXPnkpCQwIIFC2q0mzx5MrNnz+a+++5j8uTJAEyfPp033niDK664gmnTpvH555+zaNEi5syZw6mnnspLL71Eeno6mzZtYuvWrRE7XkmSJOlI2YeWpG+Z7FKD1bNnT9auXVv9euPGjSQlJREIBFiwYAHDhw8HYMSIEcyfP7/GtgkJCSQlJdGjR4/qusTEcMZw27Zt5OTkUFpaSo8ePQDo1atXdadg0KBBFBQUHO3DkyRJOiYUFBSQlZVFXl4e48aNq1U/adIkiouL97v9xo0b6d+/PykpKbXqXn31VfLy8sjLy6N169YsXrx4n+2XL19enbyJdfahJclklxqwwsJCsrOzq1+XlJSQmZkJwKZNm2jRIjy3MzU1lU2bNtXYdufOnWzYsIE333yTjRs3AuEv+iFDhvDggw+Sk5NDly5dePvttwkGg8yZM4fNmzcDkJmZycqVKyNwhJIkSceG/Y06CgaDfPDBB3Tt2nW/26ampjJz5kxOO+20WnVnn302BQUFzJ49my5dutCnT599ts/JyWHhwoWEQqH6PbAGyD60JJnsUgM0ZcoU8vLy6NChA3379t1nm5YtW1JWVgbAli1baNmyZY36iRMnctFFF/HMM89w8sknA5Cens5bb73FxIkTuf/++2nbti2jR49mxIgRrF+/nrZt2x7Nw5IkSTrm7T3q6P3336dbt251bpOYmEh6enqdbd59910GDBhAIBDYb/suXbrw4YcfHl7gjYB9aEn6lskuNTi77/xNnDixRnl2djalpaUA9O/fnzlz5gAwe/ZsBg4cWKPtsGHDmD17NldccQWDBg0iGAyya9cuANLS0khKSgLg2muvpaCggMzMTM4991wASktL67y7KEmSpMOz96ij4uJiOnfufMT7feGFF/je975XZ5tYH3lkH1qSvuXTGNVopKenU1FRAUC7du3o3bs3ubm59O7dmwEDBrBu3TqmTp3KzTffzG9+8xsKCgro0KEDjz76KOXl5Xz3u98lLi6Opk2b8sQTTwBwwQUXUFZWRm5uLoMHDwbg7bff5sEHH4zWYUqSJMWcKVOmMGvWLIYNG7bfUUfLli3j2muvrVF29tlnc+uttx5w/7Nnz+a//uu/6iPUmGMfWtKxyGSXGpTdC4zuz6hRo5g1axb5+flMmDCBCRMmVNe1a9eOm2++GYBf//rX/PrXv66x7RtvvFFrf9OnT6/xeuPGjbRs2ZLU1NQjOApJkiTtafz48dxxxx21yrt27VrdHzv55JMPa4Hzjz/+mBNOOIEmTZrU2a60tJShQ4ce8v4bA/vQklST0xjVqFx++eXk5+cftf2np6dz//33H7X9S5Ik6Vt9+vShqKjogO3y8/NZtGgR+fn5LF26lHXr1nHvvfcC+57CuHd7CC/U3rNnz/o/iEbAPrSkY40juyRJkiQdNXWNOoqLi6N3794UFxfXud7TrFmzapXtHo104403HrD98uXL6d+/P4FA4BAilyQ1Via7JEmSJEXNvqY31recnBxycnKO+vtIkhoGpzFKkiRJkiQpZpjskiRJkiRJUsww2SVJkiRJkqSY4ZpdB2nrTigpi24M2S0gJTG6MUiSJEmSJDVkJrsOUkkZXDUvujE8PhT6to5uDJIkSZIkSQ2Z0xglSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMcM2uo6zo9jzKVxQSSEgkEJ9AUoeTaD92Ei36nBnt0CRJkiRJkmKOI7sioP3YSfR7biu9n1xP8+6D+eie71NVvjnaYUmSJEmSJMUck10RFJfYlDZnjSe4bSvbPi+JdjiSJEmSJEkxx2RXBAW3V/LVzMeJS25BUvuu0Q5HkiRJkiQp5jSaZNeOHTuYMGECHTt2pFmzZowYMYL58+cTCAR44YUXoh1enT6bNoHFl7VkyY86U7HqfbLv+DfxyS2iHZYkSZIkSVLMaRQL1IdCIcaMGcP8+fO58847yc7OZtq0aYwePRqAfv36RTnCurW/7G7ajf5FtMOIql1BeGMdTC/9tuyhZXBhZ2ifHLWwpMO29Gv41yp4b0P4dd90GJMFfdKjG5d0ONZVwH+XwuufQcUu6JwCF3SGERmQ0Ghui0mKpJ1BmPUZTF/9bdmjK8KfHcclRSuq2BMMwZvr4b9Xf1v2h6UwpjN0SolWVJLU8DWKZNdjjz3Gyy+/zOLFi+nRowcAeXl5ZGVlkZ6eTqdOnaIcoeqyvQpufhfe+qLmUMKnSuCZj+EPA2Fw26iFJx2yvxfDw8vD13Pwm7IZn8Gra+FH3eDHJ0UzOunQvPsl3Dg//Fkd+qZs43ZYsAFObQP3D4SkRtFbkBQp5bvgZ2/D+xtr9u0eXwlPfwQPngZ9W0ctvJixKwh3LAwnFfc8z89+HL7hNqk/nNk+auFJUoPWKO7XTp48mbFjx1YnugDi4+PJysqqHtXVuXNnTjrpJPr27Uvfvn157bXXohWu9vLHZeFEF3ybGIDwH1U7g3DT/PCoAqkxKPg8nOiCmtdz8JsswV9Xwsy1EQ9LOixfbQsnunbskeiCb6/tBV/BHz6MRmSSGrJ73ocPNoZ/37tvt60Kfv4ObN4Rjchiy19XhhNdUPs8V4Xgtvdg1ZZoRCZJDV+DT3YVFxezatUqLrzwwlp1a9asqTGF8fnnn2fx4sUsXryY73znO5EMU/uxZSf8T+n+63cnvKbX0UZqSP7xUd0fnHHA1I8iFY10ZP6nNPyHaXA/9SHgpU9g0/ZIRiWpIVtfGb6pE9pPfZDwyK+X1kQyqtizrQqe+3j/9SEgFIJ/ropYSJLUqDT4iQlr14aHSLRtW3Oe24oVKygtLa2X9bpSU1PZsaPu20/J3Qdz4sSCQ95390mHvs3+nHFGHhVFhfW2v0hoMfB7ZN78zzrbBEMh/vy/y7mxb8Nee62x6fnPbQA0berCGfUlLrkFPZ78ss42QWDZJkg+7gSqyupuq4Pn9Xx0nPi7Qpp16UcgENhvm10h6Hbu5Wx+87kIRiapoWo14kpOuOYvdbYJhYJM+tc8xv9XfoSiij3Ne+bR5b/qnqkSBKYt/Ixfn5oVmaCkemTfLjIa+3kOBvd3S/bAGvzIrtatwxP+S0pKqstCoRC33HILwWCwRrLrhz/8Ib179+baa69l06ZNkQ5V+xDXpNkB2wQCAeKaukq9Gr64xIP/kjiYa1+KtrimyXUmuqrbeT1L+sbB9e3iCNi3OyIH+7kb8PNZkvapwY/sysnJITs7m9tuu43ExERSUlJ45JFHWLRoEcnJyXTv3h2AuXPn0rFjR7Zv384NN9zA9ddfzz/+8Y+Deo8tWw482X3xBrhq3hEdyhGbPbug0S32uXwT/MecutvEASN6deaD7c6TqU8DXgz/u93zWm92BWHka1C2s+52yfGw8ZNimsRHJq5jgdfz0fHLd6Fg3bdrzu3Pa08/Sp/0RyMTlKQG7e0v4Pq3624TB1yc1587/cw+bGu2wuj/rbtNHNC/YysWe57VCNm3i4zGfp7nzZvHsGHDDmvbBj+yKyEhgeeff56MjAzGjRvHDTfcwDnnnMPw4cPp3bs3cXHhQ+jYsSMATZs25dprr2XevChnpgTASWnQrUXdF1oQuKhzhAKSjkBCHIzOhLrGwQSA72ViokuNwoWd6050xQFZKdC7VaQiktTQDTwOMprV/V0YBC7IjFREsaljCgxofRB9aGcwStI+NfhkF0CfPn0oLCykoqKCoqIirrnmGhYtWlQ9hbG8vJzNmzcD4SmOzz77LH379o1ixNotEIBbe0N83P4vtrx2MKTtfiqlBuY/sqFD8r6v5zigXTO4smuko5IOz8A2MLLDvuvigLgA/KpP+LNckiD8uXD7N58L+/toGNUJepkkP2I39YSm8fvvQw9sA2e1j2hIktRoNIpk194qKyspKiqqTnatX7+evLw8evfuTc+ePVm5ciV//vOfoxylduudDo8NgZNa1ixPiof/OBF+NyDccZIag5ZNYMowyMuo+QEaAHLbwd9yIb1ptKKTDk0gAL/pF07QJu81GrFrC3hkCJzSyKbPSzr6TmsLfzoNuqTWLG+eAFd3/zYZpiPTNS3c5+iVXrO8SRyM6Qz3DQqPOpck1dbg1+zalw8++ICqqqrqZFeXLl1YtGhRlKNSXXqlw1Onw8rNULo1nOjq3waSG+UVqGNd6yT4/anwRSWcOzNc9tJZ4VFdUmOTEAfX5cB/doXcl8Nl/xgenoYuSfsz8Dh4Ng+Wb4a15eE+Xf824T6e6k+3bxJeH28J/yTGQf/WkJIY7cgkqWFrlKmGQYMGEQodYDXdKPjksZ9SuWoxLU45h4wxt1WXB7dX8tHkCwluK6fp8V3o/PO/s339albcMpikDt1p0qYTWTc+tc+yWNMtLfwjxYK2eyS3THSpsWu2R4/ARJekgxEIwMktwz86urqk1h5JJ0nav0aZ7GqIyosXEIhLoPtv5/LR7y5i56b1JLY8HoCyxTNIyRlGxpjbKH34aipLlxKXlEJa//Po/NPHa+xnX2WSJEmSJEk6OM7yriflK98htfcIAFJ7Dqei5L3quibHZxHcVg5A1batxCeHb5mXLXqNol/lsqHg6eq2+yqTJEmSJEnSwXFkVz2pKt9EfGZPAOKapVJVvqm6Likjm63L5vLhdTkkdzmFJsd1JLhzOz0fKQICFN/5HdJOOZvE9IxaZQktXBlYkiRJkiTpYJnsOkSVnyzjk0evrVGW1u9s4pu3pKqiDIBg5RYS251YXb/hf5+k1bBLaHvedaz568/ZuvwtUnKGVNennJzL9nUf0bzbwFplJrskSZIkSZIOnsmuQ9Ss08l0n1RQq7y8+F02znmGlgPPZ8uHc2g17OLqulAwSEJq+JnB8anpVJVvoqpyK/HNUgiFQlSULKDtedfvs0ySJEmSJEkHz2RXPWne9VQ2vP4ERb/KpUW/75DY8nh2fr2ODbOn0mbkVXx87yV8+dqjJDRvRcZFt7FlyWzWTr2NQEIirYZcRGJ6BmWLZtQqkyRJkiRJ0sEz2VWPOv3k4RqvE1u1o90FNwPQ7a4ZNepa9BtJi34jD1gmSZIkSZKkg+fTGCVJkiRJkhQzTHZJkiRJkiQpZjiN8SBlt4DHh0Y/Bqk+FBQUcOWVV5KZmUlmZiZPPvlkjfqpU6eSkZFBfn4+L774Ig888ADBYJCnnnqKTp06Vbf70Y9+xMqVK6mqquJvf/sb3bp14/zzz6esrIyEhASee+45WrZsyU9+8hMef/zxSB+mJEmSJOkYZLLrIKUkQt/W0Y5Cqj/jx4/njjvu4Gc/+xmFhYUMHjy4uu6ll17iueeeo7y8nGeffZbXX3+dQCBQax9//vOfSUxMZO7cufzlL3/hvvvuY/r06SQmJjJ16lSmTZvGz372M4477jg++ugjTjzxxEgeoiRJkiTpGOQ0RukY17NnT9auXVv9euPGjSQlJREIBCgsLCQYDHLWWWdx3XXXEQwGa2ybmJgIwNatW+nZs2eNsm3btpGTkwNAXl4er7zySiQOp8EpKCggKyuLvLw8xo0bV6t+0qRJFBcX73f7jRs30r9/f1JSUvZZv3r1ajIyMsjLy+Pyyy9n586dXHzxxeTl5XHvvfcCsHz5ciZPnlw/ByRJkiQdZUfah66srOTcc89l+PDhXHnllbXq9+5jz58/n6FDhzJkyBDuuOMOwD50Y2eySzrGFRYWkp2dXf26pKSEzMxMAL744gu++uorZsyYQZs2bXjxxRdrbX/mmWdy/fXXc+qppwLhL44hQ4bw4IMPVie7MjMzWblyZQSOpmEaP348BQUFpKWlUVhYWF0eDAb54IMP6Nq16363TU1NZebMmZx22mn7bXPeeedRUFDAU089xfTp0xkyZAgFBQW89957fPnll+Tk5LBw4UJCoVC9HpckSZJ0tBxJH3rGjBkMGzaMN954g8TERJYuXVqjfu8+dr9+/Zg3bx5vvfUWhYWFlJWV2Ydu5Ex2SceoKVOmkJeXR4cOHejbt+8+26SlpZGbm0tcXBynn346RUVFtdq8/vrrTJ8+nTvvvBOA9PR03nrrLSZOnMj9999/FI+g8dl7FN37779Pt27d6twmMTGR9PT0Otu89tpr5Obm8vTTT7Nq1Sp69eoFQE5ODu+++y4AXbp04cMPPzzCI5AkSZIi63D60FlZWZSXlwPhWShpaWk16vfuY++enVJVVUX79u1JTk4G7EM3Zia7pGPU7jslEydOrFGenZ1NaWkpAKeeeirLli0DYMmSJXTu3LlG2+3btwPhpFizZs0IBoPs2rWruiwpKQmA0tLSOu+8HCv2HkVXXFxc65weqoyMDIqKipgxYwaPPvooXbt25Y033iAUCjF37lw2b94MOLpOkiRJjdPh9KGzs7OZO3cuOTk5BAIBOnbseMD3mTZtGjk5ObRs2ZKEhPDy5vahGy8XqJdUQ3p6OhUVFQC0bduWU045heHDh3Pccccxbdo01q1bx9SpU7n55psZPXo0lZWVBAIBHn74YcrLy/nud79LXFwcTZs25YknngDCc+7Hjx8fxaOKrilTpjBr1iyGDRu231F0y5Yt49prr61RdvbZZ3PrrbfWue+mTZtW/56bm8sJJ5zArFmzOOusszjuuONo27btEccvSZIkRdqR9KHT0tK45JJLuO666/j5z3/OW2+9xZAhQ+p8v8suu4wf/OAHjBkzhiVLllTPllDjZLJLOgbl5eWRl5e33/pRo0Yxa9Ys8vPzueWWW7jllluq69q1a8fNN98MwMsvv1xr2zfeeKPG6127dvHFF1/UuBtzrNn95Mu9de3alenTpwNw8sknU1BQcMj73rp1KykpKYRCIRYsWMD111/PI488QigUYty4cdVP2SwtLWXo0KFHdBySJElSpBxJH/rhhx+unqaYnp7Opk2b6nyv7du307RpU+Li4khNTa0xQ8U+dOPkNEZJtVx++eXk5+fXy74SEhKYMmVKvewr1vTp02ef66DtLT8/n0WLFpGfn8/SpUtZt25d9ZMW33rrLQYMGMCQIUMYOXIkO3fuJC8vjzPPPJOLLrqoer2BkpKS6idmSpIkSY3VwfShL7vsMv7+97+Tl5fH4sWLOeuss2r0oaFmH/v3v/89eXl5nH766ZxwwgnVS7DYh268HNklSUdRXaPo4uLi6N27N8XFxXWuaTZr1qxaZbtH140cOZKRI0fWqNv77tby5cvp378/gUDg0IKXJEmSouBI+9CtWrVixowZNcr2nKECtfvYEyZMqPHaPnTjZrJLkqJoX0Oz61tOTg45OTlH/X0kSZKkSLAPrQNxGqMkSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZrtl1CLbuhJKy6Lx3dgtISYzOe0uSJEmSJDUWJrsOQUkZXDUvOu/9+FDo2zo67y1JkiRJktRYOI1RkiRJkiRJMcNklyRJkiRJkmKGyS5JkiRJkiTFDJNdkiRJkiRJihkuUH+UFd2eR/mKQgIJiQTiE0jqcBLtx06iRZ8zox2aJEmSJElSzHFkVwS0HzuJfs9tpfeT62nefTAf3fN9qso3RzssSZIkSZKkmGOyK4LiEpvS5qzxBLdtZdvnJdEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6Id3kEJbq/kq5mPE5fcgqT2XaMdjiRJkiRJUsxpFGt2hUIhxowZw/z587nzzjvJzs5m2rRpjB49GoB+/fpFOcK6fTZtAuv+NZFAQlOSOp5M9h3/Jj65RbTDUoxatgmeX/3t64eXwwWZkJEcrYhi0+qt8N+rv339+yVwUWfokhqtiCQ1dBW74NVP4bW1sGkHtGsG53eCvHaQ0GhuP0qSdPg+LYfppd++nvR+uA/dPS1qISlGNYpk12OPPcbLL7/M4sWL6dGjBwB5eXlkZWWRnp5Op06dohxh3dpfdjftRv8i2mEoxoVC8NByeKqk5pDNJ4phaglM7A/57aMWXkz516pwcmtPz6+Cf66C/9MDLjsxOnFJarg+LYefvAXrKiEAhIBVW2DeF9CrFTx4GqQmRjtKSZKOnpfXwJ2Lw3+37PZCKfy/Uri6e/hHqi+N4j7i5MmTGTt2bHWiCyA+Pp6srKzqUV3btm3jmmuuoWvXrvTq1Yurr746WuFKUfH/SsOJLoDgHuUhoCoEt78HRT4X4Yi9/QVMXhI+r3t8T1ef8/s+hDnrohCYpAZrVxCuK4QvtoVf7/7s2P25sfRrmLAwGpFJkhQZSzbCfy2CYGjffejHisLJMKm+NPhkV3FxMatWreLCCy+sVbdmzZrqZNcvf/lLkpKSWLlyJUuWLOHuu++OdKhS1ARD8ERJeLTAvoQI30F59uNIRhWb9h45t7c4vk06ShJAwTpYWxH+rN6XEPDm+vBIL0mSYtE/PoLA/v5YIfx3zBMlNUd9SUeiwU9jXLt2LQBt27atUb5ixQpKS0vp168fW7du5amnnuLTTz8l8M3/Qccff/xBv0dqaio7duw4YLvk7oM5cWLBwQdfj844I4+KosKovLcavqROPen6h/fqbBME/mflVu45rXVkgopBcUkp9Ji6oc42QWDxRkhu056qLXW31cHr+c/wkJimTZOiHEls8zwfHR1//iRpgy8iEL//blcoFCT3ql/z5f/cG8HIJEmKgECAntO2EEjY/3z9EPDxFmiRmcOO9d6hry+NvW8XDAYP3Gg/GvzIrtatw3+Yl5R8O1QiFApxyy23EAwG6devHx999BGtW7fmrrvuYsCAAeTl5fHmm29GK+Qauk8qcL0uHXVxSSkH165ps6McSWyLS2p+8G2bHnxbSbEtLiml7tvZAMEQcc0O7rNckqTGJJDQpM5E154Opb8t1aXBj+zKyckhOzub2267jcTERFJSUnjkkUdYtGgRycnJdO/encWLF/Pxxx/Tr18/7r33Xt555x3OP/98SkpKaNHiwE893LLl4OYNLN4AV8070iM6PLNnF9DXATnaj6+2wTkzas5/31sA6JASz3vbt0cqrJizKwhnvgrlu+pulxQPX31STFJ8ZOI6Fgx4Mfzvdq/fo8rzfHTctzQ8jbyue5OB+Hge+s2tfO+JWyMWlyRJkfKd12DDAboX8QH4ZOkC0ppEJqZjQWPv282bN49hw4Yd1rYNfmRXQkICzz//PBkZGYwbN44bbriBc845h+HDh9O7d2/i4uLo1KkTCQkJXHrppQAMGjSINm3asHLlyihHL0VGmyQYdjzE1TFwIET4sb46fAlxMKrT/tdGg/CH6nc7YqJLUrXvZ9ad6AJoFg9n+cRcSVKMurBz3fVxhJ8cb6JL9aXBJ7sA+vTpQ2FhIRUVFRQVFXHNNdewaNGi6sXp27RpwxlnnMHMmTMBWLlyJV988QXZ2dnRDFuKqOtzoGncvv+nDgBdUmF0ZqSjij3jssPJxX2d5zigZVO4smuko5LUkHVJhYuz6m5zQw9IbvDj7SVJOjw/yIKOzfffh05OgB93j3RUimWNItm1t8rKSoqKiqqTXQB/+ctfuOeee+jVqxc/+MEPmDp1Ki1btoxekFKEndgCHh8GXfeauRsATj8eHhsCKQc3VV51aJMEfxsGp+xjWnGf9HDd8S6NJmkvv+gJP+pWe9RnqyYwoe+B73hLktSYtWgCfx0Kg9vWrstpCX/LhU4uXal61CjvIX7wwQdUVVXVSHZ16dKFgoKC6AUlNQDd0+DpPPjwa1hZFp73PqANtE+OdmSxJSMZ/jIUVm2B9zeGy3q1CiccJWlf4gLw45PgP7Lh9JfDZfcPDHf6ExrlrUdJkg5NmyT442nwaTm8twGCoXCi66S0aEemWNQok12DBg0iFKprKe6GYf2LD7D53X/T7e5ZNco/eeynVK5aTItTziFjzG0AfPnqo3w975+EglV0u2vmQT+tQtqXHq3CPzq6slLDP5J0sPacqpjbLnpxSJIULSc0D/9IR1OjTHY1BqFdO6lctbhWeXnxAgJxCXT/7Vw++t1F7Ny0ntDO7VSWLqHb3a9HPlBJkiRJkqQY4sD5o2RDwVRa5V5aq7x85Tuk9h4BQGrP4VSUvEfZohkEt5Wz8o4RfPbMnRGOVJIkSZIkKXaY7DoKQsEgZQtfI+2U79SqqyrfRHxyeGGfuGapVJVvYufmLyAQoNvE/2X7+lVUfLw4whFLkiRJkiTFBqcxHoHKT5bxyaPX1ihL63c2TTOySRs4ap/bxDdvSVVFGQDByi0ktjuR+OQ0UnsOByC1x+lsW1tEcpe+RzV2SZIkSZKkWGSy6wg063Qy3ScV1Cr//J+T2LK0gI0FU6lYtZivZjxOm5FXAdC820A2znmGlgPPZ8uHc2g17GISW7Vj45xpAFSWLiF9H9MfJUmSJEmSdGBOYzwKMi6+nW6/mUnXO18lOasvbUZexc6v17Fu+r0073oqoZ3bKfpVLslZfUhseTzJJ55CqGoXRbfnEdxeQfPug6J9CJIkSZIkSY2SI7uOsm53zwIgsVU72l1wMwCdfvJwrXYdr3ogkmFJkiRJkiTFJEd2SZIkSZIkKWaY7JIkSZIkSVLMcBrjIchuAY8Pjd57S5IUTQUFBVx55ZVkZmaSmZnJk08+WaN+6tSpZGRkkJ+fzz333MMrr7xC3759eeihh2q0+/LLL7n66qvZtGkTl156KVdffTUlJSVcf/31bN++nRtvvJFRo0Zx9913M3PmTLKyspgyZQplZWVMnDiR++67L5KHHVGHco5zc3NZtGgRK1as4IQTTtjn/vr168dNN93E2LFjefbZZ/nVr37FmWeeyeOPPw7AhAkTuPrqq+nYseNRPzZJkqRIcWTXIUhJhL6to/OTkhjto5ckCcaPH09BQQFpaWkUFhbWqHvppZc488wzWb9+PQsXLmTu3LkkJCSwYMGCGu1+85vf8MADDzB79myuvvpqAO666y6effZZZs+ezahRo/j8889ZtGgRc+bM4dRTT+Wll14iPT2dTZs2sXXr1ogdbzQczDkG+Ne//sVFF1203/288sorpKenV78+66yzmDlzZo02P/zhD/nrX/9aj9FLkiRFn8kuSVKjV1BQQFZWFnl5eYwbN65W/aRJkyguLq5zHz/96U/Jzc3lnnvuqVW3evVqMjIyyMvL4/LLL2f+/PkMHTqUIUOGcMcddwDss2z58uVMnjy5Ho6w4enZsydr166tfr1x40aSkpIIBAIsWLCA4cOHAzBixAjmz59fY9uVK1dy6623MnLkSIqKitixYwdr1qzh8ssv53vf+x7r16+ntLSUHj16ANCrV6/qpM+gQYMoKCiIzEFGWV3nGKBdu3Z1bv/0009z6aWXVr9u3bo1CQk1B/WfdNJJLFy4sB6jliRJjcXR7kPv9sADD5Cfn09lZSXnnnsuw4cP58orrwTgzTff5LTTTmPIkCH84Q9/AOqnD22yS5IUE/Y3GiYYDPLBBx/QtWvX/W67YMECEhISmDt3LgsXLmT9+vW12px33nkUFBTw1FNP0a9fP+bNm8dbb71FYWEhZWVl+yzLyclh4cKFhEKho3LM0VRYWEh2dnb165KSEjIzMwHYtGkTLVqE59+npqayadOmGtu++eabTJw4kYcffpjbb7+dr776iqVLl/Lkk09yww038Nvf/pYuXbrw9ttvEwwGmTNnDps3bwYgMzOTlStXRuYgo6yuc3wg8+bNY8CAAbWSW/uyY8eOw45RkiQ1bke7D71z504WL14MwIwZMxg2bBhvvPEGiYmJLF26lC5dujBnzhzeeust/v3vf1NRUVEvfWiTXZKkmLL3aJj333+fbt261bnNO++8w4gRIwAYPnw47733Xq02r732Grm5uTz99NMkJobnlldVVdG+fXuSk5P3WQbQpUsXPvzww3o5toZgypQp5OXl0aFDB/r27bvPNi1btqSsrAyALVu20LJlyxr1PXr04MQTT6Rr165s3ryZtLQ0evXqRatWrcjNzaWoqIi2bdsyevRoRowYwfr162nbtu1RPrKG42DO8YE8+uijXHXVVfUbmCRJillHqw89derU6pHmWVlZlJeXA7B161bS0tJo3749TZo0ASA+Pp64uHCaqkuXLqxateqwj8dklyQppuw9Gqa4uJjOnTvXuc2BRiJlZGRQVFTEjBkzePTRR9mwYQPTpk0jJyeHli1bVo+e2VdZrI1E2n33b+LEiTXKs7OzKS0tBaB///7MmTMHgNmzZzNw4MAabTt37sxXX33F+vXrSU5Opnnz5iQlJbF9+3aWLl1a/d/r2muvpaCggMzMTM4991wASktL67zDGAsO5hwfyMcff8xFF13EH/7wB+699946t9vdwZQkSceuo9GHDgaDvPbaa3znO98Bwn2ZuXPnkpOTQyAQqPGAnJkzZ3LiiSeSlJQEhPvQa9asOezjMdklSYoJBzMaZtmyZeTl5dX4+d3vfnfAkUhNmzYlOTmZZs2akZuby0cffcRll13GihUr+Oyzz1iyZAnAPsuOFenp6VRUVADhtaR69+5Nbm4u27dvZ8CAAaxbt457770XgDvuuIMLLriA0aNHM2HCBABuuukmzjzzTH7+85/zy1/+EoALLriA/Px8KioqGDx4MABvv/02eXl5kT/ABmDPcwwwduxYZsyYwaWXXsrrr78OhM8jhKeKvvrqq9x0003cfPPNZGZmMmPGDMaOHcsrr7xSvS7HihUrDnv0mCRJavyOZh96+vTpjBo1qvr1k08+ySWXXMLy5ctp06YNb731FgCffvopv/3tb6vX7KoPB17IQZKkRmD8+PHVC8PvqWvXrkyfPh2Ak08+eZ+Lm7/77rs888wznH/++cyZM4eLL764Rv3WrVtJSUkhFAqxYMGC6icIxsXFkZqaWj0qqWnTpjXKIDwSaejQofV8tNGxu3OzP6NGjWLWrFnk5+czYcKE6kQWhBNgN998MwC9e/euHvm1W35+Pvn5+TXKdv93223jxo20bNmS1NTUIzyShutQzvE//vGPWvV7dxKvuOKK6t9HjhzJyJEja9Q//fTT1dezJEk69hzNPnRRUREFBQVMnTqVxYsXc/7551cvTbH7Kdvbt2/niiuu4JFHHiElJaV629LSUnJycg77uBzZJUmKaX369KGoqKjONqeeeirbt28nNzeXPn36cPzxx9cYifTWW28xYMAAhgwZwsiRI5k/fz55eXmcfvrpnHDCCXTt2pUXX3yxVhmEFxXv2bPnUT/OhuDyyy+vlbCqT+np6dx///1Hbf+NQX2f47vvvptOnTrV2/4kSVJsqI8+9O23387MmTN59dVX6du3L5dffjl///vfycvLY/HixZx11llMmzaNZcuW8eMf/5i8vLzqdcNKSkro0qXLYccfCMXiI6IkSTFlwIvhfxeMqrvd/kycOJFLLrkk4ms9LV++nBdeeIFbb701ou97uI70POvgeJ4lSVIkNPY+dG5uLsOGDePNN9885JkSTmOUJMW8fQ3NjoScnJwjGn4tSZIkRUu0+9Dz5s077H04jVGSJEmSJEkxw2SXJEmSJEmSYobJLkmSJEmSJMUM1+w6SFt3QklZdGPIbgEpidGNQZIkSZIkqSEz2XWQSsrgqsNfG61ePD4U+raObgySJEmSJEkNmdMYJUmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzDDZJUmSJEmSpJjhAvVHWdHteZSvKCSQkEggPoGkDifRfuwkWvQ5M9qhSZIkSZIkxRxHdkVA+7GT6PfcVno/uZ7m3Qfz0T3fp6p8c7TDkiRJkiRJijkmuyIoLrEpbc4aT3DbVrZ9XhLtcCRJkiRJkmKOya4ICm6v5KuZjxOX3IKk9l2jHY4kSZIkSVLMaTTJrh07djBhwgQ6duxIs2bNGDFiBPPnzycQCPDCCy9EO7w6fTZtAosva8mSH3WmYtX7ZN/xb+KTW0Q7LElq8Mp2wNMfffv6D0th9ZboxROrtu2C/yn99vWk9+HDr6MXT6zaFYRZn337esJCmP8lhELRi0mSJMWerTvhn6u+fT35Aygpi1480dAoFqgPhUKMGTOG+fPnc+edd5Kdnc20adMYPXo0AP369YtyhHVrf9ndtBv9i2iHIUmNyrtfwv+ZD5VV35Y9+zE88zFc3T38oyNXUgbXFcKG7d+WvVAK/68URnWE2/tCfCBq4cWMLyrD53nV1m/LXlsLr3wKpx0H954KzRpFr0ySJDVkS7+Gn70NZTu/Lfvv1fCv1fDDLnBDDwgcA327RtGteuyxx3j55ZdZvHgxPXr0ACAvL4+srCzS09Pp1KlTlCOUJNWnNVvhhndgZ7Bm+e4BMI8VQdsk+H5mxEOLKVt2wrVvwaYdNct3n/YX10DrJLguJ+KhxZSqEFz/NpRurVke/OaCfudL+M1i+O2AiIcmSZJiyJfbwjfXKnfVLN/dt3v6YzguCcZmRzy0iGsU0xgnT57M2LFjqxNdAPHx8WRlZdGvXz9Wr15N3759q386d+5Menp6FCOWJB2J51bBjuC3X8x7CwB/K/42WaDD8+81sHHH/s8zhEfSle+qo4EOaN56+HjL/s9ziPD0xk/LIxmVJEmKNdNXQ8Wuuvt2T5bUvqEcixr8yK7i4mJWrVrFgw8+WKtuzZo1XHjhhXTu3JnFixdXl99www3s2nXwPfPU1FR27NhRZ5vk7oM5cWLBQe/zaDjjjDwqigqjGoMkRULO45+SkHbcfutDwGcV0CpnENtWLY5YXLGmy6Q3SM4eSCBu//e+tlVB5zN/QNnb/y+CkcWWE376N1oOvYRA/P67XcFQiEFX3M5XL/4hgpFJkqRY0u3BpTRpl02gjnmKX++A40/9DuVLCyIX2GEKBg8/K9fgk11r164FoG3btjXKV6xYQWlpaa31unbs2MHTTz/Na6+9FrEY69J9UkG0Q5CkRieuWepBtYtPTjvKkcS2+Oat6kx0VbfzPB+R+OS0Ay+OEawivrkPr5EkSYcvPjmtzkTXt+1iv8/R4JNdrVu3BqCkpISBAwcC4QXrb7nlFoLBYK1k14svvkiHDh045ZRTDvo9tmw58KO9Fm+Aq+YdQuBHwezZBfRtHd0YJCkSRr8entJ1oFmKH8ydwQnNIxJSTPrZ2/D2F3UPdQd44alHGXTcoxGJKRb9fgk8v6ru8xyIT+CBO2/lgidujVhckiQptoybA8s2HbgPPfelf3FSywgEdITKyspYsmQJvXr1OuRtG/yaXTk5OWRnZ3Pbbbfxr3/9i1deeYXvfe97LFy4kOTkZLp3r/k4rr/97W/853/+Z5SilSTVhwsy6/6SjgP6pWOi6wh9v9MBEjDA8UkwoE2kIopN3zvAeQZoEgcjO0QkHEmSFKNGH6APHQCyU6F7Ixm036JFC4YOHUqLFoc+Eq3BJ7sSEhJ4/vnnycjIYNy4cdxwww2cc845DB8+nN69exO3x/SLtWvX8sYbb/DDH/4wihFLko7U6Ezo1HzfX1JxQFwAfnpypKOKPae3CycN9zXYPUC4s3RjT4g/Bh5PfTR1T4PzTqi7zU9OgpTEyMQjSZJi09knQPcW++/bBYAbehx4dYVY0OCTXQB9+vShsLCQiooKioqKuOaaa1i0aFGtKYxPPvkk5513XvXUR0lS45SSCI8NhVP2MaKobTP402Do7UN3j1hCHDxwGpzZvnanqEUiTDwF8ttHJbSYM6EvXJIFCXud6Gbx4U7nf5wYlbAkSVIMSYqHPw+BocfXrmvdFP4wEE5rW7suFgVCoVCje3B7ZWUlqampPPLII/zoRz+qLu/WrRsPPvggZ599dr2/Z0NYs+vxobhml6Rjzkdl8PaX4Uckd0uD044Lj+xS/fqsAuasCz99sWPz8KivxEZxS6xx2bgdZn8OZTuhbRKckQHJDX4FVUmS1Nh8shXeXA87gtAlFYa0Dd/oPFY0yu7VBx98QFVVVa2RXStXroxSRGGfPPZTKlctpsUp55Ax5rbq8q3L3uTTv/8CAnG0GnIhx3//puq69S8+wOZ3/023u2exa8tGiv/rLLatLaLfc1ujcQiS1OCc2CL8o6OrfTL8oEu0o4h96U3hws7RjkKSJMW6TilwWUq0o4ieRpnXGzRoEKFQiAEDBkQ7lGrlxQsIxCXQ/bdzqfhoITs3ra+ua3J8F7rdM4eTfv8Wm979N8HtFQCEdu2kctXi6nbxzVLpetdMmnc7LdLhS5IkSZIkxYRGmexqiMpXvkNq7xEApPYcTkXJe9V1TVq3Jy6xCQCBuHgIhE/7hoKptMq9tLpdICGRhFQXoZEkSZIkSTpcJrvqSVX5JuKTw/Ns4pqlUlW+qVabssUzaZpxInFNkggFg5QtfI20U74T4UglSZIkSZJiV6NcsyuaKj9ZxiePXlujLK3f2cQ3b0lVRRkAwcotJLar+VilHV99yrrnf8uJt78IwKbC6aQNHBWZoCVJkiRJko4RJrsOUbNOJ9N9UkGt8vLid9k45xlaDjyfLR/OodWwi6vrgju3s/qPV9DpJ48Q3yy8Qty2tUVsWVrAxoKpVKxazFczHqfNyKsidRiSJEmSJEkxyWmM9aR511MJ7dxO0a9ySc7qQ2LL49n59TrWTb+XjW9MY9uaZZQ+8mOKbs9jx4a1ZFx8O91+M5Oud75Kclbf6kTXygn5VKxaxMoJ+VSWLo3yUUmSJEmSJDUugVAoFIp2EI3B4g1w1bzoxvD4UOjbOroxSJIkSZIkNWSO7JIkSZIkSVLMMNklSZIkSZKkmOE0xoO0dSeUlEU3huwWkJIY3RgkSZIkSZIaMpNdkiRJkiRJihlOY5QkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5Ik6f9v7+7joyrv/P+/JiQEMAgGjSC3wQBGIBBBUTBmBKTeVLeIuLWy4LdYW+9attbiUtmv1rvy89u1a7WoLVsVRduybMUuVsQa8CYakSAoEIKFiFhQpMh9IJn5/TElEBPCXTKTnLyej0cezLnOdSafMx4nc95zXedIkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwmkzYtXfvXqZOnUrXrl1p3bo1w4cPp6ioiFAoxAsvvJDo8uLus90wYzX8dCn8/AMo/gKi0URXJUmKROGtz2DaMrhnKTzzEWwtT3RVkiRJUvMRikYbf0QSjUb5xje+QVFREXfddRdZWVnMmjWLP//5z3z66aeUlZXRrVu3RJcZF9EoPFYCv10NUSApFGuLAH3bw3+cAx1aJbhISWqmPtkJk96BdTti788hoDIKySGY1Be+2TPRFUqSJEnB1yTCrscff5xbbrmFpUuX0rdvXwAqKyvJzMxk586dfPHFFwmuMH6eLIVHVta+Lgno2RZm5kNKkxmzJ0nBsG0vXFMAn++JfQFRm7tz4bKu8axKkiRJan6aRCQybdo0xo0bVxV0AbRo0YLMzExyc3MBWL16Needdx69e/fmvPPOo7S0NFHlNpjdFfBfqw+9PgKs2Q6v/S1uJUmS/mHuethUR9AFMH1VbJqjJEmSpIaTnOgCDqe0tJS1a9fy8MMP11i3fv16xowZA8D3vvc9br75ZsaNG8czzzzDd7/7Xf7yl78c9vm3bdtGx44dqaioIBQK1Xv99and0Kvo9q/P1tknWlnBLb9+hbIHvhGfoiRJAGT9v8W06tqXUNKhv0fauBs6DBzOrlVvxrEySZIkqWlq2bIl27dvP+rtGv3Irg0bNgCQkZFRrX3VqlWUlZWRm5vLZ599xpIlS7jmmmsAuOaaa1iyZAmff/75YZ9/+fLl7N69myYwm5PkEzMO2yfUIpmU9h3jUI0k6WAp7U6tM+jaL7ndKXGoRpIkSWq+Gv3Irg4dOgCwZs0azjnnHCB2wfrJkycTiUTIzc1l/fr1dO7cmRYtWgCxKY6nnXYa69ev55RTjuykoqCggGHDhjXMTtST+Rtgynt190kCRp6by4fl3vpLkuLpm6/BR9tjNw+pyyv/8zsGdohLSZIkSVKz1OjDruzsbLKyspgyZQopKSmkpaUxffp0iouLadOmDX369KG4uDjRZcbFBadCmxawq/LQfSLA1734sSTF3eXd4KEP6+7TqTXkpMenHkmSJKm5avTTGJOTk5k9ezadOnViwoQJTJo0iUsuuYT8/HxycnJISkqia9eubNiwgcrKWApUWVnJp59+SteuwUp9WiXD9X0OvT4J6HUihDvFrSRJ0j9c0Q06tq77D+tN2ZDUuC8PKUmSJDV5jT7sAhgwYACFhYXs2rWLkpISbrzxRoqLi6vuxJiRkcHAgQN57rnnAHjuuefIzc094imMTcm/nA7f6V37yVLfk+DR8yClSfxXlaRgaZsCjw2F7mk116UkwY/7wyVd4l+XJEmS1Nw0yVhk9+7dlJSUVIVdAI899hi//OUv6d27N7/85S957LHHElhhwwmF4LtnwLyL4JbsA+0zzof/Oh/SUxNXmyQ1d11OgN9dCI+ce6Dth33hz6Pg6szE1SVJkiQ1J43+ml21WbZsGZWVldXCrjPOOIN33nkngVXF18mt4Lpe8MjK2PIArwEjSY1CUgjOPejmud86PXG1SJIkSc1Rkwy7hgwZQjR6uPtdSZIkSZIkqblpktMYJUmSJEmSpNoYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMBoMmHX3r17mTp1Kl27dqV169YMHz6coqIiQqEQL7zwQqLLk3QcKiLw6qfw8Ap4ZAW89RlEoomuSpIEsHEXPFkKv/gQZq6Bz3YnuiJJkqS6JSe6gCMRjUYZO3YsRUVF3HXXXWRlZTFr1ixGjx4NQG5uboIrlHSs3tsMU96DL8oPpO9ProHObeDBs6F3u4SWJ0nN1r4I/H/L4I8fQxRoEYLKKPxyBYzNhH/tC8lN5mtTSZLUnDSJsOuJJ55g3rx5LF26lL59+wIQDofJzMwkPT2dbt26JbhCScdi1Va49e3YyC6AyEHr/rYLvvsWPHMBdD4hEdVJUvN23/vwp/UHliv/MeI2AvxubWwE7uSchJQmSZJUpybxfdy0adMYN25cVdAF0KJFCzIzM6tGdf3oRz8iMzOTUCjEBx98kKhSJR2FX6+OBV2RWtZFgJ374JmP4l2VJGnt9upBV21mr4NPd8WlHEmSpKPS6MOu0tJS1q5dy5gxY2qsW79+fVXY9Y1vfINFixbRvXv3eJco6Rhs3QuLNtYedO0XAV5cf2A0gSQpPv53PYSOoN+8wwRikiRJidDopzFu2LABgIyMjGrtq1atoqysrCrsOv/884/r94TDYZKSGn32V0O/3+8BIDW1VYIrkY5Oaucz6P2L9w/bb08lpKWfQmTXtjhUJdUf35/VlHW5+Te0z/smoRYph+wTqdjHfb/8LTf/+tY4ViZJkpqTli1bsn379qPertGnOx06dABgzZo1VW3RaJTJkycTiUS8OL3URFXu2HJE/SL7yons2dnA1UiSDhZ7jz7M2K6kJCq3fxGXeiRJko5Gox/ZlZ2dTVZWFlOmTCElJYW0tDSmT59OcXExbdq0oU+fPvXyewoKChg2bFi9PFc8DZ4b+7e8vDyxhUjH4HtvwpIvDj2VMQm4LDOVJbu9KIyaHt+f1ZSt2ArjF9XdJ5TUgoJH/o2eT/1bXGqSJEk6Uo1+ZFdycjKzZ8+mU6dOTJgwgUmTJnHJJZeQn59PTk5Ok5x6KCnm+j6x29nXNnYgROyW9v+SFeeiJEmc2R6GZhx6bFcIGN4JeraNY1GSJElHqEkkRQMGDKCwsJBdu3ZRUlLCjTfeSHFxsVMYpSZu8Mlw76BYqPVVrZPhP86BrBPjX5ckCe4fBOecUr1t/9v1sFPhbj+GSZKkRqpJhF1ftXv3bkpKSqqFXd///vfp0qULn3zyCSNHjqRv374JrFDSkfpaZ/jzKJh00P+y/5YDL42CczMOvZ0kqWGlpcAj58KMg+4BNKYHPJkHD50T+1JCkiSpMWqSYdeyZcuorKysFnY9/PDDfPLJJ1RUVLBx40Y+/PDDBFYo6Wi0awnjTj+wPKYHnOBJlCQlXCgEA9IPLE/OgX4nxdolSZIaqyZ5OjlkyBCi0Wiiy5AkSZIkSVIj0yRHdkmSJEmSJEm1MeySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmB0WTCrr179zJ16lS6du1K69atGT58OEVFRYRCIV544YVEl6eAqojAwo3wX6vhmTXw1+2Jrkg6Piu2wlOl8NtSePsziEQTXZEkSfGzLwILPoUZq2HWR/DJzkRXJElqCMmJLuBIRKNRxo4dS1FREXfddRdZWVnMmjWL0aNHA5Cbm5vgChVEb26Ce5bC5vIDbb9YAeecDPcOgvTUhJUmHbUNO2HKe/Dh1urtndvAvWdB//SElCVJUty8sgF+tgy+3Heg7T8+hPyOcHcupKUkrjZJUv1qEmHXE088wbx581i6dCl9+/YFIBwOk5mZSXp6Ot26dUtwhQqaxZvhX4sgWsuol8Wb4XtvwpMXQJsm8X+Qmrsv9sD1b8IX5TXX/W0XfO8t+G0e9G4X/9okSYqHgr/FvvSpzaKNcEsh/Pp8SGky814kSXVpEm/n06ZNY9y4cVVBF0CLFi3IzMwkNzeXL774gksvvZQ+ffrQv39/rrzySj7//PMEVqym7hcfAlGobYZXBPjrDvjT+jgXJR2j59fC5j21T1mMEJvS8XhJ3MuSJCkuItHYCC6o/bNdFPhgK7z6aRyLkiQ1qEYfdpWWlrJ27VrGjBlTY9369evJzc0lFArx4x//mJKSEpYvX87pp5/OHXfckYBqFQRrtsGqL2MhwKGEgP8pi1dF0rGLRmHOuto/3O8XIfat9pZaRn5JktTUFX8Bn+6q+29hEvBHP9tJUmA0+klYGzZsACAjI6Na+6pVqygrKyM3N5f09HTC4XDVunPPPZfp06cf1e8Jh8MkJTX67K+Gfr/fA0BqaqsEVxIcbc+6hB7/9sc6+0SBVX/7ktTUjDr76eh4PNe/UHJL+j13+DsrRIHMnHPYs+79hi+qmfB4VpB4PKspa3/Bt+h662/r7BMB3lq5jtThfeJTlCTpiLRs2ZLt24/+TnGNPt3p0KEDAGvWrKlqi0ajTJ48mUgkUuPi9JFIhOnTp3PFFVfEtU4FR+WuLw/bJxqNUrlra8MXIx2naMVeIvuObMjWkRz7kiQ1NZW7th22TzQSoXLH3+NQjSQpHhr9yK7s7GyysrKYMmUKKSkppKWlMX36dIqLi2nTpg19+lT/9uXWW28lLS2NW2655ah+T0FBAcOGDavP0uNi8NzYv+Xlzj+qLxURuPwV+LyOlzQpFOK7Q7tzs697vfJ4bhj/dwm89Mmhp+YmEbs4/eL1XrirPnk8K0g8ntWU7amAr82HnRWH7hNKSuKOr+fyL5M8xiUpCBr9yK7k5GRmz55Np06dmDBhApMmTeKSSy4hPz+fnJycalMPf/SjH1FaWsrvfve7JjklUY1DchL8n96HXp8EtG4BY3rEqyLp+Fx7OiSFYteaq00EmFjHMS9JUlPWKhn+5fRDr08C2reEy73BuyQFRqMf2QUwYMAACgsLq7U98sgj5OfnVy1PmTKF9957j//93/8lNTU13iUqYMb2gM/3wG9LYwHBwRc0bZMM/3kudGydoOKko9S7HTx4NtyxGMoPGt61P/y6rR9c2CkhpUmSFBff7g1flMMf1sXCrYNHO7dvCY+cF/tXkhQMTXL40+7duykpKam6XteHH37IAw88wKeffsrQoUMZOHAgo0ePTnCVaspCIbg5G/5wIXyz54H2yf3hTxfBgPTE1SYdi7yO8L8XwffPPNB2XS94YWT1Y1ySpCBKCsHkHHg2H67scaD9zgGxv4W92yWsNElSA2gSI7u+atmyZVRWVlaFXX379iUaretmwtKxyWwbG/Xy3F9jy2MzE1uPdDzap8L4LHh4RWz55uzE1iNJUrz1aQd35MDsdbHlb3RPaDmSpAbSJMOuIUOGGG5JkiRJkiSphiY5jVGSJEmSJEmqjWGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKjCYTdu3du5epU6fStWtXWrduzfDhwykqKiIUCvHCCy8kujxJkhRn2/bCvPXwh7XwxiaoiCS6IunYVURg0cbY8fznT2DHvkRXJB27aBSWb4HZ6+CPZbBhZ6IrktTcJCe6gCMRjUYZO3YsRUVF3HXXXWRlZTFr1ixGjx4NQG5uboIrlCRJ8VIRgYdXxE6i9h4UcJ2cCj/sB6M6J6w06Zj86WP4zxXw970H2lKT4Js94aZsaBFKXG3S0Vq5Fe4uhjXbD7SFgLxTYepAOCk1QYVJalaaRNj1xBNPMG/ePJYuXUrfvn0BCIfDZGZmkp6eTrdu3RJcoSRJiodoFP69GOZvqLnui3KY8h5EonBxl/jXJh2LP5bBve/XbC+PwFNrYOveWEAgNQVrtsF33oS9ldXbo8RG4N7wJvw2D9JSElKepGakSUxjnDZtGuPGjasKugBatGhBZmZm1aiub3zjGwwYMIDc3Fzy8vJYunRpgqqVJEkN5f0ttQddEDuZCgE//wD2OaVRTcCeCnjow7r7vPAxrPoyPvVIx+uXK2JBV21vwRFg7Q74n7J4VyWpOWr0YVdpaSlr165lzJgxNdatX7++Kux66qmneP/99ykuLuZHP/oR3/72t+NdqiRJamB//LjuDy9RYlPB3tgUr4qkY/eXv8HOirr7JAEvGA6oCfhsN7z1We1B134h4L/XxakgSc1ao5/GuGFD7OvbjIyMau2rVq2irKysKuxq165d1bovv/ySpKSjy/HC4fBRb9MY9Pv9HgBSU1sluJJg83WOD1/n+PB1jg9f54bR857XOOGMoYftN+7WO9j84kNxqKh58HhuGBlX/YSMsXcSquMzaGU0wn/9cQH/fvblcaws+Dym61+bPudx+r0FdfaJAuu3V5Ka2iYuNUlq+lq2bMn27dsP3/ErGn3Y1aFDBwDWrFnDOeecA8QuWD958mQikUi1i9Nff/31zJ8/n2g0yp///OeE1CtJkhpOZNc2opFKQkkt6u63Z0ecKpKOXWTPjjqDrliniMezmoTI7iM7GY3s3dXAlUhSEwi7srOzycrKYsqUKaSkpJCWlsb06dMpLi6mTZs29OnTp6rvb37zGwBmzpzJ7bffzrx584749xQUFDBs2LB6r7+hDZ4b+7e8vDyxhQScr3N8+DrHh69zfPg6N4xDXcz7YEnAstmPcEqrR+JSU3Pg8dwwPtkJo1+NjXY5lFCLZH5505VcfL+vfX3ymK5/kSh841X4265DH9NJwBV92lLs6y6pgTX6eXvJycnMnj2bTp06MWHCBCZNmsQll1xCfn4+OTk5tU49/Jd/+Rdee+01vvjiiwRULEmSGsrXOsPJqZAUOnSfS7vCKc5MUhPQ5QQY3il2HaPaJAGdWsf6SI1dUgiuyzp00BX6R59rMuNZlaTmqtGHXQADBgygsLCQXbt2UVJSwo033khxcXHVFMYdO3awfv36qv4vvvgi6enppKenJ6pkSZLUAFonw6PnQfuW1dv3h1/nngJ39I9/XdKx+vdcGPiPj6xfDXFPbgWPnAct6561KzUao7vHAi+ofqIZAlqE4IHB0KtdbVtKUv1q9NMYa7N7925KSkqYNGkSADt37mTs2LHs3LmTFi1akJ6ezosvvkgoVMfXvpIkqUk6/USYMxxe+gSmLY+15Z8K/9QdzsuInVBJTcUJyfDYsNgdRF8og0X/uJPolBy4uAu0aZKf1tVchUJwy5kw8jSYvS52B12Aib3hG92hY+uEliepGWmSfz6XLVtGZWVl1ciuU089lbfffjvBVUmSpHhJS4GxmQfCrgfPSWw90vFoEYL8jrGf/deSurJHQkuSjssZ7eHOgQfCru+dkchqJDVHTTLsGjJkCNFoXZfylCRJkiRJUnPUJK7ZJUmSJEmSJB0Jwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMu6TgVFBSQmZlJOBxmwoQJNdbPnDmTBQsWADB37lyGDx9OOBzm448/rtbvO9/5Dvn5+Zx//vmsXr0agMsvv5z8/HxGjBjB5s2bqaio4Prrr2/4nZIkSZIkqYky7JLqwcSJEykoKKBdu3YUFhZWW/fiiy8yYsQIdu7cyfPPP8+rr75KQUEB3bp1q9bvV7/6FQsXLuSBBx7gscceA2DOnDksXLiQ6667jlmzZpGcnMwpp5zCRx99FLd9kyRJkiSpKTHskupRv3792LBhQ9Xyli1baNWqFaFQiMLCQiKRCBdddBE333wzkUik2rYpKSkA7Nixg379+lVr27NnD9nZ2QCEw2FeeumleOyOJDV5hxt9e99991FaWlrnc9x6663k5eVx//3311i3bt06OnXqRDgcZvz48RQVFTFs2DCGDh3KnXfeCVBr28qVK5k2bVo97KEkSZK+yrBLqkeFhYVkZWVVLa9Zs4bu3bsD8Nlnn7F582bmz5/PySefzNy5c2tsP2LECG655RbOPvtsIBaWDR06lIcffrgq7OrevXvVNEdJ0uEdavRtJBJh2bJl9OrV65DbLl68mOTkZF5//XWWLFnCpk2bavS57LLLKCgo4OmnnyY3N5c333yTt956i8LCQrZt21ZrW3Z2NkuWLCEajTbIPkuSJDVnhl1SPZgxYwbhcJjOnTszcODAWvu0a9eOvLw8kpKSuOCCCygpKanR59VXX2XOnDncddddAKSnp/PWW29x77338tBDDzXgHkhS8H119O37779P796969zmnXfeYfjw4QDk5+fz3nvv1ejz8ssvk5eXx7PPPls1IreyspLTTjuNNm3a1NoG0LNnTz788MN62TdJkiQdYNgl1YP9owbuvffeau1ZWVmUlZUBcPbZZ7NixQoAli9fTo8ePar1LS8vB2KhWOvWrYlEIlRUVFS1tWrVCoCysrI6RyFIkmr31dG3paWlNd6Lv2rr1q2ceOKJALRt25atW7dWW9+pUydKSkqYP38+jz/+OF988QWzZs0iOzub9u3bk5ycDFBrmyN1JUmSGkZyoguQgiw9PZ1du3YBkJGRwVlnnUV+fj6nnHIKs2bNYuPGjcycOZPbb7+d0aNHs3v3bkKhEI8++ig7d+7k61//OklJSaSmpvLkk08CsevPTJw4MYF7JUlNy4wZM1iwYAHnn3/+IUffrlixgptuuqla28UXX0z79u3Ztm0bANu3b+f000+v1ic1NbXqcV5eHh999BHf+ta3+OY3v8nYsWNZvnw5/fv3r7VNkiRJDcOwSzpO4XCYcDh8yPVXXHEFCxYsYOTIkUyePJnJkydXrevYsSO33347APPmzaux7cKFC6stV1RU8Nlnn1UbmSBJqtvEiROrLgx/sF69ejFnzhwAzjzzTAoKCmr0effdd3nuuee4/PLLWbRoEVdffXW19Tt27CAtLY1oNMrixYu54YYbAEhKSqJt27a0atWK8vJyUlNTq7VBbKTusGHD6nlvJUmS5DRGqYGNHz+ekSNH1stzJScnM2PGjHp5Lklq7gYMGFDr9RMPdvbZZ1NeXk5eXh4DBgzg1FNPZePGjTz44IMAvPXWWwwePJihQ4cyatQoioqKCIfDXHDBBXTp0oVevXoxd+7cGm0Qu4nJ/rvvSpIkqf44skuSJAVWXaNvk5KSyMnJobS0tM5rIT766KPVlg8elTtq1ChGjRpVbf3YsWNrLH+1beXKlQwaNIhQKHSkuyJJkqQjZNglSZKardqmN8ZDdnY22dnZCfndkiRJQec0RkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAaBJh1969e5k6dSpdu3aldevWDB8+nKKiIkKhEC+88EKiy1PArdl24PG2vYmrQ5JU3Z7KA4+XbYFoNHG1SJIkqfFITnQBhxONRhk7dixFRUXcddddZGVlMWvWLEaPHg1Abm5ugitUUJV8CT9bBsv/fqDt4vlweVf4177QqtH/3yNJwRSJwn+thpkfHWj79hvQPQ1+2BeGnZq42iRJkpR4jf50/YknnmDevHksXbqUvn37AhAOh8nMzCQ9PZ1u3boluEIF0eovYeIbsLeyevveCMwpg3U74JHzIKVJjI2UpGD52bLYe/FXfbwDJr0D/+8cyO8Y/7okSZLUODT6U/Vp06Yxbty4qqALoEWLFmRmZtYY1XX33XcTCoX44IMP4l2mAuY/PogFXZFa1kWB976A+RviXZUk6cO/1x50Qez9GeBn70NFbW/gkiRJahYaddhVWlrK2rVrGTNmTI1169evrxZ2LVmyhLfffpvu3bvHs0QF0PodsPiL2oOu/ZKA2eviVJAkqcr/lNX94SUKfF4OhZ/FqyJJkiQ1No16GuOGDbGhMxkZGdXaV61aRVlZWVXYVV5ezs0338xzzz1HOBw+pt8VDodJSmrU2V+t+v1+DwCpqa0SXElwtM29mB5T6r7xQQRY+slWUlO9MEx98niOD1/n+PB1bhg9f/oXTsgedth+37zlDja/+FAcKmoePJ7jx9c6Pnyd48PXWdLxatmyJdu3bz/q7Rp1utOhQwcA1qxZU9UWjUaZPHkykUikKuz693//d8aNG0ePHj0SUaYCJrJ395H1K9/VwJVIkr4qUr6LaOTwcxR9j5YkSWq+GvXIruzsbLKyspgyZQopKSmkpaUxffp0iouLadOmDX369KGwsJDFixfzs5/97Lh+V0FBAcOGHf6b4sZm8NzYv+Xl5YktJEDKK2N3Xdy+79B9koBvnXUak33d65XHc3z4OseHr3PD+P1a+P+W190nBCz53cN0avNwXGpqDjye48fXOj58nePD11lSojTqkV3JycnMnj2bTp06MWHCBCZNmsQll1xCfn4+OTk5JCUlsXDhQlauXElmZiY9evTgk08+4Wtf+xrz589PdPlqolJbwDczD70+BCSF4Oo6+kiSGsalXeDElEN/gAkBwztBpzbxrEqSJEmNSaMOuwAGDBhAYWEhu3btoqSkhBtvvJHi4uKqKYx33HEHn376KevWrWPdunV06dKFl19+mVGjRiW4cjVlE3vDqM6xx0mhA+0hoEUI7h8EmW0TUpokNWtpKfDLc+GElOrt+z/Q9DsJpg6Md1WSJElqTBr1NMba7N69m5KSEiZNmpToUhRgyUlw71lwWZfYXRdLt0HLJLigI4zpDl3TEl2hJDVffU+C2RfCHz+G+Rtgxz7ofAKM7g4jOkHLFomuUJIkSYnU5MKuZcuWUVlZWTWy66vWrVsX34IUWEkhGHZq7EeS1Lh0aBUbhTuxd6IrkSRJUmPT5MKuIUOGEI1GE12GJEmSJEmSGqFGf80uSZIkSZIk6UgZdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJTUBBQQGZmZmEw2EmTJhQY/3MmTNZsGABAPfffz95eXnceuutNfp9/vnnjB49mgsvvJAnnngCgDVr1nDxxRdz4YUXMnfuXADuueceLrjgAiZMmEBFRQVbtmzhhz/8YQPuoSRJ9cOwS5IkSWoiJk6cSEFBAe3ataOwsLDauhdffJERI0awadMmlixZwuuvv05ycjKLFy+u1u+nP/0pv/jFL3jttde44YYbALj77rt5/vnnee2117jiiiv429/+RnFxMYsWLeLss8/mxRdfJD09na1bt7Jjx4647a8kScfCsEuSVM3hRg7cd999lJaWHnL7LVu2MGjQINLS0mpdv27dOjp16kQ4HGb8+PHs27ePq6++mnA4zIMPPgjAypUrmTZtWv3skCQFUL9+/diwYUPV8pYtW2jVqhWhUIjFixeTn58PwPDhwykqKqq27erVq7njjjsYNWoUJSUl7N27l/Xr1zN+/Hj+6Z/+iU2bNlFWVkbfvn0B6N+/f1WwNmTIEAoKCuKzk5IkHSPDLklSDYcaORCJRFi2bBm9evU65LZt27bllVde4dxzzz1kn8suu4yCggKefvpp5syZw9ChQykoKOC9997j888/Jzs7myVLlhCNRut1vyQpKAoLC8nKyqpaXrNmDd27dwdg69atnHjiiUDsPXnr1q3Vtn3jjTe49957efTRR/nJT37C5s2b+eCDD3jqqaeYNGkSDzzwAD179uTtt98mEomwaNEivvzySwC6d+/O6tWr47OTkiQdI8MuSdIhfXXkwPvvv0/v3r3r3CYlJYX09PQ6+7z88svk5eXx7LPPsnbtWvr37w9AdnY27777LgA9e/bkww8/PM49kKRgmTFjBuFwmM6dOzNw4MBa+7Rv355t27YBsH37dtq3b19tfd++fTn99NPp1asXX375Je3ataN///6cdNJJ5OXlUVJSQkZGBqNHj2b48OFs2rSJjIyMBt4zSZLqj2GXJOmQvjpyoLS0lB49ehzXc3bq1ImSkhLmz5/P448/Tq9evVi4cCHRaJTXX3/d0QOSVIf9I2/vvffeau1ZWVmUlZUBMGjQIBYtWgTAa6+9xjnnnFOtb48ePdi8eTObNm2iTZs2nHDCCbRq1Yry8nI++OCDqvf5m266iYKCArp3786ll14KQFlZWZ2jeyVJagySE12AJKnxmTFjBgsWLOD8888/5MiBFStWcNNNN1Vru/jii7njjjvqfO7U1NSqx3l5eXTp0oUFCxZw0UUXccoppzh6QJKOQXp6Ort27QKgY8eO5OTkkJeXR05ODoMHD2bjxo3MnDmT22+/nTvvvJMrr7ySiooKHn74YQBuu+02RowYQYsWLXjyyScBuPLKK9m2bRt5eXmcd955ALz99ttV20iS1FgZdkmSapg4cSJ33nlnjfZevXoxZ84cAM4888xjukjxjh07SEtLIxqNsnjxYm655RamT59ONBplwoQJVSdUZWVlDBs27Lj2Q5KCJBwOEw6HD7n+iiuuYMGCBYwcOZKpU6cyderUqnUdO3bk9ttvByAnJ6dq5Nd+I0eOZOTIkdXa9r/f77dlyxbat29P27Ztj3NPJElqWE5jlCQdsQEDBlBSUnLYfiNHjqS4uJiRI0fywQcfsHHjxqo7Lb711lsMHjyYoUOHMmrUKPbt20c4HGbEiBFcddVVtGnTBohdbLlfv34Nuj+SFCTjx4+vEVjVp/T0dB566KEGe35JkuqLI7skSdXUNXIgKSmJnJwcSktL67xmy4IFC2q07R9RMGrUKEaNGlVt3VdHiK1cuZJBgwYRCoWOrnhJkiRJzZ5hlyTpqNQ2vbG+ZWdnk52d3eC/R5IkSVLwOI1RkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTCaTNi1d+9epk6dSteuXWndujXDhw+nqKiIUCjECy+8kOjyJKlJ2LHvwOMv9iSuDklSTR9tO/C4Mpq4OiRJauqSE13AkYhGo4wdO5aioiLuuususrKymDVrFqNHjwYgNzc3wRVKUuO2uwIeXgFzPz7QdskrMKIT/LAfnNIqcbVJUnP37uex9+iVXx5ou+IVmNgbRneHUChxtUmS1BQ1ibDriSeeYN68eSxdupS+ffsCEA6HyczMJD09nW7duiW4QklqvPZUwk2F8MHf4eCBApEovPopLNsCT10AJxt4SVLcvbEJflhE9TdoYNMeuH8ZbC6HG/okpDRJkpqsJjGNcdq0aYwbN64q6AJo0aIFmZmZVaO6evTowRlnnMHAgQMZOHAgL7/8cqLKlaRG5b/XwfK/1ziPAiACfL4HHi+Jc1GSJCoi8NOlEI3G3o9r80QJrN8Rz6okSWr6Gn3YVVpaytq1axkzZkyNdevXr682hXH27NksXbqUpUuX8rWvfS2eZUpSo/WHtVDXDJgI8L/rq1/PS5LU8F7fBFvKa/8yYr8QMKcsXhVJkhQMjX4a44YNGwDIyMio1r5q1SrKysrq7Xpd4XCYpKRGn/3V0O/3sStMp6Y6/0hNn8dz/Qslp9DvucMPCdgbgc59B7OnbHkcqmoePJ4VJB7PDSPjqilkXD2VUOjQn0Ej0Qi/mv0KPz7rijhWFnwe0/Hh6yzpeLVs2ZLt27cf9XaNPt3p0KEDAGvWrKlqi0ajTJ48mUgkUi3suvbaa8nJyeGmm25i69at8S5VkhqdaKSSaKTyyPpWOLRLkuIpsq+cusfeAtEo0Yq9calHkqSgaPQju7Kzs8nKymLKlCmkpKSQlpbG9OnTKS4upk2bNvTpE7ti5+uvv07Xrl0pLy9n0qRJ3HLLLTzzzDNH/HsKCgoYNmxYQ+1Ggxk8N/ZveXl5YguR6oHHc8O4tRDe+fzQ14MB6Ngaij56nyTv+FVvPJ4VJB7PDWP1l/CthXX3CSW14IGJlzPmHl/7+uQxHR++zpISpdGP7EpOTmb27Nl06tSJCRMmMGnSJC655BLy8/PJycmpmnrYtWtXAFJTU7npppt48803E1m2JDUa155ed9C1v49BlyTFV+92cFaHQ38gTwJOTIFLusSzKkmSmr5GH3YBDBgwgMLCQnbt2kVJSQk33ngjxcXFVVMYd+7cyZdffgnEpjg+//zzDBw4MIEVS1LjcW4G3JIde3zwm/7+x5d3hX/OjHdVkiSA+wdBlxNijw/+ziEEtE6GXwyBNo1+LoYkSY1Lk/zTuXv3bkpKSpg0aRIAmzZtYsyYMVRWVlJZWcmZZ57Jr371q8QWKUmNyHW9YGA6/G7tP6Y0RqHvSTC2B+R3hJCjuiQpIU5uBU9fAHM/hv8pg027oW0KXNwl9h7dsU2iK5QkqelpkmHXsmXLqKysrBrZ1bNnT4qLixNclSQ1bgM7xH4kSY1LWgp86/TYjyRJOn5NMuwaMmQI0Wg00WVIkiRJkiSpkWkS1+ySJEmSJEmSjoRhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYVeAFRQUkJmZSTgcZsKECTXWz5w5kwULFgAwd+5chg8fTjgc5uOPP67W7zvf+Q75+fmcf/75rF69GoDLL7+c/Px8RowYwebNm6moqOD6669v+J2SJEmS1OQdzblKXl4eaWlpfPLJJ4d8vtzcXJ555hkAnn/+eTIzM6udn0ydOpX169fX815IaqwMuwJu4sSJFBQU0K5dOwoLC6ute/HFFxkxYgQ7d+7k+eef59VXX6WgoIBu3bpV6/erX/2KhQsX8sADD/DYY48BMGfOHBYuXMh1113HrFmzSE5O5pRTTuGjjz6K275JkiRJarqO5FwF4A9/+ANXXXXVIZ/npZdeIj09vWr5oosu4pVXXqnW59prr+XXv/51PVYvqTEz7Gom+vXrx4YNG6qWt2zZQqtWrQiFQhQWFhKJRLjooou4+eabiUQi1bZNSUkBYMeOHfTr169a2549e8jOzgYgHA7z0ksvxWN31Ewd7hvA++67j9LS0kNuv2XLFgYNGkRaWlqt69etW0enTp0Ih8OMHz+effv2cfXVVxMOh3nwwQcBWLlyJdOmTaufHZIkSVKd5yoAHTt2rHP7Z599lmuuuaZquUOHDiQnJ1frc8YZZ7BkyZJ6rFpSY2bY1UwUFhaSlZVVtbxmzRq6d+8OwGeffcbmzZuZP38+J598MnPnzq2x/YgRI7jllls4++yzgdgfoKFDh/Lwww9XhV3du3evmuYoNZRDfQMYiURYtmwZvXr1OuS2bdu25ZVXXuHcc889ZJ/LLruMgoICnn76aebMmcPQoUMpKCjgvffe4/PPPyc7O5slS5YQjUbrdb8kSZKaq7rOVQ7nzTffZPDgwTXCrdrs3bv3mGuU1LQYdgXcjBkzCIfDdO7cmYEDB9bap127duTl5ZGUlMQFF1xASUlJjT6vvvoqc+bM4a677gIgPT2dt956i3vvvZeHHnqoAfdAqt1XvwF8//336d27d53bpKSkVBviXpuXX36ZvLw8nn32WdauXUv//v0ByM7O5t133wWgZ8+efPjhh8e5B5IkSc3bkZyrHM7jjz/utYMl1XD4+FtN2sSJE7nzzjtrtGdlZVFWVgbA2WefzdNPPw3A8uXL6dGjR7W+5eXlpKam0q5dO1q3bk0kEiESiZCcnEy7du1o1aoVAGVlZXWOqpHqU2FhIT/4wQ+qlktLS2scu0erU6dOlJSUEAqF+NrXvsYPfvADFi5cyPDhw3n99derwrT9oxj3T+uVJEnS0TuSc5XD+etf/8pVV13Fhg0bSEpKIi8v75Cjwlq2bHlc9UpqOgy7mqn09HR27doFQEZGBmeddRb5+fmccsopzJo1i40bNzJz5kxuv/12Ro8eze7duwmFQjz66KPs3LmTr3/96yQlJZGamsqTTz4JxK6nNHHixATulZqDGTNmsGDBAs4///xDfgO4YsUKbrrppmptF198MXfccUedz52amlr1OC8vjy5durBgwQIuuugiTjnlFDIyMo67fkmSJNXt4HMVgHHjxvGXv/yFjz76iLvuuosRI0Zw22238fOf/5w33ngDgCeffJLk5GS6d+/O/Pnz+elPf8ratWuZMGECTz31FKtWrTrm0WOSmh7DrgALh8OEw+FDrr/iiitYsGABI0eOZPLkyUyePLlqXceOHbn99tsBmDdvXo1tFy5cWG25oqKCzz77rNpce6khHOobwF69ejFnzhwAzjzzTAoKCo76uXfs2EFaWhrRaJTFixdzyy23MH36dKLRKBMmTOC8884DYqMYhw0bdlz7IUmS1JwdzbnKM888U2P9z3/+82rL1113XdXjUaNGMWrUqGrrn332WW644YbjqllS0+E1u5qx8ePHM3LkyHp5ruTkZGbMmFEvzyUdiwEDBtR6vbmvGjlyJMXFxYwcOZIPPviAjRs3Vt1p8a233mLw4MEMHTqUUaNGsW/fPsLhMCNGjOCqq66iTZs2QOyiqU5hlCRJajj1ea4CcM8999CtW7d6ez5JjZsjuyQ1GXV9A5iUlEROTg6lpaV1XjtuwYIFNdr2j2Ks7VvAr44QW7lyJYMGDaq6FbYkSZIkqXEx7JIUGLVNb6xv2dnZZGdnN/jvkSRJkiQdG6cxSpIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAVGkwm79u7dy9SpU+natSutW7dm+PDhFBUVEQqFeOGFFxJdXkJs3nPgcTSauDqk+rCr4sDj8srE1SFJkqTjt2PfgccVkcTVIal5ahJhVzQaZezYsfzmN7/hzjvv5E9/+hOZmZmMHj0agNzc3ARXGF9rtsEP34FL5h9oG/MXePHjxNUkHavt+2DaMhj18oG2i+fDIysMvSRJkpqaLeVwz9Lqn+0umQ+/KTH0khQ/yYku4Eg88cQTzJs3j6VLl9K3b18AwuEwmZmZpKen061btwRXGD+rtsJ33oTyCBw8mGv9Trh7KXy6C757RoKKk47Sjn1w/Rvw1+3Vj+ft++CpNbDs7/DIudCyRcJKlCRJ0hHaUg7XvQ4bd8HBudbf98JjJbBiKzx4DrQIJapCSc1FkxjZNW3aNMaNG1cVdAG0aNGCzMzMqlFde/bs4cYbb6RXr17079+fG264IVHlNphoFP5vcWy0S+Qr0xb3L/56NZR+GffSpGPym9U1g679osCSL+D36+JclCRJko7JL1fUDLoOtmgTzFsf15IkNVONPuwqLS1l7dq1jBkzpsa69evXV4VdP/7xj2nVqhWrV69m+fLl3HPPPfEutcEt/zt8tP3Qfzwg9h909ro4FSQdh/JK+J+y2oOu/ULAH9Z6TTpJkqTGbtte+POGw5+r/H5tvCqS1Jw1+mmMGzZsACAjI6Na+6pVqygrKyM3N5cdO3bw9NNP88knnxAKxcbEnnrqqUf1e8LhMElJjTv7S//a9+h8/X/W2ScCzHx1MXedMyw+RUnHqOVpvenzn8vr7BMFNuyCNu3TiezZGZ/CpHrS7/exu4ikprZKcCXS8fN4VtB4TNe/Nr2HcPp9i+rsEwFWfLGP1NS0+BQlqclr2bIl27dvP+rtGne6A3To0AGANWvWVLVFo1EmT55MJBIhNzeXjz76iA4dOnD33XczePBgwuEwb7zxRqJKbjiVFYftEo1GiR5BPynhjuI4jUa8Ur0kSVJjdqTnINGoV6mX1PAa/ciu7OxssrKymDJlCikpKaSlpTF9+nSKi4tp06YNffr0YenSpfz1r38lNzeXBx98kHfeeYfLL7+cNWvWcOKJJx7R7ykoKGDYsMY9GurjHXDlX+rukxQKMenyc/nu7eXxKUo6RpEoXLEANu4+dJ8koO9JsHi7F6JT0zN4buzf8nLfj9X0eTwraDym69/eytgdtbftO3SfJCCvSypLfN0lNbBGP7IrOTmZ2bNn06lTJyZMmMCkSZO45JJLyM/PJycnh6SkJLp160ZycjLXXHMNAEOGDOHkk09m9erVCa6+fnVLg6EZh/6PFiJ2Z5PR3eNZlXRskkJwTc+6+0Q4fB9JkiQlXssWMDaz7j4R4J8P00eS6kOjD7sABgwYQGFhIbt27aKkpIQbb7yR4uLiqovTn3zyyVx44YW88sorAKxevZrPPvuMrKysRJbdIP7vQOhyQs32JGLhwf2DIKN1vKuSjs03e8Ko02KPD34z2v/4mp5w0WnxrkqSJEnH4vrecN4psce1fbb7Xh84N+OrW0lS/Wv00xhrs3v3bkpKSpg0aVJV22OPPca3v/1tbrvtNlJSUpg5cybt27dPWI0NpUMreOqC2B0X/3tdbApYahJc1DkWDPRpl+gKpSPXIgT3DoJhp8buzLNiK4RCcFY6/HNPCHeMLUuSJKnxS0mCh4bAi+tjn+3WbIt9IT/klNi5ynkGXZLipEmGXcuWLaOysrJqZBdAz549KSgoSFxRcdQ2Bf5Pr9hPJBr7AyI1VUkhuKxr7CcajbUZcEmSJDVNyUmxy6qM7h47VwnhZztJ8dckw64hQ4YQ3X9W3MwZdClI/CAkSZIUHJ6rSEqUJnHNLkmSJEmSJOlIGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIk6bgUFBSQmZlJOBxmwoQJNdbPnDmTBQsWAHD//feTl5fHrbfeWqPf559/zujRo7nwwgt54oknAFizZg0XX3wxF154IXPnzgXgnnvu4YILLmDChAlUVFSwZcsWfvjDHzbgHqo5OZrjOS8vj7S0ND755JNDPl9ubi7PPPMMAM8//zyZmZlcf/31VeunTp3K+vXr63kvJKl5M+ySJEnScZs4cSIFBQW0a9eOwsLCautefPFFRowYwaZNm1iyZAmvv/46ycnJLF68uFq/n/70p/ziF7/gtdde44YbbgDg7rvv5vnnn+e1117jiiuu4G9/+xvFxcUsWrSIs88+mxdffJH09HS2bt3Kjh074ra/CrYjOZ4B/vCHP3DVVVcd8nleeukl0tPTq5YvuugiXnnllWp9rr32Wn7961/XY/WSJMMuSZIS4HAjB+677z5KS0vrfI5bb72VvLw87r///hrr1q1bR6dOnQiHw4wfP56ioiKGDRvG0KFDufPOOwFqbVu5ciXTpk2rhz1Uc9WvXz82bNhQtbxlyxZatWpFKBRi8eLF5OfnAzB8+HCKioqqbbt69WruuOMORo0aRUlJCXv37mX9+vWMHz+ef/qnf2LTpk2UlZXRt29fAPr3718VRAwZMoSCgoL47KSajbqOZ4COHTvWuf2zzz7LNddcU7XcoUMHkpOTq/U544wzWLJkST1WLUky7JIkKUEONXIgEomwbNkyevXqdchtFy9eTHJyMq+//jpLlixh06ZNNfpcdtllFBQU8PTTT5Obm8ubb77JW2+9RWFhIdu2bau1LTs7myVLlhCNRhtknxV8hYWFZGVlVS2vWbOG7t27A7B161ZOPPFEANq2bcvWrVurbfvGG29w77338uijj/KTn/yEzZs388EHH/DUU08xadIkHnjgAXr27Mnbb79NJBJh0aJFfPnllwB0796d1atXx2cn1WzUdTwfzptvvsngwYNrhFu12bt37zHXKEmqybBLkqQE++rIgffff5/evXvXuc0777zD8OHDAcjPz+e9996r0efll18mLy+PZ599lpSUFAAqKys57bTTaNOmTa1tAD179uTDDz+sl31T8zFjxgzC4TCdO3dm4MCBtfZp374927ZtA2D79u20b9++2vq+ffty+umn06tXL7788kvatWtH//79Oemkk8jLy6OkpISMjAxGjx7N8OHD2bRpExkZGQ28Z2qOjuR4PpzHH3+82rW5JEnxY9glSVKCfXXkQGlpKT169Khzm8ONkOnUqRMlJSXMnz+fxx9/nC+++IJZs2aRnZ1N+/btq0Ya1NbmCBkdi/0jFe+9995q7VlZWZSVlQEwaNAgFi1aBMBrr73GOeecU61vjx492Lx5M5s2baJNmzaccMIJtGrVivLycj744IOq/y9uuukmCgoK6N69O5deeikAZWVldY6GlI7GkRzPh/PXv/6Vq666ip///Oc8+OCDdW7XsmXL46pXklSdYZckSQlyJCMHVqxYQTgcrvbzs5/97LAjZFJTU2nTpg2tW7cmLy+Pjz76iG9961usWrWKTz/9lOXLlwPU2ibVp/T0dHbt2gXErm+Uk5NDXl4e5eXlDB48mI0bN/Lggw8CcOedd3LllVcyevRopk6dCsBtt93GiBEj+MEPfsCPf/xjAK688kpGjhzJrl27OO+88wB4++23CYfD8d9BNSsHH88A48aNY/78+VxzzTW8+uqrQOyYhdi03D//+c/cdttt3H777XTv3p358+czbtw4XnrpparrNa5ateqYR49Jkmp3+AnkkiSpQUycOLHqwvAH69WrF3PmzAHgzDPPrPWi2++++y7PPfccl19+OYsWLeLqq6+utn7Hjh2kpaURjUZZvHhx1Z3tkpKSaNu2bdVomdTU1GptEBshM2zYsHreWwXZ/iD2UK644goWLFjAyJEjmTp1alWQBbEA7PbbbwcgJyenauTXfiNHjmTkyJHV2vb//7Hfli1baN++PW3btj3OPZGO7nh+5plnaqz/+c9/Xm35uuuuq3o8atQoRo0aVW39s88+W/UeLUmqH47skiSpkRkwYAAlJSV19jn77LMpLy8nLy+PAQMGcOqpp1YbIfPWW28xePBghg4dyqhRoygqKiIcDnPBBRfQpUsXevXqxdy5c2u0QewCzP369Wvw/VTzMX78+BqBVX1KT0/noYcearDnlw5W38fzPffcQ7du3ert+SRJjuySJCkh6ho5kJSURE5ODqWlpXVeg+jRRx+ttnzwCJnaRg+MHTu2xvJX21auXMmgQYMIhUJHuiuSJElSo2LYJUlSI1Tb9MZ4yM7OJjs7OyG/W5IkSaoPTmOUJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCowmE3bt3buXqVOn0rVrV1q3bs3w4cMpKioiFArxwgsvJLo8SZKqRKMHHu+pSFwdUn37cm+iK5CO3+6D3pcPfr+WJAVHkwi7otEoY8eO5Te/+Q133nknf/rTn8jMzGT06NEA5ObmJrhCSZJiJ01/+hj+ueBA28iXYdoy+GJPwsqSjtn7W+D7bx9YHvln+Nd34MO/J64m6Vh9thvuez92HO937UL48yeJq0mS1DCSE13AkXjiiSeYN28eS5cupW/fvgCEw2EyMzNJT0+nW7duCa5QkiR4eAXM/AhCB7XtqYT/Xgevb4Lf5sEprRJVnXR0Fm2E29+Fgwe+RIE3P4PCz+AXQ+DcjERVJx2dT3fB/3kd/l4OkYPa12yDO5dA2Q747hkJK0+SVM+axMiuadOmMW7cuKqgC6BFixZkZmaSm5vLunXrGDhwYNVPjx49SE9PT2DFkqTmZvHmWNAF1cMBiJ1YfbY7NsJLagp2VcBP3oNINPZzsEgUKqMw5T0or0xMfdLRuu/9mkEXHFj+9Wr4wBGLkhQYjX5kV2lpKWvXruXhhx+usW79+vWMGTOGHj16sHTp0qr2SZMmUVHhRVIkSfHz+7WQFKoZDOwXARZuhE274dTWcS1NOmovfQK76wiyosC2ffDqp3Bp17iVJR2T9Tvgnc/r7pMEzF4H/U6KR0WSpIbW6MOuDRs2AJCRUX2c/KpVqygrK6txva69e/fy7LPP8vLLLx/V7wmHwyQlNYmBbpKkRuiMx9eRkt6pzj5RoO/Iq9i++MX4FCUdo843Ps5J+dcSapFyyD7Ryn3cdP+v+dt//WscK5OOXrvz/5luP3i6zj4R4L+L1vDAuX3r7CdJiq+WLVuyffv2o96u0ac7HTp0AGDNmjVVbdFolMmTJxOJRGqEXXPnzqVz586cddZZca1TktTMRb86OeaQHRu0DKleRCNUv/pcbULeyk5NQ+QI3589niUpMELRaON+V6+oqCA7O5t9+/bx4IMPkpaWxvTp0ykuLmbLli1s37692oisSy+9lIsvvpjvf//7R/T827ZtY/ny5fTv358TTzyxoXZDkhRw/74kdkevuk6pWoTgpVGQnhq3sqRj8qf1cFfx4ftNGwwjTmv4eqTjsXEXXL6g7q8akoDR3eHfBsSrKklSQ2r0I7uSk5OZPXs2nTp1YsKECUyaNIlLLrmE/Px8cnJyqgVdGzZsYOHChVx77bVH/Pwnnngiw4YNM+iSJB2XqzPrDrpCwEWnGXSpabjoNGiXcugPiknAyamQ3zGeVUnHpmOb2LFa14lPFLiqR5wKkiQ1uEYfdgEMGDCAwsJCdu3aRUlJCTfeeCPFxcU1pjA+9dRTXHbZZVVTHyVJipd+J8Et2bHHX/3jGgIy0+D2/vGuSjo2qS3gwXMgJanm8Zz0j/X/7xxIbhKfJCX4txzofELNyblJ/2i4rR/0ahf3siRJDaRJfkTZvXs3JSUlNcKuJ598km9/+9sJqkqS1Nxd1wt+MQTOOug7l/RUuL43/FcetGuZuNqko3VWB3j6gtjdFpP/EQi0TILLu8HMfO9ap6alQyt4Mg/+Ty9of9B78TknwyPnwjd7Jq42SVL9a/TX7KrNO++8w7nnnsu7777L4MGDE12OJEk17KmAvRFISzkwckBqqioisLMCTkh2NJeavkgUduyDli2gVYtEVyNJaghNMuySJEmSJEmSauN3c5IkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYPz/QzTh9vHKr5QAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADD7ElEQVR4nOzde3hU1b34//fkAiEkBAIiASEEAxi5C4JcIhEj9VJpUdFqOaIHa+ulrX6t1ar0aAVb6rdqtdZqpVWpqK2H71H78wJ4iCBGEQEFgZAoRERBBSGQhFtmfn+MREIg3MJMMrxfz5OHzFpr7/ns7XZm5bPXWjsQCoVCSJIkSZIkSTEgLtoBSJIkSZIkSfXFZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUMxKiHUBjsnUnlJRF572zW0BKYnTeW5IkSZIkqbEw2XUISsrgqnnRee/Hh0Lf1tF5b0mSJEmSpMbCaYySJEmSJEmKGSa7JEmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzHCB+qOs6PY8ylcUEkhIJBCfQFKHk2g/dhIt+pwZ7dAkSZIkSZJijiO7IqD92En0e24rvZ9cT/Pug/nonu9TVb452mFJkiRJkiTFHJNdERSX2JQ2Z40nuG0r2z4viXY4kiRJkiRJMcdkVwQFt1fy1czHiUtuQVL7rtEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6IdXp0+mzaBxZe1ZMmPOlOx6n2y7/g38cktoh1WVGzaDh9+DSVlEAxFO5rYtXUnLNsERZthVzDa0UhHZlcQVm4OX9NbdkY7GunIrdkKS7+G9ZXRjkRSY1G2I9yHLt4MVfahJemAGsUC9aFQiDFjxjB//nzuvPNOsrOzmTZtGqNHjwagX79+UY6wbu0vu5t2o38R7TCi6tNyeHg5vP75t0mujGZweTZc1BkCgaiGFzO+3g5/XgH/3xrY8U2Sq1UTuCQLrugKCY0mvS2Fk1xTP4JnP4YN28NlTeLgOx3guhxokxTd+KRDVfA5PFYEK8u+LRvYBq45CXqlRy8uSQ3X+spwH3rGWtj1TR/6uCT4YRe47ESIsw8tSfvUKJJdjz32GC+//DKLFy+mR48eAOTl5ZGVlUV6ejqdOnWKcoSqy+qt8J9zw6ON9hxktK4SJi+B0q1wU08TXkdq43a4ci58XlHzPH+9A/5SFB4Vc+9AiPc8qxEIhuCOhTDrs5rlO4LhZO67X8ETuSa81Hg8vxp+9wHs/RG84Cv40Tx48DQYeFw0IpPUUK2rgCvmhvt4e/btvtwGDyyD4jK4s599aEnal0YxzmPy5MmMHTu2OtEFEB8fT1ZWVvWorpUrVzJ48GC6devG4MGDKS4ujla42ss979dOdAHsHoH97CpYtDHSUcWeh5fXTnTtac56eHlNREOSDtvMz2onunYLAl9Uwh8/jGhI0mH7chv8fkn4971nHwUJJ3cnLHTauaSa/u/S2omuPf1/n4b7d5Kk2hp8squ4uJhVq1Zx4YUX1qpbs2ZNdbLrJz/5Cddddx0rV67kuuuu48c//nGkQ9U+rN4CCzfs/0sawsOvn18VsZBi0pad8MqnBzjPwD89z2ok/rWq7i+oIOGE2KbtkYpIOnwvlNa9TmWQ8FTduf7RKukbX1TCG+sO3Lf7l307SdqnQCgUatBLHBYUFHDGGWfwzjvvMHDgwOryFStW0KNHD6ZOnUp+fj7dunVjw4YNxMfHU1VVRevWrSkuLua44w48JyA1NZUdO3YcsF1y98GcOLHgSA7nsH10Rx4VRYVRee8jkTbsEjr9/KkDttu+7mNW/jQnAhHFpmZdB5J9z9wDtgtV7WLpD5pHICLpyPT4x9fENU0+YLuP/yuf8mUHvvalaOp0879oMeA8AnHx+20TClbx5fTJrH/urghGJqmhSu13Np1vO/BDuHZt2cDy/2wfgYgkKfJCoRAJCQmsW7eOFi0O7SF/DX5kV+vWrQEoKSmpLguFQtxyyy0Eg0H69evHmjVr6NChA/Hx4U5kfHw87du3Z80a52xFXdWug2sXrDq6ccS6gzzPIc+zGomDvVa9ptUoBHfBAe8tBryeJVUL2YeWJEKhEJWVlSxZsuSQt23wC9Tn5OSQnZ3NbbfdRmJiIikpKTzyyCMsWrSI5ORkunfvzqJFi47oPbZs2XJQ7RZvgKvmHdFbHbbZswvo2zo6730kvtoG586se/pGHHD50K7cvN35SIdrRxWcPQPKdu6/TVwAhnZoykLPsxqBm+cfePpG8wT4/L3ZJDX4bzId655fBb87QB8tEBfHS3+cQN9/TIhMUJIatK07YeRr3z5de1/igFE92rLYvp2kGDVv3jyGDRt2WNs2+JFdCQkJPP/882RkZDBu3DhuuOEGzjnnHIYPH07v3r2Ji4ujY8eOrF27lqqq8J2NqqoqPvvsMzp27Bjl6NUmCc5qX/vpU3u7qHMkooldTeJhTFbdbYIh+EGXyMQjHalLutSd6AK4IBMTXWoUzukIKQn773TFBaBrC+iTHtGwJDVgKYnwvU5196GDwMUH6P9J0rGqwSe7APr06UNhYSEVFRUUFRVxzTXXsGjRourF6du2bUvfvn155plnAHjmmWfo16/fQa3XpaPvll6Q/c302j2/sOO+eX1HX8hKjXxcseaqbjD4m0t+7/MM8KNuMLhtpKOSDs+ANnD9N8v4xe1xQe/+dUBr+MlJEQ9LOizNE+D/DoTEuNodrwDQqgn8fgAEDnRnSNIx5WcnQ69W4d9r9O2+eXFTT+jZKuJhSVKj0CiSXXurrKykqKioOtkF8Je//IWHHnqIbt268dBDD/GXv/wlihFqTy2awJRhcMPJ0H6P9abPbB8uH9UperHFksQ4uH8Q3NYbTtwjeTjoOPjjIPixiQE1Mld0hT+d9m0SF8KJ8Vt7wUODoen+1/qWGpwBbeDpPBid+W1Zqybh6/zp4dAxJWqhSWqgmiXAn4fAL3pCpz2eL5R7PPxlCFzqiH1J2q8G/zTGfXnnnXc47bTTePfddxkwYEDE3vdg1+wqXzmfNVNuhFCI1N4j6DB2Yp11oV07WXXfD9m5+QvS+p9HuwturrXPx4fSKNfs2pcBL4b/XTAqunHEOs+zYonXs2KJ17Okw+Fnh6Rjze41u958802GDh16SNs2ytVOBg0aREPO0SV36cdJk8NZsZUTzqSqooz45Bb7rdv83is0P2kIx4+6gY/v/QE7N39JYppTMCVJkiRJkg5Vo5zG2NAFEhIBCFVVkZjenrimyXXW7Vi/imaZvQBI6phDRfG7kQ9akiRJkiQpBpjsOko2vjGND6/PIb55SwLxCXXWNe3Qna1L3yAUCrH1w7lUVWyOUtSSJEmSJEmNW6OcxthQVH6yjE8evbZGWVq/s2l30a2kD7+MVrk/4OPfj6Fy9RKade5V3WbvupYDR1G2eAbFvz6LhLTjSEjzkXmSJEmSJEmHw2TXEWjW6WS6TyqoVR7cuZ24xKYE4uKIb5ZKoElSnXWB+Hgyr3mEUCjE6gfGkXLS4AgehSRJkiRJUuww2XUUbJ7/Il+8/DAEg6T0OJ2k9l3Z+fU6NsyeStPjO9eq2/HlJ6x64HICgTjann9DjTW+JEmSJEmSdPBMdh0FrYaOodXQMTXKElu1o90FN1fX76nJcZ32OUJMkiRJkiRJh8YF6iVJkiRJkhQzTHZJkiRJkiQpZpjskiRJkiRJUsxwza5DkN0CHh8avfc+FhQUFHDllVeSmZlJZmYmTz75ZI36qVOnkpGRQX5+Pvfccw+vvPIKffv25aGHHqrR7tVXX+Wuu+4iNTWVJ554gvbt23P++edTVlZGQkICzz33HG3atOHuu+9m5syZZGVlMWXKFMrKypg4cSL33XdfJA9bkiRJkiTVE5NdhyAlEfq2jnYUsW/8+PHccccd/OxnP6OwsJDBgwdX17300ks899xzrF+/noULFzJ37lxuvPFGFixYwIABA6rbTZ48mdmzZ1NSUsLkyZP54x//yPTp00lMTGTq1KlMmzaNMWPGsGjRIubMmcOf/vQnXnrpJUaPHs2mTZvYunUrKSkp0Th8SZIkSZJ0BJzGqAarZ8+erF27tvr1xo0bSUpKIhAIsGDBAoYPHw7AiBEjmD9/fo1tExISSEpKokePHtV1iYmJAGzbto2cnBxKS0vp0aMHAL169aKwsBCAQYMGUVBQcLQPT5IkSZIkHQWO7FKDVVhYyM9//vPq1yUlJWRmZgKwadMmWrQIz+1MTU1l06ZNNbbduXMnGzZsYNmyZWzcuBEIJ8u++93vsmXLFl555RWaNGnC22+/TTAYZM6cOWzevBmAzMxMli1bFoEjlCRJkiRJ9c2RXWpwpkyZQl5eHh06dKBv3777bNOyZUvKysoA2LJlCy1btqxRP3HiRC666CKeeeYZTj75ZADS09N56623mDhxIvfffz9t27Zl9OjRjBgxgvXr19O2bdujeViSJEmSJCkCTHapwRk/fjwFBQVMnDixRnl2djalpaUA9O/fnzlz5gAwe/ZsBg4cWKPtsGHDmD17NldccQWDBg0iGAyya9cuANLS0khKSgLg2muvpaCggMzMTM4991wASktL6dq161E9RkmSJEmSdHQ4jVGNRnp6OhUVFQC0a9eO3r17k5ubS+/evRkwYADr1q1j6tSp3HzzzfzmN7+hoKCADh068Oijj1JeXs53v/td4uLiaNq0KU888QQAF1xwAWVlZeTm5lYvhP/222/z4IMPRuswJUmSJEnSEQiEQqFQtIPQsWXAi+F/F4w69G2feuop2rdvT35+fv0G9Y2NGzdy9913c//99x+V/UfSkZxnqaHxelYs8XqWdDj87JB0rJk3bx7Dhg3jzTffZOjQoYe0rSO71KhcfvnlR3X/6enpMZHokiRJkiTpWOWaXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMcIH6g7R1J5SURTeG7BaQkhjdGCRJkiRJkhoyk10HqaQMrpoX3RgeHwp9W0c3BkmSJEmSpIbMaYySJEmSJEmKGSa7JEmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzHCB+qOs6PY8ylcUEkhIJBCfQFKHk2g/dhIt+pwZ7dAkSZIkSZJijiO7IqD92En0e24rvZ9cT/Pug/nonu9TVb452mFJkiRJkiTFHJNdERSX2JQ2Z40nuG0r2z4viXY4kiRJkiRJMcdkVwQFt1fy1czHiUtuQVL7rtEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6IdXp0+mzaBxZe1ZMmPOlOx6n2y7/g38cktoh1WVGzbFe0IpPpTFYK15eGfXcFoRyMduS+3wSdbodLPakkHqWJX+HPjq23RjkQ6cruC8Gk5fFYR7udJarwaxQL1oVCIMWPGMH/+fO68806ys7OZNm0ao0ePBqBfv35RjrBu7S+7m3ajfxHtMKLqi0qYshL+vebbsssK4PJsOPuEqIUlHZadQZhaAv9aBV9uD5e1bgpjOsN/ZEPT+KiGJx2yWZ/Bk8Ww/JvlJJvEwbknwFXdoF1ydGOT1DB9Wh7u2726Nvy9CNCrFVzRFYa3i25s0qHatgueKIH/Xg1f7wiXtWsGl2TBpV0godEMEZG0W6NIdj322GO8/PLLLF68mB49egCQl5dHVlYW6enpdOrUKcoRqi6fV8CVc2Hjdthz8EtJGdyxEEq3wo9Pilp40iHZGYQb34G3v6xZvmE7/KUI3v0KHjoNmpjwUiPx92J4eHnNod47gvDiJ/DGOvh7LpzQPGrhSWqAVm2B8W/C1p01+3Yffg03zYebeoYTBFJjsG0X/KQwfP3uOZhrXSX8cRks3gCTTzXhJTU2jeJ/2cmTJzN27NjqRBdAfHw8WVlZ1aO6fvGLX5CVlUUgEGDp0qXRClX7MOn92oku+Pb1X1fC0q8jHZV0eJ77uHaia0/vbYB/fBS5eKQjUbQ5nOiCfX9Gb94Bv1kc4aAkNXi/Xghbd+2/b3ff0vDNTKkxmFJcO9G1pzfWw/98EtGQJNWDBp/sKi4uZtWqVVx44YW16tasWVOd7Pr+97/PnDlzyMzMjHSIqsOn5eHEQF3LGcURng4mNXTBEDy3CgIHaPev1a7zoMbh+dV1dwSCwMIN4VEckgSwfFN4ynPwAN9zz6+ORDTSkdkZhOmr95/ognC/758fQ8i+ndSoNPhpjGvXrgWgbdu2NcpXrFhBaWlpdbJr2LBhh/0eqamp7Nixo842yd0Hc+LEgkPed/dJh77N/pxxRh4VRYX1tr9ISBt6MZ1umFpnmyAwfcFH/G7wyZEJ6hjR85/hlWKbNk2KciSxI75FG06esvaA7b7cBi3ad2HXxgO31cHxej46ut63kKSOPQ7Y7rSLrmJTQd2f5Tp4Xs9qzNK/8xM6XPXHOtuEgCmvvsNt/U+PTFDHCD876l+T9t3o/scldbYJAR9vhWYtWhLaURmZwCQBEAwe/lPAGvzIrtatWwNQUlJSXRYKhbjlllsIBoMNfnH6Y17oIC9Ob5WoMTikD1uvaTV8oYO9pv2MlrTbQfbtQn4PqjGwbyfFrAY/sisnJ4fs7Gxuu+02EhMTSUlJ4ZFHHmHRokUkJyfTvXv3I36PLVsOPD9j8Qa4at4Rv9URmT27gL6toxvDoVpXCefPrPurIQ74wWnZ3L59e6TCOiYMeDH873bPa70JheCi2eFHrO/vmg4QfnrP/M9WEXeg+Y46aF7PR8e9S8LTyA/U1X/v/03hhOZTIhLTscDrWY1ZSRn8oKDuNgHgunNP4/pfeI3XJz876t+uIJw3M/ygof2JA7qmwYItmyMWl6SwefPmHfYsvgY/sishIYHnn3+ejIwMxo0bxw033MA555zD8OHD6d27N3FxDf4QjmntmoUfP32gNWHGdI5QQNIRCATgB1l1J29DwA+6YKJLjcJFnQ98M2JIW5/GKOlb2S2gb3rdfbsAcEHnCAUkHYGEOBiTVXebIHDpAdpIangaRaaoT58+FBYWUlFRQVFREddccw2LFi1yCmMj8ave0KF57UW9d198/6cHdEuLdFTS4bmgM+S3D/++5zW9+/fhx8MldojUSGSlwi29wr/v3SEIAMc3gwl9IxyUpAbv7lOgddK++3YBwp8b7ZMjH5d0OMZlw2nHhX/fV9/uux3hvI6RjkrSkWoUya69VVZWUlRUVCPZ9bOf/YwTTjiBTz/9lPz8fHr0OPCCu4qM1knwRC5c2RXSEr8tP/U4eOg0uOzE6MUmHar4AEzqH07iZqV8W94pBX7ZCyafGr5LKDUWF2XBnwfDoOO+LWuRCJdnw1Onw3GugyxpLxnJMPV0+OGJ0HyPRVGGHg+PDoXzO0UvNulQJcbBA4PCN+A77JGkzW4RTtz+um94dL+kxqXBr9m1Lx988AFVVVU1kl0PPvggDz74YBSjgk8e+ymVqxbT4pRzyBhzW3V5cHslH02+kOC2cpoe34XOP/8729evZsUtg0nq0J0mbTqRdeNT+yyLFWlN4Noc+PFJsHUnNI2DpEZ59UnhhNeFneGCTDj1pXDZ82fYEVLjNfC48M/u9WBmnh2+ziVpf9okwQ094Kcnw6BvvgvvHxTdmKTDlRAXvgF/aZdv+3bThtu3kxqzRpluGDRoEKEG9mSo8uIFBOIS6P7buXz0u4vYuWk9iS2PB6Bs8QxScoaRMeY2Sh++msrSpcQlpZDW/zw6//TxGvvZV1ksiQ+EE19SLNizA2RnSLHERJekg+XnhWKJfTspdjjZpp6Ur3yH1N4jAEjtOZyKkveq65ocn0VwWzkAVdu2Ep8cXqCqbNFrFP0qlw0FT1e33VeZJEmSJEmSDk6jHNnVEFWVbyI+sycAcc1SqSrfVF2XlJHN1mVz+fC6HJK7nEKT4zoS3Lmdno8UAQGK7/wOaaecTWJ6Rq2yhBato3I8kiRJkiRJjZHJrkNU+ckyPnn02hplaf3OJr55S6oqygAIVm4hsd23q65v+N8naTXsEtqedx1r/vpzti5/i5ScIdX1KSfnsn3dRzTvNrBWmckuSZIkSZKkg2ey6xA163Qy3ScV1CovL36XjXOeoeXA89ny4RxaDbu4ui4UDJKQmg5AfGo6VeWbqKrcSnyzFEKhEBUlC2h73vX7LJMkSZIkSdLBM9lVT5p3PZUNrz9B0a9yadHvOyS2PJ6dX69jw+yptBl5FR/fewlfvvYoCc1bkXHRbWxZMpu1U28jkJBIqyEXkZieQdmiGbXKJEmSJEmSdPBMdtWjTj95uMbrxFbtaHfBzQB0u2tGjboW/UbSot/IA5ZJkiRJkiTp4Pk0RkmSJEmSJMUMk12SJEmSJEmKGSa7JEmSJEmSFDNcs+sgZbeAx4dGPwapPhQUFHDllVeSmZlJZmYmTz75ZI36qVOnkpGRQX5+Pi+++CIPPPAAwWCQp556ik6dOlW3+9GPfsTKlSupqqrib3/7G926deP888+nrKyMhIQEnnvuOVq2bMlPfvITHn/88UgfpiRJkiTpGGSy6yClJELf1tGOQqo/48eP54477uBnP/sZhYWFDB48uLrupZde4rnnnqO8vJxnn32W119/nUAgUGsff/7zn0lMTGTu3Ln85S9/4b777mP69OkkJiYydepUpk2bxs9+9jOOO+44PvroI0488cRIHqIkSZIk6RjkNEbpGNezZ0/Wrl1b/Xrjxo0kJSURCAQoLCwkGAxy1llncd111xEMBmtsm5iYCMDWrVvp2bNnjbJt27aRk5MDQF5eHq+88kokDqfBKSgoICsri7y8PMaNG1erftKkSRQXF+93+40bN9K/f39SUlL2Wb969WoyMjLIy8vj8ssvZ+fOnVx88cXk5eVx7733ArB8+XImT55cPwckSZIkSQ2cyS7pGFdYWEh2dnb165KSEjIzMwH44osv+Oqrr5gxYwZt2rThxRdfrLX9mWeeyfXXX8+pp54KhJMzQ4YM4cEHH6xOdmVmZrJy5coIHE3DNH78eAoKCkhLS6OwsLC6PBgM8sEHH9C1a9f9bpuamsrMmTM57bTT9tvmvPPOo6CggKeeeorp06czZMgQCgoKeO+99/jyyy/Jyclh4cKFhEKhej0uSZIkSWqITHZJx6gpU6aQl5dHhw4d6Nu37z7bpKWlkZubS1xcHKeffjpFRUW12rz++utMnz6dO++8E4D09HTeeustJk6cyP33338Uj6Dx2XsU3fvvv0+3bt3q3CYxMZH09PQ627z22mvk5uby9NNPs2rVKnr16gVATk4O7777LgBdunThww8/PMIjkCRJkqSGz2SXdIzaPdpo4sSJNcqzs7MpLS0F4NRTT2XZsmUALFmyhM6dO9dou337diCcFGvWrBnBYJBdu3ZVlyUlJQFQWlpa5+ilY8Xeo+iKi4trndNDlZGRQVFRETNmzODRRx+la9euvPHGG4RCIebOncvmzZsBR9dJkiRJOna4QL2kGtLT06moqACgbdu2nHLKKQwfPpzjjjuOadOmsW7dOqZOncrNN9/M6NGjqaysJBAI8PDDD1NeXs53v/td4uLiaNq0KU888QQQXrdq/PjxUTyq6JoyZQqzZs1i2LBh+x1Ft2zZMq699toaZWeffTa33nprnftu2rRp9e+5ubmccMIJzJo1i7POOovjjjuOtm3bHnH8kiRJktSYmOySjkF5eXnk5eXtt37UqFHMmjWL/Px8brnlFm655Zbqunbt2nHzzTcD8PLLL9fa9o033qjxeteuXXzxxRc1RjQda3Y/+XJvXbt2Zfr06QCcfPLJFBQUHPK+t27dSkpKCqFQiAULFnD99dfzyCOPEAqFGDduXPVTNktLSxk6dOgRHYckSZIkNQZOY5RUy+WXX05+fn697CshIYEpU6bUy75iTZ8+ffa5Dtre8vPzWbRoEfn5+SxdupR169ZVP2nxrbfeYsCAAQwZMoSRI0eyc+dO8vLyOPPMM7noootITk4Gwg8e2P3ETEmSJEmKZY7skqSjqK5RdHFxcfTu3Zvi4uI61zSbNWtWrbLdo+tGjhzJyJEja9TtPUJs+fLl9O/fn0AgcGjBS5IkSVIjZLJLkqJoX9Mb61tOTg45OTlH/X0kSZIkqSFwGqMkSZIkSZJihskuSZIkSZIkxQynMR6CrTuhpCw6753dAlISo/PekiRJkiRJjYXJrkNQUgZXzYvOez8+FPq2js57S5IkSZIkNRZOY5QkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihgvUH2VFt+dRvqKQQEIigfgEkjqcRPuxk2jR58xohyZJkiRJkhRzHNkVAe3HTqLfc1vp/eR6mncfzEf3fJ+q8s3RDkuSJEmSJCnmmOyKoLjEprQ5azzBbVvZ9nlJtMORJEmSJEmKOSa7Iii4vZKvZj5OXHILktp3jXY4kiRJkiRJMafRJLt27NjBhAkT6NixI82aNWPEiBHMnz+fQCDACy+8EO3w6vTZtAksvqwlS37UmYpV75N9x7+JT24R7bAUw4KhaEdwbAiF9v27JCn6dgZh03bYURXtSCRJewqFYOtOKNthH1pHT6NYoD4UCjFmzBjmz5/PnXfeSXZ2NtOmTWP06NEA9OvXL8oR1q39ZXfTbvQvoh2GjgHbquDZj+Gfq74t+4834LIT4ewOEAhEL7ZYUhWC/7cant3jPF/4v3BJF7gwExIazW0ESYo9pVvhqRJ45VPYEYT4AOS3h8uzoXtatKOTpGNXKAQvrQn/vbKyLFyW0QwuzoJLsqBJfHTjU2xpFMmuxx57jJdffpnFixfTo0cPAPLy8sjKyiI9PZ1OnTpFOUIp+ip3wbWFsOTrmuVFm2HCQlj6NfyipwmvI1UVgtsWwOufw56nck053LsE3vkCfn+qCS9JioYPv4Zr3grf/Al+U1YVgplr4X8/h/sHwmltoxqiJB2TQiGY+D688EnNPvS6SvjjMpi3Hv54GjQ14aV60ij+HJs8eTJjx46tTnQBxMfHk5WVRb9+/diwYQPnnnsu3bt3p1evXlxwwQV8+eWXUYxYirxHi8IJrb3t7uw/twreWBfRkGLS9NXhRBfAnqOud/8+Z33NEV+SpMioCsHN79ZMdO0WBHYF4ZYFULErGtFJ0rHttbXhRBfsuw+9YAP8vTjSUSmWNfhkV3FxMatWreLCCy+sVbdmzRr69etHIBDgl7/8JUVFRSxZsoQTTzyRW2+9NQrRStGxbRf8v9KaXxx7i8MkzJEKheCZj2vejdpbAHjuY9dNk6RIe3M9fLGtdqJrtxBQvgte/TSSUUmSIDx18UDJh+dXh9dblOpDg5/GuHbtWgDatq055nzFihWUlpbSr18/0tPTycvLq6477bTTeOSRRw76PVJTU9mxY8cB2yV3H8yJEwsOer8A3ScdWvv9OeOMPCqKCutlX4o9zbIHkP3beXW2CQLvrttB06apkQkqBsWntubkv31WZ5sQ8HklpLbPYtfGutvq4PX85zYAmjZNinIksc3zHBme56Oj3X/8jjbn/ZRA/P67t6GqXdz8p+e49KH/jGBksc9rOjI8z5HheT4K4hPo9Wz5AZtt2gGtu/Zl+6fLIxCUGoNg8PCznw1+ZFfr1q0BKCkpqS4LhULccsstBIPBWovTB4NBHnnkEUaNGhXROKXoOtiFuFyw64gc0oJnnmtJiqiD/oz281mSGiwXGFY9afAju3JycsjOzua2224jMTGRlJQUHnnkERYtWkRycjLdu3ev0f6nP/0pKSkpXH/99Qf9Hlu2bDmodos3wFV1D545ambPLqBv6+i8txq+8l3wndfC65TsTxzQq20i723fHrG4Yk0wBN+bFV5Is65ZisclwTuffUy839X1ZsCL4X+3e/0eVZ7nyPA8Hx2zPoNbF9TdJhCfwD3XXcYl//eyyAR1jPCajgzPc2R4no+OywqguKzuPnRKAnxZtMhF6lVt3rx5DBs27LC2bfAjuxISEnj++efJyMhg3Lhx3HDDDZxzzjkMHz6c3r17Exf37SH84he/oLi4mOeee65GuRTrmifA+R3rvlcdJPxYXx2+uABc0qXuL2mAMZ0x0SVJEZbXDtKb7r9zGwCS4uG8EyIZlSQJDtyHDgCjM30ao+pPo8gI9enTh8LCQioqKigqKuKaa65h0aJFNaYw3nbbbbz33nv8z//8D02bNo1itFJ0XJcDJ6bWTnjtfn3eCTCyfaSjij0/yILBx+2/fkBrGHti5OKRJIUlxMFv+4f/3buDG0d4Zszdp0BKYjSik6Rj23c7Qv43f4vs6++VnJZwdXeketMokl17q6yspKioqDrZ9eGHH/Lb3/6Wzz77jCFDhtC3b19Gjx4d5SilyEpJhMeHweXZ0GKPjvwJzeGXveC/+jkFvj4kxMF9g+D6nPB0xd3aNIWfnAQPngZNvCMlSVHRvw38PRfyMmp2ck9rC48NgTMyohaaJB3T4gMwqT/8nx6Qkfxtecsm8J/d4NEh0KzBL7KkxqRRXk4ffPABVVVV1cmuHj16EAodaGJR5K1/8QE2v/tvut09q0b5J4/9lMpVi2lxyjlkjLkNgC9ffZSv5/2TULCKbnfNJJDgbUcdupRE+OnJ4aTLF5UQHwfHJ5nkqm+JcXBFV/iP7PB5DgFtk8KJMElSdHVPg9+fClt2whmvhMsePC26MUmSwgmvy06EH3SBgS+Fy14daR9aR0ejTHYNGjSoQSa39hTatZPKVYtrlZcXLyAQl0D3387lo99dxM5N6wnt3E5l6RK63f165ANVTEqMgw7Nox1F7IsP1LwzJUlqOFK9byhJDVLcHjfiTXTpaPHSOko2FEylVe6ltcrLV75Dau8RAKT2HE5FyXuULZpBcFs5K+8YwWfP3BnhSCVJkiRJkmKHya6jIBQMUrbwNdJO+U6tuqryTcQntwAgrlkqVeWb2Ln5CwgE6Dbxf9m+fhUVHy+OcMSSJEmSJEmxoVFOY2woKj9ZxiePXlujLK3f2TTNyCZt4Kh9bhPfvCVVFWUABCu3kNjuROKT00jtORyA1B6ns21tEcld+h7V2CVJkiRJkmKRya4j0KzTyXSfVFCr/PN/TmLL0gI2FkylYtVivprxOG1GXgVA824D2TjnGVoOPJ8tH86h1bCLSWzVjo1zpgFQWbqE9H1Mf5QkSZIkSdKBOY3xKMi4+Ha6/WYmXe98leSsvrQZeRU7v17Huun30rzrqYR2bqfoV7kkZ/UhseXxJJ94CqGqXRTdnkdwewXNuw+K9iFIkiRJkiQ1So7sOsq63T0LgMRW7Wh3wc0AdPrJw7XadbzqgUiGJUmSJEmSFJMc2SVJkiRJkqSYYbJLkiRJkiRJMcNklyRJkiRJkmKGa3YdguwW8PjQ6L23JEnRVFBQwJVXXklmZiaZmZk8+eSTNeqnTp1KRkYG+fn53HPPPbzyyiv07duXhx56qEa7L7/8kquvvppNmzZx6aWXcvXVV1NSUsL111/P9u3bufHGGxk1ahR33303M2fOJCsriylTplBWVsbEiRO57777InnYilGHcj3n5uayaNEiVqxYwQknnLDP/fXr14+bbrqJsWPH8uyzz/KrX/2KM888k8cffxyACRMmcPXVV9OxY8ejfmySJB3rHNl1CFISoW/r6PykJEb76CVJgvHjx1NQUEBaWhqFhYU16l566SXOPPNM1q9fz8KFC5k7dy4JCQksWLCgRrvf/OY3PPDAA8yePZurr74agLvuuotnn32W2bNnM2rUKD7//HMWLVrEnDlzOPXUU3nppZdIT09n06ZNbN26NWLHq9h2MNczwL/+9S8uuuii/e7nlVdeIT09vfr1WWedxcyZM2u0+eEPf8hf//rXeoxekiTtj8kuSVKjV1BQQFZWFnl5eYwbN65W/aRJkyguLq5zHz/96U/Jzc3lnnvuqVW3evVqMjIyyMvL4/LLL2f+/PkMHTqUIUOGcMcddwDss2z58uVMnjy5Ho6w4enZsydr166tfr1x40aSkpIIBAIsWLCA4cOHAzBixAjmz59fY9uVK1dy6623MnLkSIqKitixYwdr1qzh8ssv53vf+x7r16+ntLSUHj16ANCrV6/qRMSgQYMoKCiIzEHqmFHX9QzQrl27Ord/+umnufTSS6tft27dmoSEmhMoTjrpJBYuXFiPUUuSpP0x2SVJign7G6ERDAb54IMP6Nq16363XbBgAQkJCcydO5eFCxeyfv36Wm3OO+88CgoKeOqpp+jXrx/z5s3jrbfeorCwkLKysn2W5eTksHDhQkKh0FE55mgqLCwkOzu7+nVJSQmZmZkAbNq0iRYtwvPvU1NT2bRpU41t33zzTSZOnMjDDz/M7bffzldffcXSpUt58sknueGGG/jtb39Lly5dePvttwkGg8yZM4fNmzcDkJmZycqVKyNzkDpm1HU9H8i8efMYMGBAreTWvuzYseOwY5QkSQfPZJckKabsPULj/fffp1u3bnVu88477zBixAgAhg8fznvvvVerzWuvvUZubi5PP/00iYnhueVVVVW0b9+e5OTkfZYBdOnShQ8//LBejq0hmDJlCnl5eXTo0IG+ffvus03Lli0pKysDYMuWLbRs2bJGfY8ePTjxxBPp2rUrmzdvJi0tjV69etGqVStyc3MpKiqibdu2jB49mhEjRrB+/Xratm17lI9Mx6KDuZ4P5NFHH+Wqq66q38AkSdIRMdklSYope4/QKC4upnPnznVuc6CRSBkZGRQVFTFjxgweffRRNmzYwLRp08jJyaFly5bVIzr2VRZrI5F2j6CbOHFijfLs7GxKS0sB6N+/P3PmzAFg9uzZDBw4sEbbzp0789VXX7F+/XqSk5Np3rw5SUlJbN++naVLl1b/97r22mspKCggMzOTc889F4DS0tI6R+lJh+JgrucD+fjjj7nooov4wx/+wL333lvndk2aNDmieCVJ0sEx2SVJigkHM0Jj2bJl5OXl1fj53e9+d8CRSE2bNiU5OZlmzZqRm5vLRx99xGWXXcaKFSv47LPPWLJkCcA+y44V6enpVFRUAOH1jXr37k1ubi7bt29nwIABrFu3jnvvvReAO+64gwsuuIDRo0czYcIEAG666SbOPPNMfv7zn/PLX/4SgAsuuID8/HwqKioYPHgwAG+//TZ5eXmRP0AdU/a8ngHGjh3LjBkzuPTSS3n99deB8DUL4Wm5r776KjfddBM333wzmZmZzJgxg7Fjx/LKK69UryO4YsWKwx49JkmSDs2BFxeQJKkRGD9+fPXC8Hvq2rUr06dPB+Dkk0/e5+Lm7777Ls888wznn38+c+bM4eKLL65Rv3XrVlJSUgiFQixYsKD6CYJxcXGkpqZWj0pq2rRpjTIIj0QaOnRoPR9tdOxOEO7PqFGjmDVrFvn5+UyYMKE6kQXhBNjNN98MQO/evatHfu2Wn59Pfn5+jbLd/91227hxIy1btiQ1NfUIj0Q6tOv5H//4R636P/zhDzVeX3HFFdW/jxw5kpEjR9aof/rpp6s/OyRJ0tHlyC5JUkzr06cPRUVFdbY59dRT2b59O7m5ufTp04fjjz++xkikt956iwEDBjBkyBBGjhzJ/PnzycvL4/TTT+eEE06ga9euvPjii7XKILzQdc+ePY/6cTYEl19+ea2EVX1KT0/n/vvvP2r7l/ZU39fz3XffTadOneptf5Ikaf8c2SVJavTqGqERFxdH7969KS4urnOtp4cffrjG6z1HIu1rlMaYMWNqvd67bPny5fTv359AIHCwhyJJkiTpCJnskiTFvH1Nb4yEnJwccnJyovLekiRJ0rHKaYySJEmSJEmKGSa7JEmSJEmSFDOcxniQtu6EkrLoxpDdAlISoxuDJEmSJElSQ2ay6yCVlMFV86Ibw+NDoW/r6MYgSZIkSZLUkDmNUZIkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZLlB/lBXdnkf5ikICCYkE4hNI6nAS7cdOokWfM6MdmiRJkiRJUsxxZFcEtB87iX7PbaX3k+tp3n0wH93zfarKN0c7LEmSJEmSpJhjsiuC4hKb0uas8QS3bWXb5yXRDkeSJEmSJCnmmOyKoOD2Sr6a+ThxyS1Iat812uFIkiRJkiTFnEaT7NqxYwcTJkygY8eONGvWjBEjRjB//nwCgQAvvPBCtMOr02fTJrD4spYs+VFnKla9T/Yd/yY+uUW0w5IkSZIkSTEqFIKqULSjiI5GsUB9KBRizJgxzJ8/nzvvvJPs7GymTZvG6NGjAejXr1+UI6xb+8vupt3oX0Q7DElqdN7+AqZ9/O3rMf8LY7Lg+52gSXz04oo1S7+GaR99+/q7M+HCzjCmM6QkRisq6fCsr4RnP4YXPvm2bPIHcFkX6JgSvbgkSYqUhRvCfbu568PJrhOah/t1F2ZCUqPIAh25RnGYjz32GC+//DKLFy+mR48eAOTl5ZGVlUV6ejqdOnWKcoSSpPr2t5Xw5xUQF/i2bPVW+P0SeP0z+ONpkGTC64i9vAbuXATscZ7XVcLDy8N1fx0KLZtGLTzpkHxUBlfPg7KdsOeN7P9eDf9eA38aDH3SoxWdJElH3z9XhfvLcQEIfvNluLYc7v8QXlsLjwyB5o0iE3RkGsU0xsmTJzN27NjqRBdAfHw8WVlZ1aO6vv/979OnTx/69etHbm4uixcvjlK0kqQjteCrcKILvv2Shm//eF24AR5dEfGwYs6n5XDnYghS8zzvVroVJr4f6aikwxMMwS/ehS17JbogfI1vr4L/8w5sq4pGdJIkHX0rNsG9S8K/76sPvXwT3L80wkFFSYNPdhUXF7Nq1SouvPDCWnVr1qypTnY9+eSTvP/++yxatIhf/OIX/Od//mekQ5Uk1ZPnPq77CyoETC+FbbsiFVFs+u/V4bUc9icIvLEO1lVEKiLp8L3zJawpD1+3+xIENu+EWZ9FMipJkiLnn6trDNavJQT8f5/C5h0RCiiKGvzgtbVr1wLQtm3bGuUrVqygtLS0OtmVlpZWXbd582bi4g4+j5eamsqOHXX/107uPpgTJxYc9D536z7p0LfZnzPOyKOiqLDe9idJDdXJT31FfLPUOtuU74KM/mdQseKtCEUVe7LvfZdmnXvX2SYE9Pnef7JpztORCeoY0POf2wBo2jQpypHElnZj76HNd28gEL//+c2hql38/IFnufBP4yMYWezzmo4Mz3NkeJ4jw/N8dJz0l49JbN2hzjY7g3Di8NFsWfhyhKI6fMHg/m5hHViDT3a1bt0agJKSEgYOHAiEF6y/5ZZbCAaDNRanv+qqq5gxYwahUIhXX301KvFKko5cIO7gFuM62Hbat0D8wXUDPM9qDMLX84EeORXyepYkxa6D7NtxDHwXBkKhuiYwRN+uXbvIyclh586d3HvvvaSkpPDII4+waNEiNm7cyJYtW2qN4po6dSrPPPMML79cf5nKxRvgqnn1trvD8vhQ6Ns6ujFIUiRc9SZ8sHH/05EAEgLw6kgXTz8Sdy2C/29N3ecZYNpw6JZ2gEY6aANeDP+7YFR044g1r3wKExYeuN0NJ8PY7KMfz7HEazoyPM+R4XmODM/z0XHjOzBvfd19uwDwYj5kJEcqqsM3b948hg0bxptvvsnQoUMPadsGv2ZXQkICzz//PBkZGYwbN44bbriBc845h+HDh9O7d+99Tlf8j//4D2bPns2GDRuiELEk6UiNyar7SzoOOKuDia4jdWHnA5/nXq1MdKlxGJEBLRLrXqskMQ6+60O8JUkx6oB96AAMads4El1HqsEnuwD69OlDYWEhFRUVFBUVcc0117Bo0aLqKYxbt25lzZo11e1feukl0tPTSU/32dKS1Bid1T78sy9xwPHN4OcnRzSkmNSzFYz7ZoTL3gmCOCA5Ae7oE+mopMPTNB5+c0q4I793BzeO8DV+ex9o2SQKwUmSFAGDj4PRmfuuiyP8HXhL3cu1xowGv2bXvlRWVlJUVMQNN9wAQHl5OWPGjKG8vJz4+HjS09N56aWXCATqurcnSWqo4gIwsT90T4NnP4avtofLm8TBOSfANSdBG9czrRfX50DH5vBkSfhJdhA+/yPawTU5kJkS3fikQzHseHh0CPxlBSzYY4D/yS3hR91h6PFRC02SpKMuEIBf9YYTU+EfH8G6ynB5QgBGdoBrT4J2x8CoLmikya4PPviAqqqq6pFdxx9/PG+//XaUo5Ik1af4AFzRFcaeCKu3hp8c07E5pCRGO7LYEgjA9zPhe53C57myCjKaQSuniKqR6tsa/jI03MHfsC18F7tD82hHJUlSZMQF4Add4OIsGPhSuOy170DaMTayuVEmuwYNGkRDXFf/k8d+SuWqxbQ45RwyxtxWXb512Zt8+vdfQCCOVkMu5Pjv31Rdt/7FB9j87r/pdvcsdm3ZSPF/ncW2tUX0e25rNA5BkhqchDjIbhHtKGJfIABZqdGOQqo/7ZqFfyRJOhbF7THR7VhLdEEjWbOrMSgvXkAgLoHuv51LxUcL2blpfXVdk+O70O2eOZz0+7fY9O6/CW6vACC0ayeVqxZXt4tvlkrXu2bSvNtpkQ5fkiRJkiQpJpjsqiflK98htfcIAFJ7Dqei5L3quiat2xOXGE6lBuLiIRA+7RsKptIq99LqdoGERBJSXVRfkiRJkiTpcJnsqidV5ZuITw7Ps4lrlkpV+aZabcoWz6RpxonENUkiFAxStvA10k75ToQjlSRJkiRJil2Ncs2uaKr8ZBmfPHptjbK0fmcT37wlVRVlAAQrt5DY7sQabXZ89Snrnv8tJ97+IgCbCqeTNnBUZIKWJEmSJEk6RpjsOkTNOp1M90kFtcrLi99l45xnaDnwfLZ8OIdWwy6urgvu3M7qP15Bp588Qnyz8DPct60tYsvSAjYWTKVi1WK+mvE4bUZeFanDkCRJkiRJiklOY6wnzbueSmjndop+lUtyVh8SWx7Pzq/XsW76vWx8Yxrb1iyj9JEfU3R7Hjs2rCXj4tvp9puZdL3zVZKz+lYnulZOyKdi1SJWTsinsnRplI9KkiRJkiSpcXFkVz3q9JOHa7xObNWOdhfcDECb/Cv3u123u2ft83dJkiRJkiQdGkd2SZIkSZIkKWaY7JIkSZIkSVLMcBrjQcpuAY8PjX4MkiRJkqTIKygo4MorryQzM5PMzEyefPLJGvVTp04lIyOD/Px87rnnHl555RX69u3LQw89VKPdq6++yl133UVqaipPPPEE7du35/zzz6esrIyEhASee+452rRpw913383MmTPJyspiypQplJWVMXHiRO67775IHrbUKJnsOkgpidC3dbSjkCRJkiRFy/jx47njjjv42c9+RmFhIYMHD66ue+mll3juuedYv349CxcuZO7cudx4440sWLCAAQMGVLebPHkys2fPpqSkhMmTJ/PHP/6R6dOnk5iYyNSpU5k2bRpjxoxh0aJFzJkzhz/96U+89NJLjB49mk2bNrF161ZSUlKicfhSo+E0RkmSpAamoKCArKws8vLyGDduXK36SZMmUVxcXOc+Hn30Uc4880zy8vLYuXNndfmrr75KXl4eeXl5tG7dmsWLF7Nz504uvvhi8vLyuPfeewFYvnw5kydPrt8Dk6QY0bNnT9auXVv9euPGjSQlJREIBFiwYAHDhw8HYMSIEcyfP7/GtgkJCSQlJdGjR4/qusTERAC2bdtGTk4OpaWl9OjRA4BevXpRWFgIwKBBgygoKDjahyc1eia7JEmSGqDx48dTUFBAWlpa9R85AMFgkA8++ICuXbvud9tPPvmEJUuW8Prrr1NQUFD9RxTA2WefTUFBAbNnz6ZLly706dOH6dOnM2TIEAoKCnjvvff48ssvycnJYeHChYRCoaN6nJLUGBUWFpKdnV39uqSkhMzMTAA2bdpEixbhNWhSU1PZtGlTjW137tzJhg0bePPNN9m4cSMQTpYNGTKEBx98kJycHLp06cLbb79NMBhkzpw5bN68GYDMzExWrlwZgSOUGjeTXZIkSQ3Y3qMH3n//fbp161bnNjNmzKC8vJwRI0Zw55137rPNu+++y4ABAwgEAqxatYpevXoBkJOTw7vvvgtAly5d+PDDD+vnQCQpBkyZMoW8vDw6dOhA375999mmZcuWlJWVAbBlyxZatmxZo37ixIlcdNFFPPPMM5x88skApKen89ZbbzFx4kTuv/9+2rZty+jRoxkxYgTr16+nbdu2R/OwpJhjskuSJKkB23v0QHFxMZ07d65zmy+++IJAIMD//u//smrVKhYvXlyrzQsvvMD3vvc9ALp3784bb7xBKBRi7ty5jiCQpP3YPep24sSJNcqzs7MpLS0FoH///syZMweA2bNnM3DgwBpthw0bxuzZs7niiisYNGgQwWCQXbt2AZCWlkZSUhIA1157LQUFBWRmZnLuuecCUFpaWufIXklhLlAvSZLUAE2ZMoVZs2YxbNiw/Y4eWLZsGddee22NsrPPPpu0tLTq9WJOP/10ioqKau1j9uzZ/Nd//RcAo0aNYsaMGZx11lkcd9xxjiCQpEOUnp5ORUUFAO3ataN3797k5ubSu3dvBgwYwLp165g6dSo333wzv/nNbygoKKBDhw48+uijlJeX893vfpe4uDiaNm3KE088AcAFF1xAWVkZubm51Qvhv/322zz44IPROkyp0TDZJUmS1ADtfuLX3rp27cr06dMBOPnkk/e5UPHChQuZNm0aAEuWLOHSSy+tUf/xxx9zwgkn0KRJEwDi4+N55JFHCIVCjBs3rvqPqtLSUoYOHVqfhyVJjdbuh3vsz6hRo5g1axb5+flMmDCBCRMmVNe1a9eOm2++GYBf//rX/PrXv66x7RtvvFFrf7s/63fbuHEjLVu2JDU19QiOQjo2OI1RkiSpEenTpw9FRUV1tjnllFPYtWsXeXl5VFRUMGjQINatW1f9pMU9pzBCeEH7vLw8zjzzTC666CKSk5OB8ILLPXv2PHoHI0kx5PLLLyc/P/+o7T89PZ3777//qO1fiiWO7JIkSWpg6ho9EBcXR+/evSkuLq5z3ZYHHnigxus9RxXceOONNeo6depUa4TY8uXL6d+/P4FA4JDjlyRJiiaTXZIkSY3MvqY31recnBxycnKO+vtIkiTVN6cxSpIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmOGaXYdg604oKYvOe2e3gJTE6Ly3JEmSJElSY2Gy6xCUlMFV86Lz3o8Phb6to/PekiRJkiRJjYXTGCVJkiRJkhQzTHZJkiRJkiQpZpjskiRJkiRJUsxwza6jrOj2PMpXFBJISCQQn0BSh5NoP3YSLfqcGe3QJEmSJEmSYo4juyKg/dhJ9HtuK72fXE/z7oP56J7vU1W+OdphSZIkSZIkxRyTXREUl9iUNmeNJ7htK9s+L4l2OJIkSZIkSTHHZFcEBbdX8tXMx4lLbkFS+67RDkeSJEmSJCnmNIpk144dO5gwYQIdO3akWbNmjBgxgvnz5xMIBHjhhReiHd4BfTZtAosva8mSH3WmYtX7ZN/xb+KTW0Q7LEmSJEmSpJjT4BeoD4VCjBkzhvnz53PnnXeSnZ3NtGnTGD16NAD9+vWLcoQH1v6yu2k3+hfRDiOqtlfBK5/C86uhdCs0jYczMuCSLMg271dvgiF4/TP45yoo2gzxARjcFi7pAn3Sox2ddOiWfg3PfgzzvoCqIHRNgzGd4awO4etbakzWVcK/Vn37+oLX4XudYHQmtGgSvbgk6VgXCsEb6+Bfq78t+8X88N8qpx4XtbAkHYEGn+x67LHHePnll1m8eDE9evQAIC8vj6ysLNLT0+nUqVOUI9SBVOyC6wvhg6/DQwmDQGUVvFAKL34Ck/pDfvtoR9n47QrCHQth1mffnmeAWZ/DjM/gxh7wwxOjGaF0aP61Cn6/BAKBcCIXYMlGeH8jzFwLk0+FhEYxPlkKJ26vKwx/J+72STk8tBz+uxQeGwrtmkUvPkk6VgVDMOl9eOETiNvjRtqc9VCwDn7UDX58UvTik3R4GvyfCZMnT2bs2LHViS6A+Ph4srKyao3quuuuuwgEAixdujTSYaoO/3cpLPk6/Htwj/Ig4S+XO96DT8ujEVlsebIknOiCvc7zN0mC+z+E976KeFjSYflgI0xeAiG+vYbh22v7jfXw+MpoRCYdum274OdvQ+Wu8DW9t3UVcMu7EQ9LkkR45skLn4R/r9Hn+Ob3v64Mj/qS1Lg06GRXcXExq1at4sILL6xVt2bNmhrJroULF/L222+TmZkZyRB1AJu2w8tr9t25h3B5VQj+e3UEg4pBu4LhqV51iePAbaSG4rlVB/6C+ucq2FEVkXCkI/LaZ7B5Z80bEXsKAh9ugg+/jmBQkiSCIXj6I6hrZYQ4YNpHkYpIUn1p0NMY165dC0Dbtm1rlK9YsYLS0tLqZNf27du57rrreOaZZ8jLyzvk90lNTWXHjh0HbJfcfTAnTiw4pH13n3Ro7ffnjDPyqCgqrJd9RVKL0y4g86Zn6mwTAv46ZwW/PKVPZIKKQUld+tF18tt1tgkCr3+yjaa5aZEJSjoCJz/55QEf5FG2E47vO5yKlXVf+1K0dfo/02gx8HsE4vff7QoFg5x9/d188fw9EYxMqh89/7kNgKZNk6IcSWzzPNe/Jsd3ofufltfZJgi8twGSmqcS2nXgvxl1cLyeI6Oxn+dgcH+3Cg+sQY/sat26NQAlJSXVZaFQiFtuuYVgMFid7Pr1r3/N2LFj6dy5czTCVB0CCYkH1S4uoelRjiS2BeIP7jwfbDsp2upKCtRol+Cq3moE4hPDi8/VKeT1LEkRdih944P9u0ZSw9CgR3bl5OSQnZ3NbbfdRmJiIikpKTzyyCMsWrSI5ORkunfvTmFhIQsWLOB3v/vdYb/Pli1bDqrd4g1w1bzDfpsjMnt2AX1bR+e9j0RJGfygoO42cQH4Tp8sPti+PSIxxaJNO+Ds12DX/uaLEh6end0ynvc8z2oExs2B5Zv2P+0Lwp8dKwtn0qZx3qjSMeSRFfC3lfuf0g8QiIvn8Xt+xcgnfxWxuKT6MuDF8L/b7WMcVZ7n+rdtF+S/BtsOsCxCu2bw7qaNB75voYPm9RwZjf08z5s3j2HDhh3Wtg16ZFdCQgLPP/88GRkZjBs3jhtuuIFzzjmH4cOH07t3b+Li4njjjTdYvnw5WVlZdO7cmU8//ZTvfOc7zJgxI9rhC8huAb1a1X2hBUNwUVbEQopJLZvAWR3qPs8h4GLPsxqJMZ0PnOg6ox0mutQofP8AD44OAGmJcEZGRMKRJH0jKQFGdap7zS4I90tMdEmNS4NOdgH06dOHwsJCKioqKCoq4pprrmHRokXVUxhvvfVWPvvsM1avXs3q1as54YQTeO211xg5cmSUI9duv+oNTeNrPsp3T9/tCAPbRDamWHR9DrRO2v//1ANaw/kH+INLaijOPgGGtN13XRzQMhF+3mPf9VJDk5EMPz05/PveX4WBb35+3Q8SG3yvTJJiz9XdoH3yvvvQAaBHS7jEG8ZSo9PoulWVlZUUFRXVeBKjGrZuafD33NoJrVZN4Loc+HVf75TUh+Obhc/ziIyaicXkePhhF/jjaf4hpcYjIQ7+76lweTY032PCfRwwvB08cXq4Yyo1Fpdnw519a1+3J6XBQ4PD17UkKfJaNg33ob9zAiTs0YdOioeLOsMjQ8IjwCQ1Lo3uf9sPPviAqqqq/Sa7Vq9eHdmAdFCyW8CfBsNnFTBqVrjs5ZEmX+pbu2bwu1Phq21w9jczeV/7DjRrdP+nS9AkHn52cviO67CXw2X/30g4zqmLaqS+2wnO7QgrNkPZDmjbDLqkRjsqSVJ6U7j7FLipBxSXhW/En5QGKa5JLzVaje5P4EGDBhEK1bXEa/SVr5zPmik3QihEau8RdBg7sc660K6drLrvh+zc/AVp/c+j3QU3RzH6o2vPO9omuo6ePdcxMtGlxm7Pu6kmutTYxQXg5JbRjkKStC8tm8Kpx0U7Ckn1wT+Dj4LkLv04aXL4sY0rJ5xJVUUZ8ckt9lu3+b1XaH7SEI4fdQMf3/sDdm7+ksQ0P2UlSZIkSZIOlWNrjoJAQni8a6iqisT09sQ1Ta6zbsf6VTTL7AVAUsccKorfjXzQkiRJkiRJMcBk11Gy8Y1pfHh9DvHNWxKIT6izrmmH7mxd+gahUIitH86lqmJzlKKWJEmSJElq3JzGeAQqP1nGJ49eW6Msrd/ZtLvoVtKHX0ar3B/w8e/HULl6Cc0696pus3ddy4GjKFs8g+Jfn0VC2nEkpLWN9KFIkiRJkiTFBJNdR6BZp5PpPqmgVnlw53biEpsSiIsjvlkqgSZJddYF4uPJvOYRQqEQqx8YR8pJgyN4FJIkSZIkSbHDZNdRsHn+i3zx8sMQDJLS43SS2ndl59fr2DB7Kk2P71yrbseXn7DqgcsJBOJoe/4NNdb4kiRJkiRJ0sEz2XUUtBo6hlZDx9QoS2zVjnYX3Fxdv6cmx3Xa5wgxSZIkSZIkHRoXqJckSZIkSVLMMNklSZIkSZKkmOE0xkOQ3QIeHxq99z4WFBQUcOWVV5KZmUlmZiZPPvlkjfqpU6eSkZFBfn4+99xzD6+88gp9+/bloYceqtHu1Vdf5a677iI1NZUnnniC9u3bc/7551NWVkZCQgLPPfccbdq04e6772bmzJlkZWUxZcoUysrKmDhxIvfdd18kD1uSJEk6bPahJakmR3YdgpRE6Ns6Oj8pidE++sgZP348BQUFpKWlUVhYWKPupZde4swzz2T9+vUsXLiQuXPnkpCQwIIFC2q0mzx5MrNnz+a+++5j8uTJAEyfPp033niDK664gmnTpvH555+zaNEi5syZw6mnnspLL71Eeno6mzZtYuvWrRE7XkmSJOlI2YeWpG+Z7FKD1bNnT9auXVv9euPGjSQlJREIBFiwYAHDhw8HYMSIEcyfP7/GtgkJCSQlJdGjR4/qusTEcMZw27Zt5OTkUFpaSo8ePQDo1atXdadg0KBBFBQUHO3DkyRJOiYUFBSQlZVFXl4e48aNq1U/adIkiouL97v9xo0b6d+/PykpKbXqXn31VfLy8sjLy6N169YsXrx4n+2XL19enbyJdfahJclklxqwwsJCsrOzq1+XlJSQmZkJwKZNm2jRIjy3MzU1lU2bNtXYdufOnWzYsIE333yTjRs3AuEv+iFDhvDggw+Sk5NDly5dePvttwkGg8yZM4fNmzcDkJmZycqVKyNwhJIkSceG/Y06CgaDfPDBB3Tt2nW/26ampjJz5kxOO+20WnVnn302BQUFzJ49my5dutCnT599ts/JyWHhwoWEQqH6PbAGyD60JJnsUgM0ZcoU8vLy6NChA3379t1nm5YtW1JWVgbAli1baNmyZY36iRMnctFFF/HMM89w8sknA5Cens5bb73FxIkTuf/++2nbti2jR49mxIgRrF+/nrZt2x7Nw5IkSTrm7T3q6P3336dbt251bpOYmEh6enqdbd59910GDBhAIBDYb/suXbrw4YcfHl7gjYB9aEn6lskuNTi77/xNnDixRnl2djalpaUA9O/fnzlz5gAwe/ZsBg4cWKPtsGHDmD17NldccQWDBg0iGAyya9cuANLS0khKSgLg2muvpaCggMzMTM4991wASktL67y7KEmSpMOz96ij4uJiOnfufMT7feGFF/je975XZ5tYH3lkH1qSvuXTGNVopKenU1FRAUC7du3o3bs3ubm59O7dmwEDBrBu3TqmTp3KzTffzG9+8xsKCgro0KEDjz76KOXl5Xz3u98lLi6Opk2b8sQTTwBwwQUXUFZWRm5uLoMHDwbg7bff5sEHH4zWYUqSJMWcKVOmMGvWLIYNG7bfUUfLli3j2muvrVF29tlnc+uttx5w/7Nnz+a//uu/6iPUmGMfWtKxyGSXGpTdC4zuz6hRo5g1axb5+flMmDCBCRMmVNe1a9eOm2++GYBf//rX/PrXv66x7RtvvFFrf9OnT6/xeuPGjbRs2ZLU1NQjOApJkiTtafz48dxxxx21yrt27VrdHzv55JMPa4Hzjz/+mBNOOIEmTZrU2a60tJShQ4ce8v4bA/vQklST0xjVqFx++eXk5+cftf2np6dz//33H7X9S5Ik6Vt9+vShqKjogO3y8/NZtGgR+fn5LF26lHXr1nHvvfcC+57CuHd7CC/U3rNnz/o/iEbAPrSkY40juyRJkiQdNXWNOoqLi6N3794UFxfXud7TrFmzapXtHo104403HrD98uXL6d+/P4FA4BAilyQ1Via7JEmSJEXNvqY31recnBxycnKO+vtIkhoGpzFKkiRJkiQpZpjskiRJkiRJUsww2SVJkiRJkqSY4ZpdB2nrTigpi24M2S0gJTG6MUiSJEmSJDVkJrsOUkkZXDUvujE8PhT6to5uDJIkSZIkSQ2Z0xglSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMcM2uo6zo9jzKVxQSSEgkEJ9AUoeTaD92Ei36nBnt0CRJkiRJkmKOI7sioP3YSfR7biu9n1xP8+6D+eie71NVvjnaYUmSJEmSJMUck10RFJfYlDZnjSe4bSvbPi+JdjiSJEmSJEkxx2RXBAW3V/LVzMeJS25BUvuu0Q5HkiRJkiQp5jSaZNeOHTuYMGECHTt2pFmzZowYMYL58+cTCAR44YUXoh1enT6bNoHFl7VkyY86U7HqfbLv+DfxyS2iHZYkSZIkSVLMaRQL1IdCIcaMGcP8+fO58847yc7OZtq0aYwePRqAfv36RTnCurW/7G7ajf5FtMOIql1BeGMdTC/9tuyhZXBhZ2ifHLWwpMO29Gv41yp4b0P4dd90GJMFfdKjG5d0ONZVwH+XwuufQcUu6JwCF3SGERmQ0Ghui0mKpJ1BmPUZTF/9bdmjK8KfHcclRSuq2BMMwZvr4b9Xf1v2h6UwpjN0SolWVJLU8DWKZNdjjz3Gyy+/zOLFi+nRowcAeXl5ZGVlkZ6eTqdOnaIcoeqyvQpufhfe+qLmUMKnSuCZj+EPA2Fw26iFJx2yvxfDw8vD13Pwm7IZn8Gra+FH3eDHJ0UzOunQvPsl3Dg//Fkd+qZs43ZYsAFObQP3D4SkRtFbkBQp5bvgZ2/D+xtr9u0eXwlPfwQPngZ9W0ctvJixKwh3LAwnFfc8z89+HL7hNqk/nNk+auFJUoPWKO7XTp48mbFjx1YnugDi4+PJysqqHtXVuXNnTjrpJPr27Uvfvn157bXXohWu9vLHZeFEF3ybGIDwH1U7g3DT/PCoAqkxKPg8nOiCmtdz8JsswV9Xwsy1EQ9LOixfbQsnunbskeiCb6/tBV/BHz6MRmSSGrJ73ocPNoZ/37tvt60Kfv4ObN4Rjchiy19XhhNdUPs8V4Xgtvdg1ZZoRCZJDV+DT3YVFxezatUqLrzwwlp1a9asqTGF8fnnn2fx4sUsXryY73znO5EMU/uxZSf8T+n+63cnvKbX0UZqSP7xUd0fnHHA1I8iFY10ZP6nNPyHaXA/9SHgpU9g0/ZIRiWpIVtfGb6pE9pPfZDwyK+X1kQyqtizrQqe+3j/9SEgFIJ/ropYSJLUqDT4iQlr14aHSLRtW3Oe24oVKygtLa2X9bpSU1PZsaPu20/J3Qdz4sSCQ95390mHvs3+nHFGHhVFhfW2v0hoMfB7ZN78zzrbBEMh/vy/y7mxb8Nee62x6fnPbQA0berCGfUlLrkFPZ78ss42QWDZJkg+7gSqyupuq4Pn9Xx0nPi7Qpp16UcgENhvm10h6Hbu5Wx+87kIRiapoWo14kpOuOYvdbYJhYJM+tc8xv9XfoSiij3Ne+bR5b/qnqkSBKYt/Ixfn5oVmaCkemTfLjIa+3kOBvd3S/bAGvzIrtatwxP+S0pKqstCoRC33HILwWCwRrLrhz/8Ib179+baa69l06ZNkQ5V+xDXpNkB2wQCAeKaukq9Gr64xIP/kjiYa1+KtrimyXUmuqrbeT1L+sbB9e3iCNi3OyIH+7kb8PNZkvapwY/sysnJITs7m9tuu43ExERSUlJ45JFHWLRoEcnJyXTv3h2AuXPn0rFjR7Zv384NN9zA9ddfzz/+8Y+Deo8tWw482X3xBrhq3hEdyhGbPbug0S32uXwT/MecutvEASN6deaD7c6TqU8DXgz/u93zWm92BWHka1C2s+52yfGw8ZNimsRHJq5jgdfz0fHLd6Fg3bdrzu3Pa08/Sp/0RyMTlKQG7e0v4Pq3624TB1yc1587/cw+bGu2wuj/rbtNHNC/YysWe57VCNm3i4zGfp7nzZvHsGHDDmvbBj+yKyEhgeeff56MjAzGjRvHDTfcwDnnnMPw4cPp3bs3cXHhQ+jYsSMATZs25dprr2XevChnpgTASWnQrUXdF1oQuKhzhAKSjkBCHIzOhLrGwQSA72ViokuNwoWd6050xQFZKdC7VaQiktTQDTwOMprV/V0YBC7IjFREsaljCgxofRB9aGcwStI+NfhkF0CfPn0oLCykoqKCoqIirrnmGhYtWlQ9hbG8vJzNmzcD4SmOzz77LH379o1ixNotEIBbe0N83P4vtrx2MKTtfiqlBuY/sqFD8r6v5zigXTO4smuko5IOz8A2MLLDvuvigLgA/KpP+LNckiD8uXD7N58L+/toGNUJepkkP2I39YSm8fvvQw9sA2e1j2hIktRoNIpk194qKyspKiqqTnatX7+evLw8evfuTc+ePVm5ciV//vOfoxylduudDo8NgZNa1ixPiof/OBF+NyDccZIag5ZNYMowyMuo+QEaAHLbwd9yIb1ptKKTDk0gAL/pF07QJu81GrFrC3hkCJzSyKbPSzr6TmsLfzoNuqTWLG+eAFd3/zYZpiPTNS3c5+iVXrO8SRyM6Qz3DQqPOpck1dbg1+zalw8++ICqqqrqZFeXLl1YtGhRlKNSXXqlw1Onw8rNULo1nOjq3waSG+UVqGNd6yT4/anwRSWcOzNc9tJZ4VFdUmOTEAfX5cB/doXcl8Nl/xgenoYuSfsz8Dh4Ng+Wb4a15eE+Xf824T6e6k+3bxJeH28J/yTGQf/WkJIY7cgkqWFrlKmGQYMGEQodYDXdKPjksZ9SuWoxLU45h4wxt1WXB7dX8tHkCwluK6fp8V3o/PO/s339albcMpikDt1p0qYTWTc+tc+yWNMtLfwjxYK2eyS3THSpsWu2R4/ARJekgxEIwMktwz86urqk1h5JJ0nav0aZ7GqIyosXEIhLoPtv5/LR7y5i56b1JLY8HoCyxTNIyRlGxpjbKH34aipLlxKXlEJa//Po/NPHa+xnX2WSJEmSJEk6OM7yriflK98htfcIAFJ7Dqei5L3quibHZxHcVg5A1batxCeHb5mXLXqNol/lsqHg6eq2+yqTJEmSJEnSwXFkVz2pKt9EfGZPAOKapVJVvqm6Likjm63L5vLhdTkkdzmFJsd1JLhzOz0fKQICFN/5HdJOOZvE9IxaZQktXBlYkiRJkiTpYJnsOkSVnyzjk0evrVGW1u9s4pu3pKqiDIBg5RYS251YXb/hf5+k1bBLaHvedaz568/ZuvwtUnKGVNennJzL9nUf0bzbwFplJrskSZIkSZIOnsmuQ9Ss08l0n1RQq7y8+F02znmGlgPPZ8uHc2g17OLqulAwSEJq+JnB8anpVJVvoqpyK/HNUgiFQlSULKDtedfvs0ySJEmSJEkHz2RXPWne9VQ2vP4ERb/KpUW/75DY8nh2fr2ODbOn0mbkVXx87yV8+dqjJDRvRcZFt7FlyWzWTr2NQEIirYZcRGJ6BmWLZtQqkyRJkiRJ0sEz2VWPOv3k4RqvE1u1o90FNwPQ7a4ZNepa9BtJi34jD1gmSZIkSZKkg+fTGCVJkiRJkhQzTHZJkiRJkiQpZjiN8SBlt4DHh0Y/Bqk+FBQUcOWVV5KZmUlmZiZPPvlkjfqpU6eSkZFBfn4+L774Ig888ADBYJCnnnqKTp06Vbf70Y9+xMqVK6mqquJvf/sb3bp14/zzz6esrIyEhASee+45WrZsyU9+8hMef/zxSB+mJEmSJOkYZLLrIKUkQt/W0Y5Cqj/jx4/njjvu4Gc/+xmFhYUMHjy4uu6ll17iueeeo7y8nGeffZbXX3+dQCBQax9//vOfSUxMZO7cufzlL3/hvvvuY/r06SQmJjJ16lSmTZvGz372M4477jg++ugjTjzxxEgeoiRJkiTpGOQ0RukY17NnT9auXVv9euPGjSQlJREIBCgsLCQYDHLWWWdx3XXXEQwGa2ybmJgIwNatW+nZs2eNsm3btpGTkwNAXl4er7zySiQOp8EpKCggKyuLvLw8xo0bV6t+0qRJFBcX73f7jRs30r9/f1JSUvZZv3r1ajIyMsjLy+Pyyy9n586dXHzxxeTl5XHvvfcCsHz5ciZPnlw/ByRJkiQdZUfah66srOTcc89l+PDhXHnllbXq9+5jz58/n6FDhzJkyBDuuOMOwD50Y2eySzrGFRYWkp2dXf26pKSEzMxMAL744gu++uorZsyYQZs2bXjxxRdrbX/mmWdy/fXXc+qppwLhL44hQ4bw4IMPVie7MjMzWblyZQSOpmEaP348BQUFpKWlUVhYWF0eDAb54IMP6Nq16363TU1NZebMmZx22mn7bXPeeedRUFDAU089xfTp0xkyZAgFBQW89957fPnll+Tk5LBw4UJCoVC9HpckSZJ0tBxJH3rGjBkMGzaMN954g8TERJYuXVqjfu8+dr9+/Zg3bx5vvfUWhYWFlJWV2Ydu5Ex2SceoKVOmkJeXR4cOHejbt+8+26SlpZGbm0tcXBynn346RUVFtdq8/vrrTJ8+nTvvvBOA9PR03nrrLSZOnMj9999/FI+g8dl7FN37779Pt27d6twmMTGR9PT0Otu89tpr5Obm8vTTT7Nq1Sp69eoFQE5ODu+++y4AXbp04cMPPzzCI5AkSZIi63D60FlZWZSXlwPhWShpaWk16vfuY++enVJVVUX79u1JTk4G7EM3Zia7pGPU7jslEydOrFGenZ1NaWkpAKeeeirLli0DYMmSJXTu3LlG2+3btwPhpFizZs0IBoPs2rWruiwpKQmA0tLSOu+8HCv2HkVXXFxc65weqoyMDIqKipgxYwaPPvooXbt25Y033iAUCjF37lw2b94MOLpOkiRJjdPh9KGzs7OZO3cuOTk5BAIBOnbseMD3mTZtGjk5ObRs2ZKEhPDy5vahGy8XqJdUQ3p6OhUVFQC0bduWU045heHDh3Pccccxbdo01q1bx9SpU7n55psZPXo0lZWVBAIBHn74YcrLy/nud79LXFwcTZs25YknngDCc+7Hjx8fxaOKrilTpjBr1iyGDRu231F0y5Yt49prr61RdvbZZ3PrrbfWue+mTZtW/56bm8sJJ5zArFmzOOusszjuuONo27btEccvSZIkRdqR9KHT0tK45JJLuO666/j5z3/OW2+9xZAhQ+p8v8suu4wf/OAHjBkzhiVLllTPllDjZLJLOgbl5eWRl5e33/pRo0Yxa9Ys8vPzueWWW7jllluq69q1a8fNN98MwMsvv1xr2zfeeKPG6127dvHFF1/UuBtzrNn95Mu9de3alenTpwNw8sknU1BQcMj73rp1KykpKYRCIRYsWMD111/PI488QigUYty4cdVP2SwtLWXo0KFHdBySJElSpBxJH/rhhx+unqaYnp7Opk2b6nyv7du307RpU+Li4khNTa0xQ8U+dOPkNEZJtVx++eXk5+fXy74SEhKYMmVKvewr1vTp02ef66DtLT8/n0WLFpGfn8/SpUtZt25d9ZMW33rrLQYMGMCQIUMYOXIkO3fuJC8vjzPPPJOLLrqoer2BkpKS6idmSpIkSY3VwfShL7vsMv7+97+Tl5fH4sWLOeuss2r0oaFmH/v3v/89eXl5nH766ZxwwgnVS7DYh268HNklSUdRXaPo4uLi6N27N8XFxXWuaTZr1qxaZbtH140cOZKRI0fWqNv77tby5cvp378/gUDg0IKXJEmSouBI+9CtWrVixowZNcr2nKECtfvYEyZMqPHaPnTjZrJLkqJoX0Oz61tOTg45OTlH/X0kSZKkSLAPrQNxGqMkSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZrtl1CLbuhJKy6Lx3dgtISYzOe0uSJEmSJDUWJrsOQUkZXDUvOu/9+FDo2zo67y1JkiRJktRYOI1RkiRJkiRJMcNklyRJkiRJkmKGyS5JkiRJkiTFDJNdkiRJkiRJihkuUH+UFd2eR/mKQgIJiQTiE0jqcBLtx06iRZ8zox2aJEmSJElSzHFkVwS0HzuJfs9tpfeT62nefTAf3fN9qso3RzssSZIkSZKkmGOyK4LiEpvS5qzxBLdtZdvnJdEOR5IkSZIkKeY0mmTXjh07mDBhAh07dqRZs2aMGDGC+fPnEwgEeOGFF6Id3kEJbq/kq5mPE5fcgqT2XaMdjiRJkiRJUsxpFGt2hUIhxowZw/z587nzzjvJzs5m2rRpjB49GoB+/fpFOcK6fTZtAuv+NZFAQlOSOp5M9h3/Jj65RbTDUoxatgmeX/3t64eXwwWZkJEcrYhi0+qt8N+rv339+yVwUWfokhqtiCQ1dBW74NVP4bW1sGkHtGsG53eCvHaQ0GhuP0qSdPg+LYfppd++nvR+uA/dPS1qISlGNYpk12OPPcbLL7/M4sWL6dGjBwB5eXlkZWWRnp5Op06dohxh3dpfdjftRv8i2mEoxoVC8NByeKqk5pDNJ4phaglM7A/57aMWXkz516pwcmtPz6+Cf66C/9MDLjsxOnFJarg+LYefvAXrKiEAhIBVW2DeF9CrFTx4GqQmRjtKSZKOnpfXwJ2Lw3+37PZCKfy/Uri6e/hHqi+N4j7i5MmTGTt2bHWiCyA+Pp6srKzqUV3btm3jmmuuoWvXrvTq1Yurr746WuFKUfH/SsOJLoDgHuUhoCoEt78HRT4X4Yi9/QVMXhI+r3t8T1ef8/s+hDnrohCYpAZrVxCuK4QvtoVf7/7s2P25sfRrmLAwGpFJkhQZSzbCfy2CYGjffejHisLJMKm+NPhkV3FxMatWreLCCy+sVbdmzZrqZNcvf/lLkpKSWLlyJUuWLOHuu++OdKhS1ARD8ERJeLTAvoQI30F59uNIRhWb9h45t7c4vk06ShJAwTpYWxH+rN6XEPDm+vBIL0mSYtE/PoLA/v5YIfx3zBMlNUd9SUeiwU9jXLt2LQBt27atUb5ixQpKS0vp168fW7du5amnnuLTTz8l8M3/Qccff/xBv0dqaio7duw4YLvk7oM5cWLBwQdfj844I4+KosKovLcavqROPen6h/fqbBME/mflVu45rXVkgopBcUkp9Ji6oc42QWDxRkhu056qLXW31cHr+c/wkJimTZOiHEls8zwfHR1//iRpgy8iEL//blcoFCT3ql/z5f/cG8HIJEmKgECAntO2EEjY/3z9EPDxFmiRmcOO9d6hry+NvW8XDAYP3Gg/GvzIrtatw3+Yl5R8O1QiFApxyy23EAwG6devHx999BGtW7fmrrvuYsCAAeTl5fHmm29GK+Qauk8qcL0uHXVxSSkH165ps6McSWyLS2p+8G2bHnxbSbEtLiml7tvZAMEQcc0O7rNckqTGJJDQpM5E154Opb8t1aXBj+zKyckhOzub2267jcTERFJSUnjkkUdYtGgRycnJdO/encWLF/Pxxx/Tr18/7r33Xt555x3OP/98SkpKaNHiwE893LLl4OYNLN4AV8070iM6PLNnF9DXATnaj6+2wTkzas5/31sA6JASz3vbt0cqrJizKwhnvgrlu+pulxQPX31STFJ8ZOI6Fgx4Mfzvdq/fo8rzfHTctzQ8jbyue5OB+Hge+s2tfO+JWyMWlyRJkfKd12DDAboX8QH4ZOkC0ppEJqZjQWPv282bN49hw4Yd1rYNfmRXQkICzz//PBkZGYwbN44bbriBc845h+HDh9O7d2/i4uLo1KkTCQkJXHrppQAMGjSINm3asHLlyihHL0VGmyQYdjzE1TFwIET4sb46fAlxMKrT/tdGg/CH6nc7YqJLUrXvZ9ad6AJoFg9n+cRcSVKMurBz3fVxhJ8cb6JL9aXBJ7sA+vTpQ2FhIRUVFRQVFXHNNdewaNGi6sXp27RpwxlnnMHMmTMBWLlyJV988QXZ2dnRDFuKqOtzoGncvv+nDgBdUmF0ZqSjij3jssPJxX2d5zigZVO4smuko5LUkHVJhYuz6m5zQw9IbvDj7SVJOjw/yIKOzfffh05OgB93j3RUimWNItm1t8rKSoqKiqqTXQB/+ctfuOeee+jVqxc/+MEPmDp1Ki1btoxekFKEndgCHh8GXfeauRsATj8eHhsCKQc3VV51aJMEfxsGp+xjWnGf9HDd8S6NJmkvv+gJP+pWe9RnqyYwoe+B73hLktSYtWgCfx0Kg9vWrstpCX/LhU4uXal61CjvIX7wwQdUVVXVSHZ16dKFgoKC6AUlNQDd0+DpPPjwa1hZFp73PqANtE+OdmSxJSMZ/jIUVm2B9zeGy3q1CiccJWlf4gLw45PgP7Lh9JfDZfcPDHf6ExrlrUdJkg5NmyT442nwaTm8twGCoXCi66S0aEemWNQok12DBg0iFKprKe6GYf2LD7D53X/T7e5ZNco/eeynVK5aTItTziFjzG0AfPnqo3w975+EglV0u2vmQT+tQtqXHq3CPzq6slLDP5J0sPacqpjbLnpxSJIULSc0D/9IR1OjTHY1BqFdO6lctbhWeXnxAgJxCXT/7Vw++t1F7Ny0ntDO7VSWLqHb3a9HPlBJkiRJkqQY4sD5o2RDwVRa5V5aq7x85Tuk9h4BQGrP4VSUvEfZohkEt5Wz8o4RfPbMnRGOVJIkSZIkKXaY7DoKQsEgZQtfI+2U79SqqyrfRHxyeGGfuGapVJVvYufmLyAQoNvE/2X7+lVUfLw4whFLkiRJkiTFBqcxHoHKT5bxyaPX1ihL63c2TTOySRs4ap/bxDdvSVVFGQDByi0ktjuR+OQ0UnsOByC1x+lsW1tEcpe+RzV2SZIkSZKkWGSy6wg063Qy3ScV1Cr//J+T2LK0gI0FU6lYtZivZjxOm5FXAdC820A2znmGlgPPZ8uHc2g17GISW7Vj45xpAFSWLiF9H9MfJUmSJEmSdGBOYzwKMi6+nW6/mUnXO18lOasvbUZexc6v17Fu+r0073oqoZ3bKfpVLslZfUhseTzJJ55CqGoXRbfnEdxeQfPug6J9CJIkSZIkSY2SI7uOsm53zwIgsVU72l1wMwCdfvJwrXYdr3ogkmFJkiRJkiTFJEd2SZIkSZIkKWaY7JIkSZIkSVLMcBrjIchuAY8Pjd57S5IUTQUFBVx55ZVkZmaSmZnJk08+WaN+6tSpZGRkkJ+fzz333MMrr7xC3759eeihh2q0+/LLL7n66qvZtGkTl156KVdffTUlJSVcf/31bN++nRtvvJFRo0Zx9913M3PmTLKyspgyZQplZWVMnDiR++67L5KHHVGHco5zc3NZtGgRK1as4IQTTtjn/vr168dNN93E2LFjefbZZ/nVr37FmWeeyeOPPw7AhAkTuPrqq+nYseNRPzZJkqRIcWTXIUhJhL6to/OTkhjto5ckCcaPH09BQQFpaWkUFhbWqHvppZc488wzWb9+PQsXLmTu3LkkJCSwYMGCGu1+85vf8MADDzB79myuvvpqAO666y6effZZZs+ezahRo/j8889ZtGgRc+bM4dRTT+Wll14iPT2dTZs2sXXr1ogdbzQczDkG+Ne//sVFF1203/288sorpKenV78+66yzmDlzZo02P/zhD/nrX/9aj9FLkiRFn8kuSVKjV1BQQFZWFnl5eYwbN65W/aRJkyguLq5zHz/96U/Jzc3lnnvuqVW3evVqMjIyyMvL4/LLL2f+/PkMHTqUIUOGcMcddwDss2z58uVMnjy5Ho6w4enZsydr166tfr1x40aSkpIIBAIsWLCA4cOHAzBixAjmz59fY9uVK1dy6623MnLkSIqKitixYwdr1qzh8ssv53vf+x7r16+ntLSUHj16ANCrV6/qpM+gQYMoKCiIzEFGWV3nGKBdu3Z1bv/0009z6aWXVr9u3bo1CQk1B/WfdNJJLFy4sB6jliRJjcXR7kPv9sADD5Cfn09lZSXnnnsuw4cP58orrwTgzTff5LTTTmPIkCH84Q9/AOqnD22yS5IUE/Y3GiYYDPLBBx/QtWvX/W67YMECEhISmDt3LgsXLmT9+vW12px33nkUFBTw1FNP0a9fP+bNm8dbb71FYWEhZWVl+yzLyclh4cKFhEKho3LM0VRYWEh2dnb165KSEjIzMwHYtGkTLVqE59+npqayadOmGtu++eabTJw4kYcffpjbb7+dr776iqVLl/Lkk09yww038Nvf/pYuXbrw9ttvEwwGmTNnDps3bwYgMzOTlStXRuYgo6yuc3wg8+bNY8CAAbWSW/uyY8eOw45RkiQ1bke7D71z504WL14MwIwZMxg2bBhvvPEGiYmJLF26lC5dujBnzhzeeust/v3vf1NRUVEvfWiTXZKkmLL3aJj333+fbt261bnNO++8w4gRIwAYPnw47733Xq02r732Grm5uTz99NMkJobnlldVVdG+fXuSk5P3WQbQpUsXPvzww3o5toZgypQp5OXl0aFDB/r27bvPNi1btqSsrAyALVu20LJlyxr1PXr04MQTT6Rr165s3ryZtLQ0evXqRatWrcjNzaWoqIi2bdsyevRoRowYwfr162nbtu1RPrKG42DO8YE8+uijXHXVVfUbmCRJillHqw89derU6pHmWVlZlJeXA7B161bS0tJo3749TZo0ASA+Pp64uHCaqkuXLqxateqwj8dklyQppuw9Gqa4uJjOnTvXuc2BRiJlZGRQVFTEjBkzePTRR9mwYQPTpk0jJyeHli1bVo+e2VdZrI1E2n33b+LEiTXKs7OzKS0tBaB///7MmTMHgNmzZzNw4MAabTt37sxXX33F+vXrSU5Opnnz5iQlJbF9+3aWLl1a/d/r2muvpaCggMzMTM4991wASktL67zDGAsO5hwfyMcff8xFF13EH/7wB+699946t9vdwZQkSceuo9GHDgaDvPbaa3znO98Bwn2ZuXPnkpOTQyAQqPGAnJkzZ3LiiSeSlJQEhPvQa9asOezjMdklSYoJBzMaZtmyZeTl5dX4+d3vfnfAkUhNmzYlOTmZZs2akZuby0cffcRll13GihUr+Oyzz1iyZAnAPsuOFenp6VRUVADhtaR69+5Nbm4u27dvZ8CAAaxbt457770XgDvuuIMLLriA0aNHM2HCBABuuukmzjzzTH7+85/zy1/+EoALLriA/Px8KioqGDx4MABvv/02eXl5kT/ABmDPcwwwduxYZsyYwaWXXsrrr78OhM8jhKeKvvrqq9x0003cfPPNZGZmMmPGDMaOHcsrr7xSvS7HihUrDnv0mCRJavyOZh96+vTpjBo1qvr1k08+ySWXXMLy5ctp06YNb731FgCffvopv/3tb6vX7KoPB17IQZKkRmD8+PHVC8PvqWvXrkyfPh2Ak08+eZ+Lm7/77rs888wznH/++cyZM4eLL764Rv3WrVtJSUkhFAqxYMGC6icIxsXFkZqaWj0qqWnTpjXKIDwSaejQofV8tNGxu3OzP6NGjWLWrFnk5+czYcKE6kQWhBNgN998MwC9e/euHvm1W35+Pvn5+TXKdv93223jxo20bNmS1NTUIzyShutQzvE//vGPWvV7dxKvuOKK6t9HjhzJyJEja9Q//fTT1dezJEk69hzNPnRRUREFBQVMnTqVxYsXc/7551cvTbH7Kdvbt2/niiuu4JFHHiElJaV629LSUnJycg77uBzZJUmKaX369KGoqKjONqeeeirbt28nNzeXPn36cPzxx9cYifTWW28xYMAAhgwZwsiRI5k/fz55eXmcfvrpnHDCCXTt2pUXX3yxVhmEFxXv2bPnUT/OhuDyyy+vlbCqT+np6dx///1Hbf+NQX2f47vvvptOnTrV2/4kSVJsqI8+9O23387MmTN59dVX6du3L5dffjl///vfycvLY/HixZx11llMmzaNZcuW8eMf/5i8vLzqdcNKSkro0qXLYccfCMXiI6IkSTFlwIvhfxeMqrvd/kycOJFLLrkk4ms9LV++nBdeeIFbb701ou97uI70POvgeJ4lSVIkNPY+dG5uLsOGDePNN9885JkSTmOUJMW8fQ3NjoScnJwjGn4tSZIkRUu0+9Dz5s077H04jVGSJEmSJEkxw2SXJEmSJEmSYobJLkmSJEmSJMUM1+w6SFt3QklZdGPIbgEpidGNQZIkSZIkqSEz2XWQSsrgqsNfG61ePD4U+raObgySJEmSJEkNmdMYJUmSJEmSFDNMdkmSJEmSJClmmOySJEmSJElSzDDZJUmSJEmSpJjhAvVHWdHteZSvKCSQkEggPoGkDifRfuwkWvQ5M9qhSZIkSZIkxRxHdkVA+7GT6PfcVno/uZ7m3Qfz0T3fp6p8c7TDkiRJkiRJijkmuyIoLrEpbc4aT3DbVrZ9XhLtcCRJkiRJkmKOya4ICm6v5KuZjxOX3IKk9l2jHY4kSZIkSVLMaTTJrh07djBhwgQ6duxIs2bNGDFiBPPnzycQCPDCCy9EO7w6fTZtAosva8mSH3WmYtX7ZN/xb+KTW0Q7LElq8Mp2wNMfffv6D0th9ZboxROrtu2C/yn99vWk9+HDr6MXT6zaFYRZn337esJCmP8lhELRi0mSJMWerTvhn6u+fT35Aygpi1480dAoFqgPhUKMGTOG+fPnc+edd5Kdnc20adMYPXo0AP369YtyhHVrf9ndtBv9i2iHIUmNyrtfwv+ZD5VV35Y9+zE88zFc3T38oyNXUgbXFcKG7d+WvVAK/68URnWE2/tCfCBq4cWMLyrD53nV1m/LXlsLr3wKpx0H954KzRpFr0ySJDVkS7+Gn70NZTu/Lfvv1fCv1fDDLnBDDwgcA327RtGteuyxx3j55ZdZvHgxPXr0ACAvL4+srCzS09Pp1KlTlCOUJNWnNVvhhndgZ7Bm+e4BMI8VQdsk+H5mxEOLKVt2wrVvwaYdNct3n/YX10DrJLguJ+KhxZSqEFz/NpRurVke/OaCfudL+M1i+O2AiIcmSZJiyJfbwjfXKnfVLN/dt3v6YzguCcZmRzy0iGsU0xgnT57M2LFjqxNdAPHx8WRlZdGvXz9Wr15N3759q386d+5Menp6FCOWJB2J51bBjuC3X8x7CwB/K/42WaDD8+81sHHH/s8zhEfSle+qo4EOaN56+HjL/s9ziPD0xk/LIxmVJEmKNdNXQ8Wuuvt2T5bUvqEcixr8yK7i4mJWrVrFgw8+WKtuzZo1XHjhhXTu3JnFixdXl99www3s2nXwPfPU1FR27NhRZ5vk7oM5cWLBQe/zaDjjjDwqigqjGoMkRULO45+SkHbcfutDwGcV0CpnENtWLY5YXLGmy6Q3SM4eSCBu//e+tlVB5zN/QNnb/y+CkcWWE376N1oOvYRA/P67XcFQiEFX3M5XL/4hgpFJkqRY0u3BpTRpl02gjnmKX++A40/9DuVLCyIX2GEKBg8/K9fgk11r164FoG3btjXKV6xYQWlpaa31unbs2MHTTz/Na6+9FrEY69J9UkG0Q5CkRieuWepBtYtPTjvKkcS2+Oat6kx0VbfzPB+R+OS0Ay+OEawivrkPr5EkSYcvPjmtzkTXt+1iv8/R4JNdrVu3BqCkpISBAwcC4QXrb7nlFoLBYK1k14svvkiHDh045ZRTDvo9tmw58KO9Fm+Aq+YdQuBHwezZBfRtHd0YJCkSRr8entJ1oFmKH8ydwQnNIxJSTPrZ2/D2F3UPdQd44alHGXTcoxGJKRb9fgk8v6ru8xyIT+CBO2/lgidujVhckiQptoybA8s2HbgPPfelf3FSywgEdITKyspYsmQJvXr1OuRtG/yaXTk5OWRnZ3Pbbbfxr3/9i1deeYXvfe97LFy4kOTkZLp3r/k4rr/97W/853/+Z5SilSTVhwsy6/6SjgP6pWOi6wh9v9MBEjDA8UkwoE2kIopN3zvAeQZoEgcjO0QkHEmSFKNGH6APHQCyU6F7Ixm036JFC4YOHUqLFoc+Eq3BJ7sSEhJ4/vnnycjIYNy4cdxwww2cc845DB8+nN69exO3x/SLtWvX8sYbb/DDH/4wihFLko7U6Ezo1HzfX1JxQFwAfnpypKOKPae3CycN9zXYPUC4s3RjT4g/Bh5PfTR1T4PzTqi7zU9OgpTEyMQjSZJi09knQPcW++/bBYAbehx4dYVY0OCTXQB9+vShsLCQiooKioqKuOaaa1i0aFGtKYxPPvkk5513XvXUR0lS45SSCI8NhVP2MaKobTP402Do7UN3j1hCHDxwGpzZvnanqEUiTDwF8ttHJbSYM6EvXJIFCXud6Gbx4U7nf5wYlbAkSVIMSYqHPw+BocfXrmvdFP4wEE5rW7suFgVCoVCje3B7ZWUlqampPPLII/zoRz+qLu/WrRsPPvggZ599dr2/Z0NYs+vxobhml6Rjzkdl8PaX4Uckd0uD044Lj+xS/fqsAuasCz99sWPz8KivxEZxS6xx2bgdZn8OZTuhbRKckQHJDX4FVUmS1Nh8shXeXA87gtAlFYa0Dd/oPFY0yu7VBx98QFVVVa2RXStXroxSRGGfPPZTKlctpsUp55Ax5rbq8q3L3uTTv/8CAnG0GnIhx3//puq69S8+wOZ3/023u2exa8tGiv/rLLatLaLfc1ujcQiS1OCc2CL8o6OrfTL8oEu0o4h96U3hws7RjkKSJMW6TilwWUq0o4ieRpnXGzRoEKFQiAEDBkQ7lGrlxQsIxCXQ/bdzqfhoITs3ra+ua3J8F7rdM4eTfv8Wm979N8HtFQCEdu2kctXi6nbxzVLpetdMmnc7LdLhS5IkSZIkxYRGmexqiMpXvkNq7xEApPYcTkXJe9V1TVq3Jy6xCQCBuHgIhE/7hoKptMq9tLpdICGRhFQXoZEkSZIkSTpcJrvqSVX5JuKTw/Ns4pqlUlW+qVabssUzaZpxInFNkggFg5QtfI20U74T4UglSZIkSZJiV6NcsyuaKj9ZxiePXlujLK3f2cQ3b0lVRRkAwcotJLar+VilHV99yrrnf8uJt78IwKbC6aQNHBWZoCVJkiRJko4RJrsOUbNOJ9N9UkGt8vLid9k45xlaDjyfLR/OodWwi6vrgju3s/qPV9DpJ48Q3yy8Qty2tUVsWVrAxoKpVKxazFczHqfNyKsidRiSJEmSJEkxyWmM9aR511MJ7dxO0a9ySc7qQ2LL49n59TrWTb+XjW9MY9uaZZQ+8mOKbs9jx4a1ZFx8O91+M5Oud75Kclbf6kTXygn5VKxaxMoJ+VSWLo3yUUmSJEmSJDUugVAoFIp2EI3B4g1w1bzoxvD4UOjbOroxSJIkSZIkNWSO7JIkSZIkSVLMMNklSZIkSZKkmOE0xoO0dSeUlEU3huwWkJIY3RgkSZIkSZIaMpNdkiRJkiRJihlOY5QkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5IkSZIkSTHDZJckSZIkSZJihskuSZIkSZIkxQyTXZIkSZIkSYoZJrskSZIkSZIUM0x2SZIkSZIkKWaY7JIkSZIkSVLMMNklSZIkSZKkmGGyS5Ik6f9v7+7joyrv/P+/JiQEMAgGjSC3wQBGIBBBUTBmBKTeVLeIuLWy4LdYW+9attbiUtmv1rvy89u1a7WoLVsVRduybMUuVsQa8CYakSAoEIKFiFhQpMh9IJn5/TElEBPCXTKTnLyej0cezLnOdSafMx4nc95zXedIkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwmkzYtXfvXqZOnUrXrl1p3bo1w4cPp6ioiFAoxAsvvJDo8uLus90wYzX8dCn8/AMo/gKi0URXJUmKROGtz2DaMrhnKTzzEWwtT3RVkiRJUvMRikYbf0QSjUb5xje+QVFREXfddRdZWVnMmjWLP//5z3z66aeUlZXRrVu3RJcZF9EoPFYCv10NUSApFGuLAH3bw3+cAx1aJbhISWqmPtkJk96BdTti788hoDIKySGY1Be+2TPRFUqSJEnB1yTCrscff5xbbrmFpUuX0rdvXwAqKyvJzMxk586dfPHFFwmuMH6eLIVHVta+Lgno2RZm5kNKkxmzJ0nBsG0vXFMAn++JfQFRm7tz4bKu8axKkiRJan6aRCQybdo0xo0bVxV0AbRo0YLMzExyc3MBWL16Needdx69e/fmvPPOo7S0NFHlNpjdFfBfqw+9PgKs2Q6v/S1uJUmS/mHuethUR9AFMH1VbJqjJEmSpIaTnOgCDqe0tJS1a9fy8MMP11i3fv16xowZA8D3vvc9br75ZsaNG8czzzzDd7/7Xf7yl78c9vm3bdtGx44dqaioIBQK1Xv99and0Kvo9q/P1tknWlnBLb9+hbIHvhGfoiRJAGT9v8W06tqXUNKhv0fauBs6DBzOrlVvxrEySZIkqWlq2bIl27dvP+rtGv3Irg0bNgCQkZFRrX3VqlWUlZWRm5vLZ599xpIlS7jmmmsAuOaaa1iyZAmff/75YZ9/+fLl7N69myYwm5PkEzMO2yfUIpmU9h3jUI0k6WAp7U6tM+jaL7ndKXGoRpIkSWq+Gv3Irg4dOgCwZs0azjnnHCB2wfrJkycTiUTIzc1l/fr1dO7cmRYtWgCxKY6nnXYa69ev55RTjuykoqCggGHDhjXMTtST+Rtgynt190kCRp6by4fl3vpLkuLpm6/BR9tjNw+pyyv/8zsGdohLSZIkSVKz1OjDruzsbLKyspgyZQopKSmkpaUxffp0iouLadOmDX369KG4uDjRZcbFBadCmxawq/LQfSLA1734sSTF3eXd4KEP6+7TqTXkpMenHkmSJKm5avTTGJOTk5k9ezadOnViwoQJTJo0iUsuuYT8/HxycnJISkqia9eubNiwgcrKWApUWVnJp59+SteuwUp9WiXD9X0OvT4J6HUihDvFrSRJ0j9c0Q06tq77D+tN2ZDUuC8PKUmSJDV5jT7sAhgwYACFhYXs2rWLkpISbrzxRoqLi6vuxJiRkcHAgQN57rnnAHjuuefIzc094imMTcm/nA7f6V37yVLfk+DR8yClSfxXlaRgaZsCjw2F7mk116UkwY/7wyVd4l+XJEmS1Nw0yVhk9+7dlJSUVIVdAI899hi//OUv6d27N7/85S957LHHElhhwwmF4LtnwLyL4JbsA+0zzof/Oh/SUxNXmyQ1d11OgN9dCI+ce6Dth33hz6Pg6szE1SVJkiQ1J43+ml21WbZsGZWVldXCrjPOOIN33nkngVXF18mt4Lpe8MjK2PIArwEjSY1CUgjOPejmud86PXG1SJIkSc1Rkwy7hgwZQjR6uPtdSZIkSZIkqblpktMYJUmSJEmSpNoYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMBoMmHX3r17mTp1Kl27dqV169YMHz6coqIiQqEQL7zwQqLLk3QcKiLw6qfw8Ap4ZAW89RlEoomuSpIEsHEXPFkKv/gQZq6Bz3YnuiJJkqS6JSe6gCMRjUYZO3YsRUVF3HXXXWRlZTFr1ixGjx4NQG5uboIrlHSs3tsMU96DL8oPpO9ProHObeDBs6F3u4SWJ0nN1r4I/H/L4I8fQxRoEYLKKPxyBYzNhH/tC8lN5mtTSZLUnDSJsOuJJ55g3rx5LF26lL59+wIQDofJzMwkPT2dbt26JbhCScdi1Va49e3YyC6AyEHr/rYLvvsWPHMBdD4hEdVJUvN23/vwp/UHliv/MeI2AvxubWwE7uSchJQmSZJUpybxfdy0adMYN25cVdAF0KJFCzIzM6tGdf3oRz8iMzOTUCjEBx98kKhSJR2FX6+OBV2RWtZFgJ374JmP4l2VJGnt9upBV21mr4NPd8WlHEmSpKPS6MOu0tJS1q5dy5gxY2qsW79+fVXY9Y1vfINFixbRvXv3eJco6Rhs3QuLNtYedO0XAV5cf2A0gSQpPv53PYSOoN+8wwRikiRJidDopzFu2LABgIyMjGrtq1atoqysrCrsOv/884/r94TDYZKSGn32V0O/3+8BIDW1VYIrkY5Oaucz6P2L9w/bb08lpKWfQmTXtjhUJdUf35/VlHW5+Te0z/smoRYph+wTqdjHfb/8LTf/+tY4ViZJkpqTli1bsn379qPertGnOx06dABgzZo1VW3RaJTJkycTiUS8OL3URFXu2HJE/SL7yons2dnA1UiSDhZ7jz7M2K6kJCq3fxGXeiRJko5Gox/ZlZ2dTVZWFlOmTCElJYW0tDSmT59OcXExbdq0oU+fPvXyewoKChg2bFi9PFc8DZ4b+7e8vDyxhUjH4HtvwpIvDj2VMQm4LDOVJbu9KIyaHt+f1ZSt2ArjF9XdJ5TUgoJH/o2eT/1bXGqSJEk6Uo1+ZFdycjKzZ8+mU6dOTJgwgUmTJnHJJZeQn59PTk5Ok5x6KCnm+j6x29nXNnYgROyW9v+SFeeiJEmc2R6GZhx6bFcIGN4JeraNY1GSJElHqEkkRQMGDKCwsJBdu3ZRUlLCjTfeSHFxsVMYpSZu8Mlw76BYqPVVrZPhP86BrBPjX5ckCe4fBOecUr1t/9v1sFPhbj+GSZKkRqpJhF1ftXv3bkpKSqqFXd///vfp0qULn3zyCSNHjqRv374JrFDSkfpaZ/jzKJh00P+y/5YDL42CczMOvZ0kqWGlpcAj58KMg+4BNKYHPJkHD50T+1JCkiSpMWqSYdeyZcuorKysFnY9/PDDfPLJJ1RUVLBx40Y+/PDDBFYo6Wi0awnjTj+wPKYHnOBJlCQlXCgEA9IPLE/OgX4nxdolSZIaqyZ5OjlkyBCi0Wiiy5AkSZIkSVIj0yRHdkmSJEmSJEm1MeySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmB0WTCrr179zJ16lS6du1K69atGT58OEVFRYRCIV544YVEl6eAqojAwo3wX6vhmTXw1+2Jrkg6Piu2wlOl8NtSePsziEQTXZEkSfGzLwILPoUZq2HWR/DJzkRXJElqCMmJLuBIRKNRxo4dS1FREXfddRdZWVnMmjWL0aNHA5Cbm5vgChVEb26Ce5bC5vIDbb9YAeecDPcOgvTUhJUmHbUNO2HKe/Dh1urtndvAvWdB//SElCVJUty8sgF+tgy+3Heg7T8+hPyOcHcupKUkrjZJUv1qEmHXE088wbx581i6dCl9+/YFIBwOk5mZSXp6Ot26dUtwhQqaxZvhX4sgWsuol8Wb4XtvwpMXQJsm8X+Qmrsv9sD1b8IX5TXX/W0XfO8t+G0e9G4X/9okSYqHgr/FvvSpzaKNcEsh/Pp8SGky814kSXVpEm/n06ZNY9y4cVVBF0CLFi3IzMwkNzeXL774gksvvZQ+ffrQv39/rrzySj7//PMEVqym7hcfAlGobYZXBPjrDvjT+jgXJR2j59fC5j21T1mMEJvS8XhJ3MuSJCkuItHYCC6o/bNdFPhgK7z6aRyLkiQ1qEYfdpWWlrJ27VrGjBlTY9369evJzc0lFArx4x//mJKSEpYvX87pp5/OHXfckYBqFQRrtsGqL2MhwKGEgP8pi1dF0rGLRmHOuto/3O8XIfat9pZaRn5JktTUFX8Bn+6q+29hEvBHP9tJUmA0+klYGzZsACAjI6Na+6pVqygrKyM3N5f09HTC4XDVunPPPZfp06cf1e8Jh8MkJTX67K+Gfr/fA0BqaqsEVxIcbc+6hB7/9sc6+0SBVX/7ktTUjDr76eh4PNe/UHJL+j13+DsrRIHMnHPYs+79hi+qmfB4VpB4PKspa3/Bt+h662/r7BMB3lq5jtThfeJTlCTpiLRs2ZLt24/+TnGNPt3p0KEDAGvWrKlqi0ajTJ48mUgkUuPi9JFIhOnTp3PFFVfEtU4FR+WuLw/bJxqNUrlra8MXIx2naMVeIvuObMjWkRz7kiQ1NZW7th22TzQSoXLH3+NQjSQpHhr9yK7s7GyysrKYMmUKKSkppKWlMX36dIqLi2nTpg19+lT/9uXWW28lLS2NW2655ah+T0FBAcOGDavP0uNi8NzYv+Xlzj+qLxURuPwV+LyOlzQpFOK7Q7tzs697vfJ4bhj/dwm89Mmhp+YmEbs4/eL1XrirPnk8K0g8ntWU7amAr82HnRWH7hNKSuKOr+fyL5M8xiUpCBr9yK7k5GRmz55Np06dmDBhApMmTeKSSy4hPz+fnJycalMPf/SjH1FaWsrvfve7JjklUY1DchL8n96HXp8EtG4BY3rEqyLp+Fx7OiSFYteaq00EmFjHMS9JUlPWKhn+5fRDr08C2reEy73BuyQFRqMf2QUwYMAACgsLq7U98sgj5OfnVy1PmTKF9957j//93/8lNTU13iUqYMb2gM/3wG9LYwHBwRc0bZMM/3kudGydoOKko9S7HTx4NtyxGMoPGt61P/y6rR9c2CkhpUmSFBff7g1flMMf1sXCrYNHO7dvCY+cF/tXkhQMTXL40+7duykpKam6XteHH37IAw88wKeffsrQoUMZOHAgo0ePTnCVaspCIbg5G/5wIXyz54H2yf3hTxfBgPTE1SYdi7yO8L8XwffPPNB2XS94YWT1Y1ySpCBKCsHkHHg2H67scaD9zgGxv4W92yWsNElSA2gSI7u+atmyZVRWVlaFXX379iUaretmwtKxyWwbG/Xy3F9jy2MzE1uPdDzap8L4LHh4RWz55uzE1iNJUrz1aQd35MDsdbHlb3RPaDmSpAbSJMOuIUOGGG5JkiRJkiSphiY5jVGSJEmSJEmqjWGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKjCYTdu3du5epU6fStWtXWrduzfDhwykqKiIUCvHCCy8kujxJkhRn2/bCvPXwh7XwxiaoiCS6IunYVURg0cbY8fznT2DHvkRXJB27aBSWb4HZ6+CPZbBhZ6IrktTcJCe6gCMRjUYZO3YsRUVF3HXXXWRlZTFr1ixGjx4NQG5uboIrlCRJ8VIRgYdXxE6i9h4UcJ2cCj/sB6M6J6w06Zj86WP4zxXw970H2lKT4Js94aZsaBFKXG3S0Vq5Fe4uhjXbD7SFgLxTYepAOCk1QYVJalaaRNj1xBNPMG/ePJYuXUrfvn0BCIfDZGZmkp6eTrdu3RJcoSRJiodoFP69GOZvqLnui3KY8h5EonBxl/jXJh2LP5bBve/XbC+PwFNrYOveWEAgNQVrtsF33oS9ldXbo8RG4N7wJvw2D9JSElKepGakSUxjnDZtGuPGjasKugBatGhBZmZm1aiub3zjGwwYMIDc3Fzy8vJYunRpgqqVJEkN5f0ttQddEDuZCgE//wD2OaVRTcCeCnjow7r7vPAxrPoyPvVIx+uXK2JBV21vwRFg7Q74n7J4VyWpOWr0YVdpaSlr165lzJgxNdatX7++Kux66qmneP/99ykuLuZHP/oR3/72t+NdqiRJamB//LjuDy9RYlPB3tgUr4qkY/eXv8HOirr7JAEvGA6oCfhsN7z1We1B134h4L/XxakgSc1ao5/GuGFD7OvbjIyMau2rVq2irKysKuxq165d1bovv/ySpKSjy/HC4fBRb9MY9Pv9HgBSU1sluJJg83WOD1/n+PB1jg9f54bR857XOOGMoYftN+7WO9j84kNxqKh58HhuGBlX/YSMsXcSquMzaGU0wn/9cQH/fvblcaws+Dym61+bPudx+r0FdfaJAuu3V5Ka2iYuNUlq+lq2bMn27dsP3/ErGn3Y1aFDBwDWrFnDOeecA8QuWD958mQikUi1i9Nff/31zJ8/n2g0yp///OeE1CtJkhpOZNc2opFKQkkt6u63Z0ecKpKOXWTPjjqDrliniMezmoTI7iM7GY3s3dXAlUhSEwi7srOzycrKYsqUKaSkpJCWlsb06dMpLi6mTZs29OnTp6rvb37zGwBmzpzJ7bffzrx584749xQUFDBs2LB6r7+hDZ4b+7e8vDyxhQScr3N8+DrHh69zfPg6N4xDXcz7YEnAstmPcEqrR+JSU3Pg8dwwPtkJo1+NjXY5lFCLZH5505VcfL+vfX3ymK5/kSh841X4265DH9NJwBV92lLs6y6pgTX6eXvJycnMnj2bTp06MWHCBCZNmsQll1xCfn4+OTk5tU49/Jd/+Rdee+01vvjiiwRULEmSGsrXOsPJqZAUOnSfS7vCKc5MUhPQ5QQY3il2HaPaJAGdWsf6SI1dUgiuyzp00BX6R59rMuNZlaTmqtGHXQADBgygsLCQXbt2UVJSwo033khxcXHVFMYdO3awfv36qv4vvvgi6enppKenJ6pkSZLUAFonw6PnQfuW1dv3h1/nngJ39I9/XdKx+vdcGPiPj6xfDXFPbgWPnAct6561KzUao7vHAi+ofqIZAlqE4IHB0KtdbVtKUv1q9NMYa7N7925KSkqYNGkSADt37mTs2LHs3LmTFi1akJ6ezosvvkgoVMfXvpIkqUk6/USYMxxe+gSmLY+15Z8K/9QdzsuInVBJTcUJyfDYsNgdRF8og0X/uJPolBy4uAu0aZKf1tVchUJwy5kw8jSYvS52B12Aib3hG92hY+uEliepGWmSfz6XLVtGZWVl1ciuU089lbfffjvBVUmSpHhJS4GxmQfCrgfPSWw90vFoEYL8jrGf/deSurJHQkuSjssZ7eHOgQfCru+dkchqJDVHTTLsGjJkCNFoXZfylCRJkiRJUnPUJK7ZJUmSJEmSJB0Jwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMu6TgVFBSQmZlJOBxmwoQJNdbPnDmTBQsWADB37lyGDx9OOBzm448/rtbvO9/5Dvn5+Zx//vmsXr0agMsvv5z8/HxGjBjB5s2bqaio4Prrr2/4nZIkSZIkqYky7JLqwcSJEykoKKBdu3YUFhZWW/fiiy8yYsQIdu7cyfPPP8+rr75KQUEB3bp1q9bvV7/6FQsXLuSBBx7gscceA2DOnDksXLiQ6667jlmzZpGcnMwpp5zCRx99FLd9kyRJkiSpKTHskupRv3792LBhQ9Xyli1baNWqFaFQiMLCQiKRCBdddBE333wzkUik2rYpKSkA7Nixg379+lVr27NnD9nZ2QCEw2FeeumleOyOJDV5hxt9e99991FaWlrnc9x6663k5eVx//3311i3bt06OnXqRDgcZvz48RQVFTFs2DCGDh3KnXfeCVBr28qVK5k2bVo97KEkSZK+yrBLqkeFhYVkZWVVLa9Zs4bu3bsD8Nlnn7F582bmz5/PySefzNy5c2tsP2LECG655RbOPvtsIBaWDR06lIcffrgq7OrevXvVNEdJ0uEdavRtJBJh2bJl9OrV65DbLl68mOTkZF5//XWWLFnCpk2bavS57LLLKCgo4OmnnyY3N5c333yTt956i8LCQrZt21ZrW3Z2NkuWLCEajTbIPkuSJDVnhl1SPZgxYwbhcJjOnTszcODAWvu0a9eOvLw8kpKSuOCCCygpKanR59VXX2XOnDncddddAKSnp/PWW29x77338tBDDzXgHkhS8H119O37779P796969zmnXfeYfjw4QDk5+fz3nvv1ejz8ssvk5eXx7PPPls1IreyspLTTjuNNm3a1NoG0LNnTz788MN62TdJkiQdYNgl1YP9owbuvffeau1ZWVmUlZUBcPbZZ7NixQoAli9fTo8ePar1LS8vB2KhWOvWrYlEIlRUVFS1tWrVCoCysrI6RyFIkmr31dG3paWlNd6Lv2rr1q2ceOKJALRt25atW7dWW9+pUydKSkqYP38+jz/+OF988QWzZs0iOzub9u3bk5ycDFBrmyN1JUmSGkZyoguQgiw9PZ1du3YBkJGRwVlnnUV+fj6nnHIKs2bNYuPGjcycOZPbb7+d0aNHs3v3bkKhEI8++ig7d+7k61//OklJSaSmpvLkk08CsevPTJw4MYF7JUlNy4wZM1iwYAHnn3/+IUffrlixgptuuqla28UXX0z79u3Ztm0bANu3b+f000+v1ic1NbXqcV5eHh999BHf+ta3+OY3v8nYsWNZvnw5/fv3r7VNkiRJDcOwSzpO4XCYcDh8yPVXXHEFCxYsYOTIkUyePJnJkydXrevYsSO33347APPmzaux7cKFC6stV1RU8Nlnn1UbmSBJqtvEiROrLgx/sF69ejFnzhwAzjzzTAoKCmr0effdd3nuuee4/PLLWbRoEVdffXW19Tt27CAtLY1oNMrixYu54YYbAEhKSqJt27a0atWK8vJyUlNTq7VBbKTusGHD6nlvJUmS5DRGqYGNHz+ekSNH1stzJScnM2PGjHp5Lklq7gYMGFDr9RMPdvbZZ1NeXk5eXh4DBgzg1FNPZePGjTz44IMAvPXWWwwePJihQ4cyatQoioqKCIfDXHDBBXTp0oVevXoxd+7cGm0Qu4nJ/rvvSpIkqf44skuSJAVWXaNvk5KSyMnJobS0tM5rIT766KPVlg8elTtq1ChGjRpVbf3YsWNrLH+1beXKlQwaNIhQKHSkuyJJkqQjZNglSZKardqmN8ZDdnY22dnZCfndkiRJQec0RkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAaBJh1969e5k6dSpdu3aldevWDB8+nKKiIkKhEC+88EKiy1PArdl24PG2vYmrQ5JU3Z7KA4+XbYFoNHG1SJIkqfFITnQBhxONRhk7dixFRUXcddddZGVlMWvWLEaPHg1Abm5ugitUUJV8CT9bBsv/fqDt4vlweVf4177QqtH/3yNJwRSJwn+thpkfHWj79hvQPQ1+2BeGnZq42iRJkpR4jf50/YknnmDevHksXbqUvn37AhAOh8nMzCQ9PZ1u3boluEIF0eovYeIbsLeyevveCMwpg3U74JHzIKVJjI2UpGD52bLYe/FXfbwDJr0D/+8cyO8Y/7okSZLUODT6U/Vp06Yxbty4qqALoEWLFmRmZtYY1XX33XcTCoX44IMP4l2mAuY/PogFXZFa1kWB976A+RviXZUk6cO/1x50Qez9GeBn70NFbW/gkiRJahYaddhVWlrK2rVrGTNmTI1169evrxZ2LVmyhLfffpvu3bvHs0QF0PodsPiL2oOu/ZKA2eviVJAkqcr/lNX94SUKfF4OhZ/FqyJJkiQ1No16GuOGDbGhMxkZGdXaV61aRVlZWVXYVV5ezs0338xzzz1HOBw+pt8VDodJSmrU2V+t+v1+DwCpqa0SXElwtM29mB5T6r7xQQRY+slWUlO9MEx98niOD1/n+PB1bhg9f/oXTsgedth+37zlDja/+FAcKmoePJ7jx9c6Pnyd48PXWdLxatmyJdu3bz/q7Rp1utOhQwcA1qxZU9UWjUaZPHkykUikKuz693//d8aNG0ePHj0SUaYCJrJ395H1K9/VwJVIkr4qUr6LaOTwcxR9j5YkSWq+GvXIruzsbLKyspgyZQopKSmkpaUxffp0iouLadOmDX369KGwsJDFixfzs5/97Lh+V0FBAcOGHf6b4sZm8NzYv+Xl5YktJEDKK2N3Xdy+79B9koBvnXUak33d65XHc3z4OseHr3PD+P1a+P+W190nBCz53cN0avNwXGpqDjye48fXOj58nePD11lSojTqkV3JycnMnj2bTp06MWHCBCZNmsQll1xCfn4+OTk5JCUlsXDhQlauXElmZiY9evTgk08+4Wtf+xrz589PdPlqolJbwDczD70+BCSF4Oo6+kiSGsalXeDElEN/gAkBwztBpzbxrEqSJEmNSaMOuwAGDBhAYWEhu3btoqSkhBtvvJHi4uKqKYx33HEHn376KevWrWPdunV06dKFl19+mVGjRiW4cjVlE3vDqM6xx0mhA+0hoEUI7h8EmW0TUpokNWtpKfDLc+GElOrt+z/Q9DsJpg6Md1WSJElqTBr1NMba7N69m5KSEiZNmpToUhRgyUlw71lwWZfYXRdLt0HLJLigI4zpDl3TEl2hJDVffU+C2RfCHz+G+Rtgxz7ofAKM7g4jOkHLFomuUJIkSYnU5MKuZcuWUVlZWTWy66vWrVsX34IUWEkhGHZq7EeS1Lh0aBUbhTuxd6IrkSRJUmPT5MKuIUOGEI1GE12GJEmSJEmSGqFGf80uSZIkSZIk6UgZdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJTUBBQQGZmZmEw2EmTJhQY/3MmTNZsGABAPfffz95eXnceuutNfp9/vnnjB49mgsvvJAnnngCgDVr1nDxxRdz4YUXMnfuXADuueceLrjgAiZMmEBFRQVbtmzhhz/8YQPuoSRJ9cOwS5IkSWoiJk6cSEFBAe3ataOwsLDauhdffJERI0awadMmlixZwuuvv05ycjKLFy+u1u+nP/0pv/jFL3jttde44YYbALj77rt5/vnnee2117jiiiv429/+RnFxMYsWLeLss8/mxRdfJD09na1bt7Jjx4647a8kScfCsEuSVM3hRg7cd999lJaWHnL7LVu2MGjQINLS0mpdv27dOjp16kQ4HGb8+PHs27ePq6++mnA4zIMPPgjAypUrmTZtWv3skCQFUL9+/diwYUPV8pYtW2jVqhWhUIjFixeTn58PwPDhwykqKqq27erVq7njjjsYNWoUJSUl7N27l/Xr1zN+/Hj+6Z/+iU2bNlFWVkbfvn0B6N+/f1WwNmTIEAoKCuKzk5IkHSPDLklSDYcaORCJRFi2bBm9evU65LZt27bllVde4dxzzz1kn8suu4yCggKefvpp5syZw9ChQykoKOC9997j888/Jzs7myVLlhCNRut1vyQpKAoLC8nKyqpaXrNmDd27dwdg69atnHjiiUDsPXnr1q3Vtn3jjTe49957efTRR/nJT37C5s2b+eCDD3jqqaeYNGkSDzzwAD179uTtt98mEomwaNEivvzySwC6d+/O6tWr47OTkiQdI8MuSdIhfXXkwPvvv0/v3r3r3CYlJYX09PQ6+7z88svk5eXx7LPPsnbtWvr37w9AdnY27777LgA9e/bkww8/PM49kKRgmTFjBuFwmM6dOzNw4MBa+7Rv355t27YBsH37dtq3b19tfd++fTn99NPp1asXX375Je3ataN///6cdNJJ5OXlUVJSQkZGBqNHj2b48OFs2rSJjIyMBt4zSZLqj2GXJOmQvjpyoLS0lB49ehzXc3bq1ImSkhLmz5/P448/Tq9evVi4cCHRaJTXX3/d0QOSVIf9I2/vvffeau1ZWVmUlZUBMGjQIBYtWgTAa6+9xjnnnFOtb48ePdi8eTObNm2iTZs2nHDCCbRq1Yry8nI++OCDqvf5m266iYKCArp3786ll14KQFlZWZ2jeyVJagySE12AJKnxmTFjBgsWLOD8888/5MiBFStWcNNNN1Vru/jii7njjjvqfO7U1NSqx3l5eXTp0oUFCxZw0UUXccoppzh6QJKOQXp6Ort27QKgY8eO5OTkkJeXR05ODoMHD2bjxo3MnDmT22+/nTvvvJMrr7ySiooKHn74YQBuu+02RowYQYsWLXjyyScBuPLKK9m2bRt5eXmcd955ALz99ttV20iS1FgZdkmSapg4cSJ33nlnjfZevXoxZ84cAM4888xjukjxjh07SEtLIxqNsnjxYm655RamT59ONBplwoQJVSdUZWVlDBs27Lj2Q5KCJBwOEw6HD7n+iiuuYMGCBYwcOZKpU6cyderUqnUdO3bk9ttvByAnJ6dq5Nd+I0eOZOTIkdXa9r/f77dlyxbat29P27Ztj3NPJElqWE5jlCQdsQEDBlBSUnLYfiNHjqS4uJiRI0fywQcfsHHjxqo7Lb711lsMHjyYoUOHMmrUKPbt20c4HGbEiBFcddVVtGnTBohdbLlfv34Nuj+SFCTjx4+vEVjVp/T0dB566KEGe35JkuqLI7skSdXUNXIgKSmJnJwcSktL67xmy4IFC2q07R9RMGrUKEaNGlVt3VdHiK1cuZJBgwYRCoWOrnhJkiRJzZ5hlyTpqNQ2vbG+ZWdnk52d3eC/R5IkSVLwOI1RkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTCaTNi1d+9epk6dSteuXWndujXDhw+nqKiIUCjECy+8kOjyJKlJ2LHvwOMv9iSuDklSTR9tO/C4Mpq4OiRJauqSE13AkYhGo4wdO5aioiLuuususrKymDVrFqNHjwYgNzc3wRVKUuO2uwIeXgFzPz7QdskrMKIT/LAfnNIqcbVJUnP37uex9+iVXx5ou+IVmNgbRneHUChxtUmS1BQ1ibDriSeeYN68eSxdupS+ffsCEA6HyczMJD09nW7duiW4QklqvPZUwk2F8MHf4eCBApEovPopLNsCT10AJxt4SVLcvbEJflhE9TdoYNMeuH8ZbC6HG/okpDRJkpqsJjGNcdq0aYwbN64q6AJo0aIFmZmZVaO6evTowRlnnMHAgQMZOHAgL7/8cqLKlaRG5b/XwfK/1ziPAiACfL4HHi+Jc1GSJCoi8NOlEI3G3o9r80QJrN8Rz6okSWr6Gn3YVVpaytq1axkzZkyNdevXr682hXH27NksXbqUpUuX8rWvfS2eZUpSo/WHtVDXDJgI8L/rq1/PS5LU8F7fBFvKa/8yYr8QMKcsXhVJkhQMjX4a44YNGwDIyMio1r5q1SrKysrq7Xpd4XCYpKRGn/3V0O/3sStMp6Y6/0hNn8dz/Qslp9DvucMPCdgbgc59B7OnbHkcqmoePJ4VJB7PDSPjqilkXD2VUOjQn0Ej0Qi/mv0KPz7rijhWFnwe0/Hh6yzpeLVs2ZLt27cf9XaNPt3p0KEDAGvWrKlqi0ajTJ48mUgkUi3suvbaa8nJyeGmm25i69at8S5VkhqdaKSSaKTyyPpWOLRLkuIpsq+cusfeAtEo0Yq9calHkqSgaPQju7Kzs8nKymLKlCmkpKSQlpbG9OnTKS4upk2bNvTpE7ti5+uvv07Xrl0pLy9n0qRJ3HLLLTzzzDNH/HsKCgoYNmxYQ+1Ggxk8N/ZveXl5YguR6oHHc8O4tRDe+fzQ14MB6Ngaij56nyTv+FVvPJ4VJB7PDWP1l/CthXX3CSW14IGJlzPmHl/7+uQxHR++zpISpdGP7EpOTmb27Nl06tSJCRMmMGnSJC655BLy8/PJycmpmnrYtWtXAFJTU7npppt48803E1m2JDUa155ed9C1v49BlyTFV+92cFaHQ38gTwJOTIFLusSzKkmSmr5GH3YBDBgwgMLCQnbt2kVJSQk33ngjxcXFVVMYd+7cyZdffgnEpjg+//zzDBw4MIEVS1LjcW4G3JIde3zwm/7+x5d3hX/OjHdVkiSA+wdBlxNijw/+ziEEtE6GXwyBNo1+LoYkSY1Lk/zTuXv3bkpKSpg0aRIAmzZtYsyYMVRWVlJZWcmZZ57Jr371q8QWKUmNyHW9YGA6/G7tP6Y0RqHvSTC2B+R3hJCjuiQpIU5uBU9fAHM/hv8pg027oW0KXNwl9h7dsU2iK5QkqelpkmHXsmXLqKysrBrZ1bNnT4qLixNclSQ1bgM7xH4kSY1LWgp86/TYjyRJOn5NMuwaMmQI0Wg00WVIkiRJkiSpkWkS1+ySJEmSJEmSjoRhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYVeAFRQUkJmZSTgcZsKECTXWz5w5kwULFgAwd+5chg8fTjgc5uOPP67W7zvf+Q75+fmcf/75rF69GoDLL7+c/Px8RowYwebNm6moqOD6669v+J2SJEmS1OQdzblKXl4eaWlpfPLJJ4d8vtzcXJ555hkAnn/+eTIzM6udn0ydOpX169fX815IaqwMuwJu4sSJFBQU0K5dOwoLC6ute/HFFxkxYgQ7d+7k+eef59VXX6WgoIBu3bpV6/erX/2KhQsX8sADD/DYY48BMGfOHBYuXMh1113HrFmzSE5O5pRTTuGjjz6K275JkiRJarqO5FwF4A9/+ANXXXXVIZ/npZdeIj09vWr5oosu4pVXXqnW59prr+XXv/51PVYvqTEz7Gom+vXrx4YNG6qWt2zZQqtWrQiFQhQWFhKJRLjooou4+eabiUQi1bZNSUkBYMeOHfTr169a2549e8jOzgYgHA7z0ksvxWN31Ewd7hvA++67j9LS0kNuv2XLFgYNGkRaWlqt69etW0enTp0Ih8OMHz+effv2cfXVVxMOh3nwwQcBWLlyJdOmTaufHZIkSVKd5yoAHTt2rHP7Z599lmuuuaZquUOHDiQnJ1frc8YZZ7BkyZJ6rFpSY2bY1UwUFhaSlZVVtbxmzRq6d+8OwGeffcbmzZuZP38+J598MnPnzq2x/YgRI7jllls4++yzgdgfoKFDh/Lwww9XhV3du3evmuYoNZRDfQMYiURYtmwZvXr1OuS2bdu25ZVXXuHcc889ZJ/LLruMgoICnn76aebMmcPQoUMpKCjgvffe4/PPPyc7O5slS5YQjUbrdb8kSZKaq7rOVQ7nzTffZPDgwTXCrdrs3bv3mGuU1LQYdgXcjBkzCIfDdO7cmYEDB9bap127duTl5ZGUlMQFF1xASUlJjT6vvvoqc+bM4a677gIgPT2dt956i3vvvZeHHnqoAfdAqt1XvwF8//336d27d53bpKSkVBviXpuXX36ZvLw8nn32WdauXUv//v0ByM7O5t133wWgZ8+efPjhh8e5B5IkSc3bkZyrHM7jjz/utYMl1XD4+FtN2sSJE7nzzjtrtGdlZVFWVgbA2WefzdNPPw3A8uXL6dGjR7W+5eXlpKam0q5dO1q3bk0kEiESiZCcnEy7du1o1aoVAGVlZXWOqpHqU2FhIT/4wQ+qlktLS2scu0erU6dOlJSUEAqF+NrXvsYPfvADFi5cyPDhw3n99derwrT9oxj3T+uVJEnS0TuSc5XD+etf/8pVV13Fhg0bSEpKIi8v75Cjwlq2bHlc9UpqOgy7mqn09HR27doFQEZGBmeddRb5+fmccsopzJo1i40bNzJz5kxuv/12Ro8eze7duwmFQjz66KPs3LmTr3/96yQlJZGamsqTTz4JxK6nNHHixATulZqDGTNmsGDBAs4///xDfgO4YsUKbrrppmptF198MXfccUedz52amlr1OC8vjy5durBgwQIuuugiTjnlFDIyMo67fkmSJNXt4HMVgHHjxvGXv/yFjz76iLvuuosRI0Zw22238fOf/5w33ngDgCeffJLk5GS6d+/O/Pnz+elPf8ratWuZMGECTz31FKtWrTrm0WOSmh7DrgALh8OEw+FDrr/iiitYsGABI0eOZPLkyUyePLlqXceOHbn99tsBmDdvXo1tFy5cWG25oqKCzz77rNpce6khHOobwF69ejFnzhwAzjzzTAoKCo76uXfs2EFaWhrRaJTFixdzyy23MH36dKLRKBMmTOC8884DYqMYhw0bdlz7IUmS1JwdzbnKM888U2P9z3/+82rL1113XdXjUaNGMWrUqGrrn332WW644YbjqllS0+E1u5qx8ePHM3LkyHp5ruTkZGbMmFEvzyUdiwEDBtR6vbmvGjlyJMXFxYwcOZIPPviAjRs3Vt1p8a233mLw4MEMHTqUUaNGsW/fPsLhMCNGjOCqq66iTZs2QOyiqU5hlCRJajj1ea4CcM8999CtW7d6ez5JjZsjuyQ1GXV9A5iUlEROTg6lpaV1XjtuwYIFNdr2j2Ks7VvAr44QW7lyJYMGDaq6FbYkSZIkqXEx7JIUGLVNb6xv2dnZZGdnN/jvkSRJkiQdG6cxSpIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAVGkwm79u7dy9SpU+natSutW7dm+PDhFBUVEQqFeOGFFxJdXkJs3nPgcTSauDqk+rCr4sDj8srE1SFJkqTjt2PfgccVkcTVIal5ahJhVzQaZezYsfzmN7/hzjvv5E9/+hOZmZmMHj0agNzc3ARXGF9rtsEP34FL5h9oG/MXePHjxNUkHavt+2DaMhj18oG2i+fDIysMvSRJkpqaLeVwz9Lqn+0umQ+/KTH0khQ/yYku4Eg88cQTzJs3j6VLl9K3b18AwuEwmZmZpKen061btwRXGD+rtsJ33oTyCBw8mGv9Trh7KXy6C757RoKKk47Sjn1w/Rvw1+3Vj+ft++CpNbDs7/DIudCyRcJKlCRJ0hHaUg7XvQ4bd8HBudbf98JjJbBiKzx4DrQIJapCSc1FkxjZNW3aNMaNG1cVdAG0aNGCzMzMqlFde/bs4cYbb6RXr17079+fG264IVHlNphoFP5vcWy0S+Qr0xb3L/56NZR+GffSpGPym9U1g679osCSL+D36+JclCRJko7JL1fUDLoOtmgTzFsf15IkNVONPuwqLS1l7dq1jBkzpsa69evXV4VdP/7xj2nVqhWrV69m+fLl3HPPPfEutcEt/zt8tP3Qfzwg9h909ro4FSQdh/JK+J+y2oOu/ULAH9Z6TTpJkqTGbtte+POGw5+r/H5tvCqS1Jw1+mmMGzZsACAjI6Na+6pVqygrKyM3N5cdO3bw9NNP88knnxAKxcbEnnrqqUf1e8LhMElJjTv7S//a9+h8/X/W2ScCzHx1MXedMyw+RUnHqOVpvenzn8vr7BMFNuyCNu3TiezZGZ/CpHrS7/exu4ikprZKcCXS8fN4VtB4TNe/Nr2HcPp9i+rsEwFWfLGP1NS0+BQlqclr2bIl27dvP+rtGne6A3To0AGANWvWVLVFo1EmT55MJBIhNzeXjz76iA4dOnD33XczePBgwuEwb7zxRqJKbjiVFYftEo1GiR5BPynhjuI4jUa8Ur0kSVJjdqTnINGoV6mX1PAa/ciu7OxssrKymDJlCikpKaSlpTF9+nSKi4tp06YNffr0YenSpfz1r38lNzeXBx98kHfeeYfLL7+cNWvWcOKJJx7R7ykoKGDYsMY9GurjHXDlX+rukxQKMenyc/nu7eXxKUo6RpEoXLEANu4+dJ8koO9JsHi7F6JT0zN4buzf8nLfj9X0eTwraDym69/eytgdtbftO3SfJCCvSypLfN0lNbBGP7IrOTmZ2bNn06lTJyZMmMCkSZO45JJLyM/PJycnh6SkJLp160ZycjLXXHMNAEOGDOHkk09m9erVCa6+fnVLg6EZh/6PFiJ2Z5PR3eNZlXRskkJwTc+6+0Q4fB9JkiQlXssWMDaz7j4R4J8P00eS6kOjD7sABgwYQGFhIbt27aKkpIQbb7yR4uLiqovTn3zyyVx44YW88sorAKxevZrPPvuMrKysRJbdIP7vQOhyQs32JGLhwf2DIKN1vKuSjs03e8Ko02KPD34z2v/4mp5w0WnxrkqSJEnH4vrecN4psce1fbb7Xh84N+OrW0lS/Wv00xhrs3v3bkpKSpg0aVJV22OPPca3v/1tbrvtNlJSUpg5cybt27dPWI0NpUMreOqC2B0X/3tdbApYahJc1DkWDPRpl+gKpSPXIgT3DoJhp8buzLNiK4RCcFY6/HNPCHeMLUuSJKnxS0mCh4bAi+tjn+3WbIt9IT/klNi5ynkGXZLipEmGXcuWLaOysrJqZBdAz549KSgoSFxRcdQ2Bf5Pr9hPJBr7AyI1VUkhuKxr7CcajbUZcEmSJDVNyUmxy6qM7h47VwnhZztJ8dckw64hQ4YQ3X9W3MwZdClI/CAkSZIUHJ6rSEqUJnHNLkmSJEmSJOlIGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIk6bgUFBSQmZlJOBxmwoQJNdbPnDmTBQsWAHD//feTl5fHrbfeWqPf559/zujRo7nwwgt54oknAFizZg0XX3wxF154IXPnzgXgnnvu4YILLmDChAlUVFSwZcsWfvjDHzbgHqo5OZrjOS8vj7S0ND755JNDPl9ubi7PPPMMAM8//zyZmZlcf/31VeunTp3K+vXr63kvJKl5M+ySJEnScZs4cSIFBQW0a9eOwsLCautefPFFRowYwaZNm1iyZAmvv/46ycnJLF68uFq/n/70p/ziF7/gtdde44YbbgDg7rvv5vnnn+e1117jiiuu4G9/+xvFxcUsWrSIs88+mxdffJH09HS2bt3Kjh074ra/CrYjOZ4B/vCHP3DVVVcd8nleeukl0tPTq5YvuugiXnnllWp9rr32Wn7961/XY/WSJMMuSZIS4HAjB+677z5KS0vrfI5bb72VvLw87r///hrr1q1bR6dOnQiHw4wfP56ioiKGDRvG0KFDufPOOwFqbVu5ciXTpk2rhz1Uc9WvXz82bNhQtbxlyxZatWpFKBRi8eLF5OfnAzB8+HCKioqqbbt69WruuOMORo0aRUlJCXv37mX9+vWMHz+ef/qnf2LTpk2UlZXRt29fAPr3718VRAwZMoSCgoL47KSajbqOZ4COHTvWuf2zzz7LNddcU7XcoUMHkpOTq/U544wzWLJkST1WLUky7JIkKUEONXIgEomwbNkyevXqdchtFy9eTHJyMq+//jpLlixh06ZNNfpcdtllFBQU8PTTT5Obm8ubb77JW2+9RWFhIdu2bau1LTs7myVLlhCNRhtknxV8hYWFZGVlVS2vWbOG7t27A7B161ZOPPFEANq2bcvWrVurbfvGG29w77338uijj/KTn/yEzZs388EHH/DUU08xadIkHnjgAXr27Mnbb79NJBJh0aJFfPnllwB0796d1atXx2cn1WzUdTwfzptvvsngwYNrhFu12bt37zHXKEmqybBLkqQE++rIgffff5/evXvXuc0777zD8OHDAcjPz+e9996r0efll18mLy+PZ599lpSUFAAqKys57bTTaNOmTa1tAD179uTDDz+sl31T8zFjxgzC4TCdO3dm4MCBtfZp374927ZtA2D79u20b9++2vq+ffty+umn06tXL7788kvatWtH//79Oemkk8jLy6OkpISMjAxGjx7N8OHD2bRpExkZGQ28Z2qOjuR4PpzHH3+82rW5JEnxY9glSVKCfXXkQGlpKT169Khzm8ONkOnUqRMlJSXMnz+fxx9/nC+++IJZs2aRnZ1N+/btq0Ya1NbmCBkdi/0jFe+9995q7VlZWZSVlQEwaNAgFi1aBMBrr73GOeecU61vjx492Lx5M5s2baJNmzaccMIJtGrVivLycj744IOq/y9uuukmCgoK6N69O5deeikAZWVldY6GlI7GkRzPh/PXv/6Vq666ip///Oc8+OCDdW7XsmXL46pXklSdYZckSQlyJCMHVqxYQTgcrvbzs5/97LAjZFJTU2nTpg2tW7cmLy+Pjz76iG9961usWrWKTz/9lOXLlwPU2ibVp/T0dHbt2gXErm+Uk5NDXl4e5eXlDB48mI0bN/Lggw8CcOedd3LllVcyevRopk6dCsBtt93GiBEj+MEPfsCPf/xjAK688kpGjhzJrl27OO+88wB4++23CYfD8d9BNSsHH88A48aNY/78+VxzzTW8+uqrQOyYhdi03D//+c/cdttt3H777XTv3p358+czbtw4XnrpparrNa5ateqYR49Jkmp3+AnkkiSpQUycOLHqwvAH69WrF3PmzAHgzDPPrPWi2++++y7PPfccl19+OYsWLeLqq6+utn7Hjh2kpaURjUZZvHhx1Z3tkpKSaNu2bdVomdTU1GptEBshM2zYsHreWwXZ/iD2UK644goWLFjAyJEjmTp1alWQBbEA7PbbbwcgJyenauTXfiNHjmTkyJHV2vb//7Hfli1baN++PW3btj3OPZGO7nh+5plnaqz/+c9/Xm35uuuuq3o8atQoRo0aVW39s88+W/UeLUmqH47skiSpkRkwYAAlJSV19jn77LMpLy8nLy+PAQMGcOqpp1YbIfPWW28xePBghg4dyqhRoygqKiIcDnPBBRfQpUsXevXqxdy5c2u0QewCzP369Wvw/VTzMX78+BqBVX1KT0/noYcearDnlw5W38fzPffcQ7du3ert+SRJjuySJCkh6ho5kJSURE5ODqWlpXVeg+jRRx+ttnzwCJnaRg+MHTu2xvJX21auXMmgQYMIhUJHuiuSJElSo2LYJUlSI1Tb9MZ4yM7OJjs7OyG/W5IkSaoPTmOUJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCowmE3bt3buXqVOn0rVrV1q3bs3w4cMpKioiFArxwgsvJLo8SZKqRKMHHu+pSFwdUn37cm+iK5CO3+6D3pcPfr+WJAVHkwi7otEoY8eO5Te/+Q133nknf/rTn8jMzGT06NEA5ObmJrhCSZJiJ01/+hj+ueBA28iXYdoy+GJPwsqSjtn7W+D7bx9YHvln+Nd34MO/J64m6Vh9thvuez92HO937UL48yeJq0mS1DCSE13AkXjiiSeYN28eS5cupW/fvgCEw2EyMzNJT0+nW7duCa5QkiR4eAXM/AhCB7XtqYT/Xgevb4Lf5sEprRJVnXR0Fm2E29+Fgwe+RIE3P4PCz+AXQ+DcjERVJx2dT3fB/3kd/l4OkYPa12yDO5dA2Q747hkJK0+SVM+axMiuadOmMW7cuKqgC6BFixZkZmaSm5vLunXrGDhwYNVPjx49SE9PT2DFkqTmZvHmWNAF1cMBiJ1YfbY7NsJLagp2VcBP3oNINPZzsEgUKqMw5T0or0xMfdLRuu/9mkEXHFj+9Wr4wBGLkhQYjX5kV2lpKWvXruXhhx+usW79+vWMGTOGHj16sHTp0qr2SZMmUVHhRVIkSfHz+7WQFKoZDOwXARZuhE274dTWcS1NOmovfQK76wiyosC2ffDqp3Bp17iVJR2T9Tvgnc/r7pMEzF4H/U6KR0WSpIbW6MOuDRs2AJCRUX2c/KpVqygrK6txva69e/fy7LPP8vLLLx/V7wmHwyQlNYmBbpKkRuiMx9eRkt6pzj5RoO/Iq9i++MX4FCUdo843Ps5J+dcSapFyyD7Ryn3cdP+v+dt//WscK5OOXrvz/5luP3i6zj4R4L+L1vDAuX3r7CdJiq+WLVuyffv2o96u0ac7HTp0AGDNmjVVbdFolMmTJxOJRGqEXXPnzqVz586cddZZca1TktTMRb86OeaQHRu0DKleRCNUv/pcbULeyk5NQ+QI3589niUpMELRaON+V6+oqCA7O5t9+/bx4IMPkpaWxvTp0ykuLmbLli1s37692oisSy+9lIsvvpjvf//7R/T827ZtY/ny5fTv358TTzyxoXZDkhRw/74kdkevuk6pWoTgpVGQnhq3sqRj8qf1cFfx4ftNGwwjTmv4eqTjsXEXXL6g7q8akoDR3eHfBsSrKklSQ2r0I7uSk5OZPXs2nTp1YsKECUyaNIlLLrmE/Px8cnJyqgVdGzZsYOHChVx77bVH/Pwnnngiw4YNM+iSJB2XqzPrDrpCwEWnGXSpabjoNGiXcugPiknAyamQ3zGeVUnHpmOb2LFa14lPFLiqR5wKkiQ1uEYfdgEMGDCAwsJCdu3aRUlJCTfeeCPFxcU1pjA+9dRTXHbZZVVTHyVJipd+J8Et2bHHX/3jGgIy0+D2/vGuSjo2qS3gwXMgJanm8Zz0j/X/7xxIbhKfJCX4txzofELNyblJ/2i4rR/0ahf3siRJDaRJfkTZvXs3JSUlNcKuJ598km9/+9sJqkqS1Nxd1wt+MQTOOug7l/RUuL43/FcetGuZuNqko3VWB3j6gtjdFpP/EQi0TILLu8HMfO9ap6alQyt4Mg/+Ty9of9B78TknwyPnwjd7Jq42SVL9a/TX7KrNO++8w7nnnsu7777L4MGDE12OJEk17KmAvRFISzkwckBqqioisLMCTkh2NJeavkgUduyDli2gVYtEVyNJaghNMuySJEmSJEmSauN3c5IkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYPz/QzTh9vHKr5QAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -378,16 +378,16 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:57.981927Z", - "iopub.status.busy": "2024-11-23T19:54:57.981589Z", - "iopub.status.idle": "2024-11-23T19:54:58.165436Z", - "shell.execute_reply": "2024-11-23T19:54:58.164850Z" + "iopub.execute_input": "2024-12-05T03:21:32.642697Z", + "iopub.status.busy": "2024-12-05T03:21:32.642353Z", + "iopub.status.idle": "2024-12-05T03:21:32.821158Z", + "shell.execute_reply": "2024-12-05T03:21:32.820634Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAGOCAYAAACdRTJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA33ElEQVR4nO3de1yUdd7/8fdwFBRUMBUNdBQlwhNtRZoFY+faDZXsoBTd1ZZbbcveVvaz3LXtaFv3buZWt3dHLTtIB7N0KzesbElWkTykCIqE5KE8JCqCMvP7w5qCYZCvOdcMzev5ePB4xDXDdX158/kSb2YYbS6XyyUAAAAAQJuF+HsBAAAAANDeUKQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMhfl7AYGsofaAdq/7yt/L+MXompqkiJhor7eTd/BhJqzlLW9yBrNhDXJGa5gPaxztZw8TFKlW7F73lRZl3+PvZfxiXDT/fvU4/SSvt5N38GEmrOUtb3IGs2ENckZrmA9rHO1nDxM8tQ8AAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMBQuylSDQ0Nmjp1qhITExUVFaVRo0apuLhYNptN8+fP9/fyAAAAAASRMH8voC1cLpfGjRun4uJiTZs2TcnJyZo7d67GjBkjSUpPT7d0PbbQEJ02LU/9c86WLSREm9/7XMumPKPG+kOWriNYkDeaYyasQc7whtmwBjmjNcyH/7WLR6RmzZqlhQsXavHixbrpppt0zjnnaNasWQoNDVVcXJySkpIsXc+Q28aq54hBmj9qkt448/fqMvBE/eqeqy1dQzAhbzTHTFiDnOENs2ENckZrmA//axdFavr06crNzVVaWpr7WGhoqOx2u/vRqA0bNmj48OEaOHCghg8frvLycp+tZ8CEc7R6xps6sG2X6nfuVeljryv5iizZQtpFnO0OeaM5ZsIa5AxvmA1rkDNaw3z4X8AnXV5ersrKSuXk5HjcVl1d7S5SEydO1C233KINGzbolltu0U033dTma8TExCgyMtLjzeHI8rhvRGy0OvU+QbvWVrqP7VxdqYiYaHVKPMH00wsqDkdWizmTd/ByOJgJKzkcLeftcGR53Jecg4vDwWxYweEgZ3jncDAfVnA4PHOOiYk5pnMFfJGqqamRJHXv3r3J8fXr16uqqkrp6enasWOHSkpKdNVVV0mSrrrqKpWUlOibb7457usJ6xQlSWr47oD7WMN3+yVJ4d/fhuOHvNEcM2ENcoY3zIY1yBmtYT4CQ8AXqfj4eElSRUWF+5jL5dLkyZPldDqVnp6u6upq9e7dW6GhoZKOPO2vV69eqq6ubtM1amtrVV9f7/FWWLjE476H99VJksJjo93HIjp3lCQd+v42tKywcEmLOZN38GImrOUtb3IGs2ENckZrmA9rtJRzbW3tMZ0r4ItUamqqkpOTNWXKFM2bN0+LFi1Sdna2SkpKFB0drZSUFEvX07D3gPbVfKO4tL7uY/GD7GqoPaB91cf/EbBgR95ojpmwBjnDG2bDGuSM1jAfgSHgi1RYWJgKCgqUkJCgvLw85efn66KLLlJmZqaGDBmikJAQJSYmqqamRo2NjZKkxsZGff3110pMTPTJmspf/peG/H6Monp0VWR8rIZNulwVry2Ry+n0yfWCHXmjOWbCGuQMb5gNa5AzWsN8+F+7+Hekhg4dqqKioibHZs6cqczMTElH/n5q2LBheuWVV5Sbm6tXXnlF6enpOuEE3/yx3aoZbyoyLlajl/xNthCbNr/7uVY88JJPrgXyhidmwhrkDG+YDWuQM1rDfPhfuyhSzdXV1amsrEz5+fnuY08//bTy8vL0l7/8RV27dtXs2bN9dn1Xo1PFU59T8dTnfHYN/Ii80RwzYQ1yhjfMhjXIGa1hPvyvXRapVatWqbGx0f3S55J00kknadmyZX5cFQAAAIBg0S6LVEZGhlwul7+XAQAAACBIBfyLTQAAAABAoKFIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIChdlOkGhoaNHXqVCUmJioqKkqjRo1ScXGxbDab5s+f7+/lAQAAAAgiYf5eQFu4XC6NGzdOxcXFmjZtmpKTkzV37lyNGTNGkpSenm7ZWvr+ZrhSb7hYcWl9Vb+rVgWn32zZtYMVmaM5ZsIa5AxvmA1rkDO8YTYCQ7soUrNmzdLChQtVWlqqtLQ0SVJWVpbsdrvi4uKUlJRk2Vrqv9uv9c/9Ux1O6Ky0G39t2XWDGZmjOWbCGuQMb5gNa5AzvGE2AkO7KFLTp09Xbm6uu0RJUmhoqOx2u8LDwyVJt99+u9544w1t3rxZq1ev1qBBg3yylq2frJIkJV14mk/OD09kjuaYCWuQM7xhNqxBzvCG2QgMAf83UuXl5aqsrFROTo7HbdXV1e6n9Y0ePVqffPKJ+vTpY/USAQAAAASZgH9EqqamRpLUvXv3JsfXr1+vqqoqd5EaOXLkMV8jJiZGDQ0NHsf7h3XVnbHHfl405XBkaePh3V5vJ+/g43AwE1ZyOFrOm5zhcDAbVnA4yBneORzMhxUcDs+cIyIiVFtba3yugH9EKj4+XpJUUVHhPuZyuTR58mQ5nU5LX2gCAAAAAKR2UKRSU1OVnJysKVOmaN68eVq0aJGys7NVUlKi6OhopaSk/Oxr1NbWqr6+3uOtsHDJz/8E4FZYuKTFnMk7eDET1vKWNzmD2bAGOaM1zIc1Wsr5WB6NktrBU/vCwsJUUFCgiRMnKi8vT4mJicrPz1dsbKw2btyokBBru6AtJEQh4aGyhYVJNptCI8PlcrnkbDhs6TqCCZmjOWbCGuQMb5gNa5AzvGE2AkPAFylJGjp0qIqKipocmzlzpjIzMy1fS//LztbIx291v3/15le0r3oHr9/vQ2SO5pgJa5AzvGE2rEHO8IbZCAztokg1V1dXp7KyMuXn57uP3XbbbXrzzTe1bds2nXvuuYqPj9fatWuP+7UrXl+iiteXHPfzwjsyR3PMhDXIGd4wG9YgZ3jDbASGgP8bqZasWrVKjY2NTV5oYsaMGdqyZYsOHz6sbdu2+aREAQAAAIDUTh+RysjIkMvl8vcyAAAAAASpdvmIFAAAAAD4E0UKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAy1myLV0NCgqVOnKjExUVFRURo1apSKi4tls9k0f/58fy8PAAAAQBAJ8/cC2sLlcmncuHEqLi7WtGnTlJycrLlz52rMmDGSpPT0dMvWEhIRpjMevEEJIwerQ3ysDmzfrXXPLdL65xZZtoZgQt5ojpmwBjnDG2bDGuSM1jAfgaFdFKlZs2Zp4cKFKi0tVVpamiQpKytLdrtdcXFxSkpKsmwtIaGhqtuxRx9ceZ9qq7Yr7uQ+Ou+Ve3Twmz3avKDIsnUEC/JGc8yENcgZ3jAb1iBntIb5CAzt4ql906dPV25urrtESVJoaKjsdrvS09O1c+dOXXzxxUpJSdHgwYM1duxYffPNNz5Zy+G6eq185FXVbt4muVzatXazqj9Yru6np/rkesGOvNEcM2ENcoY3zIY1yBmtYT4CQ8AXqfLyclVWVionJ8fjturqaqWnp8tms+nOO+9UWVmZVq9erf79++uuu+6yZH22sFD1yEjV7nVVllwv2JE3mmMmrEHO8IbZsAY5ozXMh38EfJGqqamRJHXv3r3J8fXr16uqqkrp6emKi4tTVlaW+7YzzjhDVVVtH6SYmBhFRkZ6vDkcWUf5SOmMB6/XoX112jjv4zZfL1g5HFkt5kzewcvhYCas5HC0nLfDkXXUjyXnXzaHg9mwgsNBzvDO4WA+rOBweOYcExNzTOcK+CIVHx8vSaqoqHAfc7lcmjx5spxOp8cLTTidTj311FO69NJLfb6206bl6YRfpejDCQ/Ieeiwz68X7MgbzTET1iBneMNsWIOc0Rrmw38CvkilpqYqOTlZU6ZM0bx587Ro0SJlZ2erpKRE0dHRSklJaXL/3//+9+rUqZNuvfXWNl+jtrZW9fX1Hm+FhUu8fszpf7lWvc4eovcvv1f1u2qP9dMLKoWFS1rMmbyDFzNhLW95kzOYDWuQM1rDfFijpZxra48tu4B/1b6wsDAVFBRo4sSJysvLU2JiovLz8xUbG6uNGzcqJOTHLnj77bervLxcCxYsaHL8eDv9vuuUMHKQ/nnZNNXv3Ouz6+AI8kZzzIQ1yBneMBvWIGe0hvnwv4AvUpI0dOhQFRU1fSnHmTNnKjMz0/3+lClTtGLFCr333nuKjIz02Vo6nthNJ99wsRoPNuiyZf9wH9++bL0WT3jAZ9cNVuSN5pgJa5AzvGE2rEHOaA3zERjaRZFqrq6uTmVlZcrPz5ckrV27Vg899JAGDhyoESNGSJLsdrveeuut437t/Vu+1QsJlx3386Jl5I3mmAlrkDO8YTasQc5oDfMRGNplkVq1apUaGxvdLzSRlpYml8vl51UBAAAACBbtskhlZGRQnAAAAAD4TcC/ah8AAAAABBqKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYajdFqqGhQVOnTlViYqKioqI0atQoFRcXy2azaf78+f5eHgAAAIAgEubvBbSFy+XSuHHjVFxcrGnTpik5OVlz587VmDFjJEnp6emWrueMh25Q4nmnKjw2Wof21anq3SItv+8lOQ8dtnQdwYK80RwzYQ1yhjfMhjXIGa1hPvyvXRSpWbNmaeHChSotLVVaWpokKSsrS3a7XXFxcUpKSrJ0Peue/6eW/2WODtfVKzIuRlmzJmnIbWNV+tjrlq4jWJA3mmMmrEHO8IbZsAY5ozXMh/+1iyI1ffp05ebmukuUJIWGhsputys8PFySNHr0aFVWViokJESdOnXSE088oWHDhvlkPd9t2PLjOzabXE6XYvol+ORaIG94YiasQc7whtmwBjmjNcyH/wV8kSovL1dlZaVmzJjhcVt1dbVycnIkSS+++KI6d+4sSZo/f76uu+46lZSU+Gxdg28drSH5OQrvGKWDu/bqw/Ev+exaIG94YiasQc7whtmwBjmjNcyHf9lcLpfL34tozZIlS+RwOLRs2TKdfvrp7uPr169XWlqa5syZo/Hjxzf5mNmzZ2vGjBlavnx5m64RExOjhoYGj+P9w7rqztiRrX5s5wG91W/sWSqb/YEObN3VpusFq0f2LtXGw7u93k7ewYeZsJa3vMkZzIY1yBmtYT6s0VLOERERqq2tNT5XwL9qX3x8vCSpoqLCfczlcmny5MlyOp1NXmjihhtuUFJSku6++269+OKLlqzvu/Ia7VpbpbOeuM2S6wU78kZzzIQ1yBneMBvWIGe0hvnwj4AvUqmpqUpOTtaUKVM0b948LVq0SNnZ2SopKVF0dLRSUlLc933mmWf01Vdf6cEHH9Qdd9zR5mvU1taqvr7e462wcEmbPj4kPFSxPCf1qAoLl7SYM3kHL2bCWt7yJmcwG9YgZ7SG+bBGSzkfy6NRUjsoUmFhYSooKFBCQoLy8vKUn5+viy66SJmZmRoyZIhCQjw/hauvvlqFhYXauXPncV9PeEy0ki/PUkRstCSpa2ofDc3P0ddLvjju1wJ5wxMzYQ1yhjfMhjXIGa1hPgJDwL/YhCQNHTpURUVFTY7NnDlTmZmZkqR9+/Zp9+7dSkxMlCQtWLBAcXFxiouLO/6LcbnUL+dsnTYtTyERYTr47V5VLVym0r++dvyvBfKGJ2bCGuQMb5gNa5AzWsN8BIR2UaSaq6urU1lZmfLz8yVJ+/fv17hx47R//36FhoYqLi5OCxYskM1mO+7XPrSvTh9c8Zfjfl60jLzRHDNhDXKGN8yGNcgZrWE+AkO7LFKrVq1SY2Oj+4UmevTooc8//9zPqwIAAAAQLNplkcrIyFCAv2o7AAAAgF+wgH+xCQAAAAAINBQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxSpADPy77co44Hr/b2MFk2omKO4QXZ/LwN+1rF3N02omKPIrp38vRSfYA/6RnteuyT1HJ6mCRVzfHb+C9+4V2kTLzX+uO4Zqbrii//zwYr8hz3oG+157RJ70Grsw7YJ8/cCfsl6jkjTsEmXK35IP0nSzlWbVPro69pWtNbPKzti2KTLFT+0v/51zUNtuv/LyVf7eEU/z4Vv3KseZ6RqwYWTtWt1pfv4tVsLtODCydr5xUY/ru6XY3/NtwE/Cz9gD1rjwjfu1Qm/GijnocNyOZ2q27FHX3+6WmuefFv7t3wrKXDX3t7tWLZOrw39rb+X4RV70BrsQf8J9D0osQ99iUekfOTEc3+l8+beo+rFK/T6KTfp9VNuUvXiFTrvlXt04jmntPgxttDj9+WwhYUet3O1J/V79unUu3P9vQwEAPagtUoefkUvD7hac1Py9NH1f1WHrjG69MNHFdu/l7+XBj9hD1qLPYiWsA99iyLlIxn3X6eKeUu09ql3dKj2gA7VHtDap97RxoKPdfr910mSLit+UkPyc3TxOw8od9PL6ja0vyQpvGMHZc2apAnlczT647+pV9bQo17vh4e8B+aeq8v+85QuXfyoJCnh7CH69fvTNb7sRV36r8eUdOFpkqSkC0/T4NvGqLdjmCZUzNGEijkKiWj9AcprtxYofmh/2UJDNH7DbHVJSTxy7RFpunZrgfr8ergkKap7F13z1asK7xR1bOH9DGWzP1Dc4H7qlemZ2bBJl+uc2f+vybHLip9Un0vOkCQlX56l7ML/0dD/HqcrVj+rK9c8q+QrHIobZNdvPnhE4zfMluPZOxQaFXHUdYRFd9DwR27U5Stn6Yov/k8jH79VEZ07um+/dmuBUm+4WKM//pvGl72oUc9PVmR87FHPm3D2EF26+FGN3zBbV6x+VmfNvK3JOeO/n6Gffj4//VyH/GGsLnnvIU3Y+JIumPdnRcbF6NSpV+vKtc/rsuVPKfH8U4+6hk4nnqBrtxYoMi5GHbp11jXVryk8JvrINa9wNFnHCb8aqCtWPXPUc/oCe9A/e1CSvtuwRZ/c+rgObNul9DuuaLJ2SYobZNdFb9+nK9c+ryvXPq+s/5ukDt06uz8+IjZamU//UePXv6ixnz2hgVef5565o4kf0k8XzPuzrvryeV255lllfP+1lrx/LaSjf39ork17/PqLlV34P5qw8SVlzZqkiNhonfm3mzW+7EWN+fRxnXDKgCbnjOrRRee/9idNqJijX/9zepP97M1Pn+7ULX2Arlzz7I+f0+2XK6/mdXX4/nuLffSZumRh237jezywB9mD7EH/7kGJfejrfUiR8oHY/r0U06eHKt/+zOO2TW8tVWzfnortlyBJSh6Xpc8mPamXk6/WzjVHno5mHz1Sm976VHNPytOqJ97SqOfuVHTPuKNeNywqUt2GJevts/P17kWTFdO3p8598S6tmfm2Xjn5v7TigZeU+dQfFZfWV1/98z9aPeMt1RSW6uXkq/Vy8tVyNhxu0+fnanRq+7J1Shg5WJKUcNZg7a3cqoSRg468P3Kwdq7apEP76tp0vuOp4bsDWj3jTf3q7gnH9PGdk3vr0P46vT7styqa/H8646EbNGzS5Vqc+6AKTvudOif3UkrueUc9T8b916lzcm/NP/d2vXXWHxQZF6Mz/+fmJvdJvtyhD666X/N+NVGSNLLZ7S056/FbtfZ/F2juwGtUcNrvVDb7A6PPz559ppbc9JheG3yDwqIidcm7D+q7ihq9Nvh6rXr8TY147HdGvz06+O13+m7j1+o5/GRJP52F72dj5CBt+8z6pw6wB/23B3+6xq/+WayeI9I8b3M6teKhuXp92G/11lm3KbxTVJMftjIeuF6RXTqpIONmvXfp3eo3emSbrhndM04XFEzT5nc/1+vpN2reab9T5YIiSWr1a3Es2rLHky48Tf/M+bMKTr9Z8UP76ZL3HtLmBUV6JfW/VLVwmYZPv7HJ/QdcOUqlj73uvv3c2Xe16Rc3P9j5xUaFhIepa2ofSUfmorZqu3qe+eNcbFu65pg+X1PsQfYge9C/e1BiH1qxDylSPtDh+9/Y1G3f5XFb3Y7dR+7z/W8nyuZ8qO/Ka+RyOt2Ds+3zL/XVomK5Gp3aVPCJdn9Zpb6/GX7U69pCQrTiwZd1uK5ejXUNsmeP0PZl67R5QZFcjU7VfLRSX32wXP3HZf7sz3Hb0jVNBrX00dfdg9zzzEHa+pl13yiaW/f8IkV26aR+Y88y/tj6Pfv05f++K1ejU1XvfS5bSIgq316quh171PDdftUUlrqfY+yVzaZ+Y89SyUNzVb9zrxr2HtDy++aoz8UZTX4rsuap+Trw9U4d2lenFQ/MUeL5pyoiNrrVUzsPHVZM357qEB+rxoMN2lG83ujzK5v9ofZv+VaHDxzUVx8sl6vRqfJXPpLL6VTlW0sV1a2zOvXuZnTObUtXu2eh54g0lT72uhLO+mEWBmvrZ6uNznc8sAf9uwd/cGDrLkV28XxRkt1fVmnHsnVyHjqs+l21Wj3jLfcPGraQEPW9dIRW/vU1NXy3X/U79+qLx99o0/X65ZytXasrVfbi+2qsP6TGugbtWLZOko7v16KNe3zt0wtUv6tW9Tv36utPVmlf9Q7VfLTyyH57+zN1SU1SSPiPv3nd/G6RdhSvl/PQYa1+4i25nC71buHRdW9cTqe2f75OCSMHKSy6g7oMOFFrn17wk/1o3VywB9mD7EH/7kGJfWhF3hQpHzi4q1aSFNXDs7VHde965D4790qS9td843Gf/VuaHttX/U2bfgNwuK5e9d9fW5KiE+K1r/m5qrYrOiH+qOc6mq1LV6vHGScrIjZasf16qfLtzxQaEabohDgljBykrZ9a/8PzD5wNh1XyyKtKn3xlk2+QbXHw2++avN94sEF1O/a43z9cV3/Uh4g7xMcqNDJc+6p/zH5f1XZJUnSvH7P/6df5h/se7ev80X89oi4DTtToTx7XpYsfNf4mVPfNHvd/N9bVe3xukowfAt+6dLV6njlYnQf0VsPeA6p693PFD+6n8E5R6n7qQL/MAnvQv3vwB9EJcarfXetxPKZPDzmeu0OXr5yl8Rtm65zZdynq+6cVRcbFKDQiXPtrvnXf/6f/3ZpOJ3bT3sqtXtZy/L4Wbd3jdT/5ftLSfgsJDVXYT37b3WTuXC7tr/lW0T3N1ndkPw5SjzNStWPFBtV8tFIJZw5SxxO7qWNCvLYXrzM637FiD7IHPdfCHrRyD0rsQyv2IUXKB/Zu/Fq1X22X/dIRHrfZs0eo9qvt2rvpyDcal9PlcZ+OJ57Q5P1OiSfowDbP3yY053I6m7x/YOtOdfI4V3cd2Lqzxfub2LV2s1xOp07+7a+14z/r5XI6tXXpGg0cf66iu3fVjv+YPVJyvG1641Mdqq3TSdde4D52aP/BJt8wbaEhTZ4Tfrwc3LlXjfWH1Cnxx+x/+O8DW3/8Ov706+y+/Shf511rN2vJjY/p1UHXafl9c3Tm/9ysmL49JUmH9tc1+fyi2vDN7njY9u+16jKgt+zZZ2rrp6vVWH9Iu7/crLSbfqODO/eq9vv/uVmJPej/PWgLDVHSBadp27+/9Lht+PQbVb+rVm9n/VFzB16jf13zsPu2+l21amw4pI4/eWS0YxsfJd235VvF2hNavO1oXwuT7w9t3eOmmsydzaboXvE6sG2n0Tm2Ll2jnmecrF6ZQ7V16eojP7zYbBpwxSh9U7JBjXUNx7w+E+xB9mBz7EFr96DEPrRiH1KkfKT4Ty8o+QqH0m76jcI7RSk8Jlon3/RrJV/uUPHU51v92J5nnKzE80+VLTRE/caepa4n99Hm9z43XkPl/H+rR0aq+lySIVtIiHo7hinxglO1seATSUd+U9Oxd7djfnWWbf9eq5NvvERblx5p+1s/W62Tb7xEO1ZsUGP9oWM653HjcmnFAy9pSH6O+9DO1ZvU7ZQB6jzwRIVEhB15xMoXrybjcmnTW58qffJVioyPVURstE6deo2qFi3TodoD7rulTfyNohPiFNaxg06ZMkHVi1eoYe8Br6cNCQ9T/3GZiujSSXK53Pd1NTq///wq1f+yTNlCQ9Rl4IkaOOGc4/+5taBh7wHt+rJKJ//2p7Owpsls+AN70H97sHNyL42c8XtFJ8Rr5aOvedweHhOthtoDath7QFE9ujbZpy6nU5sXFGnY7ZcronNHRcbFaMjvx7Tpupve/ETxQ/op5ZrzFRIRptCoCHXPSJV09K+F0feHNu5xU30vOUMnnJoiW1ioBt+SrZCwUH398Sqjc+xeV6XGQ4c14EqH+zex29z70dqnmrEH2YPsQf/uQYl96Ot9yL8j5SPV7/9Hi3Mf1ND/vkzD7rhc0pHX7V+c++BRf7isfHup+o/L1Nn/+IP2b92pwhse1YGvzX4jIkm1m7fpo+se0Sn/b4LO/Nst2r/lG31y6wzt+v6PCDcvKFK/0SN15ZrnZLPZ9OqQ69v8B36StPXT1er76+Hubwxbl65RRGzHgHheuCTVFJZq19oq9fr+ucnbPlujshfe10Vv3SdnwyGt/sfbbfrNyrEonvq8TpuWp9EfPSbZbPr64y9U/Kem37A2zvtY5786VdEJ8dpe9KU+++OTRz2vPftMnTYtT6GR4TqwdZf+Pekp7aveIUladvezGvn3WzS+7EV9W7pR5a8WtvhbKF/Y+ulqxaX11fbv/02KrZ+u1imTr/LrLLAHrXXKXVdp2KRxcrlcqtu+W1uXrtY7593u/jdsfqr4zy9oxCM3KqX8PNVW7VDZ7A/U6+wh7tuX3f2sRvx1oi5b9qQO7tyrL59dqISRg4/6P8QDW3fp/XH36tQ/X6NfTZmgxkOHVfn2Uu1Ytu6oXwvT7w9t2eOmyl8rVPqdV+qEU5K1d9NW/euah91PuTWx7bMjfzOw+8sqSUee+jJwwrmWzwV70FrsQfZgS9iHvmVzuVyej+VBkrS9eL0WZd/j72UEBFtIiPJqXtf8UZO0e13VMZ3jovn3q8fpJ3m9PZjybs//SHBMnx7K+fwfennA1T/7lXCYibbz5R4M9Jx7j0rX2f/4g15JvdbfSwk4CSMHK2vWf+uVk//rZ52nvc6GldiD7MGWHK89KLXf+bCSFT+PmuCpfWiTrml95Dx0uMU/RkRw6ZrWVwd3fufXl/UNRsG0B2PsPdVtWLJks6nTiSco/Y4rVDnf8+V7cWQu/PF3iMGIPcgebAl70FqBtg95al87kr3kb+p0oucffFZ/sEKf3Pz3n33+c1++Wz0yPBv6oX0HFRIeqhUPzm31b3iCSb+xZ2n4Ize2eNt7v75be9Z/dUzn7Z6RqvNentLibR9P/Lu2LF5xTOc11dqs9RyRpmVHeV71LxV70BphUZE664nfK7pXvA7V1mnL4hVacf9Lknz/NQhEP/xjn83VLPlC8YPt+vekpy1ekf+wB63BHmyKPdgU+/BHFKl2ZH7WH316/sUTHvDp+X9JNr35qTa9+ekxf/wLCZe1eHzHsnV6OfnqYz7v8eLrWWuv2IPW2P1lld466w8t3haMsxkI3xMCBXvQGuzBptiDTbEPf8RT+wAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAULsoUg0NDZo6daoSExMVFRWlUaNGqbi4WDabTfPnz/f38gAAAAAEmYAvUi6XS+PGjdMzzzyje+65R++++67sdrvGjBkjSUpPT/fLukI7RGjsv5/QhIo5frl+MCJzNMdMWIOc4Q2zYQ1yhjfMhn+F+XsBRzNr1iwtXLhQpaWlSktLkyRlZWXJbrcrLi5OSUlJfllX+h1XaN+WbxXVvYtfrh+MyBzNMRPWIGd4w2xYg5zhDbPhXwH/iNT06dOVm5vrLlGSFBoaKrvd7vFo1L333iubzaY1a9b4dE3xQ/qpt2OY1vzjbZ9eBz8iczTHTFiDnOENs2ENcoY3zIb/BXSRKi8vV2VlpXJycjxuq66ublKkSkpK9Pnnn6tPnz4+XZMtNEQjHp2oz6c8I2fDYZ9eC0eQOZpjJqxBzvCG2bAGOcMbZiMwBHSRqqmpkSR17969yfH169erqqrKXaTq6+t1yy236Kmnnjqm68TExCgyMtLjzeHI8rjvoJuztXN1pbZ/vu6YrhXMHI6sFnNuLW+JzH/JHA5mwkoOR8t5OxxZLd6fnIOHw8FsWMHhIGd453C0fT6YjWPncHjmHBMTc0znCugiFR8fL0mqqKhwH3O5XJo8ebKcTqe7SP3pT39Sbm6u+vbt69P1xPTtqZRrztfy+/iDPquQOZpjJqxBzvCG2bAGOcMbZiNwBPSLTaSmpio5OVlTpkxReHi4OnXqpKeeekorV65UdHS0UlJSVFRUpOXLl+vhhx8+5uvU1ta2eHx78Xotyr7H/X6P009SVLfOGvvZDElSSFiowjtG6cq1z6nw+r/yW4GjKCxcoh6nn+T19uZ5S2T+S8dMWMtb3uQMZsMa5IzWtHU+mI2f52g/e5gI6CIVFhamgoICTZw4UXl5eUpMTFR+fr5iY2O1ceNGhYSE6OOPP9a6detkt9slSVu2bNEFF1yg559/Xueff/5xXU/lgn/r609Xud8/4VcpGvn4LXrn3Nt1cOfe43otHEHmaI6ZsAY5wxtmwxrkDG+YjcAR0EVKkoYOHaqioqImx2bOnKnMzExJ0l133aW77rrLfVvfvn317rvvatCgQcd9LY11DTpQt8v9fv3OvZLLpQNbd7XyUfg5yBzNMRPWIGd4w2xYg5zhDbMROAL6b6RaUldXp7KyMr/9Q7w/ta1orV5OvtrfywgqZI7mmAlrkDO8YTasQc7whtnwn4B/RKq5VatWqbGx0WuR2rx5s7ULAgAAABB02l2RysjIkMvl8vcyAAAAAASxdvfUPgAAAADwN4oUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABhqN0WqoaFBU6dOVWJioqKiojRq1CgVFxfLZrNp/vz5/l4eAAAAgCAS5u8FtIXL5dK4ceNUXFysadOmKTk5WXPnztWYMWMkSenp6ZatZeTfb5F9zEg5Dx12H1vy28dUU1hq2RqCCXmjOWbCGuQMb5gNa5AzWsN8BIZ2UaRmzZqlhQsXqrS0VGlpaZKkrKws2e12xcXFKSkpydL1bHhpsZbd/ayl1wxm5I3mmAlrkDO8YTasQc5oDfPhf+2iSE2fPl25ubnuEiVJoaGhstvtCg8PlyT17dtXHTp0UIcOHdwfc8EFF/hlvQAAAAB+2QK+SJWXl6uyslIzZszwuK26ulo5OTnu9wsKCjRo0CCfr6nf2LPUb8xI1X37nTa98YlWz3xbrkanz68brMgbzTET1iBneMNsWIOc0Rrmw/8CvkjV1NRIkrp3797k+Pr161VVVXVc/j4qJiZGDQ0NHsf7h3XVnbEjmxz78tmFWn7fHB3cVav4If2U+WS+QiMjtPKRV3/2On7pHI4sbTy82+vt5B18HA5mwkoOR8t5kzMcDmbDCg4HOcM7h4P5sILD4ZlzRESEamtrjc8V8K/aFx8fL0mqqKhwH3O5XJo8ebKcTmeTIjVhwgQNGTJEN998s/bs2eOT9exaXamDO/dKLpd2frFRKx99TfbsM31yLZA3PDET1iBneMNsWIOc0RrmIzAEfJFKTU1VcnKypkyZonnz5mnRokXKzs5WSUmJoqOjlZKSIkn69NNP9cUXX+g///mPXC6Xbr311jZfo7a2VvX19R5vhYVLjv7BTpdkO8ZPLsgUFi5pMWfyDl7MhLW85U3OYDasQc5oDfNhjZZyPpZHo6R2UKTCwsJUUFCghIQE5eXlKT8/XxdddJEyMzM1ZMgQhYQc+RQSExMlSZGRkbr55pv12Wef+WQ9fS8dofCYaElS19Q+GjppnDa/W+STa4G84YmZsAY5wxtmwxrkjNYwH4Eh4P9GSpKGDh2qoqKmwzFz5kxlZmZKkvbv36/Dhw+rc+fOcrlcevXVVzVs2DCfrOWkay/Q8Ok3KiQ8VHXb92hjwcda9cRbPrkWyBuemAlrkDO8YTasQc5oDfMRGNpFkWqurq5OZWVlys/PlyRt375dOTk5amxsVGNjo04++WQ9+eSTPrn2P8f+2SfnRcvIG80xE9YgZ3jDbFiDnNEa5iMwtMsitWrVKjU2NrpfaKJfv35auXKln1cFAAAAIFi0yyKVkZEhl8vl72UAAAAACFIB/2ITAAAAABBoKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYKjdFKmGhgZNnTpViYmJioqK0qhRo1RcXCybzab58+f7e3kAAAAAgkiYvxfQFi6XS+PGjVNxcbGmTZum5ORkzZ07V2PGjJEkpaenW76mE885RemTr1Rs/146vK9Oa55eoLVPvWP5OoIFeaM5ZsIa5AxvmA1rkDNaw3z4V7soUrNmzdLChQtVWlqqtLQ0SVJWVpbsdrvi4uKUlJRk6Xp6ZQ7V8L/epKW3zdS2orUKi4pUx97dLF1DMCFvNMdMWIOc4Q2zYQ1yRmuYD/9rF0/tmz59unJzc90lSpJCQ0Nlt9vdj0YdPHhQv/vd7zRgwAANHjxYN954o8/Wk37nlVr19ze0delquRqdOrSvTnvKqn12vWBH3miOmbAGOcMbZsMa5IzWMB/+F/CPSJWXl6uyslIzZszwuK26ulo5OTmSpDvvvFMdOnTQhg0bZLPZtH37dp+sJywqUt2G9VfNRys15tPHFdG5o74pKVfx1Oe1r3qHT64ZzMgbzTET1iBneMNsWIOc0RrmIzAE/CNSNTU1kqTu3bs3Ob5+/XpVVVUpPT1d+/bt0+zZs3XffffJZrNJknr06NHma8TExCgyMtLjzeHI8rhvRJeOsoWEqM8lGfrwqvtVkHGz6r7ZI8ezdxzrpxg0HI6sFnMm7+DlcDATVnI4Ws7b4cjyuC85BxeHg9mwgsNBzvDO4WA+rOBweOYcExNzTOcK+CIVHx8vSaqoqHAfc7lcmjx5spxOp9LT07Vx40bFx8fr3nvv1amnnqqsrCwtXbrUJ+s5tO+gJOnLZxZq35Zv1FjXoJKH5ip+sJ3npfoAeaM5ZsIa5AxvmA1rkDNaw3wEhoAvUqmpqUpOTtaUKVM0b948LVq0SNnZ2SopKVF0dLRSUlLU2NioTZs2KT09XcuXL9f06dM1duxY7d27t03XqK2tVX19vcdbYeESj/seqj1w5CFTl+s4f6a/fIWFS1rMmbyDFzNhLW95kzOYDWuQM1rDfFijpZxra2uP6VwBX6TCwsJUUFCghIQE5eXlKT8/XxdddJEyMzM1ZMgQhYSEKCkpSWFhYbrqqqskSRkZGerWrZs2bNjgkzWVzf5AqTdcouhe8QqNDFf6nVfq2y82an/Ntz65XrAjbzTHTFiDnOENs2ENckZrmA//C/gXm5CkoUOHqqioqMmxmTNnKjMzU5LUrVs3ORwOffjhhzr//PO1YcMG7dixQ8nJyT5Zz+p/zFdE50669INHJFuIdhSvV+H1f/XJtUDe8MRMWIOc4Q2zYQ1yRmuYD/9rF0Wqubq6OpWVlSk/P9997Omnn9Z1112nSZMmKTw8XHPmzFGXLl18swCXSyseeEkrHnjJN+dHU+SN5pgJa5AzvGE2rEHOaA3z4XftskitWrVKjY2N7n9DSpL69eunJUuW+G9RAAAAAIJGuyxSGRkZcvHHdQAAAAD8JOBfbAIAAAAAAg1FCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwFCYvxfQVg0NDbrvvvv0wgsv6Ntvv9Xw4cP18MMPKyMjQ2+//bays7MtWceEijlN3g+NCNee8hq9c84kS64fbMgbzTET1iBneMNsWIOc0RrmIzC0iyLlcrk0btw4FRcXa9q0aUpOTtbcuXM1ZswYSVJ6erpla3k5+eom71/6r8dUOf8zy64fbMgbzTET1iBneMNsWIOc0RrmIzC0iyI1a9YsLVy4UKWlpUpLS5MkZWVlyW63Ky4uTklJSX5ZV7dhyeoy8ERVvFbol+sHG/JGc8yENcgZ3jAb1iBntIb58J92UaSmT5+u3Nxcd4mSpNDQUNntdoWHh2vz5s0aPXq0+7Y9e/Zo79692rVrl0/XNWD8KNV8tFJ123f79Do4grzRHDNhDXKGN8yGNcgZrWE+/CfgX2yivLxclZWVysnJ8biturpa6enp6tu3r0pLS91vo0eP1vjx49t8jZiYGEVGRnq8ORxZXj8mLCpS9uwztWHuv8w/qSDlcGS1mDN5By+Hg5mwksPRct4OR5bXjyHn4OBwMBtWcDjIGd45HMyHFRwOz5xjYmKO6VwB/4hUTU2NJKl79+5Njq9fv15VVVUefx/V0NCgl19+We+//75P19X3N8N1uK5BWxav8Ol1cAR5ozlmwhrkDG+YDWuQM1rDfPhXwD8iFR8fL0mqqKhwH3O5XJo8ebKcTqdHkXrnnXfUu3dvnXLKKW2+Rm1trerr6z3eCguXeP2YARPO0cbXl8jV6DT7hIJYYeGSFnMm7+DFTFjLW97kDGbDGuSM1jAf1mgp59ra2mM6V8AXqdTUVCUnJ2vKlCmaN2+eFi1apOzsbJWUlCg6OlopKSlN7v/cc8/puuuu8+maYvv3UvdTU7ThFR5GtQJ5ozlmwhrkDG+YDWuQM1rDfPhfwD+1LywsTAUFBZo4caLy8vKUmJio/Px8xcbGauPGjQoJ+bEL1tTU6OOPP9acOXNaOePPN+CqUdq+bJ1qK7f59Do4grzRHDNhDXKGN8yGNcgZrWE+/C/gi5QkDR06VEVFRU2OzZw5U5mZmU2Ovfjii7rkkkvcTwf0lRX3v+TT86Mp8kZzzIQ1yBneMBvWIGe0hvnwv4B/al9L6urqVFZW5vH3US+88ILPn9YHAAAAAO3iEanmVq1apcbGRo8itWHDBj+tCAAAAEAwaZdFKiMjQy6Xy9/LAAAAABCk2uVT+wAAAADAnyhSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGDI5uJftvWqofaAdq/7yt/L+MXompqkiJhor7eTd/BhJqzlLW9yBrNhDXJGa5gPaxztZw8TFCkAAAAAMMRT+wAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADA0P8HKTcI9XEca0wAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAGOCAYAAACdRTJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA33ElEQVR4nO3de1yUdd7/8fdwFBRUMBUNdBQlwhNtRZoFY+faDZXsoBTd1ZZbbcveVvaz3LXtaFv3buZWt3dHLTtIB7N0KzesbElWkTykCIqE5KE8JCqCMvP7w5qCYZCvOdcMzev5ePB4xDXDdX158/kSb2YYbS6XyyUAAAAAQJuF+HsBAAAAANDeUKQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMhfl7AYGsofaAdq/7yt/L+MXompqkiJhor7eTd/BhJqzlLW9yBrNhDXJGa5gPaxztZw8TFKlW7F73lRZl3+PvZfxiXDT/fvU4/SSvt5N38GEmrOUtb3IGs2ENckZrmA9rHO1nDxM8tQ8AAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMBQuylSDQ0Nmjp1qhITExUVFaVRo0apuLhYNptN8+fP9/fyAAAAAASRMH8voC1cLpfGjRun4uJiTZs2TcnJyZo7d67GjBkjSUpPT7d0PbbQEJ02LU/9c86WLSREm9/7XMumPKPG+kOWriNYkDeaYyasQc7whtmwBjmjNcyH/7WLR6RmzZqlhQsXavHixbrpppt0zjnnaNasWQoNDVVcXJySkpIsXc+Q28aq54hBmj9qkt448/fqMvBE/eqeqy1dQzAhbzTHTFiDnOENs2ENckZrmA//axdFavr06crNzVVaWpr7WGhoqOx2u/vRqA0bNmj48OEaOHCghg8frvLycp+tZ8CEc7R6xps6sG2X6nfuVeljryv5iizZQtpFnO0OeaM5ZsIa5AxvmA1rkDNaw3z4X8AnXV5ersrKSuXk5HjcVl1d7S5SEydO1C233KINGzbolltu0U033dTma8TExCgyMtLjzeHI8rhvRGy0OvU+QbvWVrqP7VxdqYiYaHVKPMH00wsqDkdWizmTd/ByOJgJKzkcLeftcGR53Jecg4vDwWxYweEgZ3jncDAfVnA4PHOOiYk5pnMFfJGqqamRJHXv3r3J8fXr16uqqkrp6enasWOHSkpKdNVVV0mSrrrqKpWUlOibb7457usJ6xQlSWr47oD7WMN3+yVJ4d/fhuOHvNEcM2ENcoY3zIY1yBmtYT4CQ8AXqfj4eElSRUWF+5jL5dLkyZPldDqVnp6u6upq9e7dW6GhoZKOPO2vV69eqq6ubtM1amtrVV9f7/FWWLjE476H99VJksJjo93HIjp3lCQd+v42tKywcEmLOZN38GImrOUtb3IGs2ENckZrmA9rtJRzbW3tMZ0r4ItUamqqkpOTNWXKFM2bN0+LFi1Sdna2SkpKFB0drZSUFEvX07D3gPbVfKO4tL7uY/GD7GqoPaB91cf/EbBgR95ojpmwBjnDG2bDGuSM1jAfgSHgi1RYWJgKCgqUkJCgvLw85efn66KLLlJmZqaGDBmikJAQJSYmqqamRo2NjZKkxsZGff3110pMTPTJmspf/peG/H6Monp0VWR8rIZNulwVry2Ry+n0yfWCHXmjOWbCGuQMb5gNa5AzWsN8+F+7+Hekhg4dqqKioibHZs6cqczMTElH/n5q2LBheuWVV5Sbm6tXXnlF6enpOuEE3/yx3aoZbyoyLlajl/xNthCbNr/7uVY88JJPrgXyhidmwhrkDG+YDWuQM1rDfPhfuyhSzdXV1amsrEz5+fnuY08//bTy8vL0l7/8RV27dtXs2bN9dn1Xo1PFU59T8dTnfHYN/Ii80RwzYQ1yhjfMhjXIGa1hPvyvXRapVatWqbGx0f3S55J00kknadmyZX5cFQAAAIBg0S6LVEZGhlwul7+XAQAAACBIBfyLTQAAAABAoKFIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIChdlOkGhoaNHXqVCUmJioqKkqjRo1ScXGxbDab5s+f7+/lAQAAAAgiYf5eQFu4XC6NGzdOxcXFmjZtmpKTkzV37lyNGTNGkpSenm7ZWvr+ZrhSb7hYcWl9Vb+rVgWn32zZtYMVmaM5ZsIa5AxvmA1rkDO8YTYCQ7soUrNmzdLChQtVWlqqtLQ0SVJWVpbsdrvi4uKUlJRk2Vrqv9uv9c/9Ux1O6Ky0G39t2XWDGZmjOWbCGuQMb5gNa5AzvGE2AkO7KFLTp09Xbm6uu0RJUmhoqOx2u8LDwyVJt99+u9544w1t3rxZq1ev1qBBg3yylq2frJIkJV14mk/OD09kjuaYCWuQM7xhNqxBzvCG2QgMAf83UuXl5aqsrFROTo7HbdXV1e6n9Y0ePVqffPKJ+vTpY/USAQAAAASZgH9EqqamRpLUvXv3JsfXr1+vqqoqd5EaOXLkMV8jJiZGDQ0NHsf7h3XVnbHHfl405XBkaePh3V5vJ+/g43AwE1ZyOFrOm5zhcDAbVnA4yBneORzMhxUcDs+cIyIiVFtba3yugH9EKj4+XpJUUVHhPuZyuTR58mQ5nU5LX2gCAAAAAKR2UKRSU1OVnJysKVOmaN68eVq0aJGys7NVUlKi6OhopaSk/Oxr1NbWqr6+3uOtsHDJz/8E4FZYuKTFnMk7eDET1vKWNzmD2bAGOaM1zIc1Wsr5WB6NktrBU/vCwsJUUFCgiRMnKi8vT4mJicrPz1dsbKw2btyokBBru6AtJEQh4aGyhYVJNptCI8PlcrnkbDhs6TqCCZmjOWbCGuQMb5gNa5AzvGE2AkPAFylJGjp0qIqKipocmzlzpjIzMy1fS//LztbIx291v3/15le0r3oHr9/vQ2SO5pgJa5AzvGE2rEHO8IbZCAztokg1V1dXp7KyMuXn57uP3XbbbXrzzTe1bds2nXvuuYqPj9fatWuP+7UrXl+iiteXHPfzwjsyR3PMhDXIGd4wG9YgZ3jDbASGgP8bqZasWrVKjY2NTV5oYsaMGdqyZYsOHz6sbdu2+aREAQAAAIDUTh+RysjIkMvl8vcyAAAAAASpdvmIFAAAAAD4E0UKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAy1myLV0NCgqVOnKjExUVFRURo1apSKi4tls9k0f/58fy8PAAAAQBAJ8/cC2sLlcmncuHEqLi7WtGnTlJycrLlz52rMmDGSpPT0dMvWEhIRpjMevEEJIwerQ3ysDmzfrXXPLdL65xZZtoZgQt5ojpmwBjnDG2bDGuSM1jAfgaFdFKlZs2Zp4cKFKi0tVVpamiQpKytLdrtdcXFxSkpKsmwtIaGhqtuxRx9ceZ9qq7Yr7uQ+Ou+Ve3Twmz3avKDIsnUEC/JGc8yENcgZ3jAb1iBntIb5CAzt4ql906dPV25urrtESVJoaKjsdrvS09O1c+dOXXzxxUpJSdHgwYM1duxYffPNNz5Zy+G6eq185FXVbt4muVzatXazqj9Yru6np/rkesGOvNEcM2ENcoY3zIY1yBmtYT4CQ8AXqfLyclVWVionJ8fjturqaqWnp8tms+nOO+9UWVmZVq9erf79++uuu+6yZH22sFD1yEjV7nVVllwv2JE3mmMmrEHO8IbZsAY5ozXMh38EfJGqqamRJHXv3r3J8fXr16uqqkrp6emKi4tTVlaW+7YzzjhDVVVtH6SYmBhFRkZ6vDkcWUf5SOmMB6/XoX112jjv4zZfL1g5HFkt5kzewcvhYCas5HC0nLfDkXXUjyXnXzaHg9mwgsNBzvDO4WA+rOBweOYcExNzTOcK+CIVHx8vSaqoqHAfc7lcmjx5spxOp8cLTTidTj311FO69NJLfb6206bl6YRfpejDCQ/Ieeiwz68X7MgbzTET1iBneMNsWIOc0Rrmw38CvkilpqYqOTlZU6ZM0bx587Ro0SJlZ2erpKRE0dHRSklJaXL/3//+9+rUqZNuvfXWNl+jtrZW9fX1Hm+FhUu8fszpf7lWvc4eovcvv1f1u2qP9dMLKoWFS1rMmbyDFzNhLW95kzOYDWuQM1rDfFijpZxra48tu4B/1b6wsDAVFBRo4sSJysvLU2JiovLz8xUbG6uNGzcqJOTHLnj77bervLxcCxYsaHL8eDv9vuuUMHKQ/nnZNNXv3Ouz6+AI8kZzzIQ1yBneMBvWIGe0hvnwv4AvUpI0dOhQFRU1fSnHmTNnKjMz0/3+lClTtGLFCr333nuKjIz02Vo6nthNJ99wsRoPNuiyZf9wH9++bL0WT3jAZ9cNVuSN5pgJa5AzvGE2rEHOaA3zERjaRZFqrq6uTmVlZcrPz5ckrV27Vg899JAGDhyoESNGSJLsdrveeuut437t/Vu+1QsJlx3386Jl5I3mmAlrkDO8YTasQc5oDfMRGNplkVq1apUaGxvdLzSRlpYml8vl51UBAAAACBbtskhlZGRQnAAAAAD4TcC/ah8AAAAABBqKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYajdFqqGhQVOnTlViYqKioqI0atQoFRcXy2azaf78+f5eHgAAAIAgEubvBbSFy+XSuHHjVFxcrGnTpik5OVlz587VmDFjJEnp6emWrueMh25Q4nmnKjw2Wof21anq3SItv+8lOQ8dtnQdwYK80RwzYQ1yhjfMhjXIGa1hPvyvXRSpWbNmaeHChSotLVVaWpokKSsrS3a7XXFxcUpKSrJ0Peue/6eW/2WODtfVKzIuRlmzJmnIbWNV+tjrlq4jWJA3mmMmrEHO8IbZsAY5ozXMh/+1iyI1ffp05ebmukuUJIWGhsputys8PFySNHr0aFVWViokJESdOnXSE088oWHDhvlkPd9t2PLjOzabXE6XYvol+ORaIG94YiasQc7whtmwBjmjNcyH/wV8kSovL1dlZaVmzJjhcVt1dbVycnIkSS+++KI6d+4sSZo/f76uu+46lZSU+Gxdg28drSH5OQrvGKWDu/bqw/Ev+exaIG94YiasQc7whtmwBjmjNcyHf9lcLpfL34tozZIlS+RwOLRs2TKdfvrp7uPr169XWlqa5syZo/Hjxzf5mNmzZ2vGjBlavnx5m64RExOjhoYGj+P9w7rqztiRrX5s5wG91W/sWSqb/YEObN3VpusFq0f2LtXGw7u93k7ewYeZsJa3vMkZzIY1yBmtYT6s0VLOERERqq2tNT5XwL9qX3x8vCSpoqLCfczlcmny5MlyOp1NXmjihhtuUFJSku6++269+OKLlqzvu/Ia7VpbpbOeuM2S6wU78kZzzIQ1yBneMBvWIGe0hvnwj4AvUqmpqUpOTtaUKVM0b948LVq0SNnZ2SopKVF0dLRSUlLc933mmWf01Vdf6cEHH9Qdd9zR5mvU1taqvr7e462wcEmbPj4kPFSxPCf1qAoLl7SYM3kHL2bCWt7yJmcwG9YgZ7SG+bBGSzkfy6NRUjsoUmFhYSooKFBCQoLy8vKUn5+viy66SJmZmRoyZIhCQjw/hauvvlqFhYXauXPncV9PeEy0ki/PUkRstCSpa2ofDc3P0ddLvjju1wJ5wxMzYQ1yhjfMhjXIGa1hPgJDwL/YhCQNHTpURUVFTY7NnDlTmZmZkqR9+/Zp9+7dSkxMlCQtWLBAcXFxiouLO/6LcbnUL+dsnTYtTyERYTr47V5VLVym0r++dvyvBfKGJ2bCGuQMb5gNa5AzWsN8BIR2UaSaq6urU1lZmfLz8yVJ+/fv17hx47R//36FhoYqLi5OCxYskM1mO+7XPrSvTh9c8Zfjfl60jLzRHDNhDXKGN8yGNcgZrWE+AkO7LFKrVq1SY2Oj+4UmevTooc8//9zPqwIAAAAQLNplkcrIyFCAv2o7AAAAgF+wgH+xCQAAAAAINBQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxSpADPy77co44Hr/b2MFk2omKO4QXZ/LwN+1rF3N02omKPIrp38vRSfYA/6RnteuyT1HJ6mCRVzfHb+C9+4V2kTLzX+uO4Zqbrii//zwYr8hz3oG+157RJ70Grsw7YJ8/cCfsl6jkjTsEmXK35IP0nSzlWbVPro69pWtNbPKzti2KTLFT+0v/51zUNtuv/LyVf7eEU/z4Vv3KseZ6RqwYWTtWt1pfv4tVsLtODCydr5xUY/ru6XY3/NtwE/Cz9gD1rjwjfu1Qm/GijnocNyOZ2q27FHX3+6WmuefFv7t3wrKXDX3t7tWLZOrw39rb+X4RV70BrsQf8J9D0osQ99iUekfOTEc3+l8+beo+rFK/T6KTfp9VNuUvXiFTrvlXt04jmntPgxttDj9+WwhYUet3O1J/V79unUu3P9vQwEAPagtUoefkUvD7hac1Py9NH1f1WHrjG69MNHFdu/l7+XBj9hD1qLPYiWsA99iyLlIxn3X6eKeUu09ql3dKj2gA7VHtDap97RxoKPdfr910mSLit+UkPyc3TxOw8od9PL6ja0vyQpvGMHZc2apAnlczT647+pV9bQo17vh4e8B+aeq8v+85QuXfyoJCnh7CH69fvTNb7sRV36r8eUdOFpkqSkC0/T4NvGqLdjmCZUzNGEijkKiWj9AcprtxYofmh/2UJDNH7DbHVJSTxy7RFpunZrgfr8ergkKap7F13z1asK7xR1bOH9DGWzP1Dc4H7qlemZ2bBJl+uc2f+vybHLip9Un0vOkCQlX56l7ML/0dD/HqcrVj+rK9c8q+QrHIobZNdvPnhE4zfMluPZOxQaFXHUdYRFd9DwR27U5Stn6Yov/k8jH79VEZ07um+/dmuBUm+4WKM//pvGl72oUc9PVmR87FHPm3D2EF26+FGN3zBbV6x+VmfNvK3JOeO/n6Gffj4//VyH/GGsLnnvIU3Y+JIumPdnRcbF6NSpV+vKtc/rsuVPKfH8U4+6hk4nnqBrtxYoMi5GHbp11jXVryk8JvrINa9wNFnHCb8aqCtWPXPUc/oCe9A/e1CSvtuwRZ/c+rgObNul9DuuaLJ2SYobZNdFb9+nK9c+ryvXPq+s/5ukDt06uz8+IjZamU//UePXv6ixnz2hgVef5565o4kf0k8XzPuzrvryeV255lllfP+1lrx/LaSjf39ork17/PqLlV34P5qw8SVlzZqkiNhonfm3mzW+7EWN+fRxnXDKgCbnjOrRRee/9idNqJijX/9zepP97M1Pn+7ULX2Arlzz7I+f0+2XK6/mdXX4/nuLffSZumRh237jezywB9mD7EH/7kGJfejrfUiR8oHY/r0U06eHKt/+zOO2TW8tVWzfnortlyBJSh6Xpc8mPamXk6/WzjVHno5mHz1Sm976VHNPytOqJ97SqOfuVHTPuKNeNywqUt2GJevts/P17kWTFdO3p8598S6tmfm2Xjn5v7TigZeU+dQfFZfWV1/98z9aPeMt1RSW6uXkq/Vy8tVyNhxu0+fnanRq+7J1Shg5WJKUcNZg7a3cqoSRg468P3Kwdq7apEP76tp0vuOp4bsDWj3jTf3q7gnH9PGdk3vr0P46vT7styqa/H8646EbNGzS5Vqc+6AKTvudOif3UkrueUc9T8b916lzcm/NP/d2vXXWHxQZF6Mz/+fmJvdJvtyhD666X/N+NVGSNLLZ7S056/FbtfZ/F2juwGtUcNrvVDb7A6PPz559ppbc9JheG3yDwqIidcm7D+q7ihq9Nvh6rXr8TY147HdGvz06+O13+m7j1+o5/GRJP52F72dj5CBt+8z6pw6wB/23B3+6xq/+WayeI9I8b3M6teKhuXp92G/11lm3KbxTVJMftjIeuF6RXTqpIONmvXfp3eo3emSbrhndM04XFEzT5nc/1+vpN2reab9T5YIiSWr1a3Es2rLHky48Tf/M+bMKTr9Z8UP76ZL3HtLmBUV6JfW/VLVwmYZPv7HJ/QdcOUqlj73uvv3c2Xe16Rc3P9j5xUaFhIepa2ofSUfmorZqu3qe+eNcbFu65pg+X1PsQfYge9C/e1BiH1qxDylSPtDh+9/Y1G3f5XFb3Y7dR+7z/W8nyuZ8qO/Ka+RyOt2Ds+3zL/XVomK5Gp3aVPCJdn9Zpb6/GX7U69pCQrTiwZd1uK5ejXUNsmeP0PZl67R5QZFcjU7VfLRSX32wXP3HZf7sz3Hb0jVNBrX00dfdg9zzzEHa+pl13yiaW/f8IkV26aR+Y88y/tj6Pfv05f++K1ejU1XvfS5bSIgq316quh171PDdftUUlrqfY+yVzaZ+Y89SyUNzVb9zrxr2HtDy++aoz8UZTX4rsuap+Trw9U4d2lenFQ/MUeL5pyoiNrrVUzsPHVZM357qEB+rxoMN2lG83ujzK5v9ofZv+VaHDxzUVx8sl6vRqfJXPpLL6VTlW0sV1a2zOvXuZnTObUtXu2eh54g0lT72uhLO+mEWBmvrZ6uNznc8sAf9uwd/cGDrLkV28XxRkt1fVmnHsnVyHjqs+l21Wj3jLfcPGraQEPW9dIRW/vU1NXy3X/U79+qLx99o0/X65ZytXasrVfbi+2qsP6TGugbtWLZOko7v16KNe3zt0wtUv6tW9Tv36utPVmlf9Q7VfLTyyH57+zN1SU1SSPiPv3nd/G6RdhSvl/PQYa1+4i25nC71buHRdW9cTqe2f75OCSMHKSy6g7oMOFFrn17wk/1o3VywB9mD7EH/7kGJfWhF3hQpHzi4q1aSFNXDs7VHde965D4790qS9td843Gf/VuaHttX/U2bfgNwuK5e9d9fW5KiE+K1r/m5qrYrOiH+qOc6mq1LV6vHGScrIjZasf16qfLtzxQaEabohDgljBykrZ9a/8PzD5wNh1XyyKtKn3xlk2+QbXHw2++avN94sEF1O/a43z9cV3/Uh4g7xMcqNDJc+6p/zH5f1XZJUnSvH7P/6df5h/se7ev80X89oi4DTtToTx7XpYsfNf4mVPfNHvd/N9bVe3xukowfAt+6dLV6njlYnQf0VsPeA6p693PFD+6n8E5R6n7qQL/MAnvQv3vwB9EJcarfXetxPKZPDzmeu0OXr5yl8Rtm65zZdynq+6cVRcbFKDQiXPtrvnXf/6f/3ZpOJ3bT3sqtXtZy/L4Wbd3jdT/5ftLSfgsJDVXYT37b3WTuXC7tr/lW0T3N1ndkPw5SjzNStWPFBtV8tFIJZw5SxxO7qWNCvLYXrzM637FiD7IHPdfCHrRyD0rsQyv2IUXKB/Zu/Fq1X22X/dIRHrfZs0eo9qvt2rvpyDcal9PlcZ+OJ57Q5P1OiSfowDbP3yY053I6m7x/YOtOdfI4V3cd2Lqzxfub2LV2s1xOp07+7a+14z/r5XI6tXXpGg0cf66iu3fVjv+YPVJyvG1641Mdqq3TSdde4D52aP/BJt8wbaEhTZ4Tfrwc3LlXjfWH1Cnxx+x/+O8DW3/8Ov706+y+/Shf511rN2vJjY/p1UHXafl9c3Tm/9ysmL49JUmH9tc1+fyi2vDN7njY9u+16jKgt+zZZ2rrp6vVWH9Iu7/crLSbfqODO/eq9vv/uVmJPej/PWgLDVHSBadp27+/9Lht+PQbVb+rVm9n/VFzB16jf13zsPu2+l21amw4pI4/eWS0YxsfJd235VvF2hNavO1oXwuT7w9t3eOmmsydzaboXvE6sG2n0Tm2Ll2jnmecrF6ZQ7V16eojP7zYbBpwxSh9U7JBjXUNx7w+E+xB9mBz7EFr96DEPrRiH1KkfKT4Ty8o+QqH0m76jcI7RSk8Jlon3/RrJV/uUPHU51v92J5nnKzE80+VLTRE/caepa4n99Hm9z43XkPl/H+rR0aq+lySIVtIiHo7hinxglO1seATSUd+U9Oxd7djfnWWbf9eq5NvvERblx5p+1s/W62Tb7xEO1ZsUGP9oWM653HjcmnFAy9pSH6O+9DO1ZvU7ZQB6jzwRIVEhB15xMoXrybjcmnTW58qffJVioyPVURstE6deo2qFi3TodoD7rulTfyNohPiFNaxg06ZMkHVi1eoYe8Br6cNCQ9T/3GZiujSSXK53Pd1NTq///wq1f+yTNlCQ9Rl4IkaOOGc4/+5taBh7wHt+rJKJ//2p7Owpsls+AN70H97sHNyL42c8XtFJ8Rr5aOvedweHhOthtoDath7QFE9ujbZpy6nU5sXFGnY7ZcronNHRcbFaMjvx7Tpupve/ETxQ/op5ZrzFRIRptCoCHXPSJV09K+F0feHNu5xU30vOUMnnJoiW1ioBt+SrZCwUH398Sqjc+xeV6XGQ4c14EqH+zex29z70dqnmrEH2YPsQf/uQYl96Ot9yL8j5SPV7/9Hi3Mf1ND/vkzD7rhc0pHX7V+c++BRf7isfHup+o/L1Nn/+IP2b92pwhse1YGvzX4jIkm1m7fpo+se0Sn/b4LO/Nst2r/lG31y6wzt+v6PCDcvKFK/0SN15ZrnZLPZ9OqQ69v8B36StPXT1er76+Hubwxbl65RRGzHgHheuCTVFJZq19oq9fr+ucnbPlujshfe10Vv3SdnwyGt/sfbbfrNyrEonvq8TpuWp9EfPSbZbPr64y9U/Kem37A2zvtY5786VdEJ8dpe9KU+++OTRz2vPftMnTYtT6GR4TqwdZf+Pekp7aveIUladvezGvn3WzS+7EV9W7pR5a8WtvhbKF/Y+ulqxaX11fbv/02KrZ+u1imTr/LrLLAHrXXKXVdp2KRxcrlcqtu+W1uXrtY7593u/jdsfqr4zy9oxCM3KqX8PNVW7VDZ7A/U6+wh7tuX3f2sRvx1oi5b9qQO7tyrL59dqISRg4/6P8QDW3fp/XH36tQ/X6NfTZmgxkOHVfn2Uu1Ytu6oXwvT7w9t2eOmyl8rVPqdV+qEU5K1d9NW/euah91PuTWx7bMjfzOw+8sqSUee+jJwwrmWzwV70FrsQfZgS9iHvmVzuVyej+VBkrS9eL0WZd/j72UEBFtIiPJqXtf8UZO0e13VMZ3jovn3q8fpJ3m9PZjybs//SHBMnx7K+fwfennA1T/7lXCYibbz5R4M9Jx7j0rX2f/4g15JvdbfSwk4CSMHK2vWf+uVk//rZ52nvc6GldiD7MGWHK89KLXf+bCSFT+PmuCpfWiTrml95Dx0uMU/RkRw6ZrWVwd3fufXl/UNRsG0B2PsPdVtWLJks6nTiSco/Y4rVDnf8+V7cWQu/PF3iMGIPcgebAl70FqBtg95al87kr3kb+p0oucffFZ/sEKf3Pz3n33+c1++Wz0yPBv6oX0HFRIeqhUPzm31b3iCSb+xZ2n4Ize2eNt7v75be9Z/dUzn7Z6RqvNentLibR9P/Lu2LF5xTOc11dqs9RyRpmVHeV71LxV70BphUZE664nfK7pXvA7V1mnL4hVacf9Lknz/NQhEP/xjn83VLPlC8YPt+vekpy1ekf+wB63BHmyKPdgU+/BHFKl2ZH7WH316/sUTHvDp+X9JNr35qTa9+ekxf/wLCZe1eHzHsnV6OfnqYz7v8eLrWWuv2IPW2P1lld466w8t3haMsxkI3xMCBXvQGuzBptiDTbEPf8RT+wAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAULsoUg0NDZo6daoSExMVFRWlUaNGqbi4WDabTfPnz/f38gAAAAAEmYAvUi6XS+PGjdMzzzyje+65R++++67sdrvGjBkjSUpPT/fLukI7RGjsv5/QhIo5frl+MCJzNMdMWIOc4Q2zYQ1yhjfMhn+F+XsBRzNr1iwtXLhQpaWlSktLkyRlZWXJbrcrLi5OSUlJfllX+h1XaN+WbxXVvYtfrh+MyBzNMRPWIGd4w2xYg5zhDbPhXwH/iNT06dOVm5vrLlGSFBoaKrvd7vFo1L333iubzaY1a9b4dE3xQ/qpt2OY1vzjbZ9eBz8iczTHTFiDnOENs2ENcoY3zIb/BXSRKi8vV2VlpXJycjxuq66ublKkSkpK9Pnnn6tPnz4+XZMtNEQjHp2oz6c8I2fDYZ9eC0eQOZpjJqxBzvCG2bAGOcMbZiMwBHSRqqmpkSR17969yfH169erqqrKXaTq6+t1yy236Kmnnjqm68TExCgyMtLjzeHI8rjvoJuztXN1pbZ/vu6YrhXMHI6sFnNuLW+JzH/JHA5mwkoOR8t5OxxZLd6fnIOHw8FsWMHhIGd453C0fT6YjWPncHjmHBMTc0znCugiFR8fL0mqqKhwH3O5XJo8ebKcTqe7SP3pT39Sbm6u+vbt69P1xPTtqZRrztfy+/iDPquQOZpjJqxBzvCG2bAGOcMbZiNwBPSLTaSmpio5OVlTpkxReHi4OnXqpKeeekorV65UdHS0UlJSVFRUpOXLl+vhhx8+5uvU1ta2eHx78Xotyr7H/X6P009SVLfOGvvZDElSSFiowjtG6cq1z6nw+r/yW4GjKCxcoh6nn+T19uZ5S2T+S8dMWMtb3uQMZsMa5IzWtHU+mI2f52g/e5gI6CIVFhamgoICTZw4UXl5eUpMTFR+fr5iY2O1ceNGhYSE6OOPP9a6detkt9slSVu2bNEFF1yg559/Xueff/5xXU/lgn/r609Xud8/4VcpGvn4LXrn3Nt1cOfe43otHEHmaI6ZsAY5wxtmwxrkDG+YjcAR0EVKkoYOHaqioqImx2bOnKnMzExJ0l133aW77rrLfVvfvn317rvvatCgQcd9LY11DTpQt8v9fv3OvZLLpQNbd7XyUfg5yBzNMRPWIGd4w2xYg5zhDbMROAL6b6RaUldXp7KyMr/9Q7w/ta1orV5OvtrfywgqZI7mmAlrkDO8YTasQc7whtnwn4B/RKq5VatWqbGx0WuR2rx5s7ULAgAAABB02l2RysjIkMvl8vcyAAAAAASxdvfUPgAAAADwN4oUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABhqN0WqoaFBU6dOVWJioqKiojRq1CgVFxfLZrNp/vz5/l4eAAAAgCAS5u8FtIXL5dK4ceNUXFysadOmKTk5WXPnztWYMWMkSenp6ZatZeTfb5F9zEg5Dx12H1vy28dUU1hq2RqCCXmjOWbCGuQMb5gNa5AzWsN8BIZ2UaRmzZqlhQsXqrS0VGlpaZKkrKws2e12xcXFKSkpydL1bHhpsZbd/ayl1wxm5I3mmAlrkDO8YTasQc5oDfPhf+2iSE2fPl25ubnuEiVJoaGhstvtCg8PlyT17dtXHTp0UIcOHdwfc8EFF/hlvQAAAAB+2QK+SJWXl6uyslIzZszwuK26ulo5OTnu9wsKCjRo0CCfr6nf2LPUb8xI1X37nTa98YlWz3xbrkanz68brMgbzTET1iBneMNsWIOc0Rrmw/8CvkjV1NRIkrp3797k+Pr161VVVXVc/j4qJiZGDQ0NHsf7h3XVnbEjmxz78tmFWn7fHB3cVav4If2U+WS+QiMjtPKRV3/2On7pHI4sbTy82+vt5B18HA5mwkoOR8t5kzMcDmbDCg4HOcM7h4P5sILD4ZlzRESEamtrjc8V8K/aFx8fL0mqqKhwH3O5XJo8ebKcTmeTIjVhwgQNGTJEN998s/bs2eOT9exaXamDO/dKLpd2frFRKx99TfbsM31yLZA3PDET1iBneMNsWIOc0RrmIzAEfJFKTU1VcnKypkyZonnz5mnRokXKzs5WSUmJoqOjlZKSIkn69NNP9cUXX+g///mPXC6Xbr311jZfo7a2VvX19R5vhYVLjv7BTpdkO8ZPLsgUFi5pMWfyDl7MhLW85U3OYDasQc5oDfNhjZZyPpZHo6R2UKTCwsJUUFCghIQE5eXlKT8/XxdddJEyMzM1ZMgQhYQc+RQSExMlSZGRkbr55pv12Wef+WQ9fS8dofCYaElS19Q+GjppnDa/W+STa4G84YmZsAY5wxtmwxrkjNYwH4Eh4P9GSpKGDh2qoqKmwzFz5kxlZmZKkvbv36/Dhw+rc+fOcrlcevXVVzVs2DCfrOWkay/Q8Ok3KiQ8VHXb92hjwcda9cRbPrkWyBuemAlrkDO8YTasQc5oDfMRGNpFkWqurq5OZWVlys/PlyRt375dOTk5amxsVGNjo04++WQ9+eSTPrn2P8f+2SfnRcvIG80xE9YgZ3jDbFiDnNEa5iMwtMsitWrVKjU2NrpfaKJfv35auXKln1cFAAAAIFi0yyKVkZEhl8vl72UAAAAACFIB/2ITAAAAABBoKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAAAAYKjdFKmGhgZNnTpViYmJioqK0qhRo1RcXCybzab58+f7e3kAAAAAgkiYvxfQFi6XS+PGjVNxcbGmTZum5ORkzZ07V2PGjJEkpaenW76mE885RemTr1Rs/146vK9Oa55eoLVPvWP5OoIFeaM5ZsIa5AxvmA1rkDNaw3z4V7soUrNmzdLChQtVWlqqtLQ0SVJWVpbsdrvi4uKUlJRk6Xp6ZQ7V8L/epKW3zdS2orUKi4pUx97dLF1DMCFvNMdMWIOc4Q2zYQ1yRmuYD/9rF0/tmz59unJzc90lSpJCQ0Nlt9vdj0YdPHhQv/vd7zRgwAANHjxYN954o8/Wk37nlVr19ze0delquRqdOrSvTnvKqn12vWBH3miOmbAGOcMbZsMa5IzWMB/+F/CPSJWXl6uyslIzZszwuK26ulo5OTmSpDvvvFMdOnTQhg0bZLPZtH37dp+sJywqUt2G9VfNRys15tPHFdG5o74pKVfx1Oe1r3qHT64ZzMgbzTET1iBneMNsWIOc0RrmIzAE/CNSNTU1kqTu3bs3Ob5+/XpVVVUpPT1d+/bt0+zZs3XffffJZrNJknr06NHma8TExCgyMtLjzeHI8rhvRJeOsoWEqM8lGfrwqvtVkHGz6r7ZI8ezdxzrpxg0HI6sFnMm7+DlcDATVnI4Ws7b4cjyuC85BxeHg9mwgsNBzvDO4WA+rOBweOYcExNzTOcK+CIVHx8vSaqoqHAfc7lcmjx5spxOp9LT07Vx40bFx8fr3nvv1amnnqqsrCwtXbrUJ+s5tO+gJOnLZxZq35Zv1FjXoJKH5ip+sJ3npfoAeaM5ZsIa5AxvmA1rkDNaw3wEhoAvUqmpqUpOTtaUKVM0b948LVq0SNnZ2SopKVF0dLRSUlLU2NioTZs2KT09XcuXL9f06dM1duxY7d27t03XqK2tVX19vcdbYeESj/seqj1w5CFTl+s4f6a/fIWFS1rMmbyDFzNhLW95kzOYDWuQM1rDfFijpZxra2uP6VwBX6TCwsJUUFCghIQE5eXlKT8/XxdddJEyMzM1ZMgQhYSEKCkpSWFhYbrqqqskSRkZGerWrZs2bNjgkzWVzf5AqTdcouhe8QqNDFf6nVfq2y82an/Ntz65XrAjbzTHTFiDnOENs2ENckZrmA//C/gXm5CkoUOHqqioqMmxmTNnKjMzU5LUrVs3ORwOffjhhzr//PO1YcMG7dixQ8nJyT5Zz+p/zFdE50669INHJFuIdhSvV+H1f/XJtUDe8MRMWIOc4Q2zYQ1yRmuYD/9rF0Wqubq6OpWVlSk/P9997Omnn9Z1112nSZMmKTw8XHPmzFGXLl18swCXSyseeEkrHnjJN+dHU+SN5pgJa5AzvGE2rEHOaA3z4XftskitWrVKjY2N7n9DSpL69eunJUuW+G9RAAAAAIJGuyxSGRkZcvHHdQAAAAD8JOBfbAIAAAAAAg1FCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwFCYvxfQVg0NDbrvvvv0wgsv6Ntvv9Xw4cP18MMPKyMjQ2+//bays7MtWceEijlN3g+NCNee8hq9c84kS64fbMgbzTET1iBneMNsWIOc0RrmIzC0iyLlcrk0btw4FRcXa9q0aUpOTtbcuXM1ZswYSVJ6erpla3k5+eom71/6r8dUOf8zy64fbMgbzTET1iBneMNsWIOc0RrmIzC0iyI1a9YsLVy4UKWlpUpLS5MkZWVlyW63Ky4uTklJSX5ZV7dhyeoy8ERVvFbol+sHG/JGc8yENcgZ3jAb1iBntIb58J92UaSmT5+u3Nxcd4mSpNDQUNntdoWHh2vz5s0aPXq0+7Y9e/Zo79692rVrl0/XNWD8KNV8tFJ123f79Do4grzRHDNhDXKGN8yGNcgZrWE+/CfgX2yivLxclZWVysnJ8biturpa6enp6tu3r0pLS91vo0eP1vjx49t8jZiYGEVGRnq8ORxZXj8mLCpS9uwztWHuv8w/qSDlcGS1mDN5By+Hg5mwksPRct4OR5bXjyHn4OBwMBtWcDjIGd45HMyHFRwOz5xjYmKO6VwB/4hUTU2NJKl79+5Njq9fv15VVVUefx/V0NCgl19+We+//75P19X3N8N1uK5BWxav8Ol1cAR5ozlmwhrkDG+YDWuQM1rDfPhXwD8iFR8fL0mqqKhwH3O5XJo8ebKcTqdHkXrnnXfUu3dvnXLKKW2+Rm1trerr6z3eCguXeP2YARPO0cbXl8jV6DT7hIJYYeGSFnMm7+DFTFjLW97kDGbDGuSM1jAf1mgp59ra2mM6V8AXqdTUVCUnJ2vKlCmaN2+eFi1apOzsbJWUlCg6OlopKSlN7v/cc8/puuuu8+maYvv3UvdTU7ThFR5GtQJ5ozlmwhrkDG+YDWuQM1rDfPhfwD+1LywsTAUFBZo4caLy8vKUmJio/Px8xcbGauPGjQoJ+bEL1tTU6OOPP9acOXNaOePPN+CqUdq+bJ1qK7f59Do4grzRHDNhDXKGN8yGNcgZrWE+/C/gi5QkDR06VEVFRU2OzZw5U5mZmU2Ovfjii7rkkkvcTwf0lRX3v+TT86Mp8kZzzIQ1yBneMBvWIGe0hvnwv4B/al9L6urqVFZW5vH3US+88ILPn9YHAAAAAO3iEanmVq1apcbGRo8itWHDBj+tCAAAAEAwaZdFKiMjQy6Xy9/LAAAAABCk2uVT+wAAAADAnyhSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGDI5uJftvWqofaAdq/7yt/L+MXompqkiJhor7eTd/BhJqzlLW9yBrNhDXJGa5gPaxztZw8TFCkAAAAAMMRT+wAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADAEEUKAAAAAAxRpAAAAADA0P8HKTcI9XEca0wAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -430,16 +430,16 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.167581Z", - "iopub.status.busy": "2024-11-23T19:54:58.167168Z", - "iopub.status.idle": "2024-11-23T19:54:58.337315Z", - "shell.execute_reply": "2024-11-23T19:54:58.336836Z" + "iopub.execute_input": "2024-12-05T03:21:32.823312Z", + "iopub.status.busy": "2024-12-05T03:21:32.822906Z", + "iopub.status.idle": "2024-12-05T03:21:32.988913Z", + "shell.execute_reply": "2024-12-05T03:21:32.988306Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAGOCAYAAABhdU6ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxTklEQVR4nO3de1iUdf7/8ddwFBJMMAwNdHSKCBWnrciyYKytddsNjegkxX6rLbfT8v1a2c/NXdu2g3v47q651cW37WTZlrRJtrodNqxsSUo01ATBkJA8lFqOSqDM/P6wpqXhg4jMPQM8H9fFdck9w31/ePm+7+vFeA/avF6vVwAAAAD8hAV7AQAAAECooiwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAACDiGAvIJS1uvdr94ZPgr2MPmNweqqi4mL9tpMzmA1rkLM1yBmd6Wg+mI2eZzoPu4Oy3IndGz7Rsty7g72MPmNy6W809IyT/baTM5gNa5CzNcgZneloPpiNnmc6D7uD2zAAAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABj0mrLc2tqq2bNnKyUlRTExMZo0aZIqKipks9lUWloa7OUBAACgD+oV/4Of1+tVfn6+KioqNGfOHDkcDi1cuFBTp06VJDmdTkvXYwsP0+lzCjU671zZwsK0+R/vaeWsx9TWcsDSdfR15AwTZsMa5GwNcoYJsxEaesUry8XFxVq6dKneeOMN3XjjjTrvvPNUXFys8PBwJSQkKDU11dL1jLvtEh1/1hiVTpqhF8++VceedIK+d/fVlq6hPyBnmDAb1iBna5AzTJiN0NAryvLcuXNVUFCgjIwM37bw8HDZ7Xbfq8obN27UhAkTdNJJJ2nChAmqra0N2HpOnHae1s77u/Zv26WWnXu05g8vyHF5jmxhvSLOXoOcYcJsWIOcrUHOMGE2QkPIp11bW6v6+nrl5eX5PdbY2Ogry9OnT9fNN9+sjRs36uabb9aNN97Y5WPExcUpOjra78PlyvF7blR8rAYOP0671tf7tu1cW6+ouFgNTDnuSL+9fsXlyiFndMjlYjas4HKRsxVcLnKGmcvlPx8uV47f85iNo+Ny+eccFxfXrX2FfFluamqSJCUlJbXbXl1drYaGBjmdTu3YsUOVlZW68sorJUlXXnmlKisr9dlnn/X4eiIGxkiSWr/c79vW+uU+SVLk14/h6JEzTJgNa5CzNcgZJsxG6Aj5spyYmChJqqur823zer2aOXOmPB6PnE6nGhsbNXz4cIWHh0s6dIvGsGHD1NjY2KVjuN1utbS0+H2UlS33e+7Bvc2SpMj4WN+2qEHHSJIOfP0YOlZWtpyc0SFmwxrkbA1yRmc6mg9mo+d1lLPb7e7WvkK+LKenp8vhcGjWrFlatGiRli1bptzcXFVWVio2NlZpaWmWrqd1z37tbfpMCRkjfdsSx9jV6t6vvY09/0p2f0XOMGE2rEHO1iBnmDAboSPky3JERIRKSkqUnJyswsJCFRUVafLkycrOzta4ceMUFhamlJQUNTU1qa2tTZLU1tamTz/9VCkpKQFZU+2z/9K4W6cqZuhgRSfGa/yMy1T3/HJ5PZ6AHK+/ImeYMBvWIGdrkDNMmI3Q0Ct+z3JmZqbKy8vbbZs/f76ys7MlHbqfefz48XruuedUUFCg5557Tk6nU8cdF5gb4Kvm/V3RCfGasvyPsoXZtPmV97TqvmcCcqz+jJxhwmxYg5ytQc4wYTZCQ68oy9/V3NysmpoaFRUV+bY9+uijKiws1K9//WsNHjxYTz/9dMCO723zqGL246qY/XjAjgFyhhmzYQ1ytgY5w4TZCA29sixXVVWpra2t3f/cd/LJJ2vlypVBXBUAAAD6ml5ZlrOysuT1eoO9DAAAAPRxIf8GPwAAACBYKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYNBrynJra6tmz56tlJQUxcTEaNKkSaqoqJDNZlNpaWmwlwcAAIA+KCLYC+gKr9er/Px8VVRUaM6cOXI4HFq4cKGmTp0qSXI6nZatZeSPJyj9+h8qIWOkWna5VXLGTZYduz8hZ3SG+bAGOVuDnGHCbISGXlGWi4uLtXTpUq1Zs0YZGRmSpJycHNntdiUkJCg1NdWytbR8uU/Vj/9TA44bpIwbfmTZcfsbckZnmA9rkLM1yBkmzEZo6BVlee7cuSooKPAVZUkKDw+X3W5XZGSkJOn222/Xiy++qM2bN2vt2rUaM2ZMQNay9e0qSVLqD04PyP5xCDmjM8yHNcjZGuQME2YjNIT8Pcu1tbWqr69XXl6e32ONjY2+WzCmTJmit99+WyNGjLB6iQAAAOijQv6V5aamJklSUlJSu+3V1dVqaGjwleWJEyd2+xhxcXFqbW312z46YrDujO/+ftGey5WjTQd3+20nZ7hczIYVXC5ytoLLRc4wc7n854PZ6Hkul3/OUVFRcrvdR7yvkH9lOTExUZJUV1fn2+b1ejVz5kx5PB5L39wHAACA/iXky3J6erocDodmzZqlRYsWadmyZcrNzVVlZaViY2OVlpZ21Mdwu91qaWnx+ygrW3703wB8ysqWkzM6xGxYg5ytQc7oTEfzwWz0vI5y7s6rylIvuA0jIiJCJSUlmj59ugoLC5WSkqKioiLFx8dr06ZNCguztu/bwsIUFhkuW0SEZLMpPDpSXq9XntaDlq6jryNndIb5sAY5W4OcYcJshIaQL8uSlJmZqfLy8nbb5s+fr+zsbMvXMvrSczXxz7f4Pr9683Pa27iD333Yw8gZnWE+rEHO1iBnmDAboaFXlOXvam5uVk1NjYqKinzbbrvtNv3973/Xtm3bdP755ysxMVHr16/v8WPXvbBcdS8s7/H9oj1yRmeYD2uQszXIGSbMRmgI+XuWO1JVVaW2trZ2b+6bN2+etmzZooMHD2rbtm0BKcoAAADoX3rlK8tZWVnyer3BXgYAAAD6uF75yjIAAABgBcoyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABj0mrLc2tqq2bNnKyUlRTExMZo0aZIqKipks9lUWloa7OUBAACgD4oI9gK6wuv1Kj8/XxUVFZozZ44cDocWLlyoqVOnSpKcTqdlawmLitCZ91+v5IljNSAxXvu379aGx5ep+vFllq2hPyBnmDAb1iBna5AzTJiN0NErynJxcbGWLl2qNWvWKCMjQ5KUk5Mju92uhIQEpaamWraWsPBwNe/4Qq9dca/cDduVcMoIff+5u/XVZ19o85Jyy9bR15EzTJgNa5CzNcgZJsxG6OgVt2HMnTtXBQUFvqIsSeHh4bLb7XI6ndq5c6d++MMfKi0tTWPHjtUll1yizz77LCBrOdjcotW//Zvcm7dJXq92rd+sxtc+UNIZ6QE5Xn9FzjBhNqxBztYgZ5gwG6Ej5MtybW2t6uvrlZeX5/dYY2OjnE6nbDab7rzzTtXU1Gjt2rUaPXq07rrrLkvWZ4sI19CsdO3e0GDJ8forcoYJs2ENcrYGOcOE2QiekC/LTU1NkqSkpKR226urq9XQ0CCn06mEhATl5OT4HjvzzDPV0ND1YYqLi1N0dLTfh8uVc5ivlM68/zod2NusTYve6vLx+iuXK4ec0SGXi9mwgstFzlZwucgZZi6X/3y4XDmH/Tpm48i4XP45x8XFdWtfIV+WExMTJUl1dXW+bV6vVzNnzpTH4/F7c5/H49Ejjzyiiy++OOBrO31OoY77Xppen3afPAcOBvx4/RU5w4TZsAY5W4OcYcJsBFfIl+X09HQ5HA7NmjVLixYt0rJly5Sbm6vKykrFxsYqLS2t3fNvvfVWDRw4ULfcckuXj+F2u9XS0uL3UVa23Pg1Z/z6Jxp27ji9etk9atnl7u6316+UlS0nZ3SI2bAGOVuDnNGZjuaD2eh5HeXsdncvv5D/bRgREREqKSnR9OnTVVhYqJSUFBUVFSk+Pl6bNm1SWNi3ff/2229XbW2tlixZ0m57Tzvj3muVPHGM/nnpHLXs3BOw4/R35AwTZsMa5GwNcoYJsxEaQr4sS1JmZqbKy9v/mpT58+crOzvb9/msWbO0atUq/eMf/1B0dHTA1nLMCUN0yvU/VNtXrbp05V9827evrNYb0+4L2HH7G3KGCbNhDXK2BjnDhNkIHb2iLH9Xc3OzampqVFRUJElav369HnjgAZ100kk666yzJEl2u10vvfRSjx9735bP9WTypT2+X7RHzjBhNqxBztYgZ5gwG6GjV5blqqoqtbW1+d7cl5GRIa/XG+RVAQAAoK/plWU5KyuLcgwAAICAC/nfhgEAAAAEC2UZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAx6TVlubW3V7NmzlZKSopiYGE2aNEkVFRWy2WwqLS0N9vIAAADQB0UEewFd4fV6lZ+fr4qKCs2ZM0cOh0MLFy7U1KlTJUlOp9PS9Zz5wPVK+f5pioyP1YG9zWp4pVwf3PuMPAcOWrqOvo6cYcJsWIOcrUHOMGE2QkOvKMvFxcVaunSp1qxZo4yMDElSTk6O7Ha7EhISlJqaaul6NjzxT33w6wU62Nyi6IQ45RTP0LjbLtGaP7xg6Tr6OnKGCbNhDXK2BjnDhNkIDb2iLM+dO1cFBQW+oixJ4eHhstvtioyMlCRNmTJF9fX1CgsL08CBA/XQQw9p/PjxAVnPlxu3fPuJzSavx6u4UckBOVZ/Rs4wYTasQc7WIGeYMBuhIeTLcm1trerr6zVv3jy/xxobG5WXlydJeuqppzRo0CBJUmlpqa699lpVVlYGbF1jb5micUV5ijwmRl/t2qPXr3omYMfqz8gZJsyGNcjZGuQME2Yj+EK+LDc1NUmSkpKS2m2vrq5WQ0OD737lb4qyJH355ZcKC+v6exfj4uLU2trqt310xGDdGT+xw69ZO3+x1s5frEEnDteoS85R847dXT5ef+Vy5WjTQf+cyBkuF7NhBZeLnK3gcpEzzFwu//lgNnqey+Wfc1RUlNxu9xHvK+R/G0ZiYqIkqa6uzrfN6/Vq5syZ8ng87d7cd/311ys1NVW/+MUv9NRTT1myvi9rm7RrfYPOeeg2S47XX5EzTJgNa5CzNcgZJsxG8IR8WU5PT5fD4dCsWbO0aNEiLVu2TLm5uaqsrFRsbKzS0tJ8z33sscf0ySef6P7779cdd9zR5WO43W61tLT4fZSVLe/S14dFhiuee4gOq6xsOTmjQ8yGNcjZGuSMznQ0H8xGz+so5+68qiz1grIcERGhkpISJScnq7CwUEVFRZo8ebKys7M1bty4Dm+3uPrqq1VWVqadO3f2+Hoi42LluCxHUfGxkqTB6SOUWZSnT5d/2OPH6s/IGSbMhjXI2RrkDBNmI3SE/D3LkpSZmany8vJ22+bPn6/s7GxJ0t69e7V7926lpKRIkpYsWaKEhAQlJCT0/GK8Xo3KO1enzylUWFSEvvp8jxqWrtSa3z3f88fqz8gZJsyGNcjZGuQME2YjZPSKsvxdzc3NqqmpUVFRkSRp3759ys/P1759+xQeHq6EhAQtWbJENputx499YG+zXrv81z2+X7RHzjBhNqxBztYgZ5gwG6GjV5blqqoqtbW1+d7cN3ToUL333ntBXhUAAAD6ml5ZlrOysuT1eoO9DAAAAPRxIf8GPwAAACBYKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoyyFm4p9uVtZ91wV7GR2aVrdACWPswV7GEeut6/7G8RMyNK1uQcD2/4MX71HG9IuP+OuSstJ1+Yf/F4AVBRfnoDXIOTB689olrndW4hzsul753133FseflaHxMy5T4rhRkqSdVR9rze9f0Lby9UFe2SHjZ1ymxMzR+tc1D3Tp+c86rg7wio7cD168R8d97yR5DhyU1+NR844v9Ok7a7Xu4cXat+VzSaG57r5gx8oNej7zp8FeRqc4B61Bztbgehc8oX694xwMLF5ZDpATzv+evr/wbjW+sUovnHqjXjj1RjW+sUrff+5unXDeqR1+jS285/46bBHhPbavUFf54HN69sSrtTCtUG9e9zsNGByni1//veJHDwv20hBEnIPWIGdrcb3Dd3EOBh5lOUCyfnOt6hYt1/pHXtYB934dcO/X+kde1qaSt3TGb66VJF1a8bDGFeXphy/fp4KPn9WQzNGSpMhjBiineIam1S7QlLf+qGE5mYc93jf/dHVSwfm69P1HdPEbv5ckJZ87Tj96da6uqnlKF//rD0r9wemSpNQfnK6xt03VcNd4TatboGl1CxQW1fk/NPxka4kSM0fLFh6mqzY+rWPTUg4d+6wM/WRriUb8aIIkKSbpWF3zyd8UOTCme+EdhS83btHbt/xZ+7ftkvOOy9utW5ISxtg1efG9umL9E7pi/RPK+b8ZGjBkkO/ro+Jjlf3of+uq6qd0ybsP6aSrv6+fbC1RdELcYY+dOG6ULlz0K1350RO6Yt1flfX137Nk/nuQDv3Efd7T/6/dvi6teFgjLjqzw+NExA7QhN/eoMtWF+vyD/9PE/98i6IGHeN7/CdbS5R+3Q+VW/a/mrbpGeUUz1BUfKzO/uNNuqrmKU1958867tQT2+0zZuixuuD5X2pa3QL96J9zfXl15j//uXSI80Rdse6v335Pt1+mwqYXNCAxXpJkn3K2LlratVcUegrnoDXnIDkH51oncb375vvt79c7zsHAn4OU5QCIHz1McSOGqn7xu36PffzSCsWPPF7xo5IlSY78HL0742E967haO9fVS5LsUybq45fe0cKTC1X10Eua9Pidij0+4bDHjYiJ1pDxDi0+t0ivTJ6puJHH6/yn7tK6+Yv13Cn/pVX3PaPsR/5bCRkj9ck/39faeS+pqWyNnnVcrWcdV8vTerBL35+3zaPtKzcoeeJYSVLyOWO1p36rkieOOfT5xLHaWfWxDuxt7tL+epq3zaNP/lmh48/K8H/M49GqBxbqhfE/1Uvn3KbIgTHtLvJZ912n6GMHqiTrJv3j4l9o1JSJXTpm7PEJurBkjja/8p5ecN6gRaf/TPVLyiWp07+H7sj6zbUa5Biu0vNv10vn/FzRCXE6+39vavec1B+crn/m/UolZ9ykxMxRuugfD2jzknI9l/5fali6UhPm3tDu+SdeMUlr/vCC7/Hzn75L4TFRXV7Tzg83KSwyQoPTR0g6NBPuhu06/uxvZ2LbinXd+n67g3PQmnOQnIN7rftmjVzv+u/1jnPQmnOQshwAA77+qbx5+y6/x5p37D70nK9/Aq1Z8Lq+rG2S1+PxDc+29z7SJ8sq5G3z6OOSt7X7owaN/PGEwx7XFhamVfc/q4PNLWprbpU99yxtX7lBm5eUy9vmUdObq/XJax9odH72UX+P21asazesa37/gm+Yjz97jLa+a10x6sj+rbsUfexAv+27P2rQjpUb5DlwUC273Fo77yXfBc4WFqaRF5+l1b97Xq1f7lPLzj368M8vdul4o/LO1a619ap56lW1tRxQW3OrdqzcIEk9+/dgs2nUJeeo8oGFatm5R6179uuDexdoxA+z2v1kvf7RJWrZ5VbLzj369O0q7W3coaY3V8vr8ah+8bs6Nj1VYZHf/mS/+ZVy7aiolufAQa196CV5PV4Nzz78Kwzf8Ho82v7eBiVPHKOI2AE69sQTtP7RJUo+JzgzwTloTd7kHPxrncT1rj9f7zgHrcmashwAX+1yS5Jihvr/dBaTNPjQc3bukSTta/rM7zn7trTftrfxsy79pHewuUUtXx9bkmKTE7X3u/tq2K7Y5MTD7utwtq5Yq6FnnqKo+FjFjxqm+sXvKjwqQrHJCUqeOEZb31l71Mc4GrHJCWrZ7fbbHjdiqFyP36HLVhfrqo1P67yn71LM1/8sGZ0Qp/CoSO1r+tz3/P/8c2cGnjBEe+q3GtbSc38PAxLjFR4dqb2N3+5vb8P2Q8cZ9u3+mj//0vfntuYWNe/4wvf5weYWhYWHK+I/XklpN3Ner/Y1fa7Y449sfVtXrNXxZ4/R0DPTtWPVRjW9uVrJZ4/RMScM0THJidpeseGI9nc0OAetOQfJOfjXOonrXX++3nEOWnMOUpYDYM+mT+X+ZLvsF5/l95g99yy5P9muPR8futB4PV6/5xxzwnHtPh+Ycpz2b/P/qfG7vB5Pu8/3b92pgX77StL+rTs7fP6R2LV+s7wej0756Y+04/1qeT0ebV2xTidddb5ikwZrx/vV3d730bKFhyn1wtO17d8f+T02Ye4Natnl1uKc/9bCk67Rv6550PdYyy632loP6JjhQ3zb/vPPndm75XPF25M7fOxwfw8H9n3V7kJuCw9rd1/hf/pq5x61tRzQwJRv9/fNn/dvPfyMmLSbOZtNscMStX/bziPax9YV63T8madoWHamtq5Ye+jCabPpxMsn6bPKjWprbu32+o4U56A15yA5B/daJ3G9646+dL3jHLTmHKQsB0jFL5+U43KXMm78sSIHxigyLlan3PgjOS5zqWL2E51+7fFnnqKUC06TLTxMoy45R4NPGaHN/3jviNdQX/pvDc1K14iLsmQLC9Nw13ilXHiaNpW8LenQT+PHDB/S7XfFbvv3ep1yw0XauuLQT3Vb312rU264SDtWbVRby4Fu7fNoDXIM08R5tyo2OVGrf/+83+ORcbFqde9X6579ihk6WOOK8nyPeT0ebV5SrvG3X6aoQccoOiFO426d2qXjfvz3t5U4bpTSrrlAYVERCo+JUlJWuqTD/z3sXPuxhpx6ogaddILCoiLknHmFwkzvLvZ69fFL78g580pFJ8YrKj5Wp82+Rg3LVuqAe/8RpvWtkRedqeNOS5MtIlxjb85VWES4Pn2r6oj2sXtDg9oOHNSJV7h8P+lve3fd1zNi/T9Vcw5acw6Sc3CudRLXu+7qa9c7zsHAn4P8nuUAaXz1fb1RcL8y/+dSjb/jMkmHfu/hGwX3+/6yTeoXr9Do/Gyd+5efa9/WnSq7/vfa/+mR/dQrSe7N2/Tmtb/Vqf9vms7+483at+UzvX3LPO36+sb+zUvKNWrKRF2x7nHZbDb9bdx1Xb7pXpK2vrNWI380wXdh2LpinaLij7H8Hr5T77pS42fky+v1qnn7bm1dsVYvf/923+8d/U8Vv3pSZ/32BqXVfl/uhh2qefo1DTt3nO/xlb/4q8763XRduvJhfbVzjz7661IlTxx72JNx/9ZdejX/Hp32q2v0vVnT1HbgoOoXr9COlRsO+/ew7d11qnnyVU1+6V55Wg9o7V8Wd/qTfcXsJ3T6nEJNefMPks2mT9/6UBW/7PyCeDi1z5fJeecVOu5Uh/Z8vFX/uuZBHWxuOeL9bHv30L1luz9qkHTon89OmnZ+UO7r5By0Bjlbi+sd17vv4hwMPJvX6/V/XR6SpO0V1VqWe3ewlxESbGFhKmx6QaWTZmj3hoZu7WNy6W809IyT/baHcs7DJzl17l9+rufSfxLspYSc5IljlVP8P3rulP866n31xtmwWn89B63Wn3PmemcW6OtdqM+GlXriHJTM52F3cBsGumRwxgh5Dhzs8A0CfUmc/XgNGe+QbDYNPOE4Oe+4XPWl/r+SB4dmwv31m20QeP3lHAy2/pQz17uu43pnnVA8B7kNoxfJXf5HDTzB/w0Yja+t0ts3/emo93/+s7/Q0Cz/n8IO7P1KYZHhWnX/QrXu6f59Yr1BREy0znnoVsUOS9QBd7O2vLFKq37zjKTA5x+Kvvkl/N/VtPxDJY61698zHrV4RcHFOWgNcrYG17v2uN59i3OwPcpyL1Ka898B3f8b0+4L6P57g90fNeilc37e4WOBzj8UPeu4OthLCCmcg9YgZ2twvWuP6923OAfb4zYMAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAoFeU5dbWVs2ePVspKSmKiYnRpEmTVFFRIZvNptLS0mAvDwAAAH1UyJdlr9er/Px8PfbYY7r77rv1yiuvyG63a+rUqZIkp9MZlHWFD4jSJf9+yPh/yaNnkDM6w3xYg5ytQc4wYTaCKyLYCzic4uJiLV26VGvWrFFGRoYkKScnR3a7XQkJCUpNTQ3Kupx3XK69Wz5XTNKxQTl+f0HO6AzzYQ1ytgY5w4TZCK6Qf2V57ty5Kigo8BVlSQoPD5fdbvd7Vfmee+6RzWbTunXrArqmxHGjNNw1Xuv+sjigx+nvyBmdYT6sQc7WIGeYMBvBF9Jluba2VvX19crLy/N7rLGxsV1Zrqys1HvvvacRI0YEdE228DCd9fvpem/WY/K0HgzosfozckZnmA9rkLM1yBkmzEZoCOmy3NTUJElKSkpqt726uloNDQ2+stzS0qKbb75ZjzzySLeOExcXp+joaL8PlyvH77ljbsrVzrX12v7ehm4dqz9zuXLIGR1yubo+GxLz0V0uFzlbweUiZ5i5XP7z4XLldPhcZqP7XC7/nOPi4rq1r5Auy4mJiZKkuro63zav16uZM2fK4/H4yvIvf/lLFRQUaOTIkQFdT9zI45V2zQX64F5usA8kckZnmA9rkLM1yBkmzEboCOk3+KWnp8vhcGjWrFmKjIzUwIED9cgjj2j16tWKjY1VWlqaysvL9cEHH+jBBx/s9nHcbneH27dXVGtZ7t2+z4eecbJihgzSJe/OkySFRYQr8pgYXbH+cZVd9zt+8juMsrLlGnrGyX7byRldnQ2J+Tga5GwNckZnOpoPZqPnmc7D7gjpshwREaGSkhJNnz5dhYWFSklJUVFRkeLj47Vp0yaFhYXprbfe0oYNG2S32yVJW7Zs0YUXXqgnnnhCF1xwQY+up37Jv/XpO1W+z4/7Xpom/vlmvXz+7fpq554ePVZ/Rs7oDPNhDXK2BjnDhNkIHSFdliUpMzNT5eXl7bbNnz9f2dnZkqS77rpLd911l++xkSNH6pVXXtGYMWN6fC1tza3a37zL93nLzj2S16v9W3d18lU4UuSMzjAf1iBna5AzTJiN0BHS9yx3pLm5WTU1NUH7z0j+07by9XrWcXWwl9HnkTM6w3xYg5ytQc4wYTaCJ+RfWf6uqqoqtbW1Gcvy5s2brV0QAAAA+qxeV5azsrLk9XqDvQwAAAD0A73uNgwAAADAKpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADDoNWW5tbVVs2fPVkpKimJiYjRp0iRVVFTIZrOptLQ02MsDAABAHxQR7AV0hdfrVX5+vioqKjRnzhw5HA4tXLhQU6dOlSQ5nU7L1jLxTzfLPnWiPAcO+rYt/+kf1FS2xrI19AfkDBNmwxrkbA1yRmeYj9DQK8pycXGxli5dqjVr1igjI0OSlJOTI7vdroSEBKWmplq6no3PvKGVv/irpcfsj8gZJsyGNcjZGuSMzjAfwdcryvLcuXNVUFDgK8qSFB4eLrvdrsjISEnSyJEjNWDAAA0YMMD3NRdeeGFQ1gsAAIC+IeTLcm1trerr6zVv3jy/xxobG5WXl+f7vKSkRGPGjAn4mkZdco5GTZ2o5s+/1Mcvvq218xfL2+YJ+HH7G3KGCbNhDXK2BjmjM8xH8IV8WW5qapIkJSUltdteXV2thoaGHrlfOS4uTq2trX7bR0cM1p3xE9tt++ivS/XBvQv01S63EseNUvbDRQqPjtLq3/7tqNfR17lcOdp0cLffdnKGy8VsWMHlImcruFzkDDOXy38+OpoNifk4Gi6Xf85RUVFyu91HvK+Q/20YiYmJkqS6ujrfNq/Xq5kzZ8rj8bQry9OmTdO4ceN000036YsvvgjIenatrddXO/dIXq92frhJq3//vOy5ZwfkWP0ZOcOE2bAGOVuDnNEZ5iM0hHxZTk9Pl8Ph0KxZs7Ro0SItW7ZMubm5qqysVGxsrNLS0iRJ77zzjj788EO9//778nq9uuWWW7p8DLfbrZaWFr+PsrLlh/9ij1eydfOb62fKypaTMzrEbFiDnK1BzuhMR/PRpdmQmI8j0FHO3XlVWeoFZTkiIkIlJSVKTk5WYWGhioqKNHnyZGVnZ2vcuHEKCzv0LaSkpEiSoqOjddNNN+ndd98NyHpGXnyWIuNiJUmD00coc0a+Nr9SHpBj9WfkDBNmwxrkbA1yRmeYj9AQ8vcsS1JmZqbKy9sPx/z585WdnS1J2rdvnw4ePKhBgwbJ6/Xqb3/7m8aPHx+QtZz8kws1Ye4NCosMV/P2L7Sp5C1VPfRSQI7Vn5EzTJgNa5CzNcgZnWE+QkOvKMvf1dzcrJqaGhUVFUmStm/frry8PLW1tamtrU2nnHKKHn744YAc+5+X/Cog+0V75AwTZsMa5GwNckZnmI/Q0CvLclVVldra2nxv7hs1apRWr14d5FUBAACgr+mVZTkrK0terzfYywAAAEAfF/Jv8AMAAACChbIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAa9piy3trZq9uzZSklJUUxMjCZNmqSKigrZbDaVlpYGe3kAAADogyKCvYCu8Hq9ys/PV0VFhebMmSOHw6GFCxdq6tSpkiSn02n5mk4471Q5Z16h+NHDdHBvs9Y9ukTrH3nZ8nX0deQME2bDGuRsDXKGCbMRfL2iLBcXF2vp0qVas2aNMjIyJEk5OTmy2+1KSEhQamqqpesZlp2pCb+7UStum69t5esVEROtY4YPsXQN/QE5w4TZsAY5W4OcYcJshIZecRvG3LlzVVBQ4CvKkhQeHi673e57Vfmrr77Sz372M5144okaO3asbrjhhoCtx3nnFar604vaumKtvG0eHdjbrC9qGgN2vP6KnGHCbFiDnK1BzjBhNkJDyL+yXFtbq/r6es2bN8/vscbGRuXl5UmS7rzzTg0YMEAbN26UzWbT9u3bA7KeiJhoDRk/Wk1vrtbUd/6sqEHH6LPKWlXMfkJ7G3cE5Jj9ETnDhNmwBjlbg5xhwmyEjpB/ZbmpqUmSlJSU1G57dXW1Ghoa5HQ6tXfvXj399NO69957ZbPZJElDhw7t8jHi4uIUHR3t9+Fy5fg9N+rYY2QLC9OIi7L0+pW/UUnWTWr+7Au5/npHd7/FfsPlyiFndMjlYjas4HKRsxVcLnKGmcvlPx8uV47f85iNo+Ny+eccFxfXrX2FfFlOTEyUJNXV1fm2eb1ezZw5Ux6PR06nU5s2bVJiYqLuuecenXbaacrJydGKFSsCsp4De7+SJH302FLt3fKZ2ppbVfnAQiWOtXMfUQ8iZ5gwG9YgZ2uQM0yYjdAR8mU5PT1dDodDs2bN0qJFi7Rs2TLl5uaqsrJSsbGxSktLU1tbmz7++GM5nU598MEHmjt3ri655BLt2bOnS8dwu91qaWnx+ygrW+733APu/Yf++cPr7eHvtO8rK1tOzugQs2ENcrYGOaMzHc0Hs9HzOsrZ7XZ3a18hX5YjIiJUUlKi5ORkFRYWqqioSJMnT1Z2drbGjRunsLAwpaamKiIiQldeeaUkKSsrS0OGDNHGjRsDsqaap19T+vUXKXZYosKjI+W88wp9/uEm7Wv6PCDH66/IGSbMhjXI2RrkDBNmIzSE/Bv8JCkzM1Pl5eXtts2fP1/Z2dmSpCFDhsjlcun111/XBRdcoI0bN2rHjh1yOBwBWc/av5QqatBAXfzabyVbmHZUVKvsut8F5Fj9GTnDhNmwBjlbg5xhwmyEhl5Rlr+rublZNTU1Kioq8m179NFHde2112rGjBmKjIzUggULdOyxxwZmAV6vVt33jFbd90xg9o9DyBkmzIY1yNka5AwTZiMk9MqyXFVVpba2tnb/c9+oUaO0fPny4C0KAAAAfU6vLMtZWVnycsM7AAAAAizk3+AHAAAABAtlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAQUSwF9BVra2tuvfee/Xkk0/q888/14QJE/Tggw8qKytLixcvVm5uriXrmFa3oN3n4VGR+qK2SS+fN8OS4/cX5AwTZsMa5GwNckZnmI/Q0CvKstfrVX5+vioqKjRnzhw5HA4tXLhQU6dOlSQ5nU7L1vKs4+p2n1/8rz+ovvRdy47fX5AzTJgNa5CzNcgZnWE+QkOvKMvFxcVaunSp1qxZo4yMDElSTk6O7Ha7EhISlJqaGpR1DRnv0LEnnaC658uCcvz+gpxhwmxYg5ytQc7oDPMRPL2iLM+dO1cFBQW+oixJ4eHhstvtioyM1ObNmzVlyhTfY1988YX27NmjXbt2BXRdJ141SU1vrlbz9t0BPU5/R84wYTasQc7WIGd0hvkInpB/g19tba3q6+uVl5fn91hjY6OcTqdGjhypNWvW+D6mTJmiq666qsvHiIuLU3R0tN+Hy5Vj/JqImGjZc8/WxoX/OvJvqp9yuXLIGR1yuZgNK7hc5GwFl4ucYeZy+c+Hy5XT6dcwH0fO5fLPOS4urlv7CvlXlpuamiRJSUlJ7bZXV1eroaHB737l1tZWPfvss3r11VcDuq6RP56gg82t2vLGqoAep78jZ5gwG9YgZ2uQMzrDfARXyL+ynJiYKEmqq6vzbfN6vZo5c6Y8Ho9fWX755Zc1fPhwnXrqqV0+htvtVktLi99HWdly49ecOO08bXphubxtniP7hvqxsrLl5IwOMRvWIGdrkDM609F8dDYbEvPRHR3l7Ha7u7WvkC/L6enpcjgcmjVrlhYtWqRly5YpNzdXlZWVio2NVVpaWrvnP/7447r22msDuqb40cOUdFqaNj7HP4cEEjnDhNmwBjlbg5zRGeYj+EL+NoyIiAiVlJRo+vTpKiwsVEpKioqKihQfH69NmzYpLOzbvt/U1KS33npLCxYs6GSPR+/EKydp+8oNctdvC+hx+jtyhgmzYQ1ytgY5ozPMR/CFfFmWpMzMTJWXl7fbNn/+fGVnZ7fb9tRTT+miiy7y3boRKKt+80xA949DyBkmzIY1yNka5IzOMB/BF/K3YXSkublZNTU1fvcrP/nkkwG/BQMAAAD9R694Zfm7qqqq1NbW5leWN27cGKQVAQAAoC/qlWU5KytLXq832MsAAABAH9crb8MAAAAArEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADm5f/3cOo1b1fuzd8Euxl9BmD01MVFRfrt52cwWxYg5ytQc7oTEfzwWz0PNN52B2UZQAAAMCA2zAAAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAM/j9Py8Lcvt2tVgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAGOCAYAAABhdU6ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxTklEQVR4nO3de1iUdf7/8ddwFBJMMAwNdHSKCBWnrciyYKytddsNjegkxX6rLbfT8v1a2c/NXdu2g3v47q651cW37WTZlrRJtrodNqxsSUo01ATBkJA8lFqOSqDM/P6wpqXhg4jMPQM8H9fFdck9w31/ePm+7+vFeA/avF6vVwAAAAD8hAV7AQAAAECooiwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAACDiGAvIJS1uvdr94ZPgr2MPmNweqqi4mL9tpMzmA1rkLM1yBmd6Wg+mI2eZzoPu4Oy3IndGz7Rsty7g72MPmNy6W809IyT/baTM5gNa5CzNcgZneloPpiNnmc6D7uD2zAAAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABj0mrLc2tqq2bNnKyUlRTExMZo0aZIqKipks9lUWloa7OUBAACgD+oV/4Of1+tVfn6+KioqNGfOHDkcDi1cuFBTp06VJDmdTkvXYwsP0+lzCjU671zZwsK0+R/vaeWsx9TWcsDSdfR15AwTZsMa5GwNcoYJsxEaesUry8XFxVq6dKneeOMN3XjjjTrvvPNUXFys8PBwJSQkKDU11dL1jLvtEh1/1hiVTpqhF8++VceedIK+d/fVlq6hPyBnmDAb1iBna5AzTJiN0NAryvLcuXNVUFCgjIwM37bw8HDZ7Xbfq8obN27UhAkTdNJJJ2nChAmqra0N2HpOnHae1s77u/Zv26WWnXu05g8vyHF5jmxhvSLOXoOcYcJsWIOcrUHOMGE2QkPIp11bW6v6+nrl5eX5PdbY2Ogry9OnT9fNN9+sjRs36uabb9aNN97Y5WPExcUpOjra78PlyvF7blR8rAYOP0671tf7tu1cW6+ouFgNTDnuSL+9fsXlyiFndMjlYjas4HKRsxVcLnKGmcvlPx8uV47f85iNo+Ny+eccFxfXrX2FfFluamqSJCUlJbXbXl1drYaGBjmdTu3YsUOVlZW68sorJUlXXnmlKisr9dlnn/X4eiIGxkiSWr/c79vW+uU+SVLk14/h6JEzTJgNa5CzNcgZJsxG6Aj5spyYmChJqqur823zer2aOXOmPB6PnE6nGhsbNXz4cIWHh0s6dIvGsGHD1NjY2KVjuN1utbS0+H2UlS33e+7Bvc2SpMj4WN+2qEHHSJIOfP0YOlZWtpyc0SFmwxrkbA1yRmc6mg9mo+d1lLPb7e7WvkK+LKenp8vhcGjWrFlatGiRli1bptzcXFVWVio2NlZpaWmWrqd1z37tbfpMCRkjfdsSx9jV6t6vvY09/0p2f0XOMGE2rEHO1iBnmDAboSPky3JERIRKSkqUnJyswsJCFRUVafLkycrOzta4ceMUFhamlJQUNTU1qa2tTZLU1tamTz/9VCkpKQFZU+2z/9K4W6cqZuhgRSfGa/yMy1T3/HJ5PZ6AHK+/ImeYMBvWIGdrkDNMmI3Q0Ct+z3JmZqbKy8vbbZs/f76ys7MlHbqfefz48XruuedUUFCg5557Tk6nU8cdF5gb4Kvm/V3RCfGasvyPsoXZtPmV97TqvmcCcqz+jJxhwmxYg5ytQc4wYTZCQ68oy9/V3NysmpoaFRUV+bY9+uijKiws1K9//WsNHjxYTz/9dMCO723zqGL246qY/XjAjgFyhhmzYQ1ytgY5w4TZCA29sixXVVWpra2t3f/cd/LJJ2vlypVBXBUAAAD6ml5ZlrOysuT1eoO9DAAAAPRxIf8GPwAAACBYKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYNBrynJra6tmz56tlJQUxcTEaNKkSaqoqJDNZlNpaWmwlwcAAIA+KCLYC+gKr9er/Px8VVRUaM6cOXI4HFq4cKGmTp0qSXI6nZatZeSPJyj9+h8qIWOkWna5VXLGTZYduz8hZ3SG+bAGOVuDnGHCbISGXlGWi4uLtXTpUq1Zs0YZGRmSpJycHNntdiUkJCg1NdWytbR8uU/Vj/9TA44bpIwbfmTZcfsbckZnmA9rkLM1yBkmzEZo6BVlee7cuSooKPAVZUkKDw+X3W5XZGSkJOn222/Xiy++qM2bN2vt2rUaM2ZMQNay9e0qSVLqD04PyP5xCDmjM8yHNcjZGuQME2YjNIT8Pcu1tbWqr69XXl6e32ONjY2+WzCmTJmit99+WyNGjLB6iQAAAOijQv6V5aamJklSUlJSu+3V1dVqaGjwleWJEyd2+xhxcXFqbW312z46YrDujO/+ftGey5WjTQd3+20nZ7hczIYVXC5ytoLLRc4wc7n854PZ6Hkul3/OUVFRcrvdR7yvkH9lOTExUZJUV1fn2+b1ejVz5kx5PB5L39wHAACA/iXky3J6erocDodmzZqlRYsWadmyZcrNzVVlZaViY2OVlpZ21Mdwu91qaWnx+ygrW3703wB8ysqWkzM6xGxYg5ytQc7oTEfzwWz0vI5y7s6rylIvuA0jIiJCJSUlmj59ugoLC5WSkqKioiLFx8dr06ZNCguztu/bwsIUFhkuW0SEZLMpPDpSXq9XntaDlq6jryNndIb5sAY5W4OcYcJshIaQL8uSlJmZqfLy8nbb5s+fr+zsbMvXMvrSczXxz7f4Pr9683Pa27iD333Yw8gZnWE+rEHO1iBnmDAboaFXlOXvam5uVk1NjYqKinzbbrvtNv3973/Xtm3bdP755ysxMVHr16/v8WPXvbBcdS8s7/H9oj1yRmeYD2uQszXIGSbMRmgI+XuWO1JVVaW2trZ2b+6bN2+etmzZooMHD2rbtm0BKcoAAADoX3rlK8tZWVnyer3BXgYAAAD6uF75yjIAAABgBcoyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABj0mrLc2tqq2bNnKyUlRTExMZo0aZIqKipks9lUWloa7OUBAACgD4oI9gK6wuv1Kj8/XxUVFZozZ44cDocWLlyoqVOnSpKcTqdlawmLitCZ91+v5IljNSAxXvu379aGx5ep+vFllq2hPyBnmDAb1iBna5AzTJiN0NErynJxcbGWLl2qNWvWKCMjQ5KUk5Mju92uhIQEpaamWraWsPBwNe/4Qq9dca/cDduVcMoIff+5u/XVZ19o85Jyy9bR15EzTJgNa5CzNcgZJsxG6OgVt2HMnTtXBQUFvqIsSeHh4bLb7XI6ndq5c6d++MMfKi0tTWPHjtUll1yizz77LCBrOdjcotW//Zvcm7dJXq92rd+sxtc+UNIZ6QE5Xn9FzjBhNqxBztYgZ5gwG6Ej5MtybW2t6uvrlZeX5/dYY2OjnE6nbDab7rzzTtXU1Gjt2rUaPXq07rrrLkvWZ4sI19CsdO3e0GDJ8forcoYJs2ENcrYGOcOE2QiekC/LTU1NkqSkpKR226urq9XQ0CCn06mEhATl5OT4HjvzzDPV0ND1YYqLi1N0dLTfh8uVc5ivlM68/zod2NusTYve6vLx+iuXK4ec0SGXi9mwgstFzlZwucgZZi6X/3y4XDmH/Tpm48i4XP45x8XFdWtfIV+WExMTJUl1dXW+bV6vVzNnzpTH4/F7c5/H49Ejjzyiiy++OOBrO31OoY77Xppen3afPAcOBvx4/RU5w4TZsAY5W4OcYcJsBFfIl+X09HQ5HA7NmjVLixYt0rJly5Sbm6vKykrFxsYqLS2t3fNvvfVWDRw4ULfcckuXj+F2u9XS0uL3UVa23Pg1Z/z6Jxp27ji9etk9atnl7u6316+UlS0nZ3SI2bAGOVuDnNGZjuaD2eh5HeXsdncvv5D/bRgREREqKSnR9OnTVVhYqJSUFBUVFSk+Pl6bNm1SWNi3ff/2229XbW2tlixZ0m57Tzvj3muVPHGM/nnpHLXs3BOw4/R35AwTZsMa5GwNcoYJsxEaQr4sS1JmZqbKy9v/mpT58+crOzvb9/msWbO0atUq/eMf/1B0dHTA1nLMCUN0yvU/VNtXrbp05V9827evrNYb0+4L2HH7G3KGCbNhDXK2BjnDhNkIHb2iLH9Xc3OzampqVFRUJElav369HnjgAZ100kk666yzJEl2u10vvfRSjx9735bP9WTypT2+X7RHzjBhNqxBztYgZ5gwG6GjV5blqqoqtbW1+d7cl5GRIa/XG+RVAQAAoK/plWU5KyuLcgwAAICAC/nfhgEAAAAEC2UZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAx6TVlubW3V7NmzlZKSopiYGE2aNEkVFRWy2WwqLS0N9vIAAADQB0UEewFd4fV6lZ+fr4qKCs2ZM0cOh0MLFy7U1KlTJUlOp9PS9Zz5wPVK+f5pioyP1YG9zWp4pVwf3PuMPAcOWrqOvo6cYcJsWIOcrUHOMGE2QkOvKMvFxcVaunSp1qxZo4yMDElSTk6O7Ha7EhISlJqaaul6NjzxT33w6wU62Nyi6IQ45RTP0LjbLtGaP7xg6Tr6OnKGCbNhDXK2BjnDhNkIDb2iLM+dO1cFBQW+oixJ4eHhstvtioyMlCRNmTJF9fX1CgsL08CBA/XQQw9p/PjxAVnPlxu3fPuJzSavx6u4UckBOVZ/Rs4wYTasQc7WIGeYMBuhIeTLcm1trerr6zVv3jy/xxobG5WXlydJeuqppzRo0CBJUmlpqa699lpVVlYGbF1jb5micUV5ijwmRl/t2qPXr3omYMfqz8gZJsyGNcjZGuQME2Yj+EK+LDc1NUmSkpKS2m2vrq5WQ0OD737lb4qyJH355ZcKC+v6exfj4uLU2trqt310xGDdGT+xw69ZO3+x1s5frEEnDteoS85R847dXT5ef+Vy5WjTQf+cyBkuF7NhBZeLnK3gcpEzzFwu//lgNnqey+Wfc1RUlNxu9xHvK+R/G0ZiYqIkqa6uzrfN6/Vq5syZ8ng87d7cd/311ys1NVW/+MUv9NRTT1myvi9rm7RrfYPOeeg2S47XX5EzTJgNa5CzNcgZJsxG8IR8WU5PT5fD4dCsWbO0aNEiLVu2TLm5uaqsrFRsbKzS0tJ8z33sscf0ySef6P7779cdd9zR5WO43W61tLT4fZSVLe/S14dFhiuee4gOq6xsOTmjQ8yGNcjZGuSMznQ0H8xGz+so5+68qiz1grIcERGhkpISJScnq7CwUEVFRZo8ebKys7M1bty4Dm+3uPrqq1VWVqadO3f2+Hoi42LluCxHUfGxkqTB6SOUWZSnT5d/2OPH6s/IGSbMhjXI2RrkDBNmI3SE/D3LkpSZmany8vJ22+bPn6/s7GxJ0t69e7V7926lpKRIkpYsWaKEhAQlJCT0/GK8Xo3KO1enzylUWFSEvvp8jxqWrtSa3z3f88fqz8gZJsyGNcjZGuQME2YjZPSKsvxdzc3NqqmpUVFRkSRp3759ys/P1759+xQeHq6EhAQtWbJENputx499YG+zXrv81z2+X7RHzjBhNqxBztYgZ5gwG6GjV5blqqoqtbW1+d7cN3ToUL333ntBXhUAAAD6ml5ZlrOysuT1eoO9DAAAAPRxIf8GPwAAACBYKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoyyFm4p9uVtZ91wV7GR2aVrdACWPswV7GEeut6/7G8RMyNK1uQcD2/4MX71HG9IuP+OuSstJ1+Yf/F4AVBRfnoDXIOTB689olrndW4hzsul753133FseflaHxMy5T4rhRkqSdVR9rze9f0Lby9UFe2SHjZ1ymxMzR+tc1D3Tp+c86rg7wio7cD168R8d97yR5DhyU1+NR844v9Ok7a7Xu4cXat+VzSaG57r5gx8oNej7zp8FeRqc4B61Bztbgehc8oX694xwMLF5ZDpATzv+evr/wbjW+sUovnHqjXjj1RjW+sUrff+5unXDeqR1+jS285/46bBHhPbavUFf54HN69sSrtTCtUG9e9zsNGByni1//veJHDwv20hBEnIPWIGdrcb3Dd3EOBh5lOUCyfnOt6hYt1/pHXtYB934dcO/X+kde1qaSt3TGb66VJF1a8bDGFeXphy/fp4KPn9WQzNGSpMhjBiineIam1S7QlLf+qGE5mYc93jf/dHVSwfm69P1HdPEbv5ckJZ87Tj96da6uqnlKF//rD0r9wemSpNQfnK6xt03VcNd4TatboGl1CxQW1fk/NPxka4kSM0fLFh6mqzY+rWPTUg4d+6wM/WRriUb8aIIkKSbpWF3zyd8UOTCme+EdhS83btHbt/xZ+7ftkvOOy9utW5ISxtg1efG9umL9E7pi/RPK+b8ZGjBkkO/ro+Jjlf3of+uq6qd0ybsP6aSrv6+fbC1RdELcYY+dOG6ULlz0K1350RO6Yt1flfX137Nk/nuQDv3Efd7T/6/dvi6teFgjLjqzw+NExA7QhN/eoMtWF+vyD/9PE/98i6IGHeN7/CdbS5R+3Q+VW/a/mrbpGeUUz1BUfKzO/uNNuqrmKU1958867tQT2+0zZuixuuD5X2pa3QL96J9zfXl15j//uXSI80Rdse6v335Pt1+mwqYXNCAxXpJkn3K2LlratVcUegrnoDXnIDkH51oncb375vvt79c7zsHAn4OU5QCIHz1McSOGqn7xu36PffzSCsWPPF7xo5IlSY78HL0742E967haO9fVS5LsUybq45fe0cKTC1X10Eua9Pidij0+4bDHjYiJ1pDxDi0+t0ivTJ6puJHH6/yn7tK6+Yv13Cn/pVX3PaPsR/5bCRkj9ck/39faeS+pqWyNnnVcrWcdV8vTerBL35+3zaPtKzcoeeJYSVLyOWO1p36rkieOOfT5xLHaWfWxDuxt7tL+epq3zaNP/lmh48/K8H/M49GqBxbqhfE/1Uvn3KbIgTHtLvJZ912n6GMHqiTrJv3j4l9o1JSJXTpm7PEJurBkjja/8p5ecN6gRaf/TPVLyiWp07+H7sj6zbUa5Biu0vNv10vn/FzRCXE6+39vavec1B+crn/m/UolZ9ykxMxRuugfD2jzknI9l/5fali6UhPm3tDu+SdeMUlr/vCC7/Hzn75L4TFRXV7Tzg83KSwyQoPTR0g6NBPuhu06/uxvZ2LbinXd+n67g3PQmnOQnIN7rftmjVzv+u/1jnPQmnOQshwAA77+qbx5+y6/x5p37D70nK9/Aq1Z8Lq+rG2S1+PxDc+29z7SJ8sq5G3z6OOSt7X7owaN/PGEwx7XFhamVfc/q4PNLWprbpU99yxtX7lBm5eUy9vmUdObq/XJax9odH72UX+P21asazesa37/gm+Yjz97jLa+a10x6sj+rbsUfexAv+27P2rQjpUb5DlwUC273Fo77yXfBc4WFqaRF5+l1b97Xq1f7lPLzj368M8vdul4o/LO1a619ap56lW1tRxQW3OrdqzcIEk9+/dgs2nUJeeo8oGFatm5R6179uuDexdoxA+z2v1kvf7RJWrZ5VbLzj369O0q7W3coaY3V8vr8ah+8bs6Nj1VYZHf/mS/+ZVy7aiolufAQa196CV5PV4Nzz78Kwzf8Ho82v7eBiVPHKOI2AE69sQTtP7RJUo+JzgzwTloTd7kHPxrncT1rj9f7zgHrcmashwAX+1yS5Jihvr/dBaTNPjQc3bukSTta/rM7zn7trTftrfxsy79pHewuUUtXx9bkmKTE7X3u/tq2K7Y5MTD7utwtq5Yq6FnnqKo+FjFjxqm+sXvKjwqQrHJCUqeOEZb31l71Mc4GrHJCWrZ7fbbHjdiqFyP36HLVhfrqo1P67yn71LM1/8sGZ0Qp/CoSO1r+tz3/P/8c2cGnjBEe+q3GtbSc38PAxLjFR4dqb2N3+5vb8P2Q8cZ9u3+mj//0vfntuYWNe/4wvf5weYWhYWHK+I/XklpN3Ner/Y1fa7Y449sfVtXrNXxZ4/R0DPTtWPVRjW9uVrJZ4/RMScM0THJidpeseGI9nc0OAetOQfJOfjXOonrXX++3nEOWnMOUpYDYM+mT+X+ZLvsF5/l95g99yy5P9muPR8futB4PV6/5xxzwnHtPh+Ycpz2b/P/qfG7vB5Pu8/3b92pgX77StL+rTs7fP6R2LV+s7wej0756Y+04/1qeT0ebV2xTidddb5ikwZrx/vV3d730bKFhyn1wtO17d8f+T02Ye4Natnl1uKc/9bCk67Rv6550PdYyy632loP6JjhQ3zb/vPPndm75XPF25M7fOxwfw8H9n3V7kJuCw9rd1/hf/pq5x61tRzQwJRv9/fNn/dvPfyMmLSbOZtNscMStX/bziPax9YV63T8madoWHamtq5Ye+jCabPpxMsn6bPKjWprbu32+o4U56A15yA5B/daJ3G9646+dL3jHLTmHKQsB0jFL5+U43KXMm78sSIHxigyLlan3PgjOS5zqWL2E51+7fFnnqKUC06TLTxMoy45R4NPGaHN/3jviNdQX/pvDc1K14iLsmQLC9Nw13ilXHiaNpW8LenQT+PHDB/S7XfFbvv3ep1yw0XauuLQT3Vb312rU264SDtWbVRby4Fu7fNoDXIM08R5tyo2OVGrf/+83+ORcbFqde9X6579ihk6WOOK8nyPeT0ebV5SrvG3X6aoQccoOiFO426d2qXjfvz3t5U4bpTSrrlAYVERCo+JUlJWuqTD/z3sXPuxhpx6ogaddILCoiLknHmFwkzvLvZ69fFL78g580pFJ8YrKj5Wp82+Rg3LVuqAe/8RpvWtkRedqeNOS5MtIlxjb85VWES4Pn2r6oj2sXtDg9oOHNSJV7h8P+lve3fd1zNi/T9Vcw5acw6Sc3CudRLXu+7qa9c7zsHAn4P8nuUAaXz1fb1RcL8y/+dSjb/jMkmHfu/hGwX3+/6yTeoXr9Do/Gyd+5efa9/WnSq7/vfa/+mR/dQrSe7N2/Tmtb/Vqf9vms7+483at+UzvX3LPO36+sb+zUvKNWrKRF2x7nHZbDb9bdx1Xb7pXpK2vrNWI380wXdh2LpinaLij7H8Hr5T77pS42fky+v1qnn7bm1dsVYvf/923+8d/U8Vv3pSZ/32BqXVfl/uhh2qefo1DTt3nO/xlb/4q8763XRduvJhfbVzjz7661IlTxx72JNx/9ZdejX/Hp32q2v0vVnT1HbgoOoXr9COlRsO+/ew7d11qnnyVU1+6V55Wg9o7V8Wd/qTfcXsJ3T6nEJNefMPks2mT9/6UBW/7PyCeDi1z5fJeecVOu5Uh/Z8vFX/uuZBHWxuOeL9bHv30L1luz9qkHTon89OmnZ+UO7r5By0Bjlbi+sd17vv4hwMPJvX6/V/XR6SpO0V1VqWe3ewlxESbGFhKmx6QaWTZmj3hoZu7WNy6W809IyT/baHcs7DJzl17l9+rufSfxLspYSc5IljlVP8P3rulP866n31xtmwWn89B63Wn3PmemcW6OtdqM+GlXriHJTM52F3cBsGumRwxgh5Dhzs8A0CfUmc/XgNGe+QbDYNPOE4Oe+4XPWl/r+SB4dmwv31m20QeP3lHAy2/pQz17uu43pnnVA8B7kNoxfJXf5HDTzB/w0Yja+t0ts3/emo93/+s7/Q0Cz/n8IO7P1KYZHhWnX/QrXu6f59Yr1BREy0znnoVsUOS9QBd7O2vLFKq37zjKTA5x+Kvvkl/N/VtPxDJY61698zHrV4RcHFOWgNcrYG17v2uN59i3OwPcpyL1Ka898B3f8b0+4L6P57g90fNeilc37e4WOBzj8UPeu4OthLCCmcg9YgZ2twvWuP6923OAfb4zYMAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAoFeU5dbWVs2ePVspKSmKiYnRpEmTVFFRIZvNptLS0mAvDwAAAH1UyJdlr9er/Px8PfbYY7r77rv1yiuvyG63a+rUqZIkp9MZlHWFD4jSJf9+yPh/yaNnkDM6w3xYg5ytQc4wYTaCKyLYCzic4uJiLV26VGvWrFFGRoYkKScnR3a7XQkJCUpNTQ3Kupx3XK69Wz5XTNKxQTl+f0HO6AzzYQ1ytgY5w4TZCK6Qf2V57ty5Kigo8BVlSQoPD5fdbvd7Vfmee+6RzWbTunXrArqmxHGjNNw1Xuv+sjigx+nvyBmdYT6sQc7WIGeYMBvBF9Jluba2VvX19crLy/N7rLGxsV1Zrqys1HvvvacRI0YEdE228DCd9fvpem/WY/K0HgzosfozckZnmA9rkLM1yBkmzEZoCOmy3NTUJElKSkpqt726uloNDQ2+stzS0qKbb75ZjzzySLeOExcXp+joaL8PlyvH77ljbsrVzrX12v7ehm4dqz9zuXLIGR1yubo+GxLz0V0uFzlbweUiZ5i5XP7z4XLldPhcZqP7XC7/nOPi4rq1r5Auy4mJiZKkuro63zav16uZM2fK4/H4yvIvf/lLFRQUaOTIkQFdT9zI45V2zQX64F5usA8kckZnmA9rkLM1yBkmzEboCOk3+KWnp8vhcGjWrFmKjIzUwIED9cgjj2j16tWKjY1VWlqaysvL9cEHH+jBBx/s9nHcbneH27dXVGtZ7t2+z4eecbJihgzSJe/OkySFRYQr8pgYXbH+cZVd9zt+8juMsrLlGnrGyX7byRldnQ2J+Tga5GwNckZnOpoPZqPnmc7D7gjpshwREaGSkhJNnz5dhYWFSklJUVFRkeLj47Vp0yaFhYXprbfe0oYNG2S32yVJW7Zs0YUXXqgnnnhCF1xwQY+up37Jv/XpO1W+z4/7Xpom/vlmvXz+7fpq554ePVZ/Rs7oDPNhDXK2BjnDhNkIHSFdliUpMzNT5eXl7bbNnz9f2dnZkqS77rpLd911l++xkSNH6pVXXtGYMWN6fC1tza3a37zL93nLzj2S16v9W3d18lU4UuSMzjAf1iBna5AzTJiN0BHS9yx3pLm5WTU1NUH7z0j+07by9XrWcXWwl9HnkTM6w3xYg5ytQc4wYTaCJ+RfWf6uqqoqtbW1Gcvy5s2brV0QAAAA+qxeV5azsrLk9XqDvQwAAAD0A73uNgwAAADAKpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADDoNWW5tbVVs2fPVkpKimJiYjRp0iRVVFTIZrOptLQ02MsDAABAHxQR7AV0hdfrVX5+vioqKjRnzhw5HA4tXLhQU6dOlSQ5nU7L1jLxTzfLPnWiPAcO+rYt/+kf1FS2xrI19AfkDBNmwxrkbA1yRmeYj9DQK8pycXGxli5dqjVr1igjI0OSlJOTI7vdroSEBKWmplq6no3PvKGVv/irpcfsj8gZJsyGNcjZGuSMzjAfwdcryvLcuXNVUFDgK8qSFB4eLrvdrsjISEnSyJEjNWDAAA0YMMD3NRdeeGFQ1gsAAIC+IeTLcm1trerr6zVv3jy/xxobG5WXl+f7vKSkRGPGjAn4mkZdco5GTZ2o5s+/1Mcvvq218xfL2+YJ+HH7G3KGCbNhDXK2BjmjM8xH8IV8WW5qapIkJSUltdteXV2thoaGHrlfOS4uTq2trX7bR0cM1p3xE9tt++ivS/XBvQv01S63EseNUvbDRQqPjtLq3/7tqNfR17lcOdp0cLffdnKGy8VsWMHlImcruFzkDDOXy38+OpoNifk4Gi6Xf85RUVFyu91HvK+Q/20YiYmJkqS6ujrfNq/Xq5kzZ8rj8bQry9OmTdO4ceN000036YsvvgjIenatrddXO/dIXq92frhJq3//vOy5ZwfkWP0ZOcOE2bAGOVuDnNEZ5iM0hHxZTk9Pl8Ph0KxZs7Ro0SItW7ZMubm5qqysVGxsrNLS0iRJ77zzjj788EO9//778nq9uuWWW7p8DLfbrZaWFr+PsrLlh/9ij1eydfOb62fKypaTMzrEbFiDnK1BzuhMR/PRpdmQmI8j0FHO3XlVWeoFZTkiIkIlJSVKTk5WYWGhioqKNHnyZGVnZ2vcuHEKCzv0LaSkpEiSoqOjddNNN+ndd98NyHpGXnyWIuNiJUmD00coc0a+Nr9SHpBj9WfkDBNmwxrkbA1yRmeYj9AQ8vcsS1JmZqbKy9sPx/z585WdnS1J2rdvnw4ePKhBgwbJ6/Xqb3/7m8aPHx+QtZz8kws1Ye4NCosMV/P2L7Sp5C1VPfRSQI7Vn5EzTJgNa5CzNcgZnWE+QkOvKMvf1dzcrJqaGhUVFUmStm/frry8PLW1tamtrU2nnHKKHn744YAc+5+X/Cog+0V75AwTZsMa5GwNckZnmI/Q0CvLclVVldra2nxv7hs1apRWr14d5FUBAACgr+mVZTkrK0terzfYywAAAEAfF/Jv8AMAAACChbIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAa9piy3trZq9uzZSklJUUxMjCZNmqSKigrZbDaVlpYGe3kAAADogyKCvYCu8Hq9ys/PV0VFhebMmSOHw6GFCxdq6tSpkiSn02n5mk4471Q5Z16h+NHDdHBvs9Y9ukTrH3nZ8nX0deQME2bDGuRsDXKGCbMRfL2iLBcXF2vp0qVas2aNMjIyJEk5OTmy2+1KSEhQamqqpesZlp2pCb+7UStum69t5esVEROtY4YPsXQN/QE5w4TZsAY5W4OcYcJshIZecRvG3LlzVVBQ4CvKkhQeHi673e57Vfmrr77Sz372M5144okaO3asbrjhhoCtx3nnFar604vaumKtvG0eHdjbrC9qGgN2vP6KnGHCbFiDnK1BzjBhNkJDyL+yXFtbq/r6es2bN8/vscbGRuXl5UmS7rzzTg0YMEAbN26UzWbT9u3bA7KeiJhoDRk/Wk1vrtbUd/6sqEHH6LPKWlXMfkJ7G3cE5Jj9ETnDhNmwBjlbg5xhwmyEjpB/ZbmpqUmSlJSU1G57dXW1Ghoa5HQ6tXfvXj399NO69957ZbPZJElDhw7t8jHi4uIUHR3t9+Fy5fg9N+rYY2QLC9OIi7L0+pW/UUnWTWr+7Au5/npHd7/FfsPlyiFndMjlYjas4HKRsxVcLnKGmcvlPx8uV47f85iNo+Ny+eccFxfXrX2FfFlOTEyUJNXV1fm2eb1ezZw5Ux6PR06nU5s2bVJiYqLuuecenXbaacrJydGKFSsCsp4De7+SJH302FLt3fKZ2ppbVfnAQiWOtXMfUQ8iZ5gwG9YgZ2uQM0yYjdAR8mU5PT1dDodDs2bN0qJFi7Rs2TLl5uaqsrJSsbGxSktLU1tbmz7++GM5nU598MEHmjt3ri655BLt2bOnS8dwu91qaWnx+ygrW+733APu/Yf++cPr7eHvtO8rK1tOzugQs2ENcrYGOaMzHc0Hs9HzOsrZ7XZ3a18hX5YjIiJUUlKi5ORkFRYWqqioSJMnT1Z2drbGjRunsLAwpaamKiIiQldeeaUkKSsrS0OGDNHGjRsDsqaap19T+vUXKXZYosKjI+W88wp9/uEm7Wv6PCDH66/IGSbMhjXI2RrkDBNmIzSE/Bv8JCkzM1Pl5eXtts2fP1/Z2dmSpCFDhsjlcun111/XBRdcoI0bN2rHjh1yOBwBWc/av5QqatBAXfzabyVbmHZUVKvsut8F5Fj9GTnDhNmwBjlbg5xhwmyEhl5Rlr+rublZNTU1Kioq8m179NFHde2112rGjBmKjIzUggULdOyxxwZmAV6vVt33jFbd90xg9o9DyBkmzIY1yNka5AwTZiMk9MqyXFVVpba2tnb/c9+oUaO0fPny4C0KAAAAfU6vLMtZWVnycsM7AAAAAizk3+AHAAAABAtlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAAWUZAAAAMKAsAwAAAAaUZQAAAMCAsgwAAAAYUJYBAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAMKMsAAACAQUSwF9BVra2tuvfee/Xkk0/q888/14QJE/Tggw8qKytLixcvVm5uriXrmFa3oN3n4VGR+qK2SS+fN8OS4/cX5AwTZsMa5GwNckZnmI/Q0CvKstfrVX5+vioqKjRnzhw5HA4tXLhQU6dOlSQ5nU7L1vKs4+p2n1/8rz+ovvRdy47fX5AzTJgNa5CzNcgZnWE+QkOvKMvFxcVaunSp1qxZo4yMDElSTk6O7Ha7EhISlJqaGpR1DRnv0LEnnaC658uCcvz+gpxhwmxYg5ytQc7oDPMRPL2iLM+dO1cFBQW+oixJ4eHhstvtioyM1ObNmzVlyhTfY1988YX27NmjXbt2BXRdJ141SU1vrlbz9t0BPU5/R84wYTasQc7WIGd0hvkInpB/g19tba3q6+uVl5fn91hjY6OcTqdGjhypNWvW+D6mTJmiq666qsvHiIuLU3R0tN+Hy5Vj/JqImGjZc8/WxoX/OvJvqp9yuXLIGR1yuZgNK7hc5GwFl4ucYeZy+c+Hy5XT6dcwH0fO5fLPOS4urlv7CvlXlpuamiRJSUlJ7bZXV1eroaHB737l1tZWPfvss3r11VcDuq6RP56gg82t2vLGqoAep78jZ5gwG9YgZ2uQMzrDfARXyL+ynJiYKEmqq6vzbfN6vZo5c6Y8Ho9fWX755Zc1fPhwnXrqqV0+htvtVktLi99HWdly49ecOO08bXphubxtniP7hvqxsrLl5IwOMRvWIGdrkDM609F8dDYbEvPRHR3l7Ha7u7WvkC/L6enpcjgcmjVrlhYtWqRly5YpNzdXlZWVio2NVVpaWrvnP/7447r22msDuqb40cOUdFqaNj7HP4cEEjnDhNmwBjlbg5zRGeYj+EL+NoyIiAiVlJRo+vTpKiwsVEpKioqKihQfH69NmzYpLOzbvt/U1KS33npLCxYs6GSPR+/EKydp+8oNctdvC+hx+jtyhgmzYQ1ytgY5ozPMR/CFfFmWpMzMTJWXl7fbNn/+fGVnZ7fb9tRTT+miiy7y3boRKKt+80xA949DyBkmzIY1yNka5IzOMB/BF/K3YXSkublZNTU1fvcrP/nkkwG/BQMAAAD9R694Zfm7qqqq1NbW5leWN27cGKQVAQAAoC/qlWU5KytLXq832MsAAABAH9crb8MAAAAArEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADm5f/3cOo1b1fuzd8Euxl9BmD01MVFRfrt52cwWxYg5ytQc7oTEfzwWz0PNN52B2UZQAAAMCA2zAAAAAAA8oyAAAAYEBZBgAAAAwoywAAAIABZRkAAAAwoCwDAAAABpRlAAAAwICyDAAAABhQlgEAAAADyjIAAABgQFkGAAAADCjLAAAAgAFlGQAAADCgLAMAAAAGlGUAAADAgLIMAAAAGFCWAQAAAAPKMgAAAGBAWQYAAAAM/j9Py8Lcvt2tVgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -474,16 +474,16 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.339384Z", - "iopub.status.busy": "2024-11-23T19:54:58.338985Z", - "iopub.status.idle": "2024-11-23T19:54:58.470675Z", - "shell.execute_reply": "2024-11-23T19:54:58.470213Z" + "iopub.execute_input": "2024-12-05T03:21:32.991113Z", + "iopub.status.busy": "2024-12-05T03:21:32.990698Z", + "iopub.status.idle": "2024-12-05T03:21:33.121686Z", + "shell.execute_reply": "2024-12-05T03:21:33.121123Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -513,16 +513,16 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.472794Z", - "iopub.status.busy": "2024-11-23T19:54:58.472408Z", - "iopub.status.idle": "2024-11-23T19:54:58.652927Z", - "shell.execute_reply": "2024-11-23T19:54:58.652430Z" + "iopub.execute_input": "2024-12-05T03:21:33.123837Z", + "iopub.status.busy": "2024-12-05T03:21:33.123457Z", + "iopub.status.idle": "2024-12-05T03:21:33.300292Z", + "shell.execute_reply": "2024-12-05T03:21:33.299694Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyUAAAGOCAYAAACJ0KybAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3BklEQVR4nO3de1jUdd7/8ddwFBJUMA0NFKWI8ERbkWXBWFtr7YZKtpUWbbXldrrZ2za7LXdt2w7u4d5dc6uf924HTdqStshWtyNWuiQlmmiCYEhEqOUhR0VQZn5/WNMSzjQSfj4z+HxcF9cVM8P3++bleyZfzAw6PB6PRwAAAABgSZjtAQAAAAAc2yglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrImwPEGpaXfu0c8PHtscIan0yUhQVFxvw7cm0a/nKn5zBbphBzmaQM/xhP8w40r/z+UMpOUI7N3yspXn32B4jqI0r+Y36n3lKwLcn067lK39yBrthBjmbQc7wh/0w40j/zucPL98CAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWBUypaS1tVUzZ85UcnKyYmJiNHbsWJWXl8vhcKikpMT2eAAAAAA6KST+RXePx6NJkyapvLxcs2bNUlpamoqKijRhwgRJUlZWluUJJUd4mM6YVaCh+efJERamzf98Vytn/FVtLQdsjxayyNQMcoYv7IYZ5GwGOcMf9sO+kHimZN68eVqyZIlef/113XTTTTr//PM1b948hYeHKyEhQSkpKbZH1IjbJ+qEs4epZOw0PX/Obep98on63j1X2x4rpJGpGeQMX9gNM8jZDHKGP+yHfSFRSmbPnq0pU6YoMzPTe1l4eLhSU1O9z5Js3LhRo0eP1sknn6zRo0erpqbG6IwnTT5flXP+oX1bdqhl+26t+cNzSvtxrhxhIRFxUCJTM8gZvrAbZpCzGeQMf9gP+4I+6ZqaGtXV1Sk/P7/DdQ0NDd5SMnXqVN1yyy3auHGjbrnlFt10000BnyMuLk7R0dEBfTiduR2+Pio+Vj0HHq8d6+u8l22vrFNUXKx6Jh9/pN9yyHM6cwPOk0y7ntN5+PydztwOtyXnY4vTyW6Y4HSSswlOJznDN6eT/TDB6eyYc1xcXKeOFfSlpLGxUZLUr1+/dpdXVVWpvr5eWVlZ2rZtmyoqKnTllVdKkq688kpVVFTos88+MzJjRM8YSVLrF/u8l7V+sVeSFPnldTgyZGoGOcMXdsMMcjaDnOEP+xEcgr6UJCYmSpJqa2u9l3k8Hk2fPl1ut1tZWVlqaGjQwIEDFR4eLunQS7sGDBighoaGgM7hcrnU0tIS0Edp6bIOX39wT7MkKTI+1ntZVK/jJEkHvrzuWFJauizgPMm06/nKn5zBbphBzmaQM/xhP8w4XM4ul6tTxwr6UpKRkaG0tDTNmDFDixYt0tKlS5WXl6eKigrFxsYqPT3d9ohq3b1Pexo/U0LmYO9licNS1erapz0NZp6t6W7I1Axyhi/shhnkbAY5wx/2IzgEfSmJiIhQcXGxkpKSVFBQoMLCQo0bN045OTkaMWKEwsLClJycrMbGRrW1tUmS2tra9Omnnyo5OdnYnDUL39CI2yYopn8fRSfGa9S0y1X77DJ53G5jM3Q3ZGoGOcMXdsMMcjaDnOEP+2FfSPw7JSNHjlRZWVm7y+bOnaucnBxJh95vMmrUKD3zzDOaMmWKnnnmGWVlZen44829OWntnH8oOiFe45f9UY4whza//K5W3f+0sfN3R2RqBjnDF3bDDHI2g5zhD/thX0iUkm9qbm5WdXW1CgsLvZc99thjKigo0K9//Wv16dNH8+fPNzqTp82t8pmPq3zm40bP252RqRnkDF/YDTPI2Qxyhj/sh30hWUrWrl2rtra2dv+S+ymnnKKVK1danAoAAABAZ4RkKcnOzpbH47E9BgAAAIAuEPRvdAcAAADQvVFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVSFTSlpbWzVz5kwlJycrJiZGY8eOVXl5uRwOh0pKSmyPBwAAAKCTImwPEAiPx6NJkyapvLxcs2bNUlpamoqKijRhwgRJUlZWluUJpcE/Gq2MGy5WQuZgtexwqfjMm22PFNLI0wxyhj/shxnkbAY5wxd2IziERCmZN2+elixZojVr1igzM1OSlJubq9TUVCUkJCglJcXyhFLLF3tV9fi/1OP4Xsq88Ye2xwl55GkGOcMf9sMMcjaDnOELuxEcQqKUzJ49W1OmTPEWEkkKDw9XamqqIiMjJUl33HGHnn/+eW3evFmVlZUaNmyY0Rmb3l4rSUr5wRlGz9tdkacZ5Ax/2A8zyNkMcoYv7EZwCPr3lNTU1Kiurk75+fkdrmtoaPC+dGv8+PF6++23NWjQINMjAgAAAPgOgv6ZksbGRklSv3792l1eVVWl+vp6bykZM2ZMp88RFxen1tbWgG47NKKP7ozv/LmOBU5nrjYd3Bnw7cm0azmdh8+fnOF0shsmOJ3kbILTSc7wzelkP0xwOjvmHBUVJZfLdcTHCvpnShITEyVJtbW13ss8Ho+mT58ut9sdFG9yBwAAANB5QV9KMjIylJaWphkzZmjRokVaunSp8vLyVFFRodjYWKWnp3/nc7hcLrW0tAT0UVq67Lt/U91caemygPMk067nK39yBrthBjmbQc7wh/0w43A5d+ZZEikEXr4VERGh4uJiTZ06VQUFBUpOTlZhYaHi4+O1adMmhYUFR69yhIUpLDJcjogIyeFQeHSkPB6P3K0HbY8WksjTDHKGP+yHGeRsBjnDF3YjOAR9KZGkkSNHqqysrN1lc+fOVU5OjqWJOhp62Xka8+dbvZ9fvfkZ7WnYxu+67iTyNIOc4Q/7YQY5m0HO8IXdCA4hUUq+qbm5WdXV1SosLPRedvvtt+sf//iHtmzZogsuuECJiYlav369sZlqn1um2ueWGTtfd0eeZpAz/GE/zCBnM8gZvrAbwSE4Xvt0hNauXau2trZ2b3KfM2eOPvnkEx08eFBbtmwxWkgAAAAAdF5IPlOSnZ0tj8djewwAAAAAXSAknykBAAAA0H1QSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFUhU0paW1s1c+ZMJScnKyYmRmPHjlV5ebkcDodKSkpsjwcAAACgkyJsDxAIj8ejSZMmqby8XLNmzVJaWpqKioo0YcIESVJWVpbV+cKiInTWAzcoacxw9UiM176tO7Xh8aWqenyp1blCGZmaQc7whd0wg5zNIGf4w34Eh5AoJfPmzdOSJUu0Zs0aZWZmSpJyc3OVmpqqhIQEpaSkWJ0vLDxczdt26dUr7pOrfqsSTh2k7z9zj/Z/tkubF5dZnS1UkakZ5Axf2A0zyNkMcoY/7EdwCImXb82ePVtTpkzxFhJJCg8PV2pqqrKysrR9+3ZdfPHFSk9P1/DhwzVx4kR99tlnxuY72Nyi1b/9u1ybt0gej3as36yGV99XvzMzjM3Q3ZCpGeQMX9gNM8jZDHKGP+xHcAj6UlJTU6O6ujrl5+d3uK6hoUFZWVlyOBy68847VV1drcrKSg0dOlR33XWXhWkPcUSEq392hnZuqLc2Q3dDpmaQM3xhN8wgZzPIGf6wH3YE/cu3GhsbJUn9+vVrd3lVVZXq6+uVlZWlhIQE5ebmeq8766yz9OijjwZ8jri4OLW2tgZ026ERfXRn/Bi/tznrget1YE+zNi16K+AZuhOnM1ebDu4M+PZk2rWczsPnT85wOtkNE5xOcjbB6SRn+OZ0sh8mOJ0dc46KipLL5TriYwX9MyWJiYmSpNraWu9lHo9H06dPl9vt7vAmd7fbrUcffVSXXnqp0Tm/csasAh3/vXS9Nvl+uQ8ctDJDd0OmZpAzfGE3zCBnM8gZ/rAf9gR9KcnIyFBaWppmzJihRYsWaenSpcrLy1NFRYViY2OVnp7e7va33XabevbsqVtvvTXgc7hcLrW0tAT0UVq6zOdxzvz1tRpw3gi9cvm9atlx5A2xuygtXRZwnmTa9XzlT85gN8wgZzPIGf6wH2YcLufOPEsihcDLtyIiIlRcXKypU6eqoKBAycnJKiwsVHx8vDZt2qSwsK971R133KGamhotXry43eUmnHnfdUoaM0z/umyWWrbvNnru7opMzSBn+MJumEHOZpAz/GE/7Av6UiJJI0eOVFlZ+1/JNnfuXOXk5Hg/nzFjhlatWqV//vOfio6ONjrfcSf21ak3XKy2/a26bOVfvJdvXVml1yffb3SW7oJMzSBn+MJumEHOZpAz/GE/gkNIlJJvam5uVnV1tQoLCyVJ69ev14MPPqiTTz5ZZ599tiQpNTVVL7zwgpF59n7yuZ5MuszIuY4VZGoGOcMXdsMMcjaDnOEP+xEcQrKUrF27Vm1tbd43uWdmZsrj8VieCgAAAEBnhGQpyc7OpoQAAAAA3UTQ//YtAAAAAN0bpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFgVMqWktbVVM2fOVHJysmJiYjR27FiVl5fL4XCopKTE9ngAAAAAOinC9gCB8Hg8mjRpksrLyzVr1iylpaWpqKhIEyZMkCRlZWVZnlA668EblPz90xUZH6sDe5pV/3KZ3r/vabkPHLQ9WsgiUzPIGb6wG2aQsxnkDH/YD/tCopTMmzdPS5Ys0Zo1a5SZmSlJys3NVWpqqhISEpSSkmJ5QmnDE//S+79eoIPNLYpOiFPuvGkacftErfnDc7ZHC1lkagY5wxd2wwxyNoOc4Q/7YV9IlJLZs2drypQp3kIiSeHh4UpNTVVkZKQkafz48aqrq1NYWJh69uyphx9+WKNGjTI24xcbP/n6E4dDHrdHcUOSjJ2/OyJTM8gZvrAbZpCzGeQMf9gP+4K+lNTU1Kiurk5z5szpcF1DQ4Py8/MlSU899ZR69eolSSopKdF1112niooKo7MOv3W8RhTmK/K4GO3fsVuvXfW00fN3R2RqBjnDF3bDDHI2g5zhD/thl8Pj8XhsD+HPsmXL5HQ6tXLlSp155pney6uqqpSZmakFCxboqquuavc18+fP15w5c/T+++8HdI64uDi1trYGdNuhEX10Z/wYv7fpddJADZl4rqrnv6p9TTsCOm538tvdy7Xp4M6Ab0+mXctX/uQMdsMMcjaDnOEP+2HG4XKOioqSy+U64mMF/W/fSkxMlCTV1tZ6L/N4PJo+fbrcbne7N7nfcMMNSklJ0d13362nnnrK+Kxf+aKmUTvW1+vch2+3NkN3Q6ZmkDN8YTfMIGczyBn+sB92BH0pycjIUFpammbMmKFFixZp6dKlysvLU0VFhWJjY5Wenu697V//+ld9/PHHeuCBB/SLX/wi4HO4XC61tLQE9FFauiygY4ZFhiv+GH0tYmnpsoDzJNOu5yt/cga7YQY5m0HO8If9MONwOXfmWRIpBEpJRESEiouLlZSUpIKCAhUWFmrcuHHKycnRiBEjFBbW8Vu4+uqrVVpaqu3btxuZMTIuVmmX5yoqPlaS1CdjkEYW5uvTZR8YOX93RKZmkDN8YTfMIGczyBn+sB/BIejf6C5JI0eOVFlZWbvL5s6dq5ycHEnSnj17tHPnTiUnJ0uSFi9erISEBCUkJJgZ0OPRkPzzdMasAoVFRWj/57tVv2Sl1vzuWTPn747I1Axyhi/shhnkbAY5wx/2IyiERCn5pubmZlVXV6uwsFCStHfvXk2aNEl79+5VeHi4EhIStHjxYjkcDiPzHNjTrFd//Gsj5zpWkKkZ5Axf2A0zyNkMcoY/7EdwCMlSsnbtWrW1tXnf5N6/f3+9++67lqcCAAAA0BkhWUqys7MV5L/JGAAAAECAgv6N7gAAAAC6N0oJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKSZAY86dblH3/9bbH8Lpg4d3KuP5i22McNcGW93+aXLtACcNSbY9xxEJ17q+cMDpTk2sXHLXj/+D5e5U59dIj/rp+2Rn68Qf/dxQmsov7oBnkfHSE8uwSj3cmcR8MXITtAY4l8UOSdPrMq9XvjHSFR0ep+bNdanj1fb0366kjOk7a5bnK/NmlKnH+91GaVHp98v1H7dhd7YSzMzVq2uVKHDFEkrR97Uda8/vntKVsveXJDhk17XIljhyqN655MKDbL0y7+ihPdOR+8Py9Ov57J8t94KA8breat+3Sp+9Uat0jL2rvJ59LCs65u4NtKzfo2ZE/tT2GX9wHzSBnM3i8syfYH++4Dx5dPFNi0AULZuiL2k9VfOYtWnjyNXpt8v3a+WG9lVkcEeFWztvVTrzge/p+0T1qeH2VnjvtJj132k1qeH2Vvv/MPTrx/NMO+zWO8K5b++6SYyAqHnpGC0+6WkXpBXrz+t+pR584Xfra7xU/dIDt0WAR90EzyNksHu/wTdwHjz5KiSHRCXGKH5Kk6vmv6uC+/ZLHI1fdFtU+t+ywtz/34ds0qeL/aXLNAl362u800DlKkpQwLFWjZ9+oXicN1OTaBZpcu0DxQ5IkHWrwl7z8gK7c8KTGv/0npead4z3eqGmX64KFdyv7gRt0xfrHlf2b6/zO+59PvV6w8G6d8pMfSJLCe0Tp6roiZT9wg/e2E975swaOzepsNN9J9m+uU+2iZVr/6Es64NqnA659Wv/oS9pU/JbO/PJ7vKz8EY0ozNfFL92vKR8tVN+RQyVJkcf1UO68aZpcs0Dj3/qjBuSO/NbzffWU98lTLtBl7z2qS1//vSQp6bwR+uErs3VV9VO69I0/KOUHZ0iSUn5whobfPkEDnaO8f15hUf6foLy2qViJI4fKER6mqzbOV+/05EPnPjtT1zYVa9APR0uSYvr11jUf/12RPWM6F9538MXGT/T2rX/Wvi07lPWLH7ebWzq0p+NevE9XrH9CV6x/Qrn/N009+vbyfn1UfKxyHvu5rqp6ShNXPKyTr/6+rm0qVnRC3LeeO3HEEF206Fe68sMndMW6v7XbZV9/DtKh+8D58/+n3bEuK39Egy4567DniYjtodG/vVGXr56nH3/wfxrz51sV1es47/XXNhUr4/qLlVf6v5q86WnlzpumqPhYnfPHm3VV9VOa8M6fdfxpJ7U7Zkz/3rrw2V9qcu0C/fBfs715+fOfL7Pom3WSrlj3t6+/pzsuV0Hjc+qRGC9JSh1/ji5ZEthPyLoK90Ez90FytvNYJ/F499X3e6w/3nEfPPr3QUqJIS07XNq1sUHn/PFmpeado7hB/f3evmnFepU4/1tFpxSoesFryp03TdGJ8dqxrk5l0+fpi5pGLUy7WgvTrtbuj5rUOz1ZYx+/U6t//6yeOfUneue2h3XWgze0exAYcN4I7VhXp2dH3KD37g38JWNNyyuVNGa4JKnfGena27RdSWOGSZJiT0hQ3KD+2vruhk6k8t3EDx2guEH9Vffiig7XffTCcsUPPsFb2NIm5WrFtEe0MO1qbV9XJ0lKHT9GH73wjopOKdDah1/Q2MfvVOwJCd963oiYaPUdlaYXzyvUy+OmK27wCbrgqbu0bu6LeubUn2jV/U8r59GfKyFzsD7+13uqnPOCGkvXeP+83K0HA/r+PG1ubV25wZt90rnDtbuuyZt90pjh2r72Ix3Y0xzQ8bqap82tj/9VrhPOzux4ndutVQ8W6blRP9UL596uyJ4x7f5nmn3/9Yru3VPF2Tfrn5ferSHjxwR0ztgTEnRR8SxtfvldPZd1oxad8TPVLS6TJL9/Dp2R/Zvr1CttoEouuEMvnPtfik6I0zn/e3O726T84Az9K/9XKj7zZiWOHKJL/vmgNi8u0zMZP1H9kpUaPfvGdrc/6YqxWvOH57zXXzD/LoXHRAU80/YPNiksMkJ9MgZJOrQTrvqtOuGcr3diy/J1nfp+O4P7oJn7IDnbfaz7akYe747dxzvug2bug5QSg/418Vf6fE2tht8+UROWz1H+u3/R4B+NPuxta//+plq/2CtPm1vV819Vy06Xt3EfTnrBRdr0/Nv6dNkHksej7R9sUl3JCg297Dzvbb6obVRN0RvytLnV1twa8NxbVqxT/7NOlRwOJZ07XDVFbygiNlox/fvohDHD9PmaTYee/TGsx5c/ZWreuqPDdc3bdh66zZc/Uale8Jq+qGmUx+323km3vPuhPl5aLk+bWx8Vv62dH9b7/PP4T46wMK16YKEONreorblVqXlna+vKDdq8uEyeNrca31ytj199X0Mn5Xzn73HL8nXtHhTW/P4574PGCecMU9MKc38BPZx9TTsU3btnh8t3flivbSs3yH3goFp2uFQ55wXv/0gcYWEafOnZWv27Z9X6xV61bN+tD/78fEDnG5J/nnZU1qn6qVfU1nJAbc2t2rbyUCHu0j8Hh0NDJp6rigeL1LJ9t1p379P79y3QoIuz2/2kaP1ji9Wyw6WW7bv16dtrtadhmxrfXC2P2626F1eod0aKwiK//knV5pfLtK28Su4DB1X58AvyuD0amPPtPzH7isft1tZ3NyhpzDBFxPZQ75NO1PrHFivpXDs7wX3QTN7kbP+xTuLx7lh+vOM+aCZrSolB+7fv1qrfPK2Xzp+mZzKuVdWTr+i8RwrVK+0br1F1OJR15xWasHyOrto4X1dVPaXYAYnehT+cnsnH66Qrx+qqqqe8H0Mn5Si2/9dNfG/j552ae3tlnRwOKWHYYCWdM1yfvlPpXd6kc4apaXllp477Xe3f4ZIkxfTv+NOGmH59Dt1m+25J0t7GzzrcZu8n7S/b0/BZQD+5ONjcopYvzy1JsUmJ2vPNY9VvVWxS4rce69s0La9U/7NOVVR8rOKHDFDdiysUHhWh2KQEJY0ZpqZ37GT/ldikBLXsdHW4PG5Qfzkf/4UuXz1PV22cr/Pn36WYL1/OEJ0Qp/CoyHb7GOhu9jyxr3bXNfmYpev+HHokxis8OlJ7Gr4+3p76rYfOM+Dr4zV//oX3v9uaW9S8bZf384PNLQoLD1fEf/xksN3OeTza2/i5Yk84svmallfqhHOGqf9ZGdq2aqMa31ytpHOG6bgT++q4pERtLTf3rCX3QTP3QXK2/1gn8Xh3LD/ecR80cx+klFhyYE+z1j/2klp37/O+hu8rQyaM0dDLc/TmtQ+pKL1ARacUaN+n2+VwOCRJHo+nw/H2Nn6uqidfUdEpBd6PhWlXa9mNf/DexuPu+HUB8Xi0pexDDRqXrbjB/bWjsk5NK9Ypacxwq6Vk96ZP5fp4q1IvPbvDdal5Z8v18Vbt/ujQA/rhvvfjTjy+3ec9k4/Xvi0dfwryTR63u93n+5q2q2eHY/XTvqbth739kdixfrM8brdO/ekPte29KnncbjUtX6eTr7pAsf36aNt7VZ0+9nflCA9TykVnaMu/P+xw3ejZN6plh0sv5v5cRSdfozeuech7XcsOl9paD+i4gX29l/3nf/uz55PPFZ+adNjrvu3P4cDe/e3+h+kID2v3uu//tH/7brW1HFDP5K+P99V/72v69h3xpd3OORyKHZCofVu2H9Exmpav0wlnnaoBOSPVtLzy0P+gHA6d9OOx+qxi4xE9C/pdcR80cx8kZ7uPdRKPd53RnR7vuA+auQ9SSgyJ6nWcTvufq9T75BPliAhXWFSETr76+4qIidL2Dz5qd9vInjFytx7U/u27FRYRrsypl7Zrwc2f7VJMv97tXptZPf9VpV2eo6TzRsgRHqawyAgljhyqPqcO6pL5m5ZXKuP6cdq6csOXi1qpQRdnq0ffXtr2fnWXnKMzyn/5pNJ+7FTmTT9SZM8YRcbF6tSbfqi0y50qn/mE36894axTlXzh6XKEh2nIxHPV59RB2vzPd494hrqSf6t/doYGXZItR1iYBjpHKfmi07Wp+G1Jh366dNzAvp3+LRxb/r1ep954ibf8Na2o1Kk3XqJtqzaqreVAp475XfVKG6Axc25TbFKiVv/+2Q7XR8bFqtW1T6279ymmfx+NKMz3Xudxu7V5cZlG3XG5onodp+iEOI24bUJA5/3oH28rccQQpV9zocKiIhQeE6V+2RmSvv3PYXvlR+p72knqdfKJCouKUNb0KxTm67eZeDz66IV3lDX9SkUnxisqPlanz7xG9UtX6oBr3xGm9bXBl5yl409PlyMiXMNvyVNYRLg+fWvtER1j54Z6tR04qJOucHp/crVlxbovd8T8S1y4D5q5D5Kzncc6ice7zupuj3fcB4/+fZB/p8QQd+tBxRzfW2Ofuksxx/dSW8tB7drYoDeund3hqbjaRcuUdO5w5a98RAf3tah6/qvaVfWx9/qm5eu0rbxKl6/6f3KEhWnxuOna+WG9Sn/6B502/Ur1fuzn8nikXVUfa9UDC7tk/qbllYqKv8H7ILCvaYeat+3S3qYdAb+R6mhoeOU9vT7lAY3878s06heXSzr0e8Nfn/LAtz6DU/ficg2dlKPz/vJf2tu0XaU3/F77Pj2yn+JIkmvzFr153W912v9M1jl/vEV7P/lMb986Rzu+fIPb5sVlGjJ+jK5Y97gcDof+PuL6I8qs6Z1KDf7haG/2TcvXKSr+OOOvsT7tris1atokeTweNW/dqabllXrp+3d4f2//fyr/1ZM6+7c3Kr3m+3LVb1P1/Fc14LwR3utX3v03nf27qbps5SPav323PvzbEiWNGf6tD3r7mnbolUn36vRfXaPvzZistgMHVfficm1bueFb/xy2rFin6idf0bgX7pO79YAq//Ki359Ulc98QmfMKtD4N/8gORz69K0PVP5L///j+TY1z5Yq684rdPxpadr9UZPeuOYhHWxuOeLjbFlx6OWTX/1K8abllTp58gVWXnfPfdAMcjaLxzse776J++DR5/Ac7rVA8GlreZWW5t1je4yjbtyL92nz4jJt+NuSI//akt+o/5mnBHz7YyXTQDjCwlTQ+JxKxk7Tzg2d+zdsfOUfzDkPHJul8/7yX3om41rbowSdpDHDlTvvv/XMqT/5zscKxd0w7Vi9D5p2LOfM451vPN6Z0xX3QenI/87nDy/fQgcRsT0UN6i/XJu32B7lmNMnc5DcBw4e9o1y3Ulc6gnqOypNcjjU88TjlfWLH6uupOOvWsShnXB9+aZTHH3Hyn3QtmMpZx7vAsfjnTnBeB/k5VvHqOG3T9SI2zu+rjW8R5TCwsNV9+IKNZauMT9YEMhb9kf1PLHjGxEbXl2lt2/+03c+/gUL71b/7I4/VTiwZ7/CIsO16oEite7u/Ot4Q0FETLTOffg2xQ5I1AFXsz55fZVW/eZpSUc//2D01T8W9k2Nyz5Q4vBU/XvaY4Ynsov7oBnkbAaPd+3xePc17oPtUUqOUZVz/qHKOf+wPUZQKsn9+VE9/uuT7z+qxw8FOz+s1wvn/tdhrzva+QejhWlX2x4hqHAfNIOczeDxrj0e777GfbA9Xr4FAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMCqkCglra2tmjlzppKTkxUTE6OxY8eqvLxcDodDJSUltscDAAAA8B0EfSnxeDyaNGmS/vrXv+qee+7Ryy+/rNTUVE2YMEGSlJWVZXnC9sJ7RGnivx/W5NoFtkfpNsjUDHKGL+yGGeRsBjnDF3bDrgjbA3ybefPmacmSJVqzZo0yMzMlSbm5uUpNTVVCQoJSUlIsT9he1i9+rD2ffK6Yfr1tj9JtkKkZ5Axf2A0zyNkMcoYv7IZdQf9MyezZszVlyhRvIZGk8PBwpaamdniW5N5775XD4dC6detMjylJShwxRAOdo7TuLy9aOX93RKZmkDN8YTfMIGczyBm+sBv2BXUpqampUV1dnfLz8ztc19DQ0K6UVFRU6N1339WgQYNMjujlCA/T2b+fqndn/FXu1oNWZuhuyNQMcoYv7IYZ5GwGOcMXdiM4BHUpaWxslCT169ev3eVVVVWqr6/3lpKWlhbdcsstevTRRzt1nri4OEVHRwf04XTmHvYYw27O0/bKOm19d0OnZuhOnM7cgPMk067ndB4+f6cz97C3J+djh9PJbpjgdJKzCU4nOcM3pzPw/WA3Os/p7JhzXFxcp44V1KUkMTFRklRbW+u9zOPxaPr06XK73d5S8stf/lJTpkzR4MGDbYypuMEnKP2aC/X+fbwxqquQqRnkDF/YDTPI2Qxyhi/sRvAI6je6Z2RkKC0tTTNmzFBkZKR69uypRx99VKtXr1ZsbKzS09NVVlam999/Xw899FCnz+NyuQK+7dbyKi3Nu6fdZf3PPEUxfXtp4oo5kqSwiHBFHhejK9Y/rtLrf3fMNe/S0mXqf+YpAd+eTLuWr/zJGeyGGeRsBjnDn0D3g934bo7073z+BHUpiYiIUHFxsaZOnaqCggIlJyersLBQ8fHx2rRpk8LCwvTWW29pw4YNSk1NlSR98sknuuiii/TEE0/owgsvNDJn3eJ/69N31no/P/576Rrz51v00gV3aP/23UZm6G7I1Axyhi/shhnkbAY5wxd2I3gEdSmRpJEjR6qsrKzdZXPnzlVOTo4k6a677tJdd93lvW7w4MF6+eWXNWzYMGMztjW3al/zDu/nLdt3Sx6P9jXt8PNV8IdMzSBn+MJumEHOZpAzfGE3gkdQv6fkcJqbm1VdXR10/2jif9pStl4L0662PUa3QqZmkDN8YTfMIGczyBm+sBv2BP0zJd+0du1atbW1+SwlmzdvNjsQAAAAgO8k5EpJdna2PB6P7TEAAAAAdJGQe/kWAAAAgO6FUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKwKmVLS2tqqmTNnKjk5WTExMRo7dqzKy8vlcDhUUlJiezwAAAAAnRRhe4BAeDweTZo0SeXl5Zo1a5bS0tJUVFSkCRMmSJKysrKszjfmT7codcIYuQ8c9F627Kd/UGPpGntDhTgyNYOc4Qu7YQY5m0HO8If9CA4hUUrmzZunJUuWaM2aNcrMzJQk5ebmKjU1VQkJCUpJSbE8obTx6de18u6/2R6jWyFTM8gZvrAbZpCzGeQMf9gP+0KilMyePVtTpkzxFhJJCg8PV2pqqiIjIyVJgwcPVo8ePdSjRw/v11x00UVW5gUAAAAQuKAvJTU1Naqrq9OcOXM6XNfQ0KD8/Hzv58XFxRo2bJjJ8byGTDxXQyaMUfPnX+ij599W5dwX5WlzW5mluyBTM8gZvrAbZpCzGeQMf9gP+4K+lDQ2NkqS+vXr1+7yqqoq1dfXd8n7SeLi4tTa2hrQbYdG9NGd8WPaXfbh35bo/fsWaP8OlxJHDFHOI4UKj47S6t/+/TvPFoqczlxtOrgz4NuTaddyOg+fPznD6WQ3THA6ydkEp5Oc4ZvTyX6Y4HR2zDkqKkoul+uIjxX0v30rMTFRklRbW+u9zOPxaPr06XK73e1KyeTJkzVixAjdfPPN2rVrl7EZd1TWaf/23ZLHo+0fbNLq3z+r1LxzjJ2/OyJTM8gZvrAbZpCzGeQMf9iP4BD0pSQjI0NpaWmaMWOGFi1apKVLlyovL08VFRWKjY1Venq6JOmdd97RBx98oPfee08ej0e33nprwOdwuVxqaWkJ6KO0dNm3H9DtkRyd/Ia7gdLSZQHnSaZdz1f+5Ax2wwxyNoOc4Q/7Ycbhcu7MsyRSCJSSiIgIFRcXKykpSQUFBSosLNS4ceOUk5OjESNGKCzs0LeQnJwsSYqOjtbNN9+sFStWGJtx8KVnKzIuVpLUJ2OQRk6bpM0vlxk7f3dEpmaQM3xhN8wgZzPIGf6wH8Eh6N9TIkkjR45UWVn75Zg7d65ycnIkSXv37tXBgwfVq1cveTwe/f3vf9eoUaOMzXfKtRdp9OwbFRYZruatu7Sp+C2tffgFY+fvjsjUDHKGL+yGGeRsBjnDH/YjOIREKfmm5uZmVVdXq7CwUJK0detW5efnq62tTW1tbTr11FP1yCOPGJvnXxN/ZexcxwoyNYOc4Qu7YQY5m0HO8If9CA4hWUrWrl2rtrY275vchwwZotWrV1ueCgAAAEBnhGQpyc7OlsfjsT0GAAAAgC4Q9G90BwAAANC9UUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVIVNKWltbNXPmTCUnJysmJkZjx45VeXm5HA6HSkpKbI8HAAAAoJMibA8QCI/Ho0mTJqm8vFyzZs1SWlqaioqKNGHCBElSVlaW5QkPOfH805Q1/QrFDx2gg3uate6xxVr/6Eu2xwppZGoGOcMXdsMMcjaDnOEP+2FXSJSSefPmacmSJVqzZo0yMzMlSbm5uUpNTVVCQoJSUlIsTygNyBmp0b+7Sctvn6stZesVEROt4wb2tT1WSCNTM8gZvrAbZpCzGeQMf9gP+0Li5VuzZ8/WlClTvIVEksLDw5Wamup9lmT//v362c9+ppNOOknDhw/XjTfeaHTGrDuv0No/Pa+m5ZXytLl1YE+zdlU3GJ2huyFTM8gZvrAbZpCzGeQMf9gP+4L+mZKamhrV1dVpzpw5Ha5raGhQfn6+JOnOO+9Ujx49tHHjRjkcDm3dutXYjBEx0eo7aqga31ytCe/8WVG9jtNnFTUqn/mE9jRsMzZHd0KmZpAzfGE3zCBnM8gZ/rAfwSHonylpbGyUJPXr16/d5VVVVaqvr1dWVpb27Nmj+fPn67777pPD4ZAk9e/fP+BzxMXFKTo6OqAPpzO3w9dH9T5OjrAwDbokW69d+RsVZ9+s5s92yfm3X3T22w5pTmduwHmSaddzOg+fv9OZ2+G25HxscTrZDROcTnI2wekkZ/jmdLIfJjidHXOOi4vr1LGCvpQkJiZKkmpra72XeTweTZ8+XW63W1lZWdq0aZMSExN177336vTTT1dubq6WL19ubMYDe/ZLkj786xLt+eQztTW3quLBIiUOT+X1iJ1EpmaQM3xhN8wgZzPIGf6wH8Eh6EtJRkaG0tLSNGPGDC1atEhLly5VXl6eKioqFBsbq/T0dLW1temjjz5SVlaW3n//fc2ePVsTJ07U7t27AzqHy+VSS0tLQB+lpcs6fP0B175DT+95PF383Yem0tJlAedJpl3PV/7kDHbDDHI2g5zhD/thxuFydrlcnTpW0JeSiIgIFRcXKykpSQUFBSosLNS4ceOUk5OjESNGKCwsTCkpKYqIiNCVV14pScrOzlbfvn21ceNGY3NWz39VGTdcotgBiQqPjlTWnVfo8w82aW/j58Zm6G7I1Axyhi/shhnkbAY5wx/2w76gf6O7JI0cOVJlZWXtLps7d65ycnIkSX379pXT6dRrr72mCy+8UBs3btS2bduUlpZmbMbKv5QoqldPXfrqbyVHmLaVV6n0+t8ZO393RKZmkDN8YTfMIGczyBn+sB/2hUQp+abm5mZVV1ersLDQe9ljjz2m6667TtOmTVNkZKQWLFig3r17mxvK49Gq+5/WqvufNnfO7o5MzSBn+MJumEHOZpAz/GE/rAvJUrJ27Vq1tbW1+5fchwwZomXLltkbCgAAAECnhGQpyc7Oloc3IwEAAADdQtC/0R0AAABA90YpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFgVYXuAQLW2tuq+++7Tk08+qc8//1yjR4/WQw89pOzsbL344ovKy8uzNtvk2gXtPg+PitSumka9dP40SxOFPjI1g5zhC7thBjmbQc7wh/0IDiFRSjwejyZNmqTy8nLNmjVLaWlpKioq0oQJEyRJWVlZVudbmHZ1u88vfeMPqitZYWma7oFMzSBn+MJumEHOZpAz/GE/gkNIlJJ58+ZpyZIlWrNmjTIzMyVJubm5Sk1NVUJCglJSUixP+LW+o9LU++QTVftsqe1Rug0yNYOc4Qu7YQY5m0HO8If9sCckSsns2bM1ZcoUbyGRpPDwcKWmpioyMlKbN2/W+PHjvdft2rVLu3fv1o4dO4zPetJVY9X45mo1b91p/NzdFZmaQc7whd0wg5zNIGf4w37YE/RvdK+pqVFdXZ3y8/M7XNfQ0KCsrCwNHjxYa9as8X6MHz9eV111VcDniIuLU3R0dEAfTmeuz+NExEQrNe8cbSx648i/0W7E6cwNOE8y7XpO5+HzdzpzfX4NOR8bnE52wwSnk5xNcDrJGb45neyHCU5nx5zj4uI6daygf6aksbFRktSvX792l1dVVam+vr7D+0laW1u1cOFCvfLKK8Zm/MrgH43WweZWffL6KuPn7q7I1Axyhi/shhnkbAY5wx/2w66gf6YkMTFRklRbW+u9zOPxaPr06XK73R1KyUsvvaSBAwfqtNNOC/gcLpdLLS0tAX2Uli7zeZyTJp+vTc8tk6fNfWTfZDdTWros4DzJtOv5yp+cwW6YQc5mkDP8YT/MOFzOLperU8cK+lKSkZGhtLQ0zZgxQ4sWLdLSpUuVl5eniooKxcbGKj09vd3tH3/8cV133XXG54wfOkD9Tk/Xxmd4yq+rkKkZ5Axf2A0zyNkMcoY/7Id9Qf/yrYiICBUXF2vq1KkqKChQcnKyCgsLFR8fr02bNiks7Ote1djYqLfeeksLFizwc8Sj46Qrx2rryg1y1W0xfu7uikzNIGf4wm6YQc5mkDP8YT/sC/pSIkkjR45UWVlZu8vmzp2rnJycdpc99dRTuuSSS7wv+TJp1W+eNn7O7o5MzSBn+MJumEHOZpAz/GE/7Av6l28dTnNzs6qrqzu8n+TJJ5+08tItAAAAAJ0XEs+UfNPatWvV1tbWoZRs3LjR0kQAAAAAOiskS0l2drY8Ho/tMQAAAAB0gZB8+RYAAACA7oNSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArHJ4+FcIj0ira592bvjY9hhBrU9GiqLiYgO+PZl2LV/5kzPYDTPI2Qxyhj/shxlH+nc+fyglAAAAAKzi5VsAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMCq/w9phDO0WxY9YwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyUAAAGOCAYAAACJ0KybAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3BklEQVR4nO3de1jUdd7/8ddwFBJUMA0NFKWI8ERbkWXBWFtr7YZKtpUWbbXldrrZ2za7LXdt2w7u4d5dc6uf924HTdqStshWtyNWuiQlmmiCYEhEqOUhR0VQZn5/WNMSzjQSfj4z+HxcF9cVM8P3++bleyZfzAw6PB6PRwAAAABgSZjtAQAAAAAc2yglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrImwPEGpaXfu0c8PHtscIan0yUhQVFxvw7cm0a/nKn5zBbphBzmaQM/xhP8w40r/z+UMpOUI7N3yspXn32B4jqI0r+Y36n3lKwLcn067lK39yBrthBjmbQc7wh/0w40j/zucPL98CAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWBUypaS1tVUzZ85UcnKyYmJiNHbsWJWXl8vhcKikpMT2eAAAAAA6KST+RXePx6NJkyapvLxcs2bNUlpamoqKijRhwgRJUlZWluUJJUd4mM6YVaCh+efJERamzf98Vytn/FVtLQdsjxayyNQMcoYv7IYZ5GwGOcMf9sO+kHimZN68eVqyZIlef/113XTTTTr//PM1b948hYeHKyEhQSkpKbZH1IjbJ+qEs4epZOw0PX/Obep98on63j1X2x4rpJGpGeQMX9gNM8jZDHKGP+yHfSFRSmbPnq0pU6YoMzPTe1l4eLhSU1O9z5Js3LhRo0eP1sknn6zRo0erpqbG6IwnTT5flXP+oX1bdqhl+26t+cNzSvtxrhxhIRFxUCJTM8gZvrAbZpCzGeQMf9gP+4I+6ZqaGtXV1Sk/P7/DdQ0NDd5SMnXqVN1yyy3auHGjbrnlFt10000BnyMuLk7R0dEBfTiduR2+Pio+Vj0HHq8d6+u8l22vrFNUXKx6Jh9/pN9yyHM6cwPOk0y7ntN5+PydztwOtyXnY4vTyW6Y4HSSswlOJznDN6eT/TDB6eyYc1xcXKeOFfSlpLGxUZLUr1+/dpdXVVWpvr5eWVlZ2rZtmyoqKnTllVdKkq688kpVVFTos88+MzJjRM8YSVLrF/u8l7V+sVeSFPnldTgyZGoGOcMXdsMMcjaDnOEP+xEcgr6UJCYmSpJqa2u9l3k8Hk2fPl1ut1tZWVlqaGjQwIEDFR4eLunQS7sGDBighoaGgM7hcrnU0tIS0Edp6bIOX39wT7MkKTI+1ntZVK/jJEkHvrzuWFJauizgPMm06/nKn5zBbphBzmaQM/xhP8w4XM4ul6tTxwr6UpKRkaG0tDTNmDFDixYt0tKlS5WXl6eKigrFxsYqPT3d9ohq3b1Pexo/U0LmYO9licNS1erapz0NZp6t6W7I1Axyhi/shhnkbAY5wx/2IzgEfSmJiIhQcXGxkpKSVFBQoMLCQo0bN045OTkaMWKEwsLClJycrMbGRrW1tUmS2tra9Omnnyo5OdnYnDUL39CI2yYopn8fRSfGa9S0y1X77DJ53G5jM3Q3ZGoGOcMXdsMMcjaDnOEP+2FfSPw7JSNHjlRZWVm7y+bOnaucnBxJh95vMmrUKD3zzDOaMmWKnnnmGWVlZen44829OWntnH8oOiFe45f9UY4whza//K5W3f+0sfN3R2RqBjnDF3bDDHI2g5zhD/thX0iUkm9qbm5WdXW1CgsLvZc99thjKigo0K9//Wv16dNH8+fPNzqTp82t8pmPq3zm40bP252RqRnkDF/YDTPI2Qxyhj/sh30hWUrWrl2rtra2dv+S+ymnnKKVK1danAoAAABAZ4RkKcnOzpbH47E9BgAAAIAuEPRvdAcAAADQvVFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVSFTSlpbWzVz5kwlJycrJiZGY8eOVXl5uRwOh0pKSmyPBwAAAKCTImwPEAiPx6NJkyapvLxcs2bNUlpamoqKijRhwgRJUlZWluUJpcE/Gq2MGy5WQuZgtexwqfjMm22PFNLI0wxyhj/shxnkbAY5wxd2IziERCmZN2+elixZojVr1igzM1OSlJubq9TUVCUkJCglJcXyhFLLF3tV9fi/1OP4Xsq88Ye2xwl55GkGOcMf9sMMcjaDnOELuxEcQqKUzJ49W1OmTPEWEkkKDw9XamqqIiMjJUl33HGHnn/+eW3evFmVlZUaNmyY0Rmb3l4rSUr5wRlGz9tdkacZ5Ax/2A8zyNkMcoYv7EZwCPr3lNTU1Kiurk75+fkdrmtoaPC+dGv8+PF6++23NWjQINMjAgAAAPgOgv6ZksbGRklSv3792l1eVVWl+vp6bykZM2ZMp88RFxen1tbWgG47NKKP7ozv/LmOBU5nrjYd3Bnw7cm0azmdh8+fnOF0shsmOJ3kbILTSc7wzelkP0xwOjvmHBUVJZfLdcTHCvpnShITEyVJtbW13ss8Ho+mT58ut9sdFG9yBwAAANB5QV9KMjIylJaWphkzZmjRokVaunSp8vLyVFFRodjYWKWnp3/nc7hcLrW0tAT0UVq67Lt/U91caemygPMk067nK39yBrthBjmbQc7wh/0w43A5d+ZZEikEXr4VERGh4uJiTZ06VQUFBUpOTlZhYaHi4+O1adMmhYUFR69yhIUpLDJcjogIyeFQeHSkPB6P3K0HbY8WksjTDHKGP+yHGeRsBjnDF3YjOAR9KZGkkSNHqqysrN1lc+fOVU5OjqWJOhp62Xka8+dbvZ9fvfkZ7WnYxu+67iTyNIOc4Q/7YQY5m0HO8IXdCA4hUUq+qbm5WdXV1SosLPRedvvtt+sf//iHtmzZogsuuECJiYlav369sZlqn1um2ueWGTtfd0eeZpAz/GE/zCBnM8gZvrAbwSE4Xvt0hNauXau2trZ2b3KfM2eOPvnkEx08eFBbtmwxWkgAAAAAdF5IPlOSnZ0tj8djewwAAAAAXSAknykBAAAA0H1QSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFUhU0paW1s1c+ZMJScnKyYmRmPHjlV5ebkcDodKSkpsjwcAAACgkyJsDxAIj8ejSZMmqby8XLNmzVJaWpqKioo0YcIESVJWVpbV+cKiInTWAzcoacxw9UiM176tO7Xh8aWqenyp1blCGZmaQc7whd0wg5zNIGf4w34Eh5AoJfPmzdOSJUu0Zs0aZWZmSpJyc3OVmpqqhIQEpaSkWJ0vLDxczdt26dUr7pOrfqsSTh2k7z9zj/Z/tkubF5dZnS1UkakZ5Axf2A0zyNkMcoY/7EdwCImXb82ePVtTpkzxFhJJCg8PV2pqqrKysrR9+3ZdfPHFSk9P1/DhwzVx4kR99tlnxuY72Nyi1b/9u1ybt0gej3as36yGV99XvzMzjM3Q3ZCpGeQMX9gNM8jZDHKGP+xHcAj6UlJTU6O6ujrl5+d3uK6hoUFZWVlyOBy68847VV1drcrKSg0dOlR33XWXhWkPcUSEq392hnZuqLc2Q3dDpmaQM3xhN8wgZzPIGf6wH3YE/cu3GhsbJUn9+vVrd3lVVZXq6+uVlZWlhIQE5ebmeq8766yz9OijjwZ8jri4OLW2tgZ026ERfXRn/Bi/tznrget1YE+zNi16K+AZuhOnM1ebDu4M+PZk2rWczsPnT85wOtkNE5xOcjbB6SRn+OZ0sh8mOJ0dc46KipLL5TriYwX9MyWJiYmSpNraWu9lHo9H06dPl9vt7vAmd7fbrUcffVSXXnqp0Tm/csasAh3/vXS9Nvl+uQ8ctDJDd0OmZpAzfGE3zCBnM8gZ/rAf9gR9KcnIyFBaWppmzJihRYsWaenSpcrLy1NFRYViY2OVnp7e7va33XabevbsqVtvvTXgc7hcLrW0tAT0UVq6zOdxzvz1tRpw3gi9cvm9atlx5A2xuygtXRZwnmTa9XzlT85gN8wgZzPIGf6wH2YcLufOPEsihcDLtyIiIlRcXKypU6eqoKBAycnJKiwsVHx8vDZt2qSwsK971R133KGamhotXry43eUmnHnfdUoaM0z/umyWWrbvNnru7opMzSBn+MJumEHOZpAz/GE/7Av6UiJJI0eOVFlZ+1/JNnfuXOXk5Hg/nzFjhlatWqV//vOfio6ONjrfcSf21ak3XKy2/a26bOVfvJdvXVml1yffb3SW7oJMzSBn+MJumEHOZpAz/GE/gkNIlJJvam5uVnV1tQoLCyVJ69ev14MPPqiTTz5ZZ599tiQpNTVVL7zwgpF59n7yuZ5MuszIuY4VZGoGOcMXdsMMcjaDnOEP+xEcQrKUrF27Vm1tbd43uWdmZsrj8VieCgAAAEBnhGQpyc7OpoQAAAAA3UTQ//YtAAAAAN0bpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFgVMqWktbVVM2fOVHJysmJiYjR27FiVl5fL4XCopKTE9ngAAAAAOinC9gCB8Hg8mjRpksrLyzVr1iylpaWpqKhIEyZMkCRlZWVZnlA668EblPz90xUZH6sDe5pV/3KZ3r/vabkPHLQ9WsgiUzPIGb6wG2aQsxnkDH/YD/tCopTMmzdPS5Ys0Zo1a5SZmSlJys3NVWpqqhISEpSSkmJ5QmnDE//S+79eoIPNLYpOiFPuvGkacftErfnDc7ZHC1lkagY5wxd2wwxyNoOc4Q/7YV9IlJLZs2drypQp3kIiSeHh4UpNTVVkZKQkafz48aqrq1NYWJh69uyphx9+WKNGjTI24xcbP/n6E4dDHrdHcUOSjJ2/OyJTM8gZvrAbZpCzGeQMf9gP+4K+lNTU1Kiurk5z5szpcF1DQ4Py8/MlSU899ZR69eolSSopKdF1112niooKo7MOv3W8RhTmK/K4GO3fsVuvXfW00fN3R2RqBjnDF3bDDHI2g5zhD/thl8Pj8XhsD+HPsmXL5HQ6tXLlSp155pney6uqqpSZmakFCxboqquuavc18+fP15w5c/T+++8HdI64uDi1trYGdNuhEX10Z/wYv7fpddJADZl4rqrnv6p9TTsCOm538tvdy7Xp4M6Ab0+mXctX/uQMdsMMcjaDnOEP+2HG4XKOioqSy+U64mMF/W/fSkxMlCTV1tZ6L/N4PJo+fbrcbne7N7nfcMMNSklJ0d13362nnnrK+Kxf+aKmUTvW1+vch2+3NkN3Q6ZmkDN8YTfMIGczyBn+sB92BH0pycjIUFpammbMmKFFixZp6dKlysvLU0VFhWJjY5Wenu697V//+ld9/PHHeuCBB/SLX/wi4HO4XC61tLQE9FFauiygY4ZFhiv+GH0tYmnpsoDzJNOu5yt/cga7YQY5m0HO8If9MONwOXfmWRIpBEpJRESEiouLlZSUpIKCAhUWFmrcuHHKycnRiBEjFBbW8Vu4+uqrVVpaqu3btxuZMTIuVmmX5yoqPlaS1CdjkEYW5uvTZR8YOX93RKZmkDN8YTfMIGczyBn+sB/BIejf6C5JI0eOVFlZWbvL5s6dq5ycHEnSnj17tHPnTiUnJ0uSFi9erISEBCUkJJgZ0OPRkPzzdMasAoVFRWj/57tVv2Sl1vzuWTPn747I1Axyhi/shhnkbAY5wx/2IyiERCn5pubmZlVXV6uwsFCStHfvXk2aNEl79+5VeHi4EhIStHjxYjkcDiPzHNjTrFd//Gsj5zpWkKkZ5Axf2A0zyNkMcoY/7EdwCMlSsnbtWrW1tXnf5N6/f3+9++67lqcCAAAA0BkhWUqys7MV5L/JGAAAAECAgv6N7gAAAAC6N0oJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKSZAY86dblH3/9bbH8Lpg4d3KuP5i22McNcGW93+aXLtACcNSbY9xxEJ17q+cMDpTk2sXHLXj/+D5e5U59dIj/rp+2Rn68Qf/dxQmsov7oBnkfHSE8uwSj3cmcR8MXITtAY4l8UOSdPrMq9XvjHSFR0ep+bNdanj1fb0366kjOk7a5bnK/NmlKnH+91GaVHp98v1H7dhd7YSzMzVq2uVKHDFEkrR97Uda8/vntKVsveXJDhk17XIljhyqN655MKDbL0y7+ihPdOR+8Py9Ov57J8t94KA8breat+3Sp+9Uat0jL2rvJ59LCs65u4NtKzfo2ZE/tT2GX9wHzSBnM3i8syfYH++4Dx5dPFNi0AULZuiL2k9VfOYtWnjyNXpt8v3a+WG9lVkcEeFWztvVTrzge/p+0T1qeH2VnjvtJj132k1qeH2Vvv/MPTrx/NMO+zWO8K5b++6SYyAqHnpGC0+6WkXpBXrz+t+pR584Xfra7xU/dIDt0WAR90EzyNksHu/wTdwHjz5KiSHRCXGKH5Kk6vmv6uC+/ZLHI1fdFtU+t+ywtz/34ds0qeL/aXLNAl362u800DlKkpQwLFWjZ9+oXicN1OTaBZpcu0DxQ5IkHWrwl7z8gK7c8KTGv/0npead4z3eqGmX64KFdyv7gRt0xfrHlf2b6/zO+59PvV6w8G6d8pMfSJLCe0Tp6roiZT9wg/e2E975swaOzepsNN9J9m+uU+2iZVr/6Es64NqnA659Wv/oS9pU/JbO/PJ7vKz8EY0ozNfFL92vKR8tVN+RQyVJkcf1UO68aZpcs0Dj3/qjBuSO/NbzffWU98lTLtBl7z2qS1//vSQp6bwR+uErs3VV9VO69I0/KOUHZ0iSUn5whobfPkEDnaO8f15hUf6foLy2qViJI4fKER6mqzbOV+/05EPnPjtT1zYVa9APR0uSYvr11jUf/12RPWM6F9538MXGT/T2rX/Wvi07lPWLH7ebWzq0p+NevE9XrH9CV6x/Qrn/N009+vbyfn1UfKxyHvu5rqp6ShNXPKyTr/6+rm0qVnRC3LeeO3HEEF206Fe68sMndMW6v7XbZV9/DtKh+8D58/+n3bEuK39Egy4567DniYjtodG/vVGXr56nH3/wfxrz51sV1es47/XXNhUr4/qLlVf6v5q86WnlzpumqPhYnfPHm3VV9VOa8M6fdfxpJ7U7Zkz/3rrw2V9qcu0C/fBfs715+fOfL7Pom3WSrlj3t6+/pzsuV0Hjc+qRGC9JSh1/ji5ZEthPyLoK90Ez90FytvNYJ/F499X3e6w/3nEfPPr3QUqJIS07XNq1sUHn/PFmpeado7hB/f3evmnFepU4/1tFpxSoesFryp03TdGJ8dqxrk5l0+fpi5pGLUy7WgvTrtbuj5rUOz1ZYx+/U6t//6yeOfUneue2h3XWgze0exAYcN4I7VhXp2dH3KD37g38JWNNyyuVNGa4JKnfGena27RdSWOGSZJiT0hQ3KD+2vruhk6k8t3EDx2guEH9Vffiig7XffTCcsUPPsFb2NIm5WrFtEe0MO1qbV9XJ0lKHT9GH73wjopOKdDah1/Q2MfvVOwJCd963oiYaPUdlaYXzyvUy+OmK27wCbrgqbu0bu6LeubUn2jV/U8r59GfKyFzsD7+13uqnPOCGkvXeP+83K0HA/r+PG1ubV25wZt90rnDtbuuyZt90pjh2r72Ix3Y0xzQ8bqap82tj/9VrhPOzux4ndutVQ8W6blRP9UL596uyJ4x7f5nmn3/9Yru3VPF2Tfrn5ferSHjxwR0ztgTEnRR8SxtfvldPZd1oxad8TPVLS6TJL9/Dp2R/Zvr1CttoEouuEMvnPtfik6I0zn/e3O726T84Az9K/9XKj7zZiWOHKJL/vmgNi8u0zMZP1H9kpUaPfvGdrc/6YqxWvOH57zXXzD/LoXHRAU80/YPNiksMkJ9MgZJOrQTrvqtOuGcr3diy/J1nfp+O4P7oJn7IDnbfaz7akYe747dxzvug2bug5QSg/418Vf6fE2tht8+UROWz1H+u3/R4B+NPuxta//+plq/2CtPm1vV819Vy06Xt3EfTnrBRdr0/Nv6dNkHksej7R9sUl3JCg297Dzvbb6obVRN0RvytLnV1twa8NxbVqxT/7NOlRwOJZ07XDVFbygiNlox/fvohDHD9PmaTYee/TGsx5c/ZWreuqPDdc3bdh66zZc/Uale8Jq+qGmUx+323km3vPuhPl5aLk+bWx8Vv62dH9b7/PP4T46wMK16YKEONreorblVqXlna+vKDdq8uEyeNrca31ytj199X0Mn5Xzn73HL8nXtHhTW/P4574PGCecMU9MKc38BPZx9TTsU3btnh8t3flivbSs3yH3goFp2uFQ55wXv/0gcYWEafOnZWv27Z9X6xV61bN+tD/78fEDnG5J/nnZU1qn6qVfU1nJAbc2t2rbyUCHu0j8Hh0NDJp6rigeL1LJ9t1p379P79y3QoIuz2/2kaP1ji9Wyw6WW7bv16dtrtadhmxrfXC2P2626F1eod0aKwiK//knV5pfLtK28Su4DB1X58AvyuD0amPPtPzH7isft1tZ3NyhpzDBFxPZQ75NO1PrHFivpXDs7wX3QTN7kbP+xTuLx7lh+vOM+aCZrSolB+7fv1qrfPK2Xzp+mZzKuVdWTr+i8RwrVK+0br1F1OJR15xWasHyOrto4X1dVPaXYAYnehT+cnsnH66Qrx+qqqqe8H0Mn5Si2/9dNfG/j552ae3tlnRwOKWHYYCWdM1yfvlPpXd6kc4apaXllp477Xe3f4ZIkxfTv+NOGmH59Dt1m+25J0t7GzzrcZu8n7S/b0/BZQD+5ONjcopYvzy1JsUmJ2vPNY9VvVWxS4rce69s0La9U/7NOVVR8rOKHDFDdiysUHhWh2KQEJY0ZpqZ37GT/ldikBLXsdHW4PG5Qfzkf/4UuXz1PV22cr/Pn36WYL1/OEJ0Qp/CoyHb7GOhu9jyxr3bXNfmYpev+HHokxis8OlJ7Gr4+3p76rYfOM+Dr4zV//oX3v9uaW9S8bZf384PNLQoLD1fEf/xksN3OeTza2/i5Yk84svmallfqhHOGqf9ZGdq2aqMa31ytpHOG6bgT++q4pERtLTf3rCX3QTP3QXK2/1gn8Xh3LD/ecR80cx+klFhyYE+z1j/2klp37/O+hu8rQyaM0dDLc/TmtQ+pKL1ARacUaN+n2+VwOCRJHo+nw/H2Nn6uqidfUdEpBd6PhWlXa9mNf/DexuPu+HUB8Xi0pexDDRqXrbjB/bWjsk5NK9Ypacxwq6Vk96ZP5fp4q1IvPbvDdal5Z8v18Vbt/ujQA/rhvvfjTjy+3ec9k4/Xvi0dfwryTR63u93n+5q2q2eHY/XTvqbth739kdixfrM8brdO/ekPte29KnncbjUtX6eTr7pAsf36aNt7VZ0+9nflCA9TykVnaMu/P+xw3ejZN6plh0sv5v5cRSdfozeuech7XcsOl9paD+i4gX29l/3nf/uz55PPFZ+adNjrvu3P4cDe/e3+h+kID2v3uu//tH/7brW1HFDP5K+P99V/72v69h3xpd3OORyKHZCofVu2H9Exmpav0wlnnaoBOSPVtLzy0P+gHA6d9OOx+qxi4xE9C/pdcR80cx8kZ7uPdRKPd53RnR7vuA+auQ9SSgyJ6nWcTvufq9T75BPliAhXWFSETr76+4qIidL2Dz5qd9vInjFytx7U/u27FRYRrsypl7Zrwc2f7VJMv97tXptZPf9VpV2eo6TzRsgRHqawyAgljhyqPqcO6pL5m5ZXKuP6cdq6csOXi1qpQRdnq0ffXtr2fnWXnKMzyn/5pNJ+7FTmTT9SZM8YRcbF6tSbfqi0y50qn/mE36894axTlXzh6XKEh2nIxHPV59RB2vzPd494hrqSf6t/doYGXZItR1iYBjpHKfmi07Wp+G1Jh366dNzAvp3+LRxb/r1ep954ibf8Na2o1Kk3XqJtqzaqreVAp475XfVKG6Axc25TbFKiVv/+2Q7XR8bFqtW1T6279ymmfx+NKMz3Xudxu7V5cZlG3XG5onodp+iEOI24bUJA5/3oH28rccQQpV9zocKiIhQeE6V+2RmSvv3PYXvlR+p72knqdfKJCouKUNb0KxTm67eZeDz66IV3lDX9SkUnxisqPlanz7xG9UtX6oBr3xGm9bXBl5yl409PlyMiXMNvyVNYRLg+fWvtER1j54Z6tR04qJOucHp/crVlxbovd8T8S1y4D5q5D5Kzncc6ice7zupuj3fcB4/+fZB/p8QQd+tBxRzfW2Ofuksxx/dSW8tB7drYoDeund3hqbjaRcuUdO5w5a98RAf3tah6/qvaVfWx9/qm5eu0rbxKl6/6f3KEhWnxuOna+WG9Sn/6B502/Ur1fuzn8nikXVUfa9UDC7tk/qbllYqKv8H7ILCvaYeat+3S3qYdAb+R6mhoeOU9vT7lAY3878s06heXSzr0e8Nfn/LAtz6DU/ficg2dlKPz/vJf2tu0XaU3/F77Pj2yn+JIkmvzFr153W912v9M1jl/vEV7P/lMb986Rzu+fIPb5sVlGjJ+jK5Y97gcDof+PuL6I8qs6Z1KDf7haG/2TcvXKSr+OOOvsT7tris1atokeTweNW/dqabllXrp+3d4f2//fyr/1ZM6+7c3Kr3m+3LVb1P1/Fc14LwR3utX3v03nf27qbps5SPav323PvzbEiWNGf6tD3r7mnbolUn36vRfXaPvzZistgMHVfficm1bueFb/xy2rFin6idf0bgX7pO79YAq//Ki359Ulc98QmfMKtD4N/8gORz69K0PVP5L///j+TY1z5Yq684rdPxpadr9UZPeuOYhHWxuOeLjbFlx6OWTX/1K8abllTp58gVWXnfPfdAMcjaLxzse776J++DR5/Ac7rVA8GlreZWW5t1je4yjbtyL92nz4jJt+NuSI//akt+o/5mnBHz7YyXTQDjCwlTQ+JxKxk7Tzg2d+zdsfOUfzDkPHJul8/7yX3om41rbowSdpDHDlTvvv/XMqT/5zscKxd0w7Vi9D5p2LOfM451vPN6Z0xX3QenI/87nDy/fQgcRsT0UN6i/XJu32B7lmNMnc5DcBw4e9o1y3Ulc6gnqOypNcjjU88TjlfWLH6uupOOvWsShnXB9+aZTHH3Hyn3QtmMpZx7vAsfjnTnBeB/k5VvHqOG3T9SI2zu+rjW8R5TCwsNV9+IKNZauMT9YEMhb9kf1PLHjGxEbXl2lt2/+03c+/gUL71b/7I4/VTiwZ7/CIsO16oEite7u/Ot4Q0FETLTOffg2xQ5I1AFXsz55fZVW/eZpSUc//2D01T8W9k2Nyz5Q4vBU/XvaY4Ynsov7oBnkbAaPd+3xePc17oPtUUqOUZVz/qHKOf+wPUZQKsn9+VE9/uuT7z+qxw8FOz+s1wvn/tdhrzva+QejhWlX2x4hqHAfNIOczeDxrj0e777GfbA9Xr4FAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMCqkCglra2tmjlzppKTkxUTE6OxY8eqvLxcDodDJSUltscDAAAA8B0EfSnxeDyaNGmS/vrXv+qee+7Ryy+/rNTUVE2YMEGSlJWVZXnC9sJ7RGnivx/W5NoFtkfpNsjUDHKGL+yGGeRsBjnDF3bDrgjbA3ybefPmacmSJVqzZo0yMzMlSbm5uUpNTVVCQoJSUlIsT9he1i9+rD2ffK6Yfr1tj9JtkKkZ5Axf2A0zyNkMcoYv7IZdQf9MyezZszVlyhRvIZGk8PBwpaamdniW5N5775XD4dC6detMjylJShwxRAOdo7TuLy9aOX93RKZmkDN8YTfMIGczyBm+sBv2BXUpqampUV1dnfLz8ztc19DQ0K6UVFRU6N1339WgQYNMjujlCA/T2b+fqndn/FXu1oNWZuhuyNQMcoYv7IYZ5GwGOcMXdiM4BHUpaWxslCT169ev3eVVVVWqr6/3lpKWlhbdcsstevTRRzt1nri4OEVHRwf04XTmHvYYw27O0/bKOm19d0OnZuhOnM7cgPMk067ndB4+f6cz97C3J+djh9PJbpjgdJKzCU4nOcM3pzPw/WA3Os/p7JhzXFxcp44V1KUkMTFRklRbW+u9zOPxaPr06XK73d5S8stf/lJTpkzR4MGDbYypuMEnKP2aC/X+fbwxqquQqRnkDF/YDTPI2Qxyhi/sRvAI6je6Z2RkKC0tTTNmzFBkZKR69uypRx99VKtXr1ZsbKzS09NVVlam999/Xw899FCnz+NyuQK+7dbyKi3Nu6fdZf3PPEUxfXtp4oo5kqSwiHBFHhejK9Y/rtLrf3fMNe/S0mXqf+YpAd+eTLuWr/zJGeyGGeRsBjnDn0D3g934bo7073z+BHUpiYiIUHFxsaZOnaqCggIlJyersLBQ8fHx2rRpk8LCwvTWW29pw4YNSk1NlSR98sknuuiii/TEE0/owgsvNDJn3eJ/69N31no/P/576Rrz51v00gV3aP/23UZm6G7I1Axyhi/shhnkbAY5wxd2I3gEdSmRpJEjR6qsrKzdZXPnzlVOTo4k6a677tJdd93lvW7w4MF6+eWXNWzYMGMztjW3al/zDu/nLdt3Sx6P9jXt8PNV8IdMzSBn+MJumEHOZpAzfGE3gkdQv6fkcJqbm1VdXR10/2jif9pStl4L0662PUa3QqZmkDN8YTfMIGczyBm+sBv2BP0zJd+0du1atbW1+SwlmzdvNjsQAAAAgO8k5EpJdna2PB6P7TEAAAAAdJGQe/kWAAAAgO6FUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKwKmVLS2tqqmTNnKjk5WTExMRo7dqzKy8vlcDhUUlJiezwAAAAAnRRhe4BAeDweTZo0SeXl5Zo1a5bS0tJUVFSkCRMmSJKysrKszjfmT7codcIYuQ8c9F627Kd/UGPpGntDhTgyNYOc4Qu7YQY5m0HO8If9CA4hUUrmzZunJUuWaM2aNcrMzJQk5ebmKjU1VQkJCUpJSbE8obTx6de18u6/2R6jWyFTM8gZvrAbZpCzGeQMf9gP+0KilMyePVtTpkzxFhJJCg8PV2pqqiIjIyVJgwcPVo8ePdSjRw/v11x00UVW5gUAAAAQuKAvJTU1Naqrq9OcOXM6XNfQ0KD8/Hzv58XFxRo2bJjJ8byGTDxXQyaMUfPnX+ij599W5dwX5WlzW5mluyBTM8gZvrAbZpCzGeQMf9gP+4K+lDQ2NkqS+vXr1+7yqqoq1dfXd8n7SeLi4tTa2hrQbYdG9NGd8WPaXfbh35bo/fsWaP8OlxJHDFHOI4UKj47S6t/+/TvPFoqczlxtOrgz4NuTaddyOg+fPznD6WQ3THA6ydkEp5Oc4ZvTyX6Y4HR2zDkqKkoul+uIjxX0v30rMTFRklRbW+u9zOPxaPr06XK73e1KyeTJkzVixAjdfPPN2rVrl7EZd1TWaf/23ZLHo+0fbNLq3z+r1LxzjJ2/OyJTM8gZvrAbZpCzGeQMf9iP4BD0pSQjI0NpaWmaMWOGFi1apKVLlyovL08VFRWKjY1Venq6JOmdd97RBx98oPfee08ej0e33nprwOdwuVxqaWkJ6KO0dNm3H9DtkRyd/Ia7gdLSZQHnSaZdz1f+5Ax2wwxyNoOc4Q/7Ycbhcu7MsyRSCJSSiIgIFRcXKykpSQUFBSosLNS4ceOUk5OjESNGKCzs0LeQnJwsSYqOjtbNN9+sFStWGJtx8KVnKzIuVpLUJ2OQRk6bpM0vlxk7f3dEpmaQM3xhN8wgZzPIGf6wH8Eh6N9TIkkjR45UWVn75Zg7d65ycnIkSXv37tXBgwfVq1cveTwe/f3vf9eoUaOMzXfKtRdp9OwbFRYZruatu7Sp+C2tffgFY+fvjsjUDHKGL+yGGeRsBjnDH/YjOIREKfmm5uZmVVdXq7CwUJK0detW5efnq62tTW1tbTr11FP1yCOPGJvnXxN/ZexcxwoyNYOc4Qu7YQY5m0HO8If9CA4hWUrWrl2rtrY275vchwwZotWrV1ueCgAAAEBnhGQpyc7OlsfjsT0GAAAAgC4Q9G90BwAAANC9UUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVIVNKWltbNXPmTCUnJysmJkZjx45VeXm5HA6HSkpKbI8HAAAAoJMibA8QCI/Ho0mTJqm8vFyzZs1SWlqaioqKNGHCBElSVlaW5QkPOfH805Q1/QrFDx2gg3uate6xxVr/6Eu2xwppZGoGOcMXdsMMcjaDnOEP+2FXSJSSefPmacmSJVqzZo0yMzMlSbm5uUpNTVVCQoJSUlIsTygNyBmp0b+7Sctvn6stZesVEROt4wb2tT1WSCNTM8gZvrAbZpCzGeQMf9gP+0Li5VuzZ8/WlClTvIVEksLDw5Wamup9lmT//v362c9+ppNOOknDhw/XjTfeaHTGrDuv0No/Pa+m5ZXytLl1YE+zdlU3GJ2huyFTM8gZvrAbZpCzGeQMf9gP+4L+mZKamhrV1dVpzpw5Ha5raGhQfn6+JOnOO+9Ujx49tHHjRjkcDm3dutXYjBEx0eo7aqga31ytCe/8WVG9jtNnFTUqn/mE9jRsMzZHd0KmZpAzfGE3zCBnM8gZ/rAfwSHonylpbGyUJPXr16/d5VVVVaqvr1dWVpb27Nmj+fPn67777pPD4ZAk9e/fP+BzxMXFKTo6OqAPpzO3w9dH9T5OjrAwDbokW69d+RsVZ9+s5s92yfm3X3T22w5pTmduwHmSaddzOg+fv9OZ2+G25HxscTrZDROcTnI2wekkZ/jmdLIfJjidHXOOi4vr1LGCvpQkJiZKkmpra72XeTweTZ8+XW63W1lZWdq0aZMSExN177336vTTT1dubq6WL19ubMYDe/ZLkj786xLt+eQztTW3quLBIiUOT+X1iJ1EpmaQM3xhN8wgZzPIGf6wH8Eh6EtJRkaG0tLSNGPGDC1atEhLly5VXl6eKioqFBsbq/T0dLW1temjjz5SVlaW3n//fc2ePVsTJ07U7t27AzqHy+VSS0tLQB+lpcs6fP0B175DT+95PF383Yem0tJlAedJpl3PV/7kDHbDDHI2g5zhD/thxuFydrlcnTpW0JeSiIgIFRcXKykpSQUFBSosLNS4ceOUk5OjESNGKCwsTCkpKYqIiNCVV14pScrOzlbfvn21ceNGY3NWz39VGTdcotgBiQqPjlTWnVfo8w82aW/j58Zm6G7I1Axyhi/shhnkbAY5wx/2w76gf6O7JI0cOVJlZWXtLps7d65ycnIkSX379pXT6dRrr72mCy+8UBs3btS2bduUlpZmbMbKv5QoqldPXfrqbyVHmLaVV6n0+t8ZO393RKZmkDN8YTfMIGczyBn+sB/2hUQp+abm5mZVV1ersLDQe9ljjz2m6667TtOmTVNkZKQWLFig3r17mxvK49Gq+5/WqvufNnfO7o5MzSBn+MJumEHOZpAz/GE/rAvJUrJ27Vq1tbW1+5fchwwZomXLltkbCgAAAECnhGQpyc7Oloc3IwEAAADdQtC/0R0AAABA90YpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFhFKQEAAABgFaUEAAAAgFWUEgAAAABWUUoAAAAAWEUpAQAAAGAVpQQAAACAVZQSAAAAAFZRSgAAAABYRSkBAAAAYBWlBAAAAIBVlBIAAAAAVlFKAAAAAFgVYXuAQLW2tuq+++7Tk08+qc8//1yjR4/WQw89pOzsbL344ovKy8uzNtvk2gXtPg+PitSumka9dP40SxOFPjI1g5zhC7thBjmbQc7wh/0IDiFRSjwejyZNmqTy8nLNmjVLaWlpKioq0oQJEyRJWVlZVudbmHZ1u88vfeMPqitZYWma7oFMzSBn+MJumEHOZpAz/GE/gkNIlJJ58+ZpyZIlWrNmjTIzMyVJubm5Sk1NVUJCglJSUixP+LW+o9LU++QTVftsqe1Rug0yNYOc4Qu7YQY5m0HO8If9sCckSsns2bM1ZcoUbyGRpPDwcKWmpioyMlKbN2/W+PHjvdft2rVLu3fv1o4dO4zPetJVY9X45mo1b91p/NzdFZmaQc7whd0wg5zNIGf4w37YE/RvdK+pqVFdXZ3y8/M7XNfQ0KCsrCwNHjxYa9as8X6MHz9eV111VcDniIuLU3R0dEAfTmeuz+NExEQrNe8cbSx648i/0W7E6cwNOE8y7XpO5+HzdzpzfX4NOR8bnE52wwSnk5xNcDrJGb45neyHCU5nx5zj4uI6daygf6aksbFRktSvX792l1dVVam+vr7D+0laW1u1cOFCvfLKK8Zm/MrgH43WweZWffL6KuPn7q7I1Axyhi/shhnkbAY5wx/2w66gf6YkMTFRklRbW+u9zOPxaPr06XK73R1KyUsvvaSBAwfqtNNOC/gcLpdLLS0tAX2Uli7zeZyTJp+vTc8tk6fNfWTfZDdTWros4DzJtOv5yp+cwW6YQc5mkDP8YT/MOFzOLperU8cK+lKSkZGhtLQ0zZgxQ4sWLdLSpUuVl5eniooKxcbGKj09vd3tH3/8cV133XXG54wfOkD9Tk/Xxmd4yq+rkKkZ5Axf2A0zyNkMcoY/7Id9Qf/yrYiICBUXF2vq1KkqKChQcnKyCgsLFR8fr02bNiks7Ote1djYqLfeeksLFizwc8Sj46Qrx2rryg1y1W0xfu7uikzNIGf4wm6YQc5mkDP8YT/sC/pSIkkjR45UWVlZu8vmzp2rnJycdpc99dRTuuSSS7wv+TJp1W+eNn7O7o5MzSBn+MJumEHOZpAz/GE/7Av6l28dTnNzs6qrqzu8n+TJJ5+08tItAAAAAJ0XEs+UfNPatWvV1tbWoZRs3LjR0kQAAAAAOiskS0l2drY8Ho/tMQAAAAB0gZB8+RYAAACA7oNSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArHJ4+FcIj0ira592bvjY9hhBrU9GiqLiYgO+PZl2LV/5kzPYDTPI2Qxyhj/shxlH+nc+fyglAAAAAKzi5VsAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMAqSgkAAAAAqyglAAAAAKyilAAAAACwilICAAAAwCpKCQAAAACrKCUAAAAArKKUAAAAALCKUgIAAADAKkoJAAAAAKsoJQAAAACsopQAAAAAsIpSAgAAAMCq/w9phDO0WxY9YwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -553,16 +553,16 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.654997Z", - "iopub.status.busy": "2024-11-23T19:54:58.654596Z", - "iopub.status.idle": "2024-11-23T19:54:58.815593Z", - "shell.execute_reply": "2024-11-23T19:54:58.815073Z" + "iopub.execute_input": "2024-12-05T03:21:33.302440Z", + "iopub.status.busy": "2024-12-05T03:21:33.302062Z", + "iopub.status.idle": "2024-12-05T03:21:33.461175Z", + "shell.execute_reply": "2024-12-05T03:21:33.460659Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGOCAYAAAD4oVVpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAziElEQVR4nO3de1hVddr/8c/mKCiooCgaKIoS4YmmIsuCbaexZkIlO4wWTTXldHqYxyZ7LGdsOjpTz8yYU/18mk6mTUmTZKOdsdIhKdFEEwRDIkJNPG0VQdj794e1i2DZltG19xffr+viumStxVo3N/cXP6y9Nzg8Ho9HAAAAMEqQvwsAAADA0SPEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYK8XcBpmlyHdCujV/4u4yA1jM1UWFRkT4fT09hNTPMxrFFn2GF2bDH0f7/+GMIcUdp18YvtCz7Hn+XEdDGFdyvPmec7PPx9BRWM8NsHFv0GVaYDXsc7f+PP4aHUwEAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxkT4pqamjRz5kwlJCQoIiJCY8eOVXFxsRwOhwoKCvxdHgAAgK2M+IsNHo9HkyZNUnFxsWbNmqXk5GQtXLhQEyZMkCSlp6f7uULJERyk02flanDOuXIEBWnLvz7SqhlPqaXxkL9LMxY9hRVmwx70GVaYjcBgxJ24efPmaenSpXrnnXd000036bzzztO8efMUHBysmJgYJSYm+rtEjbh9ovqeNUwFY6fplbNvU4+hJ+kn91zt77KMRk9hhdmwB32GFWYjMBgR4mbPnq0pU6YoLS3Nuy04OFhJSUneu3CbNm3S6NGjNXToUI0ePVoVFRW21jhk8nkqnfNPHdi6U431e7X20ZeVfEWWHEFGtDgg0VNYYTbsQZ9hhdkIDAHf7YqKClVVVSknJ6fNvpqaGm+Imzp1qm655RZt2rRJt9xyi2666SafrxEVFaXw8HCf3pzOrDYfHxYdqW79e2vnhirvtvrSKoVFRapbQu+j/ZSN53Rm+dxPegrJemaczqw2xzIbHed00me0z+lkNuzgdLbf56ioqA6dL+BDXG1trSQpLi6u1faysjJVV1crPT1d27dvV0lJia666ipJ0lVXXaWSkhJ9/fXXttQY0i1CktS054B3W9Oe/ZKk0G/24ejQU1hhNuxBn2GF2QgcAR/iYmNjJUmVlZXebR6PR9OnT5fb7VZ6erpqamrUv39/BQcHSzr8UGu/fv1UU1Pj0zVcLpcaGxt9eissXN7m45v3NUiSQqMjvdvCuneVJB36Zt+JpLBwuc/9pKeQrGeG2Ti26DOsMBv2sOqzy+Xq0PkCPsSlpqYqOTlZM2bM0KJFi7Rs2TJlZ2erpKREkZGRSklJ8XeJatp7QPtqv1ZM2kDvtthhSWpyHdC+GnvuBnY29BRWmA170GdYYTYCR8CHuJCQEOXn5ys+Pl65ubnKy8vTuHHjlJmZqREjRigoKEgJCQmqra1VS0uLJKmlpUVfffWVEhISbKuzYsG7GnHbBEX06anw2GiNmna5Kl9aLo/bbVsNnQ09hRVmwx70GVaYjcBgxO+JGzlypIqKilptmzt3rjIzMyUdfr7cqFGj9OKLL2rKlCl68cUXlZ6ert697XuC5bo5/1R4TLTGL/+zHEEObXn9I61+4AXbrt8Z0VNYYTbsQZ9hhdkIDEaEuB9qaGhQeXm58vLyvNuefPJJ5ebm6g9/+IN69uyp559/3taaPC1uFc98WsUzn7b1up0ZPYUVZsMe9BlWmI3AYGSIW7dunVpaWlr9pYaTTz5Zq1at8mNVAAAA9jEyxGVkZMjj8fi7DAAAAL8J+Bc2AAAAoC1CHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYyJgQ19TUpJkzZyohIUEREREaO3asiouL5XA4VFBQ4O/yAAAAbBXi7wJ84fF4NGnSJBUXF2vWrFlKTk7WwoULNWHCBElSenq6nyuUBv58tFJvuFgxaQPVuNOl/DNu9ndJRqOfOBLmwx70GVaYjcBgRIibN2+eli5dqrVr1yotLU2SlJWVpaSkJMXExCgxMdHPFUqNe/ar7Ok31KV3d6Xd+DN/l2M8+okjYT7sQZ9hhdkIDEaEuNmzZ2vKlCneACdJwcHBSkpKUmhoqCTpjjvu0CuvvKItW7aotLRUw4YNs7XGug/WSZISf3q6rdftrOgnjoT5sAd9hhVmIzAE/HPiKioqVFVVpZycnDb7ampqvA+ljh8/Xh988IEGDBhgd4kAAAC2C/g7cbW1tZKkuLi4VtvLyspUXV3tDXFjxozp8DWioqLU1NTk07GDQ3rqzuiOX+tE4HRmaXPzLp+Pp6dwOtufGWbj2HI66TPa53QyG3ZwOtvvc1hYmFwu11GfL+DvxMXGxkqSKisrvds8Ho+mT58ut9sdEC9qAAAAsFvAh7jU1FQlJydrxowZWrRokZYtW6bs7GyVlJQoMjJSKSkp//E1XC6XGhsbfXorLFz+n39SnVxh4XKf+0lPIVnPDLNxbNFnWGE27GHV547chZMMeDg1JCRE+fn5mjp1qnJzc5WQkKC8vDxFR0dr8+bNCgoKjBzqCApSUGiwHCEhksOh4PBQeTweuZua/V2akegnjoT5sAd9hhVmIzAEfIiTpJEjR6qoqKjVtrlz5yozM9NPFbU1+LJzNeavt3rfv3rLi9pXs53fndNB9BNHwnzYgz7DCrMRGIwIcT/U0NCg8vJy5eXlebfdfvvt+uc//6mtW7fq/PPPV2xsrDZs2GBbTZUvL1fly8ttu15nRz9xJMyHPegzrDAbgSEwHos8SuvWrVNLS0urFzXMmTNHX375pZqbm7V161ZbAxwAAIDdjLwTl5GRIY/H4+8yAAAA/MbIO3EAAAAnOkIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABjImBDX1NSkmTNnKiEhQRERERo7dqyKi4vlcDhUUFDg7/IAAABsFeLvAnzh8Xg0adIkFRcXa9asWUpOTtbChQs1YcIESVJ6erpf6wsKC9GZD96g+DHD1SU2Wge27dLGp5ep7Ollfq3LZPQUVpgNe9BnWGE2AocRIW7evHlaunSp1q5dq7S0NElSVlaWkpKSFBMTo8TERL/WFxQcrIbtu/XWlffJVb1NMacM0AUv3qODX+/WliVFfq3NVPQUVpgNe9BnWGE2AocRD6fOnj1bU6ZM8QY4SQoODlZSUpLS09NVX1+viy++WCkpKRo+fLgmTpyor7/+2rb6mhsateaP/5Bry1bJ49HODVtU89Ynijsj1bYaOht6CivMhj3oM6wwG4Ej4ENcRUWFqqqqlJOT02ZfTU2N0tPT5XA4dOedd6q8vFylpaUaPHiw7rrrLj9Ue5gjJFh9MlK1a2O132robOgprDAb9qDPsMJs+E/AP5xaW1srSYqLi2u1vaysTNXV1UpPT1dMTIyysrK8+84880w98cQTPl8jKipKTU1NPh07OKSn7owec8Rjznzweh3a16DNi973uYbOxOnM0ubmXT4fT0/hdLY/M8zGseV00me0z+lkNuzgdLbf57CwMLlcrqM+X8DfiYuNjZUkVVZWerd5PB5Nnz5dbre7zYsa3G63nnjiCV166aW21vmt02flqvdPUvT25AfkPtTslxo6G3oKK8yGPegzrDAb/hXwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkpKq+Nvu+02devWTbfeeqvP13C5XGpsbPTprbBwueV5zvjDtep37gi9efm9atx59Im6sygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBD6eGhIQoPz9fU6dOVW5urhISEpSXl6fo6Ght3rxZQUHf5dA77rhDFRUVWrJkSavtdjjjvusUP2aY3rhslhrr99p67c6KnsIKs2EP+gwrzEZgCPgQJ0kjR45UUVHrly3PnTtXmZmZ3vdnzJih1atX61//+pfCw8Ntra/rSb10yg0Xq+Vgky5b9Tfv9m2ryvTO5AdsraWzoKewwmzYgz7DCrMROIwIcT/U0NCg8vJy5eXlSZI2bNighx56SEOHDtVZZ50lSUpKStKrr75qSz37v9yhZ+Mvs+VaJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UkJaWJo/H4+eqAAAA7GNkiMvIyCC0AQCAE1rAvzoVAAAAbRHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAxoS4pqYmzZw5UwkJCYqIiNDYsWNVXFwsh8OhgoICf5cHAABgqxB/F+ALj8ejSZMmqbi4WLNmzVJycrIWLlyoCRMmSJLS09P9XKF05kM3KOGC0xQaHalD+xpU/XqRPrnvBbkPNfu7NGPRU1hhNuxBn2GF2QgMRoS4efPmaenSpVq7dq3S0tIkSVlZWUpKSlJMTIwSExP9XKG08Zk39Mkf5qu5oVHhMVHKmjdNI26fqLWPvuzv0oxFT2GF2bAHfYYVZiMwGBHiZs+erSlTpngDnCQFBwcrKSlJoaGhkqTx48erqqpKQUFB6tatmx577DGNGjXKthr3bPryu3ccDnncHkUNirft+p0RPYUVZsMe9BlWmI3AEPAhrqKiQlVVVZozZ06bfTU1NcrJyZEkPffcc+revbskqaCgQNddd51KSkpsrXX4reM1Ii9HoV0jdHDnXr39ixdsvX5nRE9hhdmwB32GFWbD/wI+xNXW1kqS4uLiWm0vKytTdXW19/lw3wY4SdqzZ4+Cgnx/zUZUVJSampp8OnZwSE/dGT2m3X2lcxerdO5idR/SX4MmnqOG7bt8rqEzcTqztLnZ98+dnsLpbH9mmI1jy+mkz2if08ls2MHpbL/PYWFhcrlcR32+gH91amxsrCSpsrLSu83j8Wj69Olyu92tXtRwww03KDExUXfffbeee+4522v91p6KWu3cUK1zHrvdbzV0NvQUVpgNe9BnWGE2/CfgQ1xqaqqSk5M1Y8YMLVq0SMuWLVN2drZKSkoUGRmplJQU77FPPfWUvvjiCz344IP67W9/6/M1XC6XGhsbfXorLFzu0zmDQoMVfYI+P6CwcLnP/aSnkKxnhtk4tugzrDAb9rDqc0fuwkkGhLiQkBDl5+crPj5eubm5ysvL07hx45SZmakRI0a0+7Dp1VdfrcLCQtXX19tSY2hUpJIvz1JYdKQkqWfqAI3My9FXyz+15fqdET2FFWbDHvQZVpiNwBHwz4mTpJEjR6qoqKjVtrlz5yozM1OStG/fPu3atUsJCQmSpCVLligmJkYxMTH2FOjxaFDOuTp9Vq6CwkJ0cMdeVS9dpbV/esme63dG9BRWmA170GdYYTYChhEh7ocaGhpUXl6uvLw8SdL+/fs1adIk7d+/X8HBwYqJidGSJUvkcDhsqefQvga9dcUfbLnWiYKewgqzYQ/6DCvMRuAwMsStW7dOLS0t3hc19OnTRx999JGfqwIAALCPkSEuIyNDHo/H32UAAAD4TcC/sAEAAABtEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gLEmL/coowHrvd3GV7nL7hbqddf7O8yjonJlfMVMyzJ32V0WN/RaZpcOf+4nf+nr9yrtKmXHvXHxWWk6opP/+84VORfgbYWv8/kWTa5dol1aCfWoO+M/LNbpooeFK/TZl6tuNNTFBwepoavd6vmrU/08aznjuo8yZdnKe3Xl6rA+d/HqVLpnckPHLdzH0s/feVe9f7JULkPNcvjdqth+2599WGp1j++WPu/3CFJWpB8tZ+r7Jy2r9qol0b+yt9lHFHfs9I0atrlih0xSJJUv+5zrX3kZW0t2uDnyg4bNe1yxY4crHevecin4wN1llmH/hPo65A1eHxxJ85G58+foT2VXyn/jFu0YOg1envyA9r1WbVfanGEBPvlusdDycMvasGQq7UwJVfvXf8ndekZpUvffkTRg/v5uzT40Unn/0QXLLxHNe+s1sun3qSXT71JNe+s1gUv3qOTzju13Y9xBB+7b4mdaY35gnWIH2INHn+EOJuEx0QpelC8yp9/S80HDkoej1xVW1X58vJ2jz/nsds0qeT/aXLFfF369p/U3zlKkhQzLEmjZ9+o7kP6a3LlfE2unK/oQfGSDv/Ec8nrD+qqjc9q/Ad/UVL22d7zjZp2uc5fcLcyHrxBV254Whn3X3fEer9/a//8BXfr5F/+VJIU3CVMV1ctVMaDN3iPnfDhX9V/bHpHW3NM7dn0pT649a86sHWn0n97hSTp2rp8xY4cLOlw/8Ytvk9XbnhGV254Rln/N01denX3fnxYdKQyn/yNflH2nCaufExDr75A19blKzwm6kevHTtikC5a9Htd9dkzunL931v1OP7cEfrZm7P1i/LndOm7jyrxp6d7942adrnOe/5/Wp3rsuLHNeCSM9u9TkhkF43+4426fM08XfHp/2nMX29VWPeu3v3X1uUr9fqLlV34v5q8+QVlzZumsOhInf3nm/WL8uc04cO/qvepQ1qdM6JPD1340u80uXK+fvbGbG+/juT7Dy/1Sh+iK9f//bvP6Y7LlVv7srrERkuSksafrUuW+vaT7rGScf91qly0XBueeE2HXAd0yHVAG554TZvz39cZ33xtLit+XCPycnTxaw9oyucL1Oubzzu0axdlzZumyRXzNf79P6tf1sgfvd63/Rg65Xxd9vETuvSdRyRZf+0Tf3q6ht8+Qf2do7xrOSjsyA+OfDvLjuAg/WLT8+qRknD42mel6dq6fA342WhJUkRcD13zxT8U2i2iY837D7EOWYcSa9CONUiIs0njTpd2b6rR2X++WUnZZytqQJ8jHl+3coMKnP+thSfnqnz+28qaN03hsdHaub5KRdPnaU9FrRYkX60FyVdr7+d16pGSoLFP36k1j7ykF0/5pT687TGd+dANrb4J9Dt3hHaur9JLI27Qx/f6/hBu3YpSxY8ZLkmKOz1F++vqFT9mmCQpsm+Mogb00baPNnagK8eHp8WtL94oVt+z0truc7u1+qGFennUr/TqObcrtFtEq2/yGQ9cr/Ae3ZSfcbP+dendGjR+jE/XjOwbo4vyZ2nL6x/p5fQbtej0X6tqSZEkKWpgX53/3F1aP3exXjzll1r9wAvKfOI3ikkb2KHPL+P+69Q9ub8Kzr9Dr57zXwqPidLZ/3tzq2MSf3q63sj5vfLPuFmxIwfpkn89pC1LivRi6i9VvXSVRs++sdXxQ64cq7WPvuzdf/7zdyk4Isznmuo/3ayg0BD1TB0gSYo/Z7hc1dvU9+zDcxI/Zri2rljfoc+3I6IH91PUgD6qWryyzb7PX12h6IF9vT/8JE/K0sppj2tB8tWqX18lSUoaP0afv/qhFp6cq3WPvaqxT9+pyL4xP3rdkIhw9RqVrMXn5un1cdOP+LX/4o2PVTrnVdUWrvWuZXdTs0+fn6fFrW2rNnrXZfw5w7W3qs67LuPHDFf9us91aF+DT+c7HliHJ/Y6ZA3aswYJcTZ6Y+LvtWNtpYbfPlETVsxRzkd/08Cfj2732Mp/vKemPfvlaXGr/Pm31LjL5f0JpT0puRdp8ysf6Kvln0oej+o/3ayqgpUafNm53mP2VNaqYuG78rS41dLQ5HPdW1euV58zT5EcDsWfM1wVC99VSGS4Ivr0VN8xw7Rj7ebDdxcDyIG6nQrv0a3N9l2fVWv7qo1yH2pW406XSue86v0G5wgK0sBLz9KaP72kpj371Vi/V5/+9RWfrjco51ztLK1S+XNvqqXxkFoamrR91eFgm5R9lrat2qgtS4rkaXGr9r01+uKtTzR4UubRf2IOhwZNPEclDy1UY/1eNe09oE/um68BF2e0+olvw5NL1LjTpcb6vfrqg3XaV7Ndte+tkcftVtXileqRmqig0O9+4tzyepG2F5fJfahZpY+9Ko/bo/6ZP/6T77c8bre2fbRR8WOGKSSyi3oMOUkbnlyi+HMOf4Pre/Yw1a20L8R1+eaOTcO2nW32NWzfdfiYb+5OlM9/W3sqauVxu73fwLd+9Jm+WFYsT4tbn+d/oF2fVVuu1e9zBAVp9YML1NzQqJaGpmP7tf+BrSvWt/oPY+0jL3v/Q7G731ZYhyfuOmQN2tNrXthgo4P1e7X6/he0+v4XFNotQkOnXKBzH8/Tro0/eF6cw6H0316hgZeepYi4HpLbo5BuXbwD355uCb0Vf/YwDc75LrQ5QoJU+95a7/v7a3d0qO760io5HFLMsIGKP3u4PprxlLon91f8mGGKP3uY6laUdui8x1NkfIwad7nabI8a0Een/f4a9U4fopCuXeRwOLzfdMNjohQcFtqqT772rNtJvbS3qs6illjt+/LrVtv2VW9Ttx+5G9ueLrHRCg4P1b6a7863r3rb4ev0i9WeTV9Kkhp27PHub2loVMP23d73mxsaFRQcrJCIMDUdOvwNc//36/N4tL92hyL7xh5VbXUrStX37GHas/krbV+9SbXvrVHa1J+r60m91DU+VtuK7btbe3Dn4a99RJ8Y7an8qtW+iLieh4+p3ytJ2l/b+msj/aAfkvbVfO3TXYDmhkY17vxu7o7l1/6H6laUakRejsKiIxU9qJ+qFq/UqXddpcj4GMWPGaZ/T3vyP77Gf4p1eOKuQ9agPWuQO3F+cmhfgzY8+Zqa9h7wPqb+rUETxmjw5Zl679qHtTAlVwtPztWBr+rlcDgkSR6Pp8359tfuUNmzb2rhybnetwXJV2v5jY96j/G4236cTzwebS36TAPGZShqYB/tLK1S3cr1ih8zPCBDnCM4SIkXna6t//6szb7Rs29U406XFmf9RguHXqN3r3nYu69xp0stTYfUtX8v77bv//tI9n25Q9FJ8e3uO1BXr24n9W61rVtCnA7U1UuSDu0/qJDvPWTiCA5q9fyg7ztYv1ctjYfULeG783377wN1bX/i9VXX79fncCiyX6wObK0/qnPUrVivvmeeon6ZI1W3ovTwN06HQ0OuGKuvSzYd1d3f/9TezV/J9cU2JV16Vpt9SdlnyfXFNu39/PB/9u2ti65tvl69dWDrj/fX43a3ev/HvvY/PP5o7NywRR63W6f86mfa/nGZPG636las19BfnK/IuJ7a/nFZh899LLAOj15nWoesQXvWICHOJmHdu+rU//mFegw9SY6QYAWFhWjo1RcoJCJM9Z9+3urY0G4Rcjc162D9XgWFBCtt6qWKjP/up7GGr3crIq5Hq+dKlD//lpIvz1T8uSPkCA5SUGiIYkcOVs9TBhyT+utWlCr1+nHatmrjN4NaqgEXZ6hLr+7a/kn5MbnGsdA9uZ/GzLlNkfGxWvPIS232h0ZFqsl1QE17DyiiT0+NyMvx7vO43dqypEij7rhcYd27KjwmSiNum+DTdT//5weKHTFIKddcqKCwEAVHhCkuI1WSVFXwb/XJSNWASzLkCApSf+coJVx0mjbnfyBJqi/9XL1OHaLuQ09SUFiI0qdfqSCrV1V5PPr81Q+VPv0qhcdGKyw6UqfNvEbVy1bpkOvAUXbrOwMvOVO9T0uRIyRYw2/JVlBIsL56f91RnWPXxmq1HGrWkCudqvvwcLDfunK9TrnxEtXZ+Hy4bxX/7lklX+FU2k0/V2i3CIVGReqUm36m5MudKp75zBE/tu+ZpyjhwtPkCA7SoInnqOcpA7TlXx8ddQ0/9rVv2LFHXfv36vAr8rb+e8M3/T3c77qVpTrlxku0ffUmtTQe6tA5jwXWYcd0tnXIGjz+a5CHU23ibmpWRO8eGvvcXYro3V0tjc3avalG7147u82t3spFyxV/znDlrHpczQcaVf78W9pd9oV3f92K9dpeXKbLV/8/OYKCtGTcdO36rFqFv3pUp06/Sj2e/I08Hml32Rda/eCCY1J/3YpShUXf4P0mcKBupxq279b+up0+PxH0eDn1rqs0atokeTweNWzbpboVpXrtgju8v5/q+4p//6zO+uONSqm4QK7q7Sp//i31O3eEd/+qu/+us/40VZetelwH6/fqs78vVfyY4T+6GA/U7dSbk+7Vab+/Rj+ZMVkth5pVtXiFtq/aKNeWrXrvuj/q1P+ZrLP/fIv2f/m1Prh1jnZ+8wTerSvXq/zZNzXu1fvkbjqk0r8tPuJPnMUzn9Hps3I1/r1HJYdDX73/qYp/d+RviD+m4qVCpd95pXqfmqy9n9fp3WseVnND41GfZ+vKw88R+fZX59StKNXQyef75flZNW9+rHemPKiR/32ZRv32ckmHf0fVO1Me/NG7x1WLV2jwpEyd+7f/0v66ehXe8IgOfHV0d0Qk/ejXfsuSIg0aP0ZXrn9aDodD/xhx/VGtp7oPSzXwZ6O967JuxXqFRXf1S79Zh6zDH2INHn8OT3uPzcHStuIyLcu+x99lHHfjFt+nLUuKtPHvS4/+YwvuV58zTvb5+EDuaf+x6Tr3b/+lF1Ov9XcpASd+zHBlzftvvXjKL//jc1nNTCDPht0cQUHKrX1ZBWOntX0erY9M7TPr0NqxWoemzoadjuca7CgeTkUbIZFdFDWgj1xbtvq7FNtFJfVVr1HJksOhbif1Vvpvr1BVQduXyEPqmTZArm+ezI3jr2faALkPNbf7JPDOhnXoO9ahfQJxDfJw6glq+O0TNeL2ts8zCe4SpqDgYFUtXqnawrX2F+ZnIRHhOuex2xTZL1aHXA368p3VWn3/C5Kk7OV/VreT2j7Buuat1frg5r/YXKk9rP5WZO3yTxU7PCkgXgFpp+M9A+cvuFt9Mtr+lH5o30EFhQZr9YML1bS348+5MgXrsDXW4XdYg60R4k5QpXP+qdI5//R3GQFn12fVevWc/2p3X0HWb2yuxv8C7e8E+tvxngFT/mbx8cY6bI11+B3WYGs8nAoAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCAjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBdwIc4j8ejSZMm6amnntI999yj119/XUlJSZow4fDf/UxPT/dzha0FdwnTxH8/Zvm37nB06CeOhPmwB32GFWbDvwL+b6fOmzdPS5cu1dq1a5WWliZJysrKUlJSkmJiYpSYmOjnCltL/+0V2vflDkXE9fB3KZ0C/cSRMB/2oM+wwmz4V8DfiZs9e7amTJniDXCSFBwcrKSkpDZ34e699145HA6tX7/e7jIlSbEjBqm/c5TW/22xX67f2dBPHAnzYQ/6DCvMhv8FdIirqKhQVVWVcnJy2uyrqalpFeJKSkr00UcfacCAAXaW6OUIDtJZj0zVRzOekrup2S81dCb0E0fCfNiDPsMKsxEYAjrE1dbWSpLi4uJabS8rK1N1dbU3xDU2NuqWW27RE0880aHrREVFKTw83Kc3pzOr3XMMuzlb9aVV2vbRxg7V0Jk4nVk+99Oqp/TzxOJ0tj8zTmdWu8czHx3jdNJntM/pZDbs4HS23+eoqKgOnS+gQ1xsbKwkqbKy0rvN4/Fo+vTpcrvd3hD3u9/9TlOmTNHAgQP9UaaiBvZVyjUX6pP7eGLnsUA/cSTMhz3oM6wwG4EjoF/YkJqaquTkZM2YMUOhoaHq1q2bnnjiCa1Zs0aRkZFKSUlRUVGRPvnkEz388MMdvo7L5fL52G3FZVqWfU+rbX3OOFkRvbpr4so5kqSgkGCFdo3QlRueVuH1fzrhflIpLFyuPmec7PPxP+wp/TzxWM0M6+3Yos+wwmzY42j/f/wxAR3iQkJClJ+fr6lTpyo3N1cJCQnKy8tTdHS0Nm/erKCgIL3//vvauHGjkpKSJElffvmlLrroIj3zzDO68MILbamzasm/9dWH67zv9/5Jisb89Ra9dv4dOli/15YaOhP6iSNhPuxBn2GF2QgcAR3iJGnkyJEqKipqtW3u3LnKzMyUJN1111266667vPsGDhyo119/XcOGDbOtxpaGJh1o2Ol9v7F+r+Tx6EDdziN8FKzQTxwJ82EP+gwrzEbgCOjnxLWnoaFB5eXlAfdLfr9va9EGLUi+2t9ldBr0E0fCfNiDPsMKs+E/AX8n7ofWrVunlpYWyxC3ZcsWewsCAADwA+NCXEZGhjwej7/LAAAA8CvjHk4FAAAAIQ4AAMBIhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADGRMiGtqatLMmTOVkJCgiIgIjR07VsXFxXI4HCooKPB3eQAAALYK8XcBvvB4PJo0aZKKi4s1a9YsJScna+HChZowYYIkKT093a/1jfnLLUqaMEbuQ83ebct/9ahqC9f6ryjD0VNYYTbsQZ9hhdkIHEaEuHnz5mnp0qVau3at0tLSJElZWVlKSkpSTEyMEhMT/VyhtOmFd7Tq7r/7u4xOhZ7CCrNhD/oMK8xGYDAixM2ePVtTpkzxBjhJCg4OVlJSkkJDQyVJAwcOVJcuXdSlSxfvx1x00UV+qRcAAOB4C/gQV1FRoaqqKs2ZM6fNvpqaGuXk5Hjfz8/P17Bhw+wsz2vQxHM0aMIYNezYo89f+UClcxfL0+L2Sy2dBT2FFWbDHvQZVpiNwBDwIa62tlaSFBcX12p7WVmZqqurj8nz4aKiotTU1OTTsYNDeurO6DGttn3296X65L75OrjTpdgRg5T5eJ6Cw8O05o//+I9rM5HTmaXNzbt8Pp6ewulsf2aYjWPL6aTPaJ/TyWzYwelsv89hYWFyuVxHfb6Af3VqbGysJKmystK7zePxaPr06XK73a1C3OTJkzVixAjdfPPN2r17t2017iyt0sH6vZLHo/pPN2vNIy8pKfts267fGdFTWGE27EGfYYXZCBwBH+JSU1OVnJysGTNmaNGiRVq2bJmys7NVUlKiyMhIpaSkSJI+/PBDffrpp/r444/l8Xh06623+nwNl8ulxsZGn94KC5f/+AndHsnRwU+4EygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBIS4kJET5+fmKj49Xbm6u8vLyNG7cOGVmZmrEiBEKCjr8KSQkJEiSwsPDdfPNN2vlypW21Tjw0rMUGhUpSeqZOkAjp03SlteLbLt+Z0RPYYXZsAd9hhVmI3AE/HPiJGnkyJEqKmo9IHPnzlVmZqYkaf/+/Wpublb37t3l8Xj0j3/8Q6NGjbKtvpOvvUijZ9+ooNBgNWzbrc3572vdY6/adv3OiJ7CCrNhD/oMK8xG4DAixP1QQ0ODysvLlZeXJ0natm2bcnJy1NLSopaWFp1yyil6/PHHbavnjYm/t+1aJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UMGjQIK1Zs8bPVQEAANjHyBCXkZEhj8fj7zIAAAD8JuBf2AAAAIC2CHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBViL8L8IXH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6u8LCTzjtV6dOvVPTgfmre16D1Ty7Rhide83dZRqOnsMJs2IM+wwqz4X9GhLh58+Zp6dKlWrt2rdLS0iRJWVlZSkpKUkxMjBITE/1codQvc6RG/+kmrbh9rrYWbVBIRLi69u/l77KMRk9hhdmwB32GFWYjMBjxcOrs2bM1ZcoUb4CTpODgYCUlJXnvwh08eFC//vWvNWTIEA0fPlw33nijrTWm33ml1v3lFdWtKJWnxa1D+xq0u7zG1ho6G3oKK8yGPegzrDAbgSHg78RVVFSoqqpKc+bMabOvpqZGOTk5kqQ777xTXbp00aZNm+RwOLRt2zbbagyJCFevUYNV+94aTfjwrwrr3lVfl1SoeOYz2lez3bY6OhN6CivMhj3oM6wwG4Ej4O/E1dbWSpLi4uJabS8rK1N1dbXS09O1b98+Pf/887rvvvvkcDgkSX369PH5GlFRUQoPD/fpzenMavPxYT26yhEUpAGXZOjtq+5XfsbNavh6t5x//21HP22jOZ1ZPveTnkKynhmnM6vNscxGxzmd9BntczqZDTs4ne33OSoqqkPnC/gQFxsbK0mqrKz0bvN4PJo+fbrcbrfS09O1efNmxcbG6t5779Vpp52mrKwsrVixwrYaD+07KEn67Kml2vfl12ppaFLJQwsVOzyJ5wh0ED2FFWbDHvQZVpiNwBHwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkqKWlpa9Pnnnys9PV2ffPKJZs+erYkTJ2rv3r0+XcPlcqmxsdGnt8LC5W0+/pDrwOFbyB7PMf7szVRYuNznftJTSNYzw2wcW/QZVpgNe1j12eVydeh8AR/iQkJClJ+fr/j4eOXm5iovL0/jxo1TZmamRowYoaCgICUmJiokJERXXXWVJCkjI0O9evXSpk2bbKuz/Pm3lHrDJYrsF6vg8FCl33mldny6Wftrd9hWQ2dDT2GF2bAHfYYVZiMwBPwLGyRp5MiRKioqarVt7ty5yszMlCT16tVLTqdTb7/9ti688EJt2rRJ27dvV3Jysm01lv6tQGHdu+nSt/4oOYK0vbhMhdf/ybbrd0b0FFaYDXvQZ1hhNgKDESHuhxoaGlReXq68vDzvtieffFLXXXedpk2bptDQUM2fP189evSwryiPR6sfeEGrH3jBvmt2dvQUVpgNe9BnWGE2AoKRIW7dunVqaWlp9ZcaBg0apOXLl/uvKAAAABsZGeIyMjLk4QmVAADgBBbwL2wAAABAW4Q4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAIf4uwFdNTU2677779Oyzz2rHjh0aPXq0Hn74YWVkZGjx4sXKzs72W22TK+e3ej84LFS7K2r12nnT/FSR+egprDAb9qDPsMJsBA4jQpzH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6tb0Hy1a3ev/TdR1VVsNJP1XQO9BRWmA170GdYYTYChxEhbt68eVq6dKnWrl2rtLQ0SVJWVpaSkpIUExOjxMREP1f4nV6jktVj6EmqfKnQ36V0GvQUVpgNe9BnWGE2/MuIEDd79mxNmTLFG+AkKTg4WElJSQoNDdWWLVs0fvx4777du3dr79692rlzp+21DvnFWNW+t0YN23bZfu3Oip7CCrNhD/oMK8yGfwV8iKuoqFBVVZXmzJnTZl9NTY1ycnI0cOBArV271rs9Ly9Pzc3NPl8jKipKTU1NPh07OKSn7owe0+6+kIhwJWWfrQ9vn+vztTsjpzNLm5t9X9D0FE5n+zPDbBxbTid9RvucTmbDDk5n+30OCwuTy+U66vMFfIirra2VJMXFxbXaXlZWpurq6jbPh2tqatKCBQv05ptv2lbjtwb+fLSaG5r05Turbb92Z0VPYYXZsAd9hhVmw/8C/leMxMbGSpIqKyu92zwej6ZPny63290mxL322mvq37+/Tj31VJ+v4XK51NjY6NNbYeFyy/MMmXyeNr+8XJ4W99F9kp1MYeFyn/tJTyFZzwyzcWzRZ1hhNuxh1eeO3IWTDAhxqampSk5O1owZM7Ro0SItW7ZM2dnZKikpUWRkpFJSUlod//TTT+u6666zvc7owf0Ud1qKNr34ru3X7qzoKawwG/agz7DCbASGgH84NSQkRPn5+Zo6dapyc3OVkJCgvLw8RUdHa/PmzQoK+i6H1tbW6v3339f8+fOPcMbjY8hVY7Vt1Ua5qrbafu3Oip7CCrNhD/oMK8xGYAj4ECdJI0eOVFFRUattc+fOVWZmZqttzz33nC655BLvQ7B2Wn3/C7Zfs7Ojp7DCbNiDPsMKsxEYAv7h1PY0NDSovLy8zfPhnn32Wb88lAoAAGA3I+7E/dC6devU0tLSJsRt2rTJTxUBAADYy8gQl5GRIY/H4+8yAAAA/MbIh1MBAABOdIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADCQw8NvzT0qTa4D2rXxC3+XEdB6piYqLCrS5+PpKaxmhtk4tugzrDAb9jja/x9/DCEOAADAQDycCgAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAG+v9cNHJlWUDfYgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGOCAYAAAD4oVVpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAziElEQVR4nO3de1hVddr/8c/mKCiooCgaKIoS4YmmIsuCbaexZkIlO4wWTTXldHqYxyZ7LGdsOjpTz8yYU/18mk6mTUmTZKOdsdIhKdFEEwRDIkJNPG0VQdj794e1i2DZltG19xffr+viumStxVo3N/cXP6y9Nzg8Ho9HAAAAMEqQvwsAAADA0SPEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYK8XcBpmlyHdCujV/4u4yA1jM1UWFRkT4fT09hNTPMxrFFn2GF2bDH0f7/+GMIcUdp18YvtCz7Hn+XEdDGFdyvPmec7PPx9BRWM8NsHFv0GVaYDXsc7f+PP4aHUwEAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxkT4pqamjRz5kwlJCQoIiJCY8eOVXFxsRwOhwoKCvxdHgAAgK2M+IsNHo9HkyZNUnFxsWbNmqXk5GQtXLhQEyZMkCSlp6f7uULJERyk02flanDOuXIEBWnLvz7SqhlPqaXxkL9LMxY9hRVmwx70GVaYjcBgxJ24efPmaenSpXrnnXd000036bzzztO8efMUHBysmJgYJSYm+rtEjbh9ovqeNUwFY6fplbNvU4+hJ+kn91zt77KMRk9hhdmwB32GFWYjMBgR4mbPnq0pU6YoLS3Nuy04OFhJSUneu3CbNm3S6NGjNXToUI0ePVoVFRW21jhk8nkqnfNPHdi6U431e7X20ZeVfEWWHEFGtDgg0VNYYTbsQZ9hhdkIDAHf7YqKClVVVSknJ6fNvpqaGm+Imzp1qm655RZt2rRJt9xyi2666SafrxEVFaXw8HCf3pzOrDYfHxYdqW79e2vnhirvtvrSKoVFRapbQu+j/ZSN53Rm+dxPegrJemaczqw2xzIbHed00me0z+lkNuzgdLbf56ioqA6dL+BDXG1trSQpLi6u1faysjJVV1crPT1d27dvV0lJia666ipJ0lVXXaWSkhJ9/fXXttQY0i1CktS054B3W9Oe/ZKk0G/24ejQU1hhNuxBn2GF2QgcAR/iYmNjJUmVlZXebR6PR9OnT5fb7VZ6erpqamrUv39/BQcHSzr8UGu/fv1UU1Pj0zVcLpcaGxt9eissXN7m45v3NUiSQqMjvdvCuneVJB36Zt+JpLBwuc/9pKeQrGeG2Ti26DOsMBv2sOqzy+Xq0PkCPsSlpqYqOTlZM2bM0KJFi7Rs2TJlZ2erpKREkZGRSklJ8XeJatp7QPtqv1ZM2kDvtthhSWpyHdC+GnvuBnY29BRWmA170GdYYTYCR8CHuJCQEOXn5ys+Pl65ubnKy8vTuHHjlJmZqREjRigoKEgJCQmqra1VS0uLJKmlpUVfffWVEhISbKuzYsG7GnHbBEX06anw2GiNmna5Kl9aLo/bbVsNnQ09hRVmwx70GVaYjcBgxO+JGzlypIqKilptmzt3rjIzMyUdfr7cqFGj9OKLL2rKlCl68cUXlZ6ert697XuC5bo5/1R4TLTGL/+zHEEObXn9I61+4AXbrt8Z0VNYYTbsQZ9hhdkIDEaEuB9qaGhQeXm58vLyvNuefPJJ5ebm6g9/+IN69uyp559/3taaPC1uFc98WsUzn7b1up0ZPYUVZsMe9BlWmI3AYGSIW7dunVpaWlr9pYaTTz5Zq1at8mNVAAAA9jEyxGVkZMjj8fi7DAAAAL8J+Bc2AAAAoC1CHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYyJgQ19TUpJkzZyohIUEREREaO3asiouL5XA4VFBQ4O/yAAAAbBXi7wJ84fF4NGnSJBUXF2vWrFlKTk7WwoULNWHCBElSenq6nyuUBv58tFJvuFgxaQPVuNOl/DNu9ndJRqOfOBLmwx70GVaYjcBgRIibN2+eli5dqrVr1yotLU2SlJWVpaSkJMXExCgxMdHPFUqNe/ar7Ok31KV3d6Xd+DN/l2M8+okjYT7sQZ9hhdkIDEaEuNmzZ2vKlCneACdJwcHBSkpKUmhoqCTpjjvu0CuvvKItW7aotLRUw4YNs7XGug/WSZISf3q6rdftrOgnjoT5sAd9hhVmIzAE/HPiKioqVFVVpZycnDb7ampqvA+ljh8/Xh988IEGDBhgd4kAAAC2C/g7cbW1tZKkuLi4VtvLyspUXV3tDXFjxozp8DWioqLU1NTk07GDQ3rqzuiOX+tE4HRmaXPzLp+Pp6dwOtufGWbj2HI66TPa53QyG3ZwOtvvc1hYmFwu11GfL+DvxMXGxkqSKisrvds8Ho+mT58ut9sdEC9qAAAAsFvAh7jU1FQlJydrxowZWrRokZYtW6bs7GyVlJQoMjJSKSkp//E1XC6XGhsbfXorLFz+n39SnVxh4XKf+0lPIVnPDLNxbNFnWGE27GHV547chZMMeDg1JCRE+fn5mjp1qnJzc5WQkKC8vDxFR0dr8+bNCgoKjBzqCApSUGiwHCEhksOh4PBQeTweuZua/V2akegnjoT5sAd9hhVmIzAEfIiTpJEjR6qoqKjVtrlz5yozM9NPFbU1+LJzNeavt3rfv3rLi9pXs53fndNB9BNHwnzYgz7DCrMRGIwIcT/U0NCg8vJy5eXlebfdfvvt+uc//6mtW7fq/PPPV2xsrDZs2GBbTZUvL1fly8ttu15nRz9xJMyHPegzrDAbgSEwHos8SuvWrVNLS0urFzXMmTNHX375pZqbm7V161ZbAxwAAIDdjLwTl5GRIY/H4+8yAAAA/MbIO3EAAAAnOkIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABjImBDX1NSkmTNnKiEhQRERERo7dqyKi4vlcDhUUFDg7/IAAABsFeLvAnzh8Xg0adIkFRcXa9asWUpOTtbChQs1YcIESVJ6erpf6wsKC9GZD96g+DHD1SU2Wge27dLGp5ep7Ollfq3LZPQUVpgNe9BnWGE2AocRIW7evHlaunSp1q5dq7S0NElSVlaWkpKSFBMTo8TERL/WFxQcrIbtu/XWlffJVb1NMacM0AUv3qODX+/WliVFfq3NVPQUVpgNe9BnWGE2AocRD6fOnj1bU6ZM8QY4SQoODlZSUpLS09NVX1+viy++WCkpKRo+fLgmTpyor7/+2rb6mhsateaP/5Bry1bJ49HODVtU89Ynijsj1bYaOht6CivMhj3oM6wwG4Ej4ENcRUWFqqqqlJOT02ZfTU2N0tPT5XA4dOedd6q8vFylpaUaPHiw7rrrLj9Ue5gjJFh9MlK1a2O132robOgprDAb9qDPsMJs+E/AP5xaW1srSYqLi2u1vaysTNXV1UpPT1dMTIyysrK8+84880w98cQTPl8jKipKTU1NPh07OKSn7owec8Rjznzweh3a16DNi973uYbOxOnM0ubmXT4fT0/hdLY/M8zGseV00me0z+lkNuzgdLbf57CwMLlcrqM+X8DfiYuNjZUkVVZWerd5PB5Nnz5dbre7zYsa3G63nnjiCV166aW21vmt02flqvdPUvT25AfkPtTslxo6G3oKK8yGPegzrDAb/hXwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkpKq+Nvu+02devWTbfeeqvP13C5XGpsbPTprbBwueV5zvjDtep37gi9efm9atx59Im6sygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBD6eGhIQoPz9fU6dOVW5urhISEpSXl6fo6Ght3rxZQUHf5dA77rhDFRUVWrJkSavtdjjjvusUP2aY3rhslhrr99p67c6KnsIKs2EP+gwrzEZgCPgQJ0kjR45UUVHrly3PnTtXmZmZ3vdnzJih1atX61//+pfCw8Ntra/rSb10yg0Xq+Vgky5b9Tfv9m2ryvTO5AdsraWzoKewwmzYgz7DCrMROIwIcT/U0NCg8vJy5eXlSZI2bNighx56SEOHDtVZZ50lSUpKStKrr75qSz37v9yhZ+Mvs+VaJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UkJaWJo/H4+eqAAAA7GNkiMvIyCC0AQCAE1rAvzoVAAAAbRHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAxoS4pqYmzZw5UwkJCYqIiNDYsWNVXFwsh8OhgoICf5cHAABgqxB/F+ALj8ejSZMmqbi4WLNmzVJycrIWLlyoCRMmSJLS09P9XKF05kM3KOGC0xQaHalD+xpU/XqRPrnvBbkPNfu7NGPRU1hhNuxBn2GF2QgMRoS4efPmaenSpVq7dq3S0tIkSVlZWUpKSlJMTIwSExP9XKG08Zk39Mkf5qu5oVHhMVHKmjdNI26fqLWPvuzv0oxFT2GF2bAHfYYVZiMwGBHiZs+erSlTpngDnCQFBwcrKSlJoaGhkqTx48erqqpKQUFB6tatmx577DGNGjXKthr3bPryu3ccDnncHkUNirft+p0RPYUVZsMe9BlWmI3AEPAhrqKiQlVVVZozZ06bfTU1NcrJyZEkPffcc+revbskqaCgQNddd51KSkpsrXX4reM1Ii9HoV0jdHDnXr39ixdsvX5nRE9hhdmwB32GFWbD/wI+xNXW1kqS4uLiWm0vKytTdXW19/lw3wY4SdqzZ4+Cgnx/zUZUVJSampp8OnZwSE/dGT2m3X2lcxerdO5idR/SX4MmnqOG7bt8rqEzcTqztLnZ98+dnsLpbH9mmI1jy+mkz2if08ls2MHpbL/PYWFhcrlcR32+gH91amxsrCSpsrLSu83j8Wj69Olyu92tXtRwww03KDExUXfffbeee+4522v91p6KWu3cUK1zHrvdbzV0NvQUVpgNe9BnWGE2/CfgQ1xqaqqSk5M1Y8YMLVq0SMuWLVN2drZKSkoUGRmplJQU77FPPfWUvvjiCz344IP67W9/6/M1XC6XGhsbfXorLFzu0zmDQoMVfYI+P6CwcLnP/aSnkKxnhtk4tugzrDAb9rDqc0fuwkkGhLiQkBDl5+crPj5eubm5ysvL07hx45SZmakRI0a0+7Dp1VdfrcLCQtXX19tSY2hUpJIvz1JYdKQkqWfqAI3My9FXyz+15fqdET2FFWbDHvQZVpiNwBHwz4mTpJEjR6qoqKjVtrlz5yozM1OStG/fPu3atUsJCQmSpCVLligmJkYxMTH2FOjxaFDOuTp9Vq6CwkJ0cMdeVS9dpbV/esme63dG9BRWmA170GdYYTYChhEh7ocaGhpUXl6uvLw8SdL+/fs1adIk7d+/X8HBwYqJidGSJUvkcDhsqefQvga9dcUfbLnWiYKewgqzYQ/6DCvMRuAwMsStW7dOLS0t3hc19OnTRx999JGfqwIAALCPkSEuIyNDHo/H32UAAAD4TcC/sAEAAABtEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gLEmL/coowHrvd3GV7nL7hbqddf7O8yjonJlfMVMyzJ32V0WN/RaZpcOf+4nf+nr9yrtKmXHvXHxWWk6opP/+84VORfgbYWv8/kWTa5dol1aCfWoO+M/LNbpooeFK/TZl6tuNNTFBwepoavd6vmrU/08aznjuo8yZdnKe3Xl6rA+d/HqVLpnckPHLdzH0s/feVe9f7JULkPNcvjdqth+2599WGp1j++WPu/3CFJWpB8tZ+r7Jy2r9qol0b+yt9lHFHfs9I0atrlih0xSJJUv+5zrX3kZW0t2uDnyg4bNe1yxY4crHevecin4wN1llmH/hPo65A1eHxxJ85G58+foT2VXyn/jFu0YOg1envyA9r1WbVfanGEBPvlusdDycMvasGQq7UwJVfvXf8ndekZpUvffkTRg/v5uzT40Unn/0QXLLxHNe+s1sun3qSXT71JNe+s1gUv3qOTzju13Y9xBB+7b4mdaY35gnWIH2INHn+EOJuEx0QpelC8yp9/S80HDkoej1xVW1X58vJ2jz/nsds0qeT/aXLFfF369p/U3zlKkhQzLEmjZ9+o7kP6a3LlfE2unK/oQfGSDv/Ec8nrD+qqjc9q/Ad/UVL22d7zjZp2uc5fcLcyHrxBV254Whn3X3fEer9/a//8BXfr5F/+VJIU3CVMV1ctVMaDN3iPnfDhX9V/bHpHW3NM7dn0pT649a86sHWn0n97hSTp2rp8xY4cLOlw/8Ytvk9XbnhGV254Rln/N01denX3fnxYdKQyn/yNflH2nCaufExDr75A19blKzwm6kevHTtikC5a9Htd9dkzunL931v1OP7cEfrZm7P1i/LndOm7jyrxp6d7942adrnOe/5/Wp3rsuLHNeCSM9u9TkhkF43+4426fM08XfHp/2nMX29VWPeu3v3X1uUr9fqLlV34v5q8+QVlzZumsOhInf3nm/WL8uc04cO/qvepQ1qdM6JPD1340u80uXK+fvbGbG+/juT7Dy/1Sh+iK9f//bvP6Y7LlVv7srrERkuSksafrUuW+vaT7rGScf91qly0XBueeE2HXAd0yHVAG554TZvz39cZ33xtLit+XCPycnTxaw9oyucL1Oubzzu0axdlzZumyRXzNf79P6tf1sgfvd63/Rg65Xxd9vETuvSdRyRZf+0Tf3q6ht8+Qf2do7xrOSjsyA+OfDvLjuAg/WLT8+qRknD42mel6dq6fA342WhJUkRcD13zxT8U2i2iY837D7EOWYcSa9CONUiIs0njTpd2b6rR2X++WUnZZytqQJ8jHl+3coMKnP+thSfnqnz+28qaN03hsdHaub5KRdPnaU9FrRYkX60FyVdr7+d16pGSoLFP36k1j7ykF0/5pT687TGd+dANrb4J9Dt3hHaur9JLI27Qx/f6/hBu3YpSxY8ZLkmKOz1F++vqFT9mmCQpsm+Mogb00baPNnagK8eHp8WtL94oVt+z0truc7u1+qGFennUr/TqObcrtFtEq2/yGQ9cr/Ae3ZSfcbP+dendGjR+jE/XjOwbo4vyZ2nL6x/p5fQbtej0X6tqSZEkKWpgX53/3F1aP3exXjzll1r9wAvKfOI3ikkb2KHPL+P+69Q9ub8Kzr9Dr57zXwqPidLZ/3tzq2MSf3q63sj5vfLPuFmxIwfpkn89pC1LivRi6i9VvXSVRs++sdXxQ64cq7WPvuzdf/7zdyk4Isznmuo/3ayg0BD1TB0gSYo/Z7hc1dvU9+zDcxI/Zri2rljfoc+3I6IH91PUgD6qWryyzb7PX12h6IF9vT/8JE/K0sppj2tB8tWqX18lSUoaP0afv/qhFp6cq3WPvaqxT9+pyL4xP3rdkIhw9RqVrMXn5un1cdOP+LX/4o2PVTrnVdUWrvWuZXdTs0+fn6fFrW2rNnrXZfw5w7W3qs67LuPHDFf9us91aF+DT+c7HliHJ/Y6ZA3aswYJcTZ6Y+LvtWNtpYbfPlETVsxRzkd/08Cfj2732Mp/vKemPfvlaXGr/Pm31LjL5f0JpT0puRdp8ysf6Kvln0oej+o/3ayqgpUafNm53mP2VNaqYuG78rS41dLQ5HPdW1euV58zT5EcDsWfM1wVC99VSGS4Ivr0VN8xw7Rj7ebDdxcDyIG6nQrv0a3N9l2fVWv7qo1yH2pW406XSue86v0G5wgK0sBLz9KaP72kpj371Vi/V5/+9RWfrjco51ztLK1S+XNvqqXxkFoamrR91eFgm5R9lrat2qgtS4rkaXGr9r01+uKtTzR4UubRf2IOhwZNPEclDy1UY/1eNe09oE/um68BF2e0+olvw5NL1LjTpcb6vfrqg3XaV7Ndte+tkcftVtXileqRmqig0O9+4tzyepG2F5fJfahZpY+9Ko/bo/6ZP/6T77c8bre2fbRR8WOGKSSyi3oMOUkbnlyi+HMOf4Pre/Yw1a20L8R1+eaOTcO2nW32NWzfdfiYb+5OlM9/W3sqauVxu73fwLd+9Jm+WFYsT4tbn+d/oF2fVVuu1e9zBAVp9YML1NzQqJaGpmP7tf+BrSvWt/oPY+0jL3v/Q7G731ZYhyfuOmQN2tNrXthgo4P1e7X6/he0+v4XFNotQkOnXKBzH8/Tro0/eF6cw6H0316hgZeepYi4HpLbo5BuXbwD355uCb0Vf/YwDc75LrQ5QoJU+95a7/v7a3d0qO760io5HFLMsIGKP3u4PprxlLon91f8mGGKP3uY6laUdui8x1NkfIwad7nabI8a0Een/f4a9U4fopCuXeRwOLzfdMNjohQcFtqqT772rNtJvbS3qs6illjt+/LrVtv2VW9Ttx+5G9ueLrHRCg4P1b6a7863r3rb4ev0i9WeTV9Kkhp27PHub2loVMP23d73mxsaFRQcrJCIMDUdOvwNc//36/N4tL92hyL7xh5VbXUrStX37GHas/krbV+9SbXvrVHa1J+r60m91DU+VtuK7btbe3Dn4a99RJ8Y7an8qtW+iLieh4+p3ytJ2l/b+msj/aAfkvbVfO3TXYDmhkY17vxu7o7l1/6H6laUakRejsKiIxU9qJ+qFq/UqXddpcj4GMWPGaZ/T3vyP77Gf4p1eOKuQ9agPWuQO3F+cmhfgzY8+Zqa9h7wPqb+rUETxmjw5Zl679qHtTAlVwtPztWBr+rlcDgkSR6Pp8359tfuUNmzb2rhybnetwXJV2v5jY96j/G4236cTzwebS36TAPGZShqYB/tLK1S3cr1ih8zPCBDnCM4SIkXna6t//6szb7Rs29U406XFmf9RguHXqN3r3nYu69xp0stTYfUtX8v77bv//tI9n25Q9FJ8e3uO1BXr24n9W61rVtCnA7U1UuSDu0/qJDvPWTiCA5q9fyg7ztYv1ctjYfULeG783377wN1bX/i9VXX79fncCiyX6wObK0/qnPUrVivvmeeon6ZI1W3ovTwN06HQ0OuGKuvSzYd1d3f/9TezV/J9cU2JV16Vpt9SdlnyfXFNu39/PB/9u2ti65tvl69dWDrj/fX43a3ev/HvvY/PP5o7NywRR63W6f86mfa/nGZPG636las19BfnK/IuJ7a/nFZh899LLAOj15nWoesQXvWICHOJmHdu+rU//mFegw9SY6QYAWFhWjo1RcoJCJM9Z9+3urY0G4Rcjc162D9XgWFBCtt6qWKjP/up7GGr3crIq5Hq+dKlD//lpIvz1T8uSPkCA5SUGiIYkcOVs9TBhyT+utWlCr1+nHatmrjN4NaqgEXZ6hLr+7a/kn5MbnGsdA9uZ/GzLlNkfGxWvPIS232h0ZFqsl1QE17DyiiT0+NyMvx7vO43dqypEij7rhcYd27KjwmSiNum+DTdT//5weKHTFIKddcqKCwEAVHhCkuI1WSVFXwb/XJSNWASzLkCApSf+coJVx0mjbnfyBJqi/9XL1OHaLuQ09SUFiI0qdfqSCrV1V5PPr81Q+VPv0qhcdGKyw6UqfNvEbVy1bpkOvAUXbrOwMvOVO9T0uRIyRYw2/JVlBIsL56f91RnWPXxmq1HGrWkCudqvvwcLDfunK9TrnxEtXZ+Hy4bxX/7lklX+FU2k0/V2i3CIVGReqUm36m5MudKp75zBE/tu+ZpyjhwtPkCA7SoInnqOcpA7TlXx8ddQ0/9rVv2LFHXfv36vAr8rb+e8M3/T3c77qVpTrlxku0ffUmtTQe6tA5jwXWYcd0tnXIGjz+a5CHU23ibmpWRO8eGvvcXYro3V0tjc3avalG7147u82t3spFyxV/znDlrHpczQcaVf78W9pd9oV3f92K9dpeXKbLV/8/OYKCtGTcdO36rFqFv3pUp06/Sj2e/I08Hml32Rda/eCCY1J/3YpShUXf4P0mcKBupxq279b+up0+PxH0eDn1rqs0atokeTweNWzbpboVpXrtgju8v5/q+4p//6zO+uONSqm4QK7q7Sp//i31O3eEd/+qu/+us/40VZetelwH6/fqs78vVfyY4T+6GA/U7dSbk+7Vab+/Rj+ZMVkth5pVtXiFtq/aKNeWrXrvuj/q1P+ZrLP/fIv2f/m1Prh1jnZ+8wTerSvXq/zZNzXu1fvkbjqk0r8tPuJPnMUzn9Hps3I1/r1HJYdDX73/qYp/d+RviD+m4qVCpd95pXqfmqy9n9fp3WseVnND41GfZ+vKw88R+fZX59StKNXQyef75flZNW9+rHemPKiR/32ZRv32ckmHf0fVO1Me/NG7x1WLV2jwpEyd+7f/0v66ehXe8IgOfHV0d0Qk/ejXfsuSIg0aP0ZXrn9aDodD/xhx/VGtp7oPSzXwZ6O967JuxXqFRXf1S79Zh6zDH2INHn8OT3uPzcHStuIyLcu+x99lHHfjFt+nLUuKtPHvS4/+YwvuV58zTvb5+EDuaf+x6Tr3b/+lF1Ov9XcpASd+zHBlzftvvXjKL//jc1nNTCDPht0cQUHKrX1ZBWOntX0erY9M7TPr0NqxWoemzoadjuca7CgeTkUbIZFdFDWgj1xbtvq7FNtFJfVVr1HJksOhbif1Vvpvr1BVQduXyEPqmTZArm+ezI3jr2faALkPNbf7JPDOhnXoO9ahfQJxDfJw6glq+O0TNeL2ts8zCe4SpqDgYFUtXqnawrX2F+ZnIRHhOuex2xTZL1aHXA368p3VWn3/C5Kk7OV/VreT2j7Buuat1frg5r/YXKk9rP5WZO3yTxU7PCkgXgFpp+M9A+cvuFt9Mtr+lH5o30EFhQZr9YML1bS348+5MgXrsDXW4XdYg60R4k5QpXP+qdI5//R3GQFn12fVevWc/2p3X0HWb2yuxv8C7e8E+tvxngFT/mbx8cY6bI11+B3WYGs8nAoAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCAjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBdwIc4j8ejSZMm6amnntI999yj119/XUlJSZow4fDf/UxPT/dzha0FdwnTxH8/Zvm37nB06CeOhPmwB32GFWbDvwL+b6fOmzdPS5cu1dq1a5WWliZJysrKUlJSkmJiYpSYmOjnCltL/+0V2vflDkXE9fB3KZ0C/cSRMB/2oM+wwmz4V8DfiZs9e7amTJniDXCSFBwcrKSkpDZ34e699145HA6tX7/e7jIlSbEjBqm/c5TW/22xX67f2dBPHAnzYQ/6DCvMhv8FdIirqKhQVVWVcnJy2uyrqalpFeJKSkr00UcfacCAAXaW6OUIDtJZj0zVRzOekrup2S81dCb0E0fCfNiDPsMKsxEYAjrE1dbWSpLi4uJabS8rK1N1dbU3xDU2NuqWW27RE0880aHrREVFKTw83Kc3pzOr3XMMuzlb9aVV2vbRxg7V0Jk4nVk+99Oqp/TzxOJ0tj8zTmdWu8czHx3jdNJntM/pZDbs4HS23+eoqKgOnS+gQ1xsbKwkqbKy0rvN4/Fo+vTpcrvd3hD3u9/9TlOmTNHAgQP9UaaiBvZVyjUX6pP7eGLnsUA/cSTMhz3oM6wwG4EjoF/YkJqaquTkZM2YMUOhoaHq1q2bnnjiCa1Zs0aRkZFKSUlRUVGRPvnkEz388MMdvo7L5fL52G3FZVqWfU+rbX3OOFkRvbpr4so5kqSgkGCFdo3QlRueVuH1fzrhflIpLFyuPmec7PPxP+wp/TzxWM0M6+3Yos+wwmzY42j/f/wxAR3iQkJClJ+fr6lTpyo3N1cJCQnKy8tTdHS0Nm/erKCgIL3//vvauHGjkpKSJElffvmlLrroIj3zzDO68MILbamzasm/9dWH67zv9/5Jisb89Ra9dv4dOli/15YaOhP6iSNhPuxBn2GF2QgcAR3iJGnkyJEqKipqtW3u3LnKzMyUJN1111266667vPsGDhyo119/XcOGDbOtxpaGJh1o2Ol9v7F+r+Tx6EDdziN8FKzQTxwJ82EP+gwrzEbgCOjnxLWnoaFB5eXlAfdLfr9va9EGLUi+2t9ldBr0E0fCfNiDPsMKs+E/AX8n7ofWrVunlpYWyxC3ZcsWewsCAADwA+NCXEZGhjwej7/LAAAA8CvjHk4FAAAAIQ4AAMBIhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADGRMiGtqatLMmTOVkJCgiIgIjR07VsXFxXI4HCooKPB3eQAAALYK8XcBvvB4PJo0aZKKi4s1a9YsJScna+HChZowYYIkKT093a/1jfnLLUqaMEbuQ83ebct/9ahqC9f6ryjD0VNYYTbsQZ9hhdkIHEaEuHnz5mnp0qVau3at0tLSJElZWVlKSkpSTEyMEhMT/VyhtOmFd7Tq7r/7u4xOhZ7CCrNhD/oMK8xGYDAixM2ePVtTpkzxBjhJCg4OVlJSkkJDQyVJAwcOVJcuXdSlSxfvx1x00UV+qRcAAOB4C/gQV1FRoaqqKs2ZM6fNvpqaGuXk5Hjfz8/P17Bhw+wsz2vQxHM0aMIYNezYo89f+UClcxfL0+L2Sy2dBT2FFWbDHvQZVpiNwBDwIa62tlaSFBcX12p7WVmZqqurj8nz4aKiotTU1OTTsYNDeurO6DGttn3296X65L75OrjTpdgRg5T5eJ6Cw8O05o//+I9rM5HTmaXNzbt8Pp6ewulsf2aYjWPL6aTPaJ/TyWzYwelsv89hYWFyuVxHfb6Af3VqbGysJKmystK7zePxaPr06XK73a1C3OTJkzVixAjdfPPN2r17t2017iyt0sH6vZLHo/pPN2vNIy8pKfts267fGdFTWGE27EGfYYXZCBwBH+JSU1OVnJysGTNmaNGiRVq2bJmys7NVUlKiyMhIpaSkSJI+/PBDffrpp/r444/l8Xh06623+nwNl8ulxsZGn94KC5f/+AndHsnRwU+4EygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBIS4kJET5+fmKj49Xbm6u8vLyNG7cOGVmZmrEiBEKCjr8KSQkJEiSwsPDdfPNN2vlypW21Tjw0rMUGhUpSeqZOkAjp03SlteLbLt+Z0RPYYXZsAd9hhVmI3AE/HPiJGnkyJEqKmo9IHPnzlVmZqYkaf/+/Wpublb37t3l8Xj0j3/8Q6NGjbKtvpOvvUijZ9+ooNBgNWzbrc3572vdY6/adv3OiJ7CCrNhD/oMK8xG4DAixP1QQ0ODysvLlZeXJ0natm2bcnJy1NLSopaWFp1yyil6/PHHbavnjYm/t+1aJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UMGjQIK1Zs8bPVQEAANjHyBCXkZEhj8fj7zIAAAD8JuBf2AAAAIC2CHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBViL8L8IXH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6u8LCTzjtV6dOvVPTgfmre16D1Ty7Rhide83dZRqOnsMJs2IM+wwqz4X9GhLh58+Zp6dKlWrt2rdLS0iRJWVlZSkpKUkxMjBITE/1codQvc6RG/+kmrbh9rrYWbVBIRLi69u/l77KMRk9hhdmwB32GFWYjMBjxcOrs2bM1ZcoUb4CTpODgYCUlJXnvwh08eFC//vWvNWTIEA0fPlw33nijrTWm33ml1v3lFdWtKJWnxa1D+xq0u7zG1ho6G3oKK8yGPegzrDAbgSHg78RVVFSoqqpKc+bMabOvpqZGOTk5kqQ777xTXbp00aZNm+RwOLRt2zbbagyJCFevUYNV+94aTfjwrwrr3lVfl1SoeOYz2lez3bY6OhN6CivMhj3oM6wwG4Ej4O/E1dbWSpLi4uJabS8rK1N1dbXS09O1b98+Pf/887rvvvvkcDgkSX369PH5GlFRUQoPD/fpzenMavPxYT26yhEUpAGXZOjtq+5XfsbNavh6t5x//21HP22jOZ1ZPveTnkKynhmnM6vNscxGxzmd9BntczqZDTs4ne33OSoqqkPnC/gQFxsbK0mqrKz0bvN4PJo+fbrcbrfS09O1efNmxcbG6t5779Vpp52mrKwsrVixwrYaD+07KEn67Kml2vfl12ppaFLJQwsVOzyJ5wh0ED2FFWbDHvQZVpiNwBHwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkqKWlpa9Pnnnys9PV2ffPKJZs+erYkTJ2rv3r0+XcPlcqmxsdGnt8LC5W0+/pDrwOFbyB7PMf7szVRYuNznftJTSNYzw2wcW/QZVpgNe1j12eVydeh8AR/iQkJClJ+fr/j4eOXm5iovL0/jxo1TZmamRowYoaCgICUmJiokJERXXXWVJCkjI0O9evXSpk2bbKuz/Pm3lHrDJYrsF6vg8FCl33mldny6Wftrd9hWQ2dDT2GF2bAHfYYVZiMwBPwLGyRp5MiRKioqarVt7ty5yszMlCT16tVLTqdTb7/9ti688EJt2rRJ27dvV3Jysm01lv6tQGHdu+nSt/4oOYK0vbhMhdf/ybbrd0b0FFaYDXvQZ1hhNgKDESHuhxoaGlReXq68vDzvtieffFLXXXedpk2bptDQUM2fP189evSwryiPR6sfeEGrH3jBvmt2dvQUVpgNe9BnWGE2AoKRIW7dunVqaWlp9ZcaBg0apOXLl/uvKAAAABsZGeIyMjLk4QmVAADgBBbwL2wAAABAW4Q4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAIf4uwFdNTU2677779Oyzz2rHjh0aPXq0Hn74YWVkZGjx4sXKzs72W22TK+e3ej84LFS7K2r12nnT/FSR+egprDAb9qDPsMJsBA4jQpzH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6tb0Hy1a3ev/TdR1VVsNJP1XQO9BRWmA170GdYYTYChxEhbt68eVq6dKnWrl2rtLQ0SVJWVpaSkpIUExOjxMREP1f4nV6jktVj6EmqfKnQ36V0GvQUVpgNe9BnWGE2/MuIEDd79mxNmTLFG+AkKTg4WElJSQoNDdWWLVs0fvx4777du3dr79692rlzp+21DvnFWNW+t0YN23bZfu3Oip7CCrNhD/oMK8yGfwV8iKuoqFBVVZXmzJnTZl9NTY1ycnI0cOBArV271rs9Ly9Pzc3NPl8jKipKTU1NPh07OKSn7owe0+6+kIhwJWWfrQ9vn+vztTsjpzNLm5t9X9D0FE5n+zPDbBxbTid9RvucTmbDDk5n+30OCwuTy+U66vMFfIirra2VJMXFxbXaXlZWpurq6jbPh2tqatKCBQv05ptv2lbjtwb+fLSaG5r05Turbb92Z0VPYYXZsAd9hhVmw/8C/leMxMbGSpIqKyu92zwej6ZPny63290mxL322mvq37+/Tj31VJ+v4XK51NjY6NNbYeFyy/MMmXyeNr+8XJ4W99F9kp1MYeFyn/tJTyFZzwyzcWzRZ1hhNuxh1eeO3IWTDAhxqampSk5O1owZM7Ro0SItW7ZM2dnZKikpUWRkpFJSUlod//TTT+u6666zvc7owf0Ud1qKNr34ru3X7qzoKawwG/agz7DCbASGgH84NSQkRPn5+Zo6dapyc3OVkJCgvLw8RUdHa/PmzQoK+i6H1tbW6v3339f8+fOPcMbjY8hVY7Vt1Ua5qrbafu3Oip7CCrNhD/oMK8xGYAj4ECdJI0eOVFFRUattc+fOVWZmZqttzz33nC655BLvQ7B2Wn3/C7Zfs7Ojp7DCbNiDPsMKsxEYAv7h1PY0NDSovLy8zfPhnn32Wb88lAoAAGA3I+7E/dC6devU0tLSJsRt2rTJTxUBAADYy8gQl5GRIY/H4+8yAAAA/MbIh1MBAABOdIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADCQw8NvzT0qTa4D2rXxC3+XEdB6piYqLCrS5+PpKaxmhtk4tugzrDAb9jja/x9/DCEOAADAQDycCgAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAG+v9cNHJlWUDfYgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -593,16 +593,16 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.817888Z", - "iopub.status.busy": "2024-11-23T19:54:58.817340Z", - "iopub.status.idle": "2024-11-23T19:54:58.949058Z", - "shell.execute_reply": "2024-11-23T19:54:58.948464Z" + "iopub.execute_input": "2024-12-05T03:21:33.463262Z", + "iopub.status.busy": "2024-12-05T03:21:33.462859Z", + "iopub.status.idle": "2024-12-05T03:21:33.614941Z", + "shell.execute_reply": "2024-12-05T03:21:33.614363Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -630,16 +630,16 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:58.951381Z", - "iopub.status.busy": "2024-11-23T19:54:58.950864Z", - "iopub.status.idle": "2024-11-23T19:54:59.115489Z", - "shell.execute_reply": "2024-11-23T19:54:59.114842Z" + "iopub.execute_input": "2024-12-05T03:21:33.617371Z", + "iopub.status.busy": "2024-12-05T03:21:33.616925Z", + "iopub.status.idle": "2024-12-05T03:21:33.887906Z", + "shell.execute_reply": "2024-12-05T03:21:33.887267Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGOCAYAAAD4oVVpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAziElEQVR4nO3de1hVddr/8c/mKCiooCgaKIoS4YmmIsuCbaexZkIlO4wWTTXldHqYxyZ7LGdsOjpTz8yYU/18mk6mTUmTZKOdsdIhKdFEEwRDIkJNPG0VQdj794e1i2DZltG19xffr+viumStxVo3N/cXP6y9Nzg8Ho9HAAAAMEqQvwsAAADA0SPEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYK8XcBpmlyHdCujV/4u4yA1jM1UWFRkT4fT09hNTPMxrFFn2GF2bDH0f7/+GMIcUdp18YvtCz7Hn+XEdDGFdyvPmec7PPx9BRWM8NsHFv0GVaYDXsc7f+PP4aHUwEAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxkT4pqamjRz5kwlJCQoIiJCY8eOVXFxsRwOhwoKCvxdHgAAgK2M+IsNHo9HkyZNUnFxsWbNmqXk5GQtXLhQEyZMkCSlp6f7uULJERyk02flanDOuXIEBWnLvz7SqhlPqaXxkL9LMxY9hRVmwx70GVaYjcBgxJ24efPmaenSpXrnnXd000036bzzztO8efMUHBysmJgYJSYm+rtEjbh9ovqeNUwFY6fplbNvU4+hJ+kn91zt77KMRk9hhdmwB32GFWYjMBgR4mbPnq0pU6YoLS3Nuy04OFhJSUneu3CbNm3S6NGjNXToUI0ePVoVFRW21jhk8nkqnfNPHdi6U431e7X20ZeVfEWWHEFGtDgg0VNYYTbsQZ9hhdkIDAHf7YqKClVVVSknJ6fNvpqaGm+Imzp1qm655RZt2rRJt9xyi2666SafrxEVFaXw8HCf3pzOrDYfHxYdqW79e2vnhirvtvrSKoVFRapbQu+j/ZSN53Rm+dxPegrJemaczqw2xzIbHed00me0z+lkNuzgdLbf56ioqA6dL+BDXG1trSQpLi6u1faysjJVV1crPT1d27dvV0lJia666ipJ0lVXXaWSkhJ9/fXXttQY0i1CktS054B3W9Oe/ZKk0G/24ejQU1hhNuxBn2GF2QgcAR/iYmNjJUmVlZXebR6PR9OnT5fb7VZ6erpqamrUv39/BQcHSzr8UGu/fv1UU1Pj0zVcLpcaGxt9eissXN7m45v3NUiSQqMjvdvCuneVJB36Zt+JpLBwuc/9pKeQrGeG2Ti26DOsMBv2sOqzy+Xq0PkCPsSlpqYqOTlZM2bM0KJFi7Rs2TJlZ2erpKREkZGRSklJ8XeJatp7QPtqv1ZM2kDvtthhSWpyHdC+GnvuBnY29BRWmA170GdYYTYCR8CHuJCQEOXn5ys+Pl65ubnKy8vTuHHjlJmZqREjRigoKEgJCQmqra1VS0uLJKmlpUVfffWVEhISbKuzYsG7GnHbBEX06anw2GiNmna5Kl9aLo/bbVsNnQ09hRVmwx70GVaYjcBgxO+JGzlypIqKilptmzt3rjIzMyUdfr7cqFGj9OKLL2rKlCl68cUXlZ6ert697XuC5bo5/1R4TLTGL/+zHEEObXn9I61+4AXbrt8Z0VNYYTbsQZ9hhdkIDEaEuB9qaGhQeXm58vLyvNuefPJJ5ebm6g9/+IN69uyp559/3taaPC1uFc98WsUzn7b1up0ZPYUVZsMe9BlWmI3AYGSIW7dunVpaWlr9pYaTTz5Zq1at8mNVAAAA9jEyxGVkZMjj8fi7DAAAAL8J+Bc2AAAAoC1CHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYyJgQ19TUpJkzZyohIUEREREaO3asiouL5XA4VFBQ4O/yAAAAbBXi7wJ84fF4NGnSJBUXF2vWrFlKTk7WwoULNWHCBElSenq6nyuUBv58tFJvuFgxaQPVuNOl/DNu9ndJRqOfOBLmwx70GVaYjcBgRIibN2+eli5dqrVr1yotLU2SlJWVpaSkJMXExCgxMdHPFUqNe/ar7Ok31KV3d6Xd+DN/l2M8+okjYT7sQZ9hhdkIDEaEuNmzZ2vKlCneACdJwcHBSkpKUmhoqCTpjjvu0CuvvKItW7aotLRUw4YNs7XGug/WSZISf3q6rdftrOgnjoT5sAd9hhVmIzAE/HPiKioqVFVVpZycnDb7ampqvA+ljh8/Xh988IEGDBhgd4kAAAC2C/g7cbW1tZKkuLi4VtvLyspUXV3tDXFjxozp8DWioqLU1NTk07GDQ3rqzuiOX+tE4HRmaXPzLp+Pp6dwOtufGWbj2HI66TPa53QyG3ZwOtvvc1hYmFwu11GfL+DvxMXGxkqSKisrvds8Ho+mT58ut9sdEC9qAAAAsFvAh7jU1FQlJydrxowZWrRokZYtW6bs7GyVlJQoMjJSKSkp//E1XC6XGhsbfXorLFz+n39SnVxh4XKf+0lPIVnPDLNxbNFnWGE27GHV547chZMMeDg1JCRE+fn5mjp1qnJzc5WQkKC8vDxFR0dr8+bNCgoKjBzqCApSUGiwHCEhksOh4PBQeTweuZua/V2akegnjoT5sAd9hhVmIzAEfIiTpJEjR6qoqKjVtrlz5yozM9NPFbU1+LJzNeavt3rfv3rLi9pXs53fndNB9BNHwnzYgz7DCrMRGIwIcT/U0NCg8vJy5eXlebfdfvvt+uc//6mtW7fq/PPPV2xsrDZs2GBbTZUvL1fly8ttu15nRz9xJMyHPegzrDAbgSEwHos8SuvWrVNLS0urFzXMmTNHX375pZqbm7V161ZbAxwAAIDdjLwTl5GRIY/H4+8yAAAA/MbIO3EAAAAnOkIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABjImBDX1NSkmTNnKiEhQRERERo7dqyKi4vlcDhUUFDg7/IAAABsFeLvAnzh8Xg0adIkFRcXa9asWUpOTtbChQs1YcIESVJ6erpf6wsKC9GZD96g+DHD1SU2Wge27dLGp5ep7Ollfq3LZPQUVpgNe9BnWGE2AocRIW7evHlaunSp1q5dq7S0NElSVlaWkpKSFBMTo8TERL/WFxQcrIbtu/XWlffJVb1NMacM0AUv3qODX+/WliVFfq3NVPQUVpgNe9BnWGE2AocRD6fOnj1bU6ZM8QY4SQoODlZSUpLS09NVX1+viy++WCkpKRo+fLgmTpyor7/+2rb6mhsateaP/5Bry1bJ49HODVtU89Ynijsj1bYaOht6CivMhj3oM6wwG4Ej4ENcRUWFqqqqlJOT02ZfTU2N0tPT5XA4dOedd6q8vFylpaUaPHiw7rrrLj9Ue5gjJFh9MlK1a2O132robOgprDAb9qDPsMJs+E/AP5xaW1srSYqLi2u1vaysTNXV1UpPT1dMTIyysrK8+84880w98cQTPl8jKipKTU1NPh07OKSn7owec8Rjznzweh3a16DNi973uYbOxOnM0ubmXT4fT0/hdLY/M8zGseV00me0z+lkNuzgdLbf57CwMLlcrqM+X8DfiYuNjZUkVVZWerd5PB5Nnz5dbre7zYsa3G63nnjiCV166aW21vmt02flqvdPUvT25AfkPtTslxo6G3oKK8yGPegzrDAb/hXwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkpKq+Nvu+02devWTbfeeqvP13C5XGpsbPTprbBwueV5zvjDtep37gi9efm9atx59Im6sygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBD6eGhIQoPz9fU6dOVW5urhISEpSXl6fo6Ght3rxZQUHf5dA77rhDFRUVWrJkSavtdjjjvusUP2aY3rhslhrr99p67c6KnsIKs2EP+gwrzEZgCPgQJ0kjR45UUVHrly3PnTtXmZmZ3vdnzJih1atX61//+pfCw8Ntra/rSb10yg0Xq+Vgky5b9Tfv9m2ryvTO5AdsraWzoKewwmzYgz7DCrMROIwIcT/U0NCg8vJy5eXlSZI2bNighx56SEOHDtVZZ50lSUpKStKrr75qSz37v9yhZ+Mvs+VaJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UkJaWJo/H4+eqAAAA7GNkiMvIyCC0AQCAE1rAvzoVAAAAbRHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAxoS4pqYmzZw5UwkJCYqIiNDYsWNVXFwsh8OhgoICf5cHAABgqxB/F+ALj8ejSZMmqbi4WLNmzVJycrIWLlyoCRMmSJLS09P9XKF05kM3KOGC0xQaHalD+xpU/XqRPrnvBbkPNfu7NGPRU1hhNuxBn2GF2QgMRoS4efPmaenSpVq7dq3S0tIkSVlZWUpKSlJMTIwSExP9XKG08Zk39Mkf5qu5oVHhMVHKmjdNI26fqLWPvuzv0oxFT2GF2bAHfYYVZiMwGBHiZs+erSlTpngDnCQFBwcrKSlJoaGhkqTx48erqqpKQUFB6tatmx577DGNGjXKthr3bPryu3ccDnncHkUNirft+p0RPYUVZsMe9BlWmI3AEPAhrqKiQlVVVZozZ06bfTU1NcrJyZEkPffcc+revbskqaCgQNddd51KSkpsrXX4reM1Ii9HoV0jdHDnXr39ixdsvX5nRE9hhdmwB32GFWbD/wI+xNXW1kqS4uLiWm0vKytTdXW19/lw3wY4SdqzZ4+Cgnx/zUZUVJSampp8OnZwSE/dGT2m3X2lcxerdO5idR/SX4MmnqOG7bt8rqEzcTqztLnZ98+dnsLpbH9mmI1jy+mkz2if08ls2MHpbL/PYWFhcrlcR32+gH91amxsrCSpsrLSu83j8Wj69Olyu92tXtRwww03KDExUXfffbeee+4522v91p6KWu3cUK1zHrvdbzV0NvQUVpgNe9BnWGE2/CfgQ1xqaqqSk5M1Y8YMLVq0SMuWLVN2drZKSkoUGRmplJQU77FPPfWUvvjiCz344IP67W9/6/M1XC6XGhsbfXorLFzu0zmDQoMVfYI+P6CwcLnP/aSnkKxnhtk4tugzrDAb9rDqc0fuwkkGhLiQkBDl5+crPj5eubm5ysvL07hx45SZmakRI0a0+7Dp1VdfrcLCQtXX19tSY2hUpJIvz1JYdKQkqWfqAI3My9FXyz+15fqdET2FFWbDHvQZVpiNwBHwz4mTpJEjR6qoqKjVtrlz5yozM1OStG/fPu3atUsJCQmSpCVLligmJkYxMTH2FOjxaFDOuTp9Vq6CwkJ0cMdeVS9dpbV/esme63dG9BRWmA170GdYYTYChhEh7ocaGhpUXl6uvLw8SdL+/fs1adIk7d+/X8HBwYqJidGSJUvkcDhsqefQvga9dcUfbLnWiYKewgqzYQ/6DCvMRuAwMsStW7dOLS0t3hc19OnTRx999JGfqwIAALCPkSEuIyNDHo/H32UAAAD4TcC/sAEAAABtEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gLEmL/coowHrvd3GV7nL7hbqddf7O8yjonJlfMVMyzJ32V0WN/RaZpcOf+4nf+nr9yrtKmXHvXHxWWk6opP/+84VORfgbYWv8/kWTa5dol1aCfWoO+M/LNbpooeFK/TZl6tuNNTFBwepoavd6vmrU/08aznjuo8yZdnKe3Xl6rA+d/HqVLpnckPHLdzH0s/feVe9f7JULkPNcvjdqth+2599WGp1j++WPu/3CFJWpB8tZ+r7Jy2r9qol0b+yt9lHFHfs9I0atrlih0xSJJUv+5zrX3kZW0t2uDnyg4bNe1yxY4crHevecin4wN1llmH/hPo65A1eHxxJ85G58+foT2VXyn/jFu0YOg1envyA9r1WbVfanGEBPvlusdDycMvasGQq7UwJVfvXf8ndekZpUvffkTRg/v5uzT40Unn/0QXLLxHNe+s1sun3qSXT71JNe+s1gUv3qOTzju13Y9xBB+7b4mdaY35gnWIH2INHn+EOJuEx0QpelC8yp9/S80HDkoej1xVW1X58vJ2jz/nsds0qeT/aXLFfF369p/U3zlKkhQzLEmjZ9+o7kP6a3LlfE2unK/oQfGSDv/Ec8nrD+qqjc9q/Ad/UVL22d7zjZp2uc5fcLcyHrxBV254Whn3X3fEer9/a//8BXfr5F/+VJIU3CVMV1ctVMaDN3iPnfDhX9V/bHpHW3NM7dn0pT649a86sHWn0n97hSTp2rp8xY4cLOlw/8Ytvk9XbnhGV254Rln/N01denX3fnxYdKQyn/yNflH2nCaufExDr75A19blKzwm6kevHTtikC5a9Htd9dkzunL931v1OP7cEfrZm7P1i/LndOm7jyrxp6d7942adrnOe/5/Wp3rsuLHNeCSM9u9TkhkF43+4426fM08XfHp/2nMX29VWPeu3v3X1uUr9fqLlV34v5q8+QVlzZumsOhInf3nm/WL8uc04cO/qvepQ1qdM6JPD1340u80uXK+fvbGbG+/juT7Dy/1Sh+iK9f//bvP6Y7LlVv7srrERkuSksafrUuW+vaT7rGScf91qly0XBueeE2HXAd0yHVAG554TZvz39cZ33xtLit+XCPycnTxaw9oyucL1Oubzzu0axdlzZumyRXzNf79P6tf1sgfvd63/Rg65Xxd9vETuvSdRyRZf+0Tf3q6ht8+Qf2do7xrOSjsyA+OfDvLjuAg/WLT8+qRknD42mel6dq6fA342WhJUkRcD13zxT8U2i2iY837D7EOWYcSa9CONUiIs0njTpd2b6rR2X++WUnZZytqQJ8jHl+3coMKnP+thSfnqnz+28qaN03hsdHaub5KRdPnaU9FrRYkX60FyVdr7+d16pGSoLFP36k1j7ykF0/5pT687TGd+dANrb4J9Dt3hHaur9JLI27Qx/f6/hBu3YpSxY8ZLkmKOz1F++vqFT9mmCQpsm+Mogb00baPNnagK8eHp8WtL94oVt+z0truc7u1+qGFennUr/TqObcrtFtEq2/yGQ9cr/Ae3ZSfcbP+dendGjR+jE/XjOwbo4vyZ2nL6x/p5fQbtej0X6tqSZEkKWpgX53/3F1aP3exXjzll1r9wAvKfOI3ikkb2KHPL+P+69Q9ub8Kzr9Dr57zXwqPidLZ/3tzq2MSf3q63sj5vfLPuFmxIwfpkn89pC1LivRi6i9VvXSVRs++sdXxQ64cq7WPvuzdf/7zdyk4Isznmuo/3ayg0BD1TB0gSYo/Z7hc1dvU9+zDcxI/Zri2rljfoc+3I6IH91PUgD6qWryyzb7PX12h6IF9vT/8JE/K0sppj2tB8tWqX18lSUoaP0afv/qhFp6cq3WPvaqxT9+pyL4xP3rdkIhw9RqVrMXn5un1cdOP+LX/4o2PVTrnVdUWrvWuZXdTs0+fn6fFrW2rNnrXZfw5w7W3qs67LuPHDFf9us91aF+DT+c7HliHJ/Y6ZA3aswYJcTZ6Y+LvtWNtpYbfPlETVsxRzkd/08Cfj2732Mp/vKemPfvlaXGr/Pm31LjL5f0JpT0puRdp8ysf6Kvln0oej+o/3ayqgpUafNm53mP2VNaqYuG78rS41dLQ5HPdW1euV58zT5EcDsWfM1wVC99VSGS4Ivr0VN8xw7Rj7ebDdxcDyIG6nQrv0a3N9l2fVWv7qo1yH2pW406XSue86v0G5wgK0sBLz9KaP72kpj371Vi/V5/+9RWfrjco51ztLK1S+XNvqqXxkFoamrR91eFgm5R9lrat2qgtS4rkaXGr9r01+uKtTzR4UubRf2IOhwZNPEclDy1UY/1eNe09oE/um68BF2e0+olvw5NL1LjTpcb6vfrqg3XaV7Ndte+tkcftVtXileqRmqig0O9+4tzyepG2F5fJfahZpY+9Ko/bo/6ZP/6T77c8bre2fbRR8WOGKSSyi3oMOUkbnlyi+HMOf4Pre/Yw1a20L8R1+eaOTcO2nW32NWzfdfiYb+5OlM9/W3sqauVxu73fwLd+9Jm+WFYsT4tbn+d/oF2fVVuu1e9zBAVp9YML1NzQqJaGpmP7tf+BrSvWt/oPY+0jL3v/Q7G731ZYhyfuOmQN2tNrXthgo4P1e7X6/he0+v4XFNotQkOnXKBzH8/Tro0/eF6cw6H0316hgZeepYi4HpLbo5BuXbwD355uCb0Vf/YwDc75LrQ5QoJU+95a7/v7a3d0qO760io5HFLMsIGKP3u4PprxlLon91f8mGGKP3uY6laUdui8x1NkfIwad7nabI8a0Een/f4a9U4fopCuXeRwOLzfdMNjohQcFtqqT772rNtJvbS3qs6illjt+/LrVtv2VW9Ttx+5G9ueLrHRCg4P1b6a7863r3rb4ev0i9WeTV9Kkhp27PHub2loVMP23d73mxsaFRQcrJCIMDUdOvwNc//36/N4tL92hyL7xh5VbXUrStX37GHas/krbV+9SbXvrVHa1J+r60m91DU+VtuK7btbe3Dn4a99RJ8Y7an8qtW+iLieh4+p3ytJ2l/b+msj/aAfkvbVfO3TXYDmhkY17vxu7o7l1/6H6laUakRejsKiIxU9qJ+qFq/UqXddpcj4GMWPGaZ/T3vyP77Gf4p1eOKuQ9agPWuQO3F+cmhfgzY8+Zqa9h7wPqb+rUETxmjw5Zl679qHtTAlVwtPztWBr+rlcDgkSR6Pp8359tfuUNmzb2rhybnetwXJV2v5jY96j/G4236cTzwebS36TAPGZShqYB/tLK1S3cr1ih8zPCBDnCM4SIkXna6t//6szb7Rs29U406XFmf9RguHXqN3r3nYu69xp0stTYfUtX8v77bv//tI9n25Q9FJ8e3uO1BXr24n9W61rVtCnA7U1UuSDu0/qJDvPWTiCA5q9fyg7ztYv1ctjYfULeG783377wN1bX/i9VXX79fncCiyX6wObK0/qnPUrVivvmeeon6ZI1W3ovTwN06HQ0OuGKuvSzYd1d3f/9TezV/J9cU2JV16Vpt9SdlnyfXFNu39/PB/9u2ti65tvl69dWDrj/fX43a3ev/HvvY/PP5o7NywRR63W6f86mfa/nGZPG636las19BfnK/IuJ7a/nFZh899LLAOj15nWoesQXvWICHOJmHdu+rU//mFegw9SY6QYAWFhWjo1RcoJCJM9Z9+3urY0G4Rcjc162D9XgWFBCtt6qWKjP/up7GGr3crIq5Hq+dKlD//lpIvz1T8uSPkCA5SUGiIYkcOVs9TBhyT+utWlCr1+nHatmrjN4NaqgEXZ6hLr+7a/kn5MbnGsdA9uZ/GzLlNkfGxWvPIS232h0ZFqsl1QE17DyiiT0+NyMvx7vO43dqypEij7rhcYd27KjwmSiNum+DTdT//5weKHTFIKddcqKCwEAVHhCkuI1WSVFXwb/XJSNWASzLkCApSf+coJVx0mjbnfyBJqi/9XL1OHaLuQ09SUFiI0qdfqSCrV1V5PPr81Q+VPv0qhcdGKyw6UqfNvEbVy1bpkOvAUXbrOwMvOVO9T0uRIyRYw2/JVlBIsL56f91RnWPXxmq1HGrWkCudqvvwcLDfunK9TrnxEtXZ+Hy4bxX/7lklX+FU2k0/V2i3CIVGReqUm36m5MudKp75zBE/tu+ZpyjhwtPkCA7SoInnqOcpA7TlXx8ddQ0/9rVv2LFHXfv36vAr8rb+e8M3/T3c77qVpTrlxku0ffUmtTQe6tA5jwXWYcd0tnXIGjz+a5CHU23ibmpWRO8eGvvcXYro3V0tjc3avalG7147u82t3spFyxV/znDlrHpczQcaVf78W9pd9oV3f92K9dpeXKbLV/8/OYKCtGTcdO36rFqFv3pUp06/Sj2e/I08Hml32Rda/eCCY1J/3YpShUXf4P0mcKBupxq279b+up0+PxH0eDn1rqs0atokeTweNWzbpboVpXrtgju8v5/q+4p//6zO+uONSqm4QK7q7Sp//i31O3eEd/+qu/+us/40VZetelwH6/fqs78vVfyY4T+6GA/U7dSbk+7Vab+/Rj+ZMVkth5pVtXiFtq/aKNeWrXrvuj/q1P+ZrLP/fIv2f/m1Prh1jnZ+8wTerSvXq/zZNzXu1fvkbjqk0r8tPuJPnMUzn9Hps3I1/r1HJYdDX73/qYp/d+RviD+m4qVCpd95pXqfmqy9n9fp3WseVnND41GfZ+vKw88R+fZX59StKNXQyef75flZNW9+rHemPKiR/32ZRv32ckmHf0fVO1Me/NG7x1WLV2jwpEyd+7f/0v66ehXe8IgOfHV0d0Qk/ejXfsuSIg0aP0ZXrn9aDodD/xhx/VGtp7oPSzXwZ6O967JuxXqFRXf1S79Zh6zDH2INHn8OT3uPzcHStuIyLcu+x99lHHfjFt+nLUuKtPHvS4/+YwvuV58zTvb5+EDuaf+x6Tr3b/+lF1Ov9XcpASd+zHBlzftvvXjKL//jc1nNTCDPht0cQUHKrX1ZBWOntX0erY9M7TPr0NqxWoemzoadjuca7CgeTkUbIZFdFDWgj1xbtvq7FNtFJfVVr1HJksOhbif1Vvpvr1BVQduXyEPqmTZArm+ezI3jr2faALkPNbf7JPDOhnXoO9ahfQJxDfJw6glq+O0TNeL2ts8zCe4SpqDgYFUtXqnawrX2F+ZnIRHhOuex2xTZL1aHXA368p3VWn3/C5Kk7OV/VreT2j7Buuat1frg5r/YXKk9rP5WZO3yTxU7PCkgXgFpp+M9A+cvuFt9Mtr+lH5o30EFhQZr9YML1bS348+5MgXrsDXW4XdYg60R4k5QpXP+qdI5//R3GQFn12fVevWc/2p3X0HWb2yuxv8C7e8E+tvxngFT/mbx8cY6bI11+B3WYGs8nAoAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCAjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBdwIc4j8ejSZMm6amnntI999yj119/XUlJSZow4fDf/UxPT/dzha0FdwnTxH8/Zvm37nB06CeOhPmwB32GFWbDvwL+b6fOmzdPS5cu1dq1a5WWliZJysrKUlJSkmJiYpSYmOjnCltL/+0V2vflDkXE9fB3KZ0C/cSRMB/2oM+wwmz4V8DfiZs9e7amTJniDXCSFBwcrKSkpDZ34e699145HA6tX7/e7jIlSbEjBqm/c5TW/22xX67f2dBPHAnzYQ/6DCvMhv8FdIirqKhQVVWVcnJy2uyrqalpFeJKSkr00UcfacCAAXaW6OUIDtJZj0zVRzOekrup2S81dCb0E0fCfNiDPsMKsxEYAjrE1dbWSpLi4uJabS8rK1N1dbU3xDU2NuqWW27RE0880aHrREVFKTw83Kc3pzOr3XMMuzlb9aVV2vbRxg7V0Jk4nVk+99Oqp/TzxOJ0tj8zTmdWu8czHx3jdNJntM/pZDbs4HS23+eoqKgOnS+gQ1xsbKwkqbKy0rvN4/Fo+vTpcrvd3hD3u9/9TlOmTNHAgQP9UaaiBvZVyjUX6pP7eGLnsUA/cSTMhz3oM6wwG4EjoF/YkJqaquTkZM2YMUOhoaHq1q2bnnjiCa1Zs0aRkZFKSUlRUVGRPvnkEz388MMdvo7L5fL52G3FZVqWfU+rbX3OOFkRvbpr4so5kqSgkGCFdo3QlRueVuH1fzrhflIpLFyuPmec7PPxP+wp/TzxWM0M6+3Yos+wwmzY42j/f/wxAR3iQkJClJ+fr6lTpyo3N1cJCQnKy8tTdHS0Nm/erKCgIL3//vvauHGjkpKSJElffvmlLrroIj3zzDO68MILbamzasm/9dWH67zv9/5Jisb89Ra9dv4dOli/15YaOhP6iSNhPuxBn2GF2QgcAR3iJGnkyJEqKipqtW3u3LnKzMyUJN1111266667vPsGDhyo119/XcOGDbOtxpaGJh1o2Ol9v7F+r+Tx6EDdziN8FKzQTxwJ82EP+gwrzEbgCOjnxLWnoaFB5eXlAfdLfr9va9EGLUi+2t9ldBr0E0fCfNiDPsMKs+E/AX8n7ofWrVunlpYWyxC3ZcsWewsCAADwA+NCXEZGhjwej7/LAAAA8CvjHk4FAAAAIQ4AAMBIhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADGRMiGtqatLMmTOVkJCgiIgIjR07VsXFxXI4HCooKPB3eQAAALYK8XcBvvB4PJo0aZKKi4s1a9YsJScna+HChZowYYIkKT093a/1jfnLLUqaMEbuQ83ebct/9ahqC9f6ryjD0VNYYTbsQZ9hhdkIHEaEuHnz5mnp0qVau3at0tLSJElZWVlKSkpSTEyMEhMT/VyhtOmFd7Tq7r/7u4xOhZ7CCrNhD/oMK8xGYDAixM2ePVtTpkzxBjhJCg4OVlJSkkJDQyVJAwcOVJcuXdSlSxfvx1x00UV+qRcAAOB4C/gQV1FRoaqqKs2ZM6fNvpqaGuXk5Hjfz8/P17Bhw+wsz2vQxHM0aMIYNezYo89f+UClcxfL0+L2Sy2dBT2FFWbDHvQZVpiNwBDwIa62tlaSFBcX12p7WVmZqqurj8nz4aKiotTU1OTTsYNDeurO6DGttn3296X65L75OrjTpdgRg5T5eJ6Cw8O05o//+I9rM5HTmaXNzbt8Pp6ewulsf2aYjWPL6aTPaJ/TyWzYwelsv89hYWFyuVxHfb6Af3VqbGysJKmystK7zePxaPr06XK73a1C3OTJkzVixAjdfPPN2r17t2017iyt0sH6vZLHo/pPN2vNIy8pKfts267fGdFTWGE27EGfYYXZCBwBH+JSU1OVnJysGTNmaNGiRVq2bJmys7NVUlKiyMhIpaSkSJI+/PBDffrpp/r444/l8Xh06623+nwNl8ulxsZGn94KC5f/+AndHsnRwU+4EygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBIS4kJET5+fmKj49Xbm6u8vLyNG7cOGVmZmrEiBEKCjr8KSQkJEiSwsPDdfPNN2vlypW21Tjw0rMUGhUpSeqZOkAjp03SlteLbLt+Z0RPYYXZsAd9hhVmI3AE/HPiJGnkyJEqKmo9IHPnzlVmZqYkaf/+/Wpublb37t3l8Xj0j3/8Q6NGjbKtvpOvvUijZ9+ooNBgNWzbrc3572vdY6/adv3OiJ7CCrNhD/oMK8xG4DAixP1QQ0ODysvLlZeXJ0natm2bcnJy1NLSopaWFp1yyil6/PHHbavnjYm/t+1aJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UMGjQIK1Zs8bPVQEAANjHyBCXkZEhj8fj7zIAAAD8JuBf2AAAAIC2CHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBViL8L8IXH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6u8LCTzjtV6dOvVPTgfmre16D1Ty7Rhide83dZRqOnsMJs2IM+wwqz4X9GhLh58+Zp6dKlWrt2rdLS0iRJWVlZSkpKUkxMjBITE/1codQvc6RG/+kmrbh9rrYWbVBIRLi69u/l77KMRk9hhdmwB32GFWYjMBjxcOrs2bM1ZcoUb4CTpODgYCUlJXnvwh08eFC//vWvNWTIEA0fPlw33nijrTWm33ml1v3lFdWtKJWnxa1D+xq0u7zG1ho6G3oKK8yGPegzrDAbgSHg78RVVFSoqqpKc+bMabOvpqZGOTk5kqQ777xTXbp00aZNm+RwOLRt2zbbagyJCFevUYNV+94aTfjwrwrr3lVfl1SoeOYz2lez3bY6OhN6CivMhj3oM6wwG4Ej4O/E1dbWSpLi4uJabS8rK1N1dbXS09O1b98+Pf/887rvvvvkcDgkSX369PH5GlFRUQoPD/fpzenMavPxYT26yhEUpAGXZOjtq+5XfsbNavh6t5x//21HP22jOZ1ZPveTnkKynhmnM6vNscxGxzmd9BntczqZDTs4ne33OSoqqkPnC/gQFxsbK0mqrKz0bvN4PJo+fbrcbrfS09O1efNmxcbG6t5779Vpp52mrKwsrVixwrYaD+07KEn67Kml2vfl12ppaFLJQwsVOzyJ5wh0ED2FFWbDHvQZVpiNwBHwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkqKWlpa9Pnnnys9PV2ffPKJZs+erYkTJ2rv3r0+XcPlcqmxsdGnt8LC5W0+/pDrwOFbyB7PMf7szVRYuNznftJTSNYzw2wcW/QZVpgNe1j12eVydeh8AR/iQkJClJ+fr/j4eOXm5iovL0/jxo1TZmamRowYoaCgICUmJiokJERXXXWVJCkjI0O9evXSpk2bbKuz/Pm3lHrDJYrsF6vg8FCl33mldny6Wftrd9hWQ2dDT2GF2bAHfYYVZiMwBPwLGyRp5MiRKioqarVt7ty5yszMlCT16tVLTqdTb7/9ti688EJt2rRJ27dvV3Jysm01lv6tQGHdu+nSt/4oOYK0vbhMhdf/ybbrd0b0FFaYDXvQZ1hhNgKDESHuhxoaGlReXq68vDzvtieffFLXXXedpk2bptDQUM2fP189evSwryiPR6sfeEGrH3jBvmt2dvQUVpgNe9BnWGE2AoKRIW7dunVqaWlp9ZcaBg0apOXLl/uvKAAAABsZGeIyMjLk4QmVAADgBBbwL2wAAABAW4Q4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAIf4uwFdNTU2677779Oyzz2rHjh0aPXq0Hn74YWVkZGjx4sXKzs72W22TK+e3ej84LFS7K2r12nnT/FSR+egprDAb9qDPsMJsBA4jQpzH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6tb0Hy1a3ev/TdR1VVsNJP1XQO9BRWmA170GdYYTYChxEhbt68eVq6dKnWrl2rtLQ0SVJWVpaSkpIUExOjxMREP1f4nV6jktVj6EmqfKnQ36V0GvQUVpgNe9BnWGE2/MuIEDd79mxNmTLFG+AkKTg4WElJSQoNDdWWLVs0fvx4777du3dr79692rlzp+21DvnFWNW+t0YN23bZfu3Oip7CCrNhD/oMK8yGfwV8iKuoqFBVVZXmzJnTZl9NTY1ycnI0cOBArV271rs9Ly9Pzc3NPl8jKipKTU1NPh07OKSn7owe0+6+kIhwJWWfrQ9vn+vztTsjpzNLm5t9X9D0FE5n+zPDbBxbTid9RvucTmbDDk5n+30OCwuTy+U66vMFfIirra2VJMXFxbXaXlZWpurq6jbPh2tqatKCBQv05ptv2lbjtwb+fLSaG5r05Turbb92Z0VPYYXZsAd9hhVmw/8C/leMxMbGSpIqKyu92zwej6ZPny63290mxL322mvq37+/Tj31VJ+v4XK51NjY6NNbYeFyy/MMmXyeNr+8XJ4W99F9kp1MYeFyn/tJTyFZzwyzcWzRZ1hhNuxh1eeO3IWTDAhxqampSk5O1owZM7Ro0SItW7ZM2dnZKikpUWRkpFJSUlod//TTT+u6666zvc7owf0Ud1qKNr34ru3X7qzoKawwG/agz7DCbASGgH84NSQkRPn5+Zo6dapyc3OVkJCgvLw8RUdHa/PmzQoK+i6H1tbW6v3339f8+fOPcMbjY8hVY7Vt1Ua5qrbafu3Oip7CCrNhD/oMK8xGYAj4ECdJI0eOVFFRUattc+fOVWZmZqttzz33nC655BLvQ7B2Wn3/C7Zfs7Ojp7DCbNiDPsMKsxEYAv7h1PY0NDSovLy8zfPhnn32Wb88lAoAAGA3I+7E/dC6devU0tLSJsRt2rTJTxUBAADYy8gQl5GRIY/H4+8yAAAA/MbIh1MBAABOdIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADCQw8NvzT0qTa4D2rXxC3+XEdB6piYqLCrS5+PpKaxmhtk4tugzrDAb9jja/x9/DCEOAADAQDycCgAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAG+v9cNHJlWUDfYgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGOCAYAAAD4oVVpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAziElEQVR4nO3de1hVddr/8c/mKCiooCgaKIoS4YmmIsuCbaexZkIlO4wWTTXldHqYxyZ7LGdsOjpTz8yYU/18mk6mTUmTZKOdsdIhKdFEEwRDIkJNPG0VQdj794e1i2DZltG19xffr+viumStxVo3N/cXP6y9Nzg8Ho9HAAAAMEqQvwsAAADA0SPEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYK8XcBpmlyHdCujV/4u4yA1jM1UWFRkT4fT09hNTPMxrFFn2GF2bDH0f7/+GMIcUdp18YvtCz7Hn+XEdDGFdyvPmec7PPx9BRWM8NsHFv0GVaYDXsc7f+PP4aHUwEAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxkT4pqamjRz5kwlJCQoIiJCY8eOVXFxsRwOhwoKCvxdHgAAgK2M+IsNHo9HkyZNUnFxsWbNmqXk5GQtXLhQEyZMkCSlp6f7uULJERyk02flanDOuXIEBWnLvz7SqhlPqaXxkL9LMxY9hRVmwx70GVaYjcBgxJ24efPmaenSpXrnnXd000036bzzztO8efMUHBysmJgYJSYm+rtEjbh9ovqeNUwFY6fplbNvU4+hJ+kn91zt77KMRk9hhdmwB32GFWYjMBgR4mbPnq0pU6YoLS3Nuy04OFhJSUneu3CbNm3S6NGjNXToUI0ePVoVFRW21jhk8nkqnfNPHdi6U431e7X20ZeVfEWWHEFGtDgg0VNYYTbsQZ9hhdkIDAHf7YqKClVVVSknJ6fNvpqaGm+Imzp1qm655RZt2rRJt9xyi2666SafrxEVFaXw8HCf3pzOrDYfHxYdqW79e2vnhirvtvrSKoVFRapbQu+j/ZSN53Rm+dxPegrJemaczqw2xzIbHed00me0z+lkNuzgdLbf56ioqA6dL+BDXG1trSQpLi6u1faysjJVV1crPT1d27dvV0lJia666ipJ0lVXXaWSkhJ9/fXXttQY0i1CktS054B3W9Oe/ZKk0G/24ejQU1hhNuxBn2GF2QgcAR/iYmNjJUmVlZXebR6PR9OnT5fb7VZ6erpqamrUv39/BQcHSzr8UGu/fv1UU1Pj0zVcLpcaGxt9eissXN7m45v3NUiSQqMjvdvCuneVJB36Zt+JpLBwuc/9pKeQrGeG2Ti26DOsMBv2sOqzy+Xq0PkCPsSlpqYqOTlZM2bM0KJFi7Rs2TJlZ2erpKREkZGRSklJ8XeJatp7QPtqv1ZM2kDvtthhSWpyHdC+GnvuBnY29BRWmA170GdYYTYCR8CHuJCQEOXn5ys+Pl65ubnKy8vTuHHjlJmZqREjRigoKEgJCQmqra1VS0uLJKmlpUVfffWVEhISbKuzYsG7GnHbBEX06anw2GiNmna5Kl9aLo/bbVsNnQ09hRVmwx70GVaYjcBgxO+JGzlypIqKilptmzt3rjIzMyUdfr7cqFGj9OKLL2rKlCl68cUXlZ6ert697XuC5bo5/1R4TLTGL/+zHEEObXn9I61+4AXbrt8Z0VNYYTbsQZ9hhdkIDEaEuB9qaGhQeXm58vLyvNuefPJJ5ebm6g9/+IN69uyp559/3taaPC1uFc98WsUzn7b1up0ZPYUVZsMe9BlWmI3AYGSIW7dunVpaWlr9pYaTTz5Zq1at8mNVAAAA9jEyxGVkZMjj8fi7DAAAAL8J+Bc2AAAAoC1CHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYyJgQ19TUpJkzZyohIUEREREaO3asiouL5XA4VFBQ4O/yAAAAbBXi7wJ84fF4NGnSJBUXF2vWrFlKTk7WwoULNWHCBElSenq6nyuUBv58tFJvuFgxaQPVuNOl/DNu9ndJRqOfOBLmwx70GVaYjcBgRIibN2+eli5dqrVr1yotLU2SlJWVpaSkJMXExCgxMdHPFUqNe/ar7Ok31KV3d6Xd+DN/l2M8+okjYT7sQZ9hhdkIDEaEuNmzZ2vKlCneACdJwcHBSkpKUmhoqCTpjjvu0CuvvKItW7aotLRUw4YNs7XGug/WSZISf3q6rdftrOgnjoT5sAd9hhVmIzAE/HPiKioqVFVVpZycnDb7ampqvA+ljh8/Xh988IEGDBhgd4kAAAC2C/g7cbW1tZKkuLi4VtvLyspUXV3tDXFjxozp8DWioqLU1NTk07GDQ3rqzuiOX+tE4HRmaXPzLp+Pp6dwOtufGWbj2HI66TPa53QyG3ZwOtvvc1hYmFwu11GfL+DvxMXGxkqSKisrvds8Ho+mT58ut9sdEC9qAAAAsFvAh7jU1FQlJydrxowZWrRokZYtW6bs7GyVlJQoMjJSKSkp//E1XC6XGhsbfXorLFz+n39SnVxh4XKf+0lPIVnPDLNxbNFnWGE27GHV547chZMMeDg1JCRE+fn5mjp1qnJzc5WQkKC8vDxFR0dr8+bNCgoKjBzqCApSUGiwHCEhksOh4PBQeTweuZua/V2akegnjoT5sAd9hhVmIzAEfIiTpJEjR6qoqKjVtrlz5yozM9NPFbU1+LJzNeavt3rfv3rLi9pXs53fndNB9BNHwnzYgz7DCrMRGIwIcT/U0NCg8vJy5eXlebfdfvvt+uc//6mtW7fq/PPPV2xsrDZs2GBbTZUvL1fly8ttu15nRz9xJMyHPegzrDAbgSEwHos8SuvWrVNLS0urFzXMmTNHX375pZqbm7V161ZbAxwAAIDdjLwTl5GRIY/H4+8yAAAA/MbIO3EAAAAnOkIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABjImBDX1NSkmTNnKiEhQRERERo7dqyKi4vlcDhUUFDg7/IAAABsFeLvAnzh8Xg0adIkFRcXa9asWUpOTtbChQs1YcIESVJ6erpf6wsKC9GZD96g+DHD1SU2Wge27dLGp5ep7Ollfq3LZPQUVpgNe9BnWGE2AocRIW7evHlaunSp1q5dq7S0NElSVlaWkpKSFBMTo8TERL/WFxQcrIbtu/XWlffJVb1NMacM0AUv3qODX+/WliVFfq3NVPQUVpgNe9BnWGE2AocRD6fOnj1bU6ZM8QY4SQoODlZSUpLS09NVX1+viy++WCkpKRo+fLgmTpyor7/+2rb6mhsateaP/5Bry1bJ49HODVtU89Ynijsj1bYaOht6CivMhj3oM6wwG4Ej4ENcRUWFqqqqlJOT02ZfTU2N0tPT5XA4dOedd6q8vFylpaUaPHiw7rrrLj9Ue5gjJFh9MlK1a2O132robOgprDAb9qDPsMJs+E/AP5xaW1srSYqLi2u1vaysTNXV1UpPT1dMTIyysrK8+84880w98cQTPl8jKipKTU1NPh07OKSn7owec8Rjznzweh3a16DNi973uYbOxOnM0ubmXT4fT0/hdLY/M8zGseV00me0z+lkNuzgdLbf57CwMLlcrqM+X8DfiYuNjZUkVVZWerd5PB5Nnz5dbre7zYsa3G63nnjiCV166aW21vmt02flqvdPUvT25AfkPtTslxo6G3oKK8yGPegzrDAb/hXwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkpKq+Nvu+02devWTbfeeqvP13C5XGpsbPTprbBwueV5zvjDtep37gi9efm9atx59Im6sygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBD6eGhIQoPz9fU6dOVW5urhISEpSXl6fo6Ght3rxZQUHf5dA77rhDFRUVWrJkSavtdjjjvusUP2aY3rhslhrr99p67c6KnsIKs2EP+gwrzEZgCPgQJ0kjR45UUVHrly3PnTtXmZmZ3vdnzJih1atX61//+pfCw8Ntra/rSb10yg0Xq+Vgky5b9Tfv9m2ryvTO5AdsraWzoKewwmzYgz7DCrMROIwIcT/U0NCg8vJy5eXlSZI2bNighx56SEOHDtVZZ50lSUpKStKrr75qSz37v9yhZ+Mvs+VaJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UkJaWJo/H4+eqAAAA7GNkiMvIyCC0AQCAE1rAvzoVAAAAbRHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAxoS4pqYmzZw5UwkJCYqIiNDYsWNVXFwsh8OhgoICf5cHAABgqxB/F+ALj8ejSZMmqbi4WLNmzVJycrIWLlyoCRMmSJLS09P9XKF05kM3KOGC0xQaHalD+xpU/XqRPrnvBbkPNfu7NGPRU1hhNuxBn2GF2QgMRoS4efPmaenSpVq7dq3S0tIkSVlZWUpKSlJMTIwSExP9XKG08Zk39Mkf5qu5oVHhMVHKmjdNI26fqLWPvuzv0oxFT2GF2bAHfYYVZiMwGBHiZs+erSlTpngDnCQFBwcrKSlJoaGhkqTx48erqqpKQUFB6tatmx577DGNGjXKthr3bPryu3ccDnncHkUNirft+p0RPYUVZsMe9BlWmI3AEPAhrqKiQlVVVZozZ06bfTU1NcrJyZEkPffcc+revbskqaCgQNddd51KSkpsrXX4reM1Ii9HoV0jdHDnXr39ixdsvX5nRE9hhdmwB32GFWbD/wI+xNXW1kqS4uLiWm0vKytTdXW19/lw3wY4SdqzZ4+Cgnx/zUZUVJSampp8OnZwSE/dGT2m3X2lcxerdO5idR/SX4MmnqOG7bt8rqEzcTqztLnZ98+dnsLpbH9mmI1jy+mkz2if08ls2MHpbL/PYWFhcrlcR32+gH91amxsrCSpsrLSu83j8Wj69Olyu92tXtRwww03KDExUXfffbeee+4522v91p6KWu3cUK1zHrvdbzV0NvQUVpgNe9BnWGE2/CfgQ1xqaqqSk5M1Y8YMLVq0SMuWLVN2drZKSkoUGRmplJQU77FPPfWUvvjiCz344IP67W9/6/M1XC6XGhsbfXorLFzu0zmDQoMVfYI+P6CwcLnP/aSnkKxnhtk4tugzrDAb9rDqc0fuwkkGhLiQkBDl5+crPj5eubm5ysvL07hx45SZmakRI0a0+7Dp1VdfrcLCQtXX19tSY2hUpJIvz1JYdKQkqWfqAI3My9FXyz+15fqdET2FFWbDHvQZVpiNwBHwz4mTpJEjR6qoqKjVtrlz5yozM1OStG/fPu3atUsJCQmSpCVLligmJkYxMTH2FOjxaFDOuTp9Vq6CwkJ0cMdeVS9dpbV/esme63dG9BRWmA170GdYYTYChhEh7ocaGhpUXl6uvLw8SdL+/fs1adIk7d+/X8HBwYqJidGSJUvkcDhsqefQvga9dcUfbLnWiYKewgqzYQ/6DCvMRuAwMsStW7dOLS0t3hc19OnTRx999JGfqwIAALCPkSEuIyNDHo/H32UAAAD4TcC/sAEAAABtEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gLEmL/coowHrvd3GV7nL7hbqddf7O8yjonJlfMVMyzJ32V0WN/RaZpcOf+4nf+nr9yrtKmXHvXHxWWk6opP/+84VORfgbYWv8/kWTa5dol1aCfWoO+M/LNbpooeFK/TZl6tuNNTFBwepoavd6vmrU/08aznjuo8yZdnKe3Xl6rA+d/HqVLpnckPHLdzH0s/feVe9f7JULkPNcvjdqth+2599WGp1j++WPu/3CFJWpB8tZ+r7Jy2r9qol0b+yt9lHFHfs9I0atrlih0xSJJUv+5zrX3kZW0t2uDnyg4bNe1yxY4crHevecin4wN1llmH/hPo65A1eHxxJ85G58+foT2VXyn/jFu0YOg1envyA9r1WbVfanGEBPvlusdDycMvasGQq7UwJVfvXf8ndekZpUvffkTRg/v5uzT40Unn/0QXLLxHNe+s1sun3qSXT71JNe+s1gUv3qOTzju13Y9xBB+7b4mdaY35gnWIH2INHn+EOJuEx0QpelC8yp9/S80HDkoej1xVW1X58vJ2jz/nsds0qeT/aXLFfF369p/U3zlKkhQzLEmjZ9+o7kP6a3LlfE2unK/oQfGSDv/Ec8nrD+qqjc9q/Ad/UVL22d7zjZp2uc5fcLcyHrxBV254Whn3X3fEer9/a//8BXfr5F/+VJIU3CVMV1ctVMaDN3iPnfDhX9V/bHpHW3NM7dn0pT649a86sHWn0n97hSTp2rp8xY4cLOlw/8Ytvk9XbnhGV254Rln/N01denX3fnxYdKQyn/yNflH2nCaufExDr75A19blKzwm6kevHTtikC5a9Htd9dkzunL931v1OP7cEfrZm7P1i/LndOm7jyrxp6d7942adrnOe/5/Wp3rsuLHNeCSM9u9TkhkF43+4426fM08XfHp/2nMX29VWPeu3v3X1uUr9fqLlV34v5q8+QVlzZumsOhInf3nm/WL8uc04cO/qvepQ1qdM6JPD1340u80uXK+fvbGbG+/juT7Dy/1Sh+iK9f//bvP6Y7LlVv7srrERkuSksafrUuW+vaT7rGScf91qly0XBueeE2HXAd0yHVAG554TZvz39cZ33xtLit+XCPycnTxaw9oyucL1Oubzzu0axdlzZumyRXzNf79P6tf1sgfvd63/Rg65Xxd9vETuvSdRyRZf+0Tf3q6ht8+Qf2do7xrOSjsyA+OfDvLjuAg/WLT8+qRknD42mel6dq6fA342WhJUkRcD13zxT8U2i2iY837D7EOWYcSa9CONUiIs0njTpd2b6rR2X++WUnZZytqQJ8jHl+3coMKnP+thSfnqnz+28qaN03hsdHaub5KRdPnaU9FrRYkX60FyVdr7+d16pGSoLFP36k1j7ykF0/5pT687TGd+dANrb4J9Dt3hHaur9JLI27Qx/f6/hBu3YpSxY8ZLkmKOz1F++vqFT9mmCQpsm+Mogb00baPNnagK8eHp8WtL94oVt+z0truc7u1+qGFennUr/TqObcrtFtEq2/yGQ9cr/Ae3ZSfcbP+dendGjR+jE/XjOwbo4vyZ2nL6x/p5fQbtej0X6tqSZEkKWpgX53/3F1aP3exXjzll1r9wAvKfOI3ikkb2KHPL+P+69Q9ub8Kzr9Dr57zXwqPidLZ/3tzq2MSf3q63sj5vfLPuFmxIwfpkn89pC1LivRi6i9VvXSVRs++sdXxQ64cq7WPvuzdf/7zdyk4Isznmuo/3ayg0BD1TB0gSYo/Z7hc1dvU9+zDcxI/Zri2rljfoc+3I6IH91PUgD6qWryyzb7PX12h6IF9vT/8JE/K0sppj2tB8tWqX18lSUoaP0afv/qhFp6cq3WPvaqxT9+pyL4xP3rdkIhw9RqVrMXn5un1cdOP+LX/4o2PVTrnVdUWrvWuZXdTs0+fn6fFrW2rNnrXZfw5w7W3qs67LuPHDFf9us91aF+DT+c7HliHJ/Y6ZA3aswYJcTZ6Y+LvtWNtpYbfPlETVsxRzkd/08Cfj2732Mp/vKemPfvlaXGr/Pm31LjL5f0JpT0puRdp8ysf6Kvln0oej+o/3ayqgpUafNm53mP2VNaqYuG78rS41dLQ5HPdW1euV58zT5EcDsWfM1wVC99VSGS4Ivr0VN8xw7Rj7ebDdxcDyIG6nQrv0a3N9l2fVWv7qo1yH2pW406XSue86v0G5wgK0sBLz9KaP72kpj371Vi/V5/+9RWfrjco51ztLK1S+XNvqqXxkFoamrR91eFgm5R9lrat2qgtS4rkaXGr9r01+uKtTzR4UubRf2IOhwZNPEclDy1UY/1eNe09oE/um68BF2e0+olvw5NL1LjTpcb6vfrqg3XaV7Ndte+tkcftVtXileqRmqig0O9+4tzyepG2F5fJfahZpY+9Ko/bo/6ZP/6T77c8bre2fbRR8WOGKSSyi3oMOUkbnlyi+HMOf4Pre/Yw1a20L8R1+eaOTcO2nW32NWzfdfiYb+5OlM9/W3sqauVxu73fwLd+9Jm+WFYsT4tbn+d/oF2fVVuu1e9zBAVp9YML1NzQqJaGpmP7tf+BrSvWt/oPY+0jL3v/Q7G731ZYhyfuOmQN2tNrXthgo4P1e7X6/he0+v4XFNotQkOnXKBzH8/Tro0/eF6cw6H0316hgZeepYi4HpLbo5BuXbwD355uCb0Vf/YwDc75LrQ5QoJU+95a7/v7a3d0qO760io5HFLMsIGKP3u4PprxlLon91f8mGGKP3uY6laUdui8x1NkfIwad7nabI8a0Een/f4a9U4fopCuXeRwOLzfdMNjohQcFtqqT772rNtJvbS3qs6illjt+/LrVtv2VW9Ttx+5G9ueLrHRCg4P1b6a7863r3rb4ev0i9WeTV9Kkhp27PHub2loVMP23d73mxsaFRQcrJCIMDUdOvwNc//36/N4tL92hyL7xh5VbXUrStX37GHas/krbV+9SbXvrVHa1J+r60m91DU+VtuK7btbe3Dn4a99RJ8Y7an8qtW+iLieh4+p3ytJ2l/b+msj/aAfkvbVfO3TXYDmhkY17vxu7o7l1/6H6laUakRejsKiIxU9qJ+qFq/UqXddpcj4GMWPGaZ/T3vyP77Gf4p1eOKuQ9agPWuQO3F+cmhfgzY8+Zqa9h7wPqb+rUETxmjw5Zl679qHtTAlVwtPztWBr+rlcDgkSR6Pp8359tfuUNmzb2rhybnetwXJV2v5jY96j/G4236cTzwebS36TAPGZShqYB/tLK1S3cr1ih8zPCBDnCM4SIkXna6t//6szb7Rs29U406XFmf9RguHXqN3r3nYu69xp0stTYfUtX8v77bv//tI9n25Q9FJ8e3uO1BXr24n9W61rVtCnA7U1UuSDu0/qJDvPWTiCA5q9fyg7ztYv1ctjYfULeG783377wN1bX/i9VXX79fncCiyX6wObK0/qnPUrVivvmeeon6ZI1W3ovTwN06HQ0OuGKuvSzYd1d3f/9TezV/J9cU2JV16Vpt9SdlnyfXFNu39/PB/9u2ti65tvl69dWDrj/fX43a3ev/HvvY/PP5o7NywRR63W6f86mfa/nGZPG636las19BfnK/IuJ7a/nFZh899LLAOj15nWoesQXvWICHOJmHdu+rU//mFegw9SY6QYAWFhWjo1RcoJCJM9Z9+3urY0G4Rcjc162D9XgWFBCtt6qWKjP/up7GGr3crIq5Hq+dKlD//lpIvz1T8uSPkCA5SUGiIYkcOVs9TBhyT+utWlCr1+nHatmrjN4NaqgEXZ6hLr+7a/kn5MbnGsdA9uZ/GzLlNkfGxWvPIS232h0ZFqsl1QE17DyiiT0+NyMvx7vO43dqypEij7rhcYd27KjwmSiNum+DTdT//5weKHTFIKddcqKCwEAVHhCkuI1WSVFXwb/XJSNWASzLkCApSf+coJVx0mjbnfyBJqi/9XL1OHaLuQ09SUFiI0qdfqSCrV1V5PPr81Q+VPv0qhcdGKyw6UqfNvEbVy1bpkOvAUXbrOwMvOVO9T0uRIyRYw2/JVlBIsL56f91RnWPXxmq1HGrWkCudqvvwcLDfunK9TrnxEtXZ+Hy4bxX/7lklX+FU2k0/V2i3CIVGReqUm36m5MudKp75zBE/tu+ZpyjhwtPkCA7SoInnqOcpA7TlXx8ddQ0/9rVv2LFHXfv36vAr8rb+e8M3/T3c77qVpTrlxku0ffUmtTQe6tA5jwXWYcd0tnXIGjz+a5CHU23ibmpWRO8eGvvcXYro3V0tjc3avalG7147u82t3spFyxV/znDlrHpczQcaVf78W9pd9oV3f92K9dpeXKbLV/8/OYKCtGTcdO36rFqFv3pUp06/Sj2e/I08Hml32Rda/eCCY1J/3YpShUXf4P0mcKBupxq279b+up0+PxH0eDn1rqs0atokeTweNWzbpboVpXrtgju8v5/q+4p//6zO+uONSqm4QK7q7Sp//i31O3eEd/+qu/+us/40VZetelwH6/fqs78vVfyY4T+6GA/U7dSbk+7Vab+/Rj+ZMVkth5pVtXiFtq/aKNeWrXrvuj/q1P+ZrLP/fIv2f/m1Prh1jnZ+8wTerSvXq/zZNzXu1fvkbjqk0r8tPuJPnMUzn9Hps3I1/r1HJYdDX73/qYp/d+RviD+m4qVCpd95pXqfmqy9n9fp3WseVnND41GfZ+vKw88R+fZX59StKNXQyef75flZNW9+rHemPKiR/32ZRv32ckmHf0fVO1Me/NG7x1WLV2jwpEyd+7f/0v66ehXe8IgOfHV0d0Qk/ejXfsuSIg0aP0ZXrn9aDodD/xhx/VGtp7oPSzXwZ6O967JuxXqFRXf1S79Zh6zDH2INHn8OT3uPzcHStuIyLcu+x99lHHfjFt+nLUuKtPHvS4/+YwvuV58zTvb5+EDuaf+x6Tr3b/+lF1Ov9XcpASd+zHBlzftvvXjKL//jc1nNTCDPht0cQUHKrX1ZBWOntX0erY9M7TPr0NqxWoemzoadjuca7CgeTkUbIZFdFDWgj1xbtvq7FNtFJfVVr1HJksOhbif1Vvpvr1BVQduXyEPqmTZArm+ezI3jr2faALkPNbf7JPDOhnXoO9ahfQJxDfJw6glq+O0TNeL2ts8zCe4SpqDgYFUtXqnawrX2F+ZnIRHhOuex2xTZL1aHXA368p3VWn3/C5Kk7OV/VreT2j7Buuat1frg5r/YXKk9rP5WZO3yTxU7PCkgXgFpp+M9A+cvuFt9Mtr+lH5o30EFhQZr9YML1bS348+5MgXrsDXW4XdYg60R4k5QpXP+qdI5//R3GQFn12fVevWc/2p3X0HWb2yuxv8C7e8E+tvxngFT/mbx8cY6bI11+B3WYGs8nAoAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCAjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBdwIc4j8ejSZMm6amnntI999yj119/XUlJSZow4fDf/UxPT/dzha0FdwnTxH8/Zvm37nB06CeOhPmwB32GFWbDvwL+b6fOmzdPS5cu1dq1a5WWliZJysrKUlJSkmJiYpSYmOjnCltL/+0V2vflDkXE9fB3KZ0C/cSRMB/2oM+wwmz4V8DfiZs9e7amTJniDXCSFBwcrKSkpDZ34e699145HA6tX7/e7jIlSbEjBqm/c5TW/22xX67f2dBPHAnzYQ/6DCvMhv8FdIirqKhQVVWVcnJy2uyrqalpFeJKSkr00UcfacCAAXaW6OUIDtJZj0zVRzOekrup2S81dCb0E0fCfNiDPsMKsxEYAjrE1dbWSpLi4uJabS8rK1N1dbU3xDU2NuqWW27RE0880aHrREVFKTw83Kc3pzOr3XMMuzlb9aVV2vbRxg7V0Jk4nVk+99Oqp/TzxOJ0tj8zTmdWu8czHx3jdNJntM/pZDbs4HS23+eoqKgOnS+gQ1xsbKwkqbKy0rvN4/Fo+vTpcrvd3hD3u9/9TlOmTNHAgQP9UaaiBvZVyjUX6pP7eGLnsUA/cSTMhz3oM6wwG4EjoF/YkJqaquTkZM2YMUOhoaHq1q2bnnjiCa1Zs0aRkZFKSUlRUVGRPvnkEz388MMdvo7L5fL52G3FZVqWfU+rbX3OOFkRvbpr4so5kqSgkGCFdo3QlRueVuH1fzrhflIpLFyuPmec7PPxP+wp/TzxWM0M6+3Yos+wwmzY42j/f/wxAR3iQkJClJ+fr6lTpyo3N1cJCQnKy8tTdHS0Nm/erKCgIL3//vvauHGjkpKSJElffvmlLrroIj3zzDO68MILbamzasm/9dWH67zv9/5Jisb89Ra9dv4dOli/15YaOhP6iSNhPuxBn2GF2QgcAR3iJGnkyJEqKipqtW3u3LnKzMyUJN1111266667vPsGDhyo119/XcOGDbOtxpaGJh1o2Ol9v7F+r+Tx6EDdziN8FKzQTxwJ82EP+gwrzEbgCOjnxLWnoaFB5eXlAfdLfr9va9EGLUi+2t9ldBr0E0fCfNiDPsMKs+E/AX8n7ofWrVunlpYWyxC3ZcsWewsCAADwA+NCXEZGhjwej7/LAAAA8CvjHk4FAAAAIQ4AAMBIhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADGRMiGtqatLMmTOVkJCgiIgIjR07VsXFxXI4HCooKPB3eQAAALYK8XcBvvB4PJo0aZKKi4s1a9YsJScna+HChZowYYIkKT093a/1jfnLLUqaMEbuQ83ebct/9ahqC9f6ryjD0VNYYTbsQZ9hhdkIHEaEuHnz5mnp0qVau3at0tLSJElZWVlKSkpSTEyMEhMT/VyhtOmFd7Tq7r/7u4xOhZ7CCrNhD/oMK8xGYDAixM2ePVtTpkzxBjhJCg4OVlJSkkJDQyVJAwcOVJcuXdSlSxfvx1x00UV+qRcAAOB4C/gQV1FRoaqqKs2ZM6fNvpqaGuXk5Hjfz8/P17Bhw+wsz2vQxHM0aMIYNezYo89f+UClcxfL0+L2Sy2dBT2FFWbDHvQZVpiNwBDwIa62tlaSFBcX12p7WVmZqqurj8nz4aKiotTU1OTTsYNDeurO6DGttn3296X65L75OrjTpdgRg5T5eJ6Cw8O05o//+I9rM5HTmaXNzbt8Pp6ewulsf2aYjWPL6aTPaJ/TyWzYwelsv89hYWFyuVxHfb6Af3VqbGysJKmystK7zePxaPr06XK73a1C3OTJkzVixAjdfPPN2r17t2017iyt0sH6vZLHo/pPN2vNIy8pKfts267fGdFTWGE27EGfYYXZCBwBH+JSU1OVnJysGTNmaNGiRVq2bJmys7NVUlKiyMhIpaSkSJI+/PBDffrpp/r444/l8Xh06623+nwNl8ulxsZGn94KC5f/+AndHsnRwU+4EygsXO5zP+kpJOuZYTaOLfoMK8yGPaz63JG7cJIBIS4kJET5+fmKj49Xbm6u8vLyNG7cOGVmZmrEiBEKCjr8KSQkJEiSwsPDdfPNN2vlypW21Tjw0rMUGhUpSeqZOkAjp03SlteLbLt+Z0RPYYXZsAd9hhVmI3AE/HPiJGnkyJEqKmo9IHPnzlVmZqYkaf/+/Wpublb37t3l8Xj0j3/8Q6NGjbKtvpOvvUijZ9+ooNBgNWzbrc3572vdY6/adv3OiJ7CCrNhD/oMK8xG4DAixP1QQ0ODysvLlZeXJ0natm2bcnJy1NLSopaWFp1yyil6/PHHbavnjYm/t+1aJwp6CivMhj3oM6wwG4HDyBC3bt06tbS0eF/UMGjQIK1Zs8bPVQEAANjHyBCXkZEhj8fj7zIAAAD8JuBf2AAAAIC2CHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBjQlxTU5NmzpyphIQERUREaOzYsSouLpbD4VBBQYG/ywMAALBViL8L8IXH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6u8LCTzjtV6dOvVPTgfmre16D1Ty7Rhide83dZRqOnsMJs2IM+wwqz4X9GhLh58+Zp6dKlWrt2rdLS0iRJWVlZSkpKUkxMjBITE/1codQvc6RG/+kmrbh9rrYWbVBIRLi69u/l77KMRk9hhdmwB32GFWYjMBjxcOrs2bM1ZcoUb4CTpODgYCUlJXnvwh08eFC//vWvNWTIEA0fPlw33nijrTWm33ml1v3lFdWtKJWnxa1D+xq0u7zG1ho6G3oKK8yGPegzrDAbgSHg78RVVFSoqqpKc+bMabOvpqZGOTk5kqQ777xTXbp00aZNm+RwOLRt2zbbagyJCFevUYNV+94aTfjwrwrr3lVfl1SoeOYz2lez3bY6OhN6CivMhj3oM6wwG4Ej4O/E1dbWSpLi4uJabS8rK1N1dbXS09O1b98+Pf/887rvvvvkcDgkSX369PH5GlFRUQoPD/fpzenMavPxYT26yhEUpAGXZOjtq+5XfsbNavh6t5x//21HP22jOZ1ZPveTnkKynhmnM6vNscxGxzmd9BntczqZDTs4ne33OSoqqkPnC/gQFxsbK0mqrKz0bvN4PJo+fbrcbrfS09O1efNmxcbG6t5779Vpp52mrKwsrVixwrYaD+07KEn67Kml2vfl12ppaFLJQwsVOzyJ5wh0ED2FFWbDHvQZVpiNwBHwIS41NVXJycmaMWOGFi1apGXLlik7O1slJSWKjIxUSkqKWlpa9Pnnnys9PV2ffPKJZs+erYkTJ2rv3r0+XcPlcqmxsdGnt8LC5W0+/pDrwOFbyB7PMf7szVRYuNznftJTSNYzw2wcW/QZVpgNe1j12eVydeh8AR/iQkJClJ+fr/j4eOXm5iovL0/jxo1TZmamRowYoaCgICUmJiokJERXXXWVJCkjI0O9evXSpk2bbKuz/Pm3lHrDJYrsF6vg8FCl33mldny6Wftrd9hWQ2dDT2GF2bAHfYYVZiMwBPwLGyRp5MiRKioqarVt7ty5yszMlCT16tVLTqdTb7/9ti688EJt2rRJ27dvV3Jysm01lv6tQGHdu+nSt/4oOYK0vbhMhdf/ybbrd0b0FFaYDXvQZ1hhNgKDESHuhxoaGlReXq68vDzvtieffFLXXXedpk2bptDQUM2fP189evSwryiPR6sfeEGrH3jBvmt2dvQUVpgNe9BnWGE2AoKRIW7dunVqaWlp9ZcaBg0apOXLl/uvKAAAABsZGeIyMjLk4QmVAADgBBbwL2wAAABAW4Q4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAhDgAAAADEeIAAAAMRIgDAAAwECEOAADAQIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADAQIQ4AAMBAIf4uwFdNTU2677779Oyzz2rHjh0aPXq0Hn74YWVkZGjx4sXKzs72W22TK+e3ej84LFS7K2r12nnT/FSR+egprDAb9qDPsMJsBA4jQpzH49GkSZNUXFysWbNmKTk5WQsXLtSECRMkSenp6X6tb0Hy1a3ev/TdR1VVsNJP1XQO9BRWmA170GdYYTYChxEhbt68eVq6dKnWrl2rtLQ0SVJWVpaSkpIUExOjxMREP1f4nV6jktVj6EmqfKnQ36V0GvQUVpgNe9BnWGE2/MuIEDd79mxNmTLFG+AkKTg4WElJSQoNDdWWLVs0fvx4777du3dr79692rlzp+21DvnFWNW+t0YN23bZfu3Oip7CCrNhD/oMK8yGfwV8iKuoqFBVVZXmzJnTZl9NTY1ycnI0cOBArV271rs9Ly9Pzc3NPl8jKipKTU1NPh07OKSn7owe0+6+kIhwJWWfrQ9vn+vztTsjpzNLm5t9X9D0FE5n+zPDbBxbTid9RvucTmbDDk5n+30OCwuTy+U66vMFfIirra2VJMXFxbXaXlZWpurq6jbPh2tqatKCBQv05ptv2lbjtwb+fLSaG5r05Turbb92Z0VPYYXZsAd9hhVmw/8C/leMxMbGSpIqKyu92zwej6ZPny63290mxL322mvq37+/Tj31VJ+v4XK51NjY6NNbYeFyy/MMmXyeNr+8XJ4W99F9kp1MYeFyn/tJTyFZzwyzcWzRZ1hhNuxh1eeO3IWTDAhxqampSk5O1owZM7Ro0SItW7ZM2dnZKikpUWRkpFJSUlod//TTT+u6666zvc7owf0Ud1qKNr34ru3X7qzoKawwG/agz7DCbASGgH84NSQkRPn5+Zo6dapyc3OVkJCgvLw8RUdHa/PmzQoK+i6H1tbW6v3339f8+fOPcMbjY8hVY7Vt1Ua5qrbafu3Oip7CCrNhD/oMK8xGYAj4ECdJI0eOVFFRUattc+fOVWZmZqttzz33nC655BLvQ7B2Wn3/C7Zfs7Ojp7DCbNiDPsMKsxEYAv7h1PY0NDSovLy8zfPhnn32Wb88lAoAAGA3I+7E/dC6devU0tLSJsRt2rTJTxUBAADYy8gQl5GRIY/H4+8yAAAA/MbIh1MBAABOdIQ4AAAAAxHiAAAADESIAwAAMBAhDgAAwECEOAAAAAMR4gAAAAxEiAMAADCQw8NvzT0qTa4D2rXxC3+XEdB6piYqLCrS5+PpKaxmhtk4tugzrDAb9jja/x9/DCEOAADAQDycCgAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAGIsQBAAAYiBAHAABgIEIcAACAgQhxAAAABiLEAQAAGIgQBwAAYCBCHAAAgIEIcQAAAAYixAEAABiIEAcAAGAgQhwAAICBCHEAAAAG+v9cNHJlWUDfYgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -677,10 +677,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:59.117512Z", - "iopub.status.busy": "2024-11-23T19:54:59.117159Z", - "iopub.status.idle": "2024-11-23T19:54:59.298528Z", - "shell.execute_reply": "2024-11-23T19:54:59.297999Z" + "iopub.execute_input": "2024-12-05T03:21:33.890102Z", + "iopub.status.busy": "2024-12-05T03:21:33.889904Z", + "iopub.status.idle": "2024-12-05T03:21:33.958944Z", + "shell.execute_reply": "2024-12-05T03:21:33.958377Z" } }, "outputs": [ @@ -736,16 +736,16 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:59.300614Z", - "iopub.status.busy": "2024-11-23T19:54:59.300411Z", - "iopub.status.idle": "2024-11-23T19:54:59.762100Z", - "shell.execute_reply": "2024-11-23T19:54:59.761498Z" + "iopub.execute_input": "2024-12-05T03:21:33.961315Z", + "iopub.status.busy": "2024-12-05T03:21:33.960784Z", + "iopub.status.idle": "2024-12-05T03:21:34.407442Z", + "shell.execute_reply": "2024-12-05T03:21:34.406774Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZeklEQVR4nOzdeXxU1f3/8dfMJGQhCyRsCYQsBGJYQlJRZJNhkUKtICJ1QxFRrEotVlF/LBYVtGix1lZBC1iggqjFAn5RNhMRiEaFALJkAyJb2CFkISGZ+f0xMjAmhADJTGbyfj4eeZB77rlzP/dyc+fezz3nXIPVarUiIiIiIiIiIiLiAYyuDkBERERERERERKSmKNklIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hZJeIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hZJeIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hZJeIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaXqwOoy0rPFHFy50+uDsNjNI5vTYNA/8vWKzgH2flOCKgSsUEQ4O2adYuIiIiIiIjItVOyqwond/7E50MmuToMjzFo6VSa33jdZetl58PDG5wQUCVm94DEUNesW0RERERERESunboxioiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hAerFI2RMNFO4KxWDlzcGkxe+La8jfMQ0gjr3c3VoIiIiIiIiIuJEatklHiN8xDSSFheQMO8wDeO6kfPK7ZQXnnZ1WCIiIiIiIiLiREp2iccxevvQ5JbRWM4WcPZQtqvDEREREREREREnUrJLPI6lpJhjq2dj9A/CN7ytq8MRERERERERESdym2RXaWkpkydPJiIiAj8/P/r27UtaWhoGg4GlS5e6OjypAw4unEz6vY3Y9kgURXu2EDvpM0z+Qa4OyyUKzsGOU5BxGsosro7Gc50th12nbD9ny1wdjci1sVohJx9+PAknSlwdjci1yyuyHc/7C10diYi4i6Iy2HkKdp2G0nJXRyMi18ItBqi3Wq0MHz6ctLQ0pkyZQmxsLAsXLmTo0KEAJCUlOTUeg8nIDVNG0mbYzRiMRvb+3zd8O2E25SXnnBqHOAq/92VaDH3G1WG41MkSeGcX/N8+KP05ydW4AdwVDQ+2BS+3SW/XbWfL4N0MWJILhT8nuRp6wZDW8Oh1tt9F3IXVCv/7CeZlwf4iW5kRMIfB4/EQFeDS8ESu2ObjMHMXbDp+oax9IxgTBz2buywsEanDzpyznTeW/WR7mAkQ5A3DouDhduBjcml4InIV3OKW7L333mPFihWkp6fToUMHAMxmM9HR0YSEhNC6dWunxpPw5B206N6RpX2fpvxcGf3+/RzXT7qftMlznRqHyMVOlMCor+FQEVzcmOtkKczKsLX0ev1GMBlcFaFnOFsOj6XaWgtYLyovLINFu203V+/1AH+3OLuKwD92wvxsuPjUYAFSDsG3R2FuT2hTPxvJihtafxieTrMlcS+28xQ89S38ORF+69zLRhGp4wrOwcPrYfcZx2u7/HPwfhZsOwFv3QQNlPAScStu0c5j+vTpjBgxwp7oAjCZTERHR9tbdWVmZtKtWzfatWtHt27dyMrKqrV42t7Xj21vLaEo7wQlx/NJn/ERsXeZMRjdYneKh3p7Z8VE18XWHYYV+5wakkdamAPbfpHoOs+KrevofL0XQdzEjycvHK+/PKYtQHEZvJzu5KBErlJJObywCSzWit+F1p9/pm6BU6UuCE5E6qzZmRUTXRf7/jh8steZEYlITajz2ZmsrCz27NnDsGHDKszbt2+fPdn1+9//nieeeILMzEyeeOIJHn300VqJp0GQPwEtm3Ji+x572fFte2gQ6E9ARNNaWafI5Zw5B5/vv3SiC2x/7B/tqaKCXFa5FT7eW3UdK/DfvRorTdzDf/dWfSFgAX48BZmnnROPyLX48pCtJcalblgByqzw2U9OC0lE6riScvg0t+rzhgHbNfQvW4yKSN1W5zvaHDhwAIBmzZo5lO/atYvc3FySkpI4cuQImzZtYvXq1QDcc889jB07lqNHj9K06eUTUIGBgZSWVnzM18arMc8G9XQo8wrwA6D0dJG9rPS0beRT75/nSeX69DGTU3bysvX847rRZmrKFX123LQrq38pffqYKcpIrZHPcia/tjcS+8rXVdaxADtOlOHj09A5QXkgU1BT2s/Zf9l6J0uhUas2nDt++boirtT2jc34RrS/bL2bf/cIJ1PmOyEikasXNvI1Qgc9gcF06ctba/k5prz7CaPfetB5gYlIneUTHke7v2+tso4V25iWfsGNsZYUVVlXRGqW1WrFy8uLvLw8goKubFyNOt+yKzQ0FIDs7Av9gqxWK8899xwWi4WkpCT27dtHy5YtMZlsHalNJhPh4eHs21fzfbbKCooB8A7yt5c1CLYlD879PE/E6cqr9ypAq0Wvlbkmluq/clH7WtyBVecO8SC24/lyA1MadDyLiJ31Cq7t0LlDxOmsVivFxcVs27btipet8y274uPjiY2NZcKECXh7exMQEMDMmTPZvHkz/v7+xMXFsXnz5mtax5kzZyotP5y2i8+HTHIoK80vouDAUUI6RJGfcxCA0I7RlJ4pomDf0WuKw9MlJ6fQ/MbrLlsv/Tg8vMEJAVUiOTmFxFDXrPtalJbDwFW27huXYjRAj5Y+bCopcV5gHsZqhXtSIKeKcR0MQOsA+O7QXgx6GYDUcX/fDv/JuXz3jS3L5tLCTy9hkbot9Qj84Zuq6xhMXvx93Ah+O2OEc4ISkTqt3AqDV8Phs5euYwQ6NIbvC/KdFpeI2GzYsIGePXtevmIl6nzLLi8vLz755BPCwsIYOXIk48aNY9CgQfTu3ZuEhASMRiMREREcOHCA8nJbtr28vJyDBw8SERFRKzFlfbCWhD8Mxa95Y3xCg0h8+ndkL07BatEgPeIaDUwwPLrqOhYr3B3jnHg8lcEA97apOjFgBe6JRokucQvDoqo+Vo1A7xbQQr30xQ10bQoRDS99cWsEgr3hlnBnRiUidZnJAPdc5vrYwuXriEjdU+eTXQCdO3cmNTWVoqIiMjIyeOyxx9i8ebN9cPpmzZqRmJjIokWLAFi0aBFJSUnVGq/ramx9awl53+zk9pS/MWzjPziVtZ8fpv2nVtYlUl0Pt4NuPx/yF9+7nv8jf6QddGv2y6XkSt0WAUMjbb9ffAI9//utreCOKCcHJXKVWjWEl5Jsx29lFwRRATCps7OjErk6RgPMuBGCGlTszGgEfEzwt662f0VEzrunDfT/OQle2bXdPTFKkou4ozrfjbEyxcXFZGRkMG7cOHvZrFmzGDlyJC+99BKNGzdm/vzaG0jXWm4hbfJc0iarS4ezFexYz/73nwGDkcbdh9H89qft846tmcuxVbPxatSM6HELsJafI+cvd4DFgneTVkSPW4DB5LlXuN5G20X8sp9sb4zJ/rl3btemthZdPZq7Nj5PYTDAhAS4sQl8uAe2nLCVd2gMd0XDr1uqVZe4l4GtbK1hFu6GlbZ3whDmZ2v1dWcUBHi7MjqRKxMTCAt7287Py36CUz+/f+jOaLg3xpbgFRG5mMkA066Hns3go72w45StPCnUdg1tbqFrOxF35JbJrq1bt1JeXm5v2QVw3XXX8e2337owKnGGBs1jaPfKOozeDciY2Iemgx7D6OOPtbyM41/OI+4v6zn9wwqOrZ5N04GPEvPsx3gHN+XAB5M5s3UtQUkDXL0JtcrLaGtVdEcUdFlmK/tHN1dG5JkMBrilpe3n/H5+v5drYxK5Fh0a2y70zye7lt/i2nhErkUzP3iyve3n/Dn62U6ujUlE6jaTAX7b2vZz/rzxbg/XxiQi18YtujH+UteuXbFarXTp0sXVoYiTNQgNx+jdAACD0QQG2yFcln+MBk1bYzAa8YvsRGFGKkYff7yDm15UV49kRERERERERDydWya7RPLTV+MT1gZjA18AvIKaUnIoG0vpWQq2r6O88LS97rlThzmzdS2Bnfq6KlwRERERERERcRIlu8TtlB7bT94nr9Jq1Ax7mcFkovnQ8WS9OJDivVvwamQboMpaXsbetx6i9aPvePR4XSIiIiIiIiJi45Zjdkn9ZTlXwt6/P0jr38/E5BfgMK9xtzto3O0OTm74GGt5GQD75vyJUPP9+EVpsA4RERERERGR+kDJLnErJ75ayNl9O8id+SgALUdMoyRvN6F97uenWY9z9kAGvhHtiRj9JiV5uzm2ejbFuVs5unIWLYaOJ7jLrS7eAhERERERERGpTUp2iVtp0n8UTfqPcigLiLe9KqX1799xKPdpEcOvPi5yWmwiIiIiIiIi4noas0tERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DA1QL3VObBDM7uG6dYuIiIiIiIiI+1KyS+qcAG9IDHV1FCIiIiIiIiLijtSNUaSeSklJITo6GrPZzMiRIyvMnzZtGllZWZdcfv369dx00010796dGTNmVJi/d+9ewsLCMJvNPPDAA3zxxReYzWbMZjOhoaGkp6ezc+dOpk+fXqPbJSIiIiIiIvWbkl0i9djo0aNJSUkhODiY1NRUe7nFYmHr1q20bdv2ksvGxMSwbt06Nm7cyGeffUZRUVGFOrfeeispKSnMnz+fgQMHkpKSQnJyMjExMXTu3Jn4+Hg2bdqE1Wqtle0TERERERGR+kfJLhGhY8eOHDhwwD69ZcsW2rVrV+Uy4eHhNGjQAACTyYTRWPF0snLlSnr16sUHH3xgL/vuu+/o0qULBoMBsCXNtm/fXhObISIiIiIiIqJkl4hAamoqsbGx9umsrCyioqKqtezq1atp06YNvr6+DuVhYWFkZGSwatUq3n33XY4fPw7A0qVLGTJkiL1eZGQkmZmZ174RIiIiIiIiImiAepF6bc6cOaxZs4aePXuSmJhYaZ0dO3bw+OOPO5QNHDiQ559/nv379/Pqq6+ybNmyCsv5+PjYf+/Vqxc5OTmEhoaSnJzMn//85xrdDhEREREREZHzlOwSqcdGjx7NpEmTKpS3bduWJUuWANC+fXtSUlIq1CkpKeHBBx9k5syZBAQEVJhfUFBAQEAAVquV77//nrFjx7J7925atWpl7/4IkJubS48ePWpuo0RERERERKReUzdGEamgc+fOZGRkVFln4cKF7Nixg0cffRSz2cyBAwfIy8vj9ddfB2Djxo106dKF7t27M2DAAMLCwip0YQTIzs6mY8eOtbYtIiIiIiIiUr+oZZdIPWU2mzGbzZXOMxqNJCQkkJWVdck3Mo4aNYpRo0ZVKB8/fjwAAwYMYMCAAQ7znnrqKYfpnTt3cv3119sHqxcRERERERG5Vkp2iUilKuveWNPi4+OJj4+v9fWIiIiIiIhI/aFujCIiIiIiIiIi4jGU7BIREREREREREY+hboxS5xScg+x816w7NggCvF2zbhERERERERG5dkp2SZ2TnQ8Pb3DNumf3gMRQ16xbRERERERERK6dujGKiIiIiIiIiIjHULJLREREREREREQ8hpJdIiIiIiIiIiLiMZTsEhERERERERERj6EB6sUjZEw0U7grFYOXNwaTF74tryN8xDSCOvdzdWgiIiIiIiIi4kRq2SUeI3zENJIWF5Aw7zAN47qR88rtlBeednVYIiIiIiIiIuJESnaJxzF6+9DkltFYzhZw9lC2q8MRERERERERESdSsks8jqWkmGOrZ2P0D8I3vK2rwxERERERERERJ3KbZFdpaSmTJ08mIiICPz8/+vbtS1paGgaDgaVLl7o6PKkDDi6cTPq9jdj2SBRFe7YQO+kzTP5Brg7LJUrLL/xutbouDpGaYLVCXhHsL4SS8svXF6nrTpbATwVQcM7VkYiIuzhbDvsKIK9Y13bi/ixWOPjztd05i6ujEU/lFgPUW61Whg8fTlpaGlOmTCE2NpaFCxcydOhQAJKSkpwWS9Rt3Yh/+DeEdIii5MQZPrnxcaetW6oWfu/LtBj6jKvDcKmCczA3Cz7NvVA2dC3c0waGR4HR4LLQRK6Y1Qr/zYWFOfBToa2soRfc3hpGt4OgBq6NT+RKfXfUdo7+7pht2miAvmHwcDuIrZ/PZkTkMk6WwJxMWPYTFP38wCc6AEbEwuAIMOjaTtxIuRU+3G37OVRsKwv2hjui4KG24OcW2QlxF25xOL333nusWLGC9PR0OnToAIDZbCY6OpqQkBBat27ttFhKTheya+4X+DYNpsOY3zptvSKXc+YcPLwedp+Bix/4HSiC17fBjpPw5yQlvMQ9WK0wbQv87ye4+JAtLIOFu2HDEZjTE4KV8BI38cV+mLzJ8Xi2WOHLg7D+MMzsBp1CXBaeiNRBx8/CQ+ttLWAuvrbbWwAvp0N2PvypgxJe4h7KrTDhe1h7yPG78PQ5+HcWfHME3u0B/m6RoRB34BbdGKdPn86IESPsiS4Ak8lEdHS0vVXXM888Q3R0NAaDgR9//LHWYjm0bit7lm6gcP/RWluHyNV4Z2fFRBdcmP6//bD6oLOjErk6KXm2RBdUfkz/VABv7XB2VCJX52QJTNlsO3Z/2VvDgq3r+f/7wXYjICJy3owf4VDRpa/tFu2Gb3VLIm5i+U+2RBdUfkzvOg3/ynB2VOLJ6nyyKysriz179jBs2LAK8/bt22dPdt1+++2sW7eOyMhIZ4co4nKFZbB8X8UvjosZgcW7nRWRyLX5aE/VX1AW4PP9kF/qrIhErt7Sn6CsihO0Bds4PKlHnBaSiNRxx8/aEgNVDWdkNMDiPU4LSeSafLTHsUXXL1mxDcWi8VmlptT5RoIHDhwAoFmzZg7lu3btIjc3157s6tmz51WvIzAwkNLSindMbbwa82zQ1X+uOOrTx0xO2cnL1vOP60abqSlX9Nlx066s/qX06WOmKCO1Rj7LmfxibyD21fVV1rEAW46ew8cnwDlB1RMdPzoLgI+Pr4sj8Swd/nMSo49/lXVKLRB5Yz+KdlZ97Ev16XiuHa3Hf0TQ9b/FYDJdso7VUs494//CkcUvOTEyz6djWtxVQOKviZ64rMo6FiskZx3D5+aWToqqftB5oxaYvOj0YeFlqxWUQdO4JEr2qfm+2FgsV/8Ggzrfsis0NBSA7Oxse5nVauW5557DYrE4dXB6kTrLWt2TgPrIiHuwVveY1iupxB1YLFTr/KvjWUTO07WdeJIr+X7Td6HUkDrfsis+Pp7Y2FgmTJiAt7c3AQEBzJw5k82bN+Pv709cXNw1r+PMmTOVlh9O28XnQyZd8+eLTXJyCs1vvO6y9dKPw8MbnBBQJZKTU0gMdc26r8XZMvj1Klt3xksxAte3aMAPJSVOi6s+6PLzQ9cS7dca9cdvIPWo7an1pfiaYP8PX9Kwzn+TuQ8dz7VjYQ68sb3qOgajif++MYkbF+i6oybpmBZ3daoUBq6sugu0ERh4XVPSdXzXKJ03aseD62DHqaq75jZqAMez0vGu801yxFk2bNhw1b346vxh5OXlxSeffEJYWBgjR45k3LhxDBo0iN69e5OQkIDR6NxNMBiNmHy8MXh5gcGAyccbYwPdaYlr+XrB0Miq+8FbgLuinRWRyLW5K6bqRJcBGNwaJbrELfw2AnyMlz5HG4HWDeGGJs6MSkTqskYNYFCry1/b/U7XduIm7o6pOtEFMDwKJbqkxrjFodS5c2dSU1MpKioiIyODxx57jM2bN7ukC2ObO2/m/r2L6POvpwlo1ZT79y7ijvVvOT0OkV/6fRx0alyx/Pwf+T0x0LuFU0MSuWrdm8EDsbbfK/uiui4YxsY7NSSRqxbUAP7SBUyGisezEWjoDa/dAIaq7mpFpN75U0doE1gx4XX+PDImDn7lhj0SpH76dUu4vbXt94u/C88f3zc0gVFtnR2VeDK3fCZeXFxMRkYG48aNs5c9+eSTLFmyhLy8PPr3709oaCjbt1+mz8BVyP4oheyPUmr8c6V6CjPT2DfnKbBaCUzoS8sRU+3zMiaaASg7fZSgxFto9eDrZEw0YzB5YfIPJubZjzA28NyBJn294J3u8OFu+HgPHLaNrUl8I1ui69ctdSMl7uUP8dC+EXyQA9t+frdFU1/bU797YsDPLb/BpL7q1QLe7wXzs2H1QVuZr8nW6uv+NtCyoWvjE5G6J9AbZveERbvh471w4udedZ1D4L42YA5zaXgiV8RggImdITEEFu6GzHxbeZi/rYXiXdFq1SU1yy1vFbZu3Up5eblDy6633nqLt95SCytP5x+TxHXTbQN6ZU7uR3lRPib/IODCGxkPzP9/BHbqg8HLm7hXvsJg8uLQ4pfJ37yKRl0Huyp0p/A1wYNtbS1iCstsrQj83fKvXMR2UdQ/3PZzfvyM/7vF9qp1EXcU3whe7QKrfz6eUwaBly7sRaQKAd7wSByMbgc3LreV/Usvixc3ZTDAb1vbfs5f2y3tpwfyUjvc8ja4a9euWPWWhnrJ4OUNgLW8HO+QcIw+/hXqnPkxhbB7XrTVN9kOcavVgk9YG+cF6mJGg+1poIinUaJLPIkSXSJSXfr+E0+lRJfUFl1mids58dVCto+Nx9SwkT2Zdd7ZQ9k0aBqJ0bsBAMU/7WDn0zeQn76aBk0iXBGuiIiIiIiIiDiRkl3idkJ630uHt3dx7sRBivduc5h3+tulNOo6xD7t17o98TO+o3GP4Rz/cp6zQxURERERERERJ1OyS9yK5ZxtZE6D0YjJLxDDLwacP/3DCoKv/w0A1rJz9u6uJv/gCnVFRERERERExPO45ZhdUn+dTlvGkRVvg8VCQIebsZwt5HjyAkL73E9Z/jEMJm9MDYMBKDmaS+4/RoPBiFdAY6L/9B8XRy8iIiIiIiIitU3JLnErjXsMp3GP4Q5l/jGJAHgFNaHtlC/s5b5hscS98pUzwxMRERERERERF1M3RhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxNEC91DmxQTC7h+vWLVJTUlJSGDVqFJGRkURGRjJv3jyH+QsWLCAsLIz+/fvTq1cvNm/ezK5du2jVqpVDvU2bNvGHP/wBLy8v3n77bTp27MgjjzxCZmYm5eXlzJ07l3bt2jFq1Cjmzp2LwWBw5maKiIiIiIjUKUp2SZ0T4A2Joa6OQqRmjB49mkmTJvHkk0+SmppKt27d7POWL1/O4sWLAfj44495/vnnK/2Ml156iSVLlmAymXjiiSdYvHgx77zzDt7e3nz99dfMmjWLN954g65du5KcnEzfvn2dsm0iIiIiIiJ1kboxiog4QceOHTlw4IB9+sSJE/j6+tpbYbVo0eKSyxYWFtK8eXOaNGnC3r17AfD29gagoKCAjh07AtCnTx9WrFhRS1tQt6WkpBAdHY3ZbGbkyJEV5k+bNo2srKxLLp+WlkaPHj3o3r07kyZNcpj3xRdfYDabMZvNhIaGkp6eTnFxMb/5zW/o3bs3o0aNAmDnzp1Mnz69ZjdMRERERESumJJdIiJOkJqaSmxsrH06OzubyMjIai0bGBhIVlYWu3fvZvv27fbyfv36MXbsWG644QYAIiMjyczMrNnA3cjo0aNJSUkhODiY1NRUe7nFYmHr1q20bdv2kssmJSWxYcMGNm7cSGpqKvn5+fZ5AwcOJCUlheTkZGJiYujcuTOrVq2iZ8+efPXVV3h7e/Pjjz8SHx/Ppk2bsFqttbqdIiIiIiJSNSW7RERq0Zw5czCbzbRs2ZLExMSr+oxp06bx+OOPM3nyZHr16mUvX7t2LUuWLGHKlCk1E6yH+GUrui1bttCuXbsqlznfUq68vJzw8HD8/f0r1Pnuu+/o0qULBoOB6OhoCgsLAVvruuDgYABiYmIcEpIiIiIiIuJ8SnaJiNSi862Npk6d6lAeGxtLbm5utT4jPj6e1atX8+qrrxIXFwdASUkJAMHBwfj5+QGQm5tbZeul+uKXreiysrKIioq67HILFy4kPj6eRo0a4eVVcUjLpUuXMmTIEMD2//f1118THx+PwWAgIiICUOs6EREREZG6QMkuEREXCAkJoaioyD49YsQIVq1axT333MPatWsBePrppwF477336NOnD3/84x+ZOHEiAEOHDqVPnz489NBD9rLk5GQGDRrk5C2pO6rTim7Hjh328bfO//zlL38B4N5772XXrl0cPHiQbdu2VVj24sH/582bx1133cXOnTtp0qQJGzdurLXtEhERERGRK6O3MYqI1JLzyZRLGTx4MGvWrKF///785z//qTB/xowZAIwZM4YxY8Y4zKtsIPpvv/22Qr365PybL3+pbdu2LFmyBID27duTkpJSoU5JSQk+Pj4YjUYCAwPx9fV1mL97925atWpFgwYNANs4YCEhIYAtcXnq1CnA1rquR48eNbhVIiIiIiJypdSyS0TERR544AH69+9fY5/3/vvvYzTqtP5LnTt3JiMjo8o6y5Ytw2w2c/PNN9OqVSvatm1LXl4er7/+OuDYhRFsrcDef/99zGYz6enp3HLLLYDtxQPn344pIiIiIiKuoZZdIiLi9qpqRWc0GklISCArK+uSY5oNHz6c4cOHO5S1aNGC8ePHA/DUU085zGvcuDGrVq1yKNu5cyfXX389BoPhKrdCRERERERqgpJdIiLi8Srr3ljT4uPjiY+Pr/X1iIiIiIhI1dTfRUREREREREREPIaSXSIiIiIiIiIi4jHUjVHqnIJzkJ3vmnXHBkGAt2vWLSIiIiIiIiLXTskuqXOy8+HhDa5Z9+wekBjqmnWLiIiIiIiIyLVTN0YREREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hpJdIiIiIiIiIiLiMTRAvXiEjIlmCnelYvDyxmDywrfldYSPmEZQ536uDk1EREREREREnEgtu8RjhI+YRtLiAhLmHaZhXDdyXrmd8sLTrg5LRERERERERJxIyS7xOEZvH5rcMhrL2QLOHsp2dTgiIiIiIiIi4kRKdonHsZQUc2z1bIz+QfiGt3V1OCIiIiIiIiLiRG6T7CotLWXy5MlERETg5+dH3759SUtLw2AwsHTpUleHJ3XAwYWTSb+3EdseiaJozxZiJ32GyT/I1WGJB7NaK/9dao9F+1lEpE4ps8CpEjhb5upIRETkl4rK4FQplNfDa2i3GKDearUyfPhw0tLSmDJlCrGxsSxcuJChQ4cCkJSU5LRYjA28uOmVhwnr2Qnf0CCKDp9k59zP2TX3c6fFIJULv/dlWgx9xtVhSD1QboVP98KHey6UDfsS7oqBYZHg5TaPEeo2qxVWH4SFORfKbl0Nw6Lgvhjwc4tvMBERz3TsLMzPhqU/QWEZGIDuzeD+WOjSxNXRiYjUb1/lwX+yYfMJ23TjBrZr6BFtIMDbpaE5jVvcKrz33nusWLGC9PR0OnToAIDZbCY6OpqQkBBat27ttFiMJhPFR06x6u6XOZN7mJD2kdyyaBJnj55i7/JUp8UhIq5RboUJ38PaQ7YL+/P2FcLr2+DbI/DaDUp41YS3dsCCHMcmyEfPwqxd8NUhmNUDGrrFt5iIiGc5WASj19sSXucbC1iB1KOw8QhMToTBzrs8FxGRi8zNhHd2gfGim5WTpTAnE9YehH/1hEYNXBefs7jF7dj06dMZMWKEPdEFYDKZiI6OJikpiePHj/Ob3/yGuLg4OnXqxB133MHRo0drJZay4hI2v/YhZ/bmgdXKie172bfqe5rdGF8r6xORumXJXluiCy5c4F/8+7rDji2+5OpsOGxLdAFYKpm/6zT8c4dTQxIRkZ+9sAmOn3X8HgRbV3MrMDUdDhS6IDARkXpu6wlbogsqDv9hBXIL4K/bnB6WS9T5ZFdWVhZ79uxh2LBhFebt27ePpKQkDAYDzz77LBkZGWzbto02bdrw/PPPOyU+g5eJ5l3jObkz1ynrExHXsVph0W7HFl2/ZAAW79bYUtfqoz2OT6N+yQos32frOiMiIs6TnQ/pJyp/EHGeFViiS2MREaf7aE/VSR4LtmFCjp91VkSuU+c7gBw4cACAZs2aOZTv2rWL3NxckpKSCAkJwWw22+fddNNNzJw5s9rrCAwMpLS0tEJ5G6/GPBvUs8plb3plNOcKisn5+Ktqr6++6tPHTE7ZycvW84/rRpupKVf02XHTrqz+pfTpY6YoQ91RpXKmwFDazz1YZR0rcKgYAsOjKTtRdV25tA4LTmD0bVhlnbPl0Or6vhTt2uCkqDxfx49sVz4+Pr4ujsSzaT87j/Z1zQsZ8CgtH3mryjpW4J0V3/BMUm/nBFVP6Hh2Du1n59B+rh3XvbsX75CwKuuUWyGu7x2c+eH/nBTV1bNYqnq0UrU637IrNDQUgOzsbHuZ1Wrlueeew2KxVBic3mKxMHPmTAYPHlzrsd0wZSRNr49j9X3TsJxT8wIRj2eoqk1Xhcq1Fka9UN19fUX/JyIics2qed416HtQRMT5dA1tV+dbdsXHxxMbG8uECRPw9vYmICCAmTNnsnnzZvz9/YmLi3Oo/4c//IGAgADGjh1b7XWcOXOm0vLDabv4fMikSufd+NKDhPXsxBfDX6TkROXLi6Pk5BSa33jdZeulH4eHXdRQIzk5hcRQ16xb6j6LFYasgbziiuOUXKypL3x7cDcmz/8OqTWPbYQfjlXdTaaBEXLT1hJUDwbYdJYuy2z/lpSUuDYQD6f97Dza1zVv5ym4f13VdQzAwwO78qdntN9rko5n59B+dg7t59rx7HeQklf1kCpGYMea/9LMz2lhXbUNGzbQs2fVve0upc637PLy8uKTTz4hLCyMkSNHMm7cOAYNGkTv3r1JSEjAaLywCc888wxZWVksXrzYobym3fjyQ4T1SrAluo7n19p6RKRuMRrgrpiqE10Aw6NQousa3RVddaLLAAxqhRJdIiJOFt8I2jeqelxFsL3iXkREnOt30ZdPdJnDcItE17Wq8y27ADp37kxqquM4Sv/85z/p3fvCOAATJkzghx9+4P/+7//w8fGptVgatmpC+4d/Q/nZUu789m17+eFvd7Hmvmm1tl4RqRvujoZvj9her16ZLqEwoo1zY/JEvVvA0Ej4NNeW2Lr4O9sARAbAk+1dFJyISD33UhI8tB4Kzjk+mDBim366o+08LSIiztWlCdzfxvZW88quoZv7wbOdXBSck7lFsuuXiouLycjIYNy4cQBs376dV199lXbt2tG9e3cAoqOj+fTTT2t83YX7j/HvsDtr/HOl+srOnCDrz7dw9kAGSYsLHObteXMkJXk5GL19iBo3nwahLTl7KJt9747Fcq6E5oOfolHX2h/PTTyXlxHe6Aof5MDiPXD05zeZNPGBO6PhgTbQwOTaGD2BwQATEuC6YFi42/aaZIAAL1sSbFRbteoSEXGVqEBYcDPMyYLP98O5nzNeHRvDg23h5haujU9EpD57sj3EBsGCbMj+ecQlPxMMaQ0PtYOQ2msbVKe4ZbJr69atlJeX2wen79ChA1br5ToWiacw+QXS9sXV7H7tdxXmhd/zIj7No8jfspajK96m5f2vcOjDF4l+5kO8Aho5P1jxSN5G28X8/bFw5Ofxu5r52hJhUnMMBls3mDsi4chZ281UM18lE0VE6oKWDeGFRHimI9y8wlY2t5dLQxIREWzX0LdGwG9awQ3LbWWrB4JvPbuGdstkV9euXZXcqscMXt54BYZUOs+neZStjtEEGLCcK6X02D72vvkAGAxEPvEe3o2aOy9Y8WgmA4T5uzoKz2cw2Jpci4hI3ePvlncTIiKe7+IXLta3RBe4wQD1IlfKarFw6JNXaHLLaMryj1Gc+yNR4+bR/LZx5H3yqqvDExEREREREZFapGSXeJyDH0wmpNfd+LSIwdQwGL/ITngFNCagQy/OHshwdXgiIiIiIiIiUouU7BKPcnLjfykrOEGT/g8BYPJtiLGBL5ZzJRTn/kiDZlGuDVBEREREREREapWSXeKWMif3p2jPZjIn96dgx3rylrwOwP65f6J4zxYyJpo59NE0AJoPeZrMyf3YN/uPtLjjWVeGLSIiIiIiIiK1TENKiltq9/Iah+mA9j0B6DQ7t0LdoMT+BCX2d0pcIiIiIiIiIuJaatklIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIYGqJc6JzYIZvdw3bpFRKRyKSkpjBo1isjISCIjI5k3b57D/AULFhAWFkb//v155ZVX+Pzzz0lMTOQf//iHQ72jR48yZswYTp06xT333MOYMWNYuXIlL774Io0bN2bhwoUEBwfz7bffMmHCBCwWC9OnTyc2NpapU6fyxhtvOHOzReQaVPe8ERERwUMPPYTRaKRLly787W9/c6j3xhtvMGPGDB577DEmTZoEwN13301eXh5nzpwhIiKC//3vf4waNYq5c+diMBicto0iIlL3KNkldU6ANySGujoKERGpzOjRo5k0aRJPPvkkqampdOvWzT5v+fLlLF68mMOHD7Np0ya+/vprnnrqKb7//nu6dOlir/fSSy/x5ptvEhkZaS+bMWMGa9euZdWqVfzrX//i6aefZsaMGaxYsQIfHx97vVOnTlFQUEBAQIBzNlhErll1zhsnTpxg5cqVBAQEcP/995OZmUm7du3s9UaMGEFiYiIbN260l3344YcAvPvuu/bkVteuXUlOTqZv375O2joREamL1I1RRERErljHjh05cOCAffrEiRP4+vpiMBj4/vvv6d27NwB9+/YlLS3NYdnMzEyef/55BgwYQEZGBoWFhQQGBuLn52evn5OTQ3FxMYMHD+a+++6jsLAQsN3IpqSkOG07XSElJYXo6GjMZjMjR46sMH/atGlkZWVdcvm9e/cSFhaG2WzmgQceqDD/3Llz/O53v8NsNvP6669XmAbYuXMn06dPr7mNEqHq80ZoaKg9iW0ymSq0zGrWrBlGY+W3LsuXL+e2224DoE+fPqxYsaKWtkBERNyFkl0iIiJyxVJTU4mNjbVPZ2dn21tqnTp1iqAgW7/wwMBATp065bDs+vXrmTp1Km+//TYTJ050qB8QEMDp06c5cuQIOTk5LFu2jP79+/Ovf/0LgMjISDIzM52wha41evRoUlJSCA4OJjU11V5usVjYunUrbdu2rXL5W2+9lZSUFObPn19h3pIlS+jevTspKSn88MMPFaaPHj1KfHw8mzZtwmq11vi2Sf1V1XnjvO3bt3Ps2LHLHuPnFRQUcObMGcLCwoD6c44QEZGqKdklIiIi1TZnzhzMZjMtW7YkMTGx0jqNGjUiPz8fgDNnztCoUSOH+R06dKBNmza0bduW06dPO9QvKCggODiY4OBgunbtio+PDzfffDMZGRm1uVl11i9bwmzZssWha9elrFy5kl69evHBBx9UmLdnzx46deoEQHx8PDk5OQ7T3333HQAxMTFs3769JjZD6rnqnDcA8vPzGTt2LO+99161P3vlypUMHDiwBqIUERFPomSXiIiIVNv5FkdTp051KI+NjSU3NxeA66+/nnXr1gGQnJzMjTfe6FA3KiqKY8eOcfjwYfz9/WnYsCFnzpzh7Nmz9vrt2rXj0KFDWK1Wtm3bRlRUFAC5ubnVbvHhCX7ZEiYrK8u+Ly4lLCyMjIwMVq1axbvvvsvx48cd5sfFxfHVV19htVr5+uuviY6Odpg+ffo0oBYyUnOqc96wWq089NBDvPTSS4SHh1f7s5cuXcqQIUPs0/XtHCEiIpXTAPUiIiJyzUJCQigqKgKgRYsWJCQk0KtXLxISEujSpQt5eXksWLCA8ePHM2nSJO644w7Kysp46623APjTn/5Enz597G9j9Pb25r777uPmm2/G39+fRYsWAfDNN9/Yl/Fkc+bMYc2aNfTs2fOSLWF27NjB448/7lA2cOBAnn/+eft0r169yMnJITT0wptfBg8ezKpVq7jlllto2rQpzZo1Y926dQ7TIs5w8XkjJSWFL7/8kmPHjgG2l1a0bNnSft6YP38+f//73zl9+jT5+fm89tprlJeXk5mZSfv27e2fmZyczKBBg1yyPSIiUnco2SUiIiLVYjabMZvNl5w/ePBg1qxZQ//+/Zk8eTKTJ0+2z2vRogXjx48HICEhwd7y67yBAwdW6Ip0//33c//999unT5w4QaNGjQgMDKyBranbzr+97pfatm3LkiVLAGjfvn2lg/Wff1ul1Wrl+++/Z+zYsQ7zTSYTM2fOxGq1MnLkSLp160a/fv0cpsHWQqZHjx41v3FSr1zJeePEiRMV5p8/bzzwwAMVXrhgMpn45ptvHMq+/fZbxowZc+2Bi4iIW1M3RhEREakRDzzwAP3796+1zw8JCeFvf/tbrX2+O+jcufNlxy/buHEjXbp0oXv37gwYMICwsDDy8vLsb1r86aefMJvN9OvXjzvvvJNjx445TPv7+wO2wcM7duxY69sk9VtNnzfef//9S761UURE6g+17BIRERGpQ6pqCWM0GklISCArK+uS4xINGDCAAQMGOJRd3LKudevWFVqE/XJ6586dXH/99RgMhqvaBhERERFXUrJLRERExI1U1r2xpsXHxxMfH1/r6xERERGpDWrjKyIiIiIiIiIiHkPJLhERERERERER8Rjqxih1TsE5yM53zbpjgyDA2zXrFhEREREREZFrp2SX1DnZ+fDwBtese3YPSAx1zbpFRERERERE5NqpG6OIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGBqgXjxCxkQzhbtSMXh5YzB54dvyOsJHTCOocz9XhyYiIiIiIiIiTqSWXeIxwkdMI2lxAQnzDtMwrhs5r9xOeeFpV4clIiIiIiIiIk6kZJd4HKO3D01uGY3lbAFnD2W7OhwRERERERERcSIlu8TjWEqKObZ6Nkb/IHzD27o6HBERERERERFxIrdJdpWWljJ58mQiIiLw8/Ojb9++pKWlYTAYWLp0qavDkzrg4MLJpN/biG2PRFG0Zwuxkz7D5B/k6rBERERERERExIncYoB6q9XK8OHDSUtLY8qUKcTGxrJw4UKGDh0KQFJSklPjuenVh4m4pQveQf6cKygm97NUvn/5P1jOlTk1DnEUfu/LtBj6jKvDEBFxOz+ehIU5F6Z/uxqGRcHwKAjwdlVUnmfvGfhg94XpW76AIa3h7hho4uu6uESuRn4pfLQH/pt7oWzyJrgvBq5r5LKwREREADdJdr333nusWLGC9PR0OnToAIDZbCY6OpqQkBBat27t1Hh2vv8F37+0gLLiEnxCAjG/9zQJT95B+oyPnBqHiIjItVqxD6ZsBgwXyvKK4e2dtnn/6gGNfFwWnsf4/hg8+Q2UWS6UnSyFedmw/Of93DrAdfGJXIljZ+Hh9bC/yLF85X5YdQBeuR76hbsmNhEREXCTbozTp09nxIgR9kQXgMlkIjo62t6q6/bbb6dz584kJSXRq1cv0tPTay2e05n7KSsusU0YDFgtVgJjwmptfSIiIrVhfyFMSQcLYLFWnJ9bAFO3ODsqz1NYBk+n2RJdll/Ms2JLej37HVgr+T8QqYv+vBkOFlUsP38umfgDHCl2elgiIiJ2dT7ZlZWVxZ49exg2bFiFefv27bMnu+bNm8eWLVvYvHkzzzzzDA899FCtxtVp7O3cl72Ae36cS0iHSHa891mtrk9ERKSm/Xdv1QkWC/BVHuRVclMr1ff5PlvC65eJrvMsVsg+A1tOODUskauytwC+PXrp49kKlFvh09xLVBAREXGCOt+N8cCBAwA0a9bMoXzXrl3k5ubak13BwcH2eadPn8ZorH4eLzAwkNLS0grlbbwa82xQz0qX2fbP/7Htn/8juG1LYu7oRfGRk9VeX33Vp4+ZnLLL7yf/uG60mZpyRZ8dN+3K6l9Knz5mijJSa+SzRETqutjXv8MvKqHKOlag85CHOLXuA+cE5YFaP72IoBsGYzBd+rLLarFw2x+nceTjqU6MzPN1/OgsAD4+GhStpoTc8ggtx/yzyjoWq5U3l3/Dk53NzgmqntDx7Bzaz86h/ewc7r6fLZZLPVq5vDrfsis0NBSA7Oxse5nVauW5557DYrE4DE7/8MMP07p1ayZOnMi8efOcEt/prAOc2J5Lr3886ZT1iYiI1JSqki8O9YymWo7Ewxm9wGC4TCWr9rO4heqcNwwGg45nERFxqTrfsis+Pp7Y2FgmTJiAt7c3AQEBzJw5k82bN+Pv709cXJy97uzZswFYsGAB48ePZ8WKFdVax5kzZyotP5y2i8+HTLrs8kZvE0Eas+uykpNTaH7jdZetl34cHt7ghIAqkZycQmKoa9YtIuJsL26G/9t36e5I56376F+0C/6XU2LyRLMzYFZG1XUMRhPzpk+gz/wJzgmqnuiyzPZvSUmJawPxIFtPwEPrq65jBEbeciPPPa39XpN0PDuH9rNzaD87h7vv5w0bNtCzZ+W97S6nzrfs8vLy4pNPPiEsLIyRI0cybtw4Bg0aRO/evUlISKi0u+L9999PcnIyx48fr/F4vAP9if2dmQZB/gA0jo+k87hhHEzRCL4iIuJehkVVnegyAp0aQ7vgKirJZd0eCcYqGnYZgVAf6NXcaSGJXLVOjaFNYNU3ERZs5xcRERFXqfMtuwA6d+5MaqrjOEr//Oc/6d27NwAFBQWcPHmSiIgIAJYvX05ISAghISE1H4zVSsywm7lhykiMDbw4eyyf3BXfkv764ppfl4iISC3q2BhGxsK8bDBgG5/rPCPg7wWTOrsoOA/SxBee6wSvbrXt14sTjEZsibCpvwKvOv8IUsTWI/fFX8Ej66Gk3PF4Pn8e+X0cxAa5KEARERHcJNn1S8XFxWRkZDBu3DgACgsLGT58OIWFhZhMJkJCQli+fDmGy46PceXOFRSz6q6XavxzRUREXGFsPEQ0tCW89hXayowG6NsCHouHyADXxucphkXZWm/NzoRdpy+U39gUfn+dLfEo4i6uC4Z/94KZu2xvbD2fKI8MgFFt4dYIl4YnIiLinsmurVu3Ul5ebh+cvnnz5nzzzTcujkqcoTAzjX1zngKrlcCEvrQcceGtVYeX/52T6xaByYuoP/4br4AQcv5yB1gseDdpRfS4BRhMGixVRORiBoOtm92Q1rC3AIrLIcwPGvu4OjLPYw6z/ewvhNOl0NQXmvm5OiqRq9MmCP56Ixw/C4fP2lqCRjasxrsYREREnMAtk11du3bFarVevqJ4HP+YJK6bbhu9PnNyP8qL8jH529rJn1y3iLjXUinclcqxL2YRfu9LxDz7Md7BTTnwwWTObF1LUNIAV4YvIlJnGQwQHejqKOqHVg1tPyKeINTX9iMiIlKXuGWyS+ovg5c3ANbycrxDwjH6+NvneTeJwHquhPKi05gCQjD6+NvnG4wmPWoUERERERERqQc0FKq4nRNfLWT72HhMDRthMF3I1wa078n2J+L5adZjhPZ90F5+7tRhzmxdS2Cnvi6IVkREREREREScSckucTshve+lw9u7OHfiIMV7twFQXpTPqY3/peOsLNr8v0859OEUAKzlZex96yFaP/qOxusSERERERERqQeU7BK3YjlXAoDBaMTkF4ihwflBIgwYfRtiMHlhCgihvPAUAPvm/IlQ8/34RXVyTcAiIiIiIiIi4lQas0vcyum0ZRxZ8TZYLAR0uBnL2UKOJy8gtM/9NIzrxq7neoClnIhH3qIkbzfHVs+mOHcrR1fOosXQ8QR3udXVmyAiIiIiIiIitUjJLnErjXsMp3GP4Q5l/jGJAITf/QLhd7/gMO9XHxc5KzQRERERERERqQPUjVFERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoTG76piebz7BucKzfDtxjqtDqeC+7AV8fvsLnPhxT62uJzYIZveo1VVUuW4RERHxfCkpKYwaNYrIyEgiIyOZN2+ew/wFCxYQFhZG//79WbZsGW+++SYWi4X58+fTunVre70tW7bw+OOP06BBA+bPn09ERAQAeXl5REdHk5WVRatWrRg1ahRz587FYDA4dTtFRNxNdc/PcXFx3HXXXXh5edGmTZsK59hHHnmEzMxMysvLmTt3Lu3atePvf/87ixYtwsvLi3//+99ERUXx+9//ntmzZzt7M6WWKdlVi1p070Di078jNCEGgONbd5P+14/IS93u4shsEp/+HaGd27D2gVerVf+D2PtrOSKbAG9IDHXKqkRERKQeGz16NJMmTeLJJ58kNTWVbt262ectX76cxYsXU1hYyIcffsjatWsrTVS99NJLfPrppxw6dIjp06fzz3/+E4B//OMfdO3a1V6va9euJCcn07dv39rfMBERN1ed87PFYmHDhg0YDAZGjx7Ntm3bSEhIsNd755138Pb25uuvv2bWrFm88cYbLFq0iNTUVFJTU5k1axZ//etfadq0KTk5ObRp08YVmyq1RN0Ya0mr/tdzy8JJ7FvzAx/96lE++tWj7FvzA7csmkSrfr+qdBmDqeb+Owxephr7LBERERFP1rFjRw4cOGCfPnHiBL6+vhgMBlJTU7FYLNxyyy088cQTWCwWh2ULCwtp1qwZnTt3Jjs7G4BTp05x7NgxoqKi7PX69OnDihUrnLI9IiKeoqrzs8lksj+E8PHxITw83GFZb29vAAoKCujYsSMAERERlJSUcPr0aUJCQgAwm818/vnnztgccSIlu2pJ16kPkf1xCttnLuPcmSLOnSli+8xl5HzyFTdOfQiAO9PeIWHcMH6zbBojdn9Ak862TLJ3Q1/M7z3NfVkLuP2rvxFu7nzZ9bXo1oH7shfQbkR/7vxuJoPX/BWAsJsT+O3K6dybMY/Ba2fQeuANALQeeAOdnhxKyz6J3Je9gPuyF2BsUHVDvwcPfUJo5zYYTEbuzZxPozhbM/0W3Tvw4KFPiPytLdvu16wRD/z0Id4Bfle380REREScKDU1ldjYWPt0dnY2kZGRABw5coRjx46xatUqmjRpwrJlyxyWvTj5df73t99+m9///vcO9SIjI8nMzKytTRAR8UhVnZ8BvvzySxISEsjLyyM4OLjC8v369WPs2LHccIPtPrhnz57Ex8fz2GOP8eCDDwI6P3sqJbtqQVCbcAIjm7PnfxsqzNv96XqColoQFBMGQOxwMxuefocPYu/n+M9jYUXf3pPdn37NwutGsvUfn9J37rP4twi57Hq9/HxokhjL/24ex2eDniMwqgX95z3Pj//8H4vaj+KHaf+h98ynCOkQxU9ffMe2tz7lQHI6H8Tezwex92MpLavW9lnLLRz+didhPTsBENarE/l7DhHW05YtD+vZieNbd3OuoLhanyciIiLiCnPmzMFsNtOyZUsSExMrrRMcHEyvXr0wGo3cfPPNZGRkOMw3Go0OvxcXF7Njxw6SkpJqM3QREY9WnfMzQN++fdm6dSuRkZF88cUXFeavXbuWJUuWMGXKFPLz8/nvf/9LVlYWn376KVOmTKm9DRCXU7KrFviGBAJQfPhEhXnFR07a6oTaRkLPWLCa01kHsFos9mRT3jc7+OnzNKzlFnZ/so6TO3KJuq1bhc/6JYPRyA+vfEBZcQnlxaVED+nO4W93snd5KtZyCwe+3MxPq76nzfDe17yNeet/dEhupf/1I3vyq0WPjhza8OM1r0NERESkNo0ePZqUlBSmTp3qUB4bG0tubi4AN9xwAzt27ABg27ZtDl0TAfz9/Tl69Chbt24lNjaWvXv3kpOTw8CBA1m9ejVPPPEEALm5ubRt27b2N0pExANU5/xcWlpqLw8ODsbX19ehbklJiX2en58fBoOBhg0b4uXlRUhICKdOnQJ0fvZUGqC+Fpw9cQYAv+YhnM4+6DDPr1ljW53j+QAUHjhaYfnC/Y5lBfuOVqtlV1lxCSU/rxvAPyyUgl9+Vu5hAiKbV2MrqnZo/TYSxg2jQZA/QTHh7PnfBn71/D34h4UQ1rMjG5+edc3rEBEREXGFkJAQioqKAGjWrBm/+tWv6N27N02bNmXhwoXk5eWxYMECxo8fz+TJk7n99tvx9va2v6nxm2++AeDBBx+036glJyczaNAgl22TiIgnuPj8nJaWxoQJEzAajcTGxtKvXz+H8/PQoUMpLi7GYDDw9ttvExgYSLdu3ejRowfl5eW89dZbgO3tj6NHj3blZkktULKrFuTnHOTMT4eJHtydvF+0cIoe0p0zPx0mf/chAKwWa4XlG7Zq6jAdENGUo5su34fY+osBU4sOHadFtw6/+KxmFB06Xmn9K3Fi+16sFgvtH/ktR77bhdVi4dD6H2l3b3/8mzXmyHe7rvqzRURERGqb2WzGbDZfcv7gwYNZs2YN/fv357nnnuO5556zz2vRogXjx48HICkpiQ0bKg5dAfDvf//b/vu3337LmDFjaiR2ERFPdiXn53Xr1jnMu/j8XNlLQV544QVeeOEF+3RZWRlHjhxxGBdMPIO6MdaStBf+Texdfejw6G14B/jhHehP+0d/S+zv+pA2+f0ql21xU3siBnTBYDISc0cvGrePZO//fXPFMexZupHmXeOJvLUrBqORln0Sifh1F3I+sZ0Qio+dpmHLJlf9Fsi8jdtpP+ZWDq3fBsChDdtoP+ZWjvyQSXnJuav6TBEREZG64IEHHqB///419nnvv/++w/heIiJydWry/Ozl5cWcOXNq5LOkblHLrlqyb+V3rBnxCp3/dCeJ438HwPGtu1kz4hV7cuhS9vxvPW2G9+bmt/9I4aHjJD/8V4oOHr/iGM7szePLh17jV//vPnr87QkK9x9l3di3OPHzQPh7l6cSc3tP7v5xLgaDgQ8TRld7kHqAQ19vI+q33Ti03tZ67dD6H2kQ1FDjdYmIiIiIiIiIyyjZVYsOrd9WZWLrkxsfr1C2ftzbV7WuvNTtfBB7f4XyA8npHEhOr3SZ0lMFfDHsz9X6fMPPTyIvToZlzF9FxvxV9uniwyf5d9idVxC1iIiIiIiIiEjNUltqqZbGHSKxnCurdEB9EREREREREZG6Qi273MiQlL8R0KpJhfJ9q35g3eNvXvPn9/9gIs27Xleh/FzBWYzeJn54ZSGl+UXXvB4RERERERERkdqiZJcbWWp+qlY/f81902r180VEREREREREapuSXVLnFJyD7HzXrDs2CAK8XbNuEREREREREbl2SnZJnZOdDw9vcM26Z/eAxFDXrFtERERERERErp0GqBcREREREREREY+hZJeIiIiIiIiIiHgMJbtERERERERERMRjaMwu8QgZE80U7krF4OWNweSFb8vrCB8xjaDO/VwdmoiIiIiIiIg4kVp2iccIHzGNpMUFJMw7TMO4buS8cjvlhaddHZaIiIiIiIiIOJGSXeJxjN4+NLllNJazBZw9lO3qcERERERERETEiZTsEo9jKSnm2OrZGP2D8A1v6+pwRERERERERMSJ3CLZVVpayuTJk4mIiMDPz4++ffuSlpaGwWBg6dKlrg5P6oiDCyeTfm8jtj0SRdGeLcRO+gyTf5CrwxIRERERERERJ6rzA9RbrVaGDx9OWloaU6ZMITY2loULFzJ06FAAkpKSXBKXybcBQ76cgV+zRnwQe79LYhBH4fe+TIuhz7g6DJeyWGHtQfhoD2ScBpMBujWDu2Kgc4iro/MsqUds+3nTcdt05xD4XTT0aAYGg2tjE7lSe87A4j2w5iCcLYfWDeGOKPhtBPiaXB2dyJU5VQpL9sLSny6UvbMThkdDU1+XhSUiIsAPx2zXHOc9thGGR0GfMF1DS82q88mu9957jxUrVpCenk6HDh0AMJvNREdHExISQuvWrV0SV9L4uyjYfwy/Zo1csn6RXyqzwKRNtptVI2D5uXzNIVh1EJ7qAPe1cWWEnsFqhbd2wIIcx/38zVHYeATujoanO+rLWtzHV3nw3He2ZPn54zkrH/6yFZb9BO90gwBvl4YoUm37C2HMBjhy1rH8/Sz4ZC/M7A5xwS4JTUSk3puTCTN3gfGi6+QfjsF3x+DWVvDnJMd5IteizndjnD59OiNGjLAnugBMJhPR0dEVWnW9+OKLGAwGfvzxx1qNKTQhhpZ9Evnx7f/V6npErsS8bFuiCy7csILtBhbgb9ttXyZybVYesCW6oPL9/OEe+Gyf08MSuSp5RfD891BudTyefz6c2XnKlvQScQdWKzydBsfOVjIPKDgHf/wGzlkqzhcRkdq14bAt0QUXrpvhwvXH/+2HD3c7PSzxYHU62ZWVlcWePXsYNmxYhXn79u1zSHZt2rSJb775hsjIyFqNyWAy0v2vv+ebCbOxlJbV6rpEqqvMcvkvByP6AqkJC3dXfeI0AB/k2G66ROq6Jbm288elDlcrtpahlSUPROqaH45DzhnHxO3FLMCxEkg+5MyoREQEYNHuy7faWrjbMREmci3qdDfGAwcOANCsWTOH8l27dpGbm2tPdpWUlPDEE0+waNEizGbzFa8nMDCQ0tLSCuVtvBrzbFBPh7KOjw/h+LY9HP5mJy26daiwjFxanz5mcspOXraef1w32kxNuaLPjpt2ZfUvpU8fM0UZqTXyWc7kG5NE2+nfVFnHAqz96Sw+vdR/42oZGzaiw78PV1nHCmSfgYAWrSk7VXVdEVeLfT0N38gEDFX0u7VYocNvH+TU14ucGJnIlWtx3zSaDH4Kg/HSA81Zy8t4bMZC9r/9iBMjE6kZHT+yPXnw8dHgc7VJ+7kWGI10/LAQg6HqtjZ5xdAoJoGSgxlOCszzufvxbLFcfXPsOt2yKzQ0FIDs7Gx7mdVq5bnnnsNisdiTXS+88AIjRowgKiqqVuMJjGpB3AMD+P7lBbW6HpErZTBVb0Cd6taTyl3J/jN4NajFSERqhsHUoMpEl72ejmdxAwYvb7Be/qJYx7OIiHMZjF6XTXTZ63rpfkVqRp1u2RUfH09sbCwTJkzA29ubgIAAZs6cyebNm/H39ycuLo7U1FS+//57/vKXv1z1es6cOVNp+eG0XXw+ZJJ9uvmN1+HXJJg7NrwFgNHLhHdDP+7ePpfk0a9z+JudVx1DfZCcnELzG6+7bL304/DwBicEVInk5BQSQ12z7mtxqhQGroSyKpr9GoDYRiZ+KClxWlyeptxq288nKzYEdRDkDSf3ZeNdpx8niMDEH2D1wct3GVi76D06NH7POUGJXKVlP8FL6VXXMZi8mPjI3Yx67W6nxCRSk7oss/1bomu5WqX9XDtuXwMHii49dAKAjxEO7vyBhnU6S+Fe3P143rBhAz179rx8xUrU6VsxLy8vPvnkE8LCwhg5ciTjxo1j0KBB9O7dm4SEBIxGI1999RU7d+4kOjqaqKgo9u/fz69//WtWrVpV4/HsWb6R/3Yfy7L+z7Cs/zNseHoW54rOsqz/MxzdlFXj6xOprkYN4JaWVf9BW4HfRTsrIs9kMsCdUbbE4aUYgKGRKNElbuHOqKoTXUagXRC0b+SkgESuwYBw8DdVfY42GWBwhNNCEhGRnw2PrjrRZQRujUCJLqkxdf52rHPnzqSmplJUVERGRgaPPfYYmzdvtndhfP755zl48CB79+5l7969tGrVipUrVzJgwIAaj6W8uJSiQyfsPyXH88FqpejQCQ1WLy43Nh5CfS/9R90lFG5r7dSQPNKIWGgTWPnNlBGIDIAH2zo7KpGrkxgCwy7xXhcjtqTtpESoRk9HEZfz9YLJibbff3nInp/+U0fbd6WIiDjXnVGQ0PjS19DN/eDROCcHJR6tzie7fqm4uJiMjAyHNzG6Sl7qdj6Ivd/VYYgAti+I93tB3zDHN534m+C+GPj7TWptVBMaesG/esLtkdDgov3pbbQ9jZrTEwI11IC4CYMBnkuAJ9tDiI/jvOubwJxeatUl7uWWlvC3rhAb5Fge0RCmXQ93qYWziIhL+Jjg7W62nia+F71HxGSwnbvf76WHEVKz3K6R4NatWykvL79ksmvv3r3ODUicqmDHeva//wwYjDTuPozmtz9tn3dszVyOrZqNV6NmRI9bgLX8HDl/uQMsFrybtCJ63AIMpku/ockTtPCDv9wAx87CwJ978q78Nfi53V963RboDRM72xIEfT63lX0xAII15rG4IaMBHoiFe2Pgps9sZf/rB60aujYukavVszn0aAY5Z2zfh40aQFywWiiKiLianxeM7wSPx8POU7ahFGKDKj5wE6kJbncL3LVrV6zWy4ykKx6rQfMY2r2yDqN3AzIm9qHpoMcw+vhjLS/j+JfziPvLek7/sIJjq2fTdOCjxDz7Md7BTTnwwWTObF1LUFLNd2+ti5pc9FREia7ac3ELLiW6xN15XdRSUYkucXcGg+0G6pctvERExPUaekGXJq6OQjydOjWJW2kQGo7R25ZVMBhN8PMrbMvyj9GgaWsMRiN+kZ0ozEjF6OOPd3DTi+rqka6IiIiIiIiIp1OyS9xSfvpqfMLaYGxga8LkFdSUkkPZWErPUrB9HeWFp+11z506zJmtawns1NdV4YqIiIiIiIiIkyjZJW6n9Nh+8j55lVajZtjLDCYTzYeOJ+vFgRTv3YJXo+YAWMvL2PvWQ7R+9B2PH69LRERERERERNxwzC6p3yznStj79wdp/fuZmPwCHOY17nYHjbvdwckNH2MtLwNg35w/EWq+H7+oTq4IV0REREREREScTMkucSsnvlrI2X07yJ35KAAtR0yjJG83oX3u56dZj3P2QAa+Ee2JGP0mJXm7ObZ6NsW5Wzm6chYtho4nuMutLt4CEREREREREalNSnaJW2nSfxRN+o9yKAuI7wFA69+/41Du0yKGX31c5LTYRERERERERMT1NGaXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkNjdkmdExsEs3u4bt0iIiIiIu4kJSWFUaNGERkZSWRkJPPmzXOYv2DBAsLCwujfvz8A//vf/xg/fjxZWVkO9V544QW++uorSkpKeOONN+jevTtPPPEEr732Gg0bNnTa9tRV1d3PcXFx3HXXXXh5edGmTRvmzp2LwWCw13vkkUfIzMykvLycuXPn0q5dO/7+97+zaNEivLy8+Pe//01UVBS///3vmT17trM3U8QjqGWX1DkB3pAY6pqfAG9Xb72IiIiIyJUbPXo0KSkpBAcHk5qa6jBv+fLl9OvXzz793//+l4iIiAqfMXnyZL766is+/vhj/vrXvwJw2223sXjx4toN3o1UZz+Hh4ezYcMG1q1bh9FoZNu2bQ713nnnHb766iteffVVZs2aBcCiRYtITU3ltddeY9asWXh5edG0aVNycnKctm0inkTJLpF6KiUlhejoaMxmMyNHjqwwf9q0aRWe9l1s/fr13HTTTXTv3p0ZM2ZUmL93717CwsIwm8088MADfPHFF5jNZsxmM6GhoaSnp7Nz506mT59eo9slIiIiUp917NiRAwcO2KdPnDiBr6+vvWXRl19+Sc+ePTEaK94KenvbnvwWFBTQqVMnAG6++WZWrlzphMjdS1X72WQy2fe3j48P4eHhDstevJ87duwIQEREBCUlJZw+fZqQkBAAzGYzn3/+uTM2R8TjKNklUo9d6smUxWJh69attG3b9pLLxsTEsG7dOjZu3Mhnn31GUVFRhTq33norKSkpzJ8/n4EDB5KSkkJycjIxMTF07tyZ+Ph4Nm3ahNVqrZXtExEREalvUlNTiY2NtU9nZ2cTGRlpn547d26lDzrPu//++7nlllvo06cPAP7+/pw8ebL2AnZTl9vPX375JQkJCeTl5REcHFxh+X79+jF27FhuuOEGAHr27El8fDyPPfYYDz74IACRkZFkZmbW7oaIeCglu0SkwpOpLVu20K5duyqXCQ8Pp0GDBgCYTKZKnw6uXLmSXr168cEHH9jLvvvuO7p06WJ/2hUTE8P27dtrYjNERERE6q05c+ZgNptp2bIliYmJldb5/vvvad++Pb6+vpf8nAULFpCWlsYLL7xQS5G6t+rsZ4C+ffuydetWIiMj+eKLLyrMX7t2LUuWLGHKlCnk5+fz3//+l6ysLD799FOmTJlSexsgUk8o2SUiFZ5MZWVlERUVVa1lV69eTZs2bSpcNIWFhZGRkcGqVat49913OX78OABLly5lyJAh9np6YiUiIiJy7c632J86dapDeWxsLLm5uQD8+OOPrF69moEDB5Kens60adMc6paUlAAQEBBgH5C+qKiIRo0a1f4GuInq7OfS0lJ7eXBwcIXr5PP7OTg4GD8/PwwGAw0bNsTLy4uQkBBOnToFQG5ubpU9LUTk0vQ2RpF6bM6cOaxZs4aePXte8snUjh07ePzxxx3KBg4cyPPPP8/+/ft59dVXWbZsWYXlfHx87L/36tWLnJwcQkNDSU5O5s9//nONboeIiIiIVC4kJMQ+3MSDDz5o7yLXv39/Jk6cCMDTTz/NjBkzeOyxx9i9ezfl5eW8+uqrAKxbt44BAwa4JHZ3cvF+TktLY8KECRiNRmJjY+nXrx95eXksWLCA8ePHM3ToUIqLizEYDLz99tsEBgbSrVs3evToQXl5OW+99RZgG2N39OjRrtwsEbelZJdIPTZ69GgmTZpUobxt27YsWbIEgPbt25OSklKhTklJCQ8++CAzZ84kICCgwvyCggICAgKwWq18//33jB07lt27d9OqVSt790ewPbHq0aNHzW2UiIiISD1z/iVAlzJ48GDWrFlD//797WVr1qyx/37+ZUNz586tsOzy5cv1QqGfXcl+XrduncO8Fi1aMH78eABWrFhRYdkXXnjBoetoWVkZR44cceh9ISLVp26MIlJB586dycjIqLLOwoUL2bFjB48++ihms5kDBw6Ql5fH66+/DsDGjRvp0qUL3bt3Z8CAAYSFhVXowgi2wTzPv4VGRERERGreAw884JDouhJvv/12pQ82paJr2c+/5OXlxZw5c2rks0TqI7XsEqmnqnoyZTQaSUhIICsr65LjBIwaNYpRo0ZVKD//xGrAgAEVmrw/9dRTDtM7d+7k+uuvtw9WLyIiIiIiInKtlOwSkUpV1r2xpsXHxxMfH1/r6xEREREREZH6Q90YRURERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8Rgas0vqnIJzkJ3vmnXHBkGAt2vWLSIiIiIiIiLXTskuqXOy8+HhDa5Z9+wekBjqmnWLiIiIiIiIyLVTN0YREREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hsbsEo+QMdFM4a5UDF7eGExe+La8jvAR0wjq3M/VoYmIiIiIiIiIE6lll3iM8BHTSFpcQMK8wzSM60bOK7dTXnja1WGJiIiIiIiIiBMp2SUex+jtQ5NbRmM5W8DZQ9muDkdEREREREREnEjJLvE4lpJijq2ejdE/CN/wtq4OR0REREREREScyG2SXaWlpUyePJmIiAj8/Pzo27cvaWlpGAwGli5d6urwpA44uHAy6fc2YtsjURTt2ULspM8w+Qe5OiwRERERERERcSK3GKDearUyfPhw0tLSmDJlCrGxsSxcuJChQ4cCkJSU5LRYer75BNFDe2I5V2YvS3lkBgeS050Wg1Qu/N6XaTH0GVeH4VJWK3x7FD7Ze6HsL1vhziiIVd5P3NCeM/DxXlh/GMosEBdsO567NwODwdXRiVyZUyXwv5/gi/1wqhRa+MOQ1jCoJfi6xRWZiDibxWr7Dvzv3gtlM36E4VHQOsBVUXmmTcfh4z0Xpl9Kh99FwXWNXBSQiFwTt7i0eu+991ixYgXp6el06NABALPZTHR0NCEhIbRu3dqp8WT+Zw3fTpzj1HWKXI7FCq9uhU9zwXhREmDJXtsF0qRE202ViLtYsQ+mpANWsPxcduwsfH0Ybm0FLySBSQkvcRPZ+fDYRjhZeqHseAn8eBIW7YZZ3SHEx3XxiUjdU2aBSZtgzUHH7jgf7rYlZaZdD/3CXRaex7Ba4a0dsCDHcT9/9hMs+wn+1AHubeOy8ETkKrlFN8bp06czYsQIe6ILwGQyER0dbW/VFRUVxXXXXUdiYiKJiYmsXLnSVeGKuMSi3bZEF9gSX+dZACswNR22nXBBYCJXYddpmLLZdixbLio///v/7YcFev+EuInScvjDN3C61LH8/Kl67xn4f987PSwRqeP+lWlLdIHjd6EVKLfChB9sLaDl2izfZ0t0QeXXHG9sh2+OODsqEblWdT7ZlZWVxZ49exg2bFiFefv27XPowvjJJ5+Qnp5Oeno6v/71r2stppg7enHPjve5fd2bJPzxDgymOr8bxcOVW+E/OVXXMQAf7qm6jkhdsXj35et8kGN76i1S1609BEfPOt5EXcwC/HAcMk87MyoRqcvOllf9XWjF1iLpI13bXROr1fbwrKqG4kZs1xwi4l7qfDfGAwcOANCsWTOH8l27dpGbm1sj43UFBgZSWlpaobyNV2OeDerpULZjzgq+f3kBZ0+cITQhht7vjMPk04DNr314zXF4uj59zOSUnbxsPf+4brSZmnJFnx037crqX0qfPmaKMlJr5LOcyTcqgbavf1dlHQvw+e4i/tq9sXOCqic6fnQWAB8fXxdH4lnav5+HKaDqY/VkKTRJ6EVxVpqTovJ8Op5rR8S4BQTfdAcG06Uvu6xWC31//yJHl/zFiZGJSF3VsKOZmD9X3VPFAizcdJAXboh2TlAeyLtpJNe9k1llHQuw8YgF34ZBWMvOOScwkRri7td2FsvVP9mu802SQkNDAcjOvtBfxWq18txzz2GxWBySXffddx8JCQk8/vjjnDp1qlbiObFtD2eP54PVyvEtOWz+62Kih/SolXWJVJexgV+16hm8NSCMuAdDg+p9IVf32BdxJWMDv8u/UcFixeij41lEbKp9bafvwWtS7f1sMGLw0nW0iDup8y274uPjiY2NZcKECXh7exMQEMDMmTPZvHkz/v7+xMXFAfD1118TERFBSUkJ48aNY+zYsfznP/+p1jrOnKm8s/vhtF18PmRS1QtbrFW3exW75OQUmt943WXrpR+Hhzc4IaBKJCenkBjqmnVfixMlMHCV41hdv2QAooJM/FBS4rS46oMuy2z/lmi/1qh7UyAr/8KYRpUxADs3rKK5rvNrjI7n2vHWDls3mSqPZ5OJWS8/z2/+/bzT4hKRumtfAQz9suo6RuD6iMak65x91YrKoP8XUHqZxiOhPlB06rjeBC1ux92v7TZs2EDPnj0vX7ESdb5ll5eXF5988glhYWGMHDmScePGMWjQIHr37k1CQgJGo20TIiIiAPDx8eHxxx9nw4bayZZEDe6Od6A/AI3jI+n89HD2fuZ+3d7Es4T4QJ8WVf9BW4E7o5wUkMg1ujOq6sSAEejZHCW6xC0MbX35xG2AF/TVW9VE5GcRAdAltOprOwtwp3owXhN/L7g1our9bACGR12+ga6I1C11vmUXQOfOnUlNdUwo/fOf/6R3794AFBYWUlZWRnBwMFarlQ8//JDExMRaieW6B39Nt+ljMHqbKD58ipxPvmLrPz6tlXWJXIk/tIfvjkFBWcUWXgagfSO4vbUrIhO5cr+NsL1xceuJikkCowH8TfDH9i4JTeSKRQTAqLbwflbFeQZsx/jzCeBrcnZkIlKXPd0RHloPJeWVv+DixiZwi5Lk1+yRdrD+MByv5EUiRiAqAO6OcUVkInIt3CLZ9UvFxcVkZGQwbtw4AA4fPsywYcMoLy+nvLyc9u3b884779TKur+448+18rki16pVQ3i/F/xlqy3pdZ6XAQa1gmc6ga9b/sVLfdTABP+8yfa678/2wbmLrj4TQ2yJgahA18UncqUevw4aN7AlvE5e9E6clv7wZHu16hKRitoGw5yeMH0bbDlxobyBEYa0hj92AK8630+n7mvmB+/3hFe3wsYjFx6yGQ22ZOKznSDA26UhishVcMtb361bt1JeXm4fnD4mJobNmze7OCpxhsLMNPbNeQqsVgIT+tJyxFT7vIyJZgDKTh8lKPEWWj34OhkTzRhMXpj8g4l59iOM1Rz02l1FBsDM7vBTAWTm2xJdiSHQSONpihvy84KJnWFsPPT7wlb2SV/bE1YRd2MwwL1t4HfRcNNntrLZPaBziLrGiMiltfs54bX7jO3H2wjXhyr5UtNa+MPfb4KDRbDzlK3VbUIINPHsWwcRj+aWya6uXbtitVY1+oV4Kv+YJK6bbhuPLXNyP8qL8jH5BwEQNy0FgAPz/x+Bnfpg8PIm7pWvMJi8OLT4ZfI3r6JR18GuCt2pWgfYfkQ8QXCDC78r0SXu7uJWGO74QhQRcY2YQNuP1K5wf9uPiLg/NXwVt2Lwsj3GspaX4x0SjtGn4rfRmR9TCOhottU32fK5VqsFn7A2TotTRERERERERFxDyS5xOye+Wsj2sfGYGjayJ7POO3somwZNIzF625qCFP+0g51P30B++moaNIlwRbgiIiIiIiIi4kRKdonbCel9Lx3e3sW5Ewcp3rvNYd7pb5fSqOsQ+7Rf6/bEz/iOxj2Gc/zLec4OVUREREREREScTMkucSuWcyUAGIxGTH6BGH4x4PzpH1YQfP1vALCWnbOP7WbyD65QV0REREREREQ8j1sOUC/11+m0ZRxZ8TZYLAR0uBnL2UKOJy8gtM/9lOUfw2DyxtQwGICSo7nk/mM0GIx4BTQm+k//cXH0IiIiIiIiIlLblOwSt9K4x3Aa9xjuUOYfkwiAV1AT2k75wl7uGxZL3CtfOTM8EREREREREXExdWMUERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEY2jMLqlzYoNgdg/XrVukpqSkpDBq1CgiIyOJjIxk3rx5DvMXLFhAWFgY/fv3p1evXmzevJldu3bRqlUrh3qbNm3iD3/4A15eXrz99tt07NiRRx55hMzMTMrLy5k7dy7t2rVj1KhRzJ07F4PB4MzNFBERERERN1Pde5W4uDjuuusuvLy8aNOmTYX7jaNHjzJmzBhOnTrFPffcw5gxY+rEfYmSXVLnBHhDYqiroxCpGaNHj2bSpEk8+eSTpKam0q1bN/u85cuXs3jxYgA+/vhjnn/++Uo/46WXXmLJkiWYTCaeeOIJFi9ezDvvvIO3tzdff/01s2bN4o033qBr164kJyfTt29fp2ybiIiIiIi4r+rcq1gsFjZs2IDBYGD06NFs27aNhIQEe72XXnqJN998k8jISHtZXbgvUTdGEREn6NixIwcOHLBPnzhxAl9fX/vTjhYtWlxy2cLCQpo3b06TJk3Yu3cvAN7e3gAUFBTQsWNHAPr06cOKFStqaQvqtpSUFKKjozGbzYwcObLC/GnTppGVlXXJ5dPS0ujRowfdu3dn0qRJDvO++OILzGYzZrOZ0NBQ0tPTKS4u5je/+Q29e/dm1KhRAOzcuZPp06fX7IaJiIiIiNSyqu5VTCaT/Z7Fx8eH8PBwh2UzMzN5/vnnGTBgABkZGUDduC9RsktExAlSU1OJjY21T2dnZzs8/ahKYGAgWVlZ7N69m+3bt9vL+/Xrx9ixY7nhhhsAiIyMJDMzs2YDdyOjR48mJSWF4OBgUlNT7eUWi4WtW7fStm3bSy6blJTEhg0b2LhxI6mpqeTn59vnDRw4kJSUFJKTk4mJiaFz586sWrWKnj178tVXX+Ht7c2PP/5IfHw8mzZtwmq11up2ioiIiIjUpMvdq3z55ZckJCSQl5dHcHCww7Lr169n6tSpvP3220ycOBGoG/clSnaJiNSiOXPmYDabadmyJYmJiVf1GdOmTePxxx9n8uTJ9OrVy16+du1alixZwpQpU2omWA/xyydTW7ZsoV27dlUuc76lXHl5OeHh4fj7+1eo891339GlSxcMBgPR0dEUFhYCttZ157/0Y2JiHBKSIiIiIiJ1VXXvVfr27cvWrVuJjIzkiy++cJjXoUMH2rRpQ9u2bTl9+nQtR1x9SnaJiNSi862Npk6d6lAeGxtLbm5utT4jPj6e1atX8+qrrxIXFwdASUkJAMHBwfj5+QGQm5tbZeul+uKXT6aysrKIioq67HILFy4kPj6eRo0a4eVVcUjLpUuXMmTIEMD2//f1118THx+PwWAgIiICqBtPsUREREREqqM69yqlpaX28uDgYHx9fR3qRkVFcezYMQ4fPmx/YFwX7kuU7BIRcYGQkBCKiors0yNGjGDVqlXcc889rF27FoCnn34agPfee48+ffrwxz/+0d40eOjQofTp04eHHnrIXpacnMygQYOcvCV1R3WeTO3YscM+/tb5n7/85S8A3HvvvezatYuDBw+ybdu2CstePMjmvHnzuOuuu9i5cydNmjRh48aNtbZdIiIiIiLOdPG9SlpaGjfffDNms5n9+/fTr18/8vLyeP311wGYNGkSd9xxB0OHDmXy5MlA3bgv0dsYRURqyflkyqUMHjyYNWvW0L9/f/7zn/9UmD9jxgwAxowZw5gxYxzmVTbg47fffluhXn1y/m0yv9S2bVuWLFkCQPv27UlJSalQp6SkBB8fH4xGI4GBgRWeWO3evZtWrVrRoEEDwDYOWEhICGC7GDh16hRge4rVo0ePGtwqEREREZGadyX3KuvWrXOY16JFC8aPHw9AQkJChfl14b5ELbtERFzkgQceoH///jX2ee+//z5Go07rv9S5c2f7m2EuZdmyZZjNZm6++WZatWpF27ZtHZ5YXdyFEWytwN5//33MZjPp6enccsstgG0wz/NvxxQRERERcVfXcq9SF+5L1LJLRETcXlVPpoxGIwkJCWRlZV1y7IDhw4czfPhwh7KLn1g99dRTDvMaN27MqlWrHMp27tzJ9ddfb381s4iIiIiIuIaSXSIi4vEq695Y0+Lj44mPj6/19YiIiIiISNXU30VERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoTG7pM4pOAfZ+a5Zd2wQBHi7Zt0iIiIiIiIicu2U7JI6JzsfHt7gmnXP7gGJoa5Zt4iIiIiIiIhcO3VjFBERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DA9SLR8iYaKZwVyoGL28MJi98W15H+IhpBHXu5+rQRERERERERMSJ1LJLPEb4iGkkLS4gYd5hGsZ1I+eV2ykvPO3qsERERERERETEiZTsEo9j9PahyS2jsZwt4OyhbFeHIyIiIiIiIiJO5DbJrtLSUiZPnkxERAR+fn707duXtLQ0DAYDS5cudXV4UodYSoo5tno2Rv8gfMPbujocEREREREREXEitxizy2q1Mnz4cNLS0pgyZQqxsbEsXLiQoUOHApCUlOT0mFr1+xVJz91NUJtwygqK+XHWcrbPXOb0OOSCgwsnk/fxVAxePvhGtCd20meY/INcHZZ4qL0F8N+9F6Zf2wZ3RkFMoKsi8kyHi+HT3AvTUzbDsEjo2BgMBtfFJSJ11zkLfHkIlv8ER89Cowbwmwj4dTj4usWVr4iIyLU5dhaW/nRheuIPMCwKkkLqzzW0W3zlv/fee6xYsYL09HQ6dOgAgNlsJjo6mpCQEFq3bu3UeMJ7d6bb64+y/sl/kpe6HS8/Hxq2bOLUGKSi8HtfpsXQZ1wdhtQDH++xJbcu9ske+GgP/KkD3NvGNXF5mq/y4PnvocxyoWzFPvhsH9wTY9vX9eXLWkSq51QJPJEKGfm27gsWbP/+cBzez4RZ3aGFv4uDFBERqUVpR+FPaXC2/ELZ6oOw8gDcFgGTEsFUD66h3aIb4/Tp0xkxYoQ90QVgMpmIjo62t+o6e/Ysjz32GG3btqVTp06MGTOm1uJJevZutr75Xw6t34a13MK5gmJOZeyrtfWJSN3xzRGYvg2s2H7OO5+PeWM7rMtzQWAeJicfnvvOluiqbD8v2g2L97giMhGpy577HrLybb+fP1+c//dgETz5DVislS0pIiLi/g4VwVPfQkm5Y/n5777l+2BupvPjcoU6n+zKyspiz549DBs2rMK8ffv22ZNdzz77LL6+vmRmZrJt2zZefvnlWonHy8+HJolt8GvaiKFf/527ts6m77+fIyCiWa2sT0TqlvnZVZ84jT/XkWuzeI/tS7mqe9J52VCum1YR+dnOU7YWXJZLzLcAuwsg9YgTgxIREXGiT/ZCqaXqa+iFuysmwzxRne/GeODAAQCaNXNMJu3atYvc3FySkpIoKChg/vz57N+/H8PPfVqaN29e7XUEBgZSWlpaobyNV2OeDerpUNagUUMMRiORt3Zl9T1TKT5+mhtfGkWfOeNZPmD8lW5evdKnj5mcspOXrecf1402U1NqO5xK9eljpigj1SXrlrrP6BtAhwXHq6xjAdJPgH+TcMrPVF1XLi1+7iG8AkOqrHP0LIR26E5xzg9OisrzdfzoLAA+Pr4ujsSzaT/XjuZ3T6Hp0GcxGE2XrGMtL+P+afM48O7jToxMRETEOdr9cyc+zWOqrHPmHITf9BsKtq51UlRXz2K51COsy6vzLbtCQ0MByM6+0FTCarXy3HPPYbFYSEpKIicnh9DQUF588UW6dOmC2Wxm/fr1tRLPuQLbBeqO2Sso2H+U8uJSNr26kNBO0Rq3y4XipqVovC6pdUbfhtWv61P9ulKR0ad6g+oYfQNqORIRcRdG3wCwXv6iWOcNERHxVKZqfsddyX2Nu6rzLbvi4+OJjY1lwoQJeHt7ExAQwMyZM9m8eTP+/v7ExcWRnp7O7t27SUpK4vXXX+fbb7/ltttuIzs7m6Cgy7+N78yZM5WWH07bxedDJjmUnTtTRMG+I2BV35krlZycQvMbr7tsvfTj8PAGJwRUieTkFBJDXbNuqfvKLNDvCygsq7qerwmO/ZSF76UbF8hlDP/S9sbLy51pt69fRZgGm64xXX5+qXBJSYlrA/Fw2s+1Y/EeeH1b1XWMJi/+NOouHn/tLucEJSIi4kSjv4ZtJy/dpf+8jZ99TNtgp4R0TTZs2EDPnj0vX7ESdb5ll5eXF5988glhYWGMHDmScePGMWjQIHr37k1CQgJGo5HWrVvj5eXFPffcA0DXrl1p0qQJmZm1M/JaxvxVxD98K/7hoZh8vEl69m6Obcmh8MCxWlmfiNQNXkYY3BqqenmJEfhtBEp0XaNhUVUnuozATU1RoktE7Aa1hAbVuLId4tyXeIuIiDjNHVFVJ7qMQPtGuEWi61rV+WQXQOfOnUlNTaWoqIiMjAwee+wxNm/ebB+cvkmTJvTp04fVq1cDkJmZyZEjR4iNja2VeLa9vZQDX25m8KrXGL7pPfybh5A8+vVaWZeI1C0jY6GJb+UnTyPQyAdGtXV2VJ5nSGtoF1R5YtEINDDBH9o7OyoRqcuCGsAT8VXXuT8WWnp+zw0REamnBrSExJDKr6ENgNEAf+rg7Khcwy2SXb9UXFxMRkaGPdkFMGvWLF555RU6derE3XffzYIFC2jUqFHtBGC18sO0//Bhx9F82GEUX46arlZdIvVEE1+Y2xN+VUl3184htnnN/Zwfl6fx84JZ3aFPWMUv65hAeLc7xNWDJ1IicmXuawPPd4Igb8dyfxM8fh384TLJMBEREXfmbYS3boJBrWyJrYu1DoB3ulNvhu2p82N2VWbr1q2Ul5c7JLtiYmJISUlxXVDiNGVnTpD151s4eyCDpMUFDvP2vDmSkrwcjN4+RI2bT4PQlpw9lM2+d8diOVdC88FP0ajrYBdFLp4izB9m9YA9Z2DLCVtZp8bQ5vJDBMoVCGoAr90AecXw3VE4Z4F2wdChERiq6ksqIvXandG2Lucbj8Az39nKVv0afN3yqldEROTK+HvBS7+CJ9vDN0egxAJtAm0P5uvTNbRbfu137doVqwaIr7dMfoG0fXE1u1/7XYV54fe8iE/zKPK3rOXoirdpef8rHPrwRaKf+RCvgEbOD1Y8WnSg7UdqVws/uE1j7IjIFWhgAnPYhWklukREpL5p4gu/rcfX0G7ZjVHqN4OXN16BIZXO82keZatjNAEGLOdKKT22j71vPkD2tCGcO3XYeYGKiIiIiIiIiNMp2SUex2qxcOiTV2hyy2jK8o9RnPsjUePm0fy2ceR98qqrwxMRERERERGRWqRkl3icgx9MJqTX3fi0iMHUMBi/yE54BTQmoEMvzh7IcHV4IiIiIiIiIlKLlOwSj3Jy438pKzhBk/4PAWDybYixgS+WcyUU5/5Ig2ZRrg1QRERERERERGqVkl3iljIn96doz2YyJ/enYMd68pa8DsD+uX+ieM8WMiaaOfTRNACaD3mazMn92Df7j7S441lXhi0iIiIiIiIitUzvphG31O7lNQ7TAe17AtBpdm6FukGJ/QlK7O+UuERERERERETEtdSyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hMbukzokNgtk9XLduERGpXEpKCqNGjSIyMpLIyEjmzZvnMH/BggWEhYXRv39/XnnlFT7//HMSExP5xz/+4VDv6NGjjBkzhlOnTnHPPfcwZswYVq5cyYsvvkjjxo1ZuHAhwcHBfPvtt0yYMAGLxcL06dOJjY1l6tSpvPHGG87cbPFQ1T2eIyIieOihhzAajXTp0oW//e1vDvXeeOMNZsyYwWOPPcakSZMAuPvuu8nLy+PMmTNERETwv//9j1GjRjF37lwMBoPTtlFERKS+UrJL6pwAb0gMdXUUIiJSmdGjRzNp0iSefPJJUlNT6datm33e8uXLWbx4MYcPH2bTpk18/fXXPPXUU3z//fd06dLFXu+ll17izTffJDIy0l42Y8YM1q5dy6pVq/jXv/7F008/zYwZM1ixYgU+Pj72eqdOnaKgoICAgADnbLB4tOoczydOnGDlypUEBARw//33k5mZSbt27ez1RowYQWJiIhs3brSXffjhhwC8++679uRW165dSU5Opm/fvk7aOhERkfpL3RhFRETkinXs2JEDBw7Yp0+cOIGvry8Gg4Hvv/+e3r17A9C3b1/S0tIcls3MzOT5559nwIABZGRkUFhYSGBgIH5+fvb6OTk5FBcXM3jwYO677z4KCwsBW8IgJSXFadvpCikpKURHR2M2mxk5cmSF+dOmTSMrK+uSy+/du5ewsDDMZjMPPPBAhfnnzp3jd7/7HWazmddff73CNMDOnTuZPn16zW1UHVfV8RwaGmpPrppMpgots5o1a4bRWPkl9fLly7ntttsA6NOnDytWrKilLRAREZGLKdklIiIiVyw1NZXY2Fj7dHZ2tr2l1qlTpwgKsvULDwwM5NSpUw7Lrl+/nqlTp/L2228zceJEh/oBAQGcPn2aI0eOkJOTw7Jly+jfvz//+te/AIiMjCQzM9MJW+hao0ePJiUlheDgYFJTU+3lFouFrVu30rZt2yqXv/XWW0lJSWH+/PkV5i1ZsoTu3buTkpLCDz/8UGH66NGjxMfHs2nTJqxWa41vW11U1fF83vbt2zl27Nhl9/15BQUFnDlzhrCwMKD+HLsiIiJ1gZJdIiIiUm1z5szBbDbTsmVLEhMTK63TqFEj8vPzAThz5gyNGjVymN+hQwfatGlD27ZtOX36tEP9goICgoODCQ4OpmvXrvj4+HDzzTeTkZFRm5tVZ/2yxdGWLVscutBdysqVK+nVqxcffPBBhXl79uyhU6dOAMTHx5OTk+Mw/d133wEQExPD9u3ba2Iz6qzqHM8A+fn5jB07lvfee6/an71y5UoGDhxYA1GKiIjIlVKyS0RERKrtfIujqVOnOpTHxsaSm5sLwPXXX8+6desASE5O5sYbb3SoGxUVxbFjxzh8+DD+/v40bNiQM2fOcPbsWXv9du3acejQIaxWK9u2bSMqKgqA3Nzcares8QS/bHGUlZVl3xeXEhYWRkZGBqtWreLdd9/l+PHjDvPj4uL46quvsFqtfP3110RHRztMnz59GqgfLZGqczxbrVYeeughXnrpJcLDw6v92UuXLmXIkCH26fp27IqIiLiSBqgXERGRaxYSEkJRUREALVq0ICEhgV69epGQkECXLl3Iy8tjwYIFjB8/nkmTJnHHHXdQVlbGW2+9BcCf/vQn+vTpY38bo7e3N/fddx8333wz/v7+LFq0CIBvvvnGvownmzNnDmvWrKFnz56XbHG0Y8cOHn/8cYeygQMH8vzzz9une/XqRU5ODqGhF978MnjwYFatWsUtt9xC06ZNadasGevWrXOYru8uPp5TUlL48ssvOXbsGGB7mULLli3tx/P8+fP5+9//zunTp8nPz+e1116jvLyczMxM2rdvb//M5ORkBg0a5JLtERERqW8M1voyGMNVOJy2i8+HTHJ1GB5j0NKpNL/xOleHISIil9Blme3f7wdf3fLz588nPDyc/v3711xQFzlx4gQvv/wyf/vb32rl853lcvs5JSWF9evXM2lSxWuQzZs3s2TJEl5++eVLfv75t1VarVYGDhzIv//9b/u4URezWq2MHDmSWbNm4e/vX2H6//2//8e9995r7+Lojq7lmK7p43nUqFHMmTPnkoPZi4iIiKMNGzbQs2dP1q9fT48ePa5oWX3bioiISI144IEHai3RBbbWNu6e6LpWnTt3vuz4ZRs3bqRLly50796dAQMGEBYWRl5env1Niz/99BNms5l+/fpx5513cuzYMYdpf39/wDZIe8eOHWt9m+qqmj6e33//fSW6REREnETdGEVERETqELPZjNlsrnSe0WgkISGBrKysS47/NGDAAAYMGOBQ1qJFC8aPHw9A69atSUlJcZj/y+mdO3dy/fXXYzAYrmobRERERFxJyS4RERERN1JZ98aaFh8fT3x8fK2vR0RERKQ2qC21iIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkNjdkmdU3AOsvNds+7YIAjwds26RUREREREROTaKdkldU52Pjy8wTXrnt0DEkNds24RERERERERuXbqxigiIiIiIiIiIh5DyS4REREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hgaoF4+QMdFM4a5UDF7eGExe+La8jvAR0wjq3M/VoYmIiIiIiIiIE6lll3iM8BHTSFpcQMK8wzSM60bOK7dTXnja1WGJiIiIiIiIiBMp2SUex+jtQ5NbRmM5W8DZQ9muDkdEREREREREnEjJLvE4lpJijq2ejdE/CN/wtq4OR0REREREREScyG2SXaWlpUyePJmIiAj8/Pzo27cvaWlpGAwGli5d6rQ47ste4PDzwE8fMnjtDKetXy7t4MLJpN/biG2PRFG0Zwuxkz7D5B/k6rBEROq8s2Xwv9wL09O2wPaTrovHU5VZYM3BC9OTN0HaUbBaXReTJ7JYIfUITPzhQlnyIdv+FxERkfrBLQaot1qtDB8+nLS0NKZMmUJsbCwLFy5k6NChACQlJTktlg9i73eYHrx2BnuWbnDa+uXSwu99mRZDn3F1GCIibiU7H55IheMlF8qW5sKnuTA4AiYmgsngsvA8xpFi237eU3ChbOUB+Hw/3NQUXr8B/NziqqxuKzgHT30Lm0+A8aLjdvx30DYI/nkThPq6Lj4RERFxDre4rHrvvfdYsWIF6enpdOjQAQCz2Ux0dDQhISG0bt3aJXE1SYylUbtWZC9Odsn6RURErsWZc/D4RjhV6lh+vgHMsn22xMAT8U4PzaOUW2HsN5Bb4Fhu+blF17dH4aV0eLWL00PzOJM2QfoJ2++WX7SYy8mHp9JgXi8wKIErIiLi0dwi2TV9+nRGjBhhT3QBmEwmoqOj8fb2Zu/evdx+++32eadOnSI/P58TJ07Ualxt7+3LgS83U3xYfT1ERMT9fLYPTpRWXWfRbniwLTR0iyuGumnDYdh95tLzrdi6Nz5RCK0aOi0sj5OdD+sPX3q+BdhxCr4/Bjc0dVZUIiIi4gp1/tI1KyuLPXv28NZbb1WYt2/fPoYNG0ZUVBTp6en28nHjxlFWVlbtdQQGBlJaWvFqv41XY54N6lnpMl5+PkQP6cHXT/6z2uup7/r0MZNTdvnEoH9cN9pMTantcCrVp4+ZooxUl6xbRMTZYqZ9hX/sjRiMlx7C82w5RPW7m/xvPnViZJ6l1R/m0qjHXRhMl77sslitdH1wIseWaRzQq9Xsd5NpNmxClceztbyM3734Pgf/NdaJkYmIiMjVsFiufsDNOp/sOnDgAADNmjVzKN+1axe5ubkVxusqLS3lgw8+YOXKlbUaV9Rt3SgrLmX/mh8uX1lqXdy0FFeHICLidkwNG1eZGLDX8w92QjSey+QffPl+c5ZyTA31UpVrYfIPBms5Vb9/yaqX14iIiNQDdT7ZFRoaCkB2djY33ngjYBuw/rnnnsNisVRIdi1btoyWLVvyq1/9qtrrOHOm8r4Fh9N28fmQSZXOa3tfP3I+SsFarlf7VFdycgrNb7zusvXSj8PDLhrzPzk5hcRQ16xbRMTZnvwGvjlyYYyuS1k6/126Nn3XKTF5ote2wSd7qt7PBpMXb055njv+/bzT4vI0H+TA37ZXXcdo8uaPD97FH167yzlBiYiIyFXLz89n27ZtdOrU6YqXvfzjXBeLj48nNjaWCRMm8PHHH/P5558zZMgQNm3ahL+/P3FxcQ71586dy0MPPVSrMQW1CadZlzgyF62t1fWIiIjUpttbXyYBAzT3hS5NnBWRZxpymf0M0MAIA1r+//buPD6q+t7/+GuysBm2oCxqgEAQAwikUFABGZBSl4qiUjcUt2utrZZr3X4KXmvRltrFa7VainXBpbdSLdpaQSxRVCQiIIIQAgIiCiKRPQTIzO+PKcEQCFsykzm8no9HHuR8z3dmPmf8OjN5z/d8T1zKCawzj4e0/UygiwLnJOa6RpIk6SA1atSIPn360KjRwc/KrvVhV1paGhMnTqRVq1aMGDGCkSNHcuaZZ9K/f3+6du1KyjdOv1i1ahVvvvkml112WY3W1OGSgayZuZBNy1bX6ONIklSTTmsJeZmxUGtPIWLBwH93gVSvXHdYOjaGs4+vus/1J0JGenzqCarMunD1CVX3uaANtM2ITz2SJClxav1pjADdunVjxoyKi4Y//PDD9O/fv0LbU089xdlnn11+6mNN+WDMMzV6/5IkxUNaCjx4Mvx8LrzxeSzc2qVROtx6Egw6NlHVBcvo7rEw62/LYec3nuj6qfCDE+GydomqLFj+64TY7K4/F8UurrBLWgguaQc/7pS42iRJUvwkRdi1p5KSEgoLCxk5cmSF9ieffHKvV21UcGxZXMDKx/8bolEadh3IccPHlO9b88r/8vVbz0NqGm1/8iRpGZks/eX5EImQfvTxZI+cQCg1NYHVS1Ltc1Qa/LInfL4V3lodCwiyjorN+kqv9fO/k0daSiw8vOYEmPYFbNwBzevBgFbQICk/jdVOoVBsdtf3s2PP81el0KRO7HluUifR1UmSpHhJyo9X8+bNo6ysrNLi9IsXL05QRYqXBu3yOHFsbPX6xaNPp2zrxvKrKn391vN0/NUMtiyawVevPcaxl95Lu9teIL3xMax6djSb5r1Bo7zBiSxfkmqtYxvAxc4uqnGZdeGCtomuIvgy0l2bS5KkI1lShl29e/cmGo3uv6MCJ5QWW9AkWlZGeuaxpNRtUL4v/egsojtKKdu6gdSMTFLqNijfH0pJ3f9l3yVJkiRJUtLzBAUlneI3n2PBj3NJPaoJodTdeW1Gp74s+FEunz72Q5oNvLK8fcf6NWya9wYNTxqYgGolSZIkSVI8GXYp6WT2v5TOjyxiR/HnlCz/CICyrRtZ/+7f6PJYEe3/30t88Zd7AIiW7WT5Q1fT+gd/cL0uSZIkSZKOAIZdSiqRHaUAhFJSSK3fkFCdev/ZEyKl3lGEUtNIzcikbMt6AFY+fjPNwpdTv+1JiSlYkiRJkiTFVVKu2aUj14aCl/ny1UcgEiGj82lEtm1h3bQJNBtwOUd1PIVFt/eBSBlZ//UQpas/4avXx1OyYh5rJz9Gy6G30rjn2Yk+BEmSJEmSVIMMu5RUmvYZRtM+wyq0NWjXHYBjL76bYy++u8K+b72wNV6lSZIkSZKkWsDTGCVJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBUYoGo1GE11EbbV901a+XvhpossIjKa5ranTsMF++23eAUs2xqGgvchpBBnpiXlsSZIkSZJ0+Ay7JEmSJEmSFBiexihJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwEhLdAGSJEmSJOnItX3TVr5e+GmiywiMprmtqdOwQaLLSCjDLkmSJEmSlDBfL/yUf507KtFlBMaZk8bQoteJiS4joTyNUZIkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgIjacKu7du3M3r0aLKysqhfvz4DBw6koKCAUCjEpEmTEl2eAmrDdnhuKfx8LoydB2+vgbJooquSJEWj8GEx/GY+3DsXxhfC6pJEVyVJkqpTKDWFXj+/iks+foJLFz3Fqb/5Ial10xNdlpJAWqILOBDRaJRhw4ZRUFDAPffcQ05ODs899xxDhw4FIC8vL8EVKoheXA4PzIcdEUgNQRR4YTlkHQW/6w1tMxJcoCQdodaXwi3vw9zi2Ld2oRBEovDHQrg8B36cCymhRFcpSZIOV9ebzqflqV2YNPCnlO3YyelP3k6PUZdTMPrPiS5NtVxSzOwaN24cr776KlOnTuUHP/gBp59+OuPGjSM1NZXMzExat26d6BIVMK+vgvvnxYIuiM3mivxnRteqrXD9O7E/tiRJ8bUzAj9+D+YVx7YjxF6jo8R+nl4C4xcnsEBJklRtOlx2Oh899CJbVxdTum4jc3/zV3IuChNKSYooQwmUFCNk7NixDB8+nM6dO5e3paamkp2dXT6ra/HixZxyyimccMIJnHLKKRQVFSWqXCW5aBT+sAj2NSkgEoWvSuGlT+NaliSJ2OnkizbEQq59eaoINu+IW0mSJKkG1GnUgIzjjqF4wbLytnUfLaNOwwZkZB2TwMqUDGr9aYxFRUUsW7aMhx56qNK+lStXcsEFFwBw/fXX86Mf/Yjhw4fzzDPP8IMf/IB///vf+73/jRs30rJlS3bu3Eko5DkPgvrte5Dzy3er7BONRvjtG0u5vkuXOFUlSQJo/dO/0Ojb5xBK3fdHmNIItD/7Gta/+UwcK5MkSYeqfVpTbmvUt0JbWkZ9ALZv2Fretn3DFgDS/7NPezdgQJilO79OdBnVok6dOmzatOmgb1frZ3atWrUKgObNm1doX7RoEStWrCAvL48vv/yS2bNnc8kllwBwySWXMHv2bNauXbvf+//oo48oKSkhGnXVccWkNW6+3z6hUMoB9ZMkVa+0Ji2qDLrK+/kaLUlSUtu5OXblmfRGDcrb6jQ+CoAdm70qjapW62d2NWvWDIAlS5bQq1cvILZg/e23304kEiEvL4+VK1dy3HHHkZqaCsROcTz22GNZuXIlxxxzYNMb8/Pz6dOnT80chJLKgq9hxPT998tu3pg5pS7cJUnxdOv78OYXVZ/GCPDH3/6C773wi7jUJEmSDs+agkX869xRFdq2b9zK5lVryezclo1LPwegWZdstm/ayuaV+5/YciSbNi2fFr1OTHQZCVXrw67c3FxycnK48847SU9PJyMjg0cffZQ5c+bQoEEDOnbsyJw5cxJdpgKkUxNofRSs3BJb7HhfhnhdBEmKu7OPh2lfVN2nXiqEW8anHkmSVHOKnn2DrjcOZc3MhUR2ltH9p99nyf/lE43s72svHelqfdiVlpbGxIkTuf766xkxYgRZWVmMHDmSRo0asXTpUlJSUsjKymLVqlWUlZWRmppKWVkZn3/+OVlZWYkuX0koFIIbcuGOWXvfnwI0qwfntYlrWZIkoG+L2JcSi9bve3bXlTmQkR7HoiRJUo2Y99CL1M1sxHn5vyOUEmL5P97jg/tck1P7V+vDLoBu3boxY8aMCm0PP/ww/fv3B2LreXXv3p3nn3+e4cOH8/zzz5OXl3fApzBKexp0LIzqBr/6CLbv8dfU8UfBg72hSZ3E1CZJR7K0FHjoZLi1AOYU724P/efnihy45oREVSdJkqpTtCxCweg/UzD6z4kuRUkmKcKuPZWUlFBYWMjIkSPL2x577DFGjBjBvffeS9OmTXn66acTV6AC4bw2MLAVvPoZ/Hp+rO2hk+HkYyDFC3dKUsI0qQPj+sCC9XDlf9ZY/OGJ8L0saO7FmSRJko54SRl2zZs3j7KyMvLy8srbTjzxRGbOnJnAqhREjerAxe12h12nenEvSaoVQiHo0nT39tXO5pIkSdJ/JGXY1bt3b6LRqpYOlyRJkiRJ0pEoJdEFSJIkSZIkSdXFsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAVG0oRd27dvZ/To0WRlZVG/fn0GDhxIQUEBoVCISZMmJbo8Sar1IlF470t4+GP43wXw+irYEUl0VZIkgK9L4flP4MEFMH4xrNic6IokKfHannMKZ076OZctmcCFBX9IdDlKImmJLuBARKNRhg0bRkFBAffccw85OTk899xzDB06FIC8vLwEVyhJtdvSjXDr+/Dplt3fckSApnVgTA/ofUwiq5OkI1c0CuMK4Yki2BmF1FDsy4nHFsHpreCePKifFJ/YJan6lW7YwqI/v0a9YxrT+brvJbocJZGkeOscN24cr776KnPnzqVz584AhMNhsrOzyczMpHXr1gmuUJJqr9UlcN07sGlHbPubk7k2bIefvAfj+0KXpgkpT5KOaI8vhj8t3r1dFt39+7+/gK074aGTIRSKf22SlGhfvDUPgNZnfDvBlSjZJMVpjGPHjmX48OHlQRdAamoq2dnZ5bO6brnlFrKzswmFQsyfPz9RpUpSrfP8Uti4o2LItUuE2AyCPy6Kd1WSpE074M9F+94fBWashTnFcStJkqRAqPVhV1FREcuWLeOCCy6otG/lypXlYdd5553HW2+9RZs2beJdoiTVWtEoTPo09gfTvkSA99bCV9viVZUkCWDq57B9P2snpoTglU/jU48kSUFR609jXLVqFQDNmzev0L5o0SJWrFhRHnb17dv3sB4nHA6TklLrsz8lSJe/xlKAunXrJbgS6eCE0urQ5flN++0XBdp368W25R/WfFFSNfL1Wcms+YV30XzYKEJVfAYti0R57pWp3H+ya9VICq72aU25rdHh/U2v3QYMCLN059eJLqNa1KlTh02b9v/3zJ5qfbrTrFkzAJYsWVLeFo1Guf3224lEIi5OL0lViO7cTqR06wH1LdvseTKSFE9lm4urDLoAiJRRtnldfAqSJCkgav3MrtzcXHJycrjzzjtJT08nIyODRx99lDlz5tCgQQM6duxYLY+Tn59Pnz59quW+FDw9X479W1pamthCpENw34cwacXe1+yC2LceXZrCrFVL9tFDqr18fVYy+2obnPV6bO3EfQmlpvHkTy+m768ujl9hkhRnawoW8a9zR1VqD6WkkJKeSigtDUIhUuumE41GiWzfmYAqk8e0afm06HViostIqFofdqWlpTFx4kSuv/56RowYQVZWFiNHjqRRo0YsXbrUUw8laT8uawevroQdkb0HXlHgv6rnewNJ0kE4uh5c2Bb+umzv+1OADo3hlOZ73y9JQdf+wtPo+78/Lt++fPnzbF75JRN73ZDAqpQMan3YBdCtWzdmzJhRoe3hhx+mf//+CapIkpJH24axy9b/tAA27/ElWFoIRnX3DylJSpSbO8OWHfDPz2Lh1je/lDixCTzYG1JDCSpOkhJsyV/zWfLX/ESXoSSUlNOiSkpKKCwsrLBe10033cTxxx/PZ599xqBBg+jcuXMCK5Sk2qXH0fCvwTCq2+62mzrBa4Phe1mJq0uSjnRpKfCzb8FfwnBxu93tj5wCT/aDzLoJK02SpKSVlGHXvHnzKCsrqxB2PfTQQ3z22Wfs3LmT1atXs2DBggRWKEm1T/00OK/N7u0rcqCJf0RJUq2Q0whu7rJ7u/cxkOKMLkmSDklSnMa4p969exONVrGSpyRJkiRJko5ISTmzS5IkSZIkSdobwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYSRN2bd++ndGjR5OVlUX9+vUZOHAgBQUFhEIhJk2alOjyJB2GaBTeXwtPFsFTRTD/61iblKyWb4ZnlsKfF0P+F7AzkuiKJEmKn7IovLMGniiCCUugcEOiK1IySqmTxqm/vp4L3nuEy4omMPTthzjx6jMTXZaSRFqiCzgQ0WiUYcOGUVBQwD333ENOTg7PPfccQ4cOBSAvLy/BFUo6VAvXw10fwKdbKrZ3bAy/6AGtMxJSlnRI1m+Hu2fDu19WbM+sA3d1h/4tE1KWJElxM3td7L1wdUnF9u6ZcF8PaFE/MXUp+aSkplLy5XqmXPxzNq1YQ2anNnzn+VFsW7ue5a/MSHR5quWSYmbXuHHjePXVV5k6dSo/+MEPOP300xk3bhypqalkZmbSunXrRJco6RB8sgmuewc+21J5X9FGuPZt+LKk8j6pNtpWBje8C+99WXnf19vhloLKIZgkSUEy/2v40Yy9f36bVxz7bLdhe/zrUnLaWVLKnF/9hU3LV0M0SvGC5aycMovmvXITXZqSQFKEXWPHjmX48OF07ty5vC01NZXs7Gzy8vJYt24dZ511Fh07duSkk07i/PPPZ+3atQmsWNKB+FMhlJbB3s7wikRjAcGzS+NelnRIXvsMFm/c+3jedVbugws8RVeSFFx/WAhlkX18tgO+KIGJy+NclAIjlJZKi965fL1wRaJLURKo9WFXUVERy5Yt44ILLqi0b+XKleTl5REKhbjtttsoLCzko48+on379txxxx0JqFbSgdq4Hd74Yu8fhnaJAn//NBZ8SbXdSysgVMX+KLHZjAtdt0SSFECrt0LBV1V/toPY+6V0KE6+/xp2bC5h6QtvJroUJYFav2bXqlWrAGjevHmF9kWLFrFixQry8vLIzMwkHA6X7zv55JN59NFHD+pxwuEwKSm1PvtTgnT56zYA6tatl+BKgqPucSdywoMf7rfflp1wVOYxRLZujENVRwbHc83I/dNK0po032+//kMuYuPMv9d8QUcIx7OCxjGtZNWg4ym0H5O/335fbCmjbt0GNV+Qkkr7tKbc1qjvPvd/+54RHNOjI5OH3UNkx844VpacBgwIs3Tn14kuo1rUqVOHTZs2HfTtan2606xZMwCWLFlS3haNRrn99tuJRCKVFqePRCI8+uijDBkyJK51Sjo4ZVsPbHpLtGwnkdKtNVyNdPjKtq4negDnKJZtcWqXJCl4DvSzXaTk4P9o1ZGt171XcuxpXZn8/Z9RWuz40YGp9TO7cnNzycnJ4c477yQ9PZ2MjAweffRR5syZQ4MGDejYsWOF/jfeeCMZGRn8+Mc/PqjHyc/Pp0+fPtVZugKk58uxf0tLSxNbSMBcPT22kOm+prunAKdnpfHB1r2sYK9D5niuGeMKYz9VaVoH1rz/Gum1/qum5OF4VtA4ppWsolG4cBp8unn3WpV7SgEu7NyEOxzf2sOagkX869xRldp7/fxqWvXtwmsX3kPpOs/0OFDTpuXToteJiS4joWp92JWWlsbEiRO5/vrrGTFiBFlZWYwcOZJGjRqxdOnSCqce3nLLLRQVFfHKK694SqKUBK4+AUbO3Pu+EBAKwfD2cS1JOmTnt4HnP4EtO/Yd4I7ogEGXJCmQQiG49gQYPXsf+4G0FLg4O65lKYkddfzRdLr2LMq2befCmY+Ut6+ZuYipl92XwMqUDGp92AXQrVs3ZsyYUaHt4Ycfpn///uXbd955Jx988AH//Oc/qVu3brxLlHQI+raA/9cVxs6LfQP4zW8B01Lgvm9B56aJqk46OEfXg4dPhpvegw07drenEAu/hreHy9olqjpJkmremcfDmhJ4eGEs3PrmZ7t6qfDAt6Ftw0RVp2Sz5bOveLLVhYkuQ0kqKb9fLikpobCwsHy9rgULFvCLX/yCzz//nFNPPZXu3bszdOjQBFcp6UBc0BZeHhSb5bXLj3Phn9+BgccmrCzpkHRuCi9/Jxbi7jIsG/4ShpGdY996S5IUZFd2gJcGVpydf3Pn2Ge7k/d/HRdJqhZJMbNrT/PmzaOsrKw87OrcufMBLQosqXZq2QB+eCI8vji2fWWHxNYjHY6j0mIh7i/mxbZvPSmh5UiSFHdZGfCTzjBhaWz7UpelkBRnSRl29e7d23BLkiRJkiRJlSTlaYySJEmSJEnS3hh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwEiasGv79u2MHj2arKws6tevz8CBAykoKCAUCjFp0qRElxd3ZVF490t4YRn8cyWs357oiiRJUhBt2wlTP4995vj351BaluiKpEMXiULB2th4/sensG5boiuSDs/SjfDi8tjPko2Jrqb6nfyLaxk26zEuXfw0w2b/kV73XklKelqiy1ISSIpREo1GGTZsGAUFBdxzzz3k5OTw3HPPMXToUADy8vISXGF8/ftzeGA+rP3Gm3NaCM5vC//dGdKTJsKUJEm1VTQKTy2BJ4pgy87d7RlpcF1HuKQdhEKJq086WO9+Cb/4EL4o2d2WGoKzj4fbToJ6SfGXkRSzagvcMwfmFFds754J9+TB8Uclpq7qtvCJ15h17wR2lpRSN7Mh4XE/petN5zP3N39NdGmq5ZLiJX3cuHG8+uqrzJ07l86dOwMQDofJzs4mMzOT1q1bJ7jC+Hnjc7hjVuX2nVH46zL4sgQe+LYfPiVJ0uF5dBH8uahy++ad8NsFsK0Mrj4h/nVJh+K9L2HkzFiI+01lUXhlZSwA+/3JkOaXxkoCa7fBNW9DcWnlffOK4arpMKE/tKwf/9qq24bFn+3eCIWIRqI0bNcqcQUpaSTFy/nYsWMZPnx4edAFkJqaSnZ2dvmsrvPOO49u3bqRl5dHv379mDt3boKqrTk7I/Drj2K/R/fRJ381zPoqbiVJkqQAWl0Sm9FVlXGFe/9DS6ptotHYWRHR6N4/Q0eB97+Ct1bHuzLp0DxVFHv9jexlXwTYsB2e3M9reDI56cfncdmSCVwy/89kdm7Dx+P+keiSlARqfdhVVFTEsmXLuOCCCyrtW7lyZXnY9dRTT/Hhhx8yZ84cbrnlFq6++up4l1rj3lsLa0v3HXQBpITgpRVxK0mSJAXQK5/uv8/OKLy6suZrkQ7XvK9hxeb9fIYGXvQztJLAjgi8/Oneg65dIsA/VsZm4AbBRw//nWdzLuel035C4dNTKPny60SXpCRQ609jXLVqFQDNmzev0L5o0SJWrFhRHnY1bty4fN+GDRtISTm4HC8cDh/0beKt2Rk3cOw1v6uyTyQKf58+m9/0OSVOVR0Zuvw1tkBa3br1ElxJsPk8x4fPc3z4PMeHz3PNOP5H42nS72JCqen77BPduYPRv/sz14y/KY6VBZ9juvo1Oe1Ssm58oso+EeCt+cuoGz4xPkUdIRzP1S+tSUty/7T/ZHZbGRzdOocdXyXHtxLt05pyW6O+VfbZULSK4gUr6Pf7m5h84T3xKSxJDRgQZunOYISCderUYdOmTQd9u1ofdjVr1gyAJUuW0KtXLyC2YP3tt99OJBKpsDj9tddey5QpU4hGo7z22msJqbcmlW3b/3/gaKSMSMnBDwRJkqRdIts2A/tZADQl5T/9pNotUrL/cRqNRijzM7SSQKR0y4H33XbgfZNFSnoqjVyzSweg1oddubm55OTkcOedd5Kenk5GRgaPPvooc+bMoUGDBnTs2LG87/jx4wGYMGECt956K6+++uoBP05+fj59+vSp9vqrU3EpnDUldtrAvoRSUrn3kv58/04X0ahOPV+O/Vta6vNak3ye48PnOT58nuPD57lmvL8Wfjij6j6hlFT++euf0uXxn8anqCOEY7r6bdkJ351c9SldoVAKN5/RlWtu8nmvTo7nmnHDu7F1mvd1KmNKCLo1hVnrvohrXYdjTcEi/nXuqApt6Q0b0ObMXnz6WgHbN26laW4buo28gM/zP0xQlclj2rR8WvQ6smeq1u7z9oC0tDQmTpxIq1atGDFiBCNHjuTMM8+kf//+dO3ada+nHl5++eVMmzaNdevWJaDimpNZF4ZUceHJlBA0rQNnHR+/miRJUvD0PBo6Nt73B8UUYpe379wkjkVJh+ioNLgoe9/7U/7T57wj5wLvSnJX5Oxnza4ojOgQt3JqTjRKuwtO44L3HuGyJRMY+MRtfPbGHGbe9XiiK1MSqPUzuwC6devGjBkVv158+OGH6d+/PwCbN2/m66+/JisrC4BXXnmFzMxMMjMz415rTftpF/hyG7y9JhZuRb4xy6tROjx8CmTse3kNSZKk/QqF4MHe8MN3Yfk3zgBLIfYHVvtG8Ktvx/pJyeCHJ8IXJTBlVeXP0PXT4KGToZnLSilJnNwc7ugKY+fFtncN510vyT/tAn1bJKKy6rVjcwlTLro30WUoSSVF2LWnkpISCgsLGTlyJABbtmxh2LBhbNmyhdTUVDIzM3nllVcIBfATWN1U+G0vKFgbu2LMv/8zM/WWLnB2FjQ06JIkSdXgmHrwbH9443O4e06srfcx8L3WMLAVpNf68wOk3dJS4L5vwfltYlcunxy7BhY/6QTntIYmdRJbn3SwLmwL3z4a/rYcnvsk1nZxO7igDbRtmMjKpNohKcOuefPmUVZWVr44fYsWLXjvvfcSXFX8pIRiaf7JzXefB39xu8TWJEmSgqduKpyVtTvs+r0Xe1YSC4Vip+j2PHp32HV5TmJrkg5Hmwy4ucvusOunXRJbj1SbJGXY1bt3b6LRKlZplyRJkiRJ0hHJCeiSJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLklJIT8/n+zsbMLhMCNGjKi0f8KECUydOhWA+++/n379+nHjjTdW6rd27VqGDh3KgAEDGDduHACTJ0/m1FNP5eyzz2bDhg0UFxcTDoc57bTTuPTSSykrK6O4uJibb765Zg9SkiRJUlz0ffBH9L7vmkSXsVeXLZlAZpfsRJeR1Ay7JCWNa665hvz8fBo3bsyMGTMq7HvllVc4/fTTWbNmDbNnz2b69OmkpaUxa9asCv3uvfdeHnzwQaZNm8Z1110HwG9+8xveeOMNrrvuOv70pz9Rr149XnjhBd566y3at2/PG2+8QWZmJuvXr2fz5s1xO15JkiRJ+9fy1M6c8befcVnRBC4rmsAZf/sZLU/pnOiyynX/6fc5/en/d8D9n825nOL5y2qwouAz7JKUdLp06cKqVavKt4uLi6lXrx6hUIhZs2bRv39/AAYOHEhBQUGF2y5evJg77riDwYMHU1hYyJYtW2jYsCH169cv79+gQQOOOeYYAFJTUwmFQgD07t2b/Pz8+BykJCWR/c2+ve+++ygqKqryPm688Ub69evH/fffv88+Dz74IIMGDaKkpISzzjqL/v37c9VVVwFQUFBAnz59OPXUUxk1ahQACxcuZOzYsYdxZJKk2u74QT34znOjWDn1A/76rR/w12/9gJVTP+A7z4/i+NO/tdfbhFKrLwoJpaVW232p+hh2SUo6M2bMICcnp3x7yZIltGnTBoD169fTqFEjABo2bMj69esr3Pbtt99mzJgxPPLII9x1110V+mdkZLBhw4byvmvWrOGNN95g4MCBALRp04bFixfX5KFJUtLa1+zbSCTCvHnz6NChwz5vO2vWLNLS0pg+fTqzZ89mzZo1lfrs2LGDuXPnAjBlyhT69u3Lm2++SXp6OvPnzycvL4933nmHd999lxkzZrBx40Zyc3OZPXs20Wi02o9XklQ79B5zNUteyGfBoy+zY9NWdmzayoJHX2bpxDfpNeZqAC4s+ANdR17AWS/fx/BPnuXobu0BSD+qHuFxP+Wyogmc9+bvODbcbb+P1/KUzly2ZAInDB/Ehe8/ypCpvwag1Wld+d7ksVxa+BRD3vgNrc/4NgCtz/g2J900lOMGdOeyJRO4bMkEUuqkVfkYV34xkWbd2hNKTeHSxU/TpGNW7LFP7cyVX0ykzfdOAaB+8yZc8elfSM+of2hPXoAZdklKGo8//jjhcJjjjjuO7t2777VPkyZN2LhxIwCbNm2iSZMmFfZ37tyZ9u3b06FDBzZs2FCh/+bNm2ncuDEAO3fu5Oqrr+YPf/gDqal+WyNJB2rP2bcffvghJ5xwQpW3mTlzZvkXC/379+eDDz6o1GfChAlccsklAGRnZ7NlyxZg92t3eno6AGVlZRx77LE0aNAAgHbt2rFgwYLDPzBJUq3TqP2xNGzTgmV/f6fSvk9eeptGbVvSqF0rAHKGhXnnp3/g2ZzLWfefUwSzz+vLJy9N57kTRzDv9y8x8M+30aBl5n4fN61+XY7unsPfTxvJP868nYZtWzLoqTuY//Dfeb7TVXxw3zP0f/S/yezclk9fe5+PHnqJVdPm8mzO5TybczmR7TsP6PiiZRHWzFxIq74nAdCq30lsXPYFrfp2iW33PYl18z5hx+aSA7q/I4lhl6SksWvWwJgxYyq05+TksGLFCgB69OjBW2+9BcC0adPo1atXhb5t27blq6++Ys2aNTRo0ICjjjqKTZs2sW3btgr9b775Zi6//HJOOumk8tuuWLGiypkJkqTKs2+Liopo27ZtlbfZ36zcSCTC5MmT+e53vwvEXvenT59Obm4uoVCIrKzYN97PPfccubm5NGnShLS02LfmzsqVpOCql9kQgJI1xZX2lXz5daxPs9j7S+GE19lQtIpoJFIeNq1+72M+/VcB0bIIn0x8i68/XkHbc07Z7+OGUlL44P5n2VlSSlnJdrLPPZU1Mxey/JUZRMsirPr3HD6dMov2w/of9jGufnt+hXBr7q//Wh5+tezThS/emX/YjxFEhl2Skl5mZiZbt24FoGXLlnTt2pV+/fpRWlpKz549Wb16NQ888AAAo0aN4vzzz2fo0KGMHj0aiAVbAwYM4LHHHuPaa6/lk08+Yfz48Tz22GOEw2H++c9/AvDee+8RDocTcoySVNsdyOzbjz/+mHA4XOHnl7/85X5n5b744osMGTKkfPupp57ioosuYuHChRx99NG8++67AFx66aUsWrSIzz//nI8++qhGjlOSVHtsK94EQP0WlWdj1W/eNNZnXez9ZcuqtZX6bPmsYtvmlWsPaGbXzpJSSv/z2AANWjVj8573tWINDVo12+997c8Xb39Ei5M7UadRAxq1O5Zlf3+H1DppNGiVSau+Xfhiuu93e1P1iaKSVEvs+qNoX4YMGcLUqVMZNGgQo0ePLg+yIBaA3XrrrQB07dq1fObXLmeccQZnnHFG+XaTJk3Kw7NdiouLadKkCQ0bNqyGo5Gk4LnmmmvKF4b/pg4dOvDiiy8C0KlTp71e6OP999/n+eef55xzzuGtt97i+9//foX9hYWF5OfnM2HCBObOncs555xD8+bNAcqvlltaWkrdunVJSUmhYcOG1KtXD4jNyu3Tp081H60kqTbYuPRzNn26huwhp7J6jxlO2eeeyqZP17Dxky8AiEYqr9941PHHVNjOyDqGtbP3Pxs4GolU2N76xbpKV3/MyGrO1i/W7bX/wShesJxoJEKn//oeX76/iGgkwhdvz+eESwfRoHlTvnx/0SHfd5A5s0tSIFxxxRUMGjSoxu4/MzOT3/3udzV2/5IUVN26daOwsLDKPt/+9rcpLS2lX79+dOvWjRYtWlSYlXvXXXfx+uuv89prr9G9e3euuOIKnnjiCcLhMHPnzuU73/kOL7/8MuFwmNNOO43jjz++/LTzJUuW0KVLlxo/TklSYhTc/SQ5Fw2g8w/OIT2jPukNG9DpB98j5/sDKBj9RJW3bXlyJ7IG9ySUmkK78/vRtFMblv/zvYOuYdmkd2nRO5c2Z/cmlJLCcQO6k/XdniydGPuSveSrDRx13NGHfBXI1e8uoNN1Z/PF27FZXF+88xGdrjubLz9YTFnpjkO6z6BzZpckSZIOS1Wzb1NSUujatStFRUVVrnv4yCOPVNj+5qzcb5o6dSoQuyLjNw0bNoxhw4ZVaFu4cCE9evQgFAodyGFIkpLQysnvM3X4/XS7+UK63xqbGbxu3idMHX5/eTi0L8v+/jbth/XntEd+wpYv1jHt2l+z9fN1B13DpuWr+ffVv+Jb/+8y+vzuR2z5bC1v/fghiv+zEP7yV2bQ7ry+XDz/z4RCIf7S9ZoDXqQe4IvpH9H2e6fwxdux2WtfvD2fOo2Ocr2uKhh2SZIkqUbt7fTGeMjNzSU3Nzchjy1Jip8v3v6oymBrYq8bKrW9PfKRvfTcv9UzFvBszuWV2ldNm8uqaXP3epvt6zfz2gX/c0D3H0qJzf76ZhhW+PQUCp/e/SVPyZqvebLVhQdR9ZHH0xglSZIkSZJqgaad2xDZsXOvC+rrwDmzS5IkSZIk6T/Ozf8dGccfXal95ZQPeOuGBw/7/gc9exctep9YqX3H5m2kpKfywf3PsX3j1r3cUgfKsEuSJEmSJOk/JoX/u0bvf+pl99Xo/cvTGCVJkiRJkhQghl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGEkRdm3fvp3Ro0eTlZVF/fr1GThwIAUFBYRCISZNmpTo8iRVg8+27P597bbE1SFJqmhnZPfvs76CsmjiapEkHZlS69Xh/Hd/z2VLJiS6FCWJWh92RaNRhg0bxvjx4xk1ahT/+Mc/yM7OZujQoQDk5eUluEJJh+OLrXDjDBj6xu62s6fAHbNgfWni6pIkwYvL4ezXd29f/y5873X4x6cJK0mSdATKu/UiNn/2VaLLUBJJS3QB+zNu3DheffVV5s6dS+fOnQEIh8NkZ2eTmZlJ69atE1yhpEP1ZQlcNR2KS+GbEwUiwL8/hyUb4Yl+0DA9URVK0pHrqSL4/cLK7Wu3wT1zYUsZXJQd97IkSUeYZl3bcdyA7rz/s6cZ8PgtiS5HSaLWz+waO3Ysw4cPLw+6AFJTU8nOzq40q+tnP/sZoVCI+fPnx7tMSYfgT4tjQVdkL/siwPLN8Pwn8a5KkvTVNnhkUdV9HlwAG7fHpx5J0pEplJrCqb++nvfuHE9k+85El6MkUqvDrqKiIpYtW8YFF1xQad/KlSsrhF2zZ8/mvffeo02bNvEsUdIh2roT/rly70HXN01cDlHXh5GkuHplJUT289q7IwKvfhafeiRJR6YuN5zLuo+Wsea9vUw1lqpQq09jXLVqFQDNmzev0L5o0SJWrFhRHnaVlpbyox/9iOeff55wOHxIjxUOh0lJqdXZ3151+WtsJe+6desluJJg83mufnWP7cgJ/ztvv/2KS6FB06OJlGyKQ1VHBsdzfPg8x4fPc804/kd/oknfSwil7fs88ujOHfy/3/yZEeNvimNlweeYjg+f5/jweY6PIDzP7dOaclujvhXaGrZtSccrBvPyd25NUFXJa8CAMEt3fp3oMqpFnTp12LTp4P8WrNVhV7NmzQBYsmQJvXr1AmIL1t9+++1EIpHysOvuu+9m+PDhtG3bNlGlSjpIke0lB9QvGo0Q3eHlGSUpniLbt0EoVHWnUIhI6db4FCRJOuK06HUi9Y9uzPnvPARASloq6UfV5+IFf2baNQ8420tVqtVhV25uLjk5Odx5552kp6eTkZHBo48+ypw5c2jQoAEdO3ZkxowZzJo1i1/+8peH9Vj5+fn06dOnmiqPn54vx/4tLfWydTXJ57n6RaNwUT4s21RxcfpvSgF6N0/hgy2b41hZ8Dme48PnOT58nmvGO2vgJzOr7hNKTeOlsf/Nt8b/d3yKOkI4puPD5zk+fJ7jIwjP85qCRfzr3FEV2pa98i6fT999JsgxPTrS939/xMuDbmHbuo3xLjGpTJuWT4teJya6jISq1eftpaWlMXHiRFq1asWIESMYOXIkZ555Jv3796dr166kpKTw5ptvsnDhQrKzs2nbti2fffYZ3/3ud5kyZUqiy5dUhVAIrsjZd9AFsfW8Lmsfr4okSbuc0hzaZuz7g2IK0LEx5GXGsypJ0pGkrGQ7W78oLv8pXbcRolG2flHsYvXar1oddgF069aNGTNmsHXrVgoLC/nhD3/InDlzyk9hvOOOO/j8889Zvnw5y5cv5/jjj2fy5MkMHjw4wZVL2p+zj4erOsR+/+aL0a7fb+kCJzff81aSpJqWEoL/7Q3N68e2d53QuOvf446C3/ba/5mOkiRVl9UzFvBszuWJLkNJolafxrg3JSUlFBYWMnLkyESXIukwhULwo1zo0xxeWA7zimNtvY+BC9vGZg1IkhLjuKPgL2H4x8rY1XPXlcIx9eCcLDgzC45Kuk+RkiTpSJF0H1PmzZtHWVlZ+cyuPS1fvjy+BUk6bN2bxX4kSbVLRjpc3C72I0mSlCySLuzq3bs30WhVq/xIkiRJkiTpSFXr1+ySJEmSJEmSDpRhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSQmQn59PdnY24XCYESNGVNo/YcIEpk6dCsD9999Pv379uPHGGyv1e+211zjllFMYPHgwn3/+OQADBgwgHA4TDof5+OOPWb16dfl2+/btefDBBykuLubmm2+u2YOUJEmSEsCwS5KkBLnmmmvIz8+ncePGzJgxo8K+V155hdNPP501a9Ywe/Zspk+fTlpaGrNmzarQb+zYsUybNo3f/va3jB07FoDU1FTy8/PJz8+nU6dOtGzZsny7V69enHXWWWRmZrJ+/Xo2b94ct+OVJEmS4sGwS5KkBOvSpQurVq0q3y4uLqZevXqEQiFmzZpF//79ARg4cCAFBQUVbpuWlka9evXo3Llz+b5oNEo4HObaa69l27Zt5X137NjBsmXLOOGEEwDo3bs3+fn5NXx0kpR89jf79r777qOoqGi/9/Pggw8yaNCgSu3FxcX06NGDjIyMvW4DLFy4sPxLDEnSwTHskiQpwWbMmEFOTk759pIlS2jTpg0A69evp1GjRgA0bNiQ9evXV7jtjh07WLduHW+//TbFxcUATJw4kfz8fHJzc3n88cfL++bn5xMOh8u327Rpw+LFi2voqCQpue1r9m0kEmHevHl06NChytvv2LGDuXPn7nVfw4YNef311zn55JP3ug2Qm5vL7NmziUajh38wknSEMeySJClBHn/8ccLhMMcddxzdu3ffa58mTZqwceNGADZt2kSTJk0q7B8zZgwXXnghzz//PJ06dQKgadOmAAwZMoQFCxaU93355Zc599xzq/9AJCnA9px9++GHH5bPkK3KhAkTuOSSS/a6Lz09nczMzH1u79KuXbsKr+OSpANj2CVJUoLsmjUwZsyYCu05OTmsWLECgB49evDWW28BMG3aNHr16lWhb9++fZk2bRpXXnklvXv3BmKhGMRmjGVnZ5f3nTlzZnkfgBUrVux3ZoIkHen2nH1bVFRE27Ztq7xNJBJh8uTJfPe73z2sx3YGriQdmrREFyBJkirKzMxk69atALRs2ZKuXbvSr18/unbtSs+ePVm9ejUTJkzg1ltv5d577yU/P5/jjjuOP/7xjwAMGjSIOnXq0KRJE5555hkA5syZQ7du3UhJ2f0913vvvcdDDz0U/wOUpCTw+OOPM3XqVPr27bvP2bcff/wxN9xwQ4W2M844g5ycHIYMGRKHKiVJe2PYJUlSAoTD4QrrZ+1pyJAhTJ06lUGDBjF69GhGjx5dvq9ly5bceuutANx9993cfffdFW47c+bMSveXl5fHn/70p/Lt4uJimjRpQsOGDQ/zSCQpmK655hpGjRpVqb1Dhw68+OKLAHTq1GmvF/q47777yM/PZ8KECcydO5fx48dz7bXXHnQNK1asoE+fPgd9O0k60nkaoyRJtdAVV1yx1yt4VZfMzEx+97vf1dj9S1JQdevWjcLCwir73HXXXbz++uu89tprdO/enWuvvZbVq1fzwAMPlPcZNGgQc+bMYdCgQcyfP7/SNsQuWNKlS5caPR5JCiJndkmSJEnSN1Q1+zYlJYWuXbtSVFR0QOseTp06Fag4K/eb7fvaXrhwIT169CAUCh1k9ZIkwy5JkiRJOgh7O72xuuXm5pKbm1vjjyNJQeRpjJIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBkTRh1/bt2xk9ejRZWVnUr1+fgQMHUlBQQCgUYtKkSYkuT5KkcqVlu3//Ymvi6pAkVfbZlt2/74gkrg5JVev74I+4fMXzXLZkQvnPcQO6J7osJYm0RBdwIKLRKMOGDaOgoIB77rmHnJwcnnvuOYYOHQpAXl5egiuUJAl2RuDxxfCXZbvbhkyF3sfAzV2gXcPE1SZJR7rFG+B3C+D9r3a3nTEZLm0PV3aA1FDiapO0d4ufmcrMux5PdBlKQkkRdo0bN45XX32VuXPn0rlzZwDC4TDZ2dlkZmbSunXrBFcoSTrSRaIwajZM/bxiexQoWAtXTYc/94X2jRJSniQd0RZtgGvfhu1lFds37IBHF8Gnm+GePAgZeElSICTFaYxjx45l+PDh5UEXQGpqKtnZ2eWzutq2bcuJJ55I9+7d6d69O5MnT05UuZKkI9BbqysHXbtEgJIyeOCjuJYkSfqPX3wYC7r2ddbiPz+Dgq/2sVNSwrQ7vx+XfPwE5731IF1/cj6h1KSIMFQL1PqZXUVFRSxbtoyHHnqo0r6VK1dywQUXlG9PnDiRLl26xLM8SZIAmLgcUkKxGV57E4nCrHWwYjO0yYhraZJ0RFu8ARasr7pPSggmLouddi6pdvj48VeZ9fMJbCveRLOu7ej/h5Gk1q3DnF/9JdGlKQnU+rBr1apVADRv3rxC+6JFi1ixYkW1rdcVDodJSUm+lLjLX7cBULduvQRXEmw+zwoSx3PNOPFPn5LepMV++/U8cxgbC16OQ0VHBsezgsYxXf2a9LuErJuerLJPJAqvzf2Eh/rlxqeoI4TjOT6C8Dy3T2vKbY36Vmgr/mj3IqjrPlzKnF//H3m3XGTYdQAGDAizdOfXiS6jWtSpU4dNmzYd9O1qfbrTrFkzAJYsWVLeFo1Guf3224lEIhXCrssuu4yuXbtyww03sH79+niXKkk6gkV3lB5Yv507argSSdI3RQ749fnA+klKkEgUXFdPB6jWz+zKzc0lJyeHO++8k/T0dDIyMnj00UeZM2cODRo0oGPHjgBMnz6drKwsSktLGTlyJD/+8Y955plnDvhx8vPz6dOnT00dRo3p+Z/JAaWlvjnXJJ9nBYnjuWaMnQd/W77v9WAA6qbA8rf+TkZ6vKoKPsezgsYxXf3Wl8IZU2DnPk4zh9jfz9eFc7nJ571aOZ7jIwjP85qCRfzr3FEV2toOOZVV0+ayY9NWmua2odtPh7H8HzMSVGFymTYtnxa9Tkx0GQlV68OutLQ0Jk6cyPXXX8+IESPIyspi5MiRNGrUiKVLl5afepiVlQVA3bp1ueGGGxgyZEgiy5YkHWGGZcPfVhC7/OJehIChbTDokqQ4a1IXzs6Clz/d+0t0CEgNwflt4l2ZpKqceOV3OWXsdaSkp1KyZj1LJ77JvN+/lOiylCRqfdgF0K1bN2bMqJjgPvzww/Tv3x+ALVu2sHPnTho3bkw0GuUvf/kL3bt3T0ClkqQjVbuGcG8e3D0HiO6e4ZVC7PdvHw03dkpcfZJ0JLulS+wCIXOLd78uQ+z3lBD8oiccf1QCC5RUyWvn/0+iS1ASS4qwa08lJSUUFhYycuRIANasWcMFF1xAWVkZZWVldOrUiT/84Q+JLVKSdMQ543ho3xD+uhymfQHbI7EQ7MK2cMZxkFbrV8qUpGCqnwZ/OAX+tSp2yvnyzVAvBQYeC9/Pjr1WS5KCIynDrnnz5lFWVla+OH27du2YM2dOgquSJAk6NIa7usV+JEm1R51UOLd17EeSFGxJGXb17t2baLSKFSYlSZIkSZJ0RPKECkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXdJjy8/PJzs4mHA4zYsSISvsnTJjA1KlTAbj//vvp168fN954Y6V+a9euZejQoQwYMIBx48YBMHnyZE499VTOPvtsNmzYQHFxMeFwmNNOO41LL72UsrIyiouLufnmm2v2IHVEqa4x/dprr3HKKacwePBgPv/8cwAGDBhAOBwmHA7z8ccfs3r16vLt9u3b8+CDDzqmJUmSJB0Wwy6pGlxzzTXk5+fTuHFjZsyYUWHfK6+8wumnn86aNWuYPXs206dPJy0tjVmzZlXod++99/Lggw8ybdo0rrvuOgB+85vf8MYbb3Ddddfxpz/9iXr16vHCCy/w1ltv0b59e9544w0yMzNZv349mzdvjtvxKviqY0yPHTuWadOm8dvf/paxY8cCkJqaSn5+Pvn5+XTq1ImWLVuWb/fq1YuzzjrLMS1JkiTpsBh2SdWoS5curFq1qny7uLiYevXqEQqFmDVrFv379wdg4MCBFBQUVLjt4sWLueOOOxg8eDCFhYVs2bKFhg0bUr9+/fL+DRo04JhjjgFioUEoFAKgd+/e5Ofnx+cgdUQ5nDGdlpZGvXr16Ny5c/m+aDRKOBzm2muvZdu2beV9d+zYwbJlyzjhhBMAx7QkSVJ12d+s/fvuu4+ioqJ93r64uJgePXqQkZGx1/3Lly+nVatWhMNhrrjiCkpKSjjrrLPo378/V111FQALFy4s//JTigfDLqkazZgxg5ycnPLtJUuW0KZNGwDWr19Po0aNAGjYsCHr16+vcNu3336bMWPG8Mgjj3DXXXdV6J+RkcGGDRvK+65Zs4Y33niDgQMHAtCmTRsWL15ck4emI9ThjOkdO3awbt063n77bYqLiwGYOHEi+fn55Obm8vjjj5f3zc/PJxwOl287piVJkqrPvmbtRyIR5s2bR4cOHfZ524YNG/L6669z8skn77PP2WefTX5+Pk8//TRTpkyhb9++vPnmm6SnpzN//nxyc3OZPXs20Wi0Wo9L2hfDLqkaPP7444TDYY477ji6d+++1z5NmjRh48aNAGzatIkmTZpU2N+5c2fat29Phw4d2LBhQ4X+mzdvpnHjxgDs3LmTq6++mj/84Q+kpqbW2DHpyFYdY3rMmDFceOGFPP/883Tq1AmApk2bAjBkyBAWLFhQ3vfll1/m3HPPrf4DkSRJUrk9Z+1/+OGH5TPr9yU9PZ3MzMwq+0yePJl+/frx7LPPkp2dzZYtW4CKf8e0a9euwuc/qSYZdknVYNc3JWPGjKnQnpOTw4oVKwDo0aMHb731FgDTpk2jV69eFfq2bduWr776ijVr1tCgQQOOOuooNm3axLZt2yr0v/nmm7n88ss56aSTym+7YsWKKr+NkQ5WdYzpvn37Mm3aNK688kp69+4NxEIxiM0Yy87OLu87c+bM8j7gmJYkSaoJe87aLyoqom3btod1n61ataKwsJApU6bwxz/+kWbNmjF9+nRyc3MJhUJkZWUBztxXfBl2STUoMzOTrVu3AtCyZUu6du1Kv379KC0tpWfPnqxevZoHHngAgFGjRnH++eczdOhQRo8eDcSCrQEDBvDYY49x7bXX8sknnzB+/Hgee+wxwuEw//znPwF47733KpwCJtWUgxnT9957LwMHDuT3v/89N910EwCDBg2iX79+vPDCC+UXYpgzZw7dunUjJWX3W5JjWpIkqfocyKz9jz/+uPwq2bt+fvnLX+73vuvWrUuDBg2oX78+/fr1Y/z48Vx00UUsXLiQo48+mnfffbeaj0bav7REFyAlu11vBPsyZMgQpk6dyqBBgxg9enR5kAWxsODWW28FoGvXruWzZHY544wzOOOMM8q3mzRpUh407FJcXEyTJk1o2LBhNRyNVH1j+u677+buu++ucNuZM2dWur+8vDz+9Kc/lW87piVJkqrXNddcw6hRoyq1d+jQgRdffBGATp06HdIFgjZv3kxGRgbRaJRZs2Zx2mmnlZ/2uOsq2xCbud+nT59DPgbpYDizS6phV1xxBYMGDaqx+8/MzOR3v/tdjd2/tCfHtCRJUjB069aNwsLC/fYbNGgQc+bMYdCgQcyfP7/CbP53332Xnj17cuqppzJ48GBuuOEGnnjiCcLhMHPnzuU73/kOELvQUZcuXWr0eKRdnNklSZIkSVJAVTVrPyUlha5du1JUVFTleqlTp06t1LZrNv/gwYMZPHhwhX1TpkypsL1w4UJ69OhBKBQ6yOqlQ2PYJUmSJEnSEWpvpzdWt9zcXHJzc2v8caRdPI1RkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTCSJuzavn07o0ePJisri/r16zNw4EAKCgoIhUJMmjQp0eUpwDZs3/37zkji6pCqw/ay3b9v2Zm4OiRJknT4tn3js902P9tJ5dISXcCBiEajDBs2jIKCAu655x5ycnJ47rnnGDp0KAB5eXkJrlBBtLoE/rAQpqza3XbO63BJexjeHlJCiatNOljby+DxInhh2e62wa/B97LghlxoXCdxtUmSJOnglOyEPxbCSyt2tw2eDOe2gR+eCA2S4i/9A3P86d8i7/aLadT+WHZuLmH+Y6+w4NGXE12Warmk+F9g3LhxvPrqq8ydO5fOnTsDEA6Hyc7OJjMzk9atWye4QgXN6q0wYjp8XQrfnMy1thQe+hiWbISf5UHIwEtJYGcE/rsAZq6t2F4agRdXwKx18Oe+Bl6SJEnJYNtO+OG7sGA9RL/RvrUM/vIJzF0Hf+wTjMDr2P7dOOWBH/D2TQ+zesYC0urX5ajjjk50WUoCSXEa49ixYxk+fHh50AWQmppKdnZ2+ayubdu28cMf/pAOHTpw0kkncd111yWqXAXAr+dXDrq+6dXP4M3VcS1JOmQvragcdO0SBT7dDI8timtJkiRJOkTPfALz11cMunaJAos2wNNL4lxUDcm77WLmPfg3vnj7I6JlEXZsLmF94cpEl6UkUOvDrqKiIpYtW8YFF1xQad/KlSvLw67bbruNevXqsXjxYj766CN+/vOfx7tUBcSXJbEgq6rluVJC8MLyeFUkHZ6/LoOqJiFGgVdWxqbDS5IkqfYqi8LEZVX3iQJ/W5786w2n1a/L0d3bU/+YJgyd/r9cNG88A5+8nYys5okuTUmg1k9sXLUqtmBS8+YVB/SiRYtYsWIFeXl5bN68maeffprPPvuM0H/OK2vRosVBPU44HCYlpdZnf5V0+es2AOrWrZfgSoIjo/t3yb6r6nPAI1F455Ni6oZbxakq6RClpnHSX7bst9u2MmiZ24Ntn86PQ1FS9fF9UEHjmFaQOJ6rX1rj5uSO3//Mpq+3Q+Pj2rGzeNV++9YG7dOaclujvhXa6jQ5ilBKCm3O7s3rl4yhZN0Get17FQMev5VXBt+aoEqTw4ABYZbu/DrRZVSLOnXqsGnTpoO+Xa1Pd5o1awbAkiW752FGo1Fuv/12IpEIeXl5LF26lGbNmvGzn/2Mnj17Eg6HefvttxNVspJd5ACnt0TK9t9HSrRohGj0wL7WizqmJUmSarVo2UFMxU/yz3Y7NsfC0o/Hv8rmz9ZSVrKd2b94jmYnZbtul/ar1s/sys3NJScnhzvvvJP09HQyMjJ49NFHmTNnDg0aNKBjx47MnTuXTz75hLy8PB544AFmzpzJOeecw5IlS2jUqNEBPU5+fj59+vSp4aOpfj3/MwGptLQ0sYUEyOYd8N3JscW79yUFGNL5GOb6vCsJ/OAdmLOu6lNzj64L7xXNJa3WfwUiVeT7oILGMa0gcTxXv2gULsmHpZv2vmYXxJavaJMB769ekTQX1FpTsIh/nTuqQtuOTVvZvPLL2EHroEyblk+LXicmuoyEqvV/1qSlpTFx4kRatWrFiBEjGDlyJGeeeSb9+/ena9eupKSk0Lp1a9LS0rjkkksA6N27N0cffTSLFy9OcPVKRhnpsUv2VvW+EAG+nx2viqTDc0m7qoMugIvaYdAlSZJUy4VCcGn7fQddENt3SbtgXDm+8Okp5F57Ng2ObUZq3XTybruYrz5cypZVXyW6NNVytX5mF0C3bt2YMWNGhbaHH36Y/v37A3D00UczYMAAXn/9dQYPHszixYv58ssvycnJSUS5CoCbcmHxBphbHAu9dr2ZpIRi63Xd0gW6NE1khdKBC7eCK3PgySWxbzh2BV+7fg+3hMvbJ64+SZIkHbhzsuCjr2NX3N7bZ7tzsmBom8TVV50+emQSdRpnMGTKryCUwpcFi5h2zQOJLktJICnCrj2VlJRQWFjIyJEjy9see+wxrr76an7605+Snp7OhAkTaNKkScJqVHKrlwaPnAKTPo1dyW7FZkgNQd8WcHE76Okp4koyP+4EXTPh/5bBrK9ioe0JjWMzFM/Oio1vSZIk1X6hENzZFXodHftsN6841t6laWy2/uBjgzGrC4BolA/ue4YP7nsm0ZUoySRl2DVv3jzKysrIy8srb2vXrh35+fmJK0qBUzc1FgR8PzsWDIQI0JuGjkintYz9RKOx2YopjmdJkqSkFArBd46L/exa0sq/VaTdkjLs6t27N1EXqVMcGQooSEKhqtekkyRJUvIw5JIqczliSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYVeA5efnk52dTTgcZsSIEZX2T5gwgalTpxKNRhk+fDj9+/fn3HPPZfv27RX6ffjhh/Tp04cBAwawcuVKAG655RaOOeYYnnnmmfJ+V111FdFotGYPSpIkSZIkqQqGXQF3zTXXkJ+fT+PGjZkxY0aFfa+88gqnn3468+bNo0GDBrz55pv07t2bKVOmVOh377338tJLL/Hggw8yduxYAG699VYeeOCBCv169+7NtGnTavaAJEmSJEmSqmDYdYTo0qULq1atKt8uLi6mXr16hEIhjj32WMrKygDYsGEDmZmZFW67ZcsWmjdvTrdu3ViyZAkALVq0qPQYAwYM4NVXX63Bo5Ak6eDsb5bzfffdR1FRUZX3ceONN9KvXz/uv//+ffZ58MEHGTRoECUlJZx11ln079+fq666CoCCggL69OnDqaeeyqhRowBYuHBh+RdI0oGqjvEMu8frnoqLi+nRowcZGRl73QbHrqrX4Y7pvY3Rb1q+fDmtWrUiHA5zxRVX7PU12jEtBZNh1xFixowZ5OTklG8vWbKENm3aAJCZmcmGDRvIzc3lvffe4+STT65w20gkstff99SmTRsWL15czZVLknR49jXLORKJMG/ePDp06LDP286aNYu0tDSmT5/O7NmzWbNmTaU+O3bsYO7cuQBMmTKFvn378uabb5Kens78+fPJy8vjnXfe4d1332XGjBls3LiR3NxcZs+e7en/OmiHM56h4njdU8OGDXn99dfLPwvuuQ04dlXtDmdM722M7unss88mPz+fp59+eq+v0Y5pKZgMuwLu8ccfJxwOc9xxx9G9e/e99pkyZQrZ2dksXLiQ8847j7/85S8V9qekpOz1d0mSksmes5w//PBDTjjhhCpvM3PmTAYOHAhA//79+eCDDyr1mTBhApdccgkA2dnZbNmyBYDNmzfTuHFj0tPTASgrK+PYY4+lQYMGALRr144FCxYc/oHpiHQo4xkqjtc9paenV5jhv+f2Lo5d1YRDGdP7GqPfNHnyZPr168ezzz6719docExLQWRyEXC7vikZM2ZMhfacnBxWrFgBxL412fUmkZmZyfr16yv0bdCgAWvXrmXevHkVZoftacWKFfv9NlGSpETZc5ZzUVERbdu2rfI269evp1GjRkBsBsGe75GRSITJkyfz3e9+F4i9v06fPp3c3FxCoRBZWVkAPPfcc+Tm5tKkSRPS0tIAZ0Tr8BzKeN5zvB4qx65qwqGM6f1p1aoVhYWFTJkyhT/+8Y80a9Zsr6/RjmkpeNISXYASIzMzk61btwIwePDg8hlgaWlpvPDCC6xevZoJEyZw6623Mnr0aM477zzS09N5+umnAXjggQd48sknCYVCfPnll9x8881MmzaNM888M5GHJUlSJY8//jhTp06lb9+++5zl/PHHH3PDDTdUaDvjjDNo0qQJGzduBGDTpk20b9++Qp8XX3yRIUOGlG8/9dRTXHTRRfzoRz/iJz/5Ce+++y6nnnoql156KRdffDHDhg3jo48+4qSTTqreg9QR43DGc05OToXxKtUGhzOm77jjjirvu27duuW/9+vXj/Hjx+/1NVpS8Bh2BVg4HCYcDu9z/5AhQ5g6dSqDBg3ixRdfrLT/1ltvBShfa2TPfbv27zJz5kyuu+66wy9ckqRqdM0115QvDP9NHTp0KH//69SpE/n5+ZX6vP/++zz//POcc845vPXWW3z/+9+vsL+wsJD8/HwmTJjA3LlzOeecc2jevDmwe7Z0aWkpdevWJSUlhYYNG1KvXj0gNiO6T58+1Xy0CrrDGc/33XdfhfE6fvx4rr322oOuwbGr6nQ4Y3p/Nm/eTEZGBtFolFmzZnHaaaft9YwWx7QUPJ7GeAS74oor9nolnkP1xBNPuKaXJClpdOvWjcLCwir7fPvb36a0tJR+/frRrVs3WrRowerVq3nggQcAuOuuu3j99dd57bXX6N69O1dccQVPPPEE4XCYuXPn8p3vfIeXX36ZcDjMaaedxvHHH19+yv+SJUvo0qVLjR+njgwHMp73HK/XXntthfEMMGjQIObMmcOgQYOYP39+pW1w7Co+DmRMQ+Ux+80x/e6779KzZ09OPfVUBg8ezA033FDpNRoc01IQhaJH+GUn3nnnHfr27cvbb7+dlGl+z5dj/85yRrok6Qh0uO+DY8aM4aKLLor7mpMLFy5k0qRJ+z0FR0eewxnT8RjPjl0djGR4jXZM1w5rChbxr3Mrz/DToTlz0hha9Dox0WUklKcxSpKkI9beTp2Jh9zcXHJzcxPy2AqueIxnx67iyTEt6VB5zpkkSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYCRN2LV9+3ZGjx5NVlYW9evXZ+DAgRQUFBAKhZg0aVKiy0uILTsTXYEkSbXD5h2JrkA6fI5jBcn2st2/R6KJq0PSkSkt0QUciGg0yrBhwygoKOCee+4hJyeH5557jqFDhwKQl5eX4Arj67Mt8PhieG3V7rYr34IrO0C4VeLqkiQpXqavhieKdm8Peg2+cxz81wnQOiNxdUmH4pNNML4Q3vhid9t1b8PVJ8DJzRNXl3QoNu+I/a3y0ordbUPfgEvbw7C2kBJKWGlKMpctmVBhO7VOOuuLVvHy6T9NUEVKJkkRdo0bN45XX32VuXPn0rlzZwDC4TDZ2dlkZmbSunXrBFcYP8s2wTVvx95EIt9o/3g93PI+/HdnuKx9oqqTJKnmvbAMxn5UcXr6zihMXhULwcb3hZxGCStPOigfr4cfvAOlZRU/280thhvfg7u7wzlHzkddJblNO2J/qyzbBN+czPX5VnjgI/j4a/ifPAMvHZhncy6vsD3kjd+wbNI7CapGySYpTmMcO3Ysw4cPLw+6AFJTU8nOziYvL4/ly5fTvXv38p+2bduSmZmZwIprzv/Mgc07K34Ygt3bv1sAyzfFuypJkuLjsy3wq49iv1d6L4zC1p1w1wcQ9ZQZJYFIFO6cVTnogth2FPj5h7B2WwKKkw7BIwsrB12we/ufn8Hrn8e7KgXB0d1zaHLC8Sz5v2mJLkVJotaHXUVFRSxbtowLLrig0r6VK1eSl5dH27ZtmTt3bvnPeeedx6WXXpqAamvWwvWxb/+qOuc9BPxtxb73S5KUzF7cz3tcBFi6CeZ9HZdypMNSsBY+21o56PqmSBT+7mc7JYHNO+CVTysHXd+UAvx1WbwqUpB0uHQgq/49h5I1vsHrwNT60xhXrYotTNW8ecUFCxYtWsSKFSsqrde1fft2nn32WSZPnnxQjxMOh0lJqd3ZX+bgH3Dcfz1UZZ8o8PjkAu7s0S8+RUmSFEfZ97xORufT9tvvzGtvZd0/q37PlBLtmPPvoMXF/0MotO/PoNFIhAeen8yPf3Fe/AqTDkH9Dr3IuX96lX0iwNwvt1O3bsP4FKWk0T6tKbc16rvXfWn165J9bh+m3/RwnKtKXgMGhFm6MxjBYJ06ddi06eBPX6vd6Q7QrFkzAJYsWVLeFo1Guf3224lEIpXCrpdffpnjjjuOb33rW3GtMy6iVX3v981+nrshSQqoaITogbzP+V6oZOBnOwXJAY5nh7MOVttzTmFnyXY+m/pBoktREglFD+gTY+Ls3LmT3NxcduzYwQMPPEBGRgaPPvooc+bMobi4mE2bNlWYkXXWWWdxxhlncNNNNx3Q/W/cuJGPPvqIk046iUaNavdqtks3wkX5VfcJASNy4Med4lGRJEnx9cdFMH5x1afJADxzGpzYJB4VSYdu7jq49gDWWr6pE1yRU/P1SIdj20747hTYsnPffVJC8O2j4ZFT4leXksOagkX869xRe9135qSf8+XMRXxw/7Nxrip5nTlpDC16nZjoMhKq1s/sSktLY+LEibRq1YoRI0YwcuRIzjzzTPr370/Xrl0rBF2rVq3izTff5LLLLjvg+2/UqBF9+vSp9UEXQPtG8K1mVf9HCwFD28SrIkmS4mtom6qv4pUCdGli0KXk0C0T2jfc95gOAXVSYEhWXMuSDkm9tNhrdFUXWoxE4fvZcStJAdCo/bE079mRxc+/kehSlGRqfdgF0K1bN2bMmMHWrVspLCzkhz/8IXPmzKl0CuNTTz3F2WefXX7qYxDdmwdH16v8JpJCrO3u7nDcUfGvS5KkeGheH36WF3vf2zMgCAFN68KYHomoTDp4oRCM7QmN0vfy2S4U+7m/BzSpm5DypIN2fUc4qWnl9l1/dF7WDk5rEdeSlOQ6XDKQNTMXsmnZ6kSXoiRT6xeo35uSkhIKCwsZOXJkhfYnn3yShx4K9mK0LRvAhNPgmaXw0grYvDP24ahPC7g8JzbzS5KkIDvjeGjVACYsgTdXx05pPCoNzm0dey88pl6iK5QOXNuGsdNuJyyFlz+FkrJYyDWwJQzPgS57CQ6k2qpeGvzhVPi/T+CF5bC6JNbeqSlc2g6+c2ws5JUO1Adjnkl0CUpStX7Nrr2ZOXMmJ598Mu+//z49e/ZMdDkJUxaFLTugbmrsR5KkI832MthWBkelQ6p/QCnJ7YzE1juqnwp1/GynJBeNxsZzagjqJ+UUC8VTVWt26eC5ZleSzuzq3bv3gV2JKeBSQ9CoTqKrkCQpceoYCihA0lKgsZ/tFBChEGSkJ7oKSUeqpFizS5IkSZIkSToQhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGKFoNBpNdBGSJEmSJOnItH3TVr5e+GmiywiMprmtqdOwQaLLSCjDLkmSJEmSJAWGpzFKkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCoz/D53cowO4BIp9AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUdElEQVR4nOzde1zUVf7H8dfMgFwERDAVEAHFC2oIq2neEpWsfm2amW0X01K7W2tbZmvaWqmttlpb2cVNN7Usy63M1jItWS9RZN5NuXghw1uKCshNmfn9MYmOXBWYG+/n48FD5pwzcz7fr1++853PnHO+BovFYkFERERERERERMQNGB0dgIiIiIiIiIiISG1RsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DQ9HB+DMinPzObHrF0eH4TYax7Skgb9vle3yzkBGjh0CKkd0APh5OqZvEREREREREak5JbsqcWLXL3w5eJKjw3AbNyybSrNu7atsl5EDYzbYIaByvNML4oId07eIiIiIiIiI1JymMYqIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oQXqxS2kPpPA6d3JGDw8MZg88A5rT+jwaQR0HuDo0ERERERERETEjjSyS9xG6PBpxC/JI3bBERq268Ge6TdTcvqUo8MSERERERERETtSskvcjtHTiybXjsZcmEfhoQxHhyMiIiIiIiIidqRkl7gdc1EBx1a9g9E3AO/QNo4OR0RERERERETsyGWSXcXFxUyePJnw8HB8fHzo378/KSkpGAwGli1b5ujwxAkcXDyZLXcGsv2+SPL3bSV60heYfAMcHZZD5J2Bn09C6ik4a3Z0NO6rsAR2n7T+FJ51dDQiNWOxwJ4c2HECsoscHY1IzR3Otx7Pv552dCQi4iryz8Kuk7D7FBSXODoaEakJl1ig3mKxMGzYMFJSUpgyZQrR0dEsXryYIUOGABAfH2/XeAwmI1dNGUnroddgMBrZ/9/v+WHiO5QUnbFrHGIr9M4XaD7kSUeH4VAniuCN3fDfA1D8e5KrcQP4UxTc0wY8XCa97dwKz8LbqfBJJpz+PcnV0AMGt4QH2lt/F3EVFgt89gssSIdf861lRiAhBB6OgUg/h4Yncsk2H4c3d8Om4+fLOgTC/e2gdzOHhSUiTiz3jPW88fkv1i8zAQI8YWgkjGkLXiaHhicil8ElPpLNnTuXFStWsGXLFjp27AhAQkICUVFRBAUF0bJlS7vGE/vYLTTv2Yll/Z+g5MxZBrw7gS6T7iZl8ny7xiFyoewiuHcdHMqHCwdznSiGt1KtI71e6gYmg6MidA+FJfBQsnW0gOWC8tNn4YO91g9Xc3uBr0ucXUXgtV2wMAMuPDWYgaRD8MNvML83tK6fg2TFBa0/Ak+kWJO4F9p1Eh7/Af4WB3+072WjiDi5vDMwZj3szbW9tss5A/9Oh+3Z8OrV0EAJLxGX4hLjPGbMmMHw4cNLE10AJpOJqKio0lFdaWlp9OjRg7Zt29KjRw/S09PrLJ42dw1g+6ufkH84m6LjOWyZ9RHRf0rAYHSJ3Sluas6usomuC609AisO2DUkt7R4D2y/KNF1jgXr1NGFui+CuIgdJ84frxcf02ag4Cy8sMXOQYlcpqISeHYTmC1l3wstv/9M3Qonix0QnIg4rXfSyia6LrTxOCzdb8+IRKQ2OH12Jj09nX379jF06NAydQcOHChNdj344IM88sgjpKWl8cgjj/DAAw/USTwNAnzxC7uC7J37SsuOb99HA39f/MKvqJM+RaqSewa+/LXiRBdY/9g/2ldJA6lSiQU+3l95Gwvwn/1aK01cw3/2V34hYAZ2nIS0U/aJR6Qmvj1kHYlR0QdWgLMW+OIXu4UkIk6uqAQ+zaz8vGHAeg198YhREXFuTj/RJisrC4CmTZvalO/evZvMzEzi4+M5evQomzZtYtWqVQDccccdjB07lt9++40rrqg6AeXv709xcdmv+Vp7NOapgN42ZR5+PgAUn8ovLSs+ZV351PP3Oilfv34J7Dl7osp2vu160Hpq0iW9drtpl9a+Iv36JZCfmlwrr2VPPm26ET19XaVtzMDP2Wfx8mpon6DckCngCjrM+7XKdieKIbBFa84cr7qtiCO1mb0Z7/AOVba75rb7OJG00A4RiVy+kJEzCb7hEQymii9vLSVnmPL2Uka/eo/9AhMRp+UV2o62/9xWaRsL1jUtfRo1xlKUX2lbEaldFosFDw8PDh8+TEDApa2r4fQju4KDgwHIyDg/L8hisTBhwgTMZjPx8fEcOHCAsLAwTCbrRGqTyURoaCgHDtT+nK2zeQUAeAb4lpY1aGRNHpz5vU7E7kqqdytAi1m3lakRc/Vvuah9La7AonOHuBHr8VzVwpQGHc8iUspyCdd26NwhYncWi4WCggK2b99+yc91+pFdMTExREdHM3HiRDw9PfHz8+PNN99k8+bN+Pr60q5dOzZv3lyjPnJzc8stP5Kymy8HT7IpK87JJy/rN4I6RpKz5yAAwZ2iKM7NJ+/AbzWKw92tWZNEs27tq2y35TiM2WCHgMqxZk0SccGO6bsmikvg+q+t0zcqYjRArzAvNhUV2S8wN2OxwB1JsKeSdR0MQEs/+PHQfgy6GYA4uX/uhPf2VD19Y+vn82nuo5uwiHNLPgqPfl95G4PJg3+OG84fZw23T1Ai4tRKLDBoFRwprLiNEejYGDbm5dgtLhGx2rBhA7179666YTmcfmSXh4cHS5cuJSQkhJEjRzJu3DhuuOEG+vbtS2xsLEajkfDwcLKysigpsWbbS0pKOHjwIOHh4XUSU/r73xD76BB8mjXGKziAuCduI2NJEhazFukRx2hggmFRlbcxW+D2VvaJx10ZDHBn68oTAxbgjiiU6BKXMDSy8mPVCPRtDs01S19cQPcrILxhxRe3RqCRJ1wbas+oRMSZmQxwRxXXx2aqbiMizsfpk10AnTt3Jjk5mfz8fFJTU3nooYfYvHlz6eL0TZs2JS4ujg8++ACADz74gPj4+Gqt13U5tr36CYe/38XNSS8z9LvXOJn+Kz9Ne69O+hKprjFtocfvh/yFn13P/ZHf1xZ6NL34WXKpbgqHIRHW3y88gZ77/cYWcEuknYMSuUwtGsLz8dbjt7wLgkg/mNTZ3lGJXB6jAWZ1g4AGZSczGgEvE7zc3fqviMg5d7SGxN+T4OVd293RSklyEVfk9NMYy1NQUEBqairjxo0rLXvrrbcYOXIkzz//PI0bN2bhwrpbSNdSYiZl8nxSJmtKhyOczc0m/W/XUpiVSvySPJu6/H1b+eWthzF4NCBq3EIaXBHOsdXzOfb1O3gENiVq3CJMvv4OirxueRqtF/Gf/2K9Y0zG77Nzu19hHdHVq5lj43MXBgNMjIVuTeDDfbA121resTH8KQquC9OoLnEt17ewjoZZvBdWWu8JQ4iPddTXrZHg5+nI6EQuTSt/WNzXen7+/Bc4+fv9h26NgjtbWRO8IiIXMhlgWhfo3RQ+2g8/n7SWxwdbr6ETmuvaTsQVuWSya9u2bZSUlJSO7AJo3749P/zwgwOjEnsx+fjT5rlV7J15W5m6Q0uep/VfP+XMiUMc/mQG4WNe4fi3C2j39/Wc+mkFx1a9Q7PBjzsgavvwMFpHFd0SCV0/t5a91sOREbkngwGuDbP+nNvP/+7j2JhEaqJjY+uF/rlk1/JrHRuPSE009YHHOlh/zp2jn7rSsTGJiHMzGeCPLa0/584bb/dybEwiUjMumezq3r07Fktlq+aIOzN4eOLhH1RunbnwNJ6BTfEMbErRoQzO5hyjwRUtMRiN+ERcSfaahYD7JrtERERERERE6juXWLNLpLosFrPN7x4BV1B0KANzcSF5O9dScvqUA6MTERERERERkbqmZJe4FYPBaPO7wWSi2ZDxpD93PQX7t+IRqIWrRERERERERNyZS05jFKmI0cuXM6d+48yJQ3iFRAPQuMctNO5xCyc2fIyl5KyDIxQRERERERGRuqRkl7iktMmJ5O/bTNrkRELvmELe7mSa3zKekD9NZs/0mzF4eBI1znpHzl/eepjCrFS8wzsQPvoVxwYuIiIiIiIiInVKyS5xSW1fWG3z2K9DbwB8W8XTfsYGm7qWD75ht7hERERERERExLG0ZpeIiIiIiIiIiLgNJbtERERERERERMRtKNklIiIiIiIiIiJuQ8kuERERERERERFxG1qgXpxOdAC808txfdcHSUlJ3HvvvURERBAREcGCBQts6hctWkRISAjh4eGMGjUKo9FI165defnll23azZ49m1mzZvHQQw8xadKkCsseeeQRZs6cScOGDe2zgSIiIiIiIlJvKdklTsfPE+KCHR2F+xs9ejSTJk3iscceIzk5mR49epTWLV++nCVLlpCdnc3KlSvx8/Pj7rvvJi0tjbZt25a2Gz58OHFxcXz33XeVlt10000sWbKEUaNG2WfjREREREREpN7SNEaReq5Tp05kZWWVPs7Ozsbb2xuDwUBwcDB+fn4AmEwmDAaDzXObNm2K0Wissuyaa65h5cqVdbQFIiIiIiIiIucp2SVSzyUnJxMdHV36OCMjg4iICJs2O3fu5NixY7Rp0+ay+vD19eXEiRM1ilNERERERESkOpTsEqmn5s2bR0JCAmFhYcTFxVXYLicnh7FjxzJ37lz7BSciIiIiIiJymbRml0g9dW7NrotFR0eTmZkJgMViYdSoUTz//POEhoZedl/5+fkEBgZe9vNFREREREREqkvJLhGxERQURH5+PmC9a+O3337LsWPHAJg1axZhYWEsWrSI8ePHs3DhQv75z39y6tQpcnJymDlzZrlla9euZeDAgY7cLBEREREREaknlOwSqYcSEhJISEiosH7QoEGsXr2axMREsrOzy9SPHz8egBEjRjBixAibuvLKli9fzowZM2oeuIiIiIiIiEgVlOwSkTIuTlbV1Jw5c2r19UREREREREQqogXqRURERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNvQAvXidPLOQEaOY/qODgA/T8f0LSIiIiIiIiI1p2SXOJ2MHBizwTF9v9ML4oId07eIiIiIiIiI1JymMYqIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oQXqxS2kPpPA6d3JGDw8MZg88A5rT+jwaQR0HuDo0ERERERERETEjjSyS9xG6PBpxC/JI3bBERq268Ge6TdTcvqUo8MSERERERERETtSskvcjtHTiybXjsZcmEfhoQxHhyMiIiIiIiIidqRkl7gdc1EBx1a9g9E3AO/QNo4OR0RERERERETsyGWSXcXFxUyePJnw8HB8fHzo378/KSkpGAwGli1b5ujwxAkcXDyZLXcGsv2+SPL3bSV60heYfAMcHZZDFJec/91icVwcIrXBYoHD+fDraSgqqbq9iLM7UQS/5EHeGUdHIiKuorAEDuTB4QJd24nrM1vg4O/XdmfMjo5G3JVLLFBvsVgYNmwYKSkpTJkyhejoaBYvXsyQIUMAiI+Pt1sskTf1IGbM/xHUMZKi7FyWdnvYbn1L5ULvfIHmQ550dBgOlXcG5qfDp5nny4Z8A3e0hmGRYDQ4LDSRS2axwH8yYfEe+OW0tayhB9zcEka3hYAGjo1P5FL9+Jv1HP3jMetjowH6h8CYthBdP7+bEZEqnCiCeWnw+S+Q//sXPlF+MDwaBoWDQdd24kJKLPDhXuvPoQJrWSNPuCUSRrUBH5fIToircInDae7cuaxYsYItW7bQsWNHABISEoiKiiIoKIiWLVvaLZaiU6fZPf8rvK9oRMf7/2i3fkWqknsGxqyHvblw4Rd+Wfnw0nb4+QT8LV4JL3ENFgtM2wqf/QIXHrKnz8LivbDhKMzrDY2U8BIX8dWvMHmT7fFstsC3B2H9EXizB1wZ5LDwRMQJHS+EUeutI2AuvLbbnwcvbIGMHPhLRyW8xDWUWGDiRvjmkO174akz8G46fH8U3u4Fvi6RoRBX4BLTGGfMmMHw4cNLE10AJpOJqKio0lFdTz75JFFRURgMBnbs2FFnsRxau419yzZw+tff6qwPkcvxxq6yiS44//i/v8Kqg/aOSuTyJB22Jrqg/GP6lzx49Wd7RyVyeU4UwZTN1mP34tkaZqxTz//6k/WDgIjIObN2wKH8iq/tPtgLP+gjibiI5b9YE11Q/jG9+xT8K9XeUYk7c/pkV3p6Ovv27WPo0KFl6g4cOFCa7Lr55ptZu3YtERER9g5RxOFOn4XlB8q+cVzICCzZa6+IRGrmo32Vv0GZgS9/hZxie0UkcvmW/QJnKzlBm7Guw5N81G4hiYiTO15oTQxUtpyR0QBL9tktJJEa+Wif7Yiui1mwLsWi9Vmltjj9IMGsrCwAmjZtalO+e/duMjMzS5NdvXv3vuw+/P39KS4u+4mptUdjngq4/NcVW/36JbDn7Ikq2/m260HrqUmX9Nrtpl1a+4r065dAfmpyrbyWPflEX0X0i+srbWMGtv52Bi8vP/sEVU90+qgQAC8vbwdH4l46vncCo5dvpW2KzRDRbQD5uyo/9qX6dDzXjZbjPyKgyx8xmEwVtrGYS7hj/N85uuR5O0bm/nRMi6vyi7uOqGc+r7SN2QJr0o/hdU2YnaKqH3TeqAMmD6788HSVzfLOwhXt4ik6oOH7YmU2X/4dDJx+ZFdwcDAAGRkZpWUWi4UJEyZgNpvtuji9iNOyVPckoDky4hos1T2mdUsqcQVmM9U6/+p4FpFzdG0n7uRS3t/0Xii1xOlHdsXExBAdHc3EiRPx9PTEz8+PN998k82bN+Pr60u7du1q3Edubm655UdSdvPl4Ek1fn2xWrMmiWbd2lfZbstxGLPBDgGVY82aJOKCHdN3TRSeheu+tk5nrIgR6NK8AT8VFdktrvqg6+9fuhZpv9aqP38Pyb9Zv7WuiLcJfv3pWxo6/TuZ69DxXDcW74HZOytvYzCa+M/sSXRbpOuO2qRjWlzVyWK4fmXlU6CNwPXtr2CLju9apfNG3bhnLfx8svKpuYEN4Hj6FjydfkiO2MuGDRsuexaf0x9GHh4eLF26lJCQEEaOHMm4ceO44YYb6Nu3L7GxsRiN9t0Eg9GIycsTg4cHGAyYvDwxNtAnLXEsbw8YElH5PHgz8Kcoe0UkUjN/alV5ossADGqJEl3iEv4YDl7Gis/RRqBlQ7iqiT2jEhFnFtgAbmhR9bXdbbq2Exdxe6vKE10AwyJRoktqjUscSp07dyY5OZn8/HxSU1N56KGH2Lx5s0OmMLa+9Rru3v8B/f71BH4truDu/R9wy/pX7R6HyMUebAdXNi5bfu6P/I5W0Le5XUMSuWw9m8KIaOvv5b1RtW8EY2PsGpLIZQtoAH/vCiZD2ePZCDT0hJlXgaGyT7UiUu/8pRO09i+b8Dp3Hrm/HfzBBWckSP10XRjc3NL6+4XvheeO76uawL1t7B2VuDOX/E68oKCA1NRUxo0bV1r22GOP8cknn3D48GESExMJDg5m584q5gxchoyPksj4KKnWX1eq52xuNul/u5bCrFTil+TZ1B1ZNpsjn83iihseIuQ26zSQzNfvo/BgGhZzCZGPzsc7rK0jwrYLbw94oyd8uBc+3gdHrGtrEhNoTXRdF6YPUuJaHo2BDoHw/h7Y/vu9La7wtn7rd0cr8HHJdzCpr/o0h3/3gYUZsOqgtczbZB31dXdrCGvo2PhExPn4e8I7veGDvfDxfsj+fVZd5yC4qzUkhDg0PJFLYjDAM50hLggW74W0HGt5iK91hOKfojSqS2qXS35U2LZtGyUlJTYju1599VVefVUjrNydycefNs+tYu/M28rUBfUdjk9UHKd3f1da1vLBNzB4eJK7cx2/ffUW4aNn2zNcu/M2wT1trCNiTp+1jiLwdcm/chHrRVFiqPXn3PoZ/73Weqt1EVcUEwgvdoVVvx/PSTeAhy7sRaQSfp5wXzsY3Ra6LbeW/Us3ixcXZTDAH1taf85d2y0boC/kpW645Mfg7t27Y9FdGuolg4cnHv5B5dZ5Bjal8ICxTHsAc2EePhGd6jw+Z2E0WL8NFHE3SnSJO1GiS0SqS+9/4q6U6JK64pLJLpFLkTZ5AEVH9xP9188cHYqIiIiIiIiI1DF9pyhur+0L39D66U84+OEUR4ciIiIiIiIiInVMyS5xa+Yz1pU8Tb6NMDbwcXA0IiIiIiIiIlLXNI1RXE7a5ETy920mbXIioXdMIW93Ms1vGc/xbxdy9It/UnL6FCX5ObS4ZyZ7XhyCuagAg8FA+ANzHB26iIiIiIiIiNQxJbvE5bR9YbXNY78O1lvSBPcfQXD/ETZ1bZ5dYbe4RERERERERMTxNI1RRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0tUC9OJzoA3unluL5FaktSUhL33nsvERERREREsGDBApv6RYsWERISQmJiIn369GHz5s3s3r2bFi1a2LSbMmUKy5Yto1GjRtx///3ceeedzJ49m1mzZvHQQw8xadIkAB555BFmzpxJw4YN7baNzuJS9vX06dP58ssviYuL47XXXrNpd99995GWlkZJSQnz58+nbdu2ZGRkMHbsWIqKinj88ccZNGgQ48eP57vvvsPb25uPPvoIg8HA1KlTmT17tj03W0REREREyqFklzgdP0+IC3Z0FCK1Y/To0UyaNInHHnuM5ORkevToUVq3fPlylixZAsDHH3/M008/XeHrvPbaa/Tu3bv08fDhw4mLi+O7774rLbvppptYsmQJo0aNqoMtcX7V2ddHjhxh06ZNrFu3jscff5yNGzfStWvX0nZvvPEGnp6erFu3jrfeeovZs2fz3HPP8eGHHxIYGAjAqVOn2Lp1Kxs2bGDx4sV88MEHjB07lpMnT5KXl4efn5+9N11ERERERC6gaYwiInbQqVMnsrKySh9nZ2fj7e2NwWAAoHnz5pU+f9y4cdx4443s378fgKZNm2I02p7Cr7nmGlauXFm7gbugyvb1xo0b6du3LwD9+/cnJSXF5rmenp4A5OXl0alTJ4qLizlw4AAjRoxg8ODBHDlyBF9fXxo1aoTZbObUqVMEBQUB0L17d5KSkuyzkSIiIiIiUiElu0RE7CA5OZno6OjSxxkZGURERFTruX/+85/ZuHEjU6ZMYcKECRW28/X15cSJEzWO1dVVtq9PnjxJQIB1vrK/vz8nT54s8/wBAwYwduxYrrrqKo4dO8aOHTtYsGAB48aN48UXX8TT05MWLVrQvn17XnvtNYYMGQJAREQEaWlpdb+BIiIiIiJSKSW7RETq0Lx580hISCAsLIy4uLjLeo3GjRsDcNVVV3H8+PFajM69VGdfBwYGkpOTA0Bubm7p1MQLffPNN3zyySdMmTKFRo0aceWVV9K4cWP69OlDamoqu3btIisri9TUVKZNm8bLL79ch1slIiIiIiKXSskuEZE6NHr0aJKSkpg6dapNeXR0NJmZmdV6jdzcXAD27t1b6eLz+fn55SZv6ovq7OsuXbqwdu1aANasWUO3bt1s2hYVFQHQqFEjfHx8aNiwId7e3hQVFbFjxw4iIyMxm800btwYg8FAUFBQ6eiwzMxM2rRpU8dbKSIiIiIiVdEC9SIiDhAUFER+fn7p4+HDh/Ptt9+yZ88epkyZwoABA3jiiSeYNWsWEyZMYOvWrRiNRubMmQPAwoUL+ec//8mpU6fIyclh5syZrF27loEDBzpqk5zWhfu6efPmxMbG0qdPH2JjY+natSuHDx9m0aJFjB8/niFDhlBQUIDBYCjd10888QQDBgzAZDLx7rvvEhUVhcVi4ZprrsFisZTe+fH777/n1Vdfddh2ioiIiIiIlcFisVgcHYSzOpKymy8HT3J0GG7jhmVTadatvaPDEKlVXT+3/rtx0KU/d+HChYSGhpKYmFgrsTzyyCPMmDHDLe8GWJP9DLW/ry+WnZ3NCy+84PJTGmu6n6V6tJ/tR/ta3ImOZ/vQfrYP7Wepjg0bNtC7d2/Wr19Pr169Lum5GtklIuIgI0aMqNXXOzcSScqq7X19saCgIJdPdImIiIiIuAut2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchhaoF6eTdwYychzTd3QA+Hk6pm8RERERERERqTklu8TpZOTAmA2O6fudXhAX7Ji+RURERERERKTmNI1RRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0tUC9uIfWZBE7vTsbg4YnB5IF3WHtCh08joPMAR4cmIiIiIiIiInakkV3iNkKHTyN+SR6xC47QsF0P9ky/mZLTpxwdloiIiIiIiIjYkZJd4naMnl40uXY05sI8Cg9lODocEREREREREbEjJbvE7ZiLCji26h2MvgF4h7ZxdDgiIiIiIiIiYkcuk+wqLi5m8uTJhIeH4+PjQ//+/UlJScFgMLBs2TJHhydO4ODiyWy5M5Dt90WSv28r0ZO+wOQb4OiwxI1ZLOX/LnXHrP0sIuJUzprhZBEUnnV0JCIicrH8s3CyGErq4TW0SyxQb7FYGDZsGCkpKUyZMoXo6GgWL17MkCFDAIiPj7dbLMYGHlw9fQwhva/EOziA/CMn2DX/S3bP/9JuMUj5Qu98geZDnnR0GFIPlFjg0/3w4b7zZUO/hT+1gqER4OEyXyM4N4sFVh2ExXvOl924CoZGwl2twMcl3sFERNzTsUJYmAHLfoHTZ8EA9GwKd0dD1yaOjk5EpH7732F4LwM2Z1sfN25gvYYe3hr8PB0amt24xEeFuXPnsmLFCrZs2ULHjh0BSEhIICoqiqCgIFq2bGm3WIwmEwVHT/L17S+Qm3mEoA4RXPvBJAp/O8n+5cl2i0NEHKPEAhM3wjeHrBf25xw4DS9thx+OwsyrlPCqDa/+DIv22A5B/q0Q3toN/zsEb/WChi7xLiYi4l4O5sPo9daE17nBAhYg+Tf47ihMjoNB9rs8FxGRC8xPgzd2g/GCDysnimFeGnxzEP7VGwIbOC4+e3GJj2MzZsxg+PDhpYkuAJPJRFRUFPHx8Rw/fpz/+7//o127dlx55ZXccsst/Pbbb3USy9mCIjbP/JDc/YfBYiF7534OfL2Rpt1i6qQ/EXEun+y3Jrrg/AX+hb+vPWI74ksuz4Yj1kQXgLmc+t2n4PWf7RqSiIj87tlNcLzQ9n0QrFPNLcDULZB12gGBiYjUc9uyrYkuKLv8hwXIzIN/bLd7WA7h9Mmu9PR09u3bx9ChQ8vUHThwgPj4eAwGA0899RSpqals376d1q1b8/TTT9slPoOHiWbdYzixK9Mu/YmI41gs8MFe2xFdFzMAS/Zqbama+mif7bdRF7MAyw9Yp86IiIj9ZOTAluzyv4g4xwJ8oktjERG7+2hf5UkeM9ZlQo4X2isix3H6CSBZWVkANG3a1KZ89+7dZGZmEh8fT1BQEAkJCaV1V199NW+++Wa1+/D396e4uLhMeWuPxjwV0LvS5149fTRn8grY8/H/qt1ffdWvXwJ7zp6osp1vux60npp0Sa/dbtqlta9Iv34J5KdqOqqUz+QfTIf5ByttYwEOFYB/aBRnsytvKxXruCgbo3fDStsUlkCLLv3J373BTlG5v04fWa98vLy8HRyJe9N+th/t69oXNPABwu57tdI2FuCNFd/zZHxf+wRVT+h4tg/tZ/vQfq4b7d/ej2dQSKVtSizQrv8t5P70XztFdfnM5sq+Wqmc04/sCg4OBiAjI6O0zGKxMGHCBMxmc5nF6c1mM2+++SaDBg2q89iumjKSK7q0Y9Vd0zCf0fACEbdnqGxMV5nGdRZGvVDdfX1J/yciIlJj1TzvGvQ+KCJif7qGLuX0I7tiYmKIjo5m4sSJeHp64ufnx5tvvsnmzZvx9fWlXbt2Nu0fffRR/Pz8GDt2bLX7yM3NLbf8SMpuvhw8qdy6bs/fQ0jvK/lq2HMUZZf/fLG1Zk0Szbq1r7LdluMwxkEDNdasSSIu2DF9i/MzW2DwajhcUHadkgtd4Q0/HNyLyf3fQ+rMQ9/BT8cqnybTwAiZKd8QUA8W2LSXrp9b/y0qKnJsIG5O+9l+tK9r366TcPfaytsYgDHXd+cvT2q/1yYdz/ah/Wwf2s9146kfIelw5UuqGIGfV/+Hpj52C+uybdiwgd69K59tVxGnH9nl4eHB0qVLCQkJYeTIkYwbN44bbriBvn37Ehsbi9F4fhOefPJJ0tPTWbJkiU15bev2wihC+sRaE13Hc+qsHxFxLkYD/KlV5YkugGGRKNFVQ3+KqjzRZQBuaIESXSIidhYTCB0CK19XEay3uBcREfu6LarqRFdCCC6R6Koppx/ZBdC5c2eSk23XUXr99dfp2/f8OgATJ07kp59+4r///S9eXl51FkvDFk3oMOb/KCks5tYf5pSWH/lhN6vvmlZn/YqIc7g9Cn44ar29enm6BsPw1vaNyR31bQ5DIuDTTGti68L3bAMQ4QePdXBQcCIi9dzz8TBqPeSdsf1iwoj18ROdrOdpERGxr65N4O7W1rual3cN3cwHnrrSQcHZmUskuy5WUFBAamoq48aNA2Dnzp28+OKLtG3blp49ewIQFRXFp59+Wut9n/71GO+G3FrrryvVczothQPzHgeLBf/Y/oQNn1pal/pMP879Obd84A18WnZg70u3k7N5JdGTluPX4fKGP4pcyMMIs7vD+3tgyT747fc7mTTxglujYERraGBybIzuwGCAibHQvhEs3mu9TTKAn4c1CXZvG43qEhFxlEh/WHQNzEuHL3+FM79nvDo1hnvawDXNHRufiEh99lgHiA6ARRmQ8fuKSz4mGNwSRrWFoLobG+RUXDLZtW3bNkpKSkoXp+/YsSMWS1UTi8Qd+LaKp/0M64JeaZMHUJKfg8k3AACD0UTbF1bbtA8f8wq/ffWW3eMU9+ZptF7M3x0NR39fv6uptzURJrXHYLBOg7klAo4WWj9MNfVWMlFExBmENYRn4+DJTnDNCmvZ/D4ODUlERLBeQ98YDv/XAq5abi1bdT1417NraJdMdnXv3l3JrXrK4OEJgKWkBM+gUIxevhfUWkh9JgGv5tG0fOB1jA288Wysrxal7pgMEOJbdTupGYPBOuRaREScj69LfpoQEXF/F95wsb4lusAFFqgXuVj2/xazc2wMpoaBGEznr7BaTVhKu2lJ+ITHcGzVPAdGKCIiIiIiIiKOomSXuJygvnfScc5uzmQfpGD/9tJyD7/GADTqNojCAzsdFZ6IiIiIiIiIOJCSXeJSzGeKADAYjZh8/DE08C6tK8m3rr53encyDZpGOSQ+EREREREREXEszbIXl3Iq5XOOrpgDZjN+Ha/BXHia42sWEdzvbtKeTcTo2QBTw0CiHn8PgAPzn+Dk959yauN/aXrTOIIT7nLwFoiIiIiIiIhIXVKyS1xK417DaNxrmE2Zb6s4AGL+8UOZ9uGjZhE+apY9QhMRERERERERJ6BpjCIiIiIiIiIi4jaU7BIREREREREREbehZJeIiIiIiIiIiLgNJbtERERERERERMRtaIF6cTrRAfBOL8f1LSIi5UtKSuLee+8lIiKCiIgIFixYYFO/aNEiQkJCSExMZPr06Xz55ZfExcXx2muv2bQbOXIke/bswcvLi4ULFxIWFsaTTz7JggULePnllxk+fDgA/fr1w2KxAPDGG2/Qtm1bHnzwQd555x37bLCI1Fh1zxvh4eGMGjUKo9FI165defnll23affXVVzz33HP4+/vz7rvvEhoaysCBAykoKCAgIIAlS5bg7e2tc4SIiAAa2SVOyM8T4oId8+Pn6eitFxFxbqNHjyYpKYlGjRqRnJxsU7d8+XIGDBjAkSNH2LRpE+vWrcPDw4ONGzfatHvuuedYv349EydOZM6cOQCMHz+el156yaadyWQiKSmJpKQkOnTogIeHB1dccQV79uyp240UkVpVnfNGkyZNWLlyJevWrePYsWOkpaXZtJsxYwZr1qxh9uzZzJgxA4C5c+eybt06brnlFhYvXqxzhIiIlFKyS0RERC5Zp06dyMrKKn2cnZ2Nt7c3BoOBjRs30rdvXwD69+9PSkqKzXMjIyMBazLLYDAA0KxZszJ9WCwWEhISGDNmDIWFhQAkJCTw5Zdf1sUmOY2kpCSioqJISEhg5MiRZeqnTZtGenp6pa/x6KOP0qdPH6ZPn16mLjs7my5duuDn5wfA+vXrufrqq+nZsyezZs0CYP/+/YSEhJCQkMCIESMA2LVrV2mSQeRyVHbeCA4OLj0mLzw3nOPh4YG3tzcdO3YsPaeUdy6pD+cIERGpmpJdIiIicsmSk5OJjo4ufZyRkUFERAQAJ0+eJCDAOi/c39+fkydPlnm+2Wxm+vTpjB49usI+li5dSlJSEjExMcybNw+AiIiIMiM+3FFFI2HMZjPbtm2jTZs2FT5348aNeHh4sG7dOjZt2sSRI0ds6v39/Vm1ahVXX301AK1atWLt2rV89913fPHFF+Tn5wNw4403kpSUxMKFCwGIiYlh06ZNpVNLRS5VZeeNc3bu3MmxY8fKHONnzpzh+PHjrF+/nuzs7NLy/Px8/vWvf3HbbbcB9eccISIilVOyS0RERKpt3rx5JCQkEBYWRlxcXLltAgMDycnJASA3N5fAwMAybSZPnsztt99Oq1atKuyrcePGAAwaNIidO3fWOHZXdPFImK1bt9K2bdtKn/PDDz/Qv39/APr27ctPP/1kU+/p6UlQUFDp49DQUBo0aABYR8gYjdbLw5UrV9KnTx/ef//90ratWrWqt/8Xcvmqc94AyMnJYezYscydO7dM3dSpU7n11lv54IMP6NChQ2n5gw8+yJQpU2jUqFFdhC4iIi5KyS4RERGptnMjjqZOnWpTHh0dTWZmJgBdunRh7dq1AKxZs4Zu3brZtP3Pf/5DdnY2o0aNqrSv3NxcwDoaJCoqCoDMzMxKRzW5m4tHwqSnp5dO3apIdUbWlWfVqlW0bt0ab29vQkJCSE1N5euvv+btt9/m+PHjgEbNyOWpznnDYrEwatQonn/+eUJDQ8u8Ru/evVmzZg333HMP3bt3B2D27Nl06NCBa6+9trRdfTtHiIhI+XQ3RhEREamxoKCg0ulvzZs3JzY2lj59+hAbG0vXrl05fPgwixYtYvz48fzlL38hLCyMhIQErr32Wp555hleeukl3n33XQwGA0ePHuUvf/kLiYmJNGjQgMDAQN577z3Aup5VZVMf3cW8efNYvXo1vXv3rnAkzM8//8zDDz9sU3b99deXGVnXunXrKvv79ddfefHFF/n8888B8PLyKq3r06cPe/bsITg4+DK3RqR8F543kpKS+Pbbbzl27BgAs2bNIiwsrPS88fzzz5OUlERYWBhvv/02xcXF/PWvf6VHjx589dVX3H333aVJtfpwjhARkcop2SUiIiLVkpCQQEJCQoX1gwYNYvXq1SQmJjJ58mQmT55cWte8eXPGjx8PUDqS40Ljx48vrT/nhx9+sHl89uxZjh49ajPSyV2NHj2aSZMmlSlv06YNn3zyCQAdOnQgKSmpTJsff/yRDz74gJtuuom1a9eWrmVUkaKiIu655x7efPPN0gXC8/Ly8PPzw2KxsHHjRsaOHQtY/+969epVw62T+uRSzhsXrsV1zrnzwrPPPsuzzz5rU1dUVGTzuD6dI0REpHKaxigiIiK1YsSIESQmJtbZ63t4eJQuVF9fde7cmdTU1ErbXHXVVRQVFdGnTx86d+5Ms2bNOHz4MC+99FJpm8TERDZv3kxiYiJz587l559/5oEHHiAhIYGsrCy+++47unbtSs+ePRk4cCAhISGAdUHxTp061ek2Sv1Sm+cNnSNEROQcjewSERERcSKVjYQxGo3ExsaSnp5e6bpEc+bMsXl84cg6gNWrV9vUP/roozaPw8LCGDhwoE3Zrl276NKlCwaDoTqbISIiIuIwSnaJiIiIuJDypjfaQ0xMDDExMQ7pW0RERORSaBqjiIiIiIiIiIi4DSW7RERERERERETEbWgaozidvDOQkeOYvqMDwM/TMX2LiIiIiIiISM0p2SVOJyMHxmxwTN/v9IK4YMf0LSIiIiIiIiI1p2mMIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG1ogXpxC6nPJHB6dzIGD08MJg+8w9oTOnwaAZ0HODo0EREREREREbEjjewStxE6fBrxS/KIXXCEhu16sGf6zZScPuXosERERERERETEjpTsErdj9PSiybWjMRfmUXgow9HhiIiIiIiIiIgdKdklbsdcVMCxVe9g9A3AO7SNo8MRERERERERETtymWRXcXExkydPJjw8HB8fH/r3709KSgoGg4Fly5Y5OjxxAgcXT2bLnYFsvy+S/H1biZ70BSbfAEeHJSIiIiIiIiJ25BIL1FssFoYNG0ZKSgpTpkwhOjqaxYsXM2TIEADi4+PtGs/VL44h/NqueAb4ciavgMwvktn4wnuYz5y1axxiK/TOF2g+5ElHhyEi4nJ2nIDFe84//uMqGBoJwyLBz9NRUbmf/bnw/t7zj6/9Cga3hNtbQRNvx8UlcjlyiuGjffCfzPNlkzfBXa2gfaDDwhIREQFcJNk1d+5cVqxYwZYtW+jYsSMACQkJREVFERQURMuWLe0az65/f8XG5xdxtqAIryB/EuY+Qexjt7Bl1kd2jUNERKSmVhyAKZsBw/mywwUwZ5e17l+9INDLYeG5jY3H4LHv4az5fNmJYliQAct/388t/RwXn8ilOFYIY9bDr/m25St/ha+zYHoXGBDqmNhERETARaYxzpgxg+HDh5cmugBMJhNRUVGlo7puvvlmOnfuTHx8PH369GHLli11Fs+ptF85W1BkfWAwYDFb8G8VUmf9iYiI1IVfT8OULWAGzJay9Zl5MHWrvaNyP6fPwhMp1kSX+aI6C9ak11M/gqWc/wMRZ/S3zXAwv2z5uXPJMz/B0QK7hyUiIlLK6ZNd6enp7Nu3j6FDh5apO3DgQGmya8GCBWzdupXNmzfz5JNPMmrUqDqN68qxN3NXxiLu2DGfoI4R/Dz3izrtT0REpLb9Z3/lCRYz8L/DcLicD7VSfV8esCa8Lk50nWO2QEYubM22a1gil2V/HvzwW8XHswUoscCnmRU0EBERsQOnn8aYlZUFQNOmTW3Kd+/eTWZmZmmyq1GjRqV1p06dwmisfh7P39+f4uLiMuWtPRrzVEDvcp+z/fXP2P76ZzRqE0arW/pQcPREtfurr/r1S2DP2ar3k2+7HrSemnRJr91u2qW1r0i/fgnkpybXymuJiDi76Jd+xCcyttI2FqDz4FGcXPu+fYJyQy2f+ICAqwZhMFV82WUxm7npz9M4+vFUO0bm/jp9VAiAl5cWRastQdfeR9j9r1faxmyx8Mry73msc4J9gqondDzbh/azfWg/24er72ezuaKvVqrm9CO7goODAcjIyCgts1gsTJgwAbPZbLM4/ZgxY2jZsiXPPPMMCxYssEt8p9KzyN6ZSZ/XHrNLfyIiIrWlsuSLTTujqY4jcXNGDzAYqmhk0X4Wl1Cd84bBYNDxLCIiDuX0I7tiYmKIjo5m4sSJeHp64ufnx5tvvsnmzZvx9fWlXbt2pW3feecdABYtWsT48eNZsWJFtfrIzc0tt/xIym6+HDypyucbPU0EaM2uKq1Zk0Szbu2rbLflOIzZYIeAyrFmTRJxwY7pW0TE3p7bDP89UPF0pHPWfvQv2jb6l11ickfvpMJbqZW3MRhNLJgxkX4LJ9onqHqi6+fWf4uKihwbiBvZlg2j1lfexgiMvLYbE57Qfq9NOp7tQ/vZPrSf7cPV9/OGDRvo3bv82XZVcfqRXR4eHixdupSQkBBGjhzJuHHjuOGGG+jbty+xsbHlTle8++67WbNmDcePH6/1eDz9fYm+LYEGAb4ANI6JoPO4oRxM0gq+IiLiWoZGVp7oMgJXNoa2jSppJFW6OQKMlQzsMgLBXtCnmd1CErlsVzaG1v6Vf4gwYz2/iIiIOIrTj+wC6Ny5M8nJtusovf766/Tt2xeAvLw8Tpw4QXh4OADLly8nKCiIoKCg2g/GYqHV0Gu4aspIjA08KDyWQ+aKH9jy0pLa70tERKQOdWoMI6NhQQYYsK7PdY4R8PWASZ0dFJwbaeINE66EF7dZ9+uFCUYj1kTY1D+Ah9N/BSlinZH73B/gvvVQVGJ7PJ87jzzYDqIDHBSgiIgILpLsulhBQQGpqamMGzcOgNOnTzNs2DBOnz6NyWQiKCiI5cuXY6hyfYxLdyavgK//9Hytv66IiIgjjI2B8IbWhNeB09YyowH6N4eHYiDCz7HxuYuhkdbRW++kwe5T58u7XQEPtrcmHkVcRftG8G4feHO39Y6t5xLlEX5wbxu4Mdyh4YmIiLhmsmvbtm2UlJSULk7frFkzvv/+ewdHJfZyNjeb9L9dS2FWKvFL8mzqzpz6jV/m3M/Z0ycJuuYOrrjufgoPZXDg7bGYzxTRbNDjBHYf5KDIRUScj8FgnWY3uCXsz4OCEgjxgcZejo7M/SSEWH9+PQ2niuEKb2jq4+ioRC5P6wD4Rzc4XghHCq0jQSMaVuNeDCIiInbgksmu7t27Y7FYqm4obsnk40+b51axd+ZtZeoOLXmeFmNewatpxPmyD58j6skP8fALtGOUIiKuxWCAKH9HR1E/tGho/RFxB8He1h8RERFnotUhxOUYPDzx8C9/PbairDSyFj5N2t8GUvhrKuYzxRQfO8D+V0aQMW0wZ04esXO0IiIiIiIiImJPLjmyS6QiebvW0+Gf27BYzGQt/Cvh971KQeYOOr2VTsHeLRxe+iLhY15xdJgiIiIiIiIiUkc0skvcinfLjniFtMY7tA0l+acwNWyET8SVePg1xq9jHwqzUh0dooiIiIiIiIjUIY3sErfi1TSSsznHsJhLMHr5YvJuiLGBN+YzRRQe2EWDppGODlFERERERERE6pCSXeKS0iYnkr9vM2mTEwm9Ywp5u5Npfst4mt82iT0v3oKl5Czh970KQLPBT5A2eQAGo4nIP7/r2MBFREREREREpE4p2SUuqe0Lq20e+3XoDYBvZCztXlxrUxcQl0hAXKLdYhMRERERERERx9GaXSIiIiIiIiIi4jaU7BIREREREREREbehZJeIiIiIiIiIiLgNrdnlZHq/8ghnThfywzPzHB1KGXdlLOLLm58le8e+Ou0nOgDe6VWnXVTat4iIiLi/pKQk7r33XiIiIoiIiGDBggU29YsWLSIkJITExET69OnD5s2b2b17Ny1atLBpt3btWsaPHw/AxIkTGTx4MPfddx9paWmUlJQwf/582rZty7333sv8+fMxGAx220YREZH6SsmuOtS8Z0finriN4NhWABzftpct//iIw8k7HRyZVdwTtxHcuTXfjHixWu3fj767jiOy8vOEuGC7dCUiIiL12OjRo5k0aRKPPfYYycnJ9OjRo7Ru+fLlLFmyBICPP/6Yp59+utzXePnll/n0008JCgrixhtvZPDgwbzxxht4enqybt063nrrLWbPnk337t1Zs2YN/fv3t8u2iYiI1GeaxlhHWiR24drFkziw+ic++sMDfPSHBziw+ieu/WASLQb8odznGEy1999h8DDV2muJiIiIuLNOnTqRlZVV+jg7Oxtvb+/SUVjNmzev8Llt2rTh1KlTnD59Gn9/fwA8PT0ByMvLo1OnTgD069ePFStW1NUmiIi4laSkJKKiokhISGDkyJFl6qdNm0Z6enqFz8/OzqZLly74+flVq37//v2EhISQkJDAiBEjANi1axczZsyoha0RR1Cyq450nzqKjI+T2Pnm55zJzedMbj473/ycPUv/R7epowC4NeUNYscN5f8+n8bwve/TpHNrADwbepMw9wnuSl/Ezf97mdCEzlX217xHR+7KWETb4Ync+uObDFr9DwBCronljytncGfqAgZ9M4uW118FQMvrr+LKx4YQ1i+OuzIWcVfGIowNKh/od8+hpQR3bo3BZOTOtIUEtgu39t2zI/ccWkrEH63fhvo0DWTELx/i6edzeTtPRERExI6Sk5OJjo4ufZyRkUFERES1njt48GCuu+46OnfuzIMPPlhaPmDAAMaOHctVV1mvvSIiIkhLS6vdwEVE3Njo0aNJSkqiUaNGJCcnl5abzWa2bdtGmzZtKnyuv78/q1at4uqrr652/Y033khSUhILFy4EICYmhk2bNmGxWGppi8SelOyqAwGtQ/GPaMa+zzaUqdv76XoCIpsT0CoEgOhhCWx44g3ej76b47+vhRV1c2/2frqOxe1Hsu21T+k//yl8mwdV2a+HjxdN4qL57JpxfHHDBPwjm5O44Gl2vP4ZH3S4l5+mvUffNx8nqGMkv3z1I9tf/ZSsNVt4P/pu3o++G3Px2Wptn6XEzJEfdhHS+0oAQvpcSc6+Q4T0tn5zGdL7So5v28uZvIJqvZ6IiIiII8ybN4+EhATCwsKIi4u7rNeYPHkyP/74Y5kRAN988w2ffPIJU6ZMqZ1gRUTqqYtH327dupW2bdtW+hxPT0+Cgir+DF1e/cqVK+nTpw/vv/9+aVmrVq3YudM5liGSS6NkVx3wDrIOYS84kl2mruDoCWubYOtK6KmLVnEqPQuL2VyabDr8/c/88mUKlhIze5eu5cTPmUTe1KPMa13MYDTy0/T3OVtQRElBMVGDe3Lkh13sX56MpcRM1reb+eXrjbQe1rfG23h4/Q6b5NaWf3xUmvxq3qsThzbsqHEfIiIiInXp3KiBqVOn2pRHR0eTmZlZrdcwmUwEBATg6+tLUVERQOm/jRo1wsfHOtI9MzOz0lEIIiJSvotH36anpxMZGVmrfYSEhJCamsrXX3/N22+/zfHjxwGNynVlSnbVgcLsXAB8mpXNJPs0bWxtczwHgNNZv5Vpc/pX27K8A79Va2TX2YIiin7vG8A3JJi8i18r8wi+ITVf/f3Q+u00u7oDDQJ8CWgVyr7PNmBq4IFvSBAhvTtxaN32GvchIiIi4ghBQUHk5+eXPh4+fDhff/01d9xxB9988w0ATzzxBADjxo2jX79+9OzZk1GjrEtVDBkyhH79+jFq1CieeeYZANasWcMNN9xg5y0REXFd1Rl9+/PPP5OQkGDz8/e///2S+/Ly8sLX1xcfHx/69OnDnj17ahi9OJruxlgHcvYcJPeXI0QN6snhi0Y4RQ3uSe4vR8jZewgAi7ns/N+GLa6weewXfgW/bao6m2wxm20e5x86TvMeHS96rabkHzpebvtLkb1zPxazmQ73/ZGjP+7GYjZzaP0O2t6ZiG/Txhz9cfdlv7aIiIhIXTv3oagigwYNYvXq1SQmJvLee++VqZ81axZgXePlxhtvtKkrbyH6H374gfvvv79mQYuI1CPn7ph7sTZt2vDJJ58A0KFDB5KSkmrcV15eHn5+flgsFjZu3MjYsWMB66jcXr161fj1xf40squOpDz7LtF/6kfHB27C088HT39fOjzwR6Jv60fK5H9X+tzmV3cgfGBXDCYjrW7pQ+MOEez/7/eXHMO+Zd/RrHsMETd2x2A0EtYvjvDrurJn6VoACo6domFYk8u+C+Th73bS4f4bObTeOorr0IbtdLj/Ro7+lEZJ0ZnLek0RERERZzBixAgSExNr7fX+/e9/YzTq0ltEpKY6d+5Mampqle0SExPZvHkziYmJ7Nixg8OHD/PSSy+VWz9//ny6du1Kz549GThwICEh1jW2MzIySu+qK65FI7vqyIGVP7J6+HQ6/+VW4sbfBsDxbXtZPXx6aXKoIvs+W0/rYX25Zs6fOX3oOGvG/IP8g8cvOYbc/Yf5dtRM/vDXu+j18iOc/vU31o59lezfF8LfvzyZVjf35vYd8zEYDHwYO7rai9QDHFq3ncg/9uDQeuvotUPrd9AgoKHW6xIREREREZHLVtnoW6PRSGxsLOnp6ZWuhbh69eoyZePHj6+w/rHHHrN5vGvXLrp06YLBYLiEyMVZKNlVhw6t315pYmtpt4fLlK0fN+ey+jqcvJP3o+8uU561ZgtZa7aU+5zik3l8NfRv1Xp9w+/fRF6YDEtd+DWpC78ufVxw5ATvhtx6CVGLiIiIiIiIXJrypjfWtpiYGGJiYuq8H6kbGkst1dK4YwTmM2fLXVBfRERERERERMRZaGSXCxmc9DJ+LZqUKT/w9U+sffiVGr9+4vvP0Kx7+zLlZ/IKMXqa+Gn6Yopz8st5poiIiIiIiIiIc1Cyy4UsS3i8Tl9/9V3T6vT1RURERERERETqmpJd4nTyzkBGjmP6jg4AP0/H9C0iIiIiIiIiNadklzidjBwYs8Exfb/TC+KCHdO3iIiIiIiIiNScFqgXERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbWjNLnELqc8kcHp3MgYPTwwmD7zD2hM6fBoBnQc4OjQRERERERERsSON7BK3ETp8GvFL8ohdcISG7XqwZ/rNlJw+5eiwRERERERERMSOlOwSt2P09KLJtaMxF+ZReCjD0eGIiIiIiIiIiB0p2SVux1xUwLFV72D0DcA7tI2jwxERERERERERO3KJZFdxcTGTJ08mPDwcHx8f+vfvT0pKCgaDgWXLljk6PHESBxdPZsudgWy/L5L8fVuJnvQFJt8AR4clIiIiIiIiInbk9AvUWywWhg0bRkpKClOmTCE6OprFixczZMgQAOLj4x0Sl8m7AYO/nYVP00Dej77bITGIrdA7X6D5kCcdHYZDmS3wzUH4aB+kngKTAXo0hT+1gs5Bjo7OvSQfte7nTcetjzsHwW1R0KspGAyOjU3kUu3LhSX7YPVBKCyBlg3hlkj4Yzh4mxwdncilOVkMn+yHZb+cL3tjFwyLgiu8HRaWiIgAPx2zXnOc89B3MCwS+oXoGlpql9Mnu+bOncuKFSvYsmULHTt2BCAhIYGoqCiCgoJo2bKlQ+KKH/8n8n49hk/TQIf0L3Kxs2aYtMn6YdUImH8vX30Ivj4Ij3eEu1o7MkL3YLHAqz/Doj22+/n73+C7o3B7FDzRSW/W4jr+dxgm/GhNlp87ntNz4O/b4PNf4I0e4Ofp0BBFqu3X03D/BjhaaFv+73RYuh/e7AntGjkkNBGRem9eGry5G4wXXCf/dAx+PAY3toC/xdvWidSE009jnDFjBsOHDy9NdAGYTCaioqLKjOp67rnnMBgM7Nixo05jCo5tRVi/OHbM+axO+xG5FAsyrIkuOP+BFawfYAFe3ml9M5GaWZllTXRB+fv5w33wxQG7hyVyWQ7nw9MbocRiezz/fjiz66Q16SXiCiwWeCIFjhWWUwfknYE/fw9nzGXrRUSkbm04Yk10wfnrZjh//fHfX+HDvXYPS9yYUye70tPT2bdvH0OHDi1Td+DAAZtk16ZNm/j++++JiIio05gMJiM9//Eg3098B3Px2TrtS6S6zpqrfnMwojeQ2rB4b+UnTgPw/h7rhy4RZ/dJpvX8UdHhasE6MrS85IGIs/npOOzJtU3cXsgMHCuCNYfsGZWIiAB8sLfqUVuL99omwkRqwqmnMWZlZQHQtGlTm/Ldu3eTmZlZmuwqKirikUce4YMPPiAhIeGS+/H396e4uLhMeWuPxjwV0NumrNPDgzm+fR9Hvt9F8x4dyzxHKtavXwJ7zp6osp1vux60npp0Sa/dbtqlta9Iv34J5Kcm18pr2ZN3q3jazPi+0jZm4JtfCvHqo/kbl8vYMJCO7x6ptI0FyMgFv+YtOXuy8rYijhb9UgreEbEYKpl3a7ZAxz/ew8l1H9gxMpFL1/yuaTQZ9DgGY8ULzVlKzvLQrMX8Ouc+O0YmUjs6fWT95sHLS4vP1SXt5zpgNNLpw9MYDJWPtTlcAIGtYik6mGqnwNyfqx/PZvPlD8d26pFdwcHBAGRkZJSWWSwWJkyYgNlsLk12PfvsswwfPpzIyMg6jcc/sjntRgxk4wuL6rQfkUtlMFVvQZ3qtpPyXcr+M3g0qMNIRGqHwdSg0kRXaTsdz+ICDB6eYKn6oljHs4iIfRmMHlUmukrbeujzitQOpx7ZFRMTQ3R0NBMnTsTT0xM/Pz/efPNNNm/ejK+vL+3atSM5OZmNGzfy97///bL7yc3NLbf8SMpuvhw8qfRxs27t8WnSiFs2vAqA0cOEZ0Mfbt85nzWjX+LI97suO4b6YM2aJJp1a19luy3HYcwGOwRUjjVrkogLdkzfNXGyGK5fCWcrGfZrAKIDTfxUVGS3uNxNicW6n0+UHQhqI8ATThzIwNOpv04QgWd+glUHq54y8M0Hc+nYeK59ghK5TJ//As9vqbyNweTBM/fdzr0zb7dLTCK1qevn1n+LdC1Xp7Sf68bNqyErv+KlEwC8jHBw1080dOoshWtx9eN5w4YN9O7du+qG5XDqj2IeHh4sXbqUkJAQRo4cybhx47jhhhvo27cvsbGxGI1G/ve//7Fr1y6ioqKIjIzk119/5brrruPrr7+u9Xj2Lf+O//Qcy+eJT/J54pNseOItzuQX8nnik/y2Kb3W+xOprsAGcG1Y5X/QFuC2KHtF5J5MBrg10po4rIgBGBKBEl3iEm6NrDzRZQTaBkCHQDsFJFIDA0PB11T5OdpkgEHhdgtJRER+Nyyq8kSXEbgxHCW6pNY4/cexzp07k5ycTH5+PqmpqTz00ENs3ry5dArj008/zcGDB9m/fz/79++nRYsWrFy5koEDB9Z6LCUFxeQfyi79KTqeAxYL+YeytVi9ONzYGAj2rviPumsw3NTSriG5peHR0Nq//A9TRiDCD+5pY++oRC5PXBAMreC+LkasSdtJcVCNmY4iDuftAZPjrL9ffMiee/yXTtb3ShERsa9bIyG2ccXX0M184IF2dg5K3JrTJ7suVlBQQGpqqs2dGB3lcPJO3o++29FhiADWN4h/94H+IbZ3OvE1wV2t4J9Xa7RRbWjoAf/qDTdHQIML9qen0fpt1Lze4K+lBsRFGAwwIRYe6wBBXrZ1XZrAvD4a1SWu5doweLk7RAfYloc3hGld4E8a4Swi4hBeJpjTwzrTxPuC+4iYDNZz97/76MsIqV0uN0hw27ZtlJSUVJjs2r9/v30DErs7m5tN+t+upTArlfgleTZ1+fu28stbD2PwaEDUuIU0uCKcY6vnc+zrd/AIbErUuEWYfP0dFHnda+4Df78KjhXC9b/P5F15Hfi43F+6c/P3hGc6WxME/b60ln01EBppzWNxQUYDjIiGO1vB1V9Yyz4bAC0aOjYukcvVuxn0agp7cq3vh4ENoF0jjVAUEXE0Hw8YfyU8HAO7TlqXUogOKPuFm0htcLmPwN27d8diqWIlXXFrJh9/2jy3ir0zbytTd2jJ87T+66ecOXGIw5/MIHzMKxz/dgHt/r6eUz+t4Niqd2g2+HEHRG1fTS74VkSJrrpz4QguJbrE1XlcMFJRiS5xdQaD9QPUxSO8RETE8Rp6QNcmjo5C3J0mNYnLMXh44uEfVG6dufA0noFN8Y3qTNGhDM7mHKPBFS0xGI34RFzJ6dRkO0crIiIiIiIiIvakZJe4FYvFbPO7R8AVFB3KwFxcSN7OtZScPuXA6ERERERERESkrinZJW7FYDDa/G4wmWg2ZDzpz11Pwf6teAQ2c2B0IiIiIiIiIlLXtJqPuBWjly9nTv3GmROH8AqJBqBxj1to3OMWTmz4GEvJWQdHKCIiIiIiIiJ1SckucUlpkxPJ37eZtMmJhN4xhbzdyTS/ZTwhf5rMnuk3Y/DwJGrcQgB+eethCrNS8Q7vQPjoVxwbuIiIiIiIiIjUKSW7xCW1fWG1zWO/Dr0B8G0VT/sZG2zqWj74ht3iEhERERERERHH0ppdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA2t2SVOJzoA3unluL7rg6SkJO69914iIiKIiIhgwYIFNvWLFi0iJCSE8PBwRo0ahdFopGvXrrz88ss27WbPns2sWbN46KGHmDRpUoVljzzyCDNnzqRhw4b22UARERGReqS613aJiYn06dOHzZs3s3v3blq0aGHTbsqUKSxbtoxGjRpx//33c+edd+o6TkRckkZ2idPx84S4YMf8+Hk6euvtZ/To0SQlJdGoUSOSk5Nt6pYvX86AAQNo0qQJK1euZN26dRw7doy0tDSbdsOHD2fRokVVlt10000sWbKkbjZERERERKp1bQfw8ccfc+utt1b4Oq+99hpJSUnceeedgK7jRMQ1KdklUs916tSJrKys0sfZ2dl4e3tjMBgIDg7Gz88PAJPJhMFgsHlu06ZNMRqNVZZdc801rFy5so62QERERETOqezaDqB58+aVPn/cuHHceOON7N+/H9B13MWSkpKIiooiISGBkSNHlqmfNm0a6enpFT4/OzubLl26lF5jV1W/f/9+QkJCSEhIYMSIEQDs2rWLGTNm1MLWiLgvJbtE6rnk5GSio6NLH2dkZBAREWHTZufOnRw7dow2bdpcVh++vr6cOHGiRnGKiIiISNWqc21XkT//+c9s3LiRKVOmMGHCBEDXceWpaBSd2Wxm27ZtlV4z+/v7s2rVKq6++upq1994440kJSWxcOFCAGJiYti0aRMWi6WWtkjE/SjZJVJPzZs3j4SEBMLCwoiLi6uwXU5ODmPHjmXu3Ln2C05ERERELkl1r+0q07hxYwCuuuoqjh8/XovRuaeLR9Ft3bqVtm3bVvocT09PgoKCLql+5cqV9OnTh/fff7+0rFWrVuzcufMyIxdxf1qgXqSeGj16dOkC8heKjo4mMzMTAIvFwqhRo3j++ecJDQ297L7y8/MJDAy87OeLiIiISOWqc21XldzcXPz9/dm7d2/pgvS6jqtYcnIyf/7zn0sfp6enExkZWat9hISEkJqaisFg4LrrruP6668nODiYiIgI0tLS6NSpU632J+IulOwSERtBQUHk5+cD1jUJvv32W44dOwbArFmzCAsLY9GiRYwfP56FCxfyz3/+k1OnTpGTk8PMmTPLLVu7di0DBw505GaJiIiI1EsXXtuB9WZC3377LXv27GHKlCkMGDCAJ554glmzZjFhwgS2bt2K0Whkzpw5ALqOK8e8efNYvXo1vXv3rnAU3c8//8zDDz9sU3b99dfz9NNPX1JfXl5epb/36dOHPXv2EBwcfMkxi9Q3SnaJ1EMJCQkkJCRUWD9o0CBWr15NYmIi2dnZZerHjx8PwIgRI0oXyjynvLLly5drEU0RERGROnIp13bvvfdemfpZs2YB8MYbb5Sp03VcWRWNomvTpg2ffPIJAB06dCApKanGfeXl5eHn54fFYmHjxo2MHTsWgMzMTHr16lXj1xdxV1qzS0TKGDFiBImJibX2enPmzKnwjjMiIiIiUrdqcm2n67jq69y5M6mpqVW2S0xMZPPmzSQmJrJjxw4OHz7MSy+9VG79/Pnz6dq1Kz179mTgwIGEhIQA1hsPaAqjSMU0sktERERERESkGiobRWc0GomNjSU9Pb3SOzKuXr26TNm5mRPl1T/22GM2j3ft2kWXLl0wGAyXELlI/aJkl4iIiIiIiEgtKG96Y22LiYkhJiamzvsRcWWaxigiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjb0Jpd4nTyzkBGjmP6jg4AP0/H9C0iIiIiIiIiNadklzidjBwYs8Exfb/TC+KCHdO3iIiIiIiIiNScpjGKiIiIiIiIiIjbULJLRERERERERETchpJdIiIiIiIiIiLiNrRml7iF1GcSOL07GYOHJwaTB95h7QkdPo2AzgMcHZqIiIiIiIiI2JFGdonbCB0+jfglecQuOELDdj3YM/1mSk6fcnRYIiIiIiIiImJHSnaJ2zF6etHk2tGYC/MoPJTh6HBERERERERExI6U7BK3Yy4q4NiqdzD6BuAd2sbR4YiIiIiIiIiIHblMsqu4uJjJkycTHh6Oj48P/fv3JyUlBYPBwLJlyxwdnjiBg4sns+XOQLbfF0n+vq1ET/oCk2+Ao8MSERERERERETtyiQXqLRYLw4YNIyUlhSlTphAdHc3ixYsZMmQIAPHx8XaLpfcrjxA1pDfmM2dLy5Lum0XWmi12i0HKF3rnCzQf8qSjw3AoiwV++A2W7j9f9vdtcGskRCvvJy5oXy58vB/WH4GzZmjXyHo892wKBoOjoxO5NCeL4LNf4Ktf4WQxNPeFwS3hhjDwdokrMhGxN7PF+h74n/3ny2btgGGR0NLPUVG5p03H4eN95x8/vwVui4T2gQ4KSERqxCUurebOncuKFSvYsmULHTt2BCAhIYGoqCiCgoJo2bKlXeNJe281Pzwzz659ilTFbIEXt8GnmWC8IAnwyX7rBdKkOOuHKhFXseIATNkCWMD8e9mxQlh3BG5sAc/Gg0kJL3ERGTnw0Hdwovh82fEi2HECPtgLb/WEIC/HxScizuesGSZtgtUHbafjfLjXmpSZ1gUGhDosPLdhscCrP8OiPbb7+Ytf4PNf4C8d4c7WDgtPRC6TS0xjnDFjBsOHDy9NdAGYTCaioqJKR3VFRkbSvn174uLiiIuLY+XKlY4KV8QhPthrTXSBNfF1jhmwAFO3wPZsBwQmchl2n4Ipm63HsvmC8nO///dXWKT7T4iLKC6BR7+HU8W25edO1ftz4a8b7R6WiDi5f6VZE11g+15oAUosMPEn6whoqZnlB6yJLij/mmP2Tvj+qL2jEpGacvpkV3p6Ovv27WPo0KFl6g4cOGAzhXHp0qVs2bKFLVu2cN1119VZTK1u6cMdP/+bm9e+Quyfb8FgcvrdKG6uxALv7am8jQH4cF/lbUScxZK9Vbd5f4/1W28RZ/fNIfit0PZD1IXMwE/HIe2UPaMSEWdWWFL5e6EF64ikj3RtVyMWi/XLs8oGihuxXnOIiGtx+mmMWVlZADRt2tSmfPfu3WRmZtbKel3+/v4UFxeXKW/t0ZinAnrblP08bwUbX1hEYXYuwbGt6PvGOExeDdg888Max+Hu+vVLYM/ZE1W2823Xg9ZTky7ptdtNu7T2FenXL4H81ORaeS178o6Mpc1LP1baxgx8uTeff/RsbJ+g6olOHxUC4OXl7eBI3EuHfx/G5Ff5sXqiGJrE9qEgPcVOUbk/Hc91I3zcIhpdfQsGU8WXXRaLmf4PPsdvn/zdjpGJiLNq2CmBVn+rfKaKGVi86SDPXhVln6DckOcVEbR/I63SNmbgu6NmvBsGYDl7xj6BidQSV7+2M5sv/5ttpx+SFBwcDEBGxvn5KhaLhQkTJmA2m22SXXfddRexsbE8/PDDnDx5sk7iyd6+j8LjOWCxcHzrHjb/YwlRg3vVSV8i1WVs4FOtdgZPLQgjrsHQoHpvyNU99kUcydjAp+o7KpgtGL10PIuIVbWv7fQ+WCPV3s8GIwYPXUeLuBKnH9kVExNDdHQ0EydOxNPTEz8/P9588002b96Mr68v7dq1A2DdunWEh4dTVFTEuHHjGDt2LO+99161+sjNLX+y+5GU3Xw5eFLlTzZbKh/3KqXWrEmiWbf2VbbbchzGbLBDQOVYsyaJuGDH9F0T2UVw/de2a3VdzABEBpj4qajIbnHVB10/t/5bpP1aq+5MgvSc82salccA7NrwNc10nV9rdDzXjVd/tk6TqfR4Npl464Wn+b93n7ZbXCLivA7kwZBvK29jBLqEN2aLztmXLf8sJH4FxVUMHgn2gvyTx3UnaHE5rn5tt2HDBnr37l11w3I4/cguDw8Pli5dSkhICCNHjmTcuHHccMMN9O3bl9jYWIxG6yaEh4cD4OXlxcMPP8yGDXWTLYkc1BNPf18AGsdE0PmJYez/wvWmvYl7CfKCfs0r/4O2ALdG2ikgkRq6NbLyxIAR6N0MJbrEJQxpWXXi1s8D+uuuaiLyu3A/6Bpc+bWdGbhVMxhrxNcDbgyvfD8bgGGRVQ/QFRHn4vQjuwA6d+5McrJtQun111+nb9++AJw+fZqzZ8/SqFEjLBYLH374IXFxcXUSS/t7rqPHjPsxepooOHKSPUv/x7bXPq2TvkQuxaMd4MdjkHe27AgvA9AhEG5u6YjIRC7dH8Otd1zcll02SWA0gK8J/tzBIaGJXLJwP7i3Dfw7vWydAesx/nQseJvsHZmIOLMnOsGo9VBUUv4NLro1gWuVJK+x+9rC+iNwvJwbiRiBSD+4vZUjIhORmnCJZNfFCgoKSE1NZdy4cQAcOXKEoUOHUlJSQklJCR06dOCNN96ok76/uuVvdfK6IjXVoiH8uw/8fZs16XWOhwFuaAFPXgneLvkXL/VRAxO8frX1dt9fHIAzF1x9xgVZEwOR/o6LT+RSPdweGjewJrxOXHBPnDBfeKyDRnWJSFltGsG83jBjO2zNPl/ewAiDW8KfO4KH08/TcX5NfeDfveHFbfDd0fNfshkN1mTiU1eCn6dDQxSRy+CSH323bdtGSUlJ6eL0rVq1YvPmzQ6OSuzhbG426X+7lsKsVOKX5NnUHVk2myOfzeKKGx4i5DbrWmuZr99H4cE0LOYSIh+dj3dYW0eEbTcRfvBmT/glD9JyrImuuCAI1Hqa4oJ8POCZzjA2BgZ8ZS1b2t/6DauIqzEY4M7WcFsUXP2FteydXtA5SFNjRKRibX9PeO3Ntf54GqFLsJIvta25L/zzajiYD7tOWkfdxgZBE9e8gZ2I4KLJru7du2OxVLb6hbgrk48/bZ5bxd6Zt5WpC+o7HJ+oOE7v/q60rOWDb2Dw8CR35zp+++otwkfPtme4DtPSz/oj4g4aNTj/uxJd4uouHIXhijdEERHHaOVv/ZG6Fepr/RER16eBr+JSDB6eePgHlVvnGdgUg8FYpj2AuTAPn4hOdR6fiIiIiIiIiDiWS47sErkUaZMHUHR0P9F//czRoYiIiIiIiIhIHdPILnF7bV/4htZPf8LBD6c4OhQRERERERERqWNKdolbM58pAsDk2whjAx8HRyMiIiIiIiIidU3TGMXlpE1OJH/fZtImJxJ6xxTydifT/JbxHP92IUe/+Cclp09Rkp9Di3tmsufFIZiLCjAYDIQ/MMfRoYuIiIiIiIhIHVOyS1xO2xdW2zz269AbgOD+IwjuP8Kmrs2zK+wWl4iIiIiIiIg4nqYxioiIiIiIiIiI21CyS0RERERERERE3IaSXSIiIiIiIiIi4ja0Zpc4negAeKeX4/oWqS1JSUnce++9REREEBERwYIFC2zqFy1aREhICImJifTp04fNmzeze/duWrRoYdNuypQpLFu2jEaNGnH//fdz5513Mnv2bGbNmsVDDz3EpEmTAHjkkUeYOXMmDRs2tNs2OotL2dfTp0/nyy+/JC4ujtdee82m3X333UdaWholJSXMnz+ftm3bkpGRwdixYykqKuLxxx9n0KBBjB8/nu+++w5vb28++ugjDAYDU6dOZfbs2fbcbBERERGRy3Ip188An332GePHjyc9Pd2m3YEDBxgxYgTFxcW88cYbdO7cmY8//piXXnoJo9HIK6+8wtVXX829997L/PnzMRgMdtk+jewSp+PnCXHBjvnx83T01ou7GT16NElJSTRq1Ijk5GSbuuXLlzNgwAAAPv74Y2699dYKX+e1114jKSmJO++8E4Dhw4ezaNEimzY33XQTS5YsqeUtcB3V2ddHjhxh06ZNrFu3Dg8PDzZu3GjT7o033uB///sfL774Im+99RYAzz33HB9++CFr1qxh0KBBnDp1iq1bt7JhwwZGjx7NBx98QFBQECdPniQvL89u2ysiIiIiUhPV/awC8J///Ifw8PAyrzFjxgxeeeUVPvvsM55//nkA5syZw9q1a/nkk0/4xz/+AUD37t1Zs2ZNHW6NLSW7RETsoFOnTmRlZZU+zs7Oxtvbu/SbjebNm1f6/HHjxnHjjTeyf/9+AJo2bYrRaHsKv+aaa1i5cmXtBu6CKtvXGzdupG/fvgD079+flJQUm+d6eloz3nl5eXTq1Ini4uLSb6sGDx7MkSNH8PX1pVGjRpjNZk6dOkVQUBBgfQNPSkqyz0aKiIiIiNSSqj6rfPvtt/Tu3bvM5w+AjIwMOnfuzBVXXMHp06cBiIyM5PTp0zbXyv369WPFihV22BorJbtEROwgOTmZ6Ojo0scZGRlERERU67l//vOf2bhxI1OmTGHChAkVtvP19eXEiRM1jtXVVbavT548SUCAdb6yv78/J0+eLPP8AQMGMHbsWK666iqOHTvGjh07WLBgAePGjePFF1/E09OTFi1a0L59e1577TWGDBkCQEREBGlpaXW/gSIiIiIitaiqzyrz589n5MiR5T7XbDaX+f2mm24iPj6exMREHnnkEcD+18pKdomI1KF58+aRkJBAWFgYcXFxl/UajRs3BuCqq67i+PHjtRide6nOvg4MDCQnJweA3NxcAgMDy7T55ptv+OSTT5gyZQqNGjXiyiuvpHHjxvTp04fU1FR27dpFVlYWqampTJs2jZdffrkOt0pEREREpG5U5/p548aNdOjQAW9v73LrLxztde73GTNmsGvXLn788UcmT55c63FXh5JdIiJ16Nw8+KlTp9qUR0dHk5mZWa3XyM3NBWDv3r2VLj6fn59fbvKmvqjOvu7SpQtr164FYM2aNXTr1s2mbVFREQCNGjXCx8eHhg0b4u3tTVFRETt27CAyMhKz2Uzjxo0xGAyla3UBZGZm0qZNmzreShERERGR2lGd6+cdO3awatUqrr/+erZs2cK0adNs2rZu3Zpt27Zx7Nix0s8q3t7e+Pj4EBAQUDq10d7Xyrobo4iIAwQFBZGfn1/6ePjw4Xz77bfs2bOHKVOmMGDAAJ544glmzZrFhAkT2Lp1K0ajkTlz5gCwcOFC/vnPf3Lq1ClycnKYOXMma9euZeDAgY7aJKd14b5u3rw5sbGx9OnTh9jYWLp27crhw4dZtGgR48ePZ8iQIRQUFGAwGEr39RNPPMGAAQMwmUy8++67REVFYbFYuOaaa7BYLKV3rvn+++959dVXHbadIiIiIiK14cLr53vuuYd77rkHgMTERJ555hkAm88qI0aM4MyZM7z++usAjBgxgp49e2I2m/nb3/4GWL9ovuGGG+y2DQaLxWKxW28u5kjKbr4cPMnRYbiNG5ZNpVm39o4OQ6RWdf3c+u/GQZf+3IULFxIaGlp6O9+aeuSRR5gxYwZ+fn618nrOpCb7GWp/X18sOzubF154weWnNNZ0P0v1aD+LiIiIPTjTZ5V7772XefPmlbvIfUU2bNhA7969Wb9+Pb169bqk/jSyS0TEQUaMGFGrr3duJJKUVdv7+mJBQUEun+gSERERETmntq+f//3vf9fq61VFa3aJiIiIiIiIiIjbULJLRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA3djVGcTt4ZyMhxTN/RAeDn6Zi+RURERERERKTmlOwSp5ORA2M2OKbvd3pBXLBj+hYRERERERGRmtM0RhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2tEC9uIXUZxI4vTsZg4cnBpMH3mHtCR0+jYDOAxwdmoiIiIiIiIjYkUZ2idsIHT6N+CV5xC44QsN2Pdgz/WZKTp9ydFgiIiIiIiIiYkdKdonbMXp60eTa0ZgL8yg8lOHocERERERERETEjlwm2VVcXMzkyZMJDw/Hx8eH/v37k5KSgsFgYNmyZY4OT5yIuaiAY6vewegbgHdoG0eHIyIiIiIiIiJ25BJrdlksFoYNG0ZKSgpTpkwhOjqaxYsXM2TIEADi4+PtHlOLAX8gfsLtBLQO5WxeATveWs7ONz+3exxy3sHFkzn88VQMHl54h3cgetIXmHwDHB2WuKn9efCf/ecfz9wOt0ZCK39HReSejhTAp5nnH0/ZDEMjoFNjMBgcF5eIOK8zZvj2ECz/BX4rhMAG8H/hcF0oeLvEla+IiEjNHCuEZb+cf/zMTzA0EuKD6s81tEu85c+dO5cVK1awZcsWOnbsCEBCQgJRUVEEBQXRsmVLu8YT2rczPV56gPWPvc7h5J14+HjRMKyJXWOQskLvfIHmQ550dBhSD3y8z5rcutDSffDRPvhLR7iztWPicjf/OwxPb4Sz5vNlKw7AFwfgjlbWfV1f3qxFpHpOFsEjyZCaY52+YMb670/H4d9p8FZPaO7r4CBFRETqUMpv8JcUKCw5X7bqIKzMgpvCYVIcmOrBNbRLTGOcMWMGw4cPL010AZhMJqKiokpHdRUWFvLQQw/Rpk0brrzySu6///46iyf+qdvZ9sp/OLR+O5YSM2fyCjiZeqDO+hMR5/H9UZixHSxYf845l4+ZvRPWHnZAYG5mTw5M+NGa6CpvP3+wF5bsc0RkIuLMJmyE9Bzr7+fOF+f+PZgPj30PZkt5zxQREXF9h/Lh8R+gqMS2/Nx73/IDMD/N/nE5gtMnu9LT09m3bx9Dhw4tU3fgwIHSZNdTTz2Ft7c3aWlpbN++nRdeeKFO4vHw8aJJXGt8rghkyLp/8qdt79D/3Qn4hTetk/5ExLkszKj8xGn8vY3UzJJ91jflyj6TLsiAEn1oFZHf7TppHcFlrqDeDOzNg+SjdgxKRETEjpbuh2Jz5dfQi/eWTYa5I6efxpiVlQVA06a2yaTdu3eTmZlJfHw8eXl5LFy4kF9//RXD73NamjVrVu0+/P39KS4uLlPe2qMxTwX0tilrENgQg9FIxI3dWXXHVAqOn6Lb8/fSb954lg8cf6mbV6/065fAnrMnqmzn264Hracm1XU45erXL4H81GSH9C3Oz+jtR8dFxyttYwa2ZINvk1BKcitvKxWLmX8ID/+gStv8VgjBHXtSsOcnO0Xl/jp9VAiAl5e3gyNxb9rPdaPZ7VO4YshTGIymCttYSs5y97QFZL39sB0jExERsY+2r+/Cq1mrStvknoHQq/+PvG3f2Cmqy2c2V/QVVtWcfmRXcHAwABkZ54dKWCwWJkyYgNlsJj4+nj179hAcHMxzzz1H165dSUhIYP369XUSz5k86wXqz++sIO/X3ygpKGbTi4sJvjJK63Y5ULtpSVqvS+qc0bth9dt6Vb+tlGX0qt6iOkZvvzqORERchdHbDyxVXxTrvCEiIu7KVM33uEv5XOOqnH5kV0xMDNHR0UycOBFPT0/8/Px488032bx5M76+vrRr144tW7awd+9e4uPjeemll/jhhx+46aabyMjIICCg6rvx5ebmllt+JGU3Xw6eZFN2JjefvANHwaK5M5dqzZokmnVrX2W7LcdhzAY7BFSONWuSiAt2TN/i/M6aYcBXcPps5e28TXDsl3S8Kx5cIFUY9q31jpdVnWl3rv+aEC02XWu6/n5T4aKiIscG4ua0n+vGkn3w0vbK2xhNHvzl3j/x8Mw/2ScoEREROxq9DrafqHhK/znfffExbRrZJaQa2bBhA7179666YTmcfmSXh4cHS5cuJSQkhJEjRzJu3DhuuOEG+vbtS2xsLEajkZYtW+Lh4cEdd9wBQPfu3WnSpAlpaXWz8lrqwq+JGXMjvqHBmLw8iX/qdo5t3cPprGN10p+IOAcPIwxqCZXdvMQI/DEcJbpqaGhk5YkuI3D1FSjRJSKlbgiDBtW4sh1s35t4i4iI2M0tkZUnuoxAh0BcItFVU06f7ALo3LkzycnJ5Ofnk5qaykMPPcTmzZtLF6dv0qQJ/fr1Y9WqVQCkpaVx9OhRoqOj6ySe7XOWkfXtZgZ9PZNhm+bi2yyINaNfqpO+RMS5jIyGJt7lnzyNQKAX3NvG3lG5n8EtoW1A+YlFI9DABI92sHdUIuLMAhrAIzGVt7k7GsLcf+aGiIjUUwPDIC6o/GtoA2A0wF862jsqx3CJZNfFCgoKSE1NLU12Abz11ltMnz6dK6+8kttvv51FixYRGBhYNwFYLPw07T0+7DSaDzvey7f3ztCoLpF6ook3zO8NfyhnumvnIGtdMx/7x+VufDzgrZ7QL6Tsm3Urf3i7J7SrB99Iiciluas1PH0lBHjalvua4OH28GgVyTARERFX5mmEV6+GG1pYE1sXaukHb/Sk3izb4/RrdpVn27ZtlJSU2CS7WrVqRVJSkuOCErs4nZbCgXmPg8WCf2x/woZPLa1LfaYf5yY+tXzgDXxadmDvS7eTs3kl0ZOW49fh8ub6ilwsxBfe6gX7cmFrtrXsysbQuuolAuUSBDSAmVfB4QL48Tc4Y4a2jaBjIBgqm0sqIvXarVHWKeffHYUnf7SWfX0deLvkVa+IiMil8fWA5/8Aj3WA749CkRla+1u/mK9P19Au+bbfvXt3LFogvl7ybRVP+xnW1evTJg+gJD8Hk681w2Awmmj7wmqb9uFjXuG3r96ye5xSP0T5W3+kbjX3gZu0xo6IXIIGJkgIOf9YiS4REalvmnjDH+vxNbRLTmOU+svgYZ2XYCkpwTMoFKPXhatTW0h9JoH9r43BXFwIgGfj5g6IUkREREREREQcRckucTnZ/1vMzrExmBoGYjCd/6q21YSltJuWhE94DMdWzXNghCIiIiIiIiLiKEp2icsJ6nsnHefs5kz2QQr2by8t9/BrDECjboMoPLDTUeGJiIiIiIiIiAMp2SUuxXymCACD0YjJxx9DA+/SupL8XABO706mQdMoh8QnIiIiIiIiIo6l5TrFpZxK+ZyjK+aA2Yxfx2swF57m+JpFBPe7m7RnEzF6NsDUMJCox98D4MD8Jzj5/aec2vhfmt40juCEuxy8BSIiIiIiIiJSl5TsEpfSuNcwGvcaZlPm2yoOgJh//FCmffioWYSPmmWP0ERERERERETECWgao4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5Da3aJ04kOgHd6Oa5vEREpX1JSEvfeey8RERFERESwYMECm/pFixYREhJCYmIi06dP58svvyQuLo7XXnvNpt3IkSPZs2cPXl5eLFy4kLCwMJ588kkWLFjAyy+/zPDhwwHo168fFosFgDfeeIO2bdvy4IMP8s4779hng8WtVfd4Dg8PZ9SoURiNRrp27crLL79s0+6rr77iueeew9/fn3fffZfQ0FAGDhxIQUEBAQEBLFmyBG9vbx27IiIidqSRXeJ0/DwhLtgxP36ejt56ERHnNnr0aJKSkmjUqBHJyck2dcuXL2fAgAEcOXKETZs2sW7dOjw8PNi4caNNu+eee47169czceJE5syZA8D48eN56aWXbNqZTCaSkpJISkqiQ4cOeHh4cMUVV7Bnz5663UipN6pzPDdp0oSVK1eybt06jh07Rlpamk27GTNmsGbNGmbPns2MGTMAmDt3LuvWreOWW25h8eLFOnZFRETsTMkuERERuWSdOnUiKyur9HF2djbe3t4YDAY2btxI3759Aejfvz8pKSk2z42MjASsySyDwQBAs2bNyvRhsVhISEhgzJgxFBYWApCQkMCXX35ZF5vkNJKSkoiKiiIhIYGRI0eWqZ82bRrp6emVvsajjz5Knz59mD59epm67OxsunTpgp+fHwDr16/n6quvpmfPnsyaZb2D8f79+wkJCSEhIYERI0YAsGvXrtJkjrup7HgODg4u3VcXHrPneHh44O3tTceOHUuP9fKO8fpw7IqIiDgLJbtERETkkiUnJxMdHV36OCMjg4iICABOnjxJQIB1Xri/vz8nT54s83yz2cz06dMZPXp0hX0sXbqUpKQkYmJimDdvHgARERFlRta4o4pGHJnNZrZt20abNm0qfO7GjRvx8PBg3bp1bNq0iSNHjtjU+/v7s2rVKq6++moAWrVqxdq1a/nuu+/44osvyM/PB+DGG28kKSmJhQsXAhATE8OmTZtKp5a6k8qO53N27tzJsWPHyuz7M2fOcPz4cdavX092dnZpeX5+Pv/617+47bbbgPpz7IqIiDgDJbtERESk2ubNm0dCQgJhYWHExcWV2yYwMJCcnBwAcnNzCQwMLNNm8uTJ3H777bRq1arCvho3bgzAoEGD2LlzZ41jd0UXjzjaunUrbdu2rfQ5P/zwA/379wegb9++/PTTTzb1np6eBAUFlT4ODQ2lQYMGgHUkktFovTxcuXIlffr04f333y9t26pVK7f6v6jO8QyQk5PD2LFjmTt3bpm6qVOncuutt/LBBx/QoUOH0vIHH3yQKVOm0KhRo7oIXURERCqhZJeIiIhU27kRR1OnTrUpj46OJjMzE4AuXbqwdu1aANasWUO3bt1s2v7nP/8hOzubUaNGVdpXbm4uYB11ExUVBUBmZmalo5rczcUjjtLT00unyFWkOiPryrNq1Spat26Nt7c3ISEhpKam8vXXX/P2229z/PhxwP1GJ1XneLZYLIwaNYrnn3+e0NDQMq/Ru3dv1qxZwz333EP37t0BmD17Nh06dODaa68tbVffjl0RERFH0t0YRUREpMaCgoJKp781b96c2NhY+vTpQ2xsLF27duXw4cMsWrSI8ePH85e//IWwsDASEhK49tpreeaZZ3jppZd49913MRgMHD16lL/85S8kJibSoEEDAgMDee+99wDrelaVTX10F/PmzWP16tX07t27whFHP//8Mw8//LBN2fXXX19mZF3r1q2r7O/XX3/lxRdf5PPPPwfAy8urtK5Pnz7s2bOH4ODgy9wa13Ph8ZyUlMS3337LsWPHAJg1axZhYWGlx/Pzzz9PUlISYWFhvP322xQXF/PXv/6VHj168NVXX3H33XeXJtXqw7ErIiLiDJTsEhERkWpJSEggISGhwvpBgwaxevVqEhMTmTx5MpMnTy6ta968OePHjwcoHTFzofHjx5fWn/PDDz/YPD579ixHjx61GenkrkaPHs2kSZPKlLdp04ZPPvkEgA4dOpCUlFSmzY8//sgHH3zATTfdxNq1a0vXjKpIUVER99xzD2+++WbpQux5eXn4+flhsVjYuHEjY8eOBaz/d7169arh1jmHSzmeL1yL65xzx+uzzz7Ls88+a1NXVFRk87g+HbsiIiLOQNMYRUREpFaMGDGCxMTEOnt9Dw+P0oXq66vOnTuTmppaaZurrrqKoqIi+vTpQ+fOnWnWrBmHDx/mpZdeKm2TmJjI5s2bSUxMZO7cufz888888MADJCQkkJWVxXfffUfXrl3p2bMnAwcOJCQkBLAu3N6pU6c63UZnUZvHs45dERER+9LILhEREREnUtmII6PRSGxsLOnp6ZWu/zRnzhybxxeOrANYvXq1Tf2jjz5q8zgsLIyBAwfalO3atYsuXbpgMBiqsxkiIiIiDqNkl4iIiIgLKW96oz3ExMQQExPjkL5FRERELoWmMYqIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2tGaXOJ28M5CR45i+owPAz9MxfYuIiIiIiIhIzSnZJU4nIwfGbHBM3+/0grhgx/QtIiIiIiIiIjWnaYwiIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbWiBenELqc8kcHp3MgYPTwwmD7zD2hM6fBoBnQc4OjQRERERERERsSON7BK3ETp8GvFL8ohdcISG7XqwZ/rNlJw+5eiwRERERERERMSOlOwSt2P09KLJtaMxF+ZReCjD0eGIiIiIiIiIiB0p2SVux1xUwLFV72D0DcA7tI2jwxERERERERERO3KZZFdxcTGTJ08mPDwcHx8f+vfvT0pKCgaDgWXLltktjrsyFtn8jPjlQwZ9M8tu/UvFDi6ezJY7A9l+XyT5+7YSPekLTL4Bjg5LRMTpFZ6FzzLPP562FXaecFw87uqsGVYfPP948iZI+Q0sFsfF5I7MFkg+Cs/8dL5szSHr/hcREZH6wSUWqLdYLAwbNoyUlBSmTJlCdHQ0ixcvZsiQIQDEx8fbLZb3o++2eTzom1nsW7bBbv1LxULvfIHmQ550dBgiIi4lIwceSYbjRefLlmXCp5kwKByeiQOTwWHhuY2jBdb9vC/vfNnKLPjyV7j6CnjpKvBxiasy55Z3Bh7/ATZng/GC43b8j9AmAF6/GoK9HRefiIiI2IdLXFbNnTuXFStWsGXLFjp27AhAQkICUVFRBAUF0bJlS4fE1SQumsC2LchYssYh/YuIiNRE7hl4+Ds4WWxbfm4AzOcHrImBR2LsHppbKbHA2O8hM8+23Pz7iK4ffoPnt8CLXe0emtuZtAm2ZFt/N180Ym5PDjyeAgv6gEEJXBEREbfmEsmuGTNmMHz48NJEF4DJZCIqKgpPT0/279/PzTffXFp38uRJcnJyyM7OrtO42tzZn6xvN1NwRHM9RETE9XxxALKLK2/zwV64pw00dIkrBue04Qjsza243oJ1euMjp6FFQ7uF5XYycmD9kYrrzcDPJ2HjMbjqCntFJSIiIo7g9Jeu6enp7Nu3j1dffbVM3YEDBxg6dCiRkZFs2bKltHzcuHGcPXu22n34+/tTXFz2ar+1R2OeCuhd7nM8fLyIGtyLdY+9Xu1+6rt+/RLYc7bqxKBvux60nppU1+GUq1+/BPJTkx3St4iIvbWa9j98o7thMFa8hGdhCUQOuJ2c7z+1Y2TupcWj8wns9ScMpoovu8wWC93veYZjn2sd0MvV9LbJNB06sdLj2VJyltue+zcH/zXWjpGJiIjI5TCbL3/BTadPdmVlZQHQtGlTm/Ldu3eTmZlZZr2u4uJi3n//fVauXFmncUXe1IOzBcX8uvqnqhtLnWs3LcnRIYiIuBxTw8aVJgZK2/k2skM07svk26jqeXPmEkwNdVOVmjD5NgJLCZXff8mim9eIiIjUA06f7AoODgYgIyODbt26AdYF6ydMmIDZbC6T7Pr8888JCwvjD3/4Q7X7yM0tf27BkZTdfDl4Url1be4awJ6PkrCU6NY+1bVmTRLNurWvst2W4zDGQWv+r1mTRFywY/oWEbG3x76H74+eX6OrIssWvk33K962S0zuaOZ2WLqv8v1sMHnwypSnueXdp+0Wl7t5fw+8vLPyNkaTJ3++5088OvNP9glKRERELltOTg7bt2/nyiuvvOTnVv11roPFxMQQHR3NxIkT+fjjj/nyyy8ZPHgwmzZtwtfXl3bt2tm0nz9/PqNGjarTmAJah9K0azvSPvimTvsRERGpSze3rCIBAzTzhq5N7BWRexpcxX4GaGCEgWF2Ccdt3dACPKoYQGcBbnLMfY1ERETkEgUEBNCrVy8CAi59VLbTJ7s8PDxYunQpISEhjBw5knHjxnHDDTfQt29fYmNjMV4w/SIrK4v//e9/3HXXXXUaU5s7+nPkh13k7jtcp/2IiIjUpWuaQ3yQNal1MQPWxMDjncCkO9fVSLtGcGOLyts82B78PO0Tj7sK8oJRbStvMzQCIv3sE4+IiIg4jtNPYwTo3Lkzycm2i4a//vrr9O3b16ZswYIF3HjjjaVTH+vKT1Pfq9PXFxERsQcPI7xyNbywBb45aE1unRPgCeOvhMRQR0XnXibHWZNZ/9kPZy/Y0T4meKA93NXKUZG5l/vaWkd3zU+33lzhHA8D3NEKxnZwXGwiIiJiPy6R7LpYQUEBqampjBs3zqb83XffLfeujeJezuZmk/63aynMSiV+SZ5N3ZlTv/HLnPs5e/okQdfcwRXX3U/hoQwOvD0W85kimg16nMDugxwUuYiI82noAX/vCgfzYe1ha4IgvKF11Jen04//dh0eRmvycHRbWHMIcs5AU2/oFwK+Lnk15pwMBuvortuirPv5WBEENrDu58AGjo5ORERE7MUlL6+2bdtGSUlJmcXp09LSHBSR2JPJx582z61i78zbytQdWvI8Lca8glfTiPNlHz5H1JMf4uEXaMcoRURcS6gv3K7RRXUuyAuGRjo6Cvfn56m1uUREROozl0x2de/eHYvFUnVDcUsGD088/IPKrSvKSiNr4dOczT1Oy/teo0GzKIqPHWD/KyPAYCDikbl4Bjazc8QiIiIiIiIiYi8umewSqUjervV0+Oc2LBYzWQv/Svh9r1KQuYNOb6VTsHcLh5e+SPiYVxwdpoiIiIiIiIjUEa3GIW7Fu2VHvEJa4x3ahpL8U5gaNsIn4ko8/Brj17EPhVmpjg5RREREREREROqQRnaJW/FqGsnZnGNYzCUYvXwxeTfE2MAb85kiCg/sokHTSEeHKCIiIiIiIiJ1SMkucUlpkxPJ37eZtMmJhN4xhbzdyTS/ZTzNb5vEnhdvwVJylvD7rHfmbDb4CdImD8BgNBH553cdG7iIiIiIiIiI1Cklu8QltX1htc1jvw69AfCNjKXdi2tt6gLiEgmIS7RbbCIiIiIiIiLiOFqzS0RERERERERE3IaSXSIiIiIiIiIi4jaU7BIREREREREREbdhsFgsFkcH4ayKc/M5sesXR4fhNhrHtKSBv2+V7fLOQEaOHQIqR3QA+Hk6pm8RERERERERqTklu0RERERERERExG1oGqOIiIiI/H97dx7fVJ3vf/yddAMsW4vsBQpFKFRKFSlQSsMiIziiCIgIiojXbRwHr+vPAS/uwzjOeB0dRkZERdCrjAo4CJUlAlIpW6UsLS2UAmUHgW60tMnvj0igdAXanOb09Xw8+qDn+z1JPicem5x3vt9vAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEzD1+gCAAAAAABA3VWYnadfdu4zugzTaBreTv4NGxhdhqEIuwAAAAAAgGF+2blP390+1egyTGPYwlfVondXo8swFNMYAQAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDS8JuwqLCzUtGnTFBISovr162vQoEFKTEyUxWLRwoULjS4PJnW6UJq/W3olSZqxVVp7RCp2Gl0VAMDplH4+Kb21TXo5SfogVTqcb3RVAACgOll8rOr9yiSN2zFH96R8rH5vPSqfAD+jy4IX8DW6gKpwOp0aM2aMEhMTNX36dIWFhWn+/PkaOXKkJCkqKsrgCmFGX+2V3twmnXNIPhbJKenLvVLINdLfoqUOgQYXCAB11KkC6ekNUtJJ16d2FovkcErvp0r3hkmPh0tWi9FVAgCAq9XjiTvVsl+EFg56SsXnijT4o+d049R7lTjtQ6NLQy3nFSO7Zs2apSVLlmj58uV6+OGHNXjwYM2aNUs+Pj4KCgpSu3btjC4RJvN9lvT6VlfQJblGczl+HdGVlSc98qPrYgsA4FlFDunxn6StJ13bDrn+Rjvl+vkkXfpgl4EFAgCAatN5/GAlv/OV8g6fVMGJM0p66wuFjbXJYvWKKAMG8oozZMaMGZowYYK6d+/ubvPx8VFoaKh7VNeuXbvUt29fXXfdderbt6/S0tKMKhdezumU/pEilTcowOGUjhdIX+/zaFkAALmmk6ecdoVc5fk4Tco557GSAABADfBv1ECBba7Vye0Z7rYTyRnyb9hAgSHXGlgZvEGtn8aYlpamjIwMvfPOO6X69u/fr1GjRkmSHnnkEf3ud7/ThAkT9Omnn+rhhx/WypUrK73/M2fOqGXLlioqKpLFwpwHSPU73aiwP62rcB+n06G/rtitRyIiPFQVAECS2j31uRrddJssPuW/hSlwSJ1unaxTP3zqwcoAAMCV6uTbVM826l+izTewviSp8HSeu63wdK4kye/XPpRt4ECbdhf9YnQZ1cLf31/Z2dmXfbtaP7IrKytLktS8efMS7SkpKcrMzFRUVJSOHj2qzZs3a9y4cZKkcePGafPmzTp27Fil95+cnKz8/Hw5naw6Dhffxs0r3cdisVZpPwBA9fJt0qLCoMu9H3+jAQDwakU5rm+e8WvUwN3m3/gaSdK5HL6VBhWr9SO7goODJUnp6enq3bu3JNeC9c8995wcDoeioqK0f/9+tWnTRj4+PpJcUxxbt26t/fv369prqza80W63KyYmpmYOAl5l+y/SxDWV7xfavLG2FLBwFwB40jMbpB8OVTyNUZLe/+sb+u2Xb3ikJgAAcHWOJKbou9unlmgrPJOnnKxjCureQWd2H5QkBUeEqjA7Tzn7Kx/YUpetWmVXi95djS7DULU+7AoPD1dYWJheeOEF+fn5KTAwUDNnztSWLVvUoEEDdenSRVu2bDG6TJhItyZSu2uk/bmuxY7LM4LvRQAAj7u1rbTqUMX71PORbC09Uw8AAKg5afNWqMfvR+rI+p1yFBWr51N3Kf3/7HI6KvvYC3VdrQ+7fH19tWDBAj3yyCOaOHGiQkJCNGXKFDVq1Ei7d++W1WpVSEiIsrKyVFxcLB8fHxUXF+vgwYMKCQkxunx4IYtFeixcen5j2f1WScH1pDvae7QsAICk/i1cH0qknCp/dNf9YVKgnweLAgAANWLrO18pIKiR7rD/TRarRXu//UmbXmNNTlSu1oddkhQZGamEhIQSbe+++67i4uIkudbz6tmzpz777DNNmDBBn332maKioqo8hRG41JDW0tRI6c/JUuElV1Ntr5Hejpaa+BtTGwDUZb5W6Z0+0jOJ0paTF9otv/7cFyZNvs6o6gAAQHVyFjuUOO1DJU770OhS4GW8Iuy6VH5+vlJTUzVlyhR32z//+U9NnDhRL7/8spo2bapPPvnEuAJhCne0lwa1kpYckP6yzdX2Th+pz7WSlS/uBADDNPGXZsVI209J9/+6xuKjXaXfhkjN+XImAACAOs8rw66tW7equLhYUVFR7rauXbtq/fr1BlYFM2rkL93d8ULY1Y8v9wKAWsFikSKaXth+gNFcAAAA+JVXhl3R0dFyOitaOhwAAAAAAAB1kdXoAgAAAAAAAIDqQtgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMw2vCrsLCQk2bNk0hISGqX7++Bg0apMTERFksFi1cuNDo8gCg1nM4pZ+OSu/ukP53u/R9lnTOYXRVAABJ+qVA+myP9PZ26YNdUmaO0RUBgPE63NZXwxa+ovHpczU68R9GlwMv4mt0AVXhdDo1ZswYJSYmavr06QoLC9P8+fM1cuRISVJUVJTBFQJA7bb7jPTMBmlf7oVPORySmvpLr94oRV9rZHUAUHc5ndKsVGlOmlTklHwsrg8n/pkiDW4lTY+S6nvFO3YAqH4Fp3OV8uFS1bu2sbo/9Fujy4EX8YqXzlmzZmnJkiVKSkpS9+7dJUk2m02hoaEKCgpSu3btDK4QAGqvw/nSQz9K2edc2xcP5jpdKP3hJ+mD/lJEU0PKA4A6bfYu6V+7LmwXOy/8vvKQlFckvdNHslg8XxsAGO3Q6q2SpHa33GRwJfA2XjGNccaMGZowYYI76JIkHx8fhYaGukd1Pf300woNDZXFYtG2bduMKhUAap3PdktnzpUMuc5zyDWC4P0UT1cFAMg+J32YVn6/U1LCMWnLSY+VBACAKdT6sCstLU0ZGRkaNWpUqb79+/e7w6477rhDq1evVvv27T1dIgDUWk6ntHCf64KpPA5JPx2Tjp/1VFUAAElaflAqrGTtRKtFWrzPM/UAAGAWtX4aY1ZWliSpefPmJdpTUlKUmZnpDrv69+9/VY9js9lktdb67A8GifjClQIEBNQzuBLg8lh8/RXxWXal+zkldYrsrbN7f675ooBqxN9neLPmo/+o5mOmylLBe9Bih1PzFy/X631YqwaAeXXybapnG13dNT0uGDjQpt1FvxhdRrXw9/dXdnbl1zOXqvXpTnBwsCQpPT3d3eZ0OvXcc8/J4XCwOD0AVMBZVChHQV6V9i3OYZ4MAHhScc7JCoMuSZKjWMU5JzxTEAAAJlHrR3aFh4crLCxML7zwgvz8/BQYGKiZM2dqy5YtatCggbp06VItj2O32xUTE1Mt9wXz6bXI9W9BQYGxhQBX4LWfpYWZZa/ZJbk+9YhoKm3MSi9nD6D24u8zvNnxs9Lw711rJ5bH4uOrj566W/3/fLfnCgMADzuSmKLvbp9aqt1itcrq5yOLr69kscgnwE9Op1OOwiIDqvQeq1bZ1aJ3V6PLMFStD7t8fX21YMECPfLII5o4caJCQkI0ZcoUNWrUSLt372bqIQBUYnxHacl+6Zyj7MDLKem/qudzAwDAZWhWTxrdQfoio+x+q6TOjaW+zcvuBwCz6zR6gPr/7+Pu7Xv3fqac/Ue1oPdjBlYFb1Drwy5JioyMVEJCQom2d999V3FxcQZVBADeo0ND19fWP5Uo5VzyIZivRZrakwspADDKf3eXcs9J/zngCrcu/lCiaxPp7WjJx2JQcQBgsPQv7Er/wm50GfBCXjksKj8/X6mpqSXW63riiSfUtm1bHThwQEOGDFH37t0NrBAAapcbm0nfDZWmRl5oe6KbtHSo9NsQ4+oCgLrO1yq9dIP0uU26u+OF9vf6Sh/FSkEBhpUGAIDX8sqwa+vWrSouLi4Rdr3zzjs6cOCAioqKdPjwYW3fvt3ACgGg9qnvK93R/sL2fWFSEy6iAKBWCGsk/XfEhe3oayUrI7oAALgiXjGN8VLR0dFyOitYyRMAAAAAAAB1kleO7AIAAAAAAADKQtgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMw2vCrsLCQk2bNk0hISGqX7++Bg0apMTERFksFi1cuNDo8gBcBadT2nBM+ihN+jhN2vaLqw3wVntzpE93Sx/ukuyHpCKH0RUBAOA5xU7pxyPSnDRpbrqUetroiuCNrP6+6veXRzTqp/c0Pm2uRq59R10fGGZ0WfASvkYXUBVOp1NjxoxRYmKipk+frrCwMM2fP18jR46UJEVFRRlcIYArtfOU9MdN0r7cku1dGktv3Ci1CzSkLOCKnCqUXtwsrTtasj3IX/pjTymupSFlAQDgMZtPuF4LD+eXbO8ZJL12o9SivjF1wftYfXyUf/SU4u9+RdmZRxTUrb1u/myqzh47pb2LE4wuD7WcV4zsmjVrlpYsWaLly5fr4Ycf1uDBgzVr1iz5+PgoKChI7dq1M7pEAFdgT7b00I/SgdzSfWlnpAfXSkfzS/cBtdHZYumxddJPR0v3/VIoPZ1YOgQDAMBMtv0i/S6h7PdvW0+63tudLvR8XfBORfkF2vLnz5W997DkdOrk9r3aH79RzXuHG10avIBXhF0zZszQhAkT1L17d3ebj4+PQkNDFRUVpRMnTmj48OHq0qWLrr/+et155506duyYgRUDqIp/pUoFxVJZM7wcTldAMG+3x8sCrsjSA9KuM2Wfz+dn5b69nSm6AADz+sdOqdhRzns7SYfypQV7PVwUTMPi66MW0eH6ZWem0aXAC9T6sCstLU0ZGRkaNWpUqb79+/crKipKFotFzz77rFJTU5WcnKxOnTrp+eefN6BaAFV1plBacajsN0PnOSV9s88VfAG13deZkqWCfqdcoxl3sm4JAMCEDudJiccrfm8nuV4vgSvR5/XJOpeTr91f/mB0KfACtX7NrqysLElS8+bNS7SnpKQoMzNTUVFRCgoKks1mc/f16dNHM2fOvKzHsdlsslprffYHg0R8cVaSFBBQz+BKzCOgTVdd9/bPle6XWyRdE3StHHlnPFBV3cD5XDPC/7Vfvk2aV7pf3IixOrP+m5ovqI7gfIbZcE7DWzXo0ledXrVXut+h3GIFBDSo+YLgVTr5NtWzjfqX23/T9Im69sYuWjZmuhznijxYmXcaONCm3UW/GF1GtfD391d2dvZl367WpzvBwcGSpPT0dHeb0+nUc889J4fDUWpxeofDoZkzZ2rEiBEerRPA5SnOq9rwFmdxkRwFeTVcDXD1ivNOyVmFOYrFuQztAgCYT1Xf2znyL/+iFXVb75fvV+sBPbTsrpdUcJLzB1VT60d2hYeHKywsTC+88IL8/PwUGBiomTNnasuWLWrQoIG6dOlSYv/f//73CgwM1OOPP35Zj2O32xUTE1OdpcNEei1y/VtQUGBsISbzwBrXQqblDXe3Shoc4qtNeWWsYI8rxvlcM2alun4q0tRfOrJhqfxq/UdN3oPzGWbDOQ1v5XRKo1dJ+3IurFV5Kauk0d2b6HnOb1ziSGKKvrt9aqn23q88oFb9I7R09HQVnGCmR1WtWmVXi95djS7DULU+7PL19dWCBQv0yCOPaOLEiQoJCdGUKVPUqFEj7d69u8TUw6efflppaWlavHgxUxIBL/DAddKU9WX3WSRZLNKETh4tCbhid7aXPtsj5Z4rP8Cd2FkEXQAAU7JYpAevk6ZtLqdfkq9VujvUo2XBi13Ttpm6PThcxWcLNXr9e+72I+tTtHz8awZWBm9Q68MuSYqMjFRCQkKJtnfffVdxcXHu7RdeeEGbNm3Sf/7zHwUEBHi6RABXoH8L6f/1kGZsdX0CePGngL5W6bUbpO5NjaoOuDzN6knv9pGe+Ek6fe5Cu1Wu8GtCJ2l8R6OqAwCg5g1rKx3Jl97d6Qq3Ln5vV89HevMmqUNDo6qDt8k9cFwftRptdBnwUl75+XJ+fr5SU1Pd63Vt375db7zxhg4ePKh+/fqpZ8+eGjlypMFVAqiKUR2kRUNco7zOezxc+s/N0qDWhpUFXJHuTaVFN7tC3PPGhEqf26Qp3V2fegMAYGb3d5a+HlRydP5/d3e9t+tT+fe4AEC18IqRXZfaunWriouL3WFX9+7dq7QoMIDaqWUD6dGu0uxdru37OxtbD3A1rvF1hbhvbHVtP3O9oeUAAOBxIYHSH7pLc3e7tu9hWQoAHuaVYVd0dDThFgAAAAAAAErxymmMAAAAAAAAQFkIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGl4TdhVWFioadOmKSQkRPXr19egQYOUmJgoi8WihQsXGl2exxU7pXVHpS8zpP/sl04VGl0RAAAwo7NF0vKDrvccKw9KBcVGVwRcOYdTSjzmOp+/3SedOGt0RcDV2X1G+mqv6yf9jNHVVL8+bzyoMRv/qXt2faIxm99X75fvl9XP1+iy4AW84ixxOp0aM2aMEhMTNX36dIWFhWn+/PkaOXKkJCkqKsrgCj1r5UHpzW3SsYtenH0t0p0dpCe7S35eE2ECAIDayumUPk6X5qRJuUUX2gN9pYe6SOM6ShaLcfUBl2vdUemNn6VD+RfafCzSrW2lZ6+X6nnFlRHgkpUrTd8ibTlZsr1nkDQ9Smp7jTF1Vbedc5Zq48tzVZRfoICghrLNeko9nrhTSW99YXRpqOW84k/6rFmztGTJEiUlJal79+6SJJvNptDQUAUFBaldu3YGV+g5Kw5Kz28s3V7klL7IkI7mS2/exJtPAABwdWamSB+mlW7PKZL+ul06Wyw9cJ3n6wKuxE9HpSnrXSHuxYqd0uL9rgDs730kXz40hhc4dlaavFY6WVC6b+tJadIaaW6c1LK+52urbqd3HbiwYbHI6XCqYcdWxhUEr+EVf85nzJihCRMmuIMuSfLx8VFoaKh7VNcdd9yhyMhIRUVFKTY2VklJSQZVW3OKHNJfkl2/O8vZx35Y2njcYyUBAAATOpzvGtFVkVmpZV9oAbWN0+maFeF0lv0e2ilpw3Fp9WFPVwZcmY/TXH9/HWX0OSSdLpQ+quRvuDe5/vE7ND59rsZt+1BB3dtrx6xvjS4JXqDWh11paWnKyMjQqFGjSvXt37/fHXZ9/PHH+vnnn7VlyxY9/fTTeuCBBzxdao376Zh0rKD8oEuSrBbp60yPlQQAAExo8b7K9ylySkv213wtwNXa+ouUmVPJe2hJX/EeGl7gnENatK/soOs8h6Rv97tG4JpB8rvfaF7Yvfp6wB+U+km88o/+YnRJ8AK1fhpjVlaWJKl58+Yl2lNSUpSZmekOuxo3buzuO336tKzWy8vxbDbbZd/G04JveUytJ/+twn0cTumbNZv1VkxfD1VVN0R84VogLSCgnsGVmBvPs2fwPHsGz7Nn8DzXjLa/+0BNYu+Wxcev3H2cRec07W8favIHT3iwMvPjnK5+TQbco5Dfz6lwH4ek1dsyFGDr6pmi6gjO5+rn26Slwv9VeTJ7tlhq1i5M5457x6cSnXyb6tlG/Svc53Ralk5uz1Ts35/QstHTPVOYlxo40KbdReYIBf39/ZWdnX3Zt6v1YVdwcLAkKT09Xb1795bkWrD+ueeek8PhKLE4/YMPPqj4+Hg5nU4tXbrUkHprUvHZyv8DOx3FcuRf/okAAABwnuNsjqRKFgC1Wn/dD6jdHPmVn6dOp0PFvIeGF3AU5FZ937NV39dbWP181Ig1u1AFtT7sCg8PV1hYmF544QX5+fkpMDBQM2fO1JYtW9SgQQN16dLFve8HH3wgSZo7d66eeeYZLVmypMqPY7fbFRMTU+31V6eTBdLweNe0gfJYrD56eVyc7nqBRTSqU69Frn8LCnheaxLPs2fwPHsGz7Nn8DzXjA3HpEcTKt7HYvXRf/7ylCJmP+WZouoIzunql1sk/WZZxVO6LBar/vuWHpr8BM97deJ8rhmPrXOt01zeVEarRYpsKm08ccijdV2NI4kp+u72qSXa/Bo2UPthvbVvaaIKz+SpaXh7RU4ZpYP2nw2q0nusWmVXi951e6Rq7Z63J8nX11cLFixQq1atNHHiRE2ZMkXDhg1TXFycevToUebUw3vvvVerVq3SiRMnDKi45gQFSCMq+OJJq0Vq6i8Nb+u5mgAAgPn0aiZ1aVz+G0WrXF9v372JB4sCrtA1vtLY0PL7rb/uc0fd+YJ3eLn7wipZs8spTezssXJqjtOpjqMGaNRP72l8+lwNmvOsDqzYovV/nG10ZfACtX5klyRFRkYqIaHkx4vvvvuu4uLiJEk5OTn65ZdfFBISIklavHixgoKCFBQU5PFaa9pTEdLRs9LaI65wy3HRKK9GftK7faXA8pfXAAAAqJTFIr0dLT26Ttp70Qwwq1wXWJ0aSX++ybUf4A0e7Sodypfis0q/h67vK73TRwpmWSl4iT7Nped7SDO2urbPn87n/yQ/FSH1b2FEZdXrXE6+4se+bHQZ8FJeEXZdKj8/X6mpqZoyZYokKTc3V2PGjFFubq58fHwUFBSkxYsXy2LCd2ABPtJfe0uJx1zfGLPy15GpT0dIt4ZIDQm6AABANbi2njQvTlpxUHpxi6st+lrpt+2kQa0kv1o/PwC4wNcqvXaDdGd71zeXL3N9B5b+0E26rZ3UxN/Y+oDLNbqDdFMz6d97pfl7XG13d5RGtZc6NDSyMqB28Mqwa+vWrSouLnYvTt+iRQv99NNPBlflOVaLK83v0/zCPPi7OxpbEwAAMJ8AH2l4yIWw6+982TO8mMXimqLbq9mFsOveMGNrAq5G+0DpvyMuhF1PRRhbD1CbeGXYFR0dLaezglXaAQAAAAAAUCcxAB0AAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAgKtit9sVGhoqm82miRMnluqfO3euli9frtTUVMXExCg2NlZPPvlkmfd19uxZtWrVSmvXrpUk3X///erbt69sNptWrlwpSZo0aZKcTmfNHRAAwPT6v/07Rb822egyyjQ+fa6CIkKNLsOrEXYBAADgqk2ePFl2u12NGzdWQkJCib7Fixdr8ODBatasmZYtW6Y1a9bo+PHj2rVrV6n7mTNnjrp161ai7csvv5TdbtegQYMkSdHR0Vq1alXNHQwAwKu07Nddt/z7JY1Pm6vxaXN1y79fUsu+3Y0uy63nU3dp8Cf/r8r7zwu7Vye3ZdRgReZH2AXAa1Q2cuC1115TWlpaubdfu3at+vTpo379+umtt94q1b937161atVKNptN9913nyTp/fff1+DBg2Wz2XTu3Dnt3LlTM2bMqL6DAgCTiYiIUFZWlnv75MmTqlevniwWi4KDgxUYGChJ8vHxkcViKXHb4uJirV27VrGxse42i8WisWPH6q677tLJkyclSQMHDtSSJUs8cDQAgNqu7ZAbdfP8qdq/fJO+uOFhfXHDw9q/fJNu/myq2g6+oczbWHyqLwqx+PpU232h+hB2AfAq5Y0ccDgc2rp1qzp37lzubTt27KjVq1dr3bp1+vbbb5WXl1dqn1tvvVV2u12ffPKJ9u3bp+TkZK1YsUJ2u11+fn4KDw/X5s2bmT4DAOVISEhQWFiYezs9PV3t27cvsc/27dt1/PjxUn+zP//8c40ePbpE21//+lf9+OOPGjt2rN544w1JUvv27cscFQYAqHuiX31A6V/atX3mIp3LztO57Dxtn7lIuxf8oN6vPiBJGp34D/WYMkrDF72mCXvmqVlkJ0mS3zX1ZJv1lManzdUdP/xNrW2RlT5ey77dNT59rq6bMESjN8zUiOV/kSS1GtBDv102Q/ekfqwRK95Su1tukiS1u+UmXf/ESLUZ2FPj0+dqfPpcWf19K3yM+w8tUHBkJ1l8rLpn1ydq0iXE9dj9uuv+QwvU/rd9JUn1mzfRffs+l19g/St78kyMsAuAV7p05MDPP/+s6667rsLbtG7dWv7+/pJcIwqs1tJ/ApctW6bY2FjNmzdP8fHxys3N1aBBgzR9+nT3Ph07dtT27dur50AAwCRmz54tm82mNm3aqGfPnuXud+bMGT3++OOaNWtWiXan06lvvvlGt99+e4n2pk2bSpJGjBjB314AQAmNOrVWw/YtlPHNj6X69ny9Vo06tFSjjq0kSWFjbPrxqX9oXti9OvHrFMHQO/prz9drNL/rRG39+9ca9OGzatAyqNLH9a0foGY9w/TNgCn6dthzatihpYZ8/Ly2vfuNPus2SZte+1RxM59UUPcO2rd0g5Lf+VpZq5I0L+xezQu7V47Coiodn7PYoSPrd6pV/+slSa1ir9eZjENq1T/Ctd3/ep3YukfncvKrdH91CWEXAK906ciBtLQ0dejQoUq3/f7779WpUyfVq1evRHurVq2Umpqq+Ph4vf/++zpy5IgsFotWrlypjIwMJSUlSWJEAQCU5fzI21dffbVEe1hYmDIzMyW5Aq0HHnhAL7/8slq3bl1iv5ycHO3Zs0fDhw/Xp59+qqefflpnz55Vdna2JNff/dBQ12K9mZmZFY7kBQDUDfWCGkqS8o+cLNWXf/QX1z7BjSRJqXO/1+m0LDkdDnfYdPinHdr3XaKcxQ7tWbBav+zIVIfb+lb6uBarVZten6ei/AIV5xcq9PZ+OrJ+p/YuTpCz2KGslVu0L36jOo2Ju+pjPLx2W4lwK+kvX7jDr5YxETr047arfgwzqnjsHADUMrNnz9by5cvVv3//ckcO7NixQ4899liJtltuuUXPP/+8Dhw4oDfeeEOLFi0qdbuAgAD377GxsSoqKlJcnOsFasCAAUpNTa1wtAIAoLSgoCD3tHG73a6VK1fq+PHjkqS33npLbdq00dy5c/XMM89o06ZNkqTp06dryJAhqlevnsaNG6djx44pICBAH330kSRp1apVGjZsmCHHAwCoPc6edH0gUr9FkE6nHyzRV7+5a2Tw2RNnJEm5WcdK3T73QMm2nP3HqjSyqyi/QAW/PrYkNWgVrJxL7yvziALbt6jCUVTs0Npk9ZgySv6NGqhRx9bK+OZH3fD8ODVoFaRW/SO07ql/XvVjmBFhFwCvMnnyZE2dOrVUe+fOnfXVV19Jkrp16ya73V5qn4KCAt1///2aOXOme4Hki+Xk5CgwMFBOp1MbN27Uiy++qK+//lqSlJycrHHjxklyjSiIiYmpxqMCAO9ms9lks9nK7R8xYoSWL1+uIUOGuBeZv9gzzzxTYvviqePn/w5fbP369XrooYeuuF4AgDmc2X1Q2fuOKHREPx2+ZIRT6O39lL3viM7sOSRJcjpKr7l7TdtrS2wHhlyrY5srn8HhdDhKbOcdOlHq2x8DQ5or79CJMve/HCe375XT4VC3//qtjm5IkdPh0KG123TdPUPUoHlTHd2QcsX3bWZMYwRgCpGRkUpNTa1wn/nz52vHjh16+OGHZbPZlJWVpcOHD+vNN9+UJK1bt069evVSv379NHToUMXExKioqEg2m015eXmKjo6W5FpsOSIiosaPCQDM4r777tOQIUOq7f7mzJlT5rqLAIC6J/HFjxQ2dqC6P3yb/ALry69hA3V7+LcKu2ugEqfNqfC2Lft0U8jQXrL4WNXxzlg17dZee//z02XXkLFwnVpEh6v9rdGyWK1qM7CnQn7TS7sXrJYk5R8/rWvaNLvib4E8vG67uj10qw6tTZYkHfoxWd0eulVHN+1SccG5K7pPs2NkFwCvUdHIAavVqh49eigtLa3cdVwmTZqkSZMmlWo/P6Jg6NChGjp0aIm+t99+u8T2zp07deONN8pisVz+AQAAAACoVvuXbdDyCa8r8r9Hq+czd0mSTmzdo+UTXneHQ+XJ+GatOo2J04D3/qDcQye06sG/KO/gicuuIXvvYa184M+64f+NV8zffqfcA8e0+vF3dPLXhfD3Lk5Qxzv66+5tH8pisejzHpOrvEi9JB1ak6wOv+2rQ2tdo9cOrd0m/0bXsF5XBQi7AJhGWdMbq1t4eLjCw8Nr/HEAAAAAVM2htckVBlsLej9Wqm3tlPeu6LEOJ2zXvLB7S7VnrUpS1qqkMm9TeCpHS0f9T5Xu3/LryOWLw7DUT+KV+km8ezv/yC/6qNXoy6i67mH8NwAAAAAAQC3QtHt7Oc4VlbmgPqqOkV0AAAAAAAC/ut3+NwW2bVaqfX/8Jq1+7O2rvv8h8/6oFtFdS7Wfyzkrq5+PNr0+X4Vn8q76ceoywi4AAAAAAIBfLbQ9WaP3v3z8azV6/2AaIwAAAAAAAEyEsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMwyvCrsLCQk2bNk0hISGqX7++Bg0apMTERFksFi1cuNDo8gBUgwO5F34/dta4OgAAJRU5Lvy+8bhU7DSuFgBA3eRTz193rvu7xqfPNboUeIlaH3Y5nU6NGTNGH3zwgaZOnapvv/1WoaGhGjlypCQpKirK4AoBXI1DedLvE6SRKy603RovPb9ROlVgXF0AAOmrvdKt31/YfmSd9NvvpW/3GVYSAKAOinpmrHIOHDe6DHgRX6MLqMysWbO0ZMkSJSUlqXv37pIkm82m0NBQBQUFqV27dgZXCOBKHc2XJq2RThZIFw8UcEhaeVBKPyPNiZUa+hlVIQDUXR+nSX/fWbr92FlpepKUWyyNDfV4WQCAOia4R0e1GdhTG176RANnP210OfAStX5k14wZMzRhwgR30CVJPj4+Cg0NLTWq66WXXpLFYtG2bds8XSaAK/CvXa6gy1FGn0PS3hzpsz2ergoAcPys9F5Kxfu8vV06U+iZegAAdZPFx6p+f3lEP73wgRyFRUaXAy9Sq8OutLQ0ZWRkaNSoUaX69u/fXyLs2rx5s3766Se1b9/ekyUCuEJ5RdJ/9pcddF1swV7JyfowAOBRi/dLjkr+9p5zSEsOeKYeAEDdFPHY7TqRnKEjP5Ux1BioQK2expiVlSVJat68eYn2lJQUZWZmusOugoIC/e53v9Nnn30mm812RY9ls9lktdbq7K9MEV+4VvIOCKhncCXmxvNc/QJad9F1/7u10v1OFkgNmjaTIz/bA1XVDZzPnsHz7Bk8zzWj7e/+pSb9x8niW/48cmfROf2/tz7UxA+e8GBl5sc57Rk8z57B8+wZZnieO/k21bON+pdoa9ihpbrcN1SLbn7GoKq818CBNu0u+sXoMqqFv7+/srMv/1qwVoddwcHBkqT09HT17t1bkmvB+ueee04Oh8Mddr344ouaMGGCOnToYFSpAC6TozC/Svs5nQ45z/H1jADgSY7Cs5LFUvFOFoscBXmeKQgAUOe06N1V9Zs11p0/viNJsvr6yO+a+rp7+4daNflNRnuhQrU67AoPD1dYWJheeOEF+fn5KTAwUDNnztSWLVvUoEEDdenSRQkJCdq4caP+9Kc/XdVj2e12xcTEVFPlntNrkevfggK+tq4m8TxXP6dTGmuXMrJLLk5/Mauk6OZWbcrN8WBl5sf57Bk8z57B81wzfjwi/WF9xftYfHz19YwndcMHT3qmqDqCc9ozeJ49g+fZM8zwPB9JTNF3t08t0ZaxeJ0OrrkwE+TaG7uo///+TouGPK2zJ854ukSvsmqVXS16dzW6DEPV6nl7vr6+WrBggVq1aqWJEydqypQpGjZsmOLi4tSjRw9ZrVb98MMP2rlzp0JDQ9WhQwcdOHBAv/nNbxQfH290+QAqYLFI94WVH3RJrvW8xnfyVEUAgPP6Npc6BJb/RtEqqUtjKSrIk1UBAOqS4vxC5R066f4pOHFGcjqVd+gki9WjUrU67JKkyMhIJSQkKC8vT6mpqXr00Ue1ZcsW9xTG559/XgcPHtTevXu1d+9etW3bVsuWLdPQoUMNrhxAZW5tK03q7Pr94j9G539/OkLq0/zSWwEAaprVIv1vtNS8vmv7/ITG8/+2uUb6a+/KZzoCAFBdDids17ywe40uA16iVk9jLEt+fr5SU1M1ZcoUo0sBcJUsFul34VJMc+nLvdLWk6626Gul0R1cowYAAMZoc430uU36dr/r23NPFEjX1pNuC5GGhUjXeN27SAAAUFd43duUrVu3qri42D2y61J79+71bEEArlrPYNcPAKB2CfST7u7o+gEAAPAWXhd2RUdHy+msaJUfAAAAAAAA1FW1fs0uAAAAAAAAoKoIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAPAwu92u0NBQ2Ww2TZw4sVT/3LlztXz5cklSbGysAgMDdeDAgVL7ff755woNDdWDDz5YYdu0adO0f//+GjgSAAAAoPYh7AIAwACTJ0+W3W5X48aNlZCQUKJv8eLFGjx4sCTpyy+/1OjRo8u8j5tvvlnff/99pW3jx4/Xv/71r2qsHgAAAKi9CLsAADBQRESEsrKy3NsnT55UvXr1ZLFYJEktW7Ys97bBwcHy9fWttK1r167avHlzNVYNAOZW2Qjc1157TWlpaRXex+9//3vFxsbq9ddfL9Gen5+v4cOHKy4uTpMmTZIkLV26VDabTTabTcHBwUpKSpIkvf/++xo8eLBsNpvOnTunnTt3asaMGdVzkABgYoRdAAAYKCEhQWFhYe7t9PR0tW/fvtofp7CwsNrvEwDMrLwRuA6HQ1u3blXnzp3Lve3GjRvl6+urNWvWaPPmzTpy5Ii7Lz4+Xv3799cPP/wgPz8/bdu2TbfccovsdrtWrVqljh07KjIyUvv27VNycrJWrFghu90uPz8/hYeHa/PmzXI6nTV67ADg7Qi7AAAwwOzZs2Wz2dSmTRv17NnT6HIAAOW4dATuzz//rOuuu67C26xfv16DBg2SJMXFxWnTpk3uvtDQUOXm5kqScnJy1LhxY3ffhg0b1KtXL1ksFsXHxys3N1eDBg3S9OnT3ft07NhR27dvr45DAwDTIuwCAMAA50cMvPrqqyXaw8LClJmZWe2P5+/vX+33CQB1waUjcNPS0tShQ4cKb3Pq1Ck1atRIktSwYUOdOnXK3RcWFqY1a9YoPDxcFotFISEh7r6FCxfq9ttvlyQdPXpUFotFK1euVEZGhntqY/v27bVr167qOTgAMCnCLgAAapGgoCDl5eW5tydMmKD4+HiNGzdOK1askCQ99dRTklxTYSZMmKDvvvvOvaZMWW0pKSmMHgOAy1SVEbg7duxwr7V1/udPf/qTmjRpojNnzkiSsrOz1aRJE/dtPv74Y40dO1Y7d+5Us2bNtG7dOnffqlWr3CPCGjdurLi4OEnSgAEDlJqaWjMHCgAm5Fv5LgAAoDqdvyAqz4gRI7R8+XINGTJEn376aan+t956S5I0dOhQDR06tERfWW3z5s3TQw89dPWFA0AdMnnyZE2dOrVUe+fOnfXVV19Jkrp16ya73V5qnw0bNuizzz7TbbfdptWrV+uuu+5y9zkcDgUFBUlyfcBxftTXnj171LZtW/dI3L59+2r+/PmSpOTkZI0bN06SlJmZqZiYmGo7TgAwI0Z2AQBQy9x3330aMmRItd3fK6+8onbt2lXb/QFAXRYZGVnpKKubbrpJBQUFio2NVWRkpFq0aKHDhw/rzTff1D333KM5c+bIZrMpKSlJN998s6SSUxgl6YYbblBRUZFsNpvy8vIUHR0tyfVFJhERETV3gABgAozsAgAAAICLVDQC12q1qkePHkpLS6vwGxnfe++9EtstW7bUM888I8k15fxSTz75ZKm2t99+u8T2zp07deONN8pisVRyBABQtxF2AQAAAMBlKGt6oyeEh4crPDzckMcGAG/CNEYAAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAahF0AAAAAAAAwDcIuAAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0/CasKuwsFDTpk1TSEiI6tevr0GDBikxMVEWi0ULFy40ujwAANwKii/8fijPuDoAAKUdyL3w+zmHcXUAqFj/t3+nezM/0/j0ue6fNgN7Gl0WvISv0QVUhdPp1JgxY5SYmKjp06crLCxM8+fP18iRIyVJUVFRBlcIAIBU5JBm75I+z7jQNmK5FH2t9N8RUseGxtUGAHXdrtPS37ZLG45faLtlmXRPJ+n+zpKPxbjaAJRt16fLtf6Ps40uA17IK8KuWbNmacmSJUpKSlL37t0lSTabTaGhoQoKClK7du0MrhAAUNc5nNLUzdLygyXbnZISj0mT1kgf9pc6NTKkPACo01JOSw+ulQqLS7afPifNTJH25UjToyQLgRcAmIJXTGOcMWOGJkyY4A66JMnHx0ehoaHuUV0dOnRQ165d1bNnT/Xs2VPLli0zqlwAQB20+nDpoOs8h6T8YunNZI+WBAD41Rs/u4Ku8mYt/ueAlHi8nE4Ahul4Z6zG7ZijO1a/rR5/uFMWH6+IMFAL1PqRXWlpacrIyNA777xTqm///v0aNWqUe3vBggWKiIjwZHkAAEiSFuyVrBbXCK+yOJzSxhNSZo7UPtCjpQFAnbbrtLT9VMX7WC3SggzXtHMAtcOO2Uu08ZW5OnsyW8E9OiruH1PkE+CvLX/+3OjS4AVqfdiVlZUlSWrevHmJ9pSUFGVmZlbbel02m01Wq/elxBFfnJUkBQTUM7gSc+N5hplwPteMrv/aJ78mLSrdr9ewMTqTuMgDFdUNnM8wG87p6tckdpxCnviown0cTmlp0h69ExvumaLqCM5nzzDD89zJt6mebdS/RNvJ5AuLoJ74ebe2/OX/FPX0WMKuKhg40KbdRb8YXUa18Pf3V3Z29mXfrtanO8HBwZKk9PR0d5vT6dRzzz0nh8NRIuwaP368evTooccee0ynTp3ydKkAgDrMea6gavsVnavhSgAAF3NU+e9z1fYDYBCHU2JdPVRRrR/ZFR4errCwML3wwgvy8/NTYGCgZs6cqS1btqhBgwbq0qWLJGnNmjUKCQlRQUGBpkyZoscff1yffvpplR/HbrcrJiampg6jxvT6dXBAQQEvzjWJ5xlmwvlcM2Zslf69t/z1YCQpwCrtXf2NAv08VZX5cT7DbDinq9+pAumWeKmonGnmkuv6+SFbuJ7gea9WnM+eYYbn+Uhiir67fWqJtg4j+ilrVZLOZeepaXh7RT41Rnu/TTCoQu+yapVdLXp3NboMQ9X6sMvX11cLFizQI488ookTJyokJERTpkxRo0aNtHv3bvfUw5CQEElSQECAHnvsMY0YMcLIsgEAdcyYUOnfmXJ9/WIZLJJGthdBFwB4WJMA6dYQadG+sv9EWyT5WKQ723u6MgAV6Xr/b9R3xkOy+vko/8gp7V7wg7b+/Wujy4KXqPVhlyRFRkYqIaFkgvvuu+8qLi5OkpSbm6uioiI1btxYTqdTn3/+uXr27GlApQCAuqpjQ+nlKOnFLZKcF0Z4WeX6/aZm0u+7GVcfANRlT0e4viAk6eSFv8uS63erRXqjl9T2GgMLBFDK0jv/x+gS4MW8Iuy6VH5+vlJTUzVlyhRJ0pEjRzRq1CgVFxeruLhY3bp10z/+8Q9jiwQA1Dm3tJU6NZS+2CutOiQVOlwh2OgO0i1tJN9av1ImAJhTfV/pH32l77JcU8735kj1rNKg1tJdoa6/1QAA8/DKsGvr1q0qLi52L07fsWNHbdmyxeCqAACQOjeW/hjp+gEA1B7+PtLt7Vw/AABz88qwKzo6Wk5nBStMAgAAAAAAoE5iQgUAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwDgZrfbFRoaKpvNpokTJ5bqnzt3rpYvXy5Jio2NVWBgoA4cOFBqv88//1yhoaF68MEHK2ybNm2a9u/fXwNHAgAAAKCuIuwCAJQwefJk2e12NW7cWAkJCSX6Fi9erMGDB0uSvvzyS40ePbrM+7j55pv1/fffV9o2fvx4/etf/6rG6gEAAADUdYRdQDWobDTMa6+9prS0tHJvv3btWvXp00f9+vXTW2+9Vap/7969atWqlWw2m+677z5J0vvvv6/BgwfLZrPp3Llz2rlzp2bMmFF9B4U6LyIiQllZWe7tkydPql69erJYLJKkli1blnvb4OBg+fr6VtrWtWtXbd68uRqrBgAAwMWu9lolMTFRMTEx6tevn6ZOnVppf1nXNlyrwNMIu4BqUt5oGIfDoa1bt6pz587l3rZjx45avXq11q1bp2+//VZ5eXml9rn11ltlt9v1ySefaN++fUpOTtaKFStkt9vl5+en8PBwbd68WU6ns0aOD3VPQkKCwsLC3Nvp6elq3759tT9OYWFhtd8nAAAALriaa5WoqCj9+OOPWrdunRISEnTmzJkK+9u1a1fq2oZrFXgaYRdQzS4dDfPzzz/ruuuuq/A2rVu3lr+/vyTJx8dHVmvp/zWXLVum2NhYzZs3T/Hx8crNzdWgQYM0ffp09z4dO3bU9u3bq+dAUGfNnj1bNptNbdq0Uc+ePY0uBwAAANXkSq5V/Pz8JEnFxcVq3bq1GjRoUGF/edc2XKvAkwi7gGp26WiYtLQ0dejQoUq3/f7779WpUyfVq1evRHurVq2Umpqq+Ph4vf/++zpy5IgsFotWrlypjIwMJSUlSZLat2+vXbt2VdehoI46/8nfq6++WqI9LCxMmZmZ1f54598MAQAAoGZd6bXK/PnzFR4eriZNmpRalqK8/kuvbbhWgScRdgHVpCqjYXbs2CGbzVbi509/+pMk6cCBA3rjjTfKXLMrICBADRo0UP369RUbG6uioiLFxcVJkgYMGKDU1NQaOy7gvKCgoBJTbCdMmKD4+HiNGzdOK1askCQ99dRTkqT4+HhNmDBB3333nXttiLLaUlJSGD0GAABQw672WuWee+5RSkqKDh48qOTk5FK3vbS/omsbwBNKR7IArsjkyZPLXLCxc+fO+uqrryRJ3bp1k91uL7VPQUGB7r//fs2cOVOBgYGl+nNychQYGCin06mNGzfqxRdf1Ndffy1JSk5O1rhx4yRJmZmZiomJqcajQl1z/o1NeUaMGKHly5dryJAh+vTTT0v1n39DM3ToUA0dOrREX1lt8+bN00MPPXT1hQMAAKBcV3utEhAQIKvVqoYNG5aahXJpv7+/f5nXNlyrwJMY2QXUsMjIyEpHXs2fP187duzQww8/LJvNpqysLB0+fFhvvvmmJGndunXq1auX+vXrp6FDhyomJkZFRUWy2WzKy8tTdHS0JNcC4hERETV+TKi77rvvPg0ZMqTa7u+VV15Ru3btqu3+AAAAUHVVuVZZtGiRbDabBgwYoLZt26pz584lrlUu7V+3bl2paxuJaxV4FiO7gGpQ0WgYq9WqHj16KC0trdxvOZk0aZImTZpUqv2ZZ56RVPaImLfffrvE9s6dO3XjjTfKYrFc/gEAAAAAMKWrvVYZM2aMxowZU6KtZcuW7muVsvovvbbhWgWeRtgFeEBZQ4arW3h4uMLDw2v8cQAAAACYB9cqMCOmMQIAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYhteEXYWFhZo2bZpCQkJUv359DRo0SImJibJYLFq4cKHR5cHEThde+L3IYVwdQHUoLL7we26RcXUAAADg6p296L3dWd7bAW6+RhdQFU6nU2PGjFFiYqKmT5+usLAwzZ8/XyNHjpQkRUVFGVwhzOhwvvSPnVJ81oW2276XxnWSJnSSrBbjagMuV2GxNDtN+jLjQtvQpdJvQ6THwqXG/sbVBgAAgMuTXyS9nyp9nXmhbegy6fb20qNdpQZecaVfNW0H36Co5+5Wo06tVZSTr23/XKztMxcZXRZqOa/4X2DWrFlasmSJkpKS1L17d0mSzWZTaGiogoKC1K5dO4MrhNkczpMmrpF+KZAuHsx1rEB6Z4eUfkZ6KUqyEHjBCxQ5pCcTpfXHSrYXOKSvMqWNJ6QP+xN4AQAAeIOzRdKj66TtpyTnRe15xdLne6SkE9L7MeYIvFrHRarvmw9r7RPv6nDCdvnWD9A1bZoZXRa8gFdMY5wxY4YmTJjgDrokycfHR6Ghoe5RXWfPntWjjz6qzp076/rrr9dDDz1kVLkwgb9sKx10XWzJAemHwx4tCbhiX2eWDrrOc0ralyP9M8WjJQEAAOAKfbpH2naqZNB1nlNSymnpk3QPF1VDop69W1vf/rcOrU2Ws9ihczn5OpW63+iy4AVqfdiVlpamjIwMjRo1qlTf/v373WHXs88+q3r16mnXrl1KTk7WK6+84ulSYRJH811BVkXLc1kt0pd7PVURcHW+yJAqGoTolLR4v2s4PAAAAGqvYqe0IKPifZyS/r3X+9cb9q0foGY9O6n+tU00cs3/auzWDzToo+cUGNLc6NLgBWr9wMasLNeCSc2blzyhU1JSlJmZqaioKOXk5OiTTz7RgQMHZPl1XlmLFi0u63FsNpus1lqf/ZUS8cVZSVJAQD2DKzGPwJ6/UegfK54D7nBKP+45qQBbKw9VBVwhH19d/3lupbudLZZaht+os/u2eaAooPrwOgiz4ZyGmXA+Vz/fxs0V/kHlI5t+KZQat+moopNZle5bG3TybapnG/Uv0ebf5BpZrFa1vzVa3497VfknTqv3y5M0cPYzWjz0GYMq9Q4DB9q0u+gXo8uoFv7+/srOzr7s29X6dCc4OFiSlJ5+YRym0+nUc889J4fDoaioKO3evVvBwcF66aWX1KtXL9lsNq1du9aokuHtHFUc3uIornwfwGhOh5zOqn2s5+ScBgAAqNWcxZcxFN/L39udy3GFpTs+WKKcA8dUnF+ozW/MV/D1oazbhUrV+pFd4eHhCgsL0wsvvCA/Pz8FBgZq5syZ2rJlixo0aKAuXbooKSlJe/bsUVRUlN58802tX79et912m9LT09WoUaMqPY7dbldMTEwNH0316/XrAKSCggJjCzGRnHPSb5a5Fu8uj1XSiO7XKonnHV7g4R+lLScqnprbLED6KS1JvrX+IxCgJF4HYTac0zATzufq53RK4+zS7uyy1+ySXMtXtA+UNhzO9Jov1DqSmKLvbp9aou1cdp5y9h91HTQuy6pVdrXo3dXoMgxV6y9rfH19tWDBArVq1UoTJ07UlClTNGzYMMXFxalHjx6yWq1q166dfH19NW7cOElSdHS0mjVrpl27dhlcPbxRoJ/rK3srel1wSLor1FMVAVdnXMeKgy5JGttRBF0AAAC1nMUi3dOp/KBLcvWN62iOb45P/SRe4Q/eqgatg+UT4KeoZ+/W8Z93KzfruNGloZar9SO7JCkyMlIJCQkl2t59913FxcVJkpo1a6aBAwfq+++/19ChQ7Vr1y4dPXpUYWFhRpQLE3giXNp1Wko66Qq9zr+YWC2u9bqejpAimhpZIVB1tlbS/WHSR+muTzjOB1/nf7e1lO7tZFx9AAAAqLrbQqTkX1zfuF3We7vbQqSR7Y2rrzolv7dQ/o0DNSL+z5LFqqOJKVo1+U2jy4IX8Iqw61L5+flKTU3VlClT3G3//Oc/9cADD+ipp56Sn5+f5s6dqyZNmhhWI7xbPV/pvb7Swn2ub7LLzJF8LFL/FtLdHaVeTBGHl3m8m9QjSPq/DGnjcVdoe11j1wjFW0Nc5zcAAABqP4tFeqGH1LuZ673d1pOu9oimrtH6Q1ubY1SXJMnp1KbXPtWm1z41uhJ4Ga8Mu7Zu3ari4mJFRUW52zp27Ci73W5cUTCdAB9XEHBXqCsYsMhELxqokwa0dP04na7RilbOZwAAAK9ksUg3t3H9nF/SimsV4AKvDLuio6PlZJE6eBChAMzEYql4TToAAAB4D0IuoDSWIwYAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2mZjdbldoaKhsNpsmTpxYqn/u3Llavny5JKlp06ay2WwaOnRoqf2OHTumkSNHauDAgZo1a5YkyWazyWazqXv37poyZYqKior04IMP1uwBAQBwmar6WpiamqqYmBjFxsbqySefLPO+zp49q1atWmnt2rWSpPvvv199+/aVzWbTypUrJUmTJk2S0+msuQMCAABApQi7TG7y5Mmy2+1q3LixEhISSvQtXrxYgwcPliTdeOONstvtio+PL3UfL7/8st5++22tWrVKDz30kCTXxYPdbteIESM0fPhw+fr66tprr9Xu3btr/qAAALgMVXktbNasmZYtW6Y1a9bo+PHj2rVrV6n7mTNnjrp161ai7csvv5TdbtegQYMkSdHR0Vq1alXNHQwAAAAqRdhVR0RERCgrK8u9ffLkSdWrV08Wi0WS9PPPPys2NlZvvfVWqdvu2rVLzz//vIYOHarU1NQSfXa7XTabTZJrtNd3331XcwcBAMBVqOi1MDg4WIGBgZIkHx8f9+vjecXFxVq7dq1iY2PdbRaLRWPHjtVdd92lkydPSpIGDhyoJUuWeOBoUFdVNlrxtddeU1paWoX38fvf/16xsbF6/fXXS7Tn5+dr+PDhiouL06RJkyRJS5cudY/oDw4OVlJSkiTp/fff1+DBg2Wz2XTu3Dnt3LlTM2bMqJ6DRJ1xtedzYmKiYmJi1K9fP02dOrXS/rVr16pPnz7q16+f+7qHcxcwJ8KuOiIhIUFhYWHu7fT0dLVv3969vWvXLtntdq1du1bbtm0rcdu1a9fq1Vdf1Xvvvac//vGPpe7D399fktS+ffsyPwkHAKA2qOy1UJK2b9+u48ePq3PnziXaP//8c40ePbpE21//+lf9+OOPGjt2rN544w1JvBbCM8obrehwOLR169ZS5+/FNm7cKF9fX61Zs0abN2/WkSNH3H3x8fHq37+/fvjhB/n5+Wnbtm265ZZbZLfbtWrVKnXs2FGRkZHat2+fkpOTtWLFCtntdvn5+Sk8PFybN29mGi8u29Wcz1FRUfrxxx+1bt06JSQk6MyZMxX2t2vXTqtXr9a6dev07bffKi8vj3MXMCnCLpObPXu2bDab2rRpo549e5a7X9OmTeXj46Phw4drx44dJfq6d++uTp06qXPnzjp9+rS7feHChbr99ttrqnQAAKpFVV8Lz5w5o8cff9y9PuV5TqdT33zzTanXvKZNm0qSRowYoe3bt1d73UBlLh2t+PPPP+u6666r8Dbr1693T7uNi4vTpk2b3H2hoaHKzc2VJOXk5Khx48buvg0bNqhXr16yWCyKj49Xbm6uBg0apOnTp7v36dixI/8v4Ipdyfns5+cnyTX6tnXr1mrQoEGF/a1bt3Z/UO/j4yOr1XU5zLkLmA9hl8md/6Tk1VdfLdEeFhamzMxMSVJeXp6Ki4sluT71Dg0NLbFvhw4ddPz4cR05cqTEC8iSJUs0fPhw93ZmZmaFn7wAAGCEqrwWOp1OPfDAA3r55ZfVunXrEvvl5ORoz549Gj58uD799FM9/fTTOnv2rLKzsyWVfO3ktRCedOloxbS0NHXo0KHC25w6dUqNGjWSJDVs2FCnTp1y94WFhWnNmjUKDw+XxWJRSEiIu+/iDzmPHj0qi8WilStXKiMjwz21kZGNuBpXcj5L0vz58xUeHq4mTZrI19e3Sv3ff/+9OnXqpHr16kni3AXMiLCrjgoKClJeXp4kaffu3erdu7f69++vJk2a6KabbtLhw4f15ptvSpKmTp2qO++8UyNHjtS0adMkScePH5efn1+JT/zsdruGDRvm+YMBAOAKXPxaaLfbtXLlSk2bNk02m02bNm1yvxY2bNhQmzZt0tKlSzVhwgT95S9/Ub169XTfffepf//+eumll/T8889LklatWsVrIWpcVUYr7tixw73W1vmfP/3pT2rSpIl7qld2draaNGnivs3HH3+ssWPHaufOnWrWrJnWrVvn7lu1apV7RFjjxo0VFxcnSRowYECpNV2By3E157Mk3XPPPUpJSdHBgweVnJxc6raX9h84cEBvvPFGmWsVAzCP0tE3TOP8C0F5RowYoeXLl2vIkCElhrBLUsuWLfXMM89Iknr06KHVq1eX6G/WrJmWLl3q3i4qKtLRo0dLfBoDAIDRLue18Pwi8xc7/1p43sVTtr7++utS+69fv979zcVATZk8eXKZi3F37txZX331lSSpW7dustvtpfbZsGGDPvvsM912221avXq17rrrLnefw+FQUFCQJFcYfH7U1549e9S2bVv39K++fftq/vz5kqTk5GSNGzdOkmtkY0xMTLUdJ+qGqzmfCwoKFBAQIKvVqoYNG7pHapXX7+/vr/vvv18zZ850fymJxLkLmBEju+qw++67T0OGDKmW+/L19dXs2bOr5b4AAPCU6nwtlKQ5c+a414ABPC0yMrLSUVY33XSTCgoKFBsbq8jISLVo0cI9ivGee+7RnDlzZLPZlJSUpJtvvllS6XVab7jhBhUVFclmsykvL0/R0dGSXF/6EBERUXMHiDqlKufzokWLZLPZNGDAALVt21adO3cuMUPl0v5169Zpx44devjhh2Wz2dxrhHHuAubDyC4AAADAS1Q0WtFqtapHjx5KS0urcO249957r8T2xSP64+PjS+3/5JNPlmp7++23S2zv3LlTN954oywWSyVHAFxwtefzmDFjNGbMmBJtF5/PZfVPmjSpxDbnLmBOhF0AAACASZQ1HcwTwsPDFR4ebshjw7w8cT5z7gLmxDh7AAAAAAAAmAZhFwAAAAAAAEyDsAsAAAAAAACmQdgFAAAAAAAA0yDsAgAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANPwmrCrsLBQ06ZNU0hIiOrXr69BgwYpMTFRFotFCxcuNLo8Q+QWGV0BAAC1Q845oysArh7nMcyksPjC7w6ncXUAqJt8jS6gKpxOp8aMGaPExERNnz5dYWFhmj9/vkaOHClJioqKMrhCzzqQK83eJS3NutB2/2rp/s6SrZVxdQEA4ClrDktz0i5sD1kq3dxG+q/rpHaBxtUFXIk92dIHqdKKQxfaHlorPXCd1Ke5cXUBVyLnnOta5evMC20jV0j3dJLGdJCsFsNKg5cZnz63xLaPv59OpWVp0eCnDKoI3sQrwq5Zs2ZpyZIlSkpKUvfu3SVJNptNoaGhCgoKUrt27Qyu0HMysqXJa10vIo6L2neckp7eID3ZXRrfyajqAACoeV9mSDOSSw5PL3JKy7JcIdgH/aWwRoaVB1yWHaekh3+UCopLvrdLOin9/ifpxZ7SbXXnrS68XPY517VKRrZ08WCug3nSm8nSjl+k/4ki8ELVzAu7t8T2iBVvKWPhjwZVA2/jFdMYZ8yYoQkTJriDLkny8fFRaGiooqKitHfvXvXs2dP906FDBwUFBRlYcc35ny1STlHJN0PShe2/bZf2Znu6KgAAPONArvTnZNfvpV4LnVJekfTHTZKTKTPwAg6n9MLG0kGX5Np2SnrlZ+nYWQOKA67AeztLB13She3/HJC+P+jpqmAGzXqGqcl1bZX+f6uMLgVeotaHXWlpacrIyNCoUaNK9e3fv19RUVHq0KGDkpKS3D933HGH7rnnHgOqrVk7T7k+/atozrtF0r8zy+8HAMCbfVXJa5xD0u5saesvHikHuCqJx6QDeaWDros5nNI3vLeDF8g5Jy3eVzrouphV0hcZnqoIZtL5nkHKWrlF+Ud4gUfV1PppjFlZroWpmjcvuWBBSkqKMjMzS63XVVhYqHnz5mnZsmWX9Tg2m01Wa+3O/oKGPqw2//VOhfs4Jc1elqgXboz1TFEAAHhQ6PTvFdh9QKX7DXvwGZ34T8WvmYDRrr3zebW4+39ksZT/HtTpcOjNz5bp8Tfu8FxhwBWo37m3wl5fU+E+DklJRwsVENDQM0XBa3TybapnG/Uvs8+3foBCb4/Rmife9XBV3mvgQJt2F5kjGPT391d29uVPX6vd6Y6k4OBgSVJ6erq7zel06rnnnpPD4SgVdi1atEht2rTRDTfc4NE6PcJZ0ed+F+/H3A0AgEk5HXJW5XWO10J4A97bwUyqeD5zOuNydbitr4ryC3Vg+SajS4EXsTir9I7ROEVFRQoPD9e5c+f05ptvKjAwUDNnztSWLVt08uRJZWdnlxiRNXz4cN1yyy164oknqnT/Z86cUXJysq6//no1alS7V7PdfUYaa694H4ukiWHS4908UREAAJ71for0wa6Kp8lI0qcDpK5NPFERcOWSTkgPVmGt5Se6SfeF1Xw9wNU4WyT9Jl7KLSp/H6tFuqmZ9F5fz9UF73AkMUXf3T61zL5hC1/R0fUp2vT6PA9X5b2GLXxVLXp3NboMQ9X6kV2+vr5asGCBWrVqpYkTJ2rKlCkaNmyY4uLi1KNHjxJBV1ZWln744QeNHz++yvffqFEjxcTE1PqgS5I6NZJuCK74P5pF0sj2nqoIAADPGtm+4m/xskqKaELQBe8QGSR1alj+OW2R5G+VRoR4tCzgitTzdf2NruiLFh1O6a5Qj5UEE2jUqbWa9+qiXZ+tMLoUeJlaH3ZJUmRkpBISEpSXl6fU1FQ9+uij2rJlS6kpjB9//LFuvfVW99RHM3o5SmpWr/SLiFWuthd7Sm2u8XxdAAB4QvP60ktRrte9SwMCi6SmAdKrNxpRGXD5LBZpRi+pkV8Z7+0srp/Xb5SaBBhSHnDZHukiXd+0dPv5i87xHaUBLTxaErxc53GDdGT9TmVnHDa6FHiZWr9AfVny8/OVmpqqKVOmlGj/6KOP9M475l6MtmUDae4A6dPd0teZUk6R681RTAvp3jDXyC8AAMzslrZSqwbS3HTph8OuKY3X+Eq3t3O9Fl5bz+gKgarr0NA17XbubmnRPim/2BVyDWopTQiTIsoIDoDaqp6v9I9+0v/tkb7cKx3Od7V3ayrd01G6ubUr5AWqatOrnxpdArxUrV+zqyzr169Xnz59tGHDBvXq1cvocgxT7JRyz0kBPq4fAADqmsJi6WyxdI2f5MMFFLxckcO13lF9H8mf93bwck6n63z2sUj1vXKIBTypojW7cPlYs8tLR3ZFR0dX7ZuYTM7HIjXyN7oKAACM408oABPxtUqNeW8Hk7BYpEA/o6sAUFd5xZpdAAAAAAAAQFUQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpWJxOp9PoIgAAAAAAQN1UmJ2nX3buM7oM02ga3k7+DRsYXYahCLsAAAAAAABgGkxjBAAAAAAAgGkQdgEAAAAAAMA0CLsAAAAAAABgGoRdAAAAAAAAMA3CLgAAAAAAAJgGYRcAAAAAAABMg7ALAAAAAAAApkHYBQAAAAAAANMg7AIAAAAAAIBpEHYBAAAAAADANAi7AAAAAAAAYBqEXQAAAAAAADANwi4AAAAAAACYBmEXAAAAAAAATIOwCwAAAAAAAKZB2AUAAAAAAADTIOwCAAAAAACAaRB2AQAAAAAAwDQIuwAAAAAAAGAa/x/TOtcjO/zeqQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -776,16 +776,16 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:54:59.764142Z", - "iopub.status.busy": "2024-11-23T19:54:59.763943Z", - "iopub.status.idle": "2024-11-23T19:55:00.023968Z", - "shell.execute_reply": "2024-11-23T19:55:00.023389Z" + "iopub.execute_input": "2024-12-05T03:21:34.409586Z", + "iopub.status.busy": "2024-12-05T03:21:34.409139Z", + "iopub.status.idle": "2024-12-05T03:21:34.667420Z", + "shell.execute_reply": "2024-12-05T03:21:34.666812Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAGOCAYAAADGoW0OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTkElEQVR4nO3deXyU5b3//9dkY5GwBGURWQJBZJGlInEBMwFaRSuISKuVylGs9tjqoVprD5V+aV1aaj1ajkt/VGstLq1SFe3BilgCqIGIgCiyBTFiKqggECAkJDO/P6YEY9hJZiaZ1/PxSMl93dfc9+eejneu971NIBwOh5EkSZIkNXhJsS5AkiRJkhQdBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShApsS4gnpWX7OaLVR/FuowGo1XPTqSlN411GZIkSapDjqFrV22PoQ2Ah/DFqo94edTtsS6jwRgx607aDjot1mVIkiSpDjmGrl21PYb2ElBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEPUmAJaXlzN58mQ6duxIkyZNGDp0KAUFBQQCAWbNmhXr8tRAbS+Hp9bDHcth6gp4fTNUhmNdlXRs9obg1WK4+x24czn87UPYXRHrqiRJUjSlxLqAIxEOhxk7diwFBQVMmTKFrKwsnnrqKUaPHg3AgAEDolpPIDmJM6eMp9uY8wgkJfHh/y1i8aRHqCzbG9U6VLee+xDueS8yaE4OQBh49kPoeALclw1dmsW4QOkorPwCbi6ALWWRzzPACx/B/SvhFwNg6MmxrU+S1PA5ho4P9eIM4PTp05k9ezZz587l+uuvZ9iwYUyfPp3k5GQyMjLo1KlTVOvpe9OltDunD7OG3sLfzr2Rlqeewhm3fzeqNahuvVoMd6+IhD+InPUL/fvMX/Fu+P4bsK0sdvVJR+PjXXBDPnzx789sZXj/mew9lfDTJbDk89jVJ0lKDI6h40O9CIBTp05l3Lhx9O7du6otOTmZzMzMqrN/a9eu5eyzz+bUU0/l7LPPZt26dXVWT/crh/HutOfYvWkrZVt2sPzeZ8j6dpBAUr14O3UY4TA8tBoCB5kfCsPnZfD8R1EtSzpmT66H0goIHWDeviua/7AmmhVJkhKRY+j4EPeXgK5bt44NGzYwbdq0GvM2btzImDFjAPj+97/PD37wA8aNG8cTTzzB9ddfzz//+c8jWkd6ejrl5eU12rultOInzQdXa0tr3pRmHU5i68oNVW1b3t1AWnpTmnU8iZKizUezeQklNzfI+oovYl3GYTXpdgZZv37zkH3C4RD/89p6vt+nT5Sqko5drz9/TnKT9IPODwFvb4ET2nelYmtx9AqTJDVIjqFrV27ugcfQaWlplJSUHPXy4j5uFxdHBiNt2rSp1r569WqKiooYMGAAn376KUuXLuWKK64A4IorrmDp0qV89tlntV5PSrMmAJRv313VVr59FwCp/56n+i2lRZvD9gkEko6onxRrgZS0Q4a/L0tpfmIdVyNJSlSOoeNH3J8BbN26NQCFhYUMGjQIiDwU5rbbbiMUCjFgwAA2btxIhw4dSE5OBiKXh5588sls3LiRk0466bDrOFhy3lywmpdH3V6trWJnKQCpzZtS+tk2ANJanADA3n/P04HNm5dH20GnxbqMw1r5BYxfePh+mW1asKzMGwEV38JhyJkNuysP33fd8gLa+DdYknScHEPXrtoeQ8f9GcCePXuSlZXFpEmTePbZZ3n55ZcZNWoUS5cupWnTpvTo0SOq9ZTv2M3O4s/I6N2lqq11n0zKS3azc2Ptn3FU9PVqCZ1OOPg9gPuMjO6zh6RjEgjANzsdemefBAxsjeFPklRnHEPHj7gPgCkpKcycOZP27dszfvx4Jk6cyIgRI8jJyaFv374kJSXRsWNHiouLqayMHOKurKzkX//6Fx07dqyTmtY9+Rp9bxxNk7ataNS6Of1v+RaFf80jHDrQIxZU3wQCcEPP/Q/H+Kok4KTGcEnnaFYlHbvvdIUmKQfe4Qf+/T/Xxf/JeUlSPecYOj7E/SWgAP369SM/P79a2wMPPEBOTg4QuT+wf//+PP3004wbN46nn36aAQMGHNHln8dixbTnaJTRnEvy7iOQFODDvy/i7bueqJN1KTaGnwy394PfvAvlX9knnXIC3J8NLdNiU5t0tE45AR4+B24pgM/2VJ/XJBl++TX4WuvY1CZJShyOoeNDIBwOH+xER9wqLS0lPT2dhx9+mO9973tA5KEw48eP54svvqBVq1b8+c9/Pu7LQw90/bKO3YhZd9aLewC/bEc5zP4YfvteZHraWXDWSZB0uOtDpThUEYL5m+C2JZHp2/vB+R0iZwclSaotjqFrV22Poevln/0VK1ZQWVlZ9R2AAKeddhqLFy+OYVVqiJqnweVd9wfAc3zwp+qxlCQYdvL+aS9jliQp8dTLAJidnU09PHEpSZIkSTEV9w+BkSRJkiTVDgOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoHSc8vLyyMzMJBgMMn78+BrzZ8yYwdy5cwEYMmQIzZo14+OPP67Rb+PGjeTm5nLuuefyzjvvADB+/HgGDx7MsGHDKC4uBuDqq68mHA7X4RZJkiSpoTIASrVgwoQJ5OXl0aJFC/Lz86vNe+mllxg2bBgAzz77LJdddtkBlzF16lTuv/9+XnjhBX75y18C8Itf/ILXX3+dSZMm8eCDDwKQnZ3NvHnz6nBrJEmS1FAZAKVa1KdPn6ozdQBbt26lcePGBAIBANq1a3fQ1xYWFtKvXz9OOukkdu3aBUCXLl0ASE5OrlpGbm4us2fPrqMtkCRJUkNmAJRqUX5+PllZWVXThYWFdO7c+YheGwqFDvr73XffzYQJEwDo3Lkza9euraWKJUmSlEgMgFItePTRRwkGg3To0IH+/fsf0zKSkpIO+PvkyZO5/PLL6dq16/GWKUmSpASXEusCpIZgwoQJ3H777TXas7KyKCoqOqJldOvWjRUrVnDyySdzwgknAPC3v/2NrVu3ctddd1X1Kyoqonv37rVTuCRJkhKKZwClOpSRkcHu3burpseNG8ecOXO44ooreO211wC45ZZbALjtttu46aabGDVqVFWYvPnmm3nnnXcIBoNVIXDevHmMGDEiylsiSZKkhsAzgNJxCgaDBIPBg84fOXIkc+fOZfjw4TzxxBM15t97770AdOrUiby8vGrzDnT2cPHixVx33XXHVbMkSZISkwFQqmNXXXVVrS7vscceq9XlSZIkKXF4CagkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQliHoTAMvLy5k8eTIdO3akSZMmDB06lIKCAgKBALNmzYp1eWqg9lTA3z/aP/3OVgiHY1dPQ1URgtf+BdPehwfehzc/hZDvs6TD+KAE/rAG7l8Jf90A28tjXZEkxb+UWBdwJMLhMGPHjqWgoIApU6aQlZXFU089xejRowEYMGBA1GrpcvHZ9Lz2QjJ6d6FsawkzB90QtXUruuYUw13vwK6K/W0TXoeeLeCeM6Fd09jV1pC8/TlMehu2lO0/IvWnQujQNPI+n9oipuVJikM798LPl8KCzRAAkgJQGY4Ewet7wPgsCARiXaWkL3MMHT/qRQCcPn06s2fPZvny5fTu3RuAYDBIZmYmGRkZdOrUKWq1lG3fxeo//oPGJ7Wg93XfjNp6FV0LN8HP3j7wvDXb4bo34ckcSE+Nbl0NzeptcOOiyBlAgNCX5n2yG65/E544DzqcEIvqJMWjUBh+tBiWb41Mh4mEP4C9IXhgFaQEYFxWzEqUdACOoeNHvbgEdOrUqYwbN64q/AEkJyeTmZlZdfbvxz/+MZmZmQQCAd577706q+WTBSvYMOsNdn38WZ2tQ7EVDsP/rvr37weYHwL+tRtmfXSAmToqf1gbCX+hA8wLAbv2whPro12VpHiW/yks23rg/fM+09dAacUhOkiKOsfQ8SPuA+C6devYsGEDY8aMqTFv48aNVQHwkksuYcGCBXTu3DnaJaqBWbMjcl/JoQYXAeCFomhV1DBtK4cFmw4c/vYJAS9t3H90X5L+vvHwg5fdlZC3KSrlSFK9E/eXgBYXFwPQpk2bau2rV6+mqKioKgAOHjz4mNeRnp5OeXnNO8e7pbTiJ82PfbmqLjc3yPqKL2JdxmGlf20EXf77hUP2CQPrN2+nUaM2h+yng2vU4TROvf+dw/bbUwnNMk4itHtHFKpKDH2e2QNAo0aNY1yJdPS63jGPE04757D9rv3Rf/P5i/8ThYokfZVj6NqVm3vgMXRaWholJSVHvby4PwPYunVrAAoLC6vawuEwt912G6FQKKoPgFFiqCjZctg+4XCYip2H76eDq9y59Yj6hfaWEdqzq46rkVRfVOz4nHDl4a/vrDyCfbkkJaK4PwPYs2dPsrKymDRpEqmpqTRr1oyHH36YZcuW0bRpU3r06HHc6zhYct5csJqXR91+3MtXxLx5ebQddFqsyzisUBhGzYVNpQe/DDQQCHDjeV25rqwsqrU1NN9/A5ZuOfhloEnARZmNWFq6O5plNXgDX4z8W+bnV/XQq8Xw3wd5SNc+aUmw9sXpNE+bHp2iJFXjGLp21fYYOu7PAKakpDBz5kzat2/P+PHjmThxIiNGjCAnJ4e+ffuSlBTdTQgkJZHcKJVASgoEAiQ3SiUpLe5ztI5CUiDyGPGDhb8koEUqXOrtpsft2n+/zwd6WnsASEmC7/okP0lfEmwPXZsdegBzeVdonha1kiQdAcfQ8aNevOv9+vUjPz+/WtsDDzxATk5O1Gvpdtl5DP7dD6umv/vh0+zc+KnfZdLAfLMTfFEO//v+lwJKIHJ2MKMRTDsLTvT2qeM28ES48wyYsizy+PYva5ICvxkIWc1jU5uk+JSaBA+eAzctgnVfujU4icjVBJd2hh/0jFV1kg7GMXT8qBcB8KtKS0tZs2YNEydOrGq76aabeO6559i0aRPDhw+ndevWrFy5stbXXfhMHoXP5NX6chV/vpsF53eIfN3D+pLIoOPcNjC0PaQlx7q6huP8DnDWSZGnfd7/7/9k/7svXHAKnFAv91CS6tpJjSPfxbros0gQBLiyG4zsBJnpsa1N0oE5ho4f9XJ4tWLFCiorK6s9AGbatGlMmzYthlWpIWrTBL53/LeZ6jBapMG4bvsD4JguMS1HUj2QFIBzvvQg5v/qffC+kqT96mUAzM7OJhz2i8EkSZIk6WjE/UNgJEmSJEm1wwAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKKleyMvLIzMzk2AwyPjx42vMnzFjBnPnzgXg7rvvZsiQIdx44401+n3ve98jJyeHwYMHs3btWgD++Mc/cs4553DJJZdQUlLC3r17Offcc8nJyWHkyJHs2bOHrVu3cvPNN9ftRkqSJNUxA6CkemPChAnk5eXRokUL8vPzq8176aWXGDZsGJs3b2bp0qUsXLiQlJQUlixZUq3fQw89xPz58/nVr37F73//eyoqKnj88cd5/fXXufbaa3nkkUdITU1l/vz5zJ8/nzPPPJM5c+aQkZHBtm3b2LlzZzQ3WZIkqVYZACXVO3369KG4uLhqeuvWrTRu3JhAIMCSJUvIyckBYOjQoRQUFFR7bWpqKgA7d+6kT58+fP7553Tq1ImkpCROP/30qmCZkpICQCgUolu3bgBkZ2eTl5dX15snSZJUZwyAkuqd/Px8srKyqqYLCwvp3LkzANu2baN58+YApKens23bthqvHzZsGD/84Q8588wzOemkkygsLGTPnj0sWLCA7du3A/D+++9z5pln8uqrr9KxY0cAOnfuXHXZqCRJUn1kAJRUbzz66KMEg0E6dOhA//79D9inZcuW7NixA4CSkhJatmxZo89rr73Gc889x5QpU0hOTubWW2/lggsu4J133qFt27YA9OrVi7feeouxY8fy+OOP19UmSZIkRZUBUFK9se8ewDvvvLNae1ZWFkVFRQCcccYZLFiwAIB58+YxaNCgan3LysoAaNGiBU2aNAHg0ksvJS8vj+zsbEaMGMHevXsJh8NV/Ro3bgxAUVER3bt3r7sNlCRJqmMpsS5Ako5XRkYGu3fvBqBdu3b07duXIUOG0LdvXwYOHMimTZuYMWMGt956K6NHj6a0tJRAIMCDDz4IwA033MCaNWvo1asX999/Pxs2bGDChAkkJSXRqlUrnnjiCQAWLVrEtGnTYradkiRJx8sAKKleCAaDBIPBg84fOXIkc+fOZfjw4UyePJnJkydXzWvXrh233norALNnz67x2oceeqjadFZWFvPnz6/WtnXrVlq2bEl6evpxbIUkSVJsGQAlNQhXXXVVnS4/IyOD++67r07XIUmSVNe8B1CSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZISRL0JgOXl5UyePJmOHTvSpEkThg4dSkFBAYFAgFmzZsW6PEnHIRyGtz7bP/3eF5E2qb76cCc8sR7+uBbyPoGKUKwrko7dtnJ47kN4dC28UAQle2NdkaTjkRLrAo5EOBxm7NixFBQUMGXKFLKysnjqqacYPXo0AAMGDIhaLUlpKZx197W0H3w6jVs3Z/fmL1j1x5dZ/ceXo1aD1JCs2gY/exs+2rW/7T8WQo8W8KszoFOzmJUmHbVt5fDzpfDmp9XbM9LgZ/0hp11MypKOSWUYHloFT66Hii8dlPvNuzA+C77XA5ICsatP9Ytj6PhRLwLg9OnTmT17NsuXL6d3794ABINBMjMzycjIoFOnTlGrJSk5mdJPtzHn8jsoKdpMRq/OfP3p29nz2TY+fCk/anVIDcEHJXDdG1BWWXPeuh1w7evwRA60aRL92qSjtacSbngTCnfUnPdFOfy4AH53FpzTJvq1Scfif96Dv26o2V4egj+sjfx7Y6/o16X6yTF0/KgXl4BOnTqVcePGVYU/gOTkZDIzMxkwYABbtmzhwgsvpEePHpx++ulceumlfPbZZ4dY4rGrKC1j2W/+QsmHmyAcZuvKD9k4ZwltBvWsk/VJDdkf1kTC34GujguFI4PmJ9dHvSzpmPzjY1i748Cf530nT+5f6eXNqh8+3gXPHCD8fdmMQvhsT3TqUf3nGDp+xH0AXLduHRs2bGDMmDE15m3cuJEBAwYQCAT4yU9+wpo1a3j33Xfp1q0bP/3pT6NSXyAlmbbZPfliVVFU1ic1FDvK4bVPDjxY3icMvPBRJAxK8e75IjjU1XBhIme9V22PVkXSsXtp4+H7hID/O4J+0oE4ho6duL8EtLi4GIA2bapfM7N69WqKiooYMGAAGRkZBIPBqnlnnXUWDz/88BGvIz09nfLy8hrt3VJa8ZPmgw/52rPunsDenaWsf3b+Ea8vUeXmBllf8UWsy1CcaNThNE69/53D9ttVASdknERo9wGuq9Mx6fNM5JB9o0aNY1xJw9LzDxtJaXn46ztzRn6bHYtfqPuCEoSf57pxyg8eoeWQywkkpx60T7hiL7/43WNc/4cbo1iZ6gPH0LUrN/fAY+i0tDRKSkqOenlxfwawdevWABQWFla1hcNhbrvtNkKhUI0HwIRCIR5++GFGjhxZ57WdOWU8J53Rg1evvIvQ3oo6X5/UkFTuPrLTIOHKCkJlu+u4Gun4Ve7eRvgIru+s3OUpQMW/yt07OPQ5bSApicpd26JRjhoYx9CxFQgfyV+rGKqoqKBnz57s3buXe+65h2bNmvHwww+zbNkytm7dSklJCUlJ+3PsD37wA4qLi3nuueeqtR+LzQWreXnU7QecN+iX/0H7wafzj7G/oGyLZyaOxIhZd9J20GmxLkNx5JqFka98ONhloEnAsJPhVwOjWVXDN/DFyL9L6v44WUKZvibycyit0mD2NyA17g+/1h9+nuvG8i1w7RuH7/dkTuSpzdKXOYauXbU9ho77P0EpKSnMnDmT9u3bM378eCZOnMiIESPIycmhb9++1ULej3/8Y9atW8df//rX4w5/hzLojmtoP6SvH1zpOF1z6sHDXwAIBGBct2hWJB27SztDeuqh/7CO7274U/3QLwP6Zxz88xwAzj7J8Kej4xg6PsT9PYAA/fr1Iz+/+uNhH3jgAXJycqqmJ02axNtvv83//d//0ahRozqr5YRTTqTXtRdSuaecyxY/WNW+efFq5l55V52tV2qIBreF/+4LU1dEHpDx5csRUpLgrq9B71axqk46Oic2hgfOgpsWwfYvfVF2EpEDHeO6wZVdY1WddHQCAfjtoMjn+f1t+9uTApEHc/XLgLu9OkNHwTF0/KgXAfCrSktLWbNmDRMnTgRg5cqV/OpXv+LUU0/lnHPOASAzM5Pnn3++1te96+PP+VP7y2p9uVKiGtMFzm0Dz38EK7+IHFU+40QY2Qky6u5YjlQnereCF78e+UqIX62ItI3NhNGdIat5bGuTjlbLNHhsCOR/ChMXR9q+cTJc1BGyT/JL4HV0HEPHj3oZAFesWEFlZWXVA2B69+59RDfeS4pP7ZrCf3p7qBqIE1IiBzb2BcBbT49pOdJxSQ5ErtbY584zYleLpNpRLwNgdna2gU+SJEmSjpK3okuSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSFGV5eXlkZmYSDAYZP358jfkzZsxg7ty5AAwZMoRmzZrx8ccf1+i3YMECsrOzyc7OZtasWQA8++yzDBo0iLPOOotFixYBcPXVVxMOh+twiyRJ9YUBUJKkGJgwYQJ5eXm0aNGC/Pz8avNeeuklhg0bBkQC3WWXXXbAZdx33308//zzzJ8/n2nTpgHw4IMPsmDBAp577jl++9vfApCdnc28efPqcGskSfWFAVCSpBjq06cPxcXFVdNbt26lcePGBAIBANq1a3fQ13bv3p3t27eza9cu0tPTAejSpQu7du1i+/btZGRkAJCbm8vs2bPrcCskSfVFSqwLkCQpkeXn5/Nf//VfVdOFhYV07tz5iF47atQozj//fEKhEI888ggAF198MQMGDKCysrIq9HXu3Jm1a9fWfvGSpHrHM4CSJMXAo48+SjAYpEOHDvTv3/+YljF58mTeeustVq1axdSpUwGYOnUqq1at4q233mLy5Mm1WLEkqSHwDKAkSTEwYcIEbr/99hrtWVlZFBUVHdEykpOTad68OWlpaZSVlQHQuHFjmjRpQjgcZteuXQAUFRXRvXv32iteklRveQZQkqQ4kpGRwe7du6umx40bx5w5c7jiiit47bXXALjlllsAmDhxIrm5uZxzzjlcc801AFx11VWcc845DB06lJtvvhmAefPmMWLEiChviSQpHnkGUJKkKAsGgwSDwYPOHzlyJHPnzmX48OE88cQTNebfe++9AFx00UVcdNFF1eZde+21XHvttdXaFi9ezHXXXXf8hUuS6j0DoCRJceaqq66q1eU99thjtbo8SVL95SWgkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCDqTQAsLy9n8uTJdOzYkSZNmjB06FAKCgoIBALMmjUr1uVJklTlsz37f3/7cwiHY1eLpPqhIgQLNsGzG+AfH8POvbGuSA1VSqwLOBLhcJixY8dSUFDAlClTyMrK4qmnnmL06NEADBgwIKr1nPWra+n49YGkNm/K3p2lFP09nyV3PEFob0VU65AkxZddFfDrd+CV4v1t178JHU+An/WDgSfGrjZJ8evvH8Hv3ocvyve3NUqCy7vCDT0hORC72mqTY+j4UC8C4PTp05k9ezbLly+nd+/eAASDQTIzM8nIyKBTp05RrWfVY/9gyS9nUFFaRqOMdILTb6HvTZey/N5nolqHJCl+lFfCTYtgxVb46gm/4l3ww3x46Bz4WuuYlCcpTr1QBHe+U7O9LASPF8K2cpjcP+pl1QnH0PGhXlwCOnXqVMaNG1cV/gCSk5PJzMysOvt3ySWX0K9fPwYMGMCQIUNYvnx5ndWzfe3HVJSWRSYCAcKhMOld29fZ+iRJ8e/Vf8E7Bwh/ACEgFIb/eS/aVUmKZ3sq4L6Vh+4z6yNYvT069dQ1x9DxIe7PAK5bt44NGzYwbdq0GvM2btzImDFjAHj88cdp0aIFALNmzeKaa65h6dKldVbX6T+8hL4Tx5B6QhP2bN3Bq995os7WJUmKf899GDmqGjrI/BCRQdza7XBqi+jVJSl+/fOTyKXjh5IEzCqC0/pGpaQ65xg69uI+ABYXR26kaNOmTbX21atXU1RUVHUGcF/4A9i+fTtJSUd+cjM9PZ3y8vIa7d1SWvGT5oMP+Jp3H3iBdx94gRbdO9D10iGUfvrFEa8vUeXmBllf4fskxVqfZyJPKGnUqHGMK2lYev5hIykt2xy237nf/BY7Cnx4WW3x8xwdvs91o81lP6PN2NsJHGLcWhkO8ccX5vLzMy+OYmXHxzF07crNPfAYOi0tjZKSkqNeXtxfAtq6deRmicLCwqq2cDjMbbfdRigUqvYAmGuvvZZOnTrxs5/9jMcffzwq9W1fV8zWlUUM+d+borI+SVJ8qizdQfgIHvcZ2rMrCtVIqg9Ce3YeMvxFOoUI7dkZnYKiyDF07MT9GcCePXuSlZXFpEmTSE1NpVmzZjz88MMsW7aMpk2b0qNHj6q+jzzyCAAzZszg1ltvZfbs2Ue0joMl580Fq3l51O2HfX1SajLNvX75sObNy6PtoNNiXYaU8Aa+GPm3rKwstoU0MA+ugj+tO/A9gPukp8K/Fv0fjZKjVlaD5+c5Onyf68bHu2D0a4febwSSU/jfGy7lgrvrz3vvGLp21fYYOu7PAKakpDBz5kzat2/P+PHjmThxIiNGjCAnJ4e+ffse8FLP7373u8ybN48tW7bUej2p6U3J+laQtOZNAWjVszP9Jo7hX3kHeHyTJClhjOkMjZIP/Yf1yq4Y/iRVOeUEGNoeDvYtD0lA+yaRPvWdY+j4EfdnAAH69etHfn5+tbYHHniAnJwcAHbu3MkXX3xBx44dAXjppZfIyMggIyOj9osJh+k65jzOnDKepLQU9ny+g6LZi1l+z19rf12SpHqjXVO4Pxt+tBhKK/e373swzMhOcM2psapOUrz6+QDYWgbLtkJSIPLE4H1ObAwPnA1pDeHAkWPouFEvAuBXlZaWsmbNGiZOnAjArl27GDt2LLt27SI5OZmMjAxeeuklAoHa/9bMvTtLmfPtX9b6ciVJ9d/AE2HWcHjxI5i/CfZUQlbzyNnBfhlQB3+WJNVzJ6TA78+F1zdHnva5YHOkfVJfuOAUaFovR+s1OYaOH/XyI7VixQoqKyurHgDTtm1bFi1aFOOqJEmCjEbwH90jP5J0JJIDkNMu8rPvfstLu8S0JDVg9TIAZmdnH9GT1iRJkiRJ+8X9Q2AkSZIkSbXDAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAYZwbf/wOy75oQ6zIO6MrCGWT0yYx1GZIkSVI1jqGPXEqsC2jI2p3Tm/63fIvWfbsCsGXFByz/7TNsyl8Z48oi+t/yLVr368ZrV/3qiPo/mfXdOq5IkiRJic4xdN3yDGAdOWX4GXz9qdvZOPdtnvna9TzztevZOPdtvv707Zwy7GsHfE0gufb+7wikJNfasiQllry8PDIzMwkGg4wfP77G/Lvuuot169Ydchk33ngjQ4YM4e67767W/o9//INgMEgwGKR169YsX768at7999/P8OHDASgtLeXCCy8kJyeHq6++GoBVq1YxderU49w6SVI8cwxd9wyAdST7zmsofDaPlQ+/yN6S3ewt2c3Kh19k/cz5DLrzGgAuK3iIvhPHcOGLdzHugyc5sV83AFJPaExw+i1cuW4Gl8y/j5OD/Q67vnZn9+bKwhmcOm44l731MCPn/haA9uf15ZuvTOU7ax5n5Gv30umCMwHodMGZnH7TaDrk9ufKwhlcWTiDpLRDnxD+j09m0rpfNwLJSXxn7Z9p2aNjZN3n9OY/PplJ52+eDUCTNi256qO/kNqsybG9eZJibsKECeTl5dGiRQvy8/Or2kOhECtWrKB79+4Hfe2SJUtISUlh4cKFLF26lM2bN1fNu+CCC8jLy2PevHl07dqVfv0i+7e9e/dWC4Nz5sxh8ODBzJ8/n9TUVN577z169uzJ0qVLCYfDtb/BkqS44Bi67sfQBsA60LzbyaR3bsuGF96oMe+D51+neZd2NO/aHoCssUHeuOUhnsz6Llve2wBA5iWD+eD5hTx12nhW/O/zDP3jT2jaLuOw601p0ogT+2fxwnkT+fuI20jv0o7hj/+U9x54gad7Xc3bdz1BzsM/IqN3Fz76x1u8O+15iuct58ms7/Jk1ncJlVcc0faFK0NsXryK9oNPB6D9kNPZseET2g/uE5kefDpbVnzA3p2lR7Q8SfGrT58+FBcXV02/8847nHrqqYd8zeLFixk6dCgAOTk5vP322zX6vPXWWwwcOJBAIADAjBkzuOKKK6rmZ2ZmsmvXLgB27txJixYtAOjatSsrV8bHJUCSpNrlGDo6Y2gDYB1onJEOQOnmrTXmlX76RaRP6+YArJnxKtvXFRMOhao+PJsWvc9HLxcQrgzxwcwFfPF+EV0uPvuw6w0kJfH23U9SUVpGZWk5maPOYfPiVXz4Uj7hyhDF/1zGR3OW0G1sznFv46bX36v2YV3+22eqPsztzu3DJ2+8d9zrkBR7+fn5ZGVlVU2vW7eOLl26HPI127Zto3nzyD4uPT2dbdu21egza9YsRo0aBUTOKr7yyiucf/75VfOzsrJYuHAhPXv2JBAI0LFj5Ghp586dWbt27XFulSQpHjmGjs4Y2gBYB/ZsLQGgSduaRxyatGkV6bNlBwC7ij+r0WfXx9Xbdm787IiOXlSUllH273UDNG3fmp1fXVbRZpq2b33YZR3OJ6+/S9uzepHWvCnNu57MhhfeIDkthabtM2g/uA+fLHz3uNchKXYeffRRgsEgHTp0oH///gfs8/7771fdz7fv59e//jUtW7Zkx47IPq6kpISWLVvWeO28efOqzhI+99xzjBw5str8xx9/nG9/+9usWrWKE088kTfffLNWt0+SFH8cQ0dnDO1TQOvAjvX/ouSjzWSOPIdNX0nxmaPOoeSjzez44BMAwqGa97KccMpJ1aabdTyJz5Ye/oh3OBSqNr37ky20O7v3V5bVht2fbDlg/6OxdeWHhEMhen3vm3z61mrCoRCfvP4ep35nOE3btOLTt1Yf87Ilxd6ECRO4/fbba7R3796d5557DoBevXqRl5dXo89bb73F008/zcUXX8yCBQv41re+VW3+Bx98wCmnnEJaWhoAa9asIS8vjxkzZrB8+XIeeeQRQqEQGRmRP9oZGRlVZxGLioo499xza3FLJUnxwjF0dMbQngGsIwU//xNZ386l9/UXk9qsCanpTel1/TfJ+lYuBZMfO+Rr253Vi47fGEggOYmulw6hVa/OfPh/i466hg2z3qRtdk86X5RNICmJDrn96Xj+QNbPXABA6efbOaHDicf85KRNb66k13UX8cnrkSMVn7zxLr2uu4hP315LZdneY1qmpPjWr18/1qxZc8g+Z555JmVlZQwZMoR+/frRtm1bNm3axD333ANUv/wT4Gc/+xmvvvoq//jHP+jfvz/XXnst3/nOd3jssccIBoMsX76cr3/96wAUFhbSp0+futtASVJMOYau+zG0ZwDryMZX3mLuuLvpd/Nl9L81cvR7y4oPmDvu7qr/sw9mwwuv021sDuc9+F/s+mQL8679Lbv/teWoayj5cBP/vOY3fO2/r+Tc+37Aro8/Y8EPp7H13zfKfvhSPl0vGczl7/2RQCDAX/pOOOKbWAE+WfguXb55Np+8HjlC88nr75HW/ATv/5PquX2Xcx5IUlISffv2Zd26dYd8EuiDDz5Ybbpdu3bceuutAPzoRz866Ovmzp0LQKtWrZgzZ061eatWreKMM86oenCMJKnhcQxd9wJhn6d9UJsLVvPyqJqXQCWiQFIS44ufYdbQW/hiVdExLWPErDtpO+i0Wq5M0tEa+GLk3yUjD91Pqg/8PEeH73P0NIT32jH0fvE4hvYSUB2RVr07E9pbccAbbiVJkiTVFI9jaC8BrUdG5d1Hs1NOrNG+cc7bLLjh/uNe/vAnf0bb7JpHF/bu3ENSajJv3/0U5Tt2H/d6JEmSpGhxDF2dAbAemRU8+H0ztWHulXfV6fIlSZKkaHMMXZ2XgEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoKoFwGwvLycyZMn07FjR5o0acLQoUMpKCggEAgwa9asWJenBq5wB7xSDPM+gR3lsa5GOj6f79n/+8adsatDkiTFRkqsCziccDjM2LFjKSgoYMqUKWRlZfHUU08xevRoAAYMGBCTupIbpzHqn/fSpE1Lnsz6bkxqUN1asx1+vQLe/WJ/W1oSXNwRftQbGsf9fz3SfjvKYeq78Oq/9reN/idknwT/3RdOOSF2tUmSEodj6NiL+yHs9OnTmT17NsuXL6d3794ABINBMjMzycjIoFOnTjGpa8Ct32bnx5/TpE3LmKxfdWvtdpjwOpRXVm8vD8FzRfDhTnjgbEitF+fQleh2VcB1b8AHJRD6yry3PoerF8Kfz4P2TWNSniQpgTiGjr24H75OnTqVcePGVYU/gOTkZDIzM2uc/fvFL35BIBDgvffeq9OaWvftSofc/rz34At1uh7Fzv+8Fwl/Xx0sA4SBt7fAnOJoVyUdm2c3QOEBwh9AKAzby+H3q6NeliQpwTiGjg9xHQDXrVvHhg0bGDNmTI15GzdurBYAly5dyqJFi+jcuXOd1hRITuKc336fRZMeIVReUafrUmxs3AlLthx4sLxPEjDzwygVJB2nZzccen6IyH2uJXujUo4kKQE5ho4fcX0JaHFx5BRLmzZtqrWvXr2aoqKiqgBYVlbGD37wA55++mmCweBRryc9PZ3y8ppP9+iW0oqfNB9cra3PDaPY8u4GNi9aRbuze9d4jQ4uNzfI+oovDtct5tIHXECXSYd+uFAIWP7xNho1ahudoqRjFEhJpc/Th3/aS0UYTulzJns+XBGFqqTa0+eZyJONGjVqHONKGjbf5+hpCO+1Y+jalZt74DF0WloaJSUlR728uD4D2Lp1awAKCwur2sLhMLfddhuhUKgqAP785z9n3LhxdOnSpU7rSe/Sjh5XfYMld8yo0/UotkLlpUfWr2x3HVciHb9wZQXhysrDdwRCZUf22Zck6Wg4ho4vcX0GsGfPnmRlZTFp0iRSU1Np1qwZDz/8MMuWLaNp06b06NGD/Px8lixZwq9//etjXs/BkvPmgtW8POr2qum2g06jyYktuPSNaQAkpSSTekITLl/5R+ZNuIfNi1Ydcw2JYN68PNoOOi3WZRxWWSVcMOfQl8MlAd/52sncVlYWtbqkY3VLASzcHLnf70ACRJ4C+taG9wgEolqadNwGvhj5t8z9cZ3yfY6ehvBeO4auXbU9ho7rAJiSksLMmTP5/ve/z/jx4+nYsSMTJ06kefPmrF+/nqSkJObPn8+qVavIzMwE4OOPP+b888/nscce4xvf+Eat1rPhpTf518L9l0eddEYPBv/uB7w4/Mfs2bKjVtel2GmUDJdnwh/WHnh+AEgKwLcyo1qWdMyu7AYLNh18fhj4bjcMf5KkOuEYOr7EdQAE6NevH/n5+dXaHnjgAXJycgD46U9/yk9/+tOqeV26dOHvf/87ffr0qfVaKkvL2V26tWq6bMsOCIfZ/cnWQ7xK9dGEU6FoV+RJn0mB/WdOAkByAO4+AzLTY1qidMS+1hp+2jfyvZYB9j/gKOnfv3+nK4yu2+dnSZISmGPo+BL3AfCrSktLWbNmDRMnTox1KWzKX+kXWDZQKUlw59fgolMiT/tcuDnSfmU3GNMZOjaLaXnSURvTBfplRJ4IuugzqAzD6a3gsi5wxomxrk6SlEgcQ8dWvQuAK1asoLKyssZ3AO7z4YcfRrcgNVhJATi3beRn3/X4E31oleqxrObw3/1iXYUkSYqlehcAs7OzCYcP8iQDSZIkSdJBxfXXQEiSJEmSao8BUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVA6Tnl5eWRmZhIMBhk/fnyN+TNmzGDu3LkADBkyhGbNmvHxxx/X6Ldx40Zyc3M599xzeeeddwAYP348gwcPZtiwYRQXFwNw9dVXEw6H63CLJEmS1FAZAKVaMGHCBPLy8mjRogX5+fnV5r300ksMGzYMgGeffZbLLrvsgMuYOnUq999/Py+88AK//OUvAfjFL37B66+/zqRJk3jwwQcByM7OZt68eXW4NZIkSWqoDIBSLerTp0/VmTqArVu30rhxYwKBAADt2rU76GsLCwvp168fJ510Ert27QKgS5cuACQnJ1ctIzc3l9mzZ9fRFkhSw3K4qzTuuusu1q1bd8hl3HjjjQwZMoS77767WntpaSkXXnghOTk5XH311Qft/49//INgMEgwGKR169YsX76cVatWMXXq1FrYQkk6OgZAqRbl5+eTlZVVNV1YWEjnzp2P6LWhUOigv999991MmDABgM6dO7N27dpaqliSGr6DXaURCoVYsWIF3bt3P+hrlyxZQkpKCgsXLmTp0qVs3ry5at6cOXMYPHgw8+fPJzU1lffee++A/S+44ALy8vKYN28eXbt2pV+/fvTs2ZOlS5d6Sb+kqDMASrXg0UcfJRgM0qFDB/r3739My0hKSjrg75MnT+byyy+na9eux1umJCW0r16l8c4773Dqqace8jWLFy9m6NChAOTk5PD2229XzcvMzKy6YmPnzp20aNHikP3feustBg4cWHVFR9euXVm5cmXtbJwkHSEDoFQL9h1dvvPOO6u1Z2VlUVRUdETL6NatGytWrODzzz/nhBNOAOBvf/sbW7du5ZprrqnqV1RUdMij1ZKkA/vqVRrr1q2rutT+YLZt20bz5s0BSE9PZ9u2bVXzsrKyWLhwIT179iQQCNCxY8dD9p81axajRo2qmvaKDkmxYACU6lBGRga7d++umh43bhxz5szhiiuu4LXXXgPglltuAeC2227jpptuYtSoUdx+++0A3HzzzbzzzjsEg0HuuusuAObNm8eIESOivCWSVH8dyVUa77//ftV9evt+fv3rX9OyZUt27NgBQElJCS1btqx6zeOPP863v/1tVq1axYknnsibb755yP7z5s2rOjsoSbGSEusCpPpu30DhYEaOHMncuXMZPnw4TzzxRI359957LwCdOnUiLy+v2rwDnT1cvHgx11133XHVLEmJZMKECVUH1r6se/fuPPfccwD06tWrxj4YIpdtPv3001x88cUsWLCAb33rW1XzQqEQGRkZQOSA37Zt2xg0aNAB+3/wwQeccsoppKWlVb2+qKiIc889tzY3VZIOyzOAUh276qqrGD58eK0t77HHHqt2j6Ak6dj069ePNWvWHLLPmWeeSVlZGUOGDKFfv360bduWTZs2cc899/Cd73yHxx57jGAwyPLly/n6179+wP5Q8/JPiDworE+fPnW2fZJ0IJ4BlCRJDdahrtJISkqib9++rFu37pD3Vu/7HtZ92rVrx6233gpEngR6uP4AP/rRj6pNr1q1ijPOOKPqgTCSFC0GQEmSlLAOdGloNPTs2ZOePXvGZN2SEpvXkUmSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoKoNwGwvLycyZMn07FjR5o0acLQoUMpKCggEAgwa9asWJenBmzT7v2/76mMXR0N3dYyWPQpFHwGJXtjXY2k+qAitP/3D0tiV4ck1ScpsS7gSITDYcaOHUtBQQFTpkwhKyuLp556itGjRwMwYMCAqNUy+P4fkDl6MKG9FVVted+7l+J5y6NWg6KjaCf8z3vw5qf7285/Bb6VCdf3gJR6c/gkvm3ZA/+zEub+CyrDkba0JPhmR7ipFzRLjW19kuJPOAzPfAh/Wru/7bJ5cHor+K9e0L91zEqTdBCOoeNHvQiA06dPZ/bs2SxfvpzevXsDEAwGyczMJCMjg06dOkW1nrVPzGXxzx6N6joVXUU74eqFsHMvhL/UvqsCHlsH63fAPYMgORCzEhuEL8rgmtfhk93wpQP5lIfg+SJ4fxv84VxoUi/2VJKi5X9XwZ8La7av/AK+/yb871lw5knRr0vSoTmGjg/14hzG1KlTGTduXFX4A0hOTiYzM7Pq7F+XLl047bTT6N+/P/379+eVV16JVblqAO59LxL+QgeZv2Az/PNfUS2pQfrDWvjX7gO/z2Fg9Xb464ZoVyUpnq3bfuDwB5F9SSgMv1we+VeSVFPcH1dft24dGzZsYNq0aTXmbdy4kTFjxlRNz5w5kz59+tR5TV0vHULX0YMp/Xw7H/xtAe8+8ALhyoNFBdU3n+yG/E+rn/n7qiTgmQ3w9Q7Rqqrh2VMBL3506PcZIu/z+CwIeLZVEvBcUWQffLC/uiHgk1JY/Bmc3SaKhUk6LMfQ8SHuA2BxcTEAbdpU34uvXr2aoqKiWrn/Lz09nfLy8hrt3VJa8ZPmg6u1vf/obJbcMYM9W0to3bcrOQ9NJLlRGst+85fjrqOhy80Nsr7ii1iXcVjpAy6gy6RDP1goBLz10Rc0atQuOkU1QI1O7sGpv1tx2H6f7oGmLVsT2rMzClVJinddf/lPTuh57mH7Xfaft/H53++v+4ISRJ9n9gDQqFHjGFfS8DWE99oxdO3KzT3wGDotLY2SkqN/AlbcXwLaunXkTu7Cwv3Xe4TDYW677TZCoVC1AHjllVfSt29fbrjhBrZt21Yn9Wx9dwN7tuyAcJgt76xn2W//Suaow/8hUv0R2lt2RP3CFTUPGujIhSqO7H0GCFf6WFBJEaG9ewiHDn/GwH20FF8cQ8ePuD8D2LNnT7Kyspg0aRKpqak0a9aMhx9+mGXLltG0aVN69OgBwMKFC+nYsSNlZWVMnDiRH/7whzzxxBNHtI6DJefNBat5edTth35xKAxemnZE5s3Lo+2g02JdxmGVVkSe9rn7EF/5kASM7duW28uOPMSounAYLv0nfLzr4JeBJgEDWsOSnTuiWZqkOPbEerh/5eH7LXryPjo1u6/uC0oQA1+M/Fvm37061xDea8fQtau2x9BxfwYwJSWFmTNn0r59e8aPH8/EiRMZMWIEOTk59O3bl6SkyCZ07NgRgEaNGnHDDTfwxhtv1Ek9XUaeQ2p6UwBa9exMv1vG8uHf8+tkXYqNJikwpsvh+43NrPNSGrRAAK7sduh7AEPAd7pFqyJJ9cHFHaFp8sEHMEnAuW2gU7NoViXpcBxDx4+4PwMI0K9fP/Lzq39AHnjgAXJycgDYtWsXFRUVtGjRgnA4zF/+8hf69+9fJ7Wc9h/nc/bU60hKTaZ08zbWz5zPiv99vk7Wpdi5oSd8UAJvfFr9YQP7Bhw/7w89WsSmtoZkTOfIE/3+9pWHOiQFIgcGr+8BOd5mKelLWqTB/2TDxMVQVrn/IFKAyO+Z6fCL6H09sKQj5Bg6ftSLAPhVpaWlrFmzhokTJwKwefNmxowZQ2VlJZWVlfTq1YuHHnqoTtb9j0v/X50sV/ElNQnuHRT5cvJnN0BhSaTtvHaRL4I/zfBXKwIB+GlfGNw28rTP/M8i7cF/v88DT4xtfZLi08AT4a9BePZDeKU48h2tJzeB0V3+fYawXo5upIbNMXT8qJe7yBUrVlBZWVn1AJiuXbuybNmyGFelhiYlCS44JfKjuhMIwJB2kZ999z385szY1iQp/nU4ASb2jvxIko5cvQyA2dnZhMN+w6skSZIkHY24fwiMJEmSJKl2GAAlSZIkKUEYACVJkiQpQRgAJUmSJClBGAAlSZIkKUEYACVJkiQpQRgAJUmSJClBGAAlSZIkKUEYACVJkiQpQRgAJdULeXl5ZGZmEgwGGT9+fI35M2bMYO7cuQDcfffdDBkyhBtvvLFGv+9973vk5OQwePBg1q5dC8Af//hHzjnnHC655BJKSkrYu3cv5557Ljk5OYwcOZI9e/awdetWbr755rrdSEmqp2prH/3ZZ58xevRocnNzmT59OgC5ubkEg0GCwSDvv/8+mzZtqpru1q0b999/v/to6SgYACXVGxMmTCAvL48WLVqQn59fbd5LL73EsGHD2Lx5M0uXLmXhwoWkpKSwZMmSav0eeugh5s+fz69+9St+//vfU1FRweOPP87rr7/OtddeyyOPPEJqairz589n/vz5nHnmmcyZM4eMjAy2bdvGzp07o7nJklRv1MY++pe//CX3338/8+bN47rrrgMgOTmZvLw88vLy6NWrF+3atauaHjRoEBdeeKH7aOkoGAAl1Tt9+vShuLi4anrr1q00btyYQCDAkiVLyMnJAWDo0KEUFBRUe21qaioAO3fupE+fPnz++ed06tSJpKQkTj/99KpBS0pKCgChUIhu3boBkJ2dTV5eXl1vniTVa8ezj167di0//elP+cY3vsGaNWsACIfDBINBrr32Wvbs2VPVd+/evWzYsIFTTz0VcB8tHSkDoKR6Jz8/n6ysrKrpwsJCOnfuDMC2bdto3rw5AOnp6Wzbtq3G64cNG8YPf/hDzjzzTE466SQKCwvZs2cPCxYsYPv27QC8//77nHnmmbz66qt07NgRgM6dO1ddNipJOrDj2Ue//vrr3HnnnTz44IP87Gc/A2DmzJnk5eXRs2dPHn300aq+eXl5BIPBqmn30dKRMQBKqjceffRRgsEgHTp0oH///gfs07JlS3bs2AFASUkJLVu2rNHntdde47nnnmPKlCkkJydz6623csEFF/DOO+/Qtm1bAHr16sVbb73F2LFjefzxx+tqkySpwaiNfXTv3r3p1q0b3bt3rzog16pVKwBGjhzJypUrq/q++OKLjBo1qvY3RGrgDICS6o1995fceeed1dqzsrIoKioC4IwzzmDBggUAzJs3j0GDBlXrW1ZWBkCLFi1o0qQJAJdeeil5eXlkZ2czYsQI9u7dSzgcrurXuHFjAIqKiujevXvdbaAk1WO1sY/u0qULn3/+OZs3b6Zp06ZAJChC5MxiZmZmVd/FixeTnZ1dNe0+WjoyKbEuQJKOV0ZGBrt37wagXbt29O3blyFDhtC3b18GDhzIpk2bmDFjBrfeeiujR4+mtLSUQCDAgw8+CMANN9zAmjVr6NWrF/fffz8bNmxgwoQJJCUl0apVK5544gkAFi1axLRp02K2nZJUHx3NPvr222/n0ksvpaKiomp/O3z4cNLS0mjZsmXV/njZsmX069ePpKT95zLcR0tHJhDed5hbNWwuWM3Lo26PdRkNxohZd9J20GmxLkNxbOCLkX+XjDz61/75z3/m5JNPZvjw4bVb1L9t3bqVO+64g/vuu69Oli9J8ex49s/gPvpoHO97HQ8cQ9eu2h5DewZQUoNw1VVX1enyMzIyGsTAQpJiwX20FD+8B1CSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZISRL0JgOXl5UyePJmOHTvSpEkThg4dSkFBAYFAgFmzZsW6PEnHaXfF/t/LKmNXR0NXXgmrt8HKL2BXxWG7S1I1/9od6wokHa+UWBdwJMLhMGPHjqWgoIApU6aQlZXFU089xejRowEYMGBA1Gs6ZdjXGHDb5TTvdjIVO0t57/cvsfLhF6Neh1TfleyFh1bBSxv3t10wB8Z0hu/1gEbJsautISmvhEfXwbMbYMfeSFujJPhmR7ihJ7RIi219kuJT/qfw/63ePz1yLvTLgO/3gDNPil1dqr8cQ8devQiA06dPZ/bs2SxfvpzevXsDEAwGyczMJCMjg06dOkW1npNz+nH2Pdfz+k0PsCl/JSlNGnFChxOjWoPUEOzcC9e+Dh+UQPhL7SV74fFCWPEFPHAWpBkCj0tFCH5UAIs/q95eFoLnimDJFvjjYEOgpOr+8TFMXgqBr7S/uxV+kA9Tz4Tc9jEpTfWUY+j4UC8uAZ06dSrjxo2rCn8AycnJZGZmVp3927NnD//5n/9J9+7dOf3007nuuuvqrJ4BP7mcFff/jU9ef5dwZYi9O0vZtmbj4V8oqZpH1tYMf/uEgaVb4JkPo1xUA/R8Uc3wt08Y+Ggn/H71gedLSkwle+GXyyP7iNBX5oWItP+/pVDqpeQ6Co6h40PcB8B169axYcMGxowZU2Pexo0bqwLgT37yExo3bszatWt59913ueOOO+qknpQmjTixfzeanNSS0Qt/x7dXPMLQP91Gs45t6mR9UkNVVhkJJgcKf/sEiFyyGD5UJx3WMxtqHsH/sjCRS3AdyEna5/82QvlXk9+XhIHdlfBKcdRKUj3nGDp+xP0loMXFkT1LmzbVPxyrV6+mqKiIAQMGsHPnTv785z/z8ccfEwhEhjlt27Y94nWkp6dTXl5eo71bSit+0nxwtba0licQSEqi80XZvHrFnZRu2c6gX15N7qO38tI3bj3azUsoublB1ld8EesyFCfSTj6VHr9795B9wkDxbmjaMoPQnl3RKayhSU7h9L8c/r3bUwntep7Bno/ei0JRkuJdhxum0+q87xBITj1on3DlXn409RG+/ejE6BWWAPo8sweARo0ax7iSY+cYunbl5h54DJ2WlkZJSclRLy/uzwC2bt0agMLCwqq2cDjMbbfdRigUYsCAAaxfv57WrVvzi1/8goEDBxIMBnn99dfrpJ69OyP/Ub7/yGx2fvwZlaXlLP3VU7Q+PdNrmKWjUXnkp5vCIR8LeszCIcLhQxzGr9bV91nSv1VWcOhrBwAC7jd0xBxDx4+4PwPYs2dPsrKymDRpEqmpqTRr1oyHH36YZcuW0bRpU3r06MHy5cv54IMPGDBgAPfccw+LFy/m4osvprCwkObNmx92HQdLzpsLVvPyqNurte0t2c3OjZ96TdoxmDcvj7aDTot1GYoToXDkaXKbSg/eJwno3QqWlGyPWl0N0fVvwLItNe/j+bITG8GidctJifvDgpKiYU4xTHr70H0CySnMmPJDhvz+h9EpKkEM/PcDMcvKymJbyHFwDF27ansMHfd/6lNSUpg5cybt27dn/PjxTJw4kREjRpCTk0Pfvn1JSkqiU6dOpKSkcMUVVwCQnZ3NiSeeyNq1a+ukpjV/nkPPay+i6cmtSW6UyoCfXM7n76xnV/HndbI+qSFKCsAVXQ/dJ8Th++jwruh66PAH8O2uGP4kVcltD60bHXygmAS0bwLnHPkdN5Jj6DgR92cAAfr160d+fn61tgceeICcnBwATjzxRHJzc3n11Vf5xje+wdq1a/n000/Jysqqk3refXAWaS2aMXLObyCQxKcFq5k34Z46WZfUkF3eNfKF5HP+FRlM7Asp+36/oit8/eTY1ddQBNvDf2TBnwoP/D4H28F3u8WuPknxJzUJ7suG/3wTdldUf2BXAGiWGpmffLirRKUvcQwdH+pFAPyq0tJS1qxZw8SJE6vafv/733PNNddwyy23kJqayowZM2jZsmXdFBAO8/ZdT/D2XU/UzfKlBJEcgDvPgHPbRp5U+f42CATgaxmRM1LBdpFpHb8f9oK+GfDXDfu/EuLUFvCtTLioo4M4STX1aglPB+HpDyJPBd2xF1qkwshOkX10uyaxrlD1jmPouFAvA+CKFSuorKys+goIgK5du5KXlxe7oiQdk6RAJIBc1HH/bQGGvrpxXrvIz777S57IiW09kuLfyU3hlj6Rn1A4ss+WVL/VywCYnZ1N2BtIpQbH4CdJ8cvwJzUM3vIvSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSaqSl5dHZmYmwWCQ8ePH15g/Y8YM5s6dC8CQIUNo1qwZH3/8cY1+CxYsIDs7m+zsbGbNmgXAs88+y6BBgzjrrLNYtGgRAFdffTXhcLgOt0iSGo6j2UfffffdDBkyhBtvvLFGv8svv5xgMMgZZ5zBJZdcAsDvfvc7zjrrLAYPHkxhYSEAixcvZtiwYeTm5lJQUMDWrVu5+eab624DFRUGQElSNRMmTCAvL48WLVqQn59fbd5LL73EsGHDgEigu+yyyw64jPvuu4/nn3+e+fPnM23aNAAefPBBFixYwHPPPcdvf/tbALKzs5k3b14dbo0kNSxHso/evHkzS5cuZeHChaSkpLBkyZJq/f7yl7+Ql5fHddddx4UXXgjA008/TX5+Pr/5zW/4/e9/Tzgc5t5772X27NnMmzePQYMGkZGRwbZt29i5c2fUtle1zwAoSTqgPn36UFxcXDW9detWGjduTCAQAKBdu3YHfW337t3Zvn07u3btIj09HYAuXbqwa9cutm/fTkZGBgC5ubnMnj27DrdCkhqmQ+2jlyxZQk5ODgBDhw6loKDggMt46aWXuPjiiwHo2LEjZWVlVfvo9evXU1paysiRI7nyyivZtWsXEDlwl5eXV7cbpzqVEusCJEnxKT8/n//6r/+qmi4sLKRz585H9NpRo0Zx/vnnEwqFeOSRRwC4+OKLGTBgAJWVlVWhr3Pnzqxdu7b2i5ekBu5Q++ht27bRvHlzANLT09m2bVuN1+/cuZOSkhLat28PwODBg+nZsyfhcJg333yTDz/8kPXr17Ns2TKeeuop/vCHPzBx4kQ6d+7M+++/X/cbqDrjGUBJUjWPPvoowWCQDh060L9//2NaxuTJk3nrrbdYtWoVU6dOBWDq1KmsWrWKt956i8mTJ9dixZKUOI5kH92yZUt27NgBQElJCS1btqzR55VXXuGCCy4AYMeOHfztb39j3bp1PP/880yZMoUWLVqQnZ1No0aNOO+881izZk1dbZKizAAoSapm3/0ld955Z7X2rKwsioqKjmgZycnJNG/enKZNm1JWVgZA48aNadKkCc2bN6+6lKioqIju3bvX7gZIUgN2JPvoM844gwULFgBU3b/3VbNmzWLUqFEABAIBTjjhBFJSUqru8zv11FP55JNPCIfDvPvuu3Tp0gVwv90QGAAlSUckIyOD3bt3V02PGzeOOXPmcMUVV/Daa68BcMsttwAwceJEcnNzOeecc7jmmmsAuOqqqzjnnHMYOnRo1VPk5s2bx4gRI6K8JZLU8Hx5H92uXTv69u3LkCFDKCsrY+DAgWzatIl77rkHgMrKStauXUuvXr2AyGWiZ599Nueeey7f/va3+fGPf0xqaipXXnkl5513Hg8//DDf+973AFi0aBHBYDAm26jaEQj7/O2D2lywmpdH3R7rMhqMEbPupO2g02JdhpTwBr4Y+XfJyKN/7Z///GdOPvlkhg8fXiu1XH311Tz66KMkJXk8UpIgvvbRX7V161buuOMO7rvvvkP2cwxdu2p7DO1DYCRJR+yqq66q1eU99thjtbo8SUpktb2P/qqMjIzDhj/FPw+5SpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEpSAgmF9/++NxS7OiRJNe3cG+sKlAhSYl3AkSovL+eOO+7gT3/6E59//jlnn302v/71r8nOzuaFF15g1KhRUanjysIZ1aaT01LZtq6YF4fdEpX1S9KxqAzD0x/AXz/Y33b+KzCmC1zdHZrWm78GktTwfFACj6yB1z7Z33bd63DNqXBWm9jVVZscQ8ePevEnPxwOM3bsWAoKCpgyZQpZWVk89dRTjB49GoABAwZErZYns75bbXrka/eyYdYbUVu/JB2tyjBMWlJ9YAGwYy/8aR3kfwrTzzUESlIsvL8Nrn8DyirhyxdmLN8KNy6Cn/eHizvFqLha5Bg6ftSLP/fTp09n9uzZLF++nN69ewMQDAbJzMwkIyODTp1i81/Fif2zaHnqKRT+dV5M1i9JR+LvG2uGv33CwJrtMH0NTOwd1bIkKeGF/n2A7qvhD/ZP3/FO5CzgSY2jXV3dcQwdW/UiAE6dOpVx48ZVhT+A5ORkMjMzSU1N5cMPP+SSSy6pmrdt2zZ27NjB1q1b67Su7t8ZSvE/l1G6+Ys6XY8kHY+/fgABImHvQMLA80Xw/dOgcXIUC5OkBFfwGXy8+9B9QmF4oQi+1yM6NUWDY+jYivsAuG7dOjZs2MC0adNqzNu4cSNjxoyhS5cuLF++vKp94sSJVFRUHPE60tPTKS8vr9HeLaUVP2k++ICvSWnSiMxR57LwpgeOeD2JLjc3yPoK/0OXoio5hdP/suuw3XZVQJvTvkbZRyujUJQkCeCkS39K28v/H4HAwZ/LGA6FuOfpV/jhry6JXmHHyTF07crNPfAYOi0tjZKSkqNeXtwHwOLiYgDatKl+B+zq1aspKiqqcf9feXk5Tz75JK+88kqd1tXl4rOpKC3n47lv1+l6JOm4hA923u84+0qSjl/4CB/H3ID2z46hYy/uA2Dr1q0BKCwsZNCgQUDkoTC33XYboVCoRgB88cUX6dChA1/72teOeB0HS86bC1bz8qjbDziv+5XDWP9MHuFKn6N+pObNy6PtoNNiXYaUcK5eCCu/qHl/yZe1TIMta5eR6pcDSVLULN8C1x7mOSiBpCRu/+6FXPWLsugUVQscQ9eu2h5Dx/2f+p49e5KVlcWkSZN49tlnefnllxk1ahRLly6ladOm9OhR/YLoP/7xj1xzzTV1WlPzbifTZmAP1j79Wp2uR5Jqw+VdDx3+AC7rguFPkqKsXwZ0S4ekwIHnB4C0JBjZMapl1RnH0PEh7v/cp6SkMHPmTNq3b8/48eOZOHEiI0aMICcnh759+5KUtH8TiouLmT9/PldeeWWd1tT9iqFsXryKkg2b6nQ9klQbvnEyXNo58vuXd/r7xhtnngjXdI92VZKkQACmDoTmqfv3yfskBSI/d58BLRvFpLxa5xg6PsT9JaAA/fr1Iz8/v1rbAw88QE5OTrW2xx9/nIsuuqjqstG68vadT9Tp8iWpNgUC8N99oW8G/OUDWL090n5yUxibCd/O9OyfJMVKl3R44jyYsR5e/AhKKyPBb2g7GJcFfVrFusLa4xg6PtSLAPhVpaWlrFmzhokTJ1Zr/9Of/nTAp4VKUqILBOCbHSM/uysijxU/ISXSLkmKrXZN4dbT4Ue9I09lbpIMaX4tj+pIvQyAK1asoLKyssYDYNauXRujiiSp/mhaL/f8ktTwpSRBi7RYV6GGrl4OA7Kzswk3oMfhSpIkSVI0eNeHJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJYhA2G9UP6jykt18seqjWJfRYLTq2Ym09KaxLkOSJEl1yDF07artMbQBUJIkSZIShJeASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKC+P8B265KgcvKqCMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAGOCAYAAADGoW0OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTkElEQVR4nO3deXyU5b3//9dkY5GwBGURWQJBZJGlInEBMwFaRSuISKuVylGs9tjqoVprD5V+aV1aaj1ajkt/VGstLq1SFe3BilgCqIGIgCiyBTFiKqggECAkJDO/P6YEY9hJZiaZ1/PxSMl93dfc9+eejneu971NIBwOh5EkSZIkNXhJsS5AkiRJkhQdBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShApsS4gnpWX7OaLVR/FuowGo1XPTqSlN411GZIkSapDjqFrV22PoQ2Ah/DFqo94edTtsS6jwRgx607aDjot1mVIkiSpDjmGrl21PYb2ElBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEAZASZIkSUoQBkBJkiRJShAGQEmSJElKEPUmAJaXlzN58mQ6duxIkyZNGDp0KAUFBQQCAWbNmhXr8tRAbS+Hp9bDHcth6gp4fTNUhmNdlXRs9obg1WK4+x24czn87UPYXRHrqiRJUjSlxLqAIxEOhxk7diwFBQVMmTKFrKwsnnrqKUaPHg3AgAEDolpPIDmJM6eMp9uY8wgkJfHh/y1i8aRHqCzbG9U6VLee+xDueS8yaE4OQBh49kPoeALclw1dmsW4QOkorPwCbi6ALWWRzzPACx/B/SvhFwNg6MmxrU+S1PA5ho4P9eIM4PTp05k9ezZz587l+uuvZ9iwYUyfPp3k5GQyMjLo1KlTVOvpe9OltDunD7OG3sLfzr2Rlqeewhm3fzeqNahuvVoMd6+IhD+InPUL/fvMX/Fu+P4bsK0sdvVJR+PjXXBDPnzx789sZXj/mew9lfDTJbDk89jVJ0lKDI6h40O9CIBTp05l3Lhx9O7du6otOTmZzMzMqrN/a9eu5eyzz+bUU0/l7LPPZt26dXVWT/crh/HutOfYvWkrZVt2sPzeZ8j6dpBAUr14O3UY4TA8tBoCB5kfCsPnZfD8R1EtSzpmT66H0goIHWDeviua/7AmmhVJkhKRY+j4EPeXgK5bt44NGzYwbdq0GvM2btzImDFjAPj+97/PD37wA8aNG8cTTzzB9ddfzz//+c8jWkd6ejrl5eU12rultOInzQdXa0tr3pRmHU5i68oNVW1b3t1AWnpTmnU8iZKizUezeQklNzfI+oovYl3GYTXpdgZZv37zkH3C4RD/89p6vt+nT5Sqko5drz9/TnKT9IPODwFvb4ET2nelYmtx9AqTJDVIjqFrV27ugcfQaWlplJSUHPXy4j5uFxdHBiNt2rSp1r569WqKiooYMGAAn376KUuXLuWKK64A4IorrmDp0qV89tlntV5PSrMmAJRv313VVr59FwCp/56n+i2lRZvD9gkEko6onxRrgZS0Q4a/L0tpfmIdVyNJSlSOoeNH3J8BbN26NQCFhYUMGjQIiDwU5rbbbiMUCjFgwAA2btxIhw4dSE5OBiKXh5588sls3LiRk0466bDrOFhy3lywmpdH3V6trWJnKQCpzZtS+tk2ANJanADA3n/P04HNm5dH20GnxbqMw1r5BYxfePh+mW1asKzMGwEV38JhyJkNuysP33fd8gLa+DdYknScHEPXrtoeQ8f9GcCePXuSlZXFpEmTePbZZ3n55ZcZNWoUS5cupWnTpvTo0SOq9ZTv2M3O4s/I6N2lqq11n0zKS3azc2Ptn3FU9PVqCZ1OOPg9gPuMjO6zh6RjEgjANzsdemefBAxsjeFPklRnHEPHj7gPgCkpKcycOZP27dszfvx4Jk6cyIgRI8jJyaFv374kJSXRsWNHiouLqayMHOKurKzkX//6Fx07dqyTmtY9+Rp9bxxNk7ataNS6Of1v+RaFf80jHDrQIxZU3wQCcEPP/Q/H+Kok4KTGcEnnaFYlHbvvdIUmKQfe4Qf+/T/Xxf/JeUlSPecYOj7E/SWgAP369SM/P79a2wMPPEBOTg4QuT+wf//+PP3004wbN46nn36aAQMGHNHln8dixbTnaJTRnEvy7iOQFODDvy/i7bueqJN1KTaGnwy394PfvAvlX9knnXIC3J8NLdNiU5t0tE45AR4+B24pgM/2VJ/XJBl++TX4WuvY1CZJShyOoeNDIBwOH+xER9wqLS0lPT2dhx9+mO9973tA5KEw48eP54svvqBVq1b8+c9/Pu7LQw90/bKO3YhZd9aLewC/bEc5zP4YfvteZHraWXDWSZB0uOtDpThUEYL5m+C2JZHp2/vB+R0iZwclSaotjqFrV22Poevln/0VK1ZQWVlZ9R2AAKeddhqLFy+OYVVqiJqnweVd9wfAc3zwp+qxlCQYdvL+aS9jliQp8dTLAJidnU09PHEpSZIkSTEV9w+BkSRJkiTVDgOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoHSc8vLyyMzMJBgMMn78+BrzZ8yYwdy5cwEYMmQIzZo14+OPP67Rb+PGjeTm5nLuuefyzjvvADB+/HgGDx7MsGHDKC4uBuDqq68mHA7X4RZJkiSpoTIASrVgwoQJ5OXl0aJFC/Lz86vNe+mllxg2bBgAzz77LJdddtkBlzF16lTuv/9+XnjhBX75y18C8Itf/ILXX3+dSZMm8eCDDwKQnZ3NvHnz6nBrJEmS1FAZAKVa1KdPn6ozdQBbt26lcePGBAIBANq1a3fQ1xYWFtKvXz9OOukkdu3aBUCXLl0ASE5OrlpGbm4us2fPrqMtkCRJUkNmAJRqUX5+PllZWVXThYWFdO7c+YheGwqFDvr73XffzYQJEwDo3Lkza9euraWKJUmSlEgMgFItePTRRwkGg3To0IH+/fsf0zKSkpIO+PvkyZO5/PLL6dq16/GWKUmSpASXEusCpIZgwoQJ3H777TXas7KyKCoqOqJldOvWjRUrVnDyySdzwgknAPC3v/2NrVu3ctddd1X1Kyoqonv37rVTuCRJkhKKZwClOpSRkcHu3burpseNG8ecOXO44ooreO211wC45ZZbALjtttu46aabGDVqVFWYvPnmm3nnnXcIBoNVIXDevHmMGDEiylsiSZKkhsAzgNJxCgaDBIPBg84fOXIkc+fOZfjw4TzxxBM15t97770AdOrUiby8vGrzDnT2cPHixVx33XXHVbMkSZISkwFQqmNXXXVVrS7vscceq9XlSZIkKXF4CagkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQliHoTAMvLy5k8eTIdO3akSZMmDB06lIKCAgKBALNmzYp1eWqg9lTA3z/aP/3OVgiHY1dPQ1URgtf+BdPehwfehzc/hZDvs6TD+KAE/rAG7l8Jf90A28tjXZEkxb+UWBdwJMLhMGPHjqWgoIApU6aQlZXFU089xejRowEYMGBA1GrpcvHZ9Lz2QjJ6d6FsawkzB90QtXUruuYUw13vwK6K/W0TXoeeLeCeM6Fd09jV1pC8/TlMehu2lO0/IvWnQujQNPI+n9oipuVJikM798LPl8KCzRAAkgJQGY4Ewet7wPgsCARiXaWkL3MMHT/qRQCcPn06s2fPZvny5fTu3RuAYDBIZmYmGRkZdOrUKWq1lG3fxeo//oPGJ7Wg93XfjNp6FV0LN8HP3j7wvDXb4bo34ckcSE+Nbl0NzeptcOOiyBlAgNCX5n2yG65/E544DzqcEIvqJMWjUBh+tBiWb41Mh4mEP4C9IXhgFaQEYFxWzEqUdACOoeNHvbgEdOrUqYwbN64q/AEkJyeTmZlZdfbvxz/+MZmZmQQCAd577706q+WTBSvYMOsNdn38WZ2tQ7EVDsP/rvr37weYHwL+tRtmfXSAmToqf1gbCX+hA8wLAbv2whPro12VpHiW/yks23rg/fM+09dAacUhOkiKOsfQ8SPuA+C6devYsGEDY8aMqTFv48aNVQHwkksuYcGCBXTu3DnaJaqBWbMjcl/JoQYXAeCFomhV1DBtK4cFmw4c/vYJAS9t3H90X5L+vvHwg5fdlZC3KSrlSFK9E/eXgBYXFwPQpk2bau2rV6+mqKioKgAOHjz4mNeRnp5OeXnNO8e7pbTiJ82PfbmqLjc3yPqKL2JdxmGlf20EXf77hUP2CQPrN2+nUaM2h+yng2vU4TROvf+dw/bbUwnNMk4itHtHFKpKDH2e2QNAo0aNY1yJdPS63jGPE04757D9rv3Rf/P5i/8ThYokfZVj6NqVm3vgMXRaWholJSVHvby4PwPYunVrAAoLC6vawuEwt912G6FQKKoPgFFiqCjZctg+4XCYip2H76eDq9y59Yj6hfaWEdqzq46rkVRfVOz4nHDl4a/vrDyCfbkkJaK4PwPYs2dPsrKymDRpEqmpqTRr1oyHH36YZcuW0bRpU3r06HHc6zhYct5csJqXR91+3MtXxLx5ebQddFqsyzisUBhGzYVNpQe/DDQQCHDjeV25rqwsqrU1NN9/A5ZuOfhloEnARZmNWFq6O5plNXgDX4z8W+bnV/XQq8Xw3wd5SNc+aUmw9sXpNE+bHp2iJFXjGLp21fYYOu7PAKakpDBz5kzat2/P+PHjmThxIiNGjCAnJ4e+ffuSlBTdTQgkJZHcKJVASgoEAiQ3SiUpLe5ztI5CUiDyGPGDhb8koEUqXOrtpsft2n+/zwd6WnsASEmC7/okP0lfEmwPXZsdegBzeVdonha1kiQdAcfQ8aNevOv9+vUjPz+/WtsDDzxATk5O1Gvpdtl5DP7dD6umv/vh0+zc+KnfZdLAfLMTfFEO//v+lwJKIHJ2MKMRTDsLTvT2qeM28ES48wyYsizy+PYva5ICvxkIWc1jU5uk+JSaBA+eAzctgnVfujU4icjVBJd2hh/0jFV1kg7GMXT8qBcB8KtKS0tZs2YNEydOrGq76aabeO6559i0aRPDhw+ndevWrFy5stbXXfhMHoXP5NX6chV/vpsF53eIfN3D+pLIoOPcNjC0PaQlx7q6huP8DnDWSZGnfd7/7/9k/7svXHAKnFAv91CS6tpJjSPfxbros0gQBLiyG4zsBJnpsa1N0oE5ho4f9XJ4tWLFCiorK6s9AGbatGlMmzYthlWpIWrTBL53/LeZ6jBapMG4bvsD4JguMS1HUj2QFIBzvvQg5v/qffC+kqT96mUAzM7OJhz2i8EkSZIk6WjE/UNgJEmSJEm1wwAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKKleyMvLIzMzk2AwyPjx42vMnzFjBnPnzgXg7rvvZsiQIdx44401+n3ve98jJyeHwYMHs3btWgD++Mc/cs4553DJJZdQUlLC3r17Offcc8nJyWHkyJHs2bOHrVu3cvPNN9ftRkqSJNUxA6CkemPChAnk5eXRokUL8vPzq8176aWXGDZsGJs3b2bp0qUsXLiQlJQUlixZUq3fQw89xPz58/nVr37F73//eyoqKnj88cd5/fXXufbaa3nkkUdITU1l/vz5zJ8/nzPPPJM5c+aQkZHBtm3b2LlzZzQ3WZIkqVYZACXVO3369KG4uLhqeuvWrTRu3JhAIMCSJUvIyckBYOjQoRQUFFR7bWpqKgA7d+6kT58+fP7553Tq1ImkpCROP/30qmCZkpICQCgUolu3bgBkZ2eTl5dX15snSZJUZwyAkuqd/Px8srKyqqYLCwvp3LkzANu2baN58+YApKens23bthqvHzZsGD/84Q8588wzOemkkygsLGTPnj0sWLCA7du3A/D+++9z5pln8uqrr9KxY0cAOnfuXHXZqCRJUn1kAJRUbzz66KMEg0E6dOhA//79D9inZcuW7NixA4CSkhJatmxZo89rr73Gc889x5QpU0hOTubWW2/lggsu4J133qFt27YA9OrVi7feeouxY8fy+OOP19UmSZIkRZUBUFK9se8ewDvvvLNae1ZWFkVFRQCcccYZLFiwAIB58+YxaNCgan3LysoAaNGiBU2aNAHg0ksvJS8vj+zsbEaMGMHevXsJh8NV/Ro3bgxAUVER3bt3r7sNlCRJqmMpsS5Ako5XRkYGu3fvBqBdu3b07duXIUOG0LdvXwYOHMimTZuYMWMGt956K6NHj6a0tJRAIMCDDz4IwA033MCaNWvo1asX999/Pxs2bGDChAkkJSXRqlUrnnjiCQAWLVrEtGnTYradkiRJx8sAKKleCAaDBIPBg84fOXIkc+fOZfjw4UyePJnJkydXzWvXrh233norALNnz67x2oceeqjadFZWFvPnz6/WtnXrVlq2bEl6evpxbIUkSVJsGQAlNQhXXXVVnS4/IyOD++67r07XIUmSVNe8B1CSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZISRL0JgOXl5UyePJmOHTvSpEkThg4dSkFBAYFAgFmzZsW6PEnHIRyGtz7bP/3eF5E2qb76cCc8sR7+uBbyPoGKUKwrko7dtnJ47kN4dC28UAQle2NdkaTjkRLrAo5EOBxm7NixFBQUMGXKFLKysnjqqacYPXo0AAMGDIhaLUlpKZx197W0H3w6jVs3Z/fmL1j1x5dZ/ceXo1aD1JCs2gY/exs+2rW/7T8WQo8W8KszoFOzmJUmHbVt5fDzpfDmp9XbM9LgZ/0hp11MypKOSWUYHloFT66Hii8dlPvNuzA+C77XA5ICsatP9Ytj6PhRLwLg9OnTmT17NsuXL6d3794ABINBMjMzycjIoFOnTlGrJSk5mdJPtzHn8jsoKdpMRq/OfP3p29nz2TY+fCk/anVIDcEHJXDdG1BWWXPeuh1w7evwRA60aRL92qSjtacSbngTCnfUnPdFOfy4AH53FpzTJvq1Scfif96Dv26o2V4egj+sjfx7Y6/o16X6yTF0/KgXl4BOnTqVcePGVYU/gOTkZDIzMxkwYABbtmzhwgsvpEePHpx++ulceumlfPbZZ4dY4rGrKC1j2W/+QsmHmyAcZuvKD9k4ZwltBvWsk/VJDdkf1kTC34GujguFI4PmJ9dHvSzpmPzjY1i748Cf530nT+5f6eXNqh8+3gXPHCD8fdmMQvhsT3TqUf3nGDp+xH0AXLduHRs2bGDMmDE15m3cuJEBAwYQCAT4yU9+wpo1a3j33Xfp1q0bP/3pT6NSXyAlmbbZPfliVVFU1ic1FDvK4bVPDjxY3icMvPBRJAxK8e75IjjU1XBhIme9V22PVkXSsXtp4+H7hID/O4J+0oE4ho6duL8EtLi4GIA2bapfM7N69WqKiooYMGAAGRkZBIPBqnlnnXUWDz/88BGvIz09nfLy8hrt3VJa8ZPmgw/52rPunsDenaWsf3b+Ea8vUeXmBllf8UWsy1CcaNThNE69/53D9ttVASdknERo9wGuq9Mx6fNM5JB9o0aNY1xJw9LzDxtJaXn46ztzRn6bHYtfqPuCEoSf57pxyg8eoeWQywkkpx60T7hiL7/43WNc/4cbo1iZ6gPH0LUrN/fAY+i0tDRKSkqOenlxfwawdevWABQWFla1hcNhbrvtNkKhUI0HwIRCIR5++GFGjhxZ57WdOWU8J53Rg1evvIvQ3oo6X5/UkFTuPrLTIOHKCkJlu+u4Gun4Ve7eRvgIru+s3OUpQMW/yt07OPQ5bSApicpd26JRjhoYx9CxFQgfyV+rGKqoqKBnz57s3buXe+65h2bNmvHwww+zbNkytm7dSklJCUlJ+3PsD37wA4qLi3nuueeqtR+LzQWreXnU7QecN+iX/0H7wafzj7G/oGyLZyaOxIhZd9J20GmxLkNx5JqFka98ONhloEnAsJPhVwOjWVXDN/DFyL9L6v44WUKZvibycyit0mD2NyA17g+/1h9+nuvG8i1w7RuH7/dkTuSpzdKXOYauXbU9ho77P0EpKSnMnDmT9u3bM378eCZOnMiIESPIycmhb9++1ULej3/8Y9atW8df//rX4w5/hzLojmtoP6SvH1zpOF1z6sHDXwAIBGBct2hWJB27SztDeuqh/7CO7274U/3QLwP6Zxz88xwAzj7J8Kej4xg6PsT9PYAA/fr1Iz+/+uNhH3jgAXJycqqmJ02axNtvv83//d//0ahRozqr5YRTTqTXtRdSuaecyxY/WNW+efFq5l55V52tV2qIBreF/+4LU1dEHpDx5csRUpLgrq9B71axqk46Oic2hgfOgpsWwfYvfVF2EpEDHeO6wZVdY1WddHQCAfjtoMjn+f1t+9uTApEHc/XLgLu9OkNHwTF0/KgXAfCrSktLWbNmDRMnTgRg5cqV/OpXv+LUU0/lnHPOASAzM5Pnn3++1te96+PP+VP7y2p9uVKiGtMFzm0Dz38EK7+IHFU+40QY2Qky6u5YjlQnereCF78e+UqIX62ItI3NhNGdIat5bGuTjlbLNHhsCOR/ChMXR9q+cTJc1BGyT/JL4HV0HEPHj3oZAFesWEFlZWXVA2B69+59RDfeS4pP7ZrCf3p7qBqIE1IiBzb2BcBbT49pOdJxSQ5ErtbY584zYleLpNpRLwNgdna2gU+SJEmSjpK3okuSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSFGV5eXlkZmYSDAYZP358jfkzZsxg7ty5AAwZMoRmzZrx8ccf1+i3YMECsrOzyc7OZtasWQA8++yzDBo0iLPOOotFixYBcPXVVxMOh+twiyRJ9YUBUJKkGJgwYQJ5eXm0aNGC/Pz8avNeeuklhg0bBkQC3WWXXXbAZdx33308//zzzJ8/n2nTpgHw4IMPsmDBAp577jl++9vfApCdnc28efPqcGskSfWFAVCSpBjq06cPxcXFVdNbt26lcePGBAIBANq1a3fQ13bv3p3t27eza9cu0tPTAejSpQu7du1i+/btZGRkAJCbm8vs2bPrcCskSfVFSqwLkCQpkeXn5/Nf//VfVdOFhYV07tz5iF47atQozj//fEKhEI888ggAF198MQMGDKCysrIq9HXu3Jm1a9fWfvGSpHrHM4CSJMXAo48+SjAYpEOHDvTv3/+YljF58mTeeustVq1axdSpUwGYOnUqq1at4q233mLy5Mm1WLEkqSHwDKAkSTEwYcIEbr/99hrtWVlZFBUVHdEykpOTad68OWlpaZSVlQHQuHFjmjRpQjgcZteuXQAUFRXRvXv32iteklRveQZQkqQ4kpGRwe7du6umx40bx5w5c7jiiit47bXXALjlllsAmDhxIrm5uZxzzjlcc801AFx11VWcc845DB06lJtvvhmAefPmMWLEiChviSQpHnkGUJKkKAsGgwSDwYPOHzlyJHPnzmX48OE88cQTNebfe++9AFx00UVcdNFF1eZde+21XHvttdXaFi9ezHXXXXf8hUuS6j0DoCRJceaqq66q1eU99thjtbo8SVL95SWgkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCAMgJIkSZKUIAyAkiRJkpQgDICSJEmSlCDqTQAsLy9n8uTJdOzYkSZNmjB06FAKCgoIBALMmjUr1uVJklTlsz37f3/7cwiHY1eLpPqhIgQLNsGzG+AfH8POvbGuSA1VSqwLOBLhcJixY8dSUFDAlClTyMrK4qmnnmL06NEADBgwIKr1nPWra+n49YGkNm/K3p2lFP09nyV3PEFob0VU65AkxZddFfDrd+CV4v1t178JHU+An/WDgSfGrjZJ8evvH8Hv3ocvyve3NUqCy7vCDT0hORC72mqTY+j4UC8C4PTp05k9ezbLly+nd+/eAASDQTIzM8nIyKBTp05RrWfVY/9gyS9nUFFaRqOMdILTb6HvTZey/N5nolqHJCl+lFfCTYtgxVb46gm/4l3ww3x46Bz4WuuYlCcpTr1QBHe+U7O9LASPF8K2cpjcP+pl1QnH0PGhXlwCOnXqVMaNG1cV/gCSk5PJzMysOvt3ySWX0K9fPwYMGMCQIUNYvnx5ndWzfe3HVJSWRSYCAcKhMOld29fZ+iRJ8e/Vf8E7Bwh/ACEgFIb/eS/aVUmKZ3sq4L6Vh+4z6yNYvT069dQ1x9DxIe7PAK5bt44NGzYwbdq0GvM2btzImDFjAHj88cdp0aIFALNmzeKaa65h6dKldVbX6T+8hL4Tx5B6QhP2bN3Bq995os7WJUmKf899GDmqGjrI/BCRQdza7XBqi+jVJSl+/fOTyKXjh5IEzCqC0/pGpaQ65xg69uI+ABYXR26kaNOmTbX21atXU1RUVHUGcF/4A9i+fTtJSUd+cjM9PZ3y8vIa7d1SWvGT5oMP+Jp3H3iBdx94gRbdO9D10iGUfvrFEa8vUeXmBllf4fskxVqfZyJPKGnUqHGMK2lYev5hIykt2xy237nf/BY7Cnx4WW3x8xwdvs91o81lP6PN2NsJHGLcWhkO8ccX5vLzMy+OYmXHxzF07crNPfAYOi0tjZKSkqNeXtxfAtq6deRmicLCwqq2cDjMbbfdRigUqvYAmGuvvZZOnTrxs5/9jMcffzwq9W1fV8zWlUUM+d+borI+SVJ8qizdQfgIHvcZ2rMrCtVIqg9Ce3YeMvxFOoUI7dkZnYKiyDF07MT9GcCePXuSlZXFpEmTSE1NpVmzZjz88MMsW7aMpk2b0qNHj6q+jzzyCAAzZszg1ltvZfbs2Ue0joMl580Fq3l51O2HfX1SajLNvX75sObNy6PtoNNiXYaU8Aa+GPm3rKwstoU0MA+ugj+tO/A9gPukp8K/Fv0fjZKjVlaD5+c5Onyf68bHu2D0a4febwSSU/jfGy7lgrvrz3vvGLp21fYYOu7PAKakpDBz5kzat2/P+PHjmThxIiNGjCAnJ4e+ffse8FLP7373u8ybN48tW7bUej2p6U3J+laQtOZNAWjVszP9Jo7hX3kHeHyTJClhjOkMjZIP/Yf1yq4Y/iRVOeUEGNoeDvYtD0lA+yaRPvWdY+j4EfdnAAH69etHfn5+tbYHHniAnJwcAHbu3MkXX3xBx44dAXjppZfIyMggIyOj9osJh+k65jzOnDKepLQU9ny+g6LZi1l+z19rf12SpHqjXVO4Pxt+tBhKK/e373swzMhOcM2psapOUrz6+QDYWgbLtkJSIPLE4H1ObAwPnA1pDeHAkWPouFEvAuBXlZaWsmbNGiZOnAjArl27GDt2LLt27SI5OZmMjAxeeuklAoHa/9bMvTtLmfPtX9b6ciVJ9d/AE2HWcHjxI5i/CfZUQlbzyNnBfhlQB3+WJNVzJ6TA78+F1zdHnva5YHOkfVJfuOAUaFovR+s1OYaOH/XyI7VixQoqKyurHgDTtm1bFi1aFOOqJEmCjEbwH90jP5J0JJIDkNMu8rPvfstLu8S0JDVg9TIAZmdnH9GT1iRJkiRJ+8X9Q2AkSZIkSbXDAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAYZwbf/wOy75oQ6zIO6MrCGWT0yYx1GZIkSVI1jqGPXEqsC2jI2p3Tm/63fIvWfbsCsGXFByz/7TNsyl8Z48oi+t/yLVr368ZrV/3qiPo/mfXdOq5IkiRJic4xdN3yDGAdOWX4GXz9qdvZOPdtnvna9TzztevZOPdtvv707Zwy7GsHfE0gufb+7wikJNfasiQllry8PDIzMwkGg4wfP77G/Lvuuot169Ydchk33ngjQ4YM4e67767W/o9//INgMEgwGKR169YsX768at7999/P8OHDASgtLeXCCy8kJyeHq6++GoBVq1YxderU49w6SVI8cwxd9wyAdST7zmsofDaPlQ+/yN6S3ewt2c3Kh19k/cz5DLrzGgAuK3iIvhPHcOGLdzHugyc5sV83AFJPaExw+i1cuW4Gl8y/j5OD/Q67vnZn9+bKwhmcOm44l731MCPn/haA9uf15ZuvTOU7ax5n5Gv30umCMwHodMGZnH7TaDrk9ufKwhlcWTiDpLRDnxD+j09m0rpfNwLJSXxn7Z9p2aNjZN3n9OY/PplJ52+eDUCTNi256qO/kNqsybG9eZJibsKECeTl5dGiRQvy8/Or2kOhECtWrKB79+4Hfe2SJUtISUlh4cKFLF26lM2bN1fNu+CCC8jLy2PevHl07dqVfv0i+7e9e/dWC4Nz5sxh8ODBzJ8/n9TUVN577z169uzJ0qVLCYfDtb/BkqS44Bi67sfQBsA60LzbyaR3bsuGF96oMe+D51+neZd2NO/aHoCssUHeuOUhnsz6Llve2wBA5iWD+eD5hTx12nhW/O/zDP3jT2jaLuOw601p0ogT+2fxwnkT+fuI20jv0o7hj/+U9x54gad7Xc3bdz1BzsM/IqN3Fz76x1u8O+15iuct58ms7/Jk1ncJlVcc0faFK0NsXryK9oNPB6D9kNPZseET2g/uE5kefDpbVnzA3p2lR7Q8SfGrT58+FBcXV02/8847nHrqqYd8zeLFixk6dCgAOTk5vP322zX6vPXWWwwcOJBAIADAjBkzuOKKK6rmZ2ZmsmvXLgB27txJixYtAOjatSsrV8bHJUCSpNrlGDo6Y2gDYB1onJEOQOnmrTXmlX76RaRP6+YArJnxKtvXFRMOhao+PJsWvc9HLxcQrgzxwcwFfPF+EV0uPvuw6w0kJfH23U9SUVpGZWk5maPOYfPiVXz4Uj7hyhDF/1zGR3OW0G1sznFv46bX36v2YV3+22eqPsztzu3DJ2+8d9zrkBR7+fn5ZGVlVU2vW7eOLl26HPI127Zto3nzyD4uPT2dbdu21egza9YsRo0aBUTOKr7yyiucf/75VfOzsrJYuHAhPXv2JBAI0LFj5Ghp586dWbt27XFulSQpHjmGjs4Y2gBYB/ZsLQGgSduaRxyatGkV6bNlBwC7ij+r0WfXx9Xbdm787IiOXlSUllH273UDNG3fmp1fXVbRZpq2b33YZR3OJ6+/S9uzepHWvCnNu57MhhfeIDkthabtM2g/uA+fLHz3uNchKXYeffRRgsEgHTp0oH///gfs8/7771fdz7fv59e//jUtW7Zkx47IPq6kpISWLVvWeO28efOqzhI+99xzjBw5str8xx9/nG9/+9usWrWKE088kTfffLNWt0+SFH8cQ0dnDO1TQOvAjvX/ouSjzWSOPIdNX0nxmaPOoeSjzez44BMAwqGa97KccMpJ1aabdTyJz5Ye/oh3OBSqNr37ky20O7v3V5bVht2fbDlg/6OxdeWHhEMhen3vm3z61mrCoRCfvP4ep35nOE3btOLTt1Yf87Ilxd6ECRO4/fbba7R3796d5557DoBevXqRl5dXo89bb73F008/zcUXX8yCBQv41re+VW3+Bx98wCmnnEJaWhoAa9asIS8vjxkzZrB8+XIeeeQRQqEQGRmRP9oZGRlVZxGLioo499xza3FLJUnxwjF0dMbQngGsIwU//xNZ386l9/UXk9qsCanpTel1/TfJ+lYuBZMfO+Rr253Vi47fGEggOYmulw6hVa/OfPh/i466hg2z3qRtdk86X5RNICmJDrn96Xj+QNbPXABA6efbOaHDicf85KRNb66k13UX8cnrkSMVn7zxLr2uu4hP315LZdneY1qmpPjWr18/1qxZc8g+Z555JmVlZQwZMoR+/frRtm1bNm3axD333ANUv/wT4Gc/+xmvvvoq//jHP+jfvz/XXnst3/nOd3jssccIBoMsX76cr3/96wAUFhbSp0+futtASVJMOYau+zG0ZwDryMZX3mLuuLvpd/Nl9L81cvR7y4oPmDvu7qr/sw9mwwuv021sDuc9+F/s+mQL8679Lbv/teWoayj5cBP/vOY3fO2/r+Tc+37Aro8/Y8EPp7H13zfKfvhSPl0vGczl7/2RQCDAX/pOOOKbWAE+WfguXb55Np+8HjlC88nr75HW/ATv/5PquX2Xcx5IUlISffv2Zd26dYd8EuiDDz5Ybbpdu3bceuutAPzoRz866Ovmzp0LQKtWrZgzZ061eatWreKMM86oenCMJKnhcQxd9wJhn6d9UJsLVvPyqJqXQCWiQFIS44ufYdbQW/hiVdExLWPErDtpO+i0Wq5M0tEa+GLk3yUjD91Pqg/8PEeH73P0NIT32jH0fvE4hvYSUB2RVr07E9pbccAbbiVJkiTVFI9jaC8BrUdG5d1Hs1NOrNG+cc7bLLjh/uNe/vAnf0bb7JpHF/bu3ENSajJv3/0U5Tt2H/d6JEmSpGhxDF2dAbAemRU8+H0ztWHulXfV6fIlSZKkaHMMXZ2XgEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoKoFwGwvLycyZMn07FjR5o0acLQoUMpKCggEAgwa9asWJenBq5wB7xSDPM+gR3lsa5GOj6f79n/+8adsatDkiTFRkqsCziccDjM2LFjKSgoYMqUKWRlZfHUU08xevRoAAYMGBCTupIbpzHqn/fSpE1Lnsz6bkxqUN1asx1+vQLe/WJ/W1oSXNwRftQbGsf9fz3SfjvKYeq78Oq/9reN/idknwT/3RdOOSF2tUmSEodj6NiL+yHs9OnTmT17NsuXL6d3794ABINBMjMzycjIoFOnTjGpa8Ct32bnx5/TpE3LmKxfdWvtdpjwOpRXVm8vD8FzRfDhTnjgbEitF+fQleh2VcB1b8AHJRD6yry3PoerF8Kfz4P2TWNSniQpgTiGjr24H75OnTqVcePGVYU/gOTkZDIzM2uc/fvFL35BIBDgvffeq9OaWvftSofc/rz34At1uh7Fzv+8Fwl/Xx0sA4SBt7fAnOJoVyUdm2c3QOEBwh9AKAzby+H3q6NeliQpwTiGjg9xHQDXrVvHhg0bGDNmTI15GzdurBYAly5dyqJFi+jcuXOd1hRITuKc336fRZMeIVReUafrUmxs3AlLthx4sLxPEjDzwygVJB2nZzccen6IyH2uJXujUo4kKQE5ho4fcX0JaHFx5BRLmzZtqrWvXr2aoqKiqgBYVlbGD37wA55++mmCweBRryc9PZ3y8ppP9+iW0oqfNB9cra3PDaPY8u4GNi9aRbuze9d4jQ4uNzfI+oovDtct5tIHXECXSYd+uFAIWP7xNho1ahudoqRjFEhJpc/Th3/aS0UYTulzJns+XBGFqqTa0+eZyJONGjVqHONKGjbf5+hpCO+1Y+jalZt74DF0WloaJSUlR728uD4D2Lp1awAKCwur2sLhMLfddhuhUKgqAP785z9n3LhxdOnSpU7rSe/Sjh5XfYMld8yo0/UotkLlpUfWr2x3HVciHb9wZQXhysrDdwRCZUf22Zck6Wg4ho4vcX0GsGfPnmRlZTFp0iRSU1Np1qwZDz/8MMuWLaNp06b06NGD/Px8lixZwq9//etjXs/BkvPmgtW8POr2qum2g06jyYktuPSNaQAkpSSTekITLl/5R+ZNuIfNi1Ydcw2JYN68PNoOOi3WZRxWWSVcMOfQl8MlAd/52sncVlYWtbqkY3VLASzcHLnf70ACRJ4C+taG9wgEolqadNwGvhj5t8z9cZ3yfY6ehvBeO4auXbU9ho7rAJiSksLMmTP5/ve/z/jx4+nYsSMTJ06kefPmrF+/nqSkJObPn8+qVavIzMwE4OOPP+b888/nscce4xvf+Eat1rPhpTf518L9l0eddEYPBv/uB7w4/Mfs2bKjVtel2GmUDJdnwh/WHnh+AEgKwLcyo1qWdMyu7AYLNh18fhj4bjcMf5KkOuEYOr7EdQAE6NevH/n5+dXaHnjgAXJycgD46U9/yk9/+tOqeV26dOHvf/87ffr0qfVaKkvL2V26tWq6bMsOCIfZ/cnWQ7xK9dGEU6FoV+RJn0mB/WdOAkByAO4+AzLTY1qidMS+1hp+2jfyvZYB9j/gKOnfv3+nK4yu2+dnSZISmGPo+BL3AfCrSktLWbNmDRMnTox1KWzKX+kXWDZQKUlw59fgolMiT/tcuDnSfmU3GNMZOjaLaXnSURvTBfplRJ4IuugzqAzD6a3gsi5wxomxrk6SlEgcQ8dWvQuAK1asoLKyssZ3AO7z4YcfRrcgNVhJATi3beRn3/X4E31oleqxrObw3/1iXYUkSYqlehcAs7OzCYcP8iQDSZIkSdJBxfXXQEiSJEmSao8BUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVA6Tnl5eWRmZhIMBhk/fnyN+TNmzGDu3LkADBkyhGbNmvHxxx/X6Ldx40Zyc3M599xzeeeddwAYP348gwcPZtiwYRQXFwNw9dVXEw6H63CLJEmS1FAZAKVaMGHCBPLy8mjRogX5+fnV5r300ksMGzYMgGeffZbLLrvsgMuYOnUq999/Py+88AK//OUvAfjFL37B66+/zqRJk3jwwQcByM7OZt68eXW4NZIkSWqoDIBSLerTp0/VmTqArVu30rhxYwKBAADt2rU76GsLCwvp168fJ510Ert27QKgS5cuACQnJ1ctIzc3l9mzZ9fRFkhSw3K4qzTuuusu1q1bd8hl3HjjjQwZMoS77767WntpaSkXXnghOTk5XH311Qft/49//INgMEgwGKR169YsX76cVatWMXXq1FrYQkk6OgZAqRbl5+eTlZVVNV1YWEjnzp2P6LWhUOigv999991MmDABgM6dO7N27dpaqliSGr6DXaURCoVYsWIF3bt3P+hrlyxZQkpKCgsXLmTp0qVs3ry5at6cOXMYPHgw8+fPJzU1lffee++A/S+44ALy8vKYN28eXbt2pV+/fvTs2ZOlS5d6Sb+kqDMASrXg0UcfJRgM0qFDB/r3739My0hKSjrg75MnT+byyy+na9eux1umJCW0r16l8c4773Dqqace8jWLFy9m6NChAOTk5PD2229XzcvMzKy6YmPnzp20aNHikP3feustBg4cWHVFR9euXVm5cmXtbJwkHSEDoFQL9h1dvvPOO6u1Z2VlUVRUdETL6NatGytWrODzzz/nhBNOAOBvf/sbW7du5ZprrqnqV1RUdMij1ZKkA/vqVRrr1q2rutT+YLZt20bz5s0BSE9PZ9u2bVXzsrKyWLhwIT179iQQCNCxY8dD9p81axajRo2qmvaKDkmxYACU6lBGRga7d++umh43bhxz5szhiiuu4LXXXgPglltuAeC2227jpptuYtSoUdx+++0A3HzzzbzzzjsEg0HuuusuAObNm8eIESOivCWSVH8dyVUa77//ftV9evt+fv3rX9OyZUt27NgBQElJCS1btqx6zeOPP863v/1tVq1axYknnsibb755yP7z5s2rOjsoSbGSEusCpPpu30DhYEaOHMncuXMZPnw4TzzxRI359957LwCdOnUiLy+v2rwDnT1cvHgx11133XHVLEmJZMKECVUH1r6se/fuPPfccwD06tWrxj4YIpdtPv3001x88cUsWLCAb33rW1XzQqEQGRkZQOSA37Zt2xg0aNAB+3/wwQeccsoppKWlVb2+qKiIc889tzY3VZIOyzOAUh276qqrGD58eK0t77HHHqt2j6Ak6dj069ePNWvWHLLPmWeeSVlZGUOGDKFfv360bduWTZs2cc899/Cd73yHxx57jGAwyPLly/n6179+wP5Q8/JPiDworE+fPnW2fZJ0IJ4BlCRJDdahrtJISkqib9++rFu37pD3Vu/7HtZ92rVrx6233gpEngR6uP4AP/rRj6pNr1q1ijPOOKPqgTCSFC0GQEmSlLAOdGloNPTs2ZOePXvGZN2SEpvXkUmSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoKoNwGwvLycyZMn07FjR5o0acLQoUMpKCggEAgwa9asWJenBmzT7v2/76mMXR0N3dYyWPQpFHwGJXtjXY2k+qAitP/3D0tiV4ck1ScpsS7gSITDYcaOHUtBQQFTpkwhKyuLp556itGjRwMwYMCAqNUy+P4fkDl6MKG9FVVted+7l+J5y6NWg6KjaCf8z3vw5qf7285/Bb6VCdf3gJR6c/gkvm3ZA/+zEub+CyrDkba0JPhmR7ipFzRLjW19kuJPOAzPfAh/Wru/7bJ5cHor+K9e0L91zEqTdBCOoeNHvQiA06dPZ/bs2SxfvpzevXsDEAwGyczMJCMjg06dOkW1nrVPzGXxzx6N6joVXUU74eqFsHMvhL/UvqsCHlsH63fAPYMgORCzEhuEL8rgmtfhk93wpQP5lIfg+SJ4fxv84VxoUi/2VJKi5X9XwZ8La7av/AK+/yb871lw5knRr0vSoTmGjg/14hzG1KlTGTduXFX4A0hOTiYzM7Pq7F+XLl047bTT6N+/P/379+eVV16JVblqAO59LxL+QgeZv2Az/PNfUS2pQfrDWvjX7gO/z2Fg9Xb464ZoVyUpnq3bfuDwB5F9SSgMv1we+VeSVFPcH1dft24dGzZsYNq0aTXmbdy4kTFjxlRNz5w5kz59+tR5TV0vHULX0YMp/Xw7H/xtAe8+8ALhyoNFBdU3n+yG/E+rn/n7qiTgmQ3w9Q7Rqqrh2VMBL3506PcZIu/z+CwIeLZVEvBcUWQffLC/uiHgk1JY/Bmc3SaKhUk6LMfQ8SHuA2BxcTEAbdpU34uvXr2aoqKiWrn/Lz09nfLy8hrt3VJa8ZPmg6u1vf/obJbcMYM9W0to3bcrOQ9NJLlRGst+85fjrqOhy80Nsr7ii1iXcVjpAy6gy6RDP1goBLz10Rc0atQuOkU1QI1O7sGpv1tx2H6f7oGmLVsT2rMzClVJinddf/lPTuh57mH7Xfaft/H53++v+4ISRJ9n9gDQqFHjGFfS8DWE99oxdO3KzT3wGDotLY2SkqN/AlbcXwLaunXkTu7Cwv3Xe4TDYW677TZCoVC1AHjllVfSt29fbrjhBrZt21Yn9Wx9dwN7tuyAcJgt76xn2W//Suaow/8hUv0R2lt2RP3CFTUPGujIhSqO7H0GCFf6WFBJEaG9ewiHDn/GwH20FF8cQ8ePuD8D2LNnT7Kyspg0aRKpqak0a9aMhx9+mGXLltG0aVN69OgBwMKFC+nYsSNlZWVMnDiRH/7whzzxxBNHtI6DJefNBat5edTth35xKAxemnZE5s3Lo+2g02JdxmGVVkSe9rn7EF/5kASM7duW28uOPMSounAYLv0nfLzr4JeBJgEDWsOSnTuiWZqkOPbEerh/5eH7LXryPjo1u6/uC0oQA1+M/Fvm37061xDea8fQtau2x9BxfwYwJSWFmTNn0r59e8aPH8/EiRMZMWIEOTk59O3bl6SkyCZ07NgRgEaNGnHDDTfwxhtv1Ek9XUaeQ2p6UwBa9exMv1vG8uHf8+tkXYqNJikwpsvh+43NrPNSGrRAAK7sduh7AEPAd7pFqyJJ9cHFHaFp8sEHMEnAuW2gU7NoViXpcBxDx4+4PwMI0K9fP/Lzq39AHnjgAXJycgDYtWsXFRUVtGjRgnA4zF/+8hf69+9fJ7Wc9h/nc/bU60hKTaZ08zbWz5zPiv99vk7Wpdi5oSd8UAJvfFr9YQP7Bhw/7w89WsSmtoZkTOfIE/3+9pWHOiQFIgcGr+8BOd5mKelLWqTB/2TDxMVQVrn/IFKAyO+Z6fCL6H09sKQj5Bg6ftSLAPhVpaWlrFmzhokTJwKwefNmxowZQ2VlJZWVlfTq1YuHHnqoTtb9j0v/X50sV/ElNQnuHRT5cvJnN0BhSaTtvHaRL4I/zfBXKwIB+GlfGNw28rTP/M8i7cF/v88DT4xtfZLi08AT4a9BePZDeKU48h2tJzeB0V3+fYawXo5upIbNMXT8qJe7yBUrVlBZWVn1AJiuXbuybNmyGFelhiYlCS44JfKjuhMIwJB2kZ999z385szY1iQp/nU4ASb2jvxIko5cvQyA2dnZhMN+w6skSZIkHY24fwiMJEmSJKl2GAAlSZIkKUEYACVJkiQpQRgAJUmSJClBGAAlSZIkKUEYACVJkiQpQRgAJUmSJClBGAAlSZIkKUEYACVJkiQpQRgAJdULeXl5ZGZmEgwGGT9+fI35M2bMYO7cuQDcfffdDBkyhBtvvLFGv+9973vk5OQwePBg1q5dC8Af//hHzjnnHC655BJKSkrYu3cv5557Ljk5OYwcOZI9e/awdetWbr755rrdSEmqp2prH/3ZZ58xevRocnNzmT59OgC5ubkEg0GCwSDvv/8+mzZtqpru1q0b999/v/to6SgYACXVGxMmTCAvL48WLVqQn59fbd5LL73EsGHD2Lx5M0uXLmXhwoWkpKSwZMmSav0eeugh5s+fz69+9St+//vfU1FRweOPP87rr7/OtddeyyOPPEJqairz589n/vz5nHnmmcyZM4eMjAy2bdvGzp07o7nJklRv1MY++pe//CX3338/8+bN47rrrgMgOTmZvLw88vLy6NWrF+3atauaHjRoEBdeeKH7aOkoGAAl1Tt9+vShuLi4anrr1q00btyYQCDAkiVLyMnJAWDo0KEUFBRUe21qaioAO3fupE+fPnz++ed06tSJpKQkTj/99KpBS0pKCgChUIhu3boBkJ2dTV5eXl1vniTVa8ezj167di0//elP+cY3vsGaNWsACIfDBINBrr32Wvbs2VPVd+/evWzYsIFTTz0VcB8tHSkDoKR6Jz8/n6ysrKrpwsJCOnfuDMC2bdto3rw5AOnp6Wzbtq3G64cNG8YPf/hDzjzzTE466SQKCwvZs2cPCxYsYPv27QC8//77nHnmmbz66qt07NgRgM6dO1ddNipJOrDj2Ue//vrr3HnnnTz44IP87Gc/A2DmzJnk5eXRs2dPHn300aq+eXl5BIPBqmn30dKRMQBKqjceffRRgsEgHTp0oH///gfs07JlS3bs2AFASUkJLVu2rNHntdde47nnnmPKlCkkJydz6623csEFF/DOO+/Qtm1bAHr16sVbb73F2LFjefzxx+tqkySpwaiNfXTv3r3p1q0b3bt3rzog16pVKwBGjhzJypUrq/q++OKLjBo1qvY3RGrgDICS6o1995fceeed1dqzsrIoKioC4IwzzmDBggUAzJs3j0GDBlXrW1ZWBkCLFi1o0qQJAJdeeil5eXlkZ2czYsQI9u7dSzgcrurXuHFjAIqKiujevXvdbaAk1WO1sY/u0qULn3/+OZs3b6Zp06ZAJChC5MxiZmZmVd/FixeTnZ1dNe0+WjoyKbEuQJKOV0ZGBrt37wagXbt29O3blyFDhtC3b18GDhzIpk2bmDFjBrfeeiujR4+mtLSUQCDAgw8+CMANN9zAmjVr6NWrF/fffz8bNmxgwoQJJCUl0apVK5544gkAFi1axLRp02K2nZJUHx3NPvr222/n0ksvpaKiomp/O3z4cNLS0mjZsmXV/njZsmX069ePpKT95zLcR0tHJhDed5hbNWwuWM3Lo26PdRkNxohZd9J20GmxLkNxbOCLkX+XjDz61/75z3/m5JNPZvjw4bVb1L9t3bqVO+64g/vuu69Oli9J8ex49s/gPvpoHO97HQ8cQ9eu2h5DewZQUoNw1VVX1enyMzIyGsTAQpJiwX20FD+8B1CSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZIShAFQkiRJkhKEAVCSJEmSEoQBUJIkSZISRL0JgOXl5UyePJmOHTvSpEkThg4dSkFBAYFAgFmzZsW6PEnHaXfF/t/LKmNXR0NXXgmrt8HKL2BXxWG7S1I1/9od6wokHa+UWBdwJMLhMGPHjqWgoIApU6aQlZXFU089xejRowEYMGBA1Gs6ZdjXGHDb5TTvdjIVO0t57/cvsfLhF6Neh1TfleyFh1bBSxv3t10wB8Z0hu/1gEbJsautISmvhEfXwbMbYMfeSFujJPhmR7ihJ7RIi219kuJT/qfw/63ePz1yLvTLgO/3gDNPil1dqr8cQ8devQiA06dPZ/bs2SxfvpzevXsDEAwGyczMJCMjg06dOkW1npNz+nH2Pdfz+k0PsCl/JSlNGnFChxOjWoPUEOzcC9e+Dh+UQPhL7SV74fFCWPEFPHAWpBkCj0tFCH5UAIs/q95eFoLnimDJFvjjYEOgpOr+8TFMXgqBr7S/uxV+kA9Tz4Tc9jEpTfWUY+j4UC8uAZ06dSrjxo2rCn8AycnJZGZmVp3927NnD//5n/9J9+7dOf3007nuuuvqrJ4BP7mcFff/jU9ef5dwZYi9O0vZtmbj4V8oqZpH1tYMf/uEgaVb4JkPo1xUA/R8Uc3wt08Y+Ggn/H71gedLSkwle+GXyyP7iNBX5oWItP+/pVDqpeQ6Co6h40PcB8B169axYcMGxowZU2Pexo0bqwLgT37yExo3bszatWt59913ueOOO+qknpQmjTixfzeanNSS0Qt/x7dXPMLQP91Gs45t6mR9UkNVVhkJJgcKf/sEiFyyGD5UJx3WMxtqHsH/sjCRS3AdyEna5/82QvlXk9+XhIHdlfBKcdRKUj3nGDp+xP0loMXFkT1LmzbVPxyrV6+mqKiIAQMGsHPnTv785z/z8ccfEwhEhjlt27Y94nWkp6dTXl5eo71bSit+0nxwtba0licQSEqi80XZvHrFnZRu2c6gX15N7qO38tI3bj3azUsoublB1ld8EesyFCfSTj6VHr9795B9wkDxbmjaMoPQnl3RKayhSU7h9L8c/r3bUwntep7Bno/ei0JRkuJdhxum0+q87xBITj1on3DlXn409RG+/ejE6BWWAPo8sweARo0ax7iSY+cYunbl5h54DJ2WlkZJSclRLy/uzwC2bt0agMLCwqq2cDjMbbfdRigUYsCAAaxfv57WrVvzi1/8goEDBxIMBnn99dfrpJ69OyP/Ub7/yGx2fvwZlaXlLP3VU7Q+PdNrmKWjUXnkp5vCIR8LeszCIcLhQxzGr9bV91nSv1VWcOhrBwAC7jd0xBxDx4+4PwPYs2dPsrKymDRpEqmpqTRr1oyHH36YZcuW0bRpU3r06MHy5cv54IMPGDBgAPfccw+LFy/m4osvprCwkObNmx92HQdLzpsLVvPyqNurte0t2c3OjZ96TdoxmDcvj7aDTot1GYoToXDkaXKbSg/eJwno3QqWlGyPWl0N0fVvwLItNe/j+bITG8GidctJifvDgpKiYU4xTHr70H0CySnMmPJDhvz+h9EpKkEM/PcDMcvKymJbyHFwDF27ansMHfd/6lNSUpg5cybt27dn/PjxTJw4kREjRpCTk0Pfvn1JSkqiU6dOpKSkcMUVVwCQnZ3NiSeeyNq1a+ukpjV/nkPPay+i6cmtSW6UyoCfXM7n76xnV/HndbI+qSFKCsAVXQ/dJ8Th++jwruh66PAH8O2uGP4kVcltD60bHXygmAS0bwLnHPkdN5Jj6DgR92cAAfr160d+fn61tgceeICcnBwATjzxRHJzc3n11Vf5xje+wdq1a/n000/Jysqqk3refXAWaS2aMXLObyCQxKcFq5k34Z46WZfUkF3eNfKF5HP+FRlM7Asp+36/oit8/eTY1ddQBNvDf2TBnwoP/D4H28F3u8WuPknxJzUJ7suG/3wTdldUf2BXAGiWGpmffLirRKUvcQwdH+pFAPyq0tJS1qxZw8SJE6vafv/733PNNddwyy23kJqayowZM2jZsmXdFBAO8/ZdT/D2XU/UzfKlBJEcgDvPgHPbRp5U+f42CATgaxmRM1LBdpFpHb8f9oK+GfDXDfu/EuLUFvCtTLioo4M4STX1aglPB+HpDyJPBd2xF1qkwshOkX10uyaxrlD1jmPouFAvA+CKFSuorKys+goIgK5du5KXlxe7oiQdk6RAJIBc1HH/bQGGvrpxXrvIz777S57IiW09kuLfyU3hlj6Rn1A4ss+WVL/VywCYnZ1N2BtIpQbH4CdJ8cvwJzUM3vIvSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSZIkSQnCAChJkiRJCcIAKEmSJEkJwgAoSaqSl5dHZmYmwWCQ8ePH15g/Y8YM5s6dC8CQIUNo1qwZH3/8cY1+CxYsIDs7m+zsbGbNmgXAs88+y6BBgzjrrLNYtGgRAFdffTXhcLgOt0iSGo6j2UfffffdDBkyhBtvvLFGv8svv5xgMMgZZ5zBJZdcAsDvfvc7zjrrLAYPHkxhYSEAixcvZtiwYeTm5lJQUMDWrVu5+eab624DFRUGQElSNRMmTCAvL48WLVqQn59fbd5LL73EsGHDgEigu+yyyw64jPvuu4/nn3+e+fPnM23aNAAefPBBFixYwHPPPcdvf/tbALKzs5k3b14dbo0kNSxHso/evHkzS5cuZeHChaSkpLBkyZJq/f7yl7+Ql5fHddddx4UXXgjA008/TX5+Pr/5zW/4/e9/Tzgc5t5772X27NnMmzePQYMGkZGRwbZt29i5c2fUtle1zwAoSTqgPn36UFxcXDW9detWGjduTCAQAKBdu3YHfW337t3Zvn07u3btIj09HYAuXbqwa9cutm/fTkZGBgC5ubnMnj27DrdCkhqmQ+2jlyxZQk5ODgBDhw6loKDggMt46aWXuPjiiwHo2LEjZWVlVfvo9evXU1paysiRI7nyyivZtWsXEDlwl5eXV7cbpzqVEusCJEnxKT8/n//6r/+qmi4sLKRz585H9NpRo0Zx/vnnEwqFeOSRRwC4+OKLGTBgAJWVlVWhr3Pnzqxdu7b2i5ekBu5Q++ht27bRvHlzANLT09m2bVuN1+/cuZOSkhLat28PwODBg+nZsyfhcJg333yTDz/8kPXr17Ns2TKeeuop/vCHPzBx4kQ6d+7M+++/X/cbqDrjGUBJUjWPPvoowWCQDh060L9//2NaxuTJk3nrrbdYtWoVU6dOBWDq1KmsWrWKt956i8mTJ9dixZKUOI5kH92yZUt27NgBQElJCS1btqzR55VXXuGCCy4AYMeOHfztb39j3bp1PP/880yZMoUWLVqQnZ1No0aNOO+881izZk1dbZKizAAoSapm3/0ld955Z7X2rKwsioqKjmgZycnJNG/enKZNm1JWVgZA48aNadKkCc2bN6+6lKioqIju3bvX7gZIUgN2JPvoM844gwULFgBU3b/3VbNmzWLUqFEABAIBTjjhBFJSUqru8zv11FP55JNPCIfDvPvuu3Tp0gVwv90QGAAlSUckIyOD3bt3V02PGzeOOXPmcMUVV/Daa68BcMsttwAwceJEcnNzOeecc7jmmmsAuOqqqzjnnHMYOnRo1VPk5s2bx4gRI6K8JZLU8Hx5H92uXTv69u3LkCFDKCsrY+DAgWzatIl77rkHgMrKStauXUuvXr2AyGWiZ599Nueeey7f/va3+fGPf0xqaipXXnkl5513Hg8//DDf+973AFi0aBHBYDAm26jaEQj7/O2D2lywmpdH3R7rMhqMEbPupO2g02JdhpTwBr4Y+XfJyKN/7Z///GdOPvlkhg8fXiu1XH311Tz66KMkJXk8UpIgvvbRX7V161buuOMO7rvvvkP2cwxdu2p7DO1DYCRJR+yqq66q1eU99thjtbo8SUpktb2P/qqMjIzDhj/FPw+5SpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEpSAgmF9/++NxS7OiRJNe3cG+sKlAhSYl3AkSovL+eOO+7gT3/6E59//jlnn302v/71r8nOzuaFF15g1KhRUanjysIZ1aaT01LZtq6YF4fdEpX1S9KxqAzD0x/AXz/Y33b+KzCmC1zdHZrWm78GktTwfFACj6yB1z7Z33bd63DNqXBWm9jVVZscQ8ePevEnPxwOM3bsWAoKCpgyZQpZWVk89dRTjB49GoABAwZErZYns75bbXrka/eyYdYbUVu/JB2tyjBMWlJ9YAGwYy/8aR3kfwrTzzUESlIsvL8Nrn8DyirhyxdmLN8KNy6Cn/eHizvFqLha5Bg6ftSLP/fTp09n9uzZLF++nN69ewMQDAbJzMwkIyODTp1i81/Fif2zaHnqKRT+dV5M1i9JR+LvG2uGv33CwJrtMH0NTOwd1bIkKeGF/n2A7qvhD/ZP3/FO5CzgSY2jXV3dcQwdW/UiAE6dOpVx48ZVhT+A5ORkMjMzSU1N5cMPP+SSSy6pmrdt2zZ27NjB1q1b67Su7t8ZSvE/l1G6+Ys6XY8kHY+/fgABImHvQMLA80Xw/dOgcXIUC5OkBFfwGXy8+9B9QmF4oQi+1yM6NUWDY+jYivsAuG7dOjZs2MC0adNqzNu4cSNjxoyhS5cuLF++vKp94sSJVFRUHPE60tPTKS8vr9HeLaUVP2k++ICvSWnSiMxR57LwpgeOeD2JLjc3yPoK/0OXoio5hdP/suuw3XZVQJvTvkbZRyujUJQkCeCkS39K28v/H4HAwZ/LGA6FuOfpV/jhry6JXmHHyTF07crNPfAYOi0tjZKSkqNeXtwHwOLiYgDatKl+B+zq1aspKiqqcf9feXk5Tz75JK+88kqd1tXl4rOpKC3n47lv1+l6JOm4hA923u84+0qSjl/4CB/H3ID2z46hYy/uA2Dr1q0BKCwsZNCgQUDkoTC33XYboVCoRgB88cUX6dChA1/72teOeB0HS86bC1bz8qjbDziv+5XDWP9MHuFKn6N+pObNy6PtoNNiXYaUcK5eCCu/qHl/yZe1TIMta5eR6pcDSVLULN8C1x7mOSiBpCRu/+6FXPWLsugUVQscQ9eu2h5Dx/2f+p49e5KVlcWkSZN49tlnefnllxk1ahRLly6ladOm9OhR/YLoP/7xj1xzzTV1WlPzbifTZmAP1j79Wp2uR5Jqw+VdDx3+AC7rguFPkqKsXwZ0S4ekwIHnB4C0JBjZMapl1RnH0PEh7v/cp6SkMHPmTNq3b8/48eOZOHEiI0aMICcnh759+5KUtH8TiouLmT9/PldeeWWd1tT9iqFsXryKkg2b6nQ9klQbvnEyXNo58vuXd/r7xhtnngjXdI92VZKkQACmDoTmqfv3yfskBSI/d58BLRvFpLxa5xg6PsT9JaAA/fr1Iz8/v1rbAw88QE5OTrW2xx9/nIsuuqjqstG68vadT9Tp8iWpNgUC8N99oW8G/OUDWL090n5yUxibCd/O9OyfJMVKl3R44jyYsR5e/AhKKyPBb2g7GJcFfVrFusLa4xg6PtSLAPhVpaWlrFmzhokTJ1Zr/9Of/nTAp4VKUqILBOCbHSM/uysijxU/ISXSLkmKrXZN4dbT4Ue9I09lbpIMaX4tj+pIvQyAK1asoLKyssYDYNauXRujiiSp/mhaL/f8ktTwpSRBi7RYV6GGrl4OA7Kzswk3oMfhSpIkSVI0eNeHJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJQgDoCRJkiQlCAOgJEmSJCUIA6AkSZIkJYhA2G9UP6jykt18seqjWJfRYLTq2Ym09KaxLkOSJEl1yDF07artMbQBUJIkSZIShJeASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKCMABKkiRJUoIwAEqSJElSgjAASpIkSVKC+P8B265KgcvKqCMAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/dev/explanations/state-vectors-and-gates.ipynb b/dev/explanations/state-vectors-and-gates.ipynb index b1e2042f7..845039d0d 100644 --- a/dev/explanations/state-vectors-and-gates.ipynb +++ b/dev/explanations/state-vectors-and-gates.ipynb @@ -26,10 +26,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:02.539595Z", - "iopub.status.busy": "2024-11-23T19:55:02.539403Z", - "iopub.status.idle": "2024-11-23T19:55:03.242180Z", - "shell.execute_reply": "2024-11-23T19:55:03.241625Z" + "iopub.execute_input": "2024-12-05T03:21:37.291915Z", + "iopub.status.busy": "2024-12-05T03:21:37.291726Z", + "iopub.status.idle": "2024-12-05T03:21:38.024215Z", + "shell.execute_reply": "2024-12-05T03:21:38.023670Z" } }, "outputs": [ @@ -74,10 +74,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.244302Z", - "iopub.status.busy": "2024-11-23T19:55:03.244015Z", - "iopub.status.idle": "2024-11-23T19:55:03.250926Z", - "shell.execute_reply": "2024-11-23T19:55:03.250362Z" + "iopub.execute_input": "2024-12-05T03:21:38.026436Z", + "iopub.status.busy": "2024-12-05T03:21:38.025967Z", + "iopub.status.idle": "2024-12-05T03:21:38.032743Z", + "shell.execute_reply": "2024-12-05T03:21:38.032274Z" } }, "outputs": [ @@ -120,10 +120,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.253007Z", - "iopub.status.busy": "2024-11-23T19:55:03.252691Z", - "iopub.status.idle": "2024-11-23T19:55:03.256946Z", - "shell.execute_reply": "2024-11-23T19:55:03.256468Z" + "iopub.execute_input": "2024-12-05T03:21:38.034620Z", + "iopub.status.busy": "2024-12-05T03:21:38.034422Z", + "iopub.status.idle": "2024-12-05T03:21:38.038774Z", + "shell.execute_reply": "2024-12-05T03:21:38.038313Z" } }, "outputs": [ @@ -157,10 +157,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.258734Z", - "iopub.status.busy": "2024-11-23T19:55:03.258541Z", - "iopub.status.idle": "2024-11-23T19:55:03.262475Z", - "shell.execute_reply": "2024-11-23T19:55:03.262029Z" + "iopub.execute_input": "2024-12-05T03:21:38.040973Z", + "iopub.status.busy": "2024-12-05T03:21:38.040442Z", + "iopub.status.idle": "2024-12-05T03:21:38.044870Z", + "shell.execute_reply": "2024-12-05T03:21:38.044379Z" } }, "outputs": [ @@ -199,10 +199,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.264358Z", - "iopub.status.busy": "2024-11-23T19:55:03.264171Z", - "iopub.status.idle": "2024-11-23T19:55:03.270003Z", - "shell.execute_reply": "2024-11-23T19:55:03.269530Z" + "iopub.execute_input": "2024-12-05T03:21:38.046998Z", + "iopub.status.busy": "2024-12-05T03:21:38.046581Z", + "iopub.status.idle": "2024-12-05T03:21:38.052906Z", + "shell.execute_reply": "2024-12-05T03:21:38.052316Z" } }, "outputs": [ @@ -245,10 +245,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.271785Z", - "iopub.status.busy": "2024-11-23T19:55:03.271598Z", - "iopub.status.idle": "2024-11-23T19:55:03.277353Z", - "shell.execute_reply": "2024-11-23T19:55:03.276829Z" + "iopub.execute_input": "2024-12-05T03:21:38.054945Z", + "iopub.status.busy": "2024-12-05T03:21:38.054590Z", + "iopub.status.idle": "2024-12-05T03:21:38.060386Z", + "shell.execute_reply": "2024-12-05T03:21:38.059903Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:03.279400Z", - "iopub.status.busy": "2024-11-23T19:55:03.279007Z", - "iopub.status.idle": "2024-11-23T19:55:03.283837Z", - "shell.execute_reply": "2024-11-23T19:55:03.283351Z" + "iopub.execute_input": "2024-12-05T03:21:38.062114Z", + "iopub.status.busy": "2024-12-05T03:21:38.061929Z", + "iopub.status.idle": "2024-12-05T03:21:38.067001Z", + "shell.execute_reply": "2024-12-05T03:21:38.066524Z" } }, "outputs": [ diff --git a/dev/how-to-guides/entanglement-forging.html b/dev/how-to-guides/entanglement-forging.html index 985cb8e19..0b7858592 100644 --- a/dev/how-to-guides/entanglement-forging.html +++ b/dev/how-to-guides/entanglement-forging.html @@ -335,7 +335,7 @@

Build a molecule
 converged SCF energy = -75.6787887956297
-Parsing /tmp/tmp8q_mmkkf
+Parsing /tmp/tmpm19br8hy
 converged SCF energy = -75.6787887956314
 CASCI E = -75.7288249991515  E(CI) = -23.6332495815006  S^2 = 0.0000000
 norb = 6
@@ -347,7 +347,7 @@ 

Build a molecule
-Overwritten attributes  get_ovlp get_hcore  of <class 'pyscf.scf.hf.RHF'>
+Overwritten attributes  get_hcore get_ovlp  of <class 'pyscf.scf.hf.RHF'>
 /home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable
   warnings.warn(msg)
 /home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute intor_symmetric because it is not JSON-serializable
@@ -471,10 +471,10 @@ 

Optimize energy\n", + "Overwritten attributes get_hcore get_ovlp of \n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable\n", " warnings.warn(msg)\n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute intor_symmetric because it is not JSON-serializable\n", @@ -125,10 +125,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:06.112309Z", - "iopub.status.busy": "2024-11-23T19:55:06.111597Z", - "iopub.status.idle": "2024-11-23T19:55:06.116560Z", - "shell.execute_reply": "2024-11-23T19:55:06.115973Z" + "iopub.execute_input": "2024-12-05T03:21:41.057868Z", + "iopub.status.busy": "2024-12-05T03:21:41.057140Z", + "iopub.status.idle": "2024-12-05T03:21:41.062181Z", + "shell.execute_reply": "2024-12-05T03:21:41.061615Z" } }, "outputs": [], @@ -168,10 +168,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:06.118875Z", - "iopub.status.busy": "2024-11-23T19:55:06.118324Z", - "iopub.status.idle": "2024-11-23T19:55:06.121641Z", - "shell.execute_reply": "2024-11-23T19:55:06.121216Z" + "iopub.execute_input": "2024-12-05T03:21:41.064499Z", + "iopub.status.busy": "2024-12-05T03:21:41.064099Z", + "iopub.status.idle": "2024-12-05T03:21:41.067400Z", + "shell.execute_reply": "2024-12-05T03:21:41.066875Z" } }, "outputs": [], @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:06.123784Z", - "iopub.status.busy": "2024-11-23T19:55:06.123300Z", - "iopub.status.idle": "2024-11-23T19:55:06.265022Z", - "shell.execute_reply": "2024-11-23T19:55:06.264382Z" + "iopub.execute_input": "2024-12-05T03:21:41.069298Z", + "iopub.status.busy": "2024-12-05T03:21:41.068913Z", + "iopub.status.idle": "2024-12-05T03:21:41.192191Z", + "shell.execute_reply": "2024-12-05T03:21:41.191651Z" } }, "outputs": [ @@ -238,10 +238,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:06.267411Z", - "iopub.status.busy": "2024-11-23T19:55:06.266893Z", - "iopub.status.idle": "2024-11-23T19:55:14.163945Z", - "shell.execute_reply": "2024-11-23T19:55:14.163398Z" + "iopub.execute_input": "2024-12-05T03:21:41.194514Z", + "iopub.status.busy": "2024-12-05T03:21:41.194006Z", + "iopub.status.idle": "2024-12-05T03:21:49.107340Z", + "shell.execute_reply": "2024-12-05T03:21:49.106740Z" } }, "outputs": [ @@ -253,10 +253,10 @@ " message: STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT\n", " success: False\n", " status: 1\n", - " fun: -75.68381563261545\n", - " x: [-1.603e-01 6.410e-03 ... 5.747e-02 -1.005e-01]\n", + " fun: -75.68381556798737\n", + " x: [-1.603e-01 6.418e-03 ... 5.747e-02 -1.005e-01]\n", " nit: 3\n", - " jac: [ 2.160e-04 1.108e-04 ... -4.748e-03 7.404e-03]\n", + " jac: [ 2.132e-04 1.108e-04 ... -4.749e-03 7.439e-03]\n", " nfev: 112\n", " njev: 7\n", " hess_inv: <15x15 LbfgsInvHessProduct with dtype=float64>\n" diff --git a/dev/how-to-guides/fermion-operator.html b/dev/how-to-guides/fermion-operator.html index 4a6b76c0a..af3e04a54 100644 --- a/dev/how-to-guides/fermion-operator.html +++ b/dev/how-to-guides/fermion-operator.html @@ -316,8 +316,8 @@

How to use the FermionOperator class
 FermionOperator({
     (cre_a(0), des_a(3)): 0.5,
-    (cre_a(3), des_a(0)): -0.25,
-    (cre_b(1), des_b(5), cre_a(4)): 1+1j
+    (cre_b(1), des_b(5), cre_a(4)): 1+1j,
+    (cre_a(3), des_a(0)): -0.25
 })
 

@@ -336,7 +336,7 @@

How to use the FermionOperator class
-'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j})'
+'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 3), (False, False, 0)): -0.25+0j})'
 

FermionOperators support arithmetic operations. Note that when multiplying a FermionOperator by a scalar, the scalar must go on the left, i.e. 2 * op and not op * 2.

@@ -364,16 +364,16 @@

How to use the FermionOperator class
 FermionOperator({
-    (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,
-    (des_a(3), des_b(3)): 0.0625,
-    (cre_a(3), des_a(0)): -0.5,
+    (cre_b(2)): 0-0.25j,
+    (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,
     (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,
+    (des_a(3), des_b(3)): 0.0625,
     (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,
+    (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,
     (cre_a(0), des_a(3)): 1,
+    (cre_a(3), des_a(0)): -0.5,
     (cre_b(1), des_b(5), cre_a(4)): 2+2j,
-    (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,
-    (cre_b(2)): 0-0.25j,
-    (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,
+    (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,
     (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625
 })
 
@@ -403,16 +403,16 @@

How to use the FermionOperator class
 FermionOperator({
-    (cre_a(3), des_a(0), cre_b(2)): -1,
-    (des_a(3), des_b(3)): 0-1.25j,
-    (cre_a(3), des_a(0)): 0+3j,
+    (cre_b(2)): -5,
+    (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,
     (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,
+    (des_a(3), des_b(3)): 0-1.25j,
     (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,
+    (cre_a(0), des_a(3), cre_b(2)): 2,
     (cre_a(0), des_a(3)): 0-6j,
+    (cre_a(3), des_a(0)): 0+3j,
     (cre_b(1), des_b(5), cre_a(4)): 12-12j,
-    (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,
-    (cre_b(2)): -5,
-    (cre_a(0), des_a(3), cre_b(2)): 2,
+    (cre_a(3), des_a(0), cre_b(2)): -1,
     (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j
 })
 
@@ -434,16 +434,16 @@

How to use the FermionOperator class
 FermionOperator({
-    (cre_a(0), des_a(3)): 0-6j,
     (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,
-    (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,
-    (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,
-    (cre_b(2), cre_a(3), des_a(0)): -1,
-    (cre_b(2)): -5,
     (cre_a(3), des_a(0)): 0+3j,
-    (des_b(3), des_a(3)): 0+1.25j,
+    (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,
     (cre_b(2), cre_a(0), des_a(3)): 2,
-    (cre_b(1), cre_a(4), des_b(5)): -12+12j
+    (des_b(3), des_a(3)): 0+1.25j,
+    (cre_a(0), des_a(3)): 0-6j,
+    (cre_b(2), cre_a(3), des_a(0)): -1,
+    (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,
+    (cre_b(1), cre_a(4), des_b(5)): -12+12j,
+    (cre_b(2)): -5
 })
 
@@ -514,7 +514,7 @@

How to use the FermionOperator class
 array([0.        +0.j        , 0.        +0.j        ,
        0.        +0.j        , 0.        +0.j        ,
-       0.00380274+0.03040046j, 0.        +0.j        ,
+       0.13782298-0.09230004j, 0.        +0.j        ,
        0.        +0.j        , 0.        +0.j        ,
        0.        +0.j        ])
 
diff --git a/dev/how-to-guides/fermion-operator.ipynb b/dev/how-to-guides/fermion-operator.ipynb index 8799ca533..fdd6d7e17 100644 --- a/dev/how-to-guides/fermion-operator.ipynb +++ b/dev/how-to-guides/fermion-operator.ipynb @@ -29,10 +29,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:15.694998Z", - "iopub.status.busy": "2024-11-23T19:55:15.694382Z", - "iopub.status.idle": "2024-11-23T19:55:16.383537Z", - "shell.execute_reply": "2024-11-23T19:55:16.382968Z" + "iopub.execute_input": "2024-12-05T03:21:50.640522Z", + "iopub.status.busy": "2024-12-05T03:21:50.640134Z", + "iopub.status.idle": "2024-12-05T03:21:51.341324Z", + "shell.execute_reply": "2024-12-05T03:21:51.340747Z" } }, "outputs": [ @@ -41,8 +41,8 @@ "text/plain": [ "FermionOperator({\n", " (cre_a(0), des_a(3)): 0.5,\n", - " (cre_a(3), des_a(0)): -0.25,\n", - " (cre_b(1), des_b(5), cre_a(4)): 1+1j\n", + " (cre_b(1), des_b(5), cre_a(4)): 1+1j,\n", + " (cre_a(3), des_a(0)): -0.25\n", "})" ] }, @@ -76,17 +76,17 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.385771Z", - "iopub.status.busy": "2024-11-23T19:55:16.385313Z", - "iopub.status.idle": "2024-11-23T19:55:16.389265Z", - "shell.execute_reply": "2024-11-23T19:55:16.388797Z" + "iopub.execute_input": "2024-12-05T03:21:51.343521Z", + "iopub.status.busy": "2024-12-05T03:21:51.343223Z", + "iopub.status.idle": "2024-12-05T03:21:51.347243Z", + "shell.execute_reply": "2024-12-05T03:21:51.346758Z" } }, "outputs": [ { "data": { "text/plain": [ - "'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j})'" + "'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 3), (False, False, 0)): -0.25+0j})'" ] }, "execution_count": 2, @@ -110,10 +110,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.391084Z", - "iopub.status.busy": "2024-11-23T19:55:16.390722Z", - "iopub.status.idle": "2024-11-23T19:55:16.395134Z", - "shell.execute_reply": "2024-11-23T19:55:16.394542Z" + "iopub.execute_input": "2024-12-05T03:21:51.349301Z", + "iopub.status.busy": "2024-12-05T03:21:51.348918Z", + "iopub.status.idle": "2024-12-05T03:21:51.353277Z", + "shell.execute_reply": "2024-12-05T03:21:51.352826Z" } }, "outputs": [ @@ -121,16 +121,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", - " (des_a(3), des_b(3)): 0.0625,\n", - " (cre_a(3), des_a(0)): -0.5,\n", + " (cre_b(2)): 0-0.25j,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", + " (des_a(3), des_b(3)): 0.0625,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", + " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", " (cre_a(0), des_a(3)): 1,\n", + " (cre_a(3), des_a(0)): -0.5,\n", " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", - " (cre_b(2)): 0-0.25j,\n", - " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", + " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625\n", "})" ] @@ -170,10 +170,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.397211Z", - "iopub.status.busy": "2024-11-23T19:55:16.396857Z", - "iopub.status.idle": "2024-11-23T19:55:16.400481Z", - "shell.execute_reply": "2024-11-23T19:55:16.400009Z" + "iopub.execute_input": "2024-12-05T03:21:51.355312Z", + "iopub.status.busy": "2024-12-05T03:21:51.354859Z", + "iopub.status.idle": "2024-12-05T03:21:51.358956Z", + "shell.execute_reply": "2024-12-05T03:21:51.358362Z" } }, "outputs": [ @@ -181,16 +181,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): -1,\n", - " (des_a(3), des_b(3)): 0-1.25j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", + " (cre_b(2)): -5,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", + " (des_a(3), des_b(3)): 0-1.25j,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", + " (cre_a(0), des_a(3), cre_b(2)): 2,\n", " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", - " (cre_b(2)): -5,\n", - " (cre_a(0), des_a(3), cre_b(2)): 2,\n", + " (cre_a(3), des_a(0), cre_b(2)): -1,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j\n", "})" ] @@ -220,10 +220,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.402390Z", - "iopub.status.busy": "2024-11-23T19:55:16.402033Z", - "iopub.status.idle": "2024-11-23T19:55:16.405878Z", - "shell.execute_reply": "2024-11-23T19:55:16.405407Z" + "iopub.execute_input": "2024-12-05T03:21:51.360954Z", + "iopub.status.busy": "2024-12-05T03:21:51.360624Z", + "iopub.status.idle": "2024-12-05T03:21:51.364593Z", + "shell.execute_reply": "2024-12-05T03:21:51.364003Z" } }, "outputs": [ @@ -231,16 +231,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(0), des_a(3)): 0-6j,\n", " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", - " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", - " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", - " (cre_b(2), cre_a(3), des_a(0)): -1,\n", - " (cre_b(2)): -5,\n", " (cre_a(3), des_a(0)): 0+3j,\n", - " (des_b(3), des_a(3)): 0+1.25j,\n", + " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", " (cre_b(2), cre_a(0), des_a(3)): 2,\n", - " (cre_b(1), cre_a(4), des_b(5)): -12+12j\n", + " (des_b(3), des_a(3)): 0+1.25j,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_b(2), cre_a(3), des_a(0)): -1,\n", + " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", + " (cre_b(1), cre_a(4), des_b(5)): -12+12j,\n", + " (cre_b(2)): -5\n", "})" ] }, @@ -265,10 +265,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.407755Z", - "iopub.status.busy": "2024-11-23T19:55:16.407420Z", - "iopub.status.idle": "2024-11-23T19:55:16.410688Z", - "shell.execute_reply": "2024-11-23T19:55:16.410095Z" + "iopub.execute_input": "2024-12-05T03:21:51.366539Z", + "iopub.status.busy": "2024-12-05T03:21:51.366208Z", + "iopub.status.idle": "2024-12-05T03:21:51.369122Z", + "shell.execute_reply": "2024-12-05T03:21:51.368636Z" } }, "outputs": [ @@ -298,10 +298,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.412782Z", - "iopub.status.busy": "2024-11-23T19:55:16.412451Z", - "iopub.status.idle": "2024-11-23T19:55:16.416844Z", - "shell.execute_reply": "2024-11-23T19:55:16.416359Z" + "iopub.execute_input": "2024-12-05T03:21:51.370816Z", + "iopub.status.busy": "2024-12-05T03:21:51.370632Z", + "iopub.status.idle": "2024-12-05T03:21:51.374623Z", + "shell.execute_reply": "2024-12-05T03:21:51.374039Z" } }, "outputs": [ @@ -341,10 +341,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.418767Z", - "iopub.status.busy": "2024-11-23T19:55:16.418490Z", - "iopub.status.idle": "2024-11-23T19:55:16.424844Z", - "shell.execute_reply": "2024-11-23T19:55:16.424360Z" + "iopub.execute_input": "2024-12-05T03:21:51.376696Z", + "iopub.status.busy": "2024-12-05T03:21:51.376269Z", + "iopub.status.idle": "2024-12-05T03:21:51.382038Z", + "shell.execute_reply": "2024-12-05T03:21:51.381553Z" } }, "outputs": [ @@ -353,7 +353,7 @@ "text/plain": [ "array([0. +0.j , 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", - " 0.00380274+0.03040046j, 0. +0.j ,\n", + " 0.13782298-0.09230004j, 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", " 0. +0.j ])" ] @@ -380,10 +380,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:16.426716Z", - "iopub.status.busy": "2024-11-23T19:55:16.426421Z", - "iopub.status.idle": "2024-11-23T19:55:16.438095Z", - "shell.execute_reply": "2024-11-23T19:55:16.437516Z" + "iopub.execute_input": "2024-12-05T03:21:51.384119Z", + "iopub.status.busy": "2024-12-05T03:21:51.383694Z", + "iopub.status.idle": "2024-12-05T03:21:51.394533Z", + "shell.execute_reply": "2024-12-05T03:21:51.394082Z" } }, "outputs": [ diff --git a/dev/how-to-guides/lucj.html b/dev/how-to-guides/lucj.html index 618b47ba0..0e5929fba 100644 --- a/dev/how-to-guides/lucj.html +++ b/dev/how-to-guides/lucj.html @@ -330,10 +330,10 @@

How to simulate the local unitary cluster Jastrow (LUCJ) ansatz
-converged SCF energy = -77.8266321248745
-Parsing /tmp/tmphnas021m
-converged SCF energy = -77.8266321248745
-CASCI E = -77.8742165643863  E(CI) = -4.02122442107772  S^2 = 0.0000000
+converged SCF energy = -77.8266321248744
+Parsing /tmp/tmpqg7_8pjf
+converged SCF energy = -77.8266321248744
+CASCI E = -77.8742165643863  E(CI) = -4.02122442107773  S^2 = 0.0000000
 norb = 4
 nelec = (2, 2)
 
@@ -343,7 +343,7 @@

How to simulate the local unitary cluster Jastrow (LUCJ) ansatz
@@ -435,10 +435,10 @@

General UCJ ansatz\n", + "Overwritten attributes get_hcore get_ovlp of \n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable\n", " warnings.warn(msg)\n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute intor_symmetric because it is not JSON-serializable\n", @@ -123,10 +123,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:19.241589Z", - "iopub.status.busy": "2024-11-23T19:55:19.241237Z", - "iopub.status.idle": "2024-11-23T19:55:19.314166Z", - "shell.execute_reply": "2024-11-23T19:55:19.313605Z" + "iopub.execute_input": "2024-12-05T03:21:54.118487Z", + "iopub.status.busy": "2024-12-05T03:21:54.117857Z", + "iopub.status.idle": "2024-12-05T03:21:54.189316Z", + "shell.execute_reply": "2024-12-05T03:21:54.188746Z" } }, "outputs": [ @@ -134,14 +134,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(CCSD) = -77.87421536374032 E_corr = -0.04758323886585004\n" + "E(CCSD) = -77.87421536374029 E_corr = -0.04758323886585067\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialization: -77.87160024816272\n" + "Energy at initialization: -77.87160024816282\n" ] }, { @@ -189,10 +189,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:55:19.317172Z", - "iopub.status.busy": "2024-11-23T19:55:19.316598Z", - "iopub.status.idle": "2024-11-23T19:57:06.161792Z", - "shell.execute_reply": "2024-11-23T19:57:06.161192Z" + "iopub.execute_input": "2024-12-05T03:21:54.192242Z", + "iopub.status.busy": "2024-12-05T03:21:54.191660Z", + "iopub.status.idle": "2024-12-05T03:23:41.886254Z", + "shell.execute_reply": "2024-12-05T03:23:41.885678Z" } }, "outputs": [ @@ -204,10 +204,10 @@ " message: STOP: TOTAL NO. of ITERATIONS REACHED LIMIT\n", " success: False\n", " status: 1\n", - " fun: -77.87387390155982\n", - " x: [-1.152e+00 -1.873e-04 ... 3.359e-04 1.286e-01]\n", + " fun: -77.87387392946924\n", + " x: [-1.152e+00 2.429e-04 ... 2.427e-04 1.287e-01]\n", " nit: 10\n", - " jac: [-2.132e-05 -5.684e-06 ... 5.684e-06 1.990e-05]\n", + " jac: [-3.126e-05 -2.416e-05 ... 4.263e-06 0.000e+00]\n", " nfev: 949\n", " njev: 13\n", " hess_inv: <72x72 LbfgsInvHessProduct with dtype=float64>\n" @@ -251,10 +251,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:06.165527Z", - "iopub.status.busy": "2024-11-23T19:57:06.164965Z", - "iopub.status.idle": "2024-11-23T19:57:43.051910Z", - "shell.execute_reply": "2024-11-23T19:57:43.050998Z" + "iopub.execute_input": "2024-12-05T03:23:41.889131Z", + "iopub.status.busy": "2024-12-05T03:23:41.888857Z", + "iopub.status.idle": "2024-12-05T03:24:18.451311Z", + "shell.execute_reply": "2024-12-05T03:24:18.450673Z" } }, "outputs": [ @@ -266,10 +266,10 @@ " message: CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n", " success: True\n", " status: 0\n", - " fun: -77.87363426182905\n", - " x: [-1.152e+00 1.697e-04 ... 3.521e-02 2.560e-01]\n", + " fun: -77.87363426554221\n", + " x: [-1.152e+00 -3.455e-05 ... 3.518e-02 2.561e-01]\n", " nit: 5\n", - " jac: [-7.105e-06 -1.421e-06 ... -8.527e-06 -8.527e-06]\n", + " jac: [-1.990e-05 4.547e-05 ... 5.684e-06 -5.684e-06]\n", " nfev: 329\n", " njev: 7\n", " hess_inv: <46x46 LbfgsInvHessProduct with dtype=float64>\n" @@ -314,10 +314,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:43.055520Z", - "iopub.status.busy": "2024-11-23T19:57:43.054466Z", - "iopub.status.idle": "2024-11-23T19:57:54.012108Z", - "shell.execute_reply": "2024-11-23T19:57:54.011459Z" + "iopub.execute_input": "2024-12-05T03:24:18.455061Z", + "iopub.status.busy": "2024-12-05T03:24:18.454107Z", + "iopub.status.idle": "2024-12-05T03:24:37.881300Z", + "shell.execute_reply": "2024-12-05T03:24:37.880651Z" } }, "outputs": [ @@ -328,29 +328,29 @@ "Number of parameters: 46\n", " message: Convergence: Relative reduction of objective function <= ftol.\n", " success: True\n", - " fun: -77.8736343056548\n", - " x: [-1.152e+00 4.963e-04 ... 3.485e-02 2.558e-01]\n", + " fun: -77.87363428118711\n", + " x: [-1.152e+00 7.876e-04 ... 3.488e-02 2.557e-01]\n", " nit: 3\n", - " jac: [ 1.798e-06 5.476e-06 ... -2.140e-06 -6.677e-06]\n", - " nfev: 454\n", + " jac: [ 7.816e-07 1.160e-05 ... -1.013e-06 -8.020e-06]\n", + " nfev: 529\n", " njev: 4\n", - " nlinop: 270\n", + " nlinop: 345\n", "\n", "Iteration 1\n", - " Energy: -77.87362341166545\n", - " Norm of gradient: 0.002907344016239031\n", - " Regularization hyperparameter: 0.0018390767492681105\n", - " Variation hyperparameter: 0.9730726623356802\n", + " Energy: -77.87363196954891\n", + " Norm of gradient: 0.0010575938908307025\n", + " Regularization hyperparameter: 0.001761897637537816\n", + " Variation hyperparameter: 0.9990810043136625\n", "Iteration 2\n", - " Energy: -77.87363428471433\n", - " Norm of gradient: 0.00010902640032211794\n", - " Regularization hyperparameter: 0.0018390767492681105\n", - " Variation hyperparameter: 0.9730726623356802\n", + " Energy: -77.8736342801622\n", + " Norm of gradient: 6.770421184784103e-05\n", + " Regularization hyperparameter: 0.001761897637537816\n", + " Variation hyperparameter: 0.9990810043136625\n", "Iteration 3\n", - " Energy: -77.8736343056548\n", - " Norm of gradient: 2.4744468844114535e-05\n", - " Regularization hyperparameter: 0.02739024656128614\n", - " Variation hyperparameter: 0.9377013345330008\n" + " Energy: -77.87363428118711\n", + " Norm of gradient: 5.91431234347536e-05\n", + " Regularization hyperparameter: 1.826121241130568\n", + " Variation hyperparameter: 0.9998395119356727\n" ] } ], diff --git a/dev/how-to-guides/qiskit-circuits.html b/dev/how-to-guides/qiskit-circuits.html index a848964b3..17fcc1693 100644 --- a/dev/how-to-guides/qiskit-circuits.html +++ b/dev/how-to-guides/qiskit-circuits.html @@ -391,7 +391,7 @@

Prepare Hartree-Fock state
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd4ec2a77c0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7fc434e2cfa0>
 

@@ -420,7 +420,7 @@

Prepare Slater determinant
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd4eccb7ee0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7fc434e2ca60>
 
@@ -447,7 +447,7 @@

Orbital rotation
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd4eccb55a0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7fc434e2e410>
 
@@ -469,7 +469,7 @@

Number operator sum evolution
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd4ec294250>
+<qiskit.circuit.instructionset.InstructionSet at 0x7fc434e2c400>
 
@@ -494,7 +494,7 @@

Diagonal Coulomb evolution
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd4ecc8e0e0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7fc435723a60>
 
@@ -517,7 +517,7 @@

Spin-balanced unitary cluster Jastrow (UCJ) operator
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd4ec294520>
+<qiskit.circuit.instructionset.InstructionSet at 0x7fc434e2efb0>
 
@@ -540,7 +540,7 @@

Spin-unbalanced unitary cluster Jastrow (UCJ) operator
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd4ecddb4c0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7fc435615c30>
 
@@ -567,7 +567,7 @@

Trotter simulation of double-factorized Hamiltonian
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd4eccb5390>
+<qiskit.circuit.instructionset.InstructionSet at 0x7fc435723460>
 
diff --git a/dev/how-to-guides/qiskit-circuits.ipynb b/dev/how-to-guides/qiskit-circuits.ipynb index 30f0bd597..482021668 100644 --- a/dev/how-to-guides/qiskit-circuits.ipynb +++ b/dev/how-to-guides/qiskit-circuits.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:55.557278Z", - "iopub.status.busy": "2024-11-23T19:57:55.557089Z", - "iopub.status.idle": "2024-11-23T19:57:56.242295Z", - "shell.execute_reply": "2024-11-23T19:57:56.241750Z" + "iopub.execute_input": "2024-12-05T03:24:39.456445Z", + "iopub.status.busy": "2024-12-05T03:24:39.456253Z", + "iopub.status.idle": "2024-12-05T03:24:40.155805Z", + "shell.execute_reply": "2024-12-05T03:24:40.155276Z" } }, "outputs": [], @@ -54,16 +54,16 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.244784Z", - "iopub.status.busy": "2024-11-23T19:57:56.244319Z", - "iopub.status.idle": "2024-11-23T19:57:56.821661Z", - "shell.execute_reply": "2024-11-23T19:57:56.821082Z" + "iopub.execute_input": "2024-12-05T03:24:40.158319Z", + "iopub.status.busy": "2024-12-05T03:24:40.157923Z", + "iopub.status.idle": "2024-12-05T03:24:40.783095Z", + "shell.execute_reply": "2024-12-05T03:24:40.782523Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAGOCAYAAABCGGK9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArkUlEQVR4nO3df1yV9f3/8cc5h4OCgAqKkoEepQhRkWqSZQHWataWGdlmWrTWyrI1tkqa5Wa1tpxrP8xG49v65bLVWIts1KqFlUVSCqImCISE5G/8AQIe4VzfP9xOH9KCg3rOm3zebzduN8/7XNf1fh148eTyfR24bJZlWYiISEDZA12AiIgojEVEjKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMEBbqA3sTd1MKejZ8Gugw5QQYmxhEcHurzfuqLk0dPe6Q7FMY+2LPxU16dem+gy5ATZErBLxky4Qyf91NfnDx62iPdoWUKEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAL0mjN1uN/Pnzyc2NpaQkBAmT55MSUkJNpuNgoKCQJcnInJMesVv4FmWxfTp0ykpKWHBggXEx8ezbNkypk2bBkBKSkpA67M57HxjQRajMi/AZrez+V8fsGre43QcPBTQuiSw1Bfii15xZpyXl0dhYSFvvvkmN998MxdeeCF5eXk4HA4iIyOJi4sLaH3jbr+SoeeOoWDyHfzjvB8x4PRTOeveawNakwSe+kJ80SvCeOHChcyaNYukpCTvmMPhwOVyec+KN23axMSJEzn99NOZOHEiVVVVfqvvtJkXsm7xi7Rsa+Tg7v2UPfwC8d9Nx2bvFZ9eOUHUF+IL47uiqqqK2tpaMjMzj3iuvr7eG8azZ89mzpw5bNq0iTlz5nDzzTd3e47w8HD69OnT5UdGRvoR+wZHhBI2bDCNG2q9Y7vX1RIcHkpY7GBfX64EUEZGerf6QH1x8srI6LpHwsPDe3Rs48O4oaEBgOjo6E7jFRUV1NXVkZKSwo4dO1izZg0zZswAYMaMGaxZs4adO3ee8PqCwkIAcO9r8Y659x0AwPnf5+Tko74QXxkfxlFRUQBUV1d7xyzLIicnB4/HQ0pKCvX19QwbNgyHwwEcXsI45ZRTqK+v79YcTU1NHDx4sMuPoqIVR+zb3twKgDPi879xGty/HwCH/vuc9A5FRSu61Qfqi5NXd3qkqampR8c2/t0UiYmJxMfHM2/ePJxOJ2FhYeTm5lJaWkpoaCgJCQmUlpYGrD73/haaG3YSmTSC/TWfARA1xoW7qYXm+hN/Zi5mUl+Ir4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cOOx2O7GxsTQ0NNDR0QFAR0cHn332GbGxsX6pserZ/zDuR9MIGTKQPlERjL/jaqqfX4Hl8fhlfjGT+kJ8YfyZMUBycjLFxcWdxpYsWUJaWhpweD15/PjxPPfcc8yaNYvnnnuOlJQUBg/2z4WS8sUv0icygitW/B6b3cbmVz5g9YN/9cvcYi71hfiiV4TxF7W2tlJZWUl2drZ37LHHHiMrK4v777+fgQMH8swzz/itHqvDQ8n8JyiZ/4Tf5hTzqS/EF70yjMvLy+no6Oj0m3dnnHEGq1atCmBVIiI91yvDODU1FcuyAl2GiMhxY/wFPBGRk4HCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAzQa8LY7XYzf/58YmNjCQkJYfLkyZSUlGCz2SgoKAh0eSIixyQo0AV0h2VZTJ8+nZKSEhYsWEB8fDzLli1j2rRpAKSkpAS0vhHfmUjijZcSmTSCg41N5E+4NaD1SOCpJ8RXvSKM8/LyKCwspKysjKSkJADS09NxuVxERkYSFxcX0PoO7jtAxROv0Xdwf5Ju+nZAaxEzqCfEV71imWLhwoXMmjXLG8QADocDl8vlPSu+8847cblc2Gw21q9f79f6tr5TTm3BexzYstOv84q51BPiK+PDuKqqitraWjIzM494rr6+3hvGV1xxBe+88w7Dhw/3d4kiIsfM+GWKhoYGAKKjozuNV1RUUFdX5w3jSZMm9XiO8PBw3G53l9uNChrI3IiezyNmy8hIp6Z9j8/7qS9OHhkZXfdIcHAwTU1NPh/b+DPjqKgoAKqrq71jlmWRk5ODx+MJ+MU7EZHjwfgz48TEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhISEY56juz/FtpdU8OrUe495PjFTUdEKhkw4w+f91Bcnj572SHcYH8ZBQUHk5+cze/ZssrKyiI2NJTs7m4iICGpqarDbA39yb7PbsTsd2IKCwGbD0ceJZVl43O2BLk0CRD0hvjI+jAGSk5MpLi7uNLZkyRLS0tICVFFno666gEl/vM37+NrNz9Fcv0PvLT2JqSfEV70ijL+otbWVyspKsrOzvWO33347L774Itu2beOiiy4iKiqKDRs2+KWe6hdWUP3CCr/MJb2DekJ8Ffj/4/dAeXk5HR0dnS7eLV68mC1bttDe3s62bdv8FsQiIsdDrzwzTk1NxbKsQJchInLc9MozYxGRrxuFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBhAYSwiYgCFsYiIARTGIiIGUBiLiBig14Sx2+1m/vz5xMbGEhISwuTJkykpKcFms1FQUBDo8kREjklQoAvoDsuymD59OiUlJSxYsID4+HiWLVvGtGnTAEhJSQlYbfbgIM751Y3ETBpL36gIWrbvYeMTr1LxxKsBq0kCT30hvuoVYZyXl0dhYSFlZWUkJSUBkJ6ejsvlIjIykri4uIDVZnc4aN2xl9e/9wBNdduJHD2cbz53L20797J5eXHA6pLAUl+Ir3rFMsXChQuZNWuWN4gBHA4HLpeLlJQUdu/ezaWXXkpCQgJjx47lyiuvZOfOnX6prb31IKW/+RtNm7eBZdG4YTP1r39E9IREv8wvZlJfiK+MD+Oqqipqa2vJzMw84rn6+npSUlKw2WzMnTuXyspK1q1bx6hRo7j77rsDUC3YghwMSU1kz8a6gMwvZlJfSFeMX6ZoaGgAIDo6utN4RUUFdXV1pKSkEBkZSXp6uve5c845h9zc3G7PER4ejtvt7nK7UUEDmRsx6Su3OedXP+BQcys1f3+72/OLGTIy0qlp3+PzfuqLk0dGRtc9EhwcTFNTk8/HNv7MOCoqCoDq6mrvmGVZ5OTk4PF4jrh45/F4yM3N5fLLL/drnQDfWJDF4LMSeGPmg3gOtft9fjGT+kK6w2ZZlhXoIr5Ke3s7iYmJHDp0iEWLFhEWFkZubi6lpaU0NjbS1NSE3f75z5Q5c+bQ0NDAiy++2Gn8eNheUsGrU+896nMT7r+emEljeW36fRzcvf+4ziv+MaXglwyZcIbP+6kvTh497ZHuMH6ZIigoiPz8fGbPnk1WVhaxsbFkZ2cTERFBTU1Np8C98847qaqqYvny5cc9iL/KhAduIGbSGF67aoG+4cRLfSG+MD6MAZKTkyku7vx2oCVLlpCWluZ9PG/ePFavXs2//vUv+vTp47fa+p06iNE3XkpHm5urVj3qHd++qoI3Zz7otzrELOoL8VWvCOMvam1tpbKykuzsbAA2bNjAr3/9a04//XTOPfdcAFwuF//85z9PeC0HtuziqZirTvg80ruoL8RXvTKMy8vL6ejo8F68S0pKwvClbxGRr9Qrwzg1NVXhKyJfK8a/tU1E5GSgMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjERED9JowdrvdzJ8/n9jYWEJCQpg8eTIlJSXYbDYKCgoCXZ6IyDEJCnQB3WFZFtOnT6ekpIQFCxYQHx/PsmXLmDZtGgApKSkBre+cX99I7DfPxhkRyqHmVupeKeajB/6K51B7QOuSwFJfiC96RRjn5eVRWFhIWVkZSUlJAKSnp+NyuYiMjCQuLi6g9W188jU+un8p7a0H6RMZTnreHYy7/UrKHn4hoHVJYKkvxBe9IowXLlzIrFmzvEEM4HA4cLlcOJ1OAK644gpqa2ux2+2EhYXxyCOPMH78eL/Ut2/Tls8f2GxYHovwkTF+mVvMpb4QXxgfxlVVVdTW1rJ48eIjnquvryczMxOAp59+mv79+wNQUFDADTfcwJo1a/xW59jbrmBcdibOfiG0Ne7njWv+6re5xVzqC+ku48O4oaEBgOjo6E7jFRUV1NXVedeL/xfEAPv27cNu7/61yfDwcNxud5fbjQoayNyISUd9bt2Sl1i35CX6nzaMkVeeT+uOPd2eX8yQkZFOTbvvXzf1xckjI6PrHgkODqapqcnnYxv/boqoqCgAqqurvWOWZZGTk4PH4+l08e7GG28kLi6Oe+65h6efftrvtQLsq2qgcUMd5z9ye0DmFzOpL6Qrxp8ZJyYmEh8fz7x583A6nYSFhZGbm0tpaSmhoaEkJCR4t3388ccBWLp0KXfddReFhYXdmqO7P8W2l1Tw6tR7u9zO7nQQobXBXqeoaAVDJpzh837qi5NHT3ukO4w/Mw4KCiI/P5+YmBiysrLIzs5mypQppKWlMW7cuKMuR1x77bUUFRWxe/fuE16fMzyU+KvTCY4IBWBg4nCSszP5bMXaEz63mEt9Ib4y/swYIDk5meLi4k5jS5YsIS0tDYDm5mb27NlDbGwsAMuXLycyMpLIyMgTX5xlMTLzAr6xIAt7cBBtu/ZTV7iKskXPn/i5xVzqC/FRrwjjL2ptbaWyspLs7GwADhw4wPTp0zlw4AAOh4PIyEiWL1+OzWY74bUcam7l9e/ef8Lnkd5FfSG+6pVhXF5eTkdHh/fi3ZAhQ/jggw8CXJWISM/1yjBOTU3FsqxAlyEictwYfwFPRORkoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDCWY3bqhWeS+cGjzKxeyojLzz2mY12/NZ+o5FE+7dNv2CBmVi+lz8CwY5q7txl7+5Wk593R5XaT/jCH1Ad/0ON5vvWP+0iafXmP9z+RutsvM6uXEjnG5YeKek5h7Edf1tTXVDzN0IlJR9mja/FXpzO16HfHWtoxmXD/91n7+3yejb+WzS+/7/f5DzTs4tn4azm4p9nvcx+rq0r+xPDLzuk0FhwRyvVb8wk7dfBX7rtu8YusuOnhE1ne18az8dfSuL420GV8JYVxL2YLchzX7XoqLC6aPRWfntA5RL7ueuUfCvq66jdsEOc+fAtRY13Y7HZ2ra3hg5/9P5pqtwGH/7sJ4OgTzLDJ41m35CXG/3Q6NqeDmdVLAVh+8Vyiz04g6ZbL2by8mITrLqZxw2benPkgQ89N4qx5M4kYdQqtO/ey9uG/U1vwnnf+4d+eSHJ2JmGxg2mq28FH9z/D1pXrvrTePgPDuOrDXOxBDqb8834sj4cXUm7G6vDwjQXXEfvNs7HZbTSsWEvJz5/Eve8AACGDB3D2L64jZtJYgvoG07ixjjdm/JKOts73IQyLjeaby+6h+u9vs27xi19aR9ipg7nqw1yeS/o+Nrudq0vzeG709znU1EL8dzOY9Ic5LP9WDrvX1jD4rNOZ/ORcnh93Y8++SP5ms5F4wxTOuP4SQodG0rpjL6vu/QsNRWWMv+NqopJH8Z/rft3lYZz9+pKedwfDMsZz4LNdlPziKe8fuj8lLZkzf3YNEa6hdLS5qX9jNSU/f4r2lrYjjhMU2pcLHv0xg886DUcfJ3srt7Bq/hPsXlsDwPg7rmZQSjz7a7cxKvN82tvclD38d6qefdN7DNcV5zH2tmmExUXj3neAskXPU/3CCuCre9DuDOIb912Pa+p5tLe2seah57r9abx+az7Lv5VD4/paZmx8isLv3MPeynqGnpvEt/5xH0U/fJi6V4oJiR7A9I8eO9w/za3dPv7xoDA2iM1m4+O8V9j2/gZsdjvn/PpGLljyY/512c+827imnsdbP1jE27f+AUdfJ63b95B0y+UUZPzUu0302Qn0jx+GzW4jf8It2Bx2BiTEMvmJuayY/Ts+e7ucqHEjufi5e9m/eRu719ZwSnoyqb+8gbeuX8iutTUMyxhPxhN38VL6T2j57Oh3TDm4p5ln46/l+q35vDrt595vyPN+dyvhI4ZQcNGdWIfaOf/RH3Pe726l6AeLwGbjwmfuZm9lPS+lZXOouZXBZ52O5fF0OnbkWBcXPplD6W/+5v1G7Y62XfvYV/MZQyeOpv71j4g5fyz7a7cSM2ksu9fWEDNpDNve2+DDVyWwEm+YwugfXsaKmx5md/kn9Bs2iKDQPj4fx3XFJN6+5fe8fcvvcU2bxOQn5vLiuT+iZVsj7W1u3r/rMfZsqCM0JpLJT+aQ/JOrWP3gkXeyttlt1L60knfm/BFPezvj77iajL/cyYsTf4TnUDsAp1wwjk9eWsmHv3iKU795Ful5P2XLm6tp3b6HU795FqkP3siKmx5m2/sb6BsZTmjM4ftcdtWD426/kqHnJPLyRXdwqKmV8/57cuILq8PD9lUbiZk0lr2V9f+nP8ZQ90rx4T4p/8TvQQxapvC7lLnf5ZqKpzt9BPfvB0Dzlp00vFVKR5ub9pY2yhY9z+AzTyMo5PNvvs/eXUfDW6VgWXS0fvkdrdsPtLH2d/l43O10tLpJyLqEmn+8c/hsyLLYvbaG2oL3GHXVBQAk/uBSNjy2nF1l1WBZNLxVyo6SCkZ8e6JvL9BmY+SV57Pm18s4uHs/7v0tfPTAUoZfmoozLIRB4+MZkBBL8c/+H+59B7A6POwoqcDjbvce4pQLxnHR0nm8P/fPPgXx/2xbuY6YSWMAGHpuEmUPv0DM+WMPPz5vLFvf+/KzfdMkZF3M2t/9nd3lnwCH18f3VTX4fJxtH3zMp6+WYHV4+CT/HfZ8XMeI7xz+2u5YtZHGdbVYHg8HGnax8fF/MfS8o1/DONTcSm3Be7S3tOFxt1O66HlCowcS7hrq3aZxYx2f5L+D5fFQ/+8POdTUwsDEOADOuP5bVDzxKtveWw+WRdvu/d613K56cGTm+ZQ/8k9atjZyqLmV0oeW+fx5ANi2cr23P2ImjaXsty8QM+l//TGGre+t79Fxj5XOjP2s9DfPs+GxlzuNXVNx+E7WfSLDmXDf9QydmIQzIhT++zeb+0SF077lIAAHGnZ2a56W7Y2dzjbDYgcTc94YRmVe4B2zBdlpeKvsv89HM/6uJJKzMz9/3ulg76YtPr2+vlEROPo4aa7/vM7muu0AhJ4SRdipg2jZ1viVP0hG33gp2z+sPPxDpwe2rlzH+Lu+R//ThuHe30LdKx8w4f4bcIaFEH326RTf9ViPjnsieA51YHd2XtO3OQ9/W3raOwg7dTD7N2875nkObOncN831Owkdevi2ZFHjRnLmvJlEjh6Oo28wNoedtl37jnocR99gzp5/LadedCZ9BoaDx8LuDKJvVAT/26N1+95O+7S3HMTZLwSAsFMH8cmL7xz12F31YOjQyE6v4//2mC+2rlzHuOxMgiNCiRh5CrUvvceZd88gNCaSmEljeP+OwPSHwtggZ82bSfCAMJZ/K4e2Xfu8a6E2Pr99lOXp/Ef1v+yP7H9xuwMNu6h46t98dP8zR93+QMMuKp/+NxVPvnZMr6Ft9346Dh4iLHYwLdsagcM/CABatjbi7BdC6NBIHH2Dj1gj/p93blvMmT+7hnMfvoX373zM+0Opu7a9v4EBpw3DNfU8tr67jo6Dh9jz8WaSbv4Obbv30/TfHw4maN6yk7C4IZ3GIoYPoaPNTcv2PTRv2UnEiKHsKKk4pnn6feGdGWGxg9m5ZhMAabk/4ZMX36XohkW0t7QRf3U64++8+qjHSbr52ww++3Reu/IXHGjYhd0ZxMzqpZ169Ks0b9lFxIij3yG7qx5s2dZ4+HV8WOl9DT3RuGEzlsfD6B9+mx0fVmB5PGxduZ7Tr7mI0OiB7Pjw2D7XPaVlCoM4w0JoP9CGe98Bgvv3I+Vn13S5T+vOvYRED8AREvyV21U+8zrxV6cRc8E4bA47dmcQUcmjGDh6OAAb/1LImFsuZ9D4eLDZcPRxMmTiaMKHD/nK4x7Bsvjkn++SkjODPlERBEeEcvb866h7dRWHmlrYVVbN3qotnPOrGwmOCMXmsBM94QzswZ+fF7j3t/D61fcz4LRTmfTH27Ad5Q7gX8W9v4XGj+sY/cPLvBd/tr63ntE3XfaVFyQD4ZN/vMMZ111M1LiRwOGzv5S7r6HmxXfBsti09A3G/eQqIpNGAIcv8vY/bZjP8ww9ZzSxF5+NzWFn5JXnM3D0cDb/6/CtypzhIRzc10x7SxvhrqGMvunbX3ocZ1goHW1uDjY24QgJ5qx7ZmJzdP/rs2np65xxw7cYMnE02Gz0jYrwvv+3qx785J8rGTvnCkKHRhLUry8pc2f4/Hn4n23vb+jUD1vfW8fomy5jx+pNdBw81OPjHgudGRukdNHznP/H25ix8Ulat+9l7R/yGXXl+V+5z9aV69lRUsHVq/+MzW5n+ZSco2635+M6in74MGfmzGDAYz/BsmBvxaes/tWzADS8VUrJgqc556EfEjFiKB2H2tld/gklP3/S59dRMv9JvrEgiyveehhsNj57e+3nx7Es/nPdQ0xYcD3TVi7GEeykccNm3pj5YKdjHGpu5fXvPcBFz87j/CW38+6PFmN1eI4y25d8Xt5dR2TSCLYXb/A+PjNnRsDWA79M9QsrCOrXl/Mf+RGhMVG49zbz6WslrFn4NwA+frwQ7DbS/vxTQocOpGXbHlbd+xef141rX1rJqOlpXPDojzmwdTdFN/7We2H2/bv+zDcWZHHm3TPY8/Gn1L60koTrLj7qcTb8eTlRY118d93jHNzTTPniF2lvPvJdF1/m09c+xBkeyjkP/oCw2GgO7m2m9Dd/o3F9bZc9WP7Hf9A3KoLL//Ow990U/1v39tXWd9cx4tsT2brycD9sXbme4Ih+Ae0Pm6WbyXXb9pIKXp16b6DLkC8IHz6EzA8e5dnTrj2mq+BTCn7JkAln+LxfoPoiZe73GJAQe/hdKvKlbHY7WQ0vUDD5DvZsrDumY/W0R7pDyxTS6w1MGkHb7n0BeTtSIA1MHE7Tcbi493U3MGk4nkPt3b74HShappAuTV3xe8JOHXTEeP3rq3nn1j8EvIah5yaxar7vyym92VUf5tK6fQ8f3PM40amJfPPZeUfd7u3Zf2DLm6v9XJ3/XfTsPQxJPfKM9VBzG3ang9W/WoZ7f0sAKus+hbF0qSD9J4EuwYgaTJL/jVu8/275bDfPxl8bwGoC780vXHPojbRMISJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJigF4Rxm63m/nz5xMbG0tISAiTJ0+mpKQEm81GQUFBoMsTETlmxoexZVlMnz6dxx9/nHvvvZdXXnkFl8vFtGnTAEhJSQlwhZ9z9A3myvcf8d4cVATUF9I9xv9tiry8PAoLCykrKyMp6fB9udLT03G5XERGRhIXFxfgCj+Xctd3ad6yi5DoAYEuRQyivpDuMP7MeOHChcyaNcsbxAAOhwOXy3XEWfF9992HzWZj/Xr//4HoqHEjGZYxnvWPvuT3ucVc6gvpLqPDuKqqitraWjIzM494rr6+vlMYr1mzhg8++IDhw4f7s0QAbA475/52Nh/Me7zTXY7l5Ka+EF8YHcYNDYdvLRMdHd1pvKKigrq6Om8YHzx4kDlz5pCbm9ujecLDw+nTp0+XHxkZ6Ufdf8ytU9m9rpbtH2zs0fxihoyM9G71gfri5JWR0XWPhIeH9+jYRodxVFQUANXV1d4xy7LIycnB4/F4w/jnP/85s2bNYsSIEX6vMXzEUBKuu5iPHtDFGfmc+kJ8ZfQFvMTEROLj45k3bx5Op5OwsDByc3MpLS0lNDSUhIQEiouL+eijj3jooYd6PE9TU1O3tjvavc6GTDiDkEH9ufK9xQDYgxw4+4XwvQ1PUPSDRTor6kWKilYct3vgqS++nnraI91hdBgHBQWRn5/P7NmzycrKIjY2luzsbCIiIqipqcFut/P222+zceNGXK7Dt/vesmULl1xyCU8++SQXX3z0O9weT7XL3+ezd8u9jweflcCkP87h5YvupG33/hM+v5hJfSG+MjqMAZKTkykuLu40tmTJEtLS0gC4++67ufvuu73PjRgxgldeeYUxY8b4pb6OVjctrY3exwd37wfLomVr41fsJV936gvxldFrxkfT2tpKZWWlUb/s8X9tK95w0t+PTI6kvpCuGH9m/EXl5eV0dHR8aRhv3rzZvwWJiBwHvS6MU1NTsSwr0GWIiBxXvW6ZQkTk60hhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgZQGIuIGEBhLCJiAIWxiIgBFMYiIgboNWHsdruZP38+sbGxhISEMHnyZEpKSrDZbBQUFAS6PBGRYxIU6AK6w7Ispk+fTklJCQsWLCA+Pp5ly5Yxbdo0AFJSUgJW26Q/zME1bRKeQ+3esRU/fJiGorKA1SSBp74QX/WKMM7Ly6OwsJCysjKSkpIASE9Px+VyERkZSVxcXEDr2/TXN1l1z18CWoOYR30hvugVYbxw4UJmzZrlDWIAh8OBy+XC6XQCMGLECPr27Uvfvn29+1xyySUBqVdExFfGh3FVVRW1tbUsXrz4iOfq6+vJzMz0Ps7Pz2fMmDH+LA+AkVeez8hpk2jdtY9P/vEO65a8hNXh8XsdYhb1hfjC+DBuaGgAIDo6utN4RUUFdXV1x2W9ODw8HLfb3eV2o4IGMjdiUqexj/9SyEcPLKWtsYmocSNJ+1M2jj7BlP7mb8dcl/hXRkY6Ne17fN5PfXHyyMjoukeCg4Npamry+djGv5siKioKgOrqau+YZVnk5OTg8Xg6hfHMmTMZN24ct956K3v37vVLfY3ramnbvR8si91rayj97fO4pp7nl7nFXOoL8ZXxYZyYmEh8fDzz5s3j73//O6+++ipTp05lzZo1hIaGkpCQAMC7777L2rVr+fDDD7Esi9tuu63bczQ1NXHw4MEuP4qKVnR9MI8Fth6+WAmooqIV3eoD9cXJqzs90pOzYugFYRwUFER+fj4xMTFkZWWRnZ3NlClTSEtLY9y4cdjth19CbGwsAH369OHWW2/lvffe80t9Iy4/F2d4KAADE4eTfMd0Nr9S7Je5xVzqC/GV8WvGAMnJyRQXd27kJUuWkJaWBsCBAwdob2+nf//+WJbF3/72N8aPH++X2s64/hImLrwJu9NB6/a91OS/Tfkj//TL3GIu9YX4qleE8Re1trZSWVlJdnY2ANu3byczM5OOjg46OjoYPXo0f/rTn/xSy2tX/sIv80jvor4QX/XKMC4vL6ejo8N78W7kyJGUlpYGuCoRkZ7rlWGcmpqKZVmBLkNE5Lgx/gKeiMjJQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBlAYi4gYQGEsImIAhbGIiAEUxiIiBug1Yex2u5k/fz6xsbGEhIQwefJkSkpKsNlsFBQUBLo8EZFjEhToArrDsiymT59OSUkJCxYsID4+nmXLljFt2jQAUlJSAlwhnHrhmaTkfI+IUafQ3tzK+seWsyH35UCXJQGmvpDu6hVhnJeXR2FhIWVlZSQlJQGQnp6Oy+UiMjKSuLi4gNZ3SloyExfdzMrbl7CteANBIX3oN2xQQGuSwFNfiC96xTLFwoULmTVrljeIARwOBy6Xy3tW3NbWxi233MJpp53G2LFjuemmm/xWX8rc71H+h3+wdeU6rA4Ph5pb2VtZ77f5xUzqC/GF8WfGVVVV1NbWsnjx4iOeq6+vJzMzE4C5c+fSt29fNm3ahM1mY/v27X6pLyikD4PGj6LhrVKmvftHgvv3Y+eaKkrmP0lz/Q6/1CDmUV+Ir4wP44aGBgCio6M7jVdUVFBXV0dKSgrNzc0888wzbNmyBZvNBsCQIUO6PUd4eDhut7vL7UYFDWRuxKROY8ED+mGz2xl+WSpvzPglrbv3MeH+75Pxl7tYfvFd3a5BAi8jI52a9j0+76e+OHlkZHTdI8HBwTQ1Nfl8bOOXKaKiogCorq72jlmWRU5ODh6Ph5SUFGpqaoiKiuK+++7j7LPPJj09nZUrV/qlvkPNbQB8/HghzVt20tHqZs2vlxE11qX1wZOY+kJ8ZfyZcWJiIvHx8cybNw+n00lYWBi5ubmUlpYSGhpKQkICZWVlfPLJJ6SkpLBo0SJWrVrFd77zHaqrq4mIiOhyju7+FNteUsGrU+/tNHaoqeXwfzstq0evT8xRVLSCIRPO8Hk/9cXJo6c90h3GnxkHBQWRn59PTEwMWVlZZGdnM2XKFNLS0hg3bhx2u524uDiCgoKYMWMGAKmpqQwaNIhNmzb5pcbKZ14n8cbLCD0lCkcfJylzv8eutTUcaNjll/nFTOoL8YXxZ8YAycnJFBcXdxpbsmQJaWlpAAwaNIiMjAzeeOMNLr74YjZt2sSOHTuIj4/3S33rHi0guH8Yl7/+G7DZ2VFSQdEPFvllbjGX+kJ80SvC+ItaW1uprKwkOzvbO/bYY49xww03cMcdd+B0Olm6dCkDBgzwT0GWxeoH/8rqB//qn/mkd1BfiA96ZRiXl5fT0dHR6TfvRo4cyYoVKwJXlIjIMeiVYZyamoqlCyMi8jVi/AU8EZGTgcJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExgMJYRMQACmMREQMojEVEDKAwFhExQFCgC+gut9vNAw88wFNPPcWuXbuYOHEiDz30EKmpqbz00ktMnTo1IHXNrF7a6bEj2MneqgZevvCOgNQjZlBfiK96RRhblsX06dMpKSlhwYIFxMfHs2zZMqZNmwZASkpKwGp7Nv7aTo8v/8/D1Ba8F6BqxBTqC/FVrwjjvLw8CgsLKSsrIykpCYD09HRcLheRkZHExcUFuMLDBo2PZ8Dpp1L9fFGgSxGDqC+kO3pFGC9cuJBZs2Z5gxjA4XDgcrlwOp1s3ryZK664wvvc3r172b9/P42NjX6t87RrJtPwVimt2/f4dV4xm/pCusP4MK6qqqK2tpbFixcf8Vx9fT2ZmZmMGDGCsrIy73h2djbt7e3dniM8PBy3293ldqOCBjI3YtJRnwsK6YNr6nm8e/uSbs8rZsnISKem3ffAVF+cPDIyuu6R4OBgmpqafD628WHc0NAAQHR0dKfxiooK6urqjlgvdrvdPPvss/z73//2W40AI74zkfZWN1veXO3XecVs6gvpLuPf2hYVFQVAdXW1d8yyLHJycvB4PEeE8csvv8ywYcM488wzuz1HU1MTBw8e7PKjqGjFlx7jtJkXUvPCCqwOj28vUIxRVLSiW32gvjh5dadHenJWDL3gzDgxMZH4+HjmzZuH0+kkLCyM3NxcSktLCQ0NJSEhodP2TzzxBDfccINfa4wYdQrRZyewMvtRv84rZlNfiC+MD+OgoCDy8/OZPXs2WVlZxMbGkp2dTUREBDU1Ndjtn5/cNzQ08Pbbb7N06dKvOOLxd9qMyWxftZGm2m1+nVfMpr4QXxgfxgDJyckUFxd3GluyZAlpaWmdxp5++mkuu+wy79KGv6z+5V/9Op/0DuoL8YXxa8ZH09raSmVl5RHrxU899ZTflyhERI6HXnFm/EXl5eV0dHQcEcabNm0KUEUiIsemV4ZxamoqlmUFugwRkeOmVy5TiIh83SiMRUQMoDAWETGAwlhExAAKYxERAyiMRUQMoDAWETGAwlhExAA2S7890W3uphb2bPw00GXICTIwMY7g8FCf91NfnDx62iPdoTAWETGAlilERAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAApjEREDKIxFRAygMBYRMYDCWETEAP8fhCVW2Cs2iV4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -103,10 +103,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.824256Z", - "iopub.status.busy": "2024-11-23T19:57:56.823520Z", - "iopub.status.idle": "2024-11-23T19:57:56.883146Z", - "shell.execute_reply": "2024-11-23T19:57:56.882541Z" + "iopub.execute_input": "2024-12-05T03:24:40.785611Z", + "iopub.status.busy": "2024-12-05T03:24:40.784914Z", + "iopub.status.idle": "2024-12-05T03:24:40.838801Z", + "shell.execute_reply": "2024-12-05T03:24:40.838179Z" } }, "outputs": [ @@ -160,17 +160,17 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.885057Z", - "iopub.status.busy": "2024-11-23T19:57:56.884722Z", - "iopub.status.idle": "2024-11-23T19:57:56.888849Z", - "shell.execute_reply": "2024-11-23T19:57:56.888244Z" + "iopub.execute_input": "2024-12-05T03:24:40.840795Z", + "iopub.status.busy": "2024-12-05T03:24:40.840596Z", + "iopub.status.idle": "2024-12-05T03:24:40.845007Z", + "shell.execute_reply": "2024-12-05T03:24:40.844439Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -195,17 +195,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.890700Z", - "iopub.status.busy": "2024-11-23T19:57:56.890393Z", - "iopub.status.idle": "2024-11-23T19:57:56.895403Z", - "shell.execute_reply": "2024-11-23T19:57:56.894793Z" + "iopub.execute_input": "2024-12-05T03:24:40.846845Z", + "iopub.status.busy": "2024-12-05T03:24:40.846651Z", + "iopub.status.idle": "2024-12-05T03:24:40.851609Z", + "shell.execute_reply": "2024-12-05T03:24:40.851021Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -242,17 +242,17 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.897430Z", - "iopub.status.busy": "2024-11-23T19:57:56.897075Z", - "iopub.status.idle": "2024-11-23T19:57:56.901506Z", - "shell.execute_reply": "2024-11-23T19:57:56.900937Z" + "iopub.execute_input": "2024-12-05T03:24:40.853466Z", + "iopub.status.busy": "2024-12-05T03:24:40.853274Z", + "iopub.status.idle": "2024-12-05T03:24:40.858068Z", + "shell.execute_reply": "2024-12-05T03:24:40.857469Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -279,17 +279,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.903502Z", - "iopub.status.busy": "2024-11-23T19:57:56.903229Z", - "iopub.status.idle": "2024-11-23T19:57:56.907610Z", - "shell.execute_reply": "2024-11-23T19:57:56.907106Z" + "iopub.execute_input": "2024-12-05T03:24:40.860035Z", + "iopub.status.busy": "2024-12-05T03:24:40.859691Z", + "iopub.status.idle": "2024-12-05T03:24:40.864104Z", + "shell.execute_reply": "2024-12-05T03:24:40.863518Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -315,17 +315,17 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.909495Z", - "iopub.status.busy": "2024-11-23T19:57:56.909134Z", - "iopub.status.idle": "2024-11-23T19:57:56.913579Z", - "shell.execute_reply": "2024-11-23T19:57:56.913000Z" + "iopub.execute_input": "2024-12-05T03:24:40.865967Z", + "iopub.status.busy": "2024-12-05T03:24:40.865637Z", + "iopub.status.idle": "2024-12-05T03:24:40.869985Z", + "shell.execute_reply": "2024-12-05T03:24:40.869528Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -354,17 +354,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.928670Z", - "iopub.status.busy": "2024-11-23T19:57:56.928162Z", - "iopub.status.idle": "2024-11-23T19:57:56.933298Z", - "shell.execute_reply": "2024-11-23T19:57:56.932684Z" + "iopub.execute_input": "2024-12-05T03:24:40.872043Z", + "iopub.status.busy": "2024-12-05T03:24:40.871604Z", + "iopub.status.idle": "2024-12-05T03:24:40.876834Z", + "shell.execute_reply": "2024-12-05T03:24:40.876270Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -391,17 +391,17 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.935084Z", - "iopub.status.busy": "2024-11-23T19:57:56.934909Z", - "iopub.status.idle": "2024-11-23T19:57:56.940301Z", - "shell.execute_reply": "2024-11-23T19:57:56.939776Z" + "iopub.execute_input": "2024-12-05T03:24:40.878795Z", + "iopub.status.busy": "2024-12-05T03:24:40.878432Z", + "iopub.status.idle": "2024-12-05T03:24:40.883674Z", + "shell.execute_reply": "2024-12-05T03:24:40.883188Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 10, @@ -428,17 +428,17 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:56.942082Z", - "iopub.status.busy": "2024-11-23T19:57:56.941762Z", - "iopub.status.idle": "2024-11-23T19:57:56.947655Z", - "shell.execute_reply": "2024-11-23T19:57:56.947044Z" + "iopub.execute_input": "2024-12-05T03:24:40.885608Z", + "iopub.status.busy": "2024-12-05T03:24:40.885242Z", + "iopub.status.idle": "2024-12-05T03:24:40.890580Z", + "shell.execute_reply": "2024-12-05T03:24:40.890136Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 11, diff --git a/dev/how-to-guides/qiskit-sampler.html b/dev/how-to-guides/qiskit-sampler.html index bb94c0249..1e2cce6f5 100644 --- a/dev/how-to-guides/qiskit-sampler.html +++ b/dev/how-to-guides/qiskit-sampler.html @@ -459,7 +459,7 @@

Sampling from an LUCJ circuit for a closed-shell molecule @@ -477,10 +477,10 @@

Sampling from an LUCJ circuit for a closed-shell molecule
diff --git a/dev/how-to-guides/qiskit-sampler.ipynb b/dev/how-to-guides/qiskit-sampler.ipynb index 99df22564..f1cee1268 100644 --- a/dev/how-to-guides/qiskit-sampler.ipynb +++ b/dev/how-to-guides/qiskit-sampler.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:58.903571Z", - "iopub.status.busy": "2024-11-23T19:57:58.902843Z", - "iopub.status.idle": "2024-11-23T19:57:59.602615Z", - "shell.execute_reply": "2024-11-23T19:57:59.602074Z" + "iopub.execute_input": "2024-12-05T03:24:42.786996Z", + "iopub.status.busy": "2024-12-05T03:24:42.786810Z", + "iopub.status.idle": "2024-12-05T03:24:43.473452Z", + "shell.execute_reply": "2024-12-05T03:24:43.472896Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:59.605375Z", - "iopub.status.busy": "2024-11-23T19:57:59.604731Z", - "iopub.status.idle": "2024-11-23T19:57:59.668481Z", - "shell.execute_reply": "2024-11-23T19:57:59.667873Z" + "iopub.execute_input": "2024-12-05T03:24:43.476028Z", + "iopub.status.busy": "2024-12-05T03:24:43.475564Z", + "iopub.status.idle": "2024-12-05T03:24:43.538662Z", + "shell.execute_reply": "2024-12-05T03:24:43.538071Z" } }, "outputs": [ @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:59.670719Z", - "iopub.status.busy": "2024-11-23T19:57:59.670375Z", - "iopub.status.idle": "2024-11-23T19:57:59.947118Z", - "shell.execute_reply": "2024-11-23T19:57:59.946606Z" + "iopub.execute_input": "2024-12-05T03:24:43.540921Z", + "iopub.status.busy": "2024-12-05T03:24:43.540416Z", + "iopub.status.idle": "2024-12-05T03:24:43.825014Z", + "shell.execute_reply": "2024-12-05T03:24:43.824381Z" } }, "outputs": [ @@ -174,7 +174,7 @@ "text": [ "norb = 14\n", "nelec = (3, 3)\n", - "E(CCSD) = -108.9630419334855 E_corr = -0.1278053627110062\n" + "E(CCSD) = -108.9630419334856 E_corr = -0.1278053627110059\n" ] }, { @@ -188,10 +188,10 @@ "data": { "text/plain": [ "{'0000000000011100000000000111': 9924,\n", - " '0000000000110100000000001101': 14,\n", + " '0000000000110100000000001101': 16,\n", " '0000000001110000000000000111': 10,\n", " '0000000000011100000000011100': 10,\n", - " '0000000001011000000000010110': 9,\n", + " '0000000001011000000000010110': 10,\n", " '0001000001010000000000000111': 5,\n", " '0000000001011000100000000110': 4,\n", " '0100000000100100000000000111': 3,\n", @@ -276,10 +276,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:57:59.949109Z", - "iopub.status.busy": "2024-11-23T19:57:59.948909Z", - "iopub.status.idle": "2024-11-23T19:58:00.487395Z", - "shell.execute_reply": "2024-11-23T19:58:00.486807Z" + "iopub.execute_input": "2024-12-05T03:24:43.827282Z", + "iopub.status.busy": "2024-12-05T03:24:43.826768Z", + "iopub.status.idle": "2024-12-05T03:24:44.368732Z", + "shell.execute_reply": "2024-12-05T03:24:44.368099Z" } }, "outputs": [ @@ -294,7 +294,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "SCF energy = -75.3484557083881\n" + "SCF energy = -75.3484557063616\n" ] }, { @@ -312,7 +312,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(UCCSD) = -75.45619739102422 E_corr = -0.1077416826361168\n" + "E(UCCSD) = -75.4561973913865 E_corr = -0.1077416850249517\n" ] }, { diff --git a/dev/searchindex.js b/dev/searchindex.js index 90e61ec6b..5b9a1003e 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API reference": [[7, null]], "Application to the double-factorized Hamiltonian": [[8, "Application-to-the-double-factorized-Hamiltonian"]], "Application to time evolution via Trotter-Suzuki formulas": [[8, "Application-to-time-evolution-via-Trotter-Suzuki-formulas"]], "Brief background on Trotter-Suzuki formulas": [[8, "Brief-background-on-Trotter-Suzuki-formulas"]], "Build a molecule": [[15, "Build-a-molecule"]], "Build the Hamiltonian": [[23, "Build-the-Hamiltonian"]], "Choose reference occupations": [[15, "Choose-reference-occupations"]], "Circuit transpilation": [[19, "Circuit-transpilation"]], "Citing ffsim": [[21, "citing-ffsim"]], "Code example": [[21, "code-example"]], "Compute energy": [[15, "Compute-energy"]], "Contents": [[21, "contents"]], "Criteria for circuits that FfsimSampler can sample": [[20, "Criteria-for-circuits-that-FfsimSampler-can-sample"]], "Data representation": [[9, "Data-representation"]], "Diagonal Coulomb evolution": [[13, "Diagonal-Coulomb-evolution"], [19, "Diagonal-Coulomb-evolution"]], "Double-factorized representation": [[8, "Double-factorized-representation"]], "Double-factorized representation of the molecular Hamiltonian": [[8, null]], "Example of using FfsimSampler": [[20, "Example-of-using-FfsimSampler"]], "Explanations": [[10, null]], "Gates": [[14, "Gates"]], "General UCJ ansatz": [[18, "General-UCJ-ansatz"]], "Hamiltonians": [[9, null]], "Hartree-Fock and Slater determinant preparation": [[13, "Hartree-Fock-and-Slater-determinant-preparation"]], "How to build and transpile Qiskit quantum circuits": [[19, null]], "How to simulate entanglement forging": [[15, null]], "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz": [[18, null]], "How to use ffsim\u2019s Qiskit Sampler primitive": [[20, null]], "How to use the FermionOperator class": [[16, null]], "How-to guides": [[17, null]], "Implement Trotter simulation": [[23, "Implement-Trotter-simulation"]], "Implementing Trotter simulation of the double-factorized Hamiltonian": [[23, null]], "Initialize ansatz operator": [[15, "Initialize-ansatz-operator"]], "Install from source": [[22, "install-from-source"]], "Installation": [[21, "installation"], [22, null]], "LUCJ ansatz": [[18, "LUCJ-ansatz"]], "Locality in the UCJ operator": [[13, "Locality-in-the-UCJ-operator"]], "Merging orbital rotations": [[13, "Merging-orbital-rotations"]], "More examples": [[20, "More-examples"]], "Number operator sum evolution": [[13, "Number-operator-sum-evolution"], [19, "Number-operator-sum-evolution"]], "Operator action via SciPy LinearOperators": [[9, "Operator-action-via-SciPy-LinearOperators"]], "Optimize energy": [[15, "Optimize-energy"]], "Optimize with the linear method": [[18, "Optimize-with-the-linear-method"]], "Orbital rotation": [[13, "Orbital-rotation"], [19, "Orbital-rotation"]], "Orbital rotations": [[12, "Orbital-rotations"]], "Orbital rotations and quadratic Hamiltonians": [[12, null]], "Overview of gates": [[19, "Overview-of-gates"]], "Pip install": [[22, "pip-install"]], "Prepare Hartree-Fock state": [[19, "Prepare-Hartree-Fock-state"]], "Prepare Slater determinant": [[19, "Prepare-Slater-determinant"]], "Qubit gate decompositions of fermionic gates": [[13, null]], "Sampling from an LUCJ circuit for a closed-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-a-closed-shell-molecule"]], "Sampling from an LUCJ circuit for an open-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-an-open-shell-molecule"]], "Spin-balanced and spin-unbalanced ansatzes": [[11, "Spin-balanced-and-spin-unbalanced-ansatzes"]], "Spin-balanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-balanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "Spin-unbalanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-unbalanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "State preparation gates": [[19, "State-preparation-gates"]], "State vectors": [[14, "State-vectors"]], "State vectors and gates": [[14, null]], "The general unitary cluster Jastrow (UCJ) ansatz": [[11, "The-general-unitary-cluster-Jastrow-(UCJ)-ansatz"]], "The local UCJ (LUCJ) ansatz": [[11, "The-local-UCJ-(LUCJ)-ansatz"]], "The local unitary cluster Jastrow (LUCJ) ansatz": [[11, null]], "Time evolution by a quadratic Hamiltonian": [[12, "Time-evolution-by-a-quadratic-Hamiltonian"]], "Treating spinless fermions": [[14, "Treating-spinless-fermions"]], "Trotter simulation of double-factorized Hamiltonian": [[13, "Trotter-simulation-of-double-factorized-Hamiltonian"], [19, "Trotter-simulation-of-double-factorized-Hamiltonian"]], "Tutorials": [[24, null]], "Unitary cluster Jastrow (UCJ) operator": [[13, "Unitary-cluster-Jastrow-(UCJ)-operator"]], "Unitary transformation gates": [[19, "Unitary-transformation-gates"]], "Use within Docker": [[22, "use-within-docker"]], "ffsim": [[0, null], [21, null]], "ffsim.contract": [[1, null]], "ffsim.linalg": [[2, null]], "ffsim.optimize": [[3, null]], "ffsim.qiskit": [[4, null]], "ffsim.random": [[5, null]], "ffsim.testing": [[6, null]]}, "docnames": ["api/ffsim", "api/ffsim.contract", "api/ffsim.linalg", "api/ffsim.optimize", "api/ffsim.qiskit", "api/ffsim.random", "api/ffsim.testing", "api/index", "explanations/double-factorized", "explanations/hamiltonians", "explanations/index", "explanations/lucj", "explanations/orbital-rotation", "explanations/qiskit-gate-decompositions", "explanations/state-vectors-and-gates", "how-to-guides/entanglement-forging", "how-to-guides/fermion-operator", "how-to-guides/index", "how-to-guides/lucj", "how-to-guides/qiskit-circuits", "how-to-guides/qiskit-sampler", "index", "install", "tutorials/double-factorized-trotter", "tutorials/index"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["api/ffsim.rst", "api/ffsim.contract.rst", "api/ffsim.linalg.rst", "api/ffsim.optimize.rst", "api/ffsim.qiskit.rst", "api/ffsim.random.rst", "api/ffsim.testing.rst", "api/index.md", "explanations/double-factorized.ipynb", "explanations/hamiltonians.ipynb", "explanations/index.md", "explanations/lucj.ipynb", "explanations/orbital-rotation.ipynb", "explanations/qiskit-gate-decompositions.ipynb", "explanations/state-vectors-and-gates.ipynb", "how-to-guides/entanglement-forging.ipynb", "how-to-guides/fermion-operator.ipynb", "how-to-guides/index.md", "how-to-guides/lucj.ipynb", "how-to-guides/qiskit-circuits.ipynb", "how-to-guides/qiskit-sampler.ipynb", "index.md", "install.md", "tutorials/double-factorized-trotter.ipynb", "tutorials/index.md"], "indexentries": {"__init__() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.__init__", false]], "__init__() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.numnumansatzopspinbalancedjw method)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockspinlessjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantspinlessjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdiagcoulombsplitopjw method)": [[4, "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdoublefactorizedjw method)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinlessjw method)": [[4, "ffsim.qiskit.UCJOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinunbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW.__init__", false]], "action (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.action", false]], "active_space (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.active_space", false]], "addresses_to_strings() (in module ffsim)": [[0, "ffsim.addresses_to_strings", false]], "alpha (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA", false]], "alpha_and_beta (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA_AND_BETA", false]], "apply_diag_coulomb_evolution() (in module ffsim)": [[0, "ffsim.apply_diag_coulomb_evolution", false]], "apply_fsim_gate() (in module ffsim)": [[0, "ffsim.apply_fsim_gate", false]], "apply_fswap_gate() (in module ffsim)": [[0, "ffsim.apply_fswap_gate", false]], "apply_givens_rotation() (in module ffsim)": [[0, "ffsim.apply_givens_rotation", false]], "apply_hop_gate() (in module ffsim)": [[0, "ffsim.apply_hop_gate", false]], "apply_matrix_to_slices() (in module ffsim.linalg)": [[2, "ffsim.linalg.apply_matrix_to_slices", false]], "apply_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_interaction", false]], "apply_num_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_num_interaction", false]], "apply_num_op_prod_interaction() (in module ffsim)": [[0, "ffsim.apply_num_op_prod_interaction", false]], "apply_num_op_sum_evolution() (in module ffsim)": [[0, "ffsim.apply_num_op_sum_evolution", false]], "apply_on_site_interaction() (in module ffsim)": [[0, "ffsim.apply_on_site_interaction", false]], "apply_orbital_rotation() (in module ffsim)": [[0, "ffsim.apply_orbital_rotation", false]], "apply_tunneling_interaction() (in module ffsim)": [[0, "ffsim.apply_tunneling_interaction", false]], "apply_unitary() (in module ffsim)": [[0, "ffsim.apply_unitary", false]], "approx_eq() (in module ffsim)": [[0, "ffsim.approx_eq", false]], "assert_allclose_up_to_global_phase() (in module ffsim.testing)": [[6, "ffsim.testing.assert_allclose_up_to_global_phase", false]], "atom (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.atom", false]], "basis (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.basis", false]], "beta (ffsim.spin attribute)": [[0, "ffsim.Spin.BETA", false]], "bit_array (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.BIT_ARRAY", false]], "bitstringtype (class in ffsim)": [[0, "ffsim.BitstringType", false]], "c (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.c", false]], "ccsd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_energy", false]], "ccsd_t1 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t1", false]], "ccsd_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t2", false]], "cisd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_energy", false]], "cisd_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_vec", false]], "coeffs (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.coeffs", false]], "conserves_particle_number() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_particle_number", false]], "conserves_spin_z() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_spin_z", false]], "constant (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.constant", false]], "constant (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.constant", false]], "constant (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.constant", false]], "constant (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.constant", false]], "contract_diag_coulomb() (in module ffsim.contract)": [[1, "ffsim.contract.contract_diag_coulomb", false]], "contract_num_op_sum() (in module ffsim.contract)": [[1, "ffsim.contract.contract_num_op_sum", false]], "contract_one_body() (in module ffsim.contract)": [[1, "ffsim.contract.contract_one_body", false]], "core_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.core_energy", false]], "cre() (in module ffsim)": [[0, "ffsim.cre", false]], "cre_a() (in module ffsim)": [[0, "ffsim.cre_a", false]], "cre_b() (in module ffsim)": [[0, "ffsim.cre_b", false]], "des() (in module ffsim)": [[0, "ffsim.des", false]], "des_a() (in module ffsim)": [[0, "ffsim.des_a", false]], "des_b() (in module ffsim)": [[0, "ffsim.des_b", false]], "diag() (in module ffsim)": [[0, "ffsim.diag", false]], "diag_coulomb_linop() (in module ffsim.contract)": [[1, "ffsim.contract.diag_coulomb_linop", false]], "diag_coulomb_mats (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.diag_coulomb_mats", false]], "diagcoulombevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW", false]], "diagcoulombevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW", false]], "diagonalcoulombhamiltonian (class in ffsim)": [[0, "ffsim.DiagonalCoulombHamiltonian", false]], "dim() (in module ffsim)": [[0, "ffsim.dim", false]], "dims() (in module ffsim)": [[0, "ffsim.dims", false]], "dipole_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.dipole_integrals", false]], "double_factorized() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized", false]], "double_factorized_t2() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2", false]], "double_factorized_t2_alpha_beta() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2_alpha_beta", false]], "doublefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.DoubleFactorizedHamiltonian", false]], "dropnegligible (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DropNegligible", false]], "expectation_one_body_power() (in module ffsim)": [[0, "ffsim.expectation_one_body_power", false]], "expectation_one_body_product() (in module ffsim)": [[0, "ffsim.expectation_one_body_product", false]], "expectation_product_state() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.expectation_product_state", false]], "expm_multiply_taylor() (in module ffsim.linalg)": [[2, "ffsim.linalg.expm_multiply_taylor", false]], "fci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_energy", false]], "fci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_vec", false]], "fermi_hubbard_1d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_1d", false]], "fermi_hubbard_2d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_2d", false]], "fermion_operator() (in module ffsim)": [[0, "ffsim.fermion_operator", false]], "fermionaction (class in ffsim)": [[0, "ffsim.FermionAction", false]], "fermionoperator (class in ffsim)": [[0, "ffsim.FermionOperator", false]], "ffsim": [[0, "module-ffsim", false]], "ffsim.contract": [[1, "module-ffsim.contract", false]], "ffsim.linalg": [[2, "module-ffsim.linalg", false]], "ffsim.optimize": [[3, "module-ffsim.optimize", false]], "ffsim.qiskit": [[4, "module-ffsim.qiskit", false]], "ffsim.random": [[5, "module-ffsim.random", false]], "ffsim.testing": [[6, "module-ffsim.testing", false]], "ffsim_vec_to_qiskit_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.ffsim_vec_to_qiskit_vec", false]], "ffsimsampler (class in ffsim.qiskit)": [[4, "ffsim.qiskit.FfsimSampler", false]], "final_orbital_rotation (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.final_orbital_rotation", false]], "final_state_vector() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.final_state_vector", false]], "from_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_diag_coulomb_mats", false]], "from_fcidump() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_fcidump", false]], "from_fermion_operator() (ffsim.diagonalcoulombhamiltonian static method)": [[0, "ffsim.DiagonalCoulombHamiltonian.from_fermion_operator", false]], "from_json() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_json", false]], "from_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian static method)": [[0, "ffsim.DoubleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_molecular_hamiltonian() (ffsim.singlefactorizedhamiltonian static method)": [[0, "ffsim.SingleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_orbital_rotation() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_orbital_rotation", false]], "from_parameters() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_parameters", false]], "from_parameters() (ffsim.hopgateansatzoperator static method)": [[0, "ffsim.HopGateAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.uccsdoprestrictedreal static method)": [[0, "ffsim.UCCSDOpRestrictedReal.from_parameters", false]], "from_parameters() (ffsim.ucjanglesopspinbalanced static method)": [[0, "ffsim.UCJAnglesOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_parameters", false]], "from_parameters() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_parameters", false]], "from_scf() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_scf", false]], "from_t_amplitudes() (ffsim.ucjanglesopspinbalanced static method)": [[0, "ffsim.UCJAnglesOpSpinBalanced.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_t_amplitudes", false]], "from_ucj_op() (ffsim.ucjanglesopspinbalanced static method)": [[0, "ffsim.UCJAnglesOpSpinBalanced.from_ucj_op", false]], "generate_norb_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec", false]], "generate_norb_nelec_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec_spin", false]], "generate_norb_nocc() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nocc", false]], "generate_norb_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_spin", false]], "givens_decomposition() (in module ffsim.linalg)": [[2, "ffsim.linalg.givens_decomposition", false]], "givensansatzop (class in ffsim)": [[0, "ffsim.GivensAnsatzOp", false]], "givensansatzopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpJW", false]], "givensansatzopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW", false]], "givensrotation (class in ffsim.linalg)": [[2, "ffsim.linalg.GivensRotation", false]], "hamiltonian (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.hamiltonian", false]], "hartree_fock_state() (in module ffsim)": [[0, "ffsim.hartree_fock_state", false]], "hf_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_energy", false]], "hf_mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_coeff", false]], "hf_mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_occ", false]], "hopgateansatzoperator (class in ffsim)": [[0, "ffsim.HopGateAnsatzOperator", false]], "i (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.i", false]], "init_cache() (in module ffsim)": [[0, "ffsim.init_cache", false]], "int (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.INT", false]], "interaction_pairs (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.interaction_pairs", false]], "interaction_pairs (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.interaction_pairs", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.inverse", false]], "is_antihermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_antihermitian", false]], "is_hermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_hermitian", false]], "is_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_orthogonal", false]], "is_real_symmetric() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_real_symmetric", false]], "is_special_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_special_orthogonal", false]], "is_unitary() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_unitary", false]], "j (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.j", false]], "jordan_wigner() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.jordan_wigner", false]], "linear_operator() (in module ffsim)": [[0, "ffsim.linear_operator", false]], "lup() (in module ffsim.linalg)": [[2, "ffsim.linalg.lup", false]], "many_body_order() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.many_body_order", false]], "match_global_phase() (in module ffsim.linalg)": [[2, "ffsim.linalg.match_global_phase", false]], "mergeorbitalrotations (class in ffsim.qiskit)": [[4, "ffsim.qiskit.MergeOrbitalRotations", false]], "minimize_linear_method() (in module ffsim.optimize)": [[3, "ffsim.optimize.minimize_linear_method", false]], "mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_coeff", false]], "mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_occ", false]], "modified_cholesky() (in module ffsim.linalg)": [[2, "ffsim.linalg.modified_cholesky", false]], "module": [[0, "module-ffsim", false], [1, "module-ffsim.contract", false], [2, "module-ffsim.linalg", false], [3, "module-ffsim.optimize", false], [4, "module-ffsim.qiskit", false], [5, "module-ffsim.random", false], [6, "module-ffsim.testing", false]], "mole (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.mole", false]], "moleculardata (class in ffsim)": [[0, "ffsim.MolecularData", false]], "molecularhamiltonian (class in ffsim)": [[0, "ffsim.MolecularHamiltonian", false]], "mp2_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_energy", false]], "mp2_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_t2", false]], "multireference_state() (in module ffsim)": [[0, "ffsim.multireference_state", false]], "multireference_state_prod() (in module ffsim)": [[0, "ffsim.multireference_state_prod", false]], "n_params() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.n_params", false]], "n_params() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.n_params", false]], "n_params() (ffsim.uccsdoprestrictedreal static method)": [[0, "ffsim.UCCSDOpRestrictedReal.n_params", false]], "n_params() (ffsim.ucjanglesopspinbalanced static method)": [[0, "ffsim.UCJAnglesOpSpinBalanced.n_params", false]], "n_params() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.n_params", false]], "n_params() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.n_params", false]], "n_params() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.n_params", false]], "n_reps (ffsim.ucjanglesopspinbalanced property)": [[0, "ffsim.UCJAnglesOpSpinBalanced.n_reps", false]], "n_reps (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.n_reps", false]], "n_reps (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.n_reps", false]], "n_reps (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.n_reps", false]], "nelec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.nelec", false]], "nelec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.nelec", false]], "norb (ffsim.diagonalcoulombhamiltonian property)": [[0, "ffsim.DiagonalCoulombHamiltonian.norb", false]], "norb (ffsim.doublefactorizedhamiltonian property)": [[0, "ffsim.DoubleFactorizedHamiltonian.norb", false]], "norb (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.norb", false]], "norb (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.norb", false]], "norb (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.norb", false]], "norb (ffsim.molecularhamiltonian property)": [[0, "ffsim.MolecularHamiltonian.norb", false]], "norb (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.norb", false]], "norb (ffsim.singlefactorizedhamiltonian property)": [[0, "ffsim.SingleFactorizedHamiltonian.norb", false]], "norb (ffsim.statevector attribute)": [[0, "ffsim.StateVector.norb", false]], "norb (ffsim.uccsdoprestrictedreal property)": [[0, "ffsim.UCCSDOpRestrictedReal.norb", false]], "norb (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.norb", false]], "norb (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.norb", false]], "norb (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.norb", false]], "normal_ordered() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.normal_ordered", false]], "num_op_sum_linop() (in module ffsim.contract)": [[1, "ffsim.contract.num_op_sum_linop", false]], "number_operator() (in module ffsim)": [[0, "ffsim.number_operator", false]], "numnumansatzopspinbalanced (class in ffsim)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced", false]], "numnumansatzopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW", false]], "numopsumevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW", false]], "numopsumevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW", false]], "one_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.one_body_integrals", false]], "one_body_linop() (in module ffsim.contract)": [[1, "ffsim.contract.one_body_linop", false]], "one_body_squares (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_squares", false]], "one_body_tensor (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_tensor", false]], "one_hot() (in module ffsim.linalg)": [[2, "ffsim.linalg.one_hot", false]], "orb (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.orb", false]], "orbital_rotations (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.orbital_rotations", false]], "orbital_symmetries (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.orbital_symmetries", false]], "orbitalrotationjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationJW", false]], "orbitalrotationspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW", false]], "phase_angles (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phase_angles", false]], "phis (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phis", false]], "pre_init (in module ffsim.qiskit)": [[4, "ffsim.qiskit.PRE_INIT", false]], "pre_init_passes() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.pre_init_passes", false]], "preparehartreefockjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockJW", false]], "preparehartreefockspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW", false]], "prepareslaterdeterminantjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW", false]], "prepareslaterdeterminantspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW", false]], "productstatesum (class in ffsim)": [[0, "ffsim.ProductStateSum", false]], "qiskit_vec_to_ffsim_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.qiskit_vec_to_ffsim_vec", false]], "random_antihermitian() (in module ffsim.random)": [[5, "ffsim.random.random_antihermitian", false]], "random_density_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_density_matrix", false]], "random_diagonal_coulomb_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_diagonal_coulomb_hamiltonian", false]], "random_double_factorized_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_double_factorized_hamiltonian", false]], "random_fermion_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_hamiltonian", false]], "random_fermion_operator() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_operator", false]], "random_hermitian() (in module ffsim.random)": [[5, "ffsim.random.random_hermitian", false]], "random_molecular_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_molecular_hamiltonian", false]], "random_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.random_nelec", false]], "random_occupied_orbitals() (in module ffsim.testing)": [[6, "ffsim.testing.random_occupied_orbitals", false]], "random_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_orthogonal", false]], "random_real_symmetric_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_real_symmetric_matrix", false]], "random_special_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_special_orthogonal", false]], "random_state_vector() (in module ffsim.random)": [[5, "ffsim.random.random_state_vector", false]], "random_t2_amplitudes() (in module ffsim.random)": [[5, "ffsim.random.random_t2_amplitudes", false]], "random_two_body_tensor() (in module ffsim.random)": [[5, "ffsim.random.random_two_body_tensor", false]], "random_uccsd_restricted() (in module ffsim.random)": [[5, "ffsim.random.random_uccsd_restricted", false]], "random_ucj_op_spin_balanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_balanced", false]], "random_ucj_op_spin_unbalanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_unbalanced", false]], "random_ucj_op_spinless() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spinless", false]], "random_unitary() (in module ffsim.random)": [[5, "ffsim.random.random_unitary", false]], "rdms() (in module ffsim)": [[0, "ffsim.rdms", false]], "reduced_matrix() (in module ffsim.linalg)": [[2, "ffsim.linalg.reduced_matrix", false]], "reduced_matrix_product_states() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.reduced_matrix_product_states", false]], "rotated() (ffsim.molecularhamiltonian method)": [[0, "ffsim.MolecularHamiltonian.rotated", false]], "run() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.run", false]], "run() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.run", false]], "run() (ffsim.qiskit.mergeorbitalrotations method)": [[4, "ffsim.qiskit.MergeOrbitalRotations.run", false]], "run_ccsd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_ccsd", false]], "run_cisd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_cisd", false]], "run_fci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_fci", false]], "run_mp2() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_mp2", false]], "run_sci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_sci", false]], "s (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.s", false]], "sample_slater_determinant() (in module ffsim)": [[0, "ffsim.sample_slater_determinant", false]], "sample_state_vector() (in module ffsim)": [[0, "ffsim.sample_state_vector", false]], "scf (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.scf", false]], "sci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_energy", false]], "sci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_vec", false]], "simulate_qdrift_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_qdrift_double_factorized", false]], "simulate_trotter_diag_coulomb_split_op() (in module ffsim)": [[0, "ffsim.simulate_trotter_diag_coulomb_split_op", false]], "simulate_trotter_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_trotter_double_factorized", false]], "simulatetrotterdiagcoulombsplitopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW", false]], "simulatetrotterdoublefactorizedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW", false]], "singlefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.SingleFactorizedHamiltonian", false]], "slater_determinant() (in module ffsim)": [[0, "ffsim.slater_determinant", false]], "slater_determinant_amplitudes() (in module ffsim)": [[0, "ffsim.slater_determinant_amplitudes", false]], "slater_determinant_rdms() (in module ffsim)": [[0, "ffsim.slater_determinant_rdms", false]], "spin (class in ffsim)": [[0, "ffsim.Spin", false]], "spin (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.spin", false]], "spin (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.spin", false]], "spin_square() (in module ffsim)": [[0, "ffsim.spin_square", false]], "states (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.states", false]], "statevector (class in ffsim)": [[0, "ffsim.StateVector", false]], "string (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.STRING", false]], "strings_to_addresses() (in module ffsim)": [[0, "ffsim.strings_to_addresses", false]], "supportsapplyunitary (class in ffsim)": [[0, "ffsim.SupportsApplyUnitary", false]], "supportsapproximateequality (class in ffsim)": [[0, "ffsim.SupportsApproximateEquality", false]], "supportsdiagonal (class in ffsim)": [[0, "ffsim.SupportsDiagonal", false]], "supportsfermionoperator (class in ffsim)": [[0, "ffsim.SupportsFermionOperator", false]], "supportslinearoperator (class in ffsim)": [[0, "ffsim.SupportsLinearOperator", false]], "supportstrace (class in ffsim)": [[0, "ffsim.SupportsTrace", false]], "symmetry (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.symmetry", false]], "thetas (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.thetas", false]], "thetas (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.thetas", false]], "thetas (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.thetas", false]], "to_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_diag_coulomb_mats", false]], "to_fcidump() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_fcidump", false]], "to_json() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_json", false]], "to_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_molecular_hamiltonian", false]], "to_number_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_number_representation", false]], "to_orbital_rotation() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_orbital_rotation", false]], "to_parameters() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_parameters", false]], "to_parameters() (ffsim.hopgateansatzoperator method)": [[0, "ffsim.HopGateAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.uccsdoprestrictedreal method)": [[0, "ffsim.UCCSDOpRestrictedReal.to_parameters", false]], "to_parameters() (ffsim.ucjanglesopspinbalanced method)": [[0, "ffsim.UCJAnglesOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.ucjopspinbalanced method)": [[0, "ffsim.UCJOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.ucjopspinless method)": [[0, "ffsim.UCJOpSpinless.to_parameters", false]], "to_parameters() (ffsim.ucjopspinunbalanced method)": [[0, "ffsim.UCJOpSpinUnbalanced.to_parameters", false]], "to_z_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_z_representation", false]], "trace() (in module ffsim)": [[0, "ffsim.trace", false]], "two_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.two_body_integrals", false]], "two_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.two_body_tensor", false]], "uccsdoprestrictedreal (class in ffsim)": [[0, "ffsim.UCCSDOpRestrictedReal", false]], "ucjanglesopspinbalanced (class in ffsim)": [[0, "ffsim.UCJAnglesOpSpinBalanced", false]], "ucjopspinbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinBalanced", false]], "ucjopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW", false]], "ucjopspinless (class in ffsim)": [[0, "ffsim.UCJOpSpinless", false]], "ucjopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinlessJW", false]], "ucjopspinunbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinUnbalanced", false]], "ucjopspinunbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW", false]], "vec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.vec", false]], "z_representation (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.z_representation", false]]}, "objects": {"": [[0, 0, 0, "-", "ffsim"]], "ffsim": [[0, 1, 1, "", "BitstringType"], [0, 1, 1, "", "DiagonalCoulombHamiltonian"], [0, 1, 1, "", "DoubleFactorizedHamiltonian"], [0, 1, 1, "", "FermionAction"], [0, 1, 1, "", "FermionOperator"], [0, 1, 1, "", "GivensAnsatzOp"], [0, 1, 1, "", "HopGateAnsatzOperator"], [0, 1, 1, "", "MolecularData"], [0, 1, 1, "", "MolecularHamiltonian"], [0, 1, 1, "", "NumNumAnsatzOpSpinBalanced"], [0, 1, 1, "", "ProductStateSum"], [0, 1, 1, "", "SingleFactorizedHamiltonian"], [0, 1, 1, "", "Spin"], [0, 1, 1, "", "StateVector"], [0, 1, 1, "", "SupportsApplyUnitary"], [0, 1, 1, "", "SupportsApproximateEquality"], [0, 1, 1, "", "SupportsDiagonal"], [0, 1, 1, "", "SupportsFermionOperator"], [0, 1, 1, "", "SupportsLinearOperator"], [0, 1, 1, "", "SupportsTrace"], [0, 1, 1, "", "UCCSDOpRestrictedReal"], [0, 1, 1, "", "UCJAnglesOpSpinBalanced"], [0, 1, 1, "", "UCJOpSpinBalanced"], [0, 1, 1, "", "UCJOpSpinUnbalanced"], [0, 1, 1, "", "UCJOpSpinless"], [0, 5, 1, "", "addresses_to_strings"], [0, 5, 1, "", "apply_diag_coulomb_evolution"], [0, 5, 1, "", "apply_fsim_gate"], [0, 5, 1, "", "apply_fswap_gate"], [0, 5, 1, "", "apply_givens_rotation"], [0, 5, 1, "", "apply_hop_gate"], [0, 5, 1, "", "apply_num_interaction"], [0, 5, 1, "", "apply_num_num_interaction"], [0, 5, 1, "", "apply_num_op_prod_interaction"], [0, 5, 1, "", "apply_num_op_sum_evolution"], [0, 5, 1, "", "apply_on_site_interaction"], [0, 5, 1, "", "apply_orbital_rotation"], [0, 5, 1, "", "apply_tunneling_interaction"], [0, 5, 1, "", "apply_unitary"], [0, 5, 1, "", "approx_eq"], [1, 0, 0, "-", "contract"], [0, 5, 1, "", "cre"], [0, 5, 1, "", "cre_a"], [0, 5, 1, "", "cre_b"], [0, 5, 1, "", "des"], [0, 5, 1, "", "des_a"], [0, 5, 1, "", "des_b"], [0, 5, 1, "", "diag"], [0, 5, 1, "", "dim"], [0, 5, 1, "", "dims"], [0, 5, 1, "", "expectation_one_body_power"], [0, 5, 1, "", "expectation_one_body_product"], [0, 5, 1, "", "fermi_hubbard_1d"], [0, 5, 1, "", "fermi_hubbard_2d"], [0, 5, 1, "", "fermion_operator"], [0, 5, 1, "", "hartree_fock_state"], [0, 5, 1, "", "init_cache"], [2, 0, 0, "-", "linalg"], [0, 5, 1, "", "linear_operator"], [0, 5, 1, "", "multireference_state"], [0, 5, 1, "", "multireference_state_prod"], [0, 5, 1, "", "number_operator"], [3, 0, 0, "-", "optimize"], [4, 0, 0, "-", "qiskit"], [5, 0, 0, "-", "random"], [0, 5, 1, "", "rdms"], [0, 5, 1, "", "sample_slater_determinant"], [0, 5, 1, "", "sample_state_vector"], [0, 5, 1, "", "simulate_qdrift_double_factorized"], [0, 5, 1, "", "simulate_trotter_diag_coulomb_split_op"], [0, 5, 1, "", "simulate_trotter_double_factorized"], [0, 5, 1, "", "slater_determinant"], [0, 5, 1, "", "slater_determinant_amplitudes"], [0, 5, 1, "", "slater_determinant_rdms"], [0, 5, 1, "", "spin_square"], [0, 5, 1, "", "strings_to_addresses"], [6, 0, 0, "-", "testing"], [0, 5, 1, "", "trace"]], "ffsim.BitstringType": [[0, 2, 1, "", "BIT_ARRAY"], [0, 2, 1, "", "INT"], [0, 2, 1, "", "STRING"]], "ffsim.DiagonalCoulombHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_fermion_operator"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"]], "ffsim.DoubleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_molecular_hamiltonian"], [0, 3, 1, "", "to_number_representation"], [0, 3, 1, "", "to_z_representation"], [0, 2, 1, "", "z_representation"]], "ffsim.FermionAction": [[0, 2, 1, "", "action"], [0, 2, 1, "", "orb"], [0, 2, 1, "", "spin"]], "ffsim.FermionOperator": [[0, 3, 1, "", "conserves_particle_number"], [0, 3, 1, "", "conserves_spin_z"], [0, 3, 1, "", "many_body_order"], [0, 3, 1, "", "normal_ordered"]], "ffsim.GivensAnsatzOp": [[0, 3, 1, "", "from_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "phase_angles"], [0, 2, 1, "", "phis"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_orbital_rotation"], [0, 3, 1, "", "to_parameters"]], "ffsim.HopGateAnsatzOperator": [[0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.MolecularData": [[0, 2, 1, "", "active_space"], [0, 2, 1, "", "atom"], [0, 2, 1, "", "basis"], [0, 2, 1, "", "ccsd_energy"], [0, 2, 1, "", "ccsd_t1"], [0, 2, 1, "", "ccsd_t2"], [0, 2, 1, "", "cisd_energy"], [0, 2, 1, "", "cisd_vec"], [0, 2, 1, "", "core_energy"], [0, 2, 1, "", "dipole_integrals"], [0, 2, 1, "", "fci_energy"], [0, 2, 1, "", "fci_vec"], [0, 3, 1, "", "from_fcidump"], [0, 3, 1, "", "from_json"], [0, 3, 1, "", "from_scf"], [0, 4, 1, "", "hamiltonian"], [0, 2, 1, "", "hf_energy"], [0, 2, 1, "", "hf_mo_coeff"], [0, 2, 1, "", "hf_mo_occ"], [0, 2, 1, "", "mo_coeff"], [0, 2, 1, "", "mo_occ"], [0, 4, 1, "", "mole"], [0, 2, 1, "", "mp2_energy"], [0, 2, 1, "", "mp2_t2"], [0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "one_body_integrals"], [0, 2, 1, "", "orbital_symmetries"], [0, 3, 1, "", "run_ccsd"], [0, 3, 1, "", "run_cisd"], [0, 3, 1, "", "run_fci"], [0, 3, 1, "", "run_mp2"], [0, 3, 1, "", "run_sci"], [0, 4, 1, "", "scf"], [0, 2, 1, "", "sci_energy"], [0, 2, 1, "", "sci_vec"], [0, 2, 1, "", "spin"], [0, 2, 1, "", "symmetry"], [0, 3, 1, "", "to_fcidump"], [0, 3, 1, "", "to_json"], [0, 2, 1, "", "two_body_integrals"]], "ffsim.MolecularHamiltonian": [[0, 2, 1, "", "constant"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "rotated"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.NumNumAnsatzOpSpinBalanced": [[0, 3, 1, "", "from_diag_coulomb_mats"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_diag_coulomb_mats"], [0, 3, 1, "", "to_parameters"]], "ffsim.ProductStateSum": [[0, 2, 1, "", "coeffs"], [0, 2, 1, "", "states"]], "ffsim.SingleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "expectation_product_state"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_squares"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "reduced_matrix_product_states"]], "ffsim.Spin": [[0, 2, 1, "", "ALPHA"], [0, 2, 1, "", "ALPHA_AND_BETA"], [0, 2, 1, "", "BETA"]], "ffsim.StateVector": [[0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "vec"]], "ffsim.UCCSDOpRestrictedReal": [[0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "norb"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJAnglesOpSpinBalanced": [[0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "from_ucj_op"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinBalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinUnbalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinless": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.contract": [[1, 5, 1, "", "contract_diag_coulomb"], [1, 5, 1, "", "contract_num_op_sum"], [1, 5, 1, "", "contract_one_body"], [1, 5, 1, "", "diag_coulomb_linop"], [1, 5, 1, "", "num_op_sum_linop"], [1, 5, 1, "", "one_body_linop"]], "ffsim.linalg": [[2, 1, 1, "", "GivensRotation"], [2, 5, 1, "", "apply_matrix_to_slices"], [2, 5, 1, "", "double_factorized"], [2, 5, 1, "", "double_factorized_t2"], [2, 5, 1, "", "double_factorized_t2_alpha_beta"], [2, 5, 1, "", "expm_multiply_taylor"], [2, 5, 1, "", "givens_decomposition"], [2, 5, 1, "", "is_antihermitian"], [2, 5, 1, "", "is_hermitian"], [2, 5, 1, "", "is_orthogonal"], [2, 5, 1, "", "is_real_symmetric"], [2, 5, 1, "", "is_special_orthogonal"], [2, 5, 1, "", "is_unitary"], [2, 5, 1, "", "lup"], [2, 5, 1, "", "match_global_phase"], [2, 5, 1, "", "modified_cholesky"], [2, 5, 1, "", "one_hot"], [2, 5, 1, "", "reduced_matrix"]], "ffsim.linalg.GivensRotation": [[2, 2, 1, "", "c"], [2, 2, 1, "", "i"], [2, 2, 1, "", "j"], [2, 2, 1, "", "s"]], "ffsim.optimize": [[3, 5, 1, "", "minimize_linear_method"]], "ffsim.qiskit": [[4, 1, 1, "", "DiagCoulombEvolutionJW"], [4, 1, 1, "", "DiagCoulombEvolutionSpinlessJW"], [4, 1, 1, "", "DropNegligible"], [4, 1, 1, "", "FfsimSampler"], [4, 1, 1, "", "GivensAnsatzOpJW"], [4, 1, 1, "", "GivensAnsatzOpSpinlessJW"], [4, 1, 1, "", "MergeOrbitalRotations"], [4, 1, 1, "", "NumNumAnsatzOpSpinBalancedJW"], [4, 1, 1, "", "NumOpSumEvolutionJW"], [4, 1, 1, "", "NumOpSumEvolutionSpinlessJW"], [4, 1, 1, "", "OrbitalRotationJW"], [4, 1, 1, "", "OrbitalRotationSpinlessJW"], [4, 6, 1, "", "PRE_INIT"], [4, 1, 1, "", "PrepareHartreeFockJW"], [4, 1, 1, "", "PrepareHartreeFockSpinlessJW"], [4, 1, 1, "", "PrepareSlaterDeterminantJW"], [4, 1, 1, "", "PrepareSlaterDeterminantSpinlessJW"], [4, 1, 1, "", "SimulateTrotterDiagCoulombSplitOpJW"], [4, 1, 1, "", "SimulateTrotterDoubleFactorizedJW"], [4, 1, 1, "", "UCJOpSpinBalancedJW"], [4, 1, 1, "", "UCJOpSpinUnbalancedJW"], [4, 1, 1, "", "UCJOpSpinlessJW"], [4, 5, 1, "", "ffsim_vec_to_qiskit_vec"], [4, 5, 1, "", "final_state_vector"], [4, 5, 1, "", "jordan_wigner"], [4, 5, 1, "", "pre_init_passes"], [4, 5, 1, "", "qiskit_vec_to_ffsim_vec"]], "ffsim.qiskit.DiagCoulombEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DropNegligible": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.FfsimSampler": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.GivensAnsatzOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.MergeOrbitalRotations": [[4, 3, 1, "", "run"]], "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.NumOpSumEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.NumOpSumEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.PrepareHartreeFockJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareHartreeFockSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinUnbalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.random": [[5, 5, 1, "", "random_antihermitian"], [5, 5, 1, "", "random_density_matrix"], [5, 5, 1, "", "random_diagonal_coulomb_hamiltonian"], [5, 5, 1, "", "random_double_factorized_hamiltonian"], [5, 5, 1, "", "random_fermion_hamiltonian"], [5, 5, 1, "", "random_fermion_operator"], [5, 5, 1, "", "random_hermitian"], [5, 5, 1, "", "random_molecular_hamiltonian"], [5, 5, 1, "", "random_orthogonal"], [5, 5, 1, "", "random_real_symmetric_matrix"], [5, 5, 1, "", "random_special_orthogonal"], [5, 5, 1, "", "random_state_vector"], [5, 5, 1, "", "random_t2_amplitudes"], [5, 5, 1, "", "random_two_body_tensor"], [5, 5, 1, "", "random_uccsd_restricted"], [5, 5, 1, "", "random_ucj_op_spin_balanced"], [5, 5, 1, "", "random_ucj_op_spin_unbalanced"], [5, 5, 1, "", "random_ucj_op_spinless"], [5, 5, 1, "", "random_unitary"]], "ffsim.testing": [[6, 5, 1, "", "assert_allclose_up_to_global_phase"], [6, 5, 1, "", "generate_norb_nelec"], [6, 5, 1, "", "generate_norb_nelec_spin"], [6, 5, 1, "", "generate_norb_nocc"], [6, 5, 1, "", "generate_norb_spin"], [6, 5, 1, "", "random_nelec"], [6, 5, 1, "", "random_occupied_orbitals"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"], "6": ["py", "data", "Python data"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function", "6": "py:data"}, "terms": {"": [0, 2, 4, 8, 9, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23], "0": [0, 2, 3, 4, 6, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23], "00": 18, "000": 20, "0000000": [15, 18], "0000000000011100000000000111": 20, "0000000000011100000000011100": 20, "0000000000011100100000001100": 20, "0000000000110100000000001101": 20, "0000000001011000000000010110": 20, "0000000001011000100000000110": 20, "0000000001110000000000000111": 20, "0000000111100000011111": 20, "0000000111100110000111": 20, "0000010101100001011011": 20, "0000010110100001011011": 20, "0000100101100000111011": 20, "0000100110100000111011": 20, "0000111100001111": 20, "0000111100011011": 20, "0000111100011101": 20, "0000111100101011": 20, "0001": 3, "0001000001010000000000000111": 20, "00010902640032211794": 18, "0001110100001111": 20, "0010000000011000000000010110": 20, "0010011100101101": 20, "0010101100001111": 20, "0010101100101101": 20, "001011": [0, 14], "0010110100100111": 20, "0010110100101011": 20, "001101": [0, 14], "001110": 14, "0018390767492681105": 18, "002907344016239031": 18, "00380274": 16, "005e": 15, "01": [15, 18], "0100000000100100000000000111": 20, "0100000110100100001111": 20, "010011": [0, 14], "0101": 0, "0101000001100000011111": 20, "010101": [0, 14], "010110": [0, 14], "0110": 0, "02": [15, 18], "02122442107772": 18, "02242": 2, "02459434j": 14, "02625": 2, "02739024656128614": 18, "02998708j": 14, "03": 15, "03040046j": 16, "03101213j": 14, "03525116j": 14, "036685417309835655": 23, "04": [15, 18], "04758323886585004": 18, "05": [0, 2, 3, 4, 18], "05395": 4, "06": 18, "0609050": 5, "0625": [0, 16], "06273307": 14, "06551571": 14, "06677383j": 14, "06844774j": 14, "07": 6, "08": [0, 2, 3, 4], "08957": 2, "0909": 5, "09723851": 14, "0b001011": 0, "0b010101": 0, "0b010110": 0, "0b100101": 0, "0b100110": 0, "0j": 16, "0x7fd4ec294250": 19, "0x7fd4ec294520": 19, "0x7fd4ec2a77c0": 19, "0x7fd4ecc8e0e0": 19, "0x7fd4eccb5390": 19, "0x7fd4eccb55a0": 19, "0x7fd4eccb7ee0": 19, "0x7fd4ecddb4c0": 19, "1": [0, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "10": [13, 18, 19, 20, 23], "100": 15, "1000": 3, "1000000101100000111011": 20, "100011": [0, 14], "100101": [0, 14], "100110": [0, 14], "101": 20, "1024": 4, "104": [15, 21], "105e": 18, "1077416826361168": 20, "108": [20, 23], "108e": 15, "10_000": 20, "11": [0, 13, 19, 20, 23], "1102529j": 14, "11157654": 14, "112": 15, "12": [2, 13, 15, 16, 18, 23], "1207": 0, "12204343": 14, "1234": [9, 13, 14, 15, 19, 21], "12345": 20, "125": [0, 16], "1278053627110062": 20, "1294": [15, 18], "12j": 16, "13": [0, 13, 18, 23], "13113848": 14, "132e": 18, "133": 20, "13327423j": 14, "13957088j": 14, "14": [13, 20], "140e": 18, "15": [13, 15], "152e": 18, "1561685j": 14, "15624569": 14, "15828306": 14, "15x15": 15, "16": 13, "160e": 15, "17": 13, "1711": [2, 4], "17181289596": 21, "17276745j": 14, "17558331": 14, "18": 13, "180": 15, "18007105": 14, "1808": 2, "18j": 16, "19": 0, "1e": [0, 2, 3, 4, 6, 15, 23], "1j": [0, 9, 16, 23], "2": [0, 1, 2, 4, 5, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "20835741": 14, "20881506": 14, "21": 0, "210": 20, "2104": 2, "2190712273": 9, "21928194": 14, "21984743e": 16, "22392824": 14, "23": 15, "23550198": 14, "23611476": 14, "24": [13, 19], "25": [0, 16], "25j": [0, 16], "26": 23, "26121865": 14, "270": 18, "286e": 18, "29821173j": 14, "2d": 0, "2j": [0, 2, 16], "2n": 14, "3": [0, 2, 5, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "30052742j": 14, "31980058j": 14, "31g": [20, 21], "32": [13, 19], "329": 18, "33731417j": 14, "339": 18, "3484557083881": 20, "35": [0, 23], "359e": 18, "36730125j": 14, "3714141": 14, "38435478j": 14, "39": [13, 14, 15, 16, 18, 19, 20], "39075171": 14, "3j": 16, "4": [0, 2, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "404e": 15, "410e": 15, "421e": 18, "4390672": 14, "454": 18, "45619739102422": 20, "46": 18, "464957764796": 23, "46x46": 18, "47": 20, "4744468844114535e": 18, "476e": 18, "478": 15, "48": [13, 20], "485e": 18, "49094286j": 14, "4j": 16, "5": [0, 3, 9, 13, 14, 15, 16, 18, 19, 20, 23], "5094": 5, "51253171j": 14, "521e": 18, "527e": 18, "55717072551543": 9, "558e": 18, "56": [13, 19, 20], "560e": 18, "5626": 18, "57": 20, "58888": 22, "5j": [0, 16], "6": [0, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "603e": 15, "6083": 0, "6332495815006": 15, "64": 14, "65": 20, "66": 20, "67794403659722": 15, "677e": 18, "6787887956297": 15, "6787887956314": 15, "68381563261545": 15, "684e": 18, "697e": 18, "6g": [0, 15, 18, 23], "6j": 16, "7": [0, 9, 13, 14, 15, 16, 18, 19, 23], "70": 20, "72": 18, "7288249991515": 15, "72x72": 18, "73105542j": 14, "747e": 15, "748e": 15, "75": [15, 20], "77": 18, "798e": 18, "8": [0, 13, 15, 16, 18, 19, 20, 23], "8266321248745": 18, "835236570775": 20, "87160024816272": 18, "87362341166545": 18, "87363426182905": 18, "87363428471433": 18, "8736343056548": 18, "87387390155982": 18, "873e": 18, "87421536374032": 18, "8742165643863": 18, "9": [13, 14, 16, 19, 20, 23], "9289": 18, "9377013345330008": 18, "9402435115135145": 23, "949": 18, "958": 15, "9630419334855": 20, "963e": 18, "9730726623356802": 18, "99": 9, "990e": 18, "9924": 20, "9985212854200015": 23, "9985212854200257": 23, "9991": 20, "9996731164188843": 23, "A": [0, 1, 2, 3, 4, 5, 6, 8, 12, 13, 14, 16, 22, 23], "AND": 15, "As": [11, 13, 14, 18, 19, 23], "By": 21, "For": [0, 3, 4, 5, 8, 9, 11, 14, 15, 16, 22, 23], "If": [0, 1, 2, 3, 4, 5, 6, 13, 16], "In": [0, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "It": [0, 2, 3, 4, 13, 14, 16, 18, 20, 22], "Its": [3, 4], "NO": [15, 18], "No": 2, "Of": 11, "On": [14, 22], "One": [0, 23], "Such": 16, "That": [0, 3, 12, 16], "The": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "Their": 19, "Then": [0, 13], "There": 13, "These": [0, 5, 11, 16, 19], "To": [0, 8, 9, 11, 14, 18, 23], "With": [11, 14, 23], "_": [0, 1, 2, 4, 8, 11, 12, 15, 23], "_1": 12, "_2": 12, "__init__": 4, "_factr": 18, "_i": [0, 4], "_k": [0, 8, 11], "_nestedsequ": 4, "_supportsarrai": 4, "a_": [0, 4, 8, 9, 12, 16], "a_j": 1, "a_p": 0, "a_q": 0, "ab": [0, 23], "abil": 8, "abl": 22, "about": 21, "abov": [13, 16], "absenc": [0, 1, 4], "absolut": [0, 2, 4, 6], "acceler": 22, "accept": [12, 18], "access": [0, 9, 22], "accommod": 4, "accomod": 8, "accur": 8, "achiev": [2, 23], "across": 22, "act": [0, 2, 4, 9, 13, 15, 16], "action": [0, 1, 12, 16, 22, 23], "activ": [0, 15, 18, 20, 23], "active_spac": [0, 15, 18, 20, 21, 23], "actual": [6, 11], "ad": [0, 13, 18], "add": [13, 18], "addit": [0, 8, 16, 23], "addition": 2, "address": [0, 13], "addresses_to_str": [0, 7, 14], "adjac": 13, "advantag": 18, "after": [3, 18], "al": 2, "algebra": [2, 9, 16], "algorithm": [0, 2, 3, 18, 21], "alia": [0, 2], "align": [0, 11, 12], "all": [0, 1, 2, 3, 4, 6, 11, 13, 16, 20, 22], "alloc": 0, "allow": [0, 2, 5, 11, 13, 18, 22, 23], "along": 0, "alpha": [0, 1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 16, 19, 20], "alpha_and_beta": 0, "alpha_i": 0, "alpha_j": 0, "alreadi": [0, 4, 12], "also": [0, 2, 3, 5, 9, 12, 14, 16, 18, 23], "altern": [0, 8], "alwai": [0, 2, 5, 12, 14, 23], "amen": 13, "amplitud": [0, 2, 5, 18, 20], "an": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "angl": 0, "ani": [0, 3, 4, 5, 11, 12, 19, 20], "annihil": [0, 16], "anoth": [2, 6], "ansatz": [0, 3, 4, 5, 10, 13, 17, 19, 20, 21], "ansatz_oper": 0, "ansatz_st": 18, "anti": [2, 5], "anticommut": 12, "ao": 0, "ap": 2, "api": [14, 21], "appear": [0, 2, 13, 16, 20], "append": [0, 6, 13, 18, 19, 20], "appli": [0, 1, 2, 3, 4, 9, 11, 12, 13, 14, 18, 19, 20, 21, 23], "applic": 12, "apply_": 14, "apply_diag_coulomb_evolut": [0, 7, 8, 23], "apply_fsim_g": [0, 7], "apply_fswap_g": [0, 7], "apply_givens_rot": [0, 7], "apply_hop_g": [0, 7], "apply_matrix_to_slic": [2, 7], "apply_num_interact": [0, 7], "apply_num_num_interact": [0, 7], "apply_num_op_prod_interact": [0, 7], "apply_num_op_sum_evolut": [0, 7, 12, 23], "apply_on_site_interact": [0, 7, 14], "apply_orbital_rot": [0, 7, 12, 14, 21], "apply_quad_ham_evolut": 12, "apply_tunneling_interact": [0, 7, 14], "apply_unitari": [0, 7, 18], "appropri": [0, 11], "approx": 8, "approx_eq": [0, 7], "approxim": [0, 2, 3, 8, 18, 23], "apt": 22, "ar": [0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 19, 20, 22], "arbitrari": [4, 20], "arch": 22, "arg": [0, 4], "argument": [0, 2, 3, 8, 9, 12, 14, 23], "aris": 8, "arithmet": 16, "around": 23, "arrai": [0, 1, 2, 4, 6, 9, 11, 14, 16], "arxiv": [0, 2, 4, 5], "ascend": 20, "assembl": 2, "assert": 14, "assert_allclose_up_to_global_phas": [6, 7], "assertionerror": 6, "associ": [0, 3, 14, 16, 18], "assum": [0, 4, 14], "asterisk": 0, "asymmetr": 8, "atol": [0, 2, 4, 6], "atom": [0, 15, 18, 20, 21, 23], "attempt": 2, "attribut": [0, 3, 9, 15, 18, 20], "author": 21, "auto": 0, "avail": [9, 19, 22], "avoid": [0, 9, 16], "awar": 16, "ax": [0, 2], "axi": [0, 2], "b": [0, 2, 3, 6, 12, 15, 18], "back": 4, "backend": [13, 19], "backflow": 3, "background": 23, "balanc": [0, 4, 5, 18, 20], "barrier": 20, "base": [0, 2, 4], "basepass": 4, "basesamplerv2": 4, "basi": [0, 2, 4, 12, 15, 18, 20, 21, 23], "basic": [9, 13], "basis_g": [13, 19], "bear": 23, "becaus": [0, 2, 8, 9, 13, 15, 16, 18], "been": [0, 8], "befor": [0, 13, 16, 22, 23], "begin": [0, 2, 11, 12, 14, 20, 23], "behavior": [2, 4, 5, 19], "being": [2, 16, 18], "below": [0, 18, 23], "benchmark": 0, "beta": [0, 1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 16, 19, 20], "beta_i": 0, "beta_j": 0, "better": 8, "between": [0, 2, 3, 11, 13], "bfg": [0, 2, 3, 15, 18], "bibtex": 21, "bit": [0, 13, 14], "bit_arrai": 0, "bitstr": [0, 14, 20], "bitstring_typ": [0, 14], "bitstringtyp": [0, 7, 14], "bla": 22, "bloc": 20, "block": 2, "block_diag": [0, 2], "bmod": 0, "bodi": [0, 1, 2, 5, 8, 9, 18, 23], "bond": 15, "bond_angle_deg": 15, "bond_dist": 18, "bool": [0, 1, 2, 3, 4, 5, 6], "both": [0, 1, 2, 4, 11, 15], "bound": [0, 2], "boundari": 0, "box": 13, "bq": 2, "bracket": 0, "braket": 0, "branch": 21, "brickwork": 15, "browser": 22, "buffer": 4, "build": [13, 17, 18, 20, 21, 22], "built": [19, 20, 23], "byte": [0, 4], "bz2": 0, "c": [2, 18], "c2v": 15, "cach": 0, "calcul": [0, 14, 18], "call": [0, 3, 8, 9, 12, 14, 16, 18, 20, 23], "callabl": [3, 18], "callback": [0, 2, 3, 18], "can": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23], "cannot": 20, "canon": 0, "casci": [15, 18], "case": [0, 6, 13, 15], "categori": 21, "caus": 0, "cc": [18, 20], "ccsd": [0, 18, 20], "ccsd_energi": 0, "ccsd_t1": 0, "ccsd_t2": 0, "cd": 22, "cdot": 2, "cell": [9, 13, 14, 18, 19, 20, 23], "certain": [2, 13], "challeng": 11, "character": 0, "check": [2, 4, 6], "chemcor": 23, "chemic": 0, "chemical_potenti": 0, "chemistri": 21, "choic": [0, 6, 13, 14], "choleski": [0, 2], "choos": [2, 14], "chosen": 0, "ci": [15, 18], "circuit": [0, 4, 8, 13, 14, 17, 21], "circul": 0, "cisd": 0, "cisd_energi": 0, "cisd_vec": 0, "class": [0, 2, 4, 5, 9, 11, 15, 17, 18, 20, 21, 23], "clement": 2, "clone": 22, "close": [11, 18], "cluster": [0, 4, 5, 10, 17, 21], "co": [0, 15], "code": [4, 9, 13, 14, 16, 18, 19, 20, 23], "coeff": [0, 1, 4, 13, 19], "coeffici": [0, 1, 2, 4, 12, 16], "collect": [0, 2, 4, 18], "column": [0, 2, 12, 14], "com": [21, 22], "comb": 4, "combin": [0, 1, 4, 12, 13, 16], "command": 22, "commonli": [8, 20], "commun": [21, 22], "commut": 8, "compact": [8, 23], "compar": [0, 6, 23], "compil": 22, "complet": 0, "complex": [0, 1, 2, 4, 5, 9], "compon": [0, 16, 21], "compos": [4, 22], "compress": [0, 2], "compris": [0, 16], "comput": [0, 2, 4, 9, 12, 18, 21, 23], "concaten": [0, 14], "concret": 9, "condit": 0, "configur": [0, 4, 13, 14, 22], "conflict": 6, "conj": [2, 12, 20], "conjug": 2, "connect": [0, 11, 13], "consecut": [4, 20], "conserv": [0, 5, 16, 21], "conserves_particle_numb": [0, 16], "conserves_spin_z": [0, 16], "consid": [11, 12, 13], "consist": [0, 9, 13], "constant": [0, 5, 8, 9, 11, 13, 19], "constrain": 2, "constraint": [11, 18], "construct": [0, 1, 3, 4, 13, 14, 15, 16, 18, 19, 20, 23], "contain": [0, 2, 3, 5, 13, 16, 20, 21, 22], "contract": [2, 7, 21], "contract_diag_coulomb": [1, 7], "contract_num_op_sum": [1, 7], "contract_one_bodi": [1, 7], "contrast": 14, "control": [3, 13], "conveni": 14, "convent": 0, "converg": [3, 15, 18, 20, 23], "convers": [11, 18], "convert": [0, 1, 4, 14, 16, 18, 20, 21, 23], "coordin": 0, "coov": 20, "copi": [0, 16], "core": 0, "core_energi": 0, "correl": 3, "correspond": [0, 2, 3, 4, 8, 12, 13, 14, 18], "cost": 0, "coulomb": [0, 1, 2, 4, 5, 8, 11, 23], "count": [0, 13, 20], "count_op": [13, 19], "coupl": 0, "cours": 11, "cp": [13, 19], "cphaseg": 13, "cre": [0, 7], "cre_a": [0, 7, 16], "cre_b": [0, 7, 16], "creat": [0, 4, 13, 14, 16, 19, 20, 21, 23], "creation": [0, 4, 12, 16], "criteria": 16, "current": [0, 2, 18], "d": [2, 22], "d2h": 18, "dag": 4, "dagcircuit": 4, "dagger": [0, 1, 2, 8, 11, 12, 16], "dagger_": [0, 4, 8, 9, 12], "dagger_i": 1, "dagger_p": 0, "dagger_q": 0, "data": [0, 5, 13, 15, 16, 18, 20, 21, 23], "daunt": 8, "de": [0, 7], "decompos": [2, 4, 8, 13, 19], "decomposit": [0, 2, 4, 8, 10, 19, 21, 23], "decreas": [0, 18], "def": [2, 12, 15, 18, 23], "default": [0, 2, 3, 4, 5, 8, 9, 23], "default_rng": [0, 4, 5, 6, 9, 13, 15, 19, 20], "default_shot": [4, 20], "defaultdict": 18, "defin": [0, 2, 13, 15, 18, 20, 23], "definit": [0, 2, 3, 5, 14], "demonstr": [14, 18, 20], "denot": [0, 1, 2, 4, 12], "dens": 15, "densiti": [0, 5], "depend": [0, 2, 3, 22, 23], "depolar": 4, "depth": 11, "deriv": 8, "des_a": [0, 7, 16], "des_b": [0, 7, 16], "descend": [0, 16], "describ": [0, 1, 2, 8, 11, 12, 13, 16, 23], "descript": [0, 4], "design": [0, 2, 12], "desir": [0, 2, 5, 6], "destroi": [0, 16], "detail": [13, 19], "determin": [0, 2, 4, 14], "determinant": 0, "dev": 22, "devel": 22, "develop": [4, 21], "devic": [13, 19], "df_hamiltonian": [13, 19, 23], "df_hamiltonian_alt": 23, "diag": [0, 7], "diag_coulomb_indic": [0, 2], "diag_coulomb_jw": 13, "diag_coulomb_linop": [1, 7], "diag_coulomb_mat": [0, 2, 13, 19, 20, 23], "diagcoulombevolutionjw": [4, 7, 13, 19, 20], "diagcoulombevolutionspinlessjw": [4, 7], "diagon": [0, 1, 2, 4, 5, 8, 11, 23], "diagonal_coulomb_mat": 2, "diagonalcoulombhamiltonian": [0, 4, 5, 7], "dict": [0, 2, 3, 15, 18], "dictionari": [0, 16], "did": 0, "differ": [0, 2, 3, 9, 11, 13, 18, 22, 23], "dim": [0, 5, 7, 14, 16], "dim_a": [0, 14], "dim_b": [0, 14], "dimens": [0, 2, 5, 14], "dimension": [0, 2, 4, 14], "dipol": 0, "dipole_integr": 0, "direct": [0, 23], "directli": [13, 18, 22, 23], "directori": 22, "discuss": [8, 12, 13], "disjoint": 2, "disk": 0, "displai": [13, 16, 20], "distinguish": 14, "distribut": [4, 5], "divid": 8, "divis": [0, 16], "dnf": 22, "do": [8, 13, 16], "doc": [15, 18, 21], "docker": 21, "dockerfil": 22, "document": [0, 2], "doe": [0, 4, 16, 18, 20], "don": 11, "dooh": [20, 21, 23], "dot": 0, "doubl": [0, 2, 4, 5, 10, 21, 24], "double_factor": [0, 2, 7], "double_factorized_t2": [2, 7], "double_factorized_t2_alpha_beta": [2, 7], "doublefactorizedhamiltonian": [0, 4, 5, 7, 23], "down": 14, "draw": [13, 19], "drop": [4, 15, 18], "dropneglig": [4, 7], "dtype": [2, 4, 5, 9, 15, 18], "due": 20, "dump": [15, 18], "duplic": 0, "dure": 4, "e": [0, 2, 4, 8, 9, 11, 15, 16, 18, 20], "e_corr": [18, 20], "each": [0, 2, 3, 4, 5, 8, 11, 14, 16, 18, 22, 23], "edg": 0, "effect": [0, 4, 13], "effici": [8, 13, 16], "eig": [9, 16], "eigendecomposit": 12, "eigenvalu": [0, 2, 3, 9], "eigenvector": [0, 2], "eigh": [12, 23], "eigsh": 9, "einsum": 23, "either": [0, 1, 2, 4, 5, 6, 11], "electon": 4, "electron": [0, 1, 4, 5, 9, 13, 14, 15, 19, 20, 23], "element": [0, 1, 2, 4, 20, 23], "ell": 2, "els": [0, 5, 14], "elsewher": 0, "enabl": 2, "encount": 20, "end": [0, 2, 11, 12, 20, 23], "energi": [0, 3, 9, 12, 18, 20, 21, 23], "energy_nuc": [15, 18], "enough": 4, "ensur": 9, "entangl": [0, 17, 21], "entir": [2, 8], "entri": [0, 2, 4, 5, 11, 14, 23], "enum": 0, "enumer": [0, 18], "environ": 22, "epsilon": 3, "epsmch": 18, "equal": [0, 2, 5, 6, 13], "equal_nan": 6, "equilibrium": 15, "equival": [0, 4], "err_msg": 6, "error": [0, 2, 4, 6, 23], "especi": 16, "estim": 9, "et": 2, "etc": 0, "ethen": 18, "evalu": [3, 15], "even": 13, "everi": 12, "everywher": 14, "evolut": [0, 4, 9, 23], "evolv": [0, 23], "evolved_vec": 9, "evolved_vec_2": 9, "exact": [2, 8, 9, 23], "exact_st": 23, "exampl": [0, 4, 9, 11, 13, 14, 15, 16, 18, 19, 22], "exce": [2, 15, 23], "except": [2, 3], "excit": 13, "exist": [2, 4], "exp": [0, 2, 4, 6], "expand": 0, "expanded_diag_coulomb_mat": 2, "expanded_orbital_rot": 2, "expans": [2, 3], "expect": [0, 3], "expectation_one_body_pow": [0, 7], "expectation_one_body_product": [0, 7], "expectation_product_st": 0, "expens": [0, 2], "explain": [9, 11, 13, 14, 18, 23], "explan": [0, 19, 21], "explicit": 0, "explicitli": 0, "exploit": 21, "expm": 2, "expm_multipli": [9, 23], "expm_multiply_taylor": [2, 7], "exponenti": [8, 9, 23], "expos": [4, 13], "express": [11, 14, 23], "extra": 8, "extract": 20, "f": [3, 14, 15, 18, 20, 23], "facilit": 11, "fact": 15, "factor": [0, 2, 4, 5, 10, 21, 24], "failur": 6, "fake_provid": [13, 19], "fals": [0, 1, 2, 4, 5, 15, 16, 18], "far": 16, "fast": 0, "faster": [18, 21], "fault": 11, "fci": [0, 14, 15, 18], "fci_energi": 0, "fci_vec": 0, "fcidump": 0, "fcivec": 0, "fedora": 22, "feenberg": 3, "fermi": 0, "fermi_hubbard_1d": [0, 7], "fermi_hubbard_2d": [0, 7], "fermion": [0, 4, 5, 6, 8, 10, 11, 12, 16, 19, 20, 21], "fermion_oper": [0, 7], "fermionact": [0, 7], "fermionoper": [0, 4, 5, 7, 17, 21], "few": [14, 22], "fewer": [13, 19, 23], "ffsim": [7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23], "ffsim_vec_to_qiskit_vec": [4, 7], "ffsimsampl": [4, 7], "fidel": 23, "field": [0, 2], "fifth": 13, "file": [0, 22], "filter": 0, "final": [0, 3, 4, 5, 13, 19, 23], "final_givens_ansatz_op": 0, "final_orbital_rot": 0, "final_st": [18, 23], "final_state_vector": [4, 7], "finish": 23, "finit": 3, "first": [0, 2, 4, 8, 13, 14, 18, 20, 23], "fix": 14, "flag": 0, "float": [0, 2, 3, 4, 5, 6, 9, 12, 23], "float64": [9, 15, 18], "fock": [0, 4, 11, 14, 18, 21, 23], "focu": 9, "follow": [0, 2, 3, 4, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23], "foot": 0, "forg": [0, 17, 21], "form": [0, 1, 2, 4, 5, 8, 9, 11, 12, 16, 20, 23], "format": [0, 4], "formula": [0, 23], "fourth": [8, 13], "frac": [0, 2], "frac12": [0, 8, 9, 11], "frac18": 0, "framework": 22, "from": [0, 2, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "from_diag_coulomb_mat": 0, "from_fcidump": 0, "from_fermion_oper": 0, "from_json": 0, "from_molecular_hamiltonian": [0, 23], "from_orbital_rot": 0, "from_paramet": [0, 13, 18], "from_scf": [0, 15, 18, 20, 21, 23], "from_t_amplitud": [0, 18, 20], "from_ucj_op": 0, "frozen": [18, 20], "fsim": 0, "fswap": 0, "ftol": [3, 18], "full": [0, 2, 13, 14, 15], "fulli": 9, "fun": [3, 15, 18], "function": [0, 1, 2, 3, 8, 9, 12, 14, 15, 16, 18, 19, 23], "fundament": 12, "further": [13, 14], "furthermor": [0, 2], "g": [0, 4, 15], "g_": 2, "g_1": 2, "g_i": 3, "g_k": 2, "g_l": 2, "gate": [0, 4, 10, 11, 15, 20, 21], "gener": [0, 3, 4, 5, 6, 8, 13, 14, 15, 19, 20, 21], "generate_norb_nelec": [6, 7], "generate_norb_nelec_spin": [6, 7], "generate_norb_nocc": [6, 7], "generate_norb_spin": [6, 7], "generate_preset_pass_manag": [13, 19], "genericbackendv2": [13, 19], "get": [0, 14, 15, 18, 20, 21, 23], "get_count": 20, "get_hcor": [15, 18], "get_ovlp": [15, 18], "git": 22, "github": [21, 22], "give": [0, 2, 8, 14, 19], "given": [0, 2, 4, 6, 8, 12], "givens_ansatz_op": [0, 4], "givens_decomposit": [2, 7], "givens_interaction_pair": 0, "givensansatzop": [0, 4, 7], "givensansatzopjw": [4, 7], "givensansatzopspinlessjw": [4, 7], "givensrot": [2, 7], "global": [4, 6], "global_depolar": 4, "go": [0, 13, 16], "good": 16, "gradient": [2, 3, 18], "greater": 3, "ground": [9, 18], "gt": [15, 18, 19, 20], "gto": [15, 18, 20, 21, 23], "gtol": 3, "guarante": [4, 19], "guess": [3, 18], "guid": [11, 15, 18, 19, 20, 21], "gzip": 0, "h": [0, 8, 9, 15, 18, 20, 23], "h1_x": 15, "h2_x": 15, "h2_y": 15, "h_": [0, 2, 8, 9], "h_0": [8, 23], "h_k": [8, 23], "ha": [0, 1, 2, 4, 5, 8, 11, 12, 13, 14, 18], "haar": 5, "ham": 14, "hamiltonian": [0, 3, 4, 5, 10, 15, 18, 20, 21, 24], "hand": 14, "handl": [20, 23], "happen": 13, "hardwar": 13, "hartre": [0, 4, 11, 14, 18, 21, 23], "hartree_fock": 0, "hartree_fock_jw": 13, "hartree_fock_st": [0, 7, 9, 14, 18, 21, 23], "hasattr": 18, "hash": 16, "have": [0, 2, 8, 9, 11, 12, 13, 14, 16, 18, 20, 22], "height": 5, "helper": 16, "here": [0, 2, 8, 12, 13, 15, 23], "hermitian": [0, 2, 5, 12], "hess_inv": [15, 18], "hf": [15, 18], "hf_energi": 0, "hf_mo_coeff": 0, "hf_mo_occ": 0, "high": 13, "higher": [0, 8, 23], "hilbert": 5, "ho": 20, "hold": [0, 3], "home": [15, 18, 22], "hop": [0, 15], "hopgateansatzoper": [0, 7, 15], "hot": 2, "how": [0, 8, 9, 11, 12, 13, 14, 21, 23], "howev": [8, 13, 21], "http": [0, 21, 22], "hubbard": 0, "hydroxyl": 20, "hyperparamet": [3, 18], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "idea": 11, "ident": 0, "ignor": [0, 2, 8], "ij": [0, 1, 2, 4, 8, 11, 12], "ijab": 2, "ik": 12, "imag": 22, "implement": [0, 1, 3, 4, 8, 9, 11, 12, 13, 15, 18, 20, 21, 22, 24], "import": [0, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "impos": [11, 18], "improv": [3, 23], "includ": [0, 2, 4, 5, 8, 9, 12, 13, 14, 15, 18, 19, 21, 22], "incorpor": 0, "increas": [0, 14, 23], "increment": 3, "incur": 3, "independ": [0, 1, 4, 15], "index": [0, 2, 11, 14, 16], "indic": [0, 1, 2, 4, 5, 11, 14, 16], "individu": [8, 14, 16], "info": 18, "inform": [0, 9, 16, 18, 21, 23], "init_cach": [0, 7], "initi": [0, 3, 4, 5, 6, 9, 11, 13, 18, 19, 20, 23], "initial_st": 23, "initiali": 15, "input": [0, 1, 3, 4, 5, 6, 18, 20], "insert": 13, "instanc": [5, 9, 23], "instead": [0, 2, 4, 18, 23], "instruct": [21, 22], "instructionset": 19, "int": [0, 1, 2, 3, 4, 5, 6, 12, 15, 23], "integ": [0, 2, 4, 5, 6, 14], "integr": [0, 4], "interact": [0, 1, 2, 4, 5, 11, 13, 18, 20], "interaction_pair": [0, 5, 13, 15, 18, 20], "interfac": [18, 22], "interferomet": 2, "intermedi": 18, "intermediate_result": [3, 18], "intern": 16, "interpret": [0, 5, 11], "intor_symmetr": [15, 18], "introduc": [11, 12, 23], "invers": 4, "involv": [12, 13], "ip": 2, "ipykernel_4180": 9, "is_antihermitian": [2, 7], "is_hermitian": [2, 7], "is_orthogon": [2, 7], "is_real_symmetr": [2, 7], "is_special_orthogon": [2, 7], "is_unitari": [2, 7], "isclos": 0, "isn": 4, "issu": [9, 13], "item": 20, "iter": [0, 3, 4, 6, 18], "itertool": 2, "its": [0, 2, 4, 9, 13, 14, 15, 16, 23], "itself": [0, 14, 16], "j": [0, 1, 2, 4, 5, 8, 11, 12, 14, 15, 16], "jac": [3, 15, 18], "jastrow": [0, 3, 4, 5, 10, 17, 21], "ji": [0, 4, 11, 12], "jk": 12, "job": [4, 20], "jordan": [0, 4], "jordan_wign": [4, 7], "jq": 2, "json": [0, 15, 18], "jupyt": 22, "just": [0, 14, 18, 22, 23], "jwt": 4, "k": [0, 2, 3, 8, 9, 11, 16, 20, 23], "kappa": 0, "kappa_": 0, "keep": [0, 2], "kei": 20, "kij": 23, "know": 15, "known": [0, 8], "kpi": 23, "kqi": 23, "krj": 23, "kron": 0, "ksj": 23, "kwarg": [0, 4], "l": [0, 2, 3, 8, 11, 15, 18, 23], "label": [4, 14], "ladder": [8, 11], "lambda": [0, 4, 20], "lambda_i": [0, 1, 4, 12], "lambda_k": 12, "langl": 0, "larger": [0, 2, 3, 16], "last": [0, 2, 3, 4], "later": [19, 23], "lattic": [0, 11, 13, 18, 20], "layer": [0, 2, 13, 20], "lbfgsinvhessproduct": [15, 18], "ldot": [0, 2, 8, 11, 23], "lead": 0, "least": [2, 5], "left": [0, 4, 12, 14, 16], "len": [15, 18, 23], "length": [0, 4, 5, 14, 15], "leq": [0, 2, 5], "less": [2, 11], "let": [0, 13, 14, 16, 18, 19, 20, 23], "level": 23, "lexicograph": [0, 16], "lib": [15, 18], "libopenbla": 22, "librari": [0, 21], "like": [4, 11, 18, 22], "limit": [0, 2, 11, 13, 15, 18], "linalg": [0, 7, 9, 12, 16, 18, 21, 23], "lindep": 3, "line": [0, 11, 13, 18], "linear": [0, 1, 2, 3, 4, 9, 12, 13, 16], "linear_oper": [0, 7, 9, 16, 18, 21, 23], "linearli": 8, "linearoper": [0, 1, 3, 16, 18, 21, 23], "linop": [9, 16, 21, 23], "linux": 22, "list": [0, 2, 4, 5, 6, 11, 14, 15, 18, 20, 23], "ll": [9, 12, 13, 15, 18, 20, 23], "lm": 16, "load": 0, "local": [10, 17, 21], "localhost": 22, "log": [0, 4], "logarithm": 11, "logic": [12, 15], "longer": 11, "longest": 0, "lookup": 0, "losslessli": 0, "low": [0, 8, 23], "lower": [0, 2], "lowest": [0, 13, 14], "lt": [15, 18, 19, 20], "lu": 2, "lucj": [10, 13, 17, 21], "lup": [2, 7], "lvert": [0, 4, 11, 14], "lzma": 0, "m": [0, 1, 2, 12], "m_": [0, 1, 2], "maco": 22, "made": 23, "magnitud": 0, "mai": [0, 2, 3, 4, 11, 22, 23], "main": [18, 22], "maintain": 8, "make": [11, 13], "manag": [4, 13, 19, 22], "mani": [0, 9, 12, 14, 21], "manual": 23, "many_body_ord": 0, "map": [0, 4, 12, 13, 16], "mapsto": [0, 4, 12], "mat": [0, 1, 2, 4, 12, 14], "mat_aa": 2, "mat_ab": 2, "mat_bb": 2, "match": [0, 2], "match_global_phas": [2, 7], "math": [5, 15], "mathbf": [0, 8, 11, 12], "mathcal": [0, 1, 4, 8, 11, 12], "matric": [0, 1, 2, 4, 11, 12, 23], "matrix": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 14, 16], "max": [3, 23], "max_error": 23, "max_term_length": 5, "max_vec": [0, 2, 23], "maxfun": 15, "maximum": [0, 2, 3, 5, 23], "maxit": [3, 18], "mcscf": [15, 18], "mea": 20, "meant": [4, 19], "measur": [5, 8, 20], "measure_al": 20, "mention": 8, "merg": [4, 19], "mergeorbitalrot": [4, 7, 13], "messag": [6, 15, 18], "method": [0, 2, 3, 11, 15, 16, 20, 21], "mid": 20, "might": 2, "mind": 23, "minim": [0, 2, 3, 13, 15, 18], "minimize_linear_method": [3, 7, 18], "minimizz": 15, "minimum": 4, "mk": 2, "mkap": 2, "mkbq": 2, "mkip": 2, "mkjq": 2, "mkpq": 2, "mo_coeff": 0, "mo_occ": 0, "mode": 12, "model": 0, "modifi": [0, 2], "modified_choleski": [2, 7], "modul": [0, 14, 15, 19, 20], "mol": [15, 18, 20, 21, 23], "mol_data": [15, 18, 20, 21, 23], "mol_hamiltonian": [9, 15, 18, 20, 23], "mole": [0, 15, 18, 20, 21, 23], "molecul": [0, 18, 21, 23], "molecular": [0, 5, 9, 10, 14, 15, 18, 20, 21, 23], "moleculardata": [0, 7, 15, 18, 20, 21, 23], "molecularhamiltonian": [0, 5, 7, 9, 23], "more": [0, 2, 3, 4, 8, 9, 11, 13, 14, 19, 23], "most": [0, 2, 16, 20], "motiv": 13, "mp2": 0, "mp2_energi": 0, "mp2_t2": 0, "mpl": [13, 19], "msg": [15, 18], "mu": 0, "much": [0, 2, 8, 13, 21], "multipl": [0, 9, 16, 23], "multipli": [0, 16], "multiport": 2, "multirefer": 0, "multireference_st": [0, 7], "multireference_state_prod": [0, 7, 15], "must": [0, 2, 3, 4, 5, 16, 20], "n": [0, 2, 3, 8, 9, 11, 12, 14, 20, 21, 23], "n2": [20, 21, 23], "n_": [0, 1, 4, 8, 11, 12, 14], "n_alpha": [4, 6, 20], "n_beta": [4, 6, 20], "n_frozen": [20, 23], "n_i": 4, "n_j": 4, "n_layer": 15, "n_p": 0, "n_param": [0, 13], "n_qubit": 4, "n_rep": [0, 5, 13, 18, 19, 20], "n_sampl": 0, "n_step": [0, 4, 13, 19, 23], "n_term": 5, "n_vec": 2, "n_x": 0, "n_y": 0, "name": [0, 9, 13, 14, 19, 22], "namedtupl": [0, 2], "nan": 6, "nao_nr": [15, 18, 20, 21, 23], "nativ": 21, "navig": 22, "ndarrai": [0, 1, 2, 3, 4, 5, 6, 12, 18, 23], "nearest": 0, "nearest_neighbor_interact": 0, "need": [0, 4, 9, 11, 13, 20, 22, 23], "neg": [0, 4], "neglig": 4, "neighbor": [0, 13], "nelec": [0, 1, 4, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "nelectron": 18, "neq": 0, "nest": 2, "network": 11, "new": [0, 4, 12, 16], "newli": 0, "next": [13, 15, 23], "nfev": [3, 15, 18], "nit": [15, 18], "nitrogen": [20, 23], "njev": [15, 18], "nlinop": [3, 18], "nn": 0, "nocc": [0, 5, 6], "nocc_a": 2, "nocc_b": 2, "noisi": [4, 11], "non": [4, 11], "none": [0, 1, 2, 3, 4, 5, 6], "nonzero": [0, 2, 5, 11], "norb": [0, 1, 2, 4, 5, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "norb_i": 0, "norb_rang": 6, "norb_x": 0, "norm": [0, 18], "normal": [0, 15, 16], "normal_ord": [0, 16], "note": [0, 2, 3, 13, 14, 16, 19, 21], "notebook": 22, "notic": 18, "notimplementederror": 4, "now": [9, 13, 15, 18, 20, 23], "np": [0, 2, 4, 5, 6, 9, 12, 13, 15, 18, 19, 20, 21, 23], "num_num_ansatz_op": [0, 4], "num_num_interaction_pair": 0, "num_op_sum_linop": [1, 7], "number": [0, 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 18, 21, 23], "number_oper": [0, 7], "numer": [0, 2, 4, 16], "numnumansatzopspinbalanc": [0, 4, 7], "numnumansatzopspinbalancedjw": [4, 7], "numopsumevolutionjw": [4, 7, 13, 19], "numopsumevolutionspinlessjw": [4, 7], "numpi": [0, 1, 2, 4, 6, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23], "o": [0, 15, 20], "o_1": 0, "o_2": 0, "o_k": 0, "obj": 0, "object": [0, 2, 3, 4, 5, 9, 16, 18, 20], "obtain": [0, 8, 9, 12, 13, 18, 23], "occ_a": 6, "occ_b": 6, "occup": [0, 6, 8, 12, 14], "occupi": [0, 4, 5, 6, 13, 14], "occupied_orbit": [0, 4, 13, 19, 20], "often": [8, 11, 18], "onc": [12, 13, 22], "one": [0, 1, 2, 4, 5, 8, 9, 13, 14, 18, 20, 22, 23], "one_body_basis_chang": 23, "one_body_energi": 23, "one_body_integr": 0, "one_body_linop": [1, 7], "one_body_squar": 0, "one_body_tensor": [0, 9, 23], "one_hot": [2, 7], "one_rdm": 0, "ones": 9, "onli": [0, 2, 4, 8, 11, 12, 13, 20, 22], "onsit": 0, "onto": [13, 16], "op": [0, 4, 16], "op1": [0, 16], "op2": [0, 16], "op3": 16, "op4": 16, "opaqu": 13, "open": [0, 11], "openbla": 22, "oper": [0, 1, 2, 3, 4, 5, 8, 11, 12, 16, 18, 22, 23], "oppos": 13, "opposit": [18, 20], "optim": [0, 2, 4, 7, 11, 13, 19, 21], "optimization_level": [13, 19], "optimize_kwarg": 3, "optimize_regular": 3, "optimize_vari": 3, "optimizeresult": [3, 18], "option": [0, 1, 2, 3, 4, 5, 9, 15, 18, 22], "orb": [0, 16], "orbit": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 18, 20, 21, 23], "orbital_rot": [0, 1, 2, 4, 12, 13, 14, 19, 20, 21, 23], "orbital_rotation_a": 2, "orbital_rotation_b": 2, "orbital_symmetri": 0, "orbitalrotationjw": [4, 7, 13, 19, 20], "orbitalrotationspinlessjw": [4, 7], "order": [0, 1, 2, 4, 5, 8, 9, 13, 14, 16, 19, 20, 23], "ordereddict": [13, 19], "org": 0, "origin": [0, 2, 11, 13, 23], "orthogon": [2, 5], "other": [0, 4, 11, 14, 18, 19, 20], "otherwis": 0, "our": [15, 18, 20, 23], "out": [2, 23], "output": [0, 3, 4, 13, 18, 20], "over": 0, "overrid": [0, 2], "overwritten": [0, 15, 18], "own": 4, "p": [0, 2, 8, 9, 11, 13, 18, 19, 20], "packag": [15, 18, 22], "pacman": 22, "pad": 0, "page": [8, 9, 11, 12, 13, 14], "pair": [0, 1, 2, 4, 5, 6, 11, 13, 14], "pairs_aa": [13, 18, 20], "pairs_ab": [13, 18, 20], "pairs_bb": 20, "paper": 11, "parallel": [2, 11, 13], "param": 0, "paramet": [0, 1, 2, 3, 4, 5, 6, 11, 15, 18], "parameter": 0, "parameter_valu": 4, "params_to_vec": [3, 18], "pars": [15, 18], "part": [0, 5, 8, 12, 14, 15], "particl": [0, 5, 6, 12, 16, 21], "pass": [0, 1, 2, 4, 9, 12, 13, 14, 15, 16, 18, 19], "pass_manag": [13, 19], "passmanag": [4, 13], "path": 0, "pathlik": 0, "pattern": [13, 15], "pauli": 0, "per": 23, "perform": [0, 2, 3, 8, 9, 12, 13, 20, 23], "period": 0, "periodic_i": 0, "periodic_x": 0, "permut": 2, "persist": 22, "ph": 5, "phase": [0, 2, 4, 6, 13], "phase_angl": 0, "phaseg": 13, "phi": [0, 2, 6], "phi_0": 11, "pi": [0, 15], "piec": [9, 16], "pip": 21, "pipelin": 13, "pivot": 2, "pk": 2, "place": [0, 2, 11, 13, 16, 22], "plain": 14, "pmatrix": [0, 2], "point": 0, "polar": 0, "posit": [2, 3, 5, 14], "possibl": [0, 2, 6, 20, 21], "possibli": [0, 18], "potenti": 0, "power": 0, "pq": [0, 2, 8, 9], "pqr": [0, 2, 8, 9, 23], "practic": 8, "pre": [11, 19], "pre_init": [4, 7, 13, 19], "pre_init_pass": [4, 7, 19], "precis": 6, "prepar": [0, 4, 20], "preparehartreefockjw": [4, 7, 13, 19, 20], "preparehartreefockspinlessjw": [4, 7, 20], "prepareslaterdeterminantjw": [4, 7, 13, 19, 20], "prepareslaterdeterminantspinlessjw": [4, 7, 20], "present": 3, "preserv": [16, 20], "preset_passmanag": [13, 19], "previou": [18, 20], "previous": [8, 13, 14, 18], "primit": [4, 17, 21], "primitivejob": 4, "primitiveresult": 4, "print": [0, 6, 13, 14, 15, 16, 18, 20, 21, 23], "probabl": [0, 4], "problem": 3, "process": 0, "processor": 11, "prod": 15, "prod_": [0, 4, 11], "prod_k": 8, "prod_state_sum": 0, "produc": [0, 13], "product": [0, 2, 8, 14, 15, 16], "productstatesum": [0, 7], "programmat": 16, "properti": [0, 2, 12], "proport": [0, 8], "protocol": 0, "provid": [9, 13, 19, 22], "pseudorandom": [0, 4, 5, 6], "psi": [0, 11], "pub": [4, 20], "pub_result": 20, "put": 15, "py": [9, 15, 18], "pypi": 22, "pyscf": [0, 4, 14, 15, 18, 20, 21, 23], "python3": [15, 18], "q": [0, 8, 9, 13, 19], "qdrift": 0, "qi": 0, "qiskit": [7, 13, 17, 21, 22], "qiskit_vec_to_ffsim_vec": [4, 7], "qk": 2, "quadrat": [8, 10, 21, 23], "qualnam": 0, "quantifi": 2, "quantiti": 0, "quantum": [0, 4, 8, 11, 13, 14, 17, 20, 21], "quantumcircuit": [4, 13, 19, 20], "quantumregist": [13, 19, 20], "qubit": [0, 4, 10, 11, 15, 19, 20, 21], "r": [0, 2, 8, 9], "radic": 20, "radius_1": 15, "radius_2": 15, "rais": [0, 2, 4, 5, 6], "random": [0, 4, 6, 7, 9, 13, 14, 15, 16, 19, 20, 21], "random_antihermitian": [5, 7], "random_density_matrix": [5, 7], "random_diagonal_coulomb_hamiltonian": [5, 7], "random_double_factorized_hamiltonian": [5, 7, 13, 19], "random_fermion_hamiltonian": [5, 7], "random_fermion_oper": [5, 7], "random_hermitian": [5, 7], "random_molecular_hamiltonian": [5, 7], "random_nelec": [6, 7], "random_occupied_orbit": [6, 7], "random_orthogon": [5, 7], "random_real_symmetric_matrix": [5, 7, 9, 13, 19, 20], "random_special_orthogon": [5, 7], "random_state_vector": [5, 7, 16], "random_t2_amplitud": [5, 7], "random_two_body_tensor": [5, 7, 9], "random_uccsd_restrict": [5, 7], "random_ucj_op_spin_balanc": [5, 7, 13, 19], "random_ucj_op_spin_unbalanc": [5, 7, 19], "random_ucj_op_spinless": [5, 7], "random_unitari": [5, 7, 13, 14, 19, 20, 21], "rang": [0, 2, 6, 13, 14, 15, 18, 20, 21, 23], "rangl": [0, 4, 11, 14], "rank": [0, 2, 5, 8, 13], "rather": [0, 5, 12, 14], "rccsd": 20, "rdm": [0, 7], "rdm1": 0, "rdm2": 0, "rdm3": 0, "rdm4": 0, "reach": 18, "read": 0, "real": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 18, 21], "reason": [4, 12], "recal": 13, "recommend": [4, 13, 16, 19, 21], "reconstruct": [0, 2, 23], "reconstruct_t2_alpha_beta": 2, "recover": 0, "reduc": [0, 2, 13], "reduced_matrix": [2, 7], "reduced_matrix_product_st": 0, "reduct": 18, "redund": 11, "refer": [0, 2, 3, 4, 5, 6, 11, 12, 14, 18, 21], "reference_occup": [0, 15], "reference_occupations_spati": 15, "reference_st": 18, "regress": 0, "regular": [3, 18], "rel": [0, 2, 4, 6, 18], "rel_reduction_of_f_": 18, "relat": 12, "releas": 21, "reorder": [0, 8], "rep": 13, "repeat": 15, "repeatedli": 12, "repetit": [0, 5, 11, 13, 18], "repositori": 22, "repr": 16, "repres": [0, 2, 3, 4, 5, 6, 9, 11, 14, 16, 18, 19], "represent": [0, 1, 2, 4, 5, 10, 14, 16, 21, 23], "reproduc": 23, "request": 0, "requir": [0, 9, 11, 13, 14, 22], "reshap": 14, "respect": [0, 2, 3, 23], "rest": [0, 13], "restrict": [0, 5, 13, 18], "result": [0, 1, 2, 3, 4, 5, 8, 9, 11, 13, 15, 18, 19, 20, 23], "retain": [0, 13], "retriev": 20, "return": [0, 1, 2, 3, 4, 5, 6, 12, 15, 16, 18, 23], "revers": 20, "rewrit": 0, "rewritten": 12, "rhf": [15, 18, 20, 21, 23], "right": [0, 4, 12, 14, 16], "ring": 0, "rise": [2, 8], "rng": [9, 13, 15, 19, 20], "rohf": 20, "root": 0, "rotat": [0, 1, 2, 4, 5, 8, 10, 11, 14, 21, 23], "rotated_vec": 14, "routin": [2, 9, 16], "row": [0, 2, 14], "rtol": [0, 2, 4, 6], "rtype": [2, 4], "run": [0, 4, 13, 15, 18, 19, 20, 21, 22, 23], "run_ccsd": 0, "run_cisd": 0, "run_fci": [0, 15, 18], "run_mp2": 0, "run_sci": 0, "rung": 11, "runner": [15, 18], "rust": 22, "rvert": 0, "s_": [0, 14], "s_a": 0, "s_b": 0, "sa": 9, "same": [0, 9, 11, 12, 13, 14, 15, 18, 20], "sampl": [0, 4, 5, 6, 9], "sample_slater_determin": [0, 7], "sample_state_vector": [0, 7], "sampler": [0, 4, 17, 21], "samplerpubresult": 4, "sandwich": 13, "satisfi": [0, 12, 16, 20, 22], "save": [0, 18, 22], "scalar": [0, 16], "scale": [8, 13, 15, 19], "scf": [0, 15, 18, 20, 21, 23], "scheme": 8, "schmidt": 5, "sci": 0, "sci_energi": 0, "sci_vec": 0, "scipi": [0, 2, 3, 15, 16, 18, 21, 23], "search": 14, "second": [0, 2, 4, 8], "section": [8, 19], "sector": [0, 1, 2, 4, 15], "see": [0, 2, 4, 11, 13, 14, 19, 22, 23], "seed": [0, 4, 5, 6, 9, 13, 14, 19, 20, 21], "seen": 20, "select": 3, "semi": 5, "sens": [13, 23], "separ": [11, 14], "sequenc": [0, 2, 4, 13], "seri": 2, "serial": 0, "serializ": [15, 18], "set": [0, 1, 2, 4, 5, 8, 11, 12, 13, 19, 23], "setup": 11, "sever": [9, 13], "shape": [0, 2, 5, 11, 23], "share": 11, "shell": [11, 18], "shot": [0, 4, 20], "should": [0, 1, 2, 4, 5, 6, 9, 12, 22], "show": [13, 15, 16, 18, 19, 20], "shown": 16, "side": 0, "sigma": [0, 1, 4, 8, 9, 11, 12], "sign": 0, "signatur": 3, "signific": 23, "significantli": 13, "similar": 18, "simpl": [20, 22], "simpler": 0, "simpli": [4, 13, 14], "simplist": 23, "simul": [0, 4, 8, 11, 12, 14, 17, 21, 24], "simulate_qdrift_double_factor": [0, 7], "simulate_trotter_diag_coulomb_split_op": [0, 7], "simulate_trotter_double_factor": [0, 7, 8, 23], "simulate_trotter_step_double_factor": 23, "simulatetrotterdiagcoulombsplitopjw": [4, 7], "simulatetrotterdoublefactorizedjw": [4, 7, 13, 19], "sin": [0, 15], "sinc": [0, 2, 11, 12, 15, 18], "singl": [0, 1, 4, 6, 8, 13, 23], "singlefactorizedhamiltonian": [0, 7], "singular": [0, 2], "site": [0, 15, 18], "size": [0, 3, 15], "slater": [0, 4], "slater_determin": [0, 7], "slater_determinant_amplitud": [0, 7], "slater_determinant_rdm": [0, 7], "slice": 2, "small": 2, "smaller": [0, 2, 8, 16, 23], "so": [0, 2, 6, 8, 11, 12, 13, 15, 16, 22, 23], "softwar": [0, 21], "solv": 3, "some": [0, 2, 6, 9, 13, 14, 16, 18, 20], "sometim": [0, 14], "sort": 20, "sourc": [0, 1, 2, 3, 4, 5, 6, 21], "space": [0, 9, 14, 15, 18, 20, 23], "span": [0, 2], "spars": [9, 16, 23], "sparsepauliop": 4, "sparsiti": 11, "spatial": [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 23], "speci": [4, 6], "special": [2, 5, 11, 13, 21], "specif": 14, "specifi": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 15, 23], "spectral": 0, "spin": [0, 1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 16, 18, 20, 21], "spin_squar": [0, 7], "spin_sum": 0, "spinless": [0, 4, 5, 6], "split": [0, 4, 23], "squar": [0, 2, 11, 13, 18, 20], "stack": 0, "stage": [4, 13, 19], "standard": 18, "standard_norm": [9, 13, 19], "star": 2, "start": 0, "state": [0, 1, 3, 4, 5, 9, 10, 11, 12, 13, 18, 20, 21, 23], "statevector": [0, 4, 7], "static": 0, "statist": 20, "statu": [15, 18], "step": [0, 4, 8, 12, 15, 19, 23], "step_tim": 23, "still": [0, 8], "sto": [0, 15, 18, 23], "stop": [3, 15, 18], "store": [0, 2, 4, 6, 9, 11, 13, 18, 19, 23], "store_cisd_vec": 0, "store_fci_vec": 0, "store_sci_vec": 0, "store_t1": 0, "store_t2": 0, "str": [0, 2, 4, 6], "straightforward": 2, "strategi": 0, "strength": 0, "strictli": 3, "string": [0, 14, 16], "strings_a": 0, "strings_b": 0, "strings_to_address": [0, 7], "structur": [0, 8], "sub": 0, "subdirectori": 22, "submit": 20, "subroutin": 12, "subspac": [0, 2, 16], "substitut": [0, 5], "subsystem": [14, 22], "subtract": [0, 16], "success": [15, 18], "sudo": 22, "suffix": 15, "suggest": 19, "sum": [0, 4, 8, 23], "sum_": [0, 1, 2, 4, 8, 9, 11, 12, 23], "sum_j": 12, "sum_k": [8, 12], "sum_p": 0, "sum_t": 0, "summat": 0, "support": [0, 2, 9, 14, 16, 20, 22], "supportsapplyunitari": [0, 7], "supportsapproximateequ": [0, 7], "supportsdiagon": [0, 7], "supportsfermionoper": [0, 7], "supportslinearoper": [0, 7], "supportstrac": [0, 7], "suzuki": [0, 23], "swap": [0, 11, 13], "symmetr": [0, 2, 4, 5, 8, 11], "symmetri": [0, 12, 15, 18, 20, 21, 23], "system": [0, 4, 6, 12, 14, 22], "t": [0, 2, 4, 8, 11, 12, 20, 21], "t1": 0, "t1a": 0, "t1b": 0, "t2": [0, 2, 5, 18, 20], "t2_amplitud": 2, "t2aa": 0, "t2ab": 0, "t2bb": 0, "t_": 2, "tabl": [0, 16], "take": [0, 3, 18, 19], "taken": 11, "target": [2, 13], "target_orb": 0, "tau": [0, 1, 4, 8, 9, 11], "taylor": 2, "tensor": [0, 1, 2, 5, 8, 9, 18, 23], "term": [0, 2, 5, 8, 11, 16, 23], "test": [7, 21, 23], "text": [0, 8, 9], "th": [2, 12], "than": [0, 4, 5, 12, 13, 14, 18, 21], "thei": [0, 9, 11, 12, 16], "them": [11, 13, 14], "therefor": [0, 2, 11], "theta": [0, 15], "thi": [0, 2, 4, 8, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23], "think": 2, "third": [0, 2], "those": [3, 18], "though": 13, "three": [0, 1, 4, 9, 16], "threshold": [0, 2, 3], "thu": 8, "time": [0, 2, 3, 4, 9, 13, 14, 19, 20, 23], "titl": 21, "tmp": [9, 15, 18], "tmp8q_mmkkf": 15, "tmphnas021m": 18, "to_diag_coulomb_mat": 0, "to_fcidump": 0, "to_json": 0, "to_molecular_hamiltonian": 0, "to_number_represent": 0, "to_orbital_rot": 0, "to_paramet": [0, 18], "to_z_represent": 0, "tol": [0, 2, 23], "toler": [0, 2, 4, 6, 11, 23], "too": 2, "top": 20, "topologi": [11, 13, 18], "toru": 0, "total": [4, 8, 15, 18, 23], "tox": [15, 18], "trace": [0, 5, 7, 9, 23], "tracea": [9, 23], "trajectori": 0, "transform": [0, 1, 4], "transformationpass": 4, "transpil": [4, 13, 17, 21], "transpiled_opt": 13, "treat": 0, "triangl": 11, "trianglular": [0, 2], "triangular": [0, 2, 4, 5], "triplet": 6, "trotter": [0, 4, 21, 24], "true": [0, 2, 3, 4, 6, 16, 18, 20], "truncat": 8, "try": 23, "tunnel": 0, "tupl": [0, 1, 2, 4, 5, 6, 12, 15, 16, 23], "tutori": [21, 23], "twice": [0, 15, 19], "two": [0, 2, 5, 8, 9, 11, 13, 14, 15, 18, 22, 23], "two_body_integr": 0, "two_body_tensor": [0, 2, 9, 23], "type": [0, 1, 2, 3, 4, 5, 6, 20, 22], "typeerror": 0, "typic": 0, "u": [0, 1, 2, 4, 8, 11, 12], "u_": 4, "u_k": 0, "ubuntu": 22, "uccsd": [0, 5, 20], "uccsdoprestrictedr": [0, 5, 7], "ucj": [0, 4, 5], "ucj_balanced_jw": 13, "ucj_op": [0, 4, 13, 19, 20], "ucjanglesopspinbalanc": [0, 7], "ucjoperatorjw": 4, "ucjopspinbalanc": [0, 4, 5, 7, 11, 13, 18, 20], "ucjopspinbalancedjw": [4, 7, 13, 19, 20], "ucjopspinless": [0, 4, 5, 7], "ucjopspinlessjw": [4, 7], "ucjopspinunbalanc": [0, 4, 5, 7, 11, 20], "ucjopspinunbalancedjw": [4, 7, 13, 19, 20], "uhf": 20, "unbalanc": [0, 4, 5, 20], "uncorrel": 0, "under": [0, 4], "underli": 4, "unifi": 20, "uniform": [0, 4, 5], "unimpl": 4, "union": [2, 4], "unit": 2, "unitari": [0, 1, 2, 4, 5, 8, 10, 12, 14, 17, 21], "univers": 2, "unlik": 0, "unord": 0, "untouch": 0, "up": [0, 2, 6, 8, 14, 22], "updat": [0, 8], "upon": 16, "upper": [0, 2, 4, 5, 11], "url": 21, "us": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23], "usag": [0, 2, 16, 19], "user": 22, "userwarn": [9, 15, 18], "usual": 0, "util": [2, 5, 6, 8], "v": [0, 20], "v_": 0, "v_i": 2, "v_j": 2, "vacuum": 4, "valid": [0, 4, 5, 6], "valu": [0, 1, 2, 3, 4, 5, 6, 9, 11, 18, 19, 23], "valueerror": [0, 2, 4, 5], "vari": [0, 4], "variabl": [14, 23], "variant": [11, 13, 18], "variat": [0, 3, 11, 18], "variation": 18, "varphi": 0, "vdot": [18, 21, 23], "ve": 23, "vec": [0, 1, 2, 4, 9, 12, 14, 16, 21, 23], "vec_a": 0, "vec_b": 0, "vector": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 15, 16, 18, 21], "verbos": 6, "verifi": 2, "version": 4, "vertic": 0, "via": [0, 23], "view": [0, 16], "volum": 22, "w": 0, "wa": [0, 3, 4, 11], "wai": 11, "want": 13, "warn": [9, 15, 18, 20], "water": 15, "wavefunct": [3, 18], "we": [0, 2, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "web": 22, "weight": 14, "well": [3, 14, 21, 22, 23], "when": [0, 3, 4, 9, 11, 13, 14, 16, 19, 21], "whenev": 0, "where": [0, 1, 2, 3, 4, 5, 8, 11, 12, 14, 22, 23], "whether": [0, 1, 2, 3, 4, 5, 16], "which": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 22, 23], "while": [8, 11], "whose": [0, 2, 14], "width": 5, "wigner": [0, 4], "william": 2, "window": [21, 22], "wise": 2, "with_final_givens_ansatz_op": 0, "with_final_orbital_rot": [0, 5], "with_phase_angl": 0, "with_phi": 0, "within": [0, 2, 13, 16, 18, 21], "without": [11, 13, 18], "won": 21, "word": [0, 11, 20], "work": [9, 13, 15, 18, 19, 21, 22], "workflow": 20, "would": [13, 14], "wrapper": 23, "write": 23, "written": 8, "wrote": 23, "wsl": 22, "x": [0, 3, 4, 13, 15, 18, 19, 20], "x0": [3, 15, 18], "xx_plus_yi": [13, 19], "xxplusyyg": [13, 19], "y": 0, "yaml": 22, "yet": [9, 18], "yield": [0, 2, 4, 8, 11, 15, 23], "you": [0, 1, 2, 4, 9, 14, 18, 21, 22, 23], "your": [19, 22], "z": [0, 1, 2, 4, 5, 12, 16, 21], "z_represent": [0, 1, 4, 5], "zero": [0, 2, 4, 9, 19], "zip": [0, 15, 18, 23], "\u03c8": 18}, "titles": ["ffsim", "ffsim.contract", "ffsim.linalg", "ffsim.optimize", "ffsim.qiskit", "ffsim.random", "ffsim.testing", "API reference", "Double-factorized representation of the molecular Hamiltonian", "Hamiltonians", "Explanations", "The local unitary cluster Jastrow (LUCJ) ansatz", "Orbital rotations and quadratic Hamiltonians", "Qubit gate decompositions of fermionic gates", "State vectors and gates", "How to simulate entanglement forging", "How to use the FermionOperator class", "How-to guides", "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz", "How to build and transpile Qiskit quantum circuits", "How to use ffsim\u2019s Qiskit Sampler primitive", "ffsim", "Installation", "Implementing Trotter simulation of the double-factorized Hamiltonian", "Tutorials"], "titleterms": {"": 20, "The": 11, "action": 9, "an": 20, "ansatz": [11, 15, 18], "api": 7, "applic": 8, "background": 8, "balanc": [11, 19], "brief": 8, "build": [15, 19, 23], "can": 20, "choos": 15, "circuit": [19, 20], "cite": 21, "class": 16, "close": 20, "cluster": [11, 13, 18, 19], "code": 21, "comput": 15, "content": 21, "contract": 1, "coulomb": [13, 19], "criteria": 20, "data": 9, "decomposit": 13, "determin": [13, 19], "diagon": [13, 19], "docker": 22, "doubl": [8, 13, 19, 23], "energi": 15, "entangl": 15, "evolut": [8, 12, 13, 19], "exampl": [20, 21], "explan": 10, "factor": [8, 13, 19, 23], "fermion": [13, 14], "fermionoper": 16, "ffsim": [0, 1, 2, 3, 4, 5, 6, 20, 21], "ffsimsampl": 20, "fock": [13, 19], "forg": 15, "formula": 8, "from": [20, 22], "gate": [13, 14, 19], "gener": [11, 18], "guid": 17, "hamiltonian": [8, 9, 12, 13, 19, 23], "hartre": [13, 19], "how": [15, 16, 17, 18, 19, 20], "implement": 23, "initi": 15, "instal": [21, 22], "jastrow": [11, 13, 18, 19], "linalg": 2, "linear": 18, "linearoper": 9, "local": [11, 13, 18], "lucj": [11, 18, 20], "merg": 13, "method": 18, "molecul": [15, 20], "molecular": 8, "more": 20, "number": [13, 19], "occup": 15, "open": 20, "oper": [9, 13, 15, 19], "optim": [3, 15, 18], "orbit": [12, 13, 19], "overview": 19, "pip": 22, "prepar": [13, 19], "primit": 20, "qiskit": [4, 19, 20], "quadrat": 12, "quantum": 19, "qubit": 13, "random": 5, "refer": [7, 15], "represent": [8, 9], "rotat": [12, 13, 19], "sampl": 20, "sampler": 20, "scipi": 9, "shell": 20, "simul": [13, 15, 18, 19, 23], "slater": [13, 19], "sourc": 22, "spin": [11, 19], "spinless": 14, "state": [14, 19], "sum": [13, 19], "suzuki": 8, "test": 6, "time": [8, 12], "transform": 19, "transpil": 19, "treat": 14, "trotter": [8, 13, 19, 23], "tutori": 24, "ucj": [11, 13, 18, 19], "unbalanc": [11, 19], "unitari": [11, 13, 18, 19], "us": [16, 20, 22], "vector": 14, "via": [8, 9], "within": 22}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API reference": [[7, null]], "Application to the double-factorized Hamiltonian": [[8, "Application-to-the-double-factorized-Hamiltonian"]], "Application to time evolution via Trotter-Suzuki formulas": [[8, "Application-to-time-evolution-via-Trotter-Suzuki-formulas"]], "Brief background on Trotter-Suzuki formulas": [[8, "Brief-background-on-Trotter-Suzuki-formulas"]], "Build a molecule": [[15, "Build-a-molecule"]], "Build the Hamiltonian": [[23, "Build-the-Hamiltonian"]], "Choose reference occupations": [[15, "Choose-reference-occupations"]], "Circuit transpilation": [[19, "Circuit-transpilation"]], "Citing ffsim": [[21, "citing-ffsim"]], "Code example": [[21, "code-example"]], "Compute energy": [[15, "Compute-energy"]], "Contents": [[21, "contents"]], "Criteria for circuits that FfsimSampler can sample": [[20, "Criteria-for-circuits-that-FfsimSampler-can-sample"]], "Data representation": [[9, "Data-representation"]], "Diagonal Coulomb evolution": [[13, "Diagonal-Coulomb-evolution"], [19, "Diagonal-Coulomb-evolution"]], "Double-factorized representation": [[8, "Double-factorized-representation"]], "Double-factorized representation of the molecular Hamiltonian": [[8, null]], "Example of using FfsimSampler": [[20, "Example-of-using-FfsimSampler"]], "Explanations": [[10, null]], "Gates": [[14, "Gates"]], "General UCJ ansatz": [[18, "General-UCJ-ansatz"]], "Hamiltonians": [[9, null]], "Hartree-Fock and Slater determinant preparation": [[13, "Hartree-Fock-and-Slater-determinant-preparation"]], "How to build and transpile Qiskit quantum circuits": [[19, null]], "How to simulate entanglement forging": [[15, null]], "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz": [[18, null]], "How to use ffsim\u2019s Qiskit Sampler primitive": [[20, null]], "How to use the FermionOperator class": [[16, null]], "How-to guides": [[17, null]], "Implement Trotter simulation": [[23, "Implement-Trotter-simulation"]], "Implementing Trotter simulation of the double-factorized Hamiltonian": [[23, null]], "Initialize ansatz operator": [[15, "Initialize-ansatz-operator"]], "Install from source": [[22, "install-from-source"]], "Installation": [[21, "installation"], [22, null]], "LUCJ ansatz": [[18, "LUCJ-ansatz"]], "Locality in the UCJ operator": [[13, "Locality-in-the-UCJ-operator"]], "Merging orbital rotations": [[13, "Merging-orbital-rotations"]], "More examples": [[20, "More-examples"]], "Number operator sum evolution": [[13, "Number-operator-sum-evolution"], [19, "Number-operator-sum-evolution"]], "Operator action via SciPy LinearOperators": [[9, "Operator-action-via-SciPy-LinearOperators"]], "Optimize energy": [[15, "Optimize-energy"]], "Optimize with the linear method": [[18, "Optimize-with-the-linear-method"]], "Orbital rotation": [[13, "Orbital-rotation"], [19, "Orbital-rotation"]], "Orbital rotations": [[12, "Orbital-rotations"]], "Orbital rotations and quadratic Hamiltonians": [[12, null]], "Overview of gates": [[19, "Overview-of-gates"]], "Pip install": [[22, "pip-install"]], "Prepare Hartree-Fock state": [[19, "Prepare-Hartree-Fock-state"]], "Prepare Slater determinant": [[19, "Prepare-Slater-determinant"]], "Qubit gate decompositions of fermionic gates": [[13, null]], "Sampling from an LUCJ circuit for a closed-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-a-closed-shell-molecule"]], "Sampling from an LUCJ circuit for an open-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-an-open-shell-molecule"]], "Spin-balanced and spin-unbalanced ansatzes": [[11, "Spin-balanced-and-spin-unbalanced-ansatzes"]], "Spin-balanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-balanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "Spin-unbalanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-unbalanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "State preparation gates": [[19, "State-preparation-gates"]], "State vectors": [[14, "State-vectors"]], "State vectors and gates": [[14, null]], "The general unitary cluster Jastrow (UCJ) ansatz": [[11, "The-general-unitary-cluster-Jastrow-(UCJ)-ansatz"]], "The local UCJ (LUCJ) ansatz": [[11, "The-local-UCJ-(LUCJ)-ansatz"]], "The local unitary cluster Jastrow (LUCJ) ansatz": [[11, null]], "Time evolution by a quadratic Hamiltonian": [[12, "Time-evolution-by-a-quadratic-Hamiltonian"]], "Treating spinless fermions": [[14, "Treating-spinless-fermions"]], "Trotter simulation of double-factorized Hamiltonian": [[13, "Trotter-simulation-of-double-factorized-Hamiltonian"], [19, "Trotter-simulation-of-double-factorized-Hamiltonian"]], "Tutorials": [[24, null]], "Unitary cluster Jastrow (UCJ) operator": [[13, "Unitary-cluster-Jastrow-(UCJ)-operator"]], "Unitary transformation gates": [[19, "Unitary-transformation-gates"]], "Use within Docker": [[22, "use-within-docker"]], "ffsim": [[0, null], [21, null]], "ffsim.contract": [[1, null]], "ffsim.linalg": [[2, null]], "ffsim.optimize": [[3, null]], "ffsim.qiskit": [[4, null]], "ffsim.random": [[5, null]], "ffsim.testing": [[6, null]]}, "docnames": ["api/ffsim", "api/ffsim.contract", "api/ffsim.linalg", "api/ffsim.optimize", "api/ffsim.qiskit", "api/ffsim.random", "api/ffsim.testing", "api/index", "explanations/double-factorized", "explanations/hamiltonians", "explanations/index", "explanations/lucj", "explanations/orbital-rotation", "explanations/qiskit-gate-decompositions", "explanations/state-vectors-and-gates", "how-to-guides/entanglement-forging", "how-to-guides/fermion-operator", "how-to-guides/index", "how-to-guides/lucj", "how-to-guides/qiskit-circuits", "how-to-guides/qiskit-sampler", "index", "install", "tutorials/double-factorized-trotter", "tutorials/index"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["api/ffsim.rst", "api/ffsim.contract.rst", "api/ffsim.linalg.rst", "api/ffsim.optimize.rst", "api/ffsim.qiskit.rst", "api/ffsim.random.rst", "api/ffsim.testing.rst", "api/index.md", "explanations/double-factorized.ipynb", "explanations/hamiltonians.ipynb", "explanations/index.md", "explanations/lucj.ipynb", "explanations/orbital-rotation.ipynb", "explanations/qiskit-gate-decompositions.ipynb", "explanations/state-vectors-and-gates.ipynb", "how-to-guides/entanglement-forging.ipynb", "how-to-guides/fermion-operator.ipynb", "how-to-guides/index.md", "how-to-guides/lucj.ipynb", "how-to-guides/qiskit-circuits.ipynb", "how-to-guides/qiskit-sampler.ipynb", "index.md", "install.md", "tutorials/double-factorized-trotter.ipynb", "tutorials/index.md"], "indexentries": {"__init__() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.__init__", false]], "__init__() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.numnumansatzopspinbalancedjw method)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockspinlessjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantspinlessjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdiagcoulombsplitopjw method)": [[4, "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdoublefactorizedjw method)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinlessjw method)": [[4, "ffsim.qiskit.UCJOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinunbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW.__init__", false]], "action (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.action", false]], "active_space (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.active_space", false]], "addresses_to_strings() (in module ffsim)": [[0, "ffsim.addresses_to_strings", false]], "alpha (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA", false]], "alpha_and_beta (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA_AND_BETA", false]], "apply_diag_coulomb_evolution() (in module ffsim)": [[0, "ffsim.apply_diag_coulomb_evolution", false]], "apply_fsim_gate() (in module ffsim)": [[0, "ffsim.apply_fsim_gate", false]], "apply_fswap_gate() (in module ffsim)": [[0, "ffsim.apply_fswap_gate", false]], "apply_givens_rotation() (in module ffsim)": [[0, "ffsim.apply_givens_rotation", false]], "apply_hop_gate() (in module ffsim)": [[0, "ffsim.apply_hop_gate", false]], "apply_matrix_to_slices() (in module ffsim.linalg)": [[2, "ffsim.linalg.apply_matrix_to_slices", false]], "apply_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_interaction", false]], "apply_num_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_num_interaction", false]], "apply_num_op_prod_interaction() (in module ffsim)": [[0, "ffsim.apply_num_op_prod_interaction", false]], "apply_num_op_sum_evolution() (in module ffsim)": [[0, "ffsim.apply_num_op_sum_evolution", false]], "apply_on_site_interaction() (in module ffsim)": [[0, "ffsim.apply_on_site_interaction", false]], "apply_orbital_rotation() (in module ffsim)": [[0, "ffsim.apply_orbital_rotation", false]], "apply_tunneling_interaction() (in module ffsim)": [[0, "ffsim.apply_tunneling_interaction", false]], "apply_unitary() (in module ffsim)": [[0, "ffsim.apply_unitary", false]], "approx_eq() (in module ffsim)": [[0, "ffsim.approx_eq", false]], "assert_allclose_up_to_global_phase() (in module ffsim.testing)": [[6, "ffsim.testing.assert_allclose_up_to_global_phase", false]], "atom (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.atom", false]], "basis (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.basis", false]], "beta (ffsim.spin attribute)": [[0, "ffsim.Spin.BETA", false]], "bit_array (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.BIT_ARRAY", false]], "bitstringtype (class in ffsim)": [[0, "ffsim.BitstringType", false]], "c (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.c", false]], "ccsd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_energy", false]], "ccsd_t1 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t1", false]], "ccsd_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t2", false]], "cisd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_energy", false]], "cisd_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_vec", false]], "coeffs (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.coeffs", false]], "conserves_particle_number() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_particle_number", false]], "conserves_spin_z() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_spin_z", false]], "constant (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.constant", false]], "constant (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.constant", false]], "constant (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.constant", false]], "constant (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.constant", false]], "contract_diag_coulomb() (in module ffsim.contract)": [[1, "ffsim.contract.contract_diag_coulomb", false]], "contract_num_op_sum() (in module ffsim.contract)": [[1, "ffsim.contract.contract_num_op_sum", false]], "contract_one_body() (in module ffsim.contract)": [[1, "ffsim.contract.contract_one_body", false]], "core_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.core_energy", false]], "cre() (in module ffsim)": [[0, "ffsim.cre", false]], "cre_a() (in module ffsim)": [[0, "ffsim.cre_a", false]], "cre_b() (in module ffsim)": [[0, "ffsim.cre_b", false]], "des() (in module ffsim)": [[0, "ffsim.des", false]], "des_a() (in module ffsim)": [[0, "ffsim.des_a", false]], "des_b() (in module ffsim)": [[0, "ffsim.des_b", false]], "diag() (in module ffsim)": [[0, "ffsim.diag", false]], "diag_coulomb_linop() (in module ffsim.contract)": [[1, "ffsim.contract.diag_coulomb_linop", false]], "diag_coulomb_mats (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.diag_coulomb_mats", false]], "diagcoulombevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW", false]], "diagcoulombevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW", false]], "diagonalcoulombhamiltonian (class in ffsim)": [[0, "ffsim.DiagonalCoulombHamiltonian", false]], "dim() (in module ffsim)": [[0, "ffsim.dim", false]], "dims() (in module ffsim)": [[0, "ffsim.dims", false]], "dipole_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.dipole_integrals", false]], "double_factorized() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized", false]], "double_factorized_t2() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2", false]], "double_factorized_t2_alpha_beta() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2_alpha_beta", false]], "doublefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.DoubleFactorizedHamiltonian", false]], "dropnegligible (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DropNegligible", false]], "expectation_one_body_power() (in module ffsim)": [[0, "ffsim.expectation_one_body_power", false]], "expectation_one_body_product() (in module ffsim)": [[0, "ffsim.expectation_one_body_product", false]], "expectation_product_state() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.expectation_product_state", false]], "expm_multiply_taylor() (in module ffsim.linalg)": [[2, "ffsim.linalg.expm_multiply_taylor", false]], "fci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_energy", false]], "fci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_vec", false]], "fermi_hubbard_1d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_1d", false]], "fermi_hubbard_2d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_2d", false]], "fermion_operator() (in module ffsim)": [[0, "ffsim.fermion_operator", false]], "fermionaction (class in ffsim)": [[0, "ffsim.FermionAction", false]], "fermionoperator (class in ffsim)": [[0, "ffsim.FermionOperator", false]], "ffsim": [[0, "module-ffsim", false]], "ffsim.contract": [[1, "module-ffsim.contract", false]], "ffsim.linalg": [[2, "module-ffsim.linalg", false]], "ffsim.optimize": [[3, "module-ffsim.optimize", false]], "ffsim.qiskit": [[4, "module-ffsim.qiskit", false]], "ffsim.random": [[5, "module-ffsim.random", false]], "ffsim.testing": [[6, "module-ffsim.testing", false]], "ffsim_vec_to_qiskit_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.ffsim_vec_to_qiskit_vec", false]], "ffsimsampler (class in ffsim.qiskit)": [[4, "ffsim.qiskit.FfsimSampler", false]], "final_orbital_rotation (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.final_orbital_rotation", false]], "final_state_vector() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.final_state_vector", false]], "from_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_diag_coulomb_mats", false]], "from_fcidump() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_fcidump", false]], "from_fermion_operator() (ffsim.diagonalcoulombhamiltonian static method)": [[0, "ffsim.DiagonalCoulombHamiltonian.from_fermion_operator", false]], "from_json() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_json", false]], "from_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian static method)": [[0, "ffsim.DoubleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_molecular_hamiltonian() (ffsim.singlefactorizedhamiltonian static method)": [[0, "ffsim.SingleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_orbital_rotation() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_orbital_rotation", false]], "from_parameters() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_parameters", false]], "from_parameters() (ffsim.hopgateansatzoperator static method)": [[0, "ffsim.HopGateAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.uccsdoprestrictedreal static method)": [[0, "ffsim.UCCSDOpRestrictedReal.from_parameters", false]], "from_parameters() (ffsim.ucjanglesopspinbalanced static method)": [[0, "ffsim.UCJAnglesOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_parameters", false]], "from_parameters() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_parameters", false]], "from_scf() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_scf", false]], "from_t_amplitudes() (ffsim.ucjanglesopspinbalanced static method)": [[0, "ffsim.UCJAnglesOpSpinBalanced.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_t_amplitudes", false]], "from_ucj_op() (ffsim.ucjanglesopspinbalanced static method)": [[0, "ffsim.UCJAnglesOpSpinBalanced.from_ucj_op", false]], "generate_norb_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec", false]], "generate_norb_nelec_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec_spin", false]], "generate_norb_nocc() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nocc", false]], "generate_norb_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_spin", false]], "givens_decomposition() (in module ffsim.linalg)": [[2, "ffsim.linalg.givens_decomposition", false]], "givensansatzop (class in ffsim)": [[0, "ffsim.GivensAnsatzOp", false]], "givensansatzopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpJW", false]], "givensansatzopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW", false]], "givensrotation (class in ffsim.linalg)": [[2, "ffsim.linalg.GivensRotation", false]], "hamiltonian (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.hamiltonian", false]], "hartree_fock_state() (in module ffsim)": [[0, "ffsim.hartree_fock_state", false]], "hf_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_energy", false]], "hf_mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_coeff", false]], "hf_mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_occ", false]], "hopgateansatzoperator (class in ffsim)": [[0, "ffsim.HopGateAnsatzOperator", false]], "i (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.i", false]], "init_cache() (in module ffsim)": [[0, "ffsim.init_cache", false]], "int (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.INT", false]], "interaction_pairs (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.interaction_pairs", false]], "interaction_pairs (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.interaction_pairs", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.inverse", false]], "is_antihermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_antihermitian", false]], "is_hermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_hermitian", false]], "is_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_orthogonal", false]], "is_real_symmetric() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_real_symmetric", false]], "is_special_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_special_orthogonal", false]], "is_unitary() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_unitary", false]], "j (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.j", false]], "jordan_wigner() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.jordan_wigner", false]], "linear_operator() (in module ffsim)": [[0, "ffsim.linear_operator", false]], "lup() (in module ffsim.linalg)": [[2, "ffsim.linalg.lup", false]], "many_body_order() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.many_body_order", false]], "match_global_phase() (in module ffsim.linalg)": [[2, "ffsim.linalg.match_global_phase", false]], "mergeorbitalrotations (class in ffsim.qiskit)": [[4, "ffsim.qiskit.MergeOrbitalRotations", false]], "minimize_linear_method() (in module ffsim.optimize)": [[3, "ffsim.optimize.minimize_linear_method", false]], "mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_coeff", false]], "mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_occ", false]], "modified_cholesky() (in module ffsim.linalg)": [[2, "ffsim.linalg.modified_cholesky", false]], "module": [[0, "module-ffsim", false], [1, "module-ffsim.contract", false], [2, "module-ffsim.linalg", false], [3, "module-ffsim.optimize", false], [4, "module-ffsim.qiskit", false], [5, "module-ffsim.random", false], [6, "module-ffsim.testing", false]], "mole (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.mole", false]], "moleculardata (class in ffsim)": [[0, "ffsim.MolecularData", false]], "molecularhamiltonian (class in ffsim)": [[0, "ffsim.MolecularHamiltonian", false]], "mp2_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_energy", false]], "mp2_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_t2", false]], "multireference_state() (in module ffsim)": [[0, "ffsim.multireference_state", false]], "multireference_state_prod() (in module ffsim)": [[0, "ffsim.multireference_state_prod", false]], "n_params() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.n_params", false]], "n_params() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.n_params", false]], "n_params() (ffsim.uccsdoprestrictedreal static method)": [[0, "ffsim.UCCSDOpRestrictedReal.n_params", false]], "n_params() (ffsim.ucjanglesopspinbalanced static method)": [[0, "ffsim.UCJAnglesOpSpinBalanced.n_params", false]], "n_params() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.n_params", false]], "n_params() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.n_params", false]], "n_params() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.n_params", false]], "n_reps (ffsim.ucjanglesopspinbalanced property)": [[0, "ffsim.UCJAnglesOpSpinBalanced.n_reps", false]], "n_reps (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.n_reps", false]], "n_reps (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.n_reps", false]], "n_reps (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.n_reps", false]], "nelec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.nelec", false]], "nelec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.nelec", false]], "norb (ffsim.diagonalcoulombhamiltonian property)": [[0, "ffsim.DiagonalCoulombHamiltonian.norb", false]], "norb (ffsim.doublefactorizedhamiltonian property)": [[0, "ffsim.DoubleFactorizedHamiltonian.norb", false]], "norb (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.norb", false]], "norb (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.norb", false]], "norb (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.norb", false]], "norb (ffsim.molecularhamiltonian property)": [[0, "ffsim.MolecularHamiltonian.norb", false]], "norb (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.norb", false]], "norb (ffsim.singlefactorizedhamiltonian property)": [[0, "ffsim.SingleFactorizedHamiltonian.norb", false]], "norb (ffsim.statevector attribute)": [[0, "ffsim.StateVector.norb", false]], "norb (ffsim.uccsdoprestrictedreal property)": [[0, "ffsim.UCCSDOpRestrictedReal.norb", false]], "norb (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.norb", false]], "norb (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.norb", false]], "norb (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.norb", false]], "normal_ordered() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.normal_ordered", false]], "num_op_sum_linop() (in module ffsim.contract)": [[1, "ffsim.contract.num_op_sum_linop", false]], "number_operator() (in module ffsim)": [[0, "ffsim.number_operator", false]], "numnumansatzopspinbalanced (class in ffsim)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced", false]], "numnumansatzopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW", false]], "numopsumevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW", false]], "numopsumevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW", false]], "one_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.one_body_integrals", false]], "one_body_linop() (in module ffsim.contract)": [[1, "ffsim.contract.one_body_linop", false]], "one_body_squares (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_squares", false]], "one_body_tensor (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_tensor", false]], "one_hot() (in module ffsim.linalg)": [[2, "ffsim.linalg.one_hot", false]], "orb (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.orb", false]], "orbital_rotations (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.orbital_rotations", false]], "orbital_symmetries (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.orbital_symmetries", false]], "orbitalrotationjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationJW", false]], "orbitalrotationspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW", false]], "phase_angles (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phase_angles", false]], "phis (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phis", false]], "pre_init (in module ffsim.qiskit)": [[4, "ffsim.qiskit.PRE_INIT", false]], "pre_init_passes() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.pre_init_passes", false]], "preparehartreefockjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockJW", false]], "preparehartreefockspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW", false]], "prepareslaterdeterminantjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW", false]], "prepareslaterdeterminantspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW", false]], "productstatesum (class in ffsim)": [[0, "ffsim.ProductStateSum", false]], "qiskit_vec_to_ffsim_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.qiskit_vec_to_ffsim_vec", false]], "random_antihermitian() (in module ffsim.random)": [[5, "ffsim.random.random_antihermitian", false]], "random_density_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_density_matrix", false]], "random_diagonal_coulomb_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_diagonal_coulomb_hamiltonian", false]], "random_double_factorized_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_double_factorized_hamiltonian", false]], "random_fermion_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_hamiltonian", false]], "random_fermion_operator() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_operator", false]], "random_hermitian() (in module ffsim.random)": [[5, "ffsim.random.random_hermitian", false]], "random_molecular_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_molecular_hamiltonian", false]], "random_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.random_nelec", false]], "random_occupied_orbitals() (in module ffsim.testing)": [[6, "ffsim.testing.random_occupied_orbitals", false]], "random_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_orthogonal", false]], "random_real_symmetric_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_real_symmetric_matrix", false]], "random_special_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_special_orthogonal", false]], "random_state_vector() (in module ffsim.random)": [[5, "ffsim.random.random_state_vector", false]], "random_t2_amplitudes() (in module ffsim.random)": [[5, "ffsim.random.random_t2_amplitudes", false]], "random_two_body_tensor() (in module ffsim.random)": [[5, "ffsim.random.random_two_body_tensor", false]], "random_uccsd_restricted() (in module ffsim.random)": [[5, "ffsim.random.random_uccsd_restricted", false]], "random_ucj_op_spin_balanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_balanced", false]], "random_ucj_op_spin_unbalanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_unbalanced", false]], "random_ucj_op_spinless() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spinless", false]], "random_unitary() (in module ffsim.random)": [[5, "ffsim.random.random_unitary", false]], "rdms() (in module ffsim)": [[0, "ffsim.rdms", false]], "reduced_matrix() (in module ffsim.linalg)": [[2, "ffsim.linalg.reduced_matrix", false]], "reduced_matrix_product_states() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.reduced_matrix_product_states", false]], "rotated() (ffsim.molecularhamiltonian method)": [[0, "ffsim.MolecularHamiltonian.rotated", false]], "run() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.run", false]], "run() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.run", false]], "run() (ffsim.qiskit.mergeorbitalrotations method)": [[4, "ffsim.qiskit.MergeOrbitalRotations.run", false]], "run_ccsd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_ccsd", false]], "run_cisd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_cisd", false]], "run_fci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_fci", false]], "run_mp2() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_mp2", false]], "run_sci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_sci", false]], "s (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.s", false]], "sample_slater_determinant() (in module ffsim)": [[0, "ffsim.sample_slater_determinant", false]], "sample_state_vector() (in module ffsim)": [[0, "ffsim.sample_state_vector", false]], "scf (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.scf", false]], "sci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_energy", false]], "sci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_vec", false]], "simulate_qdrift_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_qdrift_double_factorized", false]], "simulate_trotter_diag_coulomb_split_op() (in module ffsim)": [[0, "ffsim.simulate_trotter_diag_coulomb_split_op", false]], "simulate_trotter_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_trotter_double_factorized", false]], "simulatetrotterdiagcoulombsplitopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW", false]], "simulatetrotterdoublefactorizedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW", false]], "singlefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.SingleFactorizedHamiltonian", false]], "slater_determinant() (in module ffsim)": [[0, "ffsim.slater_determinant", false]], "slater_determinant_amplitudes() (in module ffsim)": [[0, "ffsim.slater_determinant_amplitudes", false]], "slater_determinant_rdms() (in module ffsim)": [[0, "ffsim.slater_determinant_rdms", false]], "spin (class in ffsim)": [[0, "ffsim.Spin", false]], "spin (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.spin", false]], "spin (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.spin", false]], "spin_square() (in module ffsim)": [[0, "ffsim.spin_square", false]], "states (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.states", false]], "statevector (class in ffsim)": [[0, "ffsim.StateVector", false]], "string (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.STRING", false]], "strings_to_addresses() (in module ffsim)": [[0, "ffsim.strings_to_addresses", false]], "supportsapplyunitary (class in ffsim)": [[0, "ffsim.SupportsApplyUnitary", false]], "supportsapproximateequality (class in ffsim)": [[0, "ffsim.SupportsApproximateEquality", false]], "supportsdiagonal (class in ffsim)": [[0, "ffsim.SupportsDiagonal", false]], "supportsfermionoperator (class in ffsim)": [[0, "ffsim.SupportsFermionOperator", false]], "supportslinearoperator (class in ffsim)": [[0, "ffsim.SupportsLinearOperator", false]], "supportstrace (class in ffsim)": [[0, "ffsim.SupportsTrace", false]], "symmetry (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.symmetry", false]], "thetas (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.thetas", false]], "thetas (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.thetas", false]], "thetas (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.thetas", false]], "to_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_diag_coulomb_mats", false]], "to_fcidump() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_fcidump", false]], "to_json() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_json", false]], "to_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_molecular_hamiltonian", false]], "to_number_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_number_representation", false]], "to_orbital_rotation() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_orbital_rotation", false]], "to_parameters() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_parameters", false]], "to_parameters() (ffsim.hopgateansatzoperator method)": [[0, "ffsim.HopGateAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.uccsdoprestrictedreal method)": [[0, "ffsim.UCCSDOpRestrictedReal.to_parameters", false]], "to_parameters() (ffsim.ucjanglesopspinbalanced method)": [[0, "ffsim.UCJAnglesOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.ucjopspinbalanced method)": [[0, "ffsim.UCJOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.ucjopspinless method)": [[0, "ffsim.UCJOpSpinless.to_parameters", false]], "to_parameters() (ffsim.ucjopspinunbalanced method)": [[0, "ffsim.UCJOpSpinUnbalanced.to_parameters", false]], "to_z_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_z_representation", false]], "trace() (in module ffsim)": [[0, "ffsim.trace", false]], "two_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.two_body_integrals", false]], "two_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.two_body_tensor", false]], "uccsdoprestrictedreal (class in ffsim)": [[0, "ffsim.UCCSDOpRestrictedReal", false]], "ucjanglesopspinbalanced (class in ffsim)": [[0, "ffsim.UCJAnglesOpSpinBalanced", false]], "ucjopspinbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinBalanced", false]], "ucjopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW", false]], "ucjopspinless (class in ffsim)": [[0, "ffsim.UCJOpSpinless", false]], "ucjopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinlessJW", false]], "ucjopspinunbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinUnbalanced", false]], "ucjopspinunbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW", false]], "vec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.vec", false]], "z_representation (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.z_representation", false]]}, "objects": {"": [[0, 0, 0, "-", "ffsim"]], "ffsim": [[0, 1, 1, "", "BitstringType"], [0, 1, 1, "", "DiagonalCoulombHamiltonian"], [0, 1, 1, "", "DoubleFactorizedHamiltonian"], [0, 1, 1, "", "FermionAction"], [0, 1, 1, "", "FermionOperator"], [0, 1, 1, "", "GivensAnsatzOp"], [0, 1, 1, "", "HopGateAnsatzOperator"], [0, 1, 1, "", "MolecularData"], [0, 1, 1, "", "MolecularHamiltonian"], [0, 1, 1, "", "NumNumAnsatzOpSpinBalanced"], [0, 1, 1, "", "ProductStateSum"], [0, 1, 1, "", "SingleFactorizedHamiltonian"], [0, 1, 1, "", "Spin"], [0, 1, 1, "", "StateVector"], [0, 1, 1, "", "SupportsApplyUnitary"], [0, 1, 1, "", "SupportsApproximateEquality"], [0, 1, 1, "", "SupportsDiagonal"], [0, 1, 1, "", "SupportsFermionOperator"], [0, 1, 1, "", "SupportsLinearOperator"], [0, 1, 1, "", "SupportsTrace"], [0, 1, 1, "", "UCCSDOpRestrictedReal"], [0, 1, 1, "", "UCJAnglesOpSpinBalanced"], [0, 1, 1, "", "UCJOpSpinBalanced"], [0, 1, 1, "", "UCJOpSpinUnbalanced"], [0, 1, 1, "", "UCJOpSpinless"], [0, 5, 1, "", "addresses_to_strings"], [0, 5, 1, "", "apply_diag_coulomb_evolution"], [0, 5, 1, "", "apply_fsim_gate"], [0, 5, 1, "", "apply_fswap_gate"], [0, 5, 1, "", "apply_givens_rotation"], [0, 5, 1, "", "apply_hop_gate"], [0, 5, 1, "", "apply_num_interaction"], [0, 5, 1, "", "apply_num_num_interaction"], [0, 5, 1, "", "apply_num_op_prod_interaction"], [0, 5, 1, "", "apply_num_op_sum_evolution"], [0, 5, 1, "", "apply_on_site_interaction"], [0, 5, 1, "", "apply_orbital_rotation"], [0, 5, 1, "", "apply_tunneling_interaction"], [0, 5, 1, "", "apply_unitary"], [0, 5, 1, "", "approx_eq"], [1, 0, 0, "-", "contract"], [0, 5, 1, "", "cre"], [0, 5, 1, "", "cre_a"], [0, 5, 1, "", "cre_b"], [0, 5, 1, "", "des"], [0, 5, 1, "", "des_a"], [0, 5, 1, "", "des_b"], [0, 5, 1, "", "diag"], [0, 5, 1, "", "dim"], [0, 5, 1, "", "dims"], [0, 5, 1, "", "expectation_one_body_power"], [0, 5, 1, "", "expectation_one_body_product"], [0, 5, 1, "", "fermi_hubbard_1d"], [0, 5, 1, "", "fermi_hubbard_2d"], [0, 5, 1, "", "fermion_operator"], [0, 5, 1, "", "hartree_fock_state"], [0, 5, 1, "", "init_cache"], [2, 0, 0, "-", "linalg"], [0, 5, 1, "", "linear_operator"], [0, 5, 1, "", "multireference_state"], [0, 5, 1, "", "multireference_state_prod"], [0, 5, 1, "", "number_operator"], [3, 0, 0, "-", "optimize"], [4, 0, 0, "-", "qiskit"], [5, 0, 0, "-", "random"], [0, 5, 1, "", "rdms"], [0, 5, 1, "", "sample_slater_determinant"], [0, 5, 1, "", "sample_state_vector"], [0, 5, 1, "", "simulate_qdrift_double_factorized"], [0, 5, 1, "", "simulate_trotter_diag_coulomb_split_op"], [0, 5, 1, "", "simulate_trotter_double_factorized"], [0, 5, 1, "", "slater_determinant"], [0, 5, 1, "", "slater_determinant_amplitudes"], [0, 5, 1, "", "slater_determinant_rdms"], [0, 5, 1, "", "spin_square"], [0, 5, 1, "", "strings_to_addresses"], [6, 0, 0, "-", "testing"], [0, 5, 1, "", "trace"]], "ffsim.BitstringType": [[0, 2, 1, "", "BIT_ARRAY"], [0, 2, 1, "", "INT"], [0, 2, 1, "", "STRING"]], "ffsim.DiagonalCoulombHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_fermion_operator"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"]], "ffsim.DoubleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_molecular_hamiltonian"], [0, 3, 1, "", "to_number_representation"], [0, 3, 1, "", "to_z_representation"], [0, 2, 1, "", "z_representation"]], "ffsim.FermionAction": [[0, 2, 1, "", "action"], [0, 2, 1, "", "orb"], [0, 2, 1, "", "spin"]], "ffsim.FermionOperator": [[0, 3, 1, "", "conserves_particle_number"], [0, 3, 1, "", "conserves_spin_z"], [0, 3, 1, "", "many_body_order"], [0, 3, 1, "", "normal_ordered"]], "ffsim.GivensAnsatzOp": [[0, 3, 1, "", "from_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "phase_angles"], [0, 2, 1, "", "phis"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_orbital_rotation"], [0, 3, 1, "", "to_parameters"]], "ffsim.HopGateAnsatzOperator": [[0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.MolecularData": [[0, 2, 1, "", "active_space"], [0, 2, 1, "", "atom"], [0, 2, 1, "", "basis"], [0, 2, 1, "", "ccsd_energy"], [0, 2, 1, "", "ccsd_t1"], [0, 2, 1, "", "ccsd_t2"], [0, 2, 1, "", "cisd_energy"], [0, 2, 1, "", "cisd_vec"], [0, 2, 1, "", "core_energy"], [0, 2, 1, "", "dipole_integrals"], [0, 2, 1, "", "fci_energy"], [0, 2, 1, "", "fci_vec"], [0, 3, 1, "", "from_fcidump"], [0, 3, 1, "", "from_json"], [0, 3, 1, "", "from_scf"], [0, 4, 1, "", "hamiltonian"], [0, 2, 1, "", "hf_energy"], [0, 2, 1, "", "hf_mo_coeff"], [0, 2, 1, "", "hf_mo_occ"], [0, 2, 1, "", "mo_coeff"], [0, 2, 1, "", "mo_occ"], [0, 4, 1, "", "mole"], [0, 2, 1, "", "mp2_energy"], [0, 2, 1, "", "mp2_t2"], [0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "one_body_integrals"], [0, 2, 1, "", "orbital_symmetries"], [0, 3, 1, "", "run_ccsd"], [0, 3, 1, "", "run_cisd"], [0, 3, 1, "", "run_fci"], [0, 3, 1, "", "run_mp2"], [0, 3, 1, "", "run_sci"], [0, 4, 1, "", "scf"], [0, 2, 1, "", "sci_energy"], [0, 2, 1, "", "sci_vec"], [0, 2, 1, "", "spin"], [0, 2, 1, "", "symmetry"], [0, 3, 1, "", "to_fcidump"], [0, 3, 1, "", "to_json"], [0, 2, 1, "", "two_body_integrals"]], "ffsim.MolecularHamiltonian": [[0, 2, 1, "", "constant"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "rotated"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.NumNumAnsatzOpSpinBalanced": [[0, 3, 1, "", "from_diag_coulomb_mats"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_diag_coulomb_mats"], [0, 3, 1, "", "to_parameters"]], "ffsim.ProductStateSum": [[0, 2, 1, "", "coeffs"], [0, 2, 1, "", "states"]], "ffsim.SingleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "expectation_product_state"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_squares"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "reduced_matrix_product_states"]], "ffsim.Spin": [[0, 2, 1, "", "ALPHA"], [0, 2, 1, "", "ALPHA_AND_BETA"], [0, 2, 1, "", "BETA"]], "ffsim.StateVector": [[0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "vec"]], "ffsim.UCCSDOpRestrictedReal": [[0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "norb"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJAnglesOpSpinBalanced": [[0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "from_ucj_op"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinBalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinUnbalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinless": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.contract": [[1, 5, 1, "", "contract_diag_coulomb"], [1, 5, 1, "", "contract_num_op_sum"], [1, 5, 1, "", "contract_one_body"], [1, 5, 1, "", "diag_coulomb_linop"], [1, 5, 1, "", "num_op_sum_linop"], [1, 5, 1, "", "one_body_linop"]], "ffsim.linalg": [[2, 1, 1, "", "GivensRotation"], [2, 5, 1, "", "apply_matrix_to_slices"], [2, 5, 1, "", "double_factorized"], [2, 5, 1, "", "double_factorized_t2"], [2, 5, 1, "", "double_factorized_t2_alpha_beta"], [2, 5, 1, "", "expm_multiply_taylor"], [2, 5, 1, "", "givens_decomposition"], [2, 5, 1, "", "is_antihermitian"], [2, 5, 1, "", "is_hermitian"], [2, 5, 1, "", "is_orthogonal"], [2, 5, 1, "", "is_real_symmetric"], [2, 5, 1, "", "is_special_orthogonal"], [2, 5, 1, "", "is_unitary"], [2, 5, 1, "", "lup"], [2, 5, 1, "", "match_global_phase"], [2, 5, 1, "", "modified_cholesky"], [2, 5, 1, "", "one_hot"], [2, 5, 1, "", "reduced_matrix"]], "ffsim.linalg.GivensRotation": [[2, 2, 1, "", "c"], [2, 2, 1, "", "i"], [2, 2, 1, "", "j"], [2, 2, 1, "", "s"]], "ffsim.optimize": [[3, 5, 1, "", "minimize_linear_method"]], "ffsim.qiskit": [[4, 1, 1, "", "DiagCoulombEvolutionJW"], [4, 1, 1, "", "DiagCoulombEvolutionSpinlessJW"], [4, 1, 1, "", "DropNegligible"], [4, 1, 1, "", "FfsimSampler"], [4, 1, 1, "", "GivensAnsatzOpJW"], [4, 1, 1, "", "GivensAnsatzOpSpinlessJW"], [4, 1, 1, "", "MergeOrbitalRotations"], [4, 1, 1, "", "NumNumAnsatzOpSpinBalancedJW"], [4, 1, 1, "", "NumOpSumEvolutionJW"], [4, 1, 1, "", "NumOpSumEvolutionSpinlessJW"], [4, 1, 1, "", "OrbitalRotationJW"], [4, 1, 1, "", "OrbitalRotationSpinlessJW"], [4, 6, 1, "", "PRE_INIT"], [4, 1, 1, "", "PrepareHartreeFockJW"], [4, 1, 1, "", "PrepareHartreeFockSpinlessJW"], [4, 1, 1, "", "PrepareSlaterDeterminantJW"], [4, 1, 1, "", "PrepareSlaterDeterminantSpinlessJW"], [4, 1, 1, "", "SimulateTrotterDiagCoulombSplitOpJW"], [4, 1, 1, "", "SimulateTrotterDoubleFactorizedJW"], [4, 1, 1, "", "UCJOpSpinBalancedJW"], [4, 1, 1, "", "UCJOpSpinUnbalancedJW"], [4, 1, 1, "", "UCJOpSpinlessJW"], [4, 5, 1, "", "ffsim_vec_to_qiskit_vec"], [4, 5, 1, "", "final_state_vector"], [4, 5, 1, "", "jordan_wigner"], [4, 5, 1, "", "pre_init_passes"], [4, 5, 1, "", "qiskit_vec_to_ffsim_vec"]], "ffsim.qiskit.DiagCoulombEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DropNegligible": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.FfsimSampler": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.GivensAnsatzOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.MergeOrbitalRotations": [[4, 3, 1, "", "run"]], "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.NumOpSumEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.NumOpSumEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.PrepareHartreeFockJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareHartreeFockSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinUnbalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.random": [[5, 5, 1, "", "random_antihermitian"], [5, 5, 1, "", "random_density_matrix"], [5, 5, 1, "", "random_diagonal_coulomb_hamiltonian"], [5, 5, 1, "", "random_double_factorized_hamiltonian"], [5, 5, 1, "", "random_fermion_hamiltonian"], [5, 5, 1, "", "random_fermion_operator"], [5, 5, 1, "", "random_hermitian"], [5, 5, 1, "", "random_molecular_hamiltonian"], [5, 5, 1, "", "random_orthogonal"], [5, 5, 1, "", "random_real_symmetric_matrix"], [5, 5, 1, "", "random_special_orthogonal"], [5, 5, 1, "", "random_state_vector"], [5, 5, 1, "", "random_t2_amplitudes"], [5, 5, 1, "", "random_two_body_tensor"], [5, 5, 1, "", "random_uccsd_restricted"], [5, 5, 1, "", "random_ucj_op_spin_balanced"], [5, 5, 1, "", "random_ucj_op_spin_unbalanced"], [5, 5, 1, "", "random_ucj_op_spinless"], [5, 5, 1, "", "random_unitary"]], "ffsim.testing": [[6, 5, 1, "", "assert_allclose_up_to_global_phase"], [6, 5, 1, "", "generate_norb_nelec"], [6, 5, 1, "", "generate_norb_nelec_spin"], [6, 5, 1, "", "generate_norb_nocc"], [6, 5, 1, "", "generate_norb_spin"], [6, 5, 1, "", "random_nelec"], [6, 5, 1, "", "random_occupied_orbitals"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"], "6": ["py", "data", "Python data"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function", "6": "py:data"}, "terms": {"": [0, 2, 4, 8, 9, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23], "0": [0, 2, 3, 4, 6, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23], "00": 18, "000": 20, "0000000": [15, 18], "0000000000011100000000000111": 20, "0000000000011100000000011100": 20, "0000000000011100100000001100": 20, "0000000000110100000000001101": 20, "0000000001011000000000010110": 20, "0000000001011000100000000110": 20, "0000000001110000000000000111": 20, "0000000111100000011111": 20, "0000000111100110000111": 20, "0000010101100001011011": 20, "0000010110100001011011": 20, "0000100101100000111011": 20, "0000100110100000111011": 20, "0000111100001111": 20, "0000111100011011": 20, "0000111100011101": 20, "0000111100101011": 20, "0001": 3, "0001000001010000000000000111": 20, "0001110100001111": 20, "000e": 18, "0010000000011000000000010110": 20, "0010011100101101": 20, "0010101100001111": 20, "0010101100101101": 20, "001011": [0, 14], "0010110100100111": 20, "0010110100101011": 20, "0010575938908307025": 18, "001101": [0, 14], "001110": 14, "001761897637537816": 18, "005e": 15, "01": [15, 18], "0100000000100100000000000111": 20, "0100000110100100001111": 20, "010011": [0, 14], "0101": 0, "0101000001100000011111": 20, "010101": [0, 14], "010110": [0, 14], "0110": 0, "013e": 18, "02": [15, 18], "020e": 18, "02122442107773": 18, "02242": 2, "02459434j": 14, "02625": 2, "02998708j": 14, "03": 15, "03101213j": 14, "03525116j": 14, "03668541730983477": 23, "04": [15, 18], "04758323886585067": 18, "05": [0, 2, 3, 4, 18], "05395": 4, "06": 18, "0609050": 5, "0625": [0, 16], "06273307": 14, "06551571": 14, "06677383j": 14, "06844774j": 14, "07": [6, 18], "08": [0, 2, 3, 4], "08957": 2, "0909": 5, "09230004j": 16, "09723851": 14, "0b001011": 0, "0b010101": 0, "0b010110": 0, "0b100101": 0, "0b100110": 0, "0j": 16, "0x7fc434e2c400": 19, "0x7fc434e2ca60": 19, "0x7fc434e2cfa0": 19, "0x7fc434e2e410": 19, "0x7fc434e2efb0": 19, "0x7fc435615c30": 19, "0x7fc435723460": 19, "0x7fc435723a60": 19, "1": [0, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "10": [13, 18, 19, 20, 23], "100": 15, "1000": 3, "1000000101100000111011": 20, "100011": [0, 14], "100101": [0, 14], "100110": [0, 14], "101": 20, "1024": 4, "104": [15, 21], "1077416850249517": 20, "108": [20, 23], "108e": 15, "10_000": 20, "11": [0, 13, 19, 20, 23], "1102529j": 14, "11157654": 14, "112": 15, "12": [2, 13, 15, 16, 18, 23], "1207": 0, "12204343": 14, "1234": [9, 13, 14, 15, 19, 21], "12345": 20, "125": [0, 16], "126e": 18, "1278053627110059": 20, "1294": [15, 18], "12j": 16, "13": [0, 13, 18, 23], "13113848": 14, "132e": 15, "133": 20, "13327423j": 14, "13782298": 16, "13957088j": 14, "14": [13, 20], "15": [13, 15], "152e": 18, "1561685j": 14, "15624569": 14, "15828306": 14, "15x15": 15, "16": [13, 20], "160e": 18, "17": 13, "1711": [2, 4], "17181289596": 21, "17276745j": 14, "17558331": 14, "18": 13, "180": 15, "18007105": 14, "1808": 2, "18j": 16, "19": 0, "1e": [0, 2, 3, 4, 6, 15, 23], "1j": [0, 9, 16, 23], "2": [0, 1, 2, 4, 5, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "20835741": 14, "20881506": 14, "21": 0, "210": 20, "2104": 2, "2190712273": 9, "21928194": 14, "21984743e": 16, "22392824": 14, "23": 15, "23550198": 14, "23611476": 14, "24": [13, 19], "25": [0, 16], "25j": [0, 16], "26": 23, "26121865": 14, "263e": 18, "287e": 18, "29821173j": 14, "2d": 0, "2j": [0, 2, 16], "2n": 14, "3": [0, 2, 5, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "30052742j": 14, "31980058j": 14, "31g": [20, 21], "32": [13, 19], "329": 18, "33731417j": 14, "339": 18, "345": 18, "3484557063616": 20, "35": [0, 23], "36730125j": 14, "3714141": 14, "38435478j": 14, "39": [13, 14, 15, 16, 18, 19, 20], "39075171": 14, "3j": 16, "4": [0, 2, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "416e": 18, "418e": 15, "427e": 18, "429e": 18, "4390672": 14, "439e": 15, "455e": 18, "4561973913865": 20, "46": 18, "464957764796": 23, "46x46": 18, "47": 20, "478": 15, "48": [13, 20], "488e": 18, "49094286j": 14, "4j": 16, "5": [0, 3, 9, 13, 14, 15, 16, 18, 19, 20, 23], "5094": 5, "51253171j": 14, "518e": 18, "529": 18, "547e": 18, "55717072551569": 9, "557e": 18, "56": [13, 19, 20], "561e": 18, "5626": 18, "57": 20, "58888": 22, "5j": [0, 16], "6": [0, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "603e": 15, "6083": 0, "6332495815006": 15, "64": 14, "65": 20, "66": 20, "67794403659722": 15, "6787887956297": 15, "6787887956314": 15, "68381556798737": 15, "684e": 18, "6g": [0, 15, 18, 23], "6j": 16, "7": [0, 9, 13, 14, 15, 16, 18, 19, 23], "70": 20, "72": 18, "7288249991515": 15, "72x72": 18, "73105542j": 14, "747e": 15, "749e": 15, "75": [15, 20], "77": 18, "770421184784103e": 18, "8": [0, 13, 15, 16, 18, 19, 20, 23], "816e": 18, "826121241130568": 18, "8266321248744": 18, "835236570775": 20, "87160024816282": 18, "87363196954891": 18, "87363426554221": 18, "8736342801622": 18, "87363428118711": 18, "87387392946924": 18, "87421536374029": 18, "8742165643863": 18, "876e": 18, "9": [13, 14, 16, 19, 23], "91431234347536e": 18, "9289": 18, "940243511515908": 23, "949": 18, "958": 15, "9630419334856": 20, "99": 9, "990e": 18, "9924": 20, "9985212854201858": 23, "9985212854202294": 23, "9990810043136625": 18, "9991": 20, "9996731164188969": 23, "9998395119356727": 18, "A": [0, 1, 2, 3, 4, 5, 6, 8, 12, 13, 14, 16, 22, 23], "AND": 15, "As": [11, 13, 14, 18, 19, 23], "By": 21, "For": [0, 3, 4, 5, 8, 9, 11, 14, 15, 16, 22, 23], "If": [0, 1, 2, 3, 4, 5, 6, 13, 16], "In": [0, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "It": [0, 2, 3, 4, 13, 14, 16, 18, 20, 22], "Its": [3, 4], "NO": [15, 18], "No": 2, "Of": 11, "On": [14, 22], "One": [0, 23], "Such": 16, "That": [0, 3, 12, 16], "The": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "Their": 19, "Then": [0, 13], "There": 13, "These": [0, 5, 11, 16, 19], "To": [0, 8, 9, 11, 14, 18, 23], "With": [11, 14, 23], "_": [0, 1, 2, 4, 8, 11, 12, 15, 23], "_1": 12, "_2": 12, "__init__": 4, "_factr": 18, "_i": [0, 4], "_k": [0, 8, 11], "_nestedsequ": 4, "_supportsarrai": 4, "a_": [0, 4, 8, 9, 12, 16], "a_j": 1, "a_p": 0, "a_q": 0, "ab": [0, 23], "abil": 8, "abl": 22, "about": 21, "abov": [13, 16], "absenc": [0, 1, 4], "absolut": [0, 2, 4, 6], "acceler": 22, "accept": [12, 18], "access": [0, 9, 22], "accommod": 4, "accomod": 8, "accur": 8, "achiev": [2, 23], "across": 22, "act": [0, 2, 4, 9, 13, 15, 16], "action": [0, 1, 12, 16, 22, 23], "activ": [0, 15, 18, 20, 23], "active_spac": [0, 15, 18, 20, 21, 23], "actual": [6, 11], "ad": [0, 13, 18], "add": [13, 18], "addit": [0, 8, 16, 23], "addition": 2, "address": [0, 13], "addresses_to_str": [0, 7, 14], "adjac": 13, "advantag": 18, "after": [3, 18], "al": 2, "algebra": [2, 9, 16], "algorithm": [0, 2, 3, 18, 21], "alia": [0, 2], "align": [0, 11, 12], "all": [0, 1, 2, 3, 4, 6, 11, 13, 16, 20, 22], "alloc": 0, "allow": [0, 2, 5, 11, 13, 18, 22, 23], "along": 0, "alpha": [0, 1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 16, 19, 20], "alpha_and_beta": 0, "alpha_i": 0, "alpha_j": 0, "alreadi": [0, 4, 12], "also": [0, 2, 3, 5, 9, 12, 14, 16, 18, 23], "altern": [0, 8], "alwai": [0, 2, 5, 12, 14, 23], "amen": 13, "amplitud": [0, 2, 5, 18, 20], "an": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "angl": 0, "ani": [0, 3, 4, 5, 11, 12, 19, 20], "annihil": [0, 16], "anoth": [2, 6], "ansatz": [0, 3, 4, 5, 10, 13, 17, 19, 20, 21], "ansatz_oper": 0, "ansatz_st": 18, "anti": [2, 5], "anticommut": 12, "ao": 0, "ap": 2, "api": [14, 21], "appear": [0, 2, 13, 16, 20], "append": [0, 6, 13, 18, 19, 20], "appli": [0, 1, 2, 3, 4, 9, 11, 12, 13, 14, 18, 19, 20, 21, 23], "applic": 12, "apply_": 14, "apply_diag_coulomb_evolut": [0, 7, 8, 23], "apply_fsim_g": [0, 7], "apply_fswap_g": [0, 7], "apply_givens_rot": [0, 7], "apply_hop_g": [0, 7], "apply_matrix_to_slic": [2, 7], "apply_num_interact": [0, 7], "apply_num_num_interact": [0, 7], "apply_num_op_prod_interact": [0, 7], "apply_num_op_sum_evolut": [0, 7, 12, 23], "apply_on_site_interact": [0, 7, 14], "apply_orbital_rot": [0, 7, 12, 14, 21], "apply_quad_ham_evolut": 12, "apply_tunneling_interact": [0, 7, 14], "apply_unitari": [0, 7, 18], "appropri": [0, 11], "approx": 8, "approx_eq": [0, 7], "approxim": [0, 2, 3, 8, 18, 23], "apt": 22, "ar": [0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 19, 20, 22], "arbitrari": [4, 20], "arch": 22, "arg": [0, 4], "argument": [0, 2, 3, 8, 9, 12, 14, 23], "aris": 8, "arithmet": 16, "around": 23, "arrai": [0, 1, 2, 4, 6, 9, 11, 14, 16], "arxiv": [0, 2, 4, 5], "ascend": 20, "assembl": 2, "assert": 14, "assert_allclose_up_to_global_phas": [6, 7], "assertionerror": 6, "associ": [0, 3, 14, 16, 18], "assum": [0, 4, 14], "asterisk": 0, "asymmetr": 8, "atol": [0, 2, 4, 6], "atom": [0, 15, 18, 20, 21, 23], "attempt": 2, "attribut": [0, 3, 9, 15, 18, 20], "author": 21, "auto": 0, "avail": [9, 19, 22], "avoid": [0, 9, 16], "awar": 16, "ax": [0, 2], "axi": [0, 2], "b": [0, 2, 3, 6, 12, 15, 18], "back": 4, "backend": [13, 19], "backflow": 3, "background": 23, "balanc": [0, 4, 5, 18, 20], "barrier": 20, "base": [0, 2, 4], "basepass": 4, "basesamplerv2": 4, "basi": [0, 2, 4, 12, 15, 18, 20, 21, 23], "basic": [9, 13], "basis_g": [13, 19], "bear": 23, "becaus": [0, 2, 8, 9, 13, 15, 16, 18], "been": [0, 8], "befor": [0, 13, 16, 22, 23], "begin": [0, 2, 11, 12, 14, 20, 23], "behavior": [2, 4, 5, 19], "being": [2, 16, 18], "below": [0, 18, 23], "benchmark": 0, "beta": [0, 1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 16, 19, 20], "beta_i": 0, "beta_j": 0, "better": 8, "between": [0, 2, 3, 11, 13], "bfg": [0, 2, 3, 15, 18], "bibtex": 21, "bit": [0, 13, 14], "bit_arrai": 0, "bitstr": [0, 14, 20], "bitstring_typ": [0, 14], "bitstringtyp": [0, 7, 14], "bla": 22, "bloc": 20, "block": 2, "block_diag": [0, 2], "bmod": 0, "bodi": [0, 1, 2, 5, 8, 9, 18, 23], "bond": 15, "bond_angle_deg": 15, "bond_dist": 18, "bool": [0, 1, 2, 3, 4, 5, 6], "both": [0, 1, 2, 4, 11, 15], "bound": [0, 2], "boundari": 0, "box": 13, "bq": 2, "bracket": 0, "braket": 0, "branch": 21, "brickwork": 15, "browser": 22, "buffer": 4, "build": [13, 17, 18, 20, 21, 22], "built": [19, 20, 23], "byte": [0, 4], "bz2": 0, "c": [2, 18], "c2v": 15, "cach": 0, "calcul": [0, 14, 18], "call": [0, 3, 8, 9, 12, 14, 16, 18, 20, 23], "callabl": [3, 18], "callback": [0, 2, 3, 18], "can": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23], "cannot": 20, "canon": 0, "casci": [15, 18], "case": [0, 6, 13, 15], "categori": 21, "caus": 0, "cc": [18, 20], "ccsd": [0, 18, 20], "ccsd_energi": 0, "ccsd_t1": 0, "ccsd_t2": 0, "cd": 22, "cdot": 2, "cell": [9, 13, 14, 18, 19, 20, 23], "certain": [2, 13], "challeng": 11, "character": 0, "check": [2, 4, 6], "chemcor": 23, "chemic": 0, "chemical_potenti": 0, "chemistri": 21, "choic": [0, 6, 13, 14], "choleski": [0, 2], "choos": [2, 14], "chosen": 0, "ci": [15, 18], "circuit": [0, 4, 8, 13, 14, 17, 21], "circul": 0, "cisd": 0, "cisd_energi": 0, "cisd_vec": 0, "class": [0, 2, 4, 5, 9, 11, 15, 17, 18, 20, 21, 23], "clement": 2, "clone": 22, "close": [11, 18], "cluster": [0, 4, 5, 10, 17, 21], "co": [0, 15], "code": [4, 9, 13, 14, 16, 18, 19, 20, 23], "coeff": [0, 1, 4, 13, 19], "coeffici": [0, 1, 2, 4, 12, 16], "collect": [0, 2, 4, 18], "column": [0, 2, 12, 14], "com": [21, 22], "comb": 4, "combin": [0, 1, 4, 12, 13, 16], "command": 22, "commonli": [8, 20], "commun": [21, 22], "commut": 8, "compact": [8, 23], "compar": [0, 6, 23], "compil": 22, "complet": 0, "complex": [0, 1, 2, 4, 5, 9], "compon": [0, 16, 21], "compos": [4, 22], "compress": [0, 2], "compris": [0, 16], "comput": [0, 2, 4, 9, 12, 18, 21, 23], "concaten": [0, 14], "concret": 9, "condit": 0, "configur": [0, 4, 13, 14, 22], "conflict": 6, "conj": [2, 12, 20], "conjug": 2, "connect": [0, 11, 13], "consecut": [4, 20], "conserv": [0, 5, 16, 21], "conserves_particle_numb": [0, 16], "conserves_spin_z": [0, 16], "consid": [11, 12, 13], "consist": [0, 9, 13], "constant": [0, 5, 8, 9, 11, 13, 19], "constrain": 2, "constraint": [11, 18], "construct": [0, 1, 3, 4, 13, 14, 15, 16, 18, 19, 20, 23], "contain": [0, 2, 3, 5, 13, 16, 20, 21, 22], "contract": [2, 7, 21], "contract_diag_coulomb": [1, 7], "contract_num_op_sum": [1, 7], "contract_one_bodi": [1, 7], "contrast": 14, "control": [3, 13], "conveni": 14, "convent": 0, "converg": [3, 15, 18, 20, 23], "convers": [11, 18], "convert": [0, 1, 4, 14, 16, 18, 20, 21, 23], "coordin": 0, "coov": 20, "copi": [0, 16], "core": 0, "core_energi": 0, "correl": 3, "correspond": [0, 2, 3, 4, 8, 12, 13, 14, 18], "cost": 0, "coulomb": [0, 1, 2, 4, 5, 8, 11, 23], "count": [0, 13, 20], "count_op": [13, 19], "coupl": 0, "cours": 11, "cp": [13, 19], "cphaseg": 13, "cre": [0, 7], "cre_a": [0, 7, 16], "cre_b": [0, 7, 16], "creat": [0, 4, 13, 14, 16, 19, 20, 21, 23], "creation": [0, 4, 12, 16], "criteria": 16, "current": [0, 2, 18], "d": [2, 22], "d2h": 18, "dag": 4, "dagcircuit": 4, "dagger": [0, 1, 2, 8, 11, 12, 16], "dagger_": [0, 4, 8, 9, 12], "dagger_i": 1, "dagger_p": 0, "dagger_q": 0, "data": [0, 5, 13, 15, 16, 18, 20, 21, 23], "daunt": 8, "de": [0, 7], "decompos": [2, 4, 8, 13, 19], "decomposit": [0, 2, 4, 8, 10, 19, 21, 23], "decreas": [0, 18], "def": [2, 12, 15, 18, 23], "default": [0, 2, 3, 4, 5, 8, 9, 23], "default_rng": [0, 4, 5, 6, 9, 13, 15, 19, 20], "default_shot": [4, 20], "defaultdict": 18, "defin": [0, 2, 13, 15, 18, 20, 23], "definit": [0, 2, 3, 5, 14], "demonstr": [14, 18, 20], "denot": [0, 1, 2, 4, 12], "dens": 15, "densiti": [0, 5], "depend": [0, 2, 3, 22, 23], "depolar": 4, "depth": 11, "deriv": 8, "des_a": [0, 7, 16], "des_b": [0, 7, 16], "descend": [0, 16], "describ": [0, 1, 2, 8, 11, 12, 13, 16, 23], "descript": [0, 4], "design": [0, 2, 12], "desir": [0, 2, 5, 6], "destroi": [0, 16], "detail": [13, 19], "determin": [0, 2, 4, 14], "determinant": 0, "dev": 22, "devel": 22, "develop": [4, 21], "devic": [13, 19], "df_hamiltonian": [13, 19, 23], "df_hamiltonian_alt": 23, "diag": [0, 7], "diag_coulomb_indic": [0, 2], "diag_coulomb_jw": 13, "diag_coulomb_linop": [1, 7], "diag_coulomb_mat": [0, 2, 13, 19, 20, 23], "diagcoulombevolutionjw": [4, 7, 13, 19, 20], "diagcoulombevolutionspinlessjw": [4, 7], "diagon": [0, 1, 2, 4, 5, 8, 11, 23], "diagonal_coulomb_mat": 2, "diagonalcoulombhamiltonian": [0, 4, 5, 7], "dict": [0, 2, 3, 15, 18], "dictionari": [0, 16], "did": 0, "differ": [0, 2, 3, 9, 11, 13, 18, 22, 23], "dim": [0, 5, 7, 14, 16], "dim_a": [0, 14], "dim_b": [0, 14], "dimens": [0, 2, 5, 14], "dimension": [0, 2, 4, 14], "dipol": 0, "dipole_integr": 0, "direct": [0, 23], "directli": [13, 18, 22, 23], "directori": 22, "discuss": [8, 12, 13], "disjoint": 2, "disk": 0, "displai": [13, 16, 20], "distinguish": 14, "distribut": [4, 5], "divid": 8, "divis": [0, 16], "dnf": 22, "do": [8, 13, 16], "doc": [15, 18, 21], "docker": 21, "dockerfil": 22, "document": [0, 2], "doe": [0, 4, 16, 18, 20], "don": 11, "dooh": [20, 21, 23], "dot": 0, "doubl": [0, 2, 4, 5, 10, 21, 24], "double_factor": [0, 2, 7], "double_factorized_t2": [2, 7], "double_factorized_t2_alpha_beta": [2, 7], "doublefactorizedhamiltonian": [0, 4, 5, 7, 23], "down": 14, "draw": [13, 19], "drop": [4, 15, 18], "dropneglig": [4, 7], "dtype": [2, 4, 5, 9, 15, 18], "due": 20, "dump": [15, 18], "duplic": 0, "dure": 4, "e": [0, 2, 4, 8, 9, 11, 15, 16, 18, 20], "e_corr": [18, 20], "each": [0, 2, 3, 4, 5, 8, 11, 14, 16, 18, 22, 23], "edg": 0, "effect": [0, 4, 13], "effici": [8, 13, 16], "eig": [9, 16], "eigendecomposit": 12, "eigenvalu": [0, 2, 3, 9], "eigenvector": [0, 2], "eigh": [12, 23], "eigsh": 9, "einsum": 23, "either": [0, 1, 2, 4, 5, 6, 11], "electon": 4, "electron": [0, 1, 4, 5, 9, 13, 14, 15, 19, 20, 23], "element": [0, 1, 2, 4, 20, 23], "ell": 2, "els": [0, 5, 14], "elsewher": 0, "enabl": 2, "encount": 20, "end": [0, 2, 11, 12, 20, 23], "energi": [0, 3, 9, 12, 18, 20, 21, 23], "energy_nuc": [15, 18], "enough": 4, "ensur": 9, "entangl": [0, 17, 21], "entir": [2, 8], "entri": [0, 2, 4, 5, 11, 14, 23], "enum": 0, "enumer": [0, 18], "environ": 22, "epsilon": 3, "epsmch": 18, "equal": [0, 2, 5, 6, 13], "equal_nan": 6, "equilibrium": 15, "equival": [0, 4], "err_msg": 6, "error": [0, 2, 4, 6, 23], "especi": 16, "estim": 9, "et": 2, "etc": 0, "ethen": 18, "evalu": [3, 15], "even": 13, "everi": 12, "everywher": 14, "evolut": [0, 4, 9, 23], "evolv": [0, 23], "evolved_vec": 9, "evolved_vec_2": 9, "exact": [2, 8, 9, 23], "exact_st": 23, "exampl": [0, 4, 9, 11, 13, 14, 15, 16, 18, 19, 22], "exce": [2, 15, 23], "except": [2, 3], "excit": 13, "exist": [2, 4], "exp": [0, 2, 4, 6], "expand": 0, "expanded_diag_coulomb_mat": 2, "expanded_orbital_rot": 2, "expans": [2, 3], "expect": [0, 3], "expectation_one_body_pow": [0, 7], "expectation_one_body_product": [0, 7], "expectation_product_st": 0, "expens": [0, 2], "explain": [9, 11, 13, 14, 18, 23], "explan": [0, 19, 21], "explicit": 0, "explicitli": 0, "exploit": 21, "expm": 2, "expm_multipli": [9, 23], "expm_multiply_taylor": [2, 7], "exponenti": [8, 9, 23], "expos": [4, 13], "express": [11, 14, 23], "extra": 8, "extract": 20, "f": [3, 14, 15, 18, 20, 23], "facilit": 11, "fact": 15, "factor": [0, 2, 4, 5, 10, 21, 24], "failur": 6, "fake_provid": [13, 19], "fals": [0, 1, 2, 4, 5, 15, 16, 18], "far": 16, "fast": 0, "faster": [18, 21], "fault": 11, "fci": [0, 14, 15, 18], "fci_energi": 0, "fci_vec": 0, "fcidump": 0, "fcivec": 0, "fedora": 22, "feenberg": 3, "fermi": 0, "fermi_hubbard_1d": [0, 7], "fermi_hubbard_2d": [0, 7], "fermion": [0, 4, 5, 6, 8, 10, 11, 12, 16, 19, 20, 21], "fermion_oper": [0, 7], "fermionact": [0, 7], "fermionoper": [0, 4, 5, 7, 17, 21], "few": [14, 22], "fewer": [13, 19, 23], "ffsim": [7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23], "ffsim_vec_to_qiskit_vec": [4, 7], "ffsimsampl": [4, 7], "fidel": 23, "field": [0, 2], "fifth": 13, "file": [0, 22], "filter": 0, "final": [0, 3, 4, 5, 13, 19, 23], "final_givens_ansatz_op": 0, "final_orbital_rot": 0, "final_st": [18, 23], "final_state_vector": [4, 7], "finish": 23, "finit": 3, "first": [0, 2, 4, 8, 13, 14, 18, 20, 23], "fix": 14, "flag": 0, "float": [0, 2, 3, 4, 5, 6, 9, 12, 23], "float64": [9, 15, 18], "fock": [0, 4, 11, 14, 18, 21, 23], "focu": 9, "follow": [0, 2, 3, 4, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23], "foot": 0, "forg": [0, 17, 21], "form": [0, 1, 2, 4, 5, 8, 9, 11, 12, 16, 20, 23], "format": [0, 4], "formula": [0, 23], "fourth": [8, 13], "frac": [0, 2], "frac12": [0, 8, 9, 11], "frac18": 0, "framework": 22, "from": [0, 2, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "from_diag_coulomb_mat": 0, "from_fcidump": 0, "from_fermion_oper": 0, "from_json": 0, "from_molecular_hamiltonian": [0, 23], "from_orbital_rot": 0, "from_paramet": [0, 13, 18], "from_scf": [0, 15, 18, 20, 21, 23], "from_t_amplitud": [0, 18, 20], "from_ucj_op": 0, "frozen": [18, 20], "fsim": 0, "fswap": 0, "ftol": [3, 18], "full": [0, 2, 13, 14, 15], "fulli": 9, "fun": [3, 15, 18], "function": [0, 1, 2, 3, 8, 9, 12, 14, 15, 16, 18, 19, 23], "fundament": 12, "further": [13, 14], "furthermor": [0, 2], "g": [0, 4, 15], "g_": 2, "g_1": 2, "g_i": 3, "g_k": 2, "g_l": 2, "gate": [0, 4, 10, 11, 15, 20, 21], "gener": [0, 3, 4, 5, 6, 8, 13, 14, 15, 19, 20, 21], "generate_norb_nelec": [6, 7], "generate_norb_nelec_spin": [6, 7], "generate_norb_nocc": [6, 7], "generate_norb_spin": [6, 7], "generate_preset_pass_manag": [13, 19], "genericbackendv2": [13, 19], "get": [0, 14, 15, 18, 20, 21, 23], "get_count": 20, "get_hcor": [15, 18], "get_ovlp": [15, 18], "git": 22, "github": [21, 22], "give": [0, 2, 8, 14, 19], "given": [0, 2, 4, 6, 8, 12], "givens_ansatz_op": [0, 4], "givens_decomposit": [2, 7], "givens_interaction_pair": 0, "givensansatzop": [0, 4, 7], "givensansatzopjw": [4, 7], "givensansatzopspinlessjw": [4, 7], "givensrot": [2, 7], "global": [4, 6], "global_depolar": 4, "go": [0, 13, 16], "good": 16, "gradient": [2, 3, 18], "greater": 3, "ground": [9, 18], "gt": [15, 18, 19, 20], "gto": [15, 18, 20, 21, 23], "gtol": 3, "guarante": [4, 19], "guess": [3, 18], "guid": [11, 15, 18, 19, 20, 21], "gzip": 0, "h": [0, 8, 9, 15, 18, 20, 23], "h1_x": 15, "h2_x": 15, "h2_y": 15, "h_": [0, 2, 8, 9], "h_0": [8, 23], "h_k": [8, 23], "ha": [0, 1, 2, 4, 5, 8, 11, 12, 13, 14, 18], "haar": 5, "ham": 14, "hamiltonian": [0, 3, 4, 5, 10, 15, 18, 20, 21, 24], "hand": 14, "handl": [20, 23], "happen": 13, "hardwar": 13, "hartre": [0, 4, 11, 14, 18, 21, 23], "hartree_fock": 0, "hartree_fock_jw": 13, "hartree_fock_st": [0, 7, 9, 14, 18, 21, 23], "hasattr": 18, "hash": 16, "have": [0, 2, 8, 9, 11, 12, 13, 14, 16, 18, 20, 22], "height": 5, "helper": 16, "here": [0, 2, 8, 12, 13, 15, 23], "hermitian": [0, 2, 5, 12], "hess_inv": [15, 18], "hf": [15, 18], "hf_energi": 0, "hf_mo_coeff": 0, "hf_mo_occ": 0, "high": 13, "higher": [0, 8, 23], "hilbert": 5, "ho": 20, "hold": [0, 3], "home": [15, 18, 22], "hop": [0, 15], "hopgateansatzoper": [0, 7, 15], "hot": 2, "how": [0, 8, 9, 11, 12, 13, 14, 21, 23], "howev": [8, 13, 21], "http": [0, 21, 22], "hubbard": 0, "hydroxyl": 20, "hyperparamet": [3, 18], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "idea": 11, "ident": 0, "ignor": [0, 2, 8], "ij": [0, 1, 2, 4, 8, 11, 12], "ijab": 2, "ik": 12, "imag": 22, "implement": [0, 1, 3, 4, 8, 9, 11, 12, 13, 15, 18, 20, 21, 22, 24], "import": [0, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "impos": [11, 18], "improv": [3, 23], "includ": [0, 2, 4, 5, 8, 9, 12, 13, 14, 15, 18, 19, 21, 22], "incorpor": 0, "increas": [0, 14, 23], "increment": 3, "incur": 3, "independ": [0, 1, 4, 15], "index": [0, 2, 11, 14, 16], "indic": [0, 1, 2, 4, 5, 11, 14, 16], "individu": [8, 14, 16], "info": 18, "inform": [0, 9, 16, 18, 21, 23], "init_cach": [0, 7], "initi": [0, 3, 4, 5, 6, 9, 11, 13, 18, 19, 20, 23], "initial_st": 23, "initiali": 15, "input": [0, 1, 3, 4, 5, 6, 18, 20], "insert": 13, "instanc": [5, 9, 23], "instead": [0, 2, 4, 18, 23], "instruct": [21, 22], "instructionset": 19, "int": [0, 1, 2, 3, 4, 5, 6, 12, 15, 23], "integ": [0, 2, 4, 5, 6, 14], "integr": [0, 4], "interact": [0, 1, 2, 4, 5, 11, 13, 18, 20], "interaction_pair": [0, 5, 13, 15, 18, 20], "interfac": [18, 22], "interferomet": 2, "intermedi": 18, "intermediate_result": [3, 18], "intern": 16, "interpret": [0, 5, 11], "intor_symmetr": [15, 18], "introduc": [11, 12, 23], "invers": 4, "involv": [12, 13], "ip": 2, "ipykernel_4129": 9, "is_antihermitian": [2, 7], "is_hermitian": [2, 7], "is_orthogon": [2, 7], "is_real_symmetr": [2, 7], "is_special_orthogon": [2, 7], "is_unitari": [2, 7], "isclos": 0, "isn": 4, "issu": [9, 13], "item": 20, "iter": [0, 3, 4, 6, 18], "itertool": 2, "its": [0, 2, 4, 9, 13, 14, 15, 16, 23], "itself": [0, 14, 16], "j": [0, 1, 2, 4, 5, 8, 11, 12, 14, 15, 16], "jac": [3, 15, 18], "jastrow": [0, 3, 4, 5, 10, 17, 21], "ji": [0, 4, 11, 12], "jk": 12, "job": [4, 20], "jordan": [0, 4], "jordan_wign": [4, 7], "jq": 2, "json": [0, 15, 18], "jupyt": 22, "just": [0, 14, 18, 22, 23], "jwt": 4, "k": [0, 2, 3, 8, 9, 11, 16, 20, 23], "kappa": 0, "kappa_": 0, "keep": [0, 2], "kei": 20, "kij": 23, "know": 15, "known": [0, 8], "kpi": 23, "kqi": 23, "krj": 23, "kron": 0, "ksj": 23, "kwarg": [0, 4], "l": [0, 2, 3, 8, 11, 15, 18, 23], "label": [4, 14], "ladder": [8, 11], "lambda": [0, 4, 20], "lambda_i": [0, 1, 4, 12], "lambda_k": 12, "langl": 0, "larger": [0, 2, 3, 16], "last": [0, 2, 3, 4], "later": [19, 23], "lattic": [0, 11, 13, 18, 20], "layer": [0, 2, 13, 20], "lbfgsinvhessproduct": [15, 18], "ldot": [0, 2, 8, 11, 23], "lead": 0, "least": [2, 5], "left": [0, 4, 12, 14, 16], "len": [15, 18, 23], "length": [0, 4, 5, 14, 15], "leq": [0, 2, 5], "less": [2, 11], "let": [0, 13, 14, 16, 18, 19, 20, 23], "level": 23, "lexicograph": [0, 16], "lib": [15, 18], "libopenbla": 22, "librari": [0, 21], "like": [4, 11, 18, 22], "limit": [0, 2, 11, 13, 15, 18], "linalg": [0, 7, 9, 12, 16, 18, 21, 23], "lindep": 3, "line": [0, 11, 13, 18], "linear": [0, 1, 2, 3, 4, 9, 12, 13, 16], "linear_oper": [0, 7, 9, 16, 18, 21, 23], "linearli": 8, "linearoper": [0, 1, 3, 16, 18, 21, 23], "linop": [9, 16, 21, 23], "linux": 22, "list": [0, 2, 4, 5, 6, 11, 14, 15, 18, 20, 23], "ll": [9, 12, 13, 15, 18, 20, 23], "lm": 16, "load": 0, "local": [10, 17, 21], "localhost": 22, "log": [0, 4], "logarithm": 11, "logic": [12, 15], "longer": 11, "longest": 0, "lookup": 0, "losslessli": 0, "low": [0, 8, 23], "lower": [0, 2], "lowest": [0, 13, 14], "lt": [15, 18, 19, 20], "lu": 2, "lucj": [10, 13, 17, 21], "lup": [2, 7], "lvert": [0, 4, 11, 14], "lzma": 0, "m": [0, 1, 2, 12], "m_": [0, 1, 2], "maco": 22, "made": 23, "magnitud": 0, "mai": [0, 2, 3, 4, 11, 22, 23], "main": [18, 22], "maintain": 8, "make": [11, 13], "manag": [4, 13, 19, 22], "mani": [0, 9, 12, 14, 21], "manual": 23, "many_body_ord": 0, "map": [0, 4, 12, 13, 16], "mapsto": [0, 4, 12], "mat": [0, 1, 2, 4, 12, 14], "mat_aa": 2, "mat_ab": 2, "mat_bb": 2, "match": [0, 2], "match_global_phas": [2, 7], "math": [5, 15], "mathbf": [0, 8, 11, 12], "mathcal": [0, 1, 4, 8, 11, 12], "matric": [0, 1, 2, 4, 11, 12, 23], "matrix": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 14, 16], "max": [3, 23], "max_error": 23, "max_term_length": 5, "max_vec": [0, 2, 23], "maxfun": 15, "maximum": [0, 2, 3, 5, 23], "maxit": [3, 18], "mcscf": [15, 18], "mea": 20, "meant": [4, 19], "measur": [5, 8, 20], "measure_al": 20, "mention": 8, "merg": [4, 19], "mergeorbitalrot": [4, 7, 13], "messag": [6, 15, 18], "method": [0, 2, 3, 11, 15, 16, 20, 21], "mid": 20, "might": 2, "mind": 23, "minim": [0, 2, 3, 13, 15, 18], "minimize_linear_method": [3, 7, 18], "minimizz": 15, "minimum": 4, "mk": 2, "mkap": 2, "mkbq": 2, "mkip": 2, "mkjq": 2, "mkpq": 2, "mo_coeff": 0, "mo_occ": 0, "mode": 12, "model": 0, "modifi": [0, 2], "modified_choleski": [2, 7], "modul": [0, 14, 15, 19, 20], "mol": [15, 18, 20, 21, 23], "mol_data": [15, 18, 20, 21, 23], "mol_hamiltonian": [9, 15, 18, 20, 23], "mole": [0, 15, 18, 20, 21, 23], "molecul": [0, 18, 21, 23], "molecular": [0, 5, 9, 10, 14, 15, 18, 20, 21, 23], "moleculardata": [0, 7, 15, 18, 20, 21, 23], "molecularhamiltonian": [0, 5, 7, 9, 23], "more": [0, 2, 3, 4, 8, 9, 11, 13, 14, 19, 23], "most": [0, 2, 16, 20], "motiv": 13, "mp2": 0, "mp2_energi": 0, "mp2_t2": 0, "mpl": [13, 19], "msg": [15, 18], "mu": 0, "much": [0, 2, 8, 13, 21], "multipl": [0, 9, 16, 23], "multipli": [0, 16], "multiport": 2, "multirefer": 0, "multireference_st": [0, 7], "multireference_state_prod": [0, 7, 15], "must": [0, 2, 3, 4, 5, 16, 20], "n": [0, 2, 3, 8, 9, 11, 12, 14, 20, 21, 23], "n2": [20, 21, 23], "n_": [0, 1, 4, 8, 11, 12, 14], "n_alpha": [4, 6, 20], "n_beta": [4, 6, 20], "n_frozen": [20, 23], "n_i": 4, "n_j": 4, "n_layer": 15, "n_p": 0, "n_param": [0, 13], "n_qubit": 4, "n_rep": [0, 5, 13, 18, 19, 20], "n_sampl": 0, "n_step": [0, 4, 13, 19, 23], "n_term": 5, "n_vec": 2, "n_x": 0, "n_y": 0, "name": [0, 9, 13, 14, 19, 22], "namedtupl": [0, 2], "nan": 6, "nao_nr": [15, 18, 20, 21, 23], "nativ": 21, "navig": 22, "ndarrai": [0, 1, 2, 3, 4, 5, 6, 12, 18, 23], "nearest": 0, "nearest_neighbor_interact": 0, "need": [0, 4, 9, 11, 13, 20, 22, 23], "neg": [0, 4], "neglig": 4, "neighbor": [0, 13], "nelec": [0, 1, 4, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "nelectron": 18, "neq": 0, "nest": 2, "network": 11, "new": [0, 4, 12, 16], "newli": 0, "next": [13, 15, 23], "nfev": [3, 15, 18], "nit": [15, 18], "nitrogen": [20, 23], "njev": [15, 18], "nlinop": [3, 18], "nn": 0, "nocc": [0, 5, 6], "nocc_a": 2, "nocc_b": 2, "noisi": [4, 11], "non": [4, 11], "none": [0, 1, 2, 3, 4, 5, 6], "nonzero": [0, 2, 5, 11], "norb": [0, 1, 2, 4, 5, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "norb_i": 0, "norb_rang": 6, "norb_x": 0, "norm": [0, 18], "normal": [0, 15, 16], "normal_ord": [0, 16], "note": [0, 2, 3, 13, 14, 16, 19, 21], "notebook": 22, "notic": 18, "notimplementederror": 4, "now": [9, 13, 15, 18, 20, 23], "np": [0, 2, 4, 5, 6, 9, 12, 13, 15, 18, 19, 20, 21, 23], "num_num_ansatz_op": [0, 4], "num_num_interaction_pair": 0, "num_op_sum_linop": [1, 7], "number": [0, 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 18, 21, 23], "number_oper": [0, 7], "numer": [0, 2, 4, 16], "numnumansatzopspinbalanc": [0, 4, 7], "numnumansatzopspinbalancedjw": [4, 7], "numopsumevolutionjw": [4, 7, 13, 19], "numopsumevolutionspinlessjw": [4, 7], "numpi": [0, 1, 2, 4, 6, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23], "o": [0, 15, 20], "o_1": 0, "o_2": 0, "o_k": 0, "obj": 0, "object": [0, 2, 3, 4, 5, 9, 16, 18, 20], "obtain": [0, 8, 9, 12, 13, 18, 23], "occ_a": 6, "occ_b": 6, "occup": [0, 6, 8, 12, 14], "occupi": [0, 4, 5, 6, 13, 14], "occupied_orbit": [0, 4, 13, 19, 20], "often": [8, 11, 18], "onc": [12, 13, 22], "one": [0, 1, 2, 4, 5, 8, 9, 13, 14, 18, 20, 22, 23], "one_body_basis_chang": 23, "one_body_energi": 23, "one_body_integr": 0, "one_body_linop": [1, 7], "one_body_squar": 0, "one_body_tensor": [0, 9, 23], "one_hot": [2, 7], "one_rdm": 0, "ones": 9, "onli": [0, 2, 4, 8, 11, 12, 13, 20, 22], "onsit": 0, "onto": [13, 16], "op": [0, 4, 16], "op1": [0, 16], "op2": [0, 16], "op3": 16, "op4": 16, "opaqu": 13, "open": [0, 11], "openbla": 22, "oper": [0, 1, 2, 3, 4, 5, 8, 11, 12, 16, 18, 22, 23], "oppos": 13, "opposit": [18, 20], "optim": [0, 2, 4, 7, 11, 13, 19, 21], "optimization_level": [13, 19], "optimize_kwarg": 3, "optimize_regular": 3, "optimize_vari": 3, "optimizeresult": [3, 18], "option": [0, 1, 2, 3, 4, 5, 9, 15, 18, 22], "orb": [0, 16], "orbit": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 18, 20, 21, 23], "orbital_rot": [0, 1, 2, 4, 12, 13, 14, 19, 20, 21, 23], "orbital_rotation_a": 2, "orbital_rotation_b": 2, "orbital_symmetri": 0, "orbitalrotationjw": [4, 7, 13, 19, 20], "orbitalrotationspinlessjw": [4, 7], "order": [0, 1, 2, 4, 5, 8, 9, 13, 14, 16, 19, 20, 23], "ordereddict": [13, 19], "org": 0, "origin": [0, 2, 11, 13, 23], "orthogon": [2, 5], "other": [0, 4, 11, 14, 18, 19, 20], "otherwis": 0, "our": [15, 18, 20, 23], "out": [2, 23], "output": [0, 3, 4, 13, 18, 20], "over": 0, "overrid": [0, 2], "overwritten": [0, 15, 18], "own": 4, "p": [0, 2, 8, 9, 11, 13, 18, 19, 20], "packag": [15, 18, 22], "pacman": 22, "pad": 0, "page": [8, 9, 11, 12, 13, 14], "pair": [0, 1, 2, 4, 5, 6, 11, 13, 14], "pairs_aa": [13, 18, 20], "pairs_ab": [13, 18, 20], "pairs_bb": 20, "paper": 11, "parallel": [2, 11, 13], "param": 0, "paramet": [0, 1, 2, 3, 4, 5, 6, 11, 15, 18], "parameter": 0, "parameter_valu": 4, "params_to_vec": [3, 18], "pars": [15, 18], "part": [0, 5, 8, 12, 14, 15], "particl": [0, 5, 6, 12, 16, 21], "pass": [0, 1, 2, 4, 9, 12, 13, 14, 15, 16, 18, 19], "pass_manag": [13, 19], "passmanag": [4, 13], "path": 0, "pathlik": 0, "pattern": [13, 15], "pauli": 0, "per": 23, "perform": [0, 2, 3, 8, 9, 12, 13, 20, 23], "period": 0, "periodic_i": 0, "periodic_x": 0, "permut": 2, "persist": 22, "ph": 5, "phase": [0, 2, 4, 6, 13], "phase_angl": 0, "phaseg": 13, "phi": [0, 2, 6], "phi_0": 11, "pi": [0, 15], "piec": [9, 16], "pip": 21, "pipelin": 13, "pivot": 2, "pk": 2, "place": [0, 2, 11, 13, 16, 22], "plain": 14, "pmatrix": [0, 2], "point": 0, "polar": 0, "posit": [2, 3, 5, 14], "possibl": [0, 2, 6, 20, 21], "possibli": [0, 18], "potenti": 0, "power": 0, "pq": [0, 2, 8, 9], "pqr": [0, 2, 8, 9, 23], "practic": 8, "pre": [11, 19], "pre_init": [4, 7, 13, 19], "pre_init_pass": [4, 7, 19], "precis": 6, "prepar": [0, 4, 20], "preparehartreefockjw": [4, 7, 13, 19, 20], "preparehartreefockspinlessjw": [4, 7, 20], "prepareslaterdeterminantjw": [4, 7, 13, 19, 20], "prepareslaterdeterminantspinlessjw": [4, 7, 20], "present": 3, "preserv": [16, 20], "preset_passmanag": [13, 19], "previou": [18, 20], "previous": [8, 13, 14, 18], "primit": [4, 17, 21], "primitivejob": 4, "primitiveresult": 4, "print": [0, 6, 13, 14, 15, 16, 18, 20, 21, 23], "probabl": [0, 4], "problem": 3, "process": 0, "processor": 11, "prod": 15, "prod_": [0, 4, 11], "prod_k": 8, "prod_state_sum": 0, "produc": [0, 13], "product": [0, 2, 8, 14, 15, 16], "productstatesum": [0, 7], "programmat": 16, "properti": [0, 2, 12], "proport": [0, 8], "protocol": 0, "provid": [9, 13, 19, 22], "pseudorandom": [0, 4, 5, 6], "psi": [0, 11], "pub": [4, 20], "pub_result": 20, "put": 15, "py": [9, 15, 18], "pypi": 22, "pyscf": [0, 4, 14, 15, 18, 20, 21, 23], "python3": [15, 18], "q": [0, 8, 9, 13, 19], "qdrift": 0, "qi": 0, "qiskit": [7, 13, 17, 21, 22], "qiskit_vec_to_ffsim_vec": [4, 7], "qk": 2, "quadrat": [8, 10, 21, 23], "qualnam": 0, "quantifi": 2, "quantiti": 0, "quantum": [0, 4, 8, 11, 13, 14, 17, 20, 21], "quantumcircuit": [4, 13, 19, 20], "quantumregist": [13, 19, 20], "qubit": [0, 4, 10, 11, 15, 19, 20, 21], "r": [0, 2, 8, 9], "radic": 20, "radius_1": 15, "radius_2": 15, "rais": [0, 2, 4, 5, 6], "random": [0, 4, 6, 7, 9, 13, 14, 15, 16, 19, 20, 21], "random_antihermitian": [5, 7], "random_density_matrix": [5, 7], "random_diagonal_coulomb_hamiltonian": [5, 7], "random_double_factorized_hamiltonian": [5, 7, 13, 19], "random_fermion_hamiltonian": [5, 7], "random_fermion_oper": [5, 7], "random_hermitian": [5, 7], "random_molecular_hamiltonian": [5, 7], "random_nelec": [6, 7], "random_occupied_orbit": [6, 7], "random_orthogon": [5, 7], "random_real_symmetric_matrix": [5, 7, 9, 13, 19, 20], "random_special_orthogon": [5, 7], "random_state_vector": [5, 7, 16], "random_t2_amplitud": [5, 7], "random_two_body_tensor": [5, 7, 9], "random_uccsd_restrict": [5, 7], "random_ucj_op_spin_balanc": [5, 7, 13, 19], "random_ucj_op_spin_unbalanc": [5, 7, 19], "random_ucj_op_spinless": [5, 7], "random_unitari": [5, 7, 13, 14, 19, 20, 21], "rang": [0, 2, 6, 13, 14, 15, 18, 20, 21, 23], "rangl": [0, 4, 11, 14], "rank": [0, 2, 5, 8, 13], "rather": [0, 5, 12, 14], "rccsd": 20, "rdm": [0, 7], "rdm1": 0, "rdm2": 0, "rdm3": 0, "rdm4": 0, "reach": 18, "read": 0, "real": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 18, 21], "reason": [4, 12], "recal": 13, "recommend": [4, 13, 16, 19, 21], "reconstruct": [0, 2, 23], "reconstruct_t2_alpha_beta": 2, "recover": 0, "reduc": [0, 2, 13], "reduced_matrix": [2, 7], "reduced_matrix_product_st": 0, "reduct": 18, "redund": 11, "refer": [0, 2, 3, 4, 5, 6, 11, 12, 14, 18, 21], "reference_occup": [0, 15], "reference_occupations_spati": 15, "reference_st": 18, "regress": 0, "regular": [3, 18], "rel": [0, 2, 4, 6, 18], "rel_reduction_of_f_": 18, "relat": 12, "releas": 21, "reorder": [0, 8], "rep": 13, "repeat": 15, "repeatedli": 12, "repetit": [0, 5, 11, 13, 18], "repositori": 22, "repr": 16, "repres": [0, 2, 3, 4, 5, 6, 9, 11, 14, 16, 18, 19], "represent": [0, 1, 2, 4, 5, 10, 14, 16, 21, 23], "reproduc": 23, "request": 0, "requir": [0, 9, 11, 13, 14, 22], "reshap": 14, "respect": [0, 2, 3, 23], "rest": [0, 13], "restrict": [0, 5, 13, 18], "result": [0, 1, 2, 3, 4, 5, 8, 9, 11, 13, 15, 18, 19, 20, 23], "retain": [0, 13], "retriev": 20, "return": [0, 1, 2, 3, 4, 5, 6, 12, 15, 16, 18, 23], "revers": 20, "rewrit": 0, "rewritten": 12, "rhf": [15, 18, 20, 21, 23], "right": [0, 4, 12, 14, 16], "ring": 0, "rise": [2, 8], "rng": [9, 13, 15, 19, 20], "rohf": 20, "root": 0, "rotat": [0, 1, 2, 4, 5, 8, 10, 11, 14, 21, 23], "rotated_vec": 14, "routin": [2, 9, 16], "row": [0, 2, 14], "rtol": [0, 2, 4, 6], "rtype": [2, 4], "run": [0, 4, 13, 15, 18, 19, 20, 21, 22, 23], "run_ccsd": 0, "run_cisd": 0, "run_fci": [0, 15, 18], "run_mp2": 0, "run_sci": 0, "rung": 11, "runner": [15, 18], "rust": 22, "rvert": 0, "s_": [0, 14], "s_a": 0, "s_b": 0, "sa": 9, "same": [0, 9, 11, 12, 13, 14, 15, 18, 20], "sampl": [0, 4, 5, 6, 9], "sample_slater_determin": [0, 7], "sample_state_vector": [0, 7], "sampler": [0, 4, 17, 21], "samplerpubresult": 4, "sandwich": 13, "satisfi": [0, 12, 16, 20, 22], "save": [0, 18, 22], "scalar": [0, 16], "scale": [8, 13, 15, 19], "scf": [0, 15, 18, 20, 21, 23], "scheme": 8, "schmidt": 5, "sci": 0, "sci_energi": 0, "sci_vec": 0, "scipi": [0, 2, 3, 15, 16, 18, 21, 23], "search": 14, "second": [0, 2, 4, 8], "section": [8, 19], "sector": [0, 1, 2, 4, 15], "see": [0, 2, 4, 11, 13, 14, 19, 22, 23], "seed": [0, 4, 5, 6, 9, 13, 14, 19, 20, 21], "seen": 20, "select": 3, "semi": 5, "sens": [13, 23], "separ": [11, 14], "sequenc": [0, 2, 4, 13], "seri": 2, "serial": 0, "serializ": [15, 18], "set": [0, 1, 2, 4, 5, 8, 11, 12, 13, 19, 23], "setup": 11, "sever": [9, 13], "shape": [0, 2, 5, 11, 23], "share": 11, "shell": [11, 18], "shot": [0, 4, 20], "should": [0, 1, 2, 4, 5, 6, 9, 12, 22], "show": [13, 15, 16, 18, 19, 20], "shown": 16, "side": 0, "sigma": [0, 1, 4, 8, 9, 11, 12], "sign": 0, "signatur": 3, "signific": 23, "significantli": 13, "similar": 18, "simpl": [20, 22], "simpler": 0, "simpli": [4, 13, 14], "simplist": 23, "simul": [0, 4, 8, 11, 12, 14, 17, 21, 24], "simulate_qdrift_double_factor": [0, 7], "simulate_trotter_diag_coulomb_split_op": [0, 7], "simulate_trotter_double_factor": [0, 7, 8, 23], "simulate_trotter_step_double_factor": 23, "simulatetrotterdiagcoulombsplitopjw": [4, 7], "simulatetrotterdoublefactorizedjw": [4, 7, 13, 19], "sin": [0, 15], "sinc": [0, 2, 11, 12, 15, 18], "singl": [0, 1, 4, 6, 8, 13, 23], "singlefactorizedhamiltonian": [0, 7], "singular": [0, 2], "site": [0, 15, 18], "size": [0, 3, 15], "slater": [0, 4], "slater_determin": [0, 7], "slater_determinant_amplitud": [0, 7], "slater_determinant_rdm": [0, 7], "slice": 2, "small": 2, "smaller": [0, 2, 8, 16, 23], "so": [0, 2, 6, 8, 11, 12, 13, 15, 16, 22, 23], "softwar": [0, 21], "solv": 3, "some": [0, 2, 6, 9, 13, 14, 16, 18, 20], "sometim": [0, 14], "sort": 20, "sourc": [0, 1, 2, 3, 4, 5, 6, 21], "space": [0, 9, 14, 15, 18, 20, 23], "span": [0, 2], "spars": [9, 16, 23], "sparsepauliop": 4, "sparsiti": 11, "spatial": [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 23], "speci": [4, 6], "special": [2, 5, 11, 13, 21], "specif": 14, "specifi": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 15, 23], "spectral": 0, "spin": [0, 1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 16, 18, 20, 21], "spin_squar": [0, 7], "spin_sum": 0, "spinless": [0, 4, 5, 6], "split": [0, 4, 23], "squar": [0, 2, 11, 13, 18, 20], "stack": 0, "stage": [4, 13, 19], "standard": 18, "standard_norm": [9, 13, 19], "star": 2, "start": 0, "state": [0, 1, 3, 4, 5, 9, 10, 11, 12, 13, 18, 20, 21, 23], "statevector": [0, 4, 7], "static": 0, "statist": 20, "statu": [15, 18], "step": [0, 4, 8, 12, 15, 19, 23], "step_tim": 23, "still": [0, 8], "sto": [0, 15, 18, 23], "stop": [3, 15, 18], "store": [0, 2, 4, 6, 9, 11, 13, 18, 19, 23], "store_cisd_vec": 0, "store_fci_vec": 0, "store_sci_vec": 0, "store_t1": 0, "store_t2": 0, "str": [0, 2, 4, 6], "straightforward": 2, "strategi": 0, "strength": 0, "strictli": 3, "string": [0, 14, 16], "strings_a": 0, "strings_b": 0, "strings_to_address": [0, 7], "structur": [0, 8], "sub": 0, "subdirectori": 22, "submit": 20, "subroutin": 12, "subspac": [0, 2, 16], "substitut": [0, 5], "subsystem": [14, 22], "subtract": [0, 16], "success": [15, 18], "sudo": 22, "suffix": 15, "suggest": 19, "sum": [0, 4, 8, 23], "sum_": [0, 1, 2, 4, 8, 9, 11, 12, 23], "sum_j": 12, "sum_k": [8, 12], "sum_p": 0, "sum_t": 0, "summat": 0, "support": [0, 2, 9, 14, 16, 20, 22], "supportsapplyunitari": [0, 7], "supportsapproximateequ": [0, 7], "supportsdiagon": [0, 7], "supportsfermionoper": [0, 7], "supportslinearoper": [0, 7], "supportstrac": [0, 7], "suzuki": [0, 23], "swap": [0, 11, 13], "symmetr": [0, 2, 4, 5, 8, 11], "symmetri": [0, 12, 15, 18, 20, 21, 23], "system": [0, 4, 6, 12, 14, 22], "t": [0, 2, 4, 8, 11, 12, 20, 21], "t1": 0, "t1a": 0, "t1b": 0, "t2": [0, 2, 5, 18, 20], "t2_amplitud": 2, "t2aa": 0, "t2ab": 0, "t2bb": 0, "t_": 2, "tabl": [0, 16], "take": [0, 3, 18, 19], "taken": 11, "target": [2, 13], "target_orb": 0, "tau": [0, 1, 4, 8, 9, 11], "taylor": 2, "tensor": [0, 1, 2, 5, 8, 9, 18, 23], "term": [0, 2, 5, 8, 11, 16, 23], "test": [7, 21, 23], "text": [0, 8, 9], "th": [2, 12], "than": [0, 4, 5, 12, 13, 14, 18, 21], "thei": [0, 9, 11, 12, 16], "them": [11, 13, 14], "therefor": [0, 2, 11], "theta": [0, 15], "thi": [0, 2, 4, 8, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23], "think": 2, "third": [0, 2], "those": [3, 18], "though": 13, "three": [0, 1, 4, 9, 16], "threshold": [0, 2, 3], "thu": 8, "time": [0, 2, 3, 4, 9, 13, 14, 19, 20, 23], "titl": 21, "tmp": [9, 15, 18], "tmpm19br8hy": 15, "tmpqg7_8pjf": 18, "to_diag_coulomb_mat": 0, "to_fcidump": 0, "to_json": 0, "to_molecular_hamiltonian": 0, "to_number_represent": 0, "to_orbital_rot": 0, "to_paramet": [0, 18], "to_z_represent": 0, "tol": [0, 2, 23], "toler": [0, 2, 4, 6, 11, 23], "too": 2, "top": 20, "topologi": [11, 13, 18], "toru": 0, "total": [4, 8, 15, 18, 23], "tox": [15, 18], "trace": [0, 5, 7, 9, 23], "tracea": [9, 23], "trajectori": 0, "transform": [0, 1, 4], "transformationpass": 4, "transpil": [4, 13, 17, 21], "transpiled_opt": 13, "treat": 0, "triangl": 11, "trianglular": [0, 2], "triangular": [0, 2, 4, 5], "triplet": 6, "trotter": [0, 4, 21, 24], "true": [0, 2, 3, 4, 6, 16, 18, 20], "truncat": 8, "try": 23, "tunnel": 0, "tupl": [0, 1, 2, 4, 5, 6, 12, 15, 16, 23], "tutori": [21, 23], "twice": [0, 15, 19], "two": [0, 2, 5, 8, 9, 11, 13, 14, 15, 18, 22, 23], "two_body_integr": 0, "two_body_tensor": [0, 2, 9, 23], "type": [0, 1, 2, 3, 4, 5, 6, 20, 22], "typeerror": 0, "typic": 0, "u": [0, 1, 2, 4, 8, 11, 12], "u_": 4, "u_k": 0, "ubuntu": 22, "uccsd": [0, 5, 20], "uccsdoprestrictedr": [0, 5, 7], "ucj": [0, 4, 5], "ucj_balanced_jw": 13, "ucj_op": [0, 4, 13, 19, 20], "ucjanglesopspinbalanc": [0, 7], "ucjoperatorjw": 4, "ucjopspinbalanc": [0, 4, 5, 7, 11, 13, 18, 20], "ucjopspinbalancedjw": [4, 7, 13, 19, 20], "ucjopspinless": [0, 4, 5, 7], "ucjopspinlessjw": [4, 7], "ucjopspinunbalanc": [0, 4, 5, 7, 11, 20], "ucjopspinunbalancedjw": [4, 7, 13, 19, 20], "uhf": 20, "unbalanc": [0, 4, 5, 20], "uncorrel": 0, "under": [0, 4], "underli": 4, "unifi": 20, "uniform": [0, 4, 5], "unimpl": 4, "union": [2, 4], "unit": 2, "unitari": [0, 1, 2, 4, 5, 8, 10, 12, 14, 17, 21], "univers": 2, "unlik": 0, "unord": 0, "untouch": 0, "up": [0, 2, 6, 8, 14, 22], "updat": [0, 8], "upon": 16, "upper": [0, 2, 4, 5, 11], "url": 21, "us": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23], "usag": [0, 2, 16, 19], "user": 22, "userwarn": [9, 15, 18], "usual": 0, "util": [2, 5, 6, 8], "v": [0, 20], "v_": 0, "v_i": 2, "v_j": 2, "vacuum": 4, "valid": [0, 4, 5, 6], "valu": [0, 1, 2, 3, 4, 5, 6, 9, 11, 18, 19, 23], "valueerror": [0, 2, 4, 5], "vari": [0, 4], "variabl": [14, 23], "variant": [11, 13, 18], "variat": [0, 3, 11, 18], "variation": 18, "varphi": 0, "vdot": [18, 21, 23], "ve": 23, "vec": [0, 1, 2, 4, 9, 12, 14, 16, 21, 23], "vec_a": 0, "vec_b": 0, "vector": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 15, 16, 18, 21], "verbos": 6, "verifi": 2, "version": 4, "vertic": 0, "via": [0, 23], "view": [0, 16], "volum": 22, "w": 0, "wa": [0, 3, 4, 11], "wai": 11, "want": 13, "warn": [9, 15, 18, 20], "water": 15, "wavefunct": [3, 18], "we": [0, 2, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "web": 22, "weight": 14, "well": [3, 14, 21, 22, 23], "when": [0, 3, 4, 9, 11, 13, 14, 16, 19, 21], "whenev": 0, "where": [0, 1, 2, 3, 4, 5, 8, 11, 12, 14, 22, 23], "whether": [0, 1, 2, 3, 4, 5, 16], "which": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 22, 23], "while": [8, 11], "whose": [0, 2, 14], "width": 5, "wigner": [0, 4], "william": 2, "window": [21, 22], "wise": 2, "with_final_givens_ansatz_op": 0, "with_final_orbital_rot": [0, 5], "with_phase_angl": 0, "with_phi": 0, "within": [0, 2, 13, 16, 18, 21], "without": [11, 13, 18], "won": 21, "word": [0, 11, 20], "work": [9, 13, 15, 18, 19, 21, 22], "workflow": 20, "would": [13, 14], "wrapper": 23, "write": 23, "written": 8, "wrote": 23, "wsl": 22, "x": [0, 3, 4, 13, 15, 18, 19, 20], "x0": [3, 15, 18], "xx_plus_yi": [13, 19], "xxplusyyg": [13, 19], "y": 0, "yaml": 22, "yet": [9, 18], "yield": [0, 2, 4, 8, 11, 15, 23], "you": [0, 1, 2, 4, 9, 14, 18, 21, 22, 23], "your": [19, 22], "z": [0, 1, 2, 4, 5, 12, 16, 21], "z_represent": [0, 1, 4, 5], "zero": [0, 2, 4, 9, 19], "zip": [0, 15, 18, 23], "\u03c8": 18}, "titles": ["ffsim", "ffsim.contract", "ffsim.linalg", "ffsim.optimize", "ffsim.qiskit", "ffsim.random", "ffsim.testing", "API reference", "Double-factorized representation of the molecular Hamiltonian", "Hamiltonians", "Explanations", "The local unitary cluster Jastrow (LUCJ) ansatz", "Orbital rotations and quadratic Hamiltonians", "Qubit gate decompositions of fermionic gates", "State vectors and gates", "How to simulate entanglement forging", "How to use the FermionOperator class", "How-to guides", "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz", "How to build and transpile Qiskit quantum circuits", "How to use ffsim\u2019s Qiskit Sampler primitive", "ffsim", "Installation", "Implementing Trotter simulation of the double-factorized Hamiltonian", "Tutorials"], "titleterms": {"": 20, "The": 11, "action": 9, "an": 20, "ansatz": [11, 15, 18], "api": 7, "applic": 8, "background": 8, "balanc": [11, 19], "brief": 8, "build": [15, 19, 23], "can": 20, "choos": 15, "circuit": [19, 20], "cite": 21, "class": 16, "close": 20, "cluster": [11, 13, 18, 19], "code": 21, "comput": 15, "content": 21, "contract": 1, "coulomb": [13, 19], "criteria": 20, "data": 9, "decomposit": 13, "determin": [13, 19], "diagon": [13, 19], "docker": 22, "doubl": [8, 13, 19, 23], "energi": 15, "entangl": 15, "evolut": [8, 12, 13, 19], "exampl": [20, 21], "explan": 10, "factor": [8, 13, 19, 23], "fermion": [13, 14], "fermionoper": 16, "ffsim": [0, 1, 2, 3, 4, 5, 6, 20, 21], "ffsimsampl": 20, "fock": [13, 19], "forg": 15, "formula": 8, "from": [20, 22], "gate": [13, 14, 19], "gener": [11, 18], "guid": 17, "hamiltonian": [8, 9, 12, 13, 19, 23], "hartre": [13, 19], "how": [15, 16, 17, 18, 19, 20], "implement": 23, "initi": 15, "instal": [21, 22], "jastrow": [11, 13, 18, 19], "linalg": 2, "linear": 18, "linearoper": 9, "local": [11, 13, 18], "lucj": [11, 18, 20], "merg": 13, "method": 18, "molecul": [15, 20], "molecular": 8, "more": 20, "number": [13, 19], "occup": 15, "open": 20, "oper": [9, 13, 15, 19], "optim": [3, 15, 18], "orbit": [12, 13, 19], "overview": 19, "pip": 22, "prepar": [13, 19], "primit": 20, "qiskit": [4, 19, 20], "quadrat": 12, "quantum": 19, "qubit": 13, "random": 5, "refer": [7, 15], "represent": [8, 9], "rotat": [12, 13, 19], "sampl": 20, "sampler": 20, "scipi": 9, "shell": 20, "simul": [13, 15, 18, 19, 23], "slater": [13, 19], "sourc": 22, "spin": [11, 19], "spinless": 14, "state": [14, 19], "sum": [13, 19], "suzuki": 8, "test": 6, "time": [8, 12], "transform": 19, "transpil": 19, "treat": 14, "trotter": [8, 13, 19, 23], "tutori": 24, "ucj": [11, 13, 18, 19], "unbalanc": [11, 19], "unitari": [11, 13, 18, 19], "us": [16, 20, 22], "vector": 14, "via": [8, 9], "within": 22}}) \ No newline at end of file diff --git a/dev/tutorials/double-factorized-trotter.html b/dev/tutorials/double-factorized-trotter.html index 3669b30da..0c1fd8e46 100644 --- a/dev/tutorials/double-factorized-trotter.html +++ b/dev/tutorials/double-factorized-trotter.html @@ -455,7 +455,7 @@

Build the Hamiltonian
-Maximum error in a tensor entry: 0.036685417309835655
+Maximum error in a tensor entry: 0.03668541730983477
 

@@ -596,7 +596,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9402435115135145
+Fidelity of Trotter-evolved state with exact state: 0.940243511515908
 

The fidelity of the final result can be improved by increasing the number of Trotter steps.

@@ -623,7 +623,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9985212854200015
+Fidelity of Trotter-evolved state with exact state: 0.9985212854201858
 

In the code cell below, we reproduce the results of our manually implemented function using ffsim’s built-in implementation.

@@ -651,7 +651,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9985212854200257
+Fidelity of Trotter-evolved state with exact state: 0.9985212854202294
 

A higher order formula achieves a higher fidelity with fewer Trotter steps:

@@ -679,7 +679,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9996731164188843
+Fidelity of Trotter-evolved state with exact state: 0.9996731164188969
 

You’ve made it to the end of this tutorial!

diff --git a/dev/tutorials/double-factorized-trotter.ipynb b/dev/tutorials/double-factorized-trotter.ipynb index 2bd1cd40c..ff0fcf662 100644 --- a/dev/tutorials/double-factorized-trotter.ipynb +++ b/dev/tutorials/double-factorized-trotter.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.037383Z", - "iopub.status.busy": "2024-11-23T19:58:02.037166Z", - "iopub.status.idle": "2024-11-23T19:58:02.793850Z", - "shell.execute_reply": "2024-11-23T19:58:02.793227Z" + "iopub.execute_input": "2024-12-05T03:24:45.923610Z", + "iopub.status.busy": "2024-12-05T03:24:45.923421Z", + "iopub.status.idle": "2024-12-05T03:24:46.676204Z", + "shell.execute_reply": "2024-12-05T03:24:46.675632Z" } }, "outputs": [ @@ -80,10 +80,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.797626Z", - "iopub.status.busy": "2024-11-23T19:58:02.796713Z", - "iopub.status.idle": "2024-11-23T19:58:02.801783Z", - "shell.execute_reply": "2024-11-23T19:58:02.801229Z" + "iopub.execute_input": "2024-12-05T03:24:46.679398Z", + "iopub.status.busy": "2024-12-05T03:24:46.678465Z", + "iopub.status.idle": "2024-12-05T03:24:46.683627Z", + "shell.execute_reply": "2024-12-05T03:24:46.683009Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.803810Z", - "iopub.status.busy": "2024-11-23T19:58:02.803453Z", - "iopub.status.idle": "2024-11-23T19:58:02.807598Z", - "shell.execute_reply": "2024-11-23T19:58:02.807096Z" + "iopub.execute_input": "2024-12-05T03:24:46.685803Z", + "iopub.status.busy": "2024-12-05T03:24:46.685344Z", + "iopub.status.idle": "2024-12-05T03:24:46.689861Z", + "shell.execute_reply": "2024-12-05T03:24:46.689405Z" } }, "outputs": [ @@ -172,10 +172,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.809387Z", - "iopub.status.busy": "2024-11-23T19:58:02.809068Z", - "iopub.status.idle": "2024-11-23T19:58:02.813266Z", - "shell.execute_reply": "2024-11-23T19:58:02.812785Z" + "iopub.execute_input": "2024-12-05T03:24:46.691839Z", + "iopub.status.busy": "2024-12-05T03:24:46.691484Z", + "iopub.status.idle": "2024-12-05T03:24:46.695294Z", + "shell.execute_reply": "2024-12-05T03:24:46.694799Z" } }, "outputs": [ @@ -208,10 +208,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.815065Z", - "iopub.status.busy": "2024-11-23T19:58:02.814744Z", - "iopub.status.idle": "2024-11-23T19:58:02.818817Z", - "shell.execute_reply": "2024-11-23T19:58:02.818331Z" + "iopub.execute_input": "2024-12-05T03:24:46.697235Z", + "iopub.status.busy": "2024-12-05T03:24:46.696822Z", + "iopub.status.idle": "2024-12-05T03:24:46.700442Z", + "shell.execute_reply": "2024-12-05T03:24:46.699970Z" } }, "outputs": [ @@ -242,10 +242,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.820654Z", - "iopub.status.busy": "2024-11-23T19:58:02.820333Z", - "iopub.status.idle": "2024-11-23T19:58:02.838713Z", - "shell.execute_reply": "2024-11-23T19:58:02.838243Z" + "iopub.execute_input": "2024-12-05T03:24:46.702448Z", + "iopub.status.busy": "2024-12-05T03:24:46.702098Z", + "iopub.status.idle": "2024-12-05T03:24:46.720392Z", + "shell.execute_reply": "2024-12-05T03:24:46.719899Z" } }, "outputs": [ @@ -253,7 +253,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Maximum error in a tensor entry: 0.036685417309835655\n" + "Maximum error in a tensor entry: 0.03668541730983477\n" ] } ], @@ -302,10 +302,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.840711Z", - "iopub.status.busy": "2024-11-23T19:58:02.840256Z", - "iopub.status.idle": "2024-11-23T19:58:02.844392Z", - "shell.execute_reply": "2024-11-23T19:58:02.843910Z" + "iopub.execute_input": "2024-12-05T03:24:46.722271Z", + "iopub.status.busy": "2024-12-05T03:24:46.721943Z", + "iopub.status.idle": "2024-12-05T03:24:46.726146Z", + "shell.execute_reply": "2024-12-05T03:24:46.725562Z" } }, "outputs": [], @@ -360,10 +360,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.846206Z", - "iopub.status.busy": "2024-11-23T19:58:02.846018Z", - "iopub.status.idle": "2024-11-23T19:58:02.849659Z", - "shell.execute_reply": "2024-11-23T19:58:02.849172Z" + "iopub.execute_input": "2024-12-05T03:24:46.728062Z", + "iopub.status.busy": "2024-12-05T03:24:46.727724Z", + "iopub.status.idle": "2024-12-05T03:24:46.731309Z", + "shell.execute_reply": "2024-12-05T03:24:46.730691Z" } }, "outputs": [], @@ -400,10 +400,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.851650Z", - "iopub.status.busy": "2024-11-23T19:58:02.851148Z", - "iopub.status.idle": "2024-11-23T19:58:02.949707Z", - "shell.execute_reply": "2024-11-23T19:58:02.949177Z" + "iopub.execute_input": "2024-12-05T03:24:46.733244Z", + "iopub.status.busy": "2024-12-05T03:24:46.732809Z", + "iopub.status.idle": "2024-12-05T03:24:46.833048Z", + "shell.execute_reply": "2024-12-05T03:24:46.832493Z" } }, "outputs": [], @@ -439,10 +439,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:02.952503Z", - "iopub.status.busy": "2024-11-23T19:58:02.951738Z", - "iopub.status.idle": "2024-11-23T19:58:03.001559Z", - "shell.execute_reply": "2024-11-23T19:58:03.001064Z" + "iopub.execute_input": "2024-12-05T03:24:46.836109Z", + "iopub.status.busy": "2024-12-05T03:24:46.835316Z", + "iopub.status.idle": "2024-12-05T03:24:46.884721Z", + "shell.execute_reply": "2024-12-05T03:24:46.884124Z" } }, "outputs": [ @@ -450,7 +450,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9402435115135145\n" + "Fidelity of Trotter-evolved state with exact state: 0.940243511515908\n" ] } ], @@ -480,10 +480,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:03.003522Z", - "iopub.status.busy": "2024-11-23T19:58:03.003173Z", - "iopub.status.idle": "2024-11-23T19:58:03.212664Z", - "shell.execute_reply": "2024-11-23T19:58:03.212168Z" + "iopub.execute_input": "2024-12-05T03:24:46.886638Z", + "iopub.status.busy": "2024-12-05T03:24:46.886293Z", + "iopub.status.idle": "2024-12-05T03:24:47.094658Z", + "shell.execute_reply": "2024-12-05T03:24:47.094144Z" } }, "outputs": [ @@ -491,7 +491,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212854200015\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212854201858\n" ] } ], @@ -521,10 +521,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:03.214394Z", - "iopub.status.busy": "2024-11-23T19:58:03.214206Z", - "iopub.status.idle": "2024-11-23T19:58:03.345675Z", - "shell.execute_reply": "2024-11-23T19:58:03.345130Z" + "iopub.execute_input": "2024-12-05T03:24:47.096768Z", + "iopub.status.busy": "2024-12-05T03:24:47.096400Z", + "iopub.status.idle": "2024-12-05T03:24:47.227776Z", + "shell.execute_reply": "2024-12-05T03:24:47.227137Z" } }, "outputs": [ @@ -532,7 +532,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212854200257\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212854202294\n" ] } ], @@ -563,10 +563,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-11-23T19:58:03.347712Z", - "iopub.status.busy": "2024-11-23T19:58:03.347256Z", - "iopub.status.idle": "2024-11-23T19:58:03.451353Z", - "shell.execute_reply": "2024-11-23T19:58:03.450834Z" + "iopub.execute_input": "2024-12-05T03:24:47.230002Z", + "iopub.status.busy": "2024-12-05T03:24:47.229543Z", + "iopub.status.idle": "2024-12-05T03:24:47.329290Z", + "shell.execute_reply": "2024-12-05T03:24:47.328789Z" } }, "outputs": [ @@ -574,7 +574,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9996731164188843\n" + "Fidelity of Trotter-evolved state with exact state: 0.9996731164188969\n" ] } ],