From 79157fa4b82acf6bb757ea048ca4d58fe0d930a8 Mon Sep 17 00:00:00 2001 From: kevinsung Date: Fri, 26 Jul 2024 02:30:35 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20qiskit-c?= =?UTF-8?q?ommunity/ffsim@a148b64d7f8f563dd3e05ff3fa982178c15364c3=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- dev/.doctrees/environment.pickle | Bin 945934 -> 947178 bytes .../explanations/hamiltonians.doctree | Bin 23455 -> 23455 bytes .../entanglement-forging.doctree | Bin 25865 -> 25865 bytes .../how-to-guides/fermion-operator.doctree | Bin 41913 -> 41973 bytes dev/.doctrees/how-to-guides/lucj.doctree | Bin 42998 -> 44146 bytes .../how-to-guides/qiskit-circuits.doctree | Bin 39732 -> 39732 bytes .../how-to-guides/qiskit-sampler.doctree | Bin 41229 -> 41223 bytes .../nbsphinx/explanations/hamiltonians.ipynb | 60 +++---- .../explanations/orbital-rotation.ipynb | 8 +- .../qiskit-gate-decompositions.ipynb | 146 +++++++++--------- .../state-vectors-and-gates.ipynb | 56 +++---- ...ations_qiskit-gate-decompositions_34_0.png | Bin 55604 -> 53241 bytes .../how-to-guides/entanglement-forging.ipynb | 52 +++---- .../how-to-guides/fermion-operator.ipynb | 122 +++++++-------- .../nbsphinx/how-to-guides/lucj.ipynb | 109 ++++++------- .../how-to-guides/qiskit-circuits.ipynb | 104 ++++++------- .../how-to-guides/qiskit-sampler.ipynb | 42 ++--- .../tutorials/double-factorized-trotter.ipynb | 116 +++++++------- .../double-factorized-trotter.doctree | Bin 54432 -> 54438 bytes ...ations_qiskit-gate-decompositions_34_0.png | Bin 55604 -> 53241 bytes .../diagonal_coulomb_hamiltonian.html | 23 ++- .../hamiltonians/molecular_hamiltonian.html | 5 +- dev/explanations/hamiltonians.html | 4 +- dev/explanations/hamiltonians.ipynb | 60 +++---- dev/explanations/orbital-rotation.ipynb | 8 +- .../qiskit-gate-decompositions.ipynb | 146 +++++++++--------- .../state-vectors-and-gates.ipynb | 56 +++---- dev/how-to-guides/entanglement-forging.html | 12 +- dev/how-to-guides/entanglement-forging.ipynb | 52 +++---- dev/how-to-guides/fermion-operator.html | 50 +++--- dev/how-to-guides/fermion-operator.ipynb | 122 +++++++-------- dev/how-to-guides/lucj.html | 69 +++++---- dev/how-to-guides/lucj.ipynb | 109 ++++++------- dev/how-to-guides/qiskit-circuits.html | 16 +- dev/how-to-guides/qiskit-circuits.ipynb | 104 ++++++------- dev/how-to-guides/qiskit-sampler.html | 10 +- dev/how-to-guides/qiskit-sampler.ipynb | 42 ++--- dev/searchindex.js | 2 +- dev/tutorials/double-factorized-trotter.html | 12 +- dev/tutorials/double-factorized-trotter.ipynb | 116 +++++++------- 40 files changed, 935 insertions(+), 898 deletions(-) diff --git a/dev/.doctrees/environment.pickle b/dev/.doctrees/environment.pickle index 07bfcb200aa26ca324c888ac623cc5a96485d3b6..9a3ff9e4f982db42ed49ebcd66bc35f54556bca3 100644 GIT binary patch delta 33209 zcmajI2Ur!y7x10EyL&Iag9Q*2d%@mIP-De{9V?=saz#KyqtS?(#6nQfC7u+G8WUqs z5k*})N)n^7rx;`GNlc=~mc&%`J!j7DsQ>rvy)nRV7Ufmekrh-z-IMl9| zT9_XJ{kEy05dDhoYFwBfm^wWxJvk#eCoMB$O2hQ2W8H=MPian1%ScWiUzqPo%b1dr zoStr6XdPp$Z5>)W@JZ@9sZ(;&GEgXJLgtGNaxxo?pPH7EYAJ(RzpFKUI7cG0g)8Q$ zRYUUqbEf8GW~U{mPibgnIug$G_l-0jx2gtfzQ+t6$WcJb;=bp>=vN9JtDW%Z8-KgI-(z%m(2qbsVLp%!IrQ{2PIUV&d^lj#_GadC1 zwa{H|tZ5q_Rz%GANtv>zR5mHdhk`^#MIxJsRfoRGdUaH>7Ya)Cn$Cj+ zL*a6&9*U`KAzuaPH%_mBBHN5*?dmG~LD{Z1Q%a0`?HW6aNuV|rudefu&}Uq3T?O`T z*L{sw+E-G_j8*NUlwHRD_H~s5;J-t!F+o=diH ze@ch#bT~{0vV;3GI*<+AN9aK1cORugIUPQy1C`%>j1GI~aGVZQaQ6v1P;uQS>9Cg$ zr|3YXb)TjKmDGJk&Bfz3I{ktU`|0o{9ZKl%6&!wx!pLx(atoTI}o zI($oq19Uh~2P(SzJ33Io-52Pvj}8~{Fm>vf39U+}JzrJLrR?Xq-v4lN$H*#9QT#mD z=ar@kADJM}WqdYW_{a=-u8g;42p^du&$X}ftHMX-$aA^sE)YI4M4oG4w}rw-#>jJ> zNMauuB+oVC*asr)V6O0PIB-^Y$ufDa<|o-l#>sQl9sjEcBLn5R?gj*QqKuM}@?5>9 zEEGO6RGzElx0{5IjFsowJF{PBk|cxWxlaBwRrttgd9D|HrwQLKbrgB;q)+QfqGY{1 z*SCX;gpVwk=UUV8qVQ2;$#Zp2Vjne_JXhHq_K}72T)$rojwdZ-WwhFD@)^H%?(QNJ zFDgQWv7+VrUP@=@}9@^LVZP;)lWoUP!^@#pTBctE2 zb?|7j?qMVj>#4LbMhs1WsExwgLuqOx4C`mi8QC8$7O{i?u_L{Nf-gq)gW^rPCr0gI zJRFKrJ9JM>=72GGR9|JIab{FwJgQ0alugF`qz1|sBXD%EaXl%@M{(zA&pj9a+|()V zjRbwt87K(0BdB7OCRH(dkM>jc7$Zi1W;9KUfj!BN2xClgoDq{8V{{nnGL9z?Fdn#L z;QT5K7&Ru&C`{piBVz^_btlpJFyk`1d&dqp-klI*v`!grgrSU?^12Z8O)VbCj5m`VtiL(Fi&d^HCa|iTP+6or(GA6*?31Q30Ka`DhiLiTS9A z&cw89(wUfcKcO=*N1dTFF-Kj(v#I%7PNv7$DTOZ=)^_hH&C0B(K=c4L5E_ng1eb2g znj^eHr5&>O@)^u|U-2jn&beZFqnA58N`0qYw7db;RF6_^`XmQw34)TV82b84Us_tS zW`%LU@=G42Yi7GFsZHAz4`ceQaG3o_^@LF!mB7*mbIw_DuFUhd#7@U!%AT*yu)NQ| zin>=W_}Y?tWl=>ADBb*eWj-@Dzh2#_vN#Cle2glimwYZnD;qz*9Z?!xaEl{iRtP|P zz7}ZoT@_fGviy>za$upAT^RX?Lr9gbS#h5OjVo{00-uh~Fu2u94J^I?<^?O#mA7kf z>MM?6{-RdRwDQs++XGtanjicb>4J4fExFOH zP@VgO(X0;c{);*CDDj8Y?<+y2`i2cw@?{@+TM{DA9wh-r^u~ZvZPT}w9%e~;e|d?AF=V?x-0?yU2S39K+Ig_dQZ3rp(sDcD zsD3yajQY|KW*J&&Y1t=Ml|xcDY!JnVGp&pZOSU|^&r))rCWiVR`_uAXI)b^ca)R>_ zB(i0U+~)@gewq_j`)VGgy-#r^;3Rv1xiRN-0F-@(27c*`RXU)|l#cpxnw2P7q4f6G z2dq@6!5bcz!i<1#bm%?}OLhO76C750=3CW@L>XUq`#bh+yA*8UlB1a823H)Gm%2r1 zk84)(3~WHgn-6?TFaKcGHDC$DO1E79-b$P52ew2g{xB&>3o2rRwy^Wpyq^ea7n z!)mHPP0A>_>sNaE)+rV>@%#x@2!4mkDuKCC6++uuy{Z$lX|9xkPQRR~ul)a;Qm2Q4yH(V@j zg&kWI+iQ!NB@W51+$IaOQ2ZdGg63`R)0F>B+uY(*?3PL9GmAYGJ2O<3<{B^Mnw1gJ zz|kLKmiQ=E35Crex{{`wTl|!-SW*-gnWwouK(Q>^ z6ub4vIB+>s@rIp#82o9NVh_DCwz;9AV$}zBBXf0S<$;xFY6B*=f!{4ZwMP>TeADtv ztDTNk&i@YsWIBvqgJru=%`S&18wHr>s@vr?(Q>vzyAiSxq0A@O}J1a7ucgUrOX%32{=85%sVghEL)4p6Q8s)1&Y_KG!ym>6P@ zB#ovk9%fuem=oeCtg5r z0OXEVTxOqSrMIPr;z6tFioa3ul_2x%Sf$8{vH5im^X*hSJt`1N1wcVJk z0?mQuce500;xfx;D-}413U0<~;m~M~5@bftRd^JvETGxw6}wfLZC+Cva1?XK0_Ev- ziTTkY#hO9PldmhUT4|oHjcKMYQC3;m2`{jR44j~GiSdPJuvufda>xq)%TR_}`cqdZ zTbYVghS}&%d;Bshy{%lef~cpNAuE-!R(jNn%w_M&UM9-Ce2rqwPUeF5>>v{dA!`vK z+R=jbR;hz%jx%R%u#*Fk#-t+UV=GOZ5i3LA=2{S3!KP~FZjzNMLgwtm5L)Y*P%Ot6 z(UNmZ6npL!)xUC^tR{?Uw;38N;l-9(xOru#J&y6{adek*o%0}ad~}a;$I22dry&25 z;t6wFYMv0kLGv>vT?;hT{Yo5LhRkh_ERzixXZZ-2c@W#MD8$r5vRP4xnenmRGDVl2 z`RUVLHV_)^!R+C3$y%eD7{@Ldtt!kD$CTSv)n`i_5#>mbkpxwyZ4E_ znwVF6F-eO+&<<)bqEM;#WDBKM4>ddE=zh8rS`sTN(9Hbp|0=T&yn7Ja>ZPL?{PG`) zy<`n@eAu0 zeeO!A!(MZUq2VpMxxLF#1|)OVb>_^&3aAj=fIcil_ezjx8Kw z26vU2y4UULLVK8B^>CbFDKXZS#XGDa$i%_c?pHKHL(LX?Ez>hW=9c=A`KX^QFRn;T z=RjGrGy`|-uZ5Wv2ir-A4G4l2&G1CKip+aM9rnZ|CZb!z9rg}|FxK^vGQOzYGf9q@ z6c}Bswt&;q)z-8JmIB?ksMXC*V;nClbQ)-$9_zq$G@ZhzZi=UQDb;~%NZ~&nqI#N_ z$5V|6e}`AG-Y%z6HxT~)HA#LVWs3af=}C?^6o^lDWLi6H!Eig%(H+XhI(Vl}&O~hLWj{F!RI|GCKK9^k05DsO&{Mh(&kJa13#HNFW59!NqvDIS#xy5+P!J)p{Nog#0E- zV()zt$-k}cgbQahe{n6BbfCB}vgb;_@7L;UOZ5nrfCW3Pa_7lDWL$T9Daw z3H4(kDf&)q0o5t_OGF7g^-c#134(1`5p=5 zX%J6oj}JRsX7u}x!xlu#`9stOM+LLWdMW@)hCtaV?EDCEcS!n4C>H-4*QKdZp&L>ydH z7i4U8_(AUyA1`xcsRJ*MMaIP_y{f()eDEC3F(Y<3dRl4H3g)2c*lkHuZNRv(TCll( zw*#;3gbKQ{wBTOH04oy$PWZ$TYSupB*l0=OHL5>keuCMEEpvFAz6Ytb3LV1Ov&(5D zC%=hv@oQF)Xvk<cd(Js~v6 z`m$rTr5A^O+y)R4Nf1!b3rbEW@ui}x0Y4|= z)jcd{=KHE|TY5yfUeD30niB$Kc(Wk&bt@bz*x$SoqT)rpD3UCKc`!`PvV=r8@u{u) z!0ek^pgF#hx><;G?}w;rs!kyRX3ucd>H%VvyQC5JLlL?x*bC-=kQ05!F?^q82hdFj>JKFnT&RhgQc> zrg=@gda>$?t|_n#xH(L5>`}yAQ&+Y66YYq3m^gOu&=y214uA9ASQQ6oiXs+oSR|Y| zEe*KnQ4IxBeig%MW!TtE?G7b(teXyIh34ukh5WopYi@3#;#Ld!&0Vcj+`kY(;xg{r zHY#q%lb3~`4A_WdD!6gFT%Nzs#%j{g8nXT?rwwMcZ zRUG!d7>2n@8rL4?&BI(}jkVkJ?Rjcjh5SKg+gH^WtO9c4sx{1Sma453It?_Vm#GW* z6cP?&(8c9yf)&)EP|dYYPrjipv`)tZSxv;P{FXY=I$iO$ii=@EtFKg5hf)kxFQ^%K zpSA|~j{rwX)-lAB6cx50WVBIw_J&vfoEk9OZL-UQJ>Uc}k z_n5lPIz4?{-D*i;g?2a3pHveaFm@4|V&BBJxKu||)Ld*^zxx+zErt9+=G-r7su8Dk zzNS_rPRq}d1;lBqb2PAuQ^$F=iUXRQK?~sR_Tf-+)>i0uQ4Pak=PW90aY;?GPCvXX zPb*$kM=*u?*VHeRjpoqr)jSnaGaXql;3qX18qK$B;@nSas6zfA^YPDWs&zW;2DMW` zf4fOGe0w?;uJ@$=P~$chZqrM4UY6aaDnWmcS$;>IZk_hJNAt{umoe}7AV3mqo{jBd z&u`eH_nDJ_SKm>@V*&B^#WMl%F7ZG>daTEFJ=g_YhA2#4F*3>mRR)TmA^?c7MF5xYv)6ZuH0VLsTe9xA@W7RhMJX-Tio9acduC z=)OMcrkna0k?!cDwtcYUf!bNw1b;tJ>p8ZlFmaArLn(t^f2viLjgUdkJ}CH8t(Qv= zDHOQh>@J?M5g9IUzx|AFFNhqA{^{8z1!sO&Un571t9D5bFFCERR_8mxWhQZ@s^2vA39%an2s*g8sk z7_JnVD3#+Nz@Pi(KxhoO zkM-pOEr!W$iv%vz>Okf_O^4?fYN>qo(L#+M6m0kICOzq;+wMCsLn-#)~oa(FZiw8zySX%EK#hk?6~L+IT+uB~R3gjrrW#?aS)s#{Et(5s)L*QP;A9ss)&?W^VX-y{oi;$89IL!h_DXJwC1d# z6P$SybA%6e7!!8}!NnCKR|l499Z>q=GP~gMoRHTWXbyib&F@LcbC-*fpIENFz_uSa z2o`@!Hw6tX3UwqHT6c8bGPF+UTrlj0FnSO){#C00%?h=K7?4t^wMA!5q1G3jyM@{d zoWC?qxbGWUQ&yio2xeVH^%(}Pz3EvHW7IW&n6pdd`}i9|i^mFKh#@QN>`!Ga#VfQH ztadts$1AjY3}!NTem%CMULb5W7lfA6AewdMH${c?c~k3%87z2HBy{{uyQwTDJJvOh z-v|c3w?tk>za>OgzGY`(1tk#y|GcGD<}}}ewQp&4gU2LKNt;q=Hzn*??v*S#EJO=_ zV(2Ari?)1{9lv+9_Lz@e?}%7%9ttNx*3^G@0wHTNTYQLj} zL5Wjw!ikldi-Y!XP{}F`+TwxFH3Y1(gZ9JKceT1u?4@`>Ur7&2>V*7NnkTFISgNVb z;4p&?Z(}2(r!Rb;F7r_i#0-W4K7irEwR!SA5zT9z)`mxj9_zG3K3l)eu4r#)T!a?G{^5ds>+meSV# z-q-4*(%J88JvoaZgP~-NR+XMY-$x541Q~{TmL%#s^woKKtnd ztv$;|lhz0rQUga%e42rW3=WEcdpj{`<$A3SgPNR!E9*shs(z>?Fs~2oOe}xFha$aw zABqt#XoKi($s4rhm^%ZXvSIY)Ekvu+?BPfq47qt)bx7K*b>u4gV6zxD?rgSmH<68zRID}SBr+ImE*7P^ zUu;hV1Gd4N){p;^4;Sje?3|!r}X~R(0x^1ElT-~NkKwr;Nk-*EP zT0iuiDizbZ=XPy0`rO+^wXEB&jY6Meht`m7_5NU3brXm9zB@#YXYbIOa%&kFFOPyu4Ryg!09E?b+*l%OsEY3X{a{6UEQkr*&sV zzi{%RJD=aD)n|H(Y1RFr%KPlM8{_@KJlKpsk5ACyZFU-L&g>U!1fK(T9skQ&!6gs1 zp4Sg(jnUbEK$!B;0WF@B&|qyDjvgsx!tN`}w64s(m_IBN(Hb5UZ8hhh)|ssnJOl#P zp>^);$Km3;gIWdD{o6s&9O@s^TCt7@XnY8Vm)VE3+8F%dA*~}vu4YBXo7)jASp$+! z;JETaxmKM)ZMga|MqP3gJKCahp?+<-XqT7E?YX=$%QXDhj?|37q>nXg;%UiX%g4fg z7d{rX7xjs-eex%w8Lj!mZX;b;_~9pZrg|`F`l(hCv)}7ed&$rj4jsqLzWJ%<%bD#j zK=9b?)TA-b%;$rk-=|u*55CPN@ruJ*1JoAF&WOWyRVNEk_~@|a%}P@s`LGrlFzHED zS|N<5JcUD-&v1&a_?hOzvTimXQpGvV7mqwQ8&Y7`*OM3tXDCMK1D1+X(x<0fqi2qtUZCFw|HN!oJAj=z+4FMDFb1Y?k8~xA?OiH>@I4|JE=u6 zJ;wColUgWVrha=8yJaZ^p28+u3Ik5z=vxYlPhq;HaFQMW)54c<8hfsI72+yv{X(lo zH-{@R_(A5!1*gtnYL8E28A~DJ3>r^Fx$(aeeO`5h+EXcBET6$XA_VU~mFGLBP*uAQ zdXNt{CL!<}3t)Y@;QTNx#wl^l*5d#as5#ar@qEPSiCS&4GvzwUQ;|8Q(F3=kB?O_5mrNnRe{G>H4ltfa#kCO zj^8(00y;_GXaihAG&T{U-ovr+^JFc|E`K@P`9>RoV!h5``O9JPIgy1E=dec0!S$_x z-M_{5Sq=-n#Wk1E6bJd=Vuq@uXaSyfpDhRVyhw21c^uBl0nX#)UO8MmuO*_>;yau; z%VF+!xT-COPrt)U%W{agfa{2INWCD+yY~W){X%^rm8luTUDSdwc)&%R#>-*bMWJ22 zBnp>&$u3n&BCIyBR9{}ws&hHVC(_!d0{nT)rxA3yj6J#>QZ9>3eRvrs?sB+ySt#jy z1y^|G@a`2+%F9a%<$2C!k;QymYZq$#spu`A23QK?Wqc#+MvDdMih{CUeO_$NO z@=oTHnku`lC8KE7pM;vMpKzT~4!eHRlF+I6v(^ip)Sq#2Sq?jX*2bd~`HRR}_AesB zpS%ZU}?;-NY$eB)``(=iyS{0O$~o_a2wr6s-zwib8yUQzTpO z7WSHQm~cxNtN0dni*mSo3kRoisQ0VL%k*DG0e7K~RiCz0pQX#}Hn%ljl?gY5TVB;O^Fhy|a4on3XsDj^T{_rkdehTmhgZB5ZTNgprJv2rUY`up?EP{vkaFa(!DMMk|5iJ;!?rU|J zXciG;=12E&_%4ED_p$1W!2dV2p@`;-tM_ACWvJCpjj^k*2-f_DW+{SSrC8V#?V)gT zgzg8KziUobQOOEh`a8C2p)|rGCw|w$6cc{<9kt;#^B=hK5pR&yw8EGCfpeD$2mZhY zZ-Vkb>%`#=t#C1$(5*B(XC};jfNkA`&mV||jK`l^>l#ma}!!mXuT+>aBiV{ z{z#nXKTM+iB{B4!dM5OTC!u0w3r&1F?#(Bmd%oh8%R^5~K z#3rk0LtxC9*f5RJSC)<494vmFg>-m~H{9bx2SZHSN9(5pHKGf{OA z=YO@LyF8P}(nkoW6gMAJ#^0!|w-)QoH)2BGn4sgX$s6l+yv%;%l1`U0jTD{sr)DTR zT^JrxblN-faOkw(_Pj%1*8>GkDl(jO>a_nB z=+bF_E!ibH$L%Vd^yzJqj$FosiC0(zwQCE2B+$N5B=(O|Y>nZFtn4Q(0I_*fF z_te{RHdav76;L%$uj@+A!LLc6W%_vu%PjU1vPZmh+FNva3#Y5M-i{O9KruJq_DK^x z924~e(_6>4Ug5B}u$|LKB;Vaf_!j!;wBdEsN5>ilr!R;3ilWX(hcojrsr(oMeD!+p zx3BKQ^f1xG5a^ATYU8JSaq>rr9vuW{Vz48W1nB`V6T?vXd_TQCi<}~nQ!FBK_?Mrp z^9u_4f*M9$uW@73lBT7OrIL5{7uBEVuXkq^-;vyRPZiP?APN~4zzqZ)&g2gy_ycG1 z^8nq8=}$y|qJ~lryaII}%wB~+y$uKcN`b#}lsQ4V<{CS83NG<+y&EV@eL7H>$1g}Y zz1YbM(pz)Z9#izkPnRx8_u(MNU<`5$hGo8bozR@jB=;22!RSInryzYW^z+uM!IQQw>-FJyB|R7euT;`$bG~6^G0wbLS(M{YWj&5#45k=^IaSmf;F*z> zoth;EmX6_~k4mODa?w}>6S%F6pgO%bCgaycU7Zxx&bsiT9o0DV-62Q>mJa#svgM2e3!!BWs^`)IDSPYH90#oD>WNOmTap+){@j($f|{>aAJRha~eMbd1qspV~>D4DaKCRUctc# z?qZf;PmJ!31vwle1|C;+9=)oI+FVjy*x~c)VjQhlLpbAV=>0Lm?iwN?y{3QzYKr#$ zW=$~~e^*l|i>M`1A6HAKozIoE^lqH(>y(M>RL?aaxVBEa5A|z{ikneer+YhPwMFu- zI-Hq0_E7p4Mf__pRQ2NAd-|lOPMH#G*X4madS^EOBNBWx7?N6|U_m{r_qM1jX2yke zg>AmAE7FRpC+049JyCRA{dt?ZrldyS4WSA)Ae`eMva zudlb_GDVPh1k7!Q)rATAz?-i*{jn%N)fal}H4yD&LIYu@%?}`!_OQ~P;Z^J39qZHOz<~!Iz4}#Ir9!?HhPhsn^ z)~I)L*majKhRlI2#bB|prQK$?kn9$#9K|hlZz%gpcaiLhR>E4bt+2D~gv?f0-#cM_ zE9?k6;kQ=Ut#(4k*4W8*!s6Bfo^OqL+zB<>;7VmDWVFHZmcqt1IAoQ=r8ZdXQiyJg z6LTqyXQvn)Z?VY!j&kuGOm3^U*02GWLc4aTvJ@7z!=6?OXWF4=+%aj7<9#V)w->(s z?09q#D*JZ8`YVOy9k4x@!r2ZYUX|xDf2H7l9*clkc^=2aQuy(C%wH+Q#tD&WaoB)M zVS60bdnx=KhmxD2O-C&3W|-U&OSu`!I$}x6;lGYp61=eNgw=w(7o9LKxO>qF=N@s% zRs*jD+%=$4cU<0#?xcr6)C;;7+7U%N<8WUN-*nb#2cp>vm=eMlPWVqT{ue+ifuKRHH8XT07`eITNW}4>Q z6cR|`tkmo&veKcaNPJ089AnGjYEOMQI_=|yMHa*hcs?FSv2v*2OE|N8>BG?XZ7-cJ z|C{zkn`4f8;|Pa&?=6%?^bt;aADwnkKJ6n46xkQY)^Zrp7puA)KJ2U0#r(g0MGAcq zM6yK*Ld(AiLiM12B6@K@oG;Oy{e_kZ{q@o4JKA6G!DZe>McM_+;?cUN2hxgVpsqo} z06i4N#tqQpS?mCb9pJirB6eqhuz_nJ4szwtd!VR*l>@QCmBW>Rq5>KW(g(4M)1=}w z8LuJi8>G_?J8$|DDhDjzpkL@XLCwA~#n!a5AWrd9+qhhS4Hg5n`)t|E9a1Z`LZ z{SvXfMetrCN*2N0L~ImA&~hl6qzLkc;^ZZ+pZ}$F|Amf2^~P}d9`3^xL5*Q(;3Akh z46CUK%7$U`Mc^@9@5wQ|@L3AC7bJ|p82J2bAO@}(j+Ivg_lKj|i=gWWyx0-S!$>p? za)+TPUCCqM#Sz$?i=f&_tS=LiN9xVcSuqmLZ^G@7*!@gsGYT_q!t0~3E=@SgPSqrg zXTrE75oRXovG`cl^(5?fn;>$uK1JCJ%SP+P=)@)KgVBLxz1T?)|KzuZ4pY=N@Y)#N zKwfFAz89UZ$LcGUgOHtqCOZgwQc(Lrc$}i=qLZ7dzp88jZ5(#>EzoHkwv=t~&N%%w zbgGWW=CciEj@P%L6FWf%bPi9@SK#N~MyBbnqw`A|ntDGpa-*{SP~z72x#$U_{QCXi z`H8sFTs=`AtCWD6u4kZ=ovv>}Cu)*D(<#Ivp<|(11rAKoGm&4Ot;az|hMveeY7T;e zT)h_jo}m{oX*v)RGLaG0|#LI z%OV)s?spiP2(Ulwc+u^GP*e$n1 zt%dp;Wj7pIs2@TnZxOcj-SFKatef31A`gqd4-VyFkJ$$g^7P^Sd8Mnky)(bieI9q9 z#9C-VYxG^PeeNGQ_>u%aGq@tbO$OH_xXs`P3GOktE&**R%`eP#|18O$EOJAFe;C}7 z;30$C5LDT5#hS}+I^ zfS&nuw`LM1McOf_D8cg#DofCbL4*XfU4}JLMS|`Oq9urDP)&k92y!t_bxHcMNKFX_ zGN>)V5C(N67{;K!1S1*5NXS>y!?<}&Ci0qxgelOR$GQx&-?fWQ<1pvjGk=$&w-;Gsu>Jwi3}IITFw= zB7$iW9A_|H0@_4GiI*gxtwRK}B=|a)$!tl^F_0cPn-b8*Bc}4U z1i7@|h-9TCw9AO#T?srGtdYQ*!Fv+;F?e5sKnCk22w|{6f(i_ZawVzEWRnE6J&749 zmLQrzi3BkWwncqKlLt~HpTS=eEM@SI1j`xx zC&3#G9!c;fgXfa%4o=&zSUQIUwC76e4^0xW2DK&lhCy8k&NHYl!9@nK5?o=>hybrYzGu=ziqLj2=B$|nzc6Sa z!7T=@B)G$%jRf}@w3FZu1|1~8y<@Tdh?C@B7U?7b?HXf7UXVZ;B0yIOGzQ%za53m9 zffs{b68JLcgTPvU1TaaEBDB?v>Gqc(jKM$&Dlr%=0c|&9ltc-l7z~r38iNrM)EI*O z595rIq&AC;mVkDnQDTe)u?$iqXv|=o1kD&skf0?4w*+k%q$kVu2W?toG8s~YwyF_i zNkH4v2(l&U${R`;3Eb*ZIJ8U#AKIEaARJ?*(1R=2Kyw~!QcP^`7{eA zbI1l_|KMZW=ibNipGr{1;4{(wg@$q_N2SQ8430@~guw|3jxjhzKt45tx%k2cA{SrT zKKBK(5I7 zuS|ZHB6k_wkl;54wmQr2?7Pk_smWmmztfLK{sfrkWT|l;<+(c`px1eAn17}Bq|enN(p_s?Q>V; zU>5;#k0649mkorxkL`0uaj>5R)ffawK(|dWi68{Itg<$f5GhiRL6`)w3@S>{m_cO; znlXrwpe2JU63~4XOgCDB_K7_IRFfo*MXF2CnL$knx-zIOK@SFXCFsSVz65<4#7fYg zL8CD={|K87V$wv4Br<3w!EgpGBpAh@l>~Hi2aDH60=k)lpq&Kc8FY}qoy#Onl1U6Y zNsz_h1qr4w=qkZ92Hho?!JwxEvl#S}z)H5y7@B{C0p_ttf)sg;L4OGrG8ibq>kI}< zu!KRP1j`rRu!cd31nU@#lVClA2@-t7z%9Wh2I;wy zY+;fi!8Qh266|1*Edkxx!urjTU@wDd63|U8l$b8TAqFqmAlLl~lUX)#f5u?81fMgQ zBf$v<^CX}fUzp6R5`4*Ez656(ER^6|2Dy2XTwszf!DR+ZB)G<)fPlC+b)A7>12Gc4 zVf);_a4<-4i@{qG+_4(sJCfXIkyR4>!Co?%f= z+dyRN3-XB{l=zZ^&)Pr)pR;}LZ#npa1Q!`x5&chSxXR=QDe@zOp9zScs`!P$EgOh5 zZreWh9S*)P!EX#65D>p`@h5|SY=8>z`u{)jir>9>$l=e8wSY*#Vf)-Fo}mex61W(6 zN#M=EkAV3741WeeHV_&^Y@a)HEYE)xC8@*_A_&l(Om`%MXd4I()ohVrb z3Ff&bNArjUJ~?X zkeeV$KPCeS(Dx(UgBT>*K&TvM``p7hc$5T548}+>mccj)#xrnBFfo@&1`+W?CYcPf zZ6FfOAzzt_hp8Mq-3B7~CGv@%JekSCvuz-P=h!~?Tn>I!g4e9{7fP~-Me+&ItycG9 z1_d?{Dwo?nx52?HBmf3)OYjbZcO_WO;5`DlB8_!S)=QBO85BvdkwLKpTNrGUpp?N* z2}}liB-qQ~fCOb@dHr2ZWUGpYk6Glf4Mbs&*gp4B4n8iy2?nPnIK$v83BG1W@!8snG(2Hq{qTLMY^}=#Ag})D3rJ7gr`|+&oNJXV?$adHHyu`pEtz(j(s+y z^^*{{44Jb@Zy3_#Nl4Z+A;zPj9zLjP(zCSTNI^57rfocvpZ3PWy-oOxUvOL>;X6(dV~hJ`k5_M|wIp9vB_mj$Pa@d?`l z@LjRqba2c#tc;p;@SsBo9V*iyk`4{&P@fKdboeh74;ARF4jsJdpwl6c4$*XYOd<|5 zWsCk8KV{giK0b^ier%DZxFNP&(-BXQu?-+oAW1q&Wg1C4mlU zM~8+?bPhnkPQ9%M4FKrdZ4TI}XYdyo@b@VDHPFNGY0XQ&>6OI$t%&Y^C4Qokw$1W` zVC`}7o_g%>_`pg8Os?-$*^Jxbiyx;gaQM}O)xl05nD9XF0B7Iy4)mHjVO(_Dq^!*B z9Jqbn+15P$KyO+JVp}=A;J;hWmGI#WXA~5i^3`GYN1nm3>pzzt%t^wpR#d$0tfHhq zbewktwEV?c1u8vsg+MQVZ$J3%M`u9AFQsN@PN`jcN^1Hz@eDE)gt@}t z9XhbwnEzk7@MzBf$lC2uafRkt36`w(@Pyrpvl~?T*XaRSQGPDJq~zq`S@omwe=`0< z)v2B#o)()t5(58qhT3vt{vUFJk=!;X{tCq%X9Z~9(%Di)1(3YQ8SI?UI2H2uy)RinMq?ZQ)VRPq-IRX%*HtNqyH~9=KsNx>qu4EsX0@#GomLYPfSgk zkdl@>zBZ;+R#?78Du>Uyg+M zj?Rj%PVvJQ6y`TD4$TRNbN@LjsUzYiLrH+Mt!qmBRt%|1ApuF020mZ820KT5Y5b>f zJHT1ZGa~-e1%*@bm&M?2fHTr1HevG{QG^wb)i8Y8+RO@czSYRFM>P&YG?bLN_`Uu7 zX2#XU5ylm$2&;$qxfJ$Byj@W|>U*%0lU}B39O()(eLFjsdc=!Xs^WX{_;fEdSe;&( zrzfMOhu%3Lk1F1oXO5>&gvdie=1=j?rTm=%{3X>j%dPL-22(xj{=SR~-ack#~HsHitNbvD-&mY zTxO5+&TYZ}k51YaI{bnyTK3KrO6+UPgR&4hd;c7KcC~r z0LL5x9X`-JG0$kfYG$QJ&dOCdv@vw-i=P|G>ZgQ>1~MtaMemQSj&Sko`uPn>AOemj zDj{SaCDMftr<>S-=4j|{tLiG4!j*Z+aK&J2gvm4TM>FupV|2JuSM#;%vLYPcs8wb` z-$GYaFVT#m`llwRgJQTMD+#~%pw2z}KJ!XRemEo?)FMf5=6x*1Qz}E?^hPa=Rc>DH zisZA$%Ux7M*f(P612B>1KPz0f_!Bt!&0+2WEXwI(Eu0JAfL4qb{J~sd$&-W|T*zP=Q>T88}R2(r*isL@=yrjt>sw z%SF*1)`SoSTaQ^^_rd86&%-K^4wCksl9iT`G-dMCWYPc3x1v2B`i6-h{N>`T^chK0 zGtzRBvuB{ZxhdA8r&o{ xEX%FdjglscILJX(9iJAFj}W-xg?vC+?a1UcEN0l3XO z317oZdg^T*YP(_P+Abbtl-K0p9yEuEQDMn&k9VDZLYZ#AzGJo-3ck{@mG)VH=WP89AOo?7W~-M_;a;M6QJI?lac{5cnCd-mFDqZ+aId=-fk9?-A207{Orc|auL;%AE$ZWSjo$5Aoa_~Y z-mS@AzoHAPU-QBjR!s9Xul@MFIdke_ud-k+?7cN!I69ew*LrQmmrYHN4PLFta)ns+614zBgCXhzTXZb+ZQ zNLb-r!De$-c-Qf+KsR&p{iw}~X%b)K%FM#&UrdbFBwBpN0e@9Hs~x`JgrB%5_YOx# z>F5(?b}si0n#|!L5Lm+{e}g+p_@Mq!%{#)nkq|g3GbL?YT53wt*a?~Vw$nsxzLuIJ zO?__r#EaVvYWh@6S)2wA%I@b0KG&Kko6XIy_^ge=r}g`O=u^{CuELd%@Z0h9ISR`Y;}VN zvQ`C7Z*q9yS5D#HhdvE3*66*yVP^9UKC?VD+RBFZB|hPZ&y@I7vO|@vJ|9H3pwRr# zuJi-&1Ni58W0R87a0IYlzsL`GCJ^T-dY44#zkkx_`v~!&fc#1jUFN8y(Hk33a>x;> zi_Afln?5x#y|`OGk?4%N#YMSy((xqsSI29$DdR%p-CI6Q13AZK4@De-hd=U}?Mvm} zGDxWco2TL+V8@8`@oh>kr}T^QjUkDwpB$m^sH(3p6MCX8GgXJG=~}ojlSN{f+_|QC z*(Rx7-M3B@7pO8+&CtTFVpQ$q8)=tw?GHGV3#;Le%4cYm=tKM7sNhOx-`cjGs26E>guo>MRR#&AFlh@OmZbK__6DR%Ts->S@GU|F_S86M$R^^s4S>05_+ zJvcN)t1ruaWv1_(Fce5$?%UW-_M_##?^7-JDP~*bR#b5mDTk%SzBMX}Ec=VuZUD{z z^hRLMAyk#ei+!Uk4e;qJJ|Sk<7T*;{0iC087Xikz!_Re z_yfqFIqB)%R0Ok!_{DIc_yXDGfo(l5iWvSw1*8cycR wvu~l;V9xik639qRr`N@Wj?<_koX)1^`;Mbd8H?{8=cM7rK@NWVbxiF40m@&QqyPW_ delta 32620 zcmZ|22Ur!y_xPQ?yUV3s0RfdFDE5Li_JX}&?;TK4xgwyV(L_Z}Vj-yL5|1%Ojm9Jv zKtY#a0gW*ldx~FU*CZyfm&8=#|C~9yqyFCK<$2iI`OKM_GiU0~?%uumbIawITNXeI znERVr-H{y*{dcOt5cRt5RCBYd!j9>BRV5et?o^{(*eDG1h*bx>}y$}nv{tdmzJ6_Epc2%Znpn3n39~Dm|~o6SrO`Cn$@z)Wz5J( zo0goIGQB}^>iDEtF9=Ufo<2D_!`RTOa^vTcn3kA2J`Gh6>R6EilV+u-B&H^2B&VfX zDH&&4)D8=Hfv3zE=g!U6ISxckQG>m+oyn=wGZIr$a#zn+s~C@4MVBvCUwSFq+rlwZ z#^<^Z81-65coY&3g2Z-ukY}#Dh6=uQgqr68e;$Yc+(YS1@PuZBq+gq%XXhR0_FgW*b&9*nu{C0_;TKS8g6 zBKwV%ZR#jHKq=CjD*48PHjO;?kw7h~wK~c+SW~3eRdyShZ6lNdn#bRG!Tvh*OuG)A`z%OoSXzo5ebIvl108NmG|9jNf`BXppG zyN}YLm=0gjfeP+EMu$8)9H#@7*nNTyR8IFvIvk|KDLPOw-KXh5MRcE0Gx4~ePQRwZ z4mx~8hkQDGO9v{d`#U;pqr+J`?54y2=ukk1b9C56hwtgIoet;eKt*?7paT`$eUT0( z9WLQv#*DF(S`^M~Uq#I%^|PD-$-#vWB0NO#vz)66DheN&Aj|orW4Q2<8M2(4Dn|$( znIg;C;&x5pBXeXqTYpljTfESRum5Kv~YuUfLmiWTY(T-ibAeNNqAymb34q-oi)5%5vUl_*nSJ zU|G%)9Yc4KBpEHs`O84|?NY~(x5>JLdnk~sm*vdp`n&Lv1u=^XHTO~&HI^)ARx|cd zgUNEn3}+u%ILo=?)6qhbteoZir-XdQqfXtOWa1UMwT$_l8yh#fmsbWD{d+ew+IR6a zW_PWq3=zJBp58`r&&tMv&I_EA($Xg;W+WMBdUi6PdsU^Uknl%|ce(@`&EmQnGkP^L z5_(1`qeMu4oS)&EOb@3K*WD!~V|qj=orPq4uMp$&UX47*B~Q0ya@7}vW5i-?rvq8{aq!GlGD>a_7wjQzbji45XW(wxG|Q-+j!C~M3lk5XC#)A%HnH`=;mX5Gmy_e?h|4tz55!ChY5AcTt13B?ZdZ*H9ES59P;*FR9{C`eHMNotO}%vj#9h0%6^m&?vXl!r~%c0j04ju;~_ z?d*<5qoK`T6dORuxH=#LE!b69DSv372Nq*u(sZNBpuxtsLq?&oW0h_~u+!i`tb2~) zVYD7t4lOYdTSz0LbfD93dg7Gyl%#1Q|8XdVY7VW6wj6*q5)zn^hmkZS;06ERg9411 zL&jj0#G1 zlYd6^Fk(h~Bj{nY8r9#JKf1r8aWiAV=zhLUn#MPbNl%@K6};V8Fs83kYMdF<2#;#~ zLS>J!D89b3*9b@`@2j}8w3l9rduhgWcL4$8%lJs&6ov}I0|+bQuunmq5-KWr#;AlZ zjSmx}p(N1}Zj4QgHMXZzGun^yFpeh=y{Ck z#7~%OyfZo4csk)#qZBh~xI)G5Gcne(u~gFxFANa9jF(;SDToH*F7}!Te2%XJPq_tClxv zmBX{pZ{{V->t9v%EYxOAaZoCOP;d=H-+J{ME0y#)Asn#kvS;D?c}`1eTan^v%$gGh z^Zrx4U`z)kpz!hhb5@+I3(Hwzr{geZuQz8~-u7=`+V3s?&XRk5X+;hw-2PT5pBdZV zs%BJP76|h{$0Vbce`P5de;)JuWo>w2RL*Tis1E^1$<_jlzV8PVj$d`zN_SAMr8A8F z-NDh;uYSmZ#?`eo3y-Z)t&Fd(t8#`R}1k=#`;oeHkqi}YyWm%(dQH8>k5-VL0H8gtfUsfzKdtv(if7!dLz|$C7 zR1WTWV=`r5Vg>CkE43s=8(VSE&ONd}4g_Pqalsrz3oa}@WK}uDcf$np4yRe#3v)I< zy4Ol%e+>-vJNAd=y?g|VQ2B(d4C!W!-s^&XF3khh`Dvboy-(RSAsR^fehxI|pZ15+ zFVWPmp0QgHX;e7oo0(S5WRJqT-|e@uqE>HsUJfz*|EELunOL-k|2x59g=fCET8q$r z00fV$`^dg8Qz*)3;ACGS)o|fqCVzVo%(Cp$Qh; zw+vLc?%_}WH~O~UzGhUI^VsTDM$Y39a0P2#h1>r;X30|}VF_G?>;JZTxELg0Uu6Z^ zzZWbqY5^n$rSEFqh1>tLn=qEP!mfP9_S#}*fkU#ZcgX_H6c>b7(0t6jn(}}1HuF6c zyN#0h%sfxUR)(t5T<@)1w-gag9sNOOfv;kfP}m%zDrvfz?^3>HNl{p2US^TMVp$TT zF6P!inWdei3r|hZkX9FhlbsfbT|83@Fo~@^xv@(|E0hHFv(=pP@|0m>R!~egKqb3Q%Hfcd{tA!e94r{G!uq0_5fcou~U?_;f zQL1HMHNfoARV+am~b$xcR2mvTxG1uH#;fzD2E0N zfcu-Y0QhPthAi!(9O8&34s3Jn;Q;Fn&c!LArhiW*&kDzZ+#2d};-b(n)4z{$^Z9HA zY|u}6U`1&>K#AZajr2L5X7V8A`PtXZ8lw1eFwI?N!7wGjQXt_F`Y()7?6Hn!A9M0( zrHB*8I`uSL#w$NQ^8$MPAu~a7ntc+L-c~vk4_eGp${7`34>Zq?Q?^(!w!h_Ru1&J@ zqXMCnKjhTXD#Gc$P7SJ7cLbX1B;`wv0K%+w(otsgU4DCS=buqUVXsFK)$t+;5sQv^+4`ink z1z)vZvF0gr@rQPhiNle#un>)D@n*Z|G~1bTKC!a{k;jxR%I8*|I5&nu-CEZV?(J7ryAOuOOGunDg;N5fy;ZI6UJm>exu zZmOEs)^zhA60_j zX=}}C-aqkTnZ7?|XT%*0ZQ@1A`@p46UR;PuUn{MwLQu_2`BqL!cClS%zq86O|Hl?C zGvSyF*u zKn(4utG$|}1t4f;TC`DmD8Nj5AloFhbEwe?2ldk((RNrh0cP4GdsGnVP?>$mG^OoXxegSQsR~`0ZPK@o}>kg|mftZ0yeHxqz zStk=O7wniMX`-ZE_oNeKe6EF>7yKM&tuhEB9xLat<|MK3GtUM%?8^#KkW1wqzp}jO zTUUb}_9{aRAwN}cSW7c8I$W#duxi}=Jj`LODa?%#4r`7!Gb0`L+5k^|&EzT$d!e

F6B811meJiu^IGore~nuXc_PYs7P+?Y6oS~G`OJOv{cU*=1@jmr zYnG3Xv*Hjt3$gD&u%a0@%&sEy!ElE?0a1y~+an$J#)L@o#%LK|)b5#h$Eyk? zr8&}Q!)rV=T;vEaajPRoq0>NGM}I$#8XWn=6`FZD$$<+;;TKhVWg^uF`a{ht$<+Qu zkZ8J>CzCe9PfKj``zelW1%9}prdvB|<>79cqdVOB#oAyoN2EJuDC7?mea-xJssq2O<%SeXSgY1c3h;T$Oj5@4yQr5h9jXEf+fQ;)47pN@9P07O7lo-2*P3 z(aM<<7X5!za+>{?Q1c~mF%iaQIq(WZ#1<9UG+UPKnTA;-wLr7$a_ZhfQgo@99I9&a zo478p(lkADY48$KR3*DtQ$G@3O3uUr_-w&vL;AtR;Iq9!;j$8%)D^%00{m}9d@*!4h>(5X)?L!jA(?A~UpB{EN&8SU| z!xlvIm4nDn92LyUo2dXKY5ITS$Z~KbJdK9ft-juH^As+7Z*6gGwuClrbKp9U4*V&;tt0?j*TrF2N~4~sXH7lc- zP*y|nfcNX!!DZ+0vTf8ZM^7s|>fL3g<1*`wcA~JNxiZ}27-%UW z;G{#2V6)bK$5u-cuTINB+96aUrqtnM`jt@|6=?|T&O1mWx-bjQ#BW+bqWPjNaX~JE z(2V{ZwELI?HwZ<1v|Tx~;Ry%syGcKwKghg#%5l(&S#-t`#o^|SZyb?)N)|QIqPR>K zF+~e2Ip@H|yzrCG=KAxF3@e;=Wz3jM)F~(&*Y0N26~{a)T^uKH13*M1K|n!oI6WCh z*AFJ6;rIRE_|^&*1L4-69CNI6#j*nZc)@ZVR}Z&NVWrOa#j%ma%{n*jQqy7(im##I z@>`C;)%n;|a&9}?SqflV=c*0lwcIav9Tm+>_Z_(BV;83~xVriIK)X*c2mO(ws}&Oq zic<;+(Xt3IVh9wF;JvLlj^`Z0e3tz|-CCrB6@(jjckzHSRvX;%m!qkb7|tr#`-G&J zyYD`s2}k(FrSs{hjwM#XZ96$(c{&b9uAlAFf9z1L($fVJ8u^)oH}sq9=M7_SVi7*n z)NWQ%;_|ThbS=`X>Qr}Gg&}hZ=I^DZu%IX)vN~p&k6OZVX11TY)=Ebd?yU^1iaE(& zhBpmV-?GB7mdlw}gH*hn7e$gqFv~*JbW4aD68P3qePP}$Ex?>uN!@OVQ)7k5s;W*Q z{;PLlNm2uG07(i{+gJ+HG`PGW_DUhPE>iV|_YYzX{1Bn8wo(xbZ|pKGW1>tvM>cUd z#f6K|j5-g{Ktu`o!JSt$Z}2;cRtvAD;zhNP;c>|d_Jo94SOG1Lq0GxQ@Y=#j(c}bA2842O+{EiHReLHL?L}QO^7zM#b@&qKG9O771rmD+OE%sfMDIK$VMX zDvqb2u(he$-RSob--0kJysXYqApHhzfNXE3;!aD!JUlIHq2g7Ve>$Fi-%5R`puAA0 z`(V`t%jV#;CDt*)ZPj8C#;XSrdS?!H!Kdw1Tmz>M!T5J$)w?VsCLAI2!2{elEZ0fO z{MT81%ratY&DBl4!(LhuK(C>gX~78H&urL3J;niI{VUSK03Du=(4A(3I2DI4Dhgmx zT#%QE7c;%maZTN+x4NI>#ST_OVEIVh-^9(PZv``PP*5CHLJ+;C)j;((4nScpIZ?(o$@wVHWkBn9AU03-}jyv&r*DqhkEf4etu z4LUa-i^l%-OBFAeG)Avtew2vCVt6`8^)j=@skj6Zk=UO^^)3A6s;XYF`3+omzB5t9 z)uDhQC4@LkJjR*)qhvKhftqQkT+8ucuyHafw?D&L5<$5X^`NrH{5nM)?0{t(9BFtv zF%GV!q0sts4y#r4PFL$Fa{Y*6=b2HyXw`nq*GaE`iEfg=x59`9L>h1HMLYH((rx*O7eQ+>=;nQCVT z94|rb<0rI*g$q%!*aLQwcNeOy74ip~t=~{zu}%-YsRlZj{<2toO@YQ|F#6L8t-v=6 zqZgdDqtD7x!%&U082zKS)CJaQi)EzI#kr^v-Y8uN+vj0To?W4~ROmFoj9RHK=2Pf* zSgmeeTBY{0g4*S(nbzsax78)q=|mvwh`6EesFSVJ)oazc)@il(RJ=+bx0I@AQgzt# z0cu%enXP5bb!r8L{DEe__3Cizbk7ELf_2(tql(MyN|RAx>n3g;=<^Y#aceSaUhGac0z4IDZdJ(vhAVU$ zU=G|(S&Gx6CMhCLdwr(PS77q{c;$dMnwP+pb#`0)d5;>YkU!9@xKB;BPS@;LyIH3X zO4Yu63Re!Q-sY$S>QpNT{hEX0{(ea9X-R#y3N@N>m@1Kyh4#5>Bh&MU+S~G$Q+HUWXO61{mQ>g~YB%%zNp+Y5qAsFY_D*h%>vA;9&5M|P_pjBO3Y`X+ z^S@ESI<55`wGlxNoFy}e)8^+?T>FVrz3+DMs%-WdKyai_xP7+R<0urAk46pn33~I?Fok^?)XmuScNv zc<(hfagQG%-QbV&5O?=cl5Xvzv#Sor zpu75Ue&Uus%Fz9MOq*`zV??@>kExlk>#^EN*#mz)R_i+UsxW!JT3soCUVo@nlu}3~ z$Ap|e)Vi7Ua6*oIO?UBFi%>Ynz4is)doTDtc)_>+1>c7+_?q*2HzTn&Rf^YK+zE588-5YE6lQ5;kM5zp?veT@#Q1ennjf}>pKe2@9(1RlAkP*?LMuQGLAA$}w8g%Hv z5Ok=~phJ&@phE^ihaLt&huRD}^cV;_)Mn73HiHhe8Fc8;kI}g^X27;LwJxHmFA*($ ziD>9cL_1$9n)wpZ%9n~pzEm`sr9#^!LfIuk*QG+$B|_6BLeV8c&m}_5B|^(3Ldm5< z$0b6=B|^g`?$SV1W~oqcsnBl;HtB_nv>r+x9ABh0QSw$V);gi5^J1+fI`bB5t;A!5 z?puSP5#UDFH;c7sCU-3outckkqOF%`$>@BvMC--jzlrcL*u7K>gP5gSCB}bP(V|K; zCnPV`>N5V@!ud%z(e4~EM> zXcaNPaAW;y9hT>7PK;4+nKlZYrOUJt==``$8;nk?0 zd%Wk@(9j|=jedsK9i4X!ts^=Y4ZG$O21BDeS_NpDt2MxY@wr-Sbk^r;ebKp}t954m zk~!nPZ);6B`INyh=NcxTYG~GT9b>MSgZafm@8fTaR6JJ;LkwMQt3QKN$y=>8<78(s zc)D7v%iuKz?Kfld=>@`83qYiD8bmt|T_Y-_&l;@*DwwlIWORIu)`R0OBRkeHj^8W~ zu6Kkk3GWDz_ujFUSWQ`k!{6^{p&aKO*zk^4r~KH&>B-Y`?RJDc$^9NnjtJ7qKQr|5 zwW0~1WXJWc))w{X^{(hwIqzz*=sWYS){&Fm!NrMrPpiS8h(X$WT1^HfgIe!uxHI5^ z`$i|;)0`Ys!a)V^V^F>)KD*%mz8$m=u6>}@fjn=;6Z%S8CaDKxzpr_5GM~$2YB4y> z;FGo3i0BCmzvs(*lmk)0V8Dkgd|n7V&Kb~i7BBEq&qboAES_2G;s;tg&hV{Z)5Y!U#q$3NeF+8zhQ%D3762}SbxEpxA9I{=?2^)>G7fFgEE6Z)S9ES>_btJ zCqEQ1yf=#e-esd0AU@ovb>;Xz&}a*q2|I-o_HM+p$W2-W4svl&|4mvwOm5yLttaah zGz1FPYgOnug^Da$0Rr~p2w3$atu9LT`AB5E;v;P!`hNIG>%dY`lwLRtt&U?PKAXTJ z1P4XKgWVYP-e#>fgBqOo)y*QQDj#e8nAd|gCKfm6W0BL|kHr8N_=)IUiJxdMV}|gF z7)5^iL~DV*%Abm+KIT*5gHOc>cJWg&G}PN-kFVW0|5>%Qs?X~E#1`Y0<3WCZ@aD9WVS?np4NoZPi3$@PZZ^0o~Y2i`F4fA!rABN3$6dm*Xp3w z(FIxzIs*!XPMHOwE$%JQ8Y8?{Acm-FJ4C_8?a&%=KG~d4{thwrp4y?cV!n!bwVhft z#_qmTOf?&KidKGYr#1;;&q9&%+(NBC`c4&!ncAyJOF*ByNYuo}B5e%%9J{mzY==!l z;Qd=Ti1*zkRGqg=jFCHcX@gMAxm!#?y?1N9Sc&bdMA2^1)Nk+B@JSeGZi?Y`fhiiz zK~oe+DHcv_v8cW!#ac_w?~5Vex{mo>DHi=B>@%$!Cw+vIp8J{Bl)*6u$3N3rGC0Wq z*9VO`tusU5z(uUunkCpaIIg71F2X8&PTa3Mo&=B@o&BXsud7uNi5zZS@fq2Rv}ZFFy+ro)9YtpcX~s7$nldIz)?oOU=gI)DSoyaQS- z4F33l)`25ewIbu)>Ts5<4v8ml9O-;etHz)fT>BiOET7O9E#94M_;U|Y|rFt-E@`Z-a z(L=8<>=i*@IB*=5UGs(J$1w*8P=4IBr1-HfOxJ^<{})=A@A#x=v-s-6T766{hMiG| z?W#@`qVVZq&4&{m4~d7h2>&V1qS69jBIy(cUB1K_xZ;4;Vd`TiqXb53?4 z^KwV+;qpxeSOv~!H=9kornk_sILwZF1Umdo;eztXC5 z0>I#{uS5si`<2#*`TNXMA7RFIk7;$7u4jscs)E_AJSM9A^f57s_#d~&;B730rEtRd z<61b1E;ufF)86Cu+F%#U6nu*^-Y2lf6++kv>`R3(>IC+ULfCKumssMhx`QnG5Rl2uZiNTLjA19nTgSkCDjb$u?@H1#U5#{FpmFV+^ zBiNog@#6Ok_7Nd?|2duSox-Hrw9^B9xiJZWM=XH#<%IJiw4i5+q@|4_nA7BK zzP?t$L|AnhRvDgN!%M^@rz>Uojj zpz}DK6$6~d$+Q?Qo!5q;)9eDyoyD-=0xnvM;fo8}5Ol&X;_9Iok}it!?zxC#zfg1- zm8mJjUeW?Fc;F?R!;4|(C6T&%SrjhuvR$h2!(g4ERfKOYYt^`%6Nk}Srve0D!3A3} zjK3oE`S=P>+r{wUiiqF$stEhwswm)}(KZ)$d{Df;qjPR2%^0z-} z!_gOW1AB-l_xrHz3Yyiv5lMwFy`d$dQ{`t7KmBK1UKB&|&ssb>6@Srsp_B9rE+C6x z*Du;cbRvEgI!*gkL^$xPHU(jWo480WhSzV3(jK}gEaAF^)3(TWk7dH7nYd;=Ve|2B?A#ZdQ-P-E5|QK(|{ajK`SRL{~ybE~_W zAIf&Wi(?YDvb!RIQ+GwGzW4CTM<{ZIyTkZJFa%b+g~-T@a4bbe6>FS|7_?>FHLGWspZm)+y%MrMWbV?oBpM{FiEO^-S zac?~fEr$7+0UF{1a(0?~|Inr?IGe@%rB(By-K|M2-RI(AYE3;1w*95~;fv>au;?#r zPxUy592xs^cG;bbkej+Xg{&^xU9Y*|zcFKc| z|Ir1|>Zjr|X!KKUC}&?~FlJw6Fl)X}(VbrSTLk#?0Hpt|r=;@RwRFA|czboZwbm+8s*50Ah4%2H6y}OSnY!}L{3*`9e z;Sl4{UEVPnlaewLaV3VAII0kCr|PtAxlq-qD5q4BUWlfXC5LD_UBBR~5wyQ{L(|)E zvI&%I0{Hu4vXwpbU>Kw89w?Ed>wQ>a0!d7O$bZquLgJpTd!odjy55T=Qb-~N5;VOI zr1!uFu`)e$TK(sEP?6!JhfbSm0ZyGZ%MzVJgUwEzuDbql>a-2n!&8rAqrO3Dy}?FZ z?X7cbIOeI-HkO~4u-6cF)_Li)y?EYBZ_R3~rl_l-N`PL+nV5k;;DDCt?=38|%v;DF z@z!ah(CH(bu0DDj&h!(C`3dfYG}gl~Qx}*%x(fvl`v}{4_=@bi`wHI@U!8WZj{54< zC_Vf*%uf_`5jw2Q=al5<;P0o`g}?lCU#5qN9)%H%shp_(ta5sHPT~T| zU3jjLPJdCz5PxnU=&+JMlHiZ5H`AYq{!9&}E_es%zNlV>0KF9l-l4!d9A$o> zt~tkzn~n>5T-^o;Q=bkH=5YlIrx!a}fqF|;?I}fn`h4jEbzcs048b7B5LoG_*AC7| zi+4{K9gHqJbPCdkKz|>-8swMPeMHZnUtYBS6YPWr>9nn!5Tw)Y{+1w7S+|2k6KoW$ zcVzV=D5VJKSB?5s1w6!7({+^J8!Q@WK!}JvGDIKF^0i66Hl$Z)`7lU}#>XvUOEj{I zX9b-$!3R~)hoZBsg5D3ECl&PO9Jd9&2){>N2703gg%BNWKe{RA&}^W#iIz$)U;`M z&5D<|mGwjv&8w`}L+3(eoi>wPk)liYjMQoGU{0h?cOD8NXB%?fWkgtlTc6?{+>)y;YlJcbAp-Cc@zpA3QpR(s*399S5-8P_o|9Eai^-N zj^@$!*teTv?8a>r9ERXNssts`I&HTejuu0Xvl@?E)kJMBuO{s9RW&h!R;(_Z3Dxxh z7~!+(A|t(qfCFoY_P(Zu7>6&^5Q&A?6uD2Rsnd?;do}fLto993;s(`obtqp;r(K46 zwM50ut|j_XX)TexvobK46h&gdd9budA>xjG}>xx;+U02j#UR}KlCs7`kB5vI7>0euqg46YMr%!5p zdg8Q1+L*|LM)kyKpHfe6!DR|3@o-qs6srp}^o8#id6dI~{ajC^TerSwCzI+6Gi|T0 zH|JdHQnb25Y3vDu`7t=L(F+L<%pp2POwuD_#CWzQMhq+GV}#C84eVj1EyZuk*^1~Z z8tB2CbSwqM4ut@ho%FliwE$o4?wu&G6FjJg>WX;&4RzYfs?|``)tH8&<>xfSAK$?- zs-aGMH#ga-*hsI-WgbR}41+n1^e8QntTL^U5M19#bfyz1h|&IHUya71X(Trm7RYNX zdeP79L^Tn<;Z5{btov+AdG=7Q=#nOS5TH(VW$EMp%VVkkasB2qcnkHJspypzvSkl~Xu=ymLZ6RpEm6lpsNM<}D20&P3d>srTU+6H zRRot?VX=!Ksx{8XMKF<_Jal}-s`>(HaRH{b)?1REMbM@VCRqea+h8{ftbwVF4*FWVOz344Qu(K!NP2L85k0RzPL^oT0V0)21M~#+9UY+e;4&9ek&0nu99sAE zAX=^r(lzKeP^ZnO2?O;w7TZr^`?)TkiQOA0Y~UP(BU~}`9waK@y+PREis9-YQ33S_ z>w`Io)0D(%GF}7NJ6I1ynNx#Bl}8K_RX$;eh`42lNbUX*5!P-fHnkFXZ74Ri6382h z<|={5L-i5x^gq1N9z0C%#b=v`q0LL+{xEDBCD44hK7jf1;d&<@apn9EDew<;7_K*h zD-Uqjtpuu%Kuedvj1eMk=?K)L1UyITJvoLqJ{94{C%Z>s415kY00Y;L#9AzYha=Jc zCD3&gUhG&G@hBPsnIlk?uHiB8(kN`#B~W!VR@_cV9F4!0wi8y5#(LNZcSmDC+zGA5 zV2$mBx5i+l?u4`KREfuUJ7Ge+2s7jL7-bLKh{q1N2O<*m>B>P^nV{#P6Pu_HK?f4` zJP&$wC%YxIo36HkH^=G*@=D|MJ?MNlPJd7N45p1o+kFNl<1zKm;OTfh6P?T?{S9R= zXcMr{?}d&Nu*vL)cPHp?qElrewxj*<+C+UPIx&-UK5Hw^TicNs~d)FAYh*1$r0wBMmK>51rEWY;;bi>siV^ z7&%p+gwCOZSc_yeLOneGxb-L-LP<`J_ntrGjWzJfR|sv@vs19zM>~9yWr|8`et+%&%#E! z3l7af^X-C&**Mtjf;qGGP57I4RbEBAZHLcZ#r(E|_8Jy-J7m13PeJGUYnb$Qh@Yb` z^q{AuvP0q8K{X5ca_^xtCsY3#oxbz+ zZ=52z=L`nQR`_Lsz671A3$Y1rh0ho2>zwp(R(9h~(BO4F6uN$=R)lw7*HbXm^9_9w zIxF7LFQGH#O?^2&!}sr-_^XVi5V=UNflk*&*l0@O4R#JL!np)R7U490fWoT5u*KL9 z4#334dQEgzEXIa+0KQ#}L)HPPxkO*DY=I+7^aJQ*EycFJ1uiVby4eDwvat9j9LT~R zW5VMseI)-V(ly-JS(NKOk9$vITA$PseHU$?`zH>*EWs}fu1au=!F37lGWbz~2MlgV zK$}U6ax>k(Nb(1Z+?3#N2Dc@6!r-n1FX4qOs(N1nmBB*^JQ(~Yffs|v3^K9AzD)j< zBIOwTEkPiIej*uqG-?(49e) z1aS28 z6lp3&k{L9UfVSLFqJ;!$3|dJrjX@g;W-w?c!7K)`61+C}rA$h-qa^cKq_YGI7<83@ z_UkZ8cL^3V=qW)KgI*FWW6(!}90vUmWb!iJU@}08(B2+qGf0AW7z~l%JqE)hSjS+5 z1RpXOCBa7w#z^qV;7pNCf+Sm6WUK^v48}{agTVv|iWp3iz+~W-poBq+1p64ICZPS< z0A)~px349oQD1nQ?CJ6!AeF(75=<2!(|tn{+84z{ev#l61~(;mmBDQZ<}$b|!F&eyC3u~|LkSi!_>BSe zzokqbOOb2_e@d`|!QT?BV(_m7Z!`E$f;9|YO0+vTZNg&d91_sZE3H2?Nobc9MLZl))qknlo@q z(27AyqFjH_)-`66Dn)3+8bP`Qv`LL%ngm@LWJu71!AuEyF_an~#C7|tj1Vs{j%3!w*GTqyl6x#%M z=tZ0o33f8rE5R-X`w7VBSTLIdHW2#H)wiuNy3ILPFv6#0U|F$s<^ zI3d9?2B!$f=VeffuWcZ-_}2Ehzh?Qf5`2e%#{YAYoMVym641>8l(;CtWd@fexW?eB z1V1vkF2T1eu&< zEha%yq%MOH31S#jl%NrVPzjnc2$!HagUS-n4HwKeN`kh-c>bv>Ni2(0lb{oW8WMD6 zP)mXy4C+YGi$OgJ`Z9=-U;u-LV`=^oHXY2Qu@o7`ps55S88nk%41*RD&|MxZUMmUc zt`34W5=>;!P6Br(lUPZnFz6^jI)ly>m>M-!3GKF z_8XRdqXhpk_(%d}xRCf*0*%3^qWz1aIGJpfB6N!mQ{66sAA@`e{2AUz1OK2I3nIK5GLJe9rc{zvtkK5?o?%RrEiR!Zjv8 zN|B!!{6au{VB%K>w{0NuxNG~|_c-{W1dkXzCLq2`@dtyyZGZ{j_5Z)*6<@1(!r?EC zvw+CJVf)-Fo}mdmByckDmcWOBi-7p*ML7n6HV`QW**Yg}CPkVvXeB{w2JIwh&!8g#@hOi^ z47%Dt=-J)&xqEPMF9~`x$m}Oce!3PqoWAGt?Op(V%CYzIpPw*)4G5()M&*e^lpI9`7rBtkcg-Ji3_VH=3T9;n%8sy(YcL@B>%AUQ=IS!SbtB znAzkPg5VN<`3g?u;Ul%%;XuJ^R4o4)KA-eEz`VKJkG?8fonh zEbitHEbbDYR@^Q=t+-WuS`icdwbSQ0fcCeEVAMVooN98WkSJF55<%Kr8B5PUxK@*};HjqZOdK1@mbW7&bQ z;kZUme#ZQUPo}Kctvbu_M~EwWG>3K{csL>LvECeh&Gl{ubC>z}Lc%BBVIMd6L$6dW z_w74g%1iWz-+s!DG!D!UgOVT*d=(?E{o-7sY;FYn9OO~a*&%ND;@s@|BD_d(R#HdC zr9<0bkJipiXoxS+)0Px!r}_xRIo=ijr4-{!5&SOJhNVi$2$!jd8$zcQO0s3 zR6H>s+s&gIOkRc$gyjLA)B81Zx_RK+HfCWrkB>a#M8Q;iV;b+WQ5ki5d77S`l^%L3 zojj^|dzv|(J`*Aj37H%Fd92_!&he9*>sM(tFtfx5_>;LYOFRNu)l-W-!q~J`>Gxr( zp~T6h9?_)rlp~esF=JPj2mjzpc2(H$Hc6P{vpkvykVxvaP;j|4ela8}TTZQd?(R!3FyF%CLtz^dl&4reG?#J`HO1(&@;q%#82`{QQ;;y&^jGt8!6Rp)#S-Q_i$Iny!K$hFQISVb^(Hh%VC zwMX|j{)9-skm}lR0-sWF8$$l9YEJkfl=V@X1H1%O8y^PiF zuoK^2GBXc5?_f2XQ;s`34hyr|G=6rM8bH1X`|9Vi0v6TIou(q_dcO{IVz+j_=%_=x~iF>xZXHk~~K zsX_Pc>52W?oY>RzyWomKq#VDx5&zt~8|I({&ms?(2-fX)Hq4NTp0CDZ5-SgT))Mu$ zRSDs?kYZ{sE?Ou|UFjK$)3b;h2?@pY_P!bOrRUFcSps_?{Wgd77Ep&SUi8jNY8Nm5 z&6eyc5O7ARLgSFRr;FE>f!yqJ)_73|EqlkS27{C}URH11yT%J!j9F`~S6ytr=Acrq z>--Bf*yPVR9U)4KoON45ONxCiqmZ7DjvV*@0Bm@#E5Fq@+z58;_NmmY(Y_ z#9#99sc8P2<}NU13^P+>ZS4qbdhY6$qOGYPM2TGIF#<1nEqiTG{USu&YN zU3}}7t1m=+lc&c|BBN&{C*nJ%g83m!o0c&tZDJaJ_1em0^}$Ht z4}2r+0!*EtRo3YFeVS&gGpz~NCTg|t=QBC^;}3kB1mFw&s$Y~+Y+{bNepJ5v!AfP= zK11`Bf`9q@H6f+y*Yb--r++QKs_cZ&FQof&;?o8>;Y501j2_fL1O!e@N~ISLlj7<1xp$?RFG^KNPc4bhFUu*|{6>n6aq>nfT}<&KjQnu5 zF%ZT3WumbOvNHl5(u!un28BHeFJGubLBaT;qKQ=j}K;6BBMY%U2ZV8k$mE5uP3 zi&Ls&a#He3ifggDr)cteC$`BSLiSQ_+GfYF3`|Fn96nJIXE5ACh9Rb#d7}Pu0RU0b B;u!z{ delta 747 zcmeA?#n^d@aYLveM_Ounl98EF`s5A5$&(KVmZAu3ULeH52p8GBL0AaE18P__*+8Ci za;fMvxDu!-YLn-PIbjHH&KK8X;>$0~DNsmHEs4)a&M!*c{6>n6aq>nfT}<&KjQlXQ zF;K<(WumbOvNHl5(u!un28BHhGJGubLBaT;qCc&Yocck<{B#~nClr^T1<8fQ=j}K;6BBMY%U2ZV8k$mE5uP3 zi&Ls&a#He3ifggDr)cteC$`BSLiSQ_+GfYF3`|Fn96nJIXE5ACh9Rb#d7}Pu0RZ<3 B;u!z{ diff --git a/dev/.doctrees/how-to-guides/fermion-operator.doctree b/dev/.doctrees/how-to-guides/fermion-operator.doctree index 78e24f43484b8a869e9dd7096fa6ec52f897dec2..0e0e5aa31155bccc924be2b98fb6e5abd1d978e2 100644 GIT binary patch delta 2214 zcmcJQT}V@57{^tX`~K2-c05iu&2Q&E%y~A=sgZ4|o68KP54W|6OQpn{3RFVqLi1zv zx1vCaE~J|T83uvmE&@@cyy;G)i$JIwy9fzHds{jpy6f!f{Lk~g@9#X%`+wf|yje~8 zzM8_jcjD2PMcx91ElLF=Q;J>cQd~DStMEkq5nHSrx*lG#0bbgG1$yeQ$VldLe9axk zd8{J`%|U4N;QON_tqfMI>3GMUBipURdX@WsF*4g+A}SP#hD&Bb{A)8IJ0@(pM0_GLT6-Wo0&8N9 zk2tBA*3?jEjj7}1Ej4Du@0czM;*W|dL;8CZhD3|-`&NwQm&bi7wwNlV475jh9r3E%fYro zfcM@KjQM5c@TXyq=z(?~y2x|dC%~&-JuZ7G%zBG3>65_j%fh}R1M5DPBaRqz*H<8J zCCp$s@mYw2KpAL@n)oe7Nl=fdi--FGJvM?u%m$6I_oaZH%$H&>s7S8BCYwbr*IX#v zeCWGfoY3Yusju@!DHoiGs&7AAsZ35vIz2GhZ5R0m2mN=8ui)D_jfOBewPONwjAi0X znEs{da+ASiwOLtPC0k}Pn5{N5TWPiuFaI%_EL0g7^s}yDc delta 1986 zcmb`HT}V@57{}G-rc>v>+*j^HUF!T;JLkVJYXDh6I{yLdUz`|v(L-skz9b2jIbUe70S z`jVecO>?GXC}tE~1EZsgDU32Iyp?gWA-i}~x?lbaLy8=DXw5N`(Tpj@@PGTDa`vdQ zZdJ_@>F|zfhKsfQaxCdjLY8~yApViNbr3uBx)h;-Z-N$wnVpL8};FSRrvL#$1CCJ-#fcokmE!V&Yqh8CJgM_%!;g8CY&G zVx6_@dX=#eud%a&$~@e4K8X7aryGmn%?!VEJ>wIo2}qu$L&XIlwacOe8W2^N|nQlqU+!^EvO7^E}tiB)3AD}~LgfW1Y5xt1a# zG7Xc>#n@~v!F`_&AH8a{w=h`rrr}|;4xO|RJYOKjdd==1tnPM1R&;$_ZjDHZsx~Zb z-&TuK5)%@tx&ppad`}?Y=_$O1(E&LUhjr*4P#|eoD>oS_OBqdBEL5qs1I923+@aRjh`kWW_)#zabge)&!u-??czp+kh_DO2&l<S~ diff --git a/dev/.doctrees/how-to-guides/lucj.doctree b/dev/.doctrees/how-to-guides/lucj.doctree index 48dbb2b917ecb23f4d8ca1f36679de74091e4e5d..9f0fac82155e872f7422ec19e343ba9ac582a36e 100644 GIT binary patch delta 4937 zcmeHKOH7ZvH(b%|GbfHmW;{9h}W(q?DMHa{;Gr9Nv=bZ1H zd%kndKfinx`uXcn<;BXm)W@GzeiCgIk;nSS#)r}=)RBF5H26+rO=8##5FoX!o`Cyz zHF*qTu}1fMYxf~|GS;s<}-QteS#=nnrw-7nVb=u_)eIP8B} z*Am(>crG)RM5$ypk(n47^}8CYJP0+$SDs(@Y6`NwIbp!ahilCru5$haEF`Pp)x8tT zY&o@`;J1ATmmT{U&Bwef{7PFq1ynZQC8UI#vOOBPuVZv9d1Q7ld}em=$aEPI_@0e> zAHg@5+d+vYr~U!ov!o6e=jvP{szTGN3+#jI;*^(yKWU&`f?d4?TIQMmgG}rQGfuRW z2Cf`$sAX6glZ+FAFvbW`EVYGK9&Bri3v4)ZPb7*nY(##!C?puoJwXObrlIfHFr@p! z(EZTNh8y?$j=koUT5Tx0{6g=@Kqfo>Qiq%oxe>B1aSM zxWV9R;&2;c*zqmTCF;1Oi$Y7(QV0pm6o(7RgV5gh?IvO!_5bKUB7|h8l#!pQ)vy++$w09J`iSF5=E^ub$85QVXbmo zr3Ep}ji{MR?NOl^mDEr|EHRQ2_;KohGo_6ac2!Otu7%sv_f+w~kcHUW^)XlM))K*7 z=$5*rgp;%JD7P+lX1GzosmVFjWV8xE1(${yEh7(SlVknap-dVHh)>s7<+B3bWPMa) ztrVAvGh$f)_2}jHoKYdDCR(@&WmFI;${Tg6GB9iJoU*64^S(v%?r0g1sgQTL@i&$yv>9E z*9<7bgFdesZqMxw#Vg>scb?y#_giM(H!SP>i~np-Zzp<-z1XcN>hIp|@i4T#_q+GF KfA9OZs{aD&Vf7;b delta 4458 zcmeHKUuaup6yHskb&VrUx}>iE@77^k+T48K{r=uEr!pN|t8=1^!P<3gk|il!(zRI; zXVHQ5VYDiq3|5B^+lw+#9M=aQbYp_xlkU-hg0MFg{4-Q!5A(Z;^`>o#6q`}7frRgT z=bYa;-#x!`zMEga_Wb^p$NQ@H!Vm9W^S&QwV!p$}6O-voQjg|NjXU3$&`2Wt;wbk4 z4tHn_9^c-i5eNnw)o)MmuxVinvYW%hmU4MSy_}OVd!AIamC=C95^?!$% zUri2$({{nVFj~Er{bl_wk3Ty#Hm)ZVxuH}nJCU#-Yuuv2=ElhK{p(uog6%-j7?5tm zjpp}O*na^&=&OO5)~O{}%Iz1p*VeIQ+eZ2qLG29uiFaxiL|Jo{;1-;wJweO2Cptcn z*qcvP59U*QXUo_qk2~h1b`_%W9$>Ud$chyWt5s_f6s>e)z}n-a0-W?YzPs9nm7?bR5uJm*G+>{1m7L(?$)UxiK#Tq*_E`o zEEr)WilRms7%|YFHsJjJJ@DvL7b*g7pWlB>D@AT_(>^;e7SHA;r%Q52<#Tr}%N(E+ zVtxHiPr%&+A5}P%9qS{Dj;jV+(IO?WRWx2K%BXpAqK;W`)}66 zv%{h82s0=`MRqWQORAQi3qMB4sixT_Sr!Ohww!lKks z`P5zOrTMEc9ro>5?E?q{w`2W<3H4jzPKBOW1m=>TRS-LBlXSAhGhGFr?rVi@^9+8P zL0e61Vur8}&J8{M3RlyI6sS{}Gpag>E75d%n=wl*@t{w4KACi`S0}~w=y0r8Kjw@s z=?p31uuD*fccQ?%h^6@IFj6`iM4WLaia42*iK$+l5mrD7XGR^7Dj_qL&Sb|`2!>(j z+q)hj7$cJ+%!LoM*XqN_KnPPys5sOV6f+_*gSBAAQk)O%dK@t znL2m^A%QWMQouWNyWJy`(JigxpMjAEgR)pp98U6xtv$-OBbKm zvDuSq8%=sQZ8|fOy5Ds!Kb`MPd5@l|fA*#o=JnwQ^afBz@isMC6S i?t{n=&A>IVvT>f0!XJ5H;tL85(-D-gV diff --git a/dev/.doctrees/how-to-guides/qiskit-circuits.doctree b/dev/.doctrees/how-to-guides/qiskit-circuits.doctree index 623d73fff9fb21d51565aea05ce7d394a0b2647f..5cc69b2d7bb870d0f6b537c3765b0620d415aae4 100644 GIT binary patch delta 773 zcmY+CJ5K^Z6hkMCG3NO)lw}9n3!lJBu;4~u`#hR z8A2(&RF;<3##mU`x^w5w&RCxBUherAm`rn%Y3}*5l6Q(`WJeuRqNB=zMq_VvH& zWR~>*(Hd>-=V`BYtEC(Dsv;KF3kJt9CazVK0wgZ@+yen7D9DHl?zGS2aWQ9&#y1>~ zh-0=*c^ql%eLxQ}lg%ZG=ESGkj%*G)Z1eDEkq=|n>g=@TaU|aSsx{ZYy?y%;`5f_v~n>cNY3k*s0 z-dm+xr*jp&Bm*7R;g@|pqbhv!Yw8*soU ovE@M%|2bt6yXtv>xZwRd6QpxZ03-zdO(sZFO%S_mclcZQ0~CSv(EtDd delta 773 zcmY+CJx>Bb5QZa#9tE*8e*6NhxI=Ee!W>*_BorEgl?3jt04>#$poxh_G;vESVq;=s zvV@jiegUPmF%}lK?(FQ`uH`ec`#!UGGoIwelib^Nn0HHo&q^^%_(OPL(WtS)7b@>o zW!fA3qgCG8&+~ru(WeLit3H|75POMOAZM z)N0=jq3dO{%e#_BjSs75<;vc)hjaT)Zk?gI)qSyX^s^|N=}ypLajL_KVDOvP%<7|n z`Xq4LAfPG=G>NbF)snKa)CeCB|@CDryd;wPJ1&T!d^q2(2;&%3V zSPBG!%`*}}#R!m4@N!N9s2YJJF}!#tffw5XAP~IvNdOfiKtjRRfCNxA0!d=|vaWWg loG`acyQ2ViXMU^lbw%fAg!#=o4*P={|c; diff --git a/dev/.doctrees/how-to-guides/qiskit-sampler.doctree b/dev/.doctrees/how-to-guides/qiskit-sampler.doctree index 0d08c3d45b807601cf0de4993f97a290b47a4412..2f1ffd27f131dab0ca2dc038d9ae0433e6331eba 100644 GIT binary patch delta 676 zcmeA@#MFL>iM4@s>YoK0S%qR4O(yrnn*zxPF|v$?lXGHh(M0~moP&t4nkXo^#!L>3 zkpij<%#fLE7Z-|EMr`u`xISc4xD2Ocu*XixuXX*6cj_XZ9)V8i7VTZ!XG}7G>m^+}C8vYHng~Y&7|9^9mzF z3v)wY(8VX`7ZoYkD(D*M85)?In;4o|7@Hd!TUZ(yaoOk>6s6ihLn#8y042f(OkUAa z#b`S@KSO`=oHiYV-7FxjlMUL$Ibc=+V@{T6m12|Ex2G}wp1h_R$xLm+&VfZYnoc4- KvRS~42lY(^P7NF|4U?C(R5993R&0&NFju!t9HA^QLzXyYps?kfyrn&s@z3OdRvipe Wfvy#VSq=+yoGRh=Zx-zOCI$f52eT*u diff --git a/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb b/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb index 56e0bc40e..8282ce9f7 100644 --- a/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb @@ -33,10 +33,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:53.270902Z", - "iopub.status.busy": "2024-07-23T22:29:53.270549Z", - "iopub.status.idle": "2024-07-23T22:29:53.969006Z", - "shell.execute_reply": "2024-07-23T22:29:53.968480Z" + "iopub.execute_input": "2024-07-26T02:27:45.238211Z", + "iopub.status.busy": "2024-07-26T02:27:45.237751Z", + "iopub.status.idle": "2024-07-26T02:27:45.961675Z", + "shell.execute_reply": "2024-07-26T02:27:45.961129Z" } }, "outputs": [], @@ -68,10 +68,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:53.972028Z", - "iopub.status.busy": "2024-07-23T22:29:53.971484Z", - "iopub.status.idle": "2024-07-23T22:29:53.974689Z", - "shell.execute_reply": "2024-07-23T22:29:53.974202Z" + "iopub.execute_input": "2024-07-26T02:27:45.964595Z", + "iopub.status.busy": "2024-07-26T02:27:45.964162Z", + "iopub.status.idle": "2024-07-26T02:27:45.967271Z", + "shell.execute_reply": "2024-07-26T02:27:45.966700Z" } }, "outputs": [], @@ -99,10 +99,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:53.977172Z", - "iopub.status.busy": "2024-07-23T22:29:53.976721Z", - "iopub.status.idle": "2024-07-23T22:29:53.980011Z", - "shell.execute_reply": "2024-07-23T22:29:53.979539Z" + "iopub.execute_input": "2024-07-26T02:27:45.969667Z", + "iopub.status.busy": "2024-07-26T02:27:45.969315Z", + "iopub.status.idle": "2024-07-26T02:27:45.972641Z", + "shell.execute_reply": "2024-07-26T02:27:45.972143Z" } }, "outputs": [], @@ -127,10 +127,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:53.982364Z", - "iopub.status.busy": "2024-07-23T22:29:53.982032Z", - "iopub.status.idle": "2024-07-23T22:29:53.986769Z", - "shell.execute_reply": "2024-07-23T22:29:53.986237Z" + "iopub.execute_input": "2024-07-26T02:27:45.974822Z", + "iopub.status.busy": "2024-07-26T02:27:45.974573Z", + "iopub.status.idle": "2024-07-26T02:27:45.979528Z", + "shell.execute_reply": "2024-07-26T02:27:45.978976Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:53.989947Z", - "iopub.status.busy": "2024-07-23T22:29:53.989540Z", - "iopub.status.idle": "2024-07-23T22:29:54.011854Z", - "shell.execute_reply": "2024-07-23T22:29:54.011176Z" + "iopub.execute_input": "2024-07-26T02:27:45.983397Z", + "iopub.status.busy": "2024-07-26T02:27:45.982385Z", + "iopub.status.idle": "2024-07-26T02:27:46.005180Z", + "shell.execute_reply": "2024-07-26T02:27:46.004503Z" } }, "outputs": [ { "data": { "text/plain": [ - "np.float64(-99.55717072551607)" + "np.float64(-99.55717072551532)" ] }, "execution_count": 5, @@ -191,10 +191,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:54.045105Z", - "iopub.status.busy": "2024-07-23T22:29:54.044669Z", - "iopub.status.idle": "2024-07-23T22:29:54.454846Z", - "shell.execute_reply": "2024-07-23T22:29:54.454266Z" + "iopub.execute_input": "2024-07-26T02:27:46.040024Z", + "iopub.status.busy": "2024-07-26T02:27:46.039560Z", + "iopub.status.idle": "2024-07-26T02:27:46.444185Z", + "shell.execute_reply": "2024-07-26T02:27:46.443541Z" } }, "outputs": [ @@ -202,7 +202,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_4307/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", + "/tmp/ipykernel_4333/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", " evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)\n" ] } @@ -224,10 +224,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:54.459081Z", - "iopub.status.busy": "2024-07-23T22:29:54.458107Z", - "iopub.status.idle": "2024-07-23T22:29:54.833761Z", - "shell.execute_reply": "2024-07-23T22:29:54.833193Z" + "iopub.execute_input": "2024-07-26T02:27:46.447471Z", + "iopub.status.busy": "2024-07-26T02:27:46.447081Z", + "iopub.status.idle": "2024-07-26T02:27:46.817998Z", + "shell.execute_reply": "2024-07-26T02:27:46.817360Z" } }, "outputs": [], diff --git a/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb b/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb index fce316d35..48b8c8c1a 100644 --- a/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb @@ -62,10 +62,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:57.982707Z", - "iopub.status.busy": "2024-07-23T22:29:57.982262Z", - "iopub.status.idle": "2024-07-23T22:29:58.687391Z", - "shell.execute_reply": "2024-07-23T22:29:58.686758Z" + "iopub.execute_input": "2024-07-26T02:27:50.121781Z", + "iopub.status.busy": "2024-07-26T02:27:50.121589Z", + "iopub.status.idle": "2024-07-26T02:27:50.836550Z", + "shell.execute_reply": "2024-07-26T02:27:50.836015Z" } }, "outputs": [], diff --git a/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb b/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb index e4f93353e..b73838c64 100644 --- a/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:59.990364Z", - "iopub.status.busy": "2024-07-23T22:29:59.989893Z", - "iopub.status.idle": "2024-07-23T22:30:01.579792Z", - "shell.execute_reply": "2024-07-23T22:30:01.579044Z" + "iopub.execute_input": "2024-07-26T02:27:52.245529Z", + "iopub.status.busy": "2024-07-26T02:27:52.245316Z", + "iopub.status.idle": "2024-07-26T02:27:53.834400Z", + "shell.execute_reply": "2024-07-26T02:27:53.833781Z" } }, "outputs": [ @@ -81,10 +81,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:01.582845Z", - "iopub.status.busy": "2024-07-23T22:30:01.582183Z", - "iopub.status.idle": "2024-07-23T22:30:01.780472Z", - "shell.execute_reply": "2024-07-23T22:30:01.779812Z" + "iopub.execute_input": "2024-07-26T02:27:53.837020Z", + "iopub.status.busy": "2024-07-26T02:27:53.836709Z", + "iopub.status.idle": "2024-07-26T02:27:54.052058Z", + "shell.execute_reply": "2024-07-26T02:27:54.051487Z" } }, "outputs": [ @@ -119,10 +119,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:01.783082Z", - "iopub.status.busy": "2024-07-23T22:30:01.782722Z", - "iopub.status.idle": "2024-07-23T22:30:01.893766Z", - "shell.execute_reply": "2024-07-23T22:30:01.893111Z" + "iopub.execute_input": "2024-07-26T02:27:54.054418Z", + "iopub.status.busy": "2024-07-26T02:27:54.054218Z", + "iopub.status.idle": "2024-07-26T02:27:54.168078Z", + "shell.execute_reply": "2024-07-26T02:27:54.167448Z" } }, "outputs": [ @@ -156,10 +156,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:01.896689Z", - "iopub.status.busy": "2024-07-23T22:30:01.896237Z", - "iopub.status.idle": "2024-07-23T22:30:02.006257Z", - "shell.execute_reply": "2024-07-23T22:30:02.005644Z" + "iopub.execute_input": "2024-07-26T02:27:54.170594Z", + "iopub.status.busy": "2024-07-26T02:27:54.170353Z", + "iopub.status.idle": "2024-07-26T02:27:54.280203Z", + "shell.execute_reply": "2024-07-26T02:27:54.279569Z" } }, "outputs": [ @@ -196,10 +196,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:02.008897Z", - "iopub.status.busy": "2024-07-23T22:30:02.008541Z", - "iopub.status.idle": "2024-07-23T22:30:02.193223Z", - "shell.execute_reply": "2024-07-23T22:30:02.192603Z" + "iopub.execute_input": "2024-07-26T02:27:54.282923Z", + "iopub.status.busy": "2024-07-26T02:27:54.282451Z", + "iopub.status.idle": "2024-07-26T02:27:54.467756Z", + "shell.execute_reply": "2024-07-26T02:27:54.467120Z" } }, "outputs": [ @@ -250,10 +250,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:02.195857Z", - "iopub.status.busy": "2024-07-23T22:30:02.195447Z", - "iopub.status.idle": "2024-07-23T22:30:02.418459Z", - "shell.execute_reply": "2024-07-23T22:30:02.417831Z" + "iopub.execute_input": "2024-07-26T02:27:54.470375Z", + "iopub.status.busy": "2024-07-26T02:27:54.470022Z", + "iopub.status.idle": "2024-07-26T02:27:54.693572Z", + "shell.execute_reply": "2024-07-26T02:27:54.692970Z" } }, "outputs": [ @@ -292,10 +292,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:02.421170Z", - "iopub.status.busy": "2024-07-23T22:30:02.420786Z", - "iopub.status.idle": "2024-07-23T22:30:02.557432Z", - "shell.execute_reply": "2024-07-23T22:30:02.556819Z" + "iopub.execute_input": "2024-07-26T02:27:54.696527Z", + "iopub.status.busy": "2024-07-26T02:27:54.696044Z", + "iopub.status.idle": "2024-07-26T02:27:54.832835Z", + "shell.execute_reply": "2024-07-26T02:27:54.832242Z" } }, "outputs": [ @@ -334,10 +334,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:02.559829Z", - "iopub.status.busy": "2024-07-23T22:30:02.559499Z", - "iopub.status.idle": "2024-07-23T22:30:03.083090Z", - "shell.execute_reply": "2024-07-23T22:30:03.082479Z" + "iopub.execute_input": "2024-07-26T02:27:54.835483Z", + "iopub.status.busy": "2024-07-26T02:27:54.835105Z", + "iopub.status.idle": "2024-07-26T02:27:55.363508Z", + "shell.execute_reply": "2024-07-26T02:27:55.362842Z" } }, "outputs": [ @@ -383,10 +383,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.085645Z", - "iopub.status.busy": "2024-07-23T22:30:03.085282Z", - "iopub.status.idle": "2024-07-23T22:30:03.257547Z", - "shell.execute_reply": "2024-07-23T22:30:03.256890Z" + "iopub.execute_input": "2024-07-26T02:27:55.366175Z", + "iopub.status.busy": "2024-07-26T02:27:55.365669Z", + "iopub.status.idle": "2024-07-26T02:27:55.536898Z", + "shell.execute_reply": "2024-07-26T02:27:55.536316Z" } }, "outputs": [ @@ -425,10 +425,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.260333Z", - "iopub.status.busy": "2024-07-23T22:30:03.259956Z", - "iopub.status.idle": "2024-07-23T22:30:03.443625Z", - "shell.execute_reply": "2024-07-23T22:30:03.443045Z" + "iopub.execute_input": "2024-07-26T02:27:55.539279Z", + "iopub.status.busy": "2024-07-26T02:27:55.539069Z", + "iopub.status.idle": "2024-07-26T02:27:55.722891Z", + "shell.execute_reply": "2024-07-26T02:27:55.722232Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.446348Z", - "iopub.status.busy": "2024-07-23T22:30:03.445959Z", - "iopub.status.idle": "2024-07-23T22:30:03.578198Z", - "shell.execute_reply": "2024-07-23T22:30:03.577570Z" + "iopub.execute_input": "2024-07-26T02:27:55.725632Z", + "iopub.status.busy": "2024-07-26T02:27:55.725243Z", + "iopub.status.idle": "2024-07-26T02:27:55.856692Z", + "shell.execute_reply": "2024-07-26T02:27:55.856050Z" } }, "outputs": [ @@ -513,10 +513,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.580906Z", - "iopub.status.busy": "2024-07-23T22:30:03.580473Z", - "iopub.status.idle": "2024-07-23T22:30:03.761964Z", - "shell.execute_reply": "2024-07-23T22:30:03.761365Z" + "iopub.execute_input": "2024-07-26T02:27:55.859301Z", + "iopub.status.busy": "2024-07-26T02:27:55.858898Z", + "iopub.status.idle": "2024-07-26T02:27:56.038589Z", + "shell.execute_reply": "2024-07-26T02:27:56.037969Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.764471Z", - "iopub.status.busy": "2024-07-23T22:30:03.764088Z", - "iopub.status.idle": "2024-07-23T22:30:03.926721Z", - "shell.execute_reply": "2024-07-23T22:30:03.926200Z" + "iopub.execute_input": "2024-07-26T02:27:56.041173Z", + "iopub.status.busy": "2024-07-26T02:27:56.040768Z", + "iopub.status.idle": "2024-07-26T02:27:56.204484Z", + "shell.execute_reply": "2024-07-26T02:27:56.203840Z" } }, "outputs": [ @@ -593,10 +593,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.929157Z", - "iopub.status.busy": "2024-07-23T22:30:03.928782Z", - "iopub.status.idle": "2024-07-23T22:30:04.059695Z", - "shell.execute_reply": "2024-07-23T22:30:04.059192Z" + "iopub.execute_input": "2024-07-26T02:27:56.206848Z", + "iopub.status.busy": "2024-07-26T02:27:56.206628Z", + "iopub.status.idle": "2024-07-26T02:27:56.338527Z", + "shell.execute_reply": "2024-07-26T02:27:56.337897Z" } }, "outputs": [ @@ -630,10 +630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:04.062134Z", - "iopub.status.busy": "2024-07-23T22:30:04.061798Z", - "iopub.status.idle": "2024-07-23T22:30:04.311872Z", - "shell.execute_reply": "2024-07-23T22:30:04.311301Z" + "iopub.execute_input": "2024-07-26T02:27:56.341189Z", + "iopub.status.busy": "2024-07-26T02:27:56.340802Z", + "iopub.status.idle": "2024-07-26T02:27:56.603915Z", + "shell.execute_reply": "2024-07-26T02:27:56.603165Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:04.314476Z", - "iopub.status.busy": "2024-07-23T22:30:04.314109Z", - "iopub.status.idle": "2024-07-23T22:30:04.642716Z", - "shell.execute_reply": "2024-07-23T22:30:04.642216Z" + "iopub.execute_input": "2024-07-26T02:27:56.606601Z", + "iopub.status.busy": "2024-07-26T02:27:56.606382Z", + "iopub.status.idle": "2024-07-26T02:27:56.929593Z", + "shell.execute_reply": "2024-07-26T02:27:56.928974Z" } }, "outputs": [ @@ -736,16 +736,16 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:04.644973Z", - "iopub.status.busy": "2024-07-23T22:30:04.644772Z", - "iopub.status.idle": "2024-07-23T22:30:05.112032Z", - "shell.execute_reply": "2024-07-23T22:30:05.111476Z" + "iopub.execute_input": "2024-07-26T02:27:56.932190Z", + "iopub.status.busy": "2024-07-26T02:27:56.931801Z", + "iopub.status.idle": "2024-07-26T02:27:57.389929Z", + "shell.execute_reply": "2024-07-26T02:27:57.389271Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADYoUlEQVR4nOzdeXxTVf7/8VeS7rSltOxQulCWsrUdEGSTgHUEZwQREUUUEcZxH1xQR8GvC6CM4+jPEXEYUJERRFEHcVAWpbJVKksBWUrLUtm3Wrq3tMnvj0ggtJStSZrwfj4efdB77rn3fO7tJbn55JxzDVar1YqIiIiIiIiIiIgXMLo7ABERERERERERkZqiZJeIiIiIiIiIiHgNJbtERERERERERMRrKNklIiIiIiIiIiJeQ8kuERERERERERHxGkp2iYiIiIiIiIiI11CyS0REREREREREvIaSXSIiIiIiIiIi4jWU7BIREREREREREa+hZJeIiIiIiIiIiHgNJbtERERERERERMRrKNklIiIiIiIiIiJeQ8kuERERERERERHxGkp2iYiIiIiIiIiI11CyS0REREREREREvIaSXSIiIiIiIiIi4jWU7BIREREREREREa+hZJeIiIiIiIiIiHgNJbtERERERERERMRrKNklIiIiIiIiIiJeQ8kuERERERERERHxGkp2iYiIiIiIiIiI11CyS0REREREREREvIaSXSIiIiIiIiIi4jWU7BIREREREREREa+hZJeIiIiIiIiIiHgNJbtERERERERERMRrKNklIiIiIiIiIiJeQ8kuERERERERERHxGj7uDqA2K8sv4tftv7g7DK9RL74FfiFBF6xXcAqy8lwQUBXiQiHY1z1ti4iIiIiIiMiVU7KrGr9u/4VvBo13dxheY8CCiTTq2vaC9bLyYMxqFwRUhRk9ITHCPW2LiIiIiIiIyJXTMEYREREREREREfEaSnaJiIiIiIiIiIjXULJLRERERERERES8hpJdIiIiIiIiIiLiNTRBvXiFjOfNFO5IxeDji8HkQ0CztjQdMYnQhOvdHZqIiIiIiIiIuJB6donXaDpiEknzCug06wh12nRn1+RbqCg86e6wRERERERERMSFlOwSr2P09af+DaOxlBRQcijL3eGIiIiIiIiIiAsp2SVex1JazPGlMzAGhRLQtJW7wxERERERERERF/KYZFdZWRkTJkwgMjKSwMBA+vXrR1paGgaDgQULFrg7PKkFDs6ZQPrwMLb8KZqiPZuIG/81pqBQd4flFgWnYFsuZJyEcou7o/FeJRWwI9f2U1Lu7mhErozVCrvy4OdfIafU3dGIXLnDRbbreX+huyMREU9RVA7bc2HHSSircHc0InIlPGKCeqvVytChQ0lLS+PFF18kLi6OOXPmMHjwYACSkpJcGo/BZOSaF0fScsh1GIxG9v7vR9Y+N4OK0lMujUMcNR3+Co0HP+XuMNzq11J4dwf8bx+U/ZbkqucHw2Lg3lbg4zHp7dqtpBz+lQFfZEPhb0muOj4wqAX8ua3tdxFPYbXCf3+BWZmwv8hWZgTMTeCheIgOdmt4Ipds4wmYtgM2nDhT1i4M7m8DvRq5LSwRqcXyT9leN776xfZlJkCoLwyJhjGtwd/k1vBE5DJ4xEey6dOns2jRItLT02nfvj0AZrOZmJgYwsPDadGihUvj6fTYrTTu0YEF/Z6k4lQ513/4DJ3H303ahPddGofI2XJKYdRKOFQEZ3fm+rUM3suw9fR6vSuYDO6K0DuUVMCDqbbeAtazygvLYe5u24er6T0hyCNeXUXgn9vhoyw4+6XBAqQcgrXH4P1e0PLq7CQrHmjVEXgyzZbEPdv2XHh8LfxfIvzRtbeNIlLLFZyCMatgd77jvV3eKfggE7bkwNvXgp8SXiIexSP6eUyZMoURI0bYE10AJpOJmJgYe6+unTt30r17d1q3bk337t3JzMx0Wjyt7rqeLW9/QdHhHEpP5JH+xqfEDTNjMHrE6RQvNXV75UTX2VYcgUX7XBqSV5qzC7ack+g6zYpt6OhHei6CeIiffz1zvZ57TVuA4nJ4Jd3FQYlcptIKeGEDWKyV3wutv/1M3AS5ZW4ITkRqrRk7Kye6zrbuBMzf68qIRKQm1PrsTGZmJnv27GHIkCGV1u3bt8+e7HrggQd4+OGH2blzJw8//DB//vOfnRKPX2gQwc0akLN1j73sxJY9+IUEERzZwCltilxI/in4Zv/5E11g+8/+6Z5qKsgFVVjhs73V17ECn+/VXGniGT7fW/2NgAX4ORd2nnRNPCJX4vtDtp4Y5/vAClBuha9/cVlIIlLLlVbAl9nVv24YsN1Dn9tjVERqt1o/0ObAgQMANGzY0KF8x44dZGdnk5SUxNGjR9mwYQNLly4F4M477+SRRx7h2LFjNGhw4QRUSEgIZWWVv+Zr6VOPp0N7OZT5BAcCUHayyF5WdtI286nvb+ukan37mtlV/usF6wW16U7LiSmXtO82ky6t/vn07WumKCO1RvblSoGtuhI3eWW1dSzAtpxy/P3ruCYoL2QKbUC7mfsvWO/XMghr3pJTJy5cV8SdWv1jIwGR7S5Y77rb/8SvKR+5ICKRy9dk5N+IGPAwBtP5b2+tFad48V/zGf32va4LTERqLf+mbWj9/zZXW8eKbU7LwLr1sJYWVVtXRGqW1WrFx8eHw4cPExp6afNq1PqeXREREQBkZZ0ZF2S1WnnmmWewWCwkJSWxb98+mjVrhslkG0htMplo2rQp+/bV/Jit8oJiAHxDg+xlfnVtyYNTv60TcbmKi3sUoNWix8pcEcvFP3JR51o8gVWvHeJFbNfzhSamNOh6FhE76yXc26HXDhGXs1qtFBcXs2XLlkvettb37IqPjycuLo7nnnsOX19fgoODmTZtGhs3biQoKIg2bdqwcePGK2ojPz+/yvIjaTv4ZtB4h7KyvCIKDhwjvH00ebsOAhDRIYay/CIK9h27oji83fLlKTTq2vaC9dJPwJjVLgioCsuXp5AY4Z62r0RZBfRfYhu+cT5GA/Rs5s+G0lLXBeZlrFa4MwV2VTOvgwFoEQw/HdqLQQ8DkFru/22F/+y68PCNTV+9T+NAPYRFarfUo/Doj9XXMZh8+H9jR/DHN0a4JigRqdUqrDBwKRwpOX8dI9C+HqwryHNZXCJis3r1anr16nXhilWo9T27fHx8mD9/Pk2aNGHkyJGMHTuWAQMG0KdPHzp16oTRaCQyMpIDBw5QUWHLtldUVHDw4EEiIyOdElPmx9/R6dHBBDaqh39EKIlP3k7WvBSsFk3SI+7hZ4KhMdXXsVjhjljXxOOtDAYY3rL6xIAVuDMGJbrEIwyJrv5aNQJ9GkNjjdIXD9CtAUTWOf/NrRGo6ws3NHVlVCJSm5kMcOcF7o8tXLiOiNQ+tT7ZBZCQkEBqaipFRUVkZGTw4IMPsnHjRvvk9A0bNiQxMZG5c+cCMHfuXJKSki5qvq7LsfntLzj843ZuSXmTIWv+SW7mftZP+o9T2hK5WGNaQ/ffLvmzP7ue/k/+p9bQveG5W8mlujkSBkfZfj/7BfT0739oDrdGuzgokcvUvA68nGS7fqu6IYgOhvEJro5K5PIYDfBGVwj1qzyY0Qj4m+DNbrZ/RUROu7MlJP+WBK/q3u7OWCXJRTxRrR/GWJXi4mIyMjIYO3asvey9995j5MiRvPzyy9SrV4+PPnLeRLrWCgtpE94nbYKGdLjSL9MfpXhPOqG/G0CToc/Zy09uWMyhT17CFFyP2CfnYCkrZvff7wCg7Pg+Gv7hURoNHAtA7o//Zf+H4+jwXqY7DsGpfI22m/ivfrE9MSbrt9G53RrYenT1bOTe+LyFwQDPdYKu9eGTPbApx1bevh4Mi4Ebm6lXl3iW/s1tvWHm7IbFtmfC0CTQ1uvrtmgI9nVndCKXJjYE5vSxvT5/9Qvk/vb8odtiYHisLcErInI2kwEmdYZeDeHTvbAt11aeFGG7hzY31r2diCfyyGTX5s2bqaiosPfsAmjbti1r1651Y1TiTIWZ6zAYfWjz6kp2vXYbp3KP4Btmy94cWfAGrV/5jrz0JRxb8m8aD37K/nTG3X+/k7qdb7Lv59fUz/Gr75zhrbWBj9HWq+jWaOjyla3sn93dGZF3Mhjghma2n9Pn+YPe7o1J5Eq0r2e70T+d7Fp4g3vjEbkSDQPhsXa2n9Ov0U93dG9MIlK7mQzwxxa2n9OvG//q6d6YROTKeMQwxnN169YNq9VKly5d3B2KuEjhzrWEdOoHQEiHPhRlrQegoqQQU2AIRv9AQjr2oygzzb6NtfwUZUf2ENCsNQB5m78nOL4XGDzyshcRERERERGRi6BP/eIRKgpzMQWFAmAMDKGiMPdMeeDp8mAqCk/at8n/OYXgDmb78oll7xPRb6TLYhYRERERERER11OySzyCqU4YFUW2x/1aivMx1Qk7U158urwAU5269m1y074irNsgwDYMMiCyHUa/ANcGLiIiIiIiIiIupWSXeIQ6rbuSv2U5APlbVxAU1xkAU0AdKorzsZSVkL9lOUGtutq3Kdy5ljqtuwFQ/MvP5KUvJfPF/hTtSefQp5NcfxAiIiIiIiIi4nRKdolHqNPqGqynSsn4a2+CYhI4lXOIE8tnA9Bo0BPsHN+XY4vfo/4NYwAo2r2RoOgEDEbbJV7/+ntpM2k5rV78lqCYRJrc/rzbjkVEREREREREnMcjn8YoV6cWD0x1WA6KTQSg7u/6U/d3/c9Zl0TUI/+ucj+tX1nmlPhERERERERExP3Us0tERERERERERLyGkl0iIiIiIiIiIuI1lOwSERERERERERGvoWSXiIiIiIiIiIh4DU1QL7VOXCjM6Om+tkVERERERETEcynZJbVOsC8kRrg7ChERERERERHxRBrGKHKVSklJISYmBrPZzMiRIyutnzRpEpmZmdXu49FHH6V3795Mnjy50rqcnBw6d+5McHCwQ/lbb71FcnIyANu3b2fKlClXcBQiIiIiIiIijpTsErmKjR49mpSUFOrWrUtqaqq93GKxsHnzZlq1anXebdetW4ePjw8rV65kw4YNHDlyxGF9SEgIS5cu5dprr7WXnTp1ivT0dPtyfHw8GzZswGq11txBiYiIiIiIyFVNyS4RoUOHDhw4cMC+vGnTJlq3bl3tNmvXrqVfv34A9OnTh/Xr1zus9/X1JTw83KFs9uzZ3HnnnQ5lsbGxbN269UrCFxEREREREbFTsktESE1NJS4uzr6cmZlJdHR0tdvk5uYSGmqb0T8kJITc3Nxq61ssFhYvXsyNN97oUB4VFcXOnTsvK24RERERERGRc2mCepGr2MyZM1m2bBm9evUiMTGxyjrbtm3joYcecijr378/YWFh5OXlAZCfn0/Lli2rbeuLL75g4MCBNRK3iIiIiIiIyPko2SVyFRs9ejTjx4+vVN6qVSu++OILANq1a0dKSkqlOj/99BNz587l5ptvZsWKFdx+++3VtpWRkUFKSgqzZ88mPT2dGTNmMGbMGLKzs+nZs2eNHI+IiIiIiIiIhjGKSCUJCQlkZGRUW+eaa66htLSU3r17k5CQQKNGjTh8+DCvv/66vU5ycjIbN24kOTmZQYMGsXTpUr799lsSExMZM2YMAFlZWXTo0MGpxyMiIiIiIiJXD/XsErlKmc1mzGZzleuMRiOdOnUiMzOz2icyTp061WG5cePGjBs3zr68bNmyKrc7Xb59+3Y6d+6MwWC4xOhFREREREREqqZkl4hUqarhjTUtPj6e+Ph4p7cjIiIiIiIiVw8NYxQREREREREREa+hZJeIiIiIiIiIiHgNDWOUWqfgFGTluaftuFAI9nVP2yIiIiIiIiJy5ZTsklonKw/GrHZP2zN6QmKEe9oWERERERERkSunYYwiIiIiIiIiIuI1lOwSERERERERERGvoWSXiIiIiIiIiIh4DSW7RERERERERETEa2iCevEKGc+bKdyRisHHF4PJh4BmbWk6YhKhCde7OzQRERERERERcSH17BKv0XTEJJLmFdBp1hHqtOnOrsm3UFF40t1hiYiIiIiIiIgLKdklXsfo60/9G0ZjKSmg5FCWu8MRERERERERERdSsku8jqW0mONLZ2AMCiWgaSt3hyMiIiIiIiIiLuQxya6ysjImTJhAZGQkgYGB9OvXj7S0NAwGAwsWLHB3eFILHJwzgfThYWz5UzRFezYRN/5rTEGh7g7LLcoqzvxutbovDpGaYLXC4SLYXwilFReuL1Lb/VoKvxRAwSl3RyIinqKkAvYVwOFi3duJ57NY4eBv93anLO6ORryVR0xQb7VaGTp0KGlpabz44ovExcUxZ84cBg8eDEBSUpLLYom+uTvxY24ivH00pTn5zO/6kMvaluo1Hf4KjQc/5e4w3KrgFLyfCV9mnykb/B3c2RKGRoPR4LbQRC6Z1QqfZ8OcXfBLoa2sjg/c0gJGt4ZQP/fGJ3Kpfjpme43+6bht2WiAfk1gTGuIuzq/mxGRC/i1FGbuhK9+gaLfvvCJCYYRcTAwEgy6txMPUmGFT3bbfg4V28rq+sKt0XBfKwj0iOyEeAqPuJymT5/OokWLSE9Pp3379gCYzWZiYmIIDw+nRYsWLoul9GQhO97/loAGdWl//x9d1q7IheSfgjGrYHc+nP2F34EieH0LbPsV/i9JCS/xDFYrTNoE//0Fzr5kC8thzm5YfRRm9oK6SniJh/h2P0zY4Hg9W6zw/UFYdQSmdYeO4W4LT0RqoRMlcN8qWw+Ys+/t9hbAK+mQlQdPtFfCSzxDhRWeWwffHXJ8Lzx5Cj7MhB+Pwr96QpBHZCjEE3jEMMYpU6YwYsQIe6ILwGQyERMTY+/V9dRTTxETE4PBYODnn392WiyHVmxmz4LVFO4/5rQ2RC7Hu9srJ7rgzPL/9sPSg66OSuTypBy2Jbqg6mv6lwJ4e5uroxK5PL+WwosbbdfuuaM1LNiGnv91ve2DgIjIaW/8DIeKzn9vN3c3rNVHEvEQC3+xJbqg6mt6x0n4d4aroxJvVuuTXZmZmezZs4chQ4ZUWrdv3z57suuWW25hxYoVREVFuTpEEbcrLIeF+yq/cZzNCMzb7aqIRK7Mp3uqf4OyAN/sh7wyV0UkcvkW/ALl1bxAW7DNw5N61GUhiUgtd6LElhiobjojowHm7XFZSCJX5NM9jj26zmXFNhWL5meVmlLrOwkeOHAAgIYNGzqU79ixg+zsbHuyq1evXpfdRkhICGVllT8xtfSpx9Ohl79fcdS3r5ld5b9esF5Qm+60nJhySftuM+nS6p9P375mijJSa2RfrhQYdw1xr66qto4F2HTsFP7+wa4J6irR4dMSAPz9A9wciXdp/59fMfoHVVunzAJRXa+naHv1175cPF3PztFi3KeEdv4jBpPpvHWslgruHPcaR+e97MLIvJ+uafFUwYk3EvP8V9XWsVhheeZx/K9r5qKorg563XACkw8dPym8YLWCcmjQJonSfeq+LzYWy+U/waDW9+yKiIgAICsry15mtVp55plnsFgsLp2cXqTWsl7si4DGyIhnsF7sNa1HUoknsFi4qNdfXc8icpru7cSbXMr7m94LpYbU+p5d8fHxxMXF8dxzz+Hr60twcDDTpk1j48aNBAUF0aZNmytuIz8/v8ryI2k7+GbQ+Cvev9gsX55Co65tL1gv/QSMWe2CgKqwfHkKiRHuaftKlJTDjUtswxnPxwh0buzH+tJSl8V1Nejy25eupTqvNeovP0LqMdu31ucTYIL967+nTq1/J/Mcup6dY84u+MfW6usYjCY+/8d4us7WfUdN0jUtniq3DPovrn4ItBHo37YB6bq+a5ReN5zj3hWwLbf6oblhfnAiMx3fWt8lR1xl9erVlz2Kr9ZfRj4+PsyfP58mTZowcuRIxo4dy4ABA+jTpw+dOnXCaHTtIRiMRkz+vhh8fMBgwOTvi9FPn7TEvQJ8YHBU9ePgLcCwGFdFJHJlhsVWn+gyAANboESXeIQ/RoK/8fyv0UagRR24pr4roxKR2izMDwY0v/C93e26txMPcUds9YkugKHRKNElNcYjLqWEhARSU1MpKioiIyODBx98kI0bN7plCGPL267j7r1z6fvvJwlu3oC7987l1lVvuzwOkXM90AY61qtcfvo/+Z2x0KexS0MSuWw9GsI9cbbfq3qjalsXHol3aUgily3UD17rAiZD5evZCNTxhb9dA4bqPtWKyFXniQ7QMqRywuv068j9beB3HjgiQa5ONzaDW1rYfj/7vfD09X1NfRjVytVRiTfzyO/Ei4uLycjIYOzYsfayxx57jC+++ILDhw+TnJxMREQEW7deYMzAZcj6NIWsT1NqfL9yYb9Mf5TiPemE/m4ATYY+Zy8vOZTFvn89guVUKY0GPk5Yt4Hs/2AcBTvWYPQLIHbcp/iERpA97UFK9u8gKDaJyNH/cOOROEeAD7zbAz7ZDZ/tgSO2uTWJD7Mlum5spg9S4lkejYd2YfDxLtjy27MtGgTYvvW7MxYCPfIdTK5WvRvDB73hoyxYetBWFmCy9fq6uyU0q+Pe+ESk9gnxhRm9YO5u+Gwv5Pw2qi4hHO5qCeYmbg1P5JIYDPB8AiSGw5zdsDPPVt4kyNZDcViMenVJzfLIjwqbN2+moqLCoWfX22+/zdtvq4eVtyrMXIfB6EObV1ey67XbOJV7BN+wRgAc+uQlYp76BJ/gMAAqCk9StHcTbaesJueHOeSsnEuduGsw+vrTZtJy9n/wFEW7NxIU630PNwgwwb2tbD1iCsttvQiCPPJ/uYjtpii5qe3n9PwZ/7vB9qh1EU8UHwavdoGlv13PKQPARzf2IlKNYF/4UxsY3Rq6LrSV/VsPixcPZTDAH1vYfk7f2y24Xl/Ii3N45C1Wt27dsFqtdOnSxd2hiIsU7lxLSKd+AIR06ENR1noALKfKKDu+j71v3UPWpEGcyj2C0T8IU1BdrBYLFUUn8QkOp/TIHgKjOgIQGNWRgh2pbjsWVzAabN8GKtEl3kaJLvEmSnSJyMXS+594KyW6xFl0myUeoaIwF1NQKADGwBAqCnMBKM87TnH2z0SPnUWjm8dyeP6rGHx88YtoztaH23L0638Sdu1gApq3If/nHwDI37qCiqKT7joUEREREREREXEiJbvEI5jqhFFRZBvYbSnOx1Qn7LfyugRGdcQnuB7B7XtTciCD4n3bOZVzgPbvZtB0xCSOfPUmQbFJ+DeMZud4W+8w37oN3XUoIiIiIiIiIuJESnaJR6jTuiv5W5YDtp5ZQXGdATAF1MHoF4DlVCnF2T/j1zAarBZMwfUwGAz4hITbe4E1vetlWk/8HlNAMKGJv3fTkYiIiIiIiIiIM2lGH/EIdVpdw4nvPiTjr70JTbqRUzmHyNu4hIi+d9No0JPsnHA9BqOJ6L98iH+jGLBayfjrdYCV6L/Mwlp+ip3/dwMGo4l6PW/Hr0Gkuw9JRERERERERJxAyS7xGC0emOqwHBSbCEBoYjKhickO66Ienl5p+zaTUpwVmoiIiIiIiIjUEhrGKCIiIiIiIiIiXkPJLhERERERERER8RpKdomIiIiIiIiIiNdQsktERERERERERLyGJqiXWicuFGb0dF/bIuJ5UlJSGDVqFFFRUURFRTFr1iyH9bNnz6ZJkyYkJyczefJkvvnmGxITE/nnP//pUG/kyJHs2rULf39/PvroI5o1a8b777/PjBkzaNiwIbNnzyYkJIQ77riDxYsXs3DhQnr16kV5eTkPPPAAM2bMcOVhi4iIiIhIFZTsklon2BcSI9wdhYh4mtGjRzN+/Hgee+wxUlNT6d69u33dwoULmTdvHkeOHGHDhg2sXLmSxx9/nHXr1tGlSxd7vZdeeono6Gi+++47pk6dyssvv8ysWbNYtWoVixYtYsaMGTz++OO89dZbvPfee/btfHx8aNCgAbt27aJly5YuPW4REREREXGkYYwiIk6UkpJCTEwMZrOZkSNHVlo/adIkMjMzq93Ho48+Su/evZk8ebJDeXFxMTfddBN9+vRh1KhRAKxatYprr72WHj168MYbbwCQlpZGz5496dGjB+PHjwdg+/btTJkypSYOsdbp0KEDBw4csC/n5OQQEBCAwWBg3bp19OnTB4B+/fqRlpbmsG10dDQAJpMJg8HA8ePHadGiBUajkY4dO5KamgpA48aNK7VrNpv55ptvnHRUIiIiIiJysZTsEhFxstGjR5OSkkLdunXtyRIAi8XC5s2badWq1Xm3XbduHT4+PqxcuZINGzZw5MgR+7olS5bQq1cvfvjhB3x9ffn555+JjY1lxYoVrFmzhq+//pqioiKSkpJYvXo1a9asITU1lby8POLj49mwYQNWq9Wpx+4OqampxMXF2ZezsrKIiooCIDc3l9BQ23jlkJAQcnNzK21vsViYPHkyo0ePpkGDBmRlZVFSUsKKFSs4efLkeduNiopi586dNXswIiIiIiJyyZTsEhFxkXN7HG3atInWrVtXu83atWvp168fAH369GH9+vX2dTExMRQWFgJQUFBA3bp1adq0KX5+foCtd5LRaMTX1xeAiooKmjZtSlBQEACxsbFs3bq15g7QzWbOnInZbKZZs2YkJiZWWScsLIy8vDwA8vPzCQsLq1RnwoQJ3HHHHcTGxmIymRg3bhz9+/dn06ZNNGrUyIlHICIiIiIiNUHJLhERFzm3x1FmZqZ92Nz5VNcTKS4ujpUrVxIfH4/BYCAyMtK+bunSpbRs2ZKAgAAA5syZQ3x8PGFhYfj42KZr9LaeSKd70E2cONGhPC4ujuzsbAA6d+7MihUrAFi+fDldu3Z1qPv555+Tk5PDfffdZy+79dZbSUlJoVu3bgwYMOC87WdnZ1fbS09ERERERFxDyS4RESe7mB5H27Ztw2w2O/y89tpr1fZEmjVrFsOGDWP79u3Ur1+fNWvWALB//35effVV+5xdAMOHD2fHjh0cPHiQLVu2OO1Ya6Pw8HCKiooA21xbnTp1onfv3pSWltKlSxcOHz7M66+/DsATTzzBpk2bMJvNTJo0CYCHHnqI66+/nhUrVnD77bcD8OSTT/LRRx/x+OOP8/HHHwO2+dmqS4aJiIiIiIhr6GmMIiJOdvopgedq1aoVX3zxBQDt2rUjJSWlUp2ffvqJuXPncvPNNzskW8A2t1R4eDhgS+jk5uZSWlrKvffey7Rp0wgODgagtLQUf39/jEYjISEh9t5e2dnZ9OzZs6YP1y1OJwjPZ+DAgSxbtozk5GQmTJjAhAkT7OsaN27MuHHjAOw9wM727rvvVip74403HJKJ5eXlHD161KHnnoiIiIiIuId6domIuElCQgIZGRnV1rnmmmsoLS2ld+/eJCQk0KhRI3tPpOHDh/PBBx9gNptJT0/nhhtuYM6cOWzbto0///nPmM1mDhw4wFdffYXZbOa6666jefPm9qF2WVlZdOjQwRWH6nb33HMPycnJTtu/j48PM2fOdNr+RURERETk4qlnl4iIE1XX48hoNNKpUycyMzOrnetp6tSpDstn90RasmSJw7pRo0YxatQoh7KhQ4cydOhQh7Lt27fTuXNnDAbDxR6KiIiIiIiIR1CyS0TEjaoa3ugK8fHxxMfHu6VtERERERERZ9IwRhERERERERER8RpKdomIiIiIiIiIiNfQMEapdQpOQVaee9qOC4VgX/e0LSIiIiIiIiJXTskuqXWy8mDMave0PaMnJEa4p20RERERERERuXIaxigiIiIiIiIiIl5DyS4REREREREREfEaSnaJiIiIiIiIiIjXULJLRERERERERES8hiaoF6+Q8byZwh2pGHx8MZh8CGjWlqYjJhGacL27QxMRERERERERF1LPLvEaTUdMImleAZ1mHaFOm+7smnwLFYUn3R2WiIiIiIiIiLiQkl3idYy+/tS/YTSWkgJKDmW5OxwRERERERERcSElu8TrWEqLOb50BsagUAKatnJ3OCIiIiIiIiLiQh6T7CorK2PChAlERkYSGBhIv379SEtLw2AwsGDBAneHJ7XAwTkTSB8expY/RVO0ZxNx47/GFBTq7rDEi1mtVf8uzmPReRYRqVXKLZBbCiXl7o5ERETOVVQOuWVQcRXeQ3vEBPVWq5WhQ4eSlpbGiy++SFxcHHPmzGHw4MEAJCUluSwWo58P104eQ5NeHQmICKXoyK9sf/8bdrz/jctikKo1Hf4KjQc/5e4w5CpQYYUv98Ine86UDfkehsXCkCjw8ZivEWo3qxWWHoQ5u86U/WEpDImGu2Ih0CPewUREvNPxEvgoCxb8AoXlYAB6NIS746BLfXdHJyJydfvhMPwnCzbm2Jbr+dnuoUe0hGBft4bmMh7xUWH69OksWrSI9PR02rdvD4DZbCYmJobw8HBatGjhsliMJhPFR3NZcscr5GcfIbxdFDfMHU/JsVz2Lkx1WRwi4h4VVnhuHXx3yHZjf9q+Qnh9C6w9Cn+7RgmvmvD2Npi9y7EL8rESeG8H/HAI3usJdTziXUxExLscLILRq2wJr9OdBaxA6jFYcxQmJMJA192ei4jIWd7fCe/uAONZH1Z+LYOZO+G7g/DvXhDm5774XMUjPo5NmTKFESNG2BNdACaTiZiYGJKSkjhx4gQ33XQTbdq0oWPHjtx6660cO3bMKbGUF5ey8W+fkL/3MFit5Gzdy74l62jYNd4p7YlI7fLFXluiC87c4J/9+4ojjj2+5PKsPmJLdAFYqli/4yS8s82lIYmIyG9e2AAnShzfB8E21NwKTEyHA4VuCExE5Cq3OceW6ILK039YgewC+PsWl4flFrU+2ZWZmcmePXsYMmRIpXX79u0jKSkJg8HA008/TUZGBlu2bKFly5Y8++yzLonP4GOiUbd4ft2e7ZL2RMR9rFaYu9uxR9e5DMC83Zpb6kp9usfx26hzWYGF+2xDZ0RExHWy8iA9p+ovIk6zAl/o1lhExOU+3VN9kseCbZqQEyWuish9av0AkAMHDgDQsGFDh/IdO3aQnZ1NUlIS4eHhmM1m+7prr72WadOmXXQbISEhlJWVVSpv6VOPp0N7VbvttZNHc6qgmF2f/XDR7V2t+vY1s6v81wvWC2rTnZYTUy5p320mXVr98+nb10xRhoajStVMIRG0e/9gtXWswKFiCGkaQ3lO9XXl/NrPzsEYUKfaOiUV0LxzP4p2rHZRVN6vw6e2Ox9//wA3R+LddJ5dR+e65oX//s80+9Pb1daxAu8u+pGnkvq4JqirhK5n19B5dg2dZ+do+6+9+IY3qbZOhRXa9LuV/PX/c1FUl89iqe6rlerV+p5dERERAGRlZdnLrFYrzzzzDBaLpdLk9BaLhWnTpjFw4ECnx3bNiyNp0LkNS++ahOWUuheIeD1DdX26KlV2WhhXhYs915f0NxERkSt2ka+7Br0Pioi4nu6h7Wp9z674+Hji4uJ47rnn8PX1JTg4mGnTprFx40aCgoJo06aNQ/1HH32U4OBgHnnkkYtuIz8/v8ryI2k7+GbQ+CrXdX35Xpr06si3Q1+iNKfq7cXR8uUpNOra9oL10k/AGDd11Fi+PIXECPe0LbWfxQqDlsHh4srzlJytQQCsPbgbk/e/hzjNg2tg/fHqh8n4GSE77TtCr4IJNl2ly1e2f0tLS90biJfTeXYdneuatz0X7l5RfR0DMKZ/N554Sue9Jul6dg2dZ9fQeXaOp3+ClMPVT6liBLYt+5yGgS4L67KtXr2aXr2qH213PrW+Z5ePjw/z58+nSZMmjBw5krFjxzJgwAD69OlDp06dMBrPHMJTTz1FZmYm8+bNcyivaV1fuY8mvTvZEl0n8pzWjojULkYDDIutPtEFMDQaJbqu0LCY6hNdBmBAc5ToEhFxsfgwaBdW/byKYHvEvYiIuNbtMRdOdJmb4BGJritV63t2ASQkJJCa6jiP0jvvvEOfPmfmAXjuuedYv349//vf//D393daLHWa16fdmJuoKCnjtrVT7eVH1u5g2V2TnNauiNQOd8TA2qO2x6tXpUsEjGjp2pi8UZ/GMDgKvsy2JbbOfs82AFHB8Fg7NwUnInKVezkJ7lsFBaccv5gwYlt+soPtdVpERFyrS324u6XtqeZV3UM3CoSnO7opOBfziGTXuYqLi8nIyGDs2LEAbN26lVdffZXWrVvTo0cPAGJiYvjyyy9rvO3C/cf5sMltNb5fuTgF21ax/4OnwGCkXo8hNLrlSfu6jOf7cvq/c4s/v0tgi3YcmvcKeelL8WsUQ/SjMzGYPPKSl1rExwj/6AYf74J5e+DYb08yqe8Pt8XAPS3Bz+TeGL2BwQDPdYK2dWHObttjkgGCfWxJsFGt1KtLRMRdokNg9nUwMxO+2Q+nfst4dagH97aC6xq7Nz4RkavZY+0gLhRmZ0HWbzMuBZpgUAu4rzWEO69vUK3ikZ/8N2/eTEVFhX1y+vbt22O1XmhgkXgDv0axtJ68AqOvHxnP96XBgAcx+gcBYDCaaP3KMnvdUzmHKNq9kTavruDo/94hN20h9boPdlfo4kV8jbab+bvj4Ohv83c1DLAlwqTmGAy2YTC3RsHREtuHqYYBSiaKiNQGzerAC4nwVAe4bpGt7P3ebg1JRESw3UP/IRJuag7XLLSVLe0PAVfZPbRHJru6deum5NZVyi+iqf13g9EEhrOzC1Yynjfj3ziOFn9+h9Jj2QS0aA9AYFRHTq77n5JdUqNMBmgS5O4ovJ/BYOtyLSIitU+QR36aEBHxfmc/cPFqS3SBB0xQL1KVvPSl+DdpidEvwF4W+8x82kxKITAynuNLZ+LfKJbCjB+xWiwUbF1BRdFJN0YsIiIiIiIiIq6gZJd4nLLj+zk8/1Waj3rDodwnuB4AdbsOpGTfVnzDGhJ27WB2TujHqdwj+NRt6I5wRURERERERMSFlOwSj2I5Vcre/3cvLR6YhinQ8TE/FUW22fcKd6Ti1zAGgIY3PUSbSSn4NYiibuebXB6viIiIiIiIiLiWRtmLR8n5YQ4l+7aRPe3PADQbMYnSw7uJ6Hs3O19Ixujrh6lOGDGP/weAXa/eSkVRHsHtexPctrs7QxcRERERERERF1CySzxK/eRR1E8e5VAWHN8TgPi/r61Uv+Vfv3BJXCIiIiIiIiJSO2gYo4iIiIiIiIiIeA0lu0RERERERERExGso2SUiIiIiIiIiIl5DyS4REREREREREfEamqBeap24UJjR031ti4iIiEjNSElJYdSoUURFRREVFcWsWbMc1s+ePZsmTZqQnJxM79692bhxIzt27KB58+YO9YqKinjggQfYv38/ZrOZF154gZEjR7Jr1y78/f356KOPaNasGaNGjeL999/HYDC48jBFRKSWUbJLap1gX0iMcHcUIiIiIlITRo8ezfjx43nsscdITU2le/fu9nULFy5k3rx5AHz22Wc8++yzVe7jzTff5KGHHuLaa6+1l7300ktER0fz3XffMXXqVCZPnky3bt1Yvnw5/fr1c+5BiYhIraZhjCIiInJRUlJSiImJwWw2M3LkyErrJ02aRGZmZrX7ePTRR+nduzeTJ0+utC4tLY2ePXvSo0cPxo8fX2kZoLi4mJtuuok+ffowatQoALZv386UKVNq4AhrD2ee62+//Raz2YzZbCYiIoL09PQq61d1/r3xXIvrdOjQgQMHDtiXc3JyCAgIsPfCaty48Xm3/emnn/jwww/p27cvqampAERHRwNgMpns++jbty+LFi1y0hGIiIinULJLRERELtro0aNJSUmhbt269g+cABaLhc2bN9OqVavzbrtu3Tp8fHxYuXIlGzZs4MiRIw7rk5KSWL16NWvWrCE1NZU2bdo4LOfl5bFkyRJ69erFDz/8gK+vLz///DPx8fFs2LABq9XqtON2B2ed6/79+5OSksLy5cuJjY0lISGhyvrn/j3y8vK89lyLa6SmphIXF2dfzsrKIioq6qK23bZtG8OHD2f+/Pk899xz9nKLxcLkyZMZPXo0AFFRUezcubNmAxcREY+jZJeIiIhcsnN7aGzatInWrVtXu83atWvtQ4v69OnD+vXrHdb7+voCUFFRQdOmTalTp47DclBQEDExMRQWFgJQUFBA3bp1AYiNjWXr1q01c3C1jDPONdh6ynTp0gWDwVBl/XP/HkFBQYB3n2txjpkzZ2I2m2nWrBmJiYmXtY/w8HB69+5NREQEPj5nZmKZMGECd9xxB7GxsTUUrYiIeAMlu0REROSSndtDIzMz0z6k6Hxyc3MJDbU9CSQkJITc3NxKdebMmUN8fDxhYWH4+PhUWo6Li2PlypXEx8djMBiIjIwEvLs3h7PO9YIFCxg0aFC19c89/+Dd51qc43QvxYkTJzqUx8XFkZ2dfVH76Nq1K1u3bqWkpITy8nIAPv/8c3Jycrjvvvvs9bKzs6vt9SgiIlcHJbtERETkol1MD41t27bZ54Q6/fPaa68RFhZGXl4eAPn5+YSFhVXadvjw4ezYsYODBw+yZcuWSsuzZs1i2LBhbN++nfr167NmzRonHq17Oftcnz2J9/nqn3v+RWpSeHg4RUVF9uURI0awZMkS7rzzTr777jsAnnzySQCefvppxo4di9ls5qmnngLgiSeeYNOmTZjNZiZNmgTYrusBAwa4+EhERKS20dMYRURE5KKdfqrauVq1asUXX3wBQLt27UhJSalU56effmLu3LncfPPNrFixgttvv91hfWlpKf7+/hiNRkJCQvDz8wOwLwcEBGCxWAgPDwdsH5RP90DKzs6mZ8+eNXik7ufMc717926aN29uP8ddu3atVP/cv0dAQADgnedanOd0EvZ8Bg4cyLJly0hOTuY///lPpfVvvPEGAM2bN2fZsmUO66rqFbZ27Vruv//+KwtaREQ8nnp2iYiIyBVLSEggIyOj2jrXXHMNpaWl9O7dm4SEBBo1asThw4d5/fXXAfjqq68wm81cd911NG/enM2bNzsst2rViuHDh/PBBx9gNptJT0/nhhtuAGwTXXfo0MHpx1kb1MS5PnsI4/nqn/v3OD007Go61+J899xzD8nJyTW2vw8++ACjUR9xRESudurZJSIiIheluh4aRqORTp06kZmZWe18OVOnTnVYbty4MePGjQNg6NChDB061GH9ucv16tVjyZIlDmXbt2+nc+fOGAyGiz2UWs/Z5/rxxx+/YP2q/h7eeK5FRETE+yjZJSIiIjWiqiF3rhAfH098fLxb2nYXnWsRERGR81MfXxERERERERER8RpKdomIiIiIiIiIiNfQMEapdQpOQVaee9qOC4VgX/e0LSIiIiIiIiJXTskuqXWy8mDMave0PaMnJEa4p20RERERERERuXIaxigiIiIiIiIiIl5DyS4REREREREREfEaSnaJiIiIiIiIiIjXULJLRERERERERES8hiaoF6+Q8byZwh2pGHx8MZh8CGjWlqYjJhGacL27QxMRERERERERF1LPLvEaTUdMImleAZ1mHaFOm+7smnwLFYUn3R2WiIiIiIiIiLiQkl3idYy+/tS/YTSWkgJKDmW5OxwRERERERERcSElu8TrWEqLOb50BsagUAKatnJ3OCIiIiIiIiLiQh6T7CorK2PChAlERkYSGBhIv379SEtLw2AwsGDBAneHJ7XAwTkTSB8expY/RVO0ZxNx47/GFBTq7rBERERERERExIU8YoJ6q9XK0KFDSUtL48UXXyQuLo45c+YwePBgAJKSklwaz7WvjiHyhi74hgZxqqCY7K9TWffKf7CcKndpHOKo6fBXaDz4KXeHISLicX7+FebsOrP8x6UwJBqGRkOwr7ui8j578+Hj3WeWb/gWBrWAO2KhfoD74hK5HHll8Oke+Dz7TNmEDXBXLLQNc1tYIiIigIcku6ZPn86iRYtIT0+nffv2AJjNZmJiYggPD6dFixYujWf7B9+y7uXZlBeX4h8egnn6k3R67FbS3/jUpXGIiIhcqUX74MWNgOFM2eFimLrdtu7fPSHM323heY11x+GxH6Hccqbs1zKYlQULfzvPLYLdF5/IpTheAmNWwf4ix/LF+2HJAZjcGa5v6p7YREREwEOGMU6ZMoURI0bYE10AJpOJmJgYe6+uW265hYSEBJKSkujduzfp6elOi+fkzv2UF5faFgwGrBYrIbFNnNaeiIiIM+wvhBfTwQJYrJXXZxfAxE2ujsr7FJbDk2m2RJflnHVWbEmvp38CaxV/A5Ha6P82wsGiyuWnX0ueXw9Hi10eloiIiF2tT3ZlZmayZ88ehgwZUmndvn377MmuWbNmsWnTJjZu3MhTTz3Ffffd59S4Oj5yC3dlzebOn98nvH0U26Z/7dT2REREatrne6tPsFiAHw7D4So+1MrF+2afLeF1bqLrNIsVsvJhU45LwxK5LHsLYO2x81/PVqDCCl9mn6eCiIiIC9T6YYwHDhwAoGHDhg7lO3bsIDs7257sqlu3rn3dyZMnMRovPo8XEhJCWVlZpfKWPvV4OrRXldtseee/bHnnv9Rt1YzYW3tTfPTXi27vatW3r5ld5Rc+T0FtutNyYsol7bvNpEurfz59+5opykitkX2JiNR2ca//RGB0p2rrWIGEQfeRu+Jj1wTlhVo8OZfQawZiMJ3/tstqsXDzXyZx9LOJLozM+3X4tAQAf39NilZTwm/4E83uf6faOharlbcW/shjCWbXBHWV0PXsGjrPrqHz7Bqefp4tlvN9tXJhtb5nV0REBABZWVn2MqvVyjPPPIPFYnGYnH7MmDG0aNGC559/nlmzZrkkvpOZB8jZmk3vfz7mkvZERERqSnXJF4d6RpOTI/FyRh8wGC5QyarzLB7hYl43DAaDrmcREXGrWt+zKz4+nri4OJ577jl8fX0JDg5m2rRpbNy4kaCgINq0aWOvO2PGDABmz57NuHHjWLRo0UW1kZ+fX2X5kbQdfDNo/AW3N/qaCNWcXRe0fHkKjbq2vWC99BMwZrULAqrC8uUpJEa4p20REVd7aSP8b9/5hyOdtuLTf9O67r9dEpM3mpEB72VUX8dgNDFrynP0/eg51wR1lejyle3f0tJS9wbiRTbnwH2rqq9jBEbe0JVnntR5r0m6nl1D59k1dJ5dw9PP8+rVq+nVq+rRdhdS63t2+fj4MH/+fJo0acLIkSMZO3YsAwYMoE+fPnTq1KnK4Yp33303y5cv58SJEzUej29IEHG3m/ELDQKgXnwUCWOHcDBFM/iKiIhnGRJdfaLLCHSsB63rVlNJLuiWKDBW07HLCET4Q+9GLgtJ5LJ1rActQ6r/EGHB9voiIiLiLrW+ZxdAQkICqamO8yi988479OnTB4CCggJ+/fVXIiMjAVi4cCHh4eGEh4fXfDBWK7FDruOaF0di9POh5Hge2YvWkv76vJpvS0RExIk61IORcTArCwzY5uc6zQgE+cD4BDcF50XqB8AzHeHVzbbzenaC0YgtETbxd+BT67+CFLGNyH3pd/CnVVBa4Xg9n34deaANxIW6KUARERE8JNl1ruLiYjIyMhg7diwAhYWFDB06lMLCQkwmE+Hh4SxcuBDDBefHuHSnCopZMuzlGt+viIiIOzwSD5F1bAmvfYW2MqMB+jWGB+MhKti98XmLIdG23lszdsKOk2fKuzaAB9raEo8inqJtXfiwN0zbYXti6+lEeVQwjGoFf4h0a3giIiKemezavHkzFRUV9snpGzVqxI8//ujmqMRVyvNzyPy/Gyg5kEHSvAKHdXv/372UHMjA4OtPk2EvENqpH1kTb6aiKA+DyYfYcfPwCa3vpshFRGofg8E2zG5QC9hbAMUV0CQQ6vm7OzLvY25i+9lfCCfLoEEANAx0d1Qil6dlKPy9K5wogSMltp6gUXUu4lkMIiIiLuCRya5u3bphtVovXFG8kikwhFYvLWX3326vcn3s05/hV7+5fbnls19g8PHlxPLZ5Pwwh4Y368mZIiLnMhggJsTdUVwdmtex/Yh4g4gA24+IiEhtotkhxOMYfHzxCTnffGwGdr8+jN1/u53y/Bx7fQDLqRICIuNdFKWIiIiIiIiIuIOSXeJVmo/+B22nrKZer2Ecnv8qYBv2uOPpHhz9+m0CmivZJSIiIiIiIuLNlOwSr+ITbJvhN6zrQIr3bbWVhYTT9m9raHbXRI589aY7wxMRERERERERJ1OyS7xKRVE+AAUZqfg3jMFqsWCtKAfAFFQXo68mlRARERERERHxZh45Qb3IzgnJFO3ZyM4JyTS980UKdqTS+NZx7H3rHk7lHcPo60/0Yx9iKSkka+IfwWC0lf3lQ3eHLiIiIiIiIiJOpGSXeKTWryxzWA5u1wuAls99Walum8k/uCQmEREREREREXE/DWMUERERERERERGvoWSXiIiIiIiIiIh4DSW7RERERERERETEa2jOrlqm11sPc6qwhLXPz3R3KJXclTWbb255gZyf9zi1nbhQmNHTqU1U27aIiIh4v5SUFEaNGkVUVBRRUVHMmjXLYf3s2bNp0qQJ9evXZ+zYsQBkZmYydepUbrnlFnu9e++9l4yMDPz9/XnhhRfo168f77//PjNmzKBhw4bMnj2bwMBAHnjgAWbMmOHCIxQR8UwX+/ocGRnJfffdh9FopEuXLrz55psO9ap6fQY4fPgwMTExZGZm0rx5c0aNGsX777+PwWBw2TGK8ynZ5USNe7Qn8cnbiegUC8CJzbtJ//unHE7d6ubIbBKfvJ2IhJZ8d8+rF1X/47i7nRyRTbAvJEa4pCkRERG5io0ePZrx48fz2GOPkZqaSvfu3e3rFi5cyLx58zAYDKSkpABgNpu5/vrrK+3ns88+o3nz5gCUl5cza9YsVq1axaJFi5gxYwaPP/44DRo0YNeuXbRs2dIlxyYi4sku5vU5JyeHxYsXExwczN13383OnTtp3bq1w37Ofn0+7Z///CfdunWzL3fr1o3ly5fbk2HiHTSM0UmaJ3fmhjnj2bdsPZ/+7s98+rs/s2/Zem6YO57m1/+uym0Mppr7cxh8TDW2LxERERFv1qFDBw4cOGBfzsnJISAgwOFb/sOHD1OnTh1CQkIctjUYDAwbNozbb7+dnJwcjh8/TosWLTAajXTs2JHU1FTAlij75ptvXHNAIiJeorrX54iICIKDgwEwmUyVemad+/oMkJuby/Hjx4mOjrbX69u3L4sWLXL+wYhLKdnlJN0m3kfWZylsnfYVp/KLOJVfxNZpX7Fr/g90nXgfALelvUunsUO46atJjNj9MfUTbN/0+dYJwDz9Se7KnM0tP7xJU3PCBdtr3L09d2XNpvWIZG77aRoDl/0dgCbXdeKPi6cwPGMWA797gxb9rwGgRf9r6PjYYJr1TeSurNnclTUbo1/1Hf3uPTSfiISWGExGhu/8iLA2kba2e7Tn3kPzifqjLdse2DCMe375BN/gwMs7eSIiIiIulJqaSlxcnH05KyuLqKgohzoLFy7k5ptvrrTtP/7xD1avXs2wYcN49dVXadCgAVlZWZSUlLBixQpOnjwJQFRUFDt37nTugYiIeJmLeX3eunUrx48fp1WrVg7l574+A0ydOpUHHnjAoZ5en72Tkl1OENqyKSFRjdjz39WV1u3+chWh0Y0JjW0CQNxQM6uffJeP4+7mxG9zYcXc0ovdX65kTtuRbP7nl/R7/2mCGodfsF2fQH/qJ8bx3+vG8vWAZwiJbkzyrGf5+Z3/MrfdKNZP+g99pj1OePtofvn2J7a8/SUHlqfzcdzdfBx3N5ay8os6PmuFhSNrt9OkV0cAmvTuSN6eQzTp1cG23KsjJzbv5lRB8UXtT0RERMQdZs6cidlsplmzZiQmJlZbd+HChQwcOLBSeb169QAYOHAgW7duxWQyMW7cOPr378+mTZto1KiRM0IXEfFqF/v6nJeXxyOPPML06dMrrTv39bm4uJht27aRlJTkrLClFlGyywkCwm3d24uP5FRaV3z0V1udCNtM6Bmzl3Iy8wBWi8WebDr84zZ++SYNa4WF3fNX8Ou2bKJv7l5pX+cyGI2sn/wx5cWlVBSXETOoB0fWbmfvwlSsFRYOfL+RX5aso+XQPld8jIdX/eyQ3Er/+6f25Ffjnh04tPrnK25DRERExJlGjx5NSkoKEydOdCiPi4sjOzvbvlxYWMjJkydp2rRppX3k5+cDtt4HMTExANx6662kpKTQrVs3BgwYAEB2dnalXgciIlK1i3l9tlqt3Hfffbz88ssX9fq8d+9edu3aRf/+/Vm6dCkPP/wwoNdnb6UJ6p2gJMf2nyqwUTgnsw46rAtsaMsul5zIA6DwwLFK2xfudywr2Hfsonp2lReXUvpb2wBBTSIoOHdf2UcIjrrybxgPrdpCp7FD8AsNIjS2KXv+u5rfPXsnQU3CadKrA2uefO+K2xARERFxh/DwcIqKiuzLS5Ys4fe//719+fDhw8yePZtx48Zxzz33cOzYMfz9/fnwww8BeOihh8jIyKBdu3a89dZbgO3pYqNHj3blYYiIeJ2zX59TUlL4/vvvOX78OABvvPEGzZo1O+/rc2RkJD/++CNge1Lj6UTa8uXL7V9MiPdQsssJ8nYdJP+XI8QM7MHhc3o4xQzqQf4vR8jbfQgAq8Vaafs6zRs4LAdHNuDYhguPIbZaLA7LRYdO0Lh7+3P21ZCiQyeqrH8pcrbuxWqx0O5Pf+ToTzuwWiwcWvUzrYcnE9SwHkd/2nHZ+xYRERFxNrPZjNlsPu/6gQMHsmzZMpKTkxk8eDCDBw+2r2vcuDHjxo0D4Msvv6y07bvvvuuwXF5eztGjRx3mnRERkapdyuvz6Ynnz1bd6/Npp7+cAFi7di3333//ZccrtZOGMTpJ2gsfEjesL+3/fDO+wYH4hgTR7s9/JO72vqRN+KDabRtf247I33fBYDISe2tv6rWLYu//frzkGPYsWEOjbvFE/aEbBqORZn0TibyxC7vmrwCg+PhJ6jSrf9lPgTy8Zivt7v8Dh1ZtAeDQ6i20u/8PHF2/k4rSU5e1TxEREZHa4J577iE5OblG9uXj48PMmTNrZF8iIle7mnx9Bvjggw8wGpUa8Tbq2eUk+xb/xLIRk0l44jYSx90OwInNu1k2YrI9OXQ+e/67ipZD+3Dd1L9QeOgEy8f8naKDJy45hvy9h/n+vr/xu7/eRc83H6Zw/zFWPPI2Ob9NhL93YSqxt/Tijp/fx2Aw8Emn0Rc9ST3AoZVbiP5jdw6tsvVeO7TqZ/xC62i+LhERERERERFxGyW7nOjQqi3VJrbmd32oUtmqsVMvq63DqVv5OO7uSuUHlqdzYHl6lduU5Rbw7ZD/u6j9G37LdJ+dDMv4aAkZHy2xLxcf+ZUPm9x2CVGLiIiIiIiIiNQs9dWTi1KvfRSWU+VVTqgvIiIiIiIiIlJbqGeXBxmU8ibBzetXKt+3ZD0rHnrrivef/PHzNOrWtlL5qYISjL4m1k+eQ1leURVbioiIiIiIiIjUDkp2eZAF5seduv9ld01y6v5FRERERERERJxNyS6pdQpOQVaee9qOC4VgX/e0LSIiIiIiIiJXTskuqXWy8mDMave0PaMnJEa4p20RERERERERuXKaoF5ERERERERERLyGkl0iIiIiIiIiIuI1lOwSERERERERERGvoTm7xCtkPG+mcEcqBh9fDCYfApq1pemISYQmXO/u0ERERERERETEhdSzS7xG0xGTSJpXQKdZR6jTpju7Jt9CReFJd4clIiIiIiIiIi6kZJd4HaOvP/VvGI2lpICSQ1nuDkdEREREREREXEjJLvE6ltJiji+dgTEolICmrdwdjoiIiIiIiIi4kEcku8rKypgwYQKRkZEEBgbSr18/0tLSMBgMLFiwwN3hSS1xcM4E0oeHseVP0RTt2UTc+K8xBYW6OywRERERERERcaFaP0G91Wpl6NChpKWl8eKLLxIXF8ecOXMYPHgwAElJSW6JyxTgx6Dv3yCwYRgfx93tlhjEUdPhr9B48FPuDsOtLFb47iB8ugcyToLJAN0bwrBYSAh3d3TeJfWo7TxvOGFbTgiH22OgZ0MwGNwbm8il2pMP8/bAsoNQUgEt6sCt0fDHSAgwuTs6kUuTWwZf7IUFv5wpe3c7DI2BBgFuC0tERID1x233HKc9uAaGRkPfJrqHlppV65Nd06dPZ9GiRaSnp9O+fXsAzGYzMTExhIeH06JFC7fElTRuGAX7jxPYMMwt7Yucq9wC4zfYPqwaActv5csOwZKD8Hh7uKulOyP0DlYrvL0NZu9yPM8/HoM1R+GOGHiyg96sxXP8cBie+cmWLD99PWfmwWub4atf4N3uEOzr1hBFLtr+Qrh/NRwtcSz/IBPm74VpPaBNXbeEJiJy1Zu5E6btAONZ98nrj8NPx+EPzeH/khzXiVyJWj+MccqUKYwYMcKe6AIwmUzExMRU6tX10ksvYTAY+Pnnn50aU0SnWJr1TeTnqf91ajsil2JWli3RBWc+sILtAyzAm1ttbyZyZRYfsCW6oOrz/Mke+Hqfy8MSuSyHi+DZdVBhdbyef7uc2Z5rS3qJeAKrFZ5Mg+MlVawDCk7BX36EU5bK60VExLlWH7EluuDMfTOcuf/43374ZLfLwxIvVquTXZmZmezZs4chQ4ZUWrdv3z6HZNeGDRv48ccfiYqKcmpMBpORHn9/gB+fm4GlrNypbYlcrHLLhd8cjOgNpCbM2V39C6cB+HiX7UOXSG33Rbbt9eN8l6sVW8/QqpIHIrXN+hOwK98xcXs2C3C8FJYfcmVUIiICMHf3hXttzdntmAgTuRK1ehjjgQMHAGjYsKFD+Y4dO8jOzrYnu0pLS3n44YeZO3cuZrP5ktsJCQmhrKysUnlLn3o8HdrLoazDQ4M4sWUPR37cTuPu7SttI+fXt6+ZXeW/XrBeUJvutJyYckn7bjPp0uqfT9++ZooyUmtkX64UEJtEqyk/VlvHAnz3Swn+vTV+43IZ64TR/sMj1daxAln5ENy4BeW51dcVcbe419MIiOqEoZpxtxYrtP/jveSunOvCyEQuXeO7JlF/4OMYjOefaM5aUc6Db8xh/9Q/uTAykZrR4VPbNw/+/pp8zpl0np3AaKTDJ4UYDNX3tTlcDGGxnSg9mOGiwLyfp1/PFsvld8eu1T27IiIiAMjKyrKXWa1WnnnmGSwWiz3Z9cILLzBixAiio6OdGk9IdGPa3PN71r0y26ntiFwqg+niJtS52HpStUs5fwYfPydGIlIzDCa/ahNd9nq6nsUDGHx8wXrhm2JdzyIirmUw+lww0WWv66PPK1IzanXPrvj4eOLi4njuuefw9fUlODiYadOmsXHjRoKCgmjTpg2pqamsW7eO11577bLbyc/Pr7L8SNoOvhk03r7cqGtbAuvX5dbVbwNg9DHhWyeQO7a+z/LRr3Pkx+2XHcPVYPnyFBp1bXvBeuknYMxqFwRUheXLU0iMcE/bVyK3DPovhvJquv0agLgwE+tLS10Wl7epsNrO86+VO4I6CPWFX/dl4Vurv04QgefXw9KDFx4y8N3c6bSvN901QYlcpq9+gZfTq69jMPnw/J/uYNTf7nBJTCI1qctXtn9LdS/nVDrPznHLMjhQdP6pEwD8jXBw+3rq1OoshWfx9Ot59erV9OrV68IVq1CrP4r5+Pgwf/58mjRpwsiRIxk7diwDBgygT58+dOrUCaPRyA8//MD27duJiYkhOjqa/fv3c+ONN7JkyZIaj2fPwjV83uMRvkp+iq+Sn2L1k+9xqqiEr5Kf4tiGzBpvT+RihfnBDc2q/w9tBW6PcVVE3slkgNuibYnD8zEAg6NQoks8wm3R1Se6jEDrUGgX5qKARK7A75tCkKn612iTAQZGuiwkERH5zdCY6hNdRuAPkSjRJTWm1n8cS0hIIDU1laKiIjIyMnjwwQfZuHGjfQjjs88+y8GDB9m7dy979+6lefPmLF68mN///vc1HktFcRlFh3LsP6Un8sBqpehQjiarF7d7JB4iAs7/n7pLBNzcwqUheaURcdAypOoPU0YgKhjubeXqqEQuT2I4DDnPc12M2JK24xPhIkY6irhdgA9MSLT9fu4le3r5iQ6290oREXGt26KhU73z30M3CoQ/t3FxUOLVan2y61zFxcVkZGQ4PInRXQ6nbuXjuLvdHYYIYHuD+KA39Gvi+KSTIBPcFQv/71r1NqoJdXzg373glijwO+t8+hpt30bN7AUhmmpAPITBAM90gsfaQbi/47rO9WFmb/XqEs9yQzN4sxvEhTqWR9aBSZ1hmHo4i4i4hb8Jpna3jTQJOOs5IiaD7bX7g976MkJqlsd1Ety8eTMVFRXnTXbt3bvXtQGJy/wy/VGK96QT+rsBNBn6nL385IbFHPrkJUzB9Yh9cg6WsmJ2/902F0fZ8X00/MOjNBo4FoDcH//L/g/H0eE97xx22jgQXrsGjpdA/99G8i6+EQI97n967RbiC88n2BIEfb+xlX37e6irOY/FAxkNcE8cDI+Fa7+2lf33emhex71xiVyuXo2gZ0PYlW97PwzzgzZ11UNRRMTdAn1gXEd4KB6259qmUogLrfyFm0hN8LiPwN26dcNqvcBMuuJ1CjPXYTD60ObVlex67TZO5R7BN6wRAEcWvEHrV74jL30Jx5b8m8aDn6LNpBQAdv/9Tup2vsm+n19TP8evvvdP1lH/rG9FlOhynrN7cCnRJZ7O56yeikp0iaczGGwfoM7t4SUiIu5Xxwe61Hd3FOLtNKhJPELhzrWEdOoHQEiHPhRlrQegoqQQU2AIRv9AQjr2oygzzb6NtfwUZUf2ENCsNQB5m78nOL4XXORjb0VERERERETE8+hTv3iEisJcTEG2r2eNgSFUFOaeKQ88XR5MReFJ+zb5P6cQ3MFsXz6x7H0i+o10WcwiIiIiIiIi4npKdolHMNUJo6IoDwBLcT6mOmFnyotPlxdgqlPXvk1u2leEdRsE2IZBBkS2w+inWQ9FREREREREvJmSXeIR6rTuSv6W5QDkb11BUFxnAEwBdagozsdSVkL+luUEtepq36Zw51rqtO4GQPEvP5OXvpTMF/tTtCedQ59Ocv1BiIiIiIiIiIjTKdklHqFOq2uwniol46+9CYpJ4FTOIU4snw1Ao0FPsHN8X44tfo/6N4wBoGj3RoKiEzAYbZd4/evvpc2k5bR68VuCYhJpcvvzbjsWEREREREREXEePadNPEaLB6Y6LAfFJgJQ93f9qfu7/uesSyLqkX9XuZ/WryxzSnwiIiIiIiIi4n7q2SUiIiIiIiIiIl5DyS4REREREREREfEaSnaJiIiIiIiIiIjX0JxdUuvEhcKMnu5rW0RERETEk6SkpDBq1CiioqKIiopi1qxZDutnz55NkyZNiIyM5L777sNoNNKlSxfefPNNh3p33HEHhw8fJj8/n8jISP773//y+9//nuLiYkJDQ5k3bx4BAQE88MADzJgxw5WHWCvU1Hm+9957ycjIwN/fnxdeeIF+/foBcPjwYWJiYsjMzKR58+aMGjWK999/H4PB4LJjFPEWSnZJrRPsC4kR7o5CRERERMRzjB49mvHjx/PYY4+RmppK9+7d7esWLlzIvHnzyMnJYfHixQQHB3P33Xezc+dOWrduba/3ySefAPCvf/3LnmCZPn060dHRzJw5kzlz5nD//ffToEEDdu3aRcuWLV17kLVATZxngM8++4zmzZs7lP3zn/+kW7du9uVu3bqxfPlyezJMRC6ehjGKXKVSUlKIiYnBbDYzcuTISusnTZpEZmZmtft49NFH6d27N5MnT660Licnh86dOxMcHOxQ/tZbb5GcnAzA9u3bmTJlyhUchYiIiIicrUOHDhw4cMC+nJOTQ0BAAAaDgYiICPu9mclkOm+PoYULF3LzzTcDEB0dXam+2Wzmm2++ceJR1H5Xcp4NBgPDhg3j9ttvJycnB4Dc3FyOHz9uP98Affv2ZdGiRc4/GBEvpGSXyFVs9OjRpKSkULduXVJTU+3lFouFzZs306pVq/Nuu27dOnx8fFi5ciUbNmzgyJEjDutDQkJYunQp1157rb3s1KlTpKen25fj4+PZsGEDVqu15g5KRERE5CqWmppKXFycfTkrK4uoqCiHOlu3buX48eNV3usVFBSQn59PkyZN7GVFRUX8+9//5vbbbwcgKiqKnTt3OukIPMOVnOd//OMfrF69mmHDhvHqq68CMHXqVB544AGHejrPIpdPyS4RqfTN1KZNmyp1tT7X2rVr7V2q+/Tpw/r16x3W+/r6Eh4e7lA2e/Zs7rzzToey2NhYtm7deiXhi4iIiFz1Zs6cidlsplmzZiQmJp63Xl5eHo888gjTp0+vcv3ixYvp37+/Q9kDDzzAiy++SN26dWsyZI9UE+e5Xr16AAwcOJCtW7dSXFzMtm3bSEpKclbYIlcdJbtEpNI3U5mZmQ5dqKuSm5tLaKhtRv+QkBByc3OrrW+xWFi8eDE33nijQ7m+sRIRERG5cqd77E+cONGhPC4ujuzsbACsViv33XcfL7/8Mk2bNq1yPwsWLGDQoEH25X/84x+0a9eOG264wV6WnZ1d7QgAb1YT5zk/Px+w3YPHxMSwd+9edu3aRf/+/Vm6dCkPP/wwcHWfZ5ErpQnqRa5iM2fOZNmyZfTq1eu830xt27aNhx56yKGsf//+hIWFkZeXB9jesC80QekXX3zBwIEDayRuEREREbk44eHhFBUVAbY5W7///nuOHz8OwBtvvEGzZs2YPXs248aNo6Kigp07d9KuXTsAysrK+Otf/0r37t359ttvufvuu+3JntGjR7vtmGqjSznP99xzD8eOHcPf358PP/yQyMhIfvzxR8D2pMbTibTly5czYMAA9xyQiIdTskvkKnb6aTLnatWqFV988QUA7dq1IyUlpVKdn376iblz53LzzTezYsUK+xwO55ORkUFKSgqzZ88mPT2dGTNmMGbMGLKzs+nZs2eNHI+IiIjI1chsNmM2m8+7fuDAgSxbtozk5GT7hOhnGzduHGCbTP100gXAz8+P0tJSh7rl5eUcPXrUYVTA1aKmzvOXX3553n18+OGH9t/Xrl3L/ffff9nxilzNNIxRRCpJSEggIyOj2jrXXHMNpaWl9O7dm4SEBBo1asThw4d5/fXX7XWSk5PZuHEjycnJDBo0iKVLl/Ltt9+SmJjImDFjANtknh06dHDq8YiIiIhcze655x7707CvlI+PDzNnzqyRfXmbmjzPAB988AFGoz6yi1wO9ewSuUpV982U0WikU6dOZGZmVjtPwNSpUx2WGzdubP/GCmDZsmVVbne6fPv27XTu3Pm8j70WERERERERuVRKdolIlaoa3ljT4uPjiY+Pd3o7IiIiIiIicvVQn0gREREREREREfEaSnaJiIiIiIiIiIjXULJLRERERERERES8hubsklqn4BRk5bmn7bhQCPZ1T9siIiIiIiIicuWU7JJaJysPxqx2T9szekJihHvaFhEREREREZErp2GMIiIiIiIiIiLiNZTsEhERERERERERr6Fkl4iIiIiIiIiIeA3N2SVeIeN5M4U7UjH4+GIw+RDQrC1NR0wiNOF6d4cmIiIiIiIiIi6knl3iNZqOmETSvAI6zTpCnTbd2TX5FioKT7o7LBERERERERFxISW7xOsYff2pf8NoLCUFlBzKcnc4IiIiIiIiIuJCSnaJ17GUFnN86QyMQaEENG3l7nBERERERERExIU8JtlVVlbGhAkTiIyMJDAwkH79+pGWlobBYGDBggXuDk9qgYNzJpA+PIwtf4qmaM8m4sZ/jSko1N1hiYiIiIiIiIgLecQE9VarlaFDh5KWlsaLL75IXFwcc+bMYfDgwQAkJSW5LJZebz1MzOBeWE6V28tS/vQGB5anuywGqVrT4a/QePBT7g7DraxWWHsM5u89U/baZrgtGuKU9xMPtCcfPtsLq45AuQXa1LVdzz0agsHg7uhELk1uKfz3F/h2P+SWQeMgGNQCBjSDAI+4IxMRV7NYbe+Bn+89U/bGzzA0GloEuysq77ThBHy258zyy+lwezS0DXNTQCJyRTzi1mr69OksWrSI9PR02rdvD4DZbCYmJobw8HBatGjh0nh2/mcZa5+f6dI2RS7EYoVXN8OX2WA8KwnwxV7bDdL4RNuHKhFPsWgfvJgOWMHyW9nxElh5BP7QHF5IApMSXuIhsvLgwTXwa9mZshOl8POvMHc3vNcDwv3dF5+I1D7lFhi/AZYddByO88luW1JmUme4vqnbwvMaViu8vQ1m73I8z1//Al/9Ak+0h+Et3RaeiFwmjxjGOGXKFEaMGGFPdAGYTCZiYmLsvbqio6Np27YtiYmJJCYmsnjxYneFK+IWc3fbEl1gS3ydZgGswMR02JLjhsBELsOOk/DiRtu1bDmr/PTv/9sPs/X8CfEQZRXw6I9wssyx/PRL9d58+Os6l4clIrXcv3faEl3g+F5oBSqs8Nx6Ww9ouTIL99kSXVD1Pcc/tsKPR10dlYhcqVqf7MrMzGTPnj0MGTKk0rp9+/Y5DGGcP38+6enppKenc+ONNzotpthbe3Pntg+4ZcVbdPrLrRhMtf40ipersMJ/dlVfxwB8sqf6OiK1xbzdF67z8S7bt94itd13h+BYieOHqLNZgPUnYOdJV0YlIrVZSUX174VWbD2SPtW93RWxWm1fnlXXUdyI7Z5DRDxLrR/GeODAAQAaNmzoUL5jxw6ys7NrZL6ukJAQysrKKpW39KnH06G9HMq2zVzEuldmU5KTT0SnWPq8OxaTvx8b//bJFcfh7fr2NbOr/NcL1gtq052WE1Muad9tJl1a/fPp29dMUUZqjezLlQKiO9Hq9Z+qrWMBvtldxN971HNNUFeJDp+WAODvH+DmSLxLuw8OYwqu/lr9tQzqd+pNcWaai6LyfrqenSNy7GzqXnsrBtP5b7usVgv9HniJY1+85sLIRKS2qtPBTOz/VT9SxQLM2XCQF66JcU1QXsi3QRRt391ZbR0LsOaohYA6oVjLT7kmMJEa4un3dhbL5X+zXeu7JEVERACQlXVmvIrVauWZZ57BYrE4JLvuuusuOnXqxEMPPURubq5T4snZsoeSE3lgtXJi0y42/n0eMYN6OqUtkYtl9Au8qHoGX00II57B4Hdxb8gXe+2LuJPRL/DCT1SwWDH663oWEZuLvrfT++AVuejzbDBi8NF9tIgnqfU9u+Lj44mLi+O5557D19eX4OBgpk2bxsaNGwkKCqJNmzYArFy5ksjISEpLSxk7diyPPPII//nPfy6qjfz8qge7H0nbwTeDxle/scVafb9XsVu+PIVGXdtesF76CRiz2gUBVWH58hQSI9zT9pXIKYX+Sxzn6jqXAYgONbG+tNRlcV0Nunxl+7dU57VGDU+BzLwzcxpVxQBsX72ERrrPrzG6np3j7W22YTLVXs8mE++98iw3ffisy+ISkdprXwEM/r76Okagc2Q90vWafdmKyiH5Wyi7QOeRCH8oyj2hJ0GLx/H0e7vVq1fTq1evC1esQq3v2eXj48P8+fNp0qQJI0eOZOzYsQwYMIA+ffrQqVMnjEbbIURGRgLg7+/PQw89xOrVzsmWRA/sgW9IEAD14qNIeHIoe7/2vGFv4l3C/aFv4+r/Q1uB26JdFJDIFbotuvrEgBHo1QglusQjDG5x4cRtsA/001PVROQ3kcHQJaL6ezsLcJtGMF6RIB/4Q2T159kADI2+cAddEaldan3PLoCEhARSUx0TSu+88w59+vQBoLCwkPLycurWrYvVauWTTz4hMTHRKbG0vfdGuk+5H6OvieIjueya/wOb//mlU9oSuRSPtoOfjkNBeeUeXgagXRjc0sIdkYlcuj9G2p64uDmncpLAaIAgE/ylnVtCE7lkkcEwqhV8kFl5nQHbNf5sJwgwuToyEanNnuwA962C0oqqH3DRtT7coCT5FftTa1h1BE5U8SARIxAdDHfEuiMyEbkSHpHsOldxcTEZGRmMHTsWgCNHjjBkyBAqKiqoqKigXbt2vPvuu05p+9tb/88p+xW5Us3rwAe94bXNtqTXaT4GGNAcnuoIAR75P16uRn4meOda2+O+v94Hp866+0wMtyUGokPcF5/IpXqoLdTzsyW8fj3rmTjNguCxdurVJSKVtaoLM3vBlC2wKedMuZ8RBrWAv7QHn1o/Tqf2axgIH/SCVzfDmqNnvmQzGmzJxKc7QrCvW0MUkcvgkR99N2/eTEVFhX1y+tjYWDZu3OjmqMTZfpn+KMV70gn93QCaDH3OXl5yKIt9/3oEy6lSGg18nLBuA9n/wTgKdqzB6BdA7LhP8QmNIHvag5Ts30FQbBKRo//hxiNxnqhgmNYDfimAnXm2RFdiOIRpPk3xQIE+8HwCPBIP139rK5vfz/YNq4inMRhgeEu4PQau/dpWNqMnJIRraIyInF/r3xJeu/NtP75G6Byh5EtNaxwE/+9aOFgE23NtvW47hUN9z3yAnYjgocmubt26YbVWN/uFeJvCzHUYjD60eXUlu167jVO5R/ANawTAoU9eIuapT/AJDgOgovAkRXs30XbKanJ+mEPOyrnUibsGo68/bSYtZ/8HT1G0eyNBsUnVtOjZWgTbfkS8QV2/M78r0SWe7uxeGJ74QBQRcY/YENuPOFfTINuPiHg+dXwVj1C4cy0hnfoBENKhD0VZ6wGwnCqj7Pg+9r51D1mTBnEq9whG/yBMQXWxWixUFJ3EJzic0iN7CIzqCEBgVEcKduihAiIiIiIiIiLeSMku8QgVhbmYgkIBMAaGUFGYC0B53nGKs38meuwsGt08lsPzX8Xg44tfRHO2PtyWo1//k7BrBxPQvA35P/8AQP7WFVQUnXTXoYiIiIiIiIiIEynZJR7BVCeMiqI8ACzF+ZjqhP1WXpfAqI74BNcjuH1vSg5kULxvO6dyDtD+3QyajpjEka/eJCg2Cf+G0ewcb+sd5lu3obsORUREREREREScSMku8Qh1Wnclf8tywNYzKyiuMwCmgDoY/QKwnCqlOPtn/BpGg9WCKbgeBoMBn5Bwey+wpne9TOuJ32MKCCY08fduOhIRERERERERcSaPnKBerj51Wl3Die8+JOOvvQlNupFTOYfI27iEiL5302jQk+yccD0Go4nov3yIf6MYsFrJ+Ot1gJXov8zCWn6Knf93AwajiXo9b8evQaS7D0lEREREREREnEDJLvEYLR6Y6rAcFJsIQGhiMqGJyQ7roh6eXmn7NpNSnBWaiIiIiIiIiNQSGsYoIiIiIiIiIiJeQ8kuERERERERERHxGkp2iYiIiIiIiIiI19CcXVLrxIXCjJ7ua1tEPE9KSgqjRo0iKiqKqKgoZs2a5bB+9uzZNGnShOTkZCZPnsw333xDYmIi//znPx3qjRw5kl27duHv789HH31Es2bNeP/995kxYwYNGzZk9uzZhISEcMcdd7B48WIWLlxIr169KC8v54EHHmDGjBmuPGwRERERkct2sffQkZGR3HfffRiNRrp06cKbb77pUO+OO+7g8OHD5OfnExkZyX//+1/69u2L1WoF4N1336V169YuvV9WsktqnWBfSIxwdxQi4mlGjx7N+PHjeeyxx0hNTaV79+72dQsXLmTevHkcOXKEDRs2sHLlSh5//HHWrVtHly5d7PVeeukloqOj+e6775g6dSovv/wys2bNYtWqVSxatIgZM2bw+OOP89Zbb/Hee+/Zt/Px8aFBgwbs2rWLli1buvS4RUREREQu18XcQ+fk5LB48WKCg4O5++672blzJ61bt7bX++STTwD417/+hcFgAMBkMrFs2TKHtlx5v6xhjCIiTpSSkkJMTAxms5mRI0dWWj9p0iQyMzOr3cejjz5K7969mTx5skN5cXExN910E3369GHUqFEArFq1imuvvZYePXrwxhtvAJCWlkbPnj3p0aMH48ePB2D79u1MmTKlJg6x1unQoQMHDhywL+fk5BAQEIDBYGDdunX06dMHgH79+pGWluawbXR0NGB7czYYDBw/fpwWLVpgNBrp2LEjqampADRu3LhSu2azmW+++cZJRyUiIiIi4jzV3UNHREQQHBwMnLlPrsrChQu5+eabAbBarZjNZsaMGUNJSQng2vtlJbtERJxs9OjRpKSkULduXXuyBMBisbB582ZatWp13m3XrVuHj48PK1euZMOGDRw5csS+bsmSJfTq1YsffvgBX19ffv75Z2JjY1mxYgVr1qzh66+/pqioiKSkJFavXs2aNWtITU0lLy+P+Ph4NmzYYO9a7E1SU1OJi4uzL2dlZREVFQVAbm4uoaG28cohISHk5uZW2t5isTB58mRGjx5NgwYNyMrKoqSkhBUrVnDy5MnzthsVFcXOnTtr9mBERERERFygunvo07Zu3crx48er/PxSUFBAfn4+TZo0AWD+/PmkpKQQHx/PzJkzAdfeLyvZJSLiIud+W7Jp0yaH7r9VWbt2Lf369QOgT58+rF+/3r4uJiaGwsJCwPbmUrduXZo2bYqfnx9g+9bFaDTi6+sLQEVFBU2bNiUoKAiA2NhYtm7dWnMH6GYzZ87EbDbTrFkzEhMTq6wTFhZGXl4eAPn5+YSFhVWqM2HCBO644w5iY2MxmUyMGzeO/v37s2nTJho1auTEIxARERERca2LuYcGyMvL45FHHmH69OlVrl+8eDH9+/e3L9erVw+AgQMHuuUzh5JdIiIucu63JZmZmfZhc+dTXU+kuLg4Vq5cSXx8PAaDgcjISPu6pUuX0rJlSwICAgCYM2cO8fHxhIWF4eNjm67R23oine5BN3HiRIfyuLg4srOzAejcuTMrVqwAYPny5XTt2tWh7ueff05OTg733XefvezWW28lJSWFbt26MWDAgPO2n52dXW0vPRERERGR2uZi7qGtViv33XcfL7/8Mk2bNq1yPwsWLGDQoEH25fz8fMD2GSgmJgZw7f2ykl0iIk52Md+WbNu2DbPZ7PDz2muvVdsTadasWQwbNozt27dTv3591qxZA8D+/ft59dVX7XN2AQwfPpwdO3Zw8OBBtmzZ4rRjrY3Cw8MpKioCbHNtderUid69e1NaWkqXLl04fPgwr7/+OgBPPPEEmzZtwmw2M2nSJAAeeughrr/+elasWMHtt98OwJNPPslHH33E448/zscffwzY5merLhkmIiIiIuIpzr6HTklJ4fvvv2fChAmYzWbWr1/vcA9dUVHBzp07adeunX375ORkevfuzWeffcb9999v34+r7pf1NEYRESc7/YSTc7Vq1YovvvgCgHbt2pGSklKpzk8//cTcuXO5+eabHZItYJtbKjw8HLC9GeXm5lJaWsq9997LtGnT7JNIlpaW4u/vj9FoJCQkxN7bKzs7m549e9b04brF6QTh+QwcOJBly5aRnJzMhAkTmDBhgn1d48aNGTduHID926uzvfvuu5XK3njjDYdkYnl5OUePHnXouSciIiIiUptdyj10Tk5OpfWn76FNJhM//vijw7q1a9c6LLv6flk9u0RE3CQhIYGMjIxq61xzzTWUlpbSu3dvEhISaNSokf1blOHDh/PBBx9gNptJT0/nhhtuYM6cOWzbto0///nPmM1mDhw4wFdffYXZbOa6666jefPm9q7DWVlZdOjQwRWH6nb33HMPycnJTtu/j4+PfeJNERERERFvUJP30K6+X1bPLhERJ6ru2xKj0UinTp3IzMysduz61KlTHZbP7om0ZMkSh3WjRo1i1KhRDmVDhw5l6NChDmXbt2+nc+fO531ssIiIiIiIiKdSsktExI2qGt7oCvHx8cTHx7ulbREREREREWfSMEYREREREREREfEaSnaJiIiIiIiIiIjXULJLRERERERERES8hubsklqn4BRk5bmn7bhQCPZ1T9siIiIiIiIicuWU7JJaJysPxqx2T9szekJihHvaFhEREREREZErp2GMIiIiIiIiIiLiNZTsEhERERERERERr6Fkl4iIiIiIiIiIeA0lu0RERERERERExGtognrxChnPmynckYrBxxeDyYeAZm1pOmISoQnXuzs0EREREREREXEh9ewSr9F0xCSS5hXQadYR6rTpzq7Jt1BReNLdYYmIiIiIiIiICynZJV7H6OtP/RtGYykpoORQlrvDEREREREREREX8phkV1lZGRMmTCAyMpLAwED69etHWloaBoOBBQsWuDs8qUUspcUcXzoDY1AoAU1buTscEREREREREXEhj5izy2q1MnToUNLS0njxxReJi4tjzpw5DB48GICkpCSXx9T8+t+R9MwdhLZsSnlBMT+/t5Ct075yeRxyxsE5Ezj82UQMPv4ERLYjbvzXmIJC3R2WeKm9BfD53jPLf9sCt0VDbIi7IvJOR4rhy+wzyy9uhCFR0KEeGAzui0tEaq9TFvj+ECz8BY6VQJgf3BQJNzaFAI+48xUREbkyx0tgwS9nlp9fD0OiISn86rmH9oi3/OnTp7No0SLS09Np3749AGazmZiYGMLDw2nRooVL42naJ4Hur/+ZVY+9w+HUrfgE+lOnWX2XxiCVNR3+Co0HP+XuMOQq8NkeW3LrbPP3wKd74In2MLyle+LyNj8chmfXQbnlTNmiffD1Prgz1naur5Y3axG5OLml8HAqZOTZhi9YsP27/gR8sBPe6wGNg9wcpIiIiBOlHYMn0qCk4kzZ0oOw+ADcHAnjE8F0FdxDe8QwxilTpjBixAh7ogvAZDIRExNj79VVUlLCgw8+SKtWrejYsSP333+/0+JJevoONr/1OYdWbcFaYeFUQTG5Gfuc1p6I1B4/HoUpW8CK7ee00/mYf2yFFYfdEJiX2ZUHz/xkS3RVdZ7n7oZ5e9wRmYjUZs+sg8w82++nXy9O/3uwCB77ESzWqrYUERHxfIeK4PG1UFrhWH76vW/hPnh/p+vjcodan+zKzMxkz549DBkypNK6ffv22ZNdTz/9NAEBAezcuZMtW7bwyiuvOCUen0B/6ie2JLBBGINX/j+GbZ5Bvw+fITiyoVPaE5Ha5aOs6l84jb/VkSszb4/tTbm6z6SzsqBCH1pF5Dfbc209uCznWW8BdhdA6lEXBiUiIuJC8/dCmaX6e+g5uysnw7xRrR/GeODAAQAaNnRMJu3YsYPs7GySkpIoKCjgo48+Yv/+/Rh+G9PSqFGji24jJCSEsrKySuUtferxdGgvhzK/sDoYjEai/tCNpXdOpPjESbq+PIq+M8ex8PfjLvXwrip9+5rZVf7rBesFtelOy4kpzg6nSn37minKSHVL21L7GQOCaT/7RLV1LEB6DgTVb0pFfvV15fzi3z+ET0h4tXWOlUBE+x4U71rvoqi8X4dPSwDw9w9wcyTeTefZORrd8SINBj+NwWg6bx1rRTl3T5rFgX895MLIREREXKP1O9vxbxRbbZ38U9D02pso2Pydi6K6fBbL+b7CurBa37MrIiICgKysM10lrFYrzzzzDBaLhaSkJHbt2kVERAQvvfQSXbp0wWw2s2rVKqfEc6rAdoO6bcYiCvYfo6K4jA2vziGiY4zm7XKjNpNSNF+XOJ0xoM7F1/W/+LpSmdH/4ibVMQYEOzkSEfEUxoBgsF74plivGyIi4q1MF/kedymfazxVre/ZFR8fT1xcHM899xy+vr4EBwczbdo0Nm7cSFBQEG3atCE9PZ3du3eTlJTE66+/ztq1a7n55pvJysoiNPTCT+PLz8+vsvxI2g6+GTTeoexUfhEF+46CVWNnLtXy5Sk06tr2gvXST8CY1S4IqArLl6eQGOGetqX2K7fA9d9CYXn19QJMcPyXTALO37lALmDo97YnXl7olXbrqiU00WTTNabLbw8VLi0tdW8gXk7n2Tnm7YHXt1Rfx2jy4YlRw3job8NcE5SIiIgLjV4JW349/5D+09Z8/Rmt6rokpCuyevVqevXqdeGKVaj1Pbt8fHyYP38+TZo0YeTIkYwdO5YBAwbQp08fOnXqhNFopEWLFvj4+HDnnXcC0K1bN+rXr8/Onc6ZeS3joyXEj/kDQU0jMPn7kvT0HRzftIvCA8ed0p6I1A4+RhjYAqp7eIkR+GMkSnRdoSHR1Se6jMC1DVCiS0TsBjQDv4u4sx3k2od4i4iIuMyt0dUnuoxAuzA8ItF1pWp9sgsgISGB1NRUioqKyMjI4MEHH2Tjxo32yenr169P3759Wbp0KQA7d+7k6NGjxMXFOSWeLVMXcOD7jQxc8jeGbphOUKNwlo9+3SltiUjtMjIO6gdU/eJpBML8YVQrV0flfQa1gNahVScWjYCfCR5t5+qoRKQ2C/WDh+Orr3N3HDTz/pEbIiJylfp9M0gMr/oe2gAYDfBEe1dH5R4ekew6V3FxMRkZGfZkF8B7773H5MmT6dixI3fccQezZ88mLCzMOQFYrayf9B8+6TCaT9qP4vtRU9SrS+QqUT8A3u8Fv6tiuGtCuG1do0DXx+VtAn3gvR7Qt0nlN+vYEPhXD2hzFXwjJSKX5q6W8GxHCPV1LA8ywUNt4dELJMNEREQ8ma8R3r4WBjS3JbbO1iIY3u3BVTNtT62fs6sqmzdvpqKiwiHZFRsbS0pKivuCEpco2LaK/R88BQYj9XoModEtT9rXZTzfl9MDn1r8+V0CW7Tj0LxXyEtfil+jGKIfnYnB5JGXvNQyTYLgvZ6wJx825djKOtaDlheeIlAuQagf/O0aOFwMPx2DUxZoXRfah4GhurGkInJVuy3GNuR8zVF46idb2ZIbIUC3ACIichUI8oGXfwePtYMfj0KpBVqG2L6Yv5ruoT3ybb9bt25YNUH8VcmvUSytJ6/A6OtHxvN9aTDgQftT2wxGE61fWWaveyrnEEW7N9Lm1RUc/d875KYtpF73we4KXbxQTIjtR5yrcSDcrDl2ROQS+JnA3OTMshJdIiJytakfAH+8iu+hPXIYo1y9/CKaYvT1A2zJLQxnX8JWMp43s/efY7CUlVB6LJuAFrYByYFRHSnMSHVDxCIiIiIiIiLiSkp2iUfKS1+Kf5OWGP0C7GWxz8ynzaQUAiPjOb50Jv6NYinM+BGrxULB1hVUFJ10Y8QiIiIiIiIi4gpKdonHKTu+n8PzX6X5qDccyn2C6wFQt+tASvZtxTesIWHXDmbnhH6cyj2CT92G7ghXRERERERERFxIyS7xKJZTpez9f/fS4oFpmAKDHdZVFOUDULgjFb+GMQA0vOkh2kxKwa9BFHU73+TyeEVERERERETEtTRdp3iUnB/mULJvG9nT/gxAsxGTKD28m4i+d7PzhWSMvn6Y6oQR8/h/ANj16q1UFOUR3L43wW27uzN0EREREREREXEBJbvEo9RPHkX95FEOZcHxPQGI//vaSvVb/vULl8QlIiIiIiIiIrWDhjGKiIiIiIiIiIjXULJLRERERERERES8hpJdIiIiIiIiIiLiNTRnl9Q6caEwo6f72hYRERHvl5KSwqhRo4iKiiIqKopZs2Y5rJ89ezZNmjQhOTmZ3r17s3HjRnbs2EHz5s0d6hUVFfHAAw+wf/9+zGYzL7zwAiNHjmTXrl34+/vz0Ucf0axZM0aNGsX777+PwWBw5WGKiIhclZTsklon2BcSI9wdhYiIiHi70aNHM378eB577DFSU1Pp3v3Mk5sXLlzIvHnzAPjss8949tlnq9zHm2++yUMPPcS1115rL3vppZeIjo7mu+++Y+rUqUyePJlu3bqxfPly+vXr59yDEhEREQ1jFBERkYuTkpJCTEwMZrOZkSNHVlo/adIkMjMzq93Ho48+Su/evZk8eXKldWlpafTs2ZMePXowfvz4SssAxcXF3HTTTfTp04dRo2xP592+fTtTpkypgSOsPZx5rr/99lvMZjNms5mIiAjS09OrrF/V+ffGcw3QoUMHDhw4YF/OyckhICDA3gurcePG5932p59+4sMPP6Rv376kpqYCEB0dDYDJZLLvo2/fvixatMhJRyAiIiJnU7JLRERELtro0aNJSUmhbt269g/2ABaLhc2bN9OqVavzbrtu3Tp8fHxYuXIlGzZs4MiRIw7rk5KSWL16NWvWrCE1NZU2bdo4LOfl5bFkyRJ69erFDz/8gK+vLz///DPx8fFs2LABq9XqtON2B2ed6/79+5OSksLy5cuJjY0lISGhyvrn/j3y8vK89lynpqYSFxdnX87KyiIqKuqitt22bRvDhw9n/vz5PPfcc/Zyi8XC5MmTGT16NABRUVHs3LmzZgMXERGRKinZJSIiIpfs3J4wmzZtonXr1tVus3btWvsQrj59+rB+/XqH9b6+vgBUVFTQtGlT6tSp47AcFBRETEwMhYWFABQUFFC3bl0AYmNj2bp1a80cXC3jjHMNth5JXbp0wWAwVFn/3L9HUFAQ4F3neubMmZjNZpo1a0ZiYuJl7SM8PJzevXsTERGBj8+ZGUImTJjAHXfcQWxsbA1FKyIiIhdLyS4RERG5ZOf2hMnMzLQP3Tqf3NxcQkNtTwIJCQkhNze3Up05c+YQHx9PWFgYPj4+lZbj4uJYuXIl8fHxGAwGIiMjAe/uNeOsc71gwQIGDRpUbf1zzz9417k+3Xtu4sSJDuVxcXFkZ2df1D66du3K1q1bKSkpoby8HIDPP/+cnJwc7rvvPnu97OzsanvjiYiISM1RsktEREQu2sX0hNm2bZt9TqjTP6+99hphYWHk5eUBkJ+fT1hYWKVthw8fzo4dOzh48CBbtmyptDxr1iyGDRvG9u3bqV+/PmvWrHHi0bqXs8/12ZOln6/+uef/ahEeHk5RUZF9ecSIESxZsoQ777yT7777DoAnn3wSgKeffpqxY8diNpt56qmnAHjiiSfYtGkTZrOZSZMmAbbzPWDAABcfiYiIyNVJT2MUERGRi3b66XXnatWqFV988QUA7dq1IyUlpVKdn376iblz53LzzTezYsUKbr/9dof1paWl+Pv7YzQaCQkJwc/PD8C+HBAQgMViITw8HLAlJE73QMrOzqZnz541eKTu58xzvXv3bpo3b24/x127dq1U/9y/R0BAAOA95/p0cvB8Bg4cyLJly0hOTuY///lPpfVvvPEGAM2bN2fZsmUO66rqFbZ27Vruv//+KwtaRERELop6domIiMgVS0hIICMjo9o611xzDaWlpfTu3ZuEhAQaNWrE4cOHef311wH46quvMJvNXHfddTRv3pzNmzc7LLdq1Yrhw4fzwQcfYDabSU9P54YbbgBsE4p36NDB6cdZG9TEuT57COP56p/79zg9BO9qOdf33HMPycnJNba/Dz74AKNRt94iIiKuYLB62+N0atCRtB18M6jyN6pyeQYsmEijrm3dHYaIiJxHl69s/64beHnbT5w4kWHDhrl8XqLt27ezYMECnn32WZe2e7mu9DyDzvXFqolzLSIiIu6xevVqevXqxapVqy65V7mGMYqIiEiNqGrInSvEx8cTHx/vlrbdRedaRERE5PzUl1pERERERERERLyGkl0iIiIiIiIiIuI1lOwSERERERERERGvoTm7pNYpOAVZee5pOy4Ugn3d07aIiIiIiIiIXDklu6TWycqDMavd0/aMnpAY4Z62RUREREREROTKaRijiIiIiIiIiIh4DSW7RERERERERETEayjZJSIiIiIiIiIiXkPJLhERERERERER8RqaoF68QsbzZgp3pGLw8cVg8iGgWVuajphEaML17g5NRERERERERFxIPbvEazQdMYmkeQV0mnWEOm26s2vyLVQUnnR3WCIiIiIiIiLiQkp2idcx+vpT/4bRWEoKKDmU5e5wRERERERERMSFlOwSr2MpLeb40hkYg0IJaNrK3eGIiIiIiIiIiAt5TLKrrKyMCRMmEBkZSWBgIP369SMtLQ2DwcCCBQtcFsddWbMdfu755RMGfveGy9qX8zs4ZwLpw8PY8qdoivZsIm7815iCQt0dlohIrVdSDv/NPrM8aRNs/dV98XircgssO3hmecIGSDsGVqv7YvJGFiukHoXn158pW37Idv5FRETk6uARE9RbrVaGDh1KWloaL774InFxccyZM4fBgwcDkJSU5LJYPo6722F54HdvsGfBape1L+fXdPgrNB78lLvDEBHxKFl58HAqnCg9U7YgG77MhoGR8HwimAxuC89rHC22nec9BWfKFh+Ab/bDtQ3g9Wsg0CPuymq3glPw+FrYmAPGs67bcT9Bq1B451qICHBffCIiIuIaHnFbNX36dBYtWkR6ejrt27cHwGw2ExMTQ3h4OC1atHBLXPUT4whr3Zysecvd0r6IiMiVyD8FD62B3DLH8tMdYL7aZ0sMPBzv8tC8SoUVHvkRsgscyy2/9ehaewxeTodXu7g8NK8zfgOk59h+t5zTY25XHjyeBrN6g0EJXBEREa/mEcmuKVOmMGLECHuiC8BkMhETE4Ovry979+7llltusa/Lzc0lLy+PnJwcp8bVang/Dny/keIjGushIiKe5+t9kFNWfZ25u+HeVlDHI+4YaqfVR2B3/vnXW7ENb3y4EJrXcVlYXicrD1YdOf96C7AtF9Ydh2sauCoqERERcYdaf+uamZnJnj17ePvttyut27dvH0OGDCE6Opr09HR7+dixYykvL7/oNkJCQigrq3y339KnHk+H9qpyG59Af2IG9WTlY+9cdDtXu759zewqv3BiMKhNd1pOTHF2OFXq29dMUUaqW9oWEXG12Ek/EBTXFYPx/FN4llRA9PV3kPfjly6MzLs0f/R9wnoOw2A6/22XxWql273Pc/wrzQN6uRrePoGGQ56r9nq2VpRz+0sfcPDfj7gwMhEREbkcFsvlT7hZ65NdBw4cAKBhw4YO5Tt27CA7O7vSfF1lZWV8/PHH/P/27jw+qvLu//9rsrAZFgOCCAECQYwgEBdAFjMitS51q1I3Km5ft6qlt+vPSm9qXUqtd729tVRurQuKvSu1Ra2VRYmooFEBWYQQkF0BBZEtBJKZ3x9TgjEsAZKZzOH1fDzmYeY6Z2Y+Mx7OnHmf67rOhAkTarWuDuecTFnJdlZO/mTfK6vWdXmgINElSFLSST3s8L0GAxXrNWoah2qCK7VR032Pm4uUk3qYF1U5GKmNmkK0nL1ffynqxWskSToE1Pmwq3nz5gAsWrSIXr16AbEJ6++66y4ikUiVsOvVV1+lTZs2HH/88dV+jU2bdj+2YE3hAv513r27Xdb58tNY/NcCouVe2qe6pkwpoFWvY/a53qx1cG2C5vyfMqWAns0T89qSFG+3fgAfrN01R9eejH/+SXof8WRcagqi382BcUv2/jmHUtN4dMTd/PjZu+NWV9C8uBj+MG/v66SkpvPzKy/mlt9dHJ+iJEnSAdu4cSNz5szhuOOO2+/H7vt0boLl5uaSk5PDPffcw8svv8y//vUvzjvvPGbMmEGjRo3o0qVLpfX//Oc/c/XVV9dqTU06HUXLE7uw8KW3avV1JEmqTee320cAA7RqACe2iFdFwXTePj5ngHopcHqbuJQTWGe2hbR9dKCLAuck5rpGkiRpPzVp0oR+/frRpMn+98qu82FXWloa48aNo3Xr1gwdOpRhw4Zx5plnkp+fT/fu3Un5zvCLVatW8c4773D55ZfXak2dLx3Img/ns2nJ6lp9HUmSatMpR0JeZizU+r4QsWDgF90g1SvXHZQuTeHstntf54ZjICM9PvUEVWZ9uProva9zYXvokBGfeiRJUuLU+WGMAD169GD69MqThj/++OPk5+dXanvuuec4++yzK4Y+1pZP7n+hVp9fkqR4SEuBR/vAb2bBW1/Ewq2dmqTDHcfBoKMSVV2wDO8ZC7P+thTKvvNBN0yF64+ByzsmqrJg+X9Hx3p3/bk4dnGFndJCcGlHuPnYxNUmSZLiJynCru8rKSmhqKiIYcOGVWp/9tlnd3vVRgVL2ab1FP/nD9i2qoi8/9tcadnS/76SbauKCKXXp/XFv6JJ94Esuv8cyrduJJSaRsc7/o+0Jo7HkaSdDkuD354IX2yFqatjAUHWYbFeX+l1vv938khLiYWH1xwNU76EjTugZQM4tTU0SsqjsbopFIr17vpJduxz/roUmtWLfc7N6iW6OkmSFC9JeXg1e/ZsysvLq0xOv3DhwgRVpHhKbdiYzr+exOe/+8lul3e882Xqtdg1XqTT3a8QSktn3ZQxrH9nLC3PuTVepUpS0jiqEVxi76Jal1kfLuyQ6CqCLyPdubkkSTqUJWXY1bt3b6LR6L5XVCCF0tJJa5y5p6V8/vDF1GvehnY3/om0xpmE0mKToER2bKNBVm78CpUkSZIkSXHnAAUFSttr/otjRr7P4f0vZvW4h4DYsMcFd/Zl7euP0aCtYZckSZIkSUFm2KVAScs4HIBmvc6lZMW8WFvjTI753TTaXH4/a179QyLLkyRJkiRJtcywS4FSvnUTAJuLplO/ZTbRSIRoeRkAqY2akpLeIJHlSZIkSZKkWpaUc3ZJC4cPYuuSmSwcPoijLh3B5gXTOfLHd7D00SvYsfErUtLr0+HWZ4ls28Ki+38EoZRY28+fTXTpkiRJkiSpFhl2KSkd/ZvJle5nHNsfgE73/L3Kul0efCcuNUmSJEmSpMRzGKMkSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAIRaPRaKKLqKu2b9rKN/OXJ7qMwDg8tx31Gjfa53qbd8CijXEoaDdymkBGemJeW5IkSZIkHTzDLkmSJEmSJAWGwxglSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBhpiS5AkiRJkiQdurZv2so385cnuozAODy3HfUaN0p0GQll2CVJkiRJkhLmm/nL+dd59ya6jMA4c/z9tOp1TKLLSCiHMUqSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgJE3YtX37doYPH05WVhYNGzZk4MCBFBYWEgqFGD9+fKLLU0B9ux3GLobfzIKRs+G9NVAeTXRVkqRoFD5dD4/MhftmwVNFsLok0VVJkqSaFEpNoddvruLSz57hsgXP0feRG0mtn57ospQE0hJdQHVEo1EGDx5MYWEhI0aMICcnh7Fjx3LBBRcAkJeXl+AKFUSvLIWH58KOCKSGIAq8vBSyDoM/9IYOGQkuUJIOURtK4faPYNb62Fm7UAgiUXiyCH6aAzfnQkoo0VVKkqSD1f3WH3Nk326MH3gb5TvKOO3Zuzjh3p9SOPzPiS5NdVxS9OwaPXo0b7zxBpMnT+b666/ntNNOY/To0aSmppKZmUm7du0SXaICZtIqeHB2LOiCWG+uyL97dK3aCje8H/uxJUmKr7II3PwBzF4fux8hto+OErs9vwieWpjAAiVJUo3pfPlpzHnsFbauXk/puo3MeuSv5FwcJpSSFFGGEigptpCRI0cyZMgQunbtWtGWmppKdnZ2Ra+uhQsXcvLJJ3P00Udz8sknU1xcnKhyleSiUfjjAthTp4BIFL4uhb8vj2tZkiRiw8kXfBsLufbkuWLYvCNuJUmSpFpQr0kjMtocwfp5Syra1s1ZQr3GjcjIOiKBlSkZ1PlhjMXFxSxZsoTHHnusyrIVK1Zw4YUXAnDDDTfws5/9jCFDhvDCCy9w/fXX8/bbb+/z+Tdu3MiRRx5JWVkZoZBjHgQNO51Azm+n7XWdaDTCf721mBu6dYtTVZIkgHa3/YUmJ51DKHXPhzClEeh09jVseOeFOFYmSZIOVKe0w7mzSf9KbWkZDQHY/u3Wirbt324BIP3fy7R7p54aZnHZN4kuo0bUq1ePTZs27ffj6nzPrlWrVgHQsmXLSu0LFixg2bJl5OXlsXbtWmbMmMGll14KwKWXXsqMGTP46quv9vn8c+bMoaSkhGjUWccVk9a05T7XCYVSqrWeJKlmpTVrtdegq2I999GSJCW1ss2xK8+kN2lU0Vav6WEA7NjsVWm0d3W+Z1fz5s0BWLRoEb169QJiE9bfddddRCIR8vLyWLFiBW3atCE1NRWIDXE86qijWLFiBUccUb3ujQUFBfTr16923oSSyrxvYOi7+14vu2VTZpY6cZckxdMdH8E7X+59GCPAk//1ED96+aG41CRJkg7OmsIF/Ou8eyu1bd+4lc2rviKzawc2Lv4CgObdstm+aSubV+y7Y8uhbMqUAlr1OibRZSRUnQ+7cnNzycnJ4Z577iE9PZ2MjAxGjRrFzJkzadSoEV26dGHmzJmJLlMBcmwzaHcYrNgSm+x4T871ugiSFHdnt4UpX+59nQapED4yPvVIkqTaU/ziW3S/5QLWfDifSFk5PW/7CYv+r4BoZF+nvXSoq/NhV1paGuPGjeOGG25g6NChZGVlMWzYMJo0acLixYtJSUkhKyuLVatWUV5eTmpqKuXl5XzxxRdkZWUlunwloVAIbsqFuz/e/fIUoHkDOL99XMuSJAH9W8VOSizYsOfeXVfmQEZ6HIuSJEm1YvZjr1A/swnnF/yBUEqIpa9/wCcPOCen9q3Oh10APXr0YPr06ZXaHn/8cfLz84HYfF49e/bkpZdeYsiQIbz00kvk5eVVewij9H2DjoJ7e8Dv5sD27/2aansYPNobmtVLTG2SdChLS4HH+sAdhTBz/a720L9vV+TANUcnqjpJklSTouURCof/mcLhf050KUoySRF2fV9JSQlFRUUMGzasou1Pf/oTQ4cO5b777uPwww/n+eefT1yBCoTz28PA1vDGSvj93FjbY32gzxGQ4oU7JSlhmtWD0f1g3ga48t9zLN54DPwoC1p6cSZJkqRDXlKGXbNnz6a8vJy8vLyKtmOOOYYPP/wwgVUpiJrUg0s67gq7+npxL0mqE0Ih6Hb4rvtX25tLkiRJ/5aUYVfv3r2JRvc2dbgkSZIkSZIORSmJLkCSJEmSJEmqKYZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMJIm7Nq+fTvDhw8nKyuLhg0bMnDgQAoLCwmFQowfPz7R5UlSnReJwgdr4fHP4L/nwaRVsCOS6KokSQDflMJLn8Oj8+CphbBsc6IrkqTE63DOyZw5/jdcvmgMFxX+MdHlKImkJbqA6ohGowwePJjCwkJGjBhBTk4OY8eO5YILLgAgLy8vwRVKUt22eCPc8REs37LrLEcEOLwe3H8C9D4ikdVJ0qErGoXRRfBMMZRFITUUOznxpwVwWmsYkQcNk+KIXZJqXum3W1jw5zdpcERTul73o0SXoySSFF+do0eP5o033mDWrFl07doVgHA4THZ2NpmZmbRr1y7BFUpS3bW6BK57HzbtiN3/bmeub7fDzz+Ap/pDt8MTUp4kHdKeXgj/u3DX/fLorr/f/hK2lsFjfSAUin9tkpRoX06dDUC7M05KcCVKNkkxjHHkyJEMGTKkIugCSE1NJTs7u6JX1+233052djahUIi5c+cmqlRJqnNeWgwbd1QOuXaKEOtB8OSCeFclSdq0A/5cvOflUWD6VzBzfdxKkiQpEOp82FVcXMySJUu48MILqyxbsWJFRdh1/vnnM3XqVNq3bx/vEiWpzopGYfzy2A+mPYkAH3wFX2+LV1WSJIDJX8D2fcydmBKC15bHpx5JkoKizg9jXLVqFQAtW7as1L5gwQKWLVtWEXb179//oF4nHA6TklLnsz8lSLe/xlKA+vUbJLgSaf+E0urR7aVN+1wvCnTq0YttSz+t/aKkGuT+Wcms5UW/pOXgewnt5Ri0PBJl7GuTebCPc9VICq5OaYdzZ5OD+02vXU49Nczism8SXUaNqFevHps27fv3zPfV+XSnefPmACxatKiiLRqNctdddxGJRJycXpL2Ilq2nUjp1mqtW77ZcTKSFE/lm9fvNegCIFJO+eZ18SlIkqSAqPM9u3Jzc8nJyeGee+4hPT2djIwMRo0axcyZM2nUqBFdunSpkdcpKCigX79+NfJcCp4TX439t7S0NLGFSAfggU9h/LLdz9kFsbMe3Q6Hj1ct2sMaUt3l/lnJ7OttcNak2NyJexJKTePZ2y6h/+8uiV9hkhRnawoX8K/z7q3SHkpJISU9lVBaGoRCpNZPJxqNEtleloAqk8eUKQW06nVMostIqDofdqWlpTFu3DhuuOEGhg4dSlZWFsOGDaNJkyYsXrzYoYeStA+Xd4Q3VsCOyO4Dryjw/2rmvIEkaT+0aAAXdYC/Ltn98hSgc1M4ueXul0tS0HW66BT6//fNFfd/uvQlNq9Yy7heNyWwKiWDOh92AfTo0YPp06dXanv88cfJz89PUEWSlDw6NI5dtv62Qtj8vZNgaSG4t6c/pCQpUf6jK2zZAf9cGQu3vntS4phm8GhvSA0lqDhJSrBFfy1g0V8LEl2GklBSdosqKSmhqKio0nxdt956K23btmXlypUMGjSIrl27JrBCSapbTmgB/zod7u2xq+3WY+HN0+FHWYmrS5IOdWkp8Ovj4S9huKTjrvYnToZnB0Bm/YSVJklS0krKsGv27NmUl5dXCrsee+wxVq5cSVlZGatXr2bevHkJrFCS6p6GaXB++133r8iBZv6IkqQ6IacJ/Ee3Xfd7HwEp9uiSJOmAJMUwxu/r3bs30eheZvKUJEmSJEnSISkpe3ZJkiRJkiRJu2PYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAiNpwq7t27czfPhwsrKyaNiwIQMHDqSwsJBQKMT48eMTXZ6kgxCNwkdfwbPF8FwxzP0m1iYlq6Wb4YXF8OeFUPAllEUSXZEkSfFTHoX318AzxTBmERR9m+iKlIxS6qXR9/c3cOEHT3B58RgueO8xjrn6zESXpSSRlugCqiMajTJ48GAKCwsZMWIEOTk5jB07lgsuuACAvLy8BFco6UDN3wC//ASWb6nc3qUpPHQCtMtISFnSAdmwHX41A6atrdyeWQ9+2RPyj0xIWZIkxc2MdbHvwtUlldt7ZsIDJ0CrhompS8knJTWVkrUbmHjJb9i0bA2Zx7bnBy/dy7avNrD0temJLk91XFL07Bo9ejRvvPEGkydP5vrrr+e0005j9OjRpKamkpmZSbt27RJdoqQD8PkmuO59WLml6rLijXDte7C2pOoyqS7aVg43TYMP1lZd9s12uL2waggmSVKQzP0GfjZ998dvs9fHju2+3R7/upScykpKmfm7v7Bp6WqIRlk/bykrJn5My165iS5NSSApwq6RI0cyZMgQunbtWtGWmppKdnY2eXl5rFu3jrPOOosuXbpw3HHH8eMf/5ivvvoqgRVLqo7/LYLSctjdCK9INBYQvLg47mVJB+TNlbBw4+63552jch+d5xBdSVJw/XE+lEf2cGwHfFkC45bGuSgFRigtlVa9c/lm/rJEl6IkUOfDruLiYpYsWcKFF15YZdmKFSvIy8sjFApx5513UlRUxJw5c+jUqRN33313AqqVVF0bt8NbX+7+YGinKPCP5bHgS6rr/r4MQntZHiXWm3G+85ZIkgJo9VYo/Hrvx3YQ+76UDkSfB69hx+YSFr/8TqJLURKo83N2rVq1CoCWLVtWal+wYAHLli0jLy+PzMxMwuFwxbI+ffowatSo/XqdcDhMSkqdz/6UIN3+ug2A+vUbJLiS4Kjf5hiOfvTTfa63pQwOyzyCyNaNcajq0OD2XDty/3cFac1a7nO9/HMvZuOH/6j9gg4Rbs8KGrdpJatGXU6m0/0F+1zvyy3l1K/fqPYLUlLplHY4dzbpv8flJ40YyhEndGHC4BFEdpTFsbLkdOqpYRaXfZPoMmpEvXr12LRp034/rs6nO82bNwdg0aJFFW3RaJS77rqLSCRSZXL6SCTCqFGjOPfcc+Nap6T9U761et1bouVlREq31nI10sEr37qBaDXGKJZvsWuXJCl4qntsFynZ/x+tOrT1uu9KjjqlOxN+8mtK17v9qHrqfM+u3NxccnJyuOeee0hPTycjI4NRo0Yxc+ZMGjVqRJcuXSqtf8stt5CRkcHNN9+8X69TUFBAv379arJ0BciJr8b+W1pamthCAubqd2MTme6pu3sKcFpWGp9s3c0M9jpgbs+1Y3RR7LY3h9eDNR+9SXqdP9WUPNyeFTRu00pW0ShcNAWWb941V+X3pQAXdW3G3W7f+p41hQv413n3Vmnv9Zurad2/G29eNILSdY70qK4pUwpo1euYRJeRUHU+7EpLS2PcuHHccMMNDB06lKysLIYNG0aTJk1YvHhxpaGHt99+O8XFxbz22msOSZSSwNVHw7APd78sBIRCMKRTXEuSDtiP28NLn8OWHXsOcId2xqBLkhRIoRBcezQMn7GH5UBaClySHdeylMQOa9uCY689i/Jt27nowycq2td8uIDJlz+QwMqUDOp82AXQo0cPpk+fXqnt8ccfJz8/v+L+PffcwyeffMI///lP6tevH+8SJR2A/q3g/+sOI2fHzgB+9yxgWgo8cDx0PTxR1Un7p0UDeLwP3PoBfLtjV3sKsfBrSCe4vGOiqpMkqfad2RbWlMDj82Ph1neP7RqkwsMnQYfGiapOyWbLyq95tvVFiS5DSSopzy+XlJRQVFRUMV/XvHnzeOihh/jiiy/o27cvPXv25IILLkhwlZKq48IO8OqgWC+vnW7OhX/+AAYelbCypAPS9XB49QexEHenwdnwlzAM6xo76y1JUpBd2Rn+PrBy7/z/6Bo7tuuz7+u4SFKNSIqeXd83e/ZsysvLK8Kurl27VmtSYEl105GN4MZj4OmFsftXdk5sPdLBOCwtFuI+NDt2/47jElqOJElxl5UBP+8KYxbH7l/mtBSS4iwpw67evXsbbkmSJEmSJKmKpBzGKEmSJEmSJO2OYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQqMpAm7tm/fzvDhw8nKyqJhw4YMHDiQwsJCQqEQ48ePT3R5cVcehWlr4eUl8M8VsGF7oiuSJElBtK0MJn8RO+Z4+wsoLU90RdKBi0Sh8KvY9vz6cli3LdEVSQdn8UZ4ZWnstmhjoqupeX0eupbBH/+JyxY+z+AZT9LrvitJSU9LdFlKAkmxlUSjUQYPHkxhYSEjRowgJyeHsWPHcsEFFwCQl5eX4Arj6+0v4OG58NV3vpzTQvDjDvCLrpCeNBGmJEmqq6JReG4RPFMMW8p2tWekwXVd4NKOEAolrj5pf01bCw99Cl+W7GpLDcHZbeHO46BBUvwykmJWbYERM2Hm+srtPTNhRB60PSwxddW0+c+8ycf3jaGspJT6mY0Jj76N7rf+mFmP/DXRpamOS4pd+ujRo3njjTeYNWsWXbt2BSAcDpOdnU1mZibt2rVLcIXx89YXcPfHVdvLovDXJbC2BB4+yYNPSZJ0cEYtgD8XV23fXAb/NQ+2lcPVR8e/LulAfLAWhn0YC3G/qzwKr62IBWD/0wfSPGmsJPDVNrjmPVhfWnXZ7PVw1bswJh+ObBj/2mratwtX7roTChGNRGncsXXiClLSSIrd+ciRIxkyZEhF0AWQmppKdnZ2Ra+u888/nx49epCXl8eAAQOYNWtWgqqtPWUR+P2c2N/RPaxTsBo+/jpuJUmSpABaXRLr0bU3o4t2/0NLqmui0dioiGh098fQUeCjr2Hq6nhXJh2Y54pj+9/IbpZFgG+3w7P72Icnk+NuPp/LF43h0rl/JrNrez4b/XqiS1ISqPNhV3FxMUuWLOHCCy+ssmzFihUVYddzzz3Hp59+ysyZM7n99tu5+uqr411qrfvgK/iqdM9BF0BKCP6+LG4lSZKkAHpt+b7XKYvCGytqvxbpYM3+BpZt3scxNPCKx9BKAjsi8Ory3QddO0WA11fEeuAGwZzH/8GLOT/l76f8nKLnJ1Ky9ptEl6QkUOeHMa5atQqAli1bVmpfsGABy5Ytqwi7mjZtWrHs22+/JSVl/3K8cDi834+Jt+Zn3MRR1/xhr+tEovCPd2fwSL+T41TVoaHbX2MTpNWv3yDBlQSbn3N8+DnHh59zfPg51462P3uKZgMuIZSavsd1omU7GP6HP3PNU7fGsbLgc5uuec1OuYysW57Z6zoRYOrcJdQPHxOfog4Rbs81L63ZkeT+776T2W3l0KJdDju+To6zEp3SDufOJv33us63xatYP28ZA/7nViZcNCI+hSWpU08Ns7gsGKFgvXr12LRp034/rs6HXc2bNwdg0aJF9OrVC4hNWH/XXXcRiUQqTU5/7bXXMnHiRKLRKG+++WZC6q1N5dv2/T84GiknUrL/G4IkSdJOkW2bgX1MAJqS8u/1pLotUrLv7TQajVDuMbSSQKR0S/XX3Vb9dZNFSnoqTZyzS9VQ58Ou3NxccnJyuOeee0hPTycjI4NRo0Yxc+ZMGjVqRJcuXSrWfeqppwAYM2YMd9xxB2+88Ua1X6egoIB+/frVeP01aX0pnDUxNmxgT0Ipqdx3aT4/ucdJNGrSia/G/lta6udam/yc48PPOT78nOPDz7l2fPQV3Dh97+uEUlL55+9vo9vTt8WnqEOE23TN21IGP5yw9yFdoVAK/3FGd6651c+9Jrk9146bpsXmad7TUMaUEPQ4HD5e92Vc6zoYawoX8K/z7q3Ult64Ee3P7MXyNwvZvnErh+e2p8ewC/mi4NMEVZk8pkwpoFWvQ7unat0etwekpaUxbtw4WrduzdChQxk2bBhnnnkm+fn5dO/efbdDD3/6058yZcoU1q1bl4CKa09mfTh3LxeeTAnB4fXgrLbxq0mSJAXPiS2gS9M9HyimELu8fddmcSxKOkCHpcHF2XtenvLvdc4/dC7wriR3Rc4+5uyKwtDOcSun9kSjdLzwFC784AkuXzSGgc/cycq3ZvLhL59OdGVKAnW+ZxdAjx49mD698unFxx9/nPz8fAA2b97MN998Q1ZWFgCvvfYamZmZZGZmxr3W2nZbN1i7Dd5bEwu3It/p5dUkHR4/GTL2PL2GJEnSPoVC8GhvuHEaLP3OCLAUYj+wOjWB350UW09KBjceA1+WwMRVVY+hG6bBY32gudNKKUn0aQl3d4eRs2P3d27OO3fJt3WD/q0SUVnN2rG5hIkX35foMpSkkiLs+r6SkhKKiooYNmwYAFu2bGHw4MFs2bKF1NRUMjMzee211wgF8Aisfir8Vy8o/Cp2xZi3/90z9fZucHYWNDbokiRJNeCIBvBiPrz1BfxqZqyt9xHwo3YwsDWk1/nxAdIuaSnwwPHw4/axK5dPiF0Di58fC+e0g2b1EluftL8u6gAntYC/LYWxn8faLukIF7aHDo0TWZlUNyRl2DV79mzKy8srJqdv1aoVH3zwQYKrip+UUCzN79Ny1zj4SzomtiZJkhQ89VPhrKxdYdf/eLFnJbFQKDZE98QWu8Kun+YktibpYLTPgP/otivsuq1bYuuR6pKkDLt69+5NNLqXWdolSZIkSZJ0SLIDuiRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiQdUvo/+jN6P3BNosvYrcsXjSGzW3aiy0hqaYkuQJIkSZIk6UAd2bcrPW/7Cc27dwRg3ezPmfX7v7J6+rwEVxbT87af0LxHJ9664qFqrf9izk9ruaLgs2eXpKRRUFBAdnY24XCYoUOHVln+wAMPUFxcvM/nefTRRxk0aNBul91yyy0MGDCABx98EIAnn3yS0047jXA4zI4dO5g/fz4jR448uDciSQFzsPvn9957jz59+tC3b18eeeSRKssLCwvp168fffv25d577wXcP0uSYtoOOoEfjL2XFZM/4a/HX89fj7+eFZM/4Qcv3Uvb047f7WNCqTUXhYTSUmvsuVRzDLskJZVrrrmGgoICmjZtyvTp0yvaI5EIs2fPpnPnznt9/I4dO5g1a9Zul3388cekpaXx7rvvMmPGDJYtW8acOXN46623KCgoID09ndzcXGbMmEE0Gq3JtyVJSe9g9s8dO3Zk6tSpTJs2jddff52tW7dWWp6Xl8f777/PtGnTmD59OsuXL3f/LEkCoPf9V7Po5QLmjXqVHZu2smPTVuaNepXF496h1/1XA3BR4R/pPuxCznr1AYZ8/iItenQCIP2wBoRH38blxWM4/50/cFS4xz5f78iTu3L5ojEcPWQQF300inMn/x6A1qd050cTRnJZ0XOc+9YjtDvjJADanXESx916AW1O7cnli8Zw+aIxpNTb+yC7K78cR/MenQilpnDZwudp1iUr9tp9u3Lll+No/6OTAWjYshlXLP8L6RkND+zDCzDDLklJqVu3bqxatari/qeffsrRRx+9z8eNGTOGSy+9dLfLPvzwQwYOHAhAfn4+48ePZ8uWLQwcOJARI0ZUrNexY0fmzasbXaIlqa45kP3zUUcdRb169QBITU0lJaXyIWp6ejoA5eXlHHXUUUycONH9sySJJp2OonH7Viz5x/tVln3+9/do0uFImnRsDUDO4DDv3/ZHXsz5KevmLgEg+/z+fP73dxl7zFBm/8/fGfjnO2l0ZOY+XzetYX1a9MzhH6cM4/Uz76JxhyMZ9NzdzH38H7x07FV88sAL5I/6BZldO7D8zY+Y89jfWTVlFi/m/JQXc35KZHtZtd5ftDzCmg/n07r/cQC0HnAcG5d8Sev+3WL3+x/Hutmfs2NzSbWe71Bi2CUpKU2fPp2cnJyK+8XFxXTo0GGvj4lEIkyYMIEf/vCHu12+YcMGmjRpAkDjxo3ZvHkzoVCIt99+myVLllT0CGvfvj0LFy6skfchSUFzIPvnnSZNmkSnTp1o0KBBlWVjx44lNzeXZs2asXbtWvfPkiQaZDYGoGTN+irLStZ+E1uneez4vmjMJL4tXkU0EqkIm1Z/8BnL/1VItDzC5+Om8s1ny+hwzsn7fN1QSgqfPPgiZSWllJdsJ/u8vqz5cD5LX5tOtDzCqrdnsnzix3QanH/Q73H1e3MrhVuzfv/XivDryH7d+PL9uQf9GkFk2CUpqTz99NOEw2HatGlDz549d7vOZ599RjgcrnT77W9/yyuvvMK55567x+du1qwZGzduBGDTpk00bdqU/PzYF9Qpp5xCUVFRjb8fSQqKg9k/A6xcuZKHHnpot3N2AVx22WUsWLCAL774gsMOO8z9sySJbes3AdCwVdXeWA1bHh5bZ13s+H7Lqq+qrLNlZeW2zSu+qlbPrrKSUkr//doAjVo3Z/P3n2vZGhq1br7P59qXL9+bQ6s+x1KvSSOadDyKJf94n9R6aTRqnUnr/t348t05B/0aQWTYJSmp7JwT5v7776/U3rlzZ5YuXQrAscceS0FBQaXb3XffTVFREc8++yxnnHEGs2bN4qmnnqr0HL169WLKlCkATJ06lRNPPJE5c2JfHnPmzKnombBs2bJ9zg0mSYeag9k/l5aWcuWVVzJq1CgyMjKqPHdpaSkAKSkpNG7cmD59+rh/liSxcfEXbFq+huxz+1ZZln1eXzYtX8PGz78EIBqpOqfjYW2PqHQ/I+sItq6u2kvs+6KRSKX7W79cR0aV52rJ1i/X7Xb9/bF+3lKikQjH/r8fsfajBUQjEb58by5HXzaIRi0PZ+1HCw74uYPMsEtSIPTo0WOfZ/Z/+ctfMmnSJN5880169uzJtddey+rVq3n44YcBOOmkkygtLWXAgAH06NGD3r17U1ZWRjgcZuvWrfTu3RuARYsW0a1bt1p/T5IUBNXZP48dO5bPPvuM66+/nnA4zKpVqyrtn1999VXC4TCnnHIKbdu2df8sSapQ+Ktnybn4VLpefw7pGQ1Jb9yIY6//ETk/OZXC4c/s9bFH9jmWrNNPJJSaQscfD+DwY9uz9J8f7HcNS8ZPo1XvXNqf3ZtQSgptTu1J1g9PZPG4qQCUfP0th7VpccBXgVw9bR7HXnc2X74XO9Hz5ftzOPa6s1n7yULKS3cc0HMG3d4vASBJdcjOIS+7k5KSQvfu3SkuLq7WWf3JkycDcOSRR3LHHXdUtD/xxBOV1nv00Ucr3Z8/fz4nnHACoVBo/4qXpAA72P3zVVddxVVXXVWlfef+efDgwQwePLjSMvfPkiSAFRM+YvKQB+nxHxfR846fALBu9udMHvJgRTi0J0v+8R6dBudzyhM/Z8uX65hy7e/Z+sW6/a5h09LVvH317zj+/7ucfn/4GVtWfsXUmx9j/b8nwl/62nQ6nt+fS+b+mVAoxF+6X1PtSeoBvnx3Dh1+dDJfvhebn+vL9+ZSr8lhzte1F4ZdkgLj3nvvrfXXyM3NJTc3t9ZfR5KCxP2zJKk2ffnenL0GW+N63VSl7b1hT+xmzX1bPX0eL+b8tEr7qimzWDVl1m4fs33DZt688D+r9fyhf1+R+LthWNHzEyl6fmLF/ZI13/Bs64v2o+pDj8MYJUmSJEmS6oDDu7YnsqNstxPqq/rs2SVJkiRJkvRv5xX8gYy2Laq0r5j4CVNvevSgn3/Qi7+kVe9jqrTv2LyNlPRUPnlwLNs3bj3o1zmUGXZJkiRJkiT92/jwL2r1+Sdf/kCtPr8cxihJkiRJkqQAMeySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwEiKsGv79u0MHz6crKwsGjZsyMCBAyksLCQUCjF+/PhElyepBqzcsuvvr7Ylrg5JUmVlkV1/f/w1lEcTV4sk6dCU2qAeP572P1y+aEyiS1GSqPNhVzQaZfDgwTz11FPce++9vP7662RnZ3PBBRcAkJeXl+AKJR2ML7fCLdPhgrd2tZ09Ee7+GDaUJq4uSRK8shTOnrTr/g3T4EeT4PXlCStJknQIyrvjYjav/DrRZSiJpCW6gH0ZPXo0b7zxBrNmzaJr164AhMNhsrOzyczMpF27dgmuUNKBWlsCV70L60vhux0FIsDbX8CijfDMAGicnqgKJenQ9Vwx/M/8qu1fbYMRs2BLOVycHfeyJEmHmObdO9Lm1J589OvnOfXp2xNdjpJEne/ZNXLkSIYMGVIRdAGkpqaSnZ1dpVfXr3/9a0KhEHPnzo13mZIOwP8ujAVdkd0siwBLN8NLn8e7KknS19vgiQV7X+fRebBxe3zqkSQdmkKpKfT9/Q18cM9TRLaXJbocJZE6HXYVFxezZMkSLrzwwirLVqxYUSnsmjFjBh988AHt27ePZ4mSDtDWMvjnit0HXd81bilEnR9GkuLqtRUQ2ce+d0cE3lgZn3okSYembjedx7o5S1jzwW66Gkt7UaeHMa5atQqAli1bVmpfsGABy5Ytqwi7SktL+dnPfsZLL71EOBw+oNcKh8OkpNTp7G+3uv01NpN3/foNElxJsPk517z6R3Xh6P+evc/11pdCo8NbECnZFIeqDg1uz/Hh5xwffs61o+3P/pdm/S8llLbnceTRsh38f4/8maFP3RrHyoLPbTo+/Jzjw885PoLwOXdKO5w7m/Sv1Na4w5F0ueJ0Xv3BHQmqKnmdemqYxWXfJLqMGlGvXj02bdr/34J1Ouxq3rw5AIsWLaJXr15AbML6u+66i0gkUhF2/epXv2LIkCF06NAhUaVK2k+R7SXVWi8ajRDd4eUZJSmeItu3QSi095VCISKlW+NTkCTpkNOq1zE0bNGUH7//GAApaamkH9aQS+b9mSnXPGxvL+1VnQ67cnNzycnJ4Z577iE9PZ2MjAxGjRrFzJkzadSoEV26dGH69Ol8/PHH/Pa3vz2o1yooKKBfv341VHn8nPhq7L+lpV62rjb5Ode8aBQuLoAlmypPTv9dKUDvlil8smVzHCsLPrfn+PBzjg8/59rx/hr4+Yd7XyeUmsbfR/6C45/6RXyKOkS4TceHn3N8+DnHRxA+5zWFC/jXefdWalvy2jS+eHfXSJAjTuhC///+Ga8Oup1t6zbGu8SkMmVKAa16HZPoMhKqTo/bS0tLY9y4cbRu3ZqhQ4cybNgwzjzzTPLz8+nevTspKSm88847zJ8/n+zsbDp06MDKlSv54Q9/yMSJExNdvqS9CIXgipw9B10Qm8/r8k7xqkiStNPJLaFDxp4PFFOALk0hLzOeVUmSDiXlJdvZ+uX6ilvpuo0QjbL1y/VOVq99qtNhF0CPHj2YPn06W7dupaioiBtvvJGZM2dWDGG8++67+eKLL1i6dClLly6lbdu2TJgwgdNPPz3BlUval7PbwlWdY39/d2e08+/bu0Gflt9/lCSptqWE4L97Q8uGsfs7BzTu/G+bw+C/eu17pKMkSTVl9fR5vJjz00SXoSRRp4cx7k5JSQlFRUUMGzYs0aVIOkihEPwsF/q1hJeXwuz1sbbeR8BFHWK9BiRJidHmMPhLGF5fEbt67rpSOKIBnJMFZ2bBYUl3FClJkg4VSXeYMnv2bMrLyyt6dn3f0qVL41uQpIPWs3nsJkmqWzLS4ZKOsZskSVKySLqwq3fv3kSje5vlR5IkSZIkSYeqOj9nlyRJkiRJklRdhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSQlQUFBAdnY24XCYoUOHVln+wAMPUFxcvMfHr1+/nhNOOIGMjIwqy0pKSjjrrLPIz8/nqquuqmh/8sknOe200wiHw+zYsYP58+czcuTImnlDkhQgB7uPBrjlllsYMGAADz74YKX2N998k3A4TDgcpnnz5syaNYulS5fSunVrwuEwV1xxBQDvvfceffr0oW/fvjzyyCMA7rclqZoMuyRJSpBrrrmGgoICmjZtyvTp0yvaI5EIs2fPpnPnznt8bOPGjZk0aRJ9+vSpsmzixIn079+fd955h/T0dObOncvy5cuZM2cOb731FgUFBaSnp5Obm8uMGTOIRqO18v4kKZkdzD76448/Ji0tjXfffZcZM2awZs2aimVnnHEGBQUFTJkyhY4dO9KjRw8Azj77bAoKCnj++ecB6NixI1OnTmXatGm8/vrrbN261f22JFWTYZckSQnWrVs3Vq1aVXH/008/5eijj97rY9LT08nMzNztsuzsbLZs2QLA5s2badq0KRMnTmTLli0MHDiQESNGVKzbsWNH5s2bd/BvQpIC6kD20R9++CEDBw4EID8/n08++aTKOh999BEnnngioVAIgAkTJjBgwABefPFFAI466ijq1asHQGpqKikpsZ9u7rclad8MuyRJSrDp06eTk5NTcb+4uJgOHToc8PPl5OTw7rvvkpubSygUIisri7Vr1xIKhXj77bdZsmQJs2bNAqB9+/YsXLjwIN+BJAXXgeyjN2zYQJMmTYBYT9wNGzZUWWf8+PGcd955ALRu3ZqioiImTpzIk08+ybp16yrWmzRpEp06daJBgwaA+21Jqg7DLkmSEuTpp58mHA7Tpk0bevbsudt1Pvvss4q5XXbefvvb3+71eZ977jkuvvhi5s+fT4sWLZg2bRpNmzYlPz8fgFNOOYWioqKafjuSFCgHs49u1qwZGzduBGDTpk00a9asymOnTJlS0furfv36NGrUiIYNGzJgwAAWL14MwMqVK3nooYcq5uySJFVPWqILkCTpUHXNNddw7733Vmnv3Lkzr7zyCgDHHnssBQUF+/W8kUikYohjZmYmGzZs4OSTT2bs2LEAzJkzh0svvRSAZcuW0a9fv4N4F5IUTAezj/7oo4946aWXOOecc5g6dSo/+clPKi3//PPPadu2bcUwxc2bN5ORkUE0GuXjjz/m5ptvprS0lCuvvJJRo0ZVuhiJ+21J2jd7dkmSVMf06NGjWj2vBg0axMyZMxk0aBBz585l9erVPPzww1x22WU888wzhMNhZs2axQ9+8AOOP/54ysrKCIfDbN26ld69ewOwaNEiunXrVttvSZICozr76JNOOonS0lIGDBhAjx49aNWqVcU+GioPYQSYNm0aJ554In379uX000+ndevWjB07ls8++4zrr7+ecDhcMW+Y+21J2jd7dkmSlAA7h7vsTkpKCt27d6e4uHivV/uaPHlylbY77rgDiF2R8fseffTRSvfnz5/PCSecUDE5siQppib20U888USl+0ceeWTFPvoXv/hFpWWnn346p59+eqW2q666iquuuqpSm/ttSaoewy5Jkuqg3Q2dqWm5ubnk5ubW+utIUtDEYx+9O+63Jal6HMYoSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBhJE3Zt376d4cOHk5WVRcOGDRk4cCCFhYWEQiHGjx+f6PIkSapQWr7r7y+3Jq4OSVJVK7fs+ntHJHF1SNq7/o/+jJ8ue4nLF42puLU5tWeiy1KSSEt0AdURjUYZPHgwhYWFjBgxgpycHMaOHcsFF1wAQF5eXoIrlCQJyiLw9EL4y5JdbedOht5HwH90g46NE1ebJB3qFn4Lf5gHH329q+2MCXBZJ7iyM6SGElebpN1b+MJkPvzl04kuQ0koKcKu0aNH88YbbzBr1iy6du0KQDgcJjs7m8zMTNq1a5fgCiVJh7pIFO6dAZO/qNweBQq/gqvehT/3h05NElKeJB3SFnwL174H28srt3+7A0YtgOWbYUQehAy8JCkQkmIY48iRIxkyZEhF0AWQmppKdnZ2Ra+uDh06cMwxx9CzZ0969uzJhAkTElWuJOkQNHV11aBrpwhQUg4Pz4lrSZKkf3vo01jQtadRi/9cCYVf72GhpITp+OMBXPrZM5w/9VG6//zHhFKTIsJQHVDne3YVFxezZMkSHnvssSrLVqxYwYUXXlhxf9y4cXTr1i2e5UmSBMC4pZASivXw2p1IFD5eB8s2Q/uMuJYmSYe0hd/CvA17XyclBOOWxIadS6obPnv6DT7+zRi2rd9E8+4dyf/jMFLr12Pm7/6S6NKUBOp82LVq1SoAWrZsWal9wYIFLFu2rMbm6wqHw6SkJF9K3O2v2wCoX79BgisJNj9nBYnbc+045n+Xk96s1T7XO/HMwWwsfDUOFR0a3J4VNG7TNa/ZgEvJuvXZva4TicKbsz7nsQG58SnqEOH2HB9B+Jw7pR3OnU36V2pbP2fXJKjrPl3MzN//H3m3X2zYVQ2nnhpmcdk3iS6jRtSrV49Nmzbt9+PqfLrTvHlzABYtWlTRFo1Gueuuu4hEIpXCrssvv5zu3btz0003sWHDhniXKkk6hEV3lFZvvbIdtVyJJOm7ItXeP1dvPUkJEomC8+qpmup8z67c3FxycnK45557SE9PJyMjg1GjRjFz5kwaNWpEly5dAHj33XfJysqitLSUYcOGcfPNN/PCCy9U+3UKCgro169fbb2NWnPivzsHlJb65Vyb/JwVJG7PtWPkbPjb0j3PBwNQPwWWTv0HGenxqir43J4VNG7TNW9DKZwxEcr2MMwcYr+frwvncqufe41ye46PIHzOawoX8K/z7q3U1uHcvqyaMosdm7ZyeG57etw2mKWvT09QhcllypQCWvU6JtFlJFSdD7vS0tIYN24cN9xwA0OHDiUrK4thw4bRpEkTFi9eXDH0MCsrC4D69etz0003ce655yaybEnSIWZwNvxtGbHLL+5GCLigPQZdkhRnzerD2Vnw6vLd76JDQGoIftw+3pVJ2ptjrvwhJ4+8jpT0VErWbGDxuHeY/T9/T3RZShJ1PuwC6NGjB9OnV05wH3/8cfLz8wHYsmULZWVlNG3alGg0yl/+8hd69uyZgEolSYeqjo3hvjz41UwguquHVwqxv09qAbccm7j6JOlQdnu32AVCZq3ftV+G2N8pIXjoRGh7WAILlFTFmz/+z0SXoCSWFGHX95WUlFBUVMSwYcMAWLNmDRdeeCHl5eWUl5dz7LHH8sc//jGxRUqSDjlntIVOjeGvS2HKl7A9EgvBLuoAZ7SBtDo/U6YkBVPDNPjjyfCvVbEh50s3Q4MUGHgU/CQ7tq+WJAVHUoZds2fPpry8vGJy+o4dOzJz5swEVyVJEnRuCr/sEbtJkuqOeqlwXrvYTZIUbEkZdvXu3ZtodC8zTEqSJEmSJOmQ5IAKSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSQFUUFBAdnY24XCYoUOHVlk+ZswYJk+eDMCAAQPIyMhg5cqVVdabMWMG/fr1Iz8/n7lz5wLw8ssv06tXL/r06cMHH3wAwFVXXUU0Gq3FdyRVj2GXJEmSJEkBdc0111BQUEDTpk2ZPn16pWWvvfYap512GhALry666KLdPsd9993HK6+8wt/+9jd+85vfAPDEE08wdepUXnnlFX7/+98D0Lt3b6ZMmVKL70aqHsMuqQbs64zJAw88QHFx8T6f59FHH2XQoEG7XXbLLbcwYMAAHnzwQQCefPJJTjvtNMLhMDt27GD+/PmMHDny4N6IxMFvz+vXr+eEE04gIyOjyrKSkhLOOuss8vPzueqqqyra3Z4lSZJqV7du3Vi1alXF/fXr19OgQQNCoRAARx555B4fu2XLFlq1akWLFi1YunQpAB06dGDLli18++23ZGZmAnDqqafyxhtv1N6bkKrJsEuqIXs6YxKJRJg9ezadO3fe6+N37NjBrFmzdrvs448/Ji0tjXfffZcZM2awbNky5syZw1tvvUVBQQHp6enk5uYyY8YMuw2rRhzM9ty4cWMmTZpEnz59qiybOHEi/fv355133iE9PZ25c+eyfPlyt2dJkqRaNn36dHJyciruL1q0iPbt21frsY0bN6a4uJjPP/+cefPmAXDOOeeQl5fHoEGD+NnPfgZA+/btWbhwYc0XL+0nwy6phn3/jMmnn37K0Ucfvc/HjRkzhksvvXS3yz788EMGDhwIQH5+PuPHj2fLli0MHDiQESNGVKzXsWPHii8fqSYcyPacnp5ecXbv+7Kzs9myZQsAmzdvpmnTpkycONHtWZIkqZY8/fTThMNh2rRpQ8+ePQ/oOR544AFuuukmhg8fzoABAwAYOXIk8+fP56OPPmL48OE1WLF08Ay7pBr2/TMmxcXFdOjQYa+PiUQiTJgwgR/+8Ie7Xb5hwwaaNGkCxM6qbN68mVAoxNtvv82SJUsqeoR5JkU17UC2573Jycnh3XffJTc3l1AoRFZWFmvXrnV7liRJqiU7e+zff//9ldpzcnJYtmxZtZ4jNzeXSZMm8dBDD9GlSxcAGjRoQMOGDWnSpEnFycxly5btc0SLFA+GXVINqc4Zk88++4xwOFzp9tvf/pZXXnmFc889d4/P3axZMzZu3AjApk2baNq0Kfn5+QCccsopFBUV1fj70aHtYLbnvXnuuee4+OKLmT9/Pi1atGDatGluz5IkSQmQmZnJ1q1bK+4PGTKEiRMncumll/LWW28BcNtttwEwevRoTj31VH7+85/zy1/+EoArrriCvn37MnDgQP7jP/4DgClTpnDmmWfG+Z1IVaUlugApKK655hruvffeKu2dO3fmlVdeAeDYY4+loKCgyjoPPPAABQUFjBkzhlmzZvHUU09x7bXXVizv1asXL730Eueccw5Tp07l9ttv5+WXXwZgzpw5FcMfly1bRr9+/Wrh3elQczDb895EIpGKIY6ZmZls2LCBk08+mbFjxwJuz5IkSTVp5wnJPTn33HOZPHkygwYN4oUXXqiy/JFHHgHguuuu47rrrqu07Nprr630mwVi0698fz0pEezZJdWyHj167LOnyi9/+UsmTZrEm2++Sc+ePbn22mtZvXo1Dz/8MAAnnXQSpaWlDBgwgB49etC7d2/KysoIh8Ns3bqV3r17A7FJJrt161br70mHrupszwCDBg1i5syZDBo0iLlz51Zsz5dddhnPPPMM4XCYWbNm8YMf/IDjjz/e7VmSJCkBrrjiij1eDf5APPPMM6SkGDMo8ezZJdWAvZ0xSUlJoXv37hQXF1dr/PrkyZOB2KV/77jjjor2J554otJ6jz76aKX78+fP54QTTqi4dLB0oGpie965HX/Xzu154sSJVZa5PUuSJEmqKYZdUhzsbjhYTcvNzSU3N7fWX0dye5YkSZJUl9m/UJIkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwkibs2r59O8OHDycrK4uGDRsycOBACgsLCYVCjB8/PtHlKcC+3b7r77JI4uqQasL28l1/bylLXB2SJEk6eNu+c2y3zWM7qUJaoguojmg0yuDBgyksLGTEiBHk5OQwduxYLrjgAgDy8vISXKGCaHUJ/HE+TFy1q+2cSXBpJxjSCVJCiatN2l/by+HpYnh5ya6209+EH2XBTbnQtF7iapMkSdL+KSmDJ4vg78t2tZ0+Ac5rDzceA42S4pd+9bQ97Xjy7rqEJp2OomxzCXP/9BrzRr2a6LJUxyXFP4HRo0fzxhtvMGvWLLp27QpAOBwmOzubzMxM2rVrl+AKFTSrt8LQd+GbUvhuZ66vSuGxz2DRRvh1HoQMvJQEyiLwi0L48KvK7aUReGUZfLwO/tzfwEuSJCkZbCuDG6fBvA0Q/U771nL4y+cwax082S8YgddR+T04+eHree/Wx1k9fR5pDetzWJsWiS5LSSAphjGOHDmSIUOGVARdAKmpqWRnZ1f06tq2bRs33ngjnTt35rjjjuO6665LVLkKgN/PrRp0fdcbK+Gd1XEtSTpgf19WNejaKQos3wx/WhDXkiRJknSAXvgc5m6oHHTtFAUWfAvPL4pzUbUk785LmP3o3/jyvTlEyyPs2FzChqIViS5LSaDOh13FxcUsWbKECy+8sMqyFStWVIRdd955Jw0aNGDhwoXMmTOH3/zmN/EuVQGxtiQWZO1teq6UELy8NF4VSQfnr0tgb50Qo8BrK2Ld4SVJklR3lUdh3JK9rxMF/rY0+ecbTmtYnxY9O9HwiGZc8O5/c/Hspxj47F1kZLVMdGlKAnW+Y+OqVbEJk1q2rLxBL1iwgGXLlpGXl8fmzZt5/vnnWblyJaF/jytr1arVfr1OOBwmJaXOZ39VdPvrNgDq12+Q4EqCI6PnD8n+5d7HgEei8P7n66kfbh2nqqQDlJrGcX/Zss/VtpXDkbknsG353DgUJdUcvwcVNG7TChK355qX1rQluU/tu2fTN9uhaZuOlK1ftc9164JOaYdzZ5P+ldrqNTuMUEoK7c/uzaRL76dk3bf0uu8qTn36Dl47/Y4EVZocTj01zOKybxJdRo2oV68emzZt2u/H1fl0p3nz5gAsWrSrH2Y0GuWuu+4iEomQl5fH4sWLad68Ob/+9a858cQTCYfDvPfee4kqWckuUs3uLZHyfa8jJVo0QjRavdN6UbdpSZKkOi1avh9d8ZP82G7H5lhY+tlTb7B55VeUl2xnxkNjaX5ctvN2aZ/qfM+u3NxccnJyuOeee0hPTycjI4NRo0Yxc+ZMGjVqRJcuXZg1axaff/45eXl5PPzww3z44Yecc845LFq0iCZNmlTrdQoKCujXr18tv5uad+K/OyCVlpYmtpAA2bwDfjghNnn3nqQA53Y9gll+7koC178PM9ftfWhui/rwQfEs0ur8KRCpMr8HFTRu0woSt+eaF43CpQWweNPu5+yC2PQV7TPgo9XLkuaCWmsKF/Cv8+6t1LZj01Y2r1gbe9PaL1OmFNCq1zGJLiOh6vzPmrS0NMaNG0fr1q0ZOnQow4YN48wzzyQ/P5/u3buTkpJCu3btSEtL49JLLwWgd+/etGjRgoULFya4eiWjjPTYJXv39r0QAX6SHa+KpINzace9B10AF3fEoEuSJKmOC4Xgsk57DrogtuzSjsG4cnzR8xPJvfZsGh3VnNT66eTdeQlff7qYLau+TnRpquPqfM8ugB49ejB9+vRKbY8//jj5+fkAtGjRglNPPZVJkyZx+umns3DhQtauXUtOTk4iylUA3JoLC7+FWetjodfOL5OUUGy+rtu7QbfDE1mhVH3h1nBlDjy7KHaGY2fwtfPv8JHw006Jq0+SJEnVd04WzPkmdsXt3R3bnZMFF7RPXH01ac4T46nXNINzJ/4OQimsLVzAlGseTnRZSgJJEXZ9X0lJCUVFRQwbNqyi7U9/+hNXX301t912G+np6YwZM4ZmzZolrEYltwZp8MTJMH557Ep2yzZDagj6t4JLOsKJDhFXkrn5WOieCf+3BD7+OhbaHt001kPx7KzY9i1JkqS6LxSCe7pDrxaxY7vZ62Pt3Q6P9dY//ahg9OoCIBrlkwde4JMHXkh0JUoySRl2zZ49m/LycvLy8iraOnbsSEFBQeKKUuDUT40FAT/JjgUDIQL0paFD0ilHxm7RaKy3YorbsyRJUlIKheAHbWK3nVNa+VtF2iUpw67evXsTdZI6xZGhgIIkFNr7nHSSJElKHoZcUlVORyxJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDsCrCCggKys7MJh8MMHTq0yvIxY8YwefJkioqK6NevHwMGDOAXv/hFlfUuueQSwuEwJ5xwAueffz4A//3f/02fPn3o378/ixYtoqysjGuvvba235IkSZKkAKjubxWAAQMGkJGRwcqVK6usN2PGDPr160d+fj5z584F4OWXX6ZXr1706dOHDz74AICrrrqKaDRai+9IUl1i2BVw11xzDQUFBTRt2pTp06dXWvbaa69x2mmn0aJFCyZMmMC7777L119/zcKFCyut95e//IWCggKuu+46zjrrLABeeuklpk+fzu9+9zv+9Kc/kZaWxhFHHMHixYvj9t4kSZIkJa/q/FaBWHh10UUX7fY57rvvPl555RX+9re/8Zvf/AaAJ554gqlTp/LKK6/w+9//HoDevXszZcqUWnw3kuoSw65DRLdu3Vi1alXF/fXr19OgQQNCoRDNmzcnIyMDgNTUVEKh0G6f47XXXuOcc84BICsri9LSUr799lsyMzMBCIfD/Otf/6rldyJJUvXtq+fAAw88QHFx8R4f/95779GnTx/69u3LI488UmV5YWEh/fr1o2/fvtx7770APPnkk5x22mmEw2F27NjB/PnzGTlyZM29KR3SDnabBrjlllsYMGAADz74YKX2N998k3A4TDgcpnnz5syaNYulS5fSunVrwuEwV1xxBbD7fxdu5zoYe/utAnDkkUfu8bFbtmyhVatWtGjRgqVLlwLQoUMHtmzZUum3yqmnnsobb7xRe29CUp1i2HWImD59Ojk5ORX3Fy1aRPv27SutM2/ePL7++ms6d+5c5fGbN29m06ZNtG7dGoD+/fuTm5vLjTfeyJVXXglA+/btq/QKkyQp0fbUcyASiTB79uzdfu/t1LFjR6ZOncq0adN4/fXX2bp1a6XleXl5vP/++0ybNo3p06ezfPly5syZw1tvvUVBQQHp6enk5uYyY8YMh8+oxhzMNv3xxx+TlpbGu+++y4wZM1izZk3FsjPOOIOCggKmTJlCx44d6dGjBwBnn302BQUFPP/888Du/124netgVOe3yp40btyY4uJiPv/8c+bNmwfAOeecQ15eHoMGDeJnP/sZ4G8V6VBj2BVwTz/9NOFwmDZt2tCzZ889rrdx40ZuvvlmRo8evdvlEyZM4IwzzqhY929/+xvFxcX8/e9/Z8SIEbVQuSRJNev7PQc+/fRTjj766L0+5qijjqJevXpArPdzSkrlQ6f09HQAysvLOeqoo5g4cSJbtmxh4MCBlb4fO3bsWPEjTKopB7JNf/jhhwwcOBCA/Px8PvnkkyrrfPTRR5x44okVvWomTJjAgAEDePHFF4E9/7twO9f+qu5vlb154IEHuOmmmxg+fDgDBgwAYOTIkcyfP5+PPvqI4cOH12DFkpKFYVfA7Tzzd//991dqz8nJYdmyZQBEo1Guvvpq7rvvPo466qjdPs/48eM577zzAAiFQhx22GGkpaWRmZnJhg0bAFi2bNlezyRKkpRI3+85UFxcTIcOHar12EmTJtGpUycaNGhQZdnYsWPJzc2lWbNmrF27llAoxNtvv82SJUuYNWsWYI8C1Y4D2aY3bNhAkyZNgFiPmJ3Hcd/13eO+1q1bU1RUxMSJE3nyySdZt25dxXrf/3fhdq79VZ3fKvuSm5vLpEmTeOihh+jSpQsADRo0oGHDhjRp0oQtW7YA/laRDjVpiS5AiZGZmVkxFKOgoIC3336br7/+GoBHHnmENm3aMGbMGO644w7Ky8tZuHAhxx57LBA7MDr55JPp168f5eXlPPbYYxXPc8011yTmDUmStAdPP/00kydPpn///nvsOfDZZ59x0003VWo744wzuPvuu1m5ciUPPfQQr7766m4fe9lll3HJJZcwePBgcnJyyM/PB+CUU06hqKjogHsrSHtyMNt0s2bN2LhxIwCbNm2iU6dOVR47ZcoU/vM//xOA+vXrV7QPGDCAxYsX07x5833+u5AOxnd/qwAMGTKEt99+m8WLFzNixAhOO+00brvtNh555BFGjx7NSy+9RLNmzSpGqVxxxRX07duXSCRSsS1PmTKFM888MyHvR1L8GXYF2M4JRvfk3HPPZfLkyQwaNIj169dXWX7HHXcAse7pOy/Zu9OvfvUrfvWrX1XcLysrY+3atZXOLkqSVBdcc801FZPHf1fnzp155ZVXADj22GMpKCiosk5paSlXXnklo0aNqriYy/eX169fn5SUFBo3bkyfPn14+eWXAZgzZw6XXnopEOtR0K9fvxp8VzqUHcw2/dFHH/HSSy9xzjnnMHXqVH7yk59UWv7555/Ttm3bimGKmzdvJiMjg2g0yscff8zNN9+8x38XbufaH/vzW+WFF16osnznxRGuu+46rrvuukrLrr32Wq699tpKbR9++GGV9SQFl8MYD2FXXHEFgwYNqpHnSktL4+mnn66R55IkKR569OhBUVHRXtcZO3Ysn332Gddffz3hcJhVq1axevVqHn74YQBeffVVwuEwp5xyCm3btqV3796UlZURDofZunUrvXv3BmKTLXfr1q3W35MObdXZpk866SRKS0sZMGAAPXr0oFWrVpW26e8OYQSYNm0aJ554In379uX000+ndevWu/13AW7nqlk1+VsF4Jlnnqky76Kk4ApFD/FLprz//vv079+f9957LynPRJ34757jH5+b2DokSUqEg/0evP/++7n44otrdR6X+fPnM378eO6+++5aew0FRzJs07vjdq7d8beKqmtN4QL+dV7VHqs6MGeOv59WvY5JdBkJ5TBGSZJ0yNrdULCalpubS25ubq2/jgTx2aZ3x+1cklSX2I9TkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTCSJuzavn07w4cPJysri4YNGzJw4EAKCwsJhUKMHz8+0eUlxJayRFcgSVLdsHlHoiuQDp7bsYJke/muvyPRxNUh6dCUlugCqiMajTJ48GAKCwsZMWIEOTk5jB07lgsuuACAvLy8BFcYXyu3wNML4c1Vu9qunApXdoZw68TVJUlSvLy7Gp4p3nV/0Jvwgzbw/46GdhmJq0s6EJ9vgqeK4K0vd7Vd9x5cfTT0aZm4uqQDsXlH7LfK35ftarvgLbisEwzuACmhhJWmJHP5ojGV7qfWS2dD8SpePe22BFWkZJIUYdfo0aN54403mDVrFl27dgUgHA6TnZ1NZmYm7dq1S3CF8bNkE1zzXuxLJPKd9s82wO0fwS+6wuWdElWdJEm17+UlMHJO5e7pZVGYsCoWgj3VH3KaJKw8ab98tgGufx9Kyysf281aD7d8AL/qCeccOoe6SnKbdsR+qyzZBN/tzPXFVnh4Dnz2DfxnnoGXqufFnJ9Wun/uW4+wZPz7CapGySYphjGOHDmSIUOGVARdAKmpqWRnZ5OXl8fSpUvp2bNnxa1Dhw5kZmYmsOLa858zYXNZ5YMh2HX/D/Ng6aZ4VyVJUnys3AK/mxP7u8p3YRS2lsEvP4GoQ2aUBCJRuOfjqkEXxO5Hgd98Cl9tS0Bx0gF4Yn7VoAt23f/nSpj0RbyrUhC06JlDs6Pbsuj/piS6FCWJOh92FRcXs2TJEi688MIqy1asWEFeXh4dOnRg1qxZFbfzzz+fyy67LAHV1q75G2Jn//Y25j0E/G3ZnpdLkpTMXtnHd1wEWLwJZn8Tl3Kkg1L4FazcWjXo+q5IFP7hsZ2SwOYd8NryqkHXd6UAf10Sr4oUJJ0vG8iqt2dSssYveFVPnR/GuGpVbGKqli0rT1iwYMECli1bVmW+ru3bt/Piiy8yYcKE/XqdcDhMSkrdzv4yT7+eNv/vsb2uEwWenlDIPScMiE9RkiTFUfaISWR0PWWf65157R2s++fevzOlRDvix3fT6pL/JBTa8zFoNBLh4ZcmcPND58evMOkANOzci5wH393rOhFg1trt1K/fOD5FKWl0SjucO5v03+2ytIb1yT6vH+/e+nicq0pep54aZnFZMILBevXqsWnT/g9fq9vpDtC8eXMAFi1aVNEWjUa56667iEQiVcKuV199lTZt2nD88cfHtc64iO7tvN9313PshiQpoKIRotX5nvO7UMnAYzsFSTW3Zzdn7a8O55xMWcl2Vk7+JNGlKImEotU6YkycsrIycnNz2bFjBw8//DAZGRmMGjWKmTNnsn79ejZt2lSpR9ZZZ53FGWecwa233lqt59+4cSNz5szhuOOOo0mTuj2b7eKNcHHB3tcJAUNz4OZj41GRJEnx9eQCeGrh3ofJALxwChzTLB4VSQdu1jq4thpzLd96LFyRU/v1SAdjWxn8cCJsKdvzOikhOKkFPHFy/OpSclhTuIB/nXfvbpedOf43rP1wAZ88+GKcq0peZ46/n1a9jkl0GQlV53t2paWlMW7cOFq3bs3QoUMZNmwYZ555Jvn5+XTv3r1S0LVq1SreeecdLr/88mo/f5MmTejXr1+dD7oAOjWB45vv/X9aCLigfbwqkiQpvi5ov/ereKUA3ZoZdCk59MiETo33vE2HgHopcG5WXMuSDkiDtNg+em8XWoxE4SfZcStJAdCk01G0PLELC196K9GlKMnU+bALoEePHkyfPp2tW7dSVFTEjTfeyMyZM6sMYXzuuec4++yzK4Y+BtF9edCiQdUvkRRibb/qCW0Oi39dkiTFQ8uG8Ou82Pfe9wOCEHB4fbj/hERUJu2/UAhGnghN0ndzbBeK3R48AZrVT0h50n67oQscd3jV9p0/Oi/vCKe0imtJSnKdLx3Img/ns2nJ6kSXoiRT5yeo352SkhKKiooYNmxYpfZnn32Wxx4L9mS0RzaCMafAC4vh78tgc1ns4KhfK/hpTqznlyRJQXZGW2jdCMYsgndWx4Y0HpYG57WLfRce0SDRFUrV16FxbNjtmMXw6nIoKY+FXAOPhCE50G03wYFUVzVIgz/2hf/7HF5eCqtLYu3HHg6XdYQfHBULeaXq+uT+FxJdgpJUnZ+za3c+/PBD+vTpw0cffcSJJ56Y6HISpjwKW3ZA/dTYTZKkQ832cthWDoelQ6o/oJTkyiKx+Y4apkI9j+2U5KLR2PacGoKGSdnFQvG0tzm7tP+csytJe3b17t27eldiCrjUEDSpl+gqJElKnHqGAgqQtBRo6rGdAiIUgoz0RFch6VCVFHN2SZIkSZIkSdVh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBEYpGo9FEFyFJkiRJkg5N2zdt5Zv5yxNdRmAcntuOeo0bJbqMhDLskiRJkiRJUmA4jFGSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYPz/eo4vJuqstscAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADPZklEQVR4nOzdeXxU1d348c9MEhJCCBCQPUAggMheUVRAwqIWrSIqbkUtonWtpVWrVXh+VEVLbWsfW5daQJGKuxbtg7tEFKMogiJCIGwiAgrIDgkk8/tjNBqBsCSZyQyf9+uVF5lzz9zznZPLnTvfOefcQCgUCiFJkiRJkiTFgWC0A5AkSZIkSZIqi8kuSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN0x2SZIkSZIkKW6Y7JIkSZIkSVLcMNklSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihskuSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN0x2SZIkSZIkKW6Y7JIkSZIkSVLcMNklSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihskuSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN0x2SZIkSZIkKW6Y7JIkSZIkSVLcMNklSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihskuSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN0x2SZIkSZIkKW4kRjuA6qxoy3a+WfB5tMOIG/U6tKBG7dT91tu6Cwo2RyCgvchOh7Sk6LQtSZIkSZIqzmRXOb5Z8DkvDR4V7TDixqCpd9Do2CP3W69gM1w2MwIB7cX4XtCtfnTaliRJkiRJFec0RkmSJEmSJMUNk12SJEmSJEmKGya7JEmSJEmSFDdMdkmSJEmSJCluuEC94kL+rTlsW5hHIDGJQEIiKc2OpOmwsaR3HRDt0CRJkiRJUgQ5sktxo+mwsXR/citdJq2lVvvjWXLnmRRv2xTtsCRJkiRJUgSZ7FLcCSYl0+CkEZTs3MrO1QXRDkeSJEmSJEWQyS7FnZLCHax7bTzB1HRSmraNdjiSJEmSJCmCYibZVVRUxOjRo8nMzKRmzZr079+fWbNmEQgEmDp1arTDUzXw5ZTRzL2wLvMub8X2ZR+TPeq/JKSmRzusqNi6Cz7bCPmbYHdJtKOJXzuLYeHG8M/O3dGORqqYUAiWbIZPv4ENhdGORqq4NdvDx/MX26IdiaRYsX03LNgICzdBUXG0o5FUETGxQH0oFGLo0KHMmjWLMWPGkJ2dzZQpUxgyZAgA3bt3j2g8gYQgx4y5hDZnn0ggGGT5/73H+7eMp7hwV0TjUFlNL7ydxkNuiHYYUfVNIdy/EP5vJRR9m+SqVwPOy4JftIXEmElvV287d8M/8+G5FbDt2yRXrUQY3AKuODL8uxQrQiH4z+cwaTF8sT1cFgRymsDVHaBVWlTDkw7anPXwwEL4aP33ZUfVhV+2h96NohaWpGpsy67weeOFz8NfZgKkJ8HZreCydpCcENXwJB2CmPhI9tBDDzFt2jTmzp1Lx44dAcjJySErK4uMjAxatGgR0Xi6XHcWjU/oxNT+11O8azcDHrmJo0ddxKzREyMah/RDGwph+Nuwejv8cDDXN0XwYH54pNfdx0JCIFoRxoedxXBVXni0QOgH5dt2w+NLwx+uHuoFqTFxdpXg7wvg0QL44amhBMhdDe9/DRN7Q5vDc5CsYtA7a+H6WeEk7g8t2Ai/eR/+Xzf4WWQvGyVVc1t3wWXvwNItZa/tNu+ChxfDvA1w73FQw4SXFFNiYpzHuHHjGDZsWGmiCyAhIYGsrKzSUV2LFi3i+OOPp127dhx//PEsXry4yuJp+/MBzLv3Obav2UDh+s3M/ctTZJ+XQyAYE92pOHXfgj0TXT80Yy1MWxnRkOLSlCUw70eJru+ECE8dfdT7IihGfPrN98frj4/pEmDHbrh9boSDkg5RYTH8z0dQEtrzvTD07c8dH8PGoigEJ6naGr9oz0TXD324Hp5ZHsmIJFWGap+dWbx4McuWLePss8/eY9vKlStLk11XXnkl11xzDYsWLeKaa67hiiuuqJJ4aqSnktbsCDbMX1Zatn7eMmrUTiUt84gqaVPany274KUv9p3ogvB/9qeWlVNB+1UcgqeXl18nBDy73LXSFBueXV7+hUAJ8OlGWLQpMvFIFfHm6vBIjH19YAXYHYL/fh6xkCRVc4XF8PyK8s8bAcLX0D8eMSqpeqv2E21WrVoFQMOGDcuUL1y4kBUrVtC9e3e++uorPvroI1577TUALrjgAq699lq+/vprjjhi/wmo2rVrU1S059d8bRLr8bv03mXKEtNqAlC0aXtpWdGm8MqnSd9u097165fDkt3f7LdeavvjaXNH7kHtu/3Yg6u/L/365bA9P69S9hVJNdseS/adb5dbpwT4bMNukpNrRSaoOJSQfgRHTfhiv/W+KYK6zduwa/3+60rR1Pavc0jJPGq/9U4893K+yX00AhFJh67JJX+i/qBrCCTs+/I2VLyLMf98hhH3/iJygUmqtpKbtqfd/35Sbp0Q4TUta9apR6hwe7l1JVWuUChEYmIia9asIT394NbVqPYju+rXrw9AQcH384JCoRA33XQTJSUldO/enZUrV9KsWTMSEsITqRMSEmjatCkrV1b+nK3dW3cAkJSeWlpWo044ebDr221SxBUf2K0AQyXeVqZCSg78lov2tWJByHOH4kj4eN7fwpQBj2dJpUIHcW2H5w4p4kKhEDt27GDevHkH/dxqP7KrQ4cOZGdnc8stt5CUlERaWhoPPPAAc+bMITU1lfbt2zNnzpwKtbFly5a9lq+dtZCXBo8qU1a0eTtbV31NRsdWbF7yJQD1O2VRtGU7W1d+XaE44t306bk0OvbI/dabux4umxmBgPZi+vRcutWPTtsVUVQMP301PH1jX4IB6NUsmY8KCyMXWJwJheCCXFhSzroOAaBFGnywejkBbwagau5/58O/l+x/+sbHL0ykcU1vwqLqLe8r+NV75dcJJCTyvyOH8bO/DItMUJKqteIQnPEarN257zpBoGM9+HDr5ojFJSls5syZ9O7de/8V96Laj+xKTEzkmWeeoUmTJlxyySWMHDmSQYMG0bdvX7p06UIwGCQzM5NVq1ZRXBzOthcXF/Pll1+SmZlZJTEtfuwNuvxqCDUb1SO5fjrdrj+XgidzCZW4SI+io0YCDM0qv05JCM5vHZl44lUgABe2KT8xEAIuyMJEl2LC2a3KP1aDQN/G0NhZ+ooBPY+AzFr7vrgNAnWS4KSmkYxKUnWWEIAL9nN9XML+60iqfqp9sguga9eu5OXlsX37dvLz87nqqquYM2dO6eL0DRs2pFu3bjz++OMAPP7443Tv3v2A1us6FJ/c+xxr3lvAmbn3cPa7f2fj4i+YPfbfVdKWdKAuawfHf3vI//Cz63f/yS9vB8c3/PGzdLBOz4QhLcO///AE+t3vpzWHs1pFOCjpEDWvBbd1Dx+/e7sgaJUGo7pGOirp0AQD8JdjIb3GnpMZg0ByAtzTM/yvJH3ngjYw8Nsk+N6u7S5obZJcikXVfhrj3uzYsYP8/HxGjhxZWvbggw9yySWXcNttt1GvXj0efbTqFtINFZcwa/REZo12SkekbVs0i5UTfgOhELW79KfZsDtKt617fSLrXh1PYt2GZI2cTEJqbb54+Ea2LnyXYI0UWt/4FInpMThH8QAlBcMX8S98Hr5jTMG3s3N7HhEe0dWrUXTjixeBANzSBY5tAE8sg483hMs71oPzsuCUZo7qUmz5afPwaJgpS+GV8D1haFIzPOrrnFaQlhTN6KSD07o2TOkbPj+/8Dls/Pb+Q+dkwYWtwwleSfqhhACMPRp6N4SnlsNnG8Pl3euHr6FzGnttJ8WimEx2ffLJJxQXF5eO7AI48sgjef/996MYlSIhtXV3jhwXXtBr0egBFG/fTEJqOqHi3ax/cxLt//gOm2ZPY91r42kw8FK2L/+YI8fNZMNbU9jw9uM0PO3aKL+CqpUYDI8qOqsV9HghXPb346MZUXwKBOCkZuGf7/r54T7RjUmqiI71whf63yW7XjwpuvFIFdGwJlx3VPjnu3P07zpHNyZJ1VtCAH7WIvzz3Xnjn72iG5OkiomJaYw/1rNnT0KhED169Ih2KIqwQGJ4iEGouJikjKYEk8N3xdy9eR01jmhBIBikZsvObMvPI5icSkJqHUIlJRRv30RiWkY0Q5ckSZIkSREQk8kuHd42vDWF+dd2IKFWXQIJ4cGJielHULi6gJKinWydP4PibZsIJCZRo35z5l9zJF/99+/UPW5IlCOXJEmSJElVzWSXYk5G3wvpeN9Cdm34kh3L5wEQSEig0ZAbWfyHn7Jj+cck1m3EjpUL2LVhFR3vz6fpsLGsfeGeKEcuSZIkSZKqWkyu2aXDV8muQoJJyQSCQRJq1iZQI6V0W73jz6Le8WfxzcynCRXvhlAJCWn1CAQCJNbOoHjbxugFLkmSJEmSIsJkl2LKplkv8NW0+6CkhLSOJ1Kycxvrp0+mfr+L+PzBq9m5Kp+UzKPIHPE3AgkJEAqR//sTgRCtfj0p2uFLkiRJkqQqZrJLMaVer6HU6zW0TFlq624AtLjy/j3qt7zmoUiEJUmSJEmSqgnX7JIkSZIkSVLcMNklSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihgvUq9rJTofxvaLX9uEgNzeX4cOH07JlS1q2bMmkSWXvVDl58mSaNGlCZmYml156KcFgkB49enDPPfeUqXf++eezZs0atmzZQmZmJv/5z3/IyckB4Ouvv+akk07iz3/+M1deeSXjx4+P1MuTJEmSJB3GTHap2klLgm71ox1F/BsxYgSjRo3iuuuuIy8vj+OPP75024svvsiTTz7Jhg0beOWVV0hLS+Oiiy5i0aJFtGvXrrTeE088AcA///lPAoEAEE6kAfz+97+nX79+JCYmcsQRR7BkyRLatGkTuRcoSZIkSTosOY1ROsx16tSJVatWlT7esGEDKSkpBAIB6tevT1paGgAJCQmlCa0fe/HFFzn99NPLlOXm5paO8srJyeGll16qmhcgSZIkSdIPmOySDnN5eXlkZ2eXPi4oKKBly5Zl6syfP59169bRtm3bPZ6/detWtmzZQpMmTfbYR40aNQBo2bIlixYtqqJXIEmSJEnS90x2SYepCRMmkJOTQ7NmzejWrds+623evJlrr72Whx56aK/bX3nlFX7605+WKZs6dSqDBw+uzHAlSZIkSTogrtklHaa+W7Prx7Kzs1mxYgUAoVCISy+9lNtuu42mTZvudT9Tp07l5ptvLlM2bdo0nnvuudLHK1as2OuoMEmSJEmSKpsjuySVkZGRwfbt24Hwultvvvkmo0ePJicnh9mzZ7NmzRruvvtuAIqLi1m0aBFHHXVU6fPXrVtHUlISderUKS3Lzc1l0KBBkX0hkiRJkqTDkiO7pMNQTk5O6eLxe3PGGWfw+uuvM3DgQDZs2LDH9htvvBEIL1r/3nvvldnWoEEDXn755dLHu3fv5quvviqzLpgkSZIkSVXFZJekPVx88cWVtq/ExEQmTJhQafuTJEmSJKk8TmOUJEmSJElS3DDZJUmSJEmSpLhhskuSJEmSJElxw2SXJEmSJEmS4oYL1Kva2boLCjZHp+3sdEhLik7bkiRJkiSp4kx2qdop2AyXzYxO2+N7Qbf60WlbkiRJkiRVnNMYJUmSJEmSFDdMdkmSJEmSJClumOySJEmSJElS3DDZJUmSJEmSpLjhAvWKC/m35rBtYR6BxCQCCYmkNDuSpsPGkt51QLRDkyRJkiRJEeTILsWNpsPG0v3JrXSZtJZa7Y9nyZ1nUrxtU7TDkiRJkiRJEWSyS3EnmJRMg5NGULJzKztXF0Q7HEmSJEmSFEEmuxR3Sgp3sO618QRT00lp2jba4UiSJEmSpAiKmWRXUVERo0ePJjMzk5o1a9K/f39mzZpFIBBg6tSp0Q5P1cCXU0Yz98K6zLu8FduXfUz2qP+SkJoe7bCioqj4+99DoejFIVWGUAjWbIcvtkFh8f7rS9XdN4Xw+VbYuivakUiKFTuLYeVWWLPDazvFvpIQfPnttd2ukmhHo3gVEwvUh0Ihhg4dyqxZsxgzZgzZ2dlMmTKFIUOGANC9e/eIxdLq9OPpcNmpZHRsReGGLTxz7NURa1vla3rh7TQeckO0w4iqrbtg4mJ4fsX3ZUPegAvawNBWEAxELTTpoIVC8OwKmLIEPt8WLquVCGe2gBHtIL1GdOOTDtYHX4fP0R+sCz8OBqB/E7isHWQfnt/NSNqPbwphwiJ44XPY/u0XPllpMCwbzsiEgNd2iiHFIXhiafhn9Y5wWZ0kOKsVXNoWasZEdkKxIiYOp4ceeohp06Yxd+5cOnbsCEBOTg5ZWVlkZGTQokWLiMVSuGkbCye+TMoRdej4y59FrF1pf7bsgsvegaVb4Idf+K3aDnfPg8++gf/X3YSXYkMoBGM/hv98Dj88ZLfthilLYeZXMKE31DHhpRjx8hcw+qOyx3NJCN78Et5ZCw8cD50zohaepGpo/U649J3wCJgfXtst3wq3z4WCzfDbjia8FBuKQ3DLh/DG6rLvhZt2wSOL4b2v4J+9IDUmMhSKBTExjXHcuHEMGzasNNEFkJCQQFZWVumorhtuuIGsrCwCgQCffvpplcWyesYnLJs6k21ffF1lbUiH4v4Feya64PvH//cFvPZlpKOSDk3umnCiC/Z+TH++Fe79LNJRSYfmm0IYMyd87P54tkYJ4annv58d/iAgSd/5y6ewevu+r+0eXwrv+5FEMeLFz8OJLtj7Mb1wE/wrP9JRKZ5V+2TX4sWLWbZsGWefffYe21auXFma7DrzzDOZMWMGLVu2jHSIUtRt2w0vrtzzjeOHgsCTSyMVkVQxTy0r/w2qBHjpC9hcFKmIpEM39XPYXc4JuoTwOjx5X0UsJEnV3Pqd4cRAecsZBQPw5LKIhSRVyFPLyo7o+rEQ4aVYXJ9VlaXaDxJctWoVAA0bNixTvnDhQlasWFGa7Ordu/cht1G7dm2Kivb8xNQmsR6/Sz/0/aqsfv1yWLL7m/3WS21/PG3uyD2ofbcfe3D196Vfvxy25+dVyr4iqWb2MWTf9U65dUqAj7/eRXJyWmSCOkx0emonAMnJKVGOJL50/Pc3BJNTy61TVAItjx3A9gXlH/s6cB7PVaPFjU+RfvTPCCQk7LNOqKSYC278I189eVsEI4t/HtOKVWndTiHr1hfKrVMSgumL15F8YrMIRXV48LxRBRIS6fzEtv1W27objmjfncKVDt9XWEnJod/BoNqP7Kpfvz4ABQUFpWWhUIibbrqJkpKSiC5OL1VboQM9CThHRrEhdKDHtLekUiwoKeGAzr8ez5K+47Wd4snBvL/5XqhKUu1HdnXo0IHs7GxuueUWkpKSSEtL44EHHmDOnDmkpqbSvn37CrexZcuWvZavnbWQlwaPqvD+FTZ9ei6Njj1yv/XmrofLZkYgoL2YPj2XbvWj03ZF7NwNp7wans64L0Hg6MY1mF1YGLG4Dgc9vv3StdB+rVS/fg/yvg5/a70vKQnwxew3qVXt38lih8dz1ZiyBP46v/w6gWACz/51FMdO9rqjMnlMK1ZtLIKfvlL+FOgg8NMjj2Cux3el8rxRNX4xAz7bWP7U3Lo1YP3iuSRV+yE5ipSZM2ce8iy+an8YJSYm8swzz9CkSRMuueQSRo4cyaBBg+jbty9dunQhGIzsSwgEgyQkJxFITIRAgITkJII1/KSl6EpJhCEty58HXwKclxWpiKSKOa91+YmuAHBGC0x0KSb8LBOSg/s+RweBFrXgmAaRjEpSdVa3Bgxqvv9ru3O9tlOMOL91+YkugKGtMNGlShMTh1LXrl3Jy8tj+/bt5Ofnc9VVVzFnzpyoTGFsc86JXLT8cfr963rSmh/BRcsf56x37o14HNKPXdkeOtfbs/y7/+QXtIa+jSMaknTITmgIF2eHf9/bG9WRdeDaDhENSTpk6TXgjz0gIbDn8RwEaiXBn46BQHmfaiUddn7bCdrU3jPh9d155Jft4ScxOCNBh6dTmsGZLcK///C98Lvj+5gGMLxtpKNSPIvJ78R37NhBfn4+I0eOLC277rrreO6551izZg0DBw6kfv36zJ+/nzkDh6DgqVwKnsqt9P3qwGz97B2+ePgGCASpd8LZNDrz+tJt+bfmALB709ekdzuJzMv+xvxrOpBYtxEAbW5+jsTaGdEIOyJSEuH+E+CJpfD0MlgbXluTDnXDia5TmvlBSrHlVx3gqLrw2BKY9+29LY5ICX/rd0FrqBmT72A6XPVpDA/3gUcL4LUvw2UpCeFRXxe1gWa1ohufpOqndhKM7w2PL4Wnl8OGb2fVdc2An7eBnCZRDU86KIEA3NoVumXAlKWwaHO4vElqeITieVmO6lLlismPCp988gnFxcVlRnbde++93HuvI6ziXY1GrWl35wyCSTXIv7UfRwy6qvSObd/dkXHVo7+ndud+ACRlNKPd7a9HK9yIS0mAX7QNj4jZtjs8iiA1Jv+XS+GLooFNwz/frZ/xfyeFb7UuxaIOdeGuHvDat8dz7iBI9MJeUjnSkuDy9jCiHRz7YrjsX94sXjEqEICftQj/fHdtN3WAX8irasTkJVbPnj0JhUL06NEj2qEowmrUb0owqQYQXsyXwJ6H8JZPc0nrlAPArk1ryf/9iXzxyO8IHUZ39ggGwt8GmuhSvDHRpXhiokvSgfL9T/HKRJeqipdZikmb575GcpM2BGuklCnfubqAGke0LE2Itb9zBu3vmkFJ0U42z54WjVAlSZIkSVIEmexSzCla9wVrnrmL5sP/sse2Te9PpW7PwaWPE9PCK7bXPfZ0dnxe+Wu4SZIkSZKk6sVkl2JKya5Clv/vL2hx5QMk1EzbY/um2dOoc/SpAIR276JkV3glz60L80hu5L2ZJUmSJEmKd67oo5iy4a0p7Fz5GSseuAKAZsPGUrhmKfX7XcTuzesIJCSRUKsOAMXbN7F4zCkEk2tRo0EmTYbeEs3QJUmSJElSBJjsUkxpMHA4DQYOL1OW1qEXAInpDWg75uXS8sT0BnT46+yIxidJkiRJkqLLaYySJEmSJEmKGya7JEmSJEmSFDdMdkmSJEmSJClumOySJEmSJElS3HCBelU72ekwvlf02pYqS25uLsOHD6dly5a0bNmSSZMmldk+efJkmjRpwsCBA7nqqqtYuHAh3bt3569//WuZeh9//DFXX301NWrU4NFHHyUzM5OCggKuvfZaCgsL+c1vfsOpp57KlVdeyfjx4yP5EquFg+nnPn36MGfOHBYuXEjz5s3L1Pv973/PW2+9RUJCAvfffz+dO3fm8ssvZ9GiRRQXFzNx4kTatWvH8OHDmThxIoFAIJIvU5IkSdIBcmSXqp20JOhWPzo/aUnRfvWKNyNGjCA3N5c6deqQl5dXZtuLL77IgAEDeP/990lOTmb69OkEg0HmzJlTpt5tt93G888/z9/+9jfGjRsHwB/+8AeeeOIJpk+fzhlnnEFiYiJHHHEES5Ysidhrq04OpJ8Bnn76ac4555y97uOKK67g3Xff5ZFHHuGuu+4C4P777+ett97irrvu4sEHHwSgZ8+eTJ8+vQpfjSRJkqSKMNklSRHQqVMnVq1aVfp4w4YNpKSkEAgEWLZsGZ07dwagc+fOeyRrtm3bRsOGDenatSsFBQUUFRWxcuVKLr74YgYPHszatWsByMnJ4aWXXorci6qGyutngMaNG+/zua1atQIgISGhtH5SUjgDvnXrVjp16gRAv379mDZtWlWEL0mSJKkSmOySpAjIy8sjOzu79HFBQQEtW7YEoH379rz11lsAzJgxg02bNpV5bklJSZnf161bx6effsqkSZMYOXJk6Sikli1bsmjRoqp+KdVaef18oEaPHs3VV19d+njAgAFce+21HHPMMYD9LEmSJFV3JrskqQpNmDCBnJwcmjVrRrdu3fZap3v37rRq1Yr+/fsD0LBhwzLbg8Fgmd/r1KlD586dqVevHn369CE/P7/K4o8VB9LPB+Jf//oXWVlZ9Or1/cKBb7zxBs899xxjxoypeKCSJEmSqpwL1EtSFRoxYgSjRo3aozw7O5sVK1aUPr7tttsA+PWvf83JJ59cpm5qaipff/01q1evJjs7m1q1apGSkkJhYSELFiwonX63YsUK2rZtW3Uvpho70H4uT15eHtOmTePZZ58tLSssLCQ5OZk6depQs2ZN4PDuZ0mSJCkWmOySpCjIyMhg+/btAOzatYuTTjqJhIQEzj33XDIzM1mzZg2TJ0/mxhtvZPTo0Zx55pkkJSXx6KOPAnD99dczYMAAEhISeOSRR4DwXQlHjBgRrZdULf2wnwGGDRvGm2++yZIlSxgzZgwDBgzg+uuv5y9/+Qs333wzW7ZsoX///nTu3Jm///3vDBkyhB07dhAIBLjvvvsAmD59OoMGDYrWS5IkSZK0Hya7JKmK5OTkkJOTs8/tZ5xxBq+//joDBw4kNze3zLbGjRtz4403AuFpjjNnziyzfeDAgQwcOLD08e7du/nqq6/KrFd1uDiYfv73v/+9x/a//OUvAKXrpv3Q3haif//99/nlL3956AFLkiRJqlImuyQpSi6++OJK21diYiITJkyotP3Fk8rsZ4CHH364UvcnSZIkqXK5QL0kSZIkSZLihskuSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN1ygXtXO1l1QsDk6bWenQ1pSdNqWJEmSJEkVZ7JL1U7BZrhsZnTaHt8LutWPTtuSJEmSJKninMYoSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihskuSZIkSZIkxQ0XqFdcyL81h20L8wgkJhFISCSl2ZE0HTaW9K4Doh2aJEmSJEmKIEd2KW40HTaW7k9upcuktdRqfzxL7jyT4m2boh2WJEmSJEmKIJNdijvBpGQanDSCkp1b2bm6INrhSJIkSZKkCDLZpbhTUriDda+NJ5iaTkrTttEOR5IkSZIkRVDMJLuKiooYPXo0mZmZ1KxZk/79+zNr1iwCgQBTp06NdniqBr6cMpq5F9Zl3uWt2L7sY7JH/ZeE1PRoh6U4Fgrt/XdVnRL7WZKqld0lsLEQdu6OdiSSpB/bvhs2FkHxYXgNHRML1IdCIYYOHcqsWbMYM2YM2dnZTJkyhSFDhgDQvXv3iMUSrJHIcXdeRpPenUmpn872td+wYOJLLJz4UsRi0N41vfB2Gg+5Idph6DBQHILnl8MTy74vO/tNOK81nN0SEmPma4TqLRSC176EKUu+LzvtNTi7Ffy8NdSMiXcwSYpP63bCowUw9XPYthsCwAkN4aJs6NEg2tFJ0uHtrTXw7wKYsyH8uF6N8DX0sDaQlhTV0CImJj4qPPTQQ0ybNo25c+fSsWNHAHJycsjKyiIjI4MWLVpELJZgQgI7vtrIq+ffzpYVa8k4qiUnPT6KnV9vZPmLeRGLQ1J0FIfglg/hjdXhC/vvrNwGd8+D97+CPx1jwqsy3PsZTF5Sdgjy1zvhwYXw1mp4sBfUiol3MUmKL19uhxHvhBNe3w0WCAF5X8O7X8HobnBG5C7PJUk/MHER3L8Qgj/4sPJNEUxYBG98Cf/qDXVrRC++SImJj2Pjxo1j2LBhpYkugISEBLKysujevTvr16/n1FNPpX379nTu3JmzzjqLr7/+ukpi2b2jkDl/eoIty9dAKMSG+ctZ+eqHNDy2Q5W0J6l6eW55ONEF31/g//D3GWvLjvjSoZm5NpzoAijZy/aFm+Afn0U0JEnSt/7nI1i/s+z7IISnmoeAO+bCqm1RCEySDnOfbAgnumDP5T9CwIqt8Od5EQ8rKqp9smvx4sUsW7aMs88+e49tK1eupHv37gQCAX73u9+Rn5/PvHnzaNOmDTfffHNE4gskJtCoZwe+WbAiIu1Jip5QCB5fWnZE148FgCeXurZURT21rOy3UT8WAl5cGZ46I0mKnILNMHfD3r+I+E4IeM5LY0mKuKeWlZ/kKSG8TMj6nZGKKHqq/QSQVatWAdCwYcMy5QsXLmTFihV0796djIwMcnJySrcdd9xxPPDAAwfcRu3atSkqKtqjvE1iPX6X3rvc5x535wh2bd3BkqffOuD2Dlf9+uWwZPc3+62X2v542tyRe1D7bj/24OrvS79+OWzPdzqq9i6hdn2OmvhluXVCwOodULtpFrs3lF9X+9Zx8gaCKbXKrbOzGJof3Z/tC2dGKKr41+mp8JVPcnJKlCOJb/Zz5NjXlS/j5Ctodvm95dYJAfdPe48buveNTFCHCY/nyLCfI8N+rhpH/nM5SRlNyq1THIL2/c9iy+z/i1BUh66kpLyvVspX7Ud21a9fH4CCgoLSslAoxE033URJSckei9OXlJTwwAMPcMYZZ1R5bMeMuYQjjm7Paz8fS8kuhxdIcS9Q3piuPSpXWRiHhQPt64P6m0iSKuwAz7sB3wclKfK8hi5V7Ud2dejQgezsbG655RaSkpJIS0vjgQceYM6cOaSmptK+ffsy9X/1q1+RlpbGtddee8BtbNmyZa/la2ct5KXBo/a67djbfkGT3p15eegfKNyw9+errOnTc2l07JH7rTd3PVwWpYEa06fn0q1+dNpW9VcSgsGvw5ode65T8kNHpMD7Xy4lIf7fQ6rMVe/C7HXlT5OpEYQVs94g/TBYYDNSerwQ/rewsDC6gcQ5+zly7OvKt2AjXDSj/DoB4LKf9uS3N9jvlcnjOTLs58iwn6vG7z6A3DXlL6kSBD57/Vka1oxYWIds5syZ9O5d/my7fan2I7sSExN55plnaNKkCZdccgkjR45k0KBB9O3bly5duhAMfv8SbrjhBhYvXsyTTz5ZpryyHXv7pTTp0yWc6Fq/ucrakVS9BANwXuvyE10AQ1thoquCzssqP9EVAAY1x0SXJEVYh7pwVN3y11WE8C3uJUmRdW7W/hNdOU2IiURXRVX7kV0AXbt2JS+v7DpK//jHP+jb9/t1AG655RZmz57N//3f/5GcnFxlsdRq3oCjLjuV4p1FnPP+faXla99fyOs/H1tl7UqqHs7Pgve/Ct9efW961IdhbSIbUzzq2xiGtITnV4QTWz98zw4ALdPguqOiFJwkHeZu6w6XvgNbd5X9YiJI+PH1ncLnaUlSZPVoABe1Cd/VfG/X0I1qwu86Rym4CIuJZNeP7dixg/z8fEaOHAnA/Pnzueuuu2jXrh0nnHACAFlZWTz//POV3va2L9bxSJNzKn2/OnBfv/xPvpn5FKGSYtr94TUCiUkArHt9IuteHU9i3YZkjZxMQmpt5l/TgcS6jQBoc/NzJNbOiGboigOJQfhrT3hsCTy5DL7+9k4mDZLhnCy4uA3USIhujPEgEIBbusCRdWDK0vBtkgHSEsNJsOFtHdUlSdHSqjZMPhEmLIaXvoBd32a8OtWDX7SFExtHNz5JOpxddxRkp8PkAij4dsWlmgkwuAVc2g4yqm5sULUSk8muTz75hOLi4tLF6Tt27EgotL+JRYoHRV9/zo4V82h3+xtlykPFu1n/5iTa//EdNs2exrrXxtNo8G9IymhGu9tfj1K0ildJwfDF/EXZ8NW363c1TAknwlR5AoHwNJizWsJXO8MfphqmmEyUpOqgWS34n25wQyc4cVq4bGKfqIYkSSJ8DX1aJpzaHI55MVz22k8h5TC7ho7Jj2Y9e/YkFArRo0ePaIeiCNs851VKdm5j0aj+fPn4mNLy3ZvXUeOIFgSCQWq27My2/PC0112b1pL/+xP54pHfmRBVpUsIQJNUaJpqoqsqBQLhIdfNa5nokqTqJjUmvzqXpPj3wxsuHm6JLojRZJcOX7s2fQWBAO3ueJPCtcvYvnQuAInpR1C4uoCSop1snT+D4m2bAGh/5wza3zWDkqKdbJ49LYqRS5IkSZKkSDDZpZiSkFqH2p3CNyao3fFEdq7KByCQkECjITey+A8/Zcfyj0vX6UpMqwdA3WNPZ8fn86MTtCRJkiRJihiTXYopaUcez44V8wDYsWIeyQ1blW6rd/xZtB+bS612Palz9CBCu3dRsqsQgK0L80hulBWNkCVJkiRJUgSZ7FJMSW3zE0LFu8m/NYeSwu0EkpJZP30yAJ8/eDWLRg9gy/wZ1Ot1LsXbN5F/0wnk//5EClflU/e4IVGOXpIkSZIkVTWXlFTMybzsb2Uep7buBkCLK+8vU56Y3oAOf50doagkSZIkSVJ14MguSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN0x2SZIkSZIkKW64QL2qnex0GN8rem1LkiRJkqTYZbJL1U5aEnSrH+0oJEmSJElSLHIaoyRJOiC5ublkZWWRk5PDJZdcssf2sWPHsnjx4n0+f8OGDRx99NGkpaXtdfusWbPo1asXJ5xwAqNGjWLBggWMGzeu0uKPFRXtZ4Bf/epX9OnThzvvvHOPbT/+O7z88svk5OSQk5ND/fr1mTt3LsuXL6dJkybk5ORw8cUXAxy2fw9VXFWeO3bs2MGpp55K3759GT58OIDHryTJZJckSTpwI0aMIDc3lzp16pCXl1daXlJSwieffELbtm33+dzatWvz2muvcdxxx+11e/fu3Zk5cybvvvsueXl5NGvWjI8++ohQKFTpr6O6q0g/f/jhhyQmJvL222/z0UcfsXbt2jLbf/x3+OlPf0pubi7Tp0+ndevWdO3aFYDTTjuN3NxcHn30UQA6dOhw2P49VHFVde549dVX6d27N2+99RZJSUl8+umngMevJB3uTHZJkqSD1qlTJ1atWlX6+OOPP6Zdu3blPicpKYmMjIxytwMUFxfTtGlTUlNTad26NfPnz6+coGPQofTz+++/T//+/QHo27cvs2fPLrN9X3+HDz74gB49ehAIBAB45ZVX6NOnD4899lhpncP976GKq+xzR1ZWFtu2bQNg69at1KlTB/D4laTDnckuSZJ00PLy8sjOzi59vHjxYlq1alXh/U6ZMoUOHTpQt25dEhMTadmyJYsWLarwfmPVofTzxo0bSU8P33Gldu3abNy48YDamjp1KoMHDwagSZMm5Ofn8+qrr/LPf/6T9evXAxz2fw9VXGWfO7Kzs3n77bfp0KEDgUCAzMxMj19JkskuSZJ04CZMmEBOTg7NmjWjW7due63z2Wefla4B9d3PH//4xwPa/4UXXsjChQv58ssvmTdvXiVGHlsq0s9169Zl8+bNAGzZsoW6deseUJvTp08vHRGWnJxMamoqNWvWpE+fPixZsqQyXpYOY1V17pg0aRLnnXceCxYsoEGDBrz77rsev5Ik78YoSZIO3IgRIxg1atQe5W3btuW5554D4KijjiI3N/eg911YWEhycjLBYJDatWuTkpLCihUr6NWrV0XDjjkV6ecPPviAxx9/nNNPP50ZM2Zw7rnn7re9pUuX0rx5c2rUqAGEp4OlpaURCoX48MMPufbaawEO27+HKq6qzh0lJSWlUxwzMjLYuHGjx68kyZFdkiSp4rp27Up+fv5+6w0cOJA5c+YwcOBAPv30U9asWcPdd98NwAsvvEBOTg4nnngizZs3p23bthQUFNCpU6eqDj9mHEg/H3PMMRQWFtKnTx+6du1Ko0aNyvQz7Pl3+OEURoB3332XHj16cMIJJ3DyySfTpEkTAP8eqnQVPXdceOGFPPzww+Tk5DB37lxOOukkj19JkiO7JEnSgfluWtHeBINBunTpwuLFi8u9q9rrr7++R9mNN94IwNChQxk6dGhp+YIFCzj66KNLF0w/XFRGP993331lHjdu3Li0n2HPv8OPEwAnn3wyJ598cpmyw/XvoYqr6nPHq6++Wqbc41eSZLJLkiRVir1NUaqIDh060KFDh0rdZzyo7H4+UP49VFUicUx7/ErS4cVpjJIkSZIkSYobJrskSZIkSZIUN5zGqGpn6y4o2BydtrPTIS0pOm1LkiRJkqSKM9mlaqdgM1w2Mzptj+8F3epHp21JkiRJklRxTmOUJEmSJElS3DDZJUmSJEmSpLhhskuSJEmSJElxw2SXJEmSJEmS4oYL1Csu5N+aw7aFeQQSkwgkJJLS7EiaDhtLetcB0Q5NkiRJkiRFkCO7FDeaDhtL9ye30mXSWmq1P54ld55J8bZN0Q5LkiRJkiRFkMkuxZ1gUjINThpByc6t7FxdEO1wJEmSJElSBJnsUtwpKdzButfGE0xNJ6Vp22iHI0mSJEmSIihmkl1FRUWMHj2azMxMatasSf/+/Zk1axaBQICpU6dGOzxVA19OGc3cC+sy7/JWbF/2Mdmj/ktCanq0w5IkSZIkSREUEwvUh0Ihhg4dyqxZsxgzZgzZ2dlMmTKFIUOGANC9e/eIxnPcXZeReVIPktJT2bV1Byv+m8eHt/+bkl27IxqHymp64e00HnJDtMOQpJjz6TcwZcn3j3/2GpzdCoa2grSkaEUVf5ZvgceWfv/4pJdhcAs4vzU0SIleXNKh2FwETy2DZ1d8Xzb6I/h5aziybtTCkiQJiJFk10MPPcS0adOYO3cuHTt2BCAnJ4esrCwyMjJo0aJFRONZ8PDLfHjbZHbvKCQ5ozY5D11Pl+vOYu5fnopoHJIkVdS0lTBmDhD4vmzNDrhvQXjbv3pB3eSohRc3PlwH170Hu0u+L/umCCYVwIvf9nOLtOjFJx2MdTvhsnfgi+1ly1/5Al5dBXceDQOaRic2SZIgRqYxjhs3jmHDhpUmugASEhLIysoqHdV15pln0rVrV7p3706fPn2YO3dulcWzadEX7N5RGH4QCBAqCVG7dZMqa0+SpKrwxTYYMxdKgJLQnttXbIU7Po50VPFn2264flY40VXyo20hwkmv330Aob38DaTq6P/NgS+371n+3bnk1tnw1Y6IhyVJUqlqn+xavHgxy5Yt4+yzz95j28qVK0uTXZMmTeLjjz9mzpw53HDDDVx66aVVGlfna8/k5wWTueDTiWR0bMlnD/23StuTJKmyPbu8/ARLCfDWGlizlw+1OnAvrQwnvH6c6PpOSQgKtsDHGyIalnRIlm+F97/e9/EcAopD8PyKfVSQJCkCqv00xlWrVgHQsGHDMuULFy5kxYoVpcmuOnXqlG7btGkTweCB5/Fq165NUVHRHuVtEuvxu/Tee33OvH/8h3n/+A912jaj9Vl92PHVNwfc3uGqX78cluzefz+ltj+eNnfkHtS+2489uPr70q9fDtvz8yplX5JU3WXf/QE1W3Upt04I6Dr4UjbOeCwyQcWhFtc/TvoxZxBI2PdlV6ikhNN/PZavnr4jgpHFv05P7QQgOdlF0SpLxkmX0+yX/yi3TkkoxN9efI/ruuZEJqjDhMdzZNjPkWE/R0as93NJyb6+Wtm/aj+yq379+gAUFBSUloVCIW666SZKSkrKLE5/2WWX0aJFC2699VYmTZoUkfg2LV7Fhvkr6PP36yLSniRJlaW85EuZesGEKo4kzgUTIRDYT6WQ/ayYcCDnjUAg4PEsSYqqaj+yq0OHDmRnZ3PLLbeQlJREWloaDzzwAHPmzCE1NZX27duX1h0/fjwAkydP5sYbb2TatGkH1MaWLVv2Wr521kJeGjxqv88PJiWQ7ppd+zV9ei6Njj1yv/XmrofLZkYgoL2YPj2XbvWj07YkRdof5sD/rdz3dKTvzHjqX7Sr86+IxBSPxufDg/nl1wkEE5g07hb6PXpLZII6TPR4IfxvYWFhdAOJI59sgEvfKb9OELjkpGO56Xr7vTJ5PEeG/RwZ9nNkxHo/z5w5k9699z7bbn+q/ciuxMREnnnmGZo0acIll1zCyJEjGTRoEH379qVLly57na540UUXMX36dNavX1/p8STVTiX73BxqpKcCUK9DS7qOPJsvc13BV5IUW85uVX6iKwh0rgft6pRTSft1ZksIljOwKwjUT4Y+jSIWknTIOteDNrXL/xBRQvj8IklStFT7kV0AXbt2JS+v7DpK//jHP+jbty8AW7du5ZtvviEzMxOAF198kYyMDDIyMio/mFCI1mefyDFjLiFYI5Gd6zazYtr7zL37ycpvS5KkKtSpHlySDZMKIEB4fa7vBIHURBjVNUrBxZEGKXBTZ7jrk3C//jDBGCScCLvjJ5BY7b+ClMIzcv/wE7j8HSgsLns8f3ceubI9ZKdHKUBJkoiRZNeP7dixg/z8fEaOHAnAtm3bGDp0KNu2bSMhIYGMjAxefPFFAvtdH+Pg7dq6g1fPu63S9ytJUjRc2wEya4UTXiu3hcuCAejfGK7qAC3TohtfvDi7VXj01vhFsHDT9+XHHgFXHhlOPEqx4sg68EgfeGBh+I6t3yXKW6bB8LZwWmZUw5MkKTaTXZ988gnFxcWli9M3atSI9957L8pRqap9/tCv2LFsLuk/GUSTod+vafLFwzew/s1JNB9xD/VzhgGQf2s/vrv0anHF/STWzmDpn88HoGjdShqe9isanTEy0i9BkqqdQCA8zW5wC1i+FXYUQ5OaUC852pHFn5wm4Z8vtsGmIjgiBRrWjHZU0qFpkw5/PhbW74S1O8MjQVvWOoB7MUiSFAExmezq2bMnoVBo/xUVN7Yt/pBAMJH2d73Nkj+ew66Na0mqG17cpNGQG0lp0alM/UAwgXa3v16mrP3YXACW/vkC6hx9akTilqRYEQhAVu1oR3F4aF4r/CPFg/op4R9JkqoTV4dQTNi26H1qd+kPQO1OfdleMLt023dJr7JC5N+aw/K/X0ZJ0c7vS3fvomjtMlKatavqkCVJkiRJUhSY7FJMKN62kYTU8EqnwZq1Kd62sdz6rW96hvZjc6mZ2YF1r00oLd/yaS5pnXKqMFJJkiRJkhRNJrsUExJq1aV4+2YASnZsIaFW3XLrJ6aFV/qtc+wZ7Fw5v7R846wXqNtzcJXFKUmSJEmSostkl2JCrXbHsmXedAC2zJ9BavbR5dYv3r4FgG0L86jRMKu0fNui96nVrmfVBSpJkiRJkqIqJheo1+GnVttjWP/GI+T/vg/p3U9h14bVbJ7zKvX7XcSa5+5m/ZuPQCDA7k1f0Wjwb1n0PwMJJtUgoVZdsn7zbwC2L51DaquuBILmeCVJkiRJilcmuxQzWlx5X5nHqa27AdD4rBtpfNaNZbZ1+PP7ezw/tXV3Wl77ryqLT5IkSZIkRZ9DXCRJkiRJkhQ3THZJkiRJkiQpbpjskiRJkiRJUtxwza5qpvffrmHXtp28f+uEaIeyh58XTOalM/+HDZ8uq9J2stNhfK8qbaLctiVJUvzLzc1l+PDhtGzZkpYtWzJp0qQy2ydPnkyTJk0YOHAgffr0Yc6cOSxcuJDmzZuXqbdy5UouvvhiioqKuP/+++natSuXXHIJS5YsITk5mUcffZRmzZoxfPhwJk6cSCAQiOTLlKSYU1nn5xkzZnDjjeG1nW+55RYGDx7M5ZdfzqJFiyguLmbixIm0a9fO83OcMtlVhRqf0JFu159L/S6tAVj/yVLm/vkp1uTNj3JkYd2uP5f6XdvwxsV3HVD9x7IvquKIwtKSoFv9iDQlSZIOYyNGjGDUqFFcd9115OXlcfzxx5due/HFF3nyyScBePrpp7n55pv3uo9x48bxt7/9jaZNm3LllVfy7LPP8oc//IFWrVrxxhtvcN9993HnnXfSs2dPpk+fTv/+/SPy2iQpllXG+fmee+7h+eefJyMjg9NOO43Bgwdz//33k5SUxNtvv82DDz7IX//6V8/PccppjFWk+cCjOWnKKFa+PpunfnIFT/3kCla+PpuTHh9F8wE/2etzAgmV9+cIJCZU2r4kSZLiWadOnVi1alXp4w0bNpCSklL6LX/jxo33+dyCggK6du3KEUccwbZt2wBo1aoVAAkJCaX76NevH9OmTauiVyBJ8aki5+e2bduyadMmtm3bRu3atQFISkoCYOvWrXTq1Anw/ByvTHZVkZ53XErB07nMf+AFdm3Zzq4t25n/wAsseeYtjr3jUgDOmXU/XUaezakvjGXY0sdo0LUNAEm1Ush56Hp+vngyZ751D01zuu63vcbHd+TnBZNpN2wg53zwAGe8/mcAmpzYhZ+9Mo4L8ydxxht/ocVPjwGgxU+PofN1Q2jWrxs/L5jMzwsmE6xR/kC/X6x+hvpd2xBICHLhokep2z4z3PYJHfnF6mdo+bNwtr1mw7pc/PkTJKXVPLTOkyRJiqC8vDyys7NLHxcUFNCyZcsDem5JSck+f7/zzjsZMWIEAC1btmTRokWVFLEkHR4qcn4ePHgwp5xyCl27duXKK68sLR8wYADXXnstxxwT/mzs+Tk+meyqAultmlK7ZSOW/WfmHtuWPv8O6a0ak966CQDZQ3OYef39PJZ9Eeu/XQsr68zeLH3+baYceQmf/P15+k/8HamNM/bbbmLNZBp0y+Y/J47kv4NuonarxgycdDOf/uM/PH7UcGaP/Td9H/gNGR1b8fnLHzDv3udZNX0uj2VfxGPZF1FStPuAXl+ouIS17y+gSe/OADTp05nNy1bTpHc4M96kd2fWf7KUXVt3HND+JEmSomHChAnk5OTQrFkzunXrdkj7CAaDe/199OjRnH/++bRu3bqiYUrSYacyzs+jR4/mgw8+YMGCBYwbN660/I033uC5555jzJgxlROsqiWTXVUgJSM8RHLH2g17bNvx1TfhOvXDK6HnT36NTYtXESopKU02rXnvMz5/aRah4hKWPjODbz5bQavTj99jXz8WCAaZfedj7N5RSPGOIrIGn8Da9xew/MU8QsUlrHpzDp+/+iFthvat8Gtc886nZZJbc//8VGnyq3GvTqye+WmF25AkSapKI0aMIDc3lzvuuKNMeXZ2NitWrDigfbRp04ZPPvmEdevWUatWLQCeffZZNmzYwKWXXlpab8WKFbRt27bygpekOFYZ5+eEhATS09NJTU2lsLAQoPTfOnXqULNmeCaS5+f4ZLKrCuzcsAWAmo32HI1Vs2G9cJ31mwHYturrPeps+6Js2daVXx/QyK7dOwop/LZtgNQm9dn6432tWEtqk4qv/r76nXk0Ou4oaqSnkt66Kcv+M5OEGomkNsmgSe9OrH57XoXbkCRJioaMjAy2b99e+njYsGG8+uqrXHDBBbzxxhsAXH/99QDcdNNNXHfddQwePJhRo0YB8Nvf/paPP/6YnJwcxo4dC8D06dMZNGhQhF+JJMWXgzk/jxw5kn79+nHCCSeUfvkwZMgQ+vXrx6WXXsqtt94KeH6OV96NsQpsXvIlWz5fS9YZJ7DmRyOcsgafwJbP17J56WoAQiWhPZ5fq/kRZR6nZR7B1x/tfw5x6AfrRABsX72exsd3/NG+GrJ99fq91j8YG+YvJ1RSwlGX/4yvPlhIqKSE1e98SrsLB5LasB5ffbDwkPctSZJU1XJycsjJydnn9jPOOIPXX3+dgQMH8u9//3uP7X/5y18AaNGiBbm5uWW27W3Uwfvvv88vf/nLCsUsSYeDyjo/n3baaZx22mlltu1tIXrPz/HJkV1VZNb/PEL2ef3oeMXpJKXVJKl2Kkdd8TOyz+3HrNEPl/vcxscdRebJPQgkBGl9Vh/qHdWS5f/33kHHsGzquzTq2YGWp/UkEAzSrF83Mk/pwZJnZgCwY90majVrcMh3gVzz7nyO+uVprH4nPIpr9cx5HPXL0/hq9iKKC3cd0j4lSZKqg4svvpiBAwdW2v4efvjhMmt6SZIOjednHQhHdlWRla98wOvD7qTrb8+h243nArD+k6W8PuzO0uTQviz7zzu0GdqXE+/7NdtWr2f6ZX9m+5frDzqGLcvX8Oalf+Inv/85ve65hm1ffM2Ma+9lw7cL4S9/MY/WZ/bm/E8nEggEeKLLiANepB5g9dvzaPWz41n9Tnj02up3PqVGei3X65IkSZIkSVFjsqsKrX5nXrmJrWeOvXqPsndG3ndIba3Jm89j2RftUb5q+lxWTZ+71+cUbdzKy2f/vwPaf+DbTPcPk2H5j75K/qOvlj7esfYbHmlyzkFELUmSJEmSVLkcq6cDUq9jS0p27d7rgvqSJEmSJEnVhSO7Ysjg3HtIa95gj/KVr85mxtV/q/D+Bz52K416HrlH+a6tOwkmJTD7zikUbd6+l2dKkiRJkiRVDya7YsjUnN9U6f5f//nYKt2/JEmSJElSVTPZpWpn6y4o2BydtrPTIS0pOm1LkiRJkqSKM9mlaqdgM1w2Mzptj+8F3epHp21JkiRJklRxLlAvSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihmt2KS7k35rDtoV5BBKTCCQkktLsSJoOG0t61wHRDk2SJEmSJEWQI7sUN5oOG0v3J7fSZdJaarU/niV3nknxtk3RDkuSJEmSJEWQyS7FnWBSMg1OGkHJzq3sXF0Q7XAkSZIkSVIEmexS3Ckp3MG618YTTE0npWnbaIcjSZIkSZIiKCaSXUVFRYwePZrMzExq1qxJ//79mTVrFoFAgKlTp0Y7PFUTX04ZzdwL6zLv8lZsX/Yx2aP+S0JqerTDkiRJkiRJEVTtF6gPhUIMHTqUWbNmMWbMGLKzs5kyZQpDhgwBoHv37lGJKyGlBoPf/As1G9blseyLohKDymp64e00HnJDtMOIqpIQvPElPLUM8jdBQgCObwjntYauGdGOLr7kfRXu54/Whx93zYBzs6BXQwgEohubdLCWbYEnl8HrX8LOYmhRC85qBT/LhJSEaEcnHZyNRfDccpj6+fdl9y+AoVlwRErUwpIkAbPXha85vnPVuzC0FfRr4jW0Kle1T3Y99NBDTJs2jblz59KxY0cAcnJyyMrKIiMjgxYtWkQlru43nsfWL9ZRs2HdqLQv/djuEhj1UfjDahAo+bb89dXw6pfwm47w8zbRjDA+hEJw72cweUnZfn7va3j3Kzg/C67v5Ju1Ysdba+CmD8LJ8u+O58Wb4Y+fwAufw/3HQ1pSVEOUDtgX2+CXM+GrnWXLH14MzyyHB06A9nWiEpokHfYmLIIHFkLwB9fJs9fBB+vgtObw/7qX3SZVRLWfxjhu3DiGDRtWmugCSEhIICsra49RXX/4wx8IBAJ8+umnVRpT/S6tadavG5/e958qbUc6GJMKwoku+P4DK4Q/wALcMz/8ZqKKeWVVONEFe+/nJ5bBf1dGPCzpkKzZDjd/CMWhssfzt4czCzaGk15SLAiF4PpZsG7nXrYBW3fBr9+DXSV7bpckVa2Za8OJLvj+uhm+v/74vy/giaURD0txrFonuxYvXsyyZcs4++yz99i2cuXKMsmujz76iPfee4+WLVtWaUyBhCAn/PlK3rtlPCVFu6u0LelA7S7Z/5tDEN9AKsOUpeWfOAPAY0vCH7qk6u65FeHzx74O1xDhkaF7Sx5I1c3s9bBkS9nE7Q+VAOsKYfrqSEYlSQJ4fOn+R21NWVo2ESZVRLWexrhq1SoAGjZsWKZ84cKFrFixojTZVVhYyDXXXMPjjz9OTk7OQbdTu3ZtioqK9ihvk1iP36X3LlPW6erBrJ+3jLXvLaDx8R33eI72rV+/HJbs/ma/9VLbH0+bO3IPat/txx5c/X3p1y+H7fl5lbKvSEpp3Z22494rt04J8MbnO0nu4/yNQxWsVZeOj6wtt04IKNgCaY1bsHtj+XWlaMu+exYpLbsQKGfebUkIOv7sF2x8+/EIRiYdvMY/H0uDM35DILjvheZCxbu56i9T+OK+yyMYmVQ5Oj0V/uYhOdnF56qS/VwFgkE6PbGNQKD8sTZrdkDd1l0o/DI/QoHFv1g/nktKDn04drUe2VW/fn0ACgoKSstCoRA33XQTJSUlpcmu//mf/2HYsGG0atWqSuOp3aox7S8+mQ9vn1yl7UgHK5BwYAvqHGg97d3B9F8gsUYVRiJVjkBCjXITXaX1PJ4VAwKJSRDa/0Wxx7MkRVYgmLjfRFdp3UQ/r6hyVOuRXR06dCA7O5tbbrmFpKQk0tLSeOCBB5gzZw6pqam0b9+evLw8PvzwQ/74xz8ecjtbtmzZa/naWQt5afCo0seNjj2Smg3qcNbMewEIJiaQVKsm58+fyPQRd7P2vQWHHMPhYPr0XBode+R+681dD5fNjEBAezF9ei7d6ken7YrYWAQ/fQV2lzPsNwBk101gdmFhxOKKN8WhcD9/s+dA0DLSk+CblQUkVeuvEyS4dTa89uX+pwy88fhDdKz3UGSCkg7RC5/DbXPLrxNISOTWy89n+J/Oj0hMUmXq8UL430Kv5aqU/Vw1znwdVm3f99IJAMlB+HLBbGpV6yxFbIn143nmzJn07t17/xX3olp/FEtMTOSZZ56hSZMmXHLJJYwcOZJBgwbRt29funTpQjAY5K233mLBggVkZWXRqlUrvvjiC0455RReffXVSo9n2Yvv8uwJ1/LCwBt4YeANzLz+QXZt38kLA2/g648WV3p70oGqWwNOalb+f+gQcG5WpCKKTwkBOKdVOHG4LwFgSEtMdCkmnNOq/ERXEGiXDkfVjVBAUgWc3BRSE8o/RycE4IzMiIUkSfrW0KzyE11B4LRMTHSp0lT7j2Ndu3YlLy+P7du3k5+fz1VXXcWcOXNKpzDefPPNfPnllyxfvpzly5fTvHlzXnnlFU4++eRKj6V4RxHbV28o/SlcvxlCIbav3uBi9Yq6aztA/ZR9/6fuUR9ObxHRkOLSsGxoU3vvH6aCQMs0+EXbSEclHZpuGXD2Pu7rEiSctB3VDQ5gpqMUdSmJMLpb+PcfH7LfPf5tp/B7pSQpss5pBV3q7fsaulFNuKJ9hINSXKv2ya4f27FjB/n5+WXuxBgta/Lm81j2RdEOQwLCbxAP94H+Tcre6SQ1AX7eGv73OEcbVYZaifCv3nBmS6jxg/5MCoa/jZrQG2q71IBiRCAAN3WB646CjOSy245uABP6OKpLseWkZnBPT8hOL1ueWQvGHg3nOcJZkqIiOQHuOz480yTlB/cRSQiEz90P9/HLCFWumBsk+Mknn1BcXLzPZNfy5csjG5AiatuiWayc8BsIhajdpT/Nht1Rum3d6xNZ9+p4Eus2JGvkZBJSa/PFwzeydeG7BGuk0PrGp0hMj8EFuQ5C45rwx2Ng3U746bczeV85BWrG3P/06q12EtzaNZwg6PdSuOzlk6GOax4rBgUDcHE2XNgajvtvuOw/A6B5rejGJR2q3o2gV0NYsiX8fli3BrSv4whFSYq2molwY2e4ugMs2BheSiE7fc8v3KTKEHMfgXv27EkotJ+VdBW3Ult358hx4dXrF40eQPH2zSSkphMq3s36NyfR/o/vsGn2NNa9Np4GAy9l+/KPOXLcTDa8NYUNbz9Ow9OujfIriIwGP/hWxERX1fnhCC4TXYp1iT8YqWiiS7EuEAh/gPrxCC9JUvTVSoQeDaIdheKdk5oUU767FW2ouJikjKYEk1MB2L15HTWOaEEgGKRmy85sy88jmJxKQmodQiUlFG/fRGJaRjRDlyRJkiRJEWCySzFnw1tTmH9tBxJq1SWQEB62lJh+BIWrCygp2snW+TMo3raJQGISNeo3Z/41R/LVf/9O3eOGRDlySZIkSZJU1Ux2KeZk9L2QjvctZNeGL9mxfB4AgYQEGg25kcV/+Ck7ln9MYt1G7Fi5gF0bVtHx/nyaDhvL2hfuiXLkkiRJkiSpqrmaj2JKya5CgknJBIJBEmrWJlDj+8Wp6h1/FvWOP4tvZj5NqHg3hEpISKtHIBAgsXYGxds2Ri9wSZIkSZIUESa7FFM2zXqBr6bdByUlpHU8kZKd21g/fTL1+13E5w9ezc5V+aRkHkXmiL8RSEiAUIj8358IhGj160nRDl+SJEmSJFUxk12KKfV6DaVer6FlylJbdwOgxZX371G/5TUPRSIsSZIkSZJUTbhmlyRJkiRJkuKGyS5JkiRJkiTFDZNdkiRJkiRJihuu2aVqJzsdxveKXtuHg9zcXIYPH07Lli1p2bIlkyaVXbx/8uTJNGnShMzMTC699FKCwSA9evTgnnvuKVPv/PPPZ82aNWzZsoXMzEz+85//kJOTA8DXX3/NSSedxJ///GeuvPJKxo8fH6mXJ0mSdFg50Gu7gQMHAvCf//yHG2+8kcWLF5ep98QTT/D73/+eAQMGlF67jRkzhqlTp1KnTh1++ctfcuGFF3LNNdfwpz/9iVq1akXmBVYTB9PPffr0Yc6cOSxcuJDmzZuXqTdjxgxuvPFGAG655RYGDx7M5ZdfzqJFiyguLmbixIm0a9eO4cOHM3HiRAKBQMReoxQvHNmlaictCbrVj85PWlK0X33kjBgxgtzcXOrUqUNeXl6ZbS+++CIDBgygQYMGvPLKK7z99tusW7eORYsWlan3xBNPkJubyy9/+UtOPfVUIHwRkJubyxlnnMGpp55KYmIiRxxxBEuWLInYa5MkSTrcHMi13XeeffZZMjMz99jHSSedxGuvvbZH+d///ndyc3O58MILATj99NN58sknK/kVxIYD7eenn36ac845Z6/7uOeee3j++ed56623uPfeewG4//77eeutt7jrrrt48MEHAejZsyfTp0+vwlcjxS+TXdJhrlOnTqxatar08YYNG0hJSSEQCFC/fn3S0tIASEhI2Oe3Si+++CKnn356mbLc3NzSUV45OTm89NJLVfMCJEmSVKq8azuAN998k969exMM7vlRsH79+iQm7jn5Z+TIkZx22mksX74cgBNPPJFXXnmlal5AjNhfPzdu3Hifz23bti2bNm1i27Zt1K5dG4CkpPC37lu3bqVTp04A9OvXj2nTplXVS5Dimsku6TCXl5dHdnZ26eOCggJatmxZps78+fNZt24dbdu23eP5W7duZcuWLTRp0mSPfdSoUQOAli1b7jEqTJIkSZVvf9d2EydO5JJLLjng/f3617/mww8/ZMyYMdx0000ApKam8s0331Re0DHoQK6h92Xw4MGccsopdO3alSuvvLK0fMCAAVx77bUcc8wxgNfQUkWY7JIOUxMmTCAnJ4dmzZrRrVu3fdbbvHkz1157LQ899NBet7/yyiv89Kc/LVM2depUBg8eXJnhSpIkqRwHcm334YcfctRRR5GSknLA+61Xrx4AxxxzDOvXr6+MUGPagV5Dl2f06NF88MEHLFiwgHHjxpWWv/HGGzz33HOMGTOmcoKVDmMuUC8dpkaMGMGoUaP2KM/OzmbFihUAhEIhLr30Um677TaaNm261/1MnTqVm2++uUzZtGnTeO6550ofr1ixYq+jwiRJklQ5DuTa7tNPP+W1115jxowZzJ07l7Fjx3LrrbeWu98tW7ZQu3Ztli5dWrog/fbt26lbt26lv4ZYcCD9vD8JCQmkp6dTo0YNCgsLASgsLCQ5OZk6depQs2ZNwGtoqSIc2SWpjIyMDLZv3w6E19168803GT16NDk5OcyePZs1a9Zw9913A1BcXMyiRYs46qijSp+/bt06kpKSqFOnTmlZbm4ugwYNiuwLkSRJUplru1/84hdMnz6dl19+mW7dupUmuq6//noAXn31VYYNG8ZLL71UOtXxpptuolevXlxyySXcfvvtQPhugieffHIUXk319cN+Bhg2bBivvvoqF1xwAW+88QbwfT+PHDmSfv36ccIJJ3DppZcCMGTIEPr168ell15a+neZPn2619DSIQqEQqFQtIOortbOWshLg/fM2uvQDJp6B42OPTLaYRw2erwQ/vfDMw7+uY8++ihNmzYtvT11RezevZsrrriCCRMmVHhf1VFF+lmqbjyeJan6qi7XdgDXXHMN48aNK72RUTypTv08fPhwJkyYsNebCUgHItav7WbOnEnv3r1555136NWr10E912mMkvZw8cUXV9q+EhMT4zbRJUmSFAsq89oO4L777qvU/cWLyu7nhx9+uFL3Jx1OTBFLkiRJkiQpbpjskiRJkiRJUtww2SVJkiRJkqS4YbJLkiRJkiRJccNklyRJkiRJkuKGd2NUtbN1FxRsjk7b2emQlhSdtiVJkiRJUsWZ7FK1U7AZLpsZnbbH94Ju9aPTtiRJkiRJqjinMUqSJEmSJClumOySJEmSJElS3DDZJUmSJEmSpLjhml2KC/m35rBtYR6BxCQCCYmkNDuSpsPGkt51QLRDkyRJkiRJEeTILsWNpsPG0v3JrXSZtJZa7Y9nyZ1nUrxtU7TDkiRJkiRJEWSyS3EnmJRMg5NGULJzKztXF0Q7HEmSJEmSFEEmuxR3Sgp3sO618QRT00lp2jba4UiSJEmSpAiKmWRXUVERo0ePJjMzk5o1a9K/f39mzZpFIBBg6tSp0Q5P1cCXU0Yz98K6zLu8FduXfUz2qP+SkJoe7bAkSZIkSVIExcQC9aFQiKFDhzJr1izGjBlDdnY2U6ZMYciQIQB07949YrH0/ts1ZA3pTcmu3aVluZf/hVXT50YsBu1d0wtvp/GQG6IdRlSFQvD+1/DM8u/L/vgJnNMKss37KQYt2wJPL4d31sLuEmhfJ3w8n9AQAoFoRycdnI2F8J/P4eUvYGMRNE6FwS1gUDNIiYkrMkmRVhIKvwc+u/z7sr98CkNbQYu0aEUVnz5aD08v+/7xbXPh3FZwZN0oBSSpQmLi0uqhhx5i2rRpzJ07l44dOwKQk5NDVlYWGRkZtGjRIqLxLPr367x/64SItintT0kI7voEnl8BwR8kAZ5bHr5AGtUt/KFKihXTVsKYuUAISr4tW7cT3l4LpzWH/+kOCSa8FCMKNsNV78I3Rd+XrS+ET7+Bx5fCgydARnL04pNU/ewugVEfwetflp2O88TScFJm7NEwoGnUwosboRDc+xlMXlK2n//7ObzwOfy2I1zYJmrhSTpEMTGNcdy4cQwbNqw00QWQkJBAVlZW6aiuVq1aceSRR9KtWze6devGK6+8Eq1wpah4fGk40QXhxNd3SoAQcMdcmLchCoFJh2DhJhgzJ3wsl/yg/Lvf/+8LmOz9JxQjiorhV+/BpqKy5d+dqpdvgd9/GPGwJFVz/1oUTnRB2ffCEFAcgltmh0dAq2JeXBlOdMHerzn+Oh/e+yrSUUmqqGqf7Fq8eDHLli3j7LPP3mPbypUry0xhfOaZZ5g7dy5z587llFNOqbKYWp/Vhws+e5gzZ/yNLr8+i0BCte9GxbniEPx7Sfl1AsATy8qvI1UXTy7df53HloS/9ZaquzdWw9c7y36I+qESYPZ6WLQpklFJqs52Fpf/XhgiPCLpKa/tKiQUCn95Vt5A8SDhaw5JsaXaT2NctWoVAA0bNixTvnDhQlasWFEp63XVrl2boqKiPcrbJNbjd+m9y5R9NmEaH94+mZ0btlC/S2v63j+ShOQazPnTExWOI97165fDkt3f7LdeavvjaXNH7kHtu/3Yg6u/L/365bA9P69S9hVJKa260PbuD8qtUwK8tHQ7fz6hXmSCOkx0emonAMnJKVGOJL4c9fAaEtLKP1a/KYIGXfqwY/GsCEUV/zyeq0bmyMnUOe4sAgn7vuwKhUrof+Uf+Pq5P0YwMknVVa1OObT+f+XPVCkBpnz0Jf9zTFZkgopDSUe05Mj7F5VbpwR496sSUmqlE9q9KzKBSZUk1q/tSkoO/Zvtaj8kqX79+gAUFHw/XyUUCnHTTTdRUlJSJtn185//nC5dunD11VezcePGKolnw7xl7Fy/GUIh1n+8hDl/fpKswb2qpC3pQAVr1DygeoEkF4RRbAjUOLA35AM99qVoCtaouf87KpSECCZ7PEsKO+BrO98HK+SA+zkQJJDodbQUS6r9yK4OHTqQnZ3NLbfcQlJSEmlpaTzwwAPMmTOH1NRU2rdvD8Dbb79NZmYmhYWFjBw5kmuvvZZ///vfB9TGli17n+y+dtZCXho8qvwnl4TKH/eqUtOn59Lo2CP3W2/uerhsZgQC2ovp03PpVj86bVfEhkL46atl1+r6sQDQKj2B2YWFEYvrcNDjhfC/hfZrpbowFxZv/n5No70JAAtmvkojr/Mrjcdz1bj3s/A0mXKP54QEHrz9Zk595OaIxSWp+lq5FYa8WX6dIHB0Zj3mes4+ZNt3w8CXoWg/g0fqJ8P2jeu9E7RiTqxf282cOZPevXvvv+JeVPuRXYmJiTzzzDM0adKESy65hJEjRzJo0CD69u1Lly5dCAbDLyEzMxOA5ORkrr76ambOrJpsSaszTiCpdioA9Tq0pOv1Q1n+39ib9qb4kpEM/RqX/x86BJzTKkIBSRV0TqvyEwNBoHcjTHQpJgxpsf/EbVoi9PeuapK+lZkGPeqXf21XApzjDMYKSU2E0zLL7+cAMLTV/gfoSqpeqv3ILoCuXbuSl1c2ofSPf/yDvn37ArBt2zZ2795NnTp1CIVCPPHEE3Tr1q1KYjnyF6dw/LhfEkxKYMfajSx55i0++fvzVdKWdDB+dRR8sA627t5zhFcAOKounNkiGpFJB+9nmeE7Ln6yYc8kQTAAqQnw66OiEpp00DLTYHhbeHjxntsChI/xm7tASkKkI5NUnV3fCS59BwqL936Di2MbwEkmySvs8nbwzlpYv5cbiQSBVmlwfutoRCapImIi2fVjO3bsID8/n5EjRwKwdu1azj77bIqLiykuLuaoo47i/vvvr5K2Xz7r/1XJfqWKal4LHu4Df/wknPT6TmIABjWHGzpDSkz+j9fhqEYC/OO48O2+/7sSdv3g6rNbRjgx0Kp29OKTDtbVR0K9GuGE1zc/uCdOs1S47ihHdUnaU9s6MKE3jJsHH2/4vrxGEAa3gF93hMRqP0+n+mtYEx7uDXd9Au9+9f2XbMFAOJn4u86QlhTVECUdgpj86PvJJ59QXFxcujh969atmTNnTpSjUiRs/ewdvnj4BggEqXfC2TQ68/rSbfm35gCwe9PXpHc7iczL/sb8azqQWLcRAG1ufo7E2hnRCDtiWqbBAyfA51th0eZwoqtbBtR1PU3FoJqJcGtXuLYDDHg5XPZM//A3rFKsCQTgwjZwbhYc999w2fhe0DXDqTGS9q3dtwmvpVvCP0lBOLq+yZfK1jgV/vc4+HI7LNgYHnXbJQMaxOYN7CQRo8munj17EgqVt/qF4lWNRq1pd+cMgkk1yL+1H0cMuopgcngNtfZjcwFY9ejvqd25HwBJGc1od/vr0Qo3alqkhX+keFCnxve/m+hSrPvhKIxYvCGKpOhoXTv8o6rVNDX8Iyn2OfBVMaVG/aYEk8KffAPBBAjseQhv+TSXtE45AOzatJb835/IF4/8zgSpJEmSJEmHAZNdikmb575GcpM2BGuUHVu8c3UBNY5oWZoQa3/nDNrfNYOSop1snj0tGqFKkiRJkqQIMtmlmFO07gvWPHMXzYf/ZY9tm96fSt2eg0sfJ6bVA6Dusaez4/P5EYtRkiRJkiRFh8kuxZSSXYUs/99f0OLKB0iouefiPZtmT6PO0acCENq9i5JdhQBsXZhHcqOsiMYqSZIkSZIiLyYXqNfha8NbU9i58jNWPHAFAM2GjaVwzVLq97uI3ZvXEUhIIqFWHQCKt29i8ZhTCCbXokaDTJoMvSWaoUuSJEmSpAgw2aWY0mDgcBoMHF6mLK1DLwAS0xvQdszLpeWJ6Q3o8NfZEY1PkiRJkiRFl9MYJUmSJEmSFDdMdkmSJEmSJClumOySJEmSJElS3HDNLlU72ekwvlf02pYqS25uLsOHD6dly5a0bNmSSZMmldk+efJkmjRpwsCBA7nqqqtYuHAh3bt3569//WuZeh9//DFXX301NWrU4NFHHyUzM5OCggKuvfZaCgsL+c1vfsOpp57KlVdeyfjx4yP5EquFg+nnPn36MGfOHBYuXEjz5s3L1Pv973/PW2+9RUJCAvfffz+dO3fm8ssvZ9GiRRQXFzNx4kTatWvH8OHDmThxIoFAIJIvU5IkSao0B3MNDfCf//yHG2+8kcWLF5epN2PGDG688UYAbrnlFgYPHsw111zDn/70J2rVqhWZF7MXjuxStZOWBN3qR+cnLSnar17xZsSIEeTm5lKnTh3y8vLKbHvxxRcZMGAA77//PsnJyUyfPp1gMMicOXPK1Lvtttt4/vnn+dvf/sa4ceMA+MMf/sATTzzB9OnTOeOMM0hMTOSII45gyZIlEXtt1cmB9DPA008/zTnnnLPXfVxxxRW8++67PPLII9x1110A3H///bz11lvcddddPPjggwD07NmT6dOnV+GrkSRJkqregV5DAzz77LNkZmbusY977rmH559/nrfeeot7770XgNNPP50nn3yyaoPfD5NdkhQBnTp1YtWqVaWPN2zYQEpKCoFAgGXLltG5c2cAOnfuvMcbzbZt22jYsCFdu3aloKCAoqIiVq5cycUXX8zgwYNZu3YtADk5Obz00kuRe1HVUHn9DNC4ceN9PrdVq1YAJCQklNZPSgpnwLdu3UqnTp0A6NevH9OmTauK8CVJkqSI29819Jtvvknv3r0JBvdMIbVt25ZNmzaxbds2ateuDcCJJ57IK6+8Epng98FklyRFQF5eHtnZ2aWPCwoKaNmyJQDt27fnrbfeAsLDgDdt2lTmuSUlJWV+X7duHZ9++imTJk1i5MiRpaOQWrZsyaJFi6r6pVRr5fXzgRo9ejRXX3116eMBAwZw7bXXcswxxwD2syRJkuLL/q6hJ06cyCWXXLLX5w4ePJhTTjmFrl27cuWVVwKQmprKN998U7VB74fJLkmqQhMmTCAnJ4dmzZrRrVu3vdbp3r07rVq1on///gA0bNiwzPYffoMSDAapU6cOnTt3pl69evTp04f8/Pwqiz9WHEg/H4h//etfZGVl0avX9wsHvvHGGzz33HOMGTOm4oFKkiRJ1cSBXEN/+OGHHHXUUaSkpOx1++jRo/nggw9YsGBB6ZIr1YEL1EtSFRoxYgSjRo3aozw7O5sVK1aUPr7tttsA+PWvf83JJ59cpm5qaipff/01q1evJjs7m1q1apGSkkJhYSELFiwonX63YsUK2rZtW3Uvpho70H4uT15eHtOmTePZZ58tLSssLCQ5OZk6depQs2ZN4PDuZ0mSJMWPA7mG/vTTT3nttdeYMWMGc+fOZezYsdx6662ldRMSEkhPT6dGjRoUFhYCsH37durWrRuR17AvJrskKQoyMjLYvn07ALt27eKkk04iISGBc889l8zMTNasWcPkyZO58cYbGT16NGeeeSZJSUk8+uijAFx//fUMGDCAhIQEHnnkESB8R5URI0ZE6yVVSz/sZ4Bhw4bx5ptvsmTJEsaMGcOAAQO4/vrr+ctf/sLNN9/Mli1b6N+/P507d+bvf/87Q4YMYceOHQQCAe677z4Apk+fzqBBg6L1kiRJkqQq9cNr6F/84hf84he/AGDgwIGlia7vrqFHjhxJv379CIVCXH755UB4aZYff4EfaYFQKBSKagTV2NpZC3lp8J5ZTh2aQVPvoNGxR0Y7DKlS9Xgh/O+HZxz8cx999FGaNm1aejvfiti9ezdXXHEFEyZMqPC+qqPq0s8Aw4cPZ8KECXtdoDPWVaSfdeDsZ0mSFAnRuoa+5pprGDduHGlpaQff8A/MnDmT3r17884775RZZuRAOLJLkqLk4osvrrR9JSYmxm2iq6Iqs58BHn744UrdnyRJklTdVOQa+rsZEdEUf19LS5IkSZIk6bBlskuSJEmSJElxw2SXJEmSJEmS4obJLkmSJEmSJMUNk12SJEmSJEmKG96NUdXO1l1QsDk6bWenQ1pSdNqWJEmSJEkVZ7JL1U7BZrhsZnTaHt8LutWPTtuSJEmSJKninMYoSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihskuSZIkSZIkxQ0XqFdcyL81h20L8wgkJhFISCSl2ZE0HTaW9K4Doh2aJEmSJEmKIEd2KW40HTaW7k9upcuktdRqfzxL7jyT4m2boh2WJEmSJEmKIJNdijvBpGQanDSCkp1b2bm6INrhSJIkSZKkCIqZZFdRURGjR48mMzOTmjVr0r9/f2bNmkUgEGDq1KnRDk/VSEnhDta9Np5gajopTdtGOxxJkiRJkhRBMbFmVygUYujQocyaNYsxY8aQnZ3NlClTGDJkCADdu3ePeEzNB/yE7jedT3qbpuzeuoNPH3yR+Q+8EPE49L0vp4xmzdN3EEhMJiXzKLJH/ZeE1PRoh6U4tXwrPLv8+8d/mgfntILWtaMVUXxauwOeX/H94zFz4OyW0KkeBALRi0tS9bWrBN5cDS9+Dl/vhLo14NRMOKUppMTEla8kSRWzbidM/fz7x7fOhrNbQfeMw+caOibe8h966CGmTZvG3Llz6dixIwA5OTlkZWWRkZFBixYtIhpP075dOf7uK3jnun+wJm8+iTWTqdWsQURj0J6aXng7jYfcEO0wdBh4elk4ufVDzyyDp5bBbzvChW2iE1e8eWsN3Pwh7C75vmzaSvjvSrigdbivD5c3a0kHZmMhXJMH+ZvD0xdKCP87ez08vAgePAEap0Y5SEmSqtCsr+G3s2Bn8fdlr30Jr6yC0zNhVDdIOAyuoWNiGuO4ceMYNmxYaaILICEhgaysrNJRXTt37uSqq66ibdu2dO7cmV/+8pdVFk/3353PJ397ltXvzCNUXMKurTvYmL+yytqTVH289xWMmwchwj/f+S4f89f5MGNNFAKLM0s2w00fhBNde+vnx5fCk8uiEZmk6uymD2Hx5vDv350vvvv3y+1w3XtQEtrbMyVJin2rt8Nv3ofC4rLl3733vbgSJi6KfFzRUO2TXYsXL2bZsmWcffbZe2xbuXJlabLrd7/7HSkpKSxatIh58+Zx++23V0k8iTWTadCtDTWPqMuQt/+X8z4ZT/9HbiIts2GVtCepenm0oPwTZ/DbOqqYJ5eF35TL+0w6qQCK/dAq6VsLNoZHcJXsY3sJsHQr5H0VwaAkSYqgZ5ZDUUn519BTlu6ZDItH1X4a46pVqwBo2LBsMmnhwoWsWLGC7t27s3XrVh599FG++OILAt/OaWnUqNEBt1G7dm2Kior2KG+TWI/fpfcuU1ajbi0CwSAtT+vJaxfcwY71mzj2tuH0m3AjL55848G+vMNKv345LNn9zX7rpbY/njZ35FZ1OHvVr18O2/PzotK2qr9gShodJ68vt04JMHcDpDZoSvGW8utq3zpMXE1i7Yxy63y9E+p3PIEdS2ZHKKr41+mpnQAkJ6dEOZL4Zj9XjUbnj+GIIb8jEEzYZ51Q8W4uGjuJVf+8OoKRSZIUGe3+sYDkRq3LrbNlFzQ97lS2fvJGhKI6dCUl+/oKa/+q/ciu+vXrA1BQ8P1QiVAoxE033URJSQndu3dnyZIl1K9fnz/84Q/06NGDnJwc3nnnnSqJZ9fW8AXqZ+OnsfWLryneUcRHd02hfucs1+2KovZjc12vS1UumFLrwOsmH3hd7SmYfGCL6gRT0qo4EkmxIpiSBqH9XxR73pAkxauEA3yPO5jPNbGq2o/s6tChA9nZ2dxyyy0kJSWRlpbGAw88wJw5c0hNTaV9+/bMnTuXpUuX0r17d+6++27ef/99Tj/9dAoKCkhP3//d+LZs2bLX8rWzFvLS4FFlynZt2c7WlV9ByLkzB2v69FwaHXvkfuvNXQ+XzYxAQHsxfXou3epHp21Vf7tLYMDLsG13+fVSEmDd54tJ2ffgAu3H0DfDd7zc35l2/juv0sTFpitNj29vKlxYWBjdQOKc/Vw1nlwGd88rv04wIZHfDj+Pq/90XmSCkiQpgka8DfO+2feU/u+8+9+naVsnIiFVyMyZM+ndu/f+K+5FtR/ZlZiYyDPPPEOTJk245JJLGDlyJIMGDaJv37506dKFYDBIixYtSExM5IILLgCgZ8+eNGjQgEWLqmbltfxHX6XDZaeR2rQ+CclJdP/d+az7eAnbVq2rkvYkVQ+JQTijBZR385Ig8LNMTHRV0Nmtyk90BYHjjsBEl6RSg5pBjQO4sh0c2Zt4S5IUMWe1Kj/RFQSOqktMJLoqqtonuwC6du1KXl4e27dvJz8/n6uuuoo5c+aULk7foEED+vXrx2uvvQbAokWL+Oqrr8jOzq6SeObdN5VVb87hjFf/xNCPHiK1UQbTR9xdJW1Jql4uyYYGKXs/eQaBuskwvG2ko4o/g1tAu/S9JxaDQI0E+NVRkY5KUnWWXgOu6VB+nYuyoVn8z9yQJB2mTm4G3TL2fg0dAIIB+G3HSEcVHTGR7PqxHTt2kJ+fX5rsAnjwwQe588476dy5M+effz6TJ0+mbt26VRNAKMTssf/miU4jeKLjcN4cPs5RXdJhokEKTOwNP9nLdNeuGeFtjWpGPq54UzMRHjwB+jXZ8826dW345wnQ/jD4RkrSwfl5G7i5M6QnlS1PTYCrj4Rf7ScZJklSLEsKwr3HwaDm4cTWD7VIg/tP4LBZtqfar9m1N5988gnFxcVlkl2tW7cmNzc3ekEpYr5++Z98M/MpQiXFtPvDawQSw1e0616fyLpXx5NYtyFZIyeTkFqb+dd0ILFu+M6cbW5+br93d5MORJNUeLAXLNsCH28Il3WuB232v0SgDkJ6DfjTMbBmB3zwNewqgXZ1oGNdCJQ3l1TSYe2crPCU83e/ghs+CJe9egqkxORVryRJByc1EW77CVx3FLz3FRSWQJva4S/mD6dr6Jh82+/ZsychF4g/LBV9/Tk7Vsyj3e1lb5MaKt7N+jcn0f6P77Bp9jTWvTaeRoN/Q1JGM9rd/nqUolW8y6od/lHValwTTneNHUkHoUYC5DT5/rGJLknS4aZBCvzsML6GjslpjDp8bZ7zKiU7t7FoVH++fHxMafnuzeuocUQLAsEgNVt2Zlt+HgC7Nq0l//cn8sUjvzNBKkmSJEnSYcBkl2LKrk1fQSBAuzvepHDtMrYvnQtAYvoRFK4uoKRoJ1vnz6B42yYA2t85g/Z3zaCkaCebZ0+LYuSSJEmSJCkSTHYppiSk1qF2p74A1O54IjtX5QMQSEig0ZAbWfyHn7Jj+cel63QlptUDoO6xp7Pj8/nRCVqSJEmSJEWMyS7FlLQjj2fHinkA7Fgxj+SGrUq31Tv+LNqPzaVWu57UOXoQod27KNlVCMDWhXkkN8qKRsiSJEmSJCmCTHYppqS2+Qmh4t3k35pDSeF2AknJrJ8+GYDPH7yaRaMHsGX+DOr1Opfi7ZvIv+kE8n9/IoWr8ql73JAoRy9JkiRJkqqa96ZRzMm87G9lHqe27gZAiyvvL1OemN6ADn+dHaGoJEmSJElSdeDILkmSJEmSJMUNk12SJEmSJEmKGya7JEmSJEmSFDdcs0vVTnY6jO8VvbYlSZIkSVLsMtmlaictCbrVj3YUkiRJkiQpFjmNUZIkHZDc3FyysrLIycnhkksu2WP72LFjWbx48T6fv2HDBo4++mjS0tL2un3WrFn06tWLE044gVGjRrFgwQLGjRtXafHHior2M8CvfvUr+vTpw5133rnHth//HV5++WVycnLIycmhfv36zJ07l+XLl9OkSRNycnK4+OKLAeLu71GVx/OOHTs49dRT6du3L8OHDwc4LPpUkqTqwmSXJEk6YCNGjCA3N5c6deqQl5dXWl5SUsInn3xC27Zt9/nc2rVr89prr3HcccftdXv37t2ZOXMm7777Lnl5eTRr1oyPPvqIUChU6a+juqtIP3/44YckJiby9ttv89FHH7F27doy23/8d/jpT39Kbm4u06dPp3Xr1nTt2hWA0047jdzcXB599FEAOnToEHd/j6o6nl999VV69+7NW2+9RVJSEp9++ilwePSpJEnVgckuSZJ00Dp16sSqVatKH3/88ce0a9eu3OckJSWRkZFR7naA4uJimjZtSmpqKq1bt2b+/PmVE3QMOpR+fv/99+nfvz8Affv2Zfbs2WW27+vv8MEHH9CjRw8CgQAAr7zyCn369OGxxx4rrROvf4/KPp6zsrLYtm0bAFu3bqVOnTrA4dWnkiRFk8kuSZJ00PLy8sjOzi59vHjxYlq1alXh/U6ZMoUOHTpQt25dEhMTadmyJYsWLarwfmPVofTzxo0bSU8P33Gldu3abNy48YDamjp1KoMHDwagSZMm5Ofn8+qrr/LPf/6T9evXA8Tt36Oyj+fs7GzefvttOnToQCAQIDMz87DrU0mSoslklyRJOmATJkwgJyeHZs2a0a1bt73W+eyzz0rXgPru549//OMB7f/CCy9k4cKFfPnll8ybN68SI48tFennunXrsnnzZgC2bNlC3bp1D6jN6dOnl44IS05OJjU1lZo1a9KnTx+WLFlSGS+r2qmq43nSpEmcd955LFiwgAYNGvDuu+8eNn0qSVJ14N0YJUnSARsxYgSjRo3ao7xt27Y899xzABx11FHk5uYe9L4LCwtJTk4mGAxSu3ZtUlJSWLFiBb169apo2DGnIv38wQcf8Pjjj3P66aczY8YMzj333P22t3TpUpo3b06NGjWA8NS7tLQ0QqEQH374Iddeey1A3P09qup4LikpKZ3imJGRwcaNGw+bPpUkqTpwZJckSaqwrl27kp+fv996AwcOZM6cOQwcOJBPP/2UNWvWcPfddwPwwgsvkJOTw4knnkjz5s1p27YtBQUFdOrUqarDjxkH0s/HHHMMhYWF9OnTh65du9KoUaMy/Qx7/h1+OIUR4N1336VHjx6ccMIJnHzyyTRp0gTgsPl7VPR4vvDCC3n44YfJyclh7ty5nHTSSYd9n0qSFEmBkLd/2ae1sxby0uA9v+3ToRk09Q4aHXtktMOQJO1DjxfC/354xqE9/4477uC8884r9w52B2PBggVMnTqVm2++uVL2V11Ut34+ULH496hIX0ein2OxTyVJipSZM2fSu3dv3nnnnYMeBe00RkmSVCn2Nh2sIjp06ECHDh0qdZ/xoLL7+UAdbn+PSPTz4dankiRFitMYJUmSJEmSFDdMdkmSJEmSJClumOySJEmSJElS3HDNLlU7W3dBwebotJ2dDmlJ0WlbkiRJkiRVnMkuVTsFm+GymdFpe3wv6FY/Om1LkiRJkqSKcxqjJEmSJEmS4obJLkmSJEmSJMUNk12SJEmSJEmKGya7JEmSJEmSFDdcoF5xIf/WHLYtzCOQmEQgIZGUZkfSdNhY0rsOiHZokiRJkiQpghzZpbjRdNhYuj+5lS6T1lKr/fEsufNMirdtinZYkiRJkiQpgkx2Ke4Ek5JpcNIISnZuZefqgmiHI0mSJEmSIshkl+JOSeEO1r02nmBqOilN20Y7HEmSJEmSFEExk+wqKipi9OjRZGZmUrNmTfr378+sWbMIBAJMnTo1YnH8vGBymZ+LP3+CM974S8Ta1759OWU0cy+sy7zLW7F92cdkj/ovCanp0Q5Lkqq9nbvhPyu+fzz2Y5j/TfTiiVe7S+D1L79/PPojmPU1hELRiykelYQg7yu4dfb3ZdNXh/tfkiQdHmJigfpQKMTQoUOZNWsWY8aMITs7mylTpjBkyBAAunfvHrFYHsu+qMzjM974C8umzoxY+9q3phfeTuMhN0Q7DEmKKQWb4Zo8WF/4fdnUFfD8CjgjE27tBgmBqIUXN77aEe7nZVu/L3tlFbz0BRx3BNx9DNSMiauy6m3rLvjN+zBnAwR/cNze+AG0TYd/HAf1U6IXnyRJioyYuKx66KGHmDZtGnPnzqVjx44A5OTkkJWVRUZGBi1atIhKXA26ZVO3XXMKnpwelfYlSaqILbvg6ndhY1HZ8u8GwLywMpwYuKZDxEOLK8UhuPY9WLG1bHnJtyO63v8abpsLd/WIeGhxZ9RHMHdD+PeSH42YW7IZfjMLJvWBgAlcSZLiWkwku8aNG8ewYcNKE10ACQkJZGVlkZSUxPLlyznzzDNLt23cuJHNmzezYcOGKo2r7YX9WfXmHHasda6HJCn2/HclbCgqv87jS+EXbaFWTFwxVE8z18LSLfveHiI8vfGabdC8VsTCijsFm+GdtfveXgJ8thE+XAfHHBGpqCRJUjRU+0vXxYsXs2zZMu699949tq1cuZKzzz6bVq1aMXfu3NLykSNHsnv37gNuo3bt2hQV7Xm13yaxHr9L773X5yTWTCZrcC/evu4fB9zO4a5fvxyW7N5/YjC1/fG0uSO3qsPZq379ctienxeVtiUp0lqPfYvU7GMJBPe9hOfOYmg14Hw2v/d8BCOLL81/NZG6vc4jkLDvy66SUIiev7iVdS+4DuihanjuaBqefUu5x3OoeDfn/uFhvvzXtRGMTJIkHYqSkkNfcLPaJ7tWrVoFQMOGDcuUL1y4kBUrVuyxXldRURGPPfYYr7zySpXG1er049m9o4gvXp+9/8qqcu3H5kY7BEmKOQm16pWbGCitl1onAtHEr4TUOvufN1dSTEItb6pSEQmpdSBUTPn3Xwp58xpJkg4D1T7ZVb9+fQAKCgo49thjgfCC9TfddBMlJSV7JLteeOEFmjVrxk9+8pMDbmPLlr3PLVg7ayEvDR61121tfz6AJU/lEir21j4Havr0XBode+R+681dD5dFac3/6dNz6VY/Om1LUqRd9x6899X3a3Tty9RH/0nPI/4ZkZji0Z/mwTPLyu/nQEIifxtzM2c9cnPE4oo3jy2Be+aXXyeYkMSvf3Eev/rTeZEJSpIkHbLNmzczb948OnfufNDP3f/XuVHWoUMHsrOzueWWW3j66ad56aWXGDx4MB999BGpqam0b9++TP2JEydy6aWXVmlM6W2a0rBHexY9/kaVtiNJUlU6s8V+EjBAoxTo0SBSEcWnwfvpZ4AaQTi5WUTCiVuDmkPifgbQhYDTo3NfI0mSdJDS09Pp1asX6ekHPyq72ie7EhMTeeaZZ2jSpAmXXHIJI0eOZNCgQfTt25cuXboQ/MH0i1WrVvHWW2/x85//vEpjantBf9a+v4Aty9ZUaTuSJFWlExtD94xwUuvHAoQTA7/pBAneua5C2teB05qXX+fKIyEtKTLxxKuMZLi0Xfl1zm4JrdIiE48kSYqeaj+NEaBr167k5ZVdNPwf//gHffv2LVM2adIkTjvttNKpj1Vl9h3/rtL9S5IUCYlB+NtxcPtceOPLcHLrO+lJcGNnGNg0WtHFl9HdwsmsZ5fD7h90dM0EuOJI+HnraEUWXy5vFx7dNXFx+OYK30kMwAWt4dqjohebJEmKnJhIdv3Yjh07yM/PZ+TIkWXKH3nkkb3etVHx4fOHfsWOZXNJ/8kgmgy9pbT8i4dvYP2bk2g+4h7q5wwDIP/Wfnz3sa3FFfeTWDuDpX8+H4CidStpeNqvaHTGyEi/BEmqdmolwh97wJfbYcaacIIgs1Z41FdStR//HTsSg+Hk4Yh2MH01bN4FDVOgXxNIjcmrseopEAiP7jo3K9zP6wqhbo1wP9etEe3oJElSpMTk5dUnn3xCcXHxHovTL1q0KEoRqaptW/whgWAi7e96myV/PIddG9eSVLcRAI2G3EhKi05l6geCCbS7/fUyZd/dsXHpny+gztGnRiRuSYoVTVPhfEcXVbmMZDi7VbSjiH9pSa7NJUnS4Swmv7Pt2bMnoVCIHj16RDsURci2Re9Tu0t/AGp36sv2gtml275LepUVIv/WHJb//TJKinZ+X7p7F0Vrl5HSbD+LekiSJEmSpJgUk8kuHX6Kt20kITV8B4ZgzdoUb9tYbv3WNz1D+7G51MzswLrXJpSWb/k0l7ROOVUYqSRJkiRJiiaTXYoJCbXqUrx9MwAlO7aQUKtuufUT0+oBUOfYM9i5cn5p+cZZL1C35+Aqi1OSJEmSJEWXyS7FhFrtjmXLvOkAbJk/g9Tso8utX7x9CwDbFuZRo2FWafm2Re9Tq13PqgtUkiRJkiRFVUwuUK/DT622x7D+jUfI/30f0rufwq4Nq9k851Xq97uINc/dzfo3H4FAgN2bvqLR4N+y6H8GEkyqQUKtumT95t8AbF86h9RWXQkEzfFKkiRJkhSvAqFQKBTtIKqrtbMW8tLgUdEOI24MmnoHjY49cr/15q6Hy2ZGIKC9GN8LutWPTtuSJEmSJKniHOIiSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihmt2laNoy3a+WfB5tMOIG/U6tKBG7dT91tu6Cwo2RyCgvchOh7Sk6LQtSZIkSZIqzmSXJEmSJEmS4obTGCVJkiRJkhQ3THZJkiRJkiQpbpjskiRJkiRJUtww2SVJkiRJkqS4YbJLkiRJkiRJccNklyRJkiRJkuKGyS5JkiRJkiTFDZNdkiRJkiRJihsmuyRJkiRJkhQ3THZJkiRJkiQpbpjskiRJkiRJUtww2SVJkiRJkqS4YbJLkiRJkiRJccNklyRJkiRJkuKGyS5JkiRJkiTFDZNdkiRJkiRJihsmuyRJkiRJkhQ3THZJkiRJkiQpbpjskiRJkiRJUtww2SVJkiRJkqS4YbJLkiRJkiRJccNklyRJkiRJkuKGyS5JkiRJkiTFDZNdkiRJkiRJihsmuyRJkiRJkhQ3THZJkiRJkiQpbpjskiRJkiRJUtww2SVJkiRJkqS4YbJLkiRJkiRJccNklyRJkiRJkuKGyS5JkiRJ+v/t3Xl8VPW9//H3TBZIDAEChDVAIICBSJKibAEZEBW0oohYURQVrrteehX1h9BLrWgp9ZZrsbRcUGsUey0Xi1pkq4yABsKSENaQxCSEyB6BACHbnN8fI4GQFUjmZE5ez8cjD+Z8z3dmPjN+PTPznu/5DgDAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMX7MLAAAAAAAAjVdR/jn9uPeA2WVYRsvIzvJvFmh2GaYi7AIAAAAAAKb5ce8BfXX3DLPLsIzRy99Q2/7Xm12GqTiNEQAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACzDa8KuoqIizZw5U2FhYQoICNCIESOUmJgom82m5cuXm10eLOpUkbQkQ/pNsjQnRdp4RCo1zK4KAGAY0o486e1d0uvJ0qJU6XCB2VUBAIC6ZPOxq/9vHtOEPe/rwX1/1eC3n5ZPEz+zy4IX8DW7gNowDEPjx49XYmKiZs2apYiICC1ZskRjx46VJMXGxppcIaxoWZY0d5dU7JJ8bJIh6e9ZUth10h8GSF2DTC4QABqpk4XSS1uk5Dz3t3Y2m+QypL+kSg9HSM9FSnab2VUCAIBr1feFe9VucJSWj3hRpcUluuWDV9RvxsNKnPme2aWhgfOKmV0LFy7UihUrtHbtWj355JO65ZZbtHDhQvn4+CgkJESdO3c2u0RYzJpc6c0Ud9AluWdzuX6a0ZV7TnrqW/eHLQCAZ5W4pOc2SSl57m2X3MdoQ+6/D9OlRftNLBAAANSZHg/dop3vLNO5w3kqPHFayW9/qohfOGSze0WUARN5xQiZM2eOJk6cqD59+pS1+fj4KDw8vGxW1/79+zVo0CD17NlTgwYNUlpamlnlwssZhvSnfVJVkwJchnS8UPrsgEfLAgDIfTr5vlPukKsqf02TzhR7rCQAAFAP/IMDFdSxjfJ2Z5a1ndiZKf9mgQoKa2NiZfAGDf40xrS0NGVmZuqdd96psC8nJ0fjxo2TJD311FN69tlnNXHiRH300Ud68skn9fXXX9d4+6dPn1a7du1UUlIim41zHiAFdO+niN9+V20fw3Dpv/6VoaeiojxUFQBAkjq/+DcF33SXbD5Vv4UpdEnd75ysk9985MHKAADA1eru21IvBw8p1+YbFCBJKjp1rqyt6NRZSZLfT/tQueHDHcoo+dHsMuqEv7+/8vPzr/h6DX5mV25uriQpNDS0XPu+ffuUnZ2t2NhYHT16VNu3b9eECRMkSRMmTND27dt17NixGm9/586dKigokGGw6jjcfJuH1tjHZrPXqh8AoG75tmhbbdBV1o9jNAAAXq3kjPuXZ/yCA8va/JtfJ0kqPsOv0qB6DX5mV6tWrSRJ6enp6t+/vyT3gvWvvPKKXC6XYmNjlZOTo44dO8rHx0eS+xTHDh06KCcnR23a1G56o9PpVFxcXP08CHiV3T9KkzbU3C88tLmSClm4CwA8adoW6ZtD1Z/GKEl/+a+39PO/v+WRmgAAwLU5krhPX909o1xb0elzOpN7TCF9uup0xg+SpFZR4SrKP6czOTVPbGnM1q1zqm3/680uw1QNPuyKjIxURESEpk+fLj8/PwUFBWnBggVKSkpSYGCgevXqpaSkJLPLhIX0biF1vk7KOete7LgqY/hdBADwuDs7SesOVd+nqY/kaOeZegAAQP1J+/hf6vv8WB3ZvFeuklLFvHi/0v/XKcNV09deaOwafNjl6+urpUuX6qmnntKkSZMUFhamqVOnKjg4WBkZGbLb7QoLC1Nubq5KS0vl4+Oj0tJS/fDDDwoLCzO7fHghm016JlJ6dWvl++2SWjWV7uni0bIAAJKGtHV/KbHvZNWzux6NkIL8PFgUAACoFynvLFOTkGDd4/yDbHabsr7cpG2zWZMTNWvwYZckRUdHKyEhoVzb/PnzNWzYMEnu9bxiYmL0ySefaOLEifrkk08UGxtb61MYgcuN7CDNiJZ+t1MquuzTVKfrpHkDpBb+5tQGAI2Zr116Z6A0LVFKyrvYbvvp75EIaXJPs6oDAAB1ySh1KXHme0qc+Z7ZpcDLeEXYdbmCggKlpqZq6tSpZW1//vOfNWnSJL3++utq2bKlPvzwQ/MKhCXc00Ua0V5acVD6/S532zsDpYFtJDs/3AkApmnhLy2Mk3aflB79aY3Fp6+Xfh4mhfLjTAAAAI2eV4ZdKSkpKi0tVWxsbFnb9ddfr82bN5tYFawo2F96oNvFsGswP+4FAA2CzSZFtby4/TizuQAAAPATrwy7BgwYIMOobulwAAAAAAAANEZ2swsAAAAAAAAA6gphFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAyvCbuKioo0c+ZMhYWFKSAgQCNGjFBiYqJsNpuWL19udnkA0OC5DGnTUWn+Hum/d0trcqVil9lVAQAk6cdC6ZPvpXm7pUX7pewzZlcEAObretcgjV7+Gz2UHq/7Ev9kdjnwIr5mF1AbhmFo/PjxSkxM1KxZsxQREaElS5Zo7NixkqTY2FiTKwSAhi3jtDRti3Tg7MVvOVySWvpLb/STBrQxszoAaLwMQ1qYKr2fJpUYko/N/eXEn/dJt7SXZsVKAV7xjh0A6l7hqbPa995KNW3TXH2e+LnZ5cCLeMVL58KFC7VixQolJyerT58+kiSHw6Hw8HCFhISoc+fOJlcIAA3X4QLpiW+l/GL39qWTuU4VSf++SVo0RIpqaUp5ANCoLd4v/c/+i9ulxsXLXx+SzpVI7wyUbDbP1wYAZju0PkWS1HnUTSZXAm/jFacxzpkzRxMnTiwLuiTJx8dH4eHhZbO6XnrpJYWHh8tms2nXrl1mlQoADc4nGdLp4vIh1wUuuWcQ/GWfp6sCAOQXS++lVb3fkJRwTErK81hJAABYQoMPu9LS0pSZmalx48ZV2JeTk1MWdt1zzz1av369unTp4ukSAaDBMgxp+QH3B6aquCRtOiYdP++pqgAAkrT2B6mohrUT7TbpiwOeqQcAAKto8Kcx5ubmSpJCQ0PLte/bt0/Z2dllYdeQIUOu6X4cDofs9gaf/cEkUZ+6U4AmTZqaXAlwZWy+/or6JL/Gfoak7tH9dT5rR/0XBdQhjs/wZqH3vabQ8TNkq+Y9aKnL0JIv1urNgaxVA8C6uvu21MvB1/aZHhcNH+5QRsmPZpdRJ/z9/ZWfX/Pnmcs1+HSnVatWkqT09PSyNsMw9Morr8jlcrE4PQBUwygpkqvwXK36lp7hPBkA8KTSM3nVBl2SJFepSs+c8ExBAABYRIOf2RUZGamIiAhNnz5dfn5+CgoK0oIFC5SUlKTAwED16tWrTu7H6XQqLi6uTm4L1nPj5+5/CwsLzS0EuAqzd0jLsytfs0tyf+sR1VLampteRQ+g4eL4DG92/Lx0xxr32olVsfn46oMXH9CQ3z3gucIAwMOOJO7TV3fPqNBus9tl9/ORzddXstnk08RPhmHIVVRiQpXeY906p9r2v97sMkzV4MMuX19fLV26VE899ZQmTZqksLAwTZ06VcHBwcrIyODUQwCowUPdpBU5UrGr8sDLkPRvdfO9AQDgCrRuKt3XVfo0s/L9dkk9mkuDQivfDwBW1/2+mzXkv58r23446xOdyTmqpf2fMbEqeIMGH3ZJUnR0tBISEsq1zZ8/X8OGDTOpIgDwHl2buX+2/sVE6cxlX4L52qQZMXyQAgCz/Ecf6Wyx9M+D7nDr0i8lrm8hzRsg+dhMKg4ATJb+qVPpnzrNLgNeyCunRRUUFCg1NbXcel0vvPCCOnXqpIMHD2rkyJHq06ePiRUCQMPSr7X01W3SjOiLbS/0llbeJv08zLy6AKCx87VLv/6Z9DeH9EC3i+3vDpI+GCqFNDGtNAAAvJZXhl0pKSkqLS0tF3a98847OnjwoEpKSnT48GHt3r3bxAoBoOEJ8JXu6XJx+5EIqQUfogCgQYgIlv4j6uL2gDaSnRldAABcFa84jfFyAwYMkGFUs5InAAAAAAAAGiWvnNkFAAAAAAAAVIawCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWIbXhF1FRUWaOXOmwsLCFBAQoBEjRigxMVE2m03Lly83uzwA18AwpC3HpA/SpL+mSbt+dLcB3irrjPRRhvTefsl5SCpxmV0RAACeU2pI3x6R3k+T4tOl1FNmVwRvZPf31eDfP6Vxm97VQ2nxGrvxHV3/+Gizy4KX8DW7gNowDEPjx49XYmKiZs2apYiICC1ZskRjx46VJMXGxppcIYCrtfek9No26cDZ8u29mktv9ZM6B5lSFnBVThZJv9oufXe0fHuIv/RajDSsnSllAQDgMdtPuF8LDxeUb48JkWb3k9oGmFMXvI/dx0cFR09q9QO/UX72EYX07qJbP5mh88dOKuuLBLPLQwPnFTO7Fi5cqBUrVmjt2rV68skndcstt2jhwoXy8fFRSEiIOnfubHaJAK7C9/nSE99KB89W3Jd2WpqyUTpaUHEf0BCdL5We+U7adLTivh+LpJcSK4ZgAABYya4fpWcTKn//lpLnfm93qsjzdcE7lRQUKul3f1N+1mHJMJS3O0s5q7cqtH+k2aXBC3hF2DVnzhxNnDhRffr0KWvz8fFReHi4YmNjdeLECd1xxx3q1auXbrjhBt177706duyYiRUDqI3/SZUKS6XKzvByGe6A4OMMj5cFXJWVB6X9pysfzxfOyp23m1N0AQDW9ae9Uqmrivd2kg4VSEuzPFwULMPm66O2AyL1495ss0uBF2jwYVdaWpoyMzM1bty4CvtycnIUGxsrm82ml19+Wampqdq5c6e6d++uV1991YRqAdTW6SLpX4cqfzN0gSHpHwfcwRfQ0H2WLdmq2W/IPZtxL+uWAAAs6PA5KfF49e/tJPfrJXA1Br45WcVnCpTx92/MLgVeoMGv2ZWbmytJCg0NLde+b98+ZWdnKzY2ViEhIXI4HGX7Bg4cqAULFlzR/TgcDtntDT77g0miPj0vSWrSpKnJlVhHk47Xq+e8HTX2O1siXRfSRq5zpz1QVePAeK4fkf+TI98WoTX2GzbmFzq9+R/1X1AjwXiG1TCm4a0Cew1S9zecNfY7dLZUTZoE1n9B8CrdfVvq5eAhVe6/adYktenXS6vGz5KruMSDlXmn4cMdyij50ewy6oS/v7/y8/Ov+HoNPt1p1aqVJCk9Pb2szTAMvfLKK3K5XBUWp3e5XFqwYIHGjBnj0ToBXJnSc7Wb3mKUlshVeK6eqwGuXem5kzJqcY5i6VmmdgEArKe27+1cBVf+oRWNW//XH1WHm/tq1f2/VmEe4we10+BndkVGRioiIkLTp0+Xn5+fgoKCtGDBAiUlJSkwMFC9evUq1//5559XUFCQnnvuuSu6H6fTqbi4uLosHRZy4+fufwsLC80txGIe3+BeyLSq6e52SbeE+WrbuUpWsMdVYzzXj4Wp7r/qtPSXjmxZKb8G/1WT92A8w2oY0/BWhiHdt046cObiWpWXs0u6r08Lvcr4xmWOJO7TV3fPqNDe/zePq/2QKK28b5YKT3CmR22tW+dU2/7Xm12GqRp82OXr66ulS5fqqaee0qRJkxQWFqapU6cqODhYGRkZ5U49fOmll5SWlqYvvviCUxIBL/B4T2nq5sr32STZbNLE7h4tCbhq93aRPvleOltcdYA7qYcIugAAlmSzSVN6SjO3V7Ffkq9deiDco2XBi13XqbV6T7lDpeeLdN/md8vaj2zep7UPzTaxMniDBh92SVJ0dLQSEhLKtc2fP1/Dhg0r254+fbq2bdumf/7zn2rSpImnSwRwFYa0lf5fX2lOivsbwEu/BfS1S7N/JvVpaVZ1wJVp3VSaP1B6YZN0qvhiu13u8Gtid+mhbmZVBwBA/RvdSTpSIM3f6w63Ln1v19RHmnuT1LWZWdXB25w9eFwftL/P7DLgpbzy++WCggKlpqaWrde1e/duvfXWW/rhhx80ePBgxcTEaOzYsSZXCaA2xnWVPh/pnuV1wXOR0j9vlUZ0MK0s4Kr0aSl9fqs7xL1gfLj0N4c0tY/7W28AAKzs0R7SZyPKz87/jz7u93YDa/4dFwCoE14xs+tyKSkpKi0tLQu7+vTpU6tFgQE0TO0Cpaevlxbvd28/2sPceoBrcZ2vO8R9K8W9Pe0GU8sBAMDjwoKkf+8jxWe4tx9kWQoAHuaVYdeAAQMItwAAAAAAAFCBV57GCAAAAAAAAFSGsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFiG14RdRUVFmjlzpsLCwhQQEKARI0YoMTFRNptNy5cvN7s8jys1pO+OSn/PlP6ZI50sMrsiAABgRedLpLU/uN9zfP2DVFhqdkXA1XMZUuIx93j+8oB04rzZFQHXJuO0tCzL/Zd+2uxq6t7At6Zo/NY/68H9H2r89r+o/+uPyu7na3ZZ8AJeMUoMw9D48eOVmJioWbNmKSIiQkuWLNHYsWMlSbGxsSZX6Flf/yDN3SUdu+TF2dcm3dtV+mUfyc9rIkwAANBQGYb013Tp/TTpbMnF9iBf6Yle0oRuks1mXn3AlfruqPTWDulQwcU2H5t0Zyfp5Rukpl7xyQhwyz0rzUqSkvLKt8eESLNipU7XmVNXXdv7/kptfT1eJQWFahLSTI6FL6rvC/cq+e1PzS4NDZxXHNIXLlyoFStWKDk5WX369JEkORwOhYeHKyQkRJ07dza5Qs/51w/Sq1srtpcY0qeZ0tECae5NvPkEAADXZsE+6b20iu1nSqT/2i2dL5Ue7+n5uoCrsemoNHWzO8S9VKkhfZHjDsD+OFDy5UtjeIFj56XJG6W8wor7UvKkxzZI8cOkdgGer62undp/8OKGzSbDZahZt/bmFQSv4RWH8zlz5mjixIllQZck+fj4KDw8vGxW1z333KPo6GjFxsZq6NChSk5ONqna+lPikn6/033ZqKKP87C09bjHSgIAABZ0uMA9o6s6C1Mr/6AFNDSG4T4rwjAqfw9tSNpyXFp/2NOVAVfnr2nu46+rkn0uSaeKpA9qOIZ7kxueu0cPpcdrwq73FNKni/Ys/NLskuAFGnzYlZaWpszMTI0bN67CvpycnLKw669//at27NihpKQkvfTSS3r88cc9XWq923RMOlZYddAlSXab9Fm2x0oCAAAW9MWBmvuUGNKKnPqvBbhWKT9K2WdqeA8taRnvoeEFil3S5wcqD7oucEn6Msc9A9cKds7/hz6OeFif3fzvSv1wtQqO/mh2SfACDf40xtzcXElSaGhoufZ9+/YpOzu7LOxq3rx52b5Tp07Jbr+yHM/hcFzxdTyt1ahn1GHyH6rt4zKkf2zYrrfjBnmoqsYh6lP3AmlNmjQ1uRJr43n2DJ5nz+B59gye5/rR6dlFajH0Adl8/KrsY5QUa+Yf3tPkRS94sDLrY0zXvRY3P6iw59+vto9L0vpdmWriuN4zRTUSjOe659uinSL/p+Zk9nyp1LpzhIqPe8e3Et19W+rl4CHV9jmVlqu83dka+scXtOq+WZ4pzEsNH+5QRok1QkF/f3/l5+df8fUafNjVqlUrSVJ6err69+8vyb1g/SuvvCKXy1VucfopU6Zo9erVMgxDK1euNKXe+lR6vub/wIarVK6CKx8IAAAAF7jOn5FUwwKgdvtP/YCGzVVQ8zg1DJdKeQ8NL+AqPFv7vudr39db2P18FMyaXaiFBh92RUZGKiIiQtOnT5efn5+CgoK0YMECJSUlKTAwUL169Srru2jRIklSfHy8pk2bphUrVtT6fpxOp+Li4uq8/rqUVyjdsdp92kBVbHYfvT5hmO6fziIadenGz93/FhbyvNYnnmfP4Hn2DJ5nz+B5rh9bjklPJ1Tfx2b30T9//6KiFr/omaIaCcZ03TtbIt2+qvpTumw2u/5jVF9NfoHnvS4xnuvHM9+512mu6lRGu02KbiltPXHIo3VdiyOJ+/TV3TPKtfk1C1SX0f11YGWiik6fU8vILoqeOk4/OHeYVKX3WLfOqbb9G/dM1YZ93p4kX19fLV26VO3bt9ekSZM0depUjR49WsOGDVPfvn0rPfXw4Ycf1rp163TixAkTKq4/IU2kMdX88KTdJrX0l+7o5LmaAACA9dzYWurVvOo3ina5f96+TwsPFgVcpet8pV+EV73f/lOfexrPD7zDyz0SUcOaXYY0qYfHyqk/hqFu427WuE3v6qH0eI14/2Ud/FeSNr+22OzK4AUa/MwuSYqOjlZCQvmvF+fPn69hw4ZJks6cOaMff/xRYWFhkqQvvvhCISEhCgkJ8Xit9e3FKOnoeWnjEXe45bpkllewnzR/kBRU9fIaAAAANbLZpHkDpKe/k7IuOQPMLvcHrO7B0u9ucvcDvMHT10uHCqTVuRXfQwf4Su8MlFqxrBS8xMBQ6dW+0pwU9/aF4XzhkPxilDSkrRmV1a3iMwVa/YvXzS4DXsorwq7LFRQUKDU1VVOnTpUknT17VuPHj9fZs2fl4+OjkJAQffHFF7JZ8B1YEx/pv/pLicfcvxjz9U8zU1+Kku4Mk5oRdAEAgDrQpqn08TDpXz9Iv0pytw1oI/28szSiveTX4M8PAC7ytUuzfybd28X9y+Wr3L+BpX/vLd3VWWrhb259wJW6r6t0U2vp/7KkJd+72x7oJo3rInVtZmZlQMPglWFXSkqKSktLyxanb9u2rTZt2mRyVZ5jt7nT/IGhF8+Df6CbuTUBAADraeIj3RF2Mez6Iz/2DC9ms7lP0b2x9cWw6+EIc2sCrkWXIOk/oi6GXS9GmVsP0JB4Zdg1YMAAGUY1q7QDAAAAAACgUWICOgAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAA0KkPmPasBsyebXUalHkqPV0hUuNlleDVfswsAAAAAAAC4Wu0G91HMi/erVd9ukqQTKd8r+fef6nDCbpMrc4t58X61iu6ufz3yVq36fxzxcD1XZH3M7ALgNZxOp8LDw+VwODRp0qQK+2fPnq20tLQqr79x40YNHDhQgwcP1ttvv11pn+eff15Dhw7Vm2++qcTERMXFxWnw4MGaMWOGJGnv3r2aM2dO3TwgALCIaz0+S+WPv1WZN2+eRo4cqaysLLVv314Oh0OPPPJIpX0kjtkA0Bh0GtlPty6ZoZy12/Tpz57Upz97Ujlrt+nWT2ao0y0/q/Q6Np+6i0Jsvj51dluoO4RdALzK5MmT5XQ61bx5cyUkJJS1u1wupaSkqEePHlVet1u3blq/fr2+++47ffnllzp37ly5/Vu3bpWvr682bNig7du3q0uXLvr222/13XffKSEhQadPn1ZkZKS2b98uwzDq7TECgDe6luPz5cffI0eOVOhTXFys5OTksu0777xTTqdTH374YZV9OGYDgPUNeONxpf/dqd0LPldx/jkV55/T7gWfK2PpN+r/xuOSpPsS/6S+U8fpjs9na+L3H6t1dHdJkt91TeVY+KIeSovXPd/8QR0c0TXeX7tBffRQerx6Thyp+7Ys0Ji1v5cktb+5r36+ao4eTP2rxvzrbXUedZMkqfOom3TDC2PVcXiMHkqP10Pp8bL7V3+S3aOHlqpVdHfZfOx6cP+HatErzH3fg/vo0UNL1eXngyRJAaEt9MiBv8kvKODqnjwLI+wC4JWioqKUm5tbtr1jxw717Nmz2ut06NBB/v7+kiQfHx/Z7eUPgZs3b9aIESMkScOGDdO2bdskSaWlperQoYMCAwMluUOz3bsbxpRoAGhorub4XNXx91Lx8fGaMGFC2faqVas0dOhQffzxx1X2kThmA4CVBXfvoGZd2irzH99W2Pf9ZxsV3LWdgru1lyRFjHfo2xf/pI8jHtaJXZmSpPB7huj7zzZoyfWTlPLHzzTivZcV2C6kxvv1DWii1jER+sfNU/Xl6FfUrGs7jfzrq9o1/x/6pPdj2jb7Iw1b8EuF9OmqAyu3aOc7nyl3XbI+jnhYH0c8LFdRSa0en1Hq0pHNe9V+yA2SpPZDb9DpzENqPyTKvT3kBp1I+V7FZwpqdXuNCWEXAK+UkJCgiIiIsu20tDR17dq1Vtdds2aNunfvrqZNm5ZrP3nypIKDgyVJzZo108mTJ7VkyRJFRkaqRYsW8vV1fwPTpUsX7d+/v24eCABYzNUcnys7/l7K5XJp1apVuv322yVJ7du3V2pqqlavXq2//OUvOnHiRIU+F3DMBgDrahrSTJJUcCSvwr6Coz+6+7Ryv76kxq/RqbRcGS5XWdh0eNMeHfgqUUapS98vXa8f92Sr612Darxfm92ubW9+rJKCQpUWFCn87sE6snmvsr5IkFHqUu7XSTqwequ6jx92zY/x8MZd5cKt5N9/WhZ+tYuL0qFvd13zfVgRYRcAr7J48WI5HA517NhRMTExlfbZs2ePHA5Hub/f/va3kqSDBw/qrbfeqnTNrhYtWuj06dOSpPz8fLVo0UIPPvig9u3bpx9++EE7d+6st8cFAN7uWo7PlR1/L7Vs2TKNGTOmbLtJkyYKDAxUQECAhg4dqoyMjAp9AADWdz4vX5IU0LbibKyA0JbuPifcry9nc49V6HP2YPm2MznHajWzq6SgUIU/3bckBbZvpTOX31b2EQW2b1XjbdXk0Madajuwt/yDAxXcrYMy//GtfPx9Fdg+RO2HROnQBj6jVIawC4BXubAmzBtvvFGuvUePHsrKypIk9e7dW06ns9zfq6++qsLCQj366KNasGCBgoKCKtx2//79tW7dOknS+vXr1a9fP0mS3W5Xs2bNymaCZWdnV7v2DAA0RtdyfK7q+HtBamqqPvjgA40aNUrJycmaP3++JMkwDG3dulVhYWEV+ixatEgSx2wAsLLTGT8o/8ARhY8ZXGFf+N2DlX/giE5/f0iSZLgqrt94Xac25baDwtro3OGKs8QuZ7hc5bbPHTqhoAq3Fapzh05U2v9K5O3OkuFyqfe//VxHt+yT4XLp0MZd6vngSAWGttTRLfuu+ratjLALgCVER0crNTW12j5LlizRnj179OSTT8rhcCg3N1eHDx/W3LlzJUk33XSTCgsLNXToUEVHR2v9+vVyOBy6+eab1alTp7IPS+np6YqKiqr3xwQAVlCb4/Plx9+2bduWOz6/9tprWrNmjVauXKmYmBj17NlTN954owYPHqzbbrtN7du3r9BnypQpkjhmA4DVJf7qA0X8Yrj6PHmX/IIC5NcsUL2f/Lki7h+uxJnvV3vddgN7K+y2G2XzsavbvUPVsncXZf1z0xXXkLn8O7UdEKkudw6QzW5Xx+ExCrv9RmUsXS9JKjh+Std1bH3VvwJ5+Lvd6v3EnTq00T2L69C3O9X7iTt1dNt+lRYWX9VtWl31PwEAAA3IhVNeKmO329W3b1+lpaVV+Q3+Y489pscee6xC+7Rp08ouv/vuu+X2jR8/vtz23r171a9fP9lstiusHgCs61qPz1LF42+7du3KHZ8vWLt2rSTptttuq/K2LvThmA0A1pezaovWTnxT0f9xn2Km3S9JOpHyvdZOfLMsHKpK5j82qvv4Ybr53X/X2UMntG7K73XuhxNXXEN+1mF9/fjv9LP/95Di/vCszh48pvXPvaO8nxbCz/oiQd3uGaIHdr0nm82mv/WdXOtF6iXp0Iad6vrzQTq00b0+16GNu+QffB3rdVWDsAuAZcyYMaPe7yMyMlKRkZH1fj8AYCWeOD5XhmM2ADQOhzburDbYWtr/mQptG6e+W0nPmh1O2K2PIx6u0J67Llm565IrvU7RyTNaOe4/a3X7tp9+Mf7SMCz1w9VK/XB12XbBkR/1Qfv7rqDqxofTGAEAAAAAABqAln26yFVcUumC+qg9ZnYBAAAAAAD85G7nHxTUqXWF9pzV27T+mXnXfPsjP35NbQdcX6G9+Mx52f18tO3NJSo6fe6a76cxI+wCAAAAAAD4yXLHL+v19tc+NLtebx+cxggAAAAAAAALIewCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAy/CKsKuoqEgzZ85UWFiYAgICNGLECCUmJspms2n58uVmlwegDhw8e/HysfPm1QEAKK/EdfHy1uNSqWFeLQCAxsmnqb/u/e6Peig93uxS4CUafNhlGIbGjx+vRYsWacaMGfryyy8VHh6usWPHSpJiY2NNrhDAtTh0Tno+QRr7r4ttd66WXt0qnSw0ry4AgLQsS7pzzcXtp76Tfr5G+vKAaSUBABqh2Gm/0JmDx80uA17E1+wCarJw4UKtWLFCycnJ6tOnjyTJ4XAoPDxcISEh6ty5s8kVArhaRwukxzZIeYXSpRMFXJK+/kFKPy29P1Rq5mdWhQDQeP01Tfrj3ortx85Ls5Kls6XSL8I9XhYAoJFp1bebOg6P0ZZff6jhi18yuxx4iQY/s2vOnDmaOHFiWdAlST4+PgoPD68wq+vXv/61bDabdu3a5ekyAVyF/9nvDrpclexzSco6I33yvaerAgAcPy+9u6/6PvN2S6eLPFMPAKBxsvnYNfj3T2nT9EVyFZWYXQ68SIMOu9LS0pSZmalx48ZV2JeTk1Mu7Nq+fbs2bdqkLl26eLJEAFfpXIn0z5zKg65LLc2SDNaHAQCP+iJHctVw7C12SSsOeqYeAEDjFPXM3TqxM1NHNlUy1RioRoM+jTE3N1eSFBoaWq593759ys7OLgu7CgsL9eyzz+qTTz6Rw+G4qvtyOByy2xt09lepqE/dK3k3adLU5Eqsjee57jXp0Es9/zulxn55hVJgy9ZyFeR7oKrGgfHsGTzPnsHzXD86Pfs/ajFkgmy+VZ9HbpQU6/+9/Z4mLXrBg5VZH2PaM3iePYPn2TOs8Dx3922pl4OHlGtr1rWdej1ymz6/dZpJVXmv4cMdyij50ewy6oS/v7/y86/8s2CDDrtatWolSUpPT1f//v0luResf+WVV+RyucrCrl/96leaOHGiunbtalapAK6Qq6igVv0MwyWjmJ9nBABPchWdl2y26jvZbHIVnvNMQQCARqdt/+sV0Lq57v32HUmS3ddHftcF6IHd72nd5LnM9kK1GnTYFRkZqYiICE2fPl1+fn4KCgrSggULlJSUpMDAQPXq1UsJCQnaunWrfvvb317TfTmdTsXFxdVR5Z5z4+fufwsL+dm6+sTzXPcMQ/qFU8rML784/aXskgaE2rXt7BkPVmZ9jGfP4Hn2DJ7n+vHtEenfN1ffx+bjq8/m/FI/W/RLzxTVSDCmPYPn2TN4nj3DCs/zkcR9+uruGeXaMr/4Tj9suHgmSJt+vTTkv5/V5yNf0vkTpz1doldZt86ptv2vN7sMUzXo8/Z8fX21dOlStW/fXpMmTdLUqVM1evRoDRs2TH379pXdbtc333yjvXv3Kjw8XF27dtXBgwd1++23a/Xq1WaXD6AaNpv0SETVQZfkXs/roe6eqggAcMGgUKlrUNVvFO2SejWXYkM8WRUAoDEpLSjSuUN5ZX+FJ05LhqFzh/JYrB41atBhlyRFR0crISFB586dU2pqqp5++mklJSWVncL46quv6ocfflBWVpaysrLUqVMnrVq1SrfddpvJlQOoyZ2dpMd6uC9fejC6cPmlKGlg6OXXAgDUN7tN+u8BUmiAe/vCCY0X/u14nfRf/Ws+0xEAgLpyOGG3Po542Owy4CUa9GmMlSkoKFBqaqqmTp1qdikArpHNJj0bKcWFSn/PklLy3G0D2kj3dXXPGgAAmKPjddLfHNKXOe5fzz1RKLVpKt0VJo0Ok67zuneRAACgsfC6tykpKSkqLS0tm9l1uaysLM8WBOCaxbRy/wEAGpYgP+mBbu4/AAAAb+F1YdeAAQNkGNWt8gMAAAAAAIDGqsGv2QUAAAAAAADUFmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAIAJnE6nwsPD5XA4NGnSpAr7Z8+erbS0tBpvZ968eRo5cmSF9ry8PPXr109BQUGSpOLiYt1///1yOByaO3euJGnv3r2aM2fONT4SALCeaz1GX34Mvtzlx+TK+nOMBoCrR9gFAIBJJk+eLKfTqebNmyshIaGs3eVyKSUlRT169Kj2+sXFxUpOTq50X7NmzbRmzRoNHDhQkrRs2TINHjxYTqdT27Zt07FjxxQZGant27fLMIw6e0wAYBXXcoy+/Bh8ucuPyaWlpRX6c4wGgKtH2AUAgMmioqKUm5tbtr1jxw717NmzxuvFx8drwoQJle7z8/NTSEhI2XZmZqZuuOEGSe4PUFu2bJEkdevWTbt3776W8gHA0q7mGH35MfhylR2TK+vPMRoArg5hFwAAJktISFBERETZdlpamrp27VrtdVwul1atWqXbb7+9VvfRq1cvffPNNzIMQxs2bNCpU6ckSV26dNH+/fuvunYAsLqrOUbXpKpj8uU4RgPA1fE1uwAAABqrxYsXa+3atRoyZIhiYmIq7bNnzx4988wz5dpGjRqliIgIjRkzptb3NWbMGK1evVq33nqr2rRpo9DQ0GspHQAs71qO0a+++mq1t80xGQDqF2EXAAAmmTx5smbMmFGhvUePHlq2bJkkqXfv3nI6nRX6zJ49W06nU/Hx8UpOTtaiRYs0ZcqUKu/Lx8dHCxYskGEYmjRpkgYNGiRJys7OVlxcXN08IACwkGs5RtekqmPy5ThGA8DV4TRGAAAamOjoaKWmplbb57XXXtOaNWu0cuVKxcTEaMqUKTp8+HDZLy1K0siRI5WUlKSRI0dq/fr1cjgcuuWWW3TfffcpMDBQkpSenq6oqKh6fTwAYCW1OUZL5Y/Bu3btKneMPnDgQIVj8uX9JY7RAHC1mNkFAIAJHA6HHA5Hpfvsdrv69u2rtLS0Gn+RUZLWrl0rSWrXrp2mTZtWof2Cy2cf7N27V/369ZPNZruy4gHA4uriGH35MVhS2TG6c+fOFY7Jl/fnGA0AV4+wCwCABqiyU2fqWmRkpCIjI+v9fgDAajhGA0DDxmmMAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJbhNWFXUVGRZs6cqbCwMAUEBGjEiBFKTEyUzWbT8uXLzS4PAIAyhaUXLx86Z14dAICKDp69eLnYZV4dAKo3ZN6zejj7Ez2UHl/213F4jNllwUv4ml1AbRiGofHjxysxMVGzZs1SRESElixZorFjx0qSYmNjTa4QAACpxCUt3i/9LfNi25i10oA20n9ESd2amVcbADR2+09Jf9gtbTl+sW3UKunB7tKjPSQfm3m1Aajc/o/WavNri80uA17IK8KuhQsXasWKFUpOTlafPn0kSQ6HQ+Hh4QoJCVHnzp1NrhAA0Ni5DGnGdmntD+XbDUmJx6THNkjvDZG6B5tSHgA0avtOSVM2SkWl5dtPFUsL9kkHzkizYiUbgRcAWIJXnMY4Z84cTZw4sSzokiQfHx+Fh4eXzerq2rWrrr/+esXExCgmJkarVq0yq1wAQCO0/nDFoOsCl6SCUmnuTo+WBAD4yVs73EFXVWct/vOglHi8ip0ATNPt3qGasOd93bN+nvr++72y+XhFhIEGoMHP7EpLS1NmZqbeeeedCvtycnI0bty4su2lS5cqKirKk+UBACBJWpol2W3uGV6VcRnS1hNS9hmpS5BHSwOARm3/KWn3yer72G3S0kz3aecAGoY9i1do62/idT4vX636dtOwP02VTxN/Jf3ub2aXBi/Q4MOu3NxcSVJoaGi59n379ik7O7vO1utyOByy270vJY769LwkqUmTpiZXYm08z7ASxnP9uP5/DsivRdsa+904erxOJ37ugYoaB8YzrIYxXfdaDJ2gsBc+qLaPy5BWJn+vd4ZGeqaoRoLx7BlWeJ67+7bUy8FDyrXl7by4COqJHRlK+v3/KvalXxB21cLw4Q5llPxodhl1wt/fX/n5+Vd8vQaf7rRq1UqSlJ6eXtZmGIZeeeUVuVyucmHXQw89pL59++qZZ57RyZMnPV0qAKARM4oLa9evpLieKwEAXMpV6+Nz7foBMInLkFhXD7XU4Gd2RUZGKiIiQtOnT5efn5+CgoK0YMECJSUlKTAwUL169ZIkbdiwQWFhYSosLNTUqVP13HPP6aOPPqr1/TidTsXFxdXXw6g3N/40OaCwkBfn+sTzDCthPNePOSnS/2VVvR6MJDWxS1nr/6EgP09VZX2MZ1gNY7runSyURq2WSqo4zVxyf35+whGpF3je6xTj2TOs8DwfSdynr+6eUa6t65jByl2XrOL8c2oZ2UXRL45X1pcJJlXoXdatc6pt/+vNLsNUDT7s8vX11dKlS/XUU09p0qRJCgsL09SpUxUcHKyMjIyyUw/DwsIkSU2aNNEzzzyjMWPGmFk2AKCRGR8u/V+23D+/WAmbpLFdRNAFAB7Wool0Z5j0+YHKD9E2ST426d4unq4MQHWuf/R2DZrzhOx+Pio4clIZS79Ryh8/M7sseIkGH3ZJUnR0tBISyie48+fP17BhwyRJZ8+eVUlJiZo3by7DMPS3v/1NMTExJlQKAGisujWTXo+VfpUkybg4w8su9+WbWkvP9zavPgBozF6Kcv9ASHLexeOy5L5st0lv3Sh1us7EAgFUsPLe/zS7BHgxrwi7LldQUKDU1FRNnTpVknTkyBGNGzdOpaWlKi0tVe/evfWnP/3J3CIBAI3OqE5S92bSp1nSukNSkcsdgt3XVRrVUfJt8CtlAoA1BfhKfxokfZXrPuU864zU1C6N6CDdH+4+VgMArMMrw66UlBSVlpaWLU7frVs3JSUlmVwVAABSj+bSa9HuPwBAw+HvI93d2f0HALA2rwy7BgwYIMOoZoVJAAAAAAAANEqcUAEAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAADAgpxOp8LDw+VwODRp0qQK++Pj47V27VqlpqYqLi5OQ4cO1S9/+csK/Xbs2KG4uDgNHz5cOTk5Ze2HDx9WQECADh48KEl67LHHZBhG/T0goJYIuwAAAAAAsKjJkyfL6XSqefPmSkhIKLfviy++0C233KLWrVtr1apV2rBhg44fP679+/eX6/f666/rs88+07x58zRnzpyy9j/+8Y8aMGBA2faAAQO0bt26+n1AQC0QdgF1oKZvTGbPnq20tLQqr79x40YNHDhQgwcP1ttvv11pn+eff15Dhw7Vm2++qcTERMXFxWnw4MGaMWOGJGnv3r3lXniAq3Wt4/mCefPmaeTIkRXa8/Ly1K9fPwUFBUmSiouLdf/998vhcGju3LmSGM8AAAB1LSoqSrm5uWXbeXl5atq0qWw2m1q1alX23szHx0c2m63cdc+ePavQ0FBFR0crPT1dknTy5EkdP35cXbt2Les3fPhwrVixov4fDFADwi6gjlT1jYnL5VJKSop69OhR5XW7deum9evX67vvvtOXX36pc+fOldu/detW+fr6asOGDdq+fbu6dOmib7/9Vt99950SEhJ0+vRpRUZGavv27UwbRp24lvEsuQOs5OTkSvc1a9ZMa9as0cCBAyVJy5Yt0+DBg+V0OrVt2zYdO3aM8QwAAFDHEhISFBERUbadnp6uLl26lOuze/duHT9+vMJ7PZfLVeHyu+++q6eeeqpcvy5dulSYFQaYgbALqGOXf2OyY8cO9ezZs9rrdOjQQf7+/pLc36TY7eX/19y8ebNGjBghSRo2bJi2bdsmSSotLVWHDh0UGBgoyR2a7d69u84eC3A141lyr/8wYcKESvf5+fkpJCSkbDszM1M33HCDJCkyMlJbtmyRxHgGAACoC4sXL5bD4VDHjh0VExNTZb/Tp0/rueee08KFCyvsu/Tzid1uV0FBgfbs2aPY2Nj6KBm4ZoRdQB27/BuTtLS0clN7q7NmzRp1795dTZs2Ldd+8uRJBQcHS3LPijl58qSWLFmiyMhItWjRQr6+vpL4JgV172rGs8vl0qpVq3T77bfX6j569eqlb775RoZhaMOGDTp16pQkxjMAAEBduDBj/4033ijXHhERoezsbEmSYRh6/PHH9frrr6tDhw4VbiMwMFDHjh1TSkqKIiIilJWVpYyMDI0aNUpr1qzRs88+K0nKzs6u8QwAwBN8zS4AsIrFixdr7dq1GjJkSJXfmOzZs0fPPPNMubZRo0bp1Vdf1cGDB/XWW2/p888/r3C9Fi1a6PTp05Kk/Px8de/eXXfccYceeOABjR8/Xjt37iybGQPUhWsZzxERERozZkyt72vMmDFavXq1br31VrVp00ahoaHXUjoAAABqISQkpGz5FKfTqa+//lrHjx+XJL399tvq2LGj4uPjNW3aNM2cOVP33HOP/Pz89OGHH6pz587atGmTJOnRRx8tC9LWrVun0aNHm/OAgEsQdgF1ZPLkyWWLxV+qR48eWrZsmSSpd+/ecjqdFfoUFhbq0Ucf1YIFC8oWhrxU//799cknn+iuu+7S+vXrdf/990tyTyFu1qxZ2Uyw7OxsxcXF1eGjQmN1LeN59uzZcjqdio+PV3JyshYtWqQpU6ZUeV8+Pj5asGCBDMPQpEmTNGjQIEmMZwAAgGvlcDjkcDiq3D9mzBitXbtWI0eOVF5eXoX906ZNkyTFxsbq22+/rfQ2Pvjgg7LLmzdv1hNPPHFNNQN1gdMYgXoWHR2t1NTUavssWbJEe/bs0ZNPPimHw6Hc3FwdPny47JfpbrrpJhUWFmro0KGKjo7W+vXr5XA4dPPNN6tTp05lU4XT09MVFRVV748JjVdtxvNrr72mNWvWaOXKlYqJidGUKVPKjWdJGjlypJKSkjRy5Miy8XzLLbfovvvuK1uDjvEMAABQvx555JFKfz37ar3//vsV1h8GzMDMLqAOVPeNid1uV9++fZWWllbl+euPPfaYHnvssQrtF75Jkdy/dnKp8ePHl9veu3ev+vXrV+FngoErda3j+VJr166VJLVr167ceL7QfsHlM8QYzwAAAACuFmEX4AGVnQ5W1yIjIxUZGVnv9wMwngEAAAA0ZMwvBAAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMrwm7ioqKNHPmTIWFhSkgIEAjRoxQYmKibDabli9fbnZ5sLBTRRcvl7jMqwOoC0WlFy+fLTGvDgAAAFy785e8tzvPezugjK/ZBdSGYRgaP368EhMTNWvWLEVERGjJkiUaO3asJCk2NtbkCmFFhwukP+2VVudebLtrjTShuzSxu2S3mVcbcKWKSqXFadLfMy+23bZS+nmY9Eyk1NzfvNoAAABwZQpKpL+kSp9lX2y7bZV0dxfp6eulQK/4pF87nW75mWJfeUDB3Tuo5EyBdv35C+1e8LnZZaGB84r/BRYuXKgVK1YoOTlZffr0kSQ5HA6Fh4crJCREnTt3NrlCWM3hc9KkDdKPhdKlk7mOFUrv7JHST0u/jpVsBF7wAiUu6ZeJ0uZj5dsLXdKybGnrCem9IQReAAAA3uB8ifT0d9Luk5JxSfu5Uulv30vJJ6S/xFkj8OowLFqD5j6pjS/M1+GE3fINaKLrOrY2uyx4Aa84jXHOnDmaOHFiWdAlST4+PgoPDy+b1XX+/Hk9/fTT6tGjh2644QY98cQTZpULC/j9ropB16VWHJS+OezRkoCr9ll2xaDrAkPSgTPSn/d5tCQAAABcpY++l3adLB90XWBI2ndK+jDdw0XVk9iXH1DKvP/ToY07ZZS6VHymQCdTc8wuC16gwYddaWlpyszM1Lhx4yrsy8nJKQu7Xn75ZTVt2lT79+/Xzp079Zvf/MbTpcIijha4g6zqluey26S/Z3mqIuDafJopVTcJ0ZD0RY57OjwAAAAarlJDWppZfR9D0v9lef96w74BTdQ6prsC2rTQ2A3/rV+kLNKID15RUFio2aXBCzT4iY25ue4Fk0JDyw/offv2KTs7W7GxsTpz5ow+/PBDHTx4ULafzitr27btFd2Pw+GQ3d7gs78Koj49L0lq0qSpyZVYR1DM7Qp/rfpzwF2G9O33eWriaO+hqoCr5OOrG/52tsZu50uldpH9dP7ALg8UBdQdXgdhNYxpWAnjue75Ng9V5KKaZzb9WCQ179hNJXm5NfZtCLr7ttTLwUPKtfm3uE42u11d7hygNRPeUMGJU+r/+mMavniavrhtmkmVeofhwx3KKPnR7DLqhL+/v/Lz86/4eg0+3WnVqpUkKT394jxMwzD0yiuvyOVyKTY2VhkZGWrVqpV+/etf68Ybb5TD4dDGjRvNKhnezlXL6S2u0pr7AGYzXDKM2n2tZzCmAQAAGjSj9Aqm4nv5e7viM+6wdM+iFTpz8JhKC4q0/a0lanVDOOt2oUYNfmZXZGSkIiIiNH36dPn5+SkoKEgLFixQUlKSAgMD1atXLyUnJ+v7779XbGys5s6dq82bN+uuu+5Senq6goODa3U/TqdTcXFx9fxo6t6NP01AKiwsNLcQCzlTLN2+yr14d1Xsksb0aaNknnd4gSe/lZJOVH9qbusm0qa0ZPk2+K9AgPJ4HYTVMKZhJYznumcY0gSnlJFf+Zpdknv5ii5B0pbD2V7zg1pHEvfpq7tnlGsrzj+nMzlH3Q8aV2TdOqfa9r/e7DJM1eA/1vj6+mrp0qVq3769Jk2apKlTp2r06NEaNmyY+vbtK7vdrs6dO8vX11cTJkyQJA0YMECtW7fW/v37Ta4e3ijIz/2TvdW9Lrgk3R/uqYqAazOhW/VBlyT9opsIugAAABo4m016sHvVQZfk3jehmzV+OT71w9WKnHKnAju0kk8TP8W+/ICO78jQ2dzjZpeGBq7Bz+ySpOjoaCUkJJRrmz9/voYNGyZJat26tYYPH641a9botttu0/79+3X06FFFRESYUS4s4IVIaf8pKTnPHXpdeDGx29zrdb0UJUW1NLNCoPYc7aVHI6QP0t3fcFwIvi5cdrSTHu5uXn0AAACovbvCpJ0/un9xu7L3dneFSWO7mFdfXdr57nL5Nw/SmNW/k2x2HU3cp3WT55pdFryAV4RdlysoKFBqaqqmTp1a1vbnP/9Zjz/+uF588UX5+fkpPj5eLVq0MK1GeLemvtK7g6TlB9y/ZJd9RvKxSUPaSg90k27kFHF4med6S31DpP/NlLYed4e2PZu7ZyjeGeYe3wAAAGj4bDZpel+pf2v3e7uUPHd7VEv3bP3bOlhjVpckyTC0bfZH2jb7I7MrgZfxyrArJSVFpaWlio2NLWvr1q2bnE6neUXBcpr4uIOA+8PdwYBNFnrRQKN0czv3n2G4ZyvaGc8AAABeyWaTbu3o/ruwpBWfVYCLvDLsGjBggAwWqYMHEQrASmy26tekAwAAgPcg5AIqYjliAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYZeFOZ1OhYeHy+FwaNKkSRX2x8fHa+3atUpNTVVcXJyGDh2qX/7ylxX67dixQ3FxcRo+fLhycnIkScOHD5fD4ZDD4dCePXtUUlKiKVOm1PtjAgAAAOD96vOziiQdPnxYAQEBOnjwoCTpsccek2EY9feAADQohF0WN3nyZDmdTjVv3lwJCQnl9n3xxRe65ZZb1Lp1a61atUobNmzQ8ePHtX///nL9Xn/9dX322WeaN2+e5syZI0ny8fGR0+mU0+lU79695evrqzZt2igjI8Njjw0AAACA96qvzyqS9Mc//lEDBgwo2x4wYIDWrVtXvw8IQINB2NVIREVFKTc3t2w7Ly9PTZs2lc1mU6tWrRQUFCTJHWLZbLZy1z179qxCQ0MVHR2t9PR0SZJhGHI4HJoyZYrOnz8vSXI4HPrqq6889IgAAKhZTTMHZs+erbS0tGpv4/nnn9fQoUP15ptvVtln3rx5GjlypLKystS+fXs5HA498sgjlfaRpL1795b7UAbUxrWO57y8PPXr16/sfd/liouLdf/998vhcGju3LmV9mfsoj7U9WeVkydP6vjx4+ratWtZv+HDh2vFihX1/2AANAiEXY1EQkKCIiIiyrbT09PVpUuXcn12796t48ePq0ePHuXaXS5XhctLly6V0+lUZGSkFi9eLEnq0qVLhW9aAAAwW1UzB1wul1JSUiq87l1q69at8vX11YYNG7R9+3YdOXKkQp/i4mIlJyeXbd95551yOp368MMPq+wTGRmp7du3c0oNrti1jOdmzZppzZo1GjhwYKX7ly1bpsGDB8vpdGrbtm0qLS2t0J+xi/pQ159V3n33XT311FPl+vFZBWhcCLssbvHixXI4HOrYsaNiYmKq7Hf69Gk999xzWrhwYYV9dru9wuWWLVtKksaMGaPdu3fXbdEAANSDy2cO7NixQz179qz2Ops3b9aIESMkScOGDdO2bdsq9ImPj9eECRPKtletWqWhQ4fq448/rrKPJHXr1o3XUFy1qxnPfn5+CgkJqXJ/ZmambrjhBknuUGvLli2V9mfsoq7Ux2eVgoIC7dmzR7GxsfVRMgAvQdhlcRe+/XvjjTfKtUdERCg7O1uS+5TExx9/XK+//ro6dOhQ4TYCAwN17NgxpaSklH3jkp+fL8n9LUx4eLgkKTs7u9pvEwEAMNPlMwfS0tLKneJSmZMnTyo4OFiSe1bMyZMny+13uVxatWqVbr/9dklS+/btlZqaqtWrV+svf/mLTpw4UaHPBcwywLW4mvFck169eumbb76RYRjasGGDTp06VWk/xi7qSn18VsnKylJGRoZGjRqlNWvW6Nlnn5XEZxWgsfE1uwCYIyQkROfOnZPkXv/h66+/1vHjxyVJb7/9tjp27Kj4+HhNmzZNM2fO1D333CM/P7+yUzJGjhwpf39/tWjRQh999FHZ7UyePNmcBwQAQBUWL16stWvXasiQIVXOHNizZ4+eeeaZcm2jRo1SixYtdPr0aUnuL3q6d+9ers+yZcs0ZsyYsu0mTZqUXR46dKgyMjJ04MCBcn2Aa3Et4/nVV1+t9rbHjBmj1atX69Zbb1WbNm0UGhpaV2UDV+RaPqt07txZmzZtkiQ9+uijZUHaunXrNHr0aHMeEACPI+yyMIfDIYfDUeX+MWPGaO3atRo5cqTy8vIq7J82bZokKTY2Vt9++225fZs3by63XVJSoqNHj5b7hhEAgIZg8uTJmjFjRoX2Hj16aNmyZZKk3r17y+l0VuizZcsWffLJJ7rrrru0fv163X///eX2p6amyul0Kj4+XsnJyZo/f76ee+45GYahrVu36rnnntOaNWvK9Vm0aJGmTJmi7OxsxcXF1ctjhnVdy3iuiY+PjxYsWCDDMDRp0iQNGjSo0n6MXdSF+vyscsEHH3xQdnnz5s164oknrqlmAN6D0xgbsUceeaTsV6Gula+vb9lC9QAAeIPo6GilpqZW2+emm25SYWGhhg4dqujoaLVt21aHDx/W3LlzJUmvvfaa1qxZo5UrVyomJkY9e/bUjTfeqMGDB+u2225T+/btK/SZMmWKJPcCzFFRUfX+ONE41GY8S+7Z+UlJSRo5cqR27dpVbjwfOHBADodDt9xyi+677z4FBgZW6C8xduEZdflZRZLef//9cut7AbA2ZnYBAADLqm7mgN1uV9++fZWWllbtOi7vvvtuue127dqVzSi41Nq1ayVJt912W5W3daHP3r171a9fP9lstpoeAlCmLsbzhTF4qQvjuXPnzhVmhF3en7ELAPAGhF0AAKDRqux0ME+IjIxUZGSkKfcN6/LEeGbsAgC8AfM4AQAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACzDa8KuoqIizZw5U2FhYQoICNCIESOUmJgom82m5cuXm12eKc6WmF0BAAANw5lisysArh3jGFZSVHrxssswrw4AjZOv2QXUhmEYGj9+vBITEzVr1ixFRERoyZIlGjt2rCQpNjbW5Ao96+BZafF+aWXuxbZH10uP9pAc7c2rCwAAT9lwWHo/7eL2yJXSrR2lf+spdQ4yry7ganyfLy1Klf516GLbExulx3tKA0PNqwu4GmeK3Z9VPsu+2Db2X9KD3aXxXSW7zbTS4GUeSo8vt+3j76eTabn6/JYXTaoI3sQrwq6FCxdqxYoVSk5OVp8+fSRJDodD4eHhCgkJUefOnU2u0HMy86XJG90vIq5L2veclF7aIv2yj/RQd7OqAwCg/v09U5qzs/z09BJDWpXrDsEWDZEigk0rD7gie05KT34rFZaWf2+XnCc9v0n6VYx0V+N5qwsvl1/s/qySmS9dOpnrh3PS3J3Snh+l/4wl8ELtfBzxcLntMf96W5nLvzWpGngbrziNcc6cOZo4cWJZ0CVJPj4+Cg8PV2xsrLKyshQTE1P217VrV4WEhJhYcf35zyTpTEn5N0PSxe0/7Jay8j1dFQAAnnHwrPS7ne7LFV4LDelcifTaNsnglBl4AZchTd9aMeiS3NuGpN/skI6dN6E44Cq8u7di0CVd3P7nQWnND56uClbQOiZCLXp2Uvr/rjO7FHiJBh92paWlKTMzU+PGjauwLycnR7GxseratauSk5PL/u655x49+OCDJlRbv/aedH/7V9057zZJ/5dd9X4AALzZshpe41ySMvKllB89Ug5wTRKPSQfPVQy6LuUypH/w3g5e4Eyx9MWBikHXpeySPs30VEWwkh4PjlDu10kqOMILPGqnwZ/GmJvrXpgqNLT8ggX79u1TdnZ2hfW6ioqK9PHHH2vVqlVXdD8Oh0N2e8PO/kJue1Id/+2davsYkhavStT0fkM9UxQAAB4UPmuNgvrcXGO/0VOm6cQ/q3/NBMzW5t5X1faB/5TNVvV7UMPl0txPVum5t+7xXGHAVQjo0V8Rb26oto9LUvLRIjVp0swzRcFrdPdtqZeDh1S6zzegicLvjtOGF+Z7uCrvNXy4Qxkl1ggG/f39lZ9/5aevNex0R1KrVq0kSenp6WVthmHolVdekcvlqhB2ff755+rYsaN+9rOfebROjzCq+97v0n6cuwEAsCjDJaM2r3O8FsIb8N4OVlLL8cxwxpXqetcglRQU6eDabWaXAi9iM2r1jtE8JSUlioyMVHFxsebOnaugoCAtWLBASUlJysvLU35+frkZWXfccYdGjRqlF154oVa3f/r0ae3cuVM33HCDgoMb9mq2GaelXzir72OTNClCeq63JyoCAMCz/rJPWrS/+tNkJOmjm6XrW3iiIuDqJZ+QptRireUXekuPRNR/PcC1OF8i3b5aOltSdR+7TbqptfTuIM/VBe9wJHGfvrp7RqX7Ri//jY5u3qdtb37s4aq81+jlb6ht/+vNLsNUDX5ml6+vr5YuXar27dtr0qRJmjp1qkaPHq1hw4apb9++5YKu3NxcffPNN3rooYdqffvBwcGKi4tr8EGXJHUPln7Wqvr/aDZJY7t4qiIAADxrbJfqf8XLLimqBUEXvEN0iNS9WdVj2ibJ3y6NCfNoWcBVaerrPkZX90OLLkO6P9xjJcECgrt3UOiNvbT/k3+ZXQq8TIMPuyQpOjpaCQkJOnfunFJTU/X0008rKSmpwimMf/3rX3XnnXeWnfpoRa/HSq2bVnwRscvd9qsYqeN1nq8LAABPCA2Qfh3rft27PCCwSWrZRHqjnxmVAVfOZpPm3CgF+1Xy3s7m/nuzn9SiiSnlAVfsqV7SDS0rtl/40PlQN+nmth4tCV6ux4QROrJ5r/IzD5tdCrxMg1+gvjIFBQVKTU3V1KlTy7V/8MEHeucday9G2y5Qir9Z+ihD+ixbOlPifnMU11Z6OMI98wsAACsb1UlqHyjFp0vfHHaf0nidr3R3Z/drYZumZlcI1F7XZu7TbuMzpM8PSAWl7pBrRDtpYoQUVUlwADRUTX2lPw2W/vd76e9Z0uECd3vvltKD3aRbO7hDXqC2tr3xkdklwEs1+DW7KrN582YNHDhQW7Zs0Y033mh2OaYpNaSzxVITH/cfAACNTVGpdL5Uus5P8uEDFLxcicu93lGAj+TPezt4OcNwj2cfmxTglVMs4EnVrdmFK8eaXV46s2vAgAG1+yUmi/OxScH+ZlcBAIB5/AkFYCG+dqk57+1gETabFORndhUAGiuvWLMLAAAAAAAAqA3CLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMm2EYhtlFAAAAAACAxqko/5x+3HvA7DIso2VkZ/k3CzS7DFMRdgEAAAAAAMAyOI0RAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGX8f0tN8FHwnxbZAAAAAElFTkSuQmCC", "text/plain": [ "

" ] @@ -776,10 +776,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:05.114735Z", - "iopub.status.busy": "2024-07-23T22:30:05.114333Z", - "iopub.status.idle": "2024-07-23T22:30:05.376244Z", - "shell.execute_reply": "2024-07-23T22:30:05.375653Z" + "iopub.execute_input": "2024-07-26T02:27:57.392417Z", + "iopub.status.busy": "2024-07-26T02:27:57.392218Z", + "iopub.status.idle": "2024-07-26T02:27:57.652820Z", + "shell.execute_reply": "2024-07-26T02:27:57.652221Z" } }, "outputs": [ diff --git a/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb b/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb index 8a4de8fd6..e13b94db9 100644 --- a/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb @@ -26,10 +26,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:07.876318Z", - "iopub.status.busy": "2024-07-23T22:30:07.876131Z", - "iopub.status.idle": "2024-07-23T22:30:08.578038Z", - "shell.execute_reply": "2024-07-23T22:30:08.577435Z" + "iopub.execute_input": "2024-07-26T02:28:00.070414Z", + "iopub.status.busy": "2024-07-26T02:28:00.070211Z", + "iopub.status.idle": "2024-07-26T02:28:00.780391Z", + "shell.execute_reply": "2024-07-26T02:28:00.779754Z" } }, "outputs": [ @@ -74,10 +74,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.580795Z", - "iopub.status.busy": "2024-07-23T22:30:08.580359Z", - "iopub.status.idle": "2024-07-23T22:30:08.587079Z", - "shell.execute_reply": "2024-07-23T22:30:08.586565Z" + "iopub.execute_input": "2024-07-26T02:28:00.783261Z", + "iopub.status.busy": "2024-07-26T02:28:00.782539Z", + "iopub.status.idle": "2024-07-26T02:28:00.789654Z", + "shell.execute_reply": "2024-07-26T02:28:00.789197Z" } }, "outputs": [ @@ -120,10 +120,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.589388Z", - "iopub.status.busy": "2024-07-23T22:30:08.589035Z", - "iopub.status.idle": "2024-07-23T22:30:08.593419Z", - "shell.execute_reply": "2024-07-23T22:30:08.592920Z" + "iopub.execute_input": "2024-07-26T02:28:00.792131Z", + "iopub.status.busy": "2024-07-26T02:28:00.791768Z", + "iopub.status.idle": "2024-07-26T02:28:00.795891Z", + "shell.execute_reply": "2024-07-26T02:28:00.795380Z" } }, "outputs": [ @@ -157,10 +157,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.595784Z", - "iopub.status.busy": "2024-07-23T22:30:08.595429Z", - "iopub.status.idle": "2024-07-23T22:30:08.599404Z", - "shell.execute_reply": "2024-07-23T22:30:08.598893Z" + "iopub.execute_input": "2024-07-26T02:28:00.798146Z", + "iopub.status.busy": "2024-07-26T02:28:00.797812Z", + "iopub.status.idle": "2024-07-26T02:28:00.801877Z", + "shell.execute_reply": "2024-07-26T02:28:00.801327Z" } }, "outputs": [ @@ -199,10 +199,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.601620Z", - "iopub.status.busy": "2024-07-23T22:30:08.601230Z", - "iopub.status.idle": "2024-07-23T22:30:08.607187Z", - "shell.execute_reply": "2024-07-23T22:30:08.606674Z" + "iopub.execute_input": "2024-07-26T02:28:00.804324Z", + "iopub.status.busy": "2024-07-26T02:28:00.803981Z", + "iopub.status.idle": "2024-07-26T02:28:00.809781Z", + "shell.execute_reply": "2024-07-26T02:28:00.809280Z" } }, "outputs": [ @@ -245,10 +245,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.609288Z", - "iopub.status.busy": "2024-07-23T22:30:08.609088Z", - "iopub.status.idle": "2024-07-23T22:30:08.614772Z", - "shell.execute_reply": "2024-07-23T22:30:08.614315Z" + "iopub.execute_input": "2024-07-26T02:28:00.812168Z", + "iopub.status.busy": "2024-07-26T02:28:00.811724Z", + "iopub.status.idle": "2024-07-26T02:28:00.817373Z", + "shell.execute_reply": "2024-07-26T02:28:00.816800Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.617092Z", - "iopub.status.busy": "2024-07-23T22:30:08.616656Z", - "iopub.status.idle": "2024-07-23T22:30:08.621788Z", - "shell.execute_reply": "2024-07-23T22:30:08.621187Z" + "iopub.execute_input": "2024-07-26T02:28:00.819712Z", + "iopub.status.busy": "2024-07-26T02:28:00.819385Z", + "iopub.status.idle": "2024-07-26T02:28:00.824255Z", + "shell.execute_reply": "2024-07-26T02:28:00.823711Z" } }, "outputs": [ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png index f4fcb3dc8f1c31c46283aeaa0427450087e2c0a1..92f4673040c1e3bc2ff5565270fd3e2c70a6f571 100644 GIT binary patch literal 53241 zcmdqJby!s4+BZ6sf=Eb+ij;JNNH<6fAl)h5A&qnk3P^{9z#!5{Hv-ZE(%s$Nb)Lcf z?(@Fq+uzyy`|DiSxh@A`t(mo+_0)a;;+_zBSqY2>&mKS^5Dci~YefhIxfTLJqCmX| zj>t#8SOouZJBq10D%qMiy6D>*L*D2++F98;TA3S=Ivd+NnA_U0F>y1oGLV`%I@&q# zFf&{K^9@Y4_NL5(Pj|?`MbPXdH5?!iEPeP3;k#hAIRw&Y0(~v4?3%na?dG98Jbkv` zCxe3{f{Oi_Ux?JFLsvmrs5#?t!3#PYF~$t1f-IFh6<051F==Z{60LYmp~%qM$J_q3 zukkWz{9cHVTD?Gg(1D3Yad>I?>X~mbMPlc}wA0O4f<%YDsl$}$?iAix?$s$F8oUQ& z&?pM$WOJ3-m+3Dqx%+!SzIX(dRIvW5tWyrAs~hpiX?fVmK1Z~wWwnj$iH ziS)ZnaM01)o?eHlAWQXfQNw;U5zlrKZ@c&(?@8QJoI<0b9GrtairJd#>K#Vu$CS7m zMX}GFOsy$V%|!X`)_hGvj*3YYVa{B4r)d2QsK!;4m4B`EXLkPn4KwLUI@+C0(QN<783RqQt(p9Mk{1zL@Ed$+q>xm?WBiqmcskO@cT7`&bRSz$EJVm$xp^vdj=Y z-jDk8ZF_ya)BWM%xe4;9aaKWcjlLLx@IR~ACtKPN2_`d$LSX7YJUJQ0P|-Ps72cI) zMk+sI{UPK@gJ-bzC;fL4`$ty8w$CXkJu$ROPhJ|KLZ)k7BFy-F14!FHRR?gGrb&`M zF*?7kZ@;YklwD<~_IgoX;|+6NN}H(72j?dW$8X4{8nJI|De*kNEaj>p^>+K|l?DDv zfZD3r^18GL9?n|^GKE;k_429~k6wiAtZ$XYoYmt8zxHEf`=p=4L|;`j zm0O}QCz6l%eu|u#U7s3D3C7el~{1L@swVrsj(widP9!`YN(b-8xPyg}Lr-zzlW{>(^YqVV+hsmw|8oC)( zsWbu36D?64^PO-hWUaqjw>2?tjQq4zg!6~hF zD!Q&^LTmSzC!JdsrCUe}i8oMkSl>Cv&h4Vl^&_6m=cFTd=wR%6W8k`rera*|oNw@l z*K+E~i;Peq0^FSB8u-T2K2wFAT&`vg}HP6z&F~ z$`N@EUA~|Z_qgaeZQqQDSjTzWZd2uH6W||(si4n#)h8j3GjUkYa>1Z7_T{p^6Z3hf^ zlank9=R@fWzel-Rz_O!8woo~K>#1s1c+I@D7?P!AJp4dst~8OxSUZ=+e3G)}x95G5 z9T%%4e5vx>FFQV7j~bb;cB*^;k1$n7_a;yXZEsy%y^Qwdz9jzs%Eq4LCr{6}C}Tu^ zw_e0QK2xYT1h(#7g&y<~A~cWw5hP}%%Xy!7f@`f>pot>X5`@tm!>nEP8J}MDPrbWK z!^H-@z{MK5uKPASgsEx{v9SI`v*G5#GMvlc7VY~)xuueF+3Ki=HO}UK?a_>J7tWvs zqI{XTySYaHx4o`x=&a4)%<*P?OVsr2R;8}R<)XQR#E$TG?e&;{UL*7M#d0yfV3Fbp zK9qfuSo$QzHeM?m`OK=tCMw!ejOsgA%x5oTi8p5kjmHhNelYXgH9mLvIO{MU0M!{1NHYd1!Vu!Mx0P7nP= z(y=+G9dRisDIIrbQex@V2J$u7aB!M&b8vBR%qGfc>D5$kk_)D_Tp*ugQZ+SIGiABl ziZ>^%6@THAj1@pcDQ8r_iAZ5y#eF;}HxTY{2wsppbDf!OjzNepg=UG|e`g)Mib=Zw z?!)W6^>(Jt?f&(Ygad9j;oI=N-6&we=mYgNwv(4S4++Fjd;7NmF@v0ZaON?W}e$8`~wClqXK(JFbW3fj+mD+mY(4wvKgq7oA| zC|Mc3wlHe0EKu1AhsmqGc%};le z;HlkwvniSDmFro8{?&4{aA|q@hv%j9!Qo-`Ms8jLo2l&j!Vv}`2TZHdhVSNV5d!}K zX3VwE$R-b7+SKK9%NeboiPfieC$-+Diwn#N{3o+2196UDnJn+Od%Jhs?v-x3+;%eC z-f!o;+Ano1mhB55V{B=>-9x^Z-pytYF4Yv{qFKjgFG8tw!XjyOuO&5$y_Z=d&O^8U z2N`KE-jJ-mEj9Y7zmPrR)F9hc5ryZf9|z0cB*ocG;Wm?*b(D6f*s#~L#hIS1J_g@)LWOZ9E>pz>jCKJbG;s<}4)vv(|d`F&5VgDIL4K z_9%P2m{+Q@z}@r3rY@13!E}&OSh9?Wg>{4LnRo@0NBr9`Jk8lNypVNPE{S~zB}xmy zKC=gLgP}}QWvPQZ@gw5?;XDP$#g7EOkf{NbaBGMhgMS2PKsWD*|6$2oj7j*0qSd+i z;htFnt@M2C9>2bsA{*bvX0qz%IJ}-UnEzl6hs-*mfMDYux7F3jjp(XTQ(!?0nlAJr zJpl5F|Ji%afb6&yQ^JCNDxbcbi|*3_*T2{O)}2c6V-1O)NnTZmi-9prAe*Qc3J zVqcJzJGq2EC(!+4*}sN>XFCg?g(rPsI^Wv?XZ!XH^NWd`;k4zVIm@161@mnJd3%ph ziK`M!($HCl4d&c=GU%T*Z8lR|) z6sr_L{{`zWs1#HRnO+VndJYtN*QdKf{5Fy?o?SKNjaSp9#r)3fc)rhxh=zv!AoBJS z*B86Mi=TF4{th?5=uAqaS+jJD(uX$L%VabxHf5>6|VMZ?6=zj`5 z(1-FSI%R|R>oZ1A=1Dm@e){&j&l_Z82y>f7jVrKd*@Zsu8#Z{3u-G0EG1MIm z&!&mmWSny*pwfOe$C*T8SA?tv$eH3{3pJaC&t1C_&KB(6Z19NZj{Z z3AnG12D@XHS61S}54t)#=d2;nx|!0&ot~!OhJL#I$$;CK{TrAaWUR{7w^0 zbJ`r~udtrvPi=JCRE76OG}W7vF^RBe>=3i@5=xLC)FoOL)yD-Bzc(wI)N@|VZq~PWe8v(je4)f@5M{@~)>*LlceE6cir82MeSU zN$i#bjo#h>SBjBhzug$h>Bp2C{u!?%&UV^d^SibVe=^=v=H&Zr)aNAP?c$7#?`M~@ zqUmd`WGX@Os3TUv%oW1=`!}1?!_%CBd*`ZSHS`malA-tjX)dd(m$q2)wl+jzdz^2V zPZvg+No2a>53K_mM~mxr<2go- zR$}u(jC>AT!;dVrmM!1UZ@(h87X^GkZb9wa1p`;F)>C8A86WhCpMO-bAHHUMwf;3w zWN+(1LJ6|K>|>_9SX9#rpGVuI_2Q0;(U>Fm^@98QN%GMJG4Fl##;wXHG9pQx?U9^_ zuzjH4{K9qKVeDp`KtRKsg@LfQBfw|WIh3rG%+To@1r3Wjs!WS(shRRvo46p(c>%PBP9usO$^$ z>)D$Or>esv3>CHO4&H0qDA^7C;@m|3alXE2F0G!Fo$4iCC<-fU*t@B!cMl0U@?Z6% zeE$4dNL5vJ{d*yyO%;HU3}91C^SUsPZ7q4fIS{QH$5>13h40EMaujyA-C?QC`fxtB_9GQR63NpyTaEl zeqhgMscWaH#AZ!k;b@mz;6p$b%b?U?H!q@^uda}^wJ}|LN>-^*>uenwdUEw^i0TJ% zqqN}Bb#A`bwY_@D<(KObX=`sj>zxk%@1B(;?smtgS$d7nD^^!kx*A^On4GX0%^u5E zJ4yLOG|q_G+iM#6@yIy7x1fe}cG4<@Q#3eUopK^aD|HtrDI+pQ5dAzsSthyUu_NwN z$!raii}X6`L#3eDDwX{XOF*}|BG==0(?TZy=uJErs$xDZOSU;e&{d#>Q}|J>SPUJxY=wU}tP-ZkKtnt4)7wbg7uB#>p0d!{RM&W}`&~+L zTf*6C?T_!)mX%HQ@?-FEc%=2cPyDtwnH%=)+dzZo<%7!q0nc*xZtyug-!p}U^V>Hb zuM`G%n}`EOFF}Am9>nuOXR)m*jO@B+sl8Rq!gFhF>}$?>1|ohOpCVHy2Y8JvOU{r5ZvxC3|9UPPvaGj?_0#a8z;PW*^`>gmu@ojs@4pC zX$^`ucx$A4gX9r!3)@|?4(b%xy;zY1Ce?3-rfS&VUN2Nrs9ch9hsGqbnGzo`G+1~) zp`@ZZ_|4Y$2L{Dus$RkYP@(gyu>aa*C9_VABiWNrThge={uC6{k0fORgnR;)DE!#3 zU|DNYPykuF)9&jbCdcE0i5SXV-0ZV_D6fSPC;%K2xXLq;Z<;nKa>Z-%AiW)0`z29Z@ ztsHtow9BsEU0iRzA4no;66+>e&3D-ebA3J#p)*d*Gdfv%ReQTcP!`k>M*b|yu|w7j zmB2LEdv=m=IMQiu0`n0Dl*eeDeJ+BZl&pAl|2eV+Wm8(XuaH}s1tpQQ*Cg7+&V&#l(U?vxA%#jw=fYAymeq*nzSr!H;Ut`H*E5DoqIqw+2wQ%C8om3LNBh|PA=as{ z1o~V#bBi%8+Ps1uLAkF9A9ePgYx^`0Sj�H-a7c1Ao%^Eg0jZEZCccb<0Nt)Fr)BF|sY2@@|c zcUgVt2W9VQEGLn8Sd)7cZaq64`EEF~G24073qoQ1Dsy_fNP>RqgEZ7fuM8vN!*~TR zUntn4Z{wxsKW6y8X%U<)NZa?O4zw+2YR$lOnlB{Yo2YDe*ddiXYSvZc9*CMdIAO^k zdVXn8wWT-1pvy{!?UPoHdh6k0&FSQ$*O6!OYl%{|FO?rHP~>Q>pL`;nrrBc1R*EI( z9=7i9_@Al4dvS6O(9Ia6pM`HMJ8!Q;JoYz>fnm#Jk&sx)iQu zCX~z<&~9m;Kcy$GLi90dX;Z8+p*_CT`L)xt33kv(`8-TW>m=t7*Wa|r(UuCC!c=d9 zW^j7`{G*`>TZ%H~EOuNN_b{22;zrU5AR+4*X1puQ0|&p3?m3=qZhdH@zH4JfxA~{P zx!Au`ZtQ&DtMHDmvoxq3O~lbj+t@I*1Y>1`%)iWPJPI&9vEu@N0aEi%UnDq@qF!Z3 z26*+=BJXR<#P=lLSFCD!p6u)vLv#HSB$Oa;^Ygo-ARnNkpZC~$wd7={cEzgccAo7o zlAq(`1^TbA3V2?ynD#z@%%m-OxYE--ba}n&-KS++FD4>_cslDXn8NF_a?s6e3J?(> z1lZm!yap_0``&y@BGas^}pR94pH;%FV&Ul`C@O5bLzE2rBI`vm)DZ%#Pd!U*sGB)QqU zpX$1R_DwFW_o->JFkl=dp1(tuj$;TJv&@slgry;*g3P0rdo{U!XAzLWbJH%f%aIbq z^M$oLh;uiWyQ>A2GYjC4g{J!?$X`wSQf1Nv>L2KZ!Er<=TqAq*Cr61I(6}lWu7Jmd z!C=^^$m$@S08f1HtHWxqJB1~{S>oW_`b0TBh<~=yjdIVXdhWzzpU^4i12L zFw~CjZgO7U+M{>E!U!N|LH_D_c~W;gq6PV#!0P|z3rDP*4HODZoCTn$Jv+^-3kHpT z!fkJ~P6LZ$)G9IS&&c(n9oBTa_V_9uLEJN}rl)h^`qKwN+kLzIxx;T(pKAtiFBKP{ z80I{9lfdGeoctW*^5T^?(-8*Oy3tiuGGwPWm^!O`P2v$`M`dP03L! zBKEvEA`=vB>{^Jxzdz7-e?jl|f&e71M;pi2&AzsE`}Y7ee{R_JDaZ9Ie1_*HqYp_d z;y?Qfv?nt8czM47W;{lqVY^}ya&}zg-P1{(rv1&v!h%lE`hy|z(B#xod`NqzSQK+ z+}@5UctG06@Xn;^=;(M0VjpB{qWojDEKf*40CF$?srE}YHlT!IL{rPHv=Q1Gf$c5X zZ6%R{l5&47GXl}>`goM>?N0~}4vycvMxwXs)6N$OC|HY?7B6&Ys=Ipn8d3}@f5y2<=9sX)!*UWsDCF7 zYk$=p?j6yQFXra4Hq92*RQ#t*YFZ*aEZbyKWo6jBt_PEWOc*Jhb+AL zq<8qD0U4J;^jEVDC5_ezOSWE0zHpjCg*d4FR;$;KVjNS1tZk9sAIy5Em9`sNAM=b0!K406P_g zh(FOV<}<9;`bj7Hp#$^V1?+pfhzX@+S5>-Ud+bNW9DqO`{_}#0N`Q{<=#Qw(7ml!M zht+`}h7u5ad;5;At{3Fw{*M_oUo*tL6+z@}nCQq`o$Zaox9sG~rKIK;2u;zmH9G(3 z_UNOiq9b1LTpZSX*zi31VTFb=>)8Z9+6}TO4erTc{fLkR)>`2vcMh-U$CXU zJRiaOtC2Douh0Cyk7eJ1N+QccnSkS^-rC@OWuf zsMIxY`<4Yoeuft8t-3wJqNfAOh~@r5D+9o(rF{bK5!Uo-g)p!o1Fq2Pw01T!Ev>K4 z?a*xS8wS{B99}P=Q&9c+ZhF5#qxi*(ZD?q!JSwrCrt|C32oxXc_?il3G5+%Wtx5&K z$B4SxPg8lwp`posJuEIQGmRh4WKmsvr46B>RX_$!TcRbalj*ofi43KApL>n`84#5S zcf0>GIsubWYbZWkxC06|7-y+UBA2Ome0x8U?oWwtPn6Tr(M@F5y)oeTil3>SS|xT_ zMRm5GZi>pD<(WIdRD;WtMyH&Y1@RL%t`k#{?(&y5f+uquyV8wb+*W-qJh>-K>CT?v zNoU5@P9i@yh~#U{AJ=lm=&4B!IE}o;tMHk`jRQCI=^KD@ zpZlF$_Zf6=-F}o;4labj>WWmm)BqA4F480M@$>T=D3Pc6^@el$H5A%O{BbZoCI&nz zmK~rKmEEl1HU;u#P1u?1o2Qc^LvG;MFUSwQcTluK2`%i1D@e<>rWlK}WrL3mRlbY?ZNiSir{@vWx zNNA>tPgnEu*9RTU9k(Jc3pibXuOZ9#*G;f-;!&; z%Dm!1m@7#;S*qk5+l}p9+md_GRWA9Ap9aYmH|kpVZZZ{|b>hH&(Tt zIY9cw!Nmo^)YNPMh8C}Fj|L!}5g=@jwkPA6bZW34dfnpKRL$Re%&hwx(CixD>Pm>* zFSA~)4^k$tX*O1OO++f!BO}@AZXV$3Kt#3lGxGd;yXge`@geuv+h501h^YtH*eOpR zjH(3eG44=8Bb{tUZg6$D-+TypttO^&8L0yS<^@XTqAeb&+p~7TwaL> zP_VxB3qmEnjmalLWdW;d0k~R%9(|Y)#=*Io%nZC_3ZfO8P0aWPBrTWNYl9b(XZyz~ z&8y~6MWbUg2thg8?68OJ=$|l)W*}D4R-t|jF&d57{-=b9_VeoeuzItw)@-zph&tI0 z5dzXFzT2zA*qM_G=8=8LXa_paMjku8#w)po#B;p#D1(XXd3MAQC?x-XQ4v@427Q0k zgh9+44jq8{^TA{-6e&db%u>$P3XQM&VZ+UdEEPu7d@@5-6~>U{2b)j(q}V=MH9sSr z-gXV_Sw|rZ;Iu%C=dFo`DWUxXxg0VAkEj@e;v0N)W=-mNhW&xz2A5ERQvk}7tmA@b zl-;s~NOR`gnw5mcQiY;Df%!7m#!9{%C%UsxPT)LXVPRpQbsdQEk~C$FA!4ET#q_*; z!|@NzTrLTXyF^=SHEvfZCT{nMIC@gsYDU`z&Gu|1yUfIEC-ou}%R<$lO?$0ZV&i+m zm76Z?GHBGz%5I3hd#@5oHJjCVTS&e=`<5UR1Kaqj!FZNtV<$?@^-iSyXKOuDIGO8`b$T5(RXy^M%OSL~NBTX;h(TWwRuUj66CN#CfvO z9?QhFDA)!SJ5?i3JnZbWg^-EZCWPrjzfnAgEaO=TQJ*z~CsLX@slHF|zjiL{x=#xD)=VCts5nY{Z#(}r@U?W>2GxMhE{q9-8Zp*5Ev?gPCI8T(;C+=-zTYm?`4rBO!m zMY_P5KgZ#SRHW8Lp(GF6=MD(R;D>$wzX7)l)cO!tq_wsaq+e0Z+sIK-8iJlLA!&lH z>>tIk-gaL-9olqa0$4cGdk}5u_U82iwPmH#Dl&y|-McJLg*`q-`FCgCmaQ>ycE!#; zp^x;t%u1;VGd`H!DMabt?^>zoG}rMTS{Z?vE;nV%@yRUxd+Wd5GiD6WFg0-;^GLR7 z{$7s3{#hmv+(@gdtBs6}Bcr2RDC4zD+E0EMwwJi>FL(-g1K{@D^Qa$|m9_132~>o& z;XDHPk^>r`L6aZKCqmA`0RU|9w@rQYt~b<<)(3-mck3J?tOaj)>#h#E|K{nU*B8f$ zye>@L@yyu(f`fy0K)XYFUg3?UqOFn&=KEL^fYnm74W3U0Jh*(?izqtbW=kHs{|SFJ zbrltxsna|}CM&E@&!+%*Je;sBdN=j1ecK6y{pmz*2Pyy=n1JT@%5vmWguulIc^c*Q zqRg5+NkQ+k`Cynt_xV=DF3^A5%mIP(FzEdW6fxTd-`n2i;|f1+-l(sI3<9-6o1Afc-I7<2>D+s%=J zp&X_AduOq*mK3-#)$z~4!9hoFFOz4T>%IX1hAQ*dvOxC1B;t{;w9x^<#{3@|=bo40 zFlYdPOi($j*>_o>ORT1<_I)Oj{>qs5zQRXqb@dRyrUM`jM;~vFB0WEWkD75BFAy}{ zF1IV!|D+@N3ig_ZtHO1p>l(V2#rzvHTY>D9l8U;*yhP0NiD_9D&KD z2{34sz+URcVH$z~NqA+Bvzp>U3_veni|^H4?$i=DMp5j-5fkRrheza30FgtyY&}`A zT)mo#H1|C-`~@fH>DN;ob#+O5`P}^SmUR3;otuNj(07D@Z2zpRtVa(5&-Plds!t{?5ilnkgXs!$dx?N= zD@*A)+sl_@Rqrz4Q#lftj&l}joVTUCyl%WUF`jdM=5|WWCYk?)$b;P!H?s7Jd zC+_1i>lqK%`J2(G?SSuO5YXt5TjE?te0~>g*ZDxctGyPm>{x(+Cd;!<0Us%#Dnkc+ z&uujOX8?r+98b+a3hJ)Un*eTr28r=7&KcC7f6_&t@;I8ApZlSpb6u=uN)yNkYAcHi z&Vt(+6LZ>3Rh6ab_cgXe;6lK%d{e?{^ow|%!T-DIK}d!ABJI!MMy%kz&7 zEtG9M%Od;Eb(ut3B zQ^blIP#Q0Hx=(-er9HUv_DhsbE%4ZOS^QJ({R~SuT<2sl?mUg~K6#cr{UE5quMB1; zhVLC`>)RgZb$bSj*SACGYGi*U8KSE_kUpl3EXU|?s^+1`aY26OX314zGt?YKf%YNN zXjBx7|5us$U;^0q0iAesL2eZmn*mbh;z3}wX_do(p0qy&v_4jK5Jiq*gN`?RP zjyY3iES-4?l%j_D(zruiRtljqbGFR?u z+)P(5jew*q{6jD$R58aQZAT#Smiu+%mojr>%5ZJE`as$LB-E@!WYlt z93|sy15X=gPWPW9hKd3UuBY;63R=Y6>sM|63uMjeEChsLjLjsl;xx_quI^im7QRtX z=m)#!U#G3RXK$VNRj}Lb8J5!oN9M7H=h*%*=l!Xfc_3{*kK3B@7R;&;OyzJ{A|7g( zjNq@jxEv_b!<;-kq%+owQl2)Ry+&Zya-yx2MP1`LQ{?D%Wq2vvn*MlHQ1*h=6kBra z)L891EMU-^KdvaXf!r^$wNX}X8<~`QT&$l?x(ymXxD|g(Qz;9j`8BKS5wTgb@|x;< zOF+AW(O6%kzMzD7{;31Bv!OwAyb*3@1sWIxY@ji5fg)r!HS1JTQc_(Evfksy@nHI) z+teScQoTvSi#+3C)NKtqr(Zif-Fz{SN&$_{s#}syeBTs67f#WOf=h-yCYSa3IzPdV zbTv$fbZ(yk8k+kbm}TQfhy=a(Apb>}0)x~2p*Fxb1241lh=}ep;3V$DqN4n~lcaOW z{=b)KD=5S!NLGH{7EGNw!ghbVZs?We9Tt7~g%{Db+Two>tgpzp39oh@U+}+|hO6Ab z6nJH;udnZj6hfY6Q4nG zZM<`@I|_k`C)I7`De#UpgEX+YBa-~-D>H1s^MJ6&UrTfQlzK1zE3eM zOL;l<9GJ%u<%>k6Yr^@yFgxfpsYT&w_1dU-WzeHK7T(|9h*5%GI+;kL#<3OCqYlXh z3530P475?6QGbr|?ptgHk+Z88P{lIke*r=(nIRx~SO&x~85+G_8Zxkcmv4JThgIqtsyH@^}4ZXP2#X6pU^thgdrbBl-cUkgI3mF0${?>nFqP zQcbOq_h{{uOsh7d?HX@bnx0T3qt-4`e^%da^owa`v%lTLt-2zjVPJCS^L8PwF5x%I zmY@}aM#1;8{{cUNqVa^skp^U6c z;iY9Dt}cCLU^lQh&ps*K02nxfP_K@wR>k#bvCZt!%uoftul_^B+P)Q^P@o;^tt z*SGp-;RUmlU0UCo_A2Z&O+fVp1uaLk&OfBjtdE177DFFSXWW^)6moJsZ~hdG{jg$M z7kv6UI(@dt{Ghdkv-qY5`ikTo*0Dnn!e?(w!G_u+i+8Qp0OGz~PwTt?)ofboS?US> zvlP~s1I)rvxhX=Vd_6XH=;{sl&Um8HN%G9x6OpZH$yD=c%oR=FUU0oY0n~-F@<6(I zG^V$}}&Jj1Bds@6+h=Zv=LKRZoHj{Yg zYNktnMc(RvK|4Pj zFwP#BGnuE@=dvi?#b&%Wz}kh2V=j;{yRpn; zF`wZ3q=Q{-EA8EfGP;45DpKIwUSd4s2℘CTwxizdXV`(}3awX!-B`EO})flNqNu z!-b~9D0F{6Lq|pMeRMusb<$A%wvBx0wgGE>T26m7XxJ+CkPa@VCavz6Tz`oWBK^7Z zMz0@$evKnRBs8jFxUaUv>(CZb!JHy$kynW9x8nL&omB&EXVcVn(@Sj6DX2yGbCyqN z?lBT(T;X(fcJ5r#D>4P}O0IEJ#dcMTxRQ^K}1mZ!}?ak#n&F>Jm(#TKwta6u7x^m~CPjE0HHWZ_o`@SpY`IwZdw zR|$NU_9xP2G)?-NsQ^L!wo`HC=A3q9sVBnTNFVOsztEZ7Yio5OlD}>*Va{Fn&^!?J zRqOi0E6|&mh5&`W9r~`I?K15IO!)7v_S@ra;O%2q zk0N)y^Z@>QG%<1GWXq`z+Gr68Pz>|nM%ewF7ptq_bcy*O6c>5Eb!EJ>xynay;(wpcc zs3V@*lf(SUcx<5E>`yrc1X`}x;kNePtHJf9X@e8i8;2SIwA$KT;8~A3rxod{#~#GA z?#2|7lsp!gR{t^_{gC=y8=-f4t6T)aSMVeK&`H#6q=-qAy}# zBw=|A0c12|`*YkItF3cxfyAv`#C7W=#ad(XxNFlD;>kFHTg>%>XVEh?XpnJHhXl9l zYrZ(oN1Kg0==7VvXBa$htiL^XLrc55cDsog zRRQI@%wM6qy%0beC-!u!4#Hfx*k)iZrX$`ZF*;f<&;Q(jS(2gO9DoK;;vZ0M1mL%` zbZH~Bq;vPmHG#L#Jf|KDdXns%mIAWTwgr_C<%hI zt$=P&$Wvv6q8XO9E84klT}=d{q<<} zuWIf}6}7s0W>k{*U~8%v#V0B3j(+Jqy&OEuuq1=Z`h&(o`t|TI>BJc=6kv8 z-aSWX5XdnqY-e>ZT!9={cd?PDZP$cS2euT5w)gchWXf^y4Sa8UNX(a@kSUI^H#vI~ z7a@3)0E`N4;Y8>^0WAkoIr#v+5Q^4#e{R7DQ0WBH<9C28i19jSG3vm+INodrkKYCS z9uHi-!qsNNemsDeb7=|aNsm0GE?$u!PlgXdT;FJk+qwlrgfg8!RWI-S5nwBgiJL}A zw!Jamt=->z4YAUzPX){Os=wh`iRbY}{fOWb!WCv}WyNNN_}foK0_u_=#~r27ZE-nZ@%+urBhdJupcQ2 z_Av$a!-0G~&X;oQO;M&MkYdAWDhqZ?yABs$?ZX|9@QY>hd@pLgP|M@rZqJXq2hS`{ zUWB5%5Df@`*pcfGiX#%hbEr<-5PO}?zqEW00!rAbDG{m!*e_#?JbrGr?7%i{`_d=F zRuPMDqOl5} z{Z4fdFbwy6vfMRpsYIV=_GXP3F+EwilB32!MRv{T{(z(lBYt~4d1!WAx~Oq2>v}Y? z;UbVF{+@Ak^Dgv56%4^FF7Ptdtqv(L4X=M6QQ{&#<05HY(D|hgY$DqV4Hg&Ls&CS2 zM_2Kzr@FdLZyS*&yyqrmPO+l(&m$V7ZZeDF1ZIAm5E7f)_X@xMTPUtv{X8!lNwLUK zTFQBQX4CKD@6Cn-$!iTd=BC^wEoa_F9K;s&nzRjj=k49x7jUKzdrw>~ab8%!3yQZ{ zE_-S5tY;eHO{MNWse(lXJ~)&-tGs@rcY8iYH{E!buqdj)X`ugOf`~~TZXg1r?Y}PY zw{)ic|CSb_`nR+Y?!Tdhl(z}KV+D#lB;tty&K*{h-%mh%OMGekKs4wf!dF0-D}>OK zW!>|iy+UUv99jOc^)Um-|G#lTA9ACx>-H)6${!wZ3X4F(ZBbXtg9@Mahch)SdE)P^ zMvMfLxb*lqlzvqcMMcga{Nh*~XYETJ-?XXM+-qQ_fZl6?BG?@e6JRDmO_Urawl`&; zaB+TWe9G*Tu3`6D3eFQDl#T`#aW^;&*Rqu1A6YK2m(i(}%Q^G^zuF}z3wJnE+ees3 z6iW4{zn3vzkL}<*IaWApvB0J|uedrM-rI=Z`x3r)$kG3aMIb=LZr7B>4La`SwQK2m zO3x*TUbwsTrQD!h%X01;R&(dUZun~Jm-&dapXg~V*X_WQqbwSOIYux!7tc1Imtx#a zqWiFqA^5(m&xun8P7(#t2^E9i{l_AE_eVQRN1N_%&Xuj~-PXiUQ>nZzPiy0{nc@O| zC)K1iL`g|WQhIvJ2n8MQvlbFiUIy0-RGuk;6x19fENL^RX>`^SJWrw@G>0&q-5}8i z2>wKzViUYF$q02bRsntq_uWOV4GjjO1ucd(CYw*Vdt z)F<@{S1R4r0EC{<*hZ^I%x0Z3DUGaeH07sNek$K({JOtSbm|&@QgBB<-Iz2UD^8Ng zec`povY6d&C)U39Tpwi)-adDWEh&Xv6qV;@i@?g`avxQkim0v)SQ-4;yhKT> zb^}*{;8(rDtaP@}&`tg%QJI^EAOB{BjC;IwH8<*78^uqUhyO>I(ATRU9G1>P(<3@G zS1$!cd|MmU1yiM^Fg>}P%ZbNT8ofLr4<0;_>IQ|E|ET*0T-@z>+O0ka_rP43E47$2 zoy)q-ERcw0o2H$$EqR~*v)xILEVX zaYBqn-@J9!*Z;K;%GsK3C+J@`B29-0= zi;+M1z}+D{S0*Flm@}Y!8DV&5*w`b1fQ^ChW>ELVv~lWMj!*RYInjo&)M%ZZ zl8}_l^50lz@407D(3bR?qv&jGUp}i*cvF?(8Q`y|op;h%NHY1u@c#Mvx$(}gCybT{ zD~IYQV*Qw+h|RXxpibcCP1npi1v`S*%(I(QE(t=FAkC1yq8U3A>F@jgH!=@`8pD$Q z5L(m@`53$=g>X9gZif4PS}K_gw}IeZaOFz>ScaL{$;oxdGHa!3ptliYta3MNL}k3- zM%dvM;2We^zJK}%iW<;2jdi-;jjB?ZKuB>0jI{FF+I4+KqX)~~p5DaOINfl?+2o+GTr$E@v^)g#T8YzqEpX%ixoFFll!<6Usm2sp zOxkNVd^;_BwqD8RrpJw9(KdB^v{B%UGd01UOuBZeShckrogQvUOn(mr$?hG8_Sm!V zOWUd~L8Py41#4}TM7c9zAe5??P+obdSKcctT0|9thE^nn*cqBu)gUp9J<*jSAB#f?!SrHEjB-S zHB!%!dJl=&`0^lv+kQ$0UY3nvD=6DCSQvId|KZa;!86rguhoXn=TVt(bwZs&1fS%X zWk~;E!bbJ>x!6Z#hAJKnO9c>PWDo@|q(mp-DK*sMTmM&KxDvwHe_j{<7L-Gqf{OM8 zZ|nPjTciApOTT%GpWoym`k@w@{aKVqZCIWB1yK)9dNlNBPkYbbm zaK6_%$sx{cch>;CM}S&W;^=wrTl8)EJ|!j0i7zrLWl|m3J>XQ`Dwb|fugW>hh*)gp zLnH9u`pAE{noUCuFgxCa_G9Y(O=el)c9Y}x81TYy<1R3MNMBoHPj?j>m)WtzUcmk4 z01&;YGWlBx|G%*ngW7frYF?tY(@@>XV1M9O2*M(f1>gAsm-j)TgHE0I!BXcd^ML@M zEHc#}Df%^$g2Mhez% z_VfJq-dd|3^yhJ{cKGXqwdg}IR1;J|+0}w%jI4`3+|$b}UzPakM?;em3NB}>$9!!@ zWl+iBFT>w?LrVB#y)R{G3byX7%<}HYVH6$#VUT9o`wJYep>HXlBu(W4HJinl7o|lD z7kW8KWdAK#5gtq*RX$79+4`>qKpyR{B&OvnV!vEx|4_&K06BMDasuD|PMzi#a`wx( zH_v(;e9}K;ROR!voG0I%zx4_(0t9PCH8nNEOxP>8u7cJ4moH$oiKTphb0A%<=)(iw zbHTrUYyXIdW~d+~rG+*WuQ;8?{Si_Uzl=qTt-nb z9JKIoGUu;9fRD{?xta*?Cury3cF3wxp{r*P)aZDY36AM>)q>RZ6*x{lL?UTV9g~Hl z0_@cYI9T@16iMLTAp8i2u-w7H!45f1K0dzk^$tm;HGJINlUi;h;0C@|Xz@6nC0X2- z%Z8Gl{@Nnnw%+8okGM)1c8JSv5YGPyng0Ys%{%XUwM3w&Zx`JP`Uh(Sx5;y8adc&B zTyl$#UoKjNW=sP7PKfn6v>$|VmAWPU$HN=hFgHU(L&a@uY%mj`B?5-vN#YMM=shVi zrGjrWG_ei;4&pbga3j9(a|Riezzt5Bi?^7i;3f|?b4A;nWt5%_kYwW<-QV9qqo!-g zL|%Z3gi|#T5Nlj*;TciXY`gXIPG&4tXL+>xvqcjVxO9S9vdVMwo&Gkcfo_w3fD8RA zfKMOSZU)h~JwvU?xo4o@M8dGJS=!jF4+S+SsUdAq2G6`K-zvW=eH)JX|nl+4*mkDsxOiDE{AQ zRjNC-VZzR(=(Y}8V$XZAviTm#nLR&Lze##vzxU6zk%T)C!9n$Q|Fg^7ILj`!mV@-5 z1nQjYkO*R}5VC$SKU@*Pl3Dx;*ba(zTHSIFcAlh~3Pv%c?4+`xZ4fw67D(hQ6(8jU zQ>6C=aoq>0Pub{*;}40h_GB$UqaL|5TwxD_J{X74cZJa4UfIMM+f@21!DKbT-3|f} z`3dH=e$vs(-Nm%7{d(V~#hE|35h`h^)4#1F{{`-#t+rx8o;4-8@dxRFJ`CgwBB9#? zkCA*mSWF5OvM&H)DYCEui=%aP7Q$TwA}DXtt=|gDKmIvm;Tr#QAql_Uq5P5hI{Xa? zRfDbQHiS*!SrG-TS0PdA**AY$1X%Hfp69F|3~;?TiFwqRIh3GN5_;&R)Hx$|gK$Bk z^MqN_ivOiJDltVM8XTaPzppMeA8Z}}+)13NG<_GwOOuWHt(vK$bbV7ZO_sCCdx0{P{A{JG<>zfZ2nrLBF zG8y*WgB26Yu|Z|?7em*N(x=>eKHf1K>rMR}`~kQJ`~#H$J`OYj=DrITF68UCUyWP2 zv4fq%_1xYRGA+m;k1g&TiPFNWrlH4+QlqZCbFrIsFIK{bqEor%Q^}oU5|ylKMQ4XK zPXNB@5JP$#=md1c+_m6j=Xo#^n!)Y~6vBqk8V|-hVixP;fr|U{Z0>S2pxJ~(epsvP zFqhYzZ@(F1&{gAmDfZOwWJzK4;VxhKGT&YyoqF#z!!acP{eKT>0FADfkpJq)P~(9H z!dFhqje)J7wOW{;7zT*d6KpbnF@qU2r3GFJ`Z73-xt~;{yS+~cJ3`sJ_nr+U?0e^4 z!ID^g$@r-~N949Oe%0CLrYt%oN*T5x*T{wtPt-<8Y8j7mEn1-2<;_m)nWvi$fV>NU zANj-PT?QHjb&6(dr$j{T=51uRQie2N{(*ZMZ#_7MB_O@JA~haFsG~+*f-w&6^pu`*#>cvNvw0>7 zgfW4yDOjGB|yCy1iukUSP(sa$^OOALmK`gpF5fF;UOukq|;W<65NfkrNc=W zBnCN$btbA;*Rh#~0hPgFghI2St|lt@pC?GZ5+fgZcHVAYnnB#m?>->n96u@2=rkb~jzD$(^!E3m1niJyj6AscfJ7u3r3zBwEr78xvr2$$i#JfA=OL z<@oa47Z7i)+HQ9~wNtaRTZtOL_w-wdD7zzZFP<(?F;ZjXIGZyOu`kxe!&m!K74ljm z%lxX%@(wdMFQ77`p@e-($683<9&%=R6^>&4?UJFhQBva zyu46(Sa!x{e{?oaO^o+eTdEB#&7?iu;`b^pj(MVaM2Z=u^Aw90uZvqF`xOTG0ao)a zf{4a!tFm0|6k(B@maS)Ym!?M8Wi9lmJ_ZB}BbDMp z0unnu^-Zb6WuA2T^y5cHYq-r#&t1ljnD+r5n5#DBR={S)P|@+M1hpCw^-o$1}viMLS;OO8$51ui%QfCkHt8!C74cI(eRu5oyT|3UKJh>GH3as)q;_+1 z?a?u9@+~XfN)X!z%w0{i6G8QnWApaM%(gj0^QHM93Y{MUCHyx^zr7zvQhuE|yz!ub z{}(Jn5S3cFr8OR)@t%aAGWz>?%Ej1U$FKNf5S;y_kiU4MN6?b8#rsgl&m>|vT4E^5 zLz0Fuv6~=fF()Z+Vr~1huN)lP0_Y!j1FASEK*Q_C;fPk-coWgXadk`O%() zf2zO27yc4qtno?Q;!FCQufM%SSJ{7giHvZ}z>-xCWkK_!h?dvy6UCIMaEl z&E|V^!V~}+elDZ?PQU--8w&l8VO-`dZ2v=P45^$%mM2gCz1Hz>R0>?LBKlyR5j1*= zFv>j24{!<(3^@Wi_Y5N|Q-7A`if-MT)05NFI6VYX8BNAG+t3AYiY%cHg&P|iaW&J^ zo8LgWZR#q6fIm(n*oOA~S0D`|plNha1@(C~^zZp5-f=txrTPusho_LEKkaDJ-RQo~ zQ3VBJ3-BBA(9Y^F>nU*g2SH#>4qBr%5QC6r$6*j~e-PXn^+2r8_XT1)lT^miplS<9 z9fo3-KoGh>FLZSmbNm22=RFhc8dWsx;0s_CN;h2g0m`#nLyr+M;HHz~!Lt0kJ5?#c zkH@(8j)Vj;Sk$4gZ!fXbL-5-!mN#5#0dJ6gZ#FGR(+M##ZgFu}0Vvg2PpS2NwA$lI znGGxAk3{j&QLbCoexIZb-lnr~5qOai^z`&WJu(u+dR4$xkN~?9;x7gypJk|V;@=F6 zaIHhNjH|hh6Jn)k3rq$=pp?sjJp-J|C#&8vMt#E_IKxJ<)es(fa0iG706a_ZJ3&m0 zgZd#rDaY|F@M~(_cue{gr%NEHq2rBlg7p43<)79XrzG9NYt!w zz(uO|_V$>4MU-(FkTd}0L|!OSk*~Lwt#PKZ26i2kV_O_HYS50bUFa;yM6^9dww>NU#R7@k1Gz zB(e7wA>x9c4V>HAo{UQ$(b?=c1OqX+etRpO1rTL63*$hlyb8Ws%T}RKP%d%tnaRe$ z61WmL1w${&{u(5+1R<>Q%N#>;{w6NGPHjJV`ihfy@M$`+`*RFRk|F?bfF!^Qa2Im{ zKM5scEl^d84|e82v^=N*$>}?YR6j>hzt}C{K@oti`Ll)(R1hs+EL##r;Fv0)EXHl% z*6MiXjas9hI1L2;heA9B=k?>Htx^V`mUTDB7kk92c|7YjTnv|rTA#;(Ro05kRNX^eO);nZgif<^fDZDiAI*mzW+WK zf}3qA=!x#+9bSm!#7&O-vS;Qy1A6PLNnBbSb6zwa&ZHtS6b)}maY%9U;!fFx)9vK0 zT9Ut|3QRVH2!HKP$p35{!ti^!|LLTQe*)k55IIJQ>#aOBLEkp^l_W4{L~8XdIfvZJKdH}+fxsvt}(1#{~JU`ffI`$ z$O;Xv;Y2g}uX+l;P{=u{mJvj0t?WFQzD?1O*LiApvF~bUF7jU+UZrvPNekB1uY)C)nBE*Z z++vN3g?{{a7l5c&FUoXQYVaK_ve?a(x@KQ96MoATn9`ko_r7*pRJf*{z8acBOH@#MY8Tag23w7Fj5d5t2w( zn^rxLXgi{|lTzZ?p@5^1VEHj>LA;AeVtfx_n`%qX8Y{|ss<(pG$#OoPmHw)emu00~MXiu@rEirmYbf*=D0zLvP>IengJ%%OS~K`-sN#tcK&<3}_~S&2gv0;%Da* z$)2rDFE5QmvRCe6n-|Q79D&I{z`=m@aZW3$H5>M>83*a20$Wjh<{F!ilX|=CLZF5( zCA%&_3O+k;_Bk4>m00K)HiE-1GAf8)aVkKmC&TxcZO8wFE zg?AQnP8DZoZ3W$_Bz47q^D80|^o&XO`2x0dMO5C4&G?PIp+(W1lIqoqlwC1pyD0Eh z>9Cyt)kj$QE-W16xJ`;>G-u@LP;v?_Di*q|ih0KITQM-~?hqRt;)DS3IugjrF7L~} z{VTcRH~_%(;8@j_r4=o*H%0~uzXzBnhe6y0Jp$dcd~{ZCA}MFXH;ZXlu1?(cQLM|% z4fKLf926ZIS&~X@pXBGN=C0A$X)G{(a(e1JdqkllmG=xX=jx{b!q|N+a>rqR`ua3a z0w+I#Ppw=zslbDrh1@KhPX;ZTSplPjV_6W830A>L@F7@DA$5b3195><7>R)6`wqJv zI!lY}TY*#Lq0GqP&=z*5+LjNFgxMSjWOdZlC$c>9Gc#jWfBg9T(4FzmV5o>v z2kZuLtm3^w2+uGaIS2!gP2&z4;JU7~Jvp)d@BPjx)xo-{uBK zFx{zwJ#npsTAiei{rSSj86OUd-sSyrG{|->;L36ySR<6$ z0Ix4&b<}<0L)HDzczKWTyYC5#bEz)(Mc7FOkl)fPz;Q8-d`Oj)qAz7m?Pn}Q;Ig!E zR2(QWV}y!6Ewj`I!nr|g(j$OA#@S*)2qLV4^WYYQpdnSA8DKX(#1pJ!_G9dw%3)ob zANAD&Il@lyK@A2IWU3}x<7+}DM-h8M_tM5+utpyd54AgG>lKXWJnp8z%;wH?8FAM*Wg9c*UU1F*ElOlc1 zR_M$NVZL&3UyzSuTmY76G^|t+`;u4N{#$Z;NM{a3; zo>~ix7p@`YZ%7i?R5Vn_Opn#|kQF@i*p(U0eo~m!pVe2u^A{3hfCe<#uJQ2jINW7= zUg@$O?ZmOhbdRAvf4A1?$eCJ|{5j3&Z>1^?fsc!5pU^P|`m084qphywm~Q>}44g?* zl&x(b>HR=O;1=B&z^5@g7HXYIWU`66A47W2;pA55t!!N)r)92rW_KIw7;TMXK|G;~ z9nTg%r!NPs*`i)u5m`h8xbSdY17@~>bB&tsFR1>iRd3=pC(H(`uWLe zUVNgYn2f5a21so-y^Og;;PlP>S^-Rd4beZs=do$qg8Nd0o{aDF-;M^RGvJ9xq>t~3wMnW(bS>Il z6;PQX_*ba>ggGmQzmXZ*kE{Nc8Q$S!hI~3dy#^n9#Qfu1ev_{=B#OEP4sP`OwInE) zMRoBxoQfSPyWXdCtg6S$o}Q=4N9^0Lf6Md=_jBV5w~xaB1IS>BBFAj-k&Wrm!WZ0H zY0ASNd?Cu#IUt$c;13;Ni1>!W99eaBz3P>=n&LRUDPd%e985j0qXLw%dQE~K<1!}^2SzyPOO?iDixy|6xHGsflsaq228YZts&g9#FaPdY#7MN)yEWs6PYs z;-rLeyuTHZ1#|v3H70o7`0CS8+FuHz^gfb@WP1?(X&- zDpOa#hwE!&J-B<==bune)okxpPyfu1j3fmt>|f^~G=jEzG-50_tlhxTi5*9c{R{&c;UChemn((197BQM3#+-uvEGVZfbuze6&9PR;5gGbb}q`D!4=UX@kr2Ub`<7 zb+G4^C6;3AO{`9*iuW!U@~EhvKX>1OVgSG-IP?a%ZD_$9&7_csvzs7*3_+dqn7X+# z`TGR?4kwxuf4qCV+h3GOIV?Rv%X43V1nI*BpF_CdW34UczAlR8Jz`$Ev!)A#$K7$b zipu`ei!(ZED0W93it_cNmu-&>I+FlTGA(!3WR7jCW%s5Y!4X&U!Qm~u{72rdmx(qM z;wV9Z@p<>DINjlAtTzB}FM?Q>pxy8RfdeW92R{%KBV>iLQ9}J>sg6RCh9z;-XX@Zh z2AKQ<6WeBOpJ~hWtu7H(m1p1ne7-nQv`*BQrJlBUQ|NI{fw6sK5nbu<;YHJk6Sf;~ z?DSvib&21!72U!H(7gYomV3d4R#{5@ zmZA&?x~7A5cbNLBV8u$fNn5#cU5yX!HjXUV9oEEmDm)E%kA};qQvi7-&#Aa8i3Xct zo^jvp#R}}OP+^98NdT}OBfx0@(;x;rR-px#3t<)l(=R|TBBxleFBthXE?}twJwx9k zb3O~$&v<3 zFpbU}j6JK|Ll>NW2lh59pMU^SE%Q7mGvN3A`%!oEIhwfHAOLkb5Br@&@Yimb#Q_Y> zH|(0x6^Bi!77Gp2Vgg5yK77XuW`iTnU(X0tWyEi<%ku2v-;L%`k(av1YL+U0`gn@< z6-B9StQN8T+C|8g5p)axHB!L4*{kio{A%M*s=$%HOw(@cDC{aWr#BTQuYcSYm_gO@Iq zHB~O$IUHugg3vy2YHJ-jM3>0*#EKF@P^n}pL=Bg$wg=bOd5GGA5PJG|Hlb2#|Ls{u z3-~%DRUlv6kuC0cPUt`^xR4Ghuf(5M?{enmoiF5oWtBf&pH#hz(Q~_am$&4}{hGIG z9^s3X5Hi!@eNEk}xB z_@Dip{)2N`Y-W_yLtHOkZcP)9AW5o@W{mZJiKC2wpZ)pML!13xIGBEGZN<4mb((1G zCqGsU7s#!Qt$DlDf6%c+9yVTqCSgMUp0Bsr)BT7*ec^HH*%=aoD~CNUPS~7`dJ1gd zV*!r@S792rIBOOIyZ$VFtFPZ4qK+U_Z44P|XdJ6T2cCTmH-B{{PuZ?ZMZN&e%mQaT z#wN$!*xYpHG9Es9QXxj`?8EnsX*sh@r;hn8^7F6^w$2g9n!Yy|L1&y^_z6n_lzCI# z(3ZOQ^5qKfM%h*KuS=XxNi|X1qji6Jbz#XNg27eLTjLTsKoQ0mynj9TP{LPQXO`&I z@%*y=joUgSLpd)o(d;qMLlvVpMfy-YQW$d*r&KC=_X40C`Cs0+8Xz-U;3zeA;~FY& z;TO^34Uo0&3y?qfR`_5^p-j>hVQ4$sy!omxVW3jdA(-MSY@i{B`?n>0Y+STT9Vs6e zg?{WX7V&lXJqG9#Ic^l13+$Hkv|LU^ub;N`!?fDRru#iSLZZ7lC0*a=t4h(=f3kbojDK;0)_svX{IF`XFF%{WM_IgdP^)^47R^MVV5nM8D;jx z5#-@C5en6ur|QB7o#t{3!Z=LCqig<4bB0#A^9jVjxoNpC&y)?eaql8cqc!z};_rW> zB*iA1RV$NG*pPkjUi{mkGfhWXbWP^Tv_616;=0CMtwRtdpn-nhP()>1`{+pSPglY- zQmJ?EWt6_ypB{nGFTZz}vc~ZvEi1p8-Q-#LvC!jKxRRRoN1$par8E6w$^6?%BaSzVznjVo{_|8aj7>iiguLq%~U`=*Xs>T5WZOIb4J|)}ofSNfA}I zkHL^~+<#9mcxwE9l}%E^_WRXi!e^AfU)}J?KJoii$lczfzh5<9naBV2%1!5#4c@O; z{}aERR^Fd?_FhHqfN#GT>(;09SgiTmk5#jC`ZgC5ul{+LiQ6xi@SLr&Bzeu*@7kM3 zWCsq=5gM;kc;BD?@4Pa#Mm3qx$_Hne0)VB6j~#0Ru42%qPuC+_5<%gJ(4f9CtN1aW zUUcVCE+^xIe!Kh3T;DT^5l_!|d=SJeXmrdqcEl-S%-#Ex@DOgLFV=F>4$Y`LJ%yI$ zs-0cCM~k9EWX_7@HNT=<<|=dRzeyqr^9O;p9|!jRgg0-Fu|CPY4@ci%`ueY5!_{fi z^`C@r+J-952RIoA&|;RJ$oE=z&=5Y<@Q`9Vg}9g!=+z;q7C$M7EwbT`n7kd2ikBc0 zf7tp!!X~0m2_NBR)Q$CW>^3zI3h}d(OQ>fko$^rWGW%L9@p(I{FCo@_%_mF)DBfKF zgv&=RA(+e(+pW#L_*)N)e4mRkEE~3af6CUh7x^W7D=nA7I8;Xluy3tuuYtJnBQnk^{ zHT8`a?~6Rg2SIpe?dy+0A^8D7H_0$oB&Y!QGX(|9jg`^B(&qy6-o|{N0%+&*s;c2n zrfQlmyk1XomRAbISAT6)F1s`DCfpT_L^DDVflV>&$oAxpOBK|s-! z^M2JvFQg!{H;m~}*PWQyNc*|YGU3Ss&aY70>*(svf}WL<&CbXu4(9hjdLdA%95(y( zxFC81AXsq+h_`HPptaC;yGb(9%FvHjl$XC6@!pd9%2BJOq&FijDke0w<`~pLaBNas zoS-5F;!XfRYK!OSh*hYuuoB9P$qG5N^f^6n#A&j+34y5Uo?RS}XD1?KLQh{Jzk+1u zx6Vw@_}TRY889NVD_b&FOVxCJyM6xltS1VEg5kGWTMj2(bX81EGwGQ)IrG(b!8sTd z8JW@B`tSNt;rSpEf4~p_wuHZZ}kK?-fCF|6YU^Ba&ITHmf7%*H27S&Y(wPFqqj9 z6p9}EY6Fh#KI&|t&$YFK0|URn;i;*iK|ElWyaAl1*Wvn^^mmy$eCfm}s;jH-3m&rz z9ukoVz%uOOm9DH0d#s=SeGAvU~4(D3fY86ik&-=W4r+ELq zCzuo1L_|bDNihK70>F3jPoKs(Y|JJ=);F)&(`((7*1A%E*QJ??s}j+3rEFbqU0s5)u;)L9Eg-afJjO7o5~9 zz(Qi!mz#h~Pp=VsG7NS;xY(|#`cighpUrkafFQx$gkC^o@HisTV2qvhU7$^L5cR&n z`}(A;P#5ZJUaJ#QuyntVQhBWbq8c+RtCF#?@sj~~;Ig1pig-+se!W-AA!eXH+vujq z;!(uOS1s2b6qFb5^X8SnKU_YWMN&pca{fwfvMI*=_a?w8X7iW*1Tjnef57(n-+Wfc zI*yxZ!f81z1v(_tl`D5ZqL+o;$(TDL1m#TOi93x7Vx_`J5)cR-^OvW_;=asymWq>w$#%xAOQA z`sE~|s-KuEqOS#?5AbW*pQ?+-B8&1vb?YVYG*>=QA!aqlQu6w-!xCI3o$Ag}TP1x{ zRlauhk~6?yE`Uiv42+CvKvoW*_pXgyUN-mg^h^f9>6*$h#7XoRKIW}i!rpW2WoEI%>w)h;!q@s{Et-HI!4H>6f{eLa(S!(HfqdZy0bTZ8 zkFKfUn@vz8-TD#6Ar4``8z)NX8)2;+8ynNfE7f$sFnD>xWWqcH7`>+(OpG}BgYiNK zW_*2G z4GdH`XEOxWFjbUG1u%`rF=y~%s&A7RY~x{x5>t!mP57@-i7ch0!b+3BNtBZOy5Q^r zH^!GBDuoDvNYh_Vx-~sLEfH`}RJ6HZX`o03I`lfv(EhZdnHZPLq~7zJgwgxe^m5Uq z3T}W84Oc&Iu47zz;Il)I`s(sJezASuTG&W@pYmuI?T6N7-B@fzV%rMGi?nGW{gmdm z0QR2Q7WZ@|f~wNe-NLTsYV>9pHRVZ~MOiTb?T5-S?(OdfM{BLkgf(+*StWte5D>q< zzMjindvhHaW8bDMa(IOhinZ670@9Y%Gj>9v#sn`Qmg74(?7Im8GOdy#(fWB=>MmTF z`ySDK6c;X}!1?J>w6KPYiwhVBIsoGw6ciL+Rdr`$wmVIFu>oVn%*K`}ZF-`|a$;uD z6*>ehtVfE8^K2hB=dozzNm{tho$i+J50B7%Ko&DLzC~hYvsZ4_a1q=8Rw-wDYu1C3 zrp5tFu1Qoh%YX~-+}X%RzSM;M z=vz6=b{>Q@Hb{9Zt9*d|HWjo)i)aDXo+ITdVwqYaqQtfEp#DDQyN=eY?f&=+x19X( z5qW#!G#KNY^;VBX^SKUohDMaSWwtZP?=1!Xo!XA9g7t2bj(0zOP1x5%l!veF3w|#zMa1N+ z6-c5E!q$1b*Y6bhE-aA-2%l&6;=Gjs=aBM{zwQ96lr|O6^yjx*j)9%rYHRt~!f?ev z9Wh?a*zsl9HZ5N6ems_PlqL=lbN9`$kOR8e@l7}GfXE9_JgHM;@xEWNfE2X9I`u{&oZ&5riT2~sTgpTUcYrqjyvKJ zOgP{v6GWh^ZpO1V#FKTzqY{y2E>=Z&!_0H<*5zKW54$wlKV*IxrU4~dl!D>I5$cb_ zGJ)fr30(@XKbXD1V!KC2L=s*`40nqftXwQxq0%_q(ud+G^q(q@+|mlL@$3EEn5w?j zg^F-VvyDK0qA>Y$=1S7%kf?q(XWM)y$2X{T)pwlfkxV-9G~F7IDb_kcMj2%0cl@I+ zHn5-YlLBSA-%x}2QE?f=4FZ&$%jRjX^~E?fk+9gc25IIw-y?a=q69M(9Az-@Fd1gk z=>rZDR~J|}vli(?lXG=tMegClHz4X7+q^|&)?l|g&W=bBwJHyW+Ng%-%JHkpzNBe8 z70DhPwJqIml|Nod;~O7(hUN8BSh#=_lAw2%+4V3aV8+GFHuc+@b+te+IXN@N)>Xl! z=UL;;pdtZDzO*9deAoECgz6J;6yt*7i;q6@%0bhZ$!HCJx}9Ay9Luf8>y8h-Y@mXr zE)+LF2RAPi#z%j8OF@wQ{ty{VESb>sW7*=uqTA>MiC^eZ_26Klg#9EInpVmmO_4`bL#E;yq8J)7ETK9dLZM3h1ijX z9q}oR!H>lQKcLfQ%Bi?E1=Ox;PmQ{iw=8EX8}ZLo|(&cf_t? z_dZJb8TABFLFcHR4YbObuU@?eXob+|=x7*Nl@C4+aQ-vhyeSLKZ)Wr%P*+uCW&Ht* zQNmJ6lhm0~TwGjwgX)~cUw6d1=hP#kn&0wMF^e|HBF}BZff5Pj>;@%mLA0M&$|7nu ze?9br@e?K#;h|C>_Nid4;rY&G<=3=BMbiA{)8neap?Q*}Su!Uonzp{`{B@TcKIHLB z+xNeoQEnDOEMuN1ZjzxkqxeU|`Om7WDQO`mXn_QUgd_q6;+4V~JoaTf8H3sBCTt&l zpK(XsA~oyrVneLWN8xQvel>M#H-QxIW2Fd0$csFrf`bG{kxGtM02Dk|2EXW3`)Z(5 z3LIogL=$FwtwyG8oBREYhm#7(TDWs=|KshGWgrT|_mKBU#8p0UQ@u@+JYr7qIzRY8 zOUppoXZKQ-B?#O*(p^39S;$VECLh&0e|t2ce06u~ci9z^fi7^w z0>-^ZZ3mbQoOa7k>+9-pC+2G^$78s^S_cc$V4|k1t1Ulvh?oV7S>4RIF`Bw=z~tELH*h!`9z`n?Csx~oKeJ@)(c|Gx+Smv!6!d=K_x;fi1SAmQ2?bPz@t zdE<83RZx^4%t*!;h!l@lI_-NXJ~p&@P}OaDL4N!e*6v`{&1$^7j{*;UZ6ZJaM)Q8C zOaHv#>~K|4qW)fw$XxY4jp5!VD*15E4;T(cHcyuEHE&6f)V9GGU@*5P17eX0mKh*c zw}YFE0hyBn_uIChPmq*M4f@${pGYv(Je!Zmi$D zqJ?>@+2Ls#(4wp9Tot^tn7rOYijl3Z=cb9U(qqI-U5ZcCTxmRJ-Ymq@A`uX<+Emow z`7rN!f;2izK}BO=_dvqLSxA%NsF&fH4yg}b?5Rs9u*};FGA(Q;PkvUp+(G$!ufER5 z_XM`dkMw+(Nulau`6FkR+-u!NlXax2u@r`$???*kXva5Ld{n-D1c5;7RtsY)@_iQc zB;pVISz*_vUczjbx~1h{k~yvO;8{{kp>_T^L0WadE4w-+scq-3J(JLQDWSZ^XIFkT zzJdGUN^QIiUQ|{_W@NwX^7!kPYqdJbPl`6DDUM`~QFyO`-xep+=-dsZ{};6r+(%!2 z{?rG}*YIastc0{QcS`?`!gzoSs?)hIInHk_JAb3NK?3ytb5_MwLSNGOPbjb)#vJA3 zd_5-2Qgf5pmCWQ}zlFN0Yj0;Tp2|#?!Qw<#T7WYfGRY^N%#ioBW8kHzGI6qm29US0 zY44<^x8L!qOWI%PM4x-otpSn##|gKj&u8!FcF2m{S!C5?Td7b{xR)CZu6l zF<>Rdul(4$jR9#BvHqm+_b;?w?;gGzbiTvq^G?>$Vr3=~i9S6;J2F;-3rn$MM}0Ip zW{8-{O4-bjJGUEz2++hfKMuWxKiEBv9@<-y*f%dA{&1jggIvbPsj}czM9S;y>z8ao zH<$^=9N(BX94@!-s{{^9qbVx)a_gA6`iiw+Mt8Da*Rxfc)P;%L@vg?bnMD(X_Q|PV zX=fF%_y&){Ik`&C7){u3l0@mXj^h4rW~Uv~_rUPhI$odCUh2Gd5V_Gb&2Z=B19rRY z+jH7d=!$bZBFWh^BUy!hk{vr5VTR+y!yFH|&b*r`of(LWyn2{4{bJK8rK{A^)5p)T zq3Fz?Q$Y77UvNlT`B2}*od(MM*~%wTOy4Dc6}fM@?%j2Db)A}-(OTJn%M4*c7Nop` zLn)Yk*c&UJ?n8d>YG|{P>B}83-{?b)dYeQPW_ofa4DTp9R8AjOy-riie8ob8TR16; ze?)&&ti_M9*_GLMd)=ZWyT;2!5-MR&c9MORSx{}aa>i%`t=7BmME*ToBiRdz!2j$l zFjoe^4Wzu2Q#r(765(Xqwd3+xItixo&6XdO2B};h%ISCRzoTSqLsKFA?9*cOkE<80 zF<-&BaPHh{c@N`XE-mf~XVR#BK*}&Gjx^|E+eKUtc2##Dsm8m-l zrN-Q42il5Sk6hemD%fsC%{6e0l%NeVXBEZD9{HFunFzi7_QhJmm+tNEdiM}VQ^7XZ z3B^#*7@q3H`AA1AG=F3BiQ<pe3m&=g!WPVt?s?$_@QeB>!FK3CrdzwcH0>2 zRh{iFpXKqfDRCXHlsQ3m?x=dgoKu39r%J`hfkL$7#a6QN+Ge3Ma<$@qeM>aSyd+8a!qwk@72eG#IP9nI!IVjL*0b+?_Gbaa48R7mcg!n^FVEwQtC&QOwvr*(R)3w4h6d{Qo2SwSQSJ$@ORPiPPYlP*Oko=+ z%}TRUFv1+>#xsnR4N(8Q_I~cFwTZ5-&YjxP;Abil5IfHS!q0=_E=6C2sHc8lZ^GameD{?mKv**T+SsLMIJ_x;n z5s71at-&r9rbgE0Z>Q7C1+%;_h;gOmgY*sm#mGI!=l}Hz@xQC>%E>G`EtH0r#~7g@ zmOw4xr}9v-xKGE9>#x1gV$}sgtlW2BY?{)DX+Zp0rV*BHZ1k*ojcFi@rLX;pOM%Z~ zrmN7Za>kD9PixEl;<-l z!t}`KCU>%mq^ahd!4L86T%S20i7uTVC@gg1| zUu?BEXBTeayYZBUOsq{cjKGLl#h(i5>gnJo%w2$yjSA993SjGf7VONcOW?L~(r)5q z!r@TL&=xc=`&57mr7u90WVuutexR1xPy4zz zXJSol4I{1Ak|V5YPiS|)w0j3P09q8YlDn(o8Zh+5J0w-f%C^sG-ogCP+pwMGyYq+# zq?$z~yQgM6=#hA_tn1(0QH|`^M`xo1Ptd`q9t>EWpoj>y!V2vMQfQdw_0L)TY`c4K za1cOGLqpTIFh%Ab!DH3~jcj@(EQy^^$j~EUpdW;?Jn#t!7)nI*hRQB|4bn&G>t{}H zsduknP}=;6yI#RZZI@znHTs#?XhxKKvHN3#jXrN&&UVfP@=T#n3QSIZHDGwKv7i z4;^GLVM_DwgoruAiycw{istlLHI=Wvh?MT;Tc9fAzhfo`hyHT2@{4FBf3`zf zsUM9^i{HxfSBAp6TIgE@q2qt1^VsxU@l|~G?kO!QMn5#)AXW- zqln=})eo(~RIcm=;8F$tWukEzjLjq_AyK?@$L%#KRVsk?h@BCL9$R5{tpM`2!g1qt zx3-W)VaCBMc0Ef!rJt6YPqzy>_!5 zUn30#vWswC{J{*5+lMO|PJ7N2y~6hwyzgV$2!+4k>PR=0lI&~WfzBzHSpn-tQ&Up_ z{l?;unsid$;0O$4Os%Q8Cj{YmoX7%V2=kx~Ora?Nv>&nq!fue#6hQ_InX2UJwlwL! z0!>M!Y?B1RDTcOi%ADPDybGVF@YW~+qyZ$rS|2XrT1nq{lf(o_C+D;h6?w zM0RfH1(EBARj0lDE~r1#+8Xi*b{%~q?dtk4;6*WW=7^m}68BW0M@|3F!7-n_IySvx z^{K*ED*o6Q;v$MvOK)k#{zHk$g&zT97AaWNzPfnPeBhV`rtPc7?Dpuxqpu6Q+F5rq zcM3D!!8>NS5A9!&;QNJf)fa$b)}i0qG-iICheySmjHU_8b>3|7lphC1e*OpRe-?Ebe?O(DdP(XDmh0T`Kzr|FgVeA%h*}j<0 z4GnfAGp~yT+S=H;8-;JbRW>xcUl+-r-!9}k*H$FZz57o<^i{a1;2TxX-=M zxR52C8j(Jy>enh?KVb&ejwY&T_Qz#58T6RK0n@bALbmm>PbU#Qp?QYBJKvPl{zsyS;V@P4`J03-Cv@Dkna+wu@N+Hes;JY|UD6;^qz&5htB_2yno=k8VQ zKMW%_xs+6?hHMR|lJ3obRXDRPs*LSP$y@+Sg>-u(hbrHqh>`VfVYJJwgN~awHfp<} z0<-S3ss2c_ad&q&GiLUycjx)vX0nTJA>8|GhT0WuNS{c&(%zgzsM5&GI#|%?!~TVvfAQnZ<^1%fBI6 zYS~i1kW?AyQYp5x>Sn-zhqxHqYk+DC^Ju`Gyz9{O_=dS)x5{{&a}QP-TqBLX5uRs3 zL3Jn!W(Q018Y%FLRmD%>v;}*wj)b#E)dMOI?n;QTR){DXPU|UqA=>QrxgPCI4EroJ z{E*BGNXSd*V6PF;vTSAdMBd9>ad0#$%0=2xb zurM(hS=P<8IW+2^06P7UEttaG##8q?>{}u&RS%xGL^ko$Ij>gWI@6a$*elAic7)e# zB$Ipv703`VFLSqhxwfz}2A%5K0*bf z{&v0fbCXA=Bx_3mNsl)k!f)rQxJ9@5JgW_oh14OD8gXZWeB=8Ne-4L&IJeU6?(@lF z9>VW$!CDtUe(|DerZZG`O)&iVL>Vl18xTXA4U`f7SUXmnx(h2_?!YChO_h{nnIRT? z9)pgqNs09LGbM{$m^MkFLxF^^F7{sXPn&xzC?*|aQop*d%wG^}jjCQ#7vUG$6*0W^ z;+1iwQna{f5c%9;#eUQ^R)=bj;3qWN{Ty~tLLM`H9O=t~wpf#tP!I1QBcq;zNCzQ{ z2w{|UI8wt8nlvi9k@;*r|!~!Xfl!ii}TW%`qPlJ5B zuXLwwO&v=jy5ptL^qn2WyPq&0K6NNU~h0H2LQic+>NEt$8kqRM^EMtZSwX>59 z3y~>9hRm~NsFZdjS!NlMR4hXoL->6j?bDfl?{(hmz0SM+<*JMIc%J9J@9+0BeHZT) zZdv7;y0O5go-+f(+FY}hH)y+)j**c~Dg z!i-{7Hw$myZAUb($6dTJdi)`utj+5ms;hla*6E=vi1wPX2CYJidO{fG2as~BZD0@z zn=P(w8#0bG3Ok)6U(l8&zle%Tc#W#+!U#9=y7*!twBzLq7V#$9x+nGqJRccrV(Ws-mc_Av@R&W4XcGxX#KQu+9)&U?0kME^2x_@Sb?H)F(Q`8a8w-)W>6!KpioH1775{TY5 z`*TSlAbvt@B@x+1Ek-w2w_(}ah-Z0@3)q=LH!JsFK0mCC9oxQ#x`^SQ;c7}B{oWb- zRHcH6`-4kw-0*?PGo^$`A6(= z$@p6{`$|^nucWMKTSavH6Yk7!1Ita5Kce3&AJ&r~avEdCk3^<@aL48!S{g#5q zVbV#?7ROuV-?%On*95#kRl@lXpZ4Nk`?V_Ov*!S2udSvHkByD#A@ID-+0rtJU~$RA z?AjPe5-5Q2ZCZ4fk@C<{mPd??4_uzpJH9&7c!R~5bvt-S8Ec7$A*6ZekoJKC2ily$ z&|)7k9->0B2{TqAdj2wlsrocSDNlr7183YMca9jgEtgNC5xd; z>854Ih*V2Mz;FEP*RO3wcuC?T#<%McbZwJgSi6IpG_Y~;O7HG<%dvbJt`kSp?Z_az zE0E$c(&eZS#W{maZWQo(Xh3n>n~_B!V^JL4InpN z#3}CB{?oPh$f)De!-1(ov}o|=BVxrHUDtKQe(wG*hx3U=LOeV(sSOi zJbE|qj(DcWb=!87K#j(E`$gE)M=my!VE`m6J}Z)Q^sEMq0dH*Cx|KQSMS5g|N2F3& zWqs>AQuXJW26|-8Vdo1(D0m8FOv{%oJB#2ysQE%_EgRsKtd(RZ`Rw#f+$hDbU}efn z^6^_6UFKTcYJu-lcb)0Vb(f!A4^5!iWDDSrHjBraUn3|gc3juvzVtp9gSG@KO&7{u zSi$fALzzV)r92fRBzO{Ir{09;GkoM2-UrB?5qAwYkz|02lf7Fd>~?!)+ck>zKOSbp zD+=&Oy5+MZcgzPg+l<-%_FcsEB*T|=qYWbJ@pc(t2D$(lP!_~_fM0d6yQ7>Vy>5lX zvC7$ch`sL(8~NsQqVgJH3oKa~smn)_v6($W)|1mvOYD1dlv9&+lDzU2s42lsmp77* zUopH_CI4NYkuCmd5q<&h6jnPh(4L=0gv8_J6BZIuhq`)anh8l|Yu>!WvsmVmu!JkR z*26~vLYI-gzBsX`W1peEmBjp5Y=~>AUli$Z!%$aTMAk>o&RnnPnfckWoM~6JYnNBV zKCT-CB&vtKg79H4iZNuM%E%dlP8mky>fk;W(q^)8gkYQ9Ft;h~0ym?1z3wD;isqez znoE7u?G{9=r(O)qw%Rcmho`JRl6bBw{$_ZVY5$Ij<~@DJxgkqgi*|Iqx8U5cy=B-6 zsn>5SGyaXDdDYBZthLId1aHrbmkOkigOh{|PucCQ%ld28#krz+@3p^Ys=eWv?UZ*f zJ+jSf__80*$|~uH*LP5+jDL!X&DyAxTo6!m$3VzC)8)Flds4Fc6_jEIuF>>G*`R85 ze&0}O(W-%)yxbZya|@!AiDrLsZhG>$XRSrZH&{fdPrAF!Flxu}QrU`_VT_Q{AXcqu zvnAJcVir)bNrt0&iz>Tf0<`l3cder90q`hNL`kvhr2SZJTQU=hqQzK9Ce`}P-it#s zEZc9^+&ON@p5OSN^%Ow@cCA_a00xMPi#OuvpXj()*B>9ClsYjd|GkuIsZ8FrYhGq| zY}TEPA5lvEBxVj7#cmPCf`xt=-z@>zY)vEPLfmHMqxu#orjE0nE*Xvz4^dAK)ku}E zHF5Oz@_Mo^Wut2slcRUB;N&NFJjfi5*2zd`hCi;Rggt!s?V=4ghQ>?XHf#=CEu{a6 z^3N*y(TRyBMxrL14M%|qlTjx(;7U1v{`n!0njAg$$|o4W0LH8yiAC`{PFIB+$)RoF z=9io^E9g+JIKDbEA)9jG^>Pwl^ZlDnR^j8*m#f+9<;Y5M{aupL89%8|GrY&0*&@cS z4SFew$~)?EYgXt~^D9f!#nEZ}&>~iED;oP)*8*#`02#2fKAC(INee(~$1y`#3&51n zu{ET#4@+c&O#^6NG=UdI@|87`Q+<)fnsrlhnM$OyFHQX%7gP>8c0KFOd0&36kZj*6 zOf7l!bP3C`tkJFo8TvBU9hs}>l90E=BITM8R|Yw~|9u^J%_BI033)ky?Fr0gdC{?j zh2;M#`H1e6CF6k+qeN9Vu!i>vWR^TlI-_=<#VnTi$S(h?;msr9Nn zw7HXiSjk{1>0zZ4vbD3bZEhtg zOYVnE-O?92UgAqeVR&i1j!KCYUcV+l zG%-a*N|4j&dor)G7tv%$Fn6JVK+}GIp8qH9rB5VdZy%fRzgg3#3!ch-{F6=}l}=?Q zp)6(6N6H%@j!VI@PJ2^<+`IRlg%Q4s7p&5T7xP_yA!B}FIB-HCGO?Br@xj5xCH#Un0t#LFD?U~S*zw)A|WuevPT;kqnzv4>seGlvBtzebcI?%Q`6fjRN5t*tY{+(nkxC@Q@4Z<~TqQ#tB+q@hOOp^kJ>hyf=pUU)Fe zSFY4_tn=FqD4!@Ce*gUtfnk@Imj`_nT239YsmiVCV}Q+YLTlJEphP%??8~RsVMV~R zfRs5zph_A>AWG5p(+imIEZo8eUjl+~$U){@gaBd!?{XT}4d?l-C=7AsdU(=XwrmNZ z(GoFShCqpl=YzLhjHpaA@I)T1zf>zp%JTbr1$~It9S(-(VBOxa!^H&%TIz2yG$R^T zD7)oW|sPIWjp*( z1NfOHsP3ybTrWKafMWudq)!?2VFGL?R-dNh(O=FZXR7UR7Vay7H1x#pKTVZ@P-CzS zwZC6LfT5#f4*vcGC?bxznE{z1pnC|92vQ$*K=Lgs@btDIINv+Sr*{4TklfFX6P zZ)jIFhSa$mmTIFhfYj@%`^PUoJr|{0VfX*omvR7uRY9 zQhEb5ycK6{$}k;^vzdRz%SSIIW7i&=@+V$?09!a-4Em;-2+auR^BBxtGqkas9N1Ce z?3jWwIqXdr-6azjX4qqO<+2#D^XVdziYAax1XH<|zxI0EC;fDBpCe_URe#Gui&|^Y zg7yKBkkQE0((Td20VH$gr4(dO`1+Gw#Q)J~l$E8Ywoxjq=w;f{WL7ow5-}1xGS}il zP3U7`rGm=*?Df7b;$H{ahnBUs9jk8 zhf@6is6IPh+jEhTz{Uswnj2hvn^R+CFpzOnv*I@G+%nV8O9UnR!)`J@obG$WN@3)j zvu3XDFZ*SgDXyvO?WLRJ<1UQh;GhfS*<#&(`)IbD1f2o%( zJ=Z!%!LKqE3gl3QvA`B_;otCHsmLbk{5Lm6OmQ2ikH0~H4T_jSVM$|U{W_Q7x34A9 z;OCI?-GlW(K53Ii&P11@%D61eh?#QBgTa<$k{D1P<{Tx???gFysNF?lW_xF)T2pXq z7{7LP=|V%C{~n8wl4F;WRJQ3|d@0Ea5%&!W;+d;ozHCH_t>|FQix(oSbRtF$+t9Ju zsgagfQF|sLyT4U6BtF@4dqdIHhXbJ>bKWFWSh=NcdE0&|LPUSp>iRq5YPUTU_TmC~ zGIUkp3ijkzMKSHR;9gnIqSdI7L|@XL_qvsBA>AxNobfBWsgCyXWI{PF^Yx~Gaq;l- z;QgvK?4Q2N%T7SJsBrPaEyBOZyVq5_Am){r?VExj&dz|!o;#ggZ*wcw{F9Dc`{mFY z@AR3Ak0{s2ho;6-_ET8>@+{rw0lxw+#4vLmfpf^NmKlXk1VJEPFzOcxd%k)u;6!#~H$uJ6)*d{b{= zVdgYXxobpukzE9t=6>T}5#>d1@DFME+`GMpe;B9m;v2w}ilBa)7ZTK&Rh#TXDtlfd z+o)EQyX%#HO}|72BVv|hDQ&XzR=a1q)%GN820SwH<7<-Mc}#oI-$@T=In~|gRJiy# zT!YmwZ!TTXhN>#hbdFOe?8pQTv1N;l=Zq6^&I=140x+Yks~ZF{K@%`080?ssSZ{dl z+`|vAqSD~y#N5AOLiz@d-Il5hbmzi_3lrbY4s`h|YpI}lk}3QP>ux>q&hqLqR~P-k zpsI1}_%qQiu9vq}(1MN}^R_w96k;Uhotc*VnyKP5>dJc!@_chai1Vzt7|R}n1e#4p zP=Y+B{UrA>LMz)$$F3S5{OeSI8r>?yR_qnwA3oU0&SQAyA01iB&0kT6^)nJ}y35N5 zM;7of8$@#vRSvKlF?weP-pHDk7DJe;?+CDQZC63GUo*fmtqi^{;os}#g3Fr9B#Q*l z6{Pt2*h=^sZu7h6_+ZJNydY!%JS+d^ zb9?0X*KHlWmSNXdWT2T3N&sL*h+%9aK{jKSoDkWjvm_srE;F#VeF87pfRCr5y2LgY zt|KY_*7uP0f{4iOI$n2*>yGR<9ZYH&hoD-%Oz!^J$)AT34{n7mr?cC^WL3GOiE~~s z-|%@;kn^PEGWwH*DCH9G3-p{RXBS`cX?nP!8Kr%C*l~InJ0rZQBKVv$uU5wcYVgMh z%7#)O!)ufM^gyUBxuEF@R#a@d#ZEHMDIXzTp^{UvNM-6az3 zj+@$J$B3^*SAAwHJ0JUKZE&wwiFdlVXDY_L$V#l8o2dCsUswj8ANn*;&r0Bo(f9eS zbmt(t5ucwnq+DIOZp|YNFf1(zK)ZdWHospYdTRG6{0zSS`$-&Oz93r&Cn!1+wB?+W z&jA4gW!2Eq(l;@=M<^+XByY}{q1J3wtQH;=Ch*!oz;lB=44V^{Gsu6$5!^?q)Hr*Z zAX(qe4UFab3802K&ceb%c<2QB5i1#N&NVURLy{4`M%l2-ZS)L2Sk}JF1k_L8B%$gf z0v{SnsI~-eLEyruF7h#>!Ew&idya|-Z!0wF(HJAWl?<;_U_*ZhT>j{!2|qm8JmIZd zD^CZo;p2U#QZwsBgT|jL&+EX1C;WyFcNPVtVFmjtm8<(&n+_dNQxn;>tMJ?&DXF8V z+iA6ydO*TBI5-4e@SXxC@7SW~G5HX7R8CZAzJfkusn+l37igXqP{13+SY?TtyK?I-l5 zR|1?zFr{eeFvSLMFagwH$>(7j1TQMb{V`xNu#<+_bpzW&bv%POfwaN(-)V-68f+P@ z`L{kIHN+a4B_4T)lZmro5+{<-N}xNp0V#ndE&X*&_HQ%VEiw9Co>LSe-J);ii_!A4 zCadV;=fAvrhWkmh0zmas2VKy5LWX|PxX8iW*VCC^_M{I(AvA(OdB-C#yv42_X&zT= ztk%MGqDnlbNritEm5Gku32zHcJZEPG(NYY!SRA1s)IP1CvZo_Rckx__;D#U%gO>!HF+>=#@@;76E8wx!Me|LIh)Bgr#soz2+Yxx};_8;a-1#WK zDB_DrFvgVhLp2#_&P6~Sh-cNeR<4p9(D1xu@S?g}S6%%&L5mRkb(>WT?Wq-KY&OB9 zgl~oW0049Fd((v;W@be*mYE>UC zEHN6RZRl|H-nM%ymyuLB@isj~rEi0okNU5EZiS>P+U>(#N4t1+e_f=D6F35SSjrs& zH`9!|9E%zmkS#ewIORepdCfMMx{>QJn%!pA4zmR z7yu+X7$avFL6qSJ-AI!y_QVS#SxCX26@M@wboM&9&g&=9P(pR8?mLOtF-)$p2ugrN z2d}Wfr(BDg4W4jXmY{mb^O|!fXuZD42T4iQFmmI(`9qThE8A}F>v1@n2M7cKEKl`> zQQq0Wq{Dab|IudFoW4$_)VOBg^$ge`etdJ~cIaaT*mz`;8D6(2jlMJA9y%fr_L8)-)Om4 zbGU696J3ZK2o;9@`Mvz|4k{oh3OgKsBSx_-U$MgAlhh999&YNiky;RP^5-0x9xPdM zi~5|J)bk&F{@y$eDM*eWOuu*tzlv5XT-1ndOppv}`UI_z8dvvsDO3dC673|(sxjXk zt|_d&#RUHZxTPy5o0ar=1(8b?Tc0}UwEgI>NL;~ICNjmw9DV9)3E@sD%b5IkAoI@+ zu=*ASjp&PYQ zS9Lvw8vj3#RIe}Y9E0tsQ))|wX8Y8=5YzT8b2$Oy+Ac(ZOYHodqFzL9?zi#rzp5J3 zm}?(zU<=%GMN5pmXp6@YjiX*-oS~uK_F?z7DOQkY^lv#C_PV99N`;vX&OZ#gD@9Sb z%e--s(GkUn=1*L>CHQ&&&?Sh>i-&eBxSzONQz4tew3g#vp7RsvxS^9W zR56*2r2ePMY2LNV zUN(Q|GHjZ>ybw}rFyWzH*~jQOYS3R?IQ+%L{E_~uPxWT&?9YQn)6^ZU--2kKm(psF zZJoZ0la7_t?TWqmWaM_k^^G4qibO|bFBPeB3pTG>F-IhDc=tWXlpS?kNbs7>jd9C660kjWwrhmpb&t+M$`Xb;NiOqZ>4qnpaDxnV zYred6sG3CqjRIFYn(x$H;%BOj^ai1_{!BylQsq14-(Df(?(7Q%ZTiE&nVm`x`gy7 zcRuH+aUL>O&j|F#MG1NTV5&#o6@nEdlodpPv5n^}LOoDX+I~hmNM#T8YEGS5I4g%9 z%QbZiiL}@DT-bp3vl>Z})aCm&ma01a+E`}Pbh=&WMYp8?>anv%kMykvm`dt~Q>wp7 zs+K5soECh%S!A2G1McxL z+;9%QvJC#vA-sH6f3)k>hk1|On8y1zMfz9_2UAQLY!YGxW?x@VYwzm+PyoZVX~y$w z>j+8us5E=z;zgOomhS}Jf*z&`9AizsH-hfnKl0j2slSob_Ny?O5mucMKcS%a&g&va zi-EiR6U8xHi`b?nvJJoRvj>{pKRd@TT%$6bT&$*S%_Ea64Ocaqwpb1~obQ!RsAE60 zJaPDr?SVbkr>=46lO0Gh$Fw{XmDxh)r#z61$LLw&;xQ76-8JFFo+4G#*n)zxFM(}> zk2Gb!%F;!15j{^xcR)ha<0L-oygNxmHX-+!?t17+Q7A1irvbhKwFN2$rp znzAk(pMdv(8C`c*Is{npM{>NS>50E3H>J1vian2@m@4GjKJsD7pA{7PZ7iGoc;30PWcP|>aX5fJ%bj!XPgb1A=hYifPg`5d#Mjrd#1YDW%a J>_2(se*j}a2jTz# literal 55604 zcmeFZbyQVv_b<9dQV^sO2>~hTZcu4KT0lCayE~*)L`q2k0g>)*knZlz4V&&d4}SH% z@9&&(e&@aC-+R{>3~{s9+G{;A=lsOn!E!R<4<8UdfIuJ*B_%`@AQ1Q(2;}}VWJK_a zTqOB2_=m?{RMlS5%Fy0P*VX{?M%Uij+{)hEMDMAifvug1l_eV^49Rz}*d-rqihftOY1Tv8-De_XuIdOZ|#a;33&F#L* zXIN=Q>9$<8Tx@X}@uT-q-VX3a@R*pQIGDd|NHyfdn+j0Bg)MLNW7-hNMPiD`BiYE| zWfZ@CE_LtS>u!a~3bpEr($3uoiKnH}d6Myao`NJE18%UYQ+L=7W!3pgqTNH~oY9b= zzXv{ZH6H}?&k-4)_CD_KUz{IO)`f-v-NoOInxOXE8Ym3(Lg@=Wyzo@6iab5*P#6d!0j zlEYnkMK&=mU=jMycy`1n7UvK)Sl;?uA%;6S5oqZ*`UJCYO`Z507a!>KnBv1L`9BsQ zV`=`kGlrSP{*Lp1I5X@o>zw_=)_ZYa5^W31p-n5oFG|YUiCKaN{GhYM@qeba@{_A$ z@VGIr9+u?cgAH~lvcr_U(fEq`4;ubWSmEDA;t!^|K>z4C>*is4Q8bR6Elv0A;@`!A zN;^rZ)vln{v!B7njOdRwP#ROy^7m%(55BxtdH3!yHkI^KR@TprjV~^aq2g+4gowT$ z5K!?d`S`OD(EGl=xY%PZzoLy#6G#Ypa?6qVP0lHB6%QdxN1gF~qMvPOP5QnTC2k?b z_=%zd3}!5nA2#}+=3rr6n=ET&b}&ezsztOM>f)7JLxG7YE3bq;ZKvBVNt0vk#7=HY z$*d_#s58N-E%IEZf^gd+*9!kA~a#uc2MkglvqqpxFEey$_6=q=1CFD$cc?o8!< zC%TEbr~O`d(MmF(SCIJ!!c|q?juWP=ZdtRJ*N1ms3mZC=4dHvn7T|NglR?>yq ztqZf94$RpUAnTye(iB}tnO;n%=f2Eng8NS7Q`Ww4tu=74wf&5a#CR0bnYA~zRbcu= z!`YqTN}K#@u&g4ST%j8`(T62R$Ekj~PIHd->?wBnO5^mnPYRY6IY}GEg^To8R)0(i zu?cKV2vt-tcm%hC{3Jf7p*lAwwF=8Or?A=1o*sKO{ybQ9GJ}=Z%fUsW*Rm^-H@~u4 zAF}B)yS8rPFmX7zt%{6KDieJWz0@H5tP)>>TAmoS!P^^Rv9TfU%IM=9l;R~|SC{Pe zM%{bK)|qm)?Pah==FkIY-TSJ!G4rT-4cF2$@Kpwu$TA|Pd5`(%sH^+RVemck(5@hn z?^Gif+tP-HRBk8Rx*ea$V#ao+EBceST^BweIiD>CPFC4bV+dU_d)*wSBwu_&`Gah`$WcxS#X>z9oWjfStxyvhSZn-nAHr@vF_7xs{*m~-kx^81bn9Tc_++8(eW^G`goQr7-IYjj zlEsN4eRgB(MR+9%31kCMA(C_>q$Om{GCT4)l%XiMChQ&`K&A zruPplUetWOWK!K7XGJ!f`>aUKsG-uDq;{=OaW8U*QFXU^`nI)zmbB_Ad1Uwa`<3}1 zf<0!$;d3jiJlrhjeeJ`?*C%!PsL~>)47ZsU#@Dx;D(dYa7Bbz9)yIXgcyHBJL`-8x zP21Yr16u+yunApF4oycck~KlhfxI_JdW`?ROwDEOt5KmU{WD6+BCC19cn-6G&i79w zELgu9PnFVMo{V07$vg1TgSZR(ZX0+ySakX-HsoR3RE31P;d~oSYwyy)>~0gXm0wrm z|M0eecuCZJ{Lr5&lYPS#50ei{IWwI)j*b~uqLzn)k6&WY9V<0gK6bht5)nZSLd$xx z8@jf(wvVsxS56DUCtQ}#XlQ~sEv5=>mVeQiQV0n(bRAHb@SPbBI0qIN*OEU#C!(nJ zV0WoOhkGkk-G7)Mw$$W^XnLvVb{R^WTj7!ys1cq;TI#{Exfuv-iN+wJPTz3?~M zb+XGZ1pGuzD@M}yHX=sHS-!ZRdFhMqwR4Gq*~82peV)r~O-n?}<3&s{P*0Le*J1Zg zgIuq~_1M()c*|iid>%E1S7};3UGQPoG|xnm!j56@CBy{oaBvMzPJZ z*yYO6!zY~2SXd&f?AGC!onRUu4=|e6=XV#K?=W#+EjwCDxoWFA&O6W3SA-`9qoDqaSs2NLFBW9g;HavL|mD)eqEo-UTlPas#jH3}TLA|a+OJ{gGzYF=ceI`hFvnWsa zkO=h!EaKMSHgI`kPb-rTy(!y0ygcEoz_Unzg$i0RST##H;c9)!*3;XT_MA`ax#u?O&}-NSY1*O^+Ct` z@wMKB>>oc0Pq*QWr^^}4#`7KYm6oLaze1S_Jd6*wUOUz~KFP9;Sa@RCJxBCz4>3>s z{A2AAC6W4p6(NRa*Ny$JS+9nu>Ljb;-SzR2{{5WY#KpX_4-tc7IU8ff8wW9Y+bOfN zk0YH}2^Inj%TtEe&wb}$;gTz_OACx@28EKg)tr6ZmNBca9^PLpas+QE7?gFgw~{7T zsQHSv*N%7h%9Goz&ABfkD_zd5%)jg$pkohnMqkG2y^=UD&SOa7nk?~JG z&zSK(&e@MQujX@u0T1L{UF8wZ_+yCT3*zS?hegpbpTMgx^QxyRXlJTo!MpCsU3K@b zWH3=4w%y?DNUjfLMQM0F`g5%%dw?Ire++LC=4QR_JTtTM(Zk}7u?xcPHo8AxJb=AT zG#{rQI-h>?P#;1wRTuef10GFmno{fb!p(%ugeOnyD)!qKk@%UL+Ubv?f9lZ0c8Zi= zG%8tm7}5@^=pk?5zrl7d6i=P5``^Whj8NR>+Y04rzgvqw`&+kOkCgns#Vv2-n95`{ zXnHm_>&yRqZmS)raLZ&0nVyMN@;&%7%=;pQzi4b@UQ0@nQBfh5O!jm{Qqbk4u$y3g z{rYtjwmc|Kn&GrNC!Ne+HB_CLNW|*|leV@l6h2qCsuQ)fWra*vSQ&Li)2dkG{28&2 zpvbNY2`3SVkB-LK8q1S1HT_vPqgPbua%iYlX6i6!F`lO$7!iR%r;`7^CEy_uk8P{2 z2T0{0$FEMA6_mv#@j8SY9ob*ny1Vl~;WTeFEgPG8`45Qec>4xmyHw#obRur+#`;>5 zVJc8%Y3^`>y_KQe;0Za}91c8&j`QW79v@Tk^UtK3pKMRgxU46k8x$24na@@qzi$4s zHjBUt6OnlHhLVx7uRihXS4n$&`?BekwKXh4(}Y2xXV3g*W@b#G>hyScOjrs;T#w0FScX0SU^LW>U9ZGHn=bv_8S9D+3ghn%(4o`F_`7oUwaLE4DDi| zVPX_u(#YA^N~Wk;Ws-PDb*n&;5cY(tufEoNviNxgpJu(sr6X88VNE)fts8$<f`)bqnQ5{l0VdsR?AwzdB0kfwNohvLbUAkpQUHJ z8om8ljhYVQSFWS%G@I)yJwLapKLI6@E=xD;&-=*#L%?tB_X?DC0GJ?0;_0h762F!JvKXv(Ia|114jbTcw+Q`JEMV^3FrEx_`-sf8gZ? zRQCFbm_9A-w-veAe}k6_#Zt8&GfKZKOBv~)J)rz%Lgy6tXC%lOS6Djpi;G#Qq`$m) z|NhyB4}ZJhQSs=lotza=i4xg994+dapDVJ9x^ZH1-Iz(gOogF$Gju)g zyRs~+WEK}2O@rff=I znrNtmtZbIY1G%#Ys`(}E4U;4a(>|Iqo%9s^?KMJQ{d)j0`z%#Ga12j;s$V+?2c9_!Nlz>| z3#jMrUB6UyfX{RY{J3a|Dl1}|icM)f|6Cp8OUdre30@=J=BF4W*;18eDSlyp++=m6 zd1704CVrO(f<1nu5zP&*uRe*tr)kB$%gVHhnap~v$ZlzE&AtncohqWmOS>p$(#8P&Y-9DTe*Pv}PQc>_#bG1RMP)jZWR+{+5R`Sx4ZF6WVMRva4 zFoadX?7enA4uR7{n}YnGVcEjEXXo;J07ps;MeT$8`PW0@^ieQK#ba~b;yl<03$jj6ko5~Ztkc}$v4?oY6|AU zI=oUD9V=4Rby>5yDll71`;m|CI%^FVg+VMtTdPy%V{1G>6+GmzRnNqU*S#v#^z9Ce z1qDH#($RHm8U70mGA1QzeIF~<+79*p)e&S=sI|?JC$11oU8q|5V_aLapWHScw$qxR z(RG_rbp1pRwy-ghHjPt(k{2-{>#@3WrBP7|eW=Kxg^yaPEw5u3>^+ zJNZ?5z6Fyi(=~k9yB#0zpM~x&4}vjaCYP_Hqg%qI%v&D!w+QB>Gv_7wU2E<3BsrZZ`+-#`^G%P z-wbguBtNe}yI{)qL@veLm@mJ#SzT`yt;LnNJcnDzP;rr3rR!-;&PF`1Hcu(8VQ{=P z8Yd7^Fs3agC@9#IB9ub)CZ5@LMdH^-;%@JI_cw;KFhDYDHn!g(11y;IO+A6Td!tU{ z%5LbOY)WZs9h|$4wbJqO0z+dV!QJ{Z2xwDI*P8_kpN9Rbfpc2kyG?N7>Mi*dv&urcX7r>-26D0(K~gJW{{HO7X@R6pC7z}q9X0{=Kve}B9Xd( z3V*^?ZGf!bJ)OS{tFzm@+@(gbob#?Z?OPptYgNOK9%&~qfXF+Rqv3fWbe>c+kX0ll zj8$bWK-er`Q$C;Lnr^C&PXbn(1bH082!<9Ej!JkHI*B~8@86(#KVVC6G^FG0dNBF` z>v!8`=n=Hz+G4?pgq!?jz6=+que#a<0C9DDN5>v-JP1a+M&*OK4m);RLqkJ5J34f> zCyGvr+ezHQnCj1b0Pzr&m?$kG0fT_h+aT=~y(F;dcVh{8 z6Ch~B#KaTbR_`U?v#LZJjwmRjTJd4~R)+|IZ%pS1^{L}b)|sE!CxM-puTOTL(r^ZM z4BlEVM{Uvh#tWyow_jqlB{B(mWGGVd))7c%Y;1-ag~R!E^}&A^b%B zaSaZd_O_i_kUcc1G79cXIi=9 z{K-g01T#fhqq2M`yYiU;ZO$=Rylz&70-J#0-H936I4`+p=HzDF>dhlg<=q*ixo<} zRY5zMG*#I<>ql3QZ)=)PemG#t;*cU1IDW`z(CnwZ-zd&?Laq?5qkX3MgkYAinz1zI zS{)-4AH#sTkyL%cQ)Ygep;Ak`Bh=1$g+aN(a<)({&wg{LZ8kM16bGguC6VO`@w49$ zmLGG4&}Vhg@YP4uS1xBvrnKT0dNgpQH}=ktML)QaQA5X z`DAQP`b8p=MAH-6ZJlp&z~0&qHSQY=oVGoJdSN;4=)lESkln76LOSNFeL~WrV7!0J zI2&@xnpTQ0TYmEL@1IOq(Dt<}QEyiqRKtrov{F}+H0`)4+CKGN@|fm{vGYFJH5>pH z)kpVZs+UEQXIx>1>(1)C%=6U`XB}w%lyOTU|6sFfx^wl|`{l{+UfLwxV@4Qh+Q9b) zYqV`rXnCBOFc(j{>6n=S?aa?_+U)~J9n?Tg_KHOD1#@a}gVS*2U;3ZTM2vJF*+EUS zC3six*>XW0%A4v)MV`Qp=}Nz#dZ%IIfvD|7YXQXc;Ee|NAg^?SLbc8_sDpRRMng}t znrBGTt_JWt+YcM4Lg1r}=jQa!(Bww})iEt8-Ul{ALrUrMSL(@o-wM;HK zqZATx|B4tRSOAOtEm8kN5sT_aoEkMFj^UBL_B8pDi-Ljz0f#A$yu3U}z$|8C^nu3! zA7n~KQ9YxkW^*}sUw^*#1Qhk>>q57ia#nze*`6vx_44u(yx5=s^y06}-G=_K$85$E zg=BZY0)QYsSfy`UD1M3c;w!+LiMqJ(VDRrj*bIBDS9O0YK@zyXtL_PWEQ%Ro{~+gh zz}d2SUOAJvZL@%|xH(r><1yRpkNTC%ibVV)kuJb|xf)fU+ey6=0ogE^A%*W&7pLVK zys=?ie+lEulu7F9W@_lkeOIDdW{Mk%$DsEs>@ok%*>dgin0oE$oZHC`VC{?tzTK;F z+(`qhC8NMUaLnfWU4<_b{rU4NX=yYdC`3|-E2{~a3_W9IW6POsPmd6My*pR;mEWaU z*u}<%g=^Lx+vDO$cjSjWBv-90#H^q$mPEjH@7EJ6$fwv?vHoO%&B1gefXR?_E>Cs< z)1N_wUNp8jkP0Y4qC%$im6b=29(gzE=*(6-0N{z_?Rk9>85_G+Xkl;94&(q7-=@a> z<#wQGAc&<$ekA7m93TJS1xUMeWoDcS=K#$m+AIB@aND9g1=6M%3|$nseQ>>x>RUZSQ3MLcQf+PV$N?d!TIb4PHkM1q!4Xqi%fGa|e8;E*ku|#=hMt|B4GM$FxRT=HppX!_ zr(9fd19H>OtDinSvbD3Lv#=^s{lf3Unl2uZ31H!S0|R*lh2{`kI&PPP6_@GokPyA~ zz9bGe=6{}|^Y>Fk+PM)~OqB+Y<*BRG^a2pOIbJ{txf|*0i{ldq78Vv9JUlo#Ik^|$ zIZXhO?dj?1o#*s<(71Jc9N#-6d1?fz9Cp)@j$rYpzweLZ z<()8$&r{JZZ)lk5F)?$lG>%ORsO}g#6)aNHh$bB%?hVyjZVqLXnooZA_J%;#dcFz+ z8UkSWv$Kgzv!n84i7dB)H;LSXsr=wXP;){6s_g+I0#U7Z=h3Wjbog-zCL$^-s>S1U z)`+PFELurP$yD_UOEd!Jh1wk>BO{e*DcRrQLF2blOy2CE#{njSG6ZoW}_z} zU@zi{DWW3Hcalemg5EOhjr7@pSarY`v{PosWJ*m z$_$016wixbKtS6b_Hyw(Q*Y#~P;z$W){)u(T#AC4S{LAayGu=mkChoQvpl@apO+k$~$+>U#3;7+x6&B;cS*$ycx79zT9OI##t7Z$`twaK~Of zd-iPLhdhOw?Dxf%z{4gaQXS3&Nm<$TfG3tZeTh8g)8*kpx99x;69QVPQAOLsf6{!d z8k(Q(a=3Pq>iCEJzzy7TJe{$_=A{*!QSwU^Mi<)6WN(#j+h9$h=fecANT$>aU}HTFUSz zm8i&cGG;scmgG-M1=6Vj{g?IUdYDzV|2HWIzu?n;?bl}FY>@qd?1F4O7Mn>yg&A*M zS0jx5hZVtB=x5v~d?PMRZlZNB$&ffzCIPk`?~aP=Pd!T<`zPyGe)_DrUUXes?Kc}P92m4+`Obm;F zK%&9(T0%;yMTfairwPs}kh-j~i3eMPl;l^ekf>s*5w^{8!!I11Em&b|=)1hPw~T%I zgD!ZO*>AfTKB+&TT!noETe9!15_*+^oDJ@ruv;tqv2sofn5oaPvA+OkC!wK1WVhC% zySLB;0fJl=JzjbW#<&cLaFiA?N)U3!Mn{3U*X+S~AMy-z>?9|C0Mxty*)(`hrc zTVM3UbCQ6z=1(+x`(Fw$O}TP#V@dpYYWkwDb!mY@UZY1gKrz=OB2qiNk99_a3Xrk? zst&}J-LGc(o0Nx>I5oMg!{s9L6*Vg7+C(h$d=i!_Uh1c#T@kRxO0qAndvUZ$uT~la z*wd*BD-7>Rb1EvT01z3}N{ttbRl}&T+r;hO*|yWI7?G0IYT|J95X*KJX`C=hJG>(z zUn0R(cD5vTcj|D|_nNAI1t^bPfd^hSVkiaidncS<>bi?i4~npyt&py)k>{W&4*W}+ z(ju)jMD#v`Ip!z@!$}CaFSb}z?Qp1`HNP02O%4s}csDnXvI~POzav%lWbpmUw^-x5 zx2yGNZN2_Xqm4rF6D+ZF(59uHhT1o?kaB$)Lh(_ce&rxnP*2MKp6XB4hUI6q zCA}GB!9g8XS`!fJ*F^J3O`Ib$52U37@B3RKON*>Lui$Bq-SFue_EP<@4R>~l7YCdh zKzNJ!`n5Azz>R?Qy+nosh{hDOw0CKJSXStbm>8mZxp^w6K=?1WOBjRu7xdHQE1W%N zlXpI!h_rg-Du1b&E)pNFLTjv@jaT1#?NQynKmEh*-3R|mb73P9kyfxPp9*AcF_FuZ zz-e!csfx6&3eGBed~Wx#i2sC5nIF>OVR{Yu1j-G_K%uU1-~ln8iFy0n>K`@yZOu+ul(^l`Z(lT1uB``mH1jS_I7)J^#!<&m zO^1_Wu@xCj<}Ii+)vgaWr^lt`0|L@tk4lqamb%^QlsV)!rs^S^5DL4<96PLDP4)LR z5y)jt@lxUr)Y=J!IOaOaE6o+OWR>%gdfh^}#Fu96lQqTHtJnN*Z~ECUho=G00k_L| z5t;S*qLS)Ij$gjf_<)P!!z811jS-;|Dnl2s?OG zKY#0}Mxf#!Dli^*#D$3&N#__@P=i>95fW6H3`^ZH_2|zB9P`rBk~6GoeGdo(+}vNl zHH(0f>f_^MJe(OWd@WAu5xuaWL*lX$8TwyYk>}$M9_L!|M_U~g!rE!^4-|gc!q!C8d0`j50V>s^GiGCazQLn8EpU zZ=r6E_dwG96u-qCF~ql9E1V)|w07@q)Kwci1#U0rZ}(15oz&WXQza;#ipToXv!1$VvG0z9nuv%-j+94bO~y|4+S^%St_OZueATqv z_=iF7$ALxSFB<{@s!$9_`Z1th9Zna=fB<6n?4X;;tahjQy8XPc(}JU3yNVlOTDj=f zH>*+SyH*4ld-ba1Wp&v4rR_z7U8qolluoE4QT*uxmrbdCGaTWgbT*bR{0E=o)LPq- zZ#NK0cYR#k7ACA@S+jRBD%u(a7@GQ5<_PLO{MMt(9RP(qt^fI+kB7Nrp?uy*4#@wS zX~H@u4$N%W^^+J`p54w4Kaft#eV~LjT!NU9Ig|Q3PXX#PdO2pr#)uHFBZpd9z~RSN zU?rEg6q$0xWi=-)D(dfHdvUTetzV{PtP|;czd@|1G`SWoy@2#_|7k{(HxeK+@98kd z8((*^y3GQpd#7J=7UVB%+|H44S&$u9V>qg8EQ#L9>E|`e3maC4P8?{3l+EAQ2++!P znJdJa2C=3CvjgtErV0rfLG0aXL=E0kLaMZk%-g=6vwR33FfjPsl3`hzqL0&;#xU$) z+*6qpC>5uwsdj*7u8h6yVoJ-tcJdvB4=5=?Rc1}*TAt_ri09=QIHW%bUuul;LPtql zCjT!q3XG;UrAY^B3u>D(*-zr0@sBX~J&lB{_f4hjKOjlVF)75<9%YOoP4&)F7@^1WwrlRz zi3y5CO2BthAxvbKL$0s%G?KfJK~v z!EB0F4)$jWb?dU!QNJM;MRgJ_h>Z()HsOKT&R`Y$)w2Gz+$YvNu$xy3?YrK-lFi?GwllvSU9X*GtINa3jYlK39i24C! z^NBb+TU%sgj7!>#%;^zT5yW01Cu*2oua- z)<6Db#;J|L^gB#xIa_^#kq7~qu{VKh_~+Z4L(3Y=Szf@7s8-oh0_l7KsQKtnz$pA1 z1ppje-1O_Kt3~fSu>hgd2CRSH1qDn(w^wWcZJ19K-pd)?DqVI&GD?EpTwj8dn-5mI z0kJ?yMwZ%jv3?_PaBxt2q7iELJu?#vAKys3ud9pv`SY!`^4W5WCwIv7=IWduAf*#q zKwzwNMm+|?HUv;o+cQ-qhWEkJjY$7(vDPTIb2B#occNfNI22^47T~QV9=p7_fRmG# ze+e*rwqn-D7F$3F{8#GWUJzhApksL)cGhKKY<(OPu3dl|MeuEsGq|?9C3*SsrMFXx zna#(qY({#V2_|5{1qTPml|_Jh*!2|l29Vx@f<}gVUzv5`oMvp00NKESlNS`^eE+wv zeC2b}v@iu5+pysG4R^qWpgb%SKmkeZ&K2<5;oo_IGbOc;p`rS#T`>Tw=`#}qg@wV_ z)^G)u^d0*kpc1ef%atAX3*0WuuB#<3+cUKVV^i}+x3{%LCM9{uUv5m5(E)NG1d3erFKl%^?-5pFSEKDqA4dwmF2J0>2Un3fg^ zR*I({ zY^G|){jfJzwa5oh@UyxeCML8uH#Y>~Vy|Ak+B-bFU&w?653f_C3ba`ybJA$p(-&QR zeVIo6$sEq#Ve371b#AAY@myAxLhXQT$y2(WX%K($0a>%<)qou~smx`d3( z8UXdO8OK(&`-l**L5wDg4bY)Kw{XiHchq1Fw>NaCphVzLzM~C-I&h^VB%V@Gq)+jV zYuG)^$jCT?%_ab0hmgax6|e>_*T>`c&bD$20DYq2H0!`_HJ1pk$wyydIvVo7unG`! zY)vQNm)LB7_hh8CO3)2?84UI1DYpRowkhxUlKUSXfupCJBB9ia8^}B}w zKckw25b%Y-M-ln;>$@Fy9>pvf2UW|NN)|vJ-q+a}NJS&&9nrn6>IPDne&=UObOYeR z$pQuu0B&XCFV(Z&}2&i6s{R}>{_$eJ3+*)w@%1t-q?FVg_x}EpF%skGw+De`P!_+7o zz#{WMLx13$SGTP42b&I%02?6rZfQ-9-u|gx zk?%3v8AZ)P$RrqnkA?LLFpwDsv4Y3Wyrn8J)8;Pg4R=2y7NcPk>TZheN8_QEyQZVR z9S-<{vM(*Fhi&z`D0galzf0wK2?7T^ZI?t|q(^Yjh@(xxt%#0&mMK*AgWt>3$eJbn zarjk#HGZDB0W(BB=A_&5Zqp*`Lv1RXqmp38u%1hYvr>47m)DyRWyNNzGwfcN7vKT# za$+j*ZaVZ)49DReVg`=433>bTQxCTZlRc9eVh=saY;^$!RRJmX&N_C&3i?*q`uTm^ z^lZK)diH!_DK#GS0k)N7FxFMi>Z86Qbxg*;+4T}!1H=g!)YlH3_<^osQBf58wqm5r z1dMW>KM(0i7WK5a&=7s|jW987a@6Ka=zwXgvXVR54aNiX4-|BC!>Lje^O?%XZ{MDR z-}DRk^nam24EvLN0fDRvK2x+TG9^XZ;5@RF*qzPz3Za7QA|81(Q4_xucpJj2%j@{2sYtY1s;);*Fw`-uJ-LAvVV%BAM zbiKiIHx|H@yE8vDq;QJ3B+9wo=#lfYKp$RgZXm`edBmkavN~B)czu!suq7?S{fAql zIh&(7TZ4}H3IH;npPhjw4EK0;lV(u2J?3+yzmJIaO*Tc)9DgRuYeFDiZclAHsdpa>qf@542_$Wjg~Lve9EKO^>v0WcysCJgBmwB;!Ub4YTra zQ8%*4neeU{BdX*|u|qBrgYeJWN4iZX7a%+=F@o8`e*viT?Cg(+GthvQYq+OcX-x(=C%?eJad&2Ax+3BHWzcG*cXXJ#;!H9bI`;YIqBh7Cc}ILB zZJ6m$(I(c`d3%xJ&l}I+xe(Sxw~!jyh!;nD%MV>0eFlRVFgf>~78IckJ~&0;9Uhxb zds%Pg)E1ouQap)WzCCR9ucmzgauWZuNr(J@S;*-j{{H?T{Y5u7zmlfH26sfSQTeC^ zVZFW5KI=iqJJ#)0!udOd#mA3@5$OO}Ne};W*7SQ9905qnWX~t+_FY2B2FvHv*&Lfc zMj3V0aC#$6O<_d<3!H`KSs|D7w62>TbW_Adi8;&^!7IofbT|Qj+}G`?S{F84T-=k+ z%_pEDh!DEjSo_iXw(HQY$4sN&ebRnE1BU5*OdkJAj zvv*P=kIOQkxvHZ}r1?NWS)Tk&-hpxH9U8bH#)Zhvd{F-DmZ>pm$k%?RW%g5MVlX(J zw=A&r*d9(EMdU%>&Y%jRi-(tcjBWhW75L^aad4 zfXX*Wz!j0HRiI0heEVGI$w}q%CJE8?g#}zZ-QR}HrCxxM3zo3W6BfC0p)W#CEy`m2 z{f1Ah%#0n!MS#Me$=C8%HJ}Eb+**Ki1tAEJvw`a0WLl(?M}yReqlBMcKo#@opBiP~ zkc8)DT}K~EC(h2~-9PMghoTQ0zYm>_*=&12Nn}=uTY%H@NS{=XmiC$15^0kT@Kvk| zI|cr=h|7EjfdBhg0ll3ny5%^kcWl4MyKKvZPNB+YRDbFq8=?QL1NGngPL2EW)iTG` zG3VXTMRJE(gQr+yG3`V&R0MN=kPkeNQ|` zx9&9%z)Xg|qX65o5h&du?+p!E0c^FbTE%m#bK9+p3kyR7pxI^7AAbV~sk;rgfvn<;QG_oeYKFNhvL?gVKoaM1WWFjdzAp&9-7r>h6zo!J*a zDDVM8wJvtxHrjyP4^&Unc1zi4s)!O z+N2=ASa+xX9Q?Pp%at`rM3HZPTgkuEf&u%-@C~%?!wLO}$oTlzpzm!5ipQwYQR{LD z%opFke}@3kt?K3iO1HCK(l2-?twEyW;@E&kK{-#Y4Olb3u;?R#eZ~EdkX>gyUlS;> zLzL}Qc-fv=+d#JXv8bka7d-cfY6+DzTb$wfw@Dyf%KD-(`W88GmU<;4aNk z&U82HR%5BcARlwN6_Nqa zoS87(etRNvWJIYkmgW*@`WkjG$jPj!Zf{;P?)IH{}(lM@vNtYLBpAr(f!5{^H z{8&B?{e$dpnu4Uj*gu=4niC&0qBT!C!Oc1d<&M#A9W&7`GP}XBPjV)ORAkgiWfcim zZstgaOT` z)wsh_L}(T>zdqjm1~*^4>wi&d*BTm$9z1k(p+A1m z1o8rMW(5pFe(8?T%|3>5fmUy!Zj1BrsEP?NY=BxIIy$;gukC?MGC#@-unG8_VD_*N zU}Jm@b@7<1cA#sIAkBK4ql~_~UN3lGI*B(1iNv`vHCZdAF6y(U%%iDdS~B_YiNpC( z(8hRUi<>$ajuLJG_hLqlEhoi2E@BzB)@o&^+cq;4I;)-kUS>Md{ANAw$nDm|hcHmP zP&4I)*B14!{dwrGgJW+arUjv6p)fhS+wjRMzfF*_X^v7)4=;(nx}o`gIt zz45pt&X)BMq8!?mY|eYN%;|Yf^$^_h?4imYwA?(+3Z`YE4KhG@ZpszQYFma9P8=rN z4+Mf7uR$0%Sy5R|Cgv`^Sf{fTzI(o} zfSG#(+7Ga)W$bApLPIG)=~}O$s@ehSR^aI{$?#ZNU%y{IhXeu+h&y|d z_s*ss@X9!@>VhSmRHB`tsGx9mbGggodBqL6BO-d^Irw&=cEHCkbaO_bqTo@4r?M_4FGvJQO3(Wq|4GX}Fm0P+~vs(`> z)X>uE0}dtPwIo0p{M77%9&QG&_bbmr4^6Tf5+SNJjtr;sUbhDAbY)QiEWDCasH9k2 zxlB8^?ril+^$B8nq@f3PaBUH4%~}EE+u51q7JH7@r0fU&T0^=W*zNs5Ws7?Y16vHG zHMbZOPpBkv*>rJ?;WRJu>g;~AXp|LvBH=@zSN97 z0atZ_=Qs5Y`!x-7qWxT?nbx-~%KQhMJPmLB8k}^W7gZcBeN4Hdw)Z5n2Jr zGz5*%ACE?bDinC,`7mHEMR7qh{kp#H-s4(W090aa5kROR`6#d`rd5?5%*Y0B09 zA^X-?xx#t24^~(`)tGFu@H;JeT=l#`SJxN78AnD&!XqLM6=(|$4Gn=B zhhDX?aduIX!N$4|ekd@oXjOI)l&2yyX9b}5v6_$m?@Xtv3B9ZvH8lV{-uH}*{iRSQ zz@oP&^4Jl8y$1ojzGZMX&O-aQ-T9}5x&)-{vpcZ_t@6W*1q04|iZJw+JbL9b*i-jv zBvu)pPRQ(&=0a5oWG5&4Im+W7JN#DMy6Q5>fz$fmjD(p9W}YN;WK2b29G)~5`^qWY zW7ulU8{BJ`KxVGu0o8pCc$fN&XsJ;B_=uoIe? zGXuBGH6fTwc(2=PwHv+Zv+tg>TV+lLAH@;6GF@%mL&IHL{(d16Uk>rbj|9%ezH_;4 zc30K}$>*K1^gZ=YhX?fRPte0!r= z;YUSoJDO01ow)-{Ca0ayh!)xQMU39X+s{Pf!5YD8LSZ(bJu!@cr8#*64pd^Tt*uI1 zqsK#1OuEbjXTYhKM5ri|rFvHgt!LjlnDUXw=_$uD3?di_7W(Ymr*BM9x3HqJHNYb+ zyla3tyy_%5b4}^K<8%T;7bYF#bRBAwy=oFClg*@DgPq}WaFeBdmnq-o-hUv|r0waa z7~2IE6=|(fCIt;N3q2leiB-2}^PXq#E5J3Flym;qCYr$aGID3KErK<2ZM*&FiNZD>ey8f0)VxN`x_9Orw<8=UVR0&2zH_|n9+!iw z-aqj3GZJ}O?*(=t-8_qp8z-uDElw<{E$A;N2d(0#{%#h%lRICKv8%AkTnUyz3V;CD zZ>sP)@Tqq6^_5fCyq1!30pAbtmCuRMu;l#nH0UBs&CShKaFI%JNq@?Z68DZ25(v@?tCNf&L7QG zBCJ-8j^o-?RE`fL2W|PK#@kfj(UsmV*RA9yLYq587&Vt`sN}sCmI=bvQ;hr6Z=v=lKpQMg}wC}_bw~XqXAK(x=ShzL0Zc_jGHlEdPMIf!p zPOFgLwc7+7m{wmCdRH=IL#3oN@!~473#a-H3u5?uc#)6&wNDKe)pHtT9(`CJ2MuKS zB&>V0Gn=IaT(cZ^-#r5Q@8X7Y3iO%J_pVZ4IwSKiYe{Kxj_lt?76+zvCEor%n{HNa zIs2PzY{*r(we_Xz*2osUztR2?)CK4kM_Z%NX51XP9HEf^j`u=IAM5}%U?cD`0P&8D zmp2~xdhLJ#wD^7JXTk`h{$>vMxn<1y*PbB-pHuXXqjqh6{_q38E=>gV5L(Hu==q;F zJ?#B?i(!Fa8DaBQWUlkQ_jH;?aLXYJ#5Y|oO^UzSVsMnYI_w2h&KQ3!&08eDaW~=B zr|gSyI?vL>9uOV%-`Oea*#-g+B_BwwA~iUpgw3c&DfCpNR@+M;r5J# z9Io#+rCJJpW~MoV%q0WU26XmpVJM0{eNF(gSl#*|!YHf9jmFb&rx`Z!xqKOWkz9;7 zq*BuxLt3Kr+7m|U=6W8CUVi!-)O2~%X{m~Jhx2!K7oiFp8@Z)XQ;%Y(Mq67OXaVNt z4<6J+&$3(v2!57009nV)_v{)8&EPGE5g}PxS>4cRK7c9m%eistglRC+a0iG{-M*>-#G5f){K|k3+}#Ry_OF- z{f>Q6bC3P;MPl96N~ zBC?rsqg5Rq0XDe3Mm5hVqr8-#^)NY{7$@!5Nxy=P|cnK@?O@B7|kI1V3u zl*Ow5y6@{guk-v}=Ozg{nEKD2aI47+ciVGG&A1iRh<*OFr7SgJkdH}CarnWO^HZ&+ zDl0#YY^^}pH2cFXTto=hy?N|0aCYHq#Tn;JnBqGfi8^n@NIk|6HZ$ymIvwPPbD{5&Kb}z2g$v zlE^UZj}Bz!?5n?4$7w5wH04xp$@V@x%Cxu_HftSQ;9|+r$q?I)&W!bkG)~G*N>jQI z?TZsoxhyF+oh<+E;6OIH$d!r`yz^fnGidzKxA=>5Wqnqm#__p-y~YF4;vB<3uS<`} zW@1^01vP0OK(VyPvm=snX1LB&TR3mQ?ecD*t!nFW=?G%6GZMSG)^jQmbWIE?E8&m) zx`xdGvXK-z=?Z<-(&mH8&+RUp=zk%KD^}bvo1#km$6Z#w1I-Z9(Mytt5z`nyEHp*s zGz>8wVA`cJw>QZv-GRS7Q8Z^f_R$ip2H%BydzDipG_pFZm10k!kSXSFoQ(B>=pTjH z%Wi-f(8kMTnB>M@WkBLO{;2Us?U!WO;!fXA6qU`jan*j!?jE$u`wH{J(=G9538dF3 z%_1ES=9iP(lBNrtSJi>!U}U|w4l$^|RA#h7Dbj-C0VhB5vz=^Y#F7IfL)u=&Av#m) z@?5Zoa#0n3#eqwb;;BX$bdKVg3HysTxu;koBt_8;e7nHxNs~wA^0N1!LQn*489g zlU`AA`@>NUWa#mHeX`YalJ=-9(ggyDcfP)J{1|Os0l?wk(eu81{i?e<*?8jQNt>+^ zhXNb43@{kXa<;xQ#bK=EcpS9E>bw(nmDZ3WPGtql2yP52Dz}xgHP*nl5jO zZc9fSdUgo!y@G&?K-j^0+))zfA)C{nY3I4_Si9VKAjT03>;jGC|CmDu^g$2>K_6U@ zJM2}r2#$^>MD~n#Hw>D|seO=(COYdc)QITN(7Rw60CXD&bbD3rzCPx+2#WV1pg;l) z*k@>HG}EfV>=0#9Z8iDuySuV=>}gzV2xClb4p}fUF`e`r9@YTy&s<~-1ES;xP!hL` zP?B)Mq2i08>95&NczfjlN&(rY#p!?M&AEH$jta;eu*GLpEqqT?fZ}>6a_TP;9Z0@N z!rSrVYQ*2mZ17@DgD*;Pbe^1y3_(l4#j{`lCXRi$HfG>~p1gSVsy~3p_~`yjNlsF}X^Coj%f zTG}N!9+yp1#2n(A-`}rNY(C=5Fo7I3H8%c6?20YX0!vDe;2IvB7;>x+CL05Oj@8uM z9l$0QtVN9UuyUH*cpUVI6kVoO<%|Kc*qbc%5_t`c)?%|E2}wz7rT)vxG@!C4b@3`d z#+*nqH6tV{O6qBJB$HGs9k26_IwsyNtIk9Cjb+v;E(@}M&gOuF7%ovd z&YJxj(osBF)*=8*(E0X3baNVcJqk_wUSBXTt<#E#iP2od!>~{yMc)z;q01fdZu;~o z_g^bfmUeN5!K|P~-OJX4^v7dxlpu9X<=6v|<^my6^Cdph2tSVA&B8O!S%aE{pO`FbXI;`wcj(xWCtEhi!#aXlitqSoQLKugTitA;vROH%X$ymtSw_l)*fHCwqmWJQf za&8s*;A^yj@0fP4J2xlncW5Uw*v%>GyNGONW?I6vg z;VByfP8fCbpF=tDLiFW@owITMN%%@M{sfoV^pfTAQ-p2LN04zqQAz1Dq`F|6qrZ0T z&F{G63kXowJ;PZdk~Q}7wqblDEclAu!~f&c4#vsP9)T>(-~R+rar&pBoCqxop$Dzw zS}HQ(LoM=$zi>e~t6;-TQ~Q&ElBuNPLO8Q5q_8>oq?Da%GHi>KxR8lXc!(h5_3bj8 z!S6+y9YR#k>c*F5#WrGCBs)m&ZviM(NHb=pw< zI@P}@G1^C1+6P#&g}xK)Bj;jYYA^;-e&#c1CKG=}sVi%X`St-LR1XVPP36%xKX}40~ zTxbp5g`>@{4rQR0T1SK0fdT4~huq9Ok60p1co8SaS#T#ue)Y(>W~{Rs>L4k*P#*K$&vO7n@zY&mAu)6FY=z0M z1Npuoq)s|T)_UC>Jcn+y*S($jli7m<41N(*raI$lOXFRMts8f+viL&bvKUYr+R3?6 zFZ(E0<@)YC;3}g6s!O`}#>vZO*G;eKt#rB-zGO-RfFrWt1_Vr%p<^5R`XV8@10~Go z&w&?C;o~R3mXCo1reRYAEekQ!AVmozJv}(m1NZmSPgc;OhU$2|KP%VdHLAJQDCem| zen(t$2q-bTrzi^saWEBiK}LaKd-rDe7Z#sGDQff_e@oO=wLh#=4PRICeeVV)n6_ZJsHZ~fVCk|&b*Vg zJb?5v_IK71!@!mMuOEY90Aj_SU_}20q0?95Lzf^8i8a2w+yO8Ar@5Z?uMuLz3tnIr z!q}KhlyJ0WcB$E{)U}w@tUrjin3_AftL`@ zE?2G-LEanlLvHRHFf{`OELP+8$i*ROZ7Zk(Iw{iOOsXNW3)GIT zM_wl1HeU-|lA^Zaq&_2IT*`0Mv2%Esv^yeN+2Zbuj%c-^sp^{1lPT@xdk+Xp7;qEr z4kJ!T=T!FZ>jeyz?n3kL_}ZS0=h@HoFkB8VN+-DKQWwUa%YuGT7Dob3&YHrLacUwm zDVrvgcyzy>!8Y(d(XjgQO)Ar`pHc+wNrZ33gKoS3@Y(JviP~l(^oH}wdcpqYE`V8iByZvQpf+0k~X0}0lE^O%84Nx zvnq1|pSx}yuAVV3$K(I-Fe&lw`8Y<^w*s|VxX{Utp+c)7P@(Mp%4w4mwSfM-Jd-B7 za*7E1L&6IEJr~|i`(|Tn_qTW3o6ElYRp3G!$BdEP@aUxM!$OxU01N3UoE=a*G2|{* zDXLj>vxXJ)l%)kN%GmAOWF%HW{bz=P_>{XZg6GLm*v^$aNUqd|{Zh;>=9#W|;(My| znBc)p1i0vCwH>i)D6ZAjEudXqd?0EExuHj7F`ti`f(l4@V?wABE4wSSaYg1oupXj?% z>SiHH^jNOaLLkMO=-c54A(U>Pf^$acnR!kfz35z^wwR}xQ7?(FAo@dp5sN;4gm!8U z3?41kwY@i4nX_+VeDvg}Jivlyoy@mqxKAbS-Sdp4lor<;GwzM03uo>}hpGqjeq;Lh zc#K@DTjuh65XWP<;q&LuEt_Z@ za-kRk$CE^kRuwZRC)(>Itqy=ovIR|%`aihEK5y$Av|EkO#lEsvu;Z3ykba)~nzPN!rbq;OPeEB!eaHEHw@LQz1|d=3vQ*Lqr#)??oa zB8~R}<+`w;<@}QYO1B*VD7@vjyNVo$kz`0ux+0Pn2gc(Hf_(txWOdYKd7xx{bu}J% z9{`65h+tPQ|5bW?332o_4&Mdp3Gz(A*n}KL5qLP9-HZG703U&|-B)wyQ>TLgl)60d z6ZjTuIMrnSe+kN><6^@@Nk}c?9(|5oO^1u>XMf%mByYt9=?eJ@2&!3B?|eqxKW-FH z3igcLg|6@!YHGshGTH2AVAzy_mktvcOb~v7_x3Idb!vQY&j9fQM*m6qamhbX`;URA z)#eb}0O=rr&V3sbAlvSTJBE7t`l@+)I6!Kd04~SJ)YO+rN%V+;3RoZrrj(O22-3?u zru{n0Y75e!Ez-ee;0C7B=+vesR@$tp0&5!~I?1s|ds9xSR;Qb&j9dF#z(AP?U zfDyv_So`sHz4*d!kg3V0&hhC?<3qX2Y&Qrx%^>+@?C;A1o5kH7p<-j|K$r^zEl7-X zfQ16HZ>Mo|@fACRoWMy$%2+BKuq8~_~ve{SvOj6CRI0CVw= zi=)%o>ur3>H90>|aQogp94O5gn3?fBf9ptUHYaDFfS~fpl&3pW^(Fv{GBQd3HrbSZ zQ@8%aQt1>CyiC{MJpi`oYe=URz(at9&W}%5j;*0qSpj9fxL;aYrhpTVzz`I(wLv3- zmQe|3UxqTVCv-W>r*HZqqdz#Tmr58wT-wyNK`Us=CV`P$DO&>tuon;pp<>)C2T`Fb z-#`ir3k&1zO+z9`$APdjF{K}s-8tlZIc7@xP($07h*a=Kt(VFihSDGrfBzD*TzCjwDKp~l?}{tvqrULhy2 z-YweLV-nH{N7D${BLwqe(}BrC{j5M3wgAjJEK?gZySeXvz=Ty$Q$xVde=uSBF=Pc- zPek#U)k8WGAW9gt&a;=YYYv^2GF9q8Y$2+Jg6=CUiJzu|MA`x81b%PB436{1dcq`2 zd$q3&3N--^Q-sX}ADG@8?PW`1&4&-`5c_6dc8uE|EVq!vYcq^<`wR+@#aK|rQsf2~ zj0j;8ICvgvQv}&6pwwY`f^Zxh5+a}0E-P~IX}HV=`54lKu{WqkU zg;0rzh=|GM2!CP2NaZj+bU61tV8t zLwS)&A3s~guDhxbEC$2$mo9m|diBb9Uc;u18v*fDI9QxLdlqr{9jJ%>tGw7hr_f|K zfOir>@cuo8Cdh44`dDDHkPF@VmR+r_)B&C%ru3zuvx%J&ko5<}Khu6;_gKp6Sn?}` ze4no!Y=3%?k@D@f@HYkg$X_x;_m;9spY z&x=hZokXvT)Rer*>aMnSqPG4FEE~T40Wm`1!xLh~SIqbOpvnZ0j$>LC&dSc{%@&U# ztde_oO7;%O-fmja~3jB^yuZ6BUt+sAnwe)}!mFxe?y z9v=|0*2zIQztJS6Q^#o-5vNUjH{lY?{#=>w=F5`(e>|hbXpqTkDd*^&Vo+7X#P_W2 z6T1p2s&0{=FNXh_eX}w^t8P7Sy1rGL;xg{Hd95_igMkFMl?~z2 zo4xkgIT5@jBxQVM$t#vuAO9G5!KspaP;q#|HJ5aB9y8E;m^ulmiIZu(nYunCO+Fat z^3L7H7^XfoMOtS|J`BK~e-o6e2*5ILVqu94rL0-l?Lla+>7GP6?-KFUY}^9-V4a%o z#3Rw`W#{*hVA*$C5n3M>^;-W$bYb_-TMttoa^I0NZzBi7Pj>7-ma+Y zdH3@Bla5U9R>7g=6m3qKBbQt}+C37s-t=Ms9#xjSZN=5YY!>4E>2()~hrSL(w=;GjV4 zIX^#Na+=+3Zq@cFr|*rLTz-J7CLDeXOm>h-+Wv$puNL&LzS)$wvNgrAv66lD@5ipR z6QxN04x-sf4ax7F$9`rcvL^-;S8h8Ko#?TUyyw0Fpqa@rk>|1!jzxBGjf(Bjk}az( zC!|(t`^rjTtZWfm+R%?mqX%wLjjUcijVlsZ_mtm)#^l~D2if?M=!na?8QOy1OF#!qXuIE~Is_V;hk=z(Kpgc1(Z)!69l`!K2pFgBM35hk% zs$XX{%WZ)PP+;71HRY2{dab>8x!GqJXF`{lQ2Oe0PWz<<{Z})K)`@^`;{Toc;rrkv-kR$qP`(V&!3qzZ~tc6O7bRaN$tki9bKo54Xg*2`;iZ@+Q-UnbLh-& z6*FmR&4%00r!#PMKJMoJ*kVCU4%h=bi;G$^@QTkYdi9k+*6r!qgx|vk$61R84bm|9 zG!g`Aol*y)%bUaQUe|;3S##y|Nv!$*sSztl0N~!<-nK-?IA9?L@wvX7j`o=LcTVh6 zi432DcCbaIuUy;N3;FenhI*_ppdPy^rVBo&M8e{f{aEQPj(#ND`t*{vn(>#8Z9KI_ zr@_=Cwt&lpT@z4RK=WhJ*AaS@rL9@NT|O1p1TS~mC4(o1;390&5ZeG!1vt3J0SosS zN&pCW&G+R16xt23pJPBi;RnzbfRT8MA(mZ%!g72skWgcd_l5ae8M#Euh#>b77Biqv z-MB$Cck`2_H^65|@LdkcX!SWa^j@YM zU93~QX(pQ$SCDb_4}|We0rCqMq$DN%_nw`NWbQBaKcExD!M(EKOc>wEE<4y~AUGD; zjUA`9zoUtzUO4rwQu&LNw!d~FWddD{U)_)3$ja|Gq@Rsf#pW{6@l5wO^Y?m3P{dxA z;}A`y+h3&O(}1Zz-U{cQYElgPdc~LLC0({wtYH7l^TW06q2nBr`asBqOSelf;1wjt zTl0$aI2lyrO&4@04M*)ofA!m%_e=3YYi2djCRgDW-BLM546BR7nYZl4 zew^KYS3CTpHUBJ>;MPTHbQm6${>$+~)|81FRr{CU>;2lmHvP&@XsBI}uxtvp;`DRF z!sVRVqCC$PV}A8|NW;=9VR!e_A9~TGB;uoKhF8TSGy)`;1%tef))a6EVO^O5Hc3X~ox0z`kp5q9i4V7IViBm013@WyCzY4F+3ndprd-MVZOKiuM&8Uzx_v}X z(9hiw2(awPizPfr;vRn;o12*<6p|MXJhr+fy^P*sdDHYNl1*dFm0lsQd2ti=ER<2+ndO9?txA*qefrHrz z2hl%8%% z?)%%4Eg0bT8@BD1hVYQ@!$ebAG(_746h1yk^SY8L6z!B<1EW3QNrT=24j7ogmyxO6 zv$OTt<}?f!{F?yWC_x5C3l^AUPJ4cRoWGn1e*p^87t}Fg z)euYuaGm`vpl0*`B|uHee-%#?d=+$8_>e{}498xB^KSx(a6RS)Kn>YDlMS7gT=xTK z-woKbF&;g7^sUfH0p7zYpgWU^!8--PSY6tvHQ1+K*_MIm*C z&b3FX2(<+E`EgCOGmvE9a10ucxSrmm!QvG`!DzTtArR{o)bZ~89fX5Q<1j30YHE7= z9uzK@DWnjHElJs9^yYIIEm%lA!XF2Qq&s)bWU;`ZeTkR1L_P*gR|w-nMTHWW!Ql~8 zlamM$2owxTLR=)xy}ZOdm1$E2piJD;RFBLKY&t|7`^tnzT+Amw`4LT9Sy{pSJ?-zp z<@Srspdqrbu*6qZQhRoY97RL&5ky2`m#T$@1!I>fV5dm50k`S+ZEyVbe4yAY%1tJ< zTO_Aylj={SZ&XxNlFh)z)(-Y^KF5`dKu%066om9Ac-=pPQ!7ooMi`_otI5vt$bycI zfzaf*oWnBokueD^t<1xRVA=Tel7vk)|2g2~LII9L*Y#ql37%ni`1Dje3_5*@1yx=06Ch5kl|UTCe<(|_*UQF zlWCwW4%T&@T<4)FTjOuX;DppQ-gIjxT(-9oFdzb4#Ne&FADLr%lzqX`X$b6B!Qe3~ zbJa=!C8_|fuvoWE)yQI(vg}`i-t8NW>3%i{nRY4fca_)(*eZ@P<+9@?Um`Ho_)82c zV3bJd=$0djNA95k(IfU_|9d3z`|;O5j0h$5vhd-kIxQIqaF9K78|g+e*T|Q~EryDu z-mlHx*E2@CH($jb4B8FZ}*(vth~Tvjr|c>tgQorWkJ3s?;xg`>$|%O(6mvJ#Am)0 z_Gi-!lAYIQVV~LVI#20+=hV}|=0ArO^WNj^`d1ka$SJW5bI|{L;qUJQ~yoV%YW4o0Ewn7Pju8KTp(yf zYI@M)w(6K+O~5AL_{6CmS3&?+DPvD>P5c~d60HxqFOEgs{fj-4{Q5CBPD1)!Jxl2Y z5sf5_!v(eOGAtgT6#Ie+9{UZXRr6JZUsnw2I*mJ67~$4)}`yO%_F>zgan3dZ6VID3np(tx!& zXNKf!_TSI!@dn5mBm$;kKu%sxOIsVF=fhf>^0~*@Q3Q$IPF|s!zXYra^t{^}1tqtb zvWkgOCAp?6OO(bbJ@<7S4tM(0^G;j1mY#XvXQis51#_;HXl@-j6Xdc}^wRj6P?cW2 z3U_YhtL8EP{x`MO5y0N8SpbKkyZeF=2~PkR*kuRir?PNz*39xisGXTL!?k3rD}`3p zcQf7k0*DTJxEqhB^_Mkl1(YkQ-P#te)>!IYOORd+N1IE6 z!s%;EM@J_4x#!PeKf}Ys5`A^?48`qpH!l})*k#D`UNzS)Nlz}B?~t@G)|AY0sH!S@ zWS&LfU&UHU+Ra4n5xguywSwO31&YL@@|Yy;n{UI%#e4j6C19AGrBYUhEIfV z(zZuC#m$$ugG6jxlud+=exUl*UPVO_-%=>vqD%{Xf2T0IO51~FuF-@Z#ed@aPHqN5KR_C9V1LETJ2k%y zW|_;u65+Y?J<8h2&>Nxl*kA2&50s9w7b(_}p1?Y^gDDD{y*q2&D*Js{3Da7GDdis@ zuzXO=(cdf^&9t*Ldp5HlcO%&|wvBXsFoeva#2te!bASGOK{DiSK zFDt3d!&|=c-Hx`OM)tP{DyEc_zg3n}9$vFpo=-~pxW3NHITJCaNgbC!kLto40*fUu zuO~{UUJordE$!KwKLe>9yq66^Tf+^=n1-6e4Ne%$D+mAzQBaj$=LY&LA#XsLBu!3~V-5FeNtxJkVg0 zMeVe&1OPu^6&{o2&U7R^f*4MkFYk%b1x8=z)ZA!LA;#S-_wQ&uVf(&YeI`$5oMPl+ z4{IMy7>D%4La~cB`i1_*D?-8>ClsH!mF~_~<=E)D%)TLsbEZehPk!IgeT5<9{7Yx| zS99nK5dNp2ZL4ey11wyW|nC6sH}M}6Ic#Go+<&sovf15OqWEQ)SY~@GP%_ZjaVeiG81P+4=8DBRAC&ds+d5^{7X`A|_W$0sy z_Uh(oY5%mVK5|%-kn;2K?V~=eQ2jhm;DZ4+UlBK#WOHI(ISZNp#?mgze!=Fjoa}v1 zfLnXp978!jDuj#^<>bf>{_y6OmW&57HI@_gClr$$CC&QZw%5ddLf7nlHIHgU!<>K@5CBPnG#5_Ub)!;p==ql{ZCSyH}>FP%g~Z#h9NQk9Nl;mz#TXPj3?%F5tV z6UJcB-vdpQgwEM&e6msM>)D^%gyXPjus9#o`5{X;^7uPNpY$i+ zMz!!!dp@aZPk!83siHph;PuW3*Pw>Gh>6z0-ODYZ$KP1gnk(fcUu{Q<5f$)Jp~irx zQ{wqkr}G%_Sq}*ry%;==+;2#dT11$QJ&M4WSZ_Y$9UHaq%R~;Ex*44ATWd`YxxYGD z`}0;=<-6v)CwdM2Oo!?d_B>9+hp7y8#7W!!M1BB$+PU-gEG#q!QD4KC45^3cJY}}_ ztD4I-X5Cf33y4m)Q9k;i#zLSsUP2-MzDe7_~!IDFB&L+|0FWX7n;9+ zI6mRO{OcdD+rNF+*A{-?KwgK^{`Ze#xkgy=`?3D-k9+Zd?Q3V`$8r1jbyWVZFFHxv z^QR2{xH`|yMD4Wf^f_%YA{V92{z2iK-GhV{31;8xlE**bzv+6Rm+miu>7y@*>133Y z&LO59$Sc4InzQ&mlp^k~2`vh@-7084bG#U9eHL6WQN=AsD{ZS7lJt~JSd%!Y)o1TX zox;7`a{5k1_)Nbila!9{v&f$8>WH1l$LZ+Y3ci5Kii@4i4?EFyR`a%vl6o*_0 z(ZdUp6PrOgy}SLY6>@l&A3EmaxxdHeMci~@E-{ex2LfB6;eDU$f`MfYB+;TR72?X8opAvULYvj z{86UYUwOqG7N8_Gxg6A$8-vt!yG~M92YcI8?^Jyb{PKnWvR63Ed1O}x!3z-wV6I(e zb3S5o0a_N8Wy5LSm4di~S1_P*1%lj`0C8Q16wUJb4lmFh!6SlFRXrd7MxXY?X@QvA z?G`DEb}>)6>OHE8-d-rT3s6uDq4%^eIq+eG^dYldhwrsyl3CkLZc|6J51$fj%0!P+ z3LDA_P)CwxM(0ms_8%_x`WG*bnPXl&7;7nXNr|O;Vl}|)$B`(G3_FLqZgFdB&b1>O z3KYz50I8K+MDj=wEP(;RdGLxs5mlEQsfAw)|7nIXTnKP>b7vnauy}CqJpHcPL>}5( zI4#_F%11uED3(6$Niw%dQQwCQJ)y165PF89{I)#SjwD{AN1aMJKXow{`WF<93LWeK z#R!@wCLj<=fIft!N7_4P*QY6VnFLVID&RRn`c2&2*Td}9bSz(~?B!b^6lD@HcOmLbkFfnZyp`32N7M1F;%q|x_O5)jUGK`Ha&P{6b{z4_FEGPD0|)PkdI`$jol z2$_Rni4O}rk{H~yGr~87HzY!m1{L-v)op90v3gzk;v`gW30dr&3OLO1eEL{BrOGxn zbhzFHH5whfi=KzTmqyOyipIev}BBpuR?&y6eCBV$#>QHpS zOZ?^L{rZ`UOYQPZ?dI~qdt(<$!NCjfd!!zih1fDnNqIHx*3$S~vpLA#{8nS3{G*op zK2thWW{*M>rb+O9kKWZ!c*xkYNZvq^*t=M3wSd{hHB?TkMG$c=_0BVE= zDu%3v7yk40p@!PtmCusf2g52u`feXONZw5P2r#hdzVGqwJkS}%EnOS4VHm?_8R- z-_G7s9*RQhmZOL;U1gxi`-yMy*p>b+6Nv7y{ADvirL+8R1@gO0{g0PhA&d)yp!@^F zjtMSiP+D)m_!N8sf>Syi|6uY}B|)1xrP!s?~s z8WPvX(|mGGZ4y{Rl0MB_wttPjb;zqx{gjY`{P23`G_zk4L%HYNOYuaou)GDwAB2TO z!SMz|d#0Zea9~{ICnlSnjywoKTFhAR?xggmSPI!T3d-?k%{ynWZE$R z*_wfo>^fj`1G62urzPJ5dwU+R^FgMQmw(D5w3962&K%(f_L=n(Nt*}YrR zKq?|uun_V+@c(ypAPT%b!nZJiwNZ3WDusP1gH1h8@7}$ByTcvyO^D^f z=q9@5vkYnN{^Gj(YyHF@h5R6@h@)*0pp0xtU$tvD-CASbo_*FA(Ud}q3VD{$POPs1 zvl21DJ(Bso8Z=ih?JAMjZ!C`;eb8c}CJGIaM;C}NNR-rkmiOGPE!^No;6r733bX1vgwh)&z3Rr zwJ{9!-jmMJlo8@?oy@m5t0^9ss+>a$yW8GY>sHT>ZOR|=Mrr~(RiJgBrUQweSah^j z$mV6W;uwjay~bJU)dN;HLdayNqxzP)XR$8I%k0e9t+K$n?U}kR^v`yJwBSA#X66st zHSXMN8u+oK+JOfpFb_S?N8;qTm#pr7{z%6FPF?}+2$64)GW%cymHfywJgbFyGt1tj z{$W3tvy#$N14A6~N6Q?3+PWcRh9>wFD>>^+SzWY}s7nk&;c{wJ&+jDl$}&*}o*mGN z@Vpw@6vl${M}3;gPiGH}0fgLVUOIt`NS{zwLO?tbdJaJQ=#TdeDI|_`c+RU-`})fg zb`JB(k?~BW7ibxUPcbO$JZm@xkbT2Ofv;?ODN;)Qn_c-V+3wL+8~K(;`7Z{Z9F>+* zEnbG)s|?<7SC~+|d4m%RbOunr00Sc{cP}JNke}3BM0Q3jEAvwm zoVuk+Q`wtLGA|5I-hOiMJe(0F-zC|cYXYWtV0$X#S0FP$5mzmgSrB1*0#iFqWy*!j z#lA4Ibl=n5%K75;T2-L++3Ksk*?8>< z37K2etbf=m`MKoItu0>5iIcLHPOFq0j?33ym+iKSMJCe+N6ccSU!e*FN{$ZfJ?F3M zow#-D7No5r2slbHJfTWBq0IdAcH0<6&Hjl9i?rdSR_R21AxxR-Xe8}ZVJvP(rj2C`sQeT-ExWhw=F1&U8YSCY4 zdiq^cG5RFuNK0`JPwuaxpMD&&|KSr-686dtW9gEcN?Gz;{$!x#qDyXZ(%g+SjzJ|N zUTJUQUM0=VHv7`5Tw^@A>ff{;;JWj;Z8cdG^fkR+tRA5~Di4cpmXv(AQ&E#^^wapI zxT=T+3oE1hgBGnaIH{p7f}HoS&q_Q_PEH8&si2)dfJ3v~5=NS?PSG8`&8gnK>P0S< z{`!dhS(kPH2wsi^*SRy5rF=^UsFOe1!gDRBmP*huiPm&6=rfuqdCLPU;jsIgmZm3N zRk5ZbK9@1$h%>W?D^=O-JUPr4i%g)GLpLB)?Fcs2dLIfc6@vj7VG73iD`faq;KY)D z^ym{1>1MyDkwRX@0V_THk>-Vx26gSFL!GB7%qv0DdE-*)^M}=hcU)9y8G56vs@EeV zLa?50C^7FlFE`nr*{cpC5{o;TquVrd_FT=rOoG(Iv#IMg_E~C0_@2o2WUQU5g9$W{ zE6@jNZGBKbVcD4fd!A0}fpZM(=aP~!9fx5TM-IzR|K77g##6^;C||q(>UPU6NhTy} z5q$QgH_$3|?%VjLhJf{v1CCLf+LBGxz76M-Dc_^igJ(n}<{kJ{B}NPx;+irayAN>o zG?rV~r@!ZnrEU_)%l{0s=X2osS<^Jl6iC@j!epykKTaZMAJ&+c|HF1JP4`@+Tj=Z! zV=*{0K~uTgT_n3bMF6ILoYVp42f112(=dp+21wA$8(8m3&?DXxK4_m#sih1xKX|=`I zM6$2qAk`T;BSKFfnFE84b&-&jWrD%-$na2`nFkPe5CfC`)hv$|_L4Wj!F4eEs8Tye z0U{eP0n<3&7Uzp!&gVmQHMRHscd%yW9P~-wEu~es;9IIGQN@{#v=MId>zH>G>DxYB zDCYI;^X8_jLOI8X^n?ix$C7iIcS|aDGHY<*L|BY+D^G7F!-i${dBl8dHnpL zC8Onys0^c#nhO?MT+h1fUjIskW*7d`p82<8k->6y!V3_#)gLak8iw;XqR?k%B29jA zAd~>G!zwx6w`9y+01oWPs9PdbSV(Qp{f1m(hZ?pM&+lAIQqX`6rax$?0qV~P8W$o< zU;ED=q(aCf;?HQfa1qAk`A*+f!`BF*>B|rML}W7bOg~2`V9ji(Y_@^v>R_L1spr>7 zkvFx?VT4d+;e3OcO)&UED{T>YdQ2iBHIs)(=K{O~^~iJ>FdHJJ7LDg&*7(sp(G|m{ zb`19|HXSv5K}$hfA;E_|sJ)bX*p8LN!@HQS75d69_<1WP5=^C)`U&Zw^l6(h1Lu0f zYNyuqCwd)%7O9fz8<<3WKl`Q2e0|c=oa0oyanFzAF6t^v2WMnhm>l>;u50%J5*xwB zZUgxd8SjJ~_MlppunZ4LpQZ2hJY~=UOlCAI(w;6wend&zDNb2TJ(IYL4;#mf~6Kvtc(^GLhFo z*>wj8j(^r4|LK#rr))1{D%4fS$HsncQkYA?{^<48S+&=ol}CnSiY(*npKDsuo+%^? znPg*W$Ob#g1@qquZkm4*^=Ibae_nk3f31Z1KXuZ4m2|2CnH2_kKXCFUKpO`MqQJrF zPW%}dGcIfEWTi~&V`MTh&9Krzo~!Eu2QPY*Xkiv1qX&t=jN={wGrO$qy)Lf+vG|pY z{>}YeYn2lAPIA;q!&Pxd1EYoFr}_yQX-;mmssM}95mggeI1%XZCIv!YP4Qnsp+ zSg5@4f1*%M%`b9}Pn50nI8;Y>-&vU=S_#O06U#;N5t?@y2@f63Ndy%L)tl{$43p~Y zG{?JMpTTFy7B=#bRwp2K!`F^jFqS%9H()l=KJ`IVe*Z>@o|2gt$xYpv-R4E1o4R7O zg+grC?RpA#Ix4?5Z3V_>CWY<33p^E69k^6-_*OM&pSv?T?X{G@<}UbdodD(V7Di!1 z{u1XRoMT}2DU7Uy!P8QfKCA1!6qZ{}ibE|4D}4;P#V2Tmzk17}LToL?**!%ll+DI8 zaF4i&i^Cgw?l;wN{Jia&d+voBC4p5gbYZw52E|WI)yS7a;bz5`H#g+3^mQO^PNS!i2?RUccs!z z5<2@+Up}?nYWntYJTXUiZq8Aek>)MhUw?1xi+RL7PdK|4?DhLHg-)3Z$F)!dPIQ%d zFcz4&2wymGPLPs^ZB-YEup_u?5IHmRO<@8&xo)3LhfovPqnbfMD?8X6D%+jQn9?-P z+8bxxPPgq4rMNALcUaB#`w=;t?Ns-%1k_((HLf}LQ>X0^H^OYR={nbnf73TfEP=}_ zb890fH3jZ@_9=gI9>=YVZaS(9xFs^ZoU$LCfM$}<-;5HAOoF1q_j>le9p@sw~5MjYLh8@ zm8l*(Fwak-GdIleotTa^E&(Y6xH+>1f`1$?SBDOmO@B+!Boe5Wd0lWeri%#O&Umm@ z-d@s}p(0{&9{Uij#Hhh_S=fgmO+of_K`9$$yw0Br0AJ0&6aWz4BzP&U;_>@@dsSM- zW3j0321EiAI+-Cx`sB`Bmh|+{=79(w6$`vVM;D$!M_ne^EXvF60ml1~wdIYZa(4Or z>$MJyM$c-hM`#O)Qj_e(lv|$G$VUe;X6qj+=?8N5X z6Y6^%^|5irXtZ1IbJ&?*eAL2PTLv2Q{FHw=R)3EeEhSm(SZG}1B^ao-V)aEAr!?gf z>?DkLpHO@!_}j^Fw<5)Ogtp`)K#`H7H8ADcz>a#J$CT1A)`<}Y+}SRVx|Q4|_So%? z1FRbv_!1*M{Y_+_xbZn~Qp7$uRX4FQo>{z_0oxN!hadX~scs=U=8tD8D&6{?Sg}d+ z-}X(eYaDRVid|c_YZtNQSjnb$xYsT`v*2IWm7ECwsM7xV}JYua4ob z%_UFPCOG3{Yz-u_Kt-px9YibiR=8^IXCvetqam1y!DBIc92W-#00Xf+f&>NdsLxfs zgZApYDix=NYDL9%(2kc&rYDli&+Ro9 zL#8e(iOWlitsPPONl`H<{=!F)r9PB(OR}JT8J%))@C`1|-*PZ-7jXDmV&{FBb@riZ z+hAVVb3cl)$k`iVNgc=9aLi#a0mOpcCoisPkmDyFMX@hY zAgSuRN4)d~{eQRvSQ%3+deX@Oz9srB!#^%ej;(FE+q#c$TZ*5t7&K%u!3~9p%uG$) zz9YvxLxwy#W*)JvPvE9uyvqZFguMk6X+aH6IGnA->roFv2kiNzVAR8+w$QA-B00#JMGRJm@ixpFS9$_ zVqHAQ#eIH%?DKS^KHpJ{h~=ZwCSmR6FQFCII|`k#n-zOEf zR_(Nj-s`1SnVmX?KJHvMz|erZ9VOp zka%xvdir+z__gJ+&HGxdJ1p}v9GDmP_77bTw;ay9w8}j>>KHq}jTSJneLN$q&6}m` zruM6Kf-Z${YUAc|f|c);^S_2iTHW^PDs2}OUDs*}egy5}yweoO-ERweyWT&h%589t zb7nt`!p2?lv5RWasCJ=XJ=n3j%a5!u3TZ8=FGRYc<_|~ow)W_n$_L^K^leZ@vCDFL z{R}KD(s9BtX(!r$4^E2^e%8$i@)NuK;O#Xpy2BOU3e9TW23+XZVciBh*Z=^9L5qi@ zWfX%{#G_w$CS%n?FpMTMcAtsiHl;En984*s%Jj z7q}nw`LE1>aUa=UJ19GOKqdMZo@|=n!LRP;4Z1Kp!)bjc~63Ncpq` zvi}Ebrl z>U5=!?EDaU$)kfoj6gMB!}YB=lL0EKBJ=7F^k5|CSk&DN;U;-#%fGi3^k+D7jQj3v z#AO_VyqDW+Be(wgv=*XCXJ7(K&iBzW8^Z_=P5j!tCR!;N&YL_0fD`G54@m$6%VrpD zg$qEENtiI3{)-x}WIdqvV<7W?NM!|sZ`tT+(?S}784rx{Vc@8M}iMnqUo zhb!Lznl50t(*+%1nk)vS6@cdftHf@pM+AMI)hdOlTJ?(sn>{7f2sbTl9(L`9&mA=< zE>flOr%dUZ1*O`GT$#r!&dwf`TG&enmPp=HuhF6NxFZFYdNN$PT3a_8&SlGzBzj-Snvs)HSfOnech{sp-hYEhh(JeTfmijE4sJN^# z7&j6H7c(qvs9s{($E&4j7-6ml?7l@tR<+7r8bW5YOSo$J$kHhi1q1*&^r z?=(v}P=B+*9U0}syoj><(te4v0*Nhw8D_-vDk$+?ohCu(px}vgXBm7cKc0(UJLGc2;#nP@D$S2g3oK#qE z?aj%bt8^5d>#yT5a?Ll<4`|nP?(r2eNgb}z#^9oDnn^_rTO#M*S}!gS>^7DkWb1Z! z^;EiTEb|>6RYbdcY@b(Ga&P<|MW=sI!&I-mJ7~)vI~FH3bNCKaaP4w!g+tCVdUOG#G3b#S8IbDHU19U=GL^3w^<2|&4w<~m2 zI@d{AoZa;r4??)dR!rvuHWTOW2K~i*H|N<c$$R>Lw z4Jyh=#i2n$5eXS-$%P`x&bp+NaqN}(d%mmhHNN+Cf4{%`etduTTcNa_Z4&io9n^4QGonT1uYs^P689n9i@3Ko>+wVTPL zP03YS{2;S^$gpyvp2A^t=VWav1t&7nU0}3|2L{2My6?kj!^3m*3s}1~+w%AsS3Peu zg@m&IE#*W^?0pvD&i5lm8>cF!lIf!#|cGq<;STmnQiSUp~fq4|mgK zM>-o98;69cQ2Xkooj$9P>9dPm7>Gg(sW1upwFuEZ2}lT~)Md9DVQkN5H(X*gzS^|z zB1LlxaM9vCG4&6%jjch9&?{GZJaY8%?z$?(e{)BY=Wyo&XFWPex;Z-F37GzMUWl$K~`tUb6uYQ9qx*XSan~oGYtoF!aJMmsitkf8yUa`#^uc)mQkwK^3EdR`6CW z%lTLF@gF;T?6Y&HrDek1rY9D18mT|}CR>|7p?a$A>uhX6#Yj!mj=Qf8bBNY+olj<4 zXjd`NM&lFoEq`*CUNIAOd|E;{B8%quxiW))$}e>4#%=8;-r~}L3R}4!U8}58K) z?Q1i~B6qA@m2kNIz!jm+D^MV2BLoX)mr+EmlHvtxu4sOlz9CwxU}G;q*Q2ui zJ6f9r7JWB3jAj=q-mew=Npb6XOvQ{__Y@{1m}I5Okf(NnYr_VA;b<{!tyyEyZGG27 zy)!JF`NUb3vT5V}&LQl|w1$Bh-tlkey-e3c+ywZ86{ot@!HW6P!5cFVlUdmX>YLWAL|AxIQB{s)GXvrqrA>3F$(J>Kx z7&=3a%NZkOBU%U3e3Gk<{_MhiTX=3_zjn+yItS(6Q=ic z^=W~1qW$od_%k(+J$gjIzHj=_78a5o4dX$ETJED1x4veTyI#>9s%X*i_k6OPvgJ=f zkgoCn6k`2PVsGYsf8U%I7pIvP#xB;{N>YzdKx=4h?SAn1*NO^Sa!P9Q2|s8)W$Bq! z3(mhnVCk7}L$u9KpMSmSu``To1yf$={2aKVmPsC=uq%xpNf<@?UO4!_t$g>OBf*H& zizJ8(K3bGJ`bLh7l)i#70i=uGhV@us@YmH8Y)DAP758%0IaHIE z*Sd!+r^W|j@U$u9+`!Zv5v`bCNq$)Fscx~FXnZVGxl?x#Ip{xWtDek8EC!sPI}_tX z_}I|qEJqFfwDFV@JT}2kja{34CmUOOM?B&%_uglo-l3Y0?`1>Ew zl0A$08aI9A!?@NmJr4a#(*&P!sd?g_8#VH%Vlg@5rlZ0 z%<&~ANZf&3{sVt<_oa9{u-v|25XHUB%m_4qVW5EZa+d|+5jAWfLKxj*^c!~#71QA2evO|8bchrU z7MQQ3FxCHx^nD6LZ#Scc!9p!!_wAn>qCDe{RBCKQtiwq39&;a^s9c2);b5b^df1%1 za+6=fwd8`3*^fb;1noS5h{z%(UNQEg^T_ihi-{md!&TaeFklfC#~-bU(MJ30zrVK# ziv0P!9xY^TBE}{$C&xWafAXe+hf`#hd~eR&3&vLmCIx(kD>cSw6>$~JYhw0ol+6$l zy(cnSiP$-ngh^Eak7Gqj6WoR4yAmvbkI3Q6Ga)M_H8&Vv$vV+wp$L$L(siq8AvMYB z>C>l3KCGGOR?~U^+FYrVF7;-uea6&SCZ6q=Hy31FM>J@^z+dvAd<-*N*8X?&84enUw;PM! zKep5+{W2VvoO-E3og7l9PF3GJnYdt|4jX$#&`Bta{g6~?@cv2S{)@9l%x6vej^2(B z>>O`rFq){}9HTt4KX-PjI8Y~i)ysYS`)FSOsD2?tOaET|z94EBM?c6DT)J!4$9AZP z&3m4caD_8?q`!fx#-(J!R3@`?@>0$mgkh(bNW%OeuS~|ni0nsjwwoyL8?c*`>3H;^My%YM@hm|dBh3;C8jPH zxXUf#pnX9G{}ZDiq0YQj)y>NK_KNDvoIwFYT}e0p8$uO|I|48X+l@1fcr`I&X9zT< z?&K+4kQiugYFlvG(D}DQd8UYK6CFk%qm~E}dCF&-@x~8|6-;yYDKlQvnr7nZ97q-$ z|M^(#cZ$YrTvR$L`IgVDFfNUi=9CiWb=k=)By@#$`R}Y#P1~nu4{mO{2w>RB-OkJN zlg#ymG;QsDXG<*p>O4Rm-!eo$Zu#Ue7dm)h+;DiOmGSC}aUU3M9F`OpXN3f*n>-mu zcs)fjY}7xjJnkSfWy_OZCegclLC!73`Nq(ZzUz8be~6H!eRp8> zb!z3B(EJcIw*>M|@?;dUnI-U+Ev z)0shTY>FHH8rXQrA(z{pDU4U|S&^G^UY{ksP}`azn=d+N0(X?FS9Traj^htoo|vAi zYY|=P{#E6Km%$v?2;HJ+<(UeVs9QqUxQ^D2MSho}yvAT|ioxUK3o#;UC7@y`Hl2IY ziwBF9XEvtq(gON-MxDoXq_-*hgp0)HJwKdZomW2lv;2^mF#ZoYLrG-|KFy-=P5r`iSPqR351FZ8DxhJjQHq)bNL zf-zX02^NGFOr*NELknE2wPN+^yQLYR2+QTV*P&^9+LfFl*3c9S zP{~?9+pfvriM3wQ^hkFt8Q293f`WVavw&cpMcGorC)R)_*OTUog7G>>P>Xt_1O(kV z#{mrVAa0D0&CyqqOCD(^uk?~L=L}LI6OAy+sJXk{t*7qAgF}y9^LqZNgtn>Q1Y^&u z!}bNcwr^*^1P@%|gel5fn6jJi?I;dva{}DQDfuL?i{9$E3SqtwC^i#|5I&L&3=7M) z#I;~3gTMy}=EQm>;HyWVjDC0e<>g!Mp@=1^HRvQ59Li;BM4xeM`;)Fv9TtOu6>gLjNs{FrI4sJtEzj1f1yLO znsn{25I_4@Su%mkF1J$z-o$dOJIXRyC!rx)1&t&yj`z1o8>GAR|B@HaJ375t|j zugjBdn)3;U37N$^I19u)13g4`Nz=Dw(F%yI3Sc`SJoc?s0aXoT>y+0u)F8t0UOgDu zJssKL?BryCTkA>eYJ3-j>;vz2vR7gV9feow#5NQ#m^h(cRPq+ZEZtek} zNO}&R&{7=H^_>}t8!9uM;q(_z%?WtsGfC_%GwsSVbN!LN;eb?tH{YmgdI`e06w$S* zPrvZ?7K}BE(Xk-EMCzL`wAPu2CfvGpt5l9%p&uS`Ml^fp5F0k|@qo4?c=Chm`l?g7 zNgN~!bvCqc9qV<)JoJWw$0j6l|Aso`e#R6$hzzZ{-Kp*PO3Ca&l=H*kXhyTD zG;cpe(M7;|t23Y~>Uo@4D&hA{6C2?*lEl=(4?Tr=@=$@NH1SqZ)=*tI;Yc8qFut3d z9e=Iy)73@tP~vy@sh>~nvZ-zgYf`|ND`;_SOXHBT#Gt_?Tx?=rubkNw( zUR2YFA8%C7z44i|P4+u;`J^4_An%9Z9&ded2I%)Ol_L!n4Ctp z15TV`o^n*$WAr429;5DHwPx7|W}O{DDSI1C8_U`{&D=doQnRXB0tGEz?0xz^)8sd6 zBoTa=5fweN=3;AK8L)08hVql_kd9mq`z^|MBvX;@KG>TZNH|{`XJ+TwVcwzL1vkHD z=oSkXDWCo~1^yDLlrTbMw2|ruTU?s>~!t^Z;D&LwRL;+)f68B zC1SO(+u0y`Y0w5uDB;g-48e>Am~?gL8B-9)4@h5sxT_({b~&c|ttQ(QD~jw8P2Hy~ z{w);`d0l*Jmy5Sis~y*?%N_AEJt+OPL6l`(%P)S09JOSnxcHll^L??q&*wttVnjPq zArb7n|A|mvx#sohuPx()1+pq-t9$Bg-!k=O%fJRbhV(3_O*Iqp6`DQ?!(hPzbP zEmHO9r?7&w#f&pqQr~FHwN4tuEmf4S?7wi_sK3|Gd7vk8*?5ofv13p6xL6T!k$HQv zUOIEQVb+8E?MOZ*r~!ru76be70E%=7@ol&LLd8#3Cs+FxXrUn!PAIqZ({q{ZmZ5aj z+Fxna2v~iW#$Gbh(Om4WdZ&Me)}171$Df!SKNk?NqhEbSMKz?5SD&tVWc%&YRxaUc zzCtD<_h#YDrrnIH$rOI7P0zEe+R}L2Dmo zYxX4`YswzZ?Gw}TnP4-KpAMO)ca!gbaf8`5^cDZf43;8z9Dqh@UhgW-AaV=CWNQWd z9r-b7vS0+6&%ertR3%94P{{_JcfISc4*I067B-aHA!S%l<+(rG3U|ERdc$Xe#slF~ zb#}#H3=Agf57m&=kw z9vrc{-T!D!))z+KbVF;hBJ$cbk*q6}`uw@RTUW|>jK#)NXs(I@hkScA=F}FlZ?2{L zoUpq%(Z79Q-G{CzQI4cde|oswmtQ6@K60<>rS$~V4KJZ@ZoOMw7WO5;@b^X~3$his zzLtAcHAoz|$MqgmLePfQx4Wh)Zo=1wX;!M>hI!;%){-ftZ#P#6p&mu2Mp#z(`PDQv z+cD3c@fHx`%oCLXFx!jdcnaUWG+Za_H8xtn!QdOlpB5Z{#@VX4fXSG`?e-didZDBc z*0Ze{T3&3qE3$e%guKXc@&*lAQZQ=6%U>Pyaia5clLxb@U+(qwDbKWAtdfayeFM2) zB!Qr6*oG?4Y$caE`H2U#6(dnHI8JmXK6Yr^QIl${iGci7rFxW4H(6N=&mQVFzg=4{ z5gxJ6=2V{6o_;g<8p}MJJr7#lr40g2 zQZ+jVdLGn`uE*-jmEa2S%H5f^G~GO}zT2GM#1=YIqda~8$Z*%36}%ncOeU@PQgac8 z!MqlA{7i*An?NNi^;kRI&){okk85xvILKx?+oHLwod*=sH)i-vPCmv** z1vfqh(yzmEww1}&ESq}3@Y~^C4Z=U<_lr-3$rW9_?H?e-)i4?3g6E?laL!0aPfK;( z_a-U+KM!uPJc70hg)H_ZJRF&&gB#7?kbxpl7NThvoIC%QRszjMj%;}PnG+2MVev8W zLWwdv-7*W^j?dSYLS@3OA)oGKT0vG;3ptnLDffHrm!Q&}Pn;_NT2mfuL9LJ8S`{iM zK$ncIsITsUk0a5gpaUrW1n@f{Wq7eqO~=@*Ziz#!k@G^-YNR(Nrbt87L1~T+R*A6W zu#&J$gsPT7HTDkETEriYMHNn+#V>+mM~*Z+6fy?~evtA$-!b`_;Y8)D*RH);q{{aK zr&0T8GpR9z)4HY(o;GklRk@3sJ}OJHE=gB515$1vx@BsVNg3G3o~mAX^qZ`vq8y72JK^@j>`$L;raaqUoqwByWSSOKsBXzMd1vO=E8 z0AO|s^InrX+*YaUjL=hPQ2%{z`UC`LAv>r{)E2~ept9AW3OW`Z$QVI$N+MVZ8BS67 z_BlMpwZRH-FH&w_U`ia1tkbb~1)}^P*j%Ik&q$U>lYZQGG`VG7lMm+*=|=BBI<%y> zk%vI`I|!LMBq|o{gidF6DMUM^AmR3V+3(Pyn$?}UKoolL_$?XZMgkwYEb)h%?VA;z z%}kt>bL%zg7(iom9PKfv0A7F0C?P}(%-p}CC}$>3S;{a=xR7Y&=tt)joI#RaqdiT& zee{oDJML*wOCbPsM~(*xR!!)@0iHiQGf9+!WL5#1!N2V#&sW@k!}nHZ8Xll z;6MQOv9~B=bNSXYSRrV(cVLcgC!iP#gjX_HVhVudpZCrh=TN(k=+d%FV~MH=o;jsi zByzlqW_m75i`i*nB0#EnOXW$PR{JHL`^>RKNuEC{Y4FUzGb9~$=m zg;=*Y{ zxG3Q-0LQL9QWO?;_Ne}Iy26kf24Lx1S6~h}`dkY9B&p9PtjSIRuXMjjsRCwFSW zEI7M^&$aF-^q*JJ(1By2pv9~=sSwf#i%@InlZCEz&v`cf9QZf&lq(|Xhvu}Sb(W%26a#CwI9I#voQyIa8d$lNa&=P5G>ud+!K^==T}?4gZZ zcOjuCa>BI28D4*&Ac6QiB>@tVAw>8DfE=tO3=oIBq#PbGk<e-+h1=P=Li&0&sx6y(&ik{)ugavR~+Vm!?Vjy(5v1e%CST^ zN)ldKfEgfAnOY+bXd(0MtG}1HnwOJgqYLP^I>ho(NHQ^+Qau5Ah~a03lxG(cj8Z?7 z9bI72MQ(t+Lq0QkSJ>XT`K3@0Ul2%s8T`X$v)2m}^u{Q-8q?QngVNkwp|E*npQ_Fjk1JzcIrHwZ&!3ztEHFiibdSJ^^bh$$)H*0fWhSSl zw4m7oZXk^Gz~r3kWn)pmgySM2xOlhN?ZG|bjubxzGJh$`#8Z@`d;fb-X}sS0auNL4 z(7?e4Q2ICm*&*%S#V$zpP@H3&`)9q#zv zfqT=67LnTlU%47(sRg5k_-fFw1($j>azuzR>eVv#ql9+GE>FHngSe#~v}Ed48rmHJ z&*87z_wTPXspY|J(Kw$`9$Y+%*!egnNxZE9UV~!t7olDPYP5*R$VF`Dae#>zc#X|B z3t#Vs>aM0GoXxhn{+_m6rw|!d3N{=;gSYTXky)L6Y=6tX|DMGsPf{D%Q4ldU*}0F)aG7=N!6US0f)QKR=H*R(Z33%-!Zec3_f)T1JasINm<(n+hMx6@+(^+#e$0~D(Too)&}P_QcW&SFUQ6VxaZ z7i@fI$e!&@DePjV@yVUf)o_Y-eeIjFu6|w%{q0E6L3ejH@6m-*ma(U!l4(UTaR+n# zdJl&_IyN=QoV>e4R7fH9m6N6cHbKZn+yyq)`Xuj=U*Zx&Nq&25e! z7~IW#t8cNoHqFvBt`G0ZPtoDX{CZ>OYCJV%grojM`gY!&YQBWkB!m{i+F2NU+iWy&mf=qxZmO^r}#5E<4YcV zGL-&0k*dZu)0R#Rd;W#LzhN+Wd#zgn#m|^CEtpG)DzW@m=)QF_-blFXX;TH?K#WRw`Fa)jArlT(d|6zD-^mez~B% zAAtw^M=z)!b5XR2>!y0p`5#QunhQ54sL20T>{itkHjBn!XyXYf&bGEF5r?6jwBj_$ zPKs2|r;9O6EltD>SJOa;?R~4#E>SC&A3C`fdPe5CkrE|1pqnS$V^TCszVn5LBm-V} zj&!A4Rn4%QrZjf4z5g4wQ14|bnyX0Mhz{^~6hA4?xzJ0`Z*i-2?l~tUdh5=jJJsJ} zhw}E7JU5qTRF}@S++s;j`y)VCs4`(~P~e?vIkP=685x@p{8gWB&P1S0GKZH}Iv7Hn z45aMi^>vd}YYtgbi+C(!UOdchHhf5H`6H7Sfh)O+(R9Q!IKF7EWoFpv-1^15eLsn) z82LQM-MX#$d+jC5 z8*3h$8^GbGOhUBl^5al0gE;s9;U{TAx)mNbKeQB>F0iUn9lk7cUL1Z+%v&U&$}uk48P zp`OlM=W#pZ4UU54S+&ipnJ#)wQ=BZR+UP zi~75q){2InHJTe5xKj4L?Uom(b@ipy&M1$bot@+}F=0v3G@};_utl8;6y#gN>XFbj z@p*=u(>NeZmm2r@q#JSA5Gs$%FbrA~d;O~u=RF0M!>-$=KZ2Kx-}!FTsqP@#`GlRx z%C{mum##|x7Q%aPhhiu_;xjzEqcOYz=hW+qb_`@@%jRXy#yl2R_aa1Qo~OPUOU_3Q zsidf{Vz_Q&JkQNxxsu6sqAQ&`XBAh#rC}BQm7V({xeyNfuQJag6cOT)4Z4B|eyj(cuU!eFOnJwqf! Ux*lW|Q}9Q9mzGNEjw1p81-^)?cK`qY diff --git a/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb index 028592fd7..db65f6346 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:10.441838Z", - "iopub.status.busy": "2024-07-23T22:30:10.441633Z", - "iopub.status.idle": "2024-07-23T22:30:11.469580Z", - "shell.execute_reply": "2024-07-23T22:30:11.468954Z" + "iopub.execute_input": "2024-07-26T02:28:02.666817Z", + "iopub.status.busy": "2024-07-26T02:28:02.666314Z", + "iopub.status.idle": "2024-07-26T02:28:03.666587Z", + "shell.execute_reply": "2024-07-26T02:28:03.665971Z" } }, "outputs": [ @@ -36,7 +36,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Parsing /tmp/tmpfegb262g\n", + "Parsing /tmp/tmpjfp2fs73\n", "converged SCF energy = -75.6787887956314\n" ] }, @@ -59,7 +59,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Overwritten attributes get_ovlp get_hcore of \n", + "Overwritten attributes get_hcore get_ovlp of \n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1284: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable\n", " warnings.warn(msg)\n" ] @@ -123,10 +123,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:11.472782Z", - "iopub.status.busy": "2024-07-23T22:30:11.472319Z", - "iopub.status.idle": "2024-07-23T22:30:11.476782Z", - "shell.execute_reply": "2024-07-23T22:30:11.476322Z" + "iopub.execute_input": "2024-07-26T02:28:03.670248Z", + "iopub.status.busy": "2024-07-26T02:28:03.669571Z", + "iopub.status.idle": "2024-07-26T02:28:03.674922Z", + "shell.execute_reply": "2024-07-26T02:28:03.674460Z" } }, "outputs": [], @@ -166,10 +166,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:11.479397Z", - "iopub.status.busy": "2024-07-23T22:30:11.478878Z", - "iopub.status.idle": "2024-07-23T22:30:11.482346Z", - "shell.execute_reply": "2024-07-23T22:30:11.481890Z" + "iopub.execute_input": "2024-07-26T02:28:03.678148Z", + "iopub.status.busy": "2024-07-26T02:28:03.677178Z", + "iopub.status.idle": "2024-07-26T02:28:03.681119Z", + "shell.execute_reply": "2024-07-26T02:28:03.680682Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:11.484690Z", - "iopub.status.busy": "2024-07-23T22:30:11.484349Z", - "iopub.status.idle": "2024-07-23T22:30:11.617976Z", - "shell.execute_reply": "2024-07-23T22:30:11.617420Z" + "iopub.execute_input": "2024-07-26T02:28:03.683661Z", + "iopub.status.busy": "2024-07-26T02:28:03.683273Z", + "iopub.status.idle": "2024-07-26T02:28:03.808139Z", + "shell.execute_reply": "2024-07-26T02:28:03.807604Z" } }, "outputs": [ @@ -209,7 +209,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialialization: -75.67794403659725\n" + "Energy at initialialization: -75.67794403659724\n" ] } ], @@ -236,10 +236,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:11.620396Z", - "iopub.status.busy": "2024-07-23T22:30:11.620183Z", - "iopub.status.idle": "2024-07-23T22:30:19.790133Z", - "shell.execute_reply": "2024-07-23T22:30:19.789617Z" + "iopub.execute_input": "2024-07-26T02:28:03.810866Z", + "iopub.status.busy": "2024-07-26T02:28:03.810417Z", + "iopub.status.idle": "2024-07-26T02:28:11.720965Z", + "shell.execute_reply": "2024-07-26T02:28:11.720427Z" } }, "outputs": [ @@ -251,10 +251,10 @@ " message: STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT\n", " success: False\n", " status: 1\n", - " fun: -75.68381564670884\n", - " x: [-1.603e-01 6.418e-03 ... 5.747e-02 -1.005e-01]\n", + " fun: -75.68381571652795\n", + " x: [-1.603e-01 6.421e-03 ... 5.747e-02 -1.005e-01]\n", " nit: 3\n", - " jac: [ 2.203e-04 9.948e-05 ... -4.748e-03 7.398e-03]\n", + " jac: [ 2.117e-04 1.094e-04 ... -4.741e-03 7.394e-03]\n", " nfev: 112\n", " njev: 7\n", " hess_inv: <15x15 LbfgsInvHessProduct with dtype=float64>\n" diff --git a/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb index 31eb5be42..2e0c2e5d5 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb @@ -29,10 +29,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:21.294628Z", - "iopub.status.busy": "2024-07-23T22:30:21.294436Z", - "iopub.status.idle": "2024-07-23T22:30:22.003429Z", - "shell.execute_reply": "2024-07-23T22:30:22.002837Z" + "iopub.execute_input": "2024-07-26T02:28:13.251912Z", + "iopub.status.busy": "2024-07-26T02:28:13.251407Z", + "iopub.status.idle": "2024-07-26T02:28:13.961285Z", + "shell.execute_reply": "2024-07-26T02:28:13.960686Z" } }, "outputs": [ @@ -41,8 +41,8 @@ "text/plain": [ "FermionOperator({\n", " (cre_a(3), des_a(0)): -0.25,\n", - " (cre_b(1), des_b(5), cre_a(4)): 1+1j,\n", - " (cre_a(0), des_a(3)): 0.5\n", + " (cre_a(0), des_a(3)): 0.5,\n", + " (cre_b(1), des_b(5), cre_a(4)): 1+1j\n", "})" ] }, @@ -76,17 +76,17 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.006018Z", - "iopub.status.busy": "2024-07-23T22:30:22.005624Z", - "iopub.status.idle": "2024-07-23T22:30:22.009684Z", - "shell.execute_reply": "2024-07-23T22:30:22.009052Z" + "iopub.execute_input": "2024-07-26T02:28:13.963872Z", + "iopub.status.busy": "2024-07-26T02:28:13.963415Z", + "iopub.status.idle": "2024-07-26T02:28:13.967296Z", + "shell.execute_reply": "2024-07-26T02:28:13.966761Z" } }, "outputs": [ { "data": { "text/plain": [ - "'FermionOperator({((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 0), (False, False, 3)): 0.5+0j})'" + "'FermionOperator({((True, False, 3), (False, False, 0)): -0.25+0j, ((True, False, 0), (False, False, 3)): 0.5+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j})'" ] }, "execution_count": 2, @@ -110,10 +110,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.012057Z", - "iopub.status.busy": "2024-07-23T22:30:22.011691Z", - "iopub.status.idle": "2024-07-23T22:30:22.016259Z", - "shell.execute_reply": "2024-07-23T22:30:22.015780Z" + "iopub.execute_input": "2024-07-26T02:28:13.969462Z", + "iopub.status.busy": "2024-07-26T02:28:13.969270Z", + "iopub.status.idle": "2024-07-26T02:28:13.973551Z", + "shell.execute_reply": "2024-07-26T02:28:13.972972Z" } }, "outputs": [ @@ -121,17 +121,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", - " (cre_a(3), des_a(0)): -0.5,\n", - " (cre_a(0), des_a(3)): 1,\n", - " (cre_b(2)): 0-0.25j,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", + " (cre_a(3), des_a(0)): -0.5,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", + " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", " (des_a(3), des_b(3)): 0.0625,\n", + " (cre_a(0), des_a(3)): 1,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j\n", + " (cre_b(2)): 0-0.25j,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125\n", "})" ] }, @@ -170,10 +170,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.018459Z", - "iopub.status.busy": "2024-07-23T22:30:22.018101Z", - "iopub.status.idle": "2024-07-23T22:30:22.022108Z", - "shell.execute_reply": "2024-07-23T22:30:22.021630Z" + "iopub.execute_input": "2024-07-26T02:28:13.975920Z", + "iopub.status.busy": "2024-07-26T02:28:13.975556Z", + "iopub.status.idle": "2024-07-26T02:28:13.979469Z", + "shell.execute_reply": "2024-07-26T02:28:13.978866Z" } }, "outputs": [ @@ -181,17 +181,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): -1,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", - " (cre_a(0), des_a(3)): 0-6j,\n", - " (cre_b(2)): -5,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", + " (cre_a(3), des_a(0), cre_b(2)): -1,\n", " (cre_a(0), des_a(3), cre_b(2)): 2,\n", " (des_a(3), des_b(3)): 0-1.25j,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j\n", + " (cre_b(2)): -5,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j\n", "})" ] }, @@ -220,10 +220,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.024318Z", - "iopub.status.busy": "2024-07-23T22:30:22.023961Z", - "iopub.status.idle": "2024-07-23T22:30:22.027846Z", - "shell.execute_reply": "2024-07-23T22:30:22.027367Z" + "iopub.execute_input": "2024-07-26T02:28:13.981898Z", + "iopub.status.busy": "2024-07-26T02:28:13.981503Z", + "iopub.status.idle": "2024-07-26T02:28:13.985220Z", + "shell.execute_reply": "2024-07-26T02:28:13.984710Z" } }, "outputs": [ @@ -231,15 +231,15 @@ "data": { "text/plain": [ "FermionOperator({\n", + " (cre_b(2)): -5,\n", + " (cre_b(2), cre_a(3), des_a(0)): -1,\n", + " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", " (cre_a(3), des_a(0)): 0+3j,\n", + " (des_b(3), des_a(3)): 0+1.25j,\n", " (cre_b(1), cre_a(4), des_b(5)): -12+12j,\n", + " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", - " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", - " (des_b(3), des_a(3)): 0+1.25j,\n", - " (cre_b(2)): -5,\n", " (cre_b(2), cre_a(0), des_a(3)): 2,\n", - " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", - " (cre_b(2), cre_a(3), des_a(0)): -1,\n", " (cre_a(0), des_a(3)): 0-6j\n", "})" ] @@ -265,10 +265,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.030155Z", - "iopub.status.busy": "2024-07-23T22:30:22.029817Z", - "iopub.status.idle": "2024-07-23T22:30:22.033187Z", - "shell.execute_reply": "2024-07-23T22:30:22.032711Z" + "iopub.execute_input": "2024-07-26T02:28:13.987580Z", + "iopub.status.busy": "2024-07-26T02:28:13.987228Z", + "iopub.status.idle": "2024-07-26T02:28:13.990215Z", + "shell.execute_reply": "2024-07-26T02:28:13.989643Z" } }, "outputs": [ @@ -298,10 +298,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.035371Z", - "iopub.status.busy": "2024-07-23T22:30:22.035029Z", - "iopub.status.idle": "2024-07-23T22:30:22.039211Z", - "shell.execute_reply": "2024-07-23T22:30:22.038622Z" + "iopub.execute_input": "2024-07-26T02:28:13.992439Z", + "iopub.status.busy": "2024-07-26T02:28:13.992092Z", + "iopub.status.idle": "2024-07-26T02:28:13.996004Z", + "shell.execute_reply": "2024-07-26T02:28:13.995424Z" } }, "outputs": [ @@ -341,21 +341,21 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.058742Z", - "iopub.status.busy": "2024-07-23T22:30:22.058303Z", - "iopub.status.idle": "2024-07-23T22:30:22.064306Z", - "shell.execute_reply": "2024-07-23T22:30:22.063743Z" + "iopub.execute_input": "2024-07-26T02:28:14.012112Z", + "iopub.status.busy": "2024-07-26T02:28:14.011558Z", + "iopub.status.idle": "2024-07-26T02:28:14.017998Z", + "shell.execute_reply": "2024-07-26T02:28:14.017421Z" } }, "outputs": [ { "data": { "text/plain": [ - "array([0. +0.j , 0. +0.j ,\n", - " 0. +0.j , 0. +0.j ,\n", - " 0.16281661-0.05823675j, 0. +0.j ,\n", - " 0. +0.j , 0. +0.j ,\n", - " 0. +0.j ])" + "array([ 0. +0.j , 0. +0.j ,\n", + " 0. +0.j , 0. +0.j ,\n", + " -0.08987947+0.18917418j, 0. +0.j ,\n", + " 0. +0.j , 0. +0.j ,\n", + " 0. +0.j ])" ] }, "execution_count": 8, @@ -380,10 +380,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.066614Z", - "iopub.status.busy": "2024-07-23T22:30:22.066266Z", - "iopub.status.idle": "2024-07-23T22:30:22.076861Z", - "shell.execute_reply": "2024-07-23T22:30:22.076410Z" + "iopub.execute_input": "2024-07-26T02:28:14.020214Z", + "iopub.status.busy": "2024-07-26T02:28:14.020023Z", + "iopub.status.idle": "2024-07-26T02:28:14.031249Z", + "shell.execute_reply": "2024-07-26T02:28:14.030746Z" } }, "outputs": [ diff --git a/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb index 755274727..81d4a80c1 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:23.713569Z", - "iopub.status.busy": "2024-07-23T22:30:23.713354Z", - "iopub.status.idle": "2024-07-23T22:30:24.698161Z", - "shell.execute_reply": "2024-07-23T22:30:24.697579Z" + "iopub.execute_input": "2024-07-26T02:28:15.868064Z", + "iopub.status.busy": "2024-07-26T02:28:15.867605Z", + "iopub.status.idle": "2024-07-26T02:28:16.858119Z", + "shell.execute_reply": "2024-07-26T02:28:16.857470Z" } }, "outputs": [ @@ -27,22 +27,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "converged SCF energy = -77.8266321248745\n" + "converged SCF energy = -77.8266321248744\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Parsing /tmp/tmpz0beoxj6\n", - "converged SCF energy = -77.8266321248745\n" + "Parsing /tmp/tmpvt8_j8d0\n", + "converged SCF energy = -77.8266321248744\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CASCI E = -77.8742165643863 E(CI) = -4.02122442107773 S^2 = 0.0000000\n" + "CASCI E = -77.8742165643862 E(CI) = -4.02122442107772 S^2 = 0.0000000\n" ] }, { @@ -57,7 +57,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Overwritten attributes get_ovlp get_hcore of \n", + "Overwritten attributes get_hcore get_ovlp of \n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1284: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable\n", " warnings.warn(msg)\n" ] @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:24.702317Z", - "iopub.status.busy": "2024-07-23T22:30:24.701238Z", - "iopub.status.idle": "2024-07-23T22:30:24.772193Z", - "shell.execute_reply": "2024-07-23T22:30:24.771643Z" + "iopub.execute_input": "2024-07-26T02:28:16.861236Z", + "iopub.status.busy": "2024-07-26T02:28:16.860755Z", + "iopub.status.idle": "2024-07-26T02:28:16.930228Z", + "shell.execute_reply": "2024-07-26T02:28:16.929667Z" } }, "outputs": [ @@ -132,14 +132,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(CCSD) = -77.87421536374029 E_corr = -0.04758323886585769\n" + "E(CCSD) = -77.87421536374026 E_corr = -0.04758323886585455\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialization: -77.87160024816289\n" + "Energy at initialization: -77.8716002481628\n" ] } ], @@ -180,10 +180,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:24.775553Z", - "iopub.status.busy": "2024-07-23T22:30:24.775131Z", - "iopub.status.idle": "2024-07-23T22:31:35.553547Z", - "shell.execute_reply": "2024-07-23T22:31:35.552955Z" + "iopub.execute_input": "2024-07-26T02:28:16.933028Z", + "iopub.status.busy": "2024-07-26T02:28:16.932809Z", + "iopub.status.idle": "2024-07-26T02:29:29.616723Z", + "shell.execute_reply": "2024-07-26T02:29:29.616068Z" } }, "outputs": [ @@ -195,10 +195,10 @@ " message: STOP: TOTAL NO. of ITERATIONS REACHED LIMIT\n", " success: False\n", " status: 1\n", - " fun: -77.87387391273364\n", - " x: [-1.153e+00 -3.421e-04 ... 2.640e-04 1.286e-01]\n", + " fun: -77.87387392307558\n", + " x: [-1.153e+00 -2.688e-04 ... 1.579e-04 1.286e-01]\n", " nit: 10\n", - " jac: [ 4.832e-05 2.842e-05 ... 1.847e-05 7.105e-06]\n", + " jac: [-4.832e-05 -2.842e-05 ... 1.421e-05 8.527e-06]\n", " nfev: 949\n", " njev: 13\n", " hess_inv: <72x72 LbfgsInvHessProduct with dtype=float64>\n" @@ -242,10 +242,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:31:35.556779Z", - "iopub.status.busy": "2024-07-23T22:31:35.556260Z", - "iopub.status.idle": "2024-07-23T22:32:00.294511Z", - "shell.execute_reply": "2024-07-23T22:32:00.293843Z" + "iopub.execute_input": "2024-07-26T02:29:29.620036Z", + "iopub.status.busy": "2024-07-26T02:29:29.619737Z", + "iopub.status.idle": "2024-07-26T02:29:53.702473Z", + "shell.execute_reply": "2024-07-26T02:29:53.701826Z" } }, "outputs": [ @@ -257,10 +257,10 @@ " message: CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n", " success: True\n", " status: 0\n", - " fun: -77.87363426385984\n", - " x: [-1.153e+00 -1.065e-04 ... 3.519e-02 2.561e-01]\n", + " fun: -77.87363426271249\n", + " x: [-1.152e+00 -9.220e-05 ... 3.522e-02 2.561e-01]\n", " nit: 5\n", - " jac: [-5.400e-05 5.684e-06 ... 8.527e-06 -1.421e-06]\n", + " jac: [ 2.558e-05 -1.847e-05 ... 2.842e-06 4.263e-06]\n", " nfev: 329\n", " njev: 7\n", " hess_inv: <46x46 LbfgsInvHessProduct with dtype=float64>\n" @@ -305,10 +305,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:00.297658Z", - "iopub.status.busy": "2024-07-23T22:32:00.297420Z", - "iopub.status.idle": "2024-07-23T22:32:13.812026Z", - "shell.execute_reply": "2024-07-23T22:32:13.811400Z" + "iopub.execute_input": "2024-07-26T02:29:53.705778Z", + "iopub.status.busy": "2024-07-26T02:29:53.705338Z", + "iopub.status.idle": "2024-07-26T02:30:11.544785Z", + "shell.execute_reply": "2024-07-26T02:30:11.544146Z" } }, "outputs": [ @@ -319,29 +319,34 @@ "Number of parameters: 46\n", " message: Convergence: Norm of projected gradient <= gtol.\n", " success: True\n", - " fun: -77.87363432121501\n", - " x: [-1.152e+00 -6.643e-05 ... 3.506e-02 2.559e-01]\n", - " nit: 3\n", - " jac: [ 2.682e-07 -1.744e-07 ... -9.060e-08 -1.031e-07]\n", - " nfev: 535\n", - " njev: 4\n", - " nlinop: 351\n", + " fun: -77.87363433452647\n", + " x: [-1.151e+00 -3.666e-04 ... 3.458e-02 2.561e-01]\n", + " nit: 4\n", + " jac: [ 2.547e-06 -7.273e-08 ... 1.303e-07 9.150e-08]\n", + " nfev: 673\n", + " njev: 5\n", + " nlinop: 443\n", "\n", "Iteration 1\n", - " Energy: -77.87363110240167\n", - " Norm of gradient: 0.0014977444274153814\n", - " Regularization hyperparameter: 0.0028719078748818665\n", - " Variation hyperparameter: 0.9994066917073114\n", + " Energy: -77.87362949017803\n", + " Norm of gradient: 0.0017032385482687053\n", + " Regularization hyperparameter: 0.0013279102867002953\n", + " Variation hyperparameter: 0.9872670159807396\n", "Iteration 2\n", - " Energy: -77.87363431632271\n", - " Norm of gradient: 3.99771668928647e-05\n", - " Regularization hyperparameter: 0.0028683282556405307\n", - " Variation hyperparameter: 0.9994067007116887\n", + " Energy: -77.8736342750619\n", + " Norm of gradient: 8.499606167408255e-05\n", + " Regularization hyperparameter: 0.0046215181009085105\n", + " Variation hyperparameter: 0.9877849924912689\n", "Iteration 3\n", - " Energy: -77.87363432121501\n", - " Norm of gradient: 4.89611684282813e-06\n", - " Regularization hyperparameter: 0.0028683282556405307\n", - " Variation hyperparameter: 0.9994067007116887\n" + " Energy: -77.87363433061991\n", + " Norm of gradient: 1.1990422739119957e-05\n", + " Regularization hyperparameter: 0.003930328386391183\n", + " Variation hyperparameter: 0.9876996043582875\n", + "Iteration 4\n", + " Energy: -77.87363433452647\n", + " Norm of gradient: 7.76635632092199e-06\n", + " Regularization hyperparameter: 0.003930441707468886\n", + " Variation hyperparameter: 0.9876996345535829\n" ] } ], diff --git a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb index be7b1696b..87008f68c 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:15.386313Z", - "iopub.status.busy": "2024-07-23T22:32:15.385953Z", - "iopub.status.idle": "2024-07-23T22:32:16.066835Z", - "shell.execute_reply": "2024-07-23T22:32:16.066273Z" + "iopub.execute_input": "2024-07-26T02:30:13.105612Z", + "iopub.status.busy": "2024-07-26T02:30:13.105408Z", + "iopub.status.idle": "2024-07-26T02:30:13.799010Z", + "shell.execute_reply": "2024-07-26T02:30:13.798335Z" } }, "outputs": [], @@ -54,10 +54,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.069840Z", - "iopub.status.busy": "2024-07-23T22:32:16.069462Z", - "iopub.status.idle": "2024-07-23T22:32:16.650549Z", - "shell.execute_reply": "2024-07-23T22:32:16.649988Z" + "iopub.execute_input": "2024-07-26T02:30:13.801944Z", + "iopub.status.busy": "2024-07-26T02:30:13.801459Z", + "iopub.status.idle": "2024-07-26T02:30:14.376803Z", + "shell.execute_reply": "2024-07-26T02:30:14.376147Z" } }, "outputs": [ @@ -103,10 +103,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.653328Z", - "iopub.status.busy": "2024-07-23T22:32:16.652718Z", - "iopub.status.idle": "2024-07-23T22:32:16.862997Z", - "shell.execute_reply": "2024-07-23T22:32:16.862493Z" + "iopub.execute_input": "2024-07-26T02:30:14.379742Z", + "iopub.status.busy": "2024-07-26T02:30:14.379071Z", + "iopub.status.idle": "2024-07-26T02:30:14.587465Z", + "shell.execute_reply": "2024-07-26T02:30:14.586855Z" } }, "outputs": [ @@ -160,17 +160,17 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.865475Z", - "iopub.status.busy": "2024-07-23T22:32:16.865066Z", - "iopub.status.idle": "2024-07-23T22:32:16.869263Z", - "shell.execute_reply": "2024-07-23T22:32:16.868657Z" + "iopub.execute_input": "2024-07-26T02:30:14.590119Z", + "iopub.status.busy": "2024-07-26T02:30:14.589743Z", + "iopub.status.idle": "2024-07-26T02:30:14.594084Z", + "shell.execute_reply": "2024-07-26T02:30:14.593496Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -195,17 +195,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.871684Z", - "iopub.status.busy": "2024-07-23T22:32:16.871315Z", - "iopub.status.idle": "2024-07-23T22:32:16.875891Z", - "shell.execute_reply": "2024-07-23T22:32:16.875323Z" + "iopub.execute_input": "2024-07-26T02:30:14.596340Z", + "iopub.status.busy": "2024-07-26T02:30:14.596007Z", + "iopub.status.idle": "2024-07-26T02:30:14.601165Z", + "shell.execute_reply": "2024-07-26T02:30:14.600542Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -242,17 +242,17 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.878072Z", - "iopub.status.busy": "2024-07-23T22:32:16.877882Z", - "iopub.status.idle": "2024-07-23T22:32:16.882568Z", - "shell.execute_reply": "2024-07-23T22:32:16.881979Z" + "iopub.execute_input": "2024-07-26T02:30:14.603599Z", + "iopub.status.busy": "2024-07-26T02:30:14.603258Z", + "iopub.status.idle": "2024-07-26T02:30:14.607629Z", + "shell.execute_reply": "2024-07-26T02:30:14.607164Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -279,17 +279,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.884857Z", - "iopub.status.busy": "2024-07-23T22:32:16.884505Z", - "iopub.status.idle": "2024-07-23T22:32:16.888717Z", - "shell.execute_reply": "2024-07-23T22:32:16.888158Z" + "iopub.execute_input": "2024-07-26T02:30:14.610020Z", + "iopub.status.busy": "2024-07-26T02:30:14.609581Z", + "iopub.status.idle": "2024-07-26T02:30:14.613798Z", + "shell.execute_reply": "2024-07-26T02:30:14.613284Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -315,17 +315,17 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.891073Z", - "iopub.status.busy": "2024-07-23T22:32:16.890722Z", - "iopub.status.idle": "2024-07-23T22:32:16.895208Z", - "shell.execute_reply": "2024-07-23T22:32:16.894615Z" + "iopub.execute_input": "2024-07-26T02:30:14.616078Z", + "iopub.status.busy": "2024-07-26T02:30:14.615712Z", + "iopub.status.idle": "2024-07-26T02:30:14.619953Z", + "shell.execute_reply": "2024-07-26T02:30:14.619425Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -354,17 +354,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.897386Z", - "iopub.status.busy": "2024-07-23T22:32:16.897047Z", - "iopub.status.idle": "2024-07-23T22:32:16.902145Z", - "shell.execute_reply": "2024-07-23T22:32:16.901561Z" + "iopub.execute_input": "2024-07-26T02:30:14.622239Z", + "iopub.status.busy": "2024-07-26T02:30:14.621889Z", + "iopub.status.idle": "2024-07-26T02:30:14.626701Z", + "shell.execute_reply": "2024-07-26T02:30:14.626187Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -391,17 +391,17 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.904481Z", - "iopub.status.busy": "2024-07-23T22:32:16.904024Z", - "iopub.status.idle": "2024-07-23T22:32:16.909576Z", - "shell.execute_reply": "2024-07-23T22:32:16.908973Z" + "iopub.execute_input": "2024-07-26T02:30:14.628993Z", + "iopub.status.busy": "2024-07-26T02:30:14.628653Z", + "iopub.status.idle": "2024-07-26T02:30:14.633769Z", + "shell.execute_reply": "2024-07-26T02:30:14.633234Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 10, @@ -428,17 +428,17 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.911801Z", - "iopub.status.busy": "2024-07-23T22:32:16.911477Z", - "iopub.status.idle": "2024-07-23T22:32:16.917232Z", - "shell.execute_reply": "2024-07-23T22:32:16.916663Z" + "iopub.execute_input": "2024-07-26T02:30:14.636233Z", + "iopub.status.busy": "2024-07-26T02:30:14.635875Z", + "iopub.status.idle": "2024-07-26T02:30:14.641564Z", + "shell.execute_reply": "2024-07-26T02:30:14.640963Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 11, diff --git a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb index 23b5c4e3d..d3948b6df 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:18.773681Z", - "iopub.status.busy": "2024-07-23T22:32:18.773119Z", - "iopub.status.idle": "2024-07-23T22:32:19.462158Z", - "shell.execute_reply": "2024-07-23T22:32:19.461618Z" + "iopub.execute_input": "2024-07-26T02:30:16.706593Z", + "iopub.status.busy": "2024-07-26T02:30:16.706395Z", + "iopub.status.idle": "2024-07-26T02:30:17.395098Z", + "shell.execute_reply": "2024-07-26T02:30:17.394426Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:19.466278Z", - "iopub.status.busy": "2024-07-23T22:32:19.465485Z", - "iopub.status.idle": "2024-07-23T22:32:19.531459Z", - "shell.execute_reply": "2024-07-23T22:32:19.530938Z" + "iopub.execute_input": "2024-07-26T02:30:17.398117Z", + "iopub.status.busy": "2024-07-26T02:30:17.397631Z", + "iopub.status.idle": "2024-07-26T02:30:17.460268Z", + "shell.execute_reply": "2024-07-26T02:30:17.459744Z" } }, "outputs": [ @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:19.534110Z", - "iopub.status.busy": "2024-07-23T22:32:19.533726Z", - "iopub.status.idle": "2024-07-23T22:32:19.871199Z", - "shell.execute_reply": "2024-07-23T22:32:19.870642Z" + "iopub.execute_input": "2024-07-26T02:30:17.462996Z", + "iopub.status.busy": "2024-07-26T02:30:17.462512Z", + "iopub.status.idle": "2024-07-26T02:30:17.765992Z", + "shell.execute_reply": "2024-07-26T02:30:17.765375Z" } }, "outputs": [ @@ -165,7 +165,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "converged SCF energy = -108.835236570775\n" + "converged SCF energy = -108.835236570774\n" ] }, { @@ -174,7 +174,7 @@ "text": [ "norb = 14\n", "nelec = (3, 3)\n", - "E(CCSD) = -108.9630419334855 E_corr = -0.1278053627110065\n" + "E(CCSD) = -108.9630419334854 E_corr = -0.1278053627110061\n" ] }, { @@ -185,9 +185,9 @@ " '0000000001110000000000000111': 10,\n", " '0000000000011100000000011100': 10,\n", " '0000000001011000000000010110': 9,\n", + " '0100000000100100000000000111': 5,\n", " '0001000001010000000000000111': 5,\n", " '0000000001011000100000000110': 4,\n", - " '0100000001001000000000000111': 4,\n", " '0000000000011100100000001100': 3,\n", " '0010000000011000000000010110': 3}" ] @@ -269,10 +269,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:19.873743Z", - "iopub.status.busy": "2024-07-23T22:32:19.873357Z", - "iopub.status.idle": "2024-07-23T22:32:20.412801Z", - "shell.execute_reply": "2024-07-23T22:32:20.412179Z" + "iopub.execute_input": "2024-07-26T02:30:17.768469Z", + "iopub.status.busy": "2024-07-26T02:30:17.768264Z", + "iopub.status.idle": "2024-07-26T02:30:18.302579Z", + "shell.execute_reply": "2024-07-26T02:30:18.301995Z" } }, "outputs": [ @@ -287,7 +287,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "SCF energy = -75.3484557058996\n" + "SCF energy = -75.3484557074732\n" ] }, { @@ -305,7 +305,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(UCCSD) = -75.45619739146407 E_corr = -0.1077416855645157\n" + "E(UCCSD) = -75.4561973911871 E_corr = -0.1077416837138922\n" ] }, { diff --git a/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb b/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb index c4bf1261c..4c8566e87 100644 --- a/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb +++ b/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:22.159866Z", - "iopub.status.busy": "2024-07-23T22:32:22.159677Z", - "iopub.status.idle": "2024-07-23T22:32:22.981232Z", - "shell.execute_reply": "2024-07-23T22:32:22.980641Z" + "iopub.execute_input": "2024-07-26T02:30:20.066089Z", + "iopub.status.busy": "2024-07-26T02:30:20.065808Z", + "iopub.status.idle": "2024-07-26T02:30:20.892018Z", + "shell.execute_reply": "2024-07-26T02:30:20.891393Z" } }, "outputs": [ @@ -29,7 +29,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "converged SCF energy = -108.464957764796\n" + "converged SCF energy = -108.464957764795\n" ] }, { @@ -80,10 +80,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:22.985729Z", - "iopub.status.busy": "2024-07-23T22:32:22.984358Z", - "iopub.status.idle": "2024-07-23T22:32:22.989085Z", - "shell.execute_reply": "2024-07-23T22:32:22.988617Z" + "iopub.execute_input": "2024-07-26T02:30:20.896601Z", + "iopub.status.busy": "2024-07-26T02:30:20.895255Z", + "iopub.status.idle": "2024-07-26T02:30:20.900547Z", + "shell.execute_reply": "2024-07-26T02:30:20.900092Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:22.991478Z", - "iopub.status.busy": "2024-07-23T22:32:22.991139Z", - "iopub.status.idle": "2024-07-23T22:32:22.996007Z", - "shell.execute_reply": "2024-07-23T22:32:22.995504Z" + "iopub.execute_input": "2024-07-26T02:30:20.903017Z", + "iopub.status.busy": "2024-07-26T02:30:20.902549Z", + "iopub.status.idle": "2024-07-26T02:30:20.907438Z", + "shell.execute_reply": "2024-07-26T02:30:20.906956Z" } }, "outputs": [ @@ -172,10 +172,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:22.998227Z", - "iopub.status.busy": "2024-07-23T22:32:22.997926Z", - "iopub.status.idle": "2024-07-23T22:32:23.002168Z", - "shell.execute_reply": "2024-07-23T22:32:23.001677Z" + "iopub.execute_input": "2024-07-26T02:30:20.909749Z", + "iopub.status.busy": "2024-07-26T02:30:20.909425Z", + "iopub.status.idle": "2024-07-26T02:30:20.913584Z", + "shell.execute_reply": "2024-07-26T02:30:20.913107Z" } }, "outputs": [ @@ -208,10 +208,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.004457Z", - "iopub.status.busy": "2024-07-23T22:32:23.004124Z", - "iopub.status.idle": "2024-07-23T22:32:23.007905Z", - "shell.execute_reply": "2024-07-23T22:32:23.007438Z" + "iopub.execute_input": "2024-07-26T02:30:20.915897Z", + "iopub.status.busy": "2024-07-26T02:30:20.915541Z", + "iopub.status.idle": "2024-07-26T02:30:20.919486Z", + "shell.execute_reply": "2024-07-26T02:30:20.918990Z" } }, "outputs": [ @@ -242,10 +242,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.010433Z", - "iopub.status.busy": "2024-07-23T22:32:23.009955Z", - "iopub.status.idle": "2024-07-23T22:32:23.028692Z", - "shell.execute_reply": "2024-07-23T22:32:23.028215Z" + "iopub.execute_input": "2024-07-26T02:30:20.921553Z", + "iopub.status.busy": "2024-07-26T02:30:20.921363Z", + "iopub.status.idle": "2024-07-26T02:30:20.944195Z", + "shell.execute_reply": "2024-07-26T02:30:20.943703Z" } }, "outputs": [ @@ -253,7 +253,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Maximum error in a tensor entry: 0.0366854173098351\n" + "Maximum error in a tensor entry: 0.03668541730983277\n" ] } ], @@ -302,10 +302,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.031049Z", - "iopub.status.busy": "2024-07-23T22:32:23.030662Z", - "iopub.status.idle": "2024-07-23T22:32:23.034937Z", - "shell.execute_reply": "2024-07-23T22:32:23.034466Z" + "iopub.execute_input": "2024-07-26T02:30:20.946610Z", + "iopub.status.busy": "2024-07-26T02:30:20.946258Z", + "iopub.status.idle": "2024-07-26T02:30:20.950335Z", + "shell.execute_reply": "2024-07-26T02:30:20.949843Z" } }, "outputs": [], @@ -360,10 +360,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.037172Z", - "iopub.status.busy": "2024-07-23T22:32:23.036832Z", - "iopub.status.idle": "2024-07-23T22:32:23.040500Z", - "shell.execute_reply": "2024-07-23T22:32:23.039904Z" + "iopub.execute_input": "2024-07-26T02:30:20.952435Z", + "iopub.status.busy": "2024-07-26T02:30:20.952242Z", + "iopub.status.idle": "2024-07-26T02:30:20.955825Z", + "shell.execute_reply": "2024-07-26T02:30:20.955345Z" } }, "outputs": [], @@ -400,10 +400,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.042799Z", - "iopub.status.busy": "2024-07-23T22:32:23.042440Z", - "iopub.status.idle": "2024-07-23T22:32:23.100212Z", - "shell.execute_reply": "2024-07-23T22:32:23.099662Z" + "iopub.execute_input": "2024-07-26T02:30:20.958140Z", + "iopub.status.busy": "2024-07-26T02:30:20.957721Z", + "iopub.status.idle": "2024-07-26T02:30:21.015611Z", + "shell.execute_reply": "2024-07-26T02:30:21.014968Z" } }, "outputs": [], @@ -439,10 +439,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.104134Z", - "iopub.status.busy": "2024-07-23T22:32:23.103026Z", - "iopub.status.idle": "2024-07-23T22:32:23.153546Z", - "shell.execute_reply": "2024-07-23T22:32:23.153026Z" + "iopub.execute_input": "2024-07-26T02:30:21.019706Z", + "iopub.status.busy": "2024-07-26T02:30:21.018540Z", + "iopub.status.idle": "2024-07-26T02:30:21.069515Z", + "shell.execute_reply": "2024-07-26T02:30:21.068997Z" } }, "outputs": [ @@ -450,7 +450,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9402435387541026\n" + "Fidelity of Trotter-evolved state with exact state: 0.9402387920714972\n" ] } ], @@ -480,10 +480,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.155729Z", - "iopub.status.busy": "2024-07-23T22:32:23.155540Z", - "iopub.status.idle": "2024-07-23T22:32:23.369803Z", - "shell.execute_reply": "2024-07-23T22:32:23.369296Z" + "iopub.execute_input": "2024-07-26T02:30:21.072027Z", + "iopub.status.busy": "2024-07-26T02:30:21.071666Z", + "iopub.status.idle": "2024-07-26T02:30:21.284884Z", + "shell.execute_reply": "2024-07-26T02:30:21.284270Z" } }, "outputs": [ @@ -491,7 +491,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212861540083\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985210983147164\n" ] } ], @@ -521,10 +521,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.372021Z", - "iopub.status.busy": "2024-07-23T22:32:23.371832Z", - "iopub.status.idle": "2024-07-23T22:32:23.503661Z", - "shell.execute_reply": "2024-07-23T22:32:23.503137Z" + "iopub.execute_input": "2024-07-26T02:30:21.287479Z", + "iopub.status.busy": "2024-07-26T02:30:21.287091Z", + "iopub.status.idle": "2024-07-26T02:30:21.414910Z", + "shell.execute_reply": "2024-07-26T02:30:21.414289Z" } }, "outputs": [ @@ -532,7 +532,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212861540445\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985210983146647\n" ] } ], @@ -563,10 +563,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.506087Z", - "iopub.status.busy": "2024-07-23T22:32:23.505870Z", - "iopub.status.idle": "2024-07-23T22:32:23.609736Z", - "shell.execute_reply": "2024-07-23T22:32:23.609161Z" + "iopub.execute_input": "2024-07-26T02:30:21.417207Z", + "iopub.status.busy": "2024-07-26T02:30:21.417017Z", + "iopub.status.idle": "2024-07-26T02:30:21.518377Z", + "shell.execute_reply": "2024-07-26T02:30:21.517863Z" } }, "outputs": [ @@ -574,7 +574,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9996731164193019\n" + "Fidelity of Trotter-evolved state with exact state: 0.9996731173230704\n" ] } ], diff --git a/dev/.doctrees/tutorials/double-factorized-trotter.doctree b/dev/.doctrees/tutorials/double-factorized-trotter.doctree index 63f869a684fb3941892e1f6b08a7e2bf57a8b240..246cf1ed0ebdbfabfe77276eddd548fdee24ede2 100644 GIT binary patch delta 693 zcmZ3ml6l!mW|julsk1k-@JTS5PWG3SoU9{Z17$TyoB^{s!KB{gdB-^?3rMwqc@mS? zN*O>{o4-k!yD>UW)=M-OHZnKove7RnO0}Dk!5%v$!>$J`&I}ZvydklQv2^mnP@T!) zNrqsNkCI}O7bLM`h{{h^OO9nUnS3DGkO!y}W)xU}A0*H^rEyB_lnnW-V7AGOVH%SU zgh_68NO^0|V{Bn=X=Gq-Xkuw@G!9vWtVRnMKIP8SV$xoiY2WBT&2xzAy z!et;Kgx}9hHr(X2`TpJ$>>TFCM#cu_1|Uy|AUNE|o+3C%7EfMq6iExnr^}DeL8$aT N;ST3)o^^ta2LQ!P+L-_V delta 613 zcmZ3sl6k>OW|julsZ%$y@JTS5P4<_RoU9{Z17$TyoB^{s!KB_~gN>Y%1*BTQJc-F` zr3@gf&EKTV-54Dv>m`~CnHqB0=ob{F+D*w|kDZcX*8>)2GBupMDY1&NWb(pLoyn0& zh9H5Dl46q=Y+y$hl%K4X9Ls1tIX+f#^87>rZc{^;QE)M!?#(}wtsHnvj7^O#%uP)U z4UEhtJFfTTH!(0m5u3f_A*v#XrP&w?KT66^HeWUaRdL`62Xuv-wU+a8a2Z*c8Je0H z7+4qsZ4E-^&Rzc)nG3P5098nSvgO8E$U=c99QiCvjSLaSZr0gU4!6d{#1z>Y5SMc| z+!_!U%^HZ1{N$y3;MRbI(5wLpZJx1Ll!L>}#L&{%z|azCiQnW8$Jh`8g2$dBI1o#6 ZP*s4!ZSC&mKS^5Dci~YefhIxfTLJqCmX| zj>t#8SOouZJBq10D%qMiy6D>*L*D2++F98;TA3S=Ivd+NnA_U0F>y1oGLV`%I@&q# zFf&{K^9@Y4_NL5(Pj|?`MbPXdH5?!iEPeP3;k#hAIRw&Y0(~v4?3%na?dG98Jbkv` zCxe3{f{Oi_Ux?JFLsvmrs5#?t!3#PYF~$t1f-IFh6<051F==Z{60LYmp~%qM$J_q3 zukkWz{9cHVTD?Gg(1D3Yad>I?>X~mbMPlc}wA0O4f<%YDsl$}$?iAix?$s$F8oUQ& z&?pM$WOJ3-m+3Dqx%+!SzIX(dRIvW5tWyrAs~hpiX?fVmK1Z~wWwnj$iH ziS)ZnaM01)o?eHlAWQXfQNw;U5zlrKZ@c&(?@8QJoI<0b9GrtairJd#>K#Vu$CS7m zMX}GFOsy$V%|!X`)_hGvj*3YYVa{B4r)d2QsK!;4m4B`EXLkPn4KwLUI@+C0(QN<783RqQt(p9Mk{1zL@Ed$+q>xm?WBiqmcskO@cT7`&bRSz$EJVm$xp^vdj=Y z-jDk8ZF_ya)BWM%xe4;9aaKWcjlLLx@IR~ACtKPN2_`d$LSX7YJUJQ0P|-Ps72cI) zMk+sI{UPK@gJ-bzC;fL4`$ty8w$CXkJu$ROPhJ|KLZ)k7BFy-F14!FHRR?gGrb&`M zF*?7kZ@;YklwD<~_IgoX;|+6NN}H(72j?dW$8X4{8nJI|De*kNEaj>p^>+K|l?DDv zfZD3r^18GL9?n|^GKE;k_429~k6wiAtZ$XYoYmt8zxHEf`=p=4L|;`j zm0O}QCz6l%eu|u#U7s3D3C7el~{1L@swVrsj(widP9!`YN(b-8xPyg}Lr-zzlW{>(^YqVV+hsmw|8oC)( zsWbu36D?64^PO-hWUaqjw>2?tjQq4zg!6~hF zD!Q&^LTmSzC!JdsrCUe}i8oMkSl>Cv&h4Vl^&_6m=cFTd=wR%6W8k`rera*|oNw@l z*K+E~i;Peq0^FSB8u-T2K2wFAT&`vg}HP6z&F~ z$`N@EUA~|Z_qgaeZQqQDSjTzWZd2uH6W||(si4n#)h8j3GjUkYa>1Z7_T{p^6Z3hf^ zlank9=R@fWzel-Rz_O!8woo~K>#1s1c+I@D7?P!AJp4dst~8OxSUZ=+e3G)}x95G5 z9T%%4e5vx>FFQV7j~bb;cB*^;k1$n7_a;yXZEsy%y^Qwdz9jzs%Eq4LCr{6}C}Tu^ zw_e0QK2xYT1h(#7g&y<~A~cWw5hP}%%Xy!7f@`f>pot>X5`@tm!>nEP8J}MDPrbWK z!^H-@z{MK5uKPASgsEx{v9SI`v*G5#GMvlc7VY~)xuueF+3Ki=HO}UK?a_>J7tWvs zqI{XTySYaHx4o`x=&a4)%<*P?OVsr2R;8}R<)XQR#E$TG?e&;{UL*7M#d0yfV3Fbp zK9qfuSo$QzHeM?m`OK=tCMw!ejOsgA%x5oTi8p5kjmHhNelYXgH9mLvIO{MU0M!{1NHYd1!Vu!Mx0P7nP= z(y=+G9dRisDIIrbQex@V2J$u7aB!M&b8vBR%qGfc>D5$kk_)D_Tp*ugQZ+SIGiABl ziZ>^%6@THAj1@pcDQ8r_iAZ5y#eF;}HxTY{2wsppbDf!OjzNepg=UG|e`g)Mib=Zw z?!)W6^>(Jt?f&(Ygad9j;oI=N-6&we=mYgNwv(4S4++Fjd;7NmF@v0ZaON?W}e$8`~wClqXK(JFbW3fj+mD+mY(4wvKgq7oA| zC|Mc3wlHe0EKu1AhsmqGc%};le z;HlkwvniSDmFro8{?&4{aA|q@hv%j9!Qo-`Ms8jLo2l&j!Vv}`2TZHdhVSNV5d!}K zX3VwE$R-b7+SKK9%NeboiPfieC$-+Diwn#N{3o+2196UDnJn+Od%Jhs?v-x3+;%eC z-f!o;+Ano1mhB55V{B=>-9x^Z-pytYF4Yv{qFKjgFG8tw!XjyOuO&5$y_Z=d&O^8U z2N`KE-jJ-mEj9Y7zmPrR)F9hc5ryZf9|z0cB*ocG;Wm?*b(D6f*s#~L#hIS1J_g@)LWOZ9E>pz>jCKJbG;s<}4)vv(|d`F&5VgDIL4K z_9%P2m{+Q@z}@r3rY@13!E}&OSh9?Wg>{4LnRo@0NBr9`Jk8lNypVNPE{S~zB}xmy zKC=gLgP}}QWvPQZ@gw5?;XDP$#g7EOkf{NbaBGMhgMS2PKsWD*|6$2oj7j*0qSd+i z;htFnt@M2C9>2bsA{*bvX0qz%IJ}-UnEzl6hs-*mfMDYux7F3jjp(XTQ(!?0nlAJr zJpl5F|Ji%afb6&yQ^JCNDxbcbi|*3_*T2{O)}2c6V-1O)NnTZmi-9prAe*Qc3J zVqcJzJGq2EC(!+4*}sN>XFCg?g(rPsI^Wv?XZ!XH^NWd`;k4zVIm@161@mnJd3%ph ziK`M!($HCl4d&c=GU%T*Z8lR|) z6sr_L{{`zWs1#HRnO+VndJYtN*QdKf{5Fy?o?SKNjaSp9#r)3fc)rhxh=zv!AoBJS z*B86Mi=TF4{th?5=uAqaS+jJD(uX$L%VabxHf5>6|VMZ?6=zj`5 z(1-FSI%R|R>oZ1A=1Dm@e){&j&l_Z82y>f7jVrKd*@Zsu8#Z{3u-G0EG1MIm z&!&mmWSny*pwfOe$C*T8SA?tv$eH3{3pJaC&t1C_&KB(6Z19NZj{Z z3AnG12D@XHS61S}54t)#=d2;nx|!0&ot~!OhJL#I$$;CK{TrAaWUR{7w^0 zbJ`r~udtrvPi=JCRE76OG}W7vF^RBe>=3i@5=xLC)FoOL)yD-Bzc(wI)N@|VZq~PWe8v(je4)f@5M{@~)>*LlceE6cir82MeSU zN$i#bjo#h>SBjBhzug$h>Bp2C{u!?%&UV^d^SibVe=^=v=H&Zr)aNAP?c$7#?`M~@ zqUmd`WGX@Os3TUv%oW1=`!}1?!_%CBd*`ZSHS`malA-tjX)dd(m$q2)wl+jzdz^2V zPZvg+No2a>53K_mM~mxr<2go- zR$}u(jC>AT!;dVrmM!1UZ@(h87X^GkZb9wa1p`;F)>C8A86WhCpMO-bAHHUMwf;3w zWN+(1LJ6|K>|>_9SX9#rpGVuI_2Q0;(U>Fm^@98QN%GMJG4Fl##;wXHG9pQx?U9^_ zuzjH4{K9qKVeDp`KtRKsg@LfQBfw|WIh3rG%+To@1r3Wjs!WS(shRRvo46p(c>%PBP9usO$^$ z>)D$Or>esv3>CHO4&H0qDA^7C;@m|3alXE2F0G!Fo$4iCC<-fU*t@B!cMl0U@?Z6% zeE$4dNL5vJ{d*yyO%;HU3}91C^SUsPZ7q4fIS{QH$5>13h40EMaujyA-C?QC`fxtB_9GQR63NpyTaEl zeqhgMscWaH#AZ!k;b@mz;6p$b%b?U?H!q@^uda}^wJ}|LN>-^*>uenwdUEw^i0TJ% zqqN}Bb#A`bwY_@D<(KObX=`sj>zxk%@1B(;?smtgS$d7nD^^!kx*A^On4GX0%^u5E zJ4yLOG|q_G+iM#6@yIy7x1fe}cG4<@Q#3eUopK^aD|HtrDI+pQ5dAzsSthyUu_NwN z$!raii}X6`L#3eDDwX{XOF*}|BG==0(?TZy=uJErs$xDZOSU;e&{d#>Q}|J>SPUJxY=wU}tP-ZkKtnt4)7wbg7uB#>p0d!{RM&W}`&~+L zTf*6C?T_!)mX%HQ@?-FEc%=2cPyDtwnH%=)+dzZo<%7!q0nc*xZtyug-!p}U^V>Hb zuM`G%n}`EOFF}Am9>nuOXR)m*jO@B+sl8Rq!gFhF>}$?>1|ohOpCVHy2Y8JvOU{r5ZvxC3|9UPPvaGj?_0#a8z;PW*^`>gmu@ojs@4pC zX$^`ucx$A4gX9r!3)@|?4(b%xy;zY1Ce?3-rfS&VUN2Nrs9ch9hsGqbnGzo`G+1~) zp`@ZZ_|4Y$2L{Dus$RkYP@(gyu>aa*C9_VABiWNrThge={uC6{k0fORgnR;)DE!#3 zU|DNYPykuF)9&jbCdcE0i5SXV-0ZV_D6fSPC;%K2xXLq;Z<;nKa>Z-%AiW)0`z29Z@ ztsHtow9BsEU0iRzA4no;66+>e&3D-ebA3J#p)*d*Gdfv%ReQTcP!`k>M*b|yu|w7j zmB2LEdv=m=IMQiu0`n0Dl*eeDeJ+BZl&pAl|2eV+Wm8(XuaH}s1tpQQ*Cg7+&V&#l(U?vxA%#jw=fYAymeq*nzSr!H;Ut`H*E5DoqIqw+2wQ%C8om3LNBh|PA=as{ z1o~V#bBi%8+Ps1uLAkF9A9ePgYx^`0Sj�H-a7c1Ao%^Eg0jZEZCccb<0Nt)Fr)BF|sY2@@|c zcUgVt2W9VQEGLn8Sd)7cZaq64`EEF~G24073qoQ1Dsy_fNP>RqgEZ7fuM8vN!*~TR zUntn4Z{wxsKW6y8X%U<)NZa?O4zw+2YR$lOnlB{Yo2YDe*ddiXYSvZc9*CMdIAO^k zdVXn8wWT-1pvy{!?UPoHdh6k0&FSQ$*O6!OYl%{|FO?rHP~>Q>pL`;nrrBc1R*EI( z9=7i9_@Al4dvS6O(9Ia6pM`HMJ8!Q;JoYz>fnm#Jk&sx)iQu zCX~z<&~9m;Kcy$GLi90dX;Z8+p*_CT`L)xt33kv(`8-TW>m=t7*Wa|r(UuCC!c=d9 zW^j7`{G*`>TZ%H~EOuNN_b{22;zrU5AR+4*X1puQ0|&p3?m3=qZhdH@zH4JfxA~{P zx!Au`ZtQ&DtMHDmvoxq3O~lbj+t@I*1Y>1`%)iWPJPI&9vEu@N0aEi%UnDq@qF!Z3 z26*+=BJXR<#P=lLSFCD!p6u)vLv#HSB$Oa;^Ygo-ARnNkpZC~$wd7={cEzgccAo7o zlAq(`1^TbA3V2?ynD#z@%%m-OxYE--ba}n&-KS++FD4>_cslDXn8NF_a?s6e3J?(> z1lZm!yap_0``&y@BGas^}pR94pH;%FV&Ul`C@O5bLzE2rBI`vm)DZ%#Pd!U*sGB)QqU zpX$1R_DwFW_o->JFkl=dp1(tuj$;TJv&@slgry;*g3P0rdo{U!XAzLWbJH%f%aIbq z^M$oLh;uiWyQ>A2GYjC4g{J!?$X`wSQf1Nv>L2KZ!Er<=TqAq*Cr61I(6}lWu7Jmd z!C=^^$m$@S08f1HtHWxqJB1~{S>oW_`b0TBh<~=yjdIVXdhWzzpU^4i12L zFw~CjZgO7U+M{>E!U!N|LH_D_c~W;gq6PV#!0P|z3rDP*4HODZoCTn$Jv+^-3kHpT z!fkJ~P6LZ$)G9IS&&c(n9oBTa_V_9uLEJN}rl)h^`qKwN+kLzIxx;T(pKAtiFBKP{ z80I{9lfdGeoctW*^5T^?(-8*Oy3tiuGGwPWm^!O`P2v$`M`dP03L! zBKEvEA`=vB>{^Jxzdz7-e?jl|f&e71M;pi2&AzsE`}Y7ee{R_JDaZ9Ie1_*HqYp_d z;y?Qfv?nt8czM47W;{lqVY^}ya&}zg-P1{(rv1&v!h%lE`hy|z(B#xod`NqzSQK+ z+}@5UctG06@Xn;^=;(M0VjpB{qWojDEKf*40CF$?srE}YHlT!IL{rPHv=Q1Gf$c5X zZ6%R{l5&47GXl}>`goM>?N0~}4vycvMxwXs)6N$OC|HY?7B6&Ys=Ipn8d3}@f5y2<=9sX)!*UWsDCF7 zYk$=p?j6yQFXra4Hq92*RQ#t*YFZ*aEZbyKWo6jBt_PEWOc*Jhb+AL zq<8qD0U4J;^jEVDC5_ezOSWE0zHpjCg*d4FR;$;KVjNS1tZk9sAIy5Em9`sNAM=b0!K406P_g zh(FOV<}<9;`bj7Hp#$^V1?+pfhzX@+S5>-Ud+bNW9DqO`{_}#0N`Q{<=#Qw(7ml!M zht+`}h7u5ad;5;At{3Fw{*M_oUo*tL6+z@}nCQq`o$Zaox9sG~rKIK;2u;zmH9G(3 z_UNOiq9b1LTpZSX*zi31VTFb=>)8Z9+6}TO4erTc{fLkR)>`2vcMh-U$CXU zJRiaOtC2Douh0Cyk7eJ1N+QccnSkS^-rC@OWuf zsMIxY`<4Yoeuft8t-3wJqNfAOh~@r5D+9o(rF{bK5!Uo-g)p!o1Fq2Pw01T!Ev>K4 z?a*xS8wS{B99}P=Q&9c+ZhF5#qxi*(ZD?q!JSwrCrt|C32oxXc_?il3G5+%Wtx5&K z$B4SxPg8lwp`posJuEIQGmRh4WKmsvr46B>RX_$!TcRbalj*ofi43KApL>n`84#5S zcf0>GIsubWYbZWkxC06|7-y+UBA2Ome0x8U?oWwtPn6Tr(M@F5y)oeTil3>SS|xT_ zMRm5GZi>pD<(WIdRD;WtMyH&Y1@RL%t`k#{?(&y5f+uquyV8wb+*W-qJh>-K>CT?v zNoU5@P9i@yh~#U{AJ=lm=&4B!IE}o;tMHk`jRQCI=^KD@ zpZlF$_Zf6=-F}o;4labj>WWmm)BqA4F480M@$>T=D3Pc6^@el$H5A%O{BbZoCI&nz zmK~rKmEEl1HU;u#P1u?1o2Qc^LvG;MFUSwQcTluK2`%i1D@e<>rWlK}WrL3mRlbY?ZNiSir{@vWx zNNA>tPgnEu*9RTU9k(Jc3pibXuOZ9#*G;f-;!&; z%Dm!1m@7#;S*qk5+l}p9+md_GRWA9Ap9aYmH|kpVZZZ{|b>hH&(Tt zIY9cw!Nmo^)YNPMh8C}Fj|L!}5g=@jwkPA6bZW34dfnpKRL$Re%&hwx(CixD>Pm>* zFSA~)4^k$tX*O1OO++f!BO}@AZXV$3Kt#3lGxGd;yXge`@geuv+h501h^YtH*eOpR zjH(3eG44=8Bb{tUZg6$D-+TypttO^&8L0yS<^@XTqAeb&+p~7TwaL> zP_VxB3qmEnjmalLWdW;d0k~R%9(|Y)#=*Io%nZC_3ZfO8P0aWPBrTWNYl9b(XZyz~ z&8y~6MWbUg2thg8?68OJ=$|l)W*}D4R-t|jF&d57{-=b9_VeoeuzItw)@-zph&tI0 z5dzXFzT2zA*qM_G=8=8LXa_paMjku8#w)po#B;p#D1(XXd3MAQC?x-XQ4v@427Q0k zgh9+44jq8{^TA{-6e&db%u>$P3XQM&VZ+UdEEPu7d@@5-6~>U{2b)j(q}V=MH9sSr z-gXV_Sw|rZ;Iu%C=dFo`DWUxXxg0VAkEj@e;v0N)W=-mNhW&xz2A5ERQvk}7tmA@b zl-;s~NOR`gnw5mcQiY;Df%!7m#!9{%C%UsxPT)LXVPRpQbsdQEk~C$FA!4ET#q_*; z!|@NzTrLTXyF^=SHEvfZCT{nMIC@gsYDU`z&Gu|1yUfIEC-ou}%R<$lO?$0ZV&i+m zm76Z?GHBGz%5I3hd#@5oHJjCVTS&e=`<5UR1Kaqj!FZNtV<$?@^-iSyXKOuDIGO8`b$T5(RXy^M%OSL~NBTX;h(TWwRuUj66CN#CfvO z9?QhFDA)!SJ5?i3JnZbWg^-EZCWPrjzfnAgEaO=TQJ*z~CsLX@slHF|zjiL{x=#xD)=VCts5nY{Z#(}r@U?W>2GxMhE{q9-8Zp*5Ev?gPCI8T(;C+=-zTYm?`4rBO!m zMY_P5KgZ#SRHW8Lp(GF6=MD(R;D>$wzX7)l)cO!tq_wsaq+e0Z+sIK-8iJlLA!&lH z>>tIk-gaL-9olqa0$4cGdk}5u_U82iwPmH#Dl&y|-McJLg*`q-`FCgCmaQ>ycE!#; zp^x;t%u1;VGd`H!DMabt?^>zoG}rMTS{Z?vE;nV%@yRUxd+Wd5GiD6WFg0-;^GLR7 z{$7s3{#hmv+(@gdtBs6}Bcr2RDC4zD+E0EMwwJi>FL(-g1K{@D^Qa$|m9_132~>o& z;XDHPk^>r`L6aZKCqmA`0RU|9w@rQYt~b<<)(3-mck3J?tOaj)>#h#E|K{nU*B8f$ zye>@L@yyu(f`fy0K)XYFUg3?UqOFn&=KEL^fYnm74W3U0Jh*(?izqtbW=kHs{|SFJ zbrltxsna|}CM&E@&!+%*Je;sBdN=j1ecK6y{pmz*2Pyy=n1JT@%5vmWguulIc^c*Q zqRg5+NkQ+k`Cynt_xV=DF3^A5%mIP(FzEdW6fxTd-`n2i;|f1+-l(sI3<9-6o1Afc-I7<2>D+s%=J zp&X_AduOq*mK3-#)$z~4!9hoFFOz4T>%IX1hAQ*dvOxC1B;t{;w9x^<#{3@|=bo40 zFlYdPOi($j*>_o>ORT1<_I)Oj{>qs5zQRXqb@dRyrUM`jM;~vFB0WEWkD75BFAy}{ zF1IV!|D+@N3ig_ZtHO1p>l(V2#rzvHTY>D9l8U;*yhP0NiD_9D&KD z2{34sz+URcVH$z~NqA+Bvzp>U3_veni|^H4?$i=DMp5j-5fkRrheza30FgtyY&}`A zT)mo#H1|C-`~@fH>DN;ob#+O5`P}^SmUR3;otuNj(07D@Z2zpRtVa(5&-Plds!t{?5ilnkgXs!$dx?N= zD@*A)+sl_@Rqrz4Q#lftj&l}joVTUCyl%WUF`jdM=5|WWCYk?)$b;P!H?s7Jd zC+_1i>lqK%`J2(G?SSuO5YXt5TjE?te0~>g*ZDxctGyPm>{x(+Cd;!<0Us%#Dnkc+ z&uujOX8?r+98b+a3hJ)Un*eTr28r=7&KcC7f6_&t@;I8ApZlSpb6u=uN)yNkYAcHi z&Vt(+6LZ>3Rh6ab_cgXe;6lK%d{e?{^ow|%!T-DIK}d!ABJI!MMy%kz&7 zEtG9M%Od;Eb(ut3B zQ^blIP#Q0Hx=(-er9HUv_DhsbE%4ZOS^QJ({R~SuT<2sl?mUg~K6#cr{UE5quMB1; zhVLC`>)RgZb$bSj*SACGYGi*U8KSE_kUpl3EXU|?s^+1`aY26OX314zGt?YKf%YNN zXjBx7|5us$U;^0q0iAesL2eZmn*mbh;z3}wX_do(p0qy&v_4jK5Jiq*gN`?RP zjyY3iES-4?l%j_D(zruiRtljqbGFR?u z+)P(5jew*q{6jD$R58aQZAT#Smiu+%mojr>%5ZJE`as$LB-E@!WYlt z93|sy15X=gPWPW9hKd3UuBY;63R=Y6>sM|63uMjeEChsLjLjsl;xx_quI^im7QRtX z=m)#!U#G3RXK$VNRj}Lb8J5!oN9M7H=h*%*=l!Xfc_3{*kK3B@7R;&;OyzJ{A|7g( zjNq@jxEv_b!<;-kq%+owQl2)Ry+&Zya-yx2MP1`LQ{?D%Wq2vvn*MlHQ1*h=6kBra z)L891EMU-^KdvaXf!r^$wNX}X8<~`QT&$l?x(ymXxD|g(Qz;9j`8BKS5wTgb@|x;< zOF+AW(O6%kzMzD7{;31Bv!OwAyb*3@1sWIxY@ji5fg)r!HS1JTQc_(Evfksy@nHI) z+teScQoTvSi#+3C)NKtqr(Zif-Fz{SN&$_{s#}syeBTs67f#WOf=h-yCYSa3IzPdV zbTv$fbZ(yk8k+kbm}TQfhy=a(Apb>}0)x~2p*Fxb1241lh=}ep;3V$DqN4n~lcaOW z{=b)KD=5S!NLGH{7EGNw!ghbVZs?We9Tt7~g%{Db+Two>tgpzp39oh@U+}+|hO6Ab z6nJH;udnZj6hfY6Q4nG zZM<`@I|_k`C)I7`De#UpgEX+YBa-~-D>H1s^MJ6&UrTfQlzK1zE3eM zOL;l<9GJ%u<%>k6Yr^@yFgxfpsYT&w_1dU-WzeHK7T(|9h*5%GI+;kL#<3OCqYlXh z3530P475?6QGbr|?ptgHk+Z88P{lIke*r=(nIRx~SO&x~85+G_8Zxkcmv4JThgIqtsyH@^}4ZXP2#X6pU^thgdrbBl-cUkgI3mF0${?>nFqP zQcbOq_h{{uOsh7d?HX@bnx0T3qt-4`e^%da^owa`v%lTLt-2zjVPJCS^L8PwF5x%I zmY@}aM#1;8{{cUNqVa^skp^U6c z;iY9Dt}cCLU^lQh&ps*K02nxfP_K@wR>k#bvCZt!%uoftul_^B+P)Q^P@o;^tt z*SGp-;RUmlU0UCo_A2Z&O+fVp1uaLk&OfBjtdE177DFFSXWW^)6moJsZ~hdG{jg$M z7kv6UI(@dt{Ghdkv-qY5`ikTo*0Dnn!e?(w!G_u+i+8Qp0OGz~PwTt?)ofboS?US> zvlP~s1I)rvxhX=Vd_6XH=;{sl&Um8HN%G9x6OpZH$yD=c%oR=FUU0oY0n~-F@<6(I zG^V$}}&Jj1Bds@6+h=Zv=LKRZoHj{Yg zYNktnMc(RvK|4Pj zFwP#BGnuE@=dvi?#b&%Wz}kh2V=j;{yRpn; zF`wZ3q=Q{-EA8EfGP;45DpKIwUSd4s2℘CTwxizdXV`(}3awX!-B`EO})flNqNu z!-b~9D0F{6Lq|pMeRMusb<$A%wvBx0wgGE>T26m7XxJ+CkPa@VCavz6Tz`oWBK^7Z zMz0@$evKnRBs8jFxUaUv>(CZb!JHy$kynW9x8nL&omB&EXVcVn(@Sj6DX2yGbCyqN z?lBT(T;X(fcJ5r#D>4P}O0IEJ#dcMTxRQ^K}1mZ!}?ak#n&F>Jm(#TKwta6u7x^m~CPjE0HHWZ_o`@SpY`IwZdw zR|$NU_9xP2G)?-NsQ^L!wo`HC=A3q9sVBnTNFVOsztEZ7Yio5OlD}>*Va{Fn&^!?J zRqOi0E6|&mh5&`W9r~`I?K15IO!)7v_S@ra;O%2q zk0N)y^Z@>QG%<1GWXq`z+Gr68Pz>|nM%ewF7ptq_bcy*O6c>5Eb!EJ>xynay;(wpcc zs3V@*lf(SUcx<5E>`yrc1X`}x;kNePtHJf9X@e8i8;2SIwA$KT;8~A3rxod{#~#GA z?#2|7lsp!gR{t^_{gC=y8=-f4t6T)aSMVeK&`H#6q=-qAy}# zBw=|A0c12|`*YkItF3cxfyAv`#C7W=#ad(XxNFlD;>kFHTg>%>XVEh?XpnJHhXl9l zYrZ(oN1Kg0==7VvXBa$htiL^XLrc55cDsog zRRQI@%wM6qy%0beC-!u!4#Hfx*k)iZrX$`ZF*;f<&;Q(jS(2gO9DoK;;vZ0M1mL%` zbZH~Bq;vPmHG#L#Jf|KDdXns%mIAWTwgr_C<%hI zt$=P&$Wvv6q8XO9E84klT}=d{q<<} zuWIf}6}7s0W>k{*U~8%v#V0B3j(+Jqy&OEuuq1=Z`h&(o`t|TI>BJc=6kv8 z-aSWX5XdnqY-e>ZT!9={cd?PDZP$cS2euT5w)gchWXf^y4Sa8UNX(a@kSUI^H#vI~ z7a@3)0E`N4;Y8>^0WAkoIr#v+5Q^4#e{R7DQ0WBH<9C28i19jSG3vm+INodrkKYCS z9uHi-!qsNNemsDeb7=|aNsm0GE?$u!PlgXdT;FJk+qwlrgfg8!RWI-S5nwBgiJL}A zw!Jamt=->z4YAUzPX){Os=wh`iRbY}{fOWb!WCv}WyNNN_}foK0_u_=#~r27ZE-nZ@%+urBhdJupcQ2 z_Av$a!-0G~&X;oQO;M&MkYdAWDhqZ?yABs$?ZX|9@QY>hd@pLgP|M@rZqJXq2hS`{ zUWB5%5Df@`*pcfGiX#%hbEr<-5PO}?zqEW00!rAbDG{m!*e_#?JbrGr?7%i{`_d=F zRuPMDqOl5} z{Z4fdFbwy6vfMRpsYIV=_GXP3F+EwilB32!MRv{T{(z(lBYt~4d1!WAx~Oq2>v}Y? z;UbVF{+@Ak^Dgv56%4^FF7Ptdtqv(L4X=M6QQ{&#<05HY(D|hgY$DqV4Hg&Ls&CS2 zM_2Kzr@FdLZyS*&yyqrmPO+l(&m$V7ZZeDF1ZIAm5E7f)_X@xMTPUtv{X8!lNwLUK zTFQBQX4CKD@6Cn-$!iTd=BC^wEoa_F9K;s&nzRjj=k49x7jUKzdrw>~ab8%!3yQZ{ zE_-S5tY;eHO{MNWse(lXJ~)&-tGs@rcY8iYH{E!buqdj)X`ugOf`~~TZXg1r?Y}PY zw{)ic|CSb_`nR+Y?!Tdhl(z}KV+D#lB;tty&K*{h-%mh%OMGekKs4wf!dF0-D}>OK zW!>|iy+UUv99jOc^)Um-|G#lTA9ACx>-H)6${!wZ3X4F(ZBbXtg9@Mahch)SdE)P^ zMvMfLxb*lqlzvqcMMcga{Nh*~XYETJ-?XXM+-qQ_fZl6?BG?@e6JRDmO_Urawl`&; zaB+TWe9G*Tu3`6D3eFQDl#T`#aW^;&*Rqu1A6YK2m(i(}%Q^G^zuF}z3wJnE+ees3 z6iW4{zn3vzkL}<*IaWApvB0J|uedrM-rI=Z`x3r)$kG3aMIb=LZr7B>4La`SwQK2m zO3x*TUbwsTrQD!h%X01;R&(dUZun~Jm-&dapXg~V*X_WQqbwSOIYux!7tc1Imtx#a zqWiFqA^5(m&xun8P7(#t2^E9i{l_AE_eVQRN1N_%&Xuj~-PXiUQ>nZzPiy0{nc@O| zC)K1iL`g|WQhIvJ2n8MQvlbFiUIy0-RGuk;6x19fENL^RX>`^SJWrw@G>0&q-5}8i z2>wKzViUYF$q02bRsntq_uWOV4GjjO1ucd(CYw*Vdt z)F<@{S1R4r0EC{<*hZ^I%x0Z3DUGaeH07sNek$K({JOtSbm|&@QgBB<-Iz2UD^8Ng zec`povY6d&C)U39Tpwi)-adDWEh&Xv6qV;@i@?g`avxQkim0v)SQ-4;yhKT> zb^}*{;8(rDtaP@}&`tg%QJI^EAOB{BjC;IwH8<*78^uqUhyO>I(ATRU9G1>P(<3@G zS1$!cd|MmU1yiM^Fg>}P%ZbNT8ofLr4<0;_>IQ|E|ET*0T-@z>+O0ka_rP43E47$2 zoy)q-ERcw0o2H$$EqR~*v)xILEVX zaYBqn-@J9!*Z;K;%GsK3C+J@`B29-0= zi;+M1z}+D{S0*Flm@}Y!8DV&5*w`b1fQ^ChW>ELVv~lWMj!*RYInjo&)M%ZZ zl8}_l^50lz@407D(3bR?qv&jGUp}i*cvF?(8Q`y|op;h%NHY1u@c#Mvx$(}gCybT{ zD~IYQV*Qw+h|RXxpibcCP1npi1v`S*%(I(QE(t=FAkC1yq8U3A>F@jgH!=@`8pD$Q z5L(m@`53$=g>X9gZif4PS}K_gw}IeZaOFz>ScaL{$;oxdGHa!3ptliYta3MNL}k3- zM%dvM;2We^zJK}%iW<;2jdi-;jjB?ZKuB>0jI{FF+I4+KqX)~~p5DaOINfl?+2o+GTr$E@v^)g#T8YzqEpX%ixoFFll!<6Usm2sp zOxkNVd^;_BwqD8RrpJw9(KdB^v{B%UGd01UOuBZeShckrogQvUOn(mr$?hG8_Sm!V zOWUd~L8Py41#4}TM7c9zAe5??P+obdSKcctT0|9thE^nn*cqBu)gUp9J<*jSAB#f?!SrHEjB-S zHB!%!dJl=&`0^lv+kQ$0UY3nvD=6DCSQvId|KZa;!86rguhoXn=TVt(bwZs&1fS%X zWk~;E!bbJ>x!6Z#hAJKnO9c>PWDo@|q(mp-DK*sMTmM&KxDvwHe_j{<7L-Gqf{OM8 zZ|nPjTciApOTT%GpWoym`k@w@{aKVqZCIWB1yK)9dNlNBPkYbbm zaK6_%$sx{cch>;CM}S&W;^=wrTl8)EJ|!j0i7zrLWl|m3J>XQ`Dwb|fugW>hh*)gp zLnH9u`pAE{noUCuFgxCa_G9Y(O=el)c9Y}x81TYy<1R3MNMBoHPj?j>m)WtzUcmk4 z01&;YGWlBx|G%*ngW7frYF?tY(@@>XV1M9O2*M(f1>gAsm-j)TgHE0I!BXcd^ML@M zEHc#}Df%^$g2Mhez% z_VfJq-dd|3^yhJ{cKGXqwdg}IR1;J|+0}w%jI4`3+|$b}UzPakM?;em3NB}>$9!!@ zWl+iBFT>w?LrVB#y)R{G3byX7%<}HYVH6$#VUT9o`wJYep>HXlBu(W4HJinl7o|lD z7kW8KWdAK#5gtq*RX$79+4`>qKpyR{B&OvnV!vEx|4_&K06BMDasuD|PMzi#a`wx( zH_v(;e9}K;ROR!voG0I%zx4_(0t9PCH8nNEOxP>8u7cJ4moH$oiKTphb0A%<=)(iw zbHTrUYyXIdW~d+~rG+*WuQ;8?{Si_Uzl=qTt-nb z9JKIoGUu;9fRD{?xta*?Cury3cF3wxp{r*P)aZDY36AM>)q>RZ6*x{lL?UTV9g~Hl z0_@cYI9T@16iMLTAp8i2u-w7H!45f1K0dzk^$tm;HGJINlUi;h;0C@|Xz@6nC0X2- z%Z8Gl{@Nnnw%+8okGM)1c8JSv5YGPyng0Ys%{%XUwM3w&Zx`JP`Uh(Sx5;y8adc&B zTyl$#UoKjNW=sP7PKfn6v>$|VmAWPU$HN=hFgHU(L&a@uY%mj`B?5-vN#YMM=shVi zrGjrWG_ei;4&pbga3j9(a|Riezzt5Bi?^7i;3f|?b4A;nWt5%_kYwW<-QV9qqo!-g zL|%Z3gi|#T5Nlj*;TciXY`gXIPG&4tXL+>xvqcjVxO9S9vdVMwo&Gkcfo_w3fD8RA zfKMOSZU)h~JwvU?xo4o@M8dGJS=!jF4+S+SsUdAq2G6`K-zvW=eH)JX|nl+4*mkDsxOiDE{AQ zRjNC-VZzR(=(Y}8V$XZAviTm#nLR&Lze##vzxU6zk%T)C!9n$Q|Fg^7ILj`!mV@-5 z1nQjYkO*R}5VC$SKU@*Pl3Dx;*ba(zTHSIFcAlh~3Pv%c?4+`xZ4fw67D(hQ6(8jU zQ>6C=aoq>0Pub{*;}40h_GB$UqaL|5TwxD_J{X74cZJa4UfIMM+f@21!DKbT-3|f} z`3dH=e$vs(-Nm%7{d(V~#hE|35h`h^)4#1F{{`-#t+rx8o;4-8@dxRFJ`CgwBB9#? zkCA*mSWF5OvM&H)DYCEui=%aP7Q$TwA}DXtt=|gDKmIvm;Tr#QAql_Uq5P5hI{Xa? zRfDbQHiS*!SrG-TS0PdA**AY$1X%Hfp69F|3~;?TiFwqRIh3GN5_;&R)Hx$|gK$Bk z^MqN_ivOiJDltVM8XTaPzppMeA8Z}}+)13NG<_GwOOuWHt(vK$bbV7ZO_sCCdx0{P{A{JG<>zfZ2nrLBF zG8y*WgB26Yu|Z|?7em*N(x=>eKHf1K>rMR}`~kQJ`~#H$J`OYj=DrITF68UCUyWP2 zv4fq%_1xYRGA+m;k1g&TiPFNWrlH4+QlqZCbFrIsFIK{bqEor%Q^}oU5|ylKMQ4XK zPXNB@5JP$#=md1c+_m6j=Xo#^n!)Y~6vBqk8V|-hVixP;fr|U{Z0>S2pxJ~(epsvP zFqhYzZ@(F1&{gAmDfZOwWJzK4;VxhKGT&YyoqF#z!!acP{eKT>0FADfkpJq)P~(9H z!dFhqje)J7wOW{;7zT*d6KpbnF@qU2r3GFJ`Z73-xt~;{yS+~cJ3`sJ_nr+U?0e^4 z!ID^g$@r-~N949Oe%0CLrYt%oN*T5x*T{wtPt-<8Y8j7mEn1-2<;_m)nWvi$fV>NU zANj-PT?QHjb&6(dr$j{T=51uRQie2N{(*ZMZ#_7MB_O@JA~haFsG~+*f-w&6^pu`*#>cvNvw0>7 zgfW4yDOjGB|yCy1iukUSP(sa$^OOALmK`gpF5fF;UOukq|;W<65NfkrNc=W zBnCN$btbA;*Rh#~0hPgFghI2St|lt@pC?GZ5+fgZcHVAYnnB#m?>->n96u@2=rkb~jzD$(^!E3m1niJyj6AscfJ7u3r3zBwEr78xvr2$$i#JfA=OL z<@oa47Z7i)+HQ9~wNtaRTZtOL_w-wdD7zzZFP<(?F;ZjXIGZyOu`kxe!&m!K74ljm z%lxX%@(wdMFQ77`p@e-($683<9&%=R6^>&4?UJFhQBva zyu46(Sa!x{e{?oaO^o+eTdEB#&7?iu;`b^pj(MVaM2Z=u^Aw90uZvqF`xOTG0ao)a zf{4a!tFm0|6k(B@maS)Ym!?M8Wi9lmJ_ZB}BbDMp z0unnu^-Zb6WuA2T^y5cHYq-r#&t1ljnD+r5n5#DBR={S)P|@+M1hpCw^-o$1}viMLS;OO8$51ui%QfCkHt8!C74cI(eRu5oyT|3UKJh>GH3as)q;_+1 z?a?u9@+~XfN)X!z%w0{i6G8QnWApaM%(gj0^QHM93Y{MUCHyx^zr7zvQhuE|yz!ub z{}(Jn5S3cFr8OR)@t%aAGWz>?%Ej1U$FKNf5S;y_kiU4MN6?b8#rsgl&m>|vT4E^5 zLz0Fuv6~=fF()Z+Vr~1huN)lP0_Y!j1FASEK*Q_C;fPk-coWgXadk`O%() zf2zO27yc4qtno?Q;!FCQufM%SSJ{7giHvZ}z>-xCWkK_!h?dvy6UCIMaEl z&E|V^!V~}+elDZ?PQU--8w&l8VO-`dZ2v=P45^$%mM2gCz1Hz>R0>?LBKlyR5j1*= zFv>j24{!<(3^@Wi_Y5N|Q-7A`if-MT)05NFI6VYX8BNAG+t3AYiY%cHg&P|iaW&J^ zo8LgWZR#q6fIm(n*oOA~S0D`|plNha1@(C~^zZp5-f=txrTPusho_LEKkaDJ-RQo~ zQ3VBJ3-BBA(9Y^F>nU*g2SH#>4qBr%5QC6r$6*j~e-PXn^+2r8_XT1)lT^miplS<9 z9fo3-KoGh>FLZSmbNm22=RFhc8dWsx;0s_CN;h2g0m`#nLyr+M;HHz~!Lt0kJ5?#c zkH@(8j)Vj;Sk$4gZ!fXbL-5-!mN#5#0dJ6gZ#FGR(+M##ZgFu}0Vvg2PpS2NwA$lI znGGxAk3{j&QLbCoexIZb-lnr~5qOai^z`&WJu(u+dR4$xkN~?9;x7gypJk|V;@=F6 zaIHhNjH|hh6Jn)k3rq$=pp?sjJp-J|C#&8vMt#E_IKxJ<)es(fa0iG706a_ZJ3&m0 zgZd#rDaY|F@M~(_cue{gr%NEHq2rBlg7p43<)79XrzG9NYt!w zz(uO|_V$>4MU-(FkTd}0L|!OSk*~Lwt#PKZ26i2kV_O_HYS50bUFa;yM6^9dww>NU#R7@k1Gz zB(e7wA>x9c4V>HAo{UQ$(b?=c1OqX+etRpO1rTL63*$hlyb8Ws%T}RKP%d%tnaRe$ z61WmL1w${&{u(5+1R<>Q%N#>;{w6NGPHjJV`ihfy@M$`+`*RFRk|F?bfF!^Qa2Im{ zKM5scEl^d84|e82v^=N*$>}?YR6j>hzt}C{K@oti`Ll)(R1hs+EL##r;Fv0)EXHl% z*6MiXjas9hI1L2;heA9B=k?>Htx^V`mUTDB7kk92c|7YjTnv|rTA#;(Ro05kRNX^eO);nZgif<^fDZDiAI*mzW+WK zf}3qA=!x#+9bSm!#7&O-vS;Qy1A6PLNnBbSb6zwa&ZHtS6b)}maY%9U;!fFx)9vK0 zT9Ut|3QRVH2!HKP$p35{!ti^!|LLTQe*)k55IIJQ>#aOBLEkp^l_W4{L~8XdIfvZJKdH}+fxsvt}(1#{~JU`ffI`$ z$O;Xv;Y2g}uX+l;P{=u{mJvj0t?WFQzD?1O*LiApvF~bUF7jU+UZrvPNekB1uY)C)nBE*Z z++vN3g?{{a7l5c&FUoXQYVaK_ve?a(x@KQ96MoATn9`ko_r7*pRJf*{z8acBOH@#MY8Tag23w7Fj5d5t2w( zn^rxLXgi{|lTzZ?p@5^1VEHj>LA;AeVtfx_n`%qX8Y{|ss<(pG$#OoPmHw)emu00~MXiu@rEirmYbf*=D0zLvP>IengJ%%OS~K`-sN#tcK&<3}_~S&2gv0;%Da* z$)2rDFE5QmvRCe6n-|Q79D&I{z`=m@aZW3$H5>M>83*a20$Wjh<{F!ilX|=CLZF5( zCA%&_3O+k;_Bk4>m00K)HiE-1GAf8)aVkKmC&TxcZO8wFE zg?AQnP8DZoZ3W$_Bz47q^D80|^o&XO`2x0dMO5C4&G?PIp+(W1lIqoqlwC1pyD0Eh z>9Cyt)kj$QE-W16xJ`;>G-u@LP;v?_Di*q|ih0KITQM-~?hqRt;)DS3IugjrF7L~} z{VTcRH~_%(;8@j_r4=o*H%0~uzXzBnhe6y0Jp$dcd~{ZCA}MFXH;ZXlu1?(cQLM|% z4fKLf926ZIS&~X@pXBGN=C0A$X)G{(a(e1JdqkllmG=xX=jx{b!q|N+a>rqR`ua3a z0w+I#Ppw=zslbDrh1@KhPX;ZTSplPjV_6W830A>L@F7@DA$5b3195><7>R)6`wqJv zI!lY}TY*#Lq0GqP&=z*5+LjNFgxMSjWOdZlC$c>9Gc#jWfBg9T(4FzmV5o>v z2kZuLtm3^w2+uGaIS2!gP2&z4;JU7~Jvp)d@BPjx)xo-{uBK zFx{zwJ#npsTAiei{rSSj86OUd-sSyrG{|->;L36ySR<6$ z0Ix4&b<}<0L)HDzczKWTyYC5#bEz)(Mc7FOkl)fPz;Q8-d`Oj)qAz7m?Pn}Q;Ig!E zR2(QWV}y!6Ewj`I!nr|g(j$OA#@S*)2qLV4^WYYQpdnSA8DKX(#1pJ!_G9dw%3)ob zANAD&Il@lyK@A2IWU3}x<7+}DM-h8M_tM5+utpyd54AgG>lKXWJnp8z%;wH?8FAM*Wg9c*UU1F*ElOlc1 zR_M$NVZL&3UyzSuTmY76G^|t+`;u4N{#$Z;NM{a3; zo>~ix7p@`YZ%7i?R5Vn_Opn#|kQF@i*p(U0eo~m!pVe2u^A{3hfCe<#uJQ2jINW7= zUg@$O?ZmOhbdRAvf4A1?$eCJ|{5j3&Z>1^?fsc!5pU^P|`m084qphywm~Q>}44g?* zl&x(b>HR=O;1=B&z^5@g7HXYIWU`66A47W2;pA55t!!N)r)92rW_KIw7;TMXK|G;~ z9nTg%r!NPs*`i)u5m`h8xbSdY17@~>bB&tsFR1>iRd3=pC(H(`uWLe zUVNgYn2f5a21so-y^Og;;PlP>S^-Rd4beZs=do$qg8Nd0o{aDF-;M^RGvJ9xq>t~3wMnW(bS>Il z6;PQX_*ba>ggGmQzmXZ*kE{Nc8Q$S!hI~3dy#^n9#Qfu1ev_{=B#OEP4sP`OwInE) zMRoBxoQfSPyWXdCtg6S$o}Q=4N9^0Lf6Md=_jBV5w~xaB1IS>BBFAj-k&Wrm!WZ0H zY0ASNd?Cu#IUt$c;13;Ni1>!W99eaBz3P>=n&LRUDPd%e985j0qXLw%dQE~K<1!}^2SzyPOO?iDixy|6xHGsflsaq228YZts&g9#FaPdY#7MN)yEWs6PYs z;-rLeyuTHZ1#|v3H70o7`0CS8+FuHz^gfb@WP1?(X&- zDpOa#hwE!&J-B<==bune)okxpPyfu1j3fmt>|f^~G=jEzG-50_tlhxTi5*9c{R{&c;UChemn((197BQM3#+-uvEGVZfbuze6&9PR;5gGbb}q`D!4=UX@kr2Ub`<7 zb+G4^C6;3AO{`9*iuW!U@~EhvKX>1OVgSG-IP?a%ZD_$9&7_csvzs7*3_+dqn7X+# z`TGR?4kwxuf4qCV+h3GOIV?Rv%X43V1nI*BpF_CdW34UczAlR8Jz`$Ev!)A#$K7$b zipu`ei!(ZED0W93it_cNmu-&>I+FlTGA(!3WR7jCW%s5Y!4X&U!Qm~u{72rdmx(qM z;wV9Z@p<>DINjlAtTzB}FM?Q>pxy8RfdeW92R{%KBV>iLQ9}J>sg6RCh9z;-XX@Zh z2AKQ<6WeBOpJ~hWtu7H(m1p1ne7-nQv`*BQrJlBUQ|NI{fw6sK5nbu<;YHJk6Sf;~ z?DSvib&21!72U!H(7gYomV3d4R#{5@ zmZA&?x~7A5cbNLBV8u$fNn5#cU5yX!HjXUV9oEEmDm)E%kA};qQvi7-&#Aa8i3Xct zo^jvp#R}}OP+^98NdT}OBfx0@(;x;rR-px#3t<)l(=R|TBBxleFBthXE?}twJwx9k zb3O~$&v<3 zFpbU}j6JK|Ll>NW2lh59pMU^SE%Q7mGvN3A`%!oEIhwfHAOLkb5Br@&@Yimb#Q_Y> zH|(0x6^Bi!77Gp2Vgg5yK77XuW`iTnU(X0tWyEi<%ku2v-;L%`k(av1YL+U0`gn@< z6-B9StQN8T+C|8g5p)axHB!L4*{kio{A%M*s=$%HOw(@cDC{aWr#BTQuYcSYm_gO@Iq zHB~O$IUHugg3vy2YHJ-jM3>0*#EKF@P^n}pL=Bg$wg=bOd5GGA5PJG|Hlb2#|Ls{u z3-~%DRUlv6kuC0cPUt`^xR4Ghuf(5M?{enmoiF5oWtBf&pH#hz(Q~_am$&4}{hGIG z9^s3X5Hi!@eNEk}xB z_@Dip{)2N`Y-W_yLtHOkZcP)9AW5o@W{mZJiKC2wpZ)pML!13xIGBEGZN<4mb((1G zCqGsU7s#!Qt$DlDf6%c+9yVTqCSgMUp0Bsr)BT7*ec^HH*%=aoD~CNUPS~7`dJ1gd zV*!r@S792rIBOOIyZ$VFtFPZ4qK+U_Z44P|XdJ6T2cCTmH-B{{PuZ?ZMZN&e%mQaT z#wN$!*xYpHG9Es9QXxj`?8EnsX*sh@r;hn8^7F6^w$2g9n!Yy|L1&y^_z6n_lzCI# z(3ZOQ^5qKfM%h*KuS=XxNi|X1qji6Jbz#XNg27eLTjLTsKoQ0mynj9TP{LPQXO`&I z@%*y=joUgSLpd)o(d;qMLlvVpMfy-YQW$d*r&KC=_X40C`Cs0+8Xz-U;3zeA;~FY& z;TO^34Uo0&3y?qfR`_5^p-j>hVQ4$sy!omxVW3jdA(-MSY@i{B`?n>0Y+STT9Vs6e zg?{WX7V&lXJqG9#Ic^l13+$Hkv|LU^ub;N`!?fDRru#iSLZZ7lC0*a=t4h(=f3kbojDK;0)_svX{IF`XFF%{WM_IgdP^)^47R^MVV5nM8D;jx z5#-@C5en6ur|QB7o#t{3!Z=LCqig<4bB0#A^9jVjxoNpC&y)?eaql8cqc!z};_rW> zB*iA1RV$NG*pPkjUi{mkGfhWXbWP^Tv_616;=0CMtwRtdpn-nhP()>1`{+pSPglY- zQmJ?EWt6_ypB{nGFTZz}vc~ZvEi1p8-Q-#LvC!jKxRRRoN1$par8E6w$^6?%BaSzVznjVo{_|8aj7>iiguLq%~U`=*Xs>T5WZOIb4J|)}ofSNfA}I zkHL^~+<#9mcxwE9l}%E^_WRXi!e^AfU)}J?KJoii$lczfzh5<9naBV2%1!5#4c@O; z{}aERR^Fd?_FhHqfN#GT>(;09SgiTmk5#jC`ZgC5ul{+LiQ6xi@SLr&Bzeu*@7kM3 zWCsq=5gM;kc;BD?@4Pa#Mm3qx$_Hne0)VB6j~#0Ru42%qPuC+_5<%gJ(4f9CtN1aW zUUcVCE+^xIe!Kh3T;DT^5l_!|d=SJeXmrdqcEl-S%-#Ex@DOgLFV=F>4$Y`LJ%yI$ zs-0cCM~k9EWX_7@HNT=<<|=dRzeyqr^9O;p9|!jRgg0-Fu|CPY4@ci%`ueY5!_{fi z^`C@r+J-952RIoA&|;RJ$oE=z&=5Y<@Q`9Vg}9g!=+z;q7C$M7EwbT`n7kd2ikBc0 zf7tp!!X~0m2_NBR)Q$CW>^3zI3h}d(OQ>fko$^rWGW%L9@p(I{FCo@_%_mF)DBfKF zgv&=RA(+e(+pW#L_*)N)e4mRkEE~3af6CUh7x^W7D=nA7I8;Xluy3tuuYtJnBQnk^{ zHT8`a?~6Rg2SIpe?dy+0A^8D7H_0$oB&Y!QGX(|9jg`^B(&qy6-o|{N0%+&*s;c2n zrfQlmyk1XomRAbISAT6)F1s`DCfpT_L^DDVflV>&$oAxpOBK|s-! z^M2JvFQg!{H;m~}*PWQyNc*|YGU3Ss&aY70>*(svf}WL<&CbXu4(9hjdLdA%95(y( zxFC81AXsq+h_`HPptaC;yGb(9%FvHjl$XC6@!pd9%2BJOq&FijDke0w<`~pLaBNas zoS-5F;!XfRYK!OSh*hYuuoB9P$qG5N^f^6n#A&j+34y5Uo?RS}XD1?KLQh{Jzk+1u zx6Vw@_}TRY889NVD_b&FOVxCJyM6xltS1VEg5kGWTMj2(bX81EGwGQ)IrG(b!8sTd z8JW@B`tSNt;rSpEf4~p_wuHZZ}kK?-fCF|6YU^Ba&ITHmf7%*H27S&Y(wPFqqj9 z6p9}EY6Fh#KI&|t&$YFK0|URn;i;*iK|ElWyaAl1*Wvn^^mmy$eCfm}s;jH-3m&rz z9ukoVz%uOOm9DH0d#s=SeGAvU~4(D3fY86ik&-=W4r+ELq zCzuo1L_|bDNihK70>F3jPoKs(Y|JJ=);F)&(`((7*1A%E*QJ??s}j+3rEFbqU0s5)u;)L9Eg-afJjO7o5~9 zz(Qi!mz#h~Pp=VsG7NS;xY(|#`cighpUrkafFQx$gkC^o@HisTV2qvhU7$^L5cR&n z`}(A;P#5ZJUaJ#QuyntVQhBWbq8c+RtCF#?@sj~~;Ig1pig-+se!W-AA!eXH+vujq z;!(uOS1s2b6qFb5^X8SnKU_YWMN&pca{fwfvMI*=_a?w8X7iW*1Tjnef57(n-+Wfc zI*yxZ!f81z1v(_tl`D5ZqL+o;$(TDL1m#TOi93x7Vx_`J5)cR-^OvW_;=asymWq>w$#%xAOQA z`sE~|s-KuEqOS#?5AbW*pQ?+-B8&1vb?YVYG*>=QA!aqlQu6w-!xCI3o$Ag}TP1x{ zRlauhk~6?yE`Uiv42+CvKvoW*_pXgyUN-mg^h^f9>6*$h#7XoRKIW}i!rpW2WoEI%>w)h;!q@s{Et-HI!4H>6f{eLa(S!(HfqdZy0bTZ8 zkFKfUn@vz8-TD#6Ar4``8z)NX8)2;+8ynNfE7f$sFnD>xWWqcH7`>+(OpG}BgYiNK zW_*2G z4GdH`XEOxWFjbUG1u%`rF=y~%s&A7RY~x{x5>t!mP57@-i7ch0!b+3BNtBZOy5Q^r zH^!GBDuoDvNYh_Vx-~sLEfH`}RJ6HZX`o03I`lfv(EhZdnHZPLq~7zJgwgxe^m5Uq z3T}W84Oc&Iu47zz;Il)I`s(sJezASuTG&W@pYmuI?T6N7-B@fzV%rMGi?nGW{gmdm z0QR2Q7WZ@|f~wNe-NLTsYV>9pHRVZ~MOiTb?T5-S?(OdfM{BLkgf(+*StWte5D>q< zzMjindvhHaW8bDMa(IOhinZ670@9Y%Gj>9v#sn`Qmg74(?7Im8GOdy#(fWB=>MmTF z`ySDK6c;X}!1?J>w6KPYiwhVBIsoGw6ciL+Rdr`$wmVIFu>oVn%*K`}ZF-`|a$;uD z6*>ehtVfE8^K2hB=dozzNm{tho$i+J50B7%Ko&DLzC~hYvsZ4_a1q=8Rw-wDYu1C3 zrp5tFu1Qoh%YX~-+}X%RzSM;M z=vz6=b{>Q@Hb{9Zt9*d|HWjo)i)aDXo+ITdVwqYaqQtfEp#DDQyN=eY?f&=+x19X( z5qW#!G#KNY^;VBX^SKUohDMaSWwtZP?=1!Xo!XA9g7t2bj(0zOP1x5%l!veF3w|#zMa1N+ z6-c5E!q$1b*Y6bhE-aA-2%l&6;=Gjs=aBM{zwQ96lr|O6^yjx*j)9%rYHRt~!f?ev z9Wh?a*zsl9HZ5N6ems_PlqL=lbN9`$kOR8e@l7}GfXE9_JgHM;@xEWNfE2X9I`u{&oZ&5riT2~sTgpTUcYrqjyvKJ zOgP{v6GWh^ZpO1V#FKTzqY{y2E>=Z&!_0H<*5zKW54$wlKV*IxrU4~dl!D>I5$cb_ zGJ)fr30(@XKbXD1V!KC2L=s*`40nqftXwQxq0%_q(ud+G^q(q@+|mlL@$3EEn5w?j zg^F-VvyDK0qA>Y$=1S7%kf?q(XWM)y$2X{T)pwlfkxV-9G~F7IDb_kcMj2%0cl@I+ zHn5-YlLBSA-%x}2QE?f=4FZ&$%jRjX^~E?fk+9gc25IIw-y?a=q69M(9Az-@Fd1gk z=>rZDR~J|}vli(?lXG=tMegClHz4X7+q^|&)?l|g&W=bBwJHyW+Ng%-%JHkpzNBe8 z70DhPwJqIml|Nod;~O7(hUN8BSh#=_lAw2%+4V3aV8+GFHuc+@b+te+IXN@N)>Xl! z=UL;;pdtZDzO*9deAoECgz6J;6yt*7i;q6@%0bhZ$!HCJx}9Ay9Luf8>y8h-Y@mXr zE)+LF2RAPi#z%j8OF@wQ{ty{VESb>sW7*=uqTA>MiC^eZ_26Klg#9EInpVmmO_4`bL#E;yq8J)7ETK9dLZM3h1ijX z9q}oR!H>lQKcLfQ%Bi?E1=Ox;PmQ{iw=8EX8}ZLo|(&cf_t? z_dZJb8TABFLFcHR4YbObuU@?eXob+|=x7*Nl@C4+aQ-vhyeSLKZ)Wr%P*+uCW&Ht* zQNmJ6lhm0~TwGjwgX)~cUw6d1=hP#kn&0wMF^e|HBF}BZff5Pj>;@%mLA0M&$|7nu ze?9br@e?K#;h|C>_Nid4;rY&G<=3=BMbiA{)8neap?Q*}Su!Uonzp{`{B@TcKIHLB z+xNeoQEnDOEMuN1ZjzxkqxeU|`Om7WDQO`mXn_QUgd_q6;+4V~JoaTf8H3sBCTt&l zpK(XsA~oyrVneLWN8xQvel>M#H-QxIW2Fd0$csFrf`bG{kxGtM02Dk|2EXW3`)Z(5 z3LIogL=$FwtwyG8oBREYhm#7(TDWs=|KshGWgrT|_mKBU#8p0UQ@u@+JYr7qIzRY8 zOUppoXZKQ-B?#O*(p^39S;$VECLh&0e|t2ce06u~ci9z^fi7^w z0>-^ZZ3mbQoOa7k>+9-pC+2G^$78s^S_cc$V4|k1t1Ulvh?oV7S>4RIF`Bw=z~tELH*h!`9z`n?Csx~oKeJ@)(c|Gx+Smv!6!d=K_x;fi1SAmQ2?bPz@t zdE<83RZx^4%t*!;h!l@lI_-NXJ~p&@P}OaDL4N!e*6v`{&1$^7j{*;UZ6ZJaM)Q8C zOaHv#>~K|4qW)fw$XxY4jp5!VD*15E4;T(cHcyuEHE&6f)V9GGU@*5P17eX0mKh*c zw}YFE0hyBn_uIChPmq*M4f@${pGYv(Je!Zmi$D zqJ?>@+2Ls#(4wp9Tot^tn7rOYijl3Z=cb9U(qqI-U5ZcCTxmRJ-Ymq@A`uX<+Emow z`7rN!f;2izK}BO=_dvqLSxA%NsF&fH4yg}b?5Rs9u*};FGA(Q;PkvUp+(G$!ufER5 z_XM`dkMw+(Nulau`6FkR+-u!NlXax2u@r`$???*kXva5Ld{n-D1c5;7RtsY)@_iQc zB;pVISz*_vUczjbx~1h{k~yvO;8{{kp>_T^L0WadE4w-+scq-3J(JLQDWSZ^XIFkT zzJdGUN^QIiUQ|{_W@NwX^7!kPYqdJbPl`6DDUM`~QFyO`-xep+=-dsZ{};6r+(%!2 z{?rG}*YIastc0{QcS`?`!gzoSs?)hIInHk_JAb3NK?3ytb5_MwLSNGOPbjb)#vJA3 zd_5-2Qgf5pmCWQ}zlFN0Yj0;Tp2|#?!Qw<#T7WYfGRY^N%#ioBW8kHzGI6qm29US0 zY44<^x8L!qOWI%PM4x-otpSn##|gKj&u8!FcF2m{S!C5?Td7b{xR)CZu6l zF<>Rdul(4$jR9#BvHqm+_b;?w?;gGzbiTvq^G?>$Vr3=~i9S6;J2F;-3rn$MM}0Ip zW{8-{O4-bjJGUEz2++hfKMuWxKiEBv9@<-y*f%dA{&1jggIvbPsj}czM9S;y>z8ao zH<$^=9N(BX94@!-s{{^9qbVx)a_gA6`iiw+Mt8Da*Rxfc)P;%L@vg?bnMD(X_Q|PV zX=fF%_y&){Ik`&C7){u3l0@mXj^h4rW~Uv~_rUPhI$odCUh2Gd5V_Gb&2Z=B19rRY z+jH7d=!$bZBFWh^BUy!hk{vr5VTR+y!yFH|&b*r`of(LWyn2{4{bJK8rK{A^)5p)T zq3Fz?Q$Y77UvNlT`B2}*od(MM*~%wTOy4Dc6}fM@?%j2Db)A}-(OTJn%M4*c7Nop` zLn)Yk*c&UJ?n8d>YG|{P>B}83-{?b)dYeQPW_ofa4DTp9R8AjOy-riie8ob8TR16; ze?)&&ti_M9*_GLMd)=ZWyT;2!5-MR&c9MORSx{}aa>i%`t=7BmME*ToBiRdz!2j$l zFjoe^4Wzu2Q#r(765(Xqwd3+xItixo&6XdO2B};h%ISCRzoTSqLsKFA?9*cOkE<80 zF<-&BaPHh{c@N`XE-mf~XVR#BK*}&Gjx^|E+eKUtc2##Dsm8m-l zrN-Q42il5Sk6hemD%fsC%{6e0l%NeVXBEZD9{HFunFzi7_QhJmm+tNEdiM}VQ^7XZ z3B^#*7@q3H`AA1AG=F3BiQ<pe3m&=g!WPVt?s?$_@QeB>!FK3CrdzwcH0>2 zRh{iFpXKqfDRCXHlsQ3m?x=dgoKu39r%J`hfkL$7#a6QN+Ge3Ma<$@qeM>aSyd+8a!qwk@72eG#IP9nI!IVjL*0b+?_Gbaa48R7mcg!n^FVEwQtC&QOwvr*(R)3w4h6d{Qo2SwSQSJ$@ORPiPPYlP*Oko=+ z%}TRUFv1+>#xsnR4N(8Q_I~cFwTZ5-&YjxP;Abil5IfHS!q0=_E=6C2sHc8lZ^GameD{?mKv**T+SsLMIJ_x;n z5s71at-&r9rbgE0Z>Q7C1+%;_h;gOmgY*sm#mGI!=l}Hz@xQC>%E>G`EtH0r#~7g@ zmOw4xr}9v-xKGE9>#x1gV$}sgtlW2BY?{)DX+Zp0rV*BHZ1k*ojcFi@rLX;pOM%Z~ zrmN7Za>kD9PixEl;<-l z!t}`KCU>%mq^ahd!4L86T%S20i7uTVC@gg1| zUu?BEXBTeayYZBUOsq{cjKGLl#h(i5>gnJo%w2$yjSA993SjGf7VONcOW?L~(r)5q z!r@TL&=xc=`&57mr7u90WVuutexR1xPy4zz zXJSol4I{1Ak|V5YPiS|)w0j3P09q8YlDn(o8Zh+5J0w-f%C^sG-ogCP+pwMGyYq+# zq?$z~yQgM6=#hA_tn1(0QH|`^M`xo1Ptd`q9t>EWpoj>y!V2vMQfQdw_0L)TY`c4K za1cOGLqpTIFh%Ab!DH3~jcj@(EQy^^$j~EUpdW;?Jn#t!7)nI*hRQB|4bn&G>t{}H zsduknP}=;6yI#RZZI@znHTs#?XhxKKvHN3#jXrN&&UVfP@=T#n3QSIZHDGwKv7i z4;^GLVM_DwgoruAiycw{istlLHI=Wvh?MT;Tc9fAzhfo`hyHT2@{4FBf3`zf zsUM9^i{HxfSBAp6TIgE@q2qt1^VsxU@l|~G?kO!QMn5#)AXW- zqln=})eo(~RIcm=;8F$tWukEzjLjq_AyK?@$L%#KRVsk?h@BCL9$R5{tpM`2!g1qt zx3-W)VaCBMc0Ef!rJt6YPqzy>_!5 zUn30#vWswC{J{*5+lMO|PJ7N2y~6hwyzgV$2!+4k>PR=0lI&~WfzBzHSpn-tQ&Up_ z{l?;unsid$;0O$4Os%Q8Cj{YmoX7%V2=kx~Ora?Nv>&nq!fue#6hQ_InX2UJwlwL! z0!>M!Y?B1RDTcOi%ADPDybGVF@YW~+qyZ$rS|2XrT1nq{lf(o_C+D;h6?w zM0RfH1(EBARj0lDE~r1#+8Xi*b{%~q?dtk4;6*WW=7^m}68BW0M@|3F!7-n_IySvx z^{K*ED*o6Q;v$MvOK)k#{zHk$g&zT97AaWNzPfnPeBhV`rtPc7?Dpuxqpu6Q+F5rq zcM3D!!8>NS5A9!&;QNJf)fa$b)}i0qG-iICheySmjHU_8b>3|7lphC1e*OpRe-?Ebe?O(DdP(XDmh0T`Kzr|FgVeA%h*}j<0 z4GnfAGp~yT+S=H;8-;JbRW>xcUl+-r-!9}k*H$FZz57o<^i{a1;2TxX-=M zxR52C8j(Jy>enh?KVb&ejwY&T_Qz#58T6RK0n@bALbmm>PbU#Qp?QYBJKvPl{zsyS;V@P4`J03-Cv@Dkna+wu@N+Hes;JY|UD6;^qz&5htB_2yno=k8VQ zKMW%_xs+6?hHMR|lJ3obRXDRPs*LSP$y@+Sg>-u(hbrHqh>`VfVYJJwgN~awHfp<} z0<-S3ss2c_ad&q&GiLUycjx)vX0nTJA>8|GhT0WuNS{c&(%zgzsM5&GI#|%?!~TVvfAQnZ<^1%fBI6 zYS~i1kW?AyQYp5x>Sn-zhqxHqYk+DC^Ju`Gyz9{O_=dS)x5{{&a}QP-TqBLX5uRs3 zL3Jn!W(Q018Y%FLRmD%>v;}*wj)b#E)dMOI?n;QTR){DXPU|UqA=>QrxgPCI4EroJ z{E*BGNXSd*V6PF;vTSAdMBd9>ad0#$%0=2xb zurM(hS=P<8IW+2^06P7UEttaG##8q?>{}u&RS%xGL^ko$Ij>gWI@6a$*elAic7)e# zB$Ipv703`VFLSqhxwfz}2A%5K0*bf z{&v0fbCXA=Bx_3mNsl)k!f)rQxJ9@5JgW_oh14OD8gXZWeB=8Ne-4L&IJeU6?(@lF z9>VW$!CDtUe(|DerZZG`O)&iVL>Vl18xTXA4U`f7SUXmnx(h2_?!YChO_h{nnIRT? z9)pgqNs09LGbM{$m^MkFLxF^^F7{sXPn&xzC?*|aQop*d%wG^}jjCQ#7vUG$6*0W^ z;+1iwQna{f5c%9;#eUQ^R)=bj;3qWN{Ty~tLLM`H9O=t~wpf#tP!I1QBcq;zNCzQ{ z2w{|UI8wt8nlvi9k@;*r|!~!Xfl!ii}TW%`qPlJ5B zuXLwwO&v=jy5ptL^qn2WyPq&0K6NNU~h0H2LQic+>NEt$8kqRM^EMtZSwX>59 z3y~>9hRm~NsFZdjS!NlMR4hXoL->6j?bDfl?{(hmz0SM+<*JMIc%J9J@9+0BeHZT) zZdv7;y0O5go-+f(+FY}hH)y+)j**c~Dg z!i-{7Hw$myZAUb($6dTJdi)`utj+5ms;hla*6E=vi1wPX2CYJidO{fG2as~BZD0@z zn=P(w8#0bG3Ok)6U(l8&zle%Tc#W#+!U#9=y7*!twBzLq7V#$9x+nGqJRccrV(Ws-mc_Av@R&W4XcGxX#KQu+9)&U?0kME^2x_@Sb?H)F(Q`8a8w-)W>6!KpioH1775{TY5 z`*TSlAbvt@B@x+1Ek-w2w_(}ah-Z0@3)q=LH!JsFK0mCC9oxQ#x`^SQ;c7}B{oWb- zRHcH6`-4kw-0*?PGo^$`A6(= z$@p6{`$|^nucWMKTSavH6Yk7!1Ita5Kce3&AJ&r~avEdCk3^<@aL48!S{g#5q zVbV#?7ROuV-?%On*95#kRl@lXpZ4Nk`?V_Ov*!S2udSvHkByD#A@ID-+0rtJU~$RA z?AjPe5-5Q2ZCZ4fk@C<{mPd??4_uzpJH9&7c!R~5bvt-S8Ec7$A*6ZekoJKC2ily$ z&|)7k9->0B2{TqAdj2wlsrocSDNlr7183YMca9jgEtgNC5xd; z>854Ih*V2Mz;FEP*RO3wcuC?T#<%McbZwJgSi6IpG_Y~;O7HG<%dvbJt`kSp?Z_az zE0E$c(&eZS#W{maZWQo(Xh3n>n~_B!V^JL4InpN z#3}CB{?oPh$f)De!-1(ov}o|=BVxrHUDtKQe(wG*hx3U=LOeV(sSOi zJbE|qj(DcWb=!87K#j(E`$gE)M=my!VE`m6J}Z)Q^sEMq0dH*Cx|KQSMS5g|N2F3& zWqs>AQuXJW26|-8Vdo1(D0m8FOv{%oJB#2ysQE%_EgRsKtd(RZ`Rw#f+$hDbU}efn z^6^_6UFKTcYJu-lcb)0Vb(f!A4^5!iWDDSrHjBraUn3|gc3juvzVtp9gSG@KO&7{u zSi$fALzzV)r92fRBzO{Ir{09;GkoM2-UrB?5qAwYkz|02lf7Fd>~?!)+ck>zKOSbp zD+=&Oy5+MZcgzPg+l<-%_FcsEB*T|=qYWbJ@pc(t2D$(lP!_~_fM0d6yQ7>Vy>5lX zvC7$ch`sL(8~NsQqVgJH3oKa~smn)_v6($W)|1mvOYD1dlv9&+lDzU2s42lsmp77* zUopH_CI4NYkuCmd5q<&h6jnPh(4L=0gv8_J6BZIuhq`)anh8l|Yu>!WvsmVmu!JkR z*26~vLYI-gzBsX`W1peEmBjp5Y=~>AUli$Z!%$aTMAk>o&RnnPnfckWoM~6JYnNBV zKCT-CB&vtKg79H4iZNuM%E%dlP8mky>fk;W(q^)8gkYQ9Ft;h~0ym?1z3wD;isqez znoE7u?G{9=r(O)qw%Rcmho`JRl6bBw{$_ZVY5$Ij<~@DJxgkqgi*|Iqx8U5cy=B-6 zsn>5SGyaXDdDYBZthLId1aHrbmkOkigOh{|PucCQ%ld28#krz+@3p^Ys=eWv?UZ*f zJ+jSf__80*$|~uH*LP5+jDL!X&DyAxTo6!m$3VzC)8)Flds4Fc6_jEIuF>>G*`R85 ze&0}O(W-%)yxbZya|@!AiDrLsZhG>$XRSrZH&{fdPrAF!Flxu}QrU`_VT_Q{AXcqu zvnAJcVir)bNrt0&iz>Tf0<`l3cder90q`hNL`kvhr2SZJTQU=hqQzK9Ce`}P-it#s zEZc9^+&ON@p5OSN^%Ow@cCA_a00xMPi#OuvpXj()*B>9ClsYjd|GkuIsZ8FrYhGq| zY}TEPA5lvEBxVj7#cmPCf`xt=-z@>zY)vEPLfmHMqxu#orjE0nE*Xvz4^dAK)ku}E zHF5Oz@_Mo^Wut2slcRUB;N&NFJjfi5*2zd`hCi;Rggt!s?V=4ghQ>?XHf#=CEu{a6 z^3N*y(TRyBMxrL14M%|qlTjx(;7U1v{`n!0njAg$$|o4W0LH8yiAC`{PFIB+$)RoF z=9io^E9g+JIKDbEA)9jG^>Pwl^ZlDnR^j8*m#f+9<;Y5M{aupL89%8|GrY&0*&@cS z4SFew$~)?EYgXt~^D9f!#nEZ}&>~iED;oP)*8*#`02#2fKAC(INee(~$1y`#3&51n zu{ET#4@+c&O#^6NG=UdI@|87`Q+<)fnsrlhnM$OyFHQX%7gP>8c0KFOd0&36kZj*6 zOf7l!bP3C`tkJFo8TvBU9hs}>l90E=BITM8R|Yw~|9u^J%_BI033)ky?Fr0gdC{?j zh2;M#`H1e6CF6k+qeN9Vu!i>vWR^TlI-_=<#VnTi$S(h?;msr9Nn zw7HXiSjk{1>0zZ4vbD3bZEhtg zOYVnE-O?92UgAqeVR&i1j!KCYUcV+l zG%-a*N|4j&dor)G7tv%$Fn6JVK+}GIp8qH9rB5VdZy%fRzgg3#3!ch-{F6=}l}=?Q zp)6(6N6H%@j!VI@PJ2^<+`IRlg%Q4s7p&5T7xP_yA!B}FIB-HCGO?Br@xj5xCH#Un0t#LFD?U~S*zw)A|WuevPT;kqnzv4>seGlvBtzebcI?%Q`6fjRN5t*tY{+(nkxC@Q@4Z<~TqQ#tB+q@hOOp^kJ>hyf=pUU)Fe zSFY4_tn=FqD4!@Ce*gUtfnk@Imj`_nT239YsmiVCV}Q+YLTlJEphP%??8~RsVMV~R zfRs5zph_A>AWG5p(+imIEZo8eUjl+~$U){@gaBd!?{XT}4d?l-C=7AsdU(=XwrmNZ z(GoFShCqpl=YzLhjHpaA@I)T1zf>zp%JTbr1$~It9S(-(VBOxa!^H&%TIz2yG$R^T zD7)oW|sPIWjp*( z1NfOHsP3ybTrWKafMWudq)!?2VFGL?R-dNh(O=FZXR7UR7Vay7H1x#pKTVZ@P-CzS zwZC6LfT5#f4*vcGC?bxznE{z1pnC|92vQ$*K=Lgs@btDIINv+Sr*{4TklfFX6P zZ)jIFhSa$mmTIFhfYj@%`^PUoJr|{0VfX*omvR7uRY9 zQhEb5ycK6{$}k;^vzdRz%SSIIW7i&=@+V$?09!a-4Em;-2+auR^BBxtGqkas9N1Ce z?3jWwIqXdr-6azjX4qqO<+2#D^XVdziYAax1XH<|zxI0EC;fDBpCe_URe#Gui&|^Y zg7yKBkkQE0((Td20VH$gr4(dO`1+Gw#Q)J~l$E8Ywoxjq=w;f{WL7ow5-}1xGS}il zP3U7`rGm=*?Df7b;$H{ahnBUs9jk8 zhf@6is6IPh+jEhTz{Uswnj2hvn^R+CFpzOnv*I@G+%nV8O9UnR!)`J@obG$WN@3)j zvu3XDFZ*SgDXyvO?WLRJ<1UQh;GhfS*<#&(`)IbD1f2o%( zJ=Z!%!LKqE3gl3QvA`B_;otCHsmLbk{5Lm6OmQ2ikH0~H4T_jSVM$|U{W_Q7x34A9 z;OCI?-GlW(K53Ii&P11@%D61eh?#QBgTa<$k{D1P<{Tx???gFysNF?lW_xF)T2pXq z7{7LP=|V%C{~n8wl4F;WRJQ3|d@0Ea5%&!W;+d;ozHCH_t>|FQix(oSbRtF$+t9Ju zsgagfQF|sLyT4U6BtF@4dqdIHhXbJ>bKWFWSh=NcdE0&|LPUSp>iRq5YPUTU_TmC~ zGIUkp3ijkzMKSHR;9gnIqSdI7L|@XL_qvsBA>AxNobfBWsgCyXWI{PF^Yx~Gaq;l- z;QgvK?4Q2N%T7SJsBrPaEyBOZyVq5_Am){r?VExj&dz|!o;#ggZ*wcw{F9Dc`{mFY z@AR3Ak0{s2ho;6-_ET8>@+{rw0lxw+#4vLmfpf^NmKlXk1VJEPFzOcxd%k)u;6!#~H$uJ6)*d{b{= zVdgYXxobpukzE9t=6>T}5#>d1@DFME+`GMpe;B9m;v2w}ilBa)7ZTK&Rh#TXDtlfd z+o)EQyX%#HO}|72BVv|hDQ&XzR=a1q)%GN820SwH<7<-Mc}#oI-$@T=In~|gRJiy# zT!YmwZ!TTXhN>#hbdFOe?8pQTv1N;l=Zq6^&I=140x+Yks~ZF{K@%`080?ssSZ{dl z+`|vAqSD~y#N5AOLiz@d-Il5hbmzi_3lrbY4s`h|YpI}lk}3QP>ux>q&hqLqR~P-k zpsI1}_%qQiu9vq}(1MN}^R_w96k;Uhotc*VnyKP5>dJc!@_chai1Vzt7|R}n1e#4p zP=Y+B{UrA>LMz)$$F3S5{OeSI8r>?yR_qnwA3oU0&SQAyA01iB&0kT6^)nJ}y35N5 zM;7of8$@#vRSvKlF?weP-pHDk7DJe;?+CDQZC63GUo*fmtqi^{;os}#g3Fr9B#Q*l z6{Pt2*h=^sZu7h6_+ZJNydY!%JS+d^ zb9?0X*KHlWmSNXdWT2T3N&sL*h+%9aK{jKSoDkWjvm_srE;F#VeF87pfRCr5y2LgY zt|KY_*7uP0f{4iOI$n2*>yGR<9ZYH&hoD-%Oz!^J$)AT34{n7mr?cC^WL3GOiE~~s z-|%@;kn^PEGWwH*DCH9G3-p{RXBS`cX?nP!8Kr%C*l~InJ0rZQBKVv$uU5wcYVgMh z%7#)O!)ufM^gyUBxuEF@R#a@d#ZEHMDIXzTp^{UvNM-6az3 zj+@$J$B3^*SAAwHJ0JUKZE&wwiFdlVXDY_L$V#l8o2dCsUswj8ANn*;&r0Bo(f9eS zbmt(t5ucwnq+DIOZp|YNFf1(zK)ZdWHospYdTRG6{0zSS`$-&Oz93r&Cn!1+wB?+W z&jA4gW!2Eq(l;@=M<^+XByY}{q1J3wtQH;=Ch*!oz;lB=44V^{Gsu6$5!^?q)Hr*Z zAX(qe4UFab3802K&ceb%c<2QB5i1#N&NVURLy{4`M%l2-ZS)L2Sk}JF1k_L8B%$gf z0v{SnsI~-eLEyruF7h#>!Ew&idya|-Z!0wF(HJAWl?<;_U_*ZhT>j{!2|qm8JmIZd zD^CZo;p2U#QZwsBgT|jL&+EX1C;WyFcNPVtVFmjtm8<(&n+_dNQxn;>tMJ?&DXF8V z+iA6ydO*TBI5-4e@SXxC@7SW~G5HX7R8CZAzJfkusn+l37igXqP{13+SY?TtyK?I-l5 zR|1?zFr{eeFvSLMFagwH$>(7j1TQMb{V`xNu#<+_bpzW&bv%POfwaN(-)V-68f+P@ z`L{kIHN+a4B_4T)lZmro5+{<-N}xNp0V#ndE&X*&_HQ%VEiw9Co>LSe-J);ii_!A4 zCadV;=fAvrhWkmh0zmas2VKy5LWX|PxX8iW*VCC^_M{I(AvA(OdB-C#yv42_X&zT= ztk%MGqDnlbNritEm5Gku32zHcJZEPG(NYY!SRA1s)IP1CvZo_Rckx__;D#U%gO>!HF+>=#@@;76E8wx!Me|LIh)Bgr#soz2+Yxx};_8;a-1#WK zDB_DrFvgVhLp2#_&P6~Sh-cNeR<4p9(D1xu@S?g}S6%%&L5mRkb(>WT?Wq-KY&OB9 zgl~oW0049Fd((v;W@be*mYE>UC zEHN6RZRl|H-nM%ymyuLB@isj~rEi0okNU5EZiS>P+U>(#N4t1+e_f=D6F35SSjrs& zH`9!|9E%zmkS#ewIORepdCfMMx{>QJn%!pA4zmR z7yu+X7$avFL6qSJ-AI!y_QVS#SxCX26@M@wboM&9&g&=9P(pR8?mLOtF-)$p2ugrN z2d}Wfr(BDg4W4jXmY{mb^O|!fXuZD42T4iQFmmI(`9qThE8A}F>v1@n2M7cKEKl`> zQQq0Wq{Dab|IudFoW4$_)VOBg^$ge`etdJ~cIaaT*mz`;8D6(2jlMJA9y%fr_L8)-)Om4 zbGU696J3ZK2o;9@`Mvz|4k{oh3OgKsBSx_-U$MgAlhh999&YNiky;RP^5-0x9xPdM zi~5|J)bk&F{@y$eDM*eWOuu*tzlv5XT-1ndOppv}`UI_z8dvvsDO3dC673|(sxjXk zt|_d&#RUHZxTPy5o0ar=1(8b?Tc0}UwEgI>NL;~ICNjmw9DV9)3E@sD%b5IkAoI@+ zu=*ASjp&PYQ zS9Lvw8vj3#RIe}Y9E0tsQ))|wX8Y8=5YzT8b2$Oy+Ac(ZOYHodqFzL9?zi#rzp5J3 zm}?(zU<=%GMN5pmXp6@YjiX*-oS~uK_F?z7DOQkY^lv#C_PV99N`;vX&OZ#gD@9Sb z%e--s(GkUn=1*L>CHQ&&&?Sh>i-&eBxSzONQz4tew3g#vp7RsvxS^9W zR56*2r2ePMY2LNV zUN(Q|GHjZ>ybw}rFyWzH*~jQOYS3R?IQ+%L{E_~uPxWT&?9YQn)6^ZU--2kKm(psF zZJoZ0la7_t?TWqmWaM_k^^G4qibO|bFBPeB3pTG>F-IhDc=tWXlpS?kNbs7>jd9C660kjWwrhmpb&t+M$`Xb;NiOqZ>4qnpaDxnV zYred6sG3CqjRIFYn(x$H;%BOj^ai1_{!BylQsq14-(Df(?(7Q%ZTiE&nVm`x`gy7 zcRuH+aUL>O&j|F#MG1NTV5&#o6@nEdlodpPv5n^}LOoDX+I~hmNM#T8YEGS5I4g%9 z%QbZiiL}@DT-bp3vl>Z})aCm&ma01a+E`}Pbh=&WMYp8?>anv%kMykvm`dt~Q>wp7 zs+K5soECh%S!A2G1McxL z+;9%QvJC#vA-sH6f3)k>hk1|On8y1zMfz9_2UAQLY!YGxW?x@VYwzm+PyoZVX~y$w z>j+8us5E=z;zgOomhS}Jf*z&`9AizsH-hfnKl0j2slSob_Ny?O5mucMKcS%a&g&va zi-EiR6U8xHi`b?nvJJoRvj>{pKRd@TT%$6bT&$*S%_Ea64Ocaqwpb1~obQ!RsAE60 zJaPDr?SVbkr>=46lO0Gh$Fw{XmDxh)r#z61$LLw&;xQ76-8JFFo+4G#*n)zxFM(}> zk2Gb!%F;!15j{^xcR)ha<0L-oygNxmHX-+!?t17+Q7A1irvbhKwFN2$rp znzAk(pMdv(8C`c*Is{npM{>NS>50E3H>J1vian2@m@4GjKJsD7pA{7PZ7iGoc;30PWcP|>aX5fJ%bj!XPgb1A=hYifPg`5d#Mjrd#1YDW%a J>_2(se*j}a2jTz# literal 55604 zcmeFZbyQVv_b<9dQV^sO2>~hTZcu4KT0lCayE~*)L`q2k0g>)*knZlz4V&&d4}SH% z@9&&(e&@aC-+R{>3~{s9+G{;A=lsOn!E!R<4<8UdfIuJ*B_%`@AQ1Q(2;}}VWJK_a zTqOB2_=m?{RMlS5%Fy0P*VX{?M%Uij+{)hEMDMAifvug1l_eV^49Rz}*d-rqihftOY1Tv8-De_XuIdOZ|#a;33&F#L* zXIN=Q>9$<8Tx@X}@uT-q-VX3a@R*pQIGDd|NHyfdn+j0Bg)MLNW7-hNMPiD`BiYE| zWfZ@CE_LtS>u!a~3bpEr($3uoiKnH}d6Myao`NJE18%UYQ+L=7W!3pgqTNH~oY9b= zzXv{ZH6H}?&k-4)_CD_KUz{IO)`f-v-NoOInxOXE8Ym3(Lg@=Wyzo@6iab5*P#6d!0j zlEYnkMK&=mU=jMycy`1n7UvK)Sl;?uA%;6S5oqZ*`UJCYO`Z507a!>KnBv1L`9BsQ zV`=`kGlrSP{*Lp1I5X@o>zw_=)_ZYa5^W31p-n5oFG|YUiCKaN{GhYM@qeba@{_A$ z@VGIr9+u?cgAH~lvcr_U(fEq`4;ubWSmEDA;t!^|K>z4C>*is4Q8bR6Elv0A;@`!A zN;^rZ)vln{v!B7njOdRwP#ROy^7m%(55BxtdH3!yHkI^KR@TprjV~^aq2g+4gowT$ z5K!?d`S`OD(EGl=xY%PZzoLy#6G#Ypa?6qVP0lHB6%QdxN1gF~qMvPOP5QnTC2k?b z_=%zd3}!5nA2#}+=3rr6n=ET&b}&ezsztOM>f)7JLxG7YE3bq;ZKvBVNt0vk#7=HY z$*d_#s58N-E%IEZf^gd+*9!kA~a#uc2MkglvqqpxFEey$_6=q=1CFD$cc?o8!< zC%TEbr~O`d(MmF(SCIJ!!c|q?juWP=ZdtRJ*N1ms3mZC=4dHvn7T|NglR?>yq ztqZf94$RpUAnTye(iB}tnO;n%=f2Eng8NS7Q`Ww4tu=74wf&5a#CR0bnYA~zRbcu= z!`YqTN}K#@u&g4ST%j8`(T62R$Ekj~PIHd->?wBnO5^mnPYRY6IY}GEg^To8R)0(i zu?cKV2vt-tcm%hC{3Jf7p*lAwwF=8Or?A=1o*sKO{ybQ9GJ}=Z%fUsW*Rm^-H@~u4 zAF}B)yS8rPFmX7zt%{6KDieJWz0@H5tP)>>TAmoS!P^^Rv9TfU%IM=9l;R~|SC{Pe zM%{bK)|qm)?Pah==FkIY-TSJ!G4rT-4cF2$@Kpwu$TA|Pd5`(%sH^+RVemck(5@hn z?^Gif+tP-HRBk8Rx*ea$V#ao+EBceST^BweIiD>CPFC4bV+dU_d)*wSBwu_&`Gah`$WcxS#X>z9oWjfStxyvhSZn-nAHr@vF_7xs{*m~-kx^81bn9Tc_++8(eW^G`goQr7-IYjj zlEsN4eRgB(MR+9%31kCMA(C_>q$Om{GCT4)l%XiMChQ&`K&A zruPplUetWOWK!K7XGJ!f`>aUKsG-uDq;{=OaW8U*QFXU^`nI)zmbB_Ad1Uwa`<3}1 zf<0!$;d3jiJlrhjeeJ`?*C%!PsL~>)47ZsU#@Dx;D(dYa7Bbz9)yIXgcyHBJL`-8x zP21Yr16u+yunApF4oycck~KlhfxI_JdW`?ROwDEOt5KmU{WD6+BCC19cn-6G&i79w zELgu9PnFVMo{V07$vg1TgSZR(ZX0+ySakX-HsoR3RE31P;d~oSYwyy)>~0gXm0wrm z|M0eecuCZJ{Lr5&lYPS#50ei{IWwI)j*b~uqLzn)k6&WY9V<0gK6bht5)nZSLd$xx z8@jf(wvVsxS56DUCtQ}#XlQ~sEv5=>mVeQiQV0n(bRAHb@SPbBI0qIN*OEU#C!(nJ zV0WoOhkGkk-G7)Mw$$W^XnLvVb{R^WTj7!ys1cq;TI#{Exfuv-iN+wJPTz3?~M zb+XGZ1pGuzD@M}yHX=sHS-!ZRdFhMqwR4Gq*~82peV)r~O-n?}<3&s{P*0Le*J1Zg zgIuq~_1M()c*|iid>%E1S7};3UGQPoG|xnm!j56@CBy{oaBvMzPJZ z*yYO6!zY~2SXd&f?AGC!onRUu4=|e6=XV#K?=W#+EjwCDxoWFA&O6W3SA-`9qoDqaSs2NLFBW9g;HavL|mD)eqEo-UTlPas#jH3}TLA|a+OJ{gGzYF=ceI`hFvnWsa zkO=h!EaKMSHgI`kPb-rTy(!y0ygcEoz_Unzg$i0RST##H;c9)!*3;XT_MA`ax#u?O&}-NSY1*O^+Ct` z@wMKB>>oc0Pq*QWr^^}4#`7KYm6oLaze1S_Jd6*wUOUz~KFP9;Sa@RCJxBCz4>3>s z{A2AAC6W4p6(NRa*Ny$JS+9nu>Ljb;-SzR2{{5WY#KpX_4-tc7IU8ff8wW9Y+bOfN zk0YH}2^Inj%TtEe&wb}$;gTz_OACx@28EKg)tr6ZmNBca9^PLpas+QE7?gFgw~{7T zsQHSv*N%7h%9Goz&ABfkD_zd5%)jg$pkohnMqkG2y^=UD&SOa7nk?~JG z&zSK(&e@MQujX@u0T1L{UF8wZ_+yCT3*zS?hegpbpTMgx^QxyRXlJTo!MpCsU3K@b zWH3=4w%y?DNUjfLMQM0F`g5%%dw?Ire++LC=4QR_JTtTM(Zk}7u?xcPHo8AxJb=AT zG#{rQI-h>?P#;1wRTuef10GFmno{fb!p(%ugeOnyD)!qKk@%UL+Ubv?f9lZ0c8Zi= zG%8tm7}5@^=pk?5zrl7d6i=P5``^Whj8NR>+Y04rzgvqw`&+kOkCgns#Vv2-n95`{ zXnHm_>&yRqZmS)raLZ&0nVyMN@;&%7%=;pQzi4b@UQ0@nQBfh5O!jm{Qqbk4u$y3g z{rYtjwmc|Kn&GrNC!Ne+HB_CLNW|*|leV@l6h2qCsuQ)fWra*vSQ&Li)2dkG{28&2 zpvbNY2`3SVkB-LK8q1S1HT_vPqgPbua%iYlX6i6!F`lO$7!iR%r;`7^CEy_uk8P{2 z2T0{0$FEMA6_mv#@j8SY9ob*ny1Vl~;WTeFEgPG8`45Qec>4xmyHw#obRur+#`;>5 zVJc8%Y3^`>y_KQe;0Za}91c8&j`QW79v@Tk^UtK3pKMRgxU46k8x$24na@@qzi$4s zHjBUt6OnlHhLVx7uRihXS4n$&`?BekwKXh4(}Y2xXV3g*W@b#G>hyScOjrs;T#w0FScX0SU^LW>U9ZGHn=bv_8S9D+3ghn%(4o`F_`7oUwaLE4DDi| zVPX_u(#YA^N~Wk;Ws-PDb*n&;5cY(tufEoNviNxgpJu(sr6X88VNE)fts8$<f`)bqnQ5{l0VdsR?AwzdB0kfwNohvLbUAkpQUHJ z8om8ljhYVQSFWS%G@I)yJwLapKLI6@E=xD;&-=*#L%?tB_X?DC0GJ?0;_0h762F!JvKXv(Ia|114jbTcw+Q`JEMV^3FrEx_`-sf8gZ? zRQCFbm_9A-w-veAe}k6_#Zt8&GfKZKOBv~)J)rz%Lgy6tXC%lOS6Djpi;G#Qq`$m) z|NhyB4}ZJhQSs=lotza=i4xg994+dapDVJ9x^ZH1-Iz(gOogF$Gju)g zyRs~+WEK}2O@rff=I znrNtmtZbIY1G%#Ys`(}E4U;4a(>|Iqo%9s^?KMJQ{d)j0`z%#Ga12j;s$V+?2c9_!Nlz>| z3#jMrUB6UyfX{RY{J3a|Dl1}|icM)f|6Cp8OUdre30@=J=BF4W*;18eDSlyp++=m6 zd1704CVrO(f<1nu5zP&*uRe*tr)kB$%gVHhnap~v$ZlzE&AtncohqWmOS>p$(#8P&Y-9DTe*Pv}PQc>_#bG1RMP)jZWR+{+5R`Sx4ZF6WVMRva4 zFoadX?7enA4uR7{n}YnGVcEjEXXo;J07ps;MeT$8`PW0@^ieQK#ba~b;yl<03$jj6ko5~Ztkc}$v4?oY6|AU zI=oUD9V=4Rby>5yDll71`;m|CI%^FVg+VMtTdPy%V{1G>6+GmzRnNqU*S#v#^z9Ce z1qDH#($RHm8U70mGA1QzeIF~<+79*p)e&S=sI|?JC$11oU8q|5V_aLapWHScw$qxR z(RG_rbp1pRwy-ghHjPt(k{2-{>#@3WrBP7|eW=Kxg^yaPEw5u3>^+ zJNZ?5z6Fyi(=~k9yB#0zpM~x&4}vjaCYP_Hqg%qI%v&D!w+QB>Gv_7wU2E<3BsrZZ`+-#`^G%P z-wbguBtNe}yI{)qL@veLm@mJ#SzT`yt;LnNJcnDzP;rr3rR!-;&PF`1Hcu(8VQ{=P z8Yd7^Fs3agC@9#IB9ub)CZ5@LMdH^-;%@JI_cw;KFhDYDHn!g(11y;IO+A6Td!tU{ z%5LbOY)WZs9h|$4wbJqO0z+dV!QJ{Z2xwDI*P8_kpN9Rbfpc2kyG?N7>Mi*dv&urcX7r>-26D0(K~gJW{{HO7X@R6pC7z}q9X0{=Kve}B9Xd( z3V*^?ZGf!bJ)OS{tFzm@+@(gbob#?Z?OPptYgNOK9%&~qfXF+Rqv3fWbe>c+kX0ll zj8$bWK-er`Q$C;Lnr^C&PXbn(1bH082!<9Ej!JkHI*B~8@86(#KVVC6G^FG0dNBF` z>v!8`=n=Hz+G4?pgq!?jz6=+que#a<0C9DDN5>v-JP1a+M&*OK4m);RLqkJ5J34f> zCyGvr+ezHQnCj1b0Pzr&m?$kG0fT_h+aT=~y(F;dcVh{8 z6Ch~B#KaTbR_`U?v#LZJjwmRjTJd4~R)+|IZ%pS1^{L}b)|sE!CxM-puTOTL(r^ZM z4BlEVM{Uvh#tWyow_jqlB{B(mWGGVd))7c%Y;1-ag~R!E^}&A^b%B zaSaZd_O_i_kUcc1G79cXIi=9 z{K-g01T#fhqq2M`yYiU;ZO$=Rylz&70-J#0-H936I4`+p=HzDF>dhlg<=q*ixo<} zRY5zMG*#I<>ql3QZ)=)PemG#t;*cU1IDW`z(CnwZ-zd&?Laq?5qkX3MgkYAinz1zI zS{)-4AH#sTkyL%cQ)Ygep;Ak`Bh=1$g+aN(a<)({&wg{LZ8kM16bGguC6VO`@w49$ zmLGG4&}Vhg@YP4uS1xBvrnKT0dNgpQH}=ktML)QaQA5X z`DAQP`b8p=MAH-6ZJlp&z~0&qHSQY=oVGoJdSN;4=)lESkln76LOSNFeL~WrV7!0J zI2&@xnpTQ0TYmEL@1IOq(Dt<}QEyiqRKtrov{F}+H0`)4+CKGN@|fm{vGYFJH5>pH z)kpVZs+UEQXIx>1>(1)C%=6U`XB}w%lyOTU|6sFfx^wl|`{l{+UfLwxV@4Qh+Q9b) zYqV`rXnCBOFc(j{>6n=S?aa?_+U)~J9n?Tg_KHOD1#@a}gVS*2U;3ZTM2vJF*+EUS zC3six*>XW0%A4v)MV`Qp=}Nz#dZ%IIfvD|7YXQXc;Ee|NAg^?SLbc8_sDpRRMng}t znrBGTt_JWt+YcM4Lg1r}=jQa!(Bww})iEt8-Ul{ALrUrMSL(@o-wM;HK zqZATx|B4tRSOAOtEm8kN5sT_aoEkMFj^UBL_B8pDi-Ljz0f#A$yu3U}z$|8C^nu3! zA7n~KQ9YxkW^*}sUw^*#1Qhk>>q57ia#nze*`6vx_44u(yx5=s^y06}-G=_K$85$E zg=BZY0)QYsSfy`UD1M3c;w!+LiMqJ(VDRrj*bIBDS9O0YK@zyXtL_PWEQ%Ro{~+gh zz}d2SUOAJvZL@%|xH(r><1yRpkNTC%ibVV)kuJb|xf)fU+ey6=0ogE^A%*W&7pLVK zys=?ie+lEulu7F9W@_lkeOIDdW{Mk%$DsEs>@ok%*>dgin0oE$oZHC`VC{?tzTK;F z+(`qhC8NMUaLnfWU4<_b{rU4NX=yYdC`3|-E2{~a3_W9IW6POsPmd6My*pR;mEWaU z*u}<%g=^Lx+vDO$cjSjWBv-90#H^q$mPEjH@7EJ6$fwv?vHoO%&B1gefXR?_E>Cs< z)1N_wUNp8jkP0Y4qC%$im6b=29(gzE=*(6-0N{z_?Rk9>85_G+Xkl;94&(q7-=@a> z<#wQGAc&<$ekA7m93TJS1xUMeWoDcS=K#$m+AIB@aND9g1=6M%3|$nseQ>>x>RUZSQ3MLcQf+PV$N?d!TIb4PHkM1q!4Xqi%fGa|e8;E*ku|#=hMt|B4GM$FxRT=HppX!_ zr(9fd19H>OtDinSvbD3Lv#=^s{lf3Unl2uZ31H!S0|R*lh2{`kI&PPP6_@GokPyA~ zz9bGe=6{}|^Y>Fk+PM)~OqB+Y<*BRG^a2pOIbJ{txf|*0i{ldq78Vv9JUlo#Ik^|$ zIZXhO?dj?1o#*s<(71Jc9N#-6d1?fz9Cp)@j$rYpzweLZ z<()8$&r{JZZ)lk5F)?$lG>%ORsO}g#6)aNHh$bB%?hVyjZVqLXnooZA_J%;#dcFz+ z8UkSWv$Kgzv!n84i7dB)H;LSXsr=wXP;){6s_g+I0#U7Z=h3Wjbog-zCL$^-s>S1U z)`+PFELurP$yD_UOEd!Jh1wk>BO{e*DcRrQLF2blOy2CE#{njSG6ZoW}_z} zU@zi{DWW3Hcalemg5EOhjr7@pSarY`v{PosWJ*m z$_$016wixbKtS6b_Hyw(Q*Y#~P;z$W){)u(T#AC4S{LAayGu=mkChoQvpl@apO+k$~$+>U#3;7+x6&B;cS*$ycx79zT9OI##t7Z$`twaK~Of zd-iPLhdhOw?Dxf%z{4gaQXS3&Nm<$TfG3tZeTh8g)8*kpx99x;69QVPQAOLsf6{!d z8k(Q(a=3Pq>iCEJzzy7TJe{$_=A{*!QSwU^Mi<)6WN(#j+h9$h=fecANT$>aU}HTFUSz zm8i&cGG;scmgG-M1=6Vj{g?IUdYDzV|2HWIzu?n;?bl}FY>@qd?1F4O7Mn>yg&A*M zS0jx5hZVtB=x5v~d?PMRZlZNB$&ffzCIPk`?~aP=Pd!T<`zPyGe)_DrUUXes?Kc}P92m4+`Obm;F zK%&9(T0%;yMTfairwPs}kh-j~i3eMPl;l^ekf>s*5w^{8!!I11Em&b|=)1hPw~T%I zgD!ZO*>AfTKB+&TT!noETe9!15_*+^oDJ@ruv;tqv2sofn5oaPvA+OkC!wK1WVhC% zySLB;0fJl=JzjbW#<&cLaFiA?N)U3!Mn{3U*X+S~AMy-z>?9|C0Mxty*)(`hrc zTVM3UbCQ6z=1(+x`(Fw$O}TP#V@dpYYWkwDb!mY@UZY1gKrz=OB2qiNk99_a3Xrk? zst&}J-LGc(o0Nx>I5oMg!{s9L6*Vg7+C(h$d=i!_Uh1c#T@kRxO0qAndvUZ$uT~la z*wd*BD-7>Rb1EvT01z3}N{ttbRl}&T+r;hO*|yWI7?G0IYT|J95X*KJX`C=hJG>(z zUn0R(cD5vTcj|D|_nNAI1t^bPfd^hSVkiaidncS<>bi?i4~npyt&py)k>{W&4*W}+ z(ju)jMD#v`Ip!z@!$}CaFSb}z?Qp1`HNP02O%4s}csDnXvI~POzav%lWbpmUw^-x5 zx2yGNZN2_Xqm4rF6D+ZF(59uHhT1o?kaB$)Lh(_ce&rxnP*2MKp6XB4hUI6q zCA}GB!9g8XS`!fJ*F^J3O`Ib$52U37@B3RKON*>Lui$Bq-SFue_EP<@4R>~l7YCdh zKzNJ!`n5Azz>R?Qy+nosh{hDOw0CKJSXStbm>8mZxp^w6K=?1WOBjRu7xdHQE1W%N zlXpI!h_rg-Du1b&E)pNFLTjv@jaT1#?NQynKmEh*-3R|mb73P9kyfxPp9*AcF_FuZ zz-e!csfx6&3eGBed~Wx#i2sC5nIF>OVR{Yu1j-G_K%uU1-~ln8iFy0n>K`@yZOu+ul(^l`Z(lT1uB``mH1jS_I7)J^#!<&m zO^1_Wu@xCj<}Ii+)vgaWr^lt`0|L@tk4lqamb%^QlsV)!rs^S^5DL4<96PLDP4)LR z5y)jt@lxUr)Y=J!IOaOaE6o+OWR>%gdfh^}#Fu96lQqTHtJnN*Z~ECUho=G00k_L| z5t;S*qLS)Ij$gjf_<)P!!z811jS-;|Dnl2s?OG zKY#0}Mxf#!Dli^*#D$3&N#__@P=i>95fW6H3`^ZH_2|zB9P`rBk~6GoeGdo(+}vNl zHH(0f>f_^MJe(OWd@WAu5xuaWL*lX$8TwyYk>}$M9_L!|M_U~g!rE!^4-|gc!q!C8d0`j50V>s^GiGCazQLn8EpU zZ=r6E_dwG96u-qCF~ql9E1V)|w07@q)Kwci1#U0rZ}(15oz&WXQza;#ipToXv!1$VvG0z9nuv%-j+94bO~y|4+S^%St_OZueATqv z_=iF7$ALxSFB<{@s!$9_`Z1th9Zna=fB<6n?4X;;tahjQy8XPc(}JU3yNVlOTDj=f zH>*+SyH*4ld-ba1Wp&v4rR_z7U8qolluoE4QT*uxmrbdCGaTWgbT*bR{0E=o)LPq- zZ#NK0cYR#k7ACA@S+jRBD%u(a7@GQ5<_PLO{MMt(9RP(qt^fI+kB7Nrp?uy*4#@wS zX~H@u4$N%W^^+J`p54w4Kaft#eV~LjT!NU9Ig|Q3PXX#PdO2pr#)uHFBZpd9z~RSN zU?rEg6q$0xWi=-)D(dfHdvUTetzV{PtP|;czd@|1G`SWoy@2#_|7k{(HxeK+@98kd z8((*^y3GQpd#7J=7UVB%+|H44S&$u9V>qg8EQ#L9>E|`e3maC4P8?{3l+EAQ2++!P znJdJa2C=3CvjgtErV0rfLG0aXL=E0kLaMZk%-g=6vwR33FfjPsl3`hzqL0&;#xU$) z+*6qpC>5uwsdj*7u8h6yVoJ-tcJdvB4=5=?Rc1}*TAt_ri09=QIHW%bUuul;LPtql zCjT!q3XG;UrAY^B3u>D(*-zr0@sBX~J&lB{_f4hjKOjlVF)75<9%YOoP4&)F7@^1WwrlRz zi3y5CO2BthAxvbKL$0s%G?KfJK~v z!EB0F4)$jWb?dU!QNJM;MRgJ_h>Z()HsOKT&R`Y$)w2Gz+$YvNu$xy3?YrK-lFi?GwllvSU9X*GtINa3jYlK39i24C! z^NBb+TU%sgj7!>#%;^zT5yW01Cu*2oua- z)<6Db#;J|L^gB#xIa_^#kq7~qu{VKh_~+Z4L(3Y=Szf@7s8-oh0_l7KsQKtnz$pA1 z1ppje-1O_Kt3~fSu>hgd2CRSH1qDn(w^wWcZJ19K-pd)?DqVI&GD?EpTwj8dn-5mI z0kJ?yMwZ%jv3?_PaBxt2q7iELJu?#vAKys3ud9pv`SY!`^4W5WCwIv7=IWduAf*#q zKwzwNMm+|?HUv;o+cQ-qhWEkJjY$7(vDPTIb2B#occNfNI22^47T~QV9=p7_fRmG# ze+e*rwqn-D7F$3F{8#GWUJzhApksL)cGhKKY<(OPu3dl|MeuEsGq|?9C3*SsrMFXx zna#(qY({#V2_|5{1qTPml|_Jh*!2|l29Vx@f<}gVUzv5`oMvp00NKESlNS`^eE+wv zeC2b}v@iu5+pysG4R^qWpgb%SKmkeZ&K2<5;oo_IGbOc;p`rS#T`>Tw=`#}qg@wV_ z)^G)u^d0*kpc1ef%atAX3*0WuuB#<3+cUKVV^i}+x3{%LCM9{uUv5m5(E)NG1d3erFKl%^?-5pFSEKDqA4dwmF2J0>2Un3fg^ zR*I({ zY^G|){jfJzwa5oh@UyxeCML8uH#Y>~Vy|Ak+B-bFU&w?653f_C3ba`ybJA$p(-&QR zeVIo6$sEq#Ve371b#AAY@myAxLhXQT$y2(WX%K($0a>%<)qou~smx`d3( z8UXdO8OK(&`-l**L5wDg4bY)Kw{XiHchq1Fw>NaCphVzLzM~C-I&h^VB%V@Gq)+jV zYuG)^$jCT?%_ab0hmgax6|e>_*T>`c&bD$20DYq2H0!`_HJ1pk$wyydIvVo7unG`! zY)vQNm)LB7_hh8CO3)2?84UI1DYpRowkhxUlKUSXfupCJBB9ia8^}B}w zKckw25b%Y-M-ln;>$@Fy9>pvf2UW|NN)|vJ-q+a}NJS&&9nrn6>IPDne&=UObOYeR z$pQuu0B&XCFV(Z&}2&i6s{R}>{_$eJ3+*)w@%1t-q?FVg_x}EpF%skGw+De`P!_+7o zz#{WMLx13$SGTP42b&I%02?6rZfQ-9-u|gx zk?%3v8AZ)P$RrqnkA?LLFpwDsv4Y3Wyrn8J)8;Pg4R=2y7NcPk>TZheN8_QEyQZVR z9S-<{vM(*Fhi&z`D0galzf0wK2?7T^ZI?t|q(^Yjh@(xxt%#0&mMK*AgWt>3$eJbn zarjk#HGZDB0W(BB=A_&5Zqp*`Lv1RXqmp38u%1hYvr>47m)DyRWyNNzGwfcN7vKT# za$+j*ZaVZ)49DReVg`=433>bTQxCTZlRc9eVh=saY;^$!RRJmX&N_C&3i?*q`uTm^ z^lZK)diH!_DK#GS0k)N7FxFMi>Z86Qbxg*;+4T}!1H=g!)YlH3_<^osQBf58wqm5r z1dMW>KM(0i7WK5a&=7s|jW987a@6Ka=zwXgvXVR54aNiX4-|BC!>Lje^O?%XZ{MDR z-}DRk^nam24EvLN0fDRvK2x+TG9^XZ;5@RF*qzPz3Za7QA|81(Q4_xucpJj2%j@{2sYtY1s;);*Fw`-uJ-LAvVV%BAM zbiKiIHx|H@yE8vDq;QJ3B+9wo=#lfYKp$RgZXm`edBmkavN~B)czu!suq7?S{fAql zIh&(7TZ4}H3IH;npPhjw4EK0;lV(u2J?3+yzmJIaO*Tc)9DgRuYeFDiZclAHsdpa>qf@542_$Wjg~Lve9EKO^>v0WcysCJgBmwB;!Ub4YTra zQ8%*4neeU{BdX*|u|qBrgYeJWN4iZX7a%+=F@o8`e*viT?Cg(+GthvQYq+OcX-x(=C%?eJad&2Ax+3BHWzcG*cXXJ#;!H9bI`;YIqBh7Cc}ILB zZJ6m$(I(c`d3%xJ&l}I+xe(Sxw~!jyh!;nD%MV>0eFlRVFgf>~78IckJ~&0;9Uhxb zds%Pg)E1ouQap)WzCCR9ucmzgauWZuNr(J@S;*-j{{H?T{Y5u7zmlfH26sfSQTeC^ zVZFW5KI=iqJJ#)0!udOd#mA3@5$OO}Ne};W*7SQ9905qnWX~t+_FY2B2FvHv*&Lfc zMj3V0aC#$6O<_d<3!H`KSs|D7w62>TbW_Adi8;&^!7IofbT|Qj+}G`?S{F84T-=k+ z%_pEDh!DEjSo_iXw(HQY$4sN&ebRnE1BU5*OdkJAj zvv*P=kIOQkxvHZ}r1?NWS)Tk&-hpxH9U8bH#)Zhvd{F-DmZ>pm$k%?RW%g5MVlX(J zw=A&r*d9(EMdU%>&Y%jRi-(tcjBWhW75L^aad4 zfXX*Wz!j0HRiI0heEVGI$w}q%CJE8?g#}zZ-QR}HrCxxM3zo3W6BfC0p)W#CEy`m2 z{f1Ah%#0n!MS#Me$=C8%HJ}Eb+**Ki1tAEJvw`a0WLl(?M}yReqlBMcKo#@opBiP~ zkc8)DT}K~EC(h2~-9PMghoTQ0zYm>_*=&12Nn}=uTY%H@NS{=XmiC$15^0kT@Kvk| zI|cr=h|7EjfdBhg0ll3ny5%^kcWl4MyKKvZPNB+YRDbFq8=?QL1NGngPL2EW)iTG` zG3VXTMRJE(gQr+yG3`V&R0MN=kPkeNQ|` zx9&9%z)Xg|qX65o5h&du?+p!E0c^FbTE%m#bK9+p3kyR7pxI^7AAbV~sk;rgfvn<;QG_oeYKFNhvL?gVKoaM1WWFjdzAp&9-7r>h6zo!J*a zDDVM8wJvtxHrjyP4^&Unc1zi4s)!O z+N2=ASa+xX9Q?Pp%at`rM3HZPTgkuEf&u%-@C~%?!wLO}$oTlzpzm!5ipQwYQR{LD z%opFke}@3kt?K3iO1HCK(l2-?twEyW;@E&kK{-#Y4Olb3u;?R#eZ~EdkX>gyUlS;> zLzL}Qc-fv=+d#JXv8bka7d-cfY6+DzTb$wfw@Dyf%KD-(`W88GmU<;4aNk z&U82HR%5BcARlwN6_Nqa zoS87(etRNvWJIYkmgW*@`WkjG$jPj!Zf{;P?)IH{}(lM@vNtYLBpAr(f!5{^H z{8&B?{e$dpnu4Uj*gu=4niC&0qBT!C!Oc1d<&M#A9W&7`GP}XBPjV)ORAkgiWfcim zZstgaOT` z)wsh_L}(T>zdqjm1~*^4>wi&d*BTm$9z1k(p+A1m z1o8rMW(5pFe(8?T%|3>5fmUy!Zj1BrsEP?NY=BxIIy$;gukC?MGC#@-unG8_VD_*N zU}Jm@b@7<1cA#sIAkBK4ql~_~UN3lGI*B(1iNv`vHCZdAF6y(U%%iDdS~B_YiNpC( z(8hRUi<>$ajuLJG_hLqlEhoi2E@BzB)@o&^+cq;4I;)-kUS>Md{ANAw$nDm|hcHmP zP&4I)*B14!{dwrGgJW+arUjv6p)fhS+wjRMzfF*_X^v7)4=;(nx}o`gIt zz45pt&X)BMq8!?mY|eYN%;|Yf^$^_h?4imYwA?(+3Z`YE4KhG@ZpszQYFma9P8=rN z4+Mf7uR$0%Sy5R|Cgv`^Sf{fTzI(o} zfSG#(+7Ga)W$bApLPIG)=~}O$s@ehSR^aI{$?#ZNU%y{IhXeu+h&y|d z_s*ss@X9!@>VhSmRHB`tsGx9mbGggodBqL6BO-d^Irw&=cEHCkbaO_bqTo@4r?M_4FGvJQO3(Wq|4GX}Fm0P+~vs(`> z)X>uE0}dtPwIo0p{M77%9&QG&_bbmr4^6Tf5+SNJjtr;sUbhDAbY)QiEWDCasH9k2 zxlB8^?ril+^$B8nq@f3PaBUH4%~}EE+u51q7JH7@r0fU&T0^=W*zNs5Ws7?Y16vHG zHMbZOPpBkv*>rJ?;WRJu>g;~AXp|LvBH=@zSN97 z0atZ_=Qs5Y`!x-7qWxT?nbx-~%KQhMJPmLB8k}^W7gZcBeN4Hdw)Z5n2Jr zGz5*%ACE?bDinC,`7mHEMR7qh{kp#H-s4(W090aa5kROR`6#d`rd5?5%*Y0B09 zA^X-?xx#t24^~(`)tGFu@H;JeT=l#`SJxN78AnD&!XqLM6=(|$4Gn=B zhhDX?aduIX!N$4|ekd@oXjOI)l&2yyX9b}5v6_$m?@Xtv3B9ZvH8lV{-uH}*{iRSQ zz@oP&^4Jl8y$1ojzGZMX&O-aQ-T9}5x&)-{vpcZ_t@6W*1q04|iZJw+JbL9b*i-jv zBvu)pPRQ(&=0a5oWG5&4Im+W7JN#DMy6Q5>fz$fmjD(p9W}YN;WK2b29G)~5`^qWY zW7ulU8{BJ`KxVGu0o8pCc$fN&XsJ;B_=uoIe? zGXuBGH6fTwc(2=PwHv+Zv+tg>TV+lLAH@;6GF@%mL&IHL{(d16Uk>rbj|9%ezH_;4 zc30K}$>*K1^gZ=YhX?fRPte0!r= z;YUSoJDO01ow)-{Ca0ayh!)xQMU39X+s{Pf!5YD8LSZ(bJu!@cr8#*64pd^Tt*uI1 zqsK#1OuEbjXTYhKM5ri|rFvHgt!LjlnDUXw=_$uD3?di_7W(Ymr*BM9x3HqJHNYb+ zyla3tyy_%5b4}^K<8%T;7bYF#bRBAwy=oFClg*@DgPq}WaFeBdmnq-o-hUv|r0waa z7~2IE6=|(fCIt;N3q2leiB-2}^PXq#E5J3Flym;qCYr$aGID3KErK<2ZM*&FiNZD>ey8f0)VxN`x_9Orw<8=UVR0&2zH_|n9+!iw z-aqj3GZJ}O?*(=t-8_qp8z-uDElw<{E$A;N2d(0#{%#h%lRICKv8%AkTnUyz3V;CD zZ>sP)@Tqq6^_5fCyq1!30pAbtmCuRMu;l#nH0UBs&CShKaFI%JNq@?Z68DZ25(v@?tCNf&L7QG zBCJ-8j^o-?RE`fL2W|PK#@kfj(UsmV*RA9yLYq587&Vt`sN}sCmI=bvQ;hr6Z=v=lKpQMg}wC}_bw~XqXAK(x=ShzL0Zc_jGHlEdPMIf!p zPOFgLwc7+7m{wmCdRH=IL#3oN@!~473#a-H3u5?uc#)6&wNDKe)pHtT9(`CJ2MuKS zB&>V0Gn=IaT(cZ^-#r5Q@8X7Y3iO%J_pVZ4IwSKiYe{Kxj_lt?76+zvCEor%n{HNa zIs2PzY{*r(we_Xz*2osUztR2?)CK4kM_Z%NX51XP9HEf^j`u=IAM5}%U?cD`0P&8D zmp2~xdhLJ#wD^7JXTk`h{$>vMxn<1y*PbB-pHuXXqjqh6{_q38E=>gV5L(Hu==q;F zJ?#B?i(!Fa8DaBQWUlkQ_jH;?aLXYJ#5Y|oO^UzSVsMnYI_w2h&KQ3!&08eDaW~=B zr|gSyI?vL>9uOV%-`Oea*#-g+B_BwwA~iUpgw3c&DfCpNR@+M;r5J# z9Io#+rCJJpW~MoV%q0WU26XmpVJM0{eNF(gSl#*|!YHf9jmFb&rx`Z!xqKOWkz9;7 zq*BuxLt3Kr+7m|U=6W8CUVi!-)O2~%X{m~Jhx2!K7oiFp8@Z)XQ;%Y(Mq67OXaVNt z4<6J+&$3(v2!57009nV)_v{)8&EPGE5g}PxS>4cRK7c9m%eistglRC+a0iG{-M*>-#G5f){K|k3+}#Ry_OF- z{f>Q6bC3P;MPl96N~ zBC?rsqg5Rq0XDe3Mm5hVqr8-#^)NY{7$@!5Nxy=P|cnK@?O@B7|kI1V3u zl*Ow5y6@{guk-v}=Ozg{nEKD2aI47+ciVGG&A1iRh<*OFr7SgJkdH}CarnWO^HZ&+ zDl0#YY^^}pH2cFXTto=hy?N|0aCYHq#Tn;JnBqGfi8^n@NIk|6HZ$ymIvwPPbD{5&Kb}z2g$v zlE^UZj}Bz!?5n?4$7w5wH04xp$@V@x%Cxu_HftSQ;9|+r$q?I)&W!bkG)~G*N>jQI z?TZsoxhyF+oh<+E;6OIH$d!r`yz^fnGidzKxA=>5Wqnqm#__p-y~YF4;vB<3uS<`} zW@1^01vP0OK(VyPvm=snX1LB&TR3mQ?ecD*t!nFW=?G%6GZMSG)^jQmbWIE?E8&m) zx`xdGvXK-z=?Z<-(&mH8&+RUp=zk%KD^}bvo1#km$6Z#w1I-Z9(Mytt5z`nyEHp*s zGz>8wVA`cJw>QZv-GRS7Q8Z^f_R$ip2H%BydzDipG_pFZm10k!kSXSFoQ(B>=pTjH z%Wi-f(8kMTnB>M@WkBLO{;2Us?U!WO;!fXA6qU`jan*j!?jE$u`wH{J(=G9538dF3 z%_1ES=9iP(lBNrtSJi>!U}U|w4l$^|RA#h7Dbj-C0VhB5vz=^Y#F7IfL)u=&Av#m) z@?5Zoa#0n3#eqwb;;BX$bdKVg3HysTxu;koBt_8;e7nHxNs~wA^0N1!LQn*489g zlU`AA`@>NUWa#mHeX`YalJ=-9(ggyDcfP)J{1|Os0l?wk(eu81{i?e<*?8jQNt>+^ zhXNb43@{kXa<;xQ#bK=EcpS9E>bw(nmDZ3WPGtql2yP52Dz}xgHP*nl5jO zZc9fSdUgo!y@G&?K-j^0+))zfA)C{nY3I4_Si9VKAjT03>;jGC|CmDu^g$2>K_6U@ zJM2}r2#$^>MD~n#Hw>D|seO=(COYdc)QITN(7Rw60CXD&bbD3rzCPx+2#WV1pg;l) z*k@>HG}EfV>=0#9Z8iDuySuV=>}gzV2xClb4p}fUF`e`r9@YTy&s<~-1ES;xP!hL` zP?B)Mq2i08>95&NczfjlN&(rY#p!?M&AEH$jta;eu*GLpEqqT?fZ}>6a_TP;9Z0@N z!rSrVYQ*2mZ17@DgD*;Pbe^1y3_(l4#j{`lCXRi$HfG>~p1gSVsy~3p_~`yjNlsF}X^Coj%f zTG}N!9+yp1#2n(A-`}rNY(C=5Fo7I3H8%c6?20YX0!vDe;2IvB7;>x+CL05Oj@8uM z9l$0QtVN9UuyUH*cpUVI6kVoO<%|Kc*qbc%5_t`c)?%|E2}wz7rT)vxG@!C4b@3`d z#+*nqH6tV{O6qBJB$HGs9k26_IwsyNtIk9Cjb+v;E(@}M&gOuF7%ovd z&YJxj(osBF)*=8*(E0X3baNVcJqk_wUSBXTt<#E#iP2od!>~{yMc)z;q01fdZu;~o z_g^bfmUeN5!K|P~-OJX4^v7dxlpu9X<=6v|<^my6^Cdph2tSVA&B8O!S%aE{pO`FbXI;`wcj(xWCtEhi!#aXlitqSoQLKugTitA;vROH%X$ymtSw_l)*fHCwqmWJQf za&8s*;A^yj@0fP4J2xlncW5Uw*v%>GyNGONW?I6vg z;VByfP8fCbpF=tDLiFW@owITMN%%@M{sfoV^pfTAQ-p2LN04zqQAz1Dq`F|6qrZ0T z&F{G63kXowJ;PZdk~Q}7wqblDEclAu!~f&c4#vsP9)T>(-~R+rar&pBoCqxop$Dzw zS}HQ(LoM=$zi>e~t6;-TQ~Q&ElBuNPLO8Q5q_8>oq?Da%GHi>KxR8lXc!(h5_3bj8 z!S6+y9YR#k>c*F5#WrGCBs)m&ZviM(NHb=pw< zI@P}@G1^C1+6P#&g}xK)Bj;jYYA^;-e&#c1CKG=}sVi%X`St-LR1XVPP36%xKX}40~ zTxbp5g`>@{4rQR0T1SK0fdT4~huq9Ok60p1co8SaS#T#ue)Y(>W~{Rs>L4k*P#*K$&vO7n@zY&mAu)6FY=z0M z1Npuoq)s|T)_UC>Jcn+y*S($jli7m<41N(*raI$lOXFRMts8f+viL&bvKUYr+R3?6 zFZ(E0<@)YC;3}g6s!O`}#>vZO*G;eKt#rB-zGO-RfFrWt1_Vr%p<^5R`XV8@10~Go z&w&?C;o~R3mXCo1reRYAEekQ!AVmozJv}(m1NZmSPgc;OhU$2|KP%VdHLAJQDCem| zen(t$2q-bTrzi^saWEBiK}LaKd-rDe7Z#sGDQff_e@oO=wLh#=4PRICeeVV)n6_ZJsHZ~fVCk|&b*Vg zJb?5v_IK71!@!mMuOEY90Aj_SU_}20q0?95Lzf^8i8a2w+yO8Ar@5Z?uMuLz3tnIr z!q}KhlyJ0WcB$E{)U}w@tUrjin3_AftL`@ zE?2G-LEanlLvHRHFf{`OELP+8$i*ROZ7Zk(Iw{iOOsXNW3)GIT zM_wl1HeU-|lA^Zaq&_2IT*`0Mv2%Esv^yeN+2Zbuj%c-^sp^{1lPT@xdk+Xp7;qEr z4kJ!T=T!FZ>jeyz?n3kL_}ZS0=h@HoFkB8VN+-DKQWwUa%YuGT7Dob3&YHrLacUwm zDVrvgcyzy>!8Y(d(XjgQO)Ar`pHc+wNrZ33gKoS3@Y(JviP~l(^oH}wdcpqYE`V8iByZvQpf+0k~X0}0lE^O%84Nx zvnq1|pSx}yuAVV3$K(I-Fe&lw`8Y<^w*s|VxX{Utp+c)7P@(Mp%4w4mwSfM-Jd-B7 za*7E1L&6IEJr~|i`(|Tn_qTW3o6ElYRp3G!$BdEP@aUxM!$OxU01N3UoE=a*G2|{* zDXLj>vxXJ)l%)kN%GmAOWF%HW{bz=P_>{XZg6GLm*v^$aNUqd|{Zh;>=9#W|;(My| znBc)p1i0vCwH>i)D6ZAjEudXqd?0EExuHj7F`ti`f(l4@V?wABE4wSSaYg1oupXj?% z>SiHH^jNOaLLkMO=-c54A(U>Pf^$acnR!kfz35z^wwR}xQ7?(FAo@dp5sN;4gm!8U z3?41kwY@i4nX_+VeDvg}Jivlyoy@mqxKAbS-Sdp4lor<;GwzM03uo>}hpGqjeq;Lh zc#K@DTjuh65XWP<;q&LuEt_Z@ za-kRk$CE^kRuwZRC)(>Itqy=ovIR|%`aihEK5y$Av|EkO#lEsvu;Z3ykba)~nzPN!rbq;OPeEB!eaHEHw@LQz1|d=3vQ*Lqr#)??oa zB8~R}<+`w;<@}QYO1B*VD7@vjyNVo$kz`0ux+0Pn2gc(Hf_(txWOdYKd7xx{bu}J% z9{`65h+tPQ|5bW?332o_4&Mdp3Gz(A*n}KL5qLP9-HZG703U&|-B)wyQ>TLgl)60d z6ZjTuIMrnSe+kN><6^@@Nk}c?9(|5oO^1u>XMf%mByYt9=?eJ@2&!3B?|eqxKW-FH z3igcLg|6@!YHGshGTH2AVAzy_mktvcOb~v7_x3Idb!vQY&j9fQM*m6qamhbX`;URA z)#eb}0O=rr&V3sbAlvSTJBE7t`l@+)I6!Kd04~SJ)YO+rN%V+;3RoZrrj(O22-3?u zru{n0Y75e!Ez-ee;0C7B=+vesR@$tp0&5!~I?1s|ds9xSR;Qb&j9dF#z(AP?U zfDyv_So`sHz4*d!kg3V0&hhC?<3qX2Y&Qrx%^>+@?C;A1o5kH7p<-j|K$r^zEl7-X zfQ16HZ>Mo|@fACRoWMy$%2+BKuq8~_~ve{SvOj6CRI0CVw= zi=)%o>ur3>H90>|aQogp94O5gn3?fBf9ptUHYaDFfS~fpl&3pW^(Fv{GBQd3HrbSZ zQ@8%aQt1>CyiC{MJpi`oYe=URz(at9&W}%5j;*0qSpj9fxL;aYrhpTVzz`I(wLv3- zmQe|3UxqTVCv-W>r*HZqqdz#Tmr58wT-wyNK`Us=CV`P$DO&>tuon;pp<>)C2T`Fb z-#`ir3k&1zO+z9`$APdjF{K}s-8tlZIc7@xP($07h*a=Kt(VFihSDGrfBzD*TzCjwDKp~l?}{tvqrULhy2 z-YweLV-nH{N7D${BLwqe(}BrC{j5M3wgAjJEK?gZySeXvz=Ty$Q$xVde=uSBF=Pc- zPek#U)k8WGAW9gt&a;=YYYv^2GF9q8Y$2+Jg6=CUiJzu|MA`x81b%PB436{1dcq`2 zd$q3&3N--^Q-sX}ADG@8?PW`1&4&-`5c_6dc8uE|EVq!vYcq^<`wR+@#aK|rQsf2~ zj0j;8ICvgvQv}&6pwwY`f^Zxh5+a}0E-P~IX}HV=`54lKu{WqkU zg;0rzh=|GM2!CP2NaZj+bU61tV8t zLwS)&A3s~guDhxbEC$2$mo9m|diBb9Uc;u18v*fDI9QxLdlqr{9jJ%>tGw7hr_f|K zfOir>@cuo8Cdh44`dDDHkPF@VmR+r_)B&C%ru3zuvx%J&ko5<}Khu6;_gKp6Sn?}` ze4no!Y=3%?k@D@f@HYkg$X_x;_m;9spY z&x=hZokXvT)Rer*>aMnSqPG4FEE~T40Wm`1!xLh~SIqbOpvnZ0j$>LC&dSc{%@&U# ztde_oO7;%O-fmja~3jB^yuZ6BUt+sAnwe)}!mFxe?y z9v=|0*2zIQztJS6Q^#o-5vNUjH{lY?{#=>w=F5`(e>|hbXpqTkDd*^&Vo+7X#P_W2 z6T1p2s&0{=FNXh_eX}w^t8P7Sy1rGL;xg{Hd95_igMkFMl?~z2 zo4xkgIT5@jBxQVM$t#vuAO9G5!KspaP;q#|HJ5aB9y8E;m^ulmiIZu(nYunCO+Fat z^3L7H7^XfoMOtS|J`BK~e-o6e2*5ILVqu94rL0-l?Lla+>7GP6?-KFUY}^9-V4a%o z#3Rw`W#{*hVA*$C5n3M>^;-W$bYb_-TMttoa^I0NZzBi7Pj>7-ma+Y zdH3@Bla5U9R>7g=6m3qKBbQt}+C37s-t=Ms9#xjSZN=5YY!>4E>2()~hrSL(w=;GjV4 zIX^#Na+=+3Zq@cFr|*rLTz-J7CLDeXOm>h-+Wv$puNL&LzS)$wvNgrAv66lD@5ipR z6QxN04x-sf4ax7F$9`rcvL^-;S8h8Ko#?TUyyw0Fpqa@rk>|1!jzxBGjf(Bjk}az( zC!|(t`^rjTtZWfm+R%?mqX%wLjjUcijVlsZ_mtm)#^l~D2if?M=!na?8QOy1OF#!qXuIE~Is_V;hk=z(Kpgc1(Z)!69l`!K2pFgBM35hk% zs$XX{%WZ)PP+;71HRY2{dab>8x!GqJXF`{lQ2Oe0PWz<<{Z})K)`@^`;{Toc;rrkv-kR$qP`(V&!3qzZ~tc6O7bRaN$tki9bKo54Xg*2`;iZ@+Q-UnbLh-& z6*FmR&4%00r!#PMKJMoJ*kVCU4%h=bi;G$^@QTkYdi9k+*6r!qgx|vk$61R84bm|9 zG!g`Aol*y)%bUaQUe|;3S##y|Nv!$*sSztl0N~!<-nK-?IA9?L@wvX7j`o=LcTVh6 zi432DcCbaIuUy;N3;FenhI*_ppdPy^rVBo&M8e{f{aEQPj(#ND`t*{vn(>#8Z9KI_ zr@_=Cwt&lpT@z4RK=WhJ*AaS@rL9@NT|O1p1TS~mC4(o1;390&5ZeG!1vt3J0SosS zN&pCW&G+R16xt23pJPBi;RnzbfRT8MA(mZ%!g72skWgcd_l5ae8M#Euh#>b77Biqv z-MB$Cck`2_H^65|@LdkcX!SWa^j@YM zU93~QX(pQ$SCDb_4}|We0rCqMq$DN%_nw`NWbQBaKcExD!M(EKOc>wEE<4y~AUGD; zjUA`9zoUtzUO4rwQu&LNw!d~FWddD{U)_)3$ja|Gq@Rsf#pW{6@l5wO^Y?m3P{dxA z;}A`y+h3&O(}1Zz-U{cQYElgPdc~LLC0({wtYH7l^TW06q2nBr`asBqOSelf;1wjt zTl0$aI2lyrO&4@04M*)ofA!m%_e=3YYi2djCRgDW-BLM546BR7nYZl4 zew^KYS3CTpHUBJ>;MPTHbQm6${>$+~)|81FRr{CU>;2lmHvP&@XsBI}uxtvp;`DRF z!sVRVqCC$PV}A8|NW;=9VR!e_A9~TGB;uoKhF8TSGy)`;1%tef))a6EVO^O5Hc3X~ox0z`kp5q9i4V7IViBm013@WyCzY4F+3ndprd-MVZOKiuM&8Uzx_v}X z(9hiw2(awPizPfr;vRn;o12*<6p|MXJhr+fy^P*sdDHYNl1*dFm0lsQd2ti=ER<2+ndO9?txA*qefrHrz z2hl%8%% z?)%%4Eg0bT8@BD1hVYQ@!$ebAG(_746h1yk^SY8L6z!B<1EW3QNrT=24j7ogmyxO6 zv$OTt<}?f!{F?yWC_x5C3l^AUPJ4cRoWGn1e*p^87t}Fg z)euYuaGm`vpl0*`B|uHee-%#?d=+$8_>e{}498xB^KSx(a6RS)Kn>YDlMS7gT=xTK z-woKbF&;g7^sUfH0p7zYpgWU^!8--PSY6tvHQ1+K*_MIm*C z&b3FX2(<+E`EgCOGmvE9a10ucxSrmm!QvG`!DzTtArR{o)bZ~89fX5Q<1j30YHE7= z9uzK@DWnjHElJs9^yYIIEm%lA!XF2Qq&s)bWU;`ZeTkR1L_P*gR|w-nMTHWW!Ql~8 zlamM$2owxTLR=)xy}ZOdm1$E2piJD;RFBLKY&t|7`^tnzT+Amw`4LT9Sy{pSJ?-zp z<@Srspdqrbu*6qZQhRoY97RL&5ky2`m#T$@1!I>fV5dm50k`S+ZEyVbe4yAY%1tJ< zTO_Aylj={SZ&XxNlFh)z)(-Y^KF5`dKu%066om9Ac-=pPQ!7ooMi`_otI5vt$bycI zfzaf*oWnBokueD^t<1xRVA=Tel7vk)|2g2~LII9L*Y#ql37%ni`1Dje3_5*@1yx=06Ch5kl|UTCe<(|_*UQF zlWCwW4%T&@T<4)FTjOuX;DppQ-gIjxT(-9oFdzb4#Ne&FADLr%lzqX`X$b6B!Qe3~ zbJa=!C8_|fuvoWE)yQI(vg}`i-t8NW>3%i{nRY4fca_)(*eZ@P<+9@?Um`Ho_)82c zV3bJd=$0djNA95k(IfU_|9d3z`|;O5j0h$5vhd-kIxQIqaF9K78|g+e*T|Q~EryDu z-mlHx*E2@CH($jb4B8FZ}*(vth~Tvjr|c>tgQorWkJ3s?;xg`>$|%O(6mvJ#Am)0 z_Gi-!lAYIQVV~LVI#20+=hV}|=0ArO^WNj^`d1ka$SJW5bI|{L;qUJQ~yoV%YW4o0Ewn7Pju8KTp(yf zYI@M)w(6K+O~5AL_{6CmS3&?+DPvD>P5c~d60HxqFOEgs{fj-4{Q5CBPD1)!Jxl2Y z5sf5_!v(eOGAtgT6#Ie+9{UZXRr6JZUsnw2I*mJ67~$4)}`yO%_F>zgan3dZ6VID3np(tx!& zXNKf!_TSI!@dn5mBm$;kKu%sxOIsVF=fhf>^0~*@Q3Q$IPF|s!zXYra^t{^}1tqtb zvWkgOCAp?6OO(bbJ@<7S4tM(0^G;j1mY#XvXQis51#_;HXl@-j6Xdc}^wRj6P?cW2 z3U_YhtL8EP{x`MO5y0N8SpbKkyZeF=2~PkR*kuRir?PNz*39xisGXTL!?k3rD}`3p zcQf7k0*DTJxEqhB^_Mkl1(YkQ-P#te)>!IYOORd+N1IE6 z!s%;EM@J_4x#!PeKf}Ys5`A^?48`qpH!l})*k#D`UNzS)Nlz}B?~t@G)|AY0sH!S@ zWS&LfU&UHU+Ra4n5xguywSwO31&YL@@|Yy;n{UI%#e4j6C19AGrBYUhEIfV z(zZuC#m$$ugG6jxlud+=exUl*UPVO_-%=>vqD%{Xf2T0IO51~FuF-@Z#ed@aPHqN5KR_C9V1LETJ2k%y zW|_;u65+Y?J<8h2&>Nxl*kA2&50s9w7b(_}p1?Y^gDDD{y*q2&D*Js{3Da7GDdis@ zuzXO=(cdf^&9t*Ldp5HlcO%&|wvBXsFoeva#2te!bASGOK{DiSK zFDt3d!&|=c-Hx`OM)tP{DyEc_zg3n}9$vFpo=-~pxW3NHITJCaNgbC!kLto40*fUu zuO~{UUJordE$!KwKLe>9yq66^Tf+^=n1-6e4Ne%$D+mAzQBaj$=LY&LA#XsLBu!3~V-5FeNtxJkVg0 zMeVe&1OPu^6&{o2&U7R^f*4MkFYk%b1x8=z)ZA!LA;#S-_wQ&uVf(&YeI`$5oMPl+ z4{IMy7>D%4La~cB`i1_*D?-8>ClsH!mF~_~<=E)D%)TLsbEZehPk!IgeT5<9{7Yx| zS99nK5dNp2ZL4ey11wyW|nC6sH}M}6Ic#Go+<&sovf15OqWEQ)SY~@GP%_ZjaVeiG81P+4=8DBRAC&ds+d5^{7X`A|_W$0sy z_Uh(oY5%mVK5|%-kn;2K?V~=eQ2jhm;DZ4+UlBK#WOHI(ISZNp#?mgze!=Fjoa}v1 zfLnXp978!jDuj#^<>bf>{_y6OmW&57HI@_gClr$$CC&QZw%5ddLf7nlHIHgU!<>K@5CBPnG#5_Ub)!;p==ql{ZCSyH}>FP%g~Z#h9NQk9Nl;mz#TXPj3?%F5tV z6UJcB-vdpQgwEM&e6msM>)D^%gyXPjus9#o`5{X;^7uPNpY$i+ zMz!!!dp@aZPk!83siHph;PuW3*Pw>Gh>6z0-ODYZ$KP1gnk(fcUu{Q<5f$)Jp~irx zQ{wqkr}G%_Sq}*ry%;==+;2#dT11$QJ&M4WSZ_Y$9UHaq%R~;Ex*44ATWd`YxxYGD z`}0;=<-6v)CwdM2Oo!?d_B>9+hp7y8#7W!!M1BB$+PU-gEG#q!QD4KC45^3cJY}}_ ztD4I-X5Cf33y4m)Q9k;i#zLSsUP2-MzDe7_~!IDFB&L+|0FWX7n;9+ zI6mRO{OcdD+rNF+*A{-?KwgK^{`Ze#xkgy=`?3D-k9+Zd?Q3V`$8r1jbyWVZFFHxv z^QR2{xH`|yMD4Wf^f_%YA{V92{z2iK-GhV{31;8xlE**bzv+6Rm+miu>7y@*>133Y z&LO59$Sc4InzQ&mlp^k~2`vh@-7084bG#U9eHL6WQN=AsD{ZS7lJt~JSd%!Y)o1TX zox;7`a{5k1_)Nbila!9{v&f$8>WH1l$LZ+Y3ci5Kii@4i4?EFyR`a%vl6o*_0 z(ZdUp6PrOgy}SLY6>@l&A3EmaxxdHeMci~@E-{ex2LfB6;eDU$f`MfYB+;TR72?X8opAvULYvj z{86UYUwOqG7N8_Gxg6A$8-vt!yG~M92YcI8?^Jyb{PKnWvR63Ed1O}x!3z-wV6I(e zb3S5o0a_N8Wy5LSm4di~S1_P*1%lj`0C8Q16wUJb4lmFh!6SlFRXrd7MxXY?X@QvA z?G`DEb}>)6>OHE8-d-rT3s6uDq4%^eIq+eG^dYldhwrsyl3CkLZc|6J51$fj%0!P+ z3LDA_P)CwxM(0ms_8%_x`WG*bnPXl&7;7nXNr|O;Vl}|)$B`(G3_FLqZgFdB&b1>O z3KYz50I8K+MDj=wEP(;RdGLxs5mlEQsfAw)|7nIXTnKP>b7vnauy}CqJpHcPL>}5( zI4#_F%11uED3(6$Niw%dQQwCQJ)y165PF89{I)#SjwD{AN1aMJKXow{`WF<93LWeK z#R!@wCLj<=fIft!N7_4P*QY6VnFLVID&RRn`c2&2*Td}9bSz(~?B!b^6lD@HcOmLbkFfnZyp`32N7M1F;%q|x_O5)jUGK`Ha&P{6b{z4_FEGPD0|)PkdI`$jol z2$_Rni4O}rk{H~yGr~87HzY!m1{L-v)op90v3gzk;v`gW30dr&3OLO1eEL{BrOGxn zbhzFHH5whfi=KzTmqyOyipIev}BBpuR?&y6eCBV$#>QHpS zOZ?^L{rZ`UOYQPZ?dI~qdt(<$!NCjfd!!zih1fDnNqIHx*3$S~vpLA#{8nS3{G*op zK2thWW{*M>rb+O9kKWZ!c*xkYNZvq^*t=M3wSd{hHB?TkMG$c=_0BVE= zDu%3v7yk40p@!PtmCusf2g52u`feXONZw5P2r#hdzVGqwJkS}%EnOS4VHm?_8R- z-_G7s9*RQhmZOL;U1gxi`-yMy*p>b+6Nv7y{ADvirL+8R1@gO0{g0PhA&d)yp!@^F zjtMSiP+D)m_!N8sf>Syi|6uY}B|)1xrP!s?~s z8WPvX(|mGGZ4y{Rl0MB_wttPjb;zqx{gjY`{P23`G_zk4L%HYNOYuaou)GDwAB2TO z!SMz|d#0Zea9~{ICnlSnjywoKTFhAR?xggmSPI!T3d-?k%{ynWZE$R z*_wfo>^fj`1G62urzPJ5dwU+R^FgMQmw(D5w3962&K%(f_L=n(Nt*}YrR zKq?|uun_V+@c(ypAPT%b!nZJiwNZ3WDusP1gH1h8@7}$ByTcvyO^D^f z=q9@5vkYnN{^Gj(YyHF@h5R6@h@)*0pp0xtU$tvD-CASbo_*FA(Ud}q3VD{$POPs1 zvl21DJ(Bso8Z=ih?JAMjZ!C`;eb8c}CJGIaM;C}NNR-rkmiOGPE!^No;6r733bX1vgwh)&z3Rr zwJ{9!-jmMJlo8@?oy@m5t0^9ss+>a$yW8GY>sHT>ZOR|=Mrr~(RiJgBrUQweSah^j z$mV6W;uwjay~bJU)dN;HLdayNqxzP)XR$8I%k0e9t+K$n?U}kR^v`yJwBSA#X66st zHSXMN8u+oK+JOfpFb_S?N8;qTm#pr7{z%6FPF?}+2$64)GW%cymHfywJgbFyGt1tj z{$W3tvy#$N14A6~N6Q?3+PWcRh9>wFD>>^+SzWY}s7nk&;c{wJ&+jDl$}&*}o*mGN z@Vpw@6vl${M}3;gPiGH}0fgLVUOIt`NS{zwLO?tbdJaJQ=#TdeDI|_`c+RU-`})fg zb`JB(k?~BW7ibxUPcbO$JZm@xkbT2Ofv;?ODN;)Qn_c-V+3wL+8~K(;`7Z{Z9F>+* zEnbG)s|?<7SC~+|d4m%RbOunr00Sc{cP}JNke}3BM0Q3jEAvwm zoVuk+Q`wtLGA|5I-hOiMJe(0F-zC|cYXYWtV0$X#S0FP$5mzmgSrB1*0#iFqWy*!j z#lA4Ibl=n5%K75;T2-L++3Ksk*?8>< z37K2etbf=m`MKoItu0>5iIcLHPOFq0j?33ym+iKSMJCe+N6ccSU!e*FN{$ZfJ?F3M zow#-D7No5r2slbHJfTWBq0IdAcH0<6&Hjl9i?rdSR_R21AxxR-Xe8}ZVJvP(rj2C`sQeT-ExWhw=F1&U8YSCY4 zdiq^cG5RFuNK0`JPwuaxpMD&&|KSr-686dtW9gEcN?Gz;{$!x#qDyXZ(%g+SjzJ|N zUTJUQUM0=VHv7`5Tw^@A>ff{;;JWj;Z8cdG^fkR+tRA5~Di4cpmXv(AQ&E#^^wapI zxT=T+3oE1hgBGnaIH{p7f}HoS&q_Q_PEH8&si2)dfJ3v~5=NS?PSG8`&8gnK>P0S< z{`!dhS(kPH2wsi^*SRy5rF=^UsFOe1!gDRBmP*huiPm&6=rfuqdCLPU;jsIgmZm3N zRk5ZbK9@1$h%>W?D^=O-JUPr4i%g)GLpLB)?Fcs2dLIfc6@vj7VG73iD`faq;KY)D z^ym{1>1MyDkwRX@0V_THk>-Vx26gSFL!GB7%qv0DdE-*)^M}=hcU)9y8G56vs@EeV zLa?50C^7FlFE`nr*{cpC5{o;TquVrd_FT=rOoG(Iv#IMg_E~C0_@2o2WUQU5g9$W{ zE6@jNZGBKbVcD4fd!A0}fpZM(=aP~!9fx5TM-IzR|K77g##6^;C||q(>UPU6NhTy} z5q$QgH_$3|?%VjLhJf{v1CCLf+LBGxz76M-Dc_^igJ(n}<{kJ{B}NPx;+irayAN>o zG?rV~r@!ZnrEU_)%l{0s=X2osS<^Jl6iC@j!epykKTaZMAJ&+c|HF1JP4`@+Tj=Z! zV=*{0K~uTgT_n3bMF6ILoYVp42f112(=dp+21wA$8(8m3&?DXxK4_m#sih1xKX|=`I zM6$2qAk`T;BSKFfnFE84b&-&jWrD%-$na2`nFkPe5CfC`)hv$|_L4Wj!F4eEs8Tye z0U{eP0n<3&7Uzp!&gVmQHMRHscd%yW9P~-wEu~es;9IIGQN@{#v=MId>zH>G>DxYB zDCYI;^X8_jLOI8X^n?ix$C7iIcS|aDGHY<*L|BY+D^G7F!-i${dBl8dHnpL zC8Onys0^c#nhO?MT+h1fUjIskW*7d`p82<8k->6y!V3_#)gLak8iw;XqR?k%B29jA zAd~>G!zwx6w`9y+01oWPs9PdbSV(Qp{f1m(hZ?pM&+lAIQqX`6rax$?0qV~P8W$o< zU;ED=q(aCf;?HQfa1qAk`A*+f!`BF*>B|rML}W7bOg~2`V9ji(Y_@^v>R_L1spr>7 zkvFx?VT4d+;e3OcO)&UED{T>YdQ2iBHIs)(=K{O~^~iJ>FdHJJ7LDg&*7(sp(G|m{ zb`19|HXSv5K}$hfA;E_|sJ)bX*p8LN!@HQS75d69_<1WP5=^C)`U&Zw^l6(h1Lu0f zYNyuqCwd)%7O9fz8<<3WKl`Q2e0|c=oa0oyanFzAF6t^v2WMnhm>l>;u50%J5*xwB zZUgxd8SjJ~_MlppunZ4LpQZ2hJY~=UOlCAI(w;6wend&zDNb2TJ(IYL4;#mf~6Kvtc(^GLhFo z*>wj8j(^r4|LK#rr))1{D%4fS$HsncQkYA?{^<48S+&=ol}CnSiY(*npKDsuo+%^? znPg*W$Ob#g1@qquZkm4*^=Ibae_nk3f31Z1KXuZ4m2|2CnH2_kKXCFUKpO`MqQJrF zPW%}dGcIfEWTi~&V`MTh&9Krzo~!Eu2QPY*Xkiv1qX&t=jN={wGrO$qy)Lf+vG|pY z{>}YeYn2lAPIA;q!&Pxd1EYoFr}_yQX-;mmssM}95mggeI1%XZCIv!YP4Qnsp+ zSg5@4f1*%M%`b9}Pn50nI8;Y>-&vU=S_#O06U#;N5t?@y2@f63Ndy%L)tl{$43p~Y zG{?JMpTTFy7B=#bRwp2K!`F^jFqS%9H()l=KJ`IVe*Z>@o|2gt$xYpv-R4E1o4R7O zg+grC?RpA#Ix4?5Z3V_>CWY<33p^E69k^6-_*OM&pSv?T?X{G@<}UbdodD(V7Di!1 z{u1XRoMT}2DU7Uy!P8QfKCA1!6qZ{}ibE|4D}4;P#V2Tmzk17}LToL?**!%ll+DI8 zaF4i&i^Cgw?l;wN{Jia&d+voBC4p5gbYZw52E|WI)yS7a;bz5`H#g+3^mQO^PNS!i2?RUccs!z z5<2@+Up}?nYWntYJTXUiZq8Aek>)MhUw?1xi+RL7PdK|4?DhLHg-)3Z$F)!dPIQ%d zFcz4&2wymGPLPs^ZB-YEup_u?5IHmRO<@8&xo)3LhfovPqnbfMD?8X6D%+jQn9?-P z+8bxxPPgq4rMNALcUaB#`w=;t?Ns-%1k_((HLf}LQ>X0^H^OYR={nbnf73TfEP=}_ zb890fH3jZ@_9=gI9>=YVZaS(9xFs^ZoU$LCfM$}<-;5HAOoF1q_j>le9p@sw~5MjYLh8@ zm8l*(Fwak-GdIleotTa^E&(Y6xH+>1f`1$?SBDOmO@B+!Boe5Wd0lWeri%#O&Umm@ z-d@s}p(0{&9{Uij#Hhh_S=fgmO+of_K`9$$yw0Br0AJ0&6aWz4BzP&U;_>@@dsSM- zW3j0321EiAI+-Cx`sB`Bmh|+{=79(w6$`vVM;D$!M_ne^EXvF60ml1~wdIYZa(4Or z>$MJyM$c-hM`#O)Qj_e(lv|$G$VUe;X6qj+=?8N5X z6Y6^%^|5irXtZ1IbJ&?*eAL2PTLv2Q{FHw=R)3EeEhSm(SZG}1B^ao-V)aEAr!?gf z>?DkLpHO@!_}j^Fw<5)Ogtp`)K#`H7H8ADcz>a#J$CT1A)`<}Y+}SRVx|Q4|_So%? z1FRbv_!1*M{Y_+_xbZn~Qp7$uRX4FQo>{z_0oxN!hadX~scs=U=8tD8D&6{?Sg}d+ z-}X(eYaDRVid|c_YZtNQSjnb$xYsT`v*2IWm7ECwsM7xV}JYua4ob z%_UFPCOG3{Yz-u_Kt-px9YibiR=8^IXCvetqam1y!DBIc92W-#00Xf+f&>NdsLxfs zgZApYDix=NYDL9%(2kc&rYDli&+Ro9 zL#8e(iOWlitsPPONl`H<{=!F)r9PB(OR}JT8J%))@C`1|-*PZ-7jXDmV&{FBb@riZ z+hAVVb3cl)$k`iVNgc=9aLi#a0mOpcCoisPkmDyFMX@hY zAgSuRN4)d~{eQRvSQ%3+deX@Oz9srB!#^%ej;(FE+q#c$TZ*5t7&K%u!3~9p%uG$) zz9YvxLxwy#W*)JvPvE9uyvqZFguMk6X+aH6IGnA->roFv2kiNzVAR8+w$QA-B00#JMGRJm@ixpFS9$_ zVqHAQ#eIH%?DKS^KHpJ{h~=ZwCSmR6FQFCII|`k#n-zOEf zR_(Nj-s`1SnVmX?KJHvMz|erZ9VOp zka%xvdir+z__gJ+&HGxdJ1p}v9GDmP_77bTw;ay9w8}j>>KHq}jTSJneLN$q&6}m` zruM6Kf-Z${YUAc|f|c);^S_2iTHW^PDs2}OUDs*}egy5}yweoO-ERweyWT&h%589t zb7nt`!p2?lv5RWasCJ=XJ=n3j%a5!u3TZ8=FGRYc<_|~ow)W_n$_L^K^leZ@vCDFL z{R}KD(s9BtX(!r$4^E2^e%8$i@)NuK;O#Xpy2BOU3e9TW23+XZVciBh*Z=^9L5qi@ zWfX%{#G_w$CS%n?FpMTMcAtsiHl;En984*s%Jj z7q}nw`LE1>aUa=UJ19GOKqdMZo@|=n!LRP;4Z1Kp!)bjc~63Ncpq` zvi}Ebrl z>U5=!?EDaU$)kfoj6gMB!}YB=lL0EKBJ=7F^k5|CSk&DN;U;-#%fGi3^k+D7jQj3v z#AO_VyqDW+Be(wgv=*XCXJ7(K&iBzW8^Z_=P5j!tCR!;N&YL_0fD`G54@m$6%VrpD zg$qEENtiI3{)-x}WIdqvV<7W?NM!|sZ`tT+(?S}784rx{Vc@8M}iMnqUo zhb!Lznl50t(*+%1nk)vS6@cdftHf@pM+AMI)hdOlTJ?(sn>{7f2sbTl9(L`9&mA=< zE>flOr%dUZ1*O`GT$#r!&dwf`TG&enmPp=HuhF6NxFZFYdNN$PT3a_8&SlGzBzj-Snvs)HSfOnech{sp-hYEhh(JeTfmijE4sJN^# z7&j6H7c(qvs9s{($E&4j7-6ml?7l@tR<+7r8bW5YOSo$J$kHhi1q1*&^r z?=(v}P=B+*9U0}syoj><(te4v0*Nhw8D_-vDk$+?ohCu(px}vgXBm7cKc0(UJLGc2;#nP@D$S2g3oK#qE z?aj%bt8^5d>#yT5a?Ll<4`|nP?(r2eNgb}z#^9oDnn^_rTO#M*S}!gS>^7DkWb1Z! z^;EiTEb|>6RYbdcY@b(Ga&P<|MW=sI!&I-mJ7~)vI~FH3bNCKaaP4w!g+tCVdUOG#G3b#S8IbDHU19U=GL^3w^<2|&4w<~m2 zI@d{AoZa;r4??)dR!rvuHWTOW2K~i*H|N<c$$R>Lw z4Jyh=#i2n$5eXS-$%P`x&bp+NaqN}(d%mmhHNN+Cf4{%`etduTTcNa_Z4&io9n^4QGonT1uYs^P689n9i@3Ko>+wVTPL zP03YS{2;S^$gpyvp2A^t=VWav1t&7nU0}3|2L{2My6?kj!^3m*3s}1~+w%AsS3Peu zg@m&IE#*W^?0pvD&i5lm8>cF!lIf!#|cGq<;STmnQiSUp~fq4|mgK zM>-o98;69cQ2Xkooj$9P>9dPm7>Gg(sW1upwFuEZ2}lT~)Md9DVQkN5H(X*gzS^|z zB1LlxaM9vCG4&6%jjch9&?{GZJaY8%?z$?(e{)BY=Wyo&XFWPex;Z-F37GzMUWl$K~`tUb6uYQ9qx*XSan~oGYtoF!aJMmsitkf8yUa`#^uc)mQkwK^3EdR`6CW z%lTLF@gF;T?6Y&HrDek1rY9D18mT|}CR>|7p?a$A>uhX6#Yj!mj=Qf8bBNY+olj<4 zXjd`NM&lFoEq`*CUNIAOd|E;{B8%quxiW))$}e>4#%=8;-r~}L3R}4!U8}58K) z?Q1i~B6qA@m2kNIz!jm+D^MV2BLoX)mr+EmlHvtxu4sOlz9CwxU}G;q*Q2ui zJ6f9r7JWB3jAj=q-mew=Npb6XOvQ{__Y@{1m}I5Okf(NnYr_VA;b<{!tyyEyZGG27 zy)!JF`NUb3vT5V}&LQl|w1$Bh-tlkey-e3c+ywZ86{ot@!HW6P!5cFVlUdmX>YLWAL|AxIQB{s)GXvrqrA>3F$(J>Kx z7&=3a%NZkOBU%U3e3Gk<{_MhiTX=3_zjn+yItS(6Q=ic z^=W~1qW$od_%k(+J$gjIzHj=_78a5o4dX$ETJED1x4veTyI#>9s%X*i_k6OPvgJ=f zkgoCn6k`2PVsGYsf8U%I7pIvP#xB;{N>YzdKx=4h?SAn1*NO^Sa!P9Q2|s8)W$Bq! z3(mhnVCk7}L$u9KpMSmSu``To1yf$={2aKVmPsC=uq%xpNf<@?UO4!_t$g>OBf*H& zizJ8(K3bGJ`bLh7l)i#70i=uGhV@us@YmH8Y)DAP758%0IaHIE z*Sd!+r^W|j@U$u9+`!Zv5v`bCNq$)Fscx~FXnZVGxl?x#Ip{xWtDek8EC!sPI}_tX z_}I|qEJqFfwDFV@JT}2kja{34CmUOOM?B&%_uglo-l3Y0?`1>Ew zl0A$08aI9A!?@NmJr4a#(*&P!sd?g_8#VH%Vlg@5rlZ0 z%<&~ANZf&3{sVt<_oa9{u-v|25XHUB%m_4qVW5EZa+d|+5jAWfLKxj*^c!~#71QA2evO|8bchrU z7MQQ3FxCHx^nD6LZ#Scc!9p!!_wAn>qCDe{RBCKQtiwq39&;a^s9c2);b5b^df1%1 za+6=fwd8`3*^fb;1noS5h{z%(UNQEg^T_ihi-{md!&TaeFklfC#~-bU(MJ30zrVK# ziv0P!9xY^TBE}{$C&xWafAXe+hf`#hd~eR&3&vLmCIx(kD>cSw6>$~JYhw0ol+6$l zy(cnSiP$-ngh^Eak7Gqj6WoR4yAmvbkI3Q6Ga)M_H8&Vv$vV+wp$L$L(siq8AvMYB z>C>l3KCGGOR?~U^+FYrVF7;-uea6&SCZ6q=Hy31FM>J@^z+dvAd<-*N*8X?&84enUw;PM! zKep5+{W2VvoO-E3og7l9PF3GJnYdt|4jX$#&`Bta{g6~?@cv2S{)@9l%x6vej^2(B z>>O`rFq){}9HTt4KX-PjI8Y~i)ysYS`)FSOsD2?tOaET|z94EBM?c6DT)J!4$9AZP z&3m4caD_8?q`!fx#-(J!R3@`?@>0$mgkh(bNW%OeuS~|ni0nsjwwoyL8?c*`>3H;^My%YM@hm|dBh3;C8jPH zxXUf#pnX9G{}ZDiq0YQj)y>NK_KNDvoIwFYT}e0p8$uO|I|48X+l@1fcr`I&X9zT< z?&K+4kQiugYFlvG(D}DQd8UYK6CFk%qm~E}dCF&-@x~8|6-;yYDKlQvnr7nZ97q-$ z|M^(#cZ$YrTvR$L`IgVDFfNUi=9CiWb=k=)By@#$`R}Y#P1~nu4{mO{2w>RB-OkJN zlg#ymG;QsDXG<*p>O4Rm-!eo$Zu#Ue7dm)h+;DiOmGSC}aUU3M9F`OpXN3f*n>-mu zcs)fjY}7xjJnkSfWy_OZCegclLC!73`Nq(ZzUz8be~6H!eRp8> zb!z3B(EJcIw*>M|@?;dUnI-U+Ev z)0shTY>FHH8rXQrA(z{pDU4U|S&^G^UY{ksP}`azn=d+N0(X?FS9Traj^htoo|vAi zYY|=P{#E6Km%$v?2;HJ+<(UeVs9QqUxQ^D2MSho}yvAT|ioxUK3o#;UC7@y`Hl2IY ziwBF9XEvtq(gON-MxDoXq_-*hgp0)HJwKdZomW2lv;2^mF#ZoYLrG-|KFy-=P5r`iSPqR351FZ8DxhJjQHq)bNL zf-zX02^NGFOr*NELknE2wPN+^yQLYR2+QTV*P&^9+LfFl*3c9S zP{~?9+pfvriM3wQ^hkFt8Q293f`WVavw&cpMcGorC)R)_*OTUog7G>>P>Xt_1O(kV z#{mrVAa0D0&CyqqOCD(^uk?~L=L}LI6OAy+sJXk{t*7qAgF}y9^LqZNgtn>Q1Y^&u z!}bNcwr^*^1P@%|gel5fn6jJi?I;dva{}DQDfuL?i{9$E3SqtwC^i#|5I&L&3=7M) z#I;~3gTMy}=EQm>;HyWVjDC0e<>g!Mp@=1^HRvQ59Li;BM4xeM`;)Fv9TtOu6>gLjNs{FrI4sJtEzj1f1yLO znsn{25I_4@Su%mkF1J$z-o$dOJIXRyC!rx)1&t&yj`z1o8>GAR|B@HaJ375t|j zugjBdn)3;U37N$^I19u)13g4`Nz=Dw(F%yI3Sc`SJoc?s0aXoT>y+0u)F8t0UOgDu zJssKL?BryCTkA>eYJ3-j>;vz2vR7gV9feow#5NQ#m^h(cRPq+ZEZtek} zNO}&R&{7=H^_>}t8!9uM;q(_z%?WtsGfC_%GwsSVbN!LN;eb?tH{YmgdI`e06w$S* zPrvZ?7K}BE(Xk-EMCzL`wAPu2CfvGpt5l9%p&uS`Ml^fp5F0k|@qo4?c=Chm`l?g7 zNgN~!bvCqc9qV<)JoJWw$0j6l|Aso`e#R6$hzzZ{-Kp*PO3Ca&l=H*kXhyTD zG;cpe(M7;|t23Y~>Uo@4D&hA{6C2?*lEl=(4?Tr=@=$@NH1SqZ)=*tI;Yc8qFut3d z9e=Iy)73@tP~vy@sh>~nvZ-zgYf`|ND`;_SOXHBT#Gt_?Tx?=rubkNw( zUR2YFA8%C7z44i|P4+u;`J^4_An%9Z9&ded2I%)Ol_L!n4Ctp z15TV`o^n*$WAr429;5DHwPx7|W}O{DDSI1C8_U`{&D=doQnRXB0tGEz?0xz^)8sd6 zBoTa=5fweN=3;AK8L)08hVql_kd9mq`z^|MBvX;@KG>TZNH|{`XJ+TwVcwzL1vkHD z=oSkXDWCo~1^yDLlrTbMw2|ruTU?s>~!t^Z;D&LwRL;+)f68B zC1SO(+u0y`Y0w5uDB;g-48e>Am~?gL8B-9)4@h5sxT_({b~&c|ttQ(QD~jw8P2Hy~ z{w);`d0l*Jmy5Sis~y*?%N_AEJt+OPL6l`(%P)S09JOSnxcHll^L??q&*wttVnjPq zArb7n|A|mvx#sohuPx()1+pq-t9$Bg-!k=O%fJRbhV(3_O*Iqp6`DQ?!(hPzbP zEmHO9r?7&w#f&pqQr~FHwN4tuEmf4S?7wi_sK3|Gd7vk8*?5ofv13p6xL6T!k$HQv zUOIEQVb+8E?MOZ*r~!ru76be70E%=7@ol&LLd8#3Cs+FxXrUn!PAIqZ({q{ZmZ5aj z+Fxna2v~iW#$Gbh(Om4WdZ&Me)}171$Df!SKNk?NqhEbSMKz?5SD&tVWc%&YRxaUc zzCtD<_h#YDrrnIH$rOI7P0zEe+R}L2Dmo zYxX4`YswzZ?Gw}TnP4-KpAMO)ca!gbaf8`5^cDZf43;8z9Dqh@UhgW-AaV=CWNQWd z9r-b7vS0+6&%ertR3%94P{{_JcfISc4*I067B-aHA!S%l<+(rG3U|ERdc$Xe#slF~ zb#}#H3=Agf57m&=kw z9vrc{-T!D!))z+KbVF;hBJ$cbk*q6}`uw@RTUW|>jK#)NXs(I@hkScA=F}FlZ?2{L zoUpq%(Z79Q-G{CzQI4cde|oswmtQ6@K60<>rS$~V4KJZ@ZoOMw7WO5;@b^X~3$his zzLtAcHAoz|$MqgmLePfQx4Wh)Zo=1wX;!M>hI!;%){-ftZ#P#6p&mu2Mp#z(`PDQv z+cD3c@fHx`%oCLXFx!jdcnaUWG+Za_H8xtn!QdOlpB5Z{#@VX4fXSG`?e-didZDBc z*0Ze{T3&3qE3$e%guKXc@&*lAQZQ=6%U>Pyaia5clLxb@U+(qwDbKWAtdfayeFM2) zB!Qr6*oG?4Y$caE`H2U#6(dnHI8JmXK6Yr^QIl${iGci7rFxW4H(6N=&mQVFzg=4{ z5gxJ6=2V{6o_;g<8p}MJJr7#lr40g2 zQZ+jVdLGn`uE*-jmEa2S%H5f^G~GO}zT2GM#1=YIqda~8$Z*%36}%ncOeU@PQgac8 z!MqlA{7i*An?NNi^;kRI&){okk85xvILKx?+oHLwod*=sH)i-vPCmv** z1vfqh(yzmEww1}&ESq}3@Y~^C4Z=U<_lr-3$rW9_?H?e-)i4?3g6E?laL!0aPfK;( z_a-U+KM!uPJc70hg)H_ZJRF&&gB#7?kbxpl7NThvoIC%QRszjMj%;}PnG+2MVev8W zLWwdv-7*W^j?dSYLS@3OA)oGKT0vG;3ptnLDffHrm!Q&}Pn;_NT2mfuL9LJ8S`{iM zK$ncIsITsUk0a5gpaUrW1n@f{Wq7eqO~=@*Ziz#!k@G^-YNR(Nrbt87L1~T+R*A6W zu#&J$gsPT7HTDkETEriYMHNn+#V>+mM~*Z+6fy?~evtA$-!b`_;Y8)D*RH);q{{aK zr&0T8GpR9z)4HY(o;GklRk@3sJ}OJHE=gB515$1vx@BsVNg3G3o~mAX^qZ`vq8y72JK^@j>`$L;raaqUoqwByWSSOKsBXzMd1vO=E8 z0AO|s^InrX+*YaUjL=hPQ2%{z`UC`LAv>r{)E2~ept9AW3OW`Z$QVI$N+MVZ8BS67 z_BlMpwZRH-FH&w_U`ia1tkbb~1)}^P*j%Ik&q$U>lYZQGG`VG7lMm+*=|=BBI<%y> zk%vI`I|!LMBq|o{gidF6DMUM^AmR3V+3(Pyn$?}UKoolL_$?XZMgkwYEb)h%?VA;z z%}kt>bL%zg7(iom9PKfv0A7F0C?P}(%-p}CC}$>3S;{a=xR7Y&=tt)joI#RaqdiT& zee{oDJML*wOCbPsM~(*xR!!)@0iHiQGf9+!WL5#1!N2V#&sW@k!}nHZ8Xll z;6MQOv9~B=bNSXYSRrV(cVLcgC!iP#gjX_HVhVudpZCrh=TN(k=+d%FV~MH=o;jsi zByzlqW_m75i`i*nB0#EnOXW$PR{JHL`^>RKNuEC{Y4FUzGb9~$=m zg;=*Y{ zxG3Q-0LQL9QWO?;_Ne}Iy26kf24Lx1S6~h}`dkY9B&p9PtjSIRuXMjjsRCwFSW zEI7M^&$aF-^q*JJ(1By2pv9~=sSwf#i%@InlZCEz&v`cf9QZf&lq(|Xhvu}Sb(W%26a#CwI9I#voQyIa8d$lNa&=P5G>ud+!K^==T}?4gZZ zcOjuCa>BI28D4*&Ac6QiB>@tVAw>8DfE=tO3=oIBq#PbGk<e-+h1=P=Li&0&sx6y(&ik{)ugavR~+Vm!?Vjy(5v1e%CST^ zN)ldKfEgfAnOY+bXd(0MtG}1HnwOJgqYLP^I>ho(NHQ^+Qau5Ah~a03lxG(cj8Z?7 z9bI72MQ(t+Lq0QkSJ>XT`K3@0Ul2%s8T`X$v)2m}^u{Q-8q?QngVNkwp|E*npQ_Fjk1JzcIrHwZ&!3ztEHFiibdSJ^^bh$$)H*0fWhSSl zw4m7oZXk^Gz~r3kWn)pmgySM2xOlhN?ZG|bjubxzGJh$`#8Z@`d;fb-X}sS0auNL4 z(7?e4Q2ICm*&*%S#V$zpP@H3&`)9q#zv zfqT=67LnTlU%47(sRg5k_-fFw1($j>azuzR>eVv#ql9+GE>FHngSe#~v}Ed48rmHJ z&*87z_wTPXspY|J(Kw$`9$Y+%*!egnNxZE9UV~!t7olDPYP5*R$VF`Dae#>zc#X|B z3t#Vs>aM0GoXxhn{+_m6rw|!d3N{=;gSYTXky)L6Y=6tX|DMGsPf{D%Q4ldU*}0F)aG7=N!6US0f)QKR=H*R(Z33%-!Zec3_f)T1JasINm<(n+hMx6@+(^+#e$0~D(Too)&}P_QcW&SFUQ6VxaZ z7i@fI$e!&@DePjV@yVUf)o_Y-eeIjFu6|w%{q0E6L3ejH@6m-*ma(U!l4(UTaR+n# zdJl&_IyN=QoV>e4R7fH9m6N6cHbKZn+yyq)`Xuj=U*Zx&Nq&25e! z7~IW#t8cNoHqFvBt`G0ZPtoDX{CZ>OYCJV%grojM`gY!&YQBWkB!m{i+F2NU+iWy&mf=qxZmO^r}#5E<4YcV zGL-&0k*dZu)0R#Rd;W#LzhN+Wd#zgn#m|^CEtpG)DzW@m=)QF_-blFXX;TH?K#WRw`Fa)jArlT(d|6zD-^mez~B% zAAtw^M=z)!b5XR2>!y0p`5#QunhQ54sL20T>{itkHjBn!XyXYf&bGEF5r?6jwBj_$ zPKs2|r;9O6EltD>SJOa;?R~4#E>SC&A3C`fdPe5CkrE|1pqnS$V^TCszVn5LBm-V} zj&!A4Rn4%QrZjf4z5g4wQ14|bnyX0Mhz{^~6hA4?xzJ0`Z*i-2?l~tUdh5=jJJsJ} zhw}E7JU5qTRF}@S++s;j`y)VCs4`(~P~e?vIkP=685x@p{8gWB&P1S0GKZH}Iv7Hn z45aMi^>vd}YYtgbi+C(!UOdchHhf5H`6H7Sfh)O+(R9Q!IKF7EWoFpv-1^15eLsn) z82LQM-MX#$d+jC5 z8*3h$8^GbGOhUBl^5al0gE;s9;U{TAx)mNbKeQB>F0iUn9lk7cUL1Z+%v&U&$}uk48P zp`OlM=W#pZ4UU54S+&ipnJ#)wQ=BZR+UP zi~75q){2InHJTe5xKj4L?Uom(b@ipy&M1$bot@+}F=0v3G@};_utl8;6y#gN>XFbj z@p*=u(>NeZmm2r@q#JSA5Gs$%FbrA~d;O~u=RF0M!>-$=KZ2Kx-}!FTsqP@#`GlRx z%C{mum##|x7Q%aPhhiu_;xjzEqcOYz=hW+qb_`@@%jRXy#yl2R_aa1Qo~OPUOU_3Q zsidf{Vz_Q&JkQNxxsu6sqAQ&`XBAh#rC}BQm7V({xeyNfuQJag6cOT)4Z4B|eyj(cuU!eFOnJwqf! Ux*lW|Q}9Q9mzGNEjw1p81-^)?cK`qY diff --git a/dev/_modules/ffsim/hamiltonians/diagonal_coulomb_hamiltonian.html b/dev/_modules/ffsim/hamiltonians/diagonal_coulomb_hamiltonian.html index 0763675ba..681fb37b1 100644 --- a/dev/_modules/ffsim/hamiltonians/diagonal_coulomb_hamiltonian.html +++ b/dev/_modules/ffsim/hamiltonians/diagonal_coulomb_hamiltonian.html @@ -286,6 +286,7 @@

Source code for ffsim.hamiltonians.diagonal_coulomb_hamiltonian

import numpy as np import scipy.linalg +from pyscf.fci.direct_uhf import make_hdiag from scipy.sparse.linalg import LinearOperator from ffsim._lib import FermionOperator @@ -449,7 +450,27 @@

Source code for ffsim.hamiltonians.diagonal_coulomb_hamiltonian

diag_coulomb_mats=diag_coulomb_mats, constant=constant, )
-
+ + + def _diag_(self, norb: int, nelec: tuple[int, int]) -> np.ndarray: + """Return the diagonal entries of the Hamiltonian.""" + if np.iscomplexobj(self.one_body_tensor): + raise NotImplementedError( + "Computing diagonal of complex diagonal Coulomb Hamiltonian is not yet " + "supported." + ) + two_body_tensor_aa = np.zeros((self.norb, self.norb, self.norb, self.norb)) + two_body_tensor_ab = np.zeros((self.norb, self.norb, self.norb, self.norb)) + diag_coulomb_mat_aa, diag_coulomb_mat_ab = self.diag_coulomb_mats + for p, q in itertools.product(range(self.norb), repeat=2): + two_body_tensor_aa[p, p, q, q] = diag_coulomb_mat_aa[p, q] + two_body_tensor_ab[p, p, q, q] = diag_coulomb_mat_ab[p, q] + one_body_tensor = self.one_body_tensor + 0.5 * np.einsum( + "prqr", two_body_tensor_aa + ) + h1e = (one_body_tensor, one_body_tensor) + h2e = (two_body_tensor_aa, two_body_tensor_ab, two_body_tensor_aa) + return make_hdiag(h1e, h2e, norb=norb, nelec=nelec) + self.constant diff --git a/dev/_modules/ffsim/hamiltonians/molecular_hamiltonian.html b/dev/_modules/ffsim/hamiltonians/molecular_hamiltonian.html index 6636e5b82..e6455adf7 100644 --- a/dev/_modules/ffsim/hamiltonians/molecular_hamiltonian.html +++ b/dev/_modules/ffsim/hamiltonians/molecular_hamiltonian.html @@ -437,8 +437,9 @@

Source code for ffsim.hamiltonians.molecular_hamiltonian

if np.iscomplexobj(self.two_body_tensor) or np.iscomplexobj( self.one_body_tensor ): - raise ValueError( - "Computing diagonal of complex molecular Hamiltonian is not supported." + raise NotImplementedError( + "Computing diagonal of complex molecular Hamiltonian is not yet " + "supported." ) return ( make_hdiag(self.one_body_tensor, self.two_body_tensor, norb, nelec) diff --git a/dev/explanations/hamiltonians.html b/dev/explanations/hamiltonians.html index d98c451cc..5256b895d 100644 --- a/dev/explanations/hamiltonians.html +++ b/dev/explanations/hamiltonians.html @@ -378,7 +378,7 @@

Operator action via SciPy LinearOperators
-np.float64(-99.55717072551607)
+np.float64(-99.55717072551532)
 

Time evolution by the Hamiltonian can be computed using expm_multiply:

@@ -396,7 +396,7 @@

Operator action via SciPy LinearOperators
-/tmp/ipykernel_4307/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.
+/tmp/ipykernel_4333/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.
   evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)
 
diff --git a/dev/explanations/hamiltonians.ipynb b/dev/explanations/hamiltonians.ipynb index 56e0bc40e..8282ce9f7 100644 --- a/dev/explanations/hamiltonians.ipynb +++ b/dev/explanations/hamiltonians.ipynb @@ -33,10 +33,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:53.270902Z", - "iopub.status.busy": "2024-07-23T22:29:53.270549Z", - "iopub.status.idle": "2024-07-23T22:29:53.969006Z", - "shell.execute_reply": "2024-07-23T22:29:53.968480Z" + "iopub.execute_input": "2024-07-26T02:27:45.238211Z", + "iopub.status.busy": "2024-07-26T02:27:45.237751Z", + "iopub.status.idle": "2024-07-26T02:27:45.961675Z", + "shell.execute_reply": "2024-07-26T02:27:45.961129Z" } }, "outputs": [], @@ -68,10 +68,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:53.972028Z", - "iopub.status.busy": "2024-07-23T22:29:53.971484Z", - "iopub.status.idle": "2024-07-23T22:29:53.974689Z", - "shell.execute_reply": "2024-07-23T22:29:53.974202Z" + "iopub.execute_input": "2024-07-26T02:27:45.964595Z", + "iopub.status.busy": "2024-07-26T02:27:45.964162Z", + "iopub.status.idle": "2024-07-26T02:27:45.967271Z", + "shell.execute_reply": "2024-07-26T02:27:45.966700Z" } }, "outputs": [], @@ -99,10 +99,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:53.977172Z", - "iopub.status.busy": "2024-07-23T22:29:53.976721Z", - "iopub.status.idle": "2024-07-23T22:29:53.980011Z", - "shell.execute_reply": "2024-07-23T22:29:53.979539Z" + "iopub.execute_input": "2024-07-26T02:27:45.969667Z", + "iopub.status.busy": "2024-07-26T02:27:45.969315Z", + "iopub.status.idle": "2024-07-26T02:27:45.972641Z", + "shell.execute_reply": "2024-07-26T02:27:45.972143Z" } }, "outputs": [], @@ -127,10 +127,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:53.982364Z", - "iopub.status.busy": "2024-07-23T22:29:53.982032Z", - "iopub.status.idle": "2024-07-23T22:29:53.986769Z", - "shell.execute_reply": "2024-07-23T22:29:53.986237Z" + "iopub.execute_input": "2024-07-26T02:27:45.974822Z", + "iopub.status.busy": "2024-07-26T02:27:45.974573Z", + "iopub.status.idle": "2024-07-26T02:27:45.979528Z", + "shell.execute_reply": "2024-07-26T02:27:45.978976Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:53.989947Z", - "iopub.status.busy": "2024-07-23T22:29:53.989540Z", - "iopub.status.idle": "2024-07-23T22:29:54.011854Z", - "shell.execute_reply": "2024-07-23T22:29:54.011176Z" + "iopub.execute_input": "2024-07-26T02:27:45.983397Z", + "iopub.status.busy": "2024-07-26T02:27:45.982385Z", + "iopub.status.idle": "2024-07-26T02:27:46.005180Z", + "shell.execute_reply": "2024-07-26T02:27:46.004503Z" } }, "outputs": [ { "data": { "text/plain": [ - "np.float64(-99.55717072551607)" + "np.float64(-99.55717072551532)" ] }, "execution_count": 5, @@ -191,10 +191,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:54.045105Z", - "iopub.status.busy": "2024-07-23T22:29:54.044669Z", - "iopub.status.idle": "2024-07-23T22:29:54.454846Z", - "shell.execute_reply": "2024-07-23T22:29:54.454266Z" + "iopub.execute_input": "2024-07-26T02:27:46.040024Z", + "iopub.status.busy": "2024-07-26T02:27:46.039560Z", + "iopub.status.idle": "2024-07-26T02:27:46.444185Z", + "shell.execute_reply": "2024-07-26T02:27:46.443541Z" } }, "outputs": [ @@ -202,7 +202,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_4307/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", + "/tmp/ipykernel_4333/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", " evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)\n" ] } @@ -224,10 +224,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:54.459081Z", - "iopub.status.busy": "2024-07-23T22:29:54.458107Z", - "iopub.status.idle": "2024-07-23T22:29:54.833761Z", - "shell.execute_reply": "2024-07-23T22:29:54.833193Z" + "iopub.execute_input": "2024-07-26T02:27:46.447471Z", + "iopub.status.busy": "2024-07-26T02:27:46.447081Z", + "iopub.status.idle": "2024-07-26T02:27:46.817998Z", + "shell.execute_reply": "2024-07-26T02:27:46.817360Z" } }, "outputs": [], diff --git a/dev/explanations/orbital-rotation.ipynb b/dev/explanations/orbital-rotation.ipynb index fce316d35..48b8c8c1a 100644 --- a/dev/explanations/orbital-rotation.ipynb +++ b/dev/explanations/orbital-rotation.ipynb @@ -62,10 +62,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:57.982707Z", - "iopub.status.busy": "2024-07-23T22:29:57.982262Z", - "iopub.status.idle": "2024-07-23T22:29:58.687391Z", - "shell.execute_reply": "2024-07-23T22:29:58.686758Z" + "iopub.execute_input": "2024-07-26T02:27:50.121781Z", + "iopub.status.busy": "2024-07-26T02:27:50.121589Z", + "iopub.status.idle": "2024-07-26T02:27:50.836550Z", + "shell.execute_reply": "2024-07-26T02:27:50.836015Z" } }, "outputs": [], diff --git a/dev/explanations/qiskit-gate-decompositions.ipynb b/dev/explanations/qiskit-gate-decompositions.ipynb index e4f93353e..b73838c64 100644 --- a/dev/explanations/qiskit-gate-decompositions.ipynb +++ b/dev/explanations/qiskit-gate-decompositions.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:29:59.990364Z", - "iopub.status.busy": "2024-07-23T22:29:59.989893Z", - "iopub.status.idle": "2024-07-23T22:30:01.579792Z", - "shell.execute_reply": "2024-07-23T22:30:01.579044Z" + "iopub.execute_input": "2024-07-26T02:27:52.245529Z", + "iopub.status.busy": "2024-07-26T02:27:52.245316Z", + "iopub.status.idle": "2024-07-26T02:27:53.834400Z", + "shell.execute_reply": "2024-07-26T02:27:53.833781Z" } }, "outputs": [ @@ -81,10 +81,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:01.582845Z", - "iopub.status.busy": "2024-07-23T22:30:01.582183Z", - "iopub.status.idle": "2024-07-23T22:30:01.780472Z", - "shell.execute_reply": "2024-07-23T22:30:01.779812Z" + "iopub.execute_input": "2024-07-26T02:27:53.837020Z", + "iopub.status.busy": "2024-07-26T02:27:53.836709Z", + "iopub.status.idle": "2024-07-26T02:27:54.052058Z", + "shell.execute_reply": "2024-07-26T02:27:54.051487Z" } }, "outputs": [ @@ -119,10 +119,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:01.783082Z", - "iopub.status.busy": "2024-07-23T22:30:01.782722Z", - "iopub.status.idle": "2024-07-23T22:30:01.893766Z", - "shell.execute_reply": "2024-07-23T22:30:01.893111Z" + "iopub.execute_input": "2024-07-26T02:27:54.054418Z", + "iopub.status.busy": "2024-07-26T02:27:54.054218Z", + "iopub.status.idle": "2024-07-26T02:27:54.168078Z", + "shell.execute_reply": "2024-07-26T02:27:54.167448Z" } }, "outputs": [ @@ -156,10 +156,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:01.896689Z", - "iopub.status.busy": "2024-07-23T22:30:01.896237Z", - "iopub.status.idle": "2024-07-23T22:30:02.006257Z", - "shell.execute_reply": "2024-07-23T22:30:02.005644Z" + "iopub.execute_input": "2024-07-26T02:27:54.170594Z", + "iopub.status.busy": "2024-07-26T02:27:54.170353Z", + "iopub.status.idle": "2024-07-26T02:27:54.280203Z", + "shell.execute_reply": "2024-07-26T02:27:54.279569Z" } }, "outputs": [ @@ -196,10 +196,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:02.008897Z", - "iopub.status.busy": "2024-07-23T22:30:02.008541Z", - "iopub.status.idle": "2024-07-23T22:30:02.193223Z", - "shell.execute_reply": "2024-07-23T22:30:02.192603Z" + "iopub.execute_input": "2024-07-26T02:27:54.282923Z", + "iopub.status.busy": "2024-07-26T02:27:54.282451Z", + "iopub.status.idle": "2024-07-26T02:27:54.467756Z", + "shell.execute_reply": "2024-07-26T02:27:54.467120Z" } }, "outputs": [ @@ -250,10 +250,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:02.195857Z", - "iopub.status.busy": "2024-07-23T22:30:02.195447Z", - "iopub.status.idle": "2024-07-23T22:30:02.418459Z", - "shell.execute_reply": "2024-07-23T22:30:02.417831Z" + "iopub.execute_input": "2024-07-26T02:27:54.470375Z", + "iopub.status.busy": "2024-07-26T02:27:54.470022Z", + "iopub.status.idle": "2024-07-26T02:27:54.693572Z", + "shell.execute_reply": "2024-07-26T02:27:54.692970Z" } }, "outputs": [ @@ -292,10 +292,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:02.421170Z", - "iopub.status.busy": "2024-07-23T22:30:02.420786Z", - "iopub.status.idle": "2024-07-23T22:30:02.557432Z", - "shell.execute_reply": "2024-07-23T22:30:02.556819Z" + "iopub.execute_input": "2024-07-26T02:27:54.696527Z", + "iopub.status.busy": "2024-07-26T02:27:54.696044Z", + "iopub.status.idle": "2024-07-26T02:27:54.832835Z", + "shell.execute_reply": "2024-07-26T02:27:54.832242Z" } }, "outputs": [ @@ -334,10 +334,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:02.559829Z", - "iopub.status.busy": "2024-07-23T22:30:02.559499Z", - "iopub.status.idle": "2024-07-23T22:30:03.083090Z", - "shell.execute_reply": "2024-07-23T22:30:03.082479Z" + "iopub.execute_input": "2024-07-26T02:27:54.835483Z", + "iopub.status.busy": "2024-07-26T02:27:54.835105Z", + "iopub.status.idle": "2024-07-26T02:27:55.363508Z", + "shell.execute_reply": "2024-07-26T02:27:55.362842Z" } }, "outputs": [ @@ -383,10 +383,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.085645Z", - "iopub.status.busy": "2024-07-23T22:30:03.085282Z", - "iopub.status.idle": "2024-07-23T22:30:03.257547Z", - "shell.execute_reply": "2024-07-23T22:30:03.256890Z" + "iopub.execute_input": "2024-07-26T02:27:55.366175Z", + "iopub.status.busy": "2024-07-26T02:27:55.365669Z", + "iopub.status.idle": "2024-07-26T02:27:55.536898Z", + "shell.execute_reply": "2024-07-26T02:27:55.536316Z" } }, "outputs": [ @@ -425,10 +425,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.260333Z", - "iopub.status.busy": "2024-07-23T22:30:03.259956Z", - "iopub.status.idle": "2024-07-23T22:30:03.443625Z", - "shell.execute_reply": "2024-07-23T22:30:03.443045Z" + "iopub.execute_input": "2024-07-26T02:27:55.539279Z", + "iopub.status.busy": "2024-07-26T02:27:55.539069Z", + "iopub.status.idle": "2024-07-26T02:27:55.722891Z", + "shell.execute_reply": "2024-07-26T02:27:55.722232Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.446348Z", - "iopub.status.busy": "2024-07-23T22:30:03.445959Z", - "iopub.status.idle": "2024-07-23T22:30:03.578198Z", - "shell.execute_reply": "2024-07-23T22:30:03.577570Z" + "iopub.execute_input": "2024-07-26T02:27:55.725632Z", + "iopub.status.busy": "2024-07-26T02:27:55.725243Z", + "iopub.status.idle": "2024-07-26T02:27:55.856692Z", + "shell.execute_reply": "2024-07-26T02:27:55.856050Z" } }, "outputs": [ @@ -513,10 +513,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.580906Z", - "iopub.status.busy": "2024-07-23T22:30:03.580473Z", - "iopub.status.idle": "2024-07-23T22:30:03.761964Z", - "shell.execute_reply": "2024-07-23T22:30:03.761365Z" + "iopub.execute_input": "2024-07-26T02:27:55.859301Z", + "iopub.status.busy": "2024-07-26T02:27:55.858898Z", + "iopub.status.idle": "2024-07-26T02:27:56.038589Z", + "shell.execute_reply": "2024-07-26T02:27:56.037969Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.764471Z", - "iopub.status.busy": "2024-07-23T22:30:03.764088Z", - "iopub.status.idle": "2024-07-23T22:30:03.926721Z", - "shell.execute_reply": "2024-07-23T22:30:03.926200Z" + "iopub.execute_input": "2024-07-26T02:27:56.041173Z", + "iopub.status.busy": "2024-07-26T02:27:56.040768Z", + "iopub.status.idle": "2024-07-26T02:27:56.204484Z", + "shell.execute_reply": "2024-07-26T02:27:56.203840Z" } }, "outputs": [ @@ -593,10 +593,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:03.929157Z", - "iopub.status.busy": "2024-07-23T22:30:03.928782Z", - "iopub.status.idle": "2024-07-23T22:30:04.059695Z", - "shell.execute_reply": "2024-07-23T22:30:04.059192Z" + "iopub.execute_input": "2024-07-26T02:27:56.206848Z", + "iopub.status.busy": "2024-07-26T02:27:56.206628Z", + "iopub.status.idle": "2024-07-26T02:27:56.338527Z", + "shell.execute_reply": "2024-07-26T02:27:56.337897Z" } }, "outputs": [ @@ -630,10 +630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:04.062134Z", - "iopub.status.busy": "2024-07-23T22:30:04.061798Z", - "iopub.status.idle": "2024-07-23T22:30:04.311872Z", - "shell.execute_reply": "2024-07-23T22:30:04.311301Z" + "iopub.execute_input": "2024-07-26T02:27:56.341189Z", + "iopub.status.busy": "2024-07-26T02:27:56.340802Z", + "iopub.status.idle": "2024-07-26T02:27:56.603915Z", + "shell.execute_reply": "2024-07-26T02:27:56.603165Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:04.314476Z", - "iopub.status.busy": "2024-07-23T22:30:04.314109Z", - "iopub.status.idle": "2024-07-23T22:30:04.642716Z", - "shell.execute_reply": "2024-07-23T22:30:04.642216Z" + "iopub.execute_input": "2024-07-26T02:27:56.606601Z", + "iopub.status.busy": "2024-07-26T02:27:56.606382Z", + "iopub.status.idle": "2024-07-26T02:27:56.929593Z", + "shell.execute_reply": "2024-07-26T02:27:56.928974Z" } }, "outputs": [ @@ -736,16 +736,16 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:04.644973Z", - "iopub.status.busy": "2024-07-23T22:30:04.644772Z", - "iopub.status.idle": "2024-07-23T22:30:05.112032Z", - "shell.execute_reply": "2024-07-23T22:30:05.111476Z" + "iopub.execute_input": "2024-07-26T02:27:56.932190Z", + "iopub.status.busy": "2024-07-26T02:27:56.931801Z", + "iopub.status.idle": "2024-07-26T02:27:57.389929Z", + "shell.execute_reply": "2024-07-26T02:27:57.389271Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADYoUlEQVR4nOzdeXxTVf7/8VeS7rSltOxQulCWsrUdEGSTgHUEZwQREUUUEcZxH1xQR8GvC6CM4+jPEXEYUJERRFEHcVAWpbJVKksBWUrLUtm3Wrq3tMnvj0ggtJStSZrwfj4efdB77rn3fO7tJbn55JxzDVar1YqIiIiIiIiIiIgXMLo7ABERERERERERkZqiZJeIiIiIiIiIiHgNJbtERERERERERMRrKNklIiIiIiIiIiJeQ8kuERERERERERHxGkp2iYiIiIiIiIiI11CyS0REREREREREvIaSXSIiIiIiIiIi4jWU7BIREREREREREa+hZJeIiIiIiIiIiHgNJbtERERERERERMRrKNklIiIiIiIiIiJeQ8kuERERERERERHxGkp2iYiIiIiIiIiI11CyS0REREREREREvIaSXSIiIiIiIiIi4jWU7BIREREREREREa+hZJeIiIiIiIiIiHgNJbtERERERERERMRrKNklIiIiIiIiIiJeQ8kuERERERERERHxGkp2iYiIiIiIiIiI11CyS0REREREREREvIaSXSIiIiIiIiIi4jWU7BIREREREREREa+hZJeIiIiIiIiIiHgNJbtERERERERERMRrKNklIiIiIiIiIiJeQ8kuERERERERERHxGj7uDqA2K8sv4tftv7g7DK9RL74FfiFBF6xXcAqy8lwQUBXiQiHY1z1ti4iIiIiIiMiVU7KrGr9u/4VvBo13dxheY8CCiTTq2vaC9bLyYMxqFwRUhRk9ITHCPW2LiIiIiIiIyJXTMEYREREREREREfEaSnaJiIiIiIiIiIjXULJLRERERERERES8hpJdIiIiIiIiIiLiNTRBvXiFjOfNFO5IxeDji8HkQ0CztjQdMYnQhOvdHZqIiIiIiIiIuJB6donXaDpiEknzCug06wh12nRn1+RbqCg86e6wRERERERERMSFlOwSr2P09af+DaOxlBRQcijL3eGIiIiIiIiIiAsp2SVex1JazPGlMzAGhRLQtJW7wxERERERERERF/KYZFdZWRkTJkwgMjKSwMBA+vXrR1paGgaDgQULFrg7PKkFDs6ZQPrwMLb8KZqiPZuIG/81pqBQd4flFgWnYFsuZJyEcou7o/FeJRWwI9f2U1Lu7mhErozVCrvy4OdfIafU3dGIXLnDRbbreX+huyMREU9RVA7bc2HHSSircHc0InIlPGKCeqvVytChQ0lLS+PFF18kLi6OOXPmMHjwYACSkpJcGo/BZOSaF0fScsh1GIxG9v7vR9Y+N4OK0lMujUMcNR3+Co0HP+XuMNzq11J4dwf8bx+U/ZbkqucHw2Lg3lbg4zHp7dqtpBz+lQFfZEPhb0muOj4wqAX8ua3tdxFPYbXCf3+BWZmwv8hWZgTMTeCheIgOdmt4Ipds4wmYtgM2nDhT1i4M7m8DvRq5LSwRqcXyT9leN776xfZlJkCoLwyJhjGtwd/k1vBE5DJ4xEey6dOns2jRItLT02nfvj0AZrOZmJgYwsPDadGihUvj6fTYrTTu0YEF/Z6k4lQ513/4DJ3H303ahPddGofI2XJKYdRKOFQEZ3fm+rUM3suw9fR6vSuYDO6K0DuUVMCDqbbeAtazygvLYe5u24er6T0hyCNeXUXgn9vhoyw4+6XBAqQcgrXH4P1e0PLq7CQrHmjVEXgyzZbEPdv2XHh8LfxfIvzRtbeNIlLLFZyCMatgd77jvV3eKfggE7bkwNvXgp8SXiIexSP6eUyZMoURI0bYE10AJpOJmJgYe6+unTt30r17d1q3bk337t3JzMx0Wjyt7rqeLW9/QdHhHEpP5JH+xqfEDTNjMHrE6RQvNXV75UTX2VYcgUX7XBqSV5qzC7ack+g6zYpt6OhHei6CeIiffz1zvZ57TVuA4nJ4Jd3FQYlcptIKeGEDWKyV3wutv/1M3AS5ZW4ITkRqrRk7Kye6zrbuBMzf68qIRKQm1PrsTGZmJnv27GHIkCGV1u3bt8+e7HrggQd4+OGH2blzJw8//DB//vOfnRKPX2gQwc0akLN1j73sxJY9+IUEERzZwCltilxI/in4Zv/5E11g+8/+6Z5qKsgFVVjhs73V17ECn+/VXGniGT7fW/2NgAX4ORd2nnRNPCJX4vtDtp4Y5/vAClBuha9/cVlIIlLLlVbAl9nVv24YsN1Dn9tjVERqt1o/0ObAgQMANGzY0KF8x44dZGdnk5SUxNGjR9mwYQNLly4F4M477+SRRx7h2LFjNGhw4QRUSEgIZWWVv+Zr6VOPp0N7OZT5BAcCUHayyF5WdtI286nvb+ukan37mtlV/usF6wW16U7LiSmXtO82ky6t/vn07WumKCO1RvblSoGtuhI3eWW1dSzAtpxy/P3ruCYoL2QKbUC7mfsvWO/XMghr3pJTJy5cV8SdWv1jIwGR7S5Y77rb/8SvKR+5ICKRy9dk5N+IGPAwBtP5b2+tFad48V/zGf32va4LTERqLf+mbWj9/zZXW8eKbU7LwLr1sJYWVVtXRGqW1WrFx8eHw4cPExp6afNq1PqeXREREQBkZZ0ZF2S1WnnmmWewWCwkJSWxb98+mjVrhslkG0htMplo2rQp+/bV/Jit8oJiAHxDg+xlfnVtyYNTv60TcbmKi3sUoNWix8pcEcvFP3JR51o8gVWvHeJFbNfzhSamNOh6FhE76yXc26HXDhGXs1qtFBcXs2XLlkvettb37IqPjycuLo7nnnsOX19fgoODmTZtGhs3biQoKIg2bdqwcePGK2ojPz+/yvIjaTv4ZtB4h7KyvCIKDhwjvH00ebsOAhDRIYay/CIK9h27oji83fLlKTTq2vaC9dJPwJjVLgioCsuXp5AY4Z62r0RZBfRfYhu+cT5GA/Rs5s+G0lLXBeZlrFa4MwV2VTOvgwFoEQw/HdqLQQ8DkFru/22F/+y68PCNTV+9T+NAPYRFarfUo/Doj9XXMZh8+H9jR/DHN0a4JigRqdUqrDBwKRwpOX8dI9C+HqwryHNZXCJis3r1anr16nXhilWo9T27fHx8mD9/Pk2aNGHkyJGMHTuWAQMG0KdPHzp16oTRaCQyMpIDBw5QUWHLtldUVHDw4EEiIyOdElPmx9/R6dHBBDaqh39EKIlP3k7WvBSsFk3SI+7hZ4KhMdXXsVjhjljXxOOtDAYY3rL6xIAVuDMGJbrEIwyJrv5aNQJ9GkNjjdIXD9CtAUTWOf/NrRGo6ws3NHVlVCJSm5kMcOcF7o8tXLiOiNQ+tT7ZBZCQkEBqaipFRUVkZGTw4IMPsnHjRvvk9A0bNiQxMZG5c+cCMHfuXJKSki5qvq7LsfntLzj843ZuSXmTIWv+SW7mftZP+o9T2hK5WGNaQ/ffLvmzP7ue/k/+p9bQveG5W8mlujkSBkfZfj/7BfT0739oDrdGuzgokcvUvA68nGS7fqu6IYgOhvEJro5K5PIYDfBGVwj1qzyY0Qj4m+DNbrZ/RUROu7MlJP+WBK/q3u7OWCXJRTxRrR/GWJXi4mIyMjIYO3asvey9995j5MiRvPzyy9SrV4+PPnLeRLrWCgtpE94nbYKGdLjSL9MfpXhPOqG/G0CToc/Zy09uWMyhT17CFFyP2CfnYCkrZvff7wCg7Pg+Gv7hURoNHAtA7o//Zf+H4+jwXqY7DsGpfI22m/ivfrE9MSbrt9G53RrYenT1bOTe+LyFwQDPdYKu9eGTPbApx1bevh4Mi4Ebm6lXl3iW/s1tvWHm7IbFtmfC0CTQ1uvrtmgI9nVndCKXJjYE5vSxvT5/9Qvk/vb8odtiYHisLcErInI2kwEmdYZeDeHTvbAt11aeFGG7hzY31r2diCfyyGTX5s2bqaiosPfsAmjbti1r1651Y1TiTIWZ6zAYfWjz6kp2vXYbp3KP4Btmy94cWfAGrV/5jrz0JRxb8m8aD37K/nTG3X+/k7qdb7Lv59fUz/Gr75zhrbWBj9HWq+jWaOjyla3sn93dGZF3Mhjghma2n9Pn+YPe7o1J5Eq0r2e70T+d7Fp4g3vjEbkSDQPhsXa2n9Ov0U93dG9MIlK7mQzwxxa2n9OvG//q6d6YROTKeMQwxnN169YNq9VKly5d3B2KuEjhzrWEdOoHQEiHPhRlrQegoqQQU2AIRv9AQjr2oygzzb6NtfwUZUf2ENCsNQB5m78nOL4XGDzyshcRERERERGRi6BP/eIRKgpzMQWFAmAMDKGiMPdMeeDp8mAqCk/at8n/OYXgDmb78oll7xPRb6TLYhYRERERERER11OySzyCqU4YFUW2x/1aivMx1Qk7U158urwAU5269m1y074irNsgwDYMMiCyHUa/ANcGLiIiIiIiIiIupWSXeIQ6rbuSv2U5APlbVxAU1xkAU0AdKorzsZSVkL9lOUGtutq3Kdy5ljqtuwFQ/MvP5KUvJfPF/hTtSefQp5NcfxAiIiIiIiIi4nRKdolHqNPqGqynSsn4a2+CYhI4lXOIE8tnA9Bo0BPsHN+XY4vfo/4NYwAo2r2RoOgEDEbbJV7/+ntpM2k5rV78lqCYRJrc/rzbjkVEREREREREnMcjn8YoV6cWD0x1WA6KTQSg7u/6U/d3/c9Zl0TUI/+ucj+tX1nmlPhERERERERExP3Us0tERERERERERLyGkl0iIiIiIiIiIuI1lOwSERERERERERGvoWSXiIiIiIiIiIh4DU1QL7VOXCjM6Om+tkVERERERETEcynZJbVOsC8kRrg7ChERERERERHxRBrGKHKVSklJISYmBrPZzMiRIyutnzRpEpmZmdXu49FHH6V3795Mnjy50rqcnBw6d+5McHCwQ/lbb71FcnIyANu3b2fKlClXcBQiIiIiIiIijpTsErmKjR49mpSUFOrWrUtqaqq93GKxsHnzZlq1anXebdetW4ePjw8rV65kw4YNHDlyxGF9SEgIS5cu5dprr7WXnTp1ivT0dPtyfHw8GzZswGq11txBiYiIiIiIyFVNyS4RoUOHDhw4cMC+vGnTJlq3bl3tNmvXrqVfv34A9OnTh/Xr1zus9/X1JTw83KFs9uzZ3HnnnQ5lsbGxbN269UrCFxEREREREbFTsktESE1NJS4uzr6cmZlJdHR0tdvk5uYSGmqb0T8kJITc3Nxq61ssFhYvXsyNN97oUB4VFcXOnTsvK24RERERERGRc2mCepGr2MyZM1m2bBm9evUiMTGxyjrbtm3joYcecijr378/YWFh5OXlAZCfn0/Lli2rbeuLL75g4MCBNRK3iIiIiIiIyPko2SVyFRs9ejTjx4+vVN6qVSu++OILANq1a0dKSkqlOj/99BNz587l5ptvZsWKFdx+++3VtpWRkUFKSgqzZ88mPT2dGTNmMGbMGLKzs+nZs2eNHI+IiIiIiIiIhjGKSCUJCQlkZGRUW+eaa66htLSU3r17k5CQQKNGjTh8+DCvv/66vU5ycjIbN24kOTmZQYMGsXTpUr799lsSExMZM2YMAFlZWXTo0MGpxyMiIiIiIiJXD/XsErlKmc1mzGZzleuMRiOdOnUiMzOz2icyTp061WG5cePGjBs3zr68bNmyKrc7Xb59+3Y6d+6MwWC4xOhFREREREREqqZkl4hUqarhjTUtPj6e+Ph4p7cjIiIiIiIiVw8NYxQREREREREREa+hZJeIiIiIiIiIiHgNDWOUWqfgFGTluaftuFAI9nVP2yIiIiIiIiJy5ZTsklonKw/GrHZP2zN6QmKEe9oWERERERERkSunYYwiIiIiIiIiIuI1lOwSERERERERERGvoWSXiIiIiIiIiIh4DSW7RERERERERETEa2iCevEKGc+bKdyRisHHF4PJh4BmbWk6YhKhCde7OzQRERERERERcSH17BKv0XTEJJLmFdBp1hHqtOnOrsm3UFF40t1hiYiIiIiIiIgLKdklXsfo60/9G0ZjKSmg5FCWu8MRERERERERERdSsku8jqW0mONLZ2AMCiWgaSt3hyMiIiIiIiIiLuQxya6ysjImTJhAZGQkgYGB9OvXj7S0NAwGAwsWLHB3eFILHJwzgfThYWz5UzRFezYRN/5rTEGh7g7LLcoqzvxutbovDpGaYLXC4SLYXwilFReuL1Lb/VoKvxRAwSl3RyIinqKkAvYVwOFi3duJ57NY4eBv93anLO6ORryVR0xQb7VaGTp0KGlpabz44ovExcUxZ84cBg8eDEBSUpLLYom+uTvxY24ivH00pTn5zO/6kMvaluo1Hf4KjQc/5e4w3KrgFLyfCV9mnykb/B3c2RKGRoPR4LbQRC6Z1QqfZ8OcXfBLoa2sjg/c0gJGt4ZQP/fGJ3Kpfjpme43+6bht2WiAfk1gTGuIuzq/mxGRC/i1FGbuhK9+gaLfvvCJCYYRcTAwEgy6txMPUmGFT3bbfg4V28rq+sKt0XBfKwj0iOyEeAqPuJymT5/OokWLSE9Pp3379gCYzWZiYmIIDw+nRYsWLoul9GQhO97/loAGdWl//x9d1q7IheSfgjGrYHc+nP2F34EieH0LbPsV/i9JCS/xDFYrTNoE//0Fzr5kC8thzm5YfRRm9oK6SniJh/h2P0zY4Hg9W6zw/UFYdQSmdYeO4W4LT0RqoRMlcN8qWw+Ys+/t9hbAK+mQlQdPtFfCSzxDhRWeWwffHXJ8Lzx5Cj7MhB+Pwr96QpBHZCjEE3jEMMYpU6YwYsQIe6ILwGQyERMTY+/V9dRTTxETE4PBYODnn392WiyHVmxmz4LVFO4/5rQ2RC7Hu9srJ7rgzPL/9sPSg66OSuTypBy2Jbqg6mv6lwJ4e5uroxK5PL+WwosbbdfuuaM1LNiGnv91ve2DgIjIaW/8DIeKzn9vN3c3rNVHEvEQC3+xJbqg6mt6x0n4d4aroxJvVuuTXZmZmezZs4chQ4ZUWrdv3z57suuWW25hxYoVREVFuTpEEbcrLIeF+yq/cZzNCMzb7aqIRK7Mp3uqf4OyAN/sh7wyV0UkcvkW/ALl1bxAW7DNw5N61GUhiUgtd6LElhiobjojowHm7XFZSCJX5NM9jj26zmXFNhWL5meVmlLrOwkeOHAAgIYNGzqU79ixg+zsbHuyq1evXpfdRkhICGVllT8xtfSpx9Ohl79fcdS3r5ld5b9esF5Qm+60nJhySftuM+nS6p9P375mijJSa2RfrhQYdw1xr66qto4F2HTsFP7+wa4J6irR4dMSAPz9A9wciXdp/59fMfoHVVunzAJRXa+naHv1175cPF3PztFi3KeEdv4jBpPpvHWslgruHPcaR+e97MLIvJ+uafFUwYk3EvP8V9XWsVhheeZx/K9r5qKorg563XACkw8dPym8YLWCcmjQJonSfeq+LzYWy+U/waDW9+yKiIgAICsry15mtVp55plnsFgsLp2cXqTWsl7si4DGyIhnsF7sNa1HUoknsFi4qNdfXc8icpru7cSbXMr7m94LpYbU+p5d8fHxxMXF8dxzz+Hr60twcDDTpk1j48aNBAUF0aZNmytuIz8/v8ryI2k7+GbQ+Cvev9gsX55Co65tL1gv/QSMWe2CgKqwfHkKiRHuaftKlJTDjUtswxnPxwh0buzH+tJSl8V1Nejy25eupTqvNeovP0LqMdu31ucTYIL967+nTq1/J/Mcup6dY84u+MfW6usYjCY+/8d4us7WfUdN0jUtniq3DPovrn4ItBHo37YB6bq+a5ReN5zj3hWwLbf6oblhfnAiMx3fWt8lR1xl9erVlz2Kr9ZfRj4+PsyfP58mTZowcuRIxo4dy4ABA+jTpw+dOnXCaHTtIRiMRkz+vhh8fMBgwOTvi9FPn7TEvQJ8YHBU9ePgLcCwGFdFJHJlhsVWn+gyAANboESXeIQ/RoK/8fyv0UagRR24pr4roxKR2izMDwY0v/C93e26txMPcUds9YkugKHRKNElNcYjLqWEhARSU1MpKioiIyODBx98kI0bN7plCGPL267j7r1z6fvvJwlu3oC7987l1lVvuzwOkXM90AY61qtcfvo/+Z2x0KexS0MSuWw9GsI9cbbfq3qjalsXHol3aUgily3UD17rAiZD5evZCNTxhb9dA4bqPtWKyFXniQ7QMqRywuv068j9beB3HjgiQa5ONzaDW1rYfj/7vfD09X1NfRjVytVRiTfzyO/Ei4uLycjIYOzYsfayxx57jC+++ILDhw+TnJxMREQEW7deYMzAZcj6NIWsT1NqfL9yYb9Mf5TiPemE/m4ATYY+Zy8vOZTFvn89guVUKY0GPk5Yt4Hs/2AcBTvWYPQLIHbcp/iERpA97UFK9u8gKDaJyNH/cOOROEeAD7zbAz7ZDZ/tgSO2uTWJD7Mlum5spg9S4lkejYd2YfDxLtjy27MtGgTYvvW7MxYCPfIdTK5WvRvDB73hoyxYetBWFmCy9fq6uyU0q+Pe+ESk9gnxhRm9YO5u+Gwv5Pw2qi4hHO5qCeYmbg1P5JIYDPB8AiSGw5zdsDPPVt4kyNZDcViMenVJzfLIjwqbN2+moqLCoWfX22+/zdtvq4eVtyrMXIfB6EObV1ey67XbOJV7BN+wRgAc+uQlYp76BJ/gMAAqCk9StHcTbaesJueHOeSsnEuduGsw+vrTZtJy9n/wFEW7NxIU630PNwgwwb2tbD1iCsttvQiCPPJ/uYjtpii5qe3n9PwZ/7vB9qh1EU8UHwavdoGlv13PKQPARzf2IlKNYF/4UxsY3Rq6LrSV/VsPixcPZTDAH1vYfk7f2y24Xl/Ii3N45C1Wt27dsFqtdOnSxd2hiIsU7lxLSKd+AIR06ENR1noALKfKKDu+j71v3UPWpEGcyj2C0T8IU1BdrBYLFUUn8QkOp/TIHgKjOgIQGNWRgh2pbjsWVzAabN8GKtEl3kaJLvEmSnSJyMXS+594KyW6xFl0myUeoaIwF1NQKADGwBAqCnMBKM87TnH2z0SPnUWjm8dyeP6rGHx88YtoztaH23L0638Sdu1gApq3If/nHwDI37qCiqKT7joUEREREREREXEiJbvEI5jqhFFRZBvYbSnOx1Qn7LfyugRGdcQnuB7B7XtTciCD4n3bOZVzgPbvZtB0xCSOfPUmQbFJ+DeMZud4W+8w37oN3XUoIiIiIiIiIuJESnaJR6jTuiv5W5YDtp5ZQXGdATAF1MHoF4DlVCnF2T/j1zAarBZMwfUwGAz4hITbe4E1vetlWk/8HlNAMKGJv3fTkYiIiIiIiIiIM2lGH/EIdVpdw4nvPiTjr70JTbqRUzmHyNu4hIi+d9No0JPsnHA9BqOJ6L98iH+jGLBayfjrdYCV6L/Mwlp+ip3/dwMGo4l6PW/Hr0Gkuw9JRERERERERJxAyS7xGC0emOqwHBSbCEBoYjKhickO66Ienl5p+zaTUpwVmoiIiIiIiIjUEhrGKCIiIiIiIiIiXkPJLhERERERERER8RpKdomIiIiIiIiIiNdQsktERERERERERLyGJqiXWicuFGb0dF/bIuJ5UlJSGDVqFFFRUURFRTFr1iyH9bNnz6ZJkyYkJyczefJkvvnmGxITE/nnP//pUG/kyJHs2rULf39/PvroI5o1a8b777/PjBkzaNiwIbNnzyYkJIQ77riDxYsXs3DhQnr16kV5eTkPPPAAM2bMcOVhi4iIiIhIFZTsklon2BcSI9wdhYh4mtGjRzN+/Hgee+wxUlNT6d69u33dwoULmTdvHkeOHGHDhg2sXLmSxx9/nHXr1tGlSxd7vZdeeono6Gi+++47pk6dyssvv8ysWbNYtWoVixYtYsaMGTz++OO89dZbvPfee/btfHx8aNCgAbt27aJly5YuPW4REREREXGkYYwiIk6UkpJCTEwMZrOZkSNHVlo/adIkMjMzq93Ho48+Su/evZk8ebJDeXFxMTfddBN9+vRh1KhRAKxatYprr72WHj168MYbbwCQlpZGz5496dGjB+PHjwdg+/btTJkypSYOsdbp0KEDBw4csC/n5OQQEBCAwWBg3bp19OnTB4B+/fqRlpbmsG10dDQAJpMJg8HA8ePHadGiBUajkY4dO5KamgpA48aNK7VrNpv55ptvnHRUIiIiIiJysZTsEhFxstGjR5OSkkLdunXtyRIAi8XC5s2badWq1Xm3XbduHT4+PqxcuZINGzZw5MgR+7olS5bQq1cvfvjhB3x9ffn555+JjY1lxYoVrFmzhq+//pqioiKSkpJYvXo1a9asITU1lby8POLj49mwYQNWq9Wpx+4OqampxMXF2ZezsrKIiooCIDc3l9BQ23jlkJAQcnNzK21vsViYPHkyo0ePpkGDBmRlZVFSUsKKFSs4efLkeduNiopi586dNXswIiIiIiJyyZTsEhFxkXN7HG3atInWrVtXu83atWvp168fAH369GH9+vX2dTExMRQWFgJQUFBA3bp1adq0KX5+foCtd5LRaMTX1xeAiooKmjZtSlBQEACxsbFs3bq15g7QzWbOnInZbKZZs2YkJiZWWScsLIy8vDwA8vPzCQsLq1RnwoQJ3HHHHcTGxmIymRg3bhz9+/dn06ZNNGrUyIlHICIiIiIiNUHJLhERFzm3x1FmZqZ92Nz5VNcTKS4ujpUrVxIfH4/BYCAyMtK+bunSpbRs2ZKAgAAA5syZQ3x8PGFhYfj42KZr9LaeSKd70E2cONGhPC4ujuzsbAA6d+7MihUrAFi+fDldu3Z1qPv555+Tk5PDfffdZy+79dZbSUlJoVu3bgwYMOC87WdnZ1fbS09ERERERFxDyS4RESe7mB5H27Ztw2w2O/y89tpr1fZEmjVrFsOGDWP79u3Ur1+fNWvWALB//35effVV+5xdAMOHD2fHjh0cPHiQLVu2OO1Ya6Pw8HCKiooA21xbnTp1onfv3pSWltKlSxcOHz7M66+/DsATTzzBpk2bMJvNTJo0CYCHHnqI66+/nhUrVnD77bcD8OSTT/LRRx/x+OOP8/HHHwO2+dmqS4aJiIiIiIhr6GmMIiJOdvopgedq1aoVX3zxBQDt2rUjJSWlUp2ffvqJuXPncvPNNzskW8A2t1R4eDhgS+jk5uZSWlrKvffey7Rp0wgODgagtLQUf39/jEYjISEh9t5e2dnZ9OzZs6YP1y1OJwjPZ+DAgSxbtozk5GQmTJjAhAkT7OsaN27MuHHjAOw9wM727rvvVip74403HJKJ5eXlHD161KHnnoiIiIiIuId6domIuElCQgIZGRnV1rnmmmsoLS2ld+/eJCQk0KhRI3tPpOHDh/PBBx9gNptJT0/nhhtuYM6cOWzbto0///nPmM1mDhw4wFdffYXZbOa6666jefPm9qF2WVlZdOjQwRWH6nb33HMPycnJTtu/j48PM2fOdNr+RURERETk4qlnl4iIE1XX48hoNNKpUycyMzOrnetp6tSpDstn90RasmSJw7pRo0YxatQoh7KhQ4cydOhQh7Lt27fTuXNnDAbDxR6KiIiIiIiIR1CyS0TEjaoa3ugK8fHxxMfHu6VtERERERERZ9IwRhERERERERER8RpKdomIiIiIiIiIiNfQMEapdQpOQVaee9qOC4VgX/e0LSIiIiIiIiJXTskuqXWy8mDMave0PaMnJEa4p20RERERERERuXIaxigiIiIiIiIiIl5DyS4REREREREREfEaSnaJiIiIiIiIiIjXULJLRERERERERES8hiaoF6+Q8byZwh2pGHx8MZh8CGjWlqYjJhGacL27QxMRERERERERF1LPLvEaTUdMImleAZ1mHaFOm+7smnwLFYUn3R2WiIiIiIiIiLiQkl3idYy+/tS/YTSWkgJKDmW5OxwRERERERERcSElu8TrWEqLOb50BsagUAKatnJ3OCIiIiIiIiLiQh6T7CorK2PChAlERkYSGBhIv379SEtLw2AwsGDBAneHJ7XAwTkTSB8expY/RVO0ZxNx47/GFBTq7rDEi1mtVf8uzmPReRYRqVXKLZBbCiXl7o5ERETOVVQOuWVQcRXeQ3vEBPVWq5WhQ4eSlpbGiy++SFxcHHPmzGHw4MEAJCUluSwWo58P104eQ5NeHQmICKXoyK9sf/8bdrz/jctikKo1Hf4KjQc/5e4w5CpQYYUv98Ine86UDfkehsXCkCjw8ZivEWo3qxWWHoQ5u86U/WEpDImGu2Ih0CPewUREvNPxEvgoCxb8AoXlYAB6NIS746BLfXdHJyJydfvhMPwnCzbm2Jbr+dnuoUe0hGBft4bmMh7xUWH69OksWrSI9PR02rdvD4DZbCYmJobw8HBatGjhsliMJhPFR3NZcscr5GcfIbxdFDfMHU/JsVz2Lkx1WRwi4h4VVnhuHXx3yHZjf9q+Qnh9C6w9Cn+7RgmvmvD2Npi9y7EL8rESeG8H/HAI3usJdTziXUxExLscLILRq2wJr9OdBaxA6jFYcxQmJMJA192ei4jIWd7fCe/uAONZH1Z+LYOZO+G7g/DvXhDm5774XMUjPo5NmTKFESNG2BNdACaTiZiYGJKSkjhx4gQ33XQTbdq0oWPHjtx6660cO3bMKbGUF5ey8W+fkL/3MFit5Gzdy74l62jYNd4p7YlI7fLFXluiC87c4J/9+4ojjj2+5PKsPmJLdAFYqli/4yS8s82lIYmIyG9e2AAnShzfB8E21NwKTEyHA4VuCExE5Cq3OceW6ILK039YgewC+PsWl4flFrU+2ZWZmcmePXsYMmRIpXX79u0jKSkJg8HA008/TUZGBlu2bKFly5Y8++yzLonP4GOiUbd4ft2e7ZL2RMR9rFaYu9uxR9e5DMC83Zpb6kp9usfx26hzWYGF+2xDZ0RExHWy8iA9p+ovIk6zAl/o1lhExOU+3VN9kseCbZqQEyWuish9av0AkAMHDgDQsGFDh/IdO3aQnZ1NUlIS4eHhmM1m+7prr72WadOmXXQbISEhlJWVVSpv6VOPp0N7VbvttZNHc6qgmF2f/XDR7V2t+vY1s6v81wvWC2rTnZYTUy5p320mXVr98+nb10xRhoajStVMIRG0e/9gtXWswKFiCGkaQ3lO9XXl/NrPzsEYUKfaOiUV0LxzP4p2rHZRVN6vw6e2Ox9//wA3R+LddJ5dR+e65oX//s80+9Pb1daxAu8u+pGnkvq4JqirhK5n19B5dg2dZ+do+6+9+IY3qbZOhRXa9LuV/PX/c1FUl89iqe6rlerV+p5dERERAGRlZdnLrFYrzzzzDBaLpdLk9BaLhWnTpjFw4ECnx3bNiyNp0LkNS++ahOWUuheIeD1DdX26KlV2WhhXhYs915f0NxERkSt2ka+7Br0Pioi4nu6h7Wp9z674+Hji4uJ47rnn8PX1JTg4mGnTprFx40aCgoJo06aNQ/1HH32U4OBgHnnkkYtuIz8/v8ryI2k7+GbQ+CrXdX35Xpr06si3Q1+iNKfq7cXR8uUpNOra9oL10k/AGDd11Fi+PIXECPe0LbWfxQqDlsHh4srzlJytQQCsPbgbk/e/hzjNg2tg/fHqh8n4GSE77TtCr4IJNl2ly1e2f0tLS90biJfTeXYdneuatz0X7l5RfR0DMKZ/N554Sue9Jul6dg2dZ9fQeXaOp3+ClMPVT6liBLYt+5yGgS4L67KtXr2aXr2qH213PrW+Z5ePjw/z58+nSZMmjBw5krFjxzJgwAD69OlDp06dMBrPHMJTTz1FZmYm8+bNcyivaV1fuY8mvTvZEl0n8pzWjojULkYDDIutPtEFMDQaJbqu0LCY6hNdBmBAc5ToEhFxsfgwaBdW/byKYHvEvYiIuNbtMRdOdJmb4BGJritV63t2ASQkJJCa6jiP0jvvvEOfPmfmAXjuuedYv349//vf//D393daLHWa16fdmJuoKCnjtrVT7eVH1u5g2V2TnNauiNQOd8TA2qO2x6tXpUsEjGjp2pi8UZ/GMDgKvsy2JbbOfs82AFHB8Fg7NwUnInKVezkJ7lsFBaccv5gwYlt+soPtdVpERFyrS324u6XtqeZV3UM3CoSnO7opOBfziGTXuYqLi8nIyGDs2LEAbN26lVdffZXWrVvTo0cPAGJiYvjyyy9rvO3C/cf5sMltNb5fuTgF21ax/4OnwGCkXo8hNLrlSfu6jOf7cvq/c4s/v0tgi3YcmvcKeelL8WsUQ/SjMzGYPPKSl1rExwj/6AYf74J5e+DYb08yqe8Pt8XAPS3Bz+TeGL2BwQDPdYK2dWHObttjkgGCfWxJsFGt1KtLRMRdokNg9nUwMxO+2Q+nfst4dagH97aC6xq7Nz4RkavZY+0gLhRmZ0HWbzMuBZpgUAu4rzWEO69vUK3ikZ/8N2/eTEVFhX1y+vbt22O1XmhgkXgDv0axtJ68AqOvHxnP96XBgAcx+gcBYDCaaP3KMnvdUzmHKNq9kTavruDo/94hN20h9boPdlfo4kV8jbab+bvj4Ohv83c1DLAlwqTmGAy2YTC3RsHREtuHqYYBSiaKiNQGzerAC4nwVAe4bpGt7P3ebg1JRESw3UP/IRJuag7XLLSVLe0PAVfZPbRHJru6deum5NZVyi+iqf13g9EEhrOzC1Yynjfj3ziOFn9+h9Jj2QS0aA9AYFRHTq77n5JdUqNMBmgS5O4ovJ/BYOtyLSIitU+QR36aEBHxfmc/cPFqS3SBB0xQL1KVvPSl+DdpidEvwF4W+8x82kxKITAynuNLZ+LfKJbCjB+xWiwUbF1BRdFJN0YsIiIiIiIiIq6gZJd4nLLj+zk8/1Waj3rDodwnuB4AdbsOpGTfVnzDGhJ27WB2TujHqdwj+NRt6I5wRURERERERMSFlOwSj2I5Vcre/3cvLR6YhinQ8TE/FUW22fcKd6Ti1zAGgIY3PUSbSSn4NYiibuebXB6viIiIiIiIiLiWRtmLR8n5YQ4l+7aRPe3PADQbMYnSw7uJ6Hs3O19Ixujrh6lOGDGP/weAXa/eSkVRHsHtexPctrs7QxcRERERERERF1CySzxK/eRR1E8e5VAWHN8TgPi/r61Uv+Vfv3BJXCIiIiIiIiJSO2gYo4iIiIiIiIiIeA0lu0RERERERERExGso2SUiIiIiIiIiIl5DyS4REREREREREfEamqBeap24UJjR031ti4iIiEjNSElJYdSoUURFRREVFcWsWbMc1s+ePZsmTZqQnJxM79692bhxIzt27KB58+YO9YqKinjggQfYv38/ZrOZF154gZEjR7Jr1y78/f356KOPaNasGaNGjeL999/HYDC48jBFRKSWUbJLap1gX0iMcHcUIiIiIlITRo8ezfjx43nsscdITU2le/fu9nULFy5k3rx5AHz22Wc8++yzVe7jzTff5KGHHuLaa6+1l7300ktER0fz3XffMXXqVCZPnky3bt1Yvnw5/fr1c+5BiYhIraZhjCIiInJRUlJSiImJwWw2M3LkyErrJ02aRGZmZrX7ePTRR+nduzeTJ0+utC4tLY2ePXvSo0cPxo8fX2kZoLi4mJtuuok+ffowatQoALZv386UKVNq4AhrD2ee62+//Raz2YzZbCYiIoL09PQq61d1/r3xXIvrdOjQgQMHDtiXc3JyCAgIsPfCaty48Xm3/emnn/jwww/p27cvqampAERHRwNgMpns++jbty+LFi1y0hGIiIinULJLRERELtro0aNJSUmhbt269g+cABaLhc2bN9OqVavzbrtu3Tp8fHxYuXIlGzZs4MiRIw7rk5KSWL16NWvWrCE1NZU2bdo4LOfl5bFkyRJ69erFDz/8gK+vLz///DPx8fFs2LABq9XqtON2B2ed6/79+5OSksLy5cuJjY0lISGhyvrn/j3y8vK89lyLa6SmphIXF2dfzsrKIioq6qK23bZtG8OHD2f+/Pk899xz9nKLxcLkyZMZPXo0AFFRUezcubNmAxcREY+jZJeIiIhcsnN7aGzatInWrVtXu83atWvtQ4v69OnD+vXrHdb7+voCUFFRQdOmTalTp47DclBQEDExMRQWFgJQUFBA3bp1AYiNjWXr1q01c3C1jDPONdh6ynTp0gWDwVBl/XP/HkFBQYB3n2txjpkzZ2I2m2nWrBmJiYmXtY/w8HB69+5NREQEPj5nZmKZMGECd9xxB7GxsTUUrYiIeAMlu0REROSSndtDIzMz0z6k6Hxyc3MJDbU9CSQkJITc3NxKdebMmUN8fDxhYWH4+PhUWo6Li2PlypXEx8djMBiIjIwEvLs3h7PO9YIFCxg0aFC19c89/+Dd51qc43QvxYkTJzqUx8XFkZ2dfVH76Nq1K1u3bqWkpITy8nIAPv/8c3Jycrjvvvvs9bKzs6vt9SgiIlcHJbtERETkol1MD41t27bZ54Q6/fPaa68RFhZGXl4eAPn5+YSFhVXadvjw4ezYsYODBw+yZcuWSsuzZs1i2LBhbN++nfr167NmzRonHq17Oftcnz2J9/nqn3v+RWpSeHg4RUVF9uURI0awZMkS7rzzTr777jsAnnzySQCefvppxo4di9ls5qmnngLgiSeeYNOmTZjNZiZNmgTYrusBAwa4+EhERKS20dMYRURE5KKdfqrauVq1asUXX3wBQLt27UhJSalU56effmLu3LncfPPNrFixgttvv91hfWlpKf7+/hiNRkJCQvDz8wOwLwcEBGCxWAgPDwdsH5RP90DKzs6mZ8+eNXik7ufMc717926aN29uP8ddu3atVP/cv0dAQADgnedanOd0EvZ8Bg4cyLJly0hOTuY///lPpfVvvPEGAM2bN2fZsmUO66rqFbZ27Vruv//+KwtaREQ8nnp2iYiIyBVLSEggIyOj2jrXXHMNpaWl9O7dm4SEBBo1asThw4d5/fXXAfjqq68wm81cd911NG/enM2bNzsst2rViuHDh/PBBx9gNptJT0/nhhtuAGwTXXfo0MHpx1kb1MS5PnsI4/nqn/v3OD007Go61+J899xzD8nJyTW2vw8++ACjUR9xRESudurZJSIiIheluh4aRqORTp06kZmZWe18OVOnTnVYbty4MePGjQNg6NChDB061GH9ucv16tVjyZIlDmXbt2+nc+fOGAyGiz2UWs/Z5/rxxx+/YP2q/h7eeK5FRETE+yjZJSIiIjWiqiF3rhAfH098fLxb2nYXnWsRERGR81MfXxERERERERER8RpKdomIiIiIiIiIiNfQMEapdQpOQVaee9qOC4VgX/e0LSIiIiIiIiJXTskuqXWy8mDMave0PaMnJEa4p20RERERERERuXIaxigiIiIiIiIiIl5DyS4REREREREREfEaSnaJiIiIiIiIiIjXULJLRERERERERES8hiaoF6+Q8byZwh2pGHx8MZh8CGjWlqYjJhGacL27QxMRERERERERF1LPLvEaTUdMImleAZ1mHaFOm+7smnwLFYUn3R2WiIiIiIiIiLiQkl3idYy+/tS/YTSWkgJKDmW5OxwRERERERERcSElu8TrWEqLOb50BsagUAKatnJ3OCIiIiIiIiLiQh6T7CorK2PChAlERkYSGBhIv379SEtLw2AwsGDBAneHJ7XAwTkTSB8expY/RVO0ZxNx47/GFBTq7rBERERERERExIU8YoJ6q9XK0KFDSUtL48UXXyQuLo45c+YwePBgAJKSklwaz7WvjiHyhi74hgZxqqCY7K9TWffKf7CcKndpHOKo6fBXaDz4KXeHISLicX7+FebsOrP8x6UwJBqGRkOwr7ui8j578+Hj3WeWb/gWBrWAO2KhfoD74hK5HHll8Oke+Dz7TNmEDXBXLLQNc1tYIiIigIcku6ZPn86iRYtIT0+nffv2AJjNZmJiYggPD6dFixYujWf7B9+y7uXZlBeX4h8egnn6k3R67FbS3/jUpXGIiIhcqUX74MWNgOFM2eFimLrdtu7fPSHM323heY11x+GxH6Hccqbs1zKYlQULfzvPLYLdF5/IpTheAmNWwf4ix/LF+2HJAZjcGa5v6p7YREREwEOGMU6ZMoURI0bYE10AJpOJmJgYe6+uW265hYSEBJKSkujduzfp6elOi+fkzv2UF5faFgwGrBYrIbFNnNaeiIiIM+wvhBfTwQJYrJXXZxfAxE2ujsr7FJbDk2m2RJflnHVWbEmvp38CaxV/A5Ha6P82wsGiyuWnX0ueXw9Hi10eloiIiF2tT3ZlZmayZ88ehgwZUmndvn377MmuWbNmsWnTJjZu3MhTTz3Ffffd59S4Oj5yC3dlzebOn98nvH0U26Z/7dT2REREatrne6tPsFiAHw7D4So+1MrF+2afLeF1bqLrNIsVsvJhU45LwxK5LHsLYO2x81/PVqDCCl9mn6eCiIiIC9T6YYwHDhwAoGHDhg7lO3bsIDs7257sqlu3rn3dyZMnMRovPo8XEhJCWVlZpfKWPvV4OrRXldtseee/bHnnv9Rt1YzYW3tTfPTXi27vatW3r5ld5Rc+T0FtutNyYsol7bvNpEurfz59+5opykitkX2JiNR2ca//RGB0p2rrWIGEQfeRu+Jj1wTlhVo8OZfQawZiMJ3/tstqsXDzXyZx9LOJLozM+3X4tAQAf39NilZTwm/4E83uf6faOharlbcW/shjCWbXBHWV0PXsGjrPrqHz7Bqefp4tlvN9tXJhtb5nV0REBABZWVn2MqvVyjPPPIPFYnGYnH7MmDG0aNGC559/nlmzZrkkvpOZB8jZmk3vfz7mkvZERERqSnXJF4d6RpOTI/FyRh8wGC5QyarzLB7hYl43DAaDrmcREXGrWt+zKz4+nri4OJ577jl8fX0JDg5m2rRpbNy4kaCgINq0aWOvO2PGDABmz57NuHHjWLRo0UW1kZ+fX2X5kbQdfDNo/AW3N/qaCNWcXRe0fHkKjbq2vWC99BMwZrULAqrC8uUpJEa4p20REVd7aSP8b9/5hyOdtuLTf9O67r9dEpM3mpEB72VUX8dgNDFrynP0/eg51wR1lejyle3f0tJS9wbiRTbnwH2rqq9jBEbe0JVnntR5r0m6nl1D59k1dJ5dw9PP8+rVq+nVq+rRdhdS63t2+fj4MH/+fJo0acLIkSMZO3YsAwYMoE+fPnTq1KnK4Yp33303y5cv58SJEzUej29IEHG3m/ELDQKgXnwUCWOHcDBFM/iKiIhnGRJdfaLLCHSsB63rVlNJLuiWKDBW07HLCET4Q+9GLgtJ5LJ1rActQ6r/EGHB9voiIiLiLrW+ZxdAQkICqamO8yi988479OnTB4CCggJ+/fVXIiMjAVi4cCHh4eGEh4fXfDBWK7FDruOaF0di9POh5Hge2YvWkv76vJpvS0RExIk61IORcTArCwzY5uc6zQgE+cD4BDcF50XqB8AzHeHVzbbzenaC0YgtETbxd+BT67+CFLGNyH3pd/CnVVBa4Xg9n34deaANxIW6KUARERE8JNl1ruLiYjIyMhg7diwAhYWFDB06lMLCQkwmE+Hh4SxcuBDDBefHuHSnCopZMuzlGt+viIiIOzwSD5F1bAmvfYW2MqMB+jWGB+MhKti98XmLIdG23lszdsKOk2fKuzaAB9raEo8inqJtXfiwN0zbYXti6+lEeVQwjGoFf4h0a3giIiKemezavHkzFRUV9snpGzVqxI8//ujmqMRVyvNzyPy/Gyg5kEHSvAKHdXv/372UHMjA4OtPk2EvENqpH1kTb6aiKA+DyYfYcfPwCa3vpshFRGofg8E2zG5QC9hbAMUV0CQQ6vm7OzLvY25i+9lfCCfLoEEANAx0d1Qil6dlKPy9K5wogSMltp6gUXUu4lkMIiIiLuCRya5u3bphtVovXFG8kikwhFYvLWX3326vcn3s05/hV7+5fbnls19g8PHlxPLZ5Pwwh4Y368mZIiLnMhggJsTdUVwdmtex/Yh4g4gA24+IiEhtotkhxOMYfHzxCTnffGwGdr8+jN1/u53y/Bx7fQDLqRICIuNdFKWIiIiIiIiIuIOSXeJVmo/+B22nrKZer2Ecnv8qYBv2uOPpHhz9+m0CmivZJSIiIiIiIuLNlOwSr+ITbJvhN6zrQIr3bbWVhYTT9m9raHbXRI589aY7wxMRERERERERJ1OyS7xKRVE+AAUZqfg3jMFqsWCtKAfAFFQXo68mlRARERERERHxZh45Qb3IzgnJFO3ZyM4JyTS980UKdqTS+NZx7H3rHk7lHcPo60/0Yx9iKSkka+IfwWC0lf3lQ3eHLiIiIiIiIiJOpGSXeKTWryxzWA5u1wuAls99Walum8k/uCQmEREREREREXE/DWMUERERERERERGvoWSXiIiIiIiIiIh4DSW7RERERERERETEa2jOrlqm11sPc6qwhLXPz3R3KJXclTWbb255gZyf9zi1nbhQmNHTqU1U27aIiIh4v5SUFEaNGkVUVBRRUVHMmjXLYf3s2bNp0qQJ9evXZ+zYsQBkZmYydepUbrnlFnu9e++9l4yMDPz9/XnhhRfo168f77//PjNmzKBhw4bMnj2bwMBAHnjgAWbMmOHCIxQR8UwX+/ocGRnJfffdh9FopEuXLrz55psO9ap6fQY4fPgwMTExZGZm0rx5c0aNGsX777+PwWBw2TGK8ynZ5USNe7Qn8cnbiegUC8CJzbtJ//unHE7d6ubIbBKfvJ2IhJZ8d8+rF1X/47i7nRyRTbAvJEa4pCkRERG5io0ePZrx48fz2GOPkZqaSvfu3e3rFi5cyLx58zAYDKSkpABgNpu5/vrrK+3ns88+o3nz5gCUl5cza9YsVq1axaJFi5gxYwaPP/44DRo0YNeuXbRs2dIlxyYi4sku5vU5JyeHxYsXExwczN13383OnTtp3bq1w37Ofn0+7Z///CfdunWzL3fr1o3ly5fbk2HiHTSM0UmaJ3fmhjnj2bdsPZ/+7s98+rs/s2/Zem6YO57m1/+uym0Mppr7cxh8TDW2LxERERFv1qFDBw4cOGBfzsnJISAgwOFb/sOHD1OnTh1CQkIctjUYDAwbNozbb7+dnJwcjh8/TosWLTAajXTs2JHU1FTAlij75ptvXHNAIiJeorrX54iICIKDgwEwmUyVemad+/oMkJuby/Hjx4mOjrbX69u3L4sWLXL+wYhLKdnlJN0m3kfWZylsnfYVp/KLOJVfxNZpX7Fr/g90nXgfALelvUunsUO46atJjNj9MfUTbN/0+dYJwDz9Se7KnM0tP7xJU3PCBdtr3L09d2XNpvWIZG77aRoDl/0dgCbXdeKPi6cwPGMWA797gxb9rwGgRf9r6PjYYJr1TeSurNnclTUbo1/1Hf3uPTSfiISWGExGhu/8iLA2kba2e7Tn3kPzifqjLdse2DCMe375BN/gwMs7eSIiIiIulJqaSlxcnH05KyuLqKgohzoLFy7k5ptvrrTtP/7xD1avXs2wYcN49dVXadCgAVlZWZSUlLBixQpOnjwJQFRUFDt37nTugYiIeJmLeX3eunUrx48fp1WrVg7l574+A0ydOpUHHnjAoZ5en72Tkl1OENqyKSFRjdjz39WV1u3+chWh0Y0JjW0CQNxQM6uffJeP4+7mxG9zYcXc0ovdX65kTtuRbP7nl/R7/2mCGodfsF2fQH/qJ8bx3+vG8vWAZwiJbkzyrGf5+Z3/MrfdKNZP+g99pj1OePtofvn2J7a8/SUHlqfzcdzdfBx3N5ay8os6PmuFhSNrt9OkV0cAmvTuSN6eQzTp1cG23KsjJzbv5lRB8UXtT0RERMQdZs6cidlsplmzZiQmJlZbd+HChQwcOLBSeb169QAYOHAgW7duxWQyMW7cOPr378+mTZto1KiRM0IXEfFqF/v6nJeXxyOPPML06dMrrTv39bm4uJht27aRlJTkrLClFlGyywkCwm3d24uP5FRaV3z0V1udCNtM6Bmzl3Iy8wBWi8WebDr84zZ++SYNa4WF3fNX8Ou2bKJv7l5pX+cyGI2sn/wx5cWlVBSXETOoB0fWbmfvwlSsFRYOfL+RX5aso+XQPld8jIdX/eyQ3Er/+6f25Ffjnh04tPrnK25DRERExJlGjx5NSkoKEydOdCiPi4sjOzvbvlxYWMjJkydp2rRppX3k5+cDtt4HMTExANx6662kpKTQrVs3BgwYAEB2dnalXgciIlK1i3l9tlqt3Hfffbz88ssX9fq8d+9edu3aRf/+/Vm6dCkPP/wwoNdnb6UJ6p2gJMf2nyqwUTgnsw46rAtsaMsul5zIA6DwwLFK2xfudywr2Hfsonp2lReXUvpb2wBBTSIoOHdf2UcIjrrybxgPrdpCp7FD8AsNIjS2KXv+u5rfPXsnQU3CadKrA2uefO+K2xARERFxh/DwcIqKiuzLS5Ys4fe//719+fDhw8yePZtx48Zxzz33cOzYMfz9/fnwww8BeOihh8jIyKBdu3a89dZbgO3pYqNHj3blYYiIeJ2zX59TUlL4/vvvOX78OABvvPEGzZo1O+/rc2RkJD/++CNge1Lj6UTa8uXL7V9MiPdQsssJ8nYdJP+XI8QM7MHhc3o4xQzqQf4vR8jbfQgAq8Vaafs6zRs4LAdHNuDYhguPIbZaLA7LRYdO0Lh7+3P21ZCiQyeqrH8pcrbuxWqx0O5Pf+ToTzuwWiwcWvUzrYcnE9SwHkd/2nHZ+xYRERFxNrPZjNlsPu/6gQMHsmzZMpKTkxk8eDCDBw+2r2vcuDHjxo0D4Msvv6y07bvvvuuwXF5eztGjRx3mnRERkapdyuvz6Ynnz1bd6/Npp7+cAFi7di3333//ZccrtZOGMTpJ2gsfEjesL+3/fDO+wYH4hgTR7s9/JO72vqRN+KDabRtf247I33fBYDISe2tv6rWLYu//frzkGPYsWEOjbvFE/aEbBqORZn0TibyxC7vmrwCg+PhJ6jSrf9lPgTy8Zivt7v8Dh1ZtAeDQ6i20u/8PHF2/k4rSU5e1TxEREZHa4J577iE5OblG9uXj48PMmTNrZF8iIle7mnx9Bvjggw8wGpUa8Tbq2eUk+xb/xLIRk0l44jYSx90OwInNu1k2YrI9OXQ+e/67ipZD+3Dd1L9QeOgEy8f8naKDJy45hvy9h/n+vr/xu7/eRc83H6Zw/zFWPPI2Ob9NhL93YSqxt/Tijp/fx2Aw8Emn0Rc9ST3AoZVbiP5jdw6tsvVeO7TqZ/xC62i+LhERERERERFxGyW7nOjQqi3VJrbmd32oUtmqsVMvq63DqVv5OO7uSuUHlqdzYHl6lduU5Rbw7ZD/u6j9G37LdJ+dDMv4aAkZHy2xLxcf+ZUPm9x2CVGLiIiIiIiIiNQs9dWTi1KvfRSWU+VVTqgvIiIiIiIiIlJbqGeXBxmU8ibBzetXKt+3ZD0rHnrrivef/PHzNOrWtlL5qYISjL4m1k+eQ1leURVbioiIiIiIiIjUDkp2eZAF5seduv9ld01y6v5FRERERERERJxNyS6pdQpOQVaee9qOC4VgX/e0LSIiIiIiIiJXTskuqXWy8mDMave0PaMnJEa4p20RERERERERuXKaoF5ERERERERERLyGkl0iIiIiIiIiIuI1lOwSERERERERERGvoTm7xCtkPG+mcEcqBh9fDCYfApq1pemISYQmXO/u0ERERERERETEhdSzS7xG0xGTSJpXQKdZR6jTpju7Jt9CReFJd4clIiIiIiIiIi6kZJd4HaOvP/VvGI2lpICSQ1nuDkdEREREREREXEjJLvE6ltJiji+dgTEolICmrdwdjoiIiIiIiIi4kEcku8rKypgwYQKRkZEEBgbSr18/0tLSMBgMLFiwwN3hSS1xcM4E0oeHseVP0RTt2UTc+K8xBYW6OywRERERERERcaFaP0G91Wpl6NChpKWl8eKLLxIXF8ecOXMYPHgwAElJSW6JyxTgx6Dv3yCwYRgfx93tlhjEUdPhr9B48FPuDsOtLFb47iB8ugcyToLJAN0bwrBYSAh3d3TeJfWo7TxvOGFbTgiH22OgZ0MwGNwbm8il2pMP8/bAsoNQUgEt6sCt0fDHSAgwuTs6kUuTWwZf7IUFv5wpe3c7DI2BBgFuC0tERID1x233HKc9uAaGRkPfJrqHlppV65Nd06dPZ9GiRaSnp9O+fXsAzGYzMTExhIeH06JFC7fElTRuGAX7jxPYMMwt7Yucq9wC4zfYPqwaActv5csOwZKD8Hh7uKulOyP0DlYrvL0NZu9yPM8/HoM1R+GOGHiyg96sxXP8cBie+cmWLD99PWfmwWub4atf4N3uEOzr1hBFLtr+Qrh/NRwtcSz/IBPm74VpPaBNXbeEJiJy1Zu5E6btAONZ98nrj8NPx+EPzeH/khzXiVyJWj+MccqUKYwYMcKe6AIwmUzExMRU6tX10ksvYTAY+Pnnn50aU0SnWJr1TeTnqf91ajsil2JWli3RBWc+sILtAyzAm1ttbyZyZRYfsCW6oOrz/Mke+Hqfy8MSuSyHi+DZdVBhdbyef7uc2Z5rS3qJeAKrFZ5Mg+MlVawDCk7BX36EU5bK60VExLlWH7EluuDMfTOcuf/43374ZLfLwxIvVquTXZmZmezZs4chQ4ZUWrdv3z6HZNeGDRv48ccfiYqKcmpMBpORHn9/gB+fm4GlrNypbYlcrHLLhd8cjOgNpCbM2V39C6cB+HiX7UOXSG33Rbbt9eN8l6sVW8/QqpIHIrXN+hOwK98xcXs2C3C8FJYfcmVUIiICMHf3hXttzdntmAgTuRK1ehjjgQMHAGjYsKFD+Y4dO8jOzrYnu0pLS3n44YeZO3cuZrP5ktsJCQmhrKysUnlLn3o8HdrLoazDQ4M4sWUPR37cTuPu7SttI+fXt6+ZXeW/XrBeUJvutJyYckn7bjPp0uqfT9++ZooyUmtkX64UEJtEqyk/VlvHAnz3Swn+vTV+43IZ64TR/sMj1daxAln5ENy4BeW51dcVcbe419MIiOqEoZpxtxYrtP/jveSunOvCyEQuXeO7JlF/4OMYjOefaM5aUc6Db8xh/9Q/uTAykZrR4VPbNw/+/pp8zpl0np3AaKTDJ4UYDNX3tTlcDGGxnSg9mOGiwLyfp1/PFsvld8eu1T27IiIiAMjKyrKXWa1WnnnmGSwWiz3Z9cILLzBixAiio6OdGk9IdGPa3PN71r0y26ntiFwqg+niJtS52HpStUs5fwYfPydGIlIzDCa/ahNd9nq6nsUDGHx8wXrhm2JdzyIirmUw+lww0WWv66PPK1IzanXPrvj4eOLi4njuuefw9fUlODiYadOmsXHjRoKCgmjTpg2pqamsW7eO11577bLbyc/Pr7L8SNoOvhk03r7cqGtbAuvX5dbVbwNg9DHhWyeQO7a+z/LRr3Pkx+2XHcPVYPnyFBp1bXvBeuknYMxqFwRUheXLU0iMcE/bVyK3DPovhvJquv0agLgwE+tLS10Wl7epsNrO86+VO4I6CPWFX/dl4Vurv04QgefXw9KDFx4y8N3c6bSvN901QYlcpq9+gZfTq69jMPnw/J/uYNTf7nBJTCI1qctXtn9LdS/nVDrPznHLMjhQdP6pEwD8jXBw+3rq1OoshWfx9Ot59erV9OrV68IVq1CrP4r5+Pgwf/58mjRpwsiRIxk7diwDBgygT58+dOrUCaPRyA8//MD27duJiYkhOjqa/fv3c+ONN7JkyZIaj2fPwjV83uMRvkp+iq+Sn2L1k+9xqqiEr5Kf4tiGzBpvT+RihfnBDc2q/w9tBW6PcVVE3slkgNuibYnD8zEAg6NQoks8wm3R1Se6jEDrUGgX5qKARK7A75tCkKn612iTAQZGuiwkERH5zdCY6hNdRuAPkSjRJTWm1n8cS0hIIDU1laKiIjIyMnjwwQfZuHGjfQjjs88+y8GDB9m7dy979+6lefPmLF68mN///vc1HktFcRlFh3LsP6Un8sBqpehQjiarF7d7JB4iAs7/n7pLBNzcwqUheaURcdAypOoPU0YgKhjubeXqqEQuT2I4DDnPc12M2JK24xPhIkY6irhdgA9MSLT9fu4le3r5iQ6290oREXGt26KhU73z30M3CoQ/t3FxUOLVan2y61zFxcVkZGQ4PInRXQ6nbuXjuLvdHYYIYHuD+KA39Gvi+KSTIBPcFQv/71r1NqoJdXzg373glijwO+t8+hpt30bN7AUhmmpAPITBAM90gsfaQbi/47rO9WFmb/XqEs9yQzN4sxvEhTqWR9aBSZ1hmHo4i4i4hb8Jpna3jTQJOOs5IiaD7bX7g976MkJqlsd1Ety8eTMVFRXnTXbt3bvXtQGJy/wy/VGK96QT+rsBNBn6nL385IbFHPrkJUzB9Yh9cg6WsmJ2/902F0fZ8X00/MOjNBo4FoDcH//L/g/H0eE97xx22jgQXrsGjpdA/99G8i6+EQI97n967RbiC88n2BIEfb+xlX37e6irOY/FAxkNcE8cDI+Fa7+2lf33emhex71xiVyuXo2gZ0PYlW97PwzzgzZ11UNRRMTdAn1gXEd4KB6259qmUogLrfyFm0hN8LiPwN26dcNqvcBMuuJ1CjPXYTD60ObVlex67TZO5R7BN6wRAEcWvEHrV74jL30Jx5b8m8aDn6LNpBQAdv/9Tup2vsm+n19TP8evvvdP1lH/rG9FlOhynrN7cCnRJZ7O56yeikp0iaczGGwfoM7t4SUiIu5Xxwe61Hd3FOLtNKhJPELhzrWEdOoHQEiHPhRlrQegoqQQU2AIRv9AQjr2oygzzb6NtfwUZUf2ENCsNQB5m78nOL4XXORjb0VERERERETE8+hTv3iEisJcTEG2r2eNgSFUFOaeKQ88XR5MReFJ+zb5P6cQ3MFsXz6x7H0i+o10WcwiIiIiIiIi4npKdolHMNUJo6IoDwBLcT6mOmFnyotPlxdgqlPXvk1u2leEdRsE2IZBBkS2w+inWQ9FREREREREvJmSXeIR6rTuSv6W5QDkb11BUFxnAEwBdagozsdSVkL+luUEtepq36Zw51rqtO4GQPEvP5OXvpTMF/tTtCedQ59Ocv1BiIiIiIiIiIjTKdklHqFOq2uwniol46+9CYpJ4FTOIU4snw1Ao0FPsHN8X44tfo/6N4wBoGj3RoKiEzAYbZd4/evvpc2k5bR68VuCYhJpcvvzbjsWEREREREREXEePadNPEaLB6Y6LAfFJgJQ93f9qfu7/uesSyLqkX9XuZ/WryxzSnwiIiIiIiIi4n7q2SUiIiIiIiIiIl5DyS4REREREREREfEaSnaJiIiIiIiIiIjX0JxdUuvEhcKMnu5rW0RERETEk6SkpDBq1CiioqKIiopi1qxZDutnz55NkyZNiIyM5L777sNoNNKlSxfefPNNh3p33HEHhw8fJj8/n8jISP773//y+9//nuLiYkJDQ5k3bx4BAQE88MADzJgxw5WHWCvU1Hm+9957ycjIwN/fnxdeeIF+/foBcPjwYWJiYsjMzKR58+aMGjWK999/H4PB4LJjFPEWSnZJrRPsC4kR7o5CRERERMRzjB49mvHjx/PYY4+RmppK9+7d7esWLlzIvHnzyMnJYfHixQQHB3P33Xezc+dOWrduba/3ySefAPCvf/3LnmCZPn060dHRzJw5kzlz5nD//ffToEEDdu3aRcuWLV17kLVATZxngM8++4zmzZs7lP3zn/+kW7du9uVu3bqxfPlyezJMRC6ehjGKXKVSUlKIiYnBbDYzcuTISusnTZpEZmZmtft49NFH6d27N5MnT660Licnh86dOxMcHOxQ/tZbb5GcnAzA9u3bmTJlyhUchYiIiIicrUOHDhw4cMC+nJOTQ0BAAAaDgYiICPu9mclkOm+PoYULF3LzzTcDEB0dXam+2Wzmm2++ceJR1H5Xcp4NBgPDhg3j9ttvJycnB4Dc3FyOHz9uP98Affv2ZdGiRc4/GBEvpGSXyFVs9OjRpKSkULduXVJTU+3lFouFzZs306pVq/Nuu27dOnx8fFi5ciUbNmzgyJEjDutDQkJYunQp1157rb3s1KlTpKen25fj4+PZsGEDVqu15g5KRERE5CqWmppKXFycfTkrK4uoqCiHOlu3buX48eNV3usVFBSQn59PkyZN7GVFRUX8+9//5vbbbwcgKiqKnTt3OukIPMOVnOd//OMfrF69mmHDhvHqq68CMHXqVB544AGHejrPIpdPyS4RqfTN1KZNmyp1tT7X2rVr7V2q+/Tpw/r16x3W+/r6Eh4e7lA2e/Zs7rzzToey2NhYtm7deiXhi4iIiFz1Zs6cidlsplmzZiQmJp63Xl5eHo888gjTp0+vcv3ixYvp37+/Q9kDDzzAiy++SN26dWsyZI9UE+e5Xr16AAwcOJCtW7dSXFzMtm3bSEpKclbYIlcdJbtEpNI3U5mZmQ5dqKuSm5tLaKhtRv+QkBByc3OrrW+xWFi8eDE33nijQ7m+sRIRERG5cqd77E+cONGhPC4ujuzsbACsViv33XcfL7/8Mk2bNq1yPwsWLGDQoEH25X/84x+0a9eOG264wV6WnZ1d7QgAb1YT5zk/Px+w3YPHxMSwd+9edu3aRf/+/Vm6dCkPP/wwcHWfZ5ErpQnqRa5iM2fOZNmyZfTq1eu830xt27aNhx56yKGsf//+hIWFkZeXB9jesC80QekXX3zBwIEDayRuEREREbk44eHhFBUVAbY5W7///nuOHz8OwBtvvEGzZs2YPXs248aNo6Kigp07d9KuXTsAysrK+Otf/0r37t359ttvufvuu+3JntGjR7vtmGqjSznP99xzD8eOHcPf358PP/yQyMhIfvzxR8D2pMbTibTly5czYMAA9xyQiIdTskvkKnb6aTLnatWqFV988QUA7dq1IyUlpVKdn376iblz53LzzTezYsUK+xwO55ORkUFKSgqzZ88mPT2dGTNmMGbMGLKzs+nZs2eNHI+IiIjI1chsNmM2m8+7fuDAgSxbtozk5GT7hOhnGzduHGCbTP100gXAz8+P0tJSh7rl5eUcPXrUYVTA1aKmzvOXX3553n18+OGH9t/Xrl3L/ffff9nxilzNNIxRRCpJSEggIyOj2jrXXHMNpaWl9O7dm4SEBBo1asThw4d5/fXX7XWSk5PZuHEjycnJDBo0iKVLl/Ltt9+SmJjImDFjANtknh06dHDq8YiIiIhcze655x7707CvlI+PDzNnzqyRfXmbmjzPAB988AFGoz6yi1wO9ewSuUpV982U0WikU6dOZGZmVjtPwNSpUx2WGzdubP/GCmDZsmVVbne6fPv27XTu3Pm8j70WERERERERuVRKdolIlaoa3ljT4uPjiY+Pd3o7IiIiIiIicvVQn0gREREREREREfEaSnaJiIiIiIiIiIjXULJLRERERERERES8hubsklqn4BRk5bmn7bhQCPZ1T9siIiIiIiIicuWU7JJaJysPxqx2T9szekJihHvaFhEREREREZErp2GMIiIiIiIiIiLiNZTsEhERERERERERr6Fkl4iIiIiIiIiIeA3N2SVeIeN5M4U7UjH4+GIw+RDQrC1NR0wiNOF6d4cmIiIiIiIiIi6knl3iNZqOmETSvAI6zTpCnTbd2TX5FioKT7o7LBERERERERFxISW7xOsYff2pf8NoLCUFlBzKcnc4IiIiIiIiIuJCSnaJ17GUFnN86QyMQaEENG3l7nBERERERERExIU8JtlVVlbGhAkTiIyMJDAwkH79+pGWlobBYGDBggXuDk9qgYNzJpA+PIwtf4qmaM8m4sZ/jSko1N1hiYiIiIiIiIgLecQE9VarlaFDh5KWlsaLL75IXFwcc+bMYfDgwQAkJSW5LJZebz1MzOBeWE6V28tS/vQGB5anuywGqVrT4a/QePBT7g7DraxWWHsM5u89U/baZrgtGuKU9xMPtCcfPtsLq45AuQXa1LVdzz0agsHg7uhELk1uKfz3F/h2P+SWQeMgGNQCBjSDAI+4IxMRV7NYbe+Bn+89U/bGzzA0GloEuysq77ThBHy258zyy+lwezS0DXNTQCJyRTzi1mr69OksWrSI9PR02rdvD4DZbCYmJobw8HBatGjh0nh2/mcZa5+f6dI2RS7EYoVXN8OX2WA8KwnwxV7bDdL4RNuHKhFPsWgfvJgOWMHyW9nxElh5BP7QHF5IApMSXuIhsvLgwTXwa9mZshOl8POvMHc3vNcDwv3dF5+I1D7lFhi/AZYddByO88luW1JmUme4vqnbwvMaViu8vQ1m73I8z1//Al/9Ak+0h+Et3RaeiFwmjxjGOGXKFEaMGGFPdAGYTCZiYmLsvbqio6Np27YtiYmJJCYmsnjxYneFK+IWc3fbEl1gS3ydZgGswMR02JLjhsBELsOOk/DiRtu1bDmr/PTv/9sPs/X8CfEQZRXw6I9wssyx/PRL9d58+Os6l4clIrXcv3faEl3g+F5oBSqs8Nx6Ww9ouTIL99kSXVD1Pcc/tsKPR10dlYhcqVqf7MrMzGTPnj0MGTKk0rp9+/Y5DGGcP38+6enppKenc+ONNzotpthbe3Pntg+4ZcVbdPrLrRhMtf40ipersMJ/dlVfxwB8sqf6OiK1xbzdF67z8S7bt94itd13h+BYieOHqLNZgPUnYOdJV0YlIrVZSUX174VWbD2SPtW93RWxWm1fnlXXUdyI7Z5DRDxLrR/GeODAAQAaNmzoUL5jxw6ys7NrZL6ukJAQysrKKpW39KnH06G9HMq2zVzEuldmU5KTT0SnWPq8OxaTvx8b//bJFcfh7fr2NbOr/NcL1gtq052WE1Muad9tJl1a/fPp29dMUUZqjezLlQKiO9Hq9Z+qrWMBvtldxN971HNNUFeJDp+WAODvH+DmSLxLuw8OYwqu/lr9tQzqd+pNcWaai6LyfrqenSNy7GzqXnsrBtP5b7usVgv9HniJY1+85sLIRKS2qtPBTOz/VT9SxQLM2XCQF66JcU1QXsi3QRRt391ZbR0LsOaohYA6oVjLT7kmMJEa4un3dhbL5X+zXeu7JEVERACQlXVmvIrVauWZZ57BYrE4JLvuuusuOnXqxEMPPURubq5T4snZsoeSE3lgtXJi0y42/n0eMYN6OqUtkYtl9Au8qHoGX00II57B4Hdxb8gXe+2LuJPRL/DCT1SwWDH663oWEZuLvrfT++AVuejzbDBi8NF9tIgnqfU9u+Lj44mLi+O5557D19eX4OBgpk2bxsaNGwkKCqJNmzYArFy5ksjISEpLSxk7diyPPPII//nPfy6qjfz8qge7H0nbwTeDxle/scVafb9XsVu+PIVGXdtesF76CRiz2gUBVWH58hQSI9zT9pXIKYX+Sxzn6jqXAYgONbG+tNRlcV0Nunxl+7dU57VGDU+BzLwzcxpVxQBsX72ERrrPrzG6np3j7W22YTLVXs8mE++98iw3ffisy+ISkdprXwEM/r76Okagc2Q90vWafdmKyiH5Wyi7QOeRCH8oyj2hJ0GLx/H0e7vVq1fTq1evC1esQq3v2eXj48P8+fNp0qQJI0eOZOzYsQwYMIA+ffrQqVMnjEbbIURGRgLg7+/PQw89xOrVzsmWRA/sgW9IEAD14qNIeHIoe7/2vGFv4l3C/aFv4+r/Q1uB26JdFJDIFbotuvrEgBHo1QglusQjDG5x4cRtsA/001PVROQ3kcHQJaL6ezsLcJtGMF6RIB/4Q2T159kADI2+cAddEaldan3PLoCEhARSUx0TSu+88w59+vQBoLCwkPLycurWrYvVauWTTz4hMTHRKbG0vfdGuk+5H6OvieIjueya/wOb//mlU9oSuRSPtoOfjkNBeeUeXgagXRjc0sIdkYlcuj9G2p64uDmncpLAaIAgE/ylnVtCE7lkkcEwqhV8kFl5nQHbNf5sJwgwuToyEanNnuwA962C0oqqH3DRtT7coCT5FftTa1h1BE5U8SARIxAdDHfEuiMyEbkSHpHsOldxcTEZGRmMHTsWgCNHjjBkyBAqKiqoqKigXbt2vPvuu05p+9tb/88p+xW5Us3rwAe94bXNtqTXaT4GGNAcnuoIAR75P16uRn4meOda2+O+v94Hp866+0wMtyUGokPcF5/IpXqoLdTzsyW8fj3rmTjNguCxdurVJSKVtaoLM3vBlC2wKedMuZ8RBrWAv7QHn1o/Tqf2axgIH/SCVzfDmqNnvmQzGmzJxKc7QrCvW0MUkcvgkR99N2/eTEVFhX1y+tjYWDZu3OjmqMTZfpn+KMV70gn93QCaDH3OXl5yKIt9/3oEy6lSGg18nLBuA9n/wTgKdqzB6BdA7LhP8QmNIHvag5Ts30FQbBKRo//hxiNxnqhgmNYDfimAnXm2RFdiOIRpPk3xQIE+8HwCPBIP139rK5vfz/YNq4inMRhgeEu4PQau/dpWNqMnJIRraIyInF/r3xJeu/NtP75G6Byh5EtNaxwE/+9aOFgE23NtvW47hUN9z3yAnYjgocmubt26YbVWN/uFeJvCzHUYjD60eXUlu167jVO5R/ANawTAoU9eIuapT/AJDgOgovAkRXs30XbKanJ+mEPOyrnUibsGo68/bSYtZ/8HT1G0eyNBsUnVtOjZWgTbfkS8QV2/M78r0SWe7uxeGJ74QBQRcY/YENuPOFfTINuPiHg+dXwVj1C4cy0hnfoBENKhD0VZ6wGwnCqj7Pg+9r51D1mTBnEq9whG/yBMQXWxWixUFJ3EJzic0iN7CIzqCEBgVEcKduihAiIiIiIiIiLeSMku8QgVhbmYgkIBMAaGUFGYC0B53nGKs38meuwsGt08lsPzX8Xg44tfRHO2PtyWo1//k7BrBxPQvA35P/8AQP7WFVQUnXTXoYiIiIiIiIiIEynZJR7BVCeMiqI8ACzF+ZjqhP1WXpfAqI74BNcjuH1vSg5kULxvO6dyDtD+3QyajpjEka/eJCg2Cf+G0ewcb+sd5lu3obsORUREREREREScSMku8Qh1Wnclf8tywNYzKyiuMwCmgDoY/QKwnCqlOPtn/BpGg9WCKbgeBoMBn5Bwey+wpne9TOuJ32MKCCY08fduOhIRERERERERcSaPnKBerj51Wl3Die8+JOOvvQlNupFTOYfI27iEiL5302jQk+yccD0Go4nov3yIf6MYsFrJ+Ot1gJXov8zCWn6Knf93AwajiXo9b8evQaS7D0lEREREREREnEDJLvEYLR6Y6rAcFJsIQGhiMqGJyQ7roh6eXmn7NpNSnBWaiIiIiIiIiNQSGsYoIiIiIiIiIiJeQ8kuERERERERERHxGkp2iYiIiIiIiIiI19CcXVLrxIXCjJ7ua1tEPE9KSgqjRo0iKiqKqKgoZs2a5bB+9uzZNGnShOTkZCZPnsw333xDYmIi//znPx3qjRw5kl27duHv789HH31Es2bNeP/995kxYwYNGzZk9uzZhISEcMcdd7B48WIWLlxIr169KC8v54EHHmDGjBmuPGwRERERkct2sffQkZGR3HfffRiNRrp06cKbb77pUO+OO+7g8OHD5OfnExkZyX//+1/69u2L1WoF4N1336V169YuvV9WsktqnWBfSIxwdxQi4mlGjx7N+PHjeeyxx0hNTaV79+72dQsXLmTevHkcOXKEDRs2sHLlSh5//HHWrVtHly5d7PVeeukloqOj+e6775g6dSovv/wys2bNYtWqVSxatIgZM2bw+OOP89Zbb/Hee+/Zt/Px8aFBgwbs2rWLli1buvS4RUREREQu18XcQ+fk5LB48WKCg4O5++672blzJ61bt7bX++STTwD417/+hcFgAMBkMrFs2TKHtlx5v6xhjCIiTpSSkkJMTAxms5mRI0dWWj9p0iQyMzOr3cejjz5K7969mTx5skN5cXExN910E3369GHUqFEArFq1imuvvZYePXrwxhtvAJCWlkbPnj3p0aMH48ePB2D79u1MmTKlJg6x1unQoQMHDhywL+fk5BAQEIDBYGDdunX06dMHgH79+pGWluawbXR0NGB7czYYDBw/fpwWLVpgNBrp2LEjqampADRu3LhSu2azmW+++cZJRyUiIiIi4jzV3UNHREQQHBwMnLlPrsrChQu5+eabAbBarZjNZsaMGUNJSQng2vtlJbtERJxs9OjRpKSkULduXXuyBMBisbB582ZatWp13m3XrVuHj48PK1euZMOGDRw5csS+bsmSJfTq1YsffvgBX19ffv75Z2JjY1mxYgVr1qzh66+/pqioiKSkJFavXs2aNWtITU0lLy+P+Ph4NmzYYO9a7E1SU1OJi4uzL2dlZREVFQVAbm4uoaG28cohISHk5uZW2t5isTB58mRGjx5NgwYNyMrKoqSkhBUrVnDy5MnzthsVFcXOnTtr9mBERERERFygunvo07Zu3crx48er/PxSUFBAfn4+TZo0AWD+/PmkpKQQHx/PzJkzAdfeLyvZJSLiIud+W7Jp0yaH7r9VWbt2Lf369QOgT58+rF+/3r4uJiaGwsJCwPbmUrduXZo2bYqfnx9g+9bFaDTi6+sLQEVFBU2bNiUoKAiA2NhYtm7dWnMH6GYzZ87EbDbTrFkzEhMTq6wTFhZGXl4eAPn5+YSFhVWqM2HCBO644w5iY2MxmUyMGzeO/v37s2nTJho1auTEIxARERERca2LuYcGyMvL45FHHmH69OlVrl+8eDH9+/e3L9erVw+AgQMHuuUzh5JdIiIucu63JZmZmfZhc+dTXU+kuLg4Vq5cSXx8PAaDgcjISPu6pUuX0rJlSwICAgCYM2cO8fHxhIWF4eNjm67R23oine5BN3HiRIfyuLg4srOzAejcuTMrVqwAYPny5XTt2tWh7ueff05OTg733XefvezWW28lJSWFbt26MWDAgPO2n52dXW0vPRERERGR2uZi7qGtViv33XcfL7/8Mk2bNq1yPwsWLGDQoEH25fz8fMD2GSgmJgZw7f2ykl0iIk52Md+WbNu2DbPZ7PDz2muvVdsTadasWQwbNozt27dTv3591qxZA8D+/ft59dVX7XN2AQwfPpwdO3Zw8OBBtmzZ4rRjrY3Cw8MpKioCbHNtderUid69e1NaWkqXLl04fPgwr7/+OgBPPPEEmzZtwmw2M2nSJAAeeughrr/+elasWMHtt98OwJNPPslHH33E448/zscffwzY5merLhkmIiIiIuIpzr6HTklJ4fvvv2fChAmYzWbWr1/vcA9dUVHBzp07adeunX375ORkevfuzWeffcb9999v34+r7pf1NEYRESc7/YSTc7Vq1YovvvgCgHbt2pGSklKpzk8//cTcuXO5+eabHZItYJtbKjw8HLC9GeXm5lJaWsq9997LtGnT7JNIlpaW4u/vj9FoJCQkxN7bKzs7m549e9b04brF6QTh+QwcOJBly5aRnJzMhAkTmDBhgn1d48aNGTduHID926uzvfvuu5XK3njjDYdkYnl5OUePHnXouSciIiIiUptdyj10Tk5OpfWn76FNJhM//vijw7q1a9c6LLv6flk9u0RE3CQhIYGMjIxq61xzzTWUlpbSu3dvEhISaNSokf1blOHDh/PBBx9gNptJT0/nhhtuYM6cOWzbto0///nPmM1mDhw4wFdffYXZbOa6666jefPm9q7DWVlZdOjQwRWH6nb33HMPycnJTtu/j4+PfeJNERERERFvUJP30K6+X1bPLhERJ6ru2xKj0UinTp3IzMysduz61KlTHZbP7om0ZMkSh3WjRo1i1KhRDmVDhw5l6NChDmXbt2+nc+fO531ssIiIiIiIiKdSsktExI2qGt7oCvHx8cTHx7ulbREREREREWfSMEYREREREREREfEaSnaJiIiIiIiIiIjXULJLRERERERERES8hubsklqn4BRk5bmn7bhQCPZ1T9siIiIiIiIicuWU7JJaJysPxqx2T9szekJihHvaFhEREREREZErp2GMIiIiIiIiIiLiNZTsEhERERERERERr6Fkl4iIiIiIiIiIeA0lu0RERERERERExGtognrxChnPmynckYrBxxeDyYeAZm1pOmISoQnXuzs0EREREREREXEh9ewSr9F0xCSS5hXQadYR6rTpzq7Jt1BReNLdYYmIiIiIiIiICynZJV7H6OtP/RtGYykpoORQlrvDEREREREREREX8phkV1lZGRMmTCAyMpLAwED69etHWloaBoOBBQsWuDs8qUUspcUcXzoDY1AoAU1buTscEREREREREXEhj5izy2q1MnToUNLS0njxxReJi4tjzpw5DB48GICkpCSXx9T8+t+R9MwdhLZsSnlBMT+/t5Ct075yeRxyxsE5Ezj82UQMPv4ERLYjbvzXmIJC3R2WeKm9BfD53jPLf9sCt0VDbIi7IvJOR4rhy+wzyy9uhCFR0KEeGAzui0tEaq9TFvj+ECz8BY6VQJgf3BQJNzaFAI+48xUREbkyx0tgwS9nlp9fD0OiISn86rmH9oi3/OnTp7No0SLS09Np3749AGazmZiYGMLDw2nRooVL42naJ4Hur/+ZVY+9w+HUrfgE+lOnWX2XxiCVNR3+Co0HP+XuMOQq8NkeW3LrbPP3wKd74In2MLyle+LyNj8chmfXQbnlTNmiffD1Prgz1naur5Y3axG5OLml8HAqZOTZhi9YsP27/gR8sBPe6wGNg9wcpIiIiBOlHYMn0qCk4kzZ0oOw+ADcHAnjE8F0FdxDe8QwxilTpjBixAh7ogvAZDIRExNj79VVUlLCgw8+SKtWrejYsSP333+/0+JJevoONr/1OYdWbcFaYeFUQTG5Gfuc1p6I1B4/HoUpW8CK7ee00/mYf2yFFYfdEJiX2ZUHz/xkS3RVdZ7n7oZ5e9wRmYjUZs+sg8w82++nXy9O/3uwCB77ESzWqrYUERHxfIeK4PG1UFrhWH76vW/hPnh/p+vjcodan+zKzMxkz549DBkypNK6ffv22ZNdTz/9NAEBAezcuZMtW7bwyiuvOCUen0B/6ie2JLBBGINX/j+GbZ5Bvw+fITiyoVPaE5Ha5aOs6l84jb/VkSszb4/tTbm6z6SzsqBCH1pF5Dfbc209uCznWW8BdhdA6lEXBiUiIuJC8/dCmaX6e+g5uysnw7xRrR/GeODAAQAaNnRMJu3YsYPs7GySkpIoKCjgo48+Yv/+/Rh+G9PSqFGji24jJCSEsrKySuUtferxdGgvhzK/sDoYjEai/tCNpXdOpPjESbq+PIq+M8ex8PfjLvXwrip9+5rZVf7rBesFtelOy4kpzg6nSn37minKSHVL21L7GQOCaT/7RLV1LEB6DgTVb0pFfvV15fzi3z+ET0h4tXWOlUBE+x4U71rvoqi8X4dPSwDw9w9wcyTeTefZORrd8SINBj+NwWg6bx1rRTl3T5rFgX895MLIREREXKP1O9vxbxRbbZ38U9D02pso2Pydi6K6fBbL+b7CurBa37MrIiICgKysM10lrFYrzzzzDBaLhaSkJHbt2kVERAQvvfQSXbp0wWw2s2rVKqfEc6rAdoO6bcYiCvYfo6K4jA2vziGiY4zm7XKjNpNSNF+XOJ0xoM7F1/W/+LpSmdH/4ibVMQYEOzkSEfEUxoBgsF74plivGyIi4q1MF/kedymfazxVre/ZFR8fT1xcHM899xy+vr4EBwczbdo0Nm7cSFBQEG3atCE9PZ3du3eTlJTE66+/ztq1a7n55pvJysoiNPTCT+PLz8+vsvxI2g6+GTTeoexUfhEF+46CVWNnLtXy5Sk06tr2gvXST8CY1S4IqArLl6eQGOGetqX2K7fA9d9CYXn19QJMcPyXTALO37lALmDo97YnXl7olXbrqiU00WTTNabLbw8VLi0tdW8gXk7n2Tnm7YHXt1Rfx2jy4YlRw3job8NcE5SIiIgLjV4JW349/5D+09Z8/Rmt6rokpCuyevVqevXqdeGKVaj1Pbt8fHyYP38+TZo0YeTIkYwdO5YBAwbQp08fOnXqhNFopEWLFvj4+HDnnXcC0K1bN+rXr8/Onc6ZeS3joyXEj/kDQU0jMPn7kvT0HRzftIvCA8ed0p6I1A4+RhjYAqp7eIkR+GMkSnRdoSHR1Se6jMC1DVCiS0TsBjQDv4u4sx3k2od4i4iIuMyt0dUnuoxAuzA8ItF1pWp9sgsgISGB1NRUioqKyMjI4MEHH2Tjxo32yenr169P3759Wbp0KQA7d+7k6NGjxMXFOSWeLVMXcOD7jQxc8jeGbphOUKNwlo9+3SltiUjtMjIO6gdU/eJpBML8YVQrV0flfQa1gNahVScWjYCfCR5t5+qoRKQ2C/WDh+Orr3N3HDTz/pEbIiJylfp9M0gMr/oe2gAYDfBEe1dH5R4ekew6V3FxMRkZGfZkF8B7773H5MmT6dixI3fccQezZ88mLCzMOQFYrayf9B8+6TCaT9qP4vtRU9SrS+QqUT8A3u8Fv6tiuGtCuG1do0DXx+VtAn3gvR7Qt0nlN+vYEPhXD2hzFXwjJSKX5q6W8GxHCPV1LA8ywUNt4dELJMNEREQ8ma8R3r4WBjS3JbbO1iIY3u3BVTNtT62fs6sqmzdvpqKiwiHZFRsbS0pKivuCEpco2LaK/R88BQYj9XoModEtT9rXZTzfl9MDn1r8+V0CW7Tj0LxXyEtfil+jGKIfnYnB5JGXvNQyTYLgvZ6wJx825djKOtaDlheeIlAuQagf/O0aOFwMPx2DUxZoXRfah4GhurGkInJVuy3GNuR8zVF46idb2ZIbIUC3ACIichUI8oGXfwePtYMfj0KpBVqG2L6Yv5ruoT3ybb9bt25YNUH8VcmvUSytJ6/A6OtHxvN9aTDgQftT2wxGE61fWWaveyrnEEW7N9Lm1RUc/d875KYtpF73we4KXbxQTIjtR5yrcSDcrDl2ROQS+JnA3OTMshJdIiJytakfAH+8iu+hPXIYo1y9/CKaYvT1A2zJLQxnX8JWMp43s/efY7CUlVB6LJuAFrYByYFRHSnMSHVDxCIiIiIiIiLiSkp2iUfKS1+Kf5OWGP0C7GWxz8ynzaQUAiPjOb50Jv6NYinM+BGrxULB1hVUFJ10Y8QiIiIiIiIi4gpKdonHKTu+n8PzX6X5qDccyn2C6wFQt+tASvZtxTesIWHXDmbnhH6cyj2CT92G7ghXRERERERERFxIyS7xKJZTpez9f/fS4oFpmAKDHdZVFOUDULgjFb+GMQA0vOkh2kxKwa9BFHU73+TyeEVERERERETEtTRdp3iUnB/mULJvG9nT/gxAsxGTKD28m4i+d7PzhWSMvn6Y6oQR8/h/ANj16q1UFOUR3L43wW27uzN0EREREREREXEBJbvEo9RPHkX95FEOZcHxPQGI//vaSvVb/vULl8QlIiIiIiIiIrWDhjGKiIiIiIiIiIjXULJLRERERERERES8hpJdIiIiIiIiIiLiNTRnl9Q6caEwo6f72hYRERHvl5KSwqhRo4iKiiIqKopZs2Y5rJ89ezZNmjQhOTmZ3r17s3HjRnbs2EHz5s0d6hUVFfHAAw+wf/9+zGYzL7zwAiNHjmTXrl34+/vz0Ucf0axZM0aNGsX777+PwWBw5WGKiIhclZTsklon2BcSI9wdhYiIiHi70aNHM378eB577DFSU1Pp3v3Mk5sXLlzIvHnzAPjss8949tlnq9zHm2++yUMPPcS1115rL3vppZeIjo7mu+++Y+rUqUyePJlu3bqxfPly+vXr59yDEhEREQ1jFBERkYuTkpJCTEwMZrOZkSNHVlo/adIkMjMzq93Ho48+Su/evZk8eXKldWlpafTs2ZMePXowfvz4SssAxcXF3HTTTfTp04dRo2xP592+fTtTpkypgSOsPZx5rr/99lvMZjNms5mIiAjS09OrrF/V+ffGcw3QoUMHDhw4YF/OyckhICDA3gurcePG5932p59+4sMPP6Rv376kpqYCEB0dDYDJZLLvo2/fvixatMhJRyAiIiJnU7JLRERELtro0aNJSUmhbt269g/2ABaLhc2bN9OqVavzbrtu3Tp8fHxYuXIlGzZs4MiRIw7rk5KSWL16NWvWrCE1NZU2bdo4LOfl5bFkyRJ69erFDz/8gK+vLz///DPx8fFs2LABq9XqtON2B2ed6/79+5OSksLy5cuJjY0lISGhyvrn/j3y8vK89lynpqYSFxdnX87KyiIqKuqitt22bRvDhw9n/vz5PPfcc/Zyi8XC5MmTGT16NABRUVHs3LmzZgMXERGRKinZJSIiIpfs3J4wmzZtonXr1tVus3btWvsQrj59+rB+/XqH9b6+vgBUVFTQtGlT6tSp47AcFBRETEwMhYWFABQUFFC3bl0AYmNj2bp1a80cXC3jjHMNth5JXbp0wWAwVFn/3L9HUFAQ4F3neubMmZjNZpo1a0ZiYuJl7SM8PJzevXsTERGBj8+ZGUImTJjAHXfcQWxsbA1FKyIiIhdLyS4RERG5ZOf2hMnMzLQP3Tqf3NxcQkNtTwIJCQkhNze3Up05c+YQHx9PWFgYPj4+lZbj4uJYuXIl8fHxGAwGIiMjAe/uNeOsc71gwQIGDRpUbf1zzz9417k+3Xtu4sSJDuVxcXFkZ2df1D66du3K1q1bKSkpoby8HIDPP/+cnJwc7rvvPnu97OzsanvjiYiISM1RsktEREQu2sX0hNm2bZt9TqjTP6+99hphYWHk5eUBkJ+fT1hYWKVthw8fzo4dOzh48CBbtmyptDxr1iyGDRvG9u3bqV+/PmvWrHHi0bqXs8/12ZOln6/+uef/ahEeHk5RUZF9ecSIESxZsoQ777yT7777DoAnn3wSgKeffpqxY8diNpt56qmnAHjiiSfYtGkTZrOZSZMmAbbzPWDAABcfiYiIyNVJT2MUERGRi3b66XXnatWqFV988QUA7dq1IyUlpVKdn376iblz53LzzTezYsUKbr/9dof1paWl+Pv7YzQaCQkJwc/PD8C+HBAQgMViITw8HLAlJE73QMrOzqZnz541eKTu58xzvXv3bpo3b24/x127dq1U/9y/R0BAAOA95/p0cvB8Bg4cyLJly0hOTuY///lPpfVvvPEGAM2bN2fZsmUO66rqFbZ27Vruv//+KwtaRERELop6domIiMgVS0hIICMjo9o611xzDaWlpfTu3ZuEhAQaNWrE4cOHef311wH46quvMJvNXHfddTRv3pzNmzc7LLdq1Yrhw4fzwQcfYDabSU9P54YbbgBsE4p36NDB6cdZG9TEuT57COP56p/79zg9BO9qOdf33HMPycnJNba/Dz74AKNRt94iIiKuYLB62+N0atCRtB18M6jyN6pyeQYsmEijrm3dHYaIiJxHl69s/64beHnbT5w4kWHDhrl8XqLt27ezYMECnn32WZe2e7mu9DyDzvXFqolzLSIiIu6xevVqevXqxapVqy65V7mGMYqIiEiNqGrInSvEx8cTHx/vlrbdRedaRERE5PzUl1pERERERERERLyGkl0iIiIiIiIiIuI1lOwSERERERERERGvoTm7pNYpOAVZee5pOy4Ugn3d07aIiIiIiIiIXDklu6TWycqDMavd0/aMnpAY4Z62RUREREREROTKaRijiIiIiIiIiIh4DSW7RERERERERETEayjZJSIiIiIiIiIiXkPJLhERERERERER8RqaoF68QsbzZgp3pGLw8cVg8iGgWVuajphEaML17g5NRERERERERFxIPbvEazQdMYmkeQV0mnWEOm26s2vyLVQUnnR3WCIiIiIiIiLiQkp2idcx+vpT/4bRWEoKKDmU5e5wRERERERERMSFlOwSr2MpLeb40hkYg0IJaNrK3eGIiIiIiIiIiAt5TLKrrKyMCRMmEBkZSWBgIP369SMtLQ2DwcCCBQtcFsddWbMdfu755RMGfveGy9qX8zs4ZwLpw8PY8qdoivZsIm7815iCQt0dlohIrVdSDv/NPrM8aRNs/dV98XircgssO3hmecIGSDsGVqv7YvJGFiukHoXn158pW37Idv5FRETk6uARE9RbrVaGDh1KWloaL774InFxccyZM4fBgwcDkJSU5LJYPo6722F54HdvsGfBape1L+fXdPgrNB78lLvDEBHxKFl58HAqnCg9U7YgG77MhoGR8HwimAxuC89rHC22nec9BWfKFh+Ab/bDtQ3g9Wsg0CPuymq3glPw+FrYmAPGs67bcT9Bq1B451qICHBffCIiIuIaHnFbNX36dBYtWkR6ejrt27cHwGw2ExMTQ3h4OC1atHBLXPUT4whr3Zysecvd0r6IiMiVyD8FD62B3DLH8tMdYL7aZ0sMPBzv8tC8SoUVHvkRsgscyy2/9ehaewxeTodXu7g8NK8zfgOk59h+t5zTY25XHjyeBrN6g0EJXBEREa/mEcmuKVOmMGLECHuiC8BkMhETE4Ovry979+7llltusa/Lzc0lLy+PnJwcp8bVang/Dny/keIjGushIiKe5+t9kFNWfZ25u+HeVlDHI+4YaqfVR2B3/vnXW7ENb3y4EJrXcVlYXicrD1YdOf96C7AtF9Ydh2sauCoqERERcYdaf+uamZnJnj17ePvttyut27dvH0OGDCE6Opr09HR7+dixYykvL7/oNkJCQigrq3y339KnHk+H9qpyG59Af2IG9WTlY+9cdDtXu759zewqv3BiMKhNd1pOTHF2OFXq29dMUUaqW9oWEXG12Ek/EBTXFYPx/FN4llRA9PV3kPfjly6MzLs0f/R9wnoOw2A6/22XxWql273Pc/wrzQN6uRrePoGGQ56r9nq2VpRz+0sfcPDfj7gwMhEREbkcFsvlT7hZ65NdBw4cAKBhw4YO5Tt27CA7O7vSfF1lZWV8/PHH/P/27jw+qvLu//9rsrAZFgOCCAECQYwgEBdAFjMitS51q1I3Km5ft6qlt+vPSm9qXUqtd729tVRurQuKvSu1Ra2VRYmooFEBWYQQkF0BBZEtBJKZ3x9TgjEsAZKZzOH1fDzmYeY6Z2Y+Mx7OnHmf67rOhAkTarWuDuecTFnJdlZO/mTfK6vWdXmgINElSFLSST3s8L0GAxXrNWoah2qCK7VR032Pm4uUk3qYF1U5GKmNmkK0nL1ffynqxWskSToE1Pmwq3nz5gAsWrSIXr16AbEJ6++66y4ikUiVsOvVV1+lTZs2HH/88dV+jU2bdj+2YE3hAv513r27Xdb58tNY/NcCouVe2qe6pkwpoFWvY/a53qx1cG2C5vyfMqWAns0T89qSFG+3fgAfrN01R9eejH/+SXof8WRcagqi382BcUv2/jmHUtN4dMTd/PjZu+NWV9C8uBj+MG/v66SkpvPzKy/mlt9dHJ+iJEnSAdu4cSNz5szhuOOO2+/H7vt0boLl5uaSk5PDPffcw8svv8y//vUvzjvvPGbMmEGjRo3o0qVLpfX//Oc/c/XVV9dqTU06HUXLE7uw8KW3avV1JEmqTee320cAA7RqACe2iFdFwXTePj5ngHopcHqbuJQTWGe2hbR9dKCLAuck5rpGkiRpPzVp0oR+/frRpMn+98qu82FXWloa48aNo3Xr1gwdOpRhw4Zx5plnkp+fT/fu3Un5zvCLVatW8c4773D55ZfXak2dLx3Img/ns2nJ6lp9HUmSatMpR0JeZizU+r4QsWDgF90g1SvXHZQuTeHstntf54ZjICM9PvUEVWZ9uProva9zYXvokBGfeiRJUuLU+WGMAD169GD69MqThj/++OPk5+dXanvuuec4++yzK4Y+1pZP7n+hVp9fkqR4SEuBR/vAb2bBW1/Ewq2dmqTDHcfBoKMSVV2wDO8ZC7P+thTKvvNBN0yF64+ByzsmqrJg+X9Hx3p3/bk4dnGFndJCcGlHuPnYxNUmSZLiJynCru8rKSmhqKiIYcOGVWp/9tlnd3vVRgVL2ab1FP/nD9i2qoi8/9tcadnS/76SbauKCKXXp/XFv6JJ94Esuv8cyrduJJSaRsc7/o+0Jo7HkaSdDkuD354IX2yFqatjAUHWYbFeX+l1vv938khLiYWH1xwNU76EjTugZQM4tTU0SsqjsbopFIr17vpJduxz/roUmtWLfc7N6iW6OkmSFC9JeXg1e/ZsysvLq0xOv3DhwgRVpHhKbdiYzr+exOe/+8lul3e882Xqtdg1XqTT3a8QSktn3ZQxrH9nLC3PuTVepUpS0jiqEVxi76Jal1kfLuyQ6CqCLyPdubkkSTqUJWXY1bt3b6LR6L5XVCCF0tJJa5y5p6V8/vDF1GvehnY3/om0xpmE0mKToER2bKNBVm78CpUkSZIkSXHnAAUFSttr/otjRr7P4f0vZvW4h4DYsMcFd/Zl7euP0aCtYZckSZIkSUFm2KVAScs4HIBmvc6lZMW8WFvjTI753TTaXH4/a179QyLLkyRJkiRJtcywS4FSvnUTAJuLplO/ZTbRSIRoeRkAqY2akpLeIJHlSZIkSZKkWpaUc3ZJC4cPYuuSmSwcPoijLh3B5gXTOfLHd7D00SvYsfErUtLr0+HWZ4ls28Ki+38EoZRY28+fTXTpkiRJkiSpFhl2KSkd/ZvJle5nHNsfgE73/L3Kul0efCcuNUmSJEmSpMRzGKMkSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAIRaPRaKKLqKu2b9rKN/OXJ7qMwDg8tx31Gjfa53qbd8CijXEoaDdymkBGemJeW5IkSZIkHTzDLkmSJEmSJAWGwxglSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBhpiS5AkiRJkiQdurZv2so385cnuozAODy3HfUaN0p0GQll2CVJkiRJkhLmm/nL+dd59ya6jMA4c/z9tOp1TKLLSCiHMUqSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgJE3YtX37doYPH05WVhYNGzZk4MCBFBYWEgqFGD9+fKLLU0B9ux3GLobfzIKRs+G9NVAeTXRVkqRoFD5dD4/MhftmwVNFsLok0VVJkqSaFEpNoddvruLSz57hsgXP0feRG0mtn57ospQE0hJdQHVEo1EGDx5MYWEhI0aMICcnh7Fjx3LBBRcAkJeXl+AKFUSvLIWH58KOCKSGIAq8vBSyDoM/9IYOGQkuUJIOURtK4faPYNb62Fm7UAgiUXiyCH6aAzfnQkoo0VVKkqSD1f3WH3Nk326MH3gb5TvKOO3Zuzjh3p9SOPzPiS5NdVxS9OwaPXo0b7zxBpMnT+b666/ntNNOY/To0aSmppKZmUm7du0SXaICZtIqeHB2LOiCWG+uyL97dK3aCje8H/uxJUmKr7II3PwBzF4fux8hto+OErs9vwieWpjAAiVJUo3pfPlpzHnsFbauXk/puo3MeuSv5FwcJpSSFFGGEigptpCRI0cyZMgQunbtWtGWmppKdnZ2Ra+uhQsXcvLJJ3P00Udz8sknU1xcnKhyleSiUfjjAthTp4BIFL4uhb8vj2tZkiRiw8kXfBsLufbkuWLYvCNuJUmSpFpQr0kjMtocwfp5Syra1s1ZQr3GjcjIOiKBlSkZ1PlhjMXFxSxZsoTHHnusyrIVK1Zw4YUXAnDDDTfws5/9jCFDhvDCCy9w/fXX8/bbb+/z+Tdu3MiRRx5JWVkZoZBjHgQNO51Azm+n7XWdaDTCf721mBu6dYtTVZIkgHa3/YUmJ51DKHXPhzClEeh09jVseOeFOFYmSZIOVKe0w7mzSf9KbWkZDQHY/u3Wirbt324BIP3fy7R7p54aZnHZN4kuo0bUq1ePTZs27ffj6nzPrlWrVgHQsmXLSu0LFixg2bJl5OXlsXbtWmbMmMGll14KwKWXXsqMGTP46quv9vn8c+bMoaSkhGjUWccVk9a05T7XCYVSqrWeJKlmpTVrtdegq2I999GSJCW1ss2xK8+kN2lU0Vav6WEA7NjsVWm0d3W+Z1fz5s0BWLRoEb169QJiE9bfddddRCIR8vLyWLFiBW3atCE1NRWIDXE86qijWLFiBUccUb3ujQUFBfTr16923oSSyrxvYOi7+14vu2VTZpY6cZckxdMdH8E7X+59GCPAk//1ED96+aG41CRJkg7OmsIF/Ou8eyu1bd+4lc2rviKzawc2Lv4CgObdstm+aSubV+y7Y8uhbMqUAlr1OibRZSRUnQ+7cnNzycnJ4Z577iE9PZ2MjAxGjRrFzJkzadSoEV26dGHmzJmJLlMBcmwzaHcYrNgSm+x4T871ugiSFHdnt4UpX+59nQapED4yPvVIkqTaU/ziW3S/5QLWfDifSFk5PW/7CYv+r4BoZF+nvXSoq/NhV1paGuPGjeOGG25g6NChZGVlMWzYMJo0acLixYtJSUkhKyuLVatWUV5eTmpqKuXl5XzxxRdkZWUlunwloVAIbsqFuz/e/fIUoHkDOL99XMuSJAH9W8VOSizYsOfeXVfmQEZ6HIuSJEm1YvZjr1A/swnnF/yBUEqIpa9/wCcPOCen9q3Oh10APXr0YPr06ZXaHn/8cfLz84HYfF49e/bkpZdeYsiQIbz00kvk5eVVewij9H2DjoJ7e8Dv5sD27/2aansYPNobmtVLTG2SdChLS4HH+sAdhTBz/a720L9vV+TANUcnqjpJklSTouURCof/mcLhf050KUoySRF2fV9JSQlFRUUMGzasou1Pf/oTQ4cO5b777uPwww/n+eefT1yBCoTz28PA1vDGSvj93FjbY32gzxGQ4oU7JSlhmtWD0f1g3ga48t9zLN54DPwoC1p6cSZJkqRDXlKGXbNnz6a8vJy8vLyKtmOOOYYPP/wwgVUpiJrUg0s67gq7+npxL0mqE0Ih6Hb4rvtX25tLkiRJ/5aUYVfv3r2JRvc2dbgkSZIkSZIORSmJLkCSJEmSJEmqKYZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMJIm7Nq+fTvDhw8nKyuLhg0bMnDgQAoLCwmFQowfPz7R5UlSnReJwgdr4fHP4L/nwaRVsCOS6KokSQDflMJLn8Oj8+CphbBsc6IrkqTE63DOyZw5/jdcvmgMFxX+MdHlKImkJbqA6ohGowwePJjCwkJGjBhBTk4OY8eO5YILLgAgLy8vwRVKUt22eCPc8REs37LrLEcEOLwe3H8C9D4ikdVJ0qErGoXRRfBMMZRFITUUOznxpwVwWmsYkQcNk+KIXZJqXum3W1jw5zdpcERTul73o0SXoySSFF+do0eP5o033mDWrFl07doVgHA4THZ2NpmZmbRr1y7BFUpS3bW6BK57HzbtiN3/bmeub7fDzz+Ap/pDt8MTUp4kHdKeXgj/u3DX/fLorr/f/hK2lsFjfSAUin9tkpRoX06dDUC7M05KcCVKNkkxjHHkyJEMGTKkIugCSE1NJTs7u6JX1+233052djahUIi5c+cmqlRJqnNeWgwbd1QOuXaKEOtB8OSCeFclSdq0A/5cvOflUWD6VzBzfdxKkiQpEOp82FVcXMySJUu48MILqyxbsWJFRdh1/vnnM3XqVNq3bx/vEiWpzopGYfzy2A+mPYkAH3wFX2+LV1WSJIDJX8D2fcydmBKC15bHpx5JkoKizg9jXLVqFQAtW7as1L5gwQKWLVtWEXb179//oF4nHA6TklLnsz8lSLe/xlKA+vUbJLgSaf+E0urR7aVN+1wvCnTq0YttSz+t/aKkGuT+Wcms5UW/pOXgewnt5Ri0PBJl7GuTebCPc9VICq5OaYdzZ5OD+02vXU49Nczism8SXUaNqFevHps27fv3zPfV+XSnefPmACxatKiiLRqNctdddxGJRJycXpL2Ilq2nUjp1mqtW77ZcTKSFE/lm9fvNegCIFJO+eZ18SlIkqSAqPM9u3Jzc8nJyeGee+4hPT2djIwMRo0axcyZM2nUqBFdunSpkdcpKCigX79+NfJcCp4TX439t7S0NLGFSAfggU9h/LLdz9kFsbMe3Q6Hj1ct2sMaUt3l/lnJ7OttcNak2NyJexJKTePZ2y6h/+8uiV9hkhRnawoX8K/z7q3SHkpJISU9lVBaGoRCpNZPJxqNEtleloAqk8eUKQW06nVMostIqDofdqWlpTFu3DhuuOEGhg4dSlZWFsOGDaNJkyYsXrzYoYeStA+Xd4Q3VsCOyO4Dryjw/2rmvIEkaT+0aAAXdYC/Ltn98hSgc1M4ueXul0tS0HW66BT6//fNFfd/uvQlNq9Yy7heNyWwKiWDOh92AfTo0YPp06dXanv88cfJz89PUEWSlDw6NI5dtv62Qtj8vZNgaSG4t6c/pCQpUf6jK2zZAf9cGQu3vntS4phm8GhvSA0lqDhJSrBFfy1g0V8LEl2GklBSdosqKSmhqKio0nxdt956K23btmXlypUMGjSIrl27JrBCSapbTmgB/zod7u2xq+3WY+HN0+FHWYmrS5IOdWkp8Ovj4S9huKTjrvYnToZnB0Bm/YSVJklS0krKsGv27NmUl5dXCrsee+wxVq5cSVlZGatXr2bevHkJrFCS6p6GaXB++133r8iBZv6IkqQ6IacJ/Ee3Xfd7HwEp9uiSJOmAJMUwxu/r3bs30eheZvKUJEmSJEnSISkpe3ZJkiRJkiRJu2PYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAiNpwq7t27czfPhwsrKyaNiwIQMHDqSwsJBQKMT48eMTXZ6kgxCNwkdfwbPF8FwxzP0m1iYlq6Wb4YXF8OeFUPAllEUSXZEkSfFTHoX318AzxTBmERR9m+iKlIxS6qXR9/c3cOEHT3B58RgueO8xjrn6zESXpSSRlugCqiMajTJ48GAKCwsZMWIEOTk5jB07lgsuuACAvLy8BFco6UDN3wC//ASWb6nc3qUpPHQCtMtISFnSAdmwHX41A6atrdyeWQ9+2RPyj0xIWZIkxc2MdbHvwtUlldt7ZsIDJ0CrhompS8knJTWVkrUbmHjJb9i0bA2Zx7bnBy/dy7avNrD0temJLk91XFL07Bo9ejRvvPEGkydP5vrrr+e0005j9OjRpKamkpmZSbt27RJdoqQD8PkmuO59WLml6rLijXDte7C2pOoyqS7aVg43TYMP1lZd9s12uL2waggmSVKQzP0GfjZ998dvs9fHju2+3R7/upScykpKmfm7v7Bp6WqIRlk/bykrJn5My165iS5NSSApwq6RI0cyZMgQunbtWtGWmppKdnY2eXl5rFu3jrPOOosuXbpw3HHH8eMf/5ivvvoqgRVLqo7/LYLSctjdCK9INBYQvLg47mVJB+TNlbBw4+63552jch+d5xBdSVJw/XE+lEf2cGwHfFkC45bGuSgFRigtlVa9c/lm/rJEl6IkUOfDruLiYpYsWcKFF15YZdmKFSvIy8sjFApx5513UlRUxJw5c+jUqRN33313AqqVVF0bt8NbX+7+YGinKPCP5bHgS6rr/r4MQntZHiXWm3G+85ZIkgJo9VYo/Hrvx3YQ+76UDkSfB69hx+YSFr/8TqJLURKo83N2rVq1CoCWLVtWal+wYAHLli0jLy+PzMxMwuFwxbI+ffowatSo/XqdcDhMSkqdz/6UIN3+ug2A+vUbJLiS4Kjf5hiOfvTTfa63pQwOyzyCyNaNcajq0OD2XDty/3cFac1a7nO9/HMvZuOH/6j9gg4Rbs8KGrdpJatGXU6m0/0F+1zvyy3l1K/fqPYLUlLplHY4dzbpv8flJ40YyhEndGHC4BFEdpTFsbLkdOqpYRaXfZPoMmpEvXr12LRp034/rs6nO82bNwdg0aJFFW3RaJS77rqLSCRSZXL6SCTCqFGjOPfcc+Nap6T9U761et1bouVlREq31nI10sEr37qBaDXGKJZvsWuXJCl4qntsFynZ/x+tOrT1uu9KjjqlOxN+8mtK17v9qHrqfM+u3NxccnJyuOeee0hPTycjI4NRo0Yxc+ZMGjVqRJcuXSqtf8stt5CRkcHNN9+8X69TUFBAv379arJ0BciJr8b+W1pamthCAubqd2MTme6pu3sKcFpWGp9s3c0M9jpgbs+1Y3RR7LY3h9eDNR+9SXqdP9WUPNyeFTRu00pW0ShcNAWWb941V+X3pQAXdW3G3W7f+p41hQv413n3Vmnv9Zurad2/G29eNILSdY70qK4pUwpo1euYRJeRUHU+7EpLS2PcuHHccMMNDB06lKysLIYNG0aTJk1YvHhxpaGHt99+O8XFxbz22msOSZSSwNVHw7APd78sBIRCMKRTXEuSDtiP28NLn8OWHXsOcId2xqBLkhRIoRBcezQMn7GH5UBaClySHdeylMQOa9uCY689i/Jt27nowycq2td8uIDJlz+QwMqUDOp82AXQo0cPpk+fXqnt8ccfJz8/v+L+PffcwyeffMI///lP6tevH+8SJR2A/q3g/+sOI2fHzgB+9yxgWgo8cDx0PTxR1Un7p0UDeLwP3PoBfLtjV3sKsfBrSCe4vGOiqpMkqfad2RbWlMDj82Ph1neP7RqkwsMnQYfGiapOyWbLyq95tvVFiS5DSSopzy+XlJRQVFRUMV/XvHnzeOihh/jiiy/o27cvPXv25IILLkhwlZKq48IO8OqgWC+vnW7OhX/+AAYelbCypAPS9XB49QexEHenwdnwlzAM6xo76y1JUpBd2Rn+PrBy7/z/6Bo7tuuz7+u4SFKNSIqeXd83e/ZsysvLK8Kurl27VmtSYEl105GN4MZj4OmFsftXdk5sPdLBOCwtFuI+NDt2/47jElqOJElxl5UBP+8KYxbH7l/mtBSS4iwpw67evXsbbkmSJEmSJKmKpBzGKEmSJEmSJO2OYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQqMpAm7tm/fzvDhw8nKyqJhw4YMHDiQwsJCQqEQ48ePT3R5cVcehWlr4eUl8M8VsGF7oiuSJElBtK0MJn8RO+Z4+wsoLU90RdKBi0Sh8KvY9vz6cli3LdEVSQdn8UZ4ZWnstmhjoqupeX0eupbBH/+JyxY+z+AZT9LrvitJSU9LdFlKAkmxlUSjUQYPHkxhYSEjRowgJyeHsWPHcsEFFwCQl5eX4Arj6+0v4OG58NV3vpzTQvDjDvCLrpCeNBGmJEmqq6JReG4RPFMMW8p2tWekwXVd4NKOEAolrj5pf01bCw99Cl+W7GpLDcHZbeHO46BBUvwykmJWbYERM2Hm+srtPTNhRB60PSwxddW0+c+8ycf3jaGspJT6mY0Jj76N7rf+mFmP/DXRpamOS4pd+ujRo3njjTeYNWsWXbt2BSAcDpOdnU1mZibt2rVLcIXx89YXcPfHVdvLovDXJbC2BB4+yYNPSZJ0cEYtgD8XV23fXAb/NQ+2lcPVR8e/LulAfLAWhn0YC3G/qzwKr62IBWD/0wfSPGmsJPDVNrjmPVhfWnXZ7PVw1bswJh+ObBj/2mratwtX7roTChGNRGncsXXiClLSSIrd+ciRIxkyZEhF0AWQmppKdnZ2Ra+u888/nx49epCXl8eAAQOYNWtWgqqtPWUR+P2c2N/RPaxTsBo+/jpuJUmSpABaXRLr0bU3o4t2/0NLqmui0dioiGh098fQUeCjr2Hq6nhXJh2Y54pj+9/IbpZFgG+3w7P72Icnk+NuPp/LF43h0rl/JrNrez4b/XqiS1ISqPNhV3FxMUuWLOHCCy+ssmzFihUVYddzzz3Hp59+ysyZM7n99tu5+uqr411qrfvgK/iqdM9BF0BKCP6+LG4lSZKkAHpt+b7XKYvCGytqvxbpYM3+BpZt3scxNPCKx9BKAjsi8Ory3QddO0WA11fEeuAGwZzH/8GLOT/l76f8nKLnJ1Ky9ptEl6QkUOeHMa5atQqAli1bVmpfsGABy5Ytqwi7mjZtWrHs22+/JSVl/3K8cDi834+Jt+Zn3MRR1/xhr+tEovCPd2fwSL+T41TVoaHbX2MTpNWv3yDBlQSbn3N8+DnHh59zfPg51462P3uKZgMuIZSavsd1omU7GP6HP3PNU7fGsbLgc5uuec1OuYysW57Z6zoRYOrcJdQPHxOfog4Rbs81L63ZkeT+776T2W3l0KJdDju+To6zEp3SDufOJv33us63xatYP28ZA/7nViZcNCI+hSWpU08Ns7gsGKFgvXr12LRp034/rs6HXc2bNwdg0aJF9OrVC4hNWH/XXXcRiUQqTU5/7bXXMnHiRKLRKG+++WZC6q1N5dv2/T84GiknUrL/G4IkSdJOkW2bgX1MAJqS8u/1pLotUrLv7TQajVDuMbSSQKR0S/XX3Vb9dZNFSnoqTZyzS9VQ58Ou3NxccnJyuOeee0hPTycjI4NRo0Yxc+ZMGjVqRJcuXSrWfeqppwAYM2YMd9xxB2+88Ua1X6egoIB+/frVeP01aX0pnDUxNmxgT0Ipqdx3aT4/ucdJNGrSia/G/lta6udam/yc48PPOT78nOPDz7l2fPQV3Dh97+uEUlL55+9vo9vTt8WnqEOE23TN21IGP5yw9yFdoVAK/3FGd6651c+9Jrk9146bpsXmad7TUMaUEPQ4HD5e92Vc6zoYawoX8K/z7q3Ult64Ee3P7MXyNwvZvnErh+e2p8ewC/mi4NMEVZk8pkwpoFWvQ7unat0etwekpaUxbtw4WrduzdChQxk2bBhnnnkm+fn5dO/efbdDD3/6058yZcoU1q1bl4CKa09mfTh3LxeeTAnB4fXgrLbxq0mSJAXPiS2gS9M9HyimELu8fddmcSxKOkCHpcHF2XtenvLvdc4/dC7wriR3Rc4+5uyKwtDOcSun9kSjdLzwFC784AkuXzSGgc/cycq3ZvLhL59OdGVKAnW+ZxdAjx49mD698unFxx9/nPz8fAA2b97MN998Q1ZWFgCvvfYamZmZZGZmxr3W2nZbN1i7Dd5bEwu3It/p5dUkHR4/GTL2PL2GJEnSPoVC8GhvuHEaLP3OCLAUYj+wOjWB350UW09KBjceA1+WwMRVVY+hG6bBY32gudNKKUn0aQl3d4eRs2P3d27OO3fJt3WD/q0SUVnN2rG5hIkX35foMpSkkiLs+r6SkhKKiooYNmwYAFu2bGHw4MFs2bKF1NRUMjMzee211wgF8Aisfir8Vy8o/Cp2xZi3/90z9fZucHYWNDbokiRJNeCIBvBiPrz1BfxqZqyt9xHwo3YwsDWk1/nxAdIuaSnwwPHw4/axK5dPiF0Di58fC+e0g2b1EluftL8u6gAntYC/LYWxn8faLukIF7aHDo0TWZlUNyRl2DV79mzKy8srJqdv1aoVH3zwQYKrip+UUCzN79Ny1zj4SzomtiZJkhQ89VPhrKxdYdf/eLFnJbFQKDZE98QWu8Kun+YktibpYLTPgP/otivsuq1bYuuR6pKkDLt69+5NNLqXWdolSZIkSZJ0SLIDuiRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiQdUvo/+jN6P3BNosvYrcsXjSGzW3aiy0hqaYkuQJIkSZIk6UAd2bcrPW/7Cc27dwRg3ezPmfX7v7J6+rwEVxbT87af0LxHJ9664qFqrf9izk9ruaLgs2eXpKRRUFBAdnY24XCYoUOHVln+wAMPUFxcvM/nefTRRxk0aNBul91yyy0MGDCABx98EIAnn3yS0047jXA4zI4dO5g/fz4jR448uDciSQFzsPvn9957jz59+tC3b18eeeSRKssLCwvp168fffv25d577wXcP0uSYtoOOoEfjL2XFZM/4a/HX89fj7+eFZM/4Qcv3Uvb047f7WNCqTUXhYTSUmvsuVRzDLskJZVrrrmGgoICmjZtyvTp0yvaI5EIs2fPpnPnznt9/I4dO5g1a9Zul3388cekpaXx7rvvMmPGDJYtW8acOXN46623KCgoID09ndzcXGbMmEE0Gq3JtyVJSe9g9s8dO3Zk6tSpTJs2jddff52tW7dWWp6Xl8f777/PtGnTmD59OsuXL3f/LEkCoPf9V7Po5QLmjXqVHZu2smPTVuaNepXF496h1/1XA3BR4R/pPuxCznr1AYZ8/iItenQCIP2wBoRH38blxWM4/50/cFS4xz5f78iTu3L5ojEcPWQQF300inMn/x6A1qd050cTRnJZ0XOc+9YjtDvjJADanXESx916AW1O7cnli8Zw+aIxpNTb+yC7K78cR/MenQilpnDZwudp1iUr9tp9u3Lll+No/6OTAWjYshlXLP8L6RkND+zDCzDDLklJqVu3bqxatari/qeffsrRRx+9z8eNGTOGSy+9dLfLPvzwQwYOHAhAfn4+48ePZ8uWLQwcOJARI0ZUrNexY0fmzasbXaIlqa45kP3zUUcdRb169QBITU0lJaXyIWp6ejoA5eXlHHXUUUycONH9sySJJp2OonH7Viz5x/tVln3+9/do0uFImnRsDUDO4DDv3/ZHXsz5KevmLgEg+/z+fP73dxl7zFBm/8/fGfjnO2l0ZOY+XzetYX1a9MzhH6cM4/Uz76JxhyMZ9NzdzH38H7x07FV88sAL5I/6BZldO7D8zY+Y89jfWTVlFi/m/JQXc35KZHtZtd5ftDzCmg/n07r/cQC0HnAcG5d8Sev+3WL3+x/Hutmfs2NzSbWe71Bi2CUpKU2fPp2cnJyK+8XFxXTo0GGvj4lEIkyYMIEf/vCHu12+YcMGmjRpAkDjxo3ZvHkzoVCIt99+myVLllT0CGvfvj0LFy6skfchSUFzIPvnnSZNmkSnTp1o0KBBlWVjx44lNzeXZs2asXbtWvfPkiQaZDYGoGTN+irLStZ+E1uneez4vmjMJL4tXkU0EqkIm1Z/8BnL/1VItDzC5+Om8s1ny+hwzsn7fN1QSgqfPPgiZSWllJdsJ/u8vqz5cD5LX5tOtDzCqrdnsnzix3QanH/Q73H1e3MrhVuzfv/XivDryH7d+PL9uQf9GkFk2CUpqTz99NOEw2HatGlDz549d7vOZ599RjgcrnT77W9/yyuvvMK55567x+du1qwZGzduBGDTpk00bdqU/PzYF9Qpp5xCUVFRjb8fSQqKg9k/A6xcuZKHHnpot3N2AVx22WUsWLCAL774gsMOO8z9sySJbes3AdCwVdXeWA1bHh5bZ13s+H7Lqq+qrLNlZeW2zSu+qlbPrrKSUkr//doAjVo3Z/P3n2vZGhq1br7P59qXL9+bQ6s+x1KvSSOadDyKJf94n9R6aTRqnUnr/t348t05B/0aQWTYJSmp7JwT5v7776/U3rlzZ5YuXQrAscceS0FBQaXb3XffTVFREc8++yxnnHEGs2bN4qmnnqr0HL169WLKlCkATJ06lRNPPJE5c2JfHnPmzKnombBs2bJ9zg0mSYeag9k/l5aWcuWVVzJq1CgyMjKqPHdpaSkAKSkpNG7cmD59+rh/liSxcfEXbFq+huxz+1ZZln1eXzYtX8PGz78EIBqpOqfjYW2PqHQ/I+sItq6u2kvs+6KRSKX7W79cR0aV52rJ1i/X7Xb9/bF+3lKikQjH/r8fsfajBUQjEb58by5HXzaIRi0PZ+1HCw74uYPMsEtSIPTo0WOfZ/Z/+ctfMmnSJN5880169uzJtddey+rVq3n44YcBOOmkkygtLWXAgAH06NGD3r17U1ZWRjgcZuvWrfTu3RuARYsW0a1bt1p/T5IUBNXZP48dO5bPPvuM66+/nnA4zKpVqyrtn1999VXC4TCnnHIKbdu2df8sSapQ+Ktnybn4VLpefw7pGQ1Jb9yIY6//ETk/OZXC4c/s9bFH9jmWrNNPJJSaQscfD+DwY9uz9J8f7HcNS8ZPo1XvXNqf3ZtQSgptTu1J1g9PZPG4qQCUfP0th7VpccBXgVw9bR7HXnc2X74XO9Hz5ftzOPa6s1n7yULKS3cc0HMG3d4vASBJdcjOIS+7k5KSQvfu3SkuLq7WWf3JkycDcOSRR3LHHXdUtD/xxBOV1nv00Ucr3Z8/fz4nnHACoVBo/4qXpAA72P3zVVddxVVXXVWlfef+efDgwQwePLjSMvfPkiSAFRM+YvKQB+nxHxfR846fALBu9udMHvJgRTi0J0v+8R6dBudzyhM/Z8uX65hy7e/Z+sW6/a5h09LVvH317zj+/7ucfn/4GVtWfsXUmx9j/b8nwl/62nQ6nt+fS+b+mVAoxF+6X1PtSeoBvnx3Dh1+dDJfvhebn+vL9+ZSr8lhzte1F4ZdkgLj3nvvrfXXyM3NJTc3t9ZfR5KCxP2zJKk2ffnenL0GW+N63VSl7b1hT+xmzX1bPX0eL+b8tEr7qimzWDVl1m4fs33DZt688D+r9fyhf1+R+LthWNHzEyl6fmLF/ZI13/Bs64v2o+pDj8MYJUmSJEmS6oDDu7YnsqNstxPqq/rs2SVJkiRJkvRv5xX8gYy2Laq0r5j4CVNvevSgn3/Qi7+kVe9jqrTv2LyNlPRUPnlwLNs3bj3o1zmUGXZJkiRJkiT92/jwL2r1+Sdf/kCtPr8cxihJkiRJkqQAMeySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwEiKsGv79u0MHz6crKwsGjZsyMCBAyksLCQUCjF+/PhElyepBqzcsuvvr7Ylrg5JUmVlkV1/f/w1lEcTV4sk6dCU2qAeP572P1y+aEyiS1GSqPNhVzQaZfDgwTz11FPce++9vP7662RnZ3PBBRcAkJeXl+AKJR2ML7fCLdPhgrd2tZ09Ee7+GDaUJq4uSRK8shTOnrTr/g3T4EeT4PXlCStJknQIyrvjYjav/DrRZSiJpCW6gH0ZPXo0b7zxBrNmzaJr164AhMNhsrOzyczMpF27dgmuUNKBWlsCV70L60vhux0FIsDbX8CijfDMAGicnqgKJenQ9Vwx/M/8qu1fbYMRs2BLOVycHfeyJEmHmObdO9Lm1J589OvnOfXp2xNdjpJEne/ZNXLkSIYMGVIRdAGkpqaSnZ1dpVfXr3/9a0KhEHPnzo13mZIOwP8ujAVdkd0siwBLN8NLn8e7KknS19vgiQV7X+fRebBxe3zqkSQdmkKpKfT9/Q18cM9TRLaXJbocJZE6HXYVFxezZMkSLrzwwirLVqxYUSnsmjFjBh988AHt27ePZ4mSDtDWMvjnit0HXd81bilEnR9GkuLqtRUQ2ce+d0cE3lgZn3okSYembjedx7o5S1jzwW66Gkt7UaeHMa5atQqAli1bVmpfsGABy5Ytqwi7SktL+dnPfsZLL71EOBw+oNcKh8OkpNTp7G+3uv01NpN3/foNElxJsPk517z6R3Xh6P+evc/11pdCo8NbECnZFIeqDg1uz/Hh5xwffs61o+3P/pdm/S8llLbnceTRsh38f4/8maFP3RrHyoLPbTo+/Jzjw885PoLwOXdKO5w7m/Sv1Na4w5F0ueJ0Xv3BHQmqKnmdemqYxWXfJLqMGlGvXj02bdr/34J1Ouxq3rw5AIsWLaJXr15AbML6u+66i0gkUhF2/epXv2LIkCF06NAhUaVK2k+R7SXVWi8ajRDd4eUZJSmeItu3QSi095VCISKlW+NTkCTpkNOq1zE0bNGUH7//GAApaamkH9aQS+b9mSnXPGxvL+1VnQ67cnNzycnJ4Z577iE9PZ2MjAxGjRrFzJkzadSoEV26dGH69Ol8/PHH/Pa3vz2o1yooKKBfv341VHn8nPhq7L+lpV62rjb5Ode8aBQuLoAlmypPTv9dKUDvlil8smVzHCsLPrfn+PBzjg8/59rx/hr4+Yd7XyeUmsbfR/6C45/6RXyKOkS4TceHn3N8+DnHRxA+5zWFC/jXefdWalvy2jS+eHfXSJAjTuhC///+Ga8Oup1t6zbGu8SkMmVKAa16HZPoMhKqTo/bS0tLY9y4cbRu3ZqhQ4cybNgwzjzzTPLz8+nevTspKSm88847zJ8/n+zsbDp06MDKlSv54Q9/yMSJExNdvqS9CIXgipw9B10Qm8/r8k7xqkiStNPJLaFDxp4PFFOALk0hLzOeVUmSDiXlJdvZ+uX6ilvpuo0QjbL1y/VOVq99qtNhF0CPHj2YPn06W7dupaioiBtvvJGZM2dWDGG8++67+eKLL1i6dClLly6lbdu2TJgwgdNPPz3BlUval7PbwlWdY39/d2e08+/bu0Gflt9/lCSptqWE4L97Q8uGsfs7BzTu/G+bw+C/eu17pKMkSTVl9fR5vJjz00SXoSRRp4cx7k5JSQlFRUUMGzYs0aVIOkihEPwsF/q1hJeXwuz1sbbeR8BFHWK9BiRJidHmMPhLGF5fEbt67rpSOKIBnJMFZ2bBYUl3FClJkg4VSXeYMnv2bMrLyyt6dn3f0qVL41uQpIPWs3nsJkmqWzLS4ZKOsZskSVKySLqwq3fv3kSje5vlR5IkSZIkSYeqOj9nlyRJkiRJklRdhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSQlQUFBAdnY24XCYoUOHVln+wAMPUFxcvMfHr1+/nhNOOIGMjIwqy0pKSjjrrLPIz8/nqquuqmh/8sknOe200wiHw+zYsYP58+czcuTImnlDkhQgB7uPBrjlllsYMGAADz74YKX2N998k3A4TDgcpnnz5syaNYulS5fSunVrwuEwV1xxBQDvvfceffr0oW/fvjzyyCMA7rclqZoMuyRJSpBrrrmGgoICmjZtyvTp0yvaI5EIs2fPpnPnznt8bOPGjZk0aRJ9+vSpsmzixIn079+fd955h/T0dObOncvy5cuZM2cOb731FgUFBaSnp5Obm8uMGTOIRqO18v4kKZkdzD76448/Ji0tjXfffZcZM2awZs2aimVnnHEGBQUFTJkyhY4dO9KjRw8Azj77bAoKCnj++ecB6NixI1OnTmXatGm8/vrrbN261f22JFWTYZckSQnWrVs3Vq1aVXH/008/5eijj97rY9LT08nMzNztsuzsbLZs2QLA5s2badq0KRMnTmTLli0MHDiQESNGVKzbsWNH5s2bd/BvQpIC6kD20R9++CEDBw4EID8/n08++aTKOh999BEnnngioVAIgAkTJjBgwABefPFFAI466ijq1asHQGpqKikpsZ9u7rclad8MuyRJSrDp06eTk5NTcb+4uJgOHToc8PPl5OTw7rvvkpubSygUIisri7Vr1xIKhXj77bdZsmQJs2bNAqB9+/YsXLjwIN+BJAXXgeyjN2zYQJMmTYBYT9wNGzZUWWf8+PGcd955ALRu3ZqioiImTpzIk08+ybp16yrWmzRpEp06daJBgwaA+21Jqg7DLkmSEuTpp58mHA7Tpk0bevbsudt1Pvvss4q5XXbefvvb3+71eZ977jkuvvhi5s+fT4sWLZg2bRpNmzYlPz8fgFNOOYWioqKafjuSFCgHs49u1qwZGzduBGDTpk00a9asymOnTJlS0furfv36NGrUiIYNGzJgwAAWL14MwMqVK3nooYcq5uySJFVPWqILkCTpUHXNNddw7733Vmnv3Lkzr7zyCgDHHnssBQUF+/W8kUikYohjZmYmGzZs4OSTT2bs2LEAzJkzh0svvRSAZcuW0a9fv4N4F5IUTAezj/7oo4946aWXOOecc5g6dSo/+clPKi3//PPPadu2bcUwxc2bN5ORkUE0GuXjjz/m5ptvprS0lCuvvJJRo0ZVuhiJ+21J2jd7dkmSVMf06NGjWj2vBg0axMyZMxk0aBBz585l9erVPPzww1x22WU888wzhMNhZs2axQ9+8AOOP/54ysrKCIfDbN26ld69ewOwaNEiunXrVttvSZICozr76JNOOonS0lIGDBhAjx49aNWqVcU+GioPYQSYNm0aJ554In379uX000+ndevWjB07ls8++4zrr7+ecDhcMW+Y+21J2jd7dkmSlAA7h7vsTkpKCt27d6e4uHivV/uaPHlylbY77rgDiF2R8fseffTRSvfnz5/PCSecUDE5siQppib20U888USl+0ceeWTFPvoXv/hFpWWnn346p59+eqW2q666iquuuqpSm/ttSaoewy5Jkuqg3Q2dqWm5ubnk5ubW+utIUtDEYx+9O+63Jal6HMYoSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBhJE3Zt376d4cOHk5WVRcOGDRk4cCCFhYWEQiHGjx+f6PIkSapQWr7r7y+3Jq4OSVJVK7fs+ntHJHF1SNq7/o/+jJ8ue4nLF42puLU5tWeiy1KSSEt0AdURjUYZPHgwhYWFjBgxgpycHMaOHcsFF1wAQF5eXoIrlCQJyiLw9EL4y5JdbedOht5HwH90g46NE1ebJB3qFn4Lf5gHH329q+2MCXBZJ7iyM6SGElebpN1b+MJkPvzl04kuQ0koKcKu0aNH88YbbzBr1iy6du0KQDgcJjs7m8zMTNq1a5fgCiVJh7pIFO6dAZO/qNweBQq/gqvehT/3h05NElKeJB3SFnwL174H28srt3+7A0YtgOWbYUQehAy8JCkQkmIY48iRIxkyZEhF0AWQmppKdnZ2Ra+uDh06cMwxx9CzZ0969uzJhAkTElWuJOkQNHV11aBrpwhQUg4Pz4lrSZKkf3vo01jQtadRi/9cCYVf72GhpITp+OMBXPrZM5w/9VG6//zHhFKTIsJQHVDne3YVFxezZMkSHnvssSrLVqxYwYUXXlhxf9y4cXTr1i2e5UmSBMC4pZASivXw2p1IFD5eB8s2Q/uMuJYmSYe0hd/CvA17XyclBOOWxIadS6obPnv6DT7+zRi2rd9E8+4dyf/jMFLr12Pm7/6S6NKUBOp82LVq1SoAWrZsWal9wYIFLFu2rMbm6wqHw6SkJF9K3O2v2wCoX79BgisJNj9nBYnbc+045n+Xk96s1T7XO/HMwWwsfDUOFR0a3J4VNG7TNa/ZgEvJuvXZva4TicKbsz7nsQG58SnqEOH2HB9B+Jw7pR3OnU36V2pbP2fXJKjrPl3MzN//H3m3X2zYVQ2nnhpmcdk3iS6jRtSrV49Nmzbt9+PqfLrTvHlzABYtWlTRFo1Gueuuu4hEIpXCrssvv5zu3btz0003sWHDhniXKkk6hEV3lFZvvbIdtVyJJOm7ItXeP1dvPUkJEomC8+qpmup8z67c3FxycnK45557SE9PJyMjg1GjRjFz5kwaNWpEly5dAHj33XfJysqitLSUYcOGcfPNN/PCCy9U+3UKCgro169fbb2NWnPivzsHlJb65Vyb/JwVJG7PtWPkbPjb0j3PBwNQPwWWTv0HGenxqir43J4VNG7TNW9DKZwxEcr2MMwcYr+frwvncqufe41ye46PIHzOawoX8K/z7q3U1uHcvqyaMosdm7ZyeG57etw2mKWvT09QhcllypQCWvU6JtFlJFSdD7vS0tIYN24cN9xwA0OHDiUrK4thw4bRpEkTFi9eXDH0MCsrC4D69etz0003ce655yaybEnSIWZwNvxtGbHLL+5GCLigPQZdkhRnzerD2Vnw6vLd76JDQGoIftw+3pVJ2ptjrvwhJ4+8jpT0VErWbGDxuHeY/T9/T3RZShJ1PuwC6NGjB9OnV05wH3/8cfLz8wHYsmULZWVlNG3alGg0yl/+8hd69uyZgEolSYeqjo3hvjz41UwguquHVwqxv09qAbccm7j6JOlQdnu32AVCZq3ftV+G2N8pIXjoRGh7WAILlFTFmz/+z0SXoCSWFGHX95WUlFBUVMSwYcMAWLNmDRdeeCHl5eWUl5dz7LHH8sc//jGxRUqSDjlntIVOjeGvS2HKl7A9EgvBLuoAZ7SBtDo/U6YkBVPDNPjjyfCvVbEh50s3Q4MUGHgU/CQ7tq+WJAVHUoZds2fPpry8vGJy+o4dOzJz5swEVyVJEnRuCr/sEbtJkuqOeqlwXrvYTZIUbEkZdvXu3ZtodC8zTEqSJEmSJOmQ5IAKSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSQFUUFBAdnY24XCYoUOHVlk+ZswYJk+eDMCAAQPIyMhg5cqVVdabMWMG/fr1Iz8/n7lz5wLw8ssv06tXL/r06cMHH3wAwFVXXUU0Gq3FdyRVj2GXJEmSJEkBdc0111BQUEDTpk2ZPn16pWWvvfYap512GhALry666KLdPsd9993HK6+8wt/+9jd+85vfAPDEE08wdepUXnnlFX7/+98D0Lt3b6ZMmVKL70aqHsMuqQbs64zJAw88QHFx8T6f59FHH2XQoEG7XXbLLbcwYMAAHnzwQQCefPJJTjvtNMLhMDt27GD+/PmMHDny4N6IxMFvz+vXr+eEE04gIyOjyrKSkhLOOuss8vPzueqqqyra3Z4lSZJqV7du3Vi1alXF/fXr19OgQQNCoRAARx555B4fu2XLFlq1akWLFi1YunQpAB06dGDLli18++23ZGZmAnDqqafyxhtv1N6bkKrJsEuqIXs6YxKJRJg9ezadO3fe6+N37NjBrFmzdrvs448/Ji0tjXfffZcZM2awbNky5syZw1tvvUVBQQHp6enk5uYyY8YMuw2rRhzM9ty4cWMmTZpEnz59qiybOHEi/fv355133iE9PZ25c+eyfPlyt2dJkqRaNn36dHJyciruL1q0iPbt21frsY0bN6a4uJjPP/+cefPmAXDOOeeQl5fHoEGD+NnPfgZA+/btWbhwYc0XL+0nwy6phn3/jMmnn37K0Ucfvc/HjRkzhksvvXS3yz788EMGDhwIQH5+PuPHj2fLli0MHDiQESNGVKzXsWPHii8fqSYcyPacnp5ecXbv+7Kzs9myZQsAmzdvpmnTpkycONHtWZIkqZY8/fTThMNh2rRpQ8+ePQ/oOR544AFuuukmhg8fzoABAwAYOXIk8+fP56OPPmL48OE1WLF08Ay7pBr2/TMmxcXFdOjQYa+PiUQiTJgwgR/+8Ie7Xb5hwwaaNGkCxM6qbN68mVAoxNtvv82SJUsqeoR5JkU17UC2573Jycnh3XffJTc3l1AoRFZWFmvXrnV7liRJqiU7e+zff//9ldpzcnJYtmxZtZ4jNzeXSZMm8dBDD9GlSxcAGjRoQMOGDWnSpEnFycxly5btc0SLFA+GXVINqc4Zk88++4xwOFzp9tvf/pZXXnmFc889d4/P3axZMzZu3AjApk2baNq0Kfn5+QCccsopFBUV1fj70aHtYLbnvXnuuee4+OKLmT9/Pi1atGDatGluz5IkSQmQmZnJ1q1bK+4PGTKEiRMncumll/LWW28BcNtttwEwevRoTj31VH7+85/zy1/+EoArrriCvn37MnDgQP7jP/4DgClTpnDmmWfG+Z1IVaUlugApKK655hruvffeKu2dO3fmlVdeAeDYY4+loKCgyjoPPPAABQUFjBkzhlmzZvHUU09x7bXXVizv1asXL730Eueccw5Tp07l9ttv5+WXXwZgzpw5FcMfly1bRr9+/Wrh3elQczDb895EIpGKIY6ZmZls2LCBk08+mbFjxwJuz5IkSTVp5wnJPTn33HOZPHkygwYN4oUXXqiy/JFHHgHguuuu47rrrqu07Nprr630mwVi0698fz0pEezZJdWyHj167LOnyi9/+UsmTZrEm2++Sc+ePbn22mtZvXo1Dz/8MAAnnXQSpaWlDBgwgB49etC7d2/KysoIh8Ns3bqV3r17A7FJJrt161br70mHrupszwCDBg1i5syZDBo0iLlz51Zsz5dddhnPPPMM4XCYWbNm8YMf/IDjjz/e7VmSJCkBrrjiij1eDf5APPPMM6SkGDMo8ezZJdWAvZ0xSUlJoXv37hQXF1dr/PrkyZOB2KV/77jjjor2J554otJ6jz76aKX78+fP54QTTqi4dLB0oGpie965HX/Xzu154sSJVZa5PUuSJEmqKYZdUhzsbjhYTcvNzSU3N7fWX0dye5YkSZJUl9m/UJIkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwkibs2r59O8OHDycrK4uGDRsycOBACgsLCYVCjB8/PtHlKcC+3b7r77JI4uqQasL28l1/bylLXB2SJEk6eNu+c2y3zWM7qUJaoguojmg0yuDBgyksLGTEiBHk5OQwduxYLrjgAgDy8vISXKGCaHUJ/HE+TFy1q+2cSXBpJxjSCVJCiatN2l/by+HpYnh5ya6209+EH2XBTbnQtF7iapMkSdL+KSmDJ4vg78t2tZ0+Ac5rDzceA42S4pd+9bQ97Xjy7rqEJp2OomxzCXP/9BrzRr2a6LJUxyXFP4HRo0fzxhtvMGvWLLp27QpAOBwmOzubzMxM2rVrl+AKFTSrt8LQd+GbUvhuZ66vSuGxz2DRRvh1HoQMvJQEyiLwi0L48KvK7aUReGUZfLwO/tzfwEuSJCkZbCuDG6fBvA0Q/U771nL4y+cwax082S8YgddR+T04+eHree/Wx1k9fR5pDetzWJsWiS5LSSAphjGOHDmSIUOGVARdAKmpqWRnZ1f06tq2bRs33ngjnTt35rjjjuO6665LVLkKgN/PrRp0fdcbK+Gd1XEtSTpgf19WNejaKQos3wx/WhDXkiRJknSAXvgc5m6oHHTtFAUWfAvPL4pzUbUk785LmP3o3/jyvTlEyyPs2FzChqIViS5LSaDOh13FxcUsWbKECy+8sMqyFStWVIRdd955Jw0aNGDhwoXMmTOH3/zmN/EuVQGxtiQWZO1teq6UELy8NF4VSQfnr0tgb50Qo8BrK2Ld4SVJklR3lUdh3JK9rxMF/rY0+ecbTmtYnxY9O9HwiGZc8O5/c/Hspxj47F1kZLVMdGlKAnW+Y+OqVbEJk1q2rLxBL1iwgGXLlpGXl8fmzZt5/vnnWblyJaF/jytr1arVfr1OOBwmJaXOZ39VdPvrNgDq12+Q4EqCI6PnD8n+5d7HgEei8P7n66kfbh2nqqQDlJrGcX/Zss/VtpXDkbknsG353DgUJdUcvwcVNG7TChK355qX1rQluU/tu2fTN9uhaZuOlK1ftc9164JOaYdzZ5P+ldrqNTuMUEoK7c/uzaRL76dk3bf0uu8qTn36Dl47/Y4EVZocTj01zOKybxJdRo2oV68emzZt2u/H1fl0p3nz5gAsWrSrH2Y0GuWuu+4iEomQl5fH4sWLad68Ob/+9a858cQTCYfDvPfee4kqWckuUs3uLZHyfa8jJVo0QjRavdN6UbdpSZKkOi1avh9d8ZP82G7H5lhY+tlTb7B55VeUl2xnxkNjaX5ctvN2aZ/qfM+u3NxccnJyuOeee0hPTycjI4NRo0Yxc+ZMGjVqRJcuXZg1axaff/45eXl5PPzww3z44Yecc845LFq0iCZNmlTrdQoKCujXr18tv5uad+K/OyCVlpYmtpAA2bwDfjghNnn3nqQA53Y9gll+7koC178PM9ftfWhui/rwQfEs0ur8KRCpMr8HFTRu0woSt+eaF43CpQWweNPu5+yC2PQV7TPgo9XLkuaCWmsKF/Cv8+6t1LZj01Y2r1gbe9PaL1OmFNCq1zGJLiOh6vzPmrS0NMaNG0fr1q0ZOnQow4YN48wzzyQ/P5/u3buTkpJCu3btSEtL49JLLwWgd+/etGjRgoULFya4eiWjjPTYJXv39r0QAX6SHa+KpINzace9B10AF3fEoEuSJKmOC4Xgsk57DrogtuzSjsG4cnzR8xPJvfZsGh3VnNT66eTdeQlff7qYLau+TnRpquPqfM8ugB49ejB9+vRKbY8//jj5+fkAtGjRglNPPZVJkyZx+umns3DhQtauXUtOTk4iylUA3JoLC7+FWetjodfOL5OUUGy+rtu7QbfDE1mhVH3h1nBlDjy7KHaGY2fwtfPv8JHw006Jq0+SJEnVd04WzPkmdsXt3R3bnZMFF7RPXH01ac4T46nXNINzJ/4OQimsLVzAlGseTnRZSgJJEXZ9X0lJCUVFRQwbNqyi7U9/+hNXX301t912G+np6YwZM4ZmzZolrEYltwZp8MTJMH557Ep2yzZDagj6t4JLOsKJDhFXkrn5WOieCf+3BD7+OhbaHt001kPx7KzY9i1JkqS6LxSCe7pDrxaxY7vZ62Pt3Q6P9dY//ahg9OoCIBrlkwde4JMHXkh0JUoySRl2zZ49m/LycvLy8iraOnbsSEFBQeKKUuDUT40FAT/JjgUDIQL0paFD0ilHxm7RaKy3YorbsyRJUlIKheAHbWK3nVNa+VtF2iUpw67evXsTdZI6xZGhgIIkFNr7nHSSJElKHoZcUlVORyxJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDsCrCCggKys7MJh8MMHTq0yvIxY8YwefJkioqK6NevHwMGDOAXv/hFlfUuueQSwuEwJ5xwAueffz4A//3f/02fPn3o378/ixYtoqysjGuvvba235IkSZKkAKjubxWAAQMGkJGRwcqVK6usN2PGDPr160d+fj5z584F4OWXX6ZXr1706dOHDz74AICrrrqKaDRai+9IUl1i2BVw11xzDQUFBTRt2pTp06dXWvbaa69x2mmn0aJFCyZMmMC7777L119/zcKFCyut95e//IWCggKuu+46zjrrLABeeuklpk+fzu9+9zv+9Kc/kZaWxhFHHMHixYvj9t4kSZIkJa/q/FaBWHh10UUX7fY57rvvPl555RX+9re/8Zvf/AaAJ554gqlTp/LKK6/w+9//HoDevXszZcqUWnw3kuoSw65DRLdu3Vi1alXF/fXr19OgQQNCoRDNmzcnIyMDgNTUVEKh0G6f47XXXuOcc84BICsri9LSUr799lsyMzMBCIfD/Otf/6rldyJJUvXtq+fAAw88QHFx8R4f/95779GnTx/69u3LI488UmV5YWEh/fr1o2/fvtx7770APPnkk5x22mmEw2F27NjB/PnzGTlyZM29KR3SDnabBrjlllsYMGAADz74YKX2N998k3A4TDgcpnnz5syaNYulS5fSunVrwuEwV1xxBbD7fxdu5zoYe/utAnDkkUfu8bFbtmyhVatWtGjRgqVLlwLQoUMHtmzZUum3yqmnnsobb7xRe29CUp1i2HWImD59Ojk5ORX3Fy1aRPv27SutM2/ePL7++ms6d+5c5fGbN29m06ZNtG7dGoD+/fuTm5vLjTfeyJVXXglA+/btq/QKkyQp0fbUcyASiTB79uzdfu/t1LFjR6ZOncq0adN4/fXX2bp1a6XleXl5vP/++0ybNo3p06ezfPly5syZw1tvvUVBQQHp6enk5uYyY8YMh8+oxhzMNv3xxx+TlpbGu+++y4wZM1izZk3FsjPOOIOCggKmTJlCx44d6dGjBwBnn302BQUFPP/888Du/124netgVOe3yp40btyY4uJiPv/8c+bNmwfAOeecQ15eHoMGDeJnP/sZ4G8V6VBj2BVwTz/9NOFwmDZt2tCzZ889rrdx40ZuvvlmRo8evdvlEyZM4IwzzqhY929/+xvFxcX8/e9/Z8SIEbVQuSRJNev7PQc+/fRTjj766L0+5qijjqJevXpArPdzSkrlQ6f09HQAysvLOeqoo5g4cSJbtmxh4MCBlb4fO3bsWPEjTKopB7JNf/jhhwwcOBCA/Px8PvnkkyrrfPTRR5x44okVvWomTJjAgAEDePHFF4E9/7twO9f+qu5vlb154IEHuOmmmxg+fDgDBgwAYOTIkcyfP5+PPvqI4cOH12DFkpKFYVfA7Tzzd//991dqz8nJYdmyZQBEo1Guvvpq7rvvPo466qjdPs/48eM577zzAAiFQhx22GGkpaWRmZnJhg0bAFi2bNlezyRKkpRI3+85UFxcTIcOHar12EmTJtGpUycaNGhQZdnYsWPJzc2lWbNmrF27llAoxNtvv82SJUuYNWsWYI8C1Y4D2aY3bNhAkyZNgFiPmJ3Hcd/13eO+1q1bU1RUxMSJE3nyySdZt25dxXrf/3fhdq79VZ3fKvuSm5vLpEmTeOihh+jSpQsADRo0oGHDhjRp0oQtW7YA/laRDjVpiS5AiZGZmVkxFKOgoIC3336br7/+GoBHHnmENm3aMGbMGO644w7Ky8tZuHAhxx57LBA7MDr55JPp168f5eXlPPbYYxXPc8011yTmDUmStAdPP/00kydPpn///nvsOfDZZ59x0003VWo744wzuPvuu1m5ciUPPfQQr7766m4fe9lll3HJJZcwePBgcnJyyM/PB+CUU06hqKjogHsrSHtyMNt0s2bN2LhxIwCbNm2iU6dOVR47ZcoU/vM//xOA+vXrV7QPGDCAxYsX07x5833+u5AOxnd/qwAMGTKEt99+m8WLFzNixAhOO+00brvtNh555BFGjx7NSy+9RLNmzSpGqVxxxRX07duXSCRSsS1PmTKFM888MyHvR1L8GXYF2M4JRvfk3HPPZfLkyQwaNIj169dXWX7HHXcAse7pOy/Zu9OvfvUrfvWrX1XcLysrY+3atZXOLkqSVBdcc801FZPHf1fnzp155ZVXADj22GMpKCiosk5paSlXXnklo0aNqriYy/eX169fn5SUFBo3bkyfPn14+eWXAZgzZw6XXnopEOtR0K9fvxp8VzqUHcw2/dFHH/HSSy9xzjnnMHXqVH7yk59UWv7555/Ttm3bimGKmzdvJiMjg2g0yscff8zNN9+8x38XbufaH/vzW+WFF16osnznxRGuu+46rrvuukrLrr32Wq699tpKbR9++GGV9SQFl8MYD2FXXHEFgwYNqpHnSktL4+mnn66R55IkKR569OhBUVHRXtcZO3Ysn332Gddffz3hcJhVq1axevVqHn74YQBeffVVwuEwp5xyCm3btqV3796UlZURDofZunUrvXv3BmKTLXfr1q3W35MObdXZpk866SRKS0sZMGAAPXr0oFWrVpW26e8OYQSYNm0aJ554In379uX000+ndevWu/13AW7nqlk1+VsF4Jlnnqky76Kk4ApFD/FLprz//vv079+f9957LynPRJ34757jH5+b2DokSUqEg/0evP/++7n44otrdR6X+fPnM378eO6+++5aew0FRzJs07vjdq7d8beKqmtN4QL+dV7VHqs6MGeOv59WvY5JdBkJ5TBGSZJ0yNrdULCalpubS25ubq2/jgTx2aZ3x+1cklSX2I9TkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTCSJuzavn07w4cPJysri4YNGzJw4EAKCwsJhUKMHz8+0eUlxJayRFcgSVLdsHlHoiuQDp7bsYJke/muvyPRxNUh6dCUlugCqiMajTJ48GAKCwsZMWIEOTk5jB07lgsuuACAvLy8BFcYXyu3wNML4c1Vu9qunApXdoZw68TVJUlSvLy7Gp4p3nV/0Jvwgzbw/46GdhmJq0s6EJ9vgqeK4K0vd7Vd9x5cfTT0aZm4uqQDsXlH7LfK35ftarvgLbisEwzuACmhhJWmJHP5ojGV7qfWS2dD8SpePe22BFWkZJIUYdfo0aN54403mDVrFl27dgUgHA6TnZ1NZmYm7dq1S3CF8bNkE1zzXuxLJPKd9s82wO0fwS+6wuWdElWdJEm17+UlMHJO5e7pZVGYsCoWgj3VH3KaJKw8ab98tgGufx9Kyysf281aD7d8AL/qCeccOoe6SnKbdsR+qyzZBN/tzPXFVnh4Dnz2DfxnnoGXqufFnJ9Wun/uW4+wZPz7CapGySYphjGOHDmSIUOGVARdAKmpqWRnZ5OXl8fSpUvp2bNnxa1Dhw5kZmYmsOLa858zYXNZ5YMh2HX/D/Ng6aZ4VyVJUnys3AK/mxP7u8p3YRS2lsEvP4GoQ2aUBCJRuOfjqkEXxO5Hgd98Cl9tS0Bx0gF4Yn7VoAt23f/nSpj0RbyrUhC06JlDs6Pbsuj/piS6FCWJOh92FRcXs2TJEi688MIqy1asWEFeXh4dOnRg1qxZFbfzzz+fyy67LAHV1q75G2Jn//Y25j0E/G3ZnpdLkpTMXtnHd1wEWLwJZn8Tl3Kkg1L4FazcWjXo+q5IFP7hsZ2SwOYd8NryqkHXd6UAf10Sr4oUJJ0vG8iqt2dSssYveFVPnR/GuGpVbGKqli0rT1iwYMECli1bVmW+ru3bt/Piiy8yYcKE/XqdcDhMSkrdzv4yT7+eNv/vsb2uEwWenlDIPScMiE9RkiTFUfaISWR0PWWf65157R2s++fevzOlRDvix3fT6pL/JBTa8zFoNBLh4ZcmcPND58evMOkANOzci5wH393rOhFg1trt1K/fOD5FKWl0SjucO5v03+2ytIb1yT6vH+/e+nicq0pep54aZnFZMILBevXqsWnT/g9fq9vpDtC8eXMAFi1aVNEWjUa56667iEQiVcKuV199lTZt2nD88cfHtc64iO7tvN9313PshiQpoKIRotX5nvO7UMnAYzsFSTW3Zzdn7a8O55xMWcl2Vk7+JNGlKImEotU6YkycsrIycnNz2bFjBw8//DAZGRmMGjWKmTNnsn79ejZt2lSpR9ZZZ53FGWecwa233lqt59+4cSNz5szhuOOOo0mTuj2b7eKNcHHB3tcJAUNz4OZj41GRJEnx9eQCeGrh3ofJALxwChzTLB4VSQdu1jq4thpzLd96LFyRU/v1SAdjWxn8cCJsKdvzOikhOKkFPHFy/OpSclhTuIB/nXfvbpedOf43rP1wAZ88+GKcq0peZ46/n1a9jkl0GQlV53t2paWlMW7cOFq3bs3QoUMZNmwYZ555Jvn5+XTv3r1S0LVq1SreeecdLr/88mo/f5MmTejXr1+dD7oAOjWB45vv/X9aCLigfbwqkiQpvi5ov/ereKUA3ZoZdCk59MiETo33vE2HgHopcG5WXMuSDkiDtNg+em8XWoxE4SfZcStJAdCk01G0PLELC196K9GlKMnU+bALoEePHkyfPp2tW7dSVFTEjTfeyMyZM6sMYXzuuec4++yzK4Y+BtF9edCiQdUvkRRibb/qCW0Oi39dkiTFQ8uG8Ou82Pfe9wOCEHB4fbj/hERUJu2/UAhGnghN0ndzbBeK3R48AZrVT0h50n67oQscd3jV9p0/Oi/vCKe0imtJSnKdLx3Img/ns2nJ6kSXoiRT5yeo352SkhKKiooYNmxYpfZnn32Wxx4L9mS0RzaCMafAC4vh78tgc1ns4KhfK/hpTqznlyRJQXZGW2jdCMYsgndWx4Y0HpYG57WLfRce0SDRFUrV16FxbNjtmMXw6nIoKY+FXAOPhCE50G03wYFUVzVIgz/2hf/7HF5eCqtLYu3HHg6XdYQfHBULeaXq+uT+FxJdgpJUnZ+za3c+/PBD+vTpw0cffcSJJ56Y6HISpjwKW3ZA/dTYTZKkQ832cthWDoelQ6o/oJTkyiKx+Y4apkI9j+2U5KLR2PacGoKGSdnFQvG0tzm7tP+csytJe3b17t27eldiCrjUEDSpl+gqJElKnHqGAgqQtBRo6rGdAiIUgoz0RFch6VCVFHN2SZIkSZIkSdVh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBEYpGo9FEFyFJkiRJkg5N2zdt5Zv5yxNdRmAcntuOeo0bJbqMhDLskiRJkiRJUmA4jFGSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYPz/eo4vJuqstscAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADPZklEQVR4nOzdeXxU1d348c9MEhJCCBCQPUAggMheUVRAwqIWrSIqbkUtonWtpVWrVXh+VEVLbWsfW5daQJGKuxbtg7tEFKMogiJCIGwiAgrIDgkk8/tjNBqBsCSZyQyf9+uVF5lzz9zznZPLnTvfOefcQCgUCiFJkiRJkiTFgWC0A5AkSZIkSZIqi8kuSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN0x2SZIkSZIkKW6Y7JIkSZIkSVLcMNklSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihskuSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN0x2SZIkSZIkKW6Y7JIkSZIkSVLcMNklSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihskuSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN0x2SZIkSZIkKW6Y7JIkSZIkSVLcMNklSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihskuSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN0x2SZIkSZIkKW4kRjuA6qxoy3a+WfB5tMOIG/U6tKBG7dT91tu6Cwo2RyCgvchOh7Sk6LQtSZIkSZIqzmRXOb5Z8DkvDR4V7TDixqCpd9Do2CP3W69gM1w2MwIB7cX4XtCtfnTaliRJkiRJFec0RkmSJEmSJMUNk12SJEmSJEmKGya7JEmSJEmSFDdMdkmSJEmSJCluuEC94kL+rTlsW5hHIDGJQEIiKc2OpOmwsaR3HRDt0CRJkiRJUgQ5sktxo+mwsXR/citdJq2lVvvjWXLnmRRv2xTtsCRJkiRJUgSZ7FLcCSYl0+CkEZTs3MrO1QXRDkeSJEmSJEWQyS7FnZLCHax7bTzB1HRSmraNdjiSJEmSJCmCYibZVVRUxOjRo8nMzKRmzZr079+fWbNmEQgEmDp1arTDUzXw5ZTRzL2wLvMub8X2ZR+TPeq/JKSmRzusqNi6Cz7bCPmbYHdJtKOJXzuLYeHG8M/O3dGORqqYUAiWbIZPv4ENhdGORqq4NdvDx/MX26IdiaRYsX03LNgICzdBUXG0o5FUETGxQH0oFGLo0KHMmjWLMWPGkJ2dzZQpUxgyZAgA3bt3j2g8gYQgx4y5hDZnn0ggGGT5/73H+7eMp7hwV0TjUFlNL7ydxkNuiHYYUfVNIdy/EP5vJRR9m+SqVwPOy4JftIXEmElvV287d8M/8+G5FbDt2yRXrUQY3AKuODL8uxQrQiH4z+cwaTF8sT1cFgRymsDVHaBVWlTDkw7anPXwwEL4aP33ZUfVhV+2h96NohaWpGpsy67weeOFz8NfZgKkJ8HZreCydpCcENXwJB2CmPhI9tBDDzFt2jTmzp1Lx44dAcjJySErK4uMjAxatGgR0Xi6XHcWjU/oxNT+11O8azcDHrmJo0ddxKzREyMah/RDGwph+Nuwejv8cDDXN0XwYH54pNfdx0JCIFoRxoedxXBVXni0QOgH5dt2w+NLwx+uHuoFqTFxdpXg7wvg0QL44amhBMhdDe9/DRN7Q5vDc5CsYtA7a+H6WeEk7g8t2Ai/eR/+Xzf4WWQvGyVVc1t3wWXvwNItZa/tNu+ChxfDvA1w73FQw4SXFFNiYpzHuHHjGDZsWGmiCyAhIYGsrKzSUV2LFi3i+OOPp127dhx//PEsXry4yuJp+/MBzLv3Obav2UDh+s3M/ctTZJ+XQyAYE92pOHXfgj0TXT80Yy1MWxnRkOLSlCUw70eJru+ECE8dfdT7IihGfPrN98frj4/pEmDHbrh9boSDkg5RYTH8z0dQEtrzvTD07c8dH8PGoigEJ6naGr9oz0TXD324Hp5ZHsmIJFWGap+dWbx4McuWLePss8/eY9vKlStLk11XXnkl11xzDYsWLeKaa67hiiuuqJJ4aqSnktbsCDbMX1Zatn7eMmrUTiUt84gqaVPany274KUv9p3ogvB/9qeWlVNB+1UcgqeXl18nBDy73LXSFBueXV7+hUAJ8OlGWLQpMvFIFfHm6vBIjH19YAXYHYL/fh6xkCRVc4XF8PyK8s8bAcLX0D8eMSqpeqv2E21WrVoFQMOGDcuUL1y4kBUrVtC9e3e++uorPvroI1577TUALrjgAq699lq+/vprjjhi/wmo2rVrU1S059d8bRLr8bv03mXKEtNqAlC0aXtpWdGm8MqnSd9u097165fDkt3f7LdeavvjaXNH7kHtu/3Yg6u/L/365bA9P69S9hVJNdseS/adb5dbpwT4bMNukpNrRSaoOJSQfgRHTfhiv/W+KYK6zduwa/3+60rR1Pavc0jJPGq/9U4893K+yX00AhFJh67JJX+i/qBrCCTs+/I2VLyLMf98hhH3/iJygUmqtpKbtqfd/35Sbp0Q4TUta9apR6hwe7l1JVWuUChEYmIia9asIT394NbVqPYju+rXrw9AQcH384JCoRA33XQTJSUldO/enZUrV9KsWTMSEsITqRMSEmjatCkrV1b+nK3dW3cAkJSeWlpWo044ebDr221SxBUf2K0AQyXeVqZCSg78lov2tWJByHOH4kj4eN7fwpQBj2dJpUIHcW2H5w4p4kKhEDt27GDevHkH/dxqP7KrQ4cOZGdnc8stt5CUlERaWhoPPPAAc+bMITU1lfbt2zNnzpwKtbFly5a9lq+dtZCXBo8qU1a0eTtbV31NRsdWbF7yJQD1O2VRtGU7W1d+XaE44t306bk0OvbI/dabux4umxmBgPZi+vRcutWPTtsVUVQMP301PH1jX4IB6NUsmY8KCyMXWJwJheCCXFhSzroOAaBFGnywejkBbwagau5/58O/l+x/+sbHL0ykcU1vwqLqLe8r+NV75dcJJCTyvyOH8bO/DItMUJKqteIQnPEarN257zpBoGM9+HDr5ojFJSls5syZ9O7de/8V96Laj+xKTEzkmWeeoUmTJlxyySWMHDmSQYMG0bdvX7p06UIwGCQzM5NVq1ZRXBzOthcXF/Pll1+SmZlZJTEtfuwNuvxqCDUb1SO5fjrdrj+XgidzCZW4SI+io0YCDM0qv05JCM5vHZl44lUgABe2KT8xEAIuyMJEl2LC2a3KP1aDQN/G0NhZ+ooBPY+AzFr7vrgNAnWS4KSmkYxKUnWWEIAL9nN9XML+60iqfqp9sguga9eu5OXlsX37dvLz87nqqquYM2dO6eL0DRs2pFu3bjz++OMAPP7443Tv3v2A1us6FJ/c+xxr3lvAmbn3cPa7f2fj4i+YPfbfVdKWdKAuawfHf3vI//Cz63f/yS9vB8c3/PGzdLBOz4QhLcO///AE+t3vpzWHs1pFOCjpEDWvBbd1Dx+/e7sgaJUGo7pGOirp0AQD8JdjIb3GnpMZg0ByAtzTM/yvJH3ngjYw8Nsk+N6u7S5obZJcikXVfhrj3uzYsYP8/HxGjhxZWvbggw9yySWXcNttt1GvXj0efbTqFtINFZcwa/REZo12SkekbVs0i5UTfgOhELW79KfZsDtKt617fSLrXh1PYt2GZI2cTEJqbb54+Ea2LnyXYI0UWt/4FInpMThH8QAlBcMX8S98Hr5jTMG3s3N7HhEe0dWrUXTjixeBANzSBY5tAE8sg483hMs71oPzsuCUZo7qUmz5afPwaJgpS+GV8D1haFIzPOrrnFaQlhTN6KSD07o2TOkbPj+/8Dls/Pb+Q+dkwYWtwwleSfqhhACMPRp6N4SnlsNnG8Pl3euHr6FzGnttJ8WimEx2ffLJJxQXF5eO7AI48sgjef/996MYlSIhtXV3jhwXXtBr0egBFG/fTEJqOqHi3ax/cxLt//gOm2ZPY91r42kw8FK2L/+YI8fNZMNbU9jw9uM0PO3aKL+CqpUYDI8qOqsV9HghXPb346MZUXwKBOCkZuGf7/r54T7RjUmqiI71whf63yW7XjwpuvFIFdGwJlx3VPjnu3P07zpHNyZJ1VtCAH7WIvzz3Xnjn72iG5OkiomJaYw/1rNnT0KhED169Ih2KIqwQGJ4iEGouJikjKYEk8N3xdy9eR01jmhBIBikZsvObMvPI5icSkJqHUIlJRRv30RiWkY0Q5ckSZIkSREQk8kuHd42vDWF+dd2IKFWXQIJ4cGJielHULi6gJKinWydP4PibZsIJCZRo35z5l9zJF/99+/UPW5IlCOXJEmSJElVzWSXYk5G3wvpeN9Cdm34kh3L5wEQSEig0ZAbWfyHn7Jj+cck1m3EjpUL2LVhFR3vz6fpsLGsfeGeKEcuSZIkSZKqWkyu2aXDV8muQoJJyQSCQRJq1iZQI6V0W73jz6Le8WfxzcynCRXvhlAJCWn1CAQCJNbOoHjbxugFLkmSJEmSIsJkl2LKplkv8NW0+6CkhLSOJ1Kycxvrp0+mfr+L+PzBq9m5Kp+UzKPIHPE3AgkJEAqR//sTgRCtfj0p2uFLkiRJkqQqZrJLMaVer6HU6zW0TFlq624AtLjy/j3qt7zmoUiEJUmSJEmSqgnX7JIkSZIkSVLcMNklSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihgvUq9rJTofxvaLX9uEgNzeX4cOH07JlS1q2bMmkSWXvVDl58mSaNGlCZmYml156KcFgkB49enDPPfeUqXf++eezZs0atmzZQmZmJv/5z3/IyckB4Ouvv+akk07iz3/+M1deeSXjx4+P1MuTJEmSJB3GTHap2klLgm71ox1F/BsxYgSjRo3iuuuuIy8vj+OPP75024svvsiTTz7Jhg0beOWVV0hLS+Oiiy5i0aJFtGvXrrTeE088AcA///lPAoEAEE6kAfz+97+nX79+JCYmcsQRR7BkyRLatGkTuRcoSZIkSTosOY1ROsx16tSJVatWlT7esGEDKSkpBAIB6tevT1paGgAJCQmlCa0fe/HFFzn99NPLlOXm5paO8srJyeGll16qmhcgSZIkSdIPmOySDnN5eXlkZ2eXPi4oKKBly5Zl6syfP59169bRtm3bPZ6/detWtmzZQpMmTfbYR40aNQBo2bIlixYtqqJXIEmSJEnS90x2SYepCRMmkJOTQ7NmzejWrds+623evJlrr72Whx56aK/bX3nlFX7605+WKZs6dSqDBw+uzHAlSZIkSTogrtklHaa+W7Prx7Kzs1mxYgUAoVCISy+9lNtuu42mTZvudT9Tp07l5ptvLlM2bdo0nnvuudLHK1as2OuoMEmSJEmSKpsjuySVkZGRwfbt24Hwultvvvkmo0ePJicnh9mzZ7NmzRruvvtuAIqLi1m0aBFHHXVU6fPXrVtHUlISderUKS3Lzc1l0KBBkX0hkiRJkqTDkiO7pMNQTk5O6eLxe3PGGWfw+uuvM3DgQDZs2LDH9htvvBEIL1r/3nvvldnWoEEDXn755dLHu3fv5quvviqzLpgkSZIkSVXFZJekPVx88cWVtq/ExEQmTJhQafuTJEmSJKk8TmOUJEmSJElS3DDZJUmSJEmSpLhhskuSJEmSJElxw2SXJEmSJEmS4oYL1Kva2boLCjZHp+3sdEhLik7bkiRJkiSp4kx2qdop2AyXzYxO2+N7Qbf60WlbkiRJkiRVnNMYJUmSJEmSFDdMdkmSJEmSJClumOySJEmSJElS3DDZJUmSJEmSpLjhAvWKC/m35rBtYR6BxCQCCYmkNDuSpsPGkt51QLRDkyRJkiRJEeTILsWNpsPG0v3JrXSZtJZa7Y9nyZ1nUrxtU7TDkiRJkiRJEWSyS3EnmJRMg5NGULJzKztXF0Q7HEmSJEmSFEEmuxR3Sgp3sO618QRT00lp2jba4UiSJEmSpAiKmWRXUVERo0ePJjMzk5o1a9K/f39mzZpFIBBg6tSp0Q5P1cCXU0Yz98K6zLu8FduXfUz2qP+SkJoe7bCioqj4+99DoejFIVWGUAjWbIcvtkFh8f7rS9XdN4Xw+VbYuivakUiKFTuLYeVWWLPDazvFvpIQfPnttd2ukmhHo3gVEwvUh0Ihhg4dyqxZsxgzZgzZ2dlMmTKFIUOGANC9e/eIxdLq9OPpcNmpZHRsReGGLTxz7NURa1vla3rh7TQeckO0w4iqrbtg4mJ4fsX3ZUPegAvawNBWEAxELTTpoIVC8OwKmLIEPt8WLquVCGe2gBHtIL1GdOOTDtYHX4fP0R+sCz8OBqB/E7isHWQfnt/NSNqPbwphwiJ44XPY/u0XPllpMCwbzsiEgNd2iiHFIXhiafhn9Y5wWZ0kOKsVXNoWasZEdkKxIiYOp4ceeohp06Yxd+5cOnbsCEBOTg5ZWVlkZGTQokWLiMVSuGkbCye+TMoRdej4y59FrF1pf7bsgsvegaVb4Idf+K3aDnfPg8++gf/X3YSXYkMoBGM/hv98Dj88ZLfthilLYeZXMKE31DHhpRjx8hcw+qOyx3NJCN78Et5ZCw8cD50zohaepGpo/U649J3wCJgfXtst3wq3z4WCzfDbjia8FBuKQ3DLh/DG6rLvhZt2wSOL4b2v4J+9IDUmMhSKBTExjXHcuHEMGzasNNEFkJCQQFZWVumorhtuuIGsrCwCgQCffvpplcWyesYnLJs6k21ffF1lbUiH4v4Feya64PvH//cFvPZlpKOSDk3umnCiC/Z+TH++Fe79LNJRSYfmm0IYMyd87P54tkYJ4annv58d/iAgSd/5y6ewevu+r+0eXwrv+5FEMeLFz8OJLtj7Mb1wE/wrP9JRKZ5V+2TX4sWLWbZsGWefffYe21auXFma7DrzzDOZMWMGLVu2jHSIUtRt2w0vrtzzjeOHgsCTSyMVkVQxTy0r/w2qBHjpC9hcFKmIpEM39XPYXc4JuoTwOjx5X0UsJEnV3Pqd4cRAecsZBQPw5LKIhSRVyFPLyo7o+rEQ4aVYXJ9VlaXaDxJctWoVAA0bNixTvnDhQlasWFGa7Ordu/cht1G7dm2Kivb8xNQmsR6/Sz/0/aqsfv1yWLL7m/3WS21/PG3uyD2ofbcfe3D196Vfvxy25+dVyr4iqWb2MWTf9U65dUqAj7/eRXJyWmSCOkx0emonAMnJKVGOJL50/Pc3BJNTy61TVAItjx3A9gXlH/s6cB7PVaPFjU+RfvTPCCQk7LNOqKSYC278I189eVsEI4t/HtOKVWndTiHr1hfKrVMSgumL15F8YrMIRXV48LxRBRIS6fzEtv1W27objmjfncKVDt9XWEnJod/BoNqP7Kpfvz4ABQUFpWWhUIibbrqJkpKSiC5OL1VboQM9CThHRrEhdKDHtLekUiwoKeGAzr8ez5K+47Wd4snBvL/5XqhKUu1HdnXo0IHs7GxuueUWkpKSSEtL44EHHmDOnDmkpqbSvn37CrexZcuWvZavnbWQlwaPqvD+FTZ9ei6Njj1yv/XmrofLZkYgoL2YPj2XbvWj03ZF7NwNp7wans64L0Hg6MY1mF1YGLG4Dgc9vv3StdB+rVS/fg/yvg5/a70vKQnwxew3qVXt38lih8dz1ZiyBP46v/w6gWACz/51FMdO9rqjMnlMK1ZtLIKfvlL+FOgg8NMjj2Cux3el8rxRNX4xAz7bWP7U3Lo1YP3iuSRV+yE5ipSZM2ce8iy+an8YJSYm8swzz9CkSRMuueQSRo4cyaBBg+jbty9dunQhGIzsSwgEgyQkJxFITIRAgITkJII1/KSl6EpJhCEty58HXwKclxWpiKSKOa91+YmuAHBGC0x0KSb8LBOSg/s+RweBFrXgmAaRjEpSdVa3Bgxqvv9ru3O9tlOMOL91+YkugKGtMNGlShMTh1LXrl3Jy8tj+/bt5Ofnc9VVVzFnzpyoTGFsc86JXLT8cfr963rSmh/BRcsf56x37o14HNKPXdkeOtfbs/y7/+QXtIa+jSMaknTITmgIF2eHf9/bG9WRdeDaDhENSTpk6TXgjz0gIbDn8RwEaiXBn46BQHmfaiUddn7bCdrU3jPh9d155Jft4ScxOCNBh6dTmsGZLcK///C98Lvj+5gGMLxtpKNSPIvJ78R37NhBfn4+I0eOLC277rrreO6551izZg0DBw6kfv36zJ+/nzkDh6DgqVwKnsqt9P3qwGz97B2+ePgGCASpd8LZNDrz+tJt+bfmALB709ekdzuJzMv+xvxrOpBYtxEAbW5+jsTaGdEIOyJSEuH+E+CJpfD0MlgbXluTDnXDia5TmvlBSrHlVx3gqLrw2BKY9+29LY5ICX/rd0FrqBmT72A6XPVpDA/3gUcL4LUvw2UpCeFRXxe1gWa1ohufpOqndhKM7w2PL4Wnl8OGb2fVdc2An7eBnCZRDU86KIEA3NoVumXAlKWwaHO4vElqeITieVmO6lLlismPCp988gnFxcVlRnbde++93HuvI6ziXY1GrWl35wyCSTXIv7UfRwy6qvSObd/dkXHVo7+ndud+ACRlNKPd7a9HK9yIS0mAX7QNj4jZtjs8iiA1Jv+XS+GLooFNwz/frZ/xfyeFb7UuxaIOdeGuHvDat8dz7iBI9MJeUjnSkuDy9jCiHRz7YrjsX94sXjEqEICftQj/fHdtN3WAX8irasTkJVbPnj0JhUL06NEj2qEowmrUb0owqQYQXsyXwJ6H8JZPc0nrlAPArk1ryf/9iXzxyO8IHUZ39ggGwt8GmuhSvDHRpXhiokvSgfL9T/HKRJeqipdZikmb575GcpM2BGuklCnfubqAGke0LE2Itb9zBu3vmkFJ0U42z54WjVAlSZIkSVIEmexSzCla9wVrnrmL5sP/sse2Te9PpW7PwaWPE9PCK7bXPfZ0dnxe+Wu4SZIkSZKk6sVkl2JKya5Clv/vL2hx5QMk1EzbY/um2dOoc/SpAIR276JkV3glz60L80hu5L2ZJUmSJEmKd67oo5iy4a0p7Fz5GSseuAKAZsPGUrhmKfX7XcTuzesIJCSRUKsOAMXbN7F4zCkEk2tRo0EmTYbeEs3QJUmSJElSBJjsUkxpMHA4DQYOL1OW1qEXAInpDWg75uXS8sT0BnT46+yIxidJkiRJkqLLaYySJEmSJEmKGya7JEmSJEmSFDdMdkmSJEmSJClumOySJEmSJElS3HCBelU72ekwvlf02pYqS25uLsOHD6dly5a0bNmSSZMmldk+efJkmjRpwsCBA7nqqqtYuHAh3bt3569//WuZeh9//DFXX301NWrU4NFHHyUzM5OCggKuvfZaCgsL+c1vfsOpp57KlVdeyfjx4yP5EquFg+nnPn36MGfOHBYuXEjz5s3L1Pv973/PW2+9RUJCAvfffz+dO3fm8ssvZ9GiRRQXFzNx4kTatWvH8OHDmThxIoFAIJIvU5IkSdIBcmSXqp20JOhWPzo/aUnRfvWKNyNGjCA3N5c6deqQl5dXZtuLL77IgAEDeP/990lOTmb69OkEg0HmzJlTpt5tt93G888/z9/+9jfGjRsHwB/+8AeeeOIJpk+fzhlnnEFiYiJHHHEES5Ysidhrq04OpJ8Bnn76ac4555y97uOKK67g3Xff5ZFHHuGuu+4C4P777+ett97irrvu4sEHHwSgZ8+eTJ8+vQpfjSRJkqSKMNklSRHQqVMnVq1aVfp4w4YNpKSkEAgEWLZsGZ07dwagc+fOeyRrtm3bRsOGDenatSsFBQUUFRWxcuVKLr74YgYPHszatWsByMnJ4aWXXorci6qGyutngMaNG+/zua1atQIgISGhtH5SUjgDvnXrVjp16gRAv379mDZtWlWEL0mSJKkSmOySpAjIy8sjOzu79HFBQQEtW7YEoH379rz11lsAzJgxg02bNpV5bklJSZnf161bx6effsqkSZMYOXJk6Sikli1bsmjRoqp+KdVaef18oEaPHs3VV19d+njAgAFce+21HHPMMYD9LEmSJFV3JrskqQpNmDCBnJwcmjVrRrdu3fZap3v37rRq1Yr+/fsD0LBhwzLbg8Fgmd/r1KlD586dqVevHn369CE/P7/K4o8VB9LPB+Jf//oXWVlZ9Or1/cKBb7zxBs899xxjxoypeKCSJEmSqpwL1EtSFRoxYgSjRo3aozw7O5sVK1aUPr7tttsA+PWvf83JJ59cpm5qaipff/01q1evJjs7m1q1apGSkkJhYSELFiwonX63YsUK2rZtW3Uvpho70H4uT15eHtOmTePZZ58tLSssLCQ5OZk6depQs2ZN4PDuZ0mSJCkWmOySpCjIyMhg+/btAOzatYuTTjqJhIQEzj33XDIzM1mzZg2TJ0/mxhtvZPTo0Zx55pkkJSXx6KOPAnD99dczYMAAEhISeOSRR4DwXQlHjBgRrZdULf2wnwGGDRvGm2++yZIlSxgzZgwDBgzg+uuv5y9/+Qs333wzW7ZsoX///nTu3Jm///3vDBkyhB07dhAIBLjvvvsAmD59OoMGDYrWS5IkSZK0Hya7JKmK5OTkkJOTs8/tZ5xxBq+//joDBw4kNze3zLbGjRtz4403AuFpjjNnziyzfeDAgQwcOLD08e7du/nqq6/KrFd1uDiYfv73v/+9x/a//OUvAKXrpv3Q3haif//99/nlL3956AFLkiRJqlImuyQpSi6++OJK21diYiITJkyotP3Fk8rsZ4CHH364UvcnSZIkqXK5QL0kSZIkSZLihskuSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN1ygXtXO1l1QsDk6bWenQ1pSdNqWJEmSJEkVZ7JL1U7BZrhsZnTaHt8LutWPTtuSJEmSJKninMYoSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihskuSZIkSZIkxQ0XqFdcyL81h20L8wgkJhFISCSl2ZE0HTaW9K4Doh2aJEmSJEmKIEd2KW40HTaW7k9upcuktdRqfzxL7jyT4m2boh2WJEmSJEmKIJNdijvBpGQanDSCkp1b2bm6INrhSJIkSZKkCDLZpbhTUriDda+NJ5iaTkrTttEOR5IkSZIkRVDMJLuKiooYPXo0mZmZ1KxZk/79+zNr1iwCgQBTp06NdniqBr6cMpq5F9Zl3uWt2L7sY7JH/ZeE1PRoh6U4Fgrt/XdVnRL7WZKqld0lsLEQdu6OdiSSpB/bvhs2FkHxYXgNHRML1IdCIYYOHcqsWbMYM2YM2dnZTJkyhSFDhgDQvXv3iMUSrJHIcXdeRpPenUmpn872td+wYOJLLJz4UsRi0N41vfB2Gg+5Idph6DBQHILnl8MTy74vO/tNOK81nN0SEmPma4TqLRSC176EKUu+LzvtNTi7Ffy8NdSMiXcwSYpP63bCowUw9XPYthsCwAkN4aJs6NEg2tFJ0uHtrTXw7wKYsyH8uF6N8DX0sDaQlhTV0CImJj4qPPTQQ0ybNo25c+fSsWNHAHJycsjKyiIjI4MWLVpELJZgQgI7vtrIq+ffzpYVa8k4qiUnPT6KnV9vZPmLeRGLQ1J0FIfglg/hjdXhC/vvrNwGd8+D97+CPx1jwqsy3PsZTF5Sdgjy1zvhwYXw1mp4sBfUiol3MUmKL19uhxHvhBNe3w0WCAF5X8O7X8HobnBG5C7PJUk/MHER3L8Qgj/4sPJNEUxYBG98Cf/qDXVrRC++SImJj2Pjxo1j2LBhpYkugISEBLKysujevTvr16/n1FNPpX379nTu3JmzzjqLr7/+ukpi2b2jkDl/eoIty9dAKMSG+ctZ+eqHNDy2Q5W0J6l6eW55ONEF31/g//D3GWvLjvjSoZm5NpzoAijZy/aFm+Afn0U0JEnSt/7nI1i/s+z7IISnmoeAO+bCqm1RCEySDnOfbAgnumDP5T9CwIqt8Od5EQ8rKqp9smvx4sUsW7aMs88+e49tK1eupHv37gQCAX73u9+Rn5/PvHnzaNOmDTfffHNE4gskJtCoZwe+WbAiIu1Jip5QCB5fWnZE148FgCeXurZURT21rOy3UT8WAl5cGZ46I0mKnILNMHfD3r+I+E4IeM5LY0mKuKeWlZ/kKSG8TMj6nZGKKHqq/QSQVatWAdCwYcMy5QsXLmTFihV0796djIwMcnJySrcdd9xxPPDAAwfcRu3atSkqKtqjvE1iPX6X3rvc5x535wh2bd3BkqffOuD2Dlf9+uWwZPc3+62X2v542tyRe1D7bj/24OrvS79+OWzPdzqq9i6hdn2OmvhluXVCwOodULtpFrs3lF9X+9Zx8gaCKbXKrbOzGJof3Z/tC2dGKKr41+mp8JVPcnJKlCOJb/Zz5NjXlS/j5Ctodvm95dYJAfdPe48buveNTFCHCY/nyLCfI8N+rhpH/nM5SRlNyq1THIL2/c9iy+z/i1BUh66kpLyvVspX7Ud21a9fH4CCgoLSslAoxE033URJSckei9OXlJTwwAMPcMYZZ1R5bMeMuYQjjm7Paz8fS8kuhxdIcS9Q3piuPSpXWRiHhQPt64P6m0iSKuwAz7sB3wclKfK8hi5V7Ud2dejQgezsbG655RaSkpJIS0vjgQceYM6cOaSmptK+ffsy9X/1q1+RlpbGtddee8BtbNmyZa/la2ct5KXBo/a67djbfkGT3p15eegfKNyw9+errOnTc2l07JH7rTd3PVwWpYEa06fn0q1+dNpW9VcSgsGvw5ode65T8kNHpMD7Xy4lIf7fQ6rMVe/C7HXlT5OpEYQVs94g/TBYYDNSerwQ/rewsDC6gcQ5+zly7OvKt2AjXDSj/DoB4LKf9uS3N9jvlcnjOTLs58iwn6vG7z6A3DXlL6kSBD57/Vka1oxYWIds5syZ9O5d/my7fan2I7sSExN55plnaNKkCZdccgkjR45k0KBB9O3bly5duhAMfv8SbrjhBhYvXsyTTz5ZpryyHXv7pTTp0yWc6Fq/ucrakVS9BANwXuvyE10AQ1thoquCzssqP9EVAAY1x0SXJEVYh7pwVN3y11WE8C3uJUmRdW7W/hNdOU2IiURXRVX7kV0AXbt2JS+v7DpK//jHP+jb9/t1AG655RZmz57N//3f/5GcnFxlsdRq3oCjLjuV4p1FnPP+faXla99fyOs/H1tl7UqqHs7Pgve/Ct9efW961IdhbSIbUzzq2xiGtITnV4QTWz98zw4ALdPguqOiFJwkHeZu6w6XvgNbd5X9YiJI+PH1ncLnaUlSZPVoABe1Cd/VfG/X0I1qwu86Rym4CIuJZNeP7dixg/z8fEaOHAnA/Pnzueuuu2jXrh0nnHACAFlZWTz//POV3va2L9bxSJNzKn2/OnBfv/xPvpn5FKGSYtr94TUCiUkArHt9IuteHU9i3YZkjZxMQmpt5l/TgcS6jQBoc/NzJNbOiGboigOJQfhrT3hsCTy5DL7+9k4mDZLhnCy4uA3USIhujPEgEIBbusCRdWDK0vBtkgHSEsNJsOFtHdUlSdHSqjZMPhEmLIaXvoBd32a8OtWDX7SFExtHNz5JOpxddxRkp8PkAij4dsWlmgkwuAVc2g4yqm5sULUSk8muTz75hOLi4tLF6Tt27EgotL+JRYoHRV9/zo4V82h3+xtlykPFu1n/5iTa//EdNs2exrrXxtNo8G9IymhGu9tfj1K0ildJwfDF/EXZ8NW363c1TAknwlR5AoHwNJizWsJXO8MfphqmmEyUpOqgWS34n25wQyc4cVq4bGKfqIYkSSJ8DX1aJpzaHI55MVz22k8h5TC7ho7Jj2Y9e/YkFArRo0ePaIeiCNs851VKdm5j0aj+fPn4mNLy3ZvXUeOIFgSCQWq27My2/PC0112b1pL/+xP54pHfmRBVpUsIQJNUaJpqoqsqBQLhIdfNa5nokqTqJjUmvzqXpPj3wxsuHm6JLojRZJcOX7s2fQWBAO3ueJPCtcvYvnQuAInpR1C4uoCSop1snT+D4m2bAGh/5wza3zWDkqKdbJ49LYqRS5IkSZKkSDDZpZiSkFqH2p3CNyao3fFEdq7KByCQkECjITey+A8/Zcfyj0vX6UpMqwdA3WNPZ8fn86MTtCRJkiRJihiTXYopaUcez44V8wDYsWIeyQ1blW6rd/xZtB+bS612Palz9CBCu3dRsqsQgK0L80hulBWNkCVJkiRJUgSZ7FJMSW3zE0LFu8m/NYeSwu0EkpJZP30yAJ8/eDWLRg9gy/wZ1Ot1LsXbN5F/0wnk//5EClflU/e4IVGOXpIkSZIkVTWXlFTMybzsb2Uep7buBkCLK+8vU56Y3oAOf50doagkSZIkSVJ14MguSZIkSZIkxQ2TXZIkSZIkSYobJrskSZIkSZIUN0x2SZIkSZIkKW64QL2qnex0GN8rem1LkiRJkqTYZbJL1U5aEnSrH+0oJEmSJElSLHIaoyRJOiC5ublkZWWRk5PDJZdcssf2sWPHsnjx4n0+f8OGDRx99NGkpaXtdfusWbPo1asXJ5xwAqNGjWLBggWMGzeu0uKPFRXtZ4Bf/epX9OnThzvvvHOPbT/+O7z88svk5OSQk5ND/fr1mTt3LsuXL6dJkybk5ORw8cUXAxy2fw9VXFWeO3bs2MGpp55K3759GT58OIDHryTJZJckSTpwI0aMIDc3lzp16pCXl1daXlJSwieffELbtm33+dzatWvz2muvcdxxx+11e/fu3Zk5cybvvvsueXl5NGvWjI8++ohQKFTpr6O6q0g/f/jhhyQmJvL222/z0UcfsXbt2jLbf/x3+OlPf0pubi7Tp0+ndevWdO3aFYDTTjuN3NxcHn30UQA6dOhw2P49VHFVde549dVX6d27N2+99RZJSUl8+umngMevJB3uTHZJkqSD1qlTJ1atWlX6+OOPP6Zdu3blPicpKYmMjIxytwMUFxfTtGlTUlNTad26NfPnz6+coGPQofTz+++/T//+/QHo27cvs2fPLrN9X3+HDz74gB49ehAIBAB45ZVX6NOnD4899lhpncP976GKq+xzR1ZWFtu2bQNg69at1KlTB/D4laTDnckuSZJ00PLy8sjOzi59vHjxYlq1alXh/U6ZMoUOHTpQt25dEhMTadmyJYsWLarwfmPVofTzxo0bSU8P33Gldu3abNy48YDamjp1KoMHDwagSZMm5Ofn8+qrr/LPf/6T9evXAxz2fw9VXGWfO7Kzs3n77bfp0KEDgUCAzMxMj19JkskuSZJ04CZMmEBOTg7NmjWjW7due63z2Wefla4B9d3PH//4xwPa/4UXXsjChQv58ssvmTdvXiVGHlsq0s9169Zl8+bNAGzZsoW6deseUJvTp08vHRGWnJxMamoqNWvWpE+fPixZsqQyXpYOY1V17pg0aRLnnXceCxYsoEGDBrz77rsev5Ik78YoSZIO3IgRIxg1atQe5W3btuW5554D4KijjiI3N/eg911YWEhycjLBYJDatWuTkpLCihUr6NWrV0XDjjkV6ecPPviAxx9/nNNPP50ZM2Zw7rnn7re9pUuX0rx5c2rUqAGEp4OlpaURCoX48MMPufbaawEO27+HKq6qzh0lJSWlUxwzMjLYuHGjx68kyZFdkiSp4rp27Up+fv5+6w0cOJA5c+YwcOBAPv30U9asWcPdd98NwAsvvEBOTg4nnngizZs3p23bthQUFNCpU6eqDj9mHEg/H3PMMRQWFtKnTx+6du1Ko0aNyvQz7Pl3+OEURoB3332XHj16cMIJJ3DyySfTpEkTAP8eqnQVPXdceOGFPPzww+Tk5DB37lxOOukkj19JkiO7JEnSgfluWtHeBINBunTpwuLFi8u9q9rrr7++R9mNN94IwNChQxk6dGhp+YIFCzj66KNLF0w/XFRGP993331lHjdu3Li0n2HPv8OPEwAnn3wyJ598cpmyw/XvoYqr6nPHq6++Wqbc41eSZLJLkiRVir1NUaqIDh060KFDh0rdZzyo7H4+UP49VFUicUx7/ErS4cVpjJIkSZIkSYobJrskSZIkSZIUN5zGqGpn6y4o2BydtrPTIS0pOm1LkiRJkqSKM9mlaqdgM1w2Mzptj+8F3epHp21JkiRJklRxTmOUJEmSJElS3DDZJUmSJEmSpLhhskuSJEmSJElxw2SXJEmSJEmS4oYL1Csu5N+aw7aFeQQSkwgkJJLS7EiaDhtLetcB0Q5NkiRJkiRFkCO7FDeaDhtL9ye30mXSWmq1P54ld55J8bZN0Q5LkiRJkiRFkMkuxZ1gUjINThpByc6t7FxdEO1wJEmSJElSBJnsUtwpKdzButfGE0xNJ6Vp22iHI0mSJEmSIihmkl1FRUWMHj2azMxMatasSf/+/Zk1axaBQICpU6dGOzxVA19OGc3cC+sy7/JWbF/2Mdmj/ktCanq0w5IkSZIkSREUEwvUh0Ihhg4dyqxZsxgzZgzZ2dlMmTKFIUOGANC9e/eIxnPcXZeReVIPktJT2bV1Byv+m8eHt/+bkl27IxqHymp64e00HnJDtMOQpJjz6TcwZcn3j3/2GpzdCoa2grSkaEUVf5ZvgceWfv/4pJdhcAs4vzU0SIleXNKh2FwETy2DZ1d8Xzb6I/h5aziybtTCkiQJiJFk10MPPcS0adOYO3cuHTt2BCAnJ4esrCwyMjJo0aJFRONZ8PDLfHjbZHbvKCQ5ozY5D11Pl+vOYu5fnopoHJIkVdS0lTBmDhD4vmzNDrhvQXjbv3pB3eSohRc3PlwH170Hu0u+L/umCCYVwIvf9nOLtOjFJx2MdTvhsnfgi+1ly1/5Al5dBXceDQOaRic2SZIgRqYxjhs3jmHDhpUmugASEhLIysoqHdV15pln0rVrV7p3706fPn2YO3dulcWzadEX7N5RGH4QCBAqCVG7dZMqa0+SpKrwxTYYMxdKgJLQnttXbIU7Po50VPFn2264flY40VXyo20hwkmv330Aob38DaTq6P/NgS+371n+3bnk1tnw1Y6IhyVJUqlqn+xavHgxy5Yt4+yzz95j28qVK0uTXZMmTeLjjz9mzpw53HDDDVx66aVVGlfna8/k5wWTueDTiWR0bMlnD/23StuTJKmyPbu8/ARLCfDWGlizlw+1OnAvrQwnvH6c6PpOSQgKtsDHGyIalnRIlm+F97/e9/EcAopD8PyKfVSQJCkCqv00xlWrVgHQsGHDMuULFy5kxYoVpcmuOnXqlG7btGkTweCB5/Fq165NUVHRHuVtEuvxu/Tee33OvH/8h3n/+A912jaj9Vl92PHVNwfc3uGqX78cluzefz+ltj+eNnfkHtS+2489uPr70q9fDtvz8yplX5JU3WXf/QE1W3Upt04I6Dr4UjbOeCwyQcWhFtc/TvoxZxBI2PdlV6ikhNN/PZavnr4jgpHFv05P7QQgOdlF0SpLxkmX0+yX/yi3TkkoxN9efI/ruuZEJqjDhMdzZNjPkWE/R0as93NJyb6+Wtm/aj+yq379+gAUFBSUloVCIW666SZKSkrKLE5/2WWX0aJFC2699VYmTZoUkfg2LV7Fhvkr6PP36yLSniRJlaW85EuZesGEKo4kzgUTIRDYT6WQ/ayYcCDnjUAg4PEsSYqqaj+yq0OHDmRnZ3PLLbeQlJREWloaDzzwAHPmzCE1NZX27duX1h0/fjwAkydP5sYbb2TatGkH1MaWLVv2Wr521kJeGjxqv88PJiWQ7ppd+zV9ei6Njj1yv/XmrofLZkYgoL2YPj2XbvWj07YkRdof5sD/rdz3dKTvzHjqX7Sr86+IxBSPxufDg/nl1wkEE5g07hb6PXpLZII6TPR4IfxvYWFhdAOJI59sgEvfKb9OELjkpGO56Xr7vTJ5PEeG/RwZ9nNkxHo/z5w5k9699z7bbn+q/ciuxMREnnnmGZo0acIll1zCyJEjGTRoEH379qVLly57na540UUXMX36dNavX1/p8STVTiX73BxqpKcCUK9DS7qOPJsvc13BV5IUW85uVX6iKwh0rgft6pRTSft1ZksIljOwKwjUT4Y+jSIWknTIOteDNrXL/xBRQvj8IklStFT7kV0AXbt2JS+v7DpK//jHP+jbty8AW7du5ZtvviEzMxOAF198kYyMDDIyMio/mFCI1mefyDFjLiFYI5Gd6zazYtr7zL37ycpvS5KkKtSpHlySDZMKIEB4fa7vBIHURBjVNUrBxZEGKXBTZ7jrk3C//jDBGCScCLvjJ5BY7b+ClMIzcv/wE7j8HSgsLns8f3ceubI9ZKdHKUBJkoiRZNeP7dixg/z8fEaOHAnAtm3bGDp0KNu2bSMhIYGMjAxefPFFAvtdH+Pg7dq6g1fPu63S9ytJUjRc2wEya4UTXiu3hcuCAejfGK7qAC3TohtfvDi7VXj01vhFsHDT9+XHHgFXHhlOPEqx4sg68EgfeGBh+I6t3yXKW6bB8LZwWmZUw5MkKTaTXZ988gnFxcWli9M3atSI9957L8pRqap9/tCv2LFsLuk/GUSTod+vafLFwzew/s1JNB9xD/VzhgGQf2s/vrv0anHF/STWzmDpn88HoGjdShqe9isanTEy0i9BkqqdQCA8zW5wC1i+FXYUQ5OaUC852pHFn5wm4Z8vtsGmIjgiBRrWjHZU0qFpkw5/PhbW74S1O8MjQVvWOoB7MUiSFAExmezq2bMnoVBo/xUVN7Yt/pBAMJH2d73Nkj+ew66Na0mqG17cpNGQG0lp0alM/UAwgXa3v16mrP3YXACW/vkC6hx9akTilqRYEQhAVu1oR3F4aF4r/CPFg/op4R9JkqoTV4dQTNi26H1qd+kPQO1OfdleMLt023dJr7JC5N+aw/K/X0ZJ0c7vS3fvomjtMlKatavqkCVJkiRJUhSY7FJMKN62kYTU8EqnwZq1Kd62sdz6rW96hvZjc6mZ2YF1r00oLd/yaS5pnXKqMFJJkiRJkhRNJrsUExJq1aV4+2YASnZsIaFW3XLrJ6aFV/qtc+wZ7Fw5v7R846wXqNtzcJXFKUmSJEmSostkl2JCrXbHsmXedAC2zJ9BavbR5dYv3r4FgG0L86jRMKu0fNui96nVrmfVBSpJkiRJkqIqJheo1+GnVttjWP/GI+T/vg/p3U9h14bVbJ7zKvX7XcSa5+5m/ZuPQCDA7k1f0Wjwb1n0PwMJJtUgoVZdsn7zbwC2L51DaquuBILmeCVJkiRJilcmuxQzWlx5X5nHqa27AdD4rBtpfNaNZbZ1+PP7ezw/tXV3Wl77ryqLT5IkSZIkRZ9DXCRJkiRJkhQ3THZJkiRJkiQpbpjskiRJkiRJUtxwza5qpvffrmHXtp28f+uEaIeyh58XTOalM/+HDZ8uq9J2stNhfK8qbaLctiVJUvzLzc1l+PDhtGzZkpYtWzJp0qQy2ydPnkyTJk0YOHAgffr0Yc6cOSxcuJDmzZuXqbdy5UouvvhiioqKuP/+++natSuXXHIJS5YsITk5mUcffZRmzZoxfPhwJk6cSCAQiOTLlKSYU1nn5xkzZnDjjeG1nW+55RYGDx7M5ZdfzqJFiyguLmbixIm0a9fO83OcMtlVhRqf0JFu159L/S6tAVj/yVLm/vkp1uTNj3JkYd2uP5f6XdvwxsV3HVD9x7IvquKIwtKSoFv9iDQlSZIOYyNGjGDUqFFcd9115OXlcfzxx5due/HFF3nyyScBePrpp7n55pv3uo9x48bxt7/9jaZNm3LllVfy7LPP8oc//IFWrVrxxhtvcN9993HnnXfSs2dPpk+fTv/+/SPy2iQpllXG+fmee+7h+eefJyMjg9NOO43Bgwdz//33k5SUxNtvv82DDz7IX//6V8/PccppjFWk+cCjOWnKKFa+PpunfnIFT/3kCla+PpuTHh9F8wE/2etzAgmV9+cIJCZU2r4kSZLiWadOnVi1alXp4w0bNpCSklL6LX/jxo33+dyCggK6du3KEUccwbZt2wBo1aoVAAkJCaX76NevH9OmTauiVyBJ8aki5+e2bduyadMmtm3bRu3atQFISkoCYOvWrXTq1Anw/ByvTHZVkZ53XErB07nMf+AFdm3Zzq4t25n/wAsseeYtjr3jUgDOmXU/XUaezakvjGXY0sdo0LUNAEm1Ush56Hp+vngyZ751D01zuu63vcbHd+TnBZNpN2wg53zwAGe8/mcAmpzYhZ+9Mo4L8ydxxht/ocVPjwGgxU+PofN1Q2jWrxs/L5jMzwsmE6xR/kC/X6x+hvpd2xBICHLhokep2z4z3PYJHfnF6mdo+bNwtr1mw7pc/PkTJKXVPLTOkyRJiqC8vDyys7NLHxcUFNCyZcsDem5JSck+f7/zzjsZMWIEAC1btmTRokWVFLEkHR4qcn4ePHgwp5xyCl27duXKK68sLR8wYADXXnstxxwT/mzs+Tk+meyqAultmlK7ZSOW/WfmHtuWPv8O6a0ak966CQDZQ3OYef39PJZ9Eeu/XQsr68zeLH3+baYceQmf/P15+k/8HamNM/bbbmLNZBp0y+Y/J47kv4NuonarxgycdDOf/uM/PH7UcGaP/Td9H/gNGR1b8fnLHzDv3udZNX0uj2VfxGPZF1FStPuAXl+ouIS17y+gSe/OADTp05nNy1bTpHc4M96kd2fWf7KUXVt3HND+JEmSomHChAnk5OTQrFkzunXrdkj7CAaDe/199OjRnH/++bRu3bqiYUrSYacyzs+jR4/mgw8+YMGCBYwbN660/I033uC5555jzJgxlROsqiWTXVUgJSM8RHLH2g17bNvx1TfhOvXDK6HnT36NTYtXESopKU02rXnvMz5/aRah4hKWPjODbz5bQavTj99jXz8WCAaZfedj7N5RSPGOIrIGn8Da9xew/MU8QsUlrHpzDp+/+iFthvat8Gtc886nZZJbc//8VGnyq3GvTqye+WmF25AkSapKI0aMIDc3lzvuuKNMeXZ2NitWrDigfbRp04ZPPvmEdevWUatWLQCeffZZNmzYwKWXXlpab8WKFbRt27bygpekOFYZ5+eEhATS09NJTU2lsLAQoPTfOnXqULNmeCaS5+f4ZLKrCuzcsAWAmo32HI1Vs2G9cJ31mwHYturrPeps+6Js2daVXx/QyK7dOwop/LZtgNQm9dn6432tWEtqk4qv/r76nXk0Ou4oaqSnkt66Kcv+M5OEGomkNsmgSe9OrH57XoXbkCRJioaMjAy2b99e+njYsGG8+uqrXHDBBbzxxhsAXH/99QDcdNNNXHfddQwePJhRo0YB8Nvf/paPP/6YnJwcxo4dC8D06dMZNGhQhF+JJMWXgzk/jxw5kn79+nHCCSeUfvkwZMgQ+vXrx6WXXsqtt94KeH6OV96NsQpsXvIlWz5fS9YZJ7DmRyOcsgafwJbP17J56WoAQiWhPZ5fq/kRZR6nZR7B1x/tfw5x6AfrRABsX72exsd3/NG+GrJ99fq91j8YG+YvJ1RSwlGX/4yvPlhIqKSE1e98SrsLB5LasB5ffbDwkPctSZJU1XJycsjJydnn9jPOOIPXX3+dgQMH8u9//3uP7X/5y18AaNGiBbm5uWW27W3Uwfvvv88vf/nLCsUsSYeDyjo/n3baaZx22mlltu1tIXrPz/HJkV1VZNb/PEL2ef3oeMXpJKXVJKl2Kkdd8TOyz+3HrNEPl/vcxscdRebJPQgkBGl9Vh/qHdWS5f/33kHHsGzquzTq2YGWp/UkEAzSrF83Mk/pwZJnZgCwY90majVrcMh3gVzz7nyO+uVprH4nPIpr9cx5HPXL0/hq9iKKC3cd0j4lSZKqg4svvpiBAwdW2v4efvjhMmt6SZIOjednHQhHdlWRla98wOvD7qTrb8+h243nArD+k6W8PuzO0uTQviz7zzu0GdqXE+/7NdtWr2f6ZX9m+5frDzqGLcvX8Oalf+Inv/85ve65hm1ffM2Ma+9lw7cL4S9/MY/WZ/bm/E8nEggEeKLLiANepB5g9dvzaPWz41n9Tnj02up3PqVGei3X65IkSZIkSVFjsqsKrX5nXrmJrWeOvXqPsndG3ndIba3Jm89j2RftUb5q+lxWTZ+71+cUbdzKy2f/vwPaf+DbTPcPk2H5j75K/qOvlj7esfYbHmlyzkFELUmSJEmSVLkcq6cDUq9jS0p27d7rgvqSJEmSJEnVhSO7Ysjg3HtIa95gj/KVr85mxtV/q/D+Bz52K416HrlH+a6tOwkmJTD7zikUbd6+l2dKkiRJkiRVDya7YsjUnN9U6f5f//nYKt2/JEmSJElSVTPZpWpn6y4o2BydtrPTIS0pOm1LkiRJkqSKM9mlaqdgM1w2Mzptj+8F3epHp21JkiRJklRxLlAvSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihmt2KS7k35rDtoV5BBKTCCQkktLsSJoOG0t61wHRDk2SJEmSJEWQI7sUN5oOG0v3J7fSZdJaarU/niV3nknxtk3RDkuSJEmSJEWQyS7FnWBSMg1OGkHJzq3sXF0Q7XAkSZIkSVIEmexS3Ckp3MG618YTTE0npWnbaIcjSZIkSZIiKCaSXUVFRYwePZrMzExq1qxJ//79mTVrFoFAgKlTp0Y7PFUTX04ZzdwL6zLv8lZsX/Yx2aP+S0JqerTDkiRJkiRJEVTtF6gPhUIMHTqUWbNmMWbMGLKzs5kyZQpDhgwBoHv37lGJKyGlBoPf/As1G9blseyLohKDymp64e00HnJDtMOIqpIQvPElPLUM8jdBQgCObwjntYauGdGOLr7kfRXu54/Whx93zYBzs6BXQwgEohubdLCWbYEnl8HrX8LOYmhRC85qBT/LhJSEaEcnHZyNRfDccpj6+fdl9y+AoVlwRErUwpIkAbPXha85vnPVuzC0FfRr4jW0Kle1T3Y99NBDTJs2jblz59KxY0cAcnJyyMrKIiMjgxYtWkQlru43nsfWL9ZRs2HdqLQv/djuEhj1UfjDahAo+bb89dXw6pfwm47w8zbRjDA+hEJw72cweUnZfn7va3j3Kzg/C67v5Ju1Ysdba+CmD8LJ8u+O58Wb4Y+fwAufw/3HQ1pSVEOUDtgX2+CXM+GrnWXLH14MzyyHB06A9nWiEpokHfYmLIIHFkLwB9fJs9fBB+vgtObw/7qX3SZVRLWfxjhu3DiGDRtWmugCSEhIICsra49RXX/4wx8IBAJ8+umnVRpT/S6tadavG5/e958qbUc6GJMKwoku+P4DK4Q/wALcMz/8ZqKKeWVVONEFe+/nJ5bBf1dGPCzpkKzZDjd/CMWhssfzt4czCzaGk15SLAiF4PpZsG7nXrYBW3fBr9+DXSV7bpckVa2Za8OJLvj+uhm+v/74vy/giaURD0txrFonuxYvXsyyZcs4++yz99i2cuXKMsmujz76iPfee4+WLVtWaUyBhCAn/PlK3rtlPCVFu6u0LelA7S7Z/5tDEN9AKsOUpeWfOAPAY0vCH7qk6u65FeHzx74O1xDhkaF7Sx5I1c3s9bBkS9nE7Q+VAOsKYfrqSEYlSQJ4fOn+R21NWVo2ESZVRLWexrhq1SoAGjZsWKZ84cKFrFixojTZVVhYyDXXXMPjjz9OTk7OQbdTu3ZtioqK9ihvk1iP36X3LlPW6erBrJ+3jLXvLaDx8R33eI72rV+/HJbs/ma/9VLbH0+bO3IPat/txx5c/X3p1y+H7fl5lbKvSEpp3Z22494rt04J8MbnO0nu4/yNQxWsVZeOj6wtt04IKNgCaY1bsHtj+XWlaMu+exYpLbsQKGfebUkIOv7sF2x8+/EIRiYdvMY/H0uDM35DILjvheZCxbu56i9T+OK+yyMYmVQ5Oj0V/uYhOdnF56qS/VwFgkE6PbGNQKD8sTZrdkDd1l0o/DI/QoHFv1g/nktKDn04drUe2VW/fn0ACgoKSstCoRA33XQTJSUlpcmu//mf/2HYsGG0atWqSuOp3aox7S8+mQ9vn1yl7UgHK5BwYAvqHGg97d3B9F8gsUYVRiJVjkBCjXITXaX1PJ4VAwKJSRDa/0Wxx7MkRVYgmLjfRFdp3UQ/r6hyVOuRXR06dCA7O5tbbrmFpKQk0tLSeOCBB5gzZw6pqam0b9+evLw8PvzwQ/74xz8ecjtbtmzZa/naWQt5afCo0seNjj2Smg3qcNbMewEIJiaQVKsm58+fyPQRd7P2vQWHHMPhYPr0XBode+R+681dD5fNjEBAezF9ei7d6ken7YrYWAQ/fQV2lzPsNwBk101gdmFhxOKKN8WhcD9/s+dA0DLSk+CblQUkVeuvEyS4dTa89uX+pwy88fhDdKz3UGSCkg7RC5/DbXPLrxNISOTWy89n+J/Oj0hMUmXq8UL430Kv5aqU/Vw1znwdVm3f99IJAMlB+HLBbGpV6yxFbIn143nmzJn07t17/xX3olp/FEtMTOSZZ56hSZMmXHLJJYwcOZJBgwbRt29funTpQjAY5K233mLBggVkZWXRqlUrvvjiC0455RReffXVSo9n2Yvv8uwJ1/LCwBt4YeANzLz+QXZt38kLA2/g648WV3p70oGqWwNOalb+f+gQcG5WpCKKTwkBOKdVOHG4LwFgSEtMdCkmnNOq/ERXEGiXDkfVjVBAUgWc3BRSE8o/RycE4IzMiIUkSfrW0KzyE11B4LRMTHSp0lT7j2Ndu3YlLy+P7du3k5+fz1VXXcWcOXNKpzDefPPNfPnllyxfvpzly5fTvHlzXnnlFU4++eRKj6V4RxHbV28o/SlcvxlCIbav3uBi9Yq6aztA/ZR9/6fuUR9ObxHRkOLSsGxoU3vvH6aCQMs0+EXbSEclHZpuGXD2Pu7rEiSctB3VDQ5gpqMUdSmJMLpb+PcfH7LfPf5tp/B7pSQpss5pBV3q7fsaulFNuKJ9hINSXKv2ya4f27FjB/n5+WXuxBgta/Lm81j2RdEOQwLCbxAP94H+Tcre6SQ1AX7eGv73OEcbVYZaifCv3nBmS6jxg/5MCoa/jZrQG2q71IBiRCAAN3WB646CjOSy245uABP6OKpLseWkZnBPT8hOL1ueWQvGHg3nOcJZkqIiOQHuOz480yTlB/cRSQiEz90P9/HLCFWumBsk+Mknn1BcXLzPZNfy5csjG5AiatuiWayc8BsIhajdpT/Nht1Rum3d6xNZ9+p4Eus2JGvkZBJSa/PFwzeydeG7BGuk0PrGp0hMj8EFuQ5C45rwx2Ng3U746bczeV85BWrG3P/06q12EtzaNZwg6PdSuOzlk6GOax4rBgUDcHE2XNgajvtvuOw/A6B5rejGJR2q3o2gV0NYsiX8fli3BrSv4whFSYq2molwY2e4ugMs2BheSiE7fc8v3KTKEHMfgXv27EkotJ+VdBW3Ult358hx4dXrF40eQPH2zSSkphMq3s36NyfR/o/vsGn2NNa9Np4GAy9l+/KPOXLcTDa8NYUNbz9Ow9OujfIriIwGP/hWxERX1fnhCC4TXYp1iT8YqWiiS7EuEAh/gPrxCC9JUvTVSoQeDaIdheKdk5oUU767FW2ouJikjKYEk1MB2L15HTWOaEEgGKRmy85sy88jmJxKQmodQiUlFG/fRGJaRjRDlyRJkiRJEWCySzFnw1tTmH9tBxJq1SWQEB62lJh+BIWrCygp2snW+TMo3raJQGISNeo3Z/41R/LVf/9O3eOGRDlySZIkSZJU1Ux2KeZk9L2QjvctZNeGL9mxfB4AgYQEGg25kcV/+Ck7ln9MYt1G7Fi5gF0bVtHx/nyaDhvL2hfuiXLkkiRJkiSpqrmaj2JKya5CgknJBIJBEmrWJlDj+8Wp6h1/FvWOP4tvZj5NqHg3hEpISKtHIBAgsXYGxds2Ri9wSZIkSZIUESa7FFM2zXqBr6bdByUlpHU8kZKd21g/fTL1+13E5w9ezc5V+aRkHkXmiL8RSEiAUIj8358IhGj160nRDl+SJEmSJFUxk12KKfV6DaVer6FlylJbdwOgxZX371G/5TUPRSIsSZIkSZJUTbhmlyRJkiRJkuKGyS5JkiRJkiTFDZNdkiRJkiRJihuu2aVqJzsdxveKXtuHg9zcXIYPH07Lli1p2bIlkyaVXbx/8uTJNGnShMzMTC699FKCwSA9evTgnnvuKVPv/PPPZ82aNWzZsoXMzEz+85//kJOTA8DXX3/NSSedxJ///GeuvPJKxo8fH6mXJ0mSdFg50Gu7gQMHAvCf//yHG2+8kcWLF5ep98QTT/D73/+eAQMGlF67jRkzhqlTp1KnTh1++ctfcuGFF3LNNdfwpz/9iVq1akXmBVYTB9PPffr0Yc6cOSxcuJDmzZuXqTdjxgxuvPFGAG655RYGDx7M5ZdfzqJFiyguLmbixIm0a9eO4cOHM3HiRAKBQMReoxQvHNmlaictCbrVj85PWlK0X33kjBgxgtzcXOrUqUNeXl6ZbS+++CIDBgygQYMGvPLKK7z99tusW7eORYsWlan3xBNPkJubyy9/+UtOPfVUIHwRkJubyxlnnMGpp55KYmIiRxxxBEuWLInYa5MkSTrcHMi13XeeffZZMjMz99jHSSedxGuvvbZH+d///ndyc3O58MILATj99NN58sknK/kVxIYD7eenn36ac845Z6/7uOeee3j++ed56623uPfeewG4//77eeutt7jrrrt48MEHAejZsyfTp0+vwlcjxS+TXdJhrlOnTqxatar08YYNG0hJSSEQCFC/fn3S0tIASEhI2Oe3Si+++CKnn356mbLc3NzSUV45OTm89NJLVfMCJEmSVKq8azuAN998k969exMM7vlRsH79+iQm7jn5Z+TIkZx22mksX74cgBNPPJFXXnmlal5AjNhfPzdu3Hifz23bti2bNm1i27Zt1K5dG4CkpPC37lu3bqVTp04A9OvXj2nTplXVS5Dimsku6TCXl5dHdnZ26eOCggJatmxZps78+fNZt24dbdu23eP5W7duZcuWLTRp0mSPfdSoUQOAli1b7jEqTJIkSZVvf9d2EydO5JJLLjng/f3617/mww8/ZMyYMdx0000ApKam8s0331Re0DHoQK6h92Xw4MGccsopdO3alSuvvLK0fMCAAVx77bUcc8wxgNfQUkWY7JIOUxMmTCAnJ4dmzZrRrVu3fdbbvHkz1157LQ899NBet7/yyiv89Kc/LVM2depUBg8eXJnhSpIkqRwHcm334YcfctRRR5GSknLA+61Xrx4AxxxzDOvXr6+MUGPagV5Dl2f06NF88MEHLFiwgHHjxpWWv/HGGzz33HOMGTOmcoKVDmMuUC8dpkaMGMGoUaP2KM/OzmbFihUAhEIhLr30Um677TaaNm261/1MnTqVm2++uUzZtGnTeO6550ofr1ixYq+jwiRJklQ5DuTa7tNPP+W1115jxowZzJ07l7Fjx3LrrbeWu98tW7ZQu3Ztli5dWrog/fbt26lbt26lv4ZYcCD9vD8JCQmkp6dTo0YNCgsLASgsLCQ5OZk6depQs2ZNwGtoqSIc2SWpjIyMDLZv3w6E19168803GT16NDk5OcyePZs1a9Zw9913A1BcXMyiRYs46qijSp+/bt06kpKSqFOnTmlZbm4ugwYNiuwLkSRJUplru1/84hdMnz6dl19+mW7dupUmuq6//noAXn31VYYNG8ZLL71UOtXxpptuolevXlxyySXcfvvtQPhugieffHIUXk319cN+Bhg2bBivvvoqF1xwAW+88QbwfT+PHDmSfv36ccIJJ3DppZcCMGTIEPr168ell15a+neZPn2619DSIQqEQqFQtIOortbOWshLg/fM2uvQDJp6B42OPTLaYRw2erwQ/vfDMw7+uY8++ihNmzYtvT11RezevZsrrriCCRMmVHhf1VFF+lmqbjyeJan6qi7XdgDXXHMN48aNK72RUTypTv08fPhwJkyYsNebCUgHItav7WbOnEnv3r1555136NWr10E912mMkvZw8cUXV9q+EhMT4zbRJUmSFAsq89oO4L777qvU/cWLyu7nhx9+uFL3Jx1OTBFLkiRJkiQpbpjskiRJkiRJUtww2SVJkiRJkqS4YbJLkiRJkiRJccNklyRJkiRJkuKGd2NUtbN1FxRsjk7b2emQlhSdtiVJkiRJUsWZ7FK1U7AZLpsZnbbH94Ju9aPTtiRJkiRJqjinMUqSJEmSJClumOySJEmSJElS3DDZJUmSJEmSpLjhml2KC/m35rBtYR6BxCQCCYmkNDuSpsPGkt51QLRDkyRJkiRJEeTILsWNpsPG0v3JrXSZtJZa7Y9nyZ1nUrxtU7TDkiRJkiRJEWSyS3EnmJRMg5NGULJzKztXF0Q7HEmSJEmSFEEmuxR3Sgp3sO618QRT00lp2jba4UiSJEmSpAiKmWRXUVERo0ePJjMzk5o1a9K/f39mzZpFIBBg6tSp0Q5P1cCXU0Yz98K6zLu8FduXfUz2qP+SkJoe7bAkSZIkSVIExcQC9aFQiKFDhzJr1izGjBlDdnY2U6ZMYciQIQB07949YrH0/ts1ZA3pTcmu3aVluZf/hVXT50YsBu1d0wtvp/GQG6IdRlSFQvD+1/DM8u/L/vgJnNMKss37KQYt2wJPL4d31sLuEmhfJ3w8n9AQAoFoRycdnI2F8J/P4eUvYGMRNE6FwS1gUDNIiYkrMkmRVhIKvwc+u/z7sr98CkNbQYu0aEUVnz5aD08v+/7xbXPh3FZwZN0oBSSpQmLi0uqhhx5i2rRpzJ07l44dOwKQk5NDVlYWGRkZtGjRIqLxLPr367x/64SItintT0kI7voEnl8BwR8kAZ5bHr5AGtUt/KFKihXTVsKYuUAISr4tW7cT3l4LpzWH/+kOCSa8FCMKNsNV78I3Rd+XrS+ET7+Bx5fCgydARnL04pNU/ewugVEfwetflp2O88TScFJm7NEwoGnUwosboRDc+xlMXlK2n//7ObzwOfy2I1zYJmrhSTpEMTGNcdy4cQwbNqw00QWQkJBAVlZW6aiuVq1aceSRR9KtWze6devGK6+8Eq1wpah4fGk40QXhxNd3SoAQcMdcmLchCoFJh2DhJhgzJ3wsl/yg/Lvf/+8LmOz9JxQjiorhV+/BpqKy5d+dqpdvgd9/GPGwJFVz/1oUTnRB2ffCEFAcgltmh0dAq2JeXBlOdMHerzn+Oh/e+yrSUUmqqGqf7Fq8eDHLli3j7LPP3mPbypUry0xhfOaZZ5g7dy5z587llFNOqbKYWp/Vhws+e5gzZ/yNLr8+i0BCte9GxbniEPx7Sfl1AsATy8qvI1UXTy7df53HloS/9ZaquzdWw9c7y36I+qESYPZ6WLQpklFJqs52Fpf/XhgiPCLpKa/tKiQUCn95Vt5A8SDhaw5JsaXaT2NctWoVAA0bNixTvnDhQlasWFEp63XVrl2boqKiPcrbJNbjd+m9y5R9NmEaH94+mZ0btlC/S2v63j+ShOQazPnTExWOI97165fDkt3f7LdeavvjaXNH7kHtu/3Yg6u/L/365bA9P69S9hVJKa260PbuD8qtUwK8tHQ7fz6hXmSCOkx0emonAMnJKVGOJL4c9fAaEtLKP1a/KYIGXfqwY/GsCEUV/zyeq0bmyMnUOe4sAgn7vuwKhUrof+Uf+Pq5P0YwMknVVa1OObT+f+XPVCkBpnz0Jf9zTFZkgopDSUe05Mj7F5VbpwR496sSUmqlE9q9KzKBSZUk1q/tSkoO/Zvtaj8kqX79+gAUFHw/XyUUCnHTTTdRUlJSJtn185//nC5dunD11VezcePGKolnw7xl7Fy/GUIh1n+8hDl/fpKswb2qpC3pQAVr1DygeoEkF4RRbAjUOLA35AM99qVoCtaouf87KpSECCZ7PEsKO+BrO98HK+SA+zkQJJDodbQUS6r9yK4OHTqQnZ3NLbfcQlJSEmlpaTzwwAPMmTOH1NRU2rdvD8Dbb79NZmYmhYWFjBw5kmuvvZZ///vfB9TGli17n+y+dtZCXho8qvwnl4TKH/eqUtOn59Lo2CP3W2/uerhsZgQC2ovp03PpVj86bVfEhkL46atl1+r6sQDQKj2B2YWFEYvrcNDjhfC/hfZrpbowFxZv/n5No70JAAtmvkojr/Mrjcdz1bj3s/A0mXKP54QEHrz9Zk595OaIxSWp+lq5FYa8WX6dIHB0Zj3mes4+ZNt3w8CXoWg/g0fqJ8P2jeu9E7RiTqxf282cOZPevXvvv+JeVPuRXYmJiTzzzDM0adKESy65hJEjRzJo0CD69u1Lly5dCAbDLyEzMxOA5ORkrr76ambOrJpsSaszTiCpdioA9Tq0pOv1Q1n+39ib9qb4kpEM/RqX/x86BJzTKkIBSRV0TqvyEwNBoHcjTHQpJgxpsf/EbVoi9PeuapK+lZkGPeqXf21XApzjDMYKSU2E0zLL7+cAMLTV/gfoSqpeqv3ILoCuXbuSl1c2ofSPf/yDvn37ArBt2zZ2795NnTp1CIVCPPHEE3Tr1q1KYjnyF6dw/LhfEkxKYMfajSx55i0++fvzVdKWdDB+dRR8sA627t5zhFcAOKounNkiGpFJB+9nmeE7Ln6yYc8kQTAAqQnw66OiEpp00DLTYHhbeHjxntsChI/xm7tASkKkI5NUnV3fCS59BwqL936Di2MbwEkmySvs8nbwzlpYv5cbiQSBVmlwfutoRCapImIi2fVjO3bsID8/n5EjRwKwdu1azj77bIqLiykuLuaoo47i/vvvr5K2Xz7r/1XJfqWKal4LHu4Df/wknPT6TmIABjWHGzpDSkz+j9fhqEYC/OO48O2+/7sSdv3g6rNbRjgx0Kp29OKTDtbVR0K9GuGE1zc/uCdOs1S47ihHdUnaU9s6MKE3jJsHH2/4vrxGEAa3gF93hMRqP0+n+mtYEx7uDXd9Au9+9f2XbMFAOJn4u86QlhTVECUdgpj86PvJJ59QXFxcujh969atmTNnTpSjUiRs/ewdvnj4BggEqXfC2TQ68/rSbfm35gCwe9PXpHc7iczL/sb8azqQWLcRAG1ufo7E2hnRCDtiWqbBAyfA51th0eZwoqtbBtR1PU3FoJqJcGtXuLYDDHg5XPZM//A3rFKsCQTgwjZwbhYc999w2fhe0DXDqTGS9q3dtwmvpVvCP0lBOLq+yZfK1jgV/vc4+HI7LNgYHnXbJQMaxOYN7CQRo8munj17EgqVt/qF4lWNRq1pd+cMgkk1yL+1H0cMuopgcngNtfZjcwFY9ejvqd25HwBJGc1od/vr0Qo3alqkhX+keFCnxve/m+hSrPvhKIxYvCGKpOhoXTv8o6rVNDX8Iyn2OfBVMaVG/aYEk8KffAPBBAjseQhv+TSXtE45AOzatJb835/IF4/8zgSpJEmSJEmHAZNdikmb575GcpM2BGuUHVu8c3UBNY5oWZoQa3/nDNrfNYOSop1snj0tGqFKkiRJkqQIMtmlmFO07gvWPHMXzYf/ZY9tm96fSt2eg0sfJ6bVA6Dusaez4/P5EYtRkiRJkiRFh8kuxZSSXYUs/99f0OLKB0iouefiPZtmT6PO0acCENq9i5JdhQBsXZhHcqOsiMYqSZIkSZIiLyYXqNfha8NbU9i58jNWPHAFAM2GjaVwzVLq97uI3ZvXEUhIIqFWHQCKt29i8ZhTCCbXokaDTJoMvSWaoUuSJEmSpAgw2aWY0mDgcBoMHF6mLK1DLwAS0xvQdszLpeWJ6Q3o8NfZEY1PkiRJkiRFl9MYJUmSJEmSFDdMdkmSJEmSJClumOySJEmSJElS3HDNLlU72ekwvlf02pYqS25uLsOHD6dly5a0bNmSSZMmldk+efJkmjRpwsCBA7nqqqtYuHAh3bt3569//WuZeh9//DFXX301NWrU4NFHHyUzM5OCggKuvfZaCgsL+c1vfsOpp57KlVdeyfjx4yP5EquFg+nnPn36MGfOHBYuXEjz5s3L1Pv973/PW2+9RUJCAvfffz+dO3fm8ssvZ9GiRRQXFzNx4kTatWvH8OHDmThxIoFAIJIvU5IkSao0B3MNDfCf//yHG2+8kcWLF5epN2PGDG688UYAbrnlFgYPHsw111zDn/70J2rVqhWZF7MXjuxStZOWBN3qR+cnLSnar17xZsSIEeTm5lKnTh3y8vLKbHvxxRcZMGAA77//PsnJyUyfPp1gMMicOXPK1Lvtttt4/vnn+dvf/sa4ceMA+MMf/sATTzzB9OnTOeOMM0hMTOSII45gyZIlEXtt1cmB9DPA008/zTnnnLPXfVxxxRW8++67PPLII9x1110A3H///bz11lvcddddPPjggwD07NmT6dOnV+GrkSRJkqregV5DAzz77LNkZmbusY977rmH559/nrfeeot7770XgNNPP50nn3yyaoPfD5NdkhQBnTp1YtWqVaWPN2zYQEpKCoFAgGXLltG5c2cAOnfuvMcbzbZt22jYsCFdu3aloKCAoqIiVq5cycUXX8zgwYNZu3YtADk5Obz00kuRe1HVUHn9DNC4ceN9PrdVq1YAJCQklNZPSgpnwLdu3UqnTp0A6NevH9OmTauK8CVJkqSI29819Jtvvknv3r0JBvdMIbVt25ZNmzaxbds2ateuDcCJJ57IK6+8Epng98FklyRFQF5eHtnZ2aWPCwoKaNmyJQDt27fnrbfeAsLDgDdt2lTmuSUlJWV+X7duHZ9++imTJk1i5MiRpaOQWrZsyaJFi6r6pVRr5fXzgRo9ejRXX3116eMBAwZw7bXXcswxxwD2syRJkuLL/q6hJ06cyCWXXLLX5w4ePJhTTjmFrl27cuWVVwKQmprKN998U7VB74fJLkmqQhMmTCAnJ4dmzZrRrVu3vdbp3r07rVq1on///gA0bNiwzPYffoMSDAapU6cOnTt3pl69evTp04f8/Pwqiz9WHEg/H4h//etfZGVl0avX9wsHvvHGGzz33HOMGTOm4oFKkiRJ1cSBXEN/+OGHHHXUUaSkpOx1++jRo/nggw9YsGBB6ZIr1YEL1EtSFRoxYgSjRo3aozw7O5sVK1aUPr7tttsA+PWvf83JJ59cpm5qaipff/01q1evJjs7m1q1apGSkkJhYSELFiwonX63YsUK2rZtW3Uvpho70H4uT15eHtOmTePZZ58tLSssLCQ5OZk6depQs2ZN4PDuZ0mSJMWPA7mG/vTTT3nttdeYMWMGc+fOZezYsdx6662ldRMSEkhPT6dGjRoUFhYCsH37durWrRuR17AvJrskKQoyMjLYvn07ALt27eKkk04iISGBc889l8zMTNasWcPkyZO58cYbGT16NGeeeSZJSUk8+uijAFx//fUMGDCAhIQEHnnkESB8R5URI0ZE6yVVSz/sZ4Bhw4bx5ptvsmTJEsaMGcOAAQO4/vrr+ctf/sLNN9/Mli1b6N+/P507d+bvf/87Q4YMYceOHQQCAe677z4Apk+fzqBBg6L1kiRJkqQq9cNr6F/84hf84he/AGDgwIGlia7vrqFHjhxJv379CIVCXH755UB4aZYff4EfaYFQKBSKagTV2NpZC3lp8J5ZTh2aQVPvoNGxR0Y7DKlS9Xgh/O+HZxz8cx999FGaNm1aejvfiti9ezdXXHEFEyZMqPC+qqPq0s8Aw4cPZ8KECXtdoDPWVaSfdeDsZ0mSFAnRuoa+5pprGDduHGlpaQff8A/MnDmT3r17884775RZZuRAOLJLkqLk4osvrrR9JSYmxm2iq6Iqs58BHn744UrdnyRJklTdVOQa+rsZEdEUf19LS5IkSZIk6bBlskuSJEmSJElxw2SXJEmSJEmS4obJLkmSJEmSJMUNk12SJEmSJEmKG96NUdXO1l1QsDk6bWenQ1pSdNqWJEmSJEkVZ7JL1U7BZrhsZnTaHt8LutWPTtuSJEmSJKninMYoSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihskuSZIkSZIkxQ0XqFdcyL81h20L8wgkJhFISCSl2ZE0HTaW9K4Doh2aJEmSJEmKIEd2KW40HTaW7k9upcuktdRqfzxL7jyT4m2boh2WJEmSJEmKIJNdijvBpGQanDSCkp1b2bm6INrhSJIkSZKkCIqZZFdRURGjR48mMzOTmjVr0r9/f2bNmkUgEGDq1KnRDk/VSEnhDta9Np5gajopTdtGOxxJkiRJkhRBMbFmVygUYujQocyaNYsxY8aQnZ3NlClTGDJkCADdu3ePeEzNB/yE7jedT3qbpuzeuoNPH3yR+Q+8EPE49L0vp4xmzdN3EEhMJiXzKLJH/ZeE1PRoh6U4tXwrPLv8+8d/mgfntILWtaMVUXxauwOeX/H94zFz4OyW0KkeBALRi0tS9bWrBN5cDS9+Dl/vhLo14NRMOKUppMTEla8kSRWzbidM/fz7x7fOhrNbQfeMw+caOibe8h966CGmTZvG3Llz6dixIwA5OTlkZWWRkZFBixYtIhpP075dOf7uK3jnun+wJm8+iTWTqdWsQURj0J6aXng7jYfcEO0wdBh4elk4ufVDzyyDp5bBbzvChW2iE1e8eWsN3Pwh7C75vmzaSvjvSrigdbivD5c3a0kHZmMhXJMH+ZvD0xdKCP87ez08vAgePAEap0Y5SEmSqtCsr+G3s2Bn8fdlr30Jr6yC0zNhVDdIOAyuoWNiGuO4ceMYNmxYaaILICEhgaysrNJRXTt37uSqq66ibdu2dO7cmV/+8pdVFk/3353PJ397ltXvzCNUXMKurTvYmL+yytqTVH289xWMmwchwj/f+S4f89f5MGNNFAKLM0s2w00fhBNde+vnx5fCk8uiEZmk6uymD2Hx5vDv350vvvv3y+1w3XtQEtrbMyVJin2rt8Nv3ofC4rLl3733vbgSJi6KfFzRUO2TXYsXL2bZsmWcffbZe2xbuXJlabLrd7/7HSkpKSxatIh58+Zx++23V0k8iTWTadCtDTWPqMuQt/+X8z4ZT/9HbiIts2GVtCepenm0oPwTZ/DbOqqYJ5eF35TL+0w6qQCK/dAq6VsLNoZHcJXsY3sJsHQr5H0VwaAkSYqgZ5ZDUUn519BTlu6ZDItH1X4a46pVqwBo2LBsMmnhwoWsWLGC7t27s3XrVh599FG++OILAt/OaWnUqNEBt1G7dm2Kior2KG+TWI/fpfcuU1ajbi0CwSAtT+vJaxfcwY71mzj2tuH0m3AjL55848G+vMNKv345LNn9zX7rpbY/njZ35FZ1OHvVr18O2/PzotK2qr9gShodJ68vt04JMHcDpDZoSvGW8utq3zpMXE1i7Yxy63y9E+p3PIEdS2ZHKKr41+mpnQAkJ6dEOZL4Zj9XjUbnj+GIIb8jEEzYZ51Q8W4uGjuJVf+8OoKRSZIUGe3+sYDkRq3LrbNlFzQ97lS2fvJGhKI6dCUl+/oKa/+q/ciu+vXrA1BQ8P1QiVAoxE033URJSQndu3dnyZIl1K9fnz/84Q/06NGDnJwc3nnnnSqJZ9fW8AXqZ+OnsfWLryneUcRHd02hfucs1+2KovZjc12vS1UumFLrwOsmH3hd7SmYfGCL6gRT0qo4EkmxIpiSBqH9XxR73pAkxauEA3yPO5jPNbGq2o/s6tChA9nZ2dxyyy0kJSWRlpbGAw88wJw5c0hNTaV9+/bMnTuXpUuX0r17d+6++27ef/99Tj/9dAoKCkhP3//d+LZs2bLX8rWzFvLS4FFlynZt2c7WlV9ByLkzB2v69FwaHXvkfuvNXQ+XzYxAQHsxfXou3epHp21Vf7tLYMDLsG13+fVSEmDd54tJ2ffgAu3H0DfDd7zc35l2/juv0sTFpitNj29vKlxYWBjdQOKc/Vw1nlwGd88rv04wIZHfDj+Pq/90XmSCkiQpgka8DfO+2feU/u+8+9+naVsnIiFVyMyZM+ndu/f+K+5FtR/ZlZiYyDPPPEOTJk245JJLGDlyJIMGDaJv37506dKFYDBIixYtSExM5IILLgCgZ8+eNGjQgEWLqmbltfxHX6XDZaeR2rQ+CclJdP/d+az7eAnbVq2rkvYkVQ+JQTijBZR385Ig8LNMTHRV0Nmtyk90BYHjjsBEl6RSg5pBjQO4sh0c2Zt4S5IUMWe1Kj/RFQSOqktMJLoqqtonuwC6du1KXl4e27dvJz8/n6uuuoo5c+aULk7foEED+vXrx2uvvQbAokWL+Oqrr8jOzq6SeObdN5VVb87hjFf/xNCPHiK1UQbTR9xdJW1Jql4uyYYGKXs/eQaBuskwvG2ko4o/g1tAu/S9JxaDQI0E+NVRkY5KUnWWXgOu6VB+nYuyoVn8z9yQJB2mTm4G3TL2fg0dAIIB+G3HSEcVHTGR7PqxHTt2kJ+fX5rsAnjwwQe588476dy5M+effz6TJ0+mbt26VRNAKMTssf/miU4jeKLjcN4cPs5RXdJhokEKTOwNP9nLdNeuGeFtjWpGPq54UzMRHjwB+jXZ8826dW345wnQ/jD4RkrSwfl5G7i5M6QnlS1PTYCrj4Rf7ScZJklSLEsKwr3HwaDm4cTWD7VIg/tP4LBZtqfar9m1N5988gnFxcVlkl2tW7cmNzc3ekEpYr5++Z98M/MpQiXFtPvDawQSw1e0616fyLpXx5NYtyFZIyeTkFqb+dd0ILFu+M6cbW5+br93d5MORJNUeLAXLNsCH28Il3WuB232v0SgDkJ6DfjTMbBmB3zwNewqgXZ1oGNdCJQ3l1TSYe2crPCU83e/ghs+CJe9egqkxORVryRJByc1EW77CVx3FLz3FRSWQJva4S/mD6dr6Jh82+/ZsychF4g/LBV9/Tk7Vsyj3e1lb5MaKt7N+jcn0f6P77Bp9jTWvTaeRoN/Q1JGM9rd/nqUolW8y6od/lHValwTTneNHUkHoUYC5DT5/rGJLknS4aZBCvzsML6GjslpjDp8bZ7zKiU7t7FoVH++fHxMafnuzeuocUQLAsEgNVt2Zlt+HgC7Nq0l//cn8sUjvzNBKkmSJEnSYcBkl2LKrk1fQSBAuzvepHDtMrYvnQtAYvoRFK4uoKRoJ1vnz6B42yYA2t85g/Z3zaCkaCebZ0+LYuSSJEmSJCkSTHYppiSk1qF2p74A1O54IjtX5QMQSEig0ZAbWfyHn7Jj+cel63QlptUDoO6xp7Pj8/nRCVqSJEmSJEWMyS7FlLQjj2fHinkA7Fgxj+SGrUq31Tv+LNqPzaVWu57UOXoQod27KNlVCMDWhXkkN8qKRsiSJEmSJCmCTHYppqS2+Qmh4t3k35pDSeF2AknJrJ8+GYDPH7yaRaMHsGX+DOr1Opfi7ZvIv+kE8n9/IoWr8ql73JAoRy9JkiRJkqqa96ZRzMm87G9lHqe27gZAiyvvL1OemN6ADn+dHaGoJEmSJElSdeDILkmSJEmSJMUNk12SJEmSJEmKGya7JEmSJEmSFDdcs0vVTnY6jO8VvbYlSZIkSVLsMtmlaictCbrVj3YUkiRJkiQpFjmNUZIkHZDc3FyysrLIycnhkksu2WP72LFjWbx48T6fv2HDBo4++mjS0tL2un3WrFn06tWLE044gVGjRrFgwQLGjRtXafHHior2M8CvfvUr+vTpw5133rnHth//HV5++WVycnLIycmhfv36zJ07l+XLl9OkSRNycnK4+OKLAeLu71GVx/OOHTs49dRT6du3L8OHDwc4LPpUkqTqwmSXJEk6YCNGjCA3N5c6deqQl5dXWl5SUsInn3xC27Zt9/nc2rVr89prr3HcccftdXv37t2ZOXMm7777Lnl5eTRr1oyPPvqIUChU6a+juqtIP3/44YckJiby9ttv89FHH7F27doy23/8d/jpT39Kbm4u06dPp3Xr1nTt2hWA0047jdzcXB599FEAOnToEHd/j6o6nl999VV69+7NW2+9RVJSEp9++ilwePSpJEnVgckuSZJ00Dp16sSqVatKH3/88ce0a9eu3OckJSWRkZFR7naA4uJimjZtSmpqKq1bt2b+/PmVE3QMOpR+fv/99+nfvz8Affv2Zfbs2WW27+vv8MEHH9CjRw8CgQAAr7zyCn369OGxxx4rrROvf4/KPp6zsrLYtm0bAFu3bqVOnTrA4dWnkiRFk8kuSZJ00PLy8sjOzi59vHjxYlq1alXh/U6ZMoUOHTpQt25dEhMTadmyJYsWLarwfmPVofTzxo0bSU8P33Gldu3abNy48YDamjp1KoMHDwagSZMm5Ofn8+qrr/LPf/6T9evXA8Tt36Oyj+fs7GzefvttOnToQCAQIDMz87DrU0mSoslklyRJOmATJkwgJyeHZs2a0a1bt73W+eyzz0rXgPru549//OMB7f/CCy9k4cKFfPnll8ybN68SI48tFennunXrsnnzZgC2bNlC3bp1D6jN6dOnl44IS05OJjU1lZo1a9KnTx+WLFlSGS+r2qmq43nSpEmcd955LFiwgAYNGvDuu+8eNn0qSVJ14N0YJUnSARsxYgSjRo3ao7xt27Y899xzABx11FHk5uYe9L4LCwtJTk4mGAxSu3ZtUlJSWLFiBb169apo2DGnIv38wQcf8Pjjj3P66aczY8YMzj333P22t3TpUpo3b06NGjWA8NS7tLQ0QqEQH374Iddeey1A3P09qup4LikpKZ3imJGRwcaNGw+bPpUkqTpwZJckSaqwrl27kp+fv996AwcOZM6cOQwcOJBPP/2UNWvWcPfddwPwwgsvkJOTw4knnkjz5s1p27YtBQUFdOrUqarDjxkH0s/HHHMMhYWF9OnTh65du9KoUaMy/Qx7/h1+OIUR4N1336VHjx6ccMIJnHzyyTRp0gTgsPl7VPR4vvDCC3n44YfJyclh7ty5nHTSSYd9n0qSFEmBkLd/2ae1sxby0uA9v+3ToRk09Q4aHXtktMOQJO1DjxfC/354xqE9/4477uC8884r9w52B2PBggVMnTqVm2++uVL2V11Ut34+ULH496hIX0ein2OxTyVJipSZM2fSu3dv3nnnnYMeBe00RkmSVCn2Nh2sIjp06ECHDh0qdZ/xoLL7+UAdbn+PSPTz4dankiRFitMYJUmSJEmSFDdMdkmSJEmSJClumOySJEmSJElS3HDNLlU7W3dBwebotJ2dDmlJ0WlbkiRJkiRVnMkuVTsFm+GymdFpe3wv6FY/Om1LkiRJkqSKcxqjJEmSJEmS4obJLkmSJEmSJMUNk12SJEmSJEmKGya7JEmSJEmSFDdcoF5xIf/WHLYtzCOQmEQgIZGUZkfSdNhY0rsOiHZokiRJkiQpghzZpbjRdNhYuj+5lS6T1lKr/fEsufNMirdtinZYkiRJkiQpgkx2Ke4Ek5JpcNIISnZuZefqgmiHI0mSJEmSIshkl+JOSeEO1r02nmBqOilN20Y7HEmSJEmSFEExk+wqKipi9OjRZGZmUrNmTfr378+sWbMIBAJMnTo1YnH8vGBymZ+LP3+CM974S8Ta1759OWU0cy+sy7zLW7F92cdkj/ovCanp0Q5Lkqq9nbvhPyu+fzz2Y5j/TfTiiVe7S+D1L79/PPojmPU1hELRiykelYQg7yu4dfb3ZdNXh/tfkiQdHmJigfpQKMTQoUOZNWsWY8aMITs7mylTpjBkyBAAunfvHrFYHsu+qMzjM974C8umzoxY+9q3phfeTuMhN0Q7DEmKKQWb4Zo8WF/4fdnUFfD8CjgjE27tBgmBqIUXN77aEe7nZVu/L3tlFbz0BRx3BNx9DNSMiauy6m3rLvjN+zBnAwR/cNze+AG0TYd/HAf1U6IXnyRJioyYuKx66KGHmDZtGnPnzqVjx44A5OTkkJWVRUZGBi1atIhKXA26ZVO3XXMKnpwelfYlSaqILbvg6ndhY1HZ8u8GwLywMpwYuKZDxEOLK8UhuPY9WLG1bHnJtyO63v8abpsLd/WIeGhxZ9RHMHdD+PeSH42YW7IZfjMLJvWBgAlcSZLiWkwku8aNG8ewYcNKE10ACQkJZGVlkZSUxPLlyznzzDNLt23cuJHNmzezYcOGKo2r7YX9WfXmHHasda6HJCn2/HclbCgqv87jS+EXbaFWTFwxVE8z18LSLfveHiI8vfGabdC8VsTCijsFm+GdtfveXgJ8thE+XAfHHBGpqCRJUjRU+0vXxYsXs2zZMu699949tq1cuZKzzz6bVq1aMXfu3NLykSNHsnv37gNuo3bt2hQV7Xm13yaxHr9L773X5yTWTCZrcC/evu4fB9zO4a5fvxyW7N5/YjC1/fG0uSO3qsPZq379ctienxeVtiUp0lqPfYvU7GMJBPe9hOfOYmg14Hw2v/d8BCOLL81/NZG6vc4jkLDvy66SUIiev7iVdS+4DuihanjuaBqefUu5x3OoeDfn/uFhvvzXtRGMTJIkHYqSkkNfcLPaJ7tWrVoFQMOGDcuUL1y4kBUrVuyxXldRURGPPfYYr7zySpXG1er049m9o4gvXp+9/8qqcu3H5kY7BEmKOQm16pWbGCitl1onAtHEr4TUOvufN1dSTEItb6pSEQmpdSBUTPn3Xwp58xpJkg4D1T7ZVb9+fQAKCgo49thjgfCC9TfddBMlJSV7JLteeOEFmjVrxk9+8pMDbmPLlr3PLVg7ayEvDR61121tfz6AJU/lEir21j4Havr0XBode+R+681dD5dFac3/6dNz6VY/Om1LUqRd9x6899X3a3Tty9RH/0nPI/4ZkZji0Z/mwTPLyu/nQEIifxtzM2c9cnPE4oo3jy2Be+aXXyeYkMSvf3Eev/rTeZEJSpIkHbLNmzczb948OnfufNDP3f/XuVHWoUMHsrOzueWWW3j66ad56aWXGDx4MB999BGpqam0b9++TP2JEydy6aWXVmlM6W2a0rBHexY9/kaVtiNJUlU6s8V+EjBAoxTo0SBSEcWnwfvpZ4AaQTi5WUTCiVuDmkPifgbQhYDTo3NfI0mSdJDS09Pp1asX6ekHPyq72ie7EhMTeeaZZ2jSpAmXXHIJI0eOZNCgQfTt25cuXboQ/MH0i1WrVvHWW2/x85//vEpjantBf9a+v4Aty9ZUaTuSJFWlExtD94xwUuvHAoQTA7/pBAneua5C2teB05qXX+fKIyEtKTLxxKuMZLi0Xfl1zm4JrdIiE48kSYqeaj+NEaBr167k5ZVdNPwf//gHffv2LVM2adIkTjvttNKpj1Vl9h3/rtL9S5IUCYlB+NtxcPtceOPLcHLrO+lJcGNnGNg0WtHFl9HdwsmsZ5fD7h90dM0EuOJI+HnraEUWXy5vFx7dNXFx+OYK30kMwAWt4dqjohebJEmKnJhIdv3Yjh07yM/PZ+TIkWXKH3nkkb3etVHx4fOHfsWOZXNJ/8kgmgy9pbT8i4dvYP2bk2g+4h7q5wwDIP/Wfnz3sa3FFfeTWDuDpX8+H4CidStpeNqvaHTGyEi/BEmqdmolwh97wJfbYcaacIIgs1Z41FdStR//HTsSg+Hk4Yh2MH01bN4FDVOgXxNIjcmrseopEAiP7jo3K9zP6wqhbo1wP9etEe3oJElSpMTk5dUnn3xCcXHxHovTL1q0KEoRqaptW/whgWAi7e96myV/PIddG9eSVLcRAI2G3EhKi05l6geCCbS7/fUyZd/dsXHpny+gztGnRiRuSYoVTVPhfEcXVbmMZDi7VbSjiH9pSa7NJUnS4Swmv7Pt2bMnoVCIHj16RDsURci2Re9Tu0t/AGp36sv2gtml275LepUVIv/WHJb//TJKinZ+X7p7F0Vrl5HSbD+LekiSJEmSpJgUk8kuHX6Kt20kITV8B4ZgzdoUb9tYbv3WNz1D+7G51MzswLrXJpSWb/k0l7ROOVUYqSRJkiRJiiaTXYoJCbXqUrx9MwAlO7aQUKtuufUT0+oBUOfYM9i5cn5p+cZZL1C35+Aqi1OSJEmSJEWXyS7FhFrtjmXLvOkAbJk/g9Tso8utX7x9CwDbFuZRo2FWafm2Re9Tq13PqgtUkiRJkiRFVUwuUK/DT622x7D+jUfI/30f0rufwq4Nq9k851Xq97uINc/dzfo3H4FAgN2bvqLR4N+y6H8GEkyqQUKtumT95t8AbF86h9RWXQkEzfFKkiRJkhSvAqFQKBTtIKqrtbMW8tLgUdEOI24MmnoHjY49cr/15q6Hy2ZGIKC9GN8LutWPTtuSJEmSJKniHOIiSZIkSZKkuGGyS5IkSZIkSXHDZJckSZIkSZLihmt2laNoy3a+WfB5tMOIG/U6tKBG7dT91tu6Cwo2RyCgvchOh7Sk6LQtSZIkSZIqzmSXJEmSJEmS4obTGCVJkiRJkhQ3THZJkiRJkiQpbpjskiRJkiRJUtww2SVJkiRJkqS4YbJLkiRJkiRJccNklyRJkiRJkuKGyS5JkiRJkiTFDZNdkiRJkiRJihsmuyRJkiRJkhQ3THZJkiRJkiQpbpjskiRJkiRJUtww2SVJkiRJkqS4YbJLkiRJkiRJccNklyRJkiRJkuKGyS5JkiRJkiTFDZNdkiRJkiRJihsmuyRJkiRJkhQ3THZJkiRJkiQpbpjskiRJkiRJUtww2SVJkiRJkqS4YbJLkiRJkiRJccNklyRJkiRJkuKGyS5JkiRJkiTFDZNdkiRJkiRJihsmuyRJkiRJkhQ3THZJkiRJkiQpbpjskiRJkiRJUtww2SVJkiRJkqS4YbJLkiRJkiRJccNklyRJkiRJkuKGyS5JkiRJ+v/t3Xl8VPW9//H3TBZIDAEChDVAIICBSJKibAEZEBW0oohYURQVrrteehX1h9BLrWgp9ZZrsbRcUGsUey0Xi1pkq4yABsKSENaQxCSEyB6BACHbnN8fI4GQFUjmZE5ez8cjD+Z8z3dmPjN+PTPznu/5DgDAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMX7MLAAAAAAAAjVdR/jn9uPeA2WVYRsvIzvJvFmh2GaYi7AIAAAAAAKb5ce8BfXX3DLPLsIzRy99Q2/7Xm12GqTiNEQAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACzDa8KuoqIizZw5U2FhYQoICNCIESOUmJgom82m5cuXm10eLOpUkbQkQ/pNsjQnRdp4RCo1zK4KAGAY0o486e1d0uvJ0qJU6XCB2VUBAIC6ZPOxq/9vHtOEPe/rwX1/1eC3n5ZPEz+zy4IX8DW7gNowDEPjx49XYmKiZs2apYiICC1ZskRjx46VJMXGxppcIaxoWZY0d5dU7JJ8bJIh6e9ZUth10h8GSF2DTC4QABqpk4XSS1uk5Dz3t3Y2m+QypL+kSg9HSM9FSnab2VUCAIBr1feFe9VucJSWj3hRpcUluuWDV9RvxsNKnPme2aWhgfOKmV0LFy7UihUrtHbtWj355JO65ZZbtHDhQvn4+CgkJESdO3c2u0RYzJpc6c0Ud9AluWdzuX6a0ZV7TnrqW/eHLQCAZ5W4pOc2SSl57m2X3MdoQ+6/D9OlRftNLBAAANSZHg/dop3vLNO5w3kqPHFayW9/qohfOGSze0WUARN5xQiZM2eOJk6cqD59+pS1+fj4KDw8vGxW1/79+zVo0CD17NlTgwYNUlpamlnlwssZhvSnfVJVkwJchnS8UPrsgEfLAgDIfTr5vlPukKsqf02TzhR7rCQAAFAP/IMDFdSxjfJ2Z5a1ndiZKf9mgQoKa2NiZfAGDf40xrS0NGVmZuqdd96psC8nJ0fjxo2TJD311FN69tlnNXHiRH300Ud68skn9fXXX9d4+6dPn1a7du1UUlIim41zHiAFdO+niN9+V20fw3Dpv/6VoaeiojxUFQBAkjq/+DcF33SXbD5Vv4UpdEnd75ysk9985MHKAADA1eru21IvBw8p1+YbFCBJKjp1rqyt6NRZSZLfT/tQueHDHcoo+dHsMuqEv7+/8vPzr/h6DX5mV25uriQpNDS0XPu+ffuUnZ2t2NhYHT16VNu3b9eECRMkSRMmTND27dt17NixGm9/586dKigokGGw6jjcfJuH1tjHZrPXqh8AoG75tmhbbdBV1o9jNAAAXq3kjPuXZ/yCA8va/JtfJ0kqPsOv0qB6DX5mV6tWrSRJ6enp6t+/vyT3gvWvvPKKXC6XYmNjlZOTo44dO8rHx0eS+xTHDh06KCcnR23a1G56o9PpVFxcXP08CHiV3T9KkzbU3C88tLmSClm4CwA8adoW6ZtD1Z/GKEl/+a+39PO/v+WRmgAAwLU5krhPX909o1xb0elzOpN7TCF9uup0xg+SpFZR4SrKP6czOTVPbGnM1q1zqm3/680uw1QNPuyKjIxURESEpk+fLj8/PwUFBWnBggVKSkpSYGCgevXqpaSkJLPLhIX0biF1vk7KOete7LgqY/hdBADwuDs7SesOVd+nqY/kaOeZegAAQP1J+/hf6vv8WB3ZvFeuklLFvHi/0v/XKcNV09deaOwafNjl6+urpUuX6qmnntKkSZMUFhamqVOnKjg4WBkZGbLb7QoLC1Nubq5KS0vl4+Oj0tJS/fDDDwoLCzO7fHghm016JlJ6dWvl++2SWjWV7uni0bIAAJKGtHV/KbHvZNWzux6NkIL8PFgUAACoFynvLFOTkGDd4/yDbHabsr7cpG2zWZMTNWvwYZckRUdHKyEhoVzb/PnzNWzYMEnu9bxiYmL0ySefaOLEifrkk08UGxtb61MYgcuN7CDNiJZ+t1MquuzTVKfrpHkDpBb+5tQGAI2Zr116Z6A0LVFKyrvYbvvp75EIaXJPs6oDAAB1ySh1KXHme0qc+Z7ZpcDLeEXYdbmCggKlpqZq6tSpZW1//vOfNWnSJL3++utq2bKlPvzwQ/MKhCXc00Ua0V5acVD6/S532zsDpYFtJDs/3AkApmnhLy2Mk3aflB79aY3Fp6+Xfh4mhfLjTAAAAI2eV4ZdKSkpKi0tVWxsbFnb9ddfr82bN5tYFawo2F96oNvFsGswP+4FAA2CzSZFtby4/TizuQAAAPATrwy7BgwYIMOobulwAAAAAAAANEZ2swsAAAAAAAAA6gphFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAyvCbuKioo0c+ZMhYWFKSAgQCNGjFBiYqJsNpuWL19udnkA0OC5DGnTUWn+Hum/d0trcqVil9lVAQAk6cdC6ZPvpXm7pUX7pewzZlcEAObretcgjV7+Gz2UHq/7Ev9kdjnwIr5mF1AbhmFo/PjxSkxM1KxZsxQREaElS5Zo7NixkqTY2FiTKwSAhi3jtDRti3Tg7MVvOVySWvpLb/STBrQxszoAaLwMQ1qYKr2fJpUYko/N/eXEn/dJt7SXZsVKAV7xjh0A6l7hqbPa995KNW3TXH2e+LnZ5cCLeMVL58KFC7VixQolJyerT58+kiSHw6Hw8HCFhISoc+fOJlcIAA3X4QLpiW+l/GL39qWTuU4VSf++SVo0RIpqaUp5ANCoLd4v/c/+i9ulxsXLXx+SzpVI7wyUbDbP1wYAZju0PkWS1HnUTSZXAm/jFacxzpkzRxMnTiwLuiTJx8dH4eHhZbO6XnrpJYWHh8tms2nXrl1mlQoADc4nGdLp4vIh1wUuuWcQ/GWfp6sCAOQXS++lVb3fkJRwTErK81hJAABYQoMPu9LS0pSZmalx48ZV2JeTk1MWdt1zzz1av369unTp4ukSAaDBMgxp+QH3B6aquCRtOiYdP++pqgAAkrT2B6mohrUT7TbpiwOeqQcAAKto8Kcx5ubmSpJCQ0PLte/bt0/Z2dllYdeQIUOu6X4cDofs9gaf/cEkUZ+6U4AmTZqaXAlwZWy+/or6JL/Gfoak7tH9dT5rR/0XBdQhjs/wZqH3vabQ8TNkq+Y9aKnL0JIv1urNgaxVA8C6uvu21MvB1/aZHhcNH+5QRsmPZpdRJ/z9/ZWfX/Pnmcs1+HSnVatWkqT09PSyNsMw9Morr8jlcrE4PQBUwygpkqvwXK36lp7hPBkA8KTSM3nVBl2SJFepSs+c8ExBAABYRIOf2RUZGamIiAhNnz5dfn5+CgoK0oIFC5SUlKTAwED16tWrTu7H6XQqLi6uTm4L1nPj5+5/CwsLzS0EuAqzd0jLsytfs0tyf+sR1VLampteRQ+g4eL4DG92/Lx0xxr32olVsfn46oMXH9CQ3z3gucIAwMOOJO7TV3fPqNBus9tl9/ORzddXstnk08RPhmHIVVRiQpXeY906p9r2v97sMkzV4MMuX19fLV26VE899ZQmTZqksLAwTZ06VcHBwcrIyODUQwCowUPdpBU5UrGr8sDLkPRvdfO9AQDgCrRuKt3XVfo0s/L9dkk9mkuDQivfDwBW1/2+mzXkv58r23446xOdyTmqpf2fMbEqeIMGH3ZJUnR0tBISEsq1zZ8/X8OGDTOpIgDwHl2buX+2/sVE6cxlX4L52qQZMXyQAgCz/Ecf6Wyx9M+D7nDr0i8lrm8hzRsg+dhMKg4ATJb+qVPpnzrNLgNeyCunRRUUFCg1NbXcel0vvPCCOnXqpIMHD2rkyJHq06ePiRUCQMPSr7X01W3SjOiLbS/0llbeJv08zLy6AKCx87VLv/6Z9DeH9EC3i+3vDpI+GCqFNDGtNAAAvJZXhl0pKSkqLS0tF3a98847OnjwoEpKSnT48GHt3r3bxAoBoOEJ8JXu6XJx+5EIqQUfogCgQYgIlv4j6uL2gDaSnRldAABcFa84jfFyAwYMkGFUs5InAAAAAAAAGiWvnNkFAAAAAAAAVIawCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWIbXhF1FRUWaOXOmwsLCFBAQoBEjRigxMVE2m03Lly83uzwA18AwpC3HpA/SpL+mSbt+dLcB3irrjPRRhvTefsl5SCpxmV0RAACeU2pI3x6R3k+T4tOl1FNmVwRvZPf31eDfP6Vxm97VQ2nxGrvxHV3/+Gizy4KX8DW7gNowDEPjx49XYmKiZs2apYiICC1ZskRjx46VJMXGxppcIYCrtfek9No26cDZ8u29mktv9ZM6B5lSFnBVThZJv9oufXe0fHuIv/RajDSsnSllAQDgMdtPuF8LDxeUb48JkWb3k9oGmFMXvI/dx0cFR09q9QO/UX72EYX07qJbP5mh88dOKuuLBLPLQwPnFTO7Fi5cqBUrVmjt2rV68skndcstt2jhwoXy8fFRSEiIOnfubHaJAK7C9/nSE99KB89W3Jd2WpqyUTpaUHEf0BCdL5We+U7adLTivh+LpJcSK4ZgAABYya4fpWcTKn//lpLnfm93qsjzdcE7lRQUKul3f1N+1mHJMJS3O0s5q7cqtH+k2aXBC3hF2DVnzhxNnDhRffr0KWvz8fFReHi4YmNjdeLECd1xxx3q1auXbrjhBt177706duyYiRUDqI3/SZUKS6XKzvByGe6A4OMMj5cFXJWVB6X9pysfzxfOyp23m1N0AQDW9ae9Uqmrivd2kg4VSEuzPFwULMPm66O2AyL1495ss0uBF2jwYVdaWpoyMzM1bty4CvtycnIUGxsrm82ml19+Wampqdq5c6e6d++uV1991YRqAdTW6SLpX4cqfzN0gSHpHwfcwRfQ0H2WLdmq2W/IPZtxL+uWAAAs6PA5KfF49e/tJPfrJXA1Br45WcVnCpTx92/MLgVeoMGv2ZWbmytJCg0NLde+b98+ZWdnKzY2ViEhIXI4HGX7Bg4cqAULFlzR/TgcDtntDT77g0miPj0vSWrSpKnJlVhHk47Xq+e8HTX2O1siXRfSRq5zpz1QVePAeK4fkf+TI98WoTX2GzbmFzq9+R/1X1AjwXiG1TCm4a0Cew1S9zecNfY7dLZUTZoE1n9B8CrdfVvq5eAhVe6/adYktenXS6vGz5KruMSDlXmn4cMdyij50ewy6oS/v7/y8/Ov+HoNPt1p1aqVJCk9Pb2szTAMvfLKK3K5XBUWp3e5XFqwYIHGjBnj0ToBXJnSc7Wb3mKUlshVeK6eqwGuXem5kzJqcY5i6VmmdgEArKe27+1cBVf+oRWNW//XH1WHm/tq1f2/VmEe4we10+BndkVGRioiIkLTp0+Xn5+fgoKCtGDBAiUlJSkwMFC9evUq1//5559XUFCQnnvuuSu6H6fTqbi4uLosHRZy4+fufwsLC80txGIe3+BeyLSq6e52SbeE+WrbuUpWsMdVYzzXj4Wp7r/qtPSXjmxZKb8G/1WT92A8w2oY0/BWhiHdt046cObiWpWXs0u6r08Lvcr4xmWOJO7TV3fPqNDe/zePq/2QKK28b5YKT3CmR22tW+dU2/7Xm12GqRp82OXr66ulS5fqqaee0qRJkxQWFqapU6cqODhYGRkZ5U49fOmll5SWlqYvvviCUxIBL/B4T2nq5sr32STZbNLE7h4tCbhq93aRPvleOltcdYA7qYcIugAAlmSzSVN6SjO3V7Ffkq9deiDco2XBi13XqbV6T7lDpeeLdN/md8vaj2zep7UPzTaxMniDBh92SVJ0dLQSEhLKtc2fP1/Dhg0r254+fbq2bdumf/7zn2rSpImnSwRwFYa0lf5fX2lOivsbwEu/BfS1S7N/JvVpaVZ1wJVp3VSaP1B6YZN0qvhiu13u8Gtid+mhbmZVBwBA/RvdSTpSIM3f6w63Ln1v19RHmnuT1LWZWdXB25w9eFwftL/P7DLgpbzy++WCggKlpqaWrde1e/duvfXWW/rhhx80ePBgxcTEaOzYsSZXCaA2xnWVPh/pnuV1wXOR0j9vlUZ0MK0s4Kr0aSl9fqs7xL1gfLj0N4c0tY/7W28AAKzs0R7SZyPKz87/jz7u93YDa/4dFwCoE14xs+tyKSkpKi0tLQu7+vTpU6tFgQE0TO0Cpaevlxbvd28/2sPceoBrcZ2vO8R9K8W9Pe0GU8sBAMDjwoKkf+8jxWe4tx9kWQoAHuaVYdeAAQMItwAAAAAAAFCBV57GCAAAAAAAAFSGsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFiG14RdRUVFmjlzpsLCwhQQEKARI0YoMTFRNptNy5cvN7s8jys1pO+OSn/PlP6ZI50sMrsiAABgRedLpLU/uN9zfP2DVFhqdkXA1XMZUuIx93j+8oB04rzZFQHXJuO0tCzL/Zd+2uxq6t7At6Zo/NY/68H9H2r89r+o/+uPyu7na3ZZ8AJeMUoMw9D48eOVmJioWbNmKSIiQkuWLNHYsWMlSbGxsSZX6Flf/yDN3SUdu+TF2dcm3dtV+mUfyc9rIkwAANBQGYb013Tp/TTpbMnF9iBf6Yle0oRuks1mXn3AlfruqPTWDulQwcU2H5t0Zyfp5Rukpl7xyQhwyz0rzUqSkvLKt8eESLNipU7XmVNXXdv7/kptfT1eJQWFahLSTI6FL6rvC/cq+e1PzS4NDZxXHNIXLlyoFStWKDk5WX369JEkORwOhYeHKyQkRJ07dza5Qs/51w/Sq1srtpcY0qeZ0tECae5NvPkEAADXZsE+6b20iu1nSqT/2i2dL5Ue7+n5uoCrsemoNHWzO8S9VKkhfZHjDsD+OFDy5UtjeIFj56XJG6W8wor7UvKkxzZI8cOkdgGer62undp/8OKGzSbDZahZt/bmFQSv4RWH8zlz5mjixIllQZck+fj4KDw8vGxW1z333KPo6GjFxsZq6NChSk5ONqna+lPikn6/033ZqKKP87C09bjHSgIAABZ0uMA9o6s6C1Mr/6AFNDSG4T4rwjAqfw9tSNpyXFp/2NOVAVfnr2nu46+rkn0uSaeKpA9qOIZ7kxueu0cPpcdrwq73FNKni/Ys/NLskuAFGnzYlZaWpszMTI0bN67CvpycnLKw669//at27NihpKQkvfTSS3r88cc9XWq923RMOlZYddAlSXab9Fm2x0oCAAAW9MWBmvuUGNKKnPqvBbhWKT9K2WdqeA8taRnvoeEFil3S5wcqD7oucEn6Msc9A9cKds7/hz6OeFif3fzvSv1wtQqO/mh2SfACDf40xtzcXElSaGhoufZ9+/YpOzu7LOxq3rx52b5Tp07Jbr+yHM/hcFzxdTyt1ahn1GHyH6rt4zKkf2zYrrfjBnmoqsYh6lP3AmlNmjQ1uRJr43n2DJ5nz+B59gye5/rR6dlFajH0Adl8/KrsY5QUa+Yf3tPkRS94sDLrY0zXvRY3P6iw59+vto9L0vpdmWriuN4zRTUSjOe659uinSL/p+Zk9nyp1LpzhIqPe8e3Et19W+rl4CHV9jmVlqu83dka+scXtOq+WZ4pzEsNH+5QRok1QkF/f3/l5+df8fUafNjVqlUrSVJ6err69+8vyb1g/SuvvCKXy1VucfopU6Zo9erVMgxDK1euNKXe+lR6vub/wIarVK6CKx8IAAAAF7jOn5FUwwKgdvtP/YCGzVVQ8zg1DJdKeQ8NL+AqPFv7vudr39db2P18FMyaXaiFBh92RUZGKiIiQtOnT5efn5+CgoK0YMECJSUlKTAwUL169Srru2jRIklSfHy8pk2bphUrVtT6fpxOp+Li4uq8/rqUVyjdsdp92kBVbHYfvT5hmO6fziIadenGz93/FhbyvNYnnmfP4Hn2DJ5nz+B5rh9bjklPJ1Tfx2b30T9//6KiFr/omaIaCcZ03TtbIt2+qvpTumw2u/5jVF9NfoHnvS4xnuvHM9+512mu6lRGu02KbiltPXHIo3VdiyOJ+/TV3TPKtfk1C1SX0f11YGWiik6fU8vILoqeOk4/OHeYVKX3WLfOqbb9G/dM1YZ93p4kX19fLV26VO3bt9ekSZM0depUjR49WsOGDVPfvn0rPfXw4Ycf1rp163TixAkTKq4/IU2kMdX88KTdJrX0l+7o5LmaAACA9dzYWurVvOo3ina5f96+TwsPFgVcpet8pV+EV73f/lOfexrPD7zDyz0SUcOaXYY0qYfHyqk/hqFu427WuE3v6qH0eI14/2Ud/FeSNr+22OzK4AUa/MwuSYqOjlZCQvmvF+fPn69hw4ZJks6cOaMff/xRYWFhkqQvvvhCISEhCgkJ8Xit9e3FKOnoeWnjEXe45bpkllewnzR/kBRU9fIaAAAANbLZpHkDpKe/k7IuOQPMLvcHrO7B0u9ucvcDvMHT10uHCqTVuRXfQwf4Su8MlFqxrBS8xMBQ6dW+0pwU9/aF4XzhkPxilDSkrRmV1a3iMwVa/YvXzS4DXsorwq7LFRQUKDU1VVOnTpUknT17VuPHj9fZs2fl4+OjkJAQffHFF7JZ8B1YEx/pv/pLicfcvxjz9U8zU1+Kku4Mk5oRdAEAgDrQpqn08TDpXz9Iv0pytw1oI/28szSiveTX4M8PAC7ytUuzfybd28X9y+Wr3L+BpX/vLd3VWWrhb259wJW6r6t0U2vp/7KkJd+72x7oJo3rInVtZmZlQMPglWFXSkqKSktLyxanb9u2rTZt2mRyVZ5jt7nT/IGhF8+Df6CbuTUBAADraeIj3RF2Mez6Iz/2DC9ms7lP0b2x9cWw6+EIc2sCrkWXIOk/oi6GXS9GmVsP0JB4Zdg1YMAAGUY1q7QDAAAAAACgUWICOgAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAA0KkPmPasBsyebXUalHkqPV0hUuNlleDVfswsAAAAAAAC4Wu0G91HMi/erVd9ukqQTKd8r+fef6nDCbpMrc4t58X61iu6ufz3yVq36fxzxcD1XZH3M7ALgNZxOp8LDw+VwODRp0qQK+2fPnq20tLQqr79x40YNHDhQgwcP1ttvv11pn+eff15Dhw7Vm2++qcTERMXFxWnw4MGaMWOGJGnv3r2aM2dO3TwgALCIaz0+S+WPv1WZN2+eRo4cqaysLLVv314Oh0OPPPJIpX0kjtkA0Bh0GtlPty6ZoZy12/Tpz57Upz97Ujlrt+nWT2ao0y0/q/Q6Np+6i0Jsvj51dluoO4RdALzK5MmT5XQ61bx5cyUkJJS1u1wupaSkqEePHlVet1u3blq/fr2+++47ffnllzp37ly5/Vu3bpWvr682bNig7du3q0uXLvr222/13XffKSEhQadPn1ZkZKS2b98uwzDq7TECgDe6luPz5cffI0eOVOhTXFys5OTksu0777xTTqdTH374YZV9OGYDgPUNeONxpf/dqd0LPldx/jkV55/T7gWfK2PpN+r/xuOSpPsS/6S+U8fpjs9na+L3H6t1dHdJkt91TeVY+KIeSovXPd/8QR0c0TXeX7tBffRQerx6Thyp+7Ys0Ji1v5cktb+5r36+ao4eTP2rxvzrbXUedZMkqfOom3TDC2PVcXiMHkqP10Pp8bL7V3+S3aOHlqpVdHfZfOx6cP+HatErzH3fg/vo0UNL1eXngyRJAaEt9MiBv8kvKODqnjwLI+wC4JWioqKUm5tbtr1jxw717Nmz2ut06NBB/v7+kiQfHx/Z7eUPgZs3b9aIESMkScOGDdO2bdskSaWlperQoYMCAwMluUOz3bsbxpRoAGhorub4XNXx91Lx8fGaMGFC2faqVas0dOhQffzxx1X2kThmA4CVBXfvoGZd2irzH99W2Pf9ZxsV3LWdgru1lyRFjHfo2xf/pI8jHtaJXZmSpPB7huj7zzZoyfWTlPLHzzTivZcV2C6kxvv1DWii1jER+sfNU/Xl6FfUrGs7jfzrq9o1/x/6pPdj2jb7Iw1b8EuF9OmqAyu3aOc7nyl3XbI+jnhYH0c8LFdRSa0en1Hq0pHNe9V+yA2SpPZDb9DpzENqPyTKvT3kBp1I+V7FZwpqdXuNCWEXAK+UkJCgiIiIsu20tDR17dq1Vtdds2aNunfvrqZNm5ZrP3nypIKDgyVJzZo108mTJ7VkyRJFRkaqRYsW8vV1fwPTpUsX7d+/v24eCABYzNUcnys7/l7K5XJp1apVuv322yVJ7du3V2pqqlavXq2//OUvOnHiRIU+F3DMBgDrahrSTJJUcCSvwr6Coz+6+7Ryv76kxq/RqbRcGS5XWdh0eNMeHfgqUUapS98vXa8f92Sr612Darxfm92ubW9+rJKCQpUWFCn87sE6snmvsr5IkFHqUu7XSTqwequ6jx92zY/x8MZd5cKt5N9/WhZ+tYuL0qFvd13zfVgRYRcAr7J48WI5HA517NhRMTExlfbZs2ePHA5Hub/f/va3kqSDBw/qrbfeqnTNrhYtWuj06dOSpPz8fLVo0UIPPvig9u3bpx9++EE7d+6st8cFAN7uWo7PlR1/L7Vs2TKNGTOmbLtJkyYKDAxUQECAhg4dqoyMjAp9AADWdz4vX5IU0LbibKyA0JbuPifcry9nc49V6HP2YPm2MznHajWzq6SgUIU/3bckBbZvpTOX31b2EQW2b1XjbdXk0Madajuwt/yDAxXcrYMy//GtfPx9Fdg+RO2HROnQBj6jVIawC4BXubAmzBtvvFGuvUePHsrKypIk9e7dW06ns9zfq6++qsLCQj366KNasGCBgoKCKtx2//79tW7dOknS+vXr1a9fP0mS3W5Xs2bNymaCZWdnV7v2DAA0RtdyfK7q+HtBamqqPvjgA40aNUrJycmaP3++JMkwDG3dulVhYWEV+ixatEgSx2wAsLLTGT8o/8ARhY8ZXGFf+N2DlX/giE5/f0iSZLgqrt94Xac25baDwtro3OGKs8QuZ7hc5bbPHTqhoAq3Fapzh05U2v9K5O3OkuFyqfe//VxHt+yT4XLp0MZd6vngSAWGttTRLfuu+ratjLALgCVER0crNTW12j5LlizRnj179OSTT8rhcCg3N1eHDx/W3LlzJUk33XSTCgsLNXToUEVHR2v9+vVyOBy6+eab1alTp7IPS+np6YqKiqr3xwQAVlCb4/Plx9+2bduWOz6/9tprWrNmjVauXKmYmBj17NlTN954owYPHqzbbrtN7du3r9BnypQpkjhmA4DVJf7qA0X8Yrj6PHmX/IIC5NcsUL2f/Lki7h+uxJnvV3vddgN7K+y2G2XzsavbvUPVsncXZf1z0xXXkLn8O7UdEKkudw6QzW5Xx+ExCrv9RmUsXS9JKjh+Std1bH3VvwJ5+Lvd6v3EnTq00T2L69C3O9X7iTt1dNt+lRYWX9VtWl31PwEAAA3IhVNeKmO329W3b1+lpaVV+Q3+Y489pscee6xC+7Rp08ouv/vuu+X2jR8/vtz23r171a9fP9lstiusHgCs61qPz1LF42+7du3KHZ8vWLt2rSTptttuq/K2LvThmA0A1pezaovWTnxT0f9xn2Km3S9JOpHyvdZOfLMsHKpK5j82qvv4Ybr53X/X2UMntG7K73XuhxNXXEN+1mF9/fjv9LP/95Di/vCszh48pvXPvaO8nxbCz/oiQd3uGaIHdr0nm82mv/WdXOtF6iXp0Iad6vrzQTq00b0+16GNu+QffB3rdVWDsAuAZcyYMaPe7yMyMlKRkZH1fj8AYCWeOD5XhmM2ADQOhzburDbYWtr/mQptG6e+W0nPmh1O2K2PIx6u0J67Llm565IrvU7RyTNaOe4/a3X7tp9+Mf7SMCz1w9VK/XB12XbBkR/1Qfv7rqDqxofTGAEAAAAAABqAln26yFVcUumC+qg9ZnYBAAAAAAD85G7nHxTUqXWF9pzV27T+mXnXfPsjP35NbQdcX6G9+Mx52f18tO3NJSo6fe6a76cxI+wCAAAAAAD4yXLHL+v19tc+NLtebx+cxggAAAAAAAALIewCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAy/CKsKuoqEgzZ85UWFiYAgICNGLECCUmJspms2n58uVmlwegDhw8e/HysfPm1QEAKK/EdfHy1uNSqWFeLQCAxsmnqb/u/e6Peig93uxS4CUafNhlGIbGjx+vRYsWacaMGfryyy8VHh6usWPHSpJiY2NNrhDAtTh0Tno+QRr7r4ttd66WXt0qnSw0ry4AgLQsS7pzzcXtp76Tfr5G+vKAaSUBABqh2Gm/0JmDx80uA17E1+wCarJw4UKtWLFCycnJ6tOnjyTJ4XAoPDxcISEh6ty5s8kVArhaRwukxzZIeYXSpRMFXJK+/kFKPy29P1Rq5mdWhQDQeP01Tfrj3ortx85Ls5Kls6XSL8I9XhYAoJFp1bebOg6P0ZZff6jhi18yuxx4iQY/s2vOnDmaOHFiWdAlST4+PgoPD68wq+vXv/61bDabdu3a5ekyAVyF/9nvDrpclexzSco6I33yvaerAgAcPy+9u6/6PvN2S6eLPFMPAKBxsvnYNfj3T2nT9EVyFZWYXQ68SIMOu9LS0pSZmalx48ZV2JeTk1Mu7Nq+fbs2bdqkLl26eLJEAFfpXIn0z5zKg65LLc2SDNaHAQCP+iJHctVw7C12SSsOeqYeAEDjFPXM3TqxM1NHNlUy1RioRoM+jTE3N1eSFBoaWq593759ys7OLgu7CgsL9eyzz+qTTz6Rw+G4qvtyOByy2xt09lepqE/dK3k3adLU5Eqsjee57jXp0Es9/zulxn55hVJgy9ZyFeR7oKrGgfHsGTzPnsHzXD86Pfs/ajFkgmy+VZ9HbpQU6/+9/Z4mLXrBg5VZH2PaM3iePYPn2TOs8Dx3922pl4OHlGtr1rWdej1ymz6/dZpJVXmv4cMdyij50ewy6oS/v7/y86/8s2CDDrtatWolSUpPT1f//v0luResf+WVV+RyucrCrl/96leaOHGiunbtalapAK6Qq6igVv0MwyWjmJ9nBABPchWdl2y26jvZbHIVnvNMQQCARqdt/+sV0Lq57v32HUmS3ddHftcF6IHd72nd5LnM9kK1GnTYFRkZqYiICE2fPl1+fn4KCgrSggULlJSUpMDAQPXq1UsJCQnaunWrfvvb317TfTmdTsXFxdVR5Z5z4+fufwsL+dm6+sTzXPcMQ/qFU8rML784/aXskgaE2rXt7BkPVmZ9jGfP4Hn2DJ7n+vHtEenfN1ffx+bjq8/m/FI/W/RLzxTVSDCmPYPn2TN4nj3DCs/zkcR9+uruGeXaMr/4Tj9suHgmSJt+vTTkv5/V5yNf0vkTpz1doldZt86ptv2vN7sMUzXo8/Z8fX21dOlStW/fXpMmTdLUqVM1evRoDRs2TH379pXdbtc333yjvXv3Kjw8XF27dtXBgwd1++23a/Xq1WaXD6AaNpv0SETVQZfkXs/roe6eqggAcMGgUKlrUNVvFO2SejWXYkM8WRUAoDEpLSjSuUN5ZX+FJ05LhqFzh/JYrB41atBhlyRFR0crISFB586dU2pqqp5++mklJSWVncL46quv6ocfflBWVpaysrLUqVMnrVq1SrfddpvJlQOoyZ2dpMd6uC9fejC6cPmlKGlg6OXXAgDUN7tN+u8BUmiAe/vCCY0X/u14nfRf/Ws+0xEAgLpyOGG3Po542Owy4CUa9GmMlSkoKFBqaqqmTp1qdikArpHNJj0bKcWFSn/PklLy3G0D2kj3dXXPGgAAmKPjddLfHNKXOe5fzz1RKLVpKt0VJo0Ok67zuneRAACgsfC6tykpKSkqLS0tm9l1uaysLM8WBOCaxbRy/wEAGpYgP+mBbu4/AAAAb+F1YdeAAQNkGNWt8gMAAAAAAIDGqsGv2QUAAAAAAADUFmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAIAJnE6nwsPD5XA4NGnSpAr7Z8+erbS0tBpvZ968eRo5cmSF9ry8PPXr109BQUGSpOLiYt1///1yOByaO3euJGnv3r2aM2fONT4SALCeaz1GX34Mvtzlx+TK+nOMBoCrR9gFAIBJJk+eLKfTqebNmyshIaGs3eVyKSUlRT169Kj2+sXFxUpOTq50X7NmzbRmzRoNHDhQkrRs2TINHjxYTqdT27Zt07FjxxQZGant27fLMIw6e0wAYBXXcoy+/Bh8ucuPyaWlpRX6c4wGgKtH2AUAgMmioqKUm5tbtr1jxw717NmzxuvFx8drwoQJle7z8/NTSEhI2XZmZqZuuOEGSe4PUFu2bJEkdevWTbt3776W8gHA0q7mGH35MfhylR2TK+vPMRoArg5hFwAAJktISFBERETZdlpamrp27VrtdVwul1atWqXbb7+9VvfRq1cvffPNNzIMQxs2bNCpU6ckSV26dNH+/fuvunYAsLqrOUbXpKpj8uU4RgPA1fE1uwAAABqrxYsXa+3atRoyZIhiYmIq7bNnzx4988wz5dpGjRqliIgIjRkzptb3NWbMGK1evVq33nqr2rRpo9DQ0GspHQAs71qO0a+++mq1t80xGQDqF2EXAAAmmTx5smbMmFGhvUePHlq2bJkkqXfv3nI6nRX6zJ49W06nU/Hx8UpOTtaiRYs0ZcqUKu/Lx8dHCxYskGEYmjRpkgYNGiRJys7OVlxcXN08IACwkGs5RtekqmPy5ThGA8DV4TRGAAAamOjoaKWmplbb57XXXtOaNWu0cuVKxcTEaMqUKTp8+HDZLy1K0siRI5WUlKSRI0dq/fr1cjgcuuWWW3TfffcpMDBQkpSenq6oqKh6fTwAYCW1OUZL5Y/Bu3btKneMPnDgQIVj8uX9JY7RAHC1mNkFAIAJHA6HHA5Hpfvsdrv69u2rtLS0Gn+RUZLWrl0rSWrXrp2mTZtWof2Cy2cf7N27V/369ZPNZruy4gHA4uriGH35MVhS2TG6c+fOFY7Jl/fnGA0AV4+wCwCABqiyU2fqWmRkpCIjI+v9fgDAajhGA0DDxmmMAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJbhNWFXUVGRZs6cqbCwMAUEBGjEiBFKTEyUzWbT8uXLzS4PAIAyhaUXLx86Z14dAICKDp69eLnYZV4dAKo3ZN6zejj7Ez2UHl/213F4jNllwUv4ml1AbRiGofHjxysxMVGzZs1SRESElixZorFjx0qSYmNjTa4QAACpxCUt3i/9LfNi25i10oA20n9ESd2amVcbADR2+09Jf9gtbTl+sW3UKunB7tKjPSQfm3m1Aajc/o/WavNri80uA17IK8KuhQsXasWKFUpOTlafPn0kSQ6HQ+Hh4QoJCVHnzp1NrhAA0Ni5DGnGdmntD+XbDUmJx6THNkjvDZG6B5tSHgA0avtOSVM2SkWl5dtPFUsL9kkHzkizYiUbgRcAWIJXnMY4Z84cTZw4sSzokiQfHx+Fh4eXzerq2rWrrr/+esXExCgmJkarVq0yq1wAQCO0/nDFoOsCl6SCUmnuTo+WBAD4yVs73EFXVWct/vOglHi8ip0ATNPt3qGasOd93bN+nvr++72y+XhFhIEGoMHP7EpLS1NmZqbeeeedCvtycnI0bty4su2lS5cqKirKk+UBACBJWpol2W3uGV6VcRnS1hNS9hmpS5BHSwOARm3/KWn3yer72G3S0kz3aecAGoY9i1do62/idT4vX636dtOwP02VTxN/Jf3ub2aXBi/Q4MOu3NxcSVJoaGi59n379ik7O7vO1utyOByy270vJY769LwkqUmTpiZXYm08z7ASxnP9uP5/DsivRdsa+904erxOJ37ugYoaB8YzrIYxXfdaDJ2gsBc+qLaPy5BWJn+vd4ZGeqaoRoLx7BlWeJ67+7bUy8FDyrXl7by4COqJHRlK+v3/KvalXxB21cLw4Q5llPxodhl1wt/fX/n5+Vd8vQaf7rRq1UqSlJ6eXtZmGIZeeeUVuVyucmHXQw89pL59++qZZ57RyZMnPV0qAKARM4oLa9evpLieKwEAXMpV6+Nz7foBMInLkFhXD7XU4Gd2RUZGKiIiQtOnT5efn5+CgoK0YMECJSUlKTAwUL169ZIkbdiwQWFhYSosLNTUqVP13HPP6aOPPqr1/TidTsXFxdXXw6g3N/40OaCwkBfn+sTzDCthPNePOSnS/2VVvR6MJDWxS1nr/6EgP09VZX2MZ1gNY7runSyURq2WSqo4zVxyf35+whGpF3je6xTj2TOs8DwfSdynr+6eUa6t65jByl2XrOL8c2oZ2UXRL45X1pcJJlXoXdatc6pt/+vNLsNUDT7s8vX11dKlS/XUU09p0qRJCgsL09SpUxUcHKyMjIyyUw/DwsIkSU2aNNEzzzyjMWPGmFk2AKCRGR8u/V+23D+/WAmbpLFdRNAFAB7Wool0Z5j0+YHKD9E2ST426d4unq4MQHWuf/R2DZrzhOx+Pio4clIZS79Ryh8/M7sseIkGH3ZJUnR0tBISyie48+fP17BhwyRJZ8+eVUlJiZo3by7DMPS3v/1NMTExJlQKAGisujWTXo+VfpUkybg4w8su9+WbWkvP9zavPgBozF6Kcv9ASHLexeOy5L5st0lv3Sh1us7EAgFUsPLe/zS7BHgxrwi7LldQUKDU1FRNnTpVknTkyBGNGzdOpaWlKi0tVe/evfWnP/3J3CIBAI3OqE5S92bSp1nSukNSkcsdgt3XVRrVUfJt8CtlAoA1BfhKfxokfZXrPuU864zU1C6N6CDdH+4+VgMArMMrw66UlBSVlpaWLU7frVs3JSUlmVwVAABSj+bSa9HuPwBAw+HvI93d2f0HALA2rwy7BgwYIMOoZoVJAAAAAAAANEqcUAEAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAADAgpxOp8LDw+VwODRp0qQK++Pj47V27VqlpqYqLi5OQ4cO1S9/+csK/Xbs2KG4uDgNHz5cOTk5Ze2HDx9WQECADh48KEl67LHHZBhG/T0goJYIuwAAAAAAsKjJkyfL6XSqefPmSkhIKLfviy++0C233KLWrVtr1apV2rBhg44fP679+/eX6/f666/rs88+07x58zRnzpyy9j/+8Y8aMGBA2faAAQO0bt26+n1AQC0QdgF1oKZvTGbPnq20tLQqr79x40YNHDhQgwcP1ttvv11pn+eff15Dhw7Vm2++qcTERMXFxWnw4MGaMWOGJGnv3r3lXniAq3Wt4/mCefPmaeTIkRXa8/Ly1K9fPwUFBUmSiouLdf/998vhcGju3LmSGM8AAAB1LSoqSrm5uWXbeXl5atq0qWw2m1q1alX23szHx0c2m63cdc+ePavQ0FBFR0crPT1dknTy5EkdP35cXbt2Les3fPhwrVixov4fDFADwi6gjlT1jYnL5VJKSop69OhR5XW7deum9evX67vvvtOXX36pc+fOldu/detW+fr6asOGDdq+fbu6dOmib7/9Vt99950SEhJ0+vRpRUZGavv27UwbRp24lvEsuQOs5OTkSvc1a9ZMa9as0cCBAyVJy5Yt0+DBg+V0OrVt2zYdO3aM8QwAAFDHEhISFBERUbadnp6uLl26lOuze/duHT9+vMJ7PZfLVeHyu+++q6eeeqpcvy5dulSYFQaYgbALqGOXf2OyY8cO9ezZs9rrdOjQQf7+/pLc36TY7eX/19y8ebNGjBghSRo2bJi2bdsmSSotLVWHDh0UGBgoyR2a7d69u84eC3A141lyr/8wYcKESvf5+fkpJCSkbDszM1M33HCDJCkyMlJbtmyRxHgGAACoC4sXL5bD4VDHjh0VExNTZb/Tp0/rueee08KFCyvsu/Tzid1uV0FBgfbs2aPY2Nj6KBm4ZoRdQB27/BuTtLS0clN7q7NmzRp1795dTZs2Ldd+8uRJBQcHS3LPijl58qSWLFmiyMhItWjRQr6+vpL4JgV172rGs8vl0qpVq3T77bfX6j569eqlb775RoZhaMOGDTp16pQkxjMAAEBduDBj/4033ijXHhERoezsbEmSYRh6/PHH9frrr6tDhw4VbiMwMFDHjh1TSkqKIiIilJWVpYyMDI0aNUpr1qzRs88+K0nKzs6u8QwAwBN8zS4AsIrFixdr7dq1GjJkSJXfmOzZs0fPPPNMubZRo0bp1Vdf1cGDB/XWW2/p888/r3C9Fi1a6PTp05Kk/Px8de/eXXfccYceeOABjR8/Xjt37iybGQPUhWsZzxERERozZkyt72vMmDFavXq1br31VrVp00ahoaHXUjoAAABqISQkpGz5FKfTqa+//lrHjx+XJL399tvq2LGj4uPjNW3aNM2cOVP33HOP/Pz89OGHH6pz587atGmTJOnRRx8tC9LWrVun0aNHm/OAgEsQdgF1ZPLkyWWLxV+qR48eWrZsmSSpd+/ecjqdFfoUFhbq0Ucf1YIFC8oWhrxU//799cknn+iuu+7S+vXrdf/990tyTyFu1qxZ2Uyw7OxsxcXF1eGjQmN1LeN59uzZcjqdio+PV3JyshYtWqQpU6ZUeV8+Pj5asGCBDMPQpEmTNGjQIEmMZwAAgGvlcDjkcDiq3D9mzBitXbtWI0eOVF5eXoX906ZNkyTFxsbq22+/rfQ2Pvjgg7LLmzdv1hNPPHFNNQN1gdMYgXoWHR2t1NTUavssWbJEe/bs0ZNPPimHw6Hc3FwdPny47JfpbrrpJhUWFmro0KGKjo7W+vXr5XA4dPPNN6tTp05lU4XT09MVFRVV748JjVdtxvNrr72mNWvWaOXKlYqJidGUKVPKjWdJGjlypJKSkjRy5Miy8XzLLbfovvvuK1uDjvEMAABQvx555JFKfz37ar3//vsV1h8GzMDMLqAOVPeNid1uV9++fZWWllbl+euPPfaYHnvssQrtF75Jkdy/dnKp8ePHl9veu3ev+vXrV+FngoErda3j+VJr166VJLVr167ceL7QfsHlM8QYzwAAAACuFmEX4AGVnQ5W1yIjIxUZGVnv9wMwngEAAAA0ZMwvBAAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMrwm7ioqKNHPmTIWFhSkgIEAjRoxQYmKibDabli9fbnZ5sLBTRRcvl7jMqwOoC0WlFy+fLTGvDgAAAFy785e8tzvPezugjK/ZBdSGYRgaP368EhMTNWvWLEVERGjJkiUaO3asJCk2NtbkCmFFhwukP+2VVudebLtrjTShuzSxu2S3mVcbcKWKSqXFadLfMy+23bZS+nmY9Eyk1NzfvNoAAABwZQpKpL+kSp9lX2y7bZV0dxfp6eulQK/4pF87nW75mWJfeUDB3Tuo5EyBdv35C+1e8LnZZaGB84r/BRYuXKgVK1YoOTlZffr0kSQ5HA6Fh4crJCREnTt3NrlCWM3hc9KkDdKPhdKlk7mOFUrv7JHST0u/jpVsBF7wAiUu6ZeJ0uZj5dsLXdKybGnrCem9IQReAAAA3uB8ifT0d9Luk5JxSfu5Uulv30vJJ6S/xFkj8OowLFqD5j6pjS/M1+GE3fINaKLrOrY2uyx4Aa84jXHOnDmaOHFiWdAlST4+PgoPDy+b1XX+/Hk9/fTT6tGjh2644QY98cQTZpULC/j9ropB16VWHJS+OezRkoCr9ll2xaDrAkPSgTPSn/d5tCQAAABcpY++l3adLB90XWBI2ndK+jDdw0XVk9iXH1DKvP/ToY07ZZS6VHymQCdTc8wuC16gwYddaWlpyszM1Lhx4yrsy8nJKQu7Xn75ZTVt2lT79+/Xzp079Zvf/MbTpcIijha4g6zqluey26S/Z3mqIuDafJopVTcJ0ZD0RY57OjwAAAAarlJDWppZfR9D0v9lef96w74BTdQ6prsC2rTQ2A3/rV+kLNKID15RUFio2aXBCzT4iY25ue4Fk0JDyw/offv2KTs7W7GxsTpz5ow+/PBDHTx4ULafzitr27btFd2Pw+GQ3d7gs78Koj49L0lq0qSpyZVYR1DM7Qp/rfpzwF2G9O33eWriaO+hqoCr5OOrG/52tsZu50uldpH9dP7ALg8UBdQdXgdhNYxpWAnjue75Ng9V5KKaZzb9WCQ179hNJXm5NfZtCLr7ttTLwUPKtfm3uE42u11d7hygNRPeUMGJU+r/+mMavniavrhtmkmVeofhwx3KKPnR7DLqhL+/v/Lz86/4eg0+3WnVqpUkKT394jxMwzD0yiuvyOVyKTY2VhkZGWrVqpV+/etf68Ybb5TD4dDGjRvNKhnezlXL6S2u0pr7AGYzXDKM2n2tZzCmAQAAGjSj9Aqm4nv5e7viM+6wdM+iFTpz8JhKC4q0/a0lanVDOOt2oUYNfmZXZGSkIiIiNH36dPn5+SkoKEgLFixQUlKSAgMD1atXLyUnJ+v7779XbGys5s6dq82bN+uuu+5Senq6goODa3U/TqdTcXFx9fxo6t6NP01AKiwsNLcQCzlTLN2+yr14d1Xsksb0aaNknnd4gSe/lZJOVH9qbusm0qa0ZPk2+K9AgPJ4HYTVMKZhJYznumcY0gSnlJFf+Zpdknv5ii5B0pbD2V7zg1pHEvfpq7tnlGsrzj+nMzlH3Q8aV2TdOqfa9r/e7DJM1eA/1vj6+mrp0qVq3769Jk2apKlTp2r06NEaNmyY+vbtK7vdrs6dO8vX11cTJkyQJA0YMECtW7fW/v37Ta4e3ijIz/2TvdW9Lrgk3R/uqYqAazOhW/VBlyT9opsIugAAABo4m016sHvVQZfk3jehmzV+OT71w9WKnHKnAju0kk8TP8W+/ICO78jQ2dzjZpeGBq7Bz+ySpOjoaCUkJJRrmz9/voYNGyZJat26tYYPH641a9botttu0/79+3X06FFFRESYUS4s4IVIaf8pKTnPHXpdeDGx29zrdb0UJUW1NLNCoPYc7aVHI6QP0t3fcFwIvi5cdrSTHu5uXn0AAACovbvCpJ0/un9xu7L3dneFSWO7mFdfXdr57nL5Nw/SmNW/k2x2HU3cp3WT55pdFryAV4RdlysoKFBqaqqmTp1a1vbnP/9Zjz/+uF588UX5+fkpPj5eLVq0MK1GeLemvtK7g6TlB9y/ZJd9RvKxSUPaSg90k27kFHF4med6S31DpP/NlLYed4e2PZu7ZyjeGeYe3wAAAGj4bDZpel+pf2v3e7uUPHd7VEv3bP3bOlhjVpckyTC0bfZH2jb7I7MrgZfxyrArJSVFpaWlio2NLWvr1q2bnE6neUXBcpr4uIOA+8PdwYBNFnrRQKN0czv3n2G4ZyvaGc8AAABeyWaTbu3o/ruwpBWfVYCLvDLsGjBggAwWqYMHEQrASmy26tekAwAAgPcg5AIqYjliAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGUQdgEAAAAAAMAyCLsAAAAAAABgGYRdAAAAAAAAsAzCLgAAAAAAAFgGYZeFOZ1OhYeHy+FwaNKkSRX2x8fHa+3atUpNTVVcXJyGDh2qX/7ylxX67dixQ3FxcRo+fLhycnIkScOHD5fD4ZDD4dCePXtUUlKiKVOm1PtjAgAAAOD96vOziiQdPnxYAQEBOnjwoCTpsccek2EY9feAADQohF0WN3nyZDmdTjVv3lwJCQnl9n3xxRe65ZZb1Lp1a61atUobNmzQ8ePHtX///nL9Xn/9dX322WeaN2+e5syZI0ny8fGR0+mU0+lU79695evrqzZt2igjI8Njjw0AAACA96qvzyqS9Mc//lEDBgwo2x4wYIDWrVtXvw8IQINB2NVIREVFKTc3t2w7Ly9PTZs2lc1mU6tWrRQUFCTJHWLZbLZy1z179qxCQ0MVHR2t9PR0SZJhGHI4HJoyZYrOnz8vSXI4HPrqq6889IgAAKhZTTMHZs+erbS0tGpv4/nnn9fQoUP15ptvVtln3rx5GjlypLKystS+fXs5HA498sgjlfaRpL1795b7UAbUxrWO57y8PPXr16/sfd/liouLdf/998vhcGju3LmV9mfsoj7U9WeVkydP6vjx4+ratWtZv+HDh2vFihX1/2AANAiEXY1EQkKCIiIiyrbT09PVpUuXcn12796t48ePq0ePHuXaXS5XhctLly6V0+lUZGSkFi9eLEnq0qVLhW9aAAAwW1UzB1wul1JSUiq87l1q69at8vX11YYNG7R9+3YdOXKkQp/i4mIlJyeXbd95551yOp368MMPq+wTGRmp7du3c0oNrti1jOdmzZppzZo1GjhwYKX7ly1bpsGDB8vpdGrbtm0qLS2t0J+xi/pQ159V3n33XT311FPl+vFZBWhcCLssbvHixXI4HOrYsaNiYmKq7Hf69Gk999xzWrhwYYV9dru9wuWWLVtKksaMGaPdu3fXbdEAANSDy2cO7NixQz179qz2Ops3b9aIESMkScOGDdO2bdsq9ImPj9eECRPKtletWqWhQ4fq448/rrKPJHXr1o3XUFy1qxnPfn5+CgkJqXJ/ZmambrjhBknuUGvLli2V9mfsoq7Ux2eVgoIC7dmzR7GxsfVRMgAvQdhlcRe+/XvjjTfKtUdERCg7O1uS+5TExx9/XK+//ro6dOhQ4TYCAwN17NgxpaSklH3jkp+fL8n9LUx4eLgkKTs7u9pvEwEAMNPlMwfS0tLKneJSmZMnTyo4OFiSe1bMyZMny+13uVxatWqVbr/9dklS+/btlZqaqtWrV+svf/mLTpw4UaHPBcwywLW4mvFck169eumbb76RYRjasGGDTp06VWk/xi7qSn18VsnKylJGRoZGjRqlNWvW6Nlnn5XEZxWgsfE1uwCYIyQkROfOnZPkXv/h66+/1vHjxyVJb7/9tjp27Kj4+HhNmzZNM2fO1D333CM/P7+yUzJGjhwpf39/tWjRQh999FHZ7UyePNmcBwQAQBUWL16stWvXasiQIVXOHNizZ4+eeeaZcm2jRo1SixYtdPr0aUnuL3q6d+9ers+yZcs0ZsyYsu0mTZqUXR46dKgyMjJ04MCBcn2Aa3Et4/nVV1+t9rbHjBmj1atX69Zbb1WbNm0UGhpaV2UDV+RaPqt07txZmzZtkiQ9+uijZUHaunXrNHr0aHMeEACPI+yyMIfDIYfDUeX+MWPGaO3atRo5cqTy8vIq7J82bZokKTY2Vt9++225fZs3by63XVJSoqNHj5b7hhEAgIZg8uTJmjFjRoX2Hj16aNmyZZKk3r17y+l0VuizZcsWffLJJ7rrrru0fv163X///eX2p6amyul0Kj4+XsnJyZo/f76ee+45GYahrVu36rnnntOaNWvK9Vm0aJGmTJmi7OxsxcXF1ctjhnVdy3iuiY+PjxYsWCDDMDRp0iQNGjSo0n6MXdSF+vyscsEHH3xQdnnz5s164oknrqlmAN6D0xgbsUceeaTsV6Gula+vb9lC9QAAeIPo6GilpqZW2+emm25SYWGhhg4dqujoaLVt21aHDx/W3LlzJUmvvfaa1qxZo5UrVyomJkY9e/bUjTfeqMGDB+u2225T+/btK/SZMmWKJPcCzFFRUfX+ONE41GY8S+7Z+UlJSRo5cqR27dpVbjwfOHBADodDt9xyi+677z4FBgZW6C8xduEZdflZRZLef//9cut7AbA2ZnYBAADLqm7mgN1uV9++fZWWllbtOi7vvvtuue127dqVzSi41Nq1ayVJt912W5W3daHP3r171a9fP9lstpoeAlCmLsbzhTF4qQvjuXPnzhVmhF3en7ELAPAGhF0AAKDRqux0ME+IjIxUZGSkKfcN6/LEeGbsAgC8AfM4AQAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACzDa8KuoqIizZw5U2FhYQoICNCIESOUmJgom82m5cuXm12eKc6WmF0BAAANw5lisysArh3jGFZSVHrxssswrw4AjZOv2QXUhmEYGj9+vBITEzVr1ixFRERoyZIlGjt2rCQpNjbW5Ao96+BZafF+aWXuxbZH10uP9pAc7c2rCwAAT9lwWHo/7eL2yJXSrR2lf+spdQ4yry7ganyfLy1Klf516GLbExulx3tKA0PNqwu4GmeK3Z9VPsu+2Db2X9KD3aXxXSW7zbTS4GUeSo8vt+3j76eTabn6/JYXTaoI3sQrwq6FCxdqxYoVSk5OVp8+fSRJDodD4eHhCgkJUefOnU2u0HMy86XJG90vIq5L2veclF7aIv2yj/RQd7OqAwCg/v09U5qzs/z09BJDWpXrDsEWDZEigk0rD7gie05KT34rFZaWf2+XnCc9v0n6VYx0V+N5qwsvl1/s/qySmS9dOpnrh3PS3J3Snh+l/4wl8ELtfBzxcLntMf96W5nLvzWpGngbrziNcc6cOZo4cWJZ0CVJPj4+Cg8PV2xsrLKyshQTE1P217VrV4WEhJhYcf35zyTpTEn5N0PSxe0/7Jay8j1dFQAAnnHwrPS7ne7LFV4LDelcifTaNsnglBl4AZchTd9aMeiS3NuGpN/skI6dN6E44Cq8u7di0CVd3P7nQWnND56uClbQOiZCLXp2Uvr/rjO7FHiJBh92paWlKTMzU+PGjauwLycnR7GxseratauSk5PL/u655x49+OCDJlRbv/aedH/7V9057zZJ/5dd9X4AALzZshpe41ySMvKllB89Ug5wTRKPSQfPVQy6LuUypH/w3g5e4Eyx9MWBikHXpeySPs30VEWwkh4PjlDu10kqOMILPGqnwZ/GmJvrXpgqNLT8ggX79u1TdnZ2hfW6ioqK9PHHH2vVqlVXdD8Oh0N2e8PO/kJue1Id/+2davsYkhavStT0fkM9UxQAAB4UPmuNgvrcXGO/0VOm6cQ/q3/NBMzW5t5X1faB/5TNVvV7UMPl0txPVum5t+7xXGHAVQjo0V8Rb26oto9LUvLRIjVp0swzRcFrdPdtqZeDh1S6zzegicLvjtOGF+Z7uCrvNXy4Qxkl1ggG/f39lZ9/5aevNex0R1KrVq0kSenp6WVthmHolVdekcvlqhB2ff755+rYsaN+9rOfebROjzCq+97v0n6cuwEAsCjDJaM2r3O8FsIb8N4OVlLL8cxwxpXqetcglRQU6eDabWaXAi9iM2r1jtE8JSUlioyMVHFxsebOnaugoCAtWLBASUlJysvLU35+frkZWXfccYdGjRqlF154oVa3f/r0ae3cuVM33HCDgoMb9mq2GaelXzir72OTNClCeq63JyoCAMCz/rJPWrS/+tNkJOmjm6XrW3iiIuDqJZ+QptRireUXekuPRNR/PcC1OF8i3b5aOltSdR+7TbqptfTuIM/VBe9wJHGfvrp7RqX7Ri//jY5u3qdtb37s4aq81+jlb6ht/+vNLsNUDX5ml6+vr5YuXar27dtr0qRJmjp1qkaPHq1hw4apb9++5YKu3NxcffPNN3rooYdqffvBwcGKi4tr8EGXJHUPln7Wqvr/aDZJY7t4qiIAADxrbJfqf8XLLimqBUEXvEN0iNS9WdVj2ibJ3y6NCfNoWcBVaerrPkZX90OLLkO6P9xjJcECgrt3UOiNvbT/k3+ZXQq8TIMPuyQpOjpaCQkJOnfunFJTU/X0008rKSmpwimMf/3rX3XnnXeWnfpoRa/HSq2bVnwRscvd9qsYqeN1nq8LAABPCA2Qfh3rft27PCCwSWrZRHqjnxmVAVfOZpPm3CgF+1Xy3s7m/nuzn9SiiSnlAVfsqV7SDS0rtl/40PlQN+nmth4tCV6ux4QROrJ5r/IzD5tdCrxMg1+gvjIFBQVKTU3V1KlTy7V/8MEHeucday9G2y5Qir9Z+ihD+ixbOlPifnMU11Z6OMI98wsAACsb1UlqHyjFp0vfHHaf0nidr3R3Z/drYZumZlcI1F7XZu7TbuMzpM8PSAWl7pBrRDtpYoQUVUlwADRUTX2lPw2W/vd76e9Z0uECd3vvltKD3aRbO7hDXqC2tr3xkdklwEs1+DW7KrN582YNHDhQW7Zs0Y033mh2OaYpNaSzxVITH/cfAACNTVGpdL5Uus5P8uEDFLxcicu93lGAj+TPezt4OcNwj2cfmxTglVMs4EnVrdmFK8eaXV46s2vAgAG1+yUmi/OxScH+ZlcBAIB5/AkFYCG+dqk57+1gETabFORndhUAGiuvWLMLAAAAAAAAqA3CLgAAAAAAAFgGYRcAAAAAAAAsg7ALAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMm2EYhtlFAAAAAACAxqko/5x+3HvA7DIso2VkZ/k3CzS7DFMRdgEAAAAAAMAyOI0RAAAAAAAAlkHYBQAAAAAAAMsg7AIAAAAAAIBlEHYBAAAAAADAMgi7AAAAAAAAYBmEXQAAAAAAALAMwi4AAAAAAABYBmEXAAAAAAAALIOwCwAAAAAAAJZB2AUAAAAAAADLIOwCAAAAAACAZRB2AQAAAAAAwDIIuwAAAAAAAGAZhF0AAAAAAACwDMIuAAAAAAAAWAZhFwAAAAAAACyDsAsAAAAAAACWQdgFAAAAAAAAyyDsAgAAAAAAgGX8f0tN8FHwnxbZAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -776,10 +776,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:05.114735Z", - "iopub.status.busy": "2024-07-23T22:30:05.114333Z", - "iopub.status.idle": "2024-07-23T22:30:05.376244Z", - "shell.execute_reply": "2024-07-23T22:30:05.375653Z" + "iopub.execute_input": "2024-07-26T02:27:57.392417Z", + "iopub.status.busy": "2024-07-26T02:27:57.392218Z", + "iopub.status.idle": "2024-07-26T02:27:57.652820Z", + "shell.execute_reply": "2024-07-26T02:27:57.652221Z" } }, "outputs": [ diff --git a/dev/explanations/state-vectors-and-gates.ipynb b/dev/explanations/state-vectors-and-gates.ipynb index 8a4de8fd6..e13b94db9 100644 --- a/dev/explanations/state-vectors-and-gates.ipynb +++ b/dev/explanations/state-vectors-and-gates.ipynb @@ -26,10 +26,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:07.876318Z", - "iopub.status.busy": "2024-07-23T22:30:07.876131Z", - "iopub.status.idle": "2024-07-23T22:30:08.578038Z", - "shell.execute_reply": "2024-07-23T22:30:08.577435Z" + "iopub.execute_input": "2024-07-26T02:28:00.070414Z", + "iopub.status.busy": "2024-07-26T02:28:00.070211Z", + "iopub.status.idle": "2024-07-26T02:28:00.780391Z", + "shell.execute_reply": "2024-07-26T02:28:00.779754Z" } }, "outputs": [ @@ -74,10 +74,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.580795Z", - "iopub.status.busy": "2024-07-23T22:30:08.580359Z", - "iopub.status.idle": "2024-07-23T22:30:08.587079Z", - "shell.execute_reply": "2024-07-23T22:30:08.586565Z" + "iopub.execute_input": "2024-07-26T02:28:00.783261Z", + "iopub.status.busy": "2024-07-26T02:28:00.782539Z", + "iopub.status.idle": "2024-07-26T02:28:00.789654Z", + "shell.execute_reply": "2024-07-26T02:28:00.789197Z" } }, "outputs": [ @@ -120,10 +120,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.589388Z", - "iopub.status.busy": "2024-07-23T22:30:08.589035Z", - "iopub.status.idle": "2024-07-23T22:30:08.593419Z", - "shell.execute_reply": "2024-07-23T22:30:08.592920Z" + "iopub.execute_input": "2024-07-26T02:28:00.792131Z", + "iopub.status.busy": "2024-07-26T02:28:00.791768Z", + "iopub.status.idle": "2024-07-26T02:28:00.795891Z", + "shell.execute_reply": "2024-07-26T02:28:00.795380Z" } }, "outputs": [ @@ -157,10 +157,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.595784Z", - "iopub.status.busy": "2024-07-23T22:30:08.595429Z", - "iopub.status.idle": "2024-07-23T22:30:08.599404Z", - "shell.execute_reply": "2024-07-23T22:30:08.598893Z" + "iopub.execute_input": "2024-07-26T02:28:00.798146Z", + "iopub.status.busy": "2024-07-26T02:28:00.797812Z", + "iopub.status.idle": "2024-07-26T02:28:00.801877Z", + "shell.execute_reply": "2024-07-26T02:28:00.801327Z" } }, "outputs": [ @@ -199,10 +199,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.601620Z", - "iopub.status.busy": "2024-07-23T22:30:08.601230Z", - "iopub.status.idle": "2024-07-23T22:30:08.607187Z", - "shell.execute_reply": "2024-07-23T22:30:08.606674Z" + "iopub.execute_input": "2024-07-26T02:28:00.804324Z", + "iopub.status.busy": "2024-07-26T02:28:00.803981Z", + "iopub.status.idle": "2024-07-26T02:28:00.809781Z", + "shell.execute_reply": "2024-07-26T02:28:00.809280Z" } }, "outputs": [ @@ -245,10 +245,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.609288Z", - "iopub.status.busy": "2024-07-23T22:30:08.609088Z", - "iopub.status.idle": "2024-07-23T22:30:08.614772Z", - "shell.execute_reply": "2024-07-23T22:30:08.614315Z" + "iopub.execute_input": "2024-07-26T02:28:00.812168Z", + "iopub.status.busy": "2024-07-26T02:28:00.811724Z", + "iopub.status.idle": "2024-07-26T02:28:00.817373Z", + "shell.execute_reply": "2024-07-26T02:28:00.816800Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:08.617092Z", - "iopub.status.busy": "2024-07-23T22:30:08.616656Z", - "iopub.status.idle": "2024-07-23T22:30:08.621788Z", - "shell.execute_reply": "2024-07-23T22:30:08.621187Z" + "iopub.execute_input": "2024-07-26T02:28:00.819712Z", + "iopub.status.busy": "2024-07-26T02:28:00.819385Z", + "iopub.status.idle": "2024-07-26T02:28:00.824255Z", + "shell.execute_reply": "2024-07-26T02:28:00.823711Z" } }, "outputs": [ diff --git a/dev/how-to-guides/entanglement-forging.html b/dev/how-to-guides/entanglement-forging.html index 3e6201718..c1b9aa774 100644 --- a/dev/how-to-guides/entanglement-forging.html +++ b/dev/how-to-guides/entanglement-forging.html @@ -336,7 +336,7 @@

Build a molecule @@ -424,7 +424,7 @@

Compute energy
-Energy at initialialization: -75.67794403659725
+Energy at initialialization: -75.67794403659724
 
@@ -470,10 +470,10 @@

Optimize energy\n", + "Overwritten attributes get_hcore get_ovlp of \n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1284: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable\n", " warnings.warn(msg)\n" ] @@ -123,10 +123,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:11.472782Z", - "iopub.status.busy": "2024-07-23T22:30:11.472319Z", - "iopub.status.idle": "2024-07-23T22:30:11.476782Z", - "shell.execute_reply": "2024-07-23T22:30:11.476322Z" + "iopub.execute_input": "2024-07-26T02:28:03.670248Z", + "iopub.status.busy": "2024-07-26T02:28:03.669571Z", + "iopub.status.idle": "2024-07-26T02:28:03.674922Z", + "shell.execute_reply": "2024-07-26T02:28:03.674460Z" } }, "outputs": [], @@ -166,10 +166,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:11.479397Z", - "iopub.status.busy": "2024-07-23T22:30:11.478878Z", - "iopub.status.idle": "2024-07-23T22:30:11.482346Z", - "shell.execute_reply": "2024-07-23T22:30:11.481890Z" + "iopub.execute_input": "2024-07-26T02:28:03.678148Z", + "iopub.status.busy": "2024-07-26T02:28:03.677178Z", + "iopub.status.idle": "2024-07-26T02:28:03.681119Z", + "shell.execute_reply": "2024-07-26T02:28:03.680682Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:11.484690Z", - "iopub.status.busy": "2024-07-23T22:30:11.484349Z", - "iopub.status.idle": "2024-07-23T22:30:11.617976Z", - "shell.execute_reply": "2024-07-23T22:30:11.617420Z" + "iopub.execute_input": "2024-07-26T02:28:03.683661Z", + "iopub.status.busy": "2024-07-26T02:28:03.683273Z", + "iopub.status.idle": "2024-07-26T02:28:03.808139Z", + "shell.execute_reply": "2024-07-26T02:28:03.807604Z" } }, "outputs": [ @@ -209,7 +209,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialialization: -75.67794403659725\n" + "Energy at initialialization: -75.67794403659724\n" ] } ], @@ -236,10 +236,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:11.620396Z", - "iopub.status.busy": "2024-07-23T22:30:11.620183Z", - "iopub.status.idle": "2024-07-23T22:30:19.790133Z", - "shell.execute_reply": "2024-07-23T22:30:19.789617Z" + "iopub.execute_input": "2024-07-26T02:28:03.810866Z", + "iopub.status.busy": "2024-07-26T02:28:03.810417Z", + "iopub.status.idle": "2024-07-26T02:28:11.720965Z", + "shell.execute_reply": "2024-07-26T02:28:11.720427Z" } }, "outputs": [ @@ -251,10 +251,10 @@ " message: STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT\n", " success: False\n", " status: 1\n", - " fun: -75.68381564670884\n", - " x: [-1.603e-01 6.418e-03 ... 5.747e-02 -1.005e-01]\n", + " fun: -75.68381571652795\n", + " x: [-1.603e-01 6.421e-03 ... 5.747e-02 -1.005e-01]\n", " nit: 3\n", - " jac: [ 2.203e-04 9.948e-05 ... -4.748e-03 7.398e-03]\n", + " jac: [ 2.117e-04 1.094e-04 ... -4.741e-03 7.394e-03]\n", " nfev: 112\n", " njev: 7\n", " hess_inv: <15x15 LbfgsInvHessProduct with dtype=float64>\n" diff --git a/dev/how-to-guides/fermion-operator.html b/dev/how-to-guides/fermion-operator.html index 9fdbb1360..2514c4fd7 100644 --- a/dev/how-to-guides/fermion-operator.html +++ b/dev/how-to-guides/fermion-operator.html @@ -317,8 +317,8 @@

How to use the FermionOperator class
 FermionOperator({
     (cre_a(3), des_a(0)): -0.25,
-    (cre_b(1), des_b(5), cre_a(4)): 1+1j,
-    (cre_a(0), des_a(3)): 0.5
+    (cre_a(0), des_a(3)): 0.5,
+    (cre_b(1), des_b(5), cre_a(4)): 1+1j
 })
 
@@ -337,7 +337,7 @@

How to use the FermionOperator class
-'FermionOperator({((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 0), (False, False, 3)): 0.5+0j})'
+'FermionOperator({((True, False, 3), (False, False, 0)): -0.25+0j, ((True, False, 0), (False, False, 3)): 0.5+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j})'
 

FermionOperators support arithmetic operations. Note that when multiplying a FermionOperator by a scalar, the scalar must go on the left, i.e. 2 * op and not op * 2.

@@ -365,17 +365,17 @@

How to use the FermionOperator class
 FermionOperator({
-    (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,
     (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,
-    (cre_a(3), des_a(0)): -0.5,
-    (cre_a(0), des_a(3)): 1,
-    (cre_b(2)): 0-0.25j,
-    (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,
     (cre_b(1), des_b(5), cre_a(4)): 2+2j,
+    (cre_a(3), des_a(0)): -0.5,
+    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,
+    (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,
     (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,
     (des_a(3), des_b(3)): 0.0625,
+    (cre_a(0), des_a(3)): 1,
     (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,
-    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j
+    (cre_b(2)): 0-0.25j,
+    (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125
 })
 
@@ -404,17 +404,17 @@

How to use the FermionOperator class
 FermionOperator({
-    (cre_a(3), des_a(0), cre_b(2)): -1,
     (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,
-    (cre_a(3), des_a(0)): 0+3j,
-    (cre_a(0), des_a(3)): 0-6j,
-    (cre_b(2)): -5,
-    (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,
     (cre_b(1), des_b(5), cre_a(4)): 12-12j,
+    (cre_a(3), des_a(0)): 0+3j,
+    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,
+    (cre_a(3), des_a(0), cre_b(2)): -1,
     (cre_a(0), des_a(3), cre_b(2)): 2,
     (des_a(3), des_b(3)): 0-1.25j,
+    (cre_a(0), des_a(3)): 0-6j,
     (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,
-    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j
+    (cre_b(2)): -5,
+    (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j
 })
 
@@ -435,15 +435,15 @@

How to use the FermionOperator class
 FermionOperator({
+    (cre_b(2)): -5,
+    (cre_b(2), cre_a(3), des_a(0)): -1,
+    (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,
     (cre_a(3), des_a(0)): 0+3j,
+    (des_b(3), des_a(3)): 0+1.25j,
     (cre_b(1), cre_a(4), des_b(5)): -12+12j,
+    (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,
     (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,
-    (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,
-    (des_b(3), des_a(3)): 0+1.25j,
-    (cre_b(2)): -5,
     (cre_b(2), cre_a(0), des_a(3)): 2,
-    (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,
-    (cre_b(2), cre_a(3), des_a(0)): -1,
     (cre_a(0), des_a(3)): 0-6j
 })
 
@@ -513,11 +513,11 @@

How to use the FermionOperator class
-array([0.        +0.j        , 0.        +0.j        ,
-       0.        +0.j        , 0.        +0.j        ,
-       0.16281661-0.05823675j, 0.        +0.j        ,
-       0.        +0.j        , 0.        +0.j        ,
-       0.        +0.j        ])
+array([ 0.        +0.j        ,  0.        +0.j        ,
+        0.        +0.j        ,  0.        +0.j        ,
+       -0.08987947+0.18917418j,  0.        +0.j        ,
+        0.        +0.j        ,  0.        +0.j        ,
+        0.        +0.j        ])
 

It can also be passed into most linear algebra routines in scipy.sparse.linalg.

diff --git a/dev/how-to-guides/fermion-operator.ipynb b/dev/how-to-guides/fermion-operator.ipynb index 31eb5be42..2e0c2e5d5 100644 --- a/dev/how-to-guides/fermion-operator.ipynb +++ b/dev/how-to-guides/fermion-operator.ipynb @@ -29,10 +29,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:21.294628Z", - "iopub.status.busy": "2024-07-23T22:30:21.294436Z", - "iopub.status.idle": "2024-07-23T22:30:22.003429Z", - "shell.execute_reply": "2024-07-23T22:30:22.002837Z" + "iopub.execute_input": "2024-07-26T02:28:13.251912Z", + "iopub.status.busy": "2024-07-26T02:28:13.251407Z", + "iopub.status.idle": "2024-07-26T02:28:13.961285Z", + "shell.execute_reply": "2024-07-26T02:28:13.960686Z" } }, "outputs": [ @@ -41,8 +41,8 @@ "text/plain": [ "FermionOperator({\n", " (cre_a(3), des_a(0)): -0.25,\n", - " (cre_b(1), des_b(5), cre_a(4)): 1+1j,\n", - " (cre_a(0), des_a(3)): 0.5\n", + " (cre_a(0), des_a(3)): 0.5,\n", + " (cre_b(1), des_b(5), cre_a(4)): 1+1j\n", "})" ] }, @@ -76,17 +76,17 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.006018Z", - "iopub.status.busy": "2024-07-23T22:30:22.005624Z", - "iopub.status.idle": "2024-07-23T22:30:22.009684Z", - "shell.execute_reply": "2024-07-23T22:30:22.009052Z" + "iopub.execute_input": "2024-07-26T02:28:13.963872Z", + "iopub.status.busy": "2024-07-26T02:28:13.963415Z", + "iopub.status.idle": "2024-07-26T02:28:13.967296Z", + "shell.execute_reply": "2024-07-26T02:28:13.966761Z" } }, "outputs": [ { "data": { "text/plain": [ - "'FermionOperator({((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 0), (False, False, 3)): 0.5+0j})'" + "'FermionOperator({((True, False, 3), (False, False, 0)): -0.25+0j, ((True, False, 0), (False, False, 3)): 0.5+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j})'" ] }, "execution_count": 2, @@ -110,10 +110,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.012057Z", - "iopub.status.busy": "2024-07-23T22:30:22.011691Z", - "iopub.status.idle": "2024-07-23T22:30:22.016259Z", - "shell.execute_reply": "2024-07-23T22:30:22.015780Z" + "iopub.execute_input": "2024-07-26T02:28:13.969462Z", + "iopub.status.busy": "2024-07-26T02:28:13.969270Z", + "iopub.status.idle": "2024-07-26T02:28:13.973551Z", + "shell.execute_reply": "2024-07-26T02:28:13.972972Z" } }, "outputs": [ @@ -121,17 +121,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", - " (cre_a(3), des_a(0)): -0.5,\n", - " (cre_a(0), des_a(3)): 1,\n", - " (cre_b(2)): 0-0.25j,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", + " (cre_a(3), des_a(0)): -0.5,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", + " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", " (des_a(3), des_b(3)): 0.0625,\n", + " (cre_a(0), des_a(3)): 1,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j\n", + " (cre_b(2)): 0-0.25j,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125\n", "})" ] }, @@ -170,10 +170,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.018459Z", - "iopub.status.busy": "2024-07-23T22:30:22.018101Z", - "iopub.status.idle": "2024-07-23T22:30:22.022108Z", - "shell.execute_reply": "2024-07-23T22:30:22.021630Z" + "iopub.execute_input": "2024-07-26T02:28:13.975920Z", + "iopub.status.busy": "2024-07-26T02:28:13.975556Z", + "iopub.status.idle": "2024-07-26T02:28:13.979469Z", + "shell.execute_reply": "2024-07-26T02:28:13.978866Z" } }, "outputs": [ @@ -181,17 +181,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(3), des_a(0), cre_b(2)): -1,\n", " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", - " (cre_a(0), des_a(3)): 0-6j,\n", - " (cre_b(2)): -5,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", + " (cre_a(3), des_a(0), cre_b(2)): -1,\n", " (cre_a(0), des_a(3), cre_b(2)): 2,\n", " (des_a(3), des_b(3)): 0-1.25j,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j\n", + " (cre_b(2)): -5,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j\n", "})" ] }, @@ -220,10 +220,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.024318Z", - "iopub.status.busy": "2024-07-23T22:30:22.023961Z", - "iopub.status.idle": "2024-07-23T22:30:22.027846Z", - "shell.execute_reply": "2024-07-23T22:30:22.027367Z" + "iopub.execute_input": "2024-07-26T02:28:13.981898Z", + "iopub.status.busy": "2024-07-26T02:28:13.981503Z", + "iopub.status.idle": "2024-07-26T02:28:13.985220Z", + "shell.execute_reply": "2024-07-26T02:28:13.984710Z" } }, "outputs": [ @@ -231,15 +231,15 @@ "data": { "text/plain": [ "FermionOperator({\n", + " (cre_b(2)): -5,\n", + " (cre_b(2), cre_a(3), des_a(0)): -1,\n", + " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", " (cre_a(3), des_a(0)): 0+3j,\n", + " (des_b(3), des_a(3)): 0+1.25j,\n", " (cre_b(1), cre_a(4), des_b(5)): -12+12j,\n", + " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", - " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", - " (des_b(3), des_a(3)): 0+1.25j,\n", - " (cre_b(2)): -5,\n", " (cre_b(2), cre_a(0), des_a(3)): 2,\n", - " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", - " (cre_b(2), cre_a(3), des_a(0)): -1,\n", " (cre_a(0), des_a(3)): 0-6j\n", "})" ] @@ -265,10 +265,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.030155Z", - "iopub.status.busy": "2024-07-23T22:30:22.029817Z", - "iopub.status.idle": "2024-07-23T22:30:22.033187Z", - "shell.execute_reply": "2024-07-23T22:30:22.032711Z" + "iopub.execute_input": "2024-07-26T02:28:13.987580Z", + "iopub.status.busy": "2024-07-26T02:28:13.987228Z", + "iopub.status.idle": "2024-07-26T02:28:13.990215Z", + "shell.execute_reply": "2024-07-26T02:28:13.989643Z" } }, "outputs": [ @@ -298,10 +298,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.035371Z", - "iopub.status.busy": "2024-07-23T22:30:22.035029Z", - "iopub.status.idle": "2024-07-23T22:30:22.039211Z", - "shell.execute_reply": "2024-07-23T22:30:22.038622Z" + "iopub.execute_input": "2024-07-26T02:28:13.992439Z", + "iopub.status.busy": "2024-07-26T02:28:13.992092Z", + "iopub.status.idle": "2024-07-26T02:28:13.996004Z", + "shell.execute_reply": "2024-07-26T02:28:13.995424Z" } }, "outputs": [ @@ -341,21 +341,21 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.058742Z", - "iopub.status.busy": "2024-07-23T22:30:22.058303Z", - "iopub.status.idle": "2024-07-23T22:30:22.064306Z", - "shell.execute_reply": "2024-07-23T22:30:22.063743Z" + "iopub.execute_input": "2024-07-26T02:28:14.012112Z", + "iopub.status.busy": "2024-07-26T02:28:14.011558Z", + "iopub.status.idle": "2024-07-26T02:28:14.017998Z", + "shell.execute_reply": "2024-07-26T02:28:14.017421Z" } }, "outputs": [ { "data": { "text/plain": [ - "array([0. +0.j , 0. +0.j ,\n", - " 0. +0.j , 0. +0.j ,\n", - " 0.16281661-0.05823675j, 0. +0.j ,\n", - " 0. +0.j , 0. +0.j ,\n", - " 0. +0.j ])" + "array([ 0. +0.j , 0. +0.j ,\n", + " 0. +0.j , 0. +0.j ,\n", + " -0.08987947+0.18917418j, 0. +0.j ,\n", + " 0. +0.j , 0. +0.j ,\n", + " 0. +0.j ])" ] }, "execution_count": 8, @@ -380,10 +380,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:22.066614Z", - "iopub.status.busy": "2024-07-23T22:30:22.066266Z", - "iopub.status.idle": "2024-07-23T22:30:22.076861Z", - "shell.execute_reply": "2024-07-23T22:30:22.076410Z" + "iopub.execute_input": "2024-07-26T02:28:14.020214Z", + "iopub.status.busy": "2024-07-26T02:28:14.020023Z", + "iopub.status.idle": "2024-07-26T02:28:14.031249Z", + "shell.execute_reply": "2024-07-26T02:28:14.030746Z" } }, "outputs": [ diff --git a/dev/how-to-guides/lucj.html b/dev/how-to-guides/lucj.html index e39f06524..c5df0eca7 100644 --- a/dev/how-to-guides/lucj.html +++ b/dev/how-to-guides/lucj.html @@ -331,10 +331,10 @@

How to simulate the local unitary cluster Jastrow (LUCJ) ansatz
-converged SCF energy = -77.8266321248745
-Parsing /tmp/tmpz0beoxj6
-converged SCF energy = -77.8266321248745
-CASCI E = -77.8742165643863  E(CI) = -4.02122442107773  S^2 = 0.0000000
+converged SCF energy = -77.8266321248744
+Parsing /tmp/tmpvt8_j8d0
+converged SCF energy = -77.8266321248744
+CASCI E = -77.8742165643862  E(CI) = -4.02122442107772  S^2 = 0.0000000
 norb = 4
 nelec = (2, 2)
 
@@ -344,7 +344,7 @@

How to simulate the local unitary cluster Jastrow (LUCJ) ansatz
-Overwritten attributes  get_ovlp get_hcore  of <class 'pyscf.scf.hf.RHF'>
+Overwritten attributes  get_hcore get_ovlp  of <class 'pyscf.scf.hf.RHF'>
 /home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1284: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable
   warnings.warn(msg)
 
@@ -387,8 +387,8 @@

General UCJ ansatz
-E(CCSD) = -77.87421536374029  E_corr = -0.04758323886585769
-Energy at initialization: -77.87160024816289
+E(CCSD) = -77.87421536374026  E_corr = -0.04758323886585455
+Energy at initialization: -77.8716002481628
 

To variationally optimize the ansatz, we’ll take advantage of methods for conversion to and from real-valued parameter vectors. In the following code cell, we define an objective function that takes a parameter vector as input and outputs the energy of the associated ansatz state. We then optimize this objective function using scipy.optimize.minimize, with an initial guess obtained from the operator we initialized previously from t2 amplitudes.

@@ -426,10 +426,10 @@

General UCJ ansatz\n", + "Overwritten attributes get_hcore get_ovlp of \n", "/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.12/site-packages/pyscf/gto/mole.py:1284: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable\n", " warnings.warn(msg)\n" ] @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:24.702317Z", - "iopub.status.busy": "2024-07-23T22:30:24.701238Z", - "iopub.status.idle": "2024-07-23T22:30:24.772193Z", - "shell.execute_reply": "2024-07-23T22:30:24.771643Z" + "iopub.execute_input": "2024-07-26T02:28:16.861236Z", + "iopub.status.busy": "2024-07-26T02:28:16.860755Z", + "iopub.status.idle": "2024-07-26T02:28:16.930228Z", + "shell.execute_reply": "2024-07-26T02:28:16.929667Z" } }, "outputs": [ @@ -132,14 +132,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(CCSD) = -77.87421536374029 E_corr = -0.04758323886585769\n" + "E(CCSD) = -77.87421536374026 E_corr = -0.04758323886585455\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialization: -77.87160024816289\n" + "Energy at initialization: -77.8716002481628\n" ] } ], @@ -180,10 +180,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:30:24.775553Z", - "iopub.status.busy": "2024-07-23T22:30:24.775131Z", - "iopub.status.idle": "2024-07-23T22:31:35.553547Z", - "shell.execute_reply": "2024-07-23T22:31:35.552955Z" + "iopub.execute_input": "2024-07-26T02:28:16.933028Z", + "iopub.status.busy": "2024-07-26T02:28:16.932809Z", + "iopub.status.idle": "2024-07-26T02:29:29.616723Z", + "shell.execute_reply": "2024-07-26T02:29:29.616068Z" } }, "outputs": [ @@ -195,10 +195,10 @@ " message: STOP: TOTAL NO. of ITERATIONS REACHED LIMIT\n", " success: False\n", " status: 1\n", - " fun: -77.87387391273364\n", - " x: [-1.153e+00 -3.421e-04 ... 2.640e-04 1.286e-01]\n", + " fun: -77.87387392307558\n", + " x: [-1.153e+00 -2.688e-04 ... 1.579e-04 1.286e-01]\n", " nit: 10\n", - " jac: [ 4.832e-05 2.842e-05 ... 1.847e-05 7.105e-06]\n", + " jac: [-4.832e-05 -2.842e-05 ... 1.421e-05 8.527e-06]\n", " nfev: 949\n", " njev: 13\n", " hess_inv: <72x72 LbfgsInvHessProduct with dtype=float64>\n" @@ -242,10 +242,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:31:35.556779Z", - "iopub.status.busy": "2024-07-23T22:31:35.556260Z", - "iopub.status.idle": "2024-07-23T22:32:00.294511Z", - "shell.execute_reply": "2024-07-23T22:32:00.293843Z" + "iopub.execute_input": "2024-07-26T02:29:29.620036Z", + "iopub.status.busy": "2024-07-26T02:29:29.619737Z", + "iopub.status.idle": "2024-07-26T02:29:53.702473Z", + "shell.execute_reply": "2024-07-26T02:29:53.701826Z" } }, "outputs": [ @@ -257,10 +257,10 @@ " message: CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n", " success: True\n", " status: 0\n", - " fun: -77.87363426385984\n", - " x: [-1.153e+00 -1.065e-04 ... 3.519e-02 2.561e-01]\n", + " fun: -77.87363426271249\n", + " x: [-1.152e+00 -9.220e-05 ... 3.522e-02 2.561e-01]\n", " nit: 5\n", - " jac: [-5.400e-05 5.684e-06 ... 8.527e-06 -1.421e-06]\n", + " jac: [ 2.558e-05 -1.847e-05 ... 2.842e-06 4.263e-06]\n", " nfev: 329\n", " njev: 7\n", " hess_inv: <46x46 LbfgsInvHessProduct with dtype=float64>\n" @@ -305,10 +305,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:00.297658Z", - "iopub.status.busy": "2024-07-23T22:32:00.297420Z", - "iopub.status.idle": "2024-07-23T22:32:13.812026Z", - "shell.execute_reply": "2024-07-23T22:32:13.811400Z" + "iopub.execute_input": "2024-07-26T02:29:53.705778Z", + "iopub.status.busy": "2024-07-26T02:29:53.705338Z", + "iopub.status.idle": "2024-07-26T02:30:11.544785Z", + "shell.execute_reply": "2024-07-26T02:30:11.544146Z" } }, "outputs": [ @@ -319,29 +319,34 @@ "Number of parameters: 46\n", " message: Convergence: Norm of projected gradient <= gtol.\n", " success: True\n", - " fun: -77.87363432121501\n", - " x: [-1.152e+00 -6.643e-05 ... 3.506e-02 2.559e-01]\n", - " nit: 3\n", - " jac: [ 2.682e-07 -1.744e-07 ... -9.060e-08 -1.031e-07]\n", - " nfev: 535\n", - " njev: 4\n", - " nlinop: 351\n", + " fun: -77.87363433452647\n", + " x: [-1.151e+00 -3.666e-04 ... 3.458e-02 2.561e-01]\n", + " nit: 4\n", + " jac: [ 2.547e-06 -7.273e-08 ... 1.303e-07 9.150e-08]\n", + " nfev: 673\n", + " njev: 5\n", + " nlinop: 443\n", "\n", "Iteration 1\n", - " Energy: -77.87363110240167\n", - " Norm of gradient: 0.0014977444274153814\n", - " Regularization hyperparameter: 0.0028719078748818665\n", - " Variation hyperparameter: 0.9994066917073114\n", + " Energy: -77.87362949017803\n", + " Norm of gradient: 0.0017032385482687053\n", + " Regularization hyperparameter: 0.0013279102867002953\n", + " Variation hyperparameter: 0.9872670159807396\n", "Iteration 2\n", - " Energy: -77.87363431632271\n", - " Norm of gradient: 3.99771668928647e-05\n", - " Regularization hyperparameter: 0.0028683282556405307\n", - " Variation hyperparameter: 0.9994067007116887\n", + " Energy: -77.8736342750619\n", + " Norm of gradient: 8.499606167408255e-05\n", + " Regularization hyperparameter: 0.0046215181009085105\n", + " Variation hyperparameter: 0.9877849924912689\n", "Iteration 3\n", - " Energy: -77.87363432121501\n", - " Norm of gradient: 4.89611684282813e-06\n", - " Regularization hyperparameter: 0.0028683282556405307\n", - " Variation hyperparameter: 0.9994067007116887\n" + " Energy: -77.87363433061991\n", + " Norm of gradient: 1.1990422739119957e-05\n", + " Regularization hyperparameter: 0.003930328386391183\n", + " Variation hyperparameter: 0.9876996043582875\n", + "Iteration 4\n", + " Energy: -77.87363433452647\n", + " Norm of gradient: 7.76635632092199e-06\n", + " Regularization hyperparameter: 0.003930441707468886\n", + " Variation hyperparameter: 0.9876996345535829\n" ] } ], diff --git a/dev/how-to-guides/qiskit-circuits.html b/dev/how-to-guides/qiskit-circuits.html index 5bbc5c6db..d4a2aaa4f 100644 --- a/dev/how-to-guides/qiskit-circuits.html +++ b/dev/how-to-guides/qiskit-circuits.html @@ -392,7 +392,7 @@

Prepare Hartree-Fock state
-<qiskit.circuit.instructionset.InstructionSet at 0x7f139673d7e0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f510d4df670>
 
@@ -421,7 +421,7 @@

Prepare Slater determinant
-<qiskit.circuit.instructionset.InstructionSet at 0x7f13966d1e70>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f510ce69210>
 
@@ -448,7 +448,7 @@

Orbital rotation
-<qiskit.circuit.instructionset.InstructionSet at 0x7f13966d1120>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f510d650a00>
 
@@ -470,7 +470,7 @@

Number operator sum evolution
-<qiskit.circuit.instructionset.InstructionSet at 0x7f13f89c7df0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f510e92f3a0>
 
@@ -495,7 +495,7 @@

Diagonal Coulomb evolution
-<qiskit.circuit.instructionset.InstructionSet at 0x7f13967f2920>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f510ce6bfd0>
 
@@ -518,7 +518,7 @@

Spin-balanced unitary cluster Jastrow (UCJ) operator
-<qiskit.circuit.instructionset.InstructionSet at 0x7f13967f0040>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f517c465a20>
 
@@ -541,7 +541,7 @@

Spin-unbalanced unitary cluster Jastrow (UCJ) operator
-<qiskit.circuit.instructionset.InstructionSet at 0x7f13967f2d40>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f510ce864d0>
 
@@ -568,7 +568,7 @@

Trotter simulation of double-factorized Hamiltonian
-<qiskit.circuit.instructionset.InstructionSet at 0x7f1395e71570>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f510ce86e90>
 
diff --git a/dev/how-to-guides/qiskit-circuits.ipynb b/dev/how-to-guides/qiskit-circuits.ipynb index be7b1696b..87008f68c 100644 --- a/dev/how-to-guides/qiskit-circuits.ipynb +++ b/dev/how-to-guides/qiskit-circuits.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:15.386313Z", - "iopub.status.busy": "2024-07-23T22:32:15.385953Z", - "iopub.status.idle": "2024-07-23T22:32:16.066835Z", - "shell.execute_reply": "2024-07-23T22:32:16.066273Z" + "iopub.execute_input": "2024-07-26T02:30:13.105612Z", + "iopub.status.busy": "2024-07-26T02:30:13.105408Z", + "iopub.status.idle": "2024-07-26T02:30:13.799010Z", + "shell.execute_reply": "2024-07-26T02:30:13.798335Z" } }, "outputs": [], @@ -54,10 +54,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.069840Z", - "iopub.status.busy": "2024-07-23T22:32:16.069462Z", - "iopub.status.idle": "2024-07-23T22:32:16.650549Z", - "shell.execute_reply": "2024-07-23T22:32:16.649988Z" + "iopub.execute_input": "2024-07-26T02:30:13.801944Z", + "iopub.status.busy": "2024-07-26T02:30:13.801459Z", + "iopub.status.idle": "2024-07-26T02:30:14.376803Z", + "shell.execute_reply": "2024-07-26T02:30:14.376147Z" } }, "outputs": [ @@ -103,10 +103,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.653328Z", - "iopub.status.busy": "2024-07-23T22:32:16.652718Z", - "iopub.status.idle": "2024-07-23T22:32:16.862997Z", - "shell.execute_reply": "2024-07-23T22:32:16.862493Z" + "iopub.execute_input": "2024-07-26T02:30:14.379742Z", + "iopub.status.busy": "2024-07-26T02:30:14.379071Z", + "iopub.status.idle": "2024-07-26T02:30:14.587465Z", + "shell.execute_reply": "2024-07-26T02:30:14.586855Z" } }, "outputs": [ @@ -160,17 +160,17 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.865475Z", - "iopub.status.busy": "2024-07-23T22:32:16.865066Z", - "iopub.status.idle": "2024-07-23T22:32:16.869263Z", - "shell.execute_reply": "2024-07-23T22:32:16.868657Z" + "iopub.execute_input": "2024-07-26T02:30:14.590119Z", + "iopub.status.busy": "2024-07-26T02:30:14.589743Z", + "iopub.status.idle": "2024-07-26T02:30:14.594084Z", + "shell.execute_reply": "2024-07-26T02:30:14.593496Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -195,17 +195,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.871684Z", - "iopub.status.busy": "2024-07-23T22:32:16.871315Z", - "iopub.status.idle": "2024-07-23T22:32:16.875891Z", - "shell.execute_reply": "2024-07-23T22:32:16.875323Z" + "iopub.execute_input": "2024-07-26T02:30:14.596340Z", + "iopub.status.busy": "2024-07-26T02:30:14.596007Z", + "iopub.status.idle": "2024-07-26T02:30:14.601165Z", + "shell.execute_reply": "2024-07-26T02:30:14.600542Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -242,17 +242,17 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.878072Z", - "iopub.status.busy": "2024-07-23T22:32:16.877882Z", - "iopub.status.idle": "2024-07-23T22:32:16.882568Z", - "shell.execute_reply": "2024-07-23T22:32:16.881979Z" + "iopub.execute_input": "2024-07-26T02:30:14.603599Z", + "iopub.status.busy": "2024-07-26T02:30:14.603258Z", + "iopub.status.idle": "2024-07-26T02:30:14.607629Z", + "shell.execute_reply": "2024-07-26T02:30:14.607164Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -279,17 +279,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.884857Z", - "iopub.status.busy": "2024-07-23T22:32:16.884505Z", - "iopub.status.idle": "2024-07-23T22:32:16.888717Z", - "shell.execute_reply": "2024-07-23T22:32:16.888158Z" + "iopub.execute_input": "2024-07-26T02:30:14.610020Z", + "iopub.status.busy": "2024-07-26T02:30:14.609581Z", + "iopub.status.idle": "2024-07-26T02:30:14.613798Z", + "shell.execute_reply": "2024-07-26T02:30:14.613284Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -315,17 +315,17 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.891073Z", - "iopub.status.busy": "2024-07-23T22:32:16.890722Z", - "iopub.status.idle": "2024-07-23T22:32:16.895208Z", - "shell.execute_reply": "2024-07-23T22:32:16.894615Z" + "iopub.execute_input": "2024-07-26T02:30:14.616078Z", + "iopub.status.busy": "2024-07-26T02:30:14.615712Z", + "iopub.status.idle": "2024-07-26T02:30:14.619953Z", + "shell.execute_reply": "2024-07-26T02:30:14.619425Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -354,17 +354,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.897386Z", - "iopub.status.busy": "2024-07-23T22:32:16.897047Z", - "iopub.status.idle": "2024-07-23T22:32:16.902145Z", - "shell.execute_reply": "2024-07-23T22:32:16.901561Z" + "iopub.execute_input": "2024-07-26T02:30:14.622239Z", + "iopub.status.busy": "2024-07-26T02:30:14.621889Z", + "iopub.status.idle": "2024-07-26T02:30:14.626701Z", + "shell.execute_reply": "2024-07-26T02:30:14.626187Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -391,17 +391,17 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.904481Z", - "iopub.status.busy": "2024-07-23T22:32:16.904024Z", - "iopub.status.idle": "2024-07-23T22:32:16.909576Z", - "shell.execute_reply": "2024-07-23T22:32:16.908973Z" + "iopub.execute_input": "2024-07-26T02:30:14.628993Z", + "iopub.status.busy": "2024-07-26T02:30:14.628653Z", + "iopub.status.idle": "2024-07-26T02:30:14.633769Z", + "shell.execute_reply": "2024-07-26T02:30:14.633234Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 10, @@ -428,17 +428,17 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:16.911801Z", - "iopub.status.busy": "2024-07-23T22:32:16.911477Z", - "iopub.status.idle": "2024-07-23T22:32:16.917232Z", - "shell.execute_reply": "2024-07-23T22:32:16.916663Z" + "iopub.execute_input": "2024-07-26T02:30:14.636233Z", + "iopub.status.busy": "2024-07-26T02:30:14.635875Z", + "iopub.status.idle": "2024-07-26T02:30:14.641564Z", + "shell.execute_reply": "2024-07-26T02:30:14.640963Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 11, diff --git a/dev/how-to-guides/qiskit-sampler.html b/dev/how-to-guides/qiskit-sampler.html index 84f30c55a..4778ac296 100644 --- a/dev/how-to-guides/qiskit-sampler.html +++ b/dev/how-to-guides/qiskit-sampler.html @@ -457,10 +457,10 @@

Sampling from an LUCJ circuit for a closed-shell molecule
-converged SCF energy = -108.835236570775
+converged SCF energy = -108.835236570774
 norb = 14
 nelec = (3, 3)
-E(CCSD) = -108.9630419334855  E_corr = -0.1278053627110065
+E(CCSD) = -108.9630419334854  E_corr = -0.1278053627110061
 
diff --git a/dev/how-to-guides/qiskit-sampler.ipynb b/dev/how-to-guides/qiskit-sampler.ipynb index 23b5c4e3d..d3948b6df 100644 --- a/dev/how-to-guides/qiskit-sampler.ipynb +++ b/dev/how-to-guides/qiskit-sampler.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:18.773681Z", - "iopub.status.busy": "2024-07-23T22:32:18.773119Z", - "iopub.status.idle": "2024-07-23T22:32:19.462158Z", - "shell.execute_reply": "2024-07-23T22:32:19.461618Z" + "iopub.execute_input": "2024-07-26T02:30:16.706593Z", + "iopub.status.busy": "2024-07-26T02:30:16.706395Z", + "iopub.status.idle": "2024-07-26T02:30:17.395098Z", + "shell.execute_reply": "2024-07-26T02:30:17.394426Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:19.466278Z", - "iopub.status.busy": "2024-07-23T22:32:19.465485Z", - "iopub.status.idle": "2024-07-23T22:32:19.531459Z", - "shell.execute_reply": "2024-07-23T22:32:19.530938Z" + "iopub.execute_input": "2024-07-26T02:30:17.398117Z", + "iopub.status.busy": "2024-07-26T02:30:17.397631Z", + "iopub.status.idle": "2024-07-26T02:30:17.460268Z", + "shell.execute_reply": "2024-07-26T02:30:17.459744Z" } }, "outputs": [ @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:19.534110Z", - "iopub.status.busy": "2024-07-23T22:32:19.533726Z", - "iopub.status.idle": "2024-07-23T22:32:19.871199Z", - "shell.execute_reply": "2024-07-23T22:32:19.870642Z" + "iopub.execute_input": "2024-07-26T02:30:17.462996Z", + "iopub.status.busy": "2024-07-26T02:30:17.462512Z", + "iopub.status.idle": "2024-07-26T02:30:17.765992Z", + "shell.execute_reply": "2024-07-26T02:30:17.765375Z" } }, "outputs": [ @@ -165,7 +165,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "converged SCF energy = -108.835236570775\n" + "converged SCF energy = -108.835236570774\n" ] }, { @@ -174,7 +174,7 @@ "text": [ "norb = 14\n", "nelec = (3, 3)\n", - "E(CCSD) = -108.9630419334855 E_corr = -0.1278053627110065\n" + "E(CCSD) = -108.9630419334854 E_corr = -0.1278053627110061\n" ] }, { @@ -185,9 +185,9 @@ " '0000000001110000000000000111': 10,\n", " '0000000000011100000000011100': 10,\n", " '0000000001011000000000010110': 9,\n", + " '0100000000100100000000000111': 5,\n", " '0001000001010000000000000111': 5,\n", " '0000000001011000100000000110': 4,\n", - " '0100000001001000000000000111': 4,\n", " '0000000000011100100000001100': 3,\n", " '0010000000011000000000010110': 3}" ] @@ -269,10 +269,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:19.873743Z", - "iopub.status.busy": "2024-07-23T22:32:19.873357Z", - "iopub.status.idle": "2024-07-23T22:32:20.412801Z", - "shell.execute_reply": "2024-07-23T22:32:20.412179Z" + "iopub.execute_input": "2024-07-26T02:30:17.768469Z", + "iopub.status.busy": "2024-07-26T02:30:17.768264Z", + "iopub.status.idle": "2024-07-26T02:30:18.302579Z", + "shell.execute_reply": "2024-07-26T02:30:18.301995Z" } }, "outputs": [ @@ -287,7 +287,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "SCF energy = -75.3484557058996\n" + "SCF energy = -75.3484557074732\n" ] }, { @@ -305,7 +305,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(UCCSD) = -75.45619739146407 E_corr = -0.1077416855645157\n" + "E(UCCSD) = -75.4561973911871 E_corr = -0.1077416837138922\n" ] }, { diff --git a/dev/searchindex.js b/dev/searchindex.js index 564838030..bc18f319b 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API reference": [[7, null]], "Application to the double-factorized Hamiltonian": [[8, "Application-to-the-double-factorized-Hamiltonian"]], "Application to time evolution via Trotter-Suzuki formulas": [[8, "Application-to-time-evolution-via-Trotter-Suzuki-formulas"]], "Brief background on Trotter-Suzuki formulas": [[8, "Brief-background-on-Trotter-Suzuki-formulas"]], "Build a molecule": [[15, "Build-a-molecule"]], "Build the Hamiltonian": [[23, "Build-the-Hamiltonian"]], "Choose reference occupations": [[15, "Choose-reference-occupations"]], "Circuit transpilation": [[19, "Circuit-transpilation"]], "Citing ffsim": [[21, "citing-ffsim"]], "Code example": [[21, "code-example"]], "Compute energy": [[15, "Compute-energy"]], "Contents": [[21, "contents"]], "Criteria for circuits that FfsimSampler can sample": [[20, "Criteria-for-circuits-that-FfsimSampler-can-sample"]], "Data representation": [[9, "Data-representation"]], "Diagonal Coulomb evolution": [[13, "Diagonal-Coulomb-evolution"], [19, "Diagonal-Coulomb-evolution"]], "Double-factorized representation": [[8, "Double-factorized-representation"]], "Double-factorized representation of the molecular Hamiltonian": [[8, null]], "Example of using FfsimSampler": [[20, "Example-of-using-FfsimSampler"]], "Explanations": [[10, null]], "Gates": [[14, "Gates"]], "General UCJ ansatz": [[18, "General-UCJ-ansatz"]], "Hamiltonians": [[9, null]], "Hartree-Fock and Slater determinant preparation": [[13, "Hartree-Fock-and-Slater-determinant-preparation"]], "How to build and transpile Qiskit quantum circuits": [[19, null]], "How to simulate entanglement forging": [[15, null]], "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz": [[18, null]], "How to use ffsim\u2019s Qiskit Sampler primitive": [[20, null]], "How to use the FermionOperator class": [[16, null]], "How-to guides": [[17, null]], "Implement Trotter simulation": [[23, "Implement-Trotter-simulation"]], "Implementing Trotter simulation of the double-factorized Hamiltonian": [[23, null]], "Initialize ansatz operator": [[15, "Initialize-ansatz-operator"]], "Install from source": [[22, "install-from-source"]], "Installation": [[21, "installation"], [22, null]], "LUCJ ansatz": [[18, "LUCJ-ansatz"]], "Locality in the UCJ operator": [[13, "Locality-in-the-UCJ-operator"]], "Merging orbital rotations": [[13, "Merging-orbital-rotations"]], "More examples": [[20, "More-examples"]], "Number operator sum evolution": [[13, "Number-operator-sum-evolution"], [19, "Number-operator-sum-evolution"]], "Operator action via SciPy LinearOperators": [[9, "Operator-action-via-SciPy-LinearOperators"]], "Optimize energy": [[15, "Optimize-energy"]], "Optimize with the linear method": [[18, "Optimize-with-the-linear-method"]], "Orbital rotation": [[13, "Orbital-rotation"], [19, "Orbital-rotation"]], "Orbital rotations": [[12, "Orbital-rotations"]], "Orbital rotations and quadratic Hamiltonians": [[12, null]], "Overview of gates": [[19, "Overview-of-gates"]], "Pip install": [[22, "pip-install"]], "Prepare Hartree-Fock state": [[19, "Prepare-Hartree-Fock-state"]], "Prepare Slater determinant": [[19, "Prepare-Slater-determinant"]], "Qubit gate decompositions of fermionic gates": [[13, null]], "Sampling from an LUCJ circuit for a closed-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-a-closed-shell-molecule"]], "Sampling from an LUCJ circuit for an open-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-an-open-shell-molecule"]], "Spin-balanced and spin-unbalanced ansatzes": [[11, "Spin-balanced-and-spin-unbalanced-ansatzes"]], "Spin-balanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-balanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "Spin-unbalanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-unbalanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "State preparation gates": [[19, "State-preparation-gates"]], "State vectors": [[14, "State-vectors"]], "State vectors and gates": [[14, null]], "The general unitary cluster Jastrow (UCJ) ansatz": [[11, "The-general-unitary-cluster-Jastrow-(UCJ)-ansatz"]], "The local UCJ (LUCJ) ansatz": [[11, "The-local-UCJ-(LUCJ)-ansatz"]], "The local unitary cluster Jastrow (LUCJ) ansatz": [[11, null]], "Time evolution by a quadratic Hamiltonian": [[12, "Time-evolution-by-a-quadratic-Hamiltonian"]], "Treating spinless fermions": [[14, "Treating-spinless-fermions"]], "Trotter simulation of double-factorized Hamiltonian": [[13, "Trotter-simulation-of-double-factorized-Hamiltonian"], [19, "Trotter-simulation-of-double-factorized-Hamiltonian"]], "Tutorials": [[24, null]], "Unitary cluster Jastrow (UCJ) operator": [[13, "Unitary-cluster-Jastrow-(UCJ)-operator"]], "Unitary transformation gates": [[19, "Unitary-transformation-gates"]], "Use within Docker": [[22, "use-within-docker"]], "ffsim": [[0, null], [21, null]], "ffsim.contract": [[1, null]], "ffsim.linalg": [[2, null]], "ffsim.optimize": [[3, null]], "ffsim.qiskit": [[4, null]], "ffsim.random": [[5, null]], "ffsim.testing": [[6, null]]}, "docnames": ["api/ffsim", "api/ffsim.contract", "api/ffsim.linalg", "api/ffsim.optimize", "api/ffsim.qiskit", "api/ffsim.random", "api/ffsim.testing", "api/index", "explanations/double-factorized", "explanations/hamiltonians", "explanations/index", "explanations/lucj", "explanations/orbital-rotation", "explanations/qiskit-gate-decompositions", "explanations/state-vectors-and-gates", "how-to-guides/entanglement-forging", "how-to-guides/fermion-operator", "how-to-guides/index", "how-to-guides/lucj", "how-to-guides/qiskit-circuits", "how-to-guides/qiskit-sampler", "index", "install", "tutorials/double-factorized-trotter", "tutorials/index"], "envversion": {"nbsphinx": 4, "sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["api/ffsim.rst", "api/ffsim.contract.rst", "api/ffsim.linalg.rst", "api/ffsim.optimize.rst", "api/ffsim.qiskit.rst", "api/ffsim.random.rst", "api/ffsim.testing.rst", "api/index.md", "explanations/double-factorized.ipynb", "explanations/hamiltonians.ipynb", "explanations/index.md", "explanations/lucj.ipynb", "explanations/orbital-rotation.ipynb", "explanations/qiskit-gate-decompositions.ipynb", "explanations/state-vectors-and-gates.ipynb", "how-to-guides/entanglement-forging.ipynb", "how-to-guides/fermion-operator.ipynb", "how-to-guides/index.md", "how-to-guides/lucj.ipynb", "how-to-guides/qiskit-circuits.ipynb", "how-to-guides/qiskit-sampler.ipynb", "index.md", "install.md", "tutorials/double-factorized-trotter.ipynb", "tutorials/index.md"], "indexentries": {"__init__() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.__init__", false]], "__init__() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.__init__", false]], "__init__() (ffsim.qiskit.givensansatzoperatorjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzoperatorspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.numnumansatzopspinbalancedjw method)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockspinlessjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantspinlessjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdoublefactorizedjw method)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjoperatorjw method)": [[4, "ffsim.qiskit.UCJOperatorJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinlessjw method)": [[4, "ffsim.qiskit.UCJOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinunbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW.__init__", false]], "__init_subclass__() (ffsim.qiskit.givensansatzoperatorjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__init_subclass__", false]], "__init_subclass__() (ffsim.qiskit.givensansatzoperatorspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__init_subclass__", false]], "__init_subclass__() (ffsim.qiskit.ucjoperatorjw method)": [[4, "ffsim.qiskit.UCJOperatorJW.__init_subclass__", false]], "__new__() (ffsim.qiskit.givensansatzoperatorjw static method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__new__", false]], "__new__() (ffsim.qiskit.givensansatzoperatorspinlessjw static method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__new__", false]], "__new__() (ffsim.qiskit.ucjoperatorjw static method)": [[4, "ffsim.qiskit.UCJOperatorJW.__new__", false]], "action (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.action", false]], "active_space (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.active_space", false]], "addresses_to_strings() (in module ffsim)": [[0, "ffsim.addresses_to_strings", false]], "alpha (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA", false]], "alpha_and_beta (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA_AND_BETA", false]], "apply_diag_coulomb_evolution() (in module ffsim)": [[0, "ffsim.apply_diag_coulomb_evolution", false]], "apply_fsim_gate() (in module ffsim)": [[0, "ffsim.apply_fsim_gate", false]], "apply_givens_rotation() (in module ffsim)": [[0, "ffsim.apply_givens_rotation", false]], "apply_hop_gate() (in module ffsim)": [[0, "ffsim.apply_hop_gate", false]], "apply_matrix_to_slices() (in module ffsim.linalg)": [[2, "ffsim.linalg.apply_matrix_to_slices", false]], "apply_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_interaction", false]], "apply_num_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_num_interaction", false]], "apply_num_op_prod_interaction() (in module ffsim)": [[0, "ffsim.apply_num_op_prod_interaction", false]], "apply_num_op_sum_evolution() (in module ffsim)": [[0, "ffsim.apply_num_op_sum_evolution", false]], "apply_on_site_interaction() (in module ffsim)": [[0, "ffsim.apply_on_site_interaction", false]], "apply_orbital_rotation() (in module ffsim)": [[0, "ffsim.apply_orbital_rotation", false]], "apply_tunneling_interaction() (in module ffsim)": [[0, "ffsim.apply_tunneling_interaction", false]], "apply_unitary() (in module ffsim)": [[0, "ffsim.apply_unitary", false]], "approx_eq() (in module ffsim)": [[0, "ffsim.approx_eq", false]], "assert_allclose_up_to_global_phase() (in module ffsim.testing)": [[6, "ffsim.testing.assert_allclose_up_to_global_phase", false]], "atom (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.atom", false]], "basis (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.basis", false]], "beta (ffsim.spin attribute)": [[0, "ffsim.Spin.BETA", false]], "bit_array (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.BIT_ARRAY", false]], "bitstringtype (class in ffsim)": [[0, "ffsim.BitstringType", false]], "c (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.c", false]], "ccsd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_energy", false]], "ccsd_t1 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t1", false]], "ccsd_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t2", false]], "cisd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_energy", false]], "cisd_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_vec", false]], "coeffs (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.coeffs", false]], "conserves_particle_number() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_particle_number", false]], "conserves_spin_z() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_spin_z", false]], "constant (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.constant", false]], "constant (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.constant", false]], "constant (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.constant", false]], "constant (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.constant", false]], "contract_diag_coulomb() (in module ffsim.contract)": [[1, "ffsim.contract.contract_diag_coulomb", false]], "contract_num_op_sum() (in module ffsim.contract)": [[1, "ffsim.contract.contract_num_op_sum", false]], "contract_one_body() (in module ffsim.contract)": [[1, "ffsim.contract.contract_one_body", false]], "core_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.core_energy", false]], "cre() (in module ffsim)": [[0, "ffsim.cre", false]], "cre_a() (in module ffsim)": [[0, "ffsim.cre_a", false]], "cre_b() (in module ffsim)": [[0, "ffsim.cre_b", false]], "des() (in module ffsim)": [[0, "ffsim.des", false]], "des_a() (in module ffsim)": [[0, "ffsim.des_a", false]], "des_b() (in module ffsim)": [[0, "ffsim.des_b", false]], "diag() (in module ffsim)": [[0, "ffsim.diag", false]], "diag_coulomb_linop() (in module ffsim.contract)": [[1, "ffsim.contract.diag_coulomb_linop", false]], "diag_coulomb_mats (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.diag_coulomb_mats", false]], "diag_coulomb_mats_alpha_alpha (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.diag_coulomb_mats_alpha_alpha", false]], "diag_coulomb_mats_alpha_alpha (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_alpha", false]], "diag_coulomb_mats_alpha_beta (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.diag_coulomb_mats_alpha_beta", false]], "diag_coulomb_mats_alpha_beta (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_beta", false]], "diagcoulombevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW", false]], "diagcoulombevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW", false]], "diagonalcoulombhamiltonian (class in ffsim)": [[0, "ffsim.DiagonalCoulombHamiltonian", false]], "dim() (in module ffsim)": [[0, "ffsim.dim", false]], "dims() (in module ffsim)": [[0, "ffsim.dims", false]], "dipole_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.dipole_integrals", false]], "double_factorized() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized", false]], "double_factorized_t2() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2", false]], "double_factorized_t2_alpha_beta() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2_alpha_beta", false]], "doublefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.DoubleFactorizedHamiltonian", false]], "dropnegligible (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DropNegligible", false]], "expectation_one_body_power() (in module ffsim)": [[0, "ffsim.expectation_one_body_power", false]], "expectation_one_body_product() (in module ffsim)": [[0, "ffsim.expectation_one_body_product", false]], "expectation_product_state() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.expectation_product_state", false]], "expm_multiply_taylor() (in module ffsim.linalg)": [[2, "ffsim.linalg.expm_multiply_taylor", false]], "fci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_energy", false]], "fci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_vec", false]], "fermi_hubbard_1d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_1d", false]], "fermi_hubbard_2d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_2d", false]], "fermion_operator() (in module ffsim)": [[0, "ffsim.fermion_operator", false]], "fermionaction (class in ffsim)": [[0, "ffsim.FermionAction", false]], "fermionoperator (class in ffsim)": [[0, "ffsim.FermionOperator", false]], "ffsim": [[0, "module-ffsim", false]], "ffsim.contract": [[1, "module-ffsim.contract", false]], "ffsim.linalg": [[2, "module-ffsim.linalg", false]], "ffsim.optimize": [[3, "module-ffsim.optimize", false]], "ffsim.qiskit": [[4, "module-ffsim.qiskit", false]], "ffsim.random": [[5, "module-ffsim.random", false]], "ffsim.testing": [[6, "module-ffsim.testing", false]], "ffsim_vec_to_qiskit_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.ffsim_vec_to_qiskit_vec", false]], "ffsimsampler (class in ffsim.qiskit)": [[4, "ffsim.qiskit.FfsimSampler", false]], "final_orbital_rotation (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.final_orbital_rotation", false]], "final_state_vector() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.final_state_vector", false]], "from_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_diag_coulomb_mats", false]], "from_fcidump() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_fcidump", false]], "from_fcidump() (ffsim.molecularhamiltonian static method)": [[0, "ffsim.MolecularHamiltonian.from_fcidump", false]], "from_fermion_operator() (ffsim.diagonalcoulombhamiltonian static method)": [[0, "ffsim.DiagonalCoulombHamiltonian.from_fermion_operator", false]], "from_json() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_json", false]], "from_mole() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_mole", false]], "from_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian static method)": [[0, "ffsim.DoubleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_molecular_hamiltonian() (ffsim.singlefactorizedhamiltonian static method)": [[0, "ffsim.SingleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_orbital_rotation() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_orbital_rotation", false]], "from_parameters() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_parameters", false]], "from_parameters() (ffsim.givensansatzoperator static method)": [[0, "ffsim.GivensAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.hopgateansatzoperator static method)": [[0, "ffsim.HopGateAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.from_parameters", false]], "from_parameters() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_parameters", false]], "from_parameters() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_parameters", false]], "from_parameters() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_parameters", false]], "from_scf() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_scf", false]], "from_t_amplitudes() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_t_amplitudes", false]], "generate_norb_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec", false]], "generate_norb_nelec_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec_spin", false]], "generate_norb_nocc() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nocc", false]], "generate_norb_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_spin", false]], "givens_decomposition() (in module ffsim.linalg)": [[2, "ffsim.linalg.givens_decomposition", false]], "givensansatzop (class in ffsim)": [[0, "ffsim.GivensAnsatzOp", false]], "givensansatzoperator (class in ffsim)": [[0, "ffsim.GivensAnsatzOperator", false]], "givensansatzoperatorjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW", false]], "givensansatzoperatorspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW", false]], "givensansatzopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpJW", false]], "givensansatzopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW", false]], "givensrotation (class in ffsim.linalg)": [[2, "ffsim.linalg.GivensRotation", false]], "hamiltonian (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.hamiltonian", false]], "hartree_fock_state() (in module ffsim)": [[0, "ffsim.hartree_fock_state", false]], "hf_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_energy", false]], "hf_mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_coeff", false]], "hf_mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_occ", false]], "hopgateansatzoperator (class in ffsim)": [[0, "ffsim.HopGateAnsatzOperator", false]], "i (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.i", false]], "indices_to_strings() (in module ffsim)": [[0, "ffsim.indices_to_strings", false]], "init_cache() (in module ffsim)": [[0, "ffsim.init_cache", false]], "int (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.INT", false]], "interaction_pairs (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.interaction_pairs", false]], "interaction_pairs (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.interaction_pairs", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.inverse", false]], "is_antihermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_antihermitian", false]], "is_hermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_hermitian", false]], "is_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_orthogonal", false]], "is_real_symmetric() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_real_symmetric", false]], "is_special_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_special_orthogonal", false]], "is_unitary() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_unitary", false]], "j (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.j", false]], "jordan_wigner() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.jordan_wigner", false]], "linear_operator() (in module ffsim)": [[0, "ffsim.linear_operator", false]], "lup() (in module ffsim.linalg)": [[2, "ffsim.linalg.lup", false]], "many_body_order() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.many_body_order", false]], "match_global_phase() (in module ffsim.linalg)": [[2, "ffsim.linalg.match_global_phase", false]], "mergeorbitalrotations (class in ffsim.qiskit)": [[4, "ffsim.qiskit.MergeOrbitalRotations", false]], "minimize_linear_method() (in module ffsim.optimize)": [[3, "ffsim.optimize.minimize_linear_method", false]], "mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_coeff", false]], "mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_occ", false]], "modified_cholesky() (in module ffsim.linalg)": [[2, "ffsim.linalg.modified_cholesky", false]], "module": [[0, "module-ffsim", false], [1, "module-ffsim.contract", false], [2, "module-ffsim.linalg", false], [3, "module-ffsim.optimize", false], [4, "module-ffsim.qiskit", false], [5, "module-ffsim.random", false], [6, "module-ffsim.testing", false]], "mole (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.mole", false]], "moleculardata (class in ffsim)": [[0, "ffsim.MolecularData", false]], "molecularhamiltonian (class in ffsim)": [[0, "ffsim.MolecularHamiltonian", false]], "mp2_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_energy", false]], "mp2_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_t2", false]], "multireference_state() (in module ffsim)": [[0, "ffsim.multireference_state", false]], "multireference_state_prod() (in module ffsim)": [[0, "ffsim.multireference_state_prod", false]], "n_params() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.n_params", false]], "n_params() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.n_params", false]], "n_params() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.n_params", false]], "n_params() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.n_params", false]], "n_params() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.n_params", false]], "n_params() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.n_params", false]], "n_params() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.n_params", false]], "n_reps (ffsim.realucjoperator property)": [[0, "ffsim.RealUCJOperator.n_reps", false]], "n_reps (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.n_reps", false]], "n_reps (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.n_reps", false]], "n_reps (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.n_reps", false]], "n_reps (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.n_reps", false]], "nelec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.nelec", false]], "nelec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.nelec", false]], "norb (ffsim.diagonalcoulombhamiltonian property)": [[0, "ffsim.DiagonalCoulombHamiltonian.norb", false]], "norb (ffsim.doublefactorizedhamiltonian property)": [[0, "ffsim.DoubleFactorizedHamiltonian.norb", false]], "norb (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.norb", false]], "norb (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.norb", false]], "norb (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.norb", false]], "norb (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.norb", false]], "norb (ffsim.molecularhamiltonian property)": [[0, "ffsim.MolecularHamiltonian.norb", false]], "norb (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.norb", false]], "norb (ffsim.realucjoperator property)": [[0, "ffsim.RealUCJOperator.norb", false]], "norb (ffsim.singlefactorizedhamiltonian property)": [[0, "ffsim.SingleFactorizedHamiltonian.norb", false]], "norb (ffsim.statevector attribute)": [[0, "ffsim.StateVector.norb", false]], "norb (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.norb", false]], "norb (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.norb", false]], "norb (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.norb", false]], "norb (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.norb", false]], "normal_ordered() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.normal_ordered", false]], "num_op_sum_linop() (in module ffsim.contract)": [[1, "ffsim.contract.num_op_sum_linop", false]], "number_operator() (in module ffsim)": [[0, "ffsim.number_operator", false]], "numnumansatzopspinbalanced (class in ffsim)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced", false]], "numnumansatzopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW", false]], "numopsumevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW", false]], "numopsumevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW", false]], "one_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.one_body_integrals", false]], "one_body_linop() (in module ffsim.contract)": [[1, "ffsim.contract.one_body_linop", false]], "one_body_squares (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_squares", false]], "one_body_tensor (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_tensor", false]], "one_hot() (in module ffsim)": [[0, "ffsim.one_hot", false]], "one_hot() (in module ffsim.linalg)": [[2, "ffsim.linalg.one_hot", false]], "orb (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.orb", false]], "orbital_rotations (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.orbital_rotations", false]], "orbital_rotations (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.orbital_rotations", false]], "orbital_rotations (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.orbital_rotations", false]], "orbital_symmetries (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.orbital_symmetries", false]], "orbitalrotationjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationJW", false]], "orbitalrotationspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW", false]], "phase_angles (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phase_angles", false]], "phis (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phis", false]], "pre_init (in module ffsim.qiskit)": [[4, "ffsim.qiskit.PRE_INIT", false]], "pre_init_passes() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.pre_init_passes", false]], "preparehartreefockjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockJW", false]], "preparehartreefockspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW", false]], "prepareslaterdeterminantjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW", false]], "prepareslaterdeterminantspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW", false]], "productstatesum (class in ffsim)": [[0, "ffsim.ProductStateSum", false]], "qiskit_vec_to_ffsim_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.qiskit_vec_to_ffsim_vec", false]], "random_antihermitian() (in module ffsim.random)": [[5, "ffsim.random.random_antihermitian", false]], "random_double_factorized_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_double_factorized_hamiltonian", false]], "random_fermion_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_hamiltonian", false]], "random_fermion_operator() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_operator", false]], "random_hermitian() (in module ffsim.random)": [[5, "ffsim.random.random_hermitian", false]], "random_molecular_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_molecular_hamiltonian", false]], "random_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.random_nelec", false]], "random_occupied_orbitals() (in module ffsim.testing)": [[6, "ffsim.testing.random_occupied_orbitals", false]], "random_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_orthogonal", false]], "random_real_symmetric_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_real_symmetric_matrix", false]], "random_special_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_special_orthogonal", false]], "random_state_vector() (in module ffsim.random)": [[5, "ffsim.random.random_state_vector", false]], "random_statevector() (in module ffsim.random)": [[5, "ffsim.random.random_statevector", false]], "random_t2_amplitudes() (in module ffsim.random)": [[5, "ffsim.random.random_t2_amplitudes", false]], "random_two_body_tensor() (in module ffsim.random)": [[5, "ffsim.random.random_two_body_tensor", false]], "random_ucj_op_spin_balanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_balanced", false]], "random_ucj_op_spin_unbalanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_unbalanced", false]], "random_ucj_op_spinless() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spinless", false]], "random_ucj_operator() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_operator", false]], "random_unitary() (in module ffsim.random)": [[5, "ffsim.random.random_unitary", false]], "rdm() (in module ffsim)": [[0, "ffsim.rdm", false]], "rdms() (in module ffsim)": [[0, "ffsim.rdms", false]], "realucjoperator (class in ffsim)": [[0, "ffsim.RealUCJOperator", false]], "reduced_matrix() (in module ffsim.linalg)": [[2, "ffsim.linalg.reduced_matrix", false]], "reduced_matrix_product_states() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.reduced_matrix_product_states", false]], "rotated() (ffsim.molecularhamiltonian method)": [[0, "ffsim.MolecularHamiltonian.rotated", false]], "run() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.run", false]], "run() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.run", false]], "run() (ffsim.qiskit.mergeorbitalrotations method)": [[4, "ffsim.qiskit.MergeOrbitalRotations.run", false]], "run_ccsd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_ccsd", false]], "run_cisd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_cisd", false]], "run_fci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_fci", false]], "run_mp2() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_mp2", false]], "run_sci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_sci", false]], "s (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.s", false]], "sample_state_vector() (in module ffsim)": [[0, "ffsim.sample_state_vector", false]], "scf (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.scf", false]], "sci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_energy", false]], "sci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_vec", false]], "simulate_qdrift_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_qdrift_double_factorized", false]], "simulate_trotter_diag_coulomb_split_op() (in module ffsim)": [[0, "ffsim.simulate_trotter_diag_coulomb_split_op", false]], "simulate_trotter_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_trotter_double_factorized", false]], "simulatetrotterdoublefactorizedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW", false]], "singlefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.SingleFactorizedHamiltonian", false]], "slater_determinant() (in module ffsim)": [[0, "ffsim.slater_determinant", false]], "slater_determinant_rdm() (in module ffsim)": [[0, "ffsim.slater_determinant_rdm", false]], "slater_determinant_rdms() (in module ffsim)": [[0, "ffsim.slater_determinant_rdms", false]], "spin (class in ffsim)": [[0, "ffsim.Spin", false]], "spin (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.spin", false]], "spin (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.spin", false]], "spin_square() (in module ffsim)": [[0, "ffsim.spin_square", false]], "states (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.states", false]], "statevector (class in ffsim)": [[0, "ffsim.StateVector", false]], "string (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.STRING", false]], "strings_to_addresses() (in module ffsim)": [[0, "ffsim.strings_to_addresses", false]], "strings_to_indices() (in module ffsim)": [[0, "ffsim.strings_to_indices", false]], "supportsapplyunitary (class in ffsim)": [[0, "ffsim.SupportsApplyUnitary", false]], "supportsapproximateequality (class in ffsim)": [[0, "ffsim.SupportsApproximateEquality", false]], "supportsdiagonal (class in ffsim)": [[0, "ffsim.SupportsDiagonal", false]], "supportsfermionoperator (class in ffsim)": [[0, "ffsim.SupportsFermionOperator", false]], "supportslinearoperator (class in ffsim)": [[0, "ffsim.SupportsLinearOperator", false]], "supportstrace (class in ffsim)": [[0, "ffsim.SupportsTrace", false]], "symmetry (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.symmetry", false]], "thetas (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.thetas", false]], "thetas (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.thetas", false]], "thetas (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.thetas", false]], "thetas (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.thetas", false]], "to_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_diag_coulomb_mats", false]], "to_fcidump() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_fcidump", false]], "to_json() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_json", false]], "to_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_molecular_hamiltonian", false]], "to_number_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_number_representation", false]], "to_orbital_rotation() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_orbital_rotation", false]], "to_parameters() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_parameters", false]], "to_parameters() (ffsim.givensansatzoperator method)": [[0, "ffsim.GivensAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.hopgateansatzoperator method)": [[0, "ffsim.HopGateAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.realucjoperator method)": [[0, "ffsim.RealUCJOperator.to_parameters", false]], "to_parameters() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_parameters", false]], "to_parameters() (ffsim.ucjopspinbalanced method)": [[0, "ffsim.UCJOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.ucjopspinless method)": [[0, "ffsim.UCJOpSpinless.to_parameters", false]], "to_parameters() (ffsim.ucjopspinunbalanced method)": [[0, "ffsim.UCJOpSpinUnbalanced.to_parameters", false]], "to_t_amplitudes() (ffsim.realucjoperator method)": [[0, "ffsim.RealUCJOperator.to_t_amplitudes", false]], "to_t_amplitudes() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_t_amplitudes", false]], "to_z_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_z_representation", false]], "trace() (in module ffsim)": [[0, "ffsim.trace", false]], "two_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.two_body_integrals", false]], "two_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.two_body_tensor", false]], "ucjoperator (class in ffsim)": [[0, "ffsim.UCJOperator", false]], "ucjoperatorjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOperatorJW", false]], "ucjopspinbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinBalanced", false]], "ucjopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW", false]], "ucjopspinless (class in ffsim)": [[0, "ffsim.UCJOpSpinless", false]], "ucjopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinlessJW", false]], "ucjopspinunbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinUnbalanced", false]], "ucjopspinunbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW", false]], "vec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.vec", false]], "z_representation (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.z_representation", false]]}, "objects": {"": [[0, 0, 0, "-", "ffsim"]], "ffsim": [[0, 1, 1, "", "BitstringType"], [0, 1, 1, "", "DiagonalCoulombHamiltonian"], [0, 1, 1, "", "DoubleFactorizedHamiltonian"], [0, 1, 1, "", "FermionAction"], [0, 1, 1, "", "FermionOperator"], [0, 1, 1, "", "GivensAnsatzOp"], [0, 1, 1, "", "GivensAnsatzOperator"], [0, 1, 1, "", "HopGateAnsatzOperator"], [0, 1, 1, "", "MolecularData"], [0, 1, 1, "", "MolecularHamiltonian"], [0, 1, 1, "", "NumNumAnsatzOpSpinBalanced"], [0, 1, 1, "", "ProductStateSum"], [0, 1, 1, "", "RealUCJOperator"], [0, 1, 1, "", "SingleFactorizedHamiltonian"], [0, 1, 1, "", "Spin"], [0, 1, 1, "", "StateVector"], [0, 1, 1, "", "SupportsApplyUnitary"], [0, 1, 1, "", "SupportsApproximateEquality"], [0, 1, 1, "", "SupportsDiagonal"], [0, 1, 1, "", "SupportsFermionOperator"], [0, 1, 1, "", "SupportsLinearOperator"], [0, 1, 1, "", "SupportsTrace"], [0, 1, 1, "", "UCJOpSpinBalanced"], [0, 1, 1, "", "UCJOpSpinUnbalanced"], [0, 1, 1, "", "UCJOpSpinless"], [0, 1, 1, "", "UCJOperator"], [0, 5, 1, "", "addresses_to_strings"], [0, 5, 1, "", "apply_diag_coulomb_evolution"], [0, 5, 1, "", "apply_fsim_gate"], [0, 5, 1, "", "apply_givens_rotation"], [0, 5, 1, "", "apply_hop_gate"], [0, 5, 1, "", "apply_num_interaction"], [0, 5, 1, "", "apply_num_num_interaction"], [0, 5, 1, "", "apply_num_op_prod_interaction"], [0, 5, 1, "", "apply_num_op_sum_evolution"], [0, 5, 1, "", "apply_on_site_interaction"], [0, 5, 1, "", "apply_orbital_rotation"], [0, 5, 1, "", "apply_tunneling_interaction"], [0, 5, 1, "", "apply_unitary"], [0, 5, 1, "", "approx_eq"], [1, 0, 0, "-", "contract"], [0, 5, 1, "", "cre"], [0, 5, 1, "", "cre_a"], [0, 5, 1, "", "cre_b"], [0, 5, 1, "", "des"], [0, 5, 1, "", "des_a"], [0, 5, 1, "", "des_b"], [0, 5, 1, "", "diag"], [0, 5, 1, "", "dim"], [0, 5, 1, "", "dims"], [0, 5, 1, "", "expectation_one_body_power"], [0, 5, 1, "", "expectation_one_body_product"], [0, 5, 1, "", "fermi_hubbard_1d"], [0, 5, 1, "", "fermi_hubbard_2d"], [0, 5, 1, "", "fermion_operator"], [0, 5, 1, "", "hartree_fock_state"], [0, 5, 1, "", "indices_to_strings"], [0, 5, 1, "", "init_cache"], [2, 0, 0, "-", "linalg"], [0, 5, 1, "", "linear_operator"], [0, 5, 1, "", "multireference_state"], [0, 5, 1, "", "multireference_state_prod"], [0, 5, 1, "", "number_operator"], [0, 5, 1, "", "one_hot"], [3, 0, 0, "-", "optimize"], [4, 0, 0, "-", "qiskit"], [5, 0, 0, "-", "random"], [0, 5, 1, "", "rdm"], [0, 5, 1, "", "rdms"], [0, 5, 1, "", "sample_state_vector"], [0, 5, 1, "", "simulate_qdrift_double_factorized"], [0, 5, 1, "", "simulate_trotter_diag_coulomb_split_op"], [0, 5, 1, "", "simulate_trotter_double_factorized"], [0, 5, 1, "", "slater_determinant"], [0, 5, 1, "", "slater_determinant_rdm"], [0, 5, 1, "", "slater_determinant_rdms"], [0, 5, 1, "", "spin_square"], [0, 5, 1, "", "strings_to_addresses"], [0, 5, 1, "", "strings_to_indices"], [6, 0, 0, "-", "testing"], [0, 5, 1, "", "trace"]], "ffsim.BitstringType": [[0, 2, 1, "", "BIT_ARRAY"], [0, 2, 1, "", "INT"], [0, 2, 1, "", "STRING"]], "ffsim.DiagonalCoulombHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_fermion_operator"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"]], "ffsim.DoubleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_molecular_hamiltonian"], [0, 3, 1, "", "to_number_representation"], [0, 3, 1, "", "to_z_representation"], [0, 2, 1, "", "z_representation"]], "ffsim.FermionAction": [[0, 2, 1, "", "action"], [0, 2, 1, "", "orb"], [0, 2, 1, "", "spin"]], "ffsim.FermionOperator": [[0, 3, 1, "", "conserves_particle_number"], [0, 3, 1, "", "conserves_spin_z"], [0, 3, 1, "", "many_body_order"], [0, 3, 1, "", "normal_ordered"]], "ffsim.GivensAnsatzOp": [[0, 3, 1, "", "from_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "phase_angles"], [0, 2, 1, "", "phis"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_orbital_rotation"], [0, 3, 1, "", "to_parameters"]], "ffsim.GivensAnsatzOperator": [[0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.HopGateAnsatzOperator": [[0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.MolecularData": [[0, 2, 1, "", "active_space"], [0, 2, 1, "", "atom"], [0, 2, 1, "", "basis"], [0, 2, 1, "", "ccsd_energy"], [0, 2, 1, "", "ccsd_t1"], [0, 2, 1, "", "ccsd_t2"], [0, 2, 1, "", "cisd_energy"], [0, 2, 1, "", "cisd_vec"], [0, 2, 1, "", "core_energy"], [0, 2, 1, "", "dipole_integrals"], [0, 2, 1, "", "fci_energy"], [0, 2, 1, "", "fci_vec"], [0, 3, 1, "", "from_fcidump"], [0, 3, 1, "", "from_json"], [0, 3, 1, "", "from_mole"], [0, 3, 1, "", "from_scf"], [0, 4, 1, "", "hamiltonian"], [0, 2, 1, "", "hf_energy"], [0, 2, 1, "", "hf_mo_coeff"], [0, 2, 1, "", "hf_mo_occ"], [0, 2, 1, "", "mo_coeff"], [0, 2, 1, "", "mo_occ"], [0, 4, 1, "", "mole"], [0, 2, 1, "", "mp2_energy"], [0, 2, 1, "", "mp2_t2"], [0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "one_body_integrals"], [0, 2, 1, "", "orbital_symmetries"], [0, 3, 1, "", "run_ccsd"], [0, 3, 1, "", "run_cisd"], [0, 3, 1, "", "run_fci"], [0, 3, 1, "", "run_mp2"], [0, 3, 1, "", "run_sci"], [0, 4, 1, "", "scf"], [0, 2, 1, "", "sci_energy"], [0, 2, 1, "", "sci_vec"], [0, 2, 1, "", "spin"], [0, 2, 1, "", "symmetry"], [0, 3, 1, "", "to_fcidump"], [0, 3, 1, "", "to_json"], [0, 2, 1, "", "two_body_integrals"]], "ffsim.MolecularHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "from_fcidump"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "rotated"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.NumNumAnsatzOpSpinBalanced": [[0, 3, 1, "", "from_diag_coulomb_mats"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_diag_coulomb_mats"], [0, 3, 1, "", "to_parameters"]], "ffsim.ProductStateSum": [[0, 2, 1, "", "coeffs"], [0, 2, 1, "", "states"]], "ffsim.RealUCJOperator": [[0, 2, 1, "", "diag_coulomb_mats_alpha_alpha"], [0, 2, 1, "", "diag_coulomb_mats_alpha_beta"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"], [0, 3, 1, "", "to_t_amplitudes"]], "ffsim.SingleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "expectation_product_state"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_squares"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "reduced_matrix_product_states"]], "ffsim.Spin": [[0, 2, 1, "", "ALPHA"], [0, 2, 1, "", "ALPHA_AND_BETA"], [0, 2, 1, "", "BETA"]], "ffsim.StateVector": [[0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "vec"]], "ffsim.UCJOpSpinBalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinUnbalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinless": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOperator": [[0, 2, 1, "", "diag_coulomb_mats_alpha_alpha"], [0, 2, 1, "", "diag_coulomb_mats_alpha_beta"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"], [0, 3, 1, "", "to_t_amplitudes"]], "ffsim.contract": [[1, 5, 1, "", "contract_diag_coulomb"], [1, 5, 1, "", "contract_num_op_sum"], [1, 5, 1, "", "contract_one_body"], [1, 5, 1, "", "diag_coulomb_linop"], [1, 5, 1, "", "num_op_sum_linop"], [1, 5, 1, "", "one_body_linop"]], "ffsim.linalg": [[2, 1, 1, "", "GivensRotation"], [2, 5, 1, "", "apply_matrix_to_slices"], [2, 5, 1, "", "double_factorized"], [2, 5, 1, "", "double_factorized_t2"], [2, 5, 1, "", "double_factorized_t2_alpha_beta"], [2, 5, 1, "", "expm_multiply_taylor"], [2, 5, 1, "", "givens_decomposition"], [2, 5, 1, "", "is_antihermitian"], [2, 5, 1, "", "is_hermitian"], [2, 5, 1, "", "is_orthogonal"], [2, 5, 1, "", "is_real_symmetric"], [2, 5, 1, "", "is_special_orthogonal"], [2, 5, 1, "", "is_unitary"], [2, 5, 1, "", "lup"], [2, 5, 1, "", "match_global_phase"], [2, 5, 1, "", "modified_cholesky"], [2, 5, 1, "", "one_hot"], [2, 5, 1, "", "reduced_matrix"]], "ffsim.linalg.GivensRotation": [[2, 2, 1, "", "c"], [2, 2, 1, "", "i"], [2, 2, 1, "", "j"], [2, 2, 1, "", "s"]], "ffsim.optimize": [[3, 5, 1, "", "minimize_linear_method"]], "ffsim.qiskit": [[4, 1, 1, "", "DiagCoulombEvolutionJW"], [4, 1, 1, "", "DiagCoulombEvolutionSpinlessJW"], [4, 1, 1, "", "DropNegligible"], [4, 1, 1, "", "FfsimSampler"], [4, 1, 1, "", "GivensAnsatzOpJW"], [4, 1, 1, "", "GivensAnsatzOpSpinlessJW"], [4, 1, 1, "", "GivensAnsatzOperatorJW"], [4, 1, 1, "", "GivensAnsatzOperatorSpinlessJW"], [4, 1, 1, "", "MergeOrbitalRotations"], [4, 1, 1, "", "NumNumAnsatzOpSpinBalancedJW"], [4, 1, 1, "", "NumOpSumEvolutionJW"], [4, 1, 1, "", "NumOpSumEvolutionSpinlessJW"], [4, 1, 1, "", "OrbitalRotationJW"], [4, 1, 1, "", "OrbitalRotationSpinlessJW"], [4, 6, 1, "", "PRE_INIT"], [4, 1, 1, "", "PrepareHartreeFockJW"], [4, 1, 1, "", "PrepareHartreeFockSpinlessJW"], [4, 1, 1, "", "PrepareSlaterDeterminantJW"], [4, 1, 1, "", "PrepareSlaterDeterminantSpinlessJW"], [4, 1, 1, "", "SimulateTrotterDoubleFactorizedJW"], [4, 1, 1, "", "UCJOpSpinBalancedJW"], [4, 1, 1, "", "UCJOpSpinUnbalancedJW"], [4, 1, 1, "", "UCJOpSpinlessJW"], [4, 1, 1, "", "UCJOperatorJW"], [4, 5, 1, "", "ffsim_vec_to_qiskit_vec"], [4, 5, 1, "", "final_state_vector"], [4, 5, 1, "", "jordan_wigner"], [4, 5, 1, "", "pre_init_passes"], [4, 5, 1, "", "qiskit_vec_to_ffsim_vec"]], "ffsim.qiskit.DiagCoulombEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DropNegligible": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.FfsimSampler": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.GivensAnsatzOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOperatorJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.qiskit.MergeOrbitalRotations": [[4, 3, 1, "", "run"]], "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.NumOpSumEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.NumOpSumEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.PrepareHartreeFockJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareHartreeFockSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinUnbalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOperatorJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.random": [[5, 5, 1, "", "random_antihermitian"], [5, 5, 1, "", "random_double_factorized_hamiltonian"], [5, 5, 1, "", "random_fermion_hamiltonian"], [5, 5, 1, "", "random_fermion_operator"], [5, 5, 1, "", "random_hermitian"], [5, 5, 1, "", "random_molecular_hamiltonian"], [5, 5, 1, "", "random_orthogonal"], [5, 5, 1, "", "random_real_symmetric_matrix"], [5, 5, 1, "", "random_special_orthogonal"], [5, 5, 1, "", "random_state_vector"], [5, 5, 1, "", "random_statevector"], [5, 5, 1, "", "random_t2_amplitudes"], [5, 5, 1, "", "random_two_body_tensor"], [5, 5, 1, "", "random_ucj_op_spin_balanced"], [5, 5, 1, "", "random_ucj_op_spin_unbalanced"], [5, 5, 1, "", "random_ucj_op_spinless"], [5, 5, 1, "", "random_ucj_operator"], [5, 5, 1, "", "random_unitary"]], "ffsim.testing": [[6, 5, 1, "", "assert_allclose_up_to_global_phase"], [6, 5, 1, "", "generate_norb_nelec"], [6, 5, 1, "", "generate_norb_nelec_spin"], [6, 5, 1, "", "generate_norb_nocc"], [6, 5, 1, "", "generate_norb_spin"], [6, 5, 1, "", "random_nelec"], [6, 5, 1, "", "random_occupied_orbitals"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"], "6": ["py", "data", "Python data"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function", "6": "py:data"}, "terms": {"": [0, 2, 4, 8, 9, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23], "0": [0, 2, 3, 4, 6, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23], "00": 18, "000": 20, "0000000": [15, 18], "0000000000011100000000000111": 20, "0000000000011100000000011100": 20, "0000000000011100100000001100": 20, "0000000000110100000000001101": 20, "0000000001011000000000010110": 20, "0000000001011000100000000110": 20, "0000000001110000000000000111": 20, "0000000111100000011111": 20, "0000000111100110000111": 20, "0000010101100001011011": 20, "0000010110100001011011": 20, "0000100101100000111011": 20, "0000100110100000111011": 20, "0000111100001111": 20, "0000111100011011": 20, "0000111100011101": 20, "0000111100101011": 20, "0001": 3, "0001000001010000000000000111": 20, "0001110100001111": 20, "0010000000011000000000010110": 20, "0010011100101101": 20, "0010101100001111": 20, "0010101100101101": 20, "001011": [0, 14], "0010110100100111": 20, "0010110100101011": 20, "001101": [0, 14], "001110": [0, 14], "0014977444274153814": 18, "0028683282556405307": 18, "0028719078748818665": 18, "005e": 15, "01": [15, 18], "0100000001001000000000000111": 20, "0100000110100100001111": 20, "010011": [0, 14], "0101": 0, "0101000001100000011111": 20, "010101": [0, 14], "010110": [0, 14], "0110": 0, "02": [15, 18], "02122442107773": 18, "02242": 2, "02459434j": 14, "02625": 2, "02998708j": 14, "03": 15, "03101213j": 14, "031e": 18, "03525116j": 14, "0366854173098351": 23, "04": [15, 18], "04758323886585769": 18, "05": [0, 2, 3, 4, 15, 18], "05395": 4, "05823675j": 16, "06": 18, "0609050": 5, "060e": 18, "0625": [0, 16], "06273307": 14, "06551571": 14, "065e": 18, "06677383j": 14, "06844774j": 14, "07": [6, 18], "08": [0, 2, 3, 4, 18], "08957": 2, "09723851": 14, "0b001011": 0, "0b010101": 0, "0b010110": 0, "0b100101": 0, "0b100110": 0, "0j": 16, "0x7f1395e71570": 19, "0x7f13966d1120": 19, "0x7f13966d1e70": 19, "0x7f139673d7e0": 19, "0x7f13967f0040": 19, "0x7f13967f2920": 19, "0x7f13967f2d40": 19, "0x7f13f89c7df0": 19, "1": [0, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "10": [13, 18, 19, 20, 23], "100": 15, "1000": 3, "1000000101100000111011": 20, "100011": [0, 14], "100101": [0, 14], "100110": [0, 14], "101": 20, "1024": 4, "104": [15, 21], "105e": 18, "1077416855645157": 20, "108": [20, 23], "10_000": 20, "11": [0, 13, 19, 20, 23], "1102529j": 14, "11157654": 14, "112": 15, "12": [2, 13, 15, 16, 18, 23], "12204343": 14, "1234": [9, 13, 14, 15, 19, 21], "12345": 20, "125": [0, 16], "1278053627110065": 20, "1284": [15, 18], "12j": 16, "13": [0, 13, 18, 23], "13113848": 14, "133": 20, "13327423j": 14, "13957088j": 14, "14": [13, 20], "15": [13, 15], "152e": 18, "153e": 18, "1561685j": 14, "15624569": 14, "15828306": 14, "15x15": 15, "16": 13, "16281661": 16, "17": 13, "1711": [2, 4], "17181289596": 21, "17276745j": 14, "17558331": 14, "18": 13, "180": 15, "18007105": 14, "1808": 2, "18j": 16, "19": 0, "1e": [0, 2, 3, 4, 6, 15, 23], "1j": [0, 9, 16, 23], "2": [0, 1, 2, 4, 5, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "203e": 15, "20835741": 14, "20881506": 14, "21": 0, "210": 20, "2104": 2, "2190712273": 9, "21928194": 14, "21984743e": 16, "22392824": 14, "23": 15, "23550198": 14, "23611476": 14, "24": [13, 19], "25": [0, 16], "25j": [0, 16], "26": 23, "26121865": 14, "286e": 18, "29821173j": 14, "2j": [0, 2, 16], "2n": 14, "3": [0, 2, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "30052742j": 14, "31980058j": 14, "31g": [20, 21], "32": [13, 19], "329": 18, "33731417j": 14, "339": 18, "3484557058996": 20, "35": [0, 23], "351": 18, "36730125j": 14, "3714141": 14, "38435478j": 14, "39": [13, 14, 15, 16, 18, 19, 20], "39075171": 14, "398e": 15, "3j": 16, "4": [0, 2, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "400e": 18, "418e": 15, "421e": 18, "4390672": 14, "45619739146407": 20, "46": 18, "464957764796": 23, "46x46": 18, "47": 20, "478": 15, "48": [13, 20], "49094286j": 14, "4j": 16, "5": [0, 3, 9, 13, 14, 15, 16, 18, 19, 20, 23], "506e": 18, "51253171j": 14, "519e": 18, "527e": 18, "535": 18, "55717072551607": 9, "559e": 18, "56": [13, 19, 20], "561e": 18, "5626": 18, "57": 20, "58888": 22, "5j": [0, 16], "6": [0, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "603e": 15, "6332495815006": 15, "64": 14, "640e": 18, "643e": 18, "65": 20, "66": 20, "67794403659725": 15, "6787887956297": 15, "6787887956314": 15, "682e": 18, "68381564670884": 15, "684e": 18, "6g": [0, 15, 18, 23], "6j": 16, "7": [0, 9, 13, 14, 15, 16, 18, 19, 23], "70": 20, "72": 18, "7288249991515": 15, "72x72": 18, "73105542j": 14, "744e": 18, "747e": 15, "748e": 15, "75": [15, 20], "77": 18, "8": [0, 13, 15, 16, 18, 19, 20, 23], "8266321248745": 18, "832e": 18, "835236570775": 20, "842e": 18, "847e": 18, "87160024816289": 18, "87363110240167": 18, "87363426385984": 18, "87363431632271": 18, "87363432121501": 18, "87387391273364": 18, "87421536374029": 18, "8742165643863": 18, "89611684282813e": 18, "9": [13, 14, 15, 16, 18, 19, 20, 23], "9289": 18, "9402435387541026": 23, "948e": 15, "949": 18, "958": 15, "9630419334855": 20, "99": 9, "9924": 20, "99771668928647e": 18, "9985212861540083": 23, "9985212861540445": 23, "9991": 20, "9994066917073114": 18, "9994067007116887": 18, "9996731164193019": 23, "A": [0, 1, 2, 3, 4, 5, 6, 8, 12, 13, 14, 16, 22, 23], "AND": 15, "As": [0, 11, 13, 14, 18, 19, 23], "By": 21, "For": [0, 3, 4, 8, 9, 11, 14, 15, 16, 22, 23], "If": [0, 1, 2, 3, 4, 5, 6, 13, 16], "In": [0, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "It": [0, 2, 3, 4, 13, 14, 16, 18, 20, 22], "Its": [3, 4], "NO": [15, 18], "No": 2, "Of": 11, "On": [14, 22], "One": [0, 23], "Such": 16, "That": [0, 3, 12, 16], "The": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "Their": 19, "Then": [0, 13], "There": 13, "These": [0, 11, 16, 19], "To": [0, 8, 9, 11, 14, 18, 23], "With": [11, 14, 23], "_": [0, 1, 2, 4, 8, 11, 12, 15, 23], "_1": 12, "_2": 12, "__init__": 4, "__init_subclass__": 4, "__new__": 4, "_factr": 18, "_i": [0, 4], "_k": [0, 8, 11], "_nestedsequ": 4, "_supportsarrai": 4, "a_": [0, 4, 8, 9, 12, 16], "a_j": 1, "a_p": 0, "a_q": 0, "ab": 23, "abil": 8, "abl": 22, "about": 21, "abov": [13, 16], "absenc": [0, 1, 4], "absolut": [0, 2, 4, 6], "acceler": 22, "accept": [12, 18], "access": [0, 9, 22], "accommod": 4, "accomod": 8, "accur": 8, "achiev": [2, 23], "across": 22, "act": [0, 2, 4, 9, 13, 15, 16], "action": [0, 1, 12, 16, 22, 23], "activ": [0, 15, 18, 20, 23], "active_spac": [0, 15, 18, 20, 21, 23], "actual": [6, 11], "ad": [0, 13, 18], "add": [13, 18], "addit": [0, 8, 16, 23], "addition": 2, "address": [0, 13], "addresses_to_str": [0, 7, 14], "adjac": 13, "advantag": 18, "after": [3, 18], "al": 2, "algebra": [2, 9, 16], "algorithm": [0, 2, 3, 18, 21], "alia": [0, 2], "align": [0, 11, 12], "all": [0, 1, 2, 3, 4, 6, 11, 13, 16, 20, 22], "alloc": 0, "allow": [0, 2, 11, 13, 18, 22, 23], "along": 0, "alpha": [0, 1, 2, 4, 6, 9, 11, 13, 14, 15, 16, 19, 20], "alpha_alpha_indic": 0, "alpha_and_beta": 0, "alpha_beta_indic": 0, "alpha_i": 0, "alpha_j": 0, "alreadi": [0, 4, 12], "also": [0, 2, 3, 9, 12, 14, 16, 18, 23], "altern": [0, 8], "alwai": [0, 2, 5, 12, 14, 23], "amen": 13, "amplitud": [0, 2, 5, 18, 20], "an": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "angl": 0, "ani": [0, 3, 4, 11, 12, 19, 20], "annihil": [0, 16], "anoth": [2, 6], "ansatz": [0, 3, 4, 5, 10, 13, 17, 19, 20, 21], "ansatz_oper": 0, "ansatz_st": 18, "anti": [2, 5], "anticommut": 12, "ao": 0, "ap": 2, "api": [14, 21], "appear": [0, 2, 13, 16, 20], "append": [0, 6, 13, 18, 19, 20], "appli": [0, 1, 2, 3, 4, 9, 11, 12, 13, 14, 18, 19, 20, 21, 23], "applic": 12, "apply_": 14, "apply_diag_coulomb_evolut": [0, 7, 8, 23], "apply_fsim_g": [0, 7], "apply_givens_rot": [0, 7], "apply_hop_g": [0, 7], "apply_matrix_to_slic": [2, 7], "apply_num_interact": [0, 7], "apply_num_num_interact": [0, 7], "apply_num_op_prod_interact": [0, 7], "apply_num_op_sum_evolut": [0, 7, 12, 23], "apply_on_site_interact": [0, 7, 14], "apply_orbital_rot": [0, 7, 12, 14, 21], "apply_quad_ham_evolut": 12, "apply_tunneling_interact": [0, 7, 14], "apply_unitari": [0, 7, 18], "appropri": [0, 11], "approx": 8, "approx_eq": [0, 7], "approxim": [0, 2, 3, 8, 18, 23], "apt": 22, "ar": [0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 19, 20, 22], "arbitrari": [4, 20], "arch": 22, "arg": [0, 4], "argument": [0, 2, 3, 8, 9, 12, 14, 23], "aris": 8, "arithmet": 16, "around": 23, "arrai": [0, 1, 2, 4, 6, 9, 11, 14, 16], "arxiv": [2, 4, 5], "ascend": 20, "assembl": 2, "assert": 14, "assert_allclose_up_to_global_phas": [6, 7], "assertionerror": 6, "associ": [0, 3, 14, 16, 18], "assum": [0, 4, 14], "asterisk": 0, "asymmetr": 8, "atol": [0, 2, 4, 6], "atom": [0, 15, 18, 20, 21, 23], "attempt": 2, "attribut": [0, 3, 9, 15, 18], "author": 21, "avail": [9, 19, 22], "avoid": [0, 9, 16], "awar": 16, "ax": [0, 2], "axi": [0, 2], "b": [0, 2, 3, 6, 12, 15, 18], "back": 4, "backend": [13, 19], "backflow": 3, "background": 23, "balanc": [0, 4, 5, 18, 20], "barrier": 20, "base": [0, 2, 4], "basepass": 4, "basesamplerv2": 4, "basi": [0, 2, 4, 12, 15, 18, 20, 21, 23], "basic": [9, 13], "basis_g": [13, 19], "bear": 23, "becaus": [0, 2, 8, 9, 13, 15, 16, 18], "been": [0, 8], "befor": [0, 13, 16, 22, 23], "begin": [0, 2, 11, 12, 14, 20, 23], "behavior": [2, 4, 5, 19], "being": [2, 16, 18], "below": [0, 18, 23], "benchmark": 0, "beta": [0, 1, 2, 4, 6, 9, 11, 13, 14, 15, 16, 19, 20], "beta_i": 0, "beta_j": 0, "better": 8, "between": [0, 1, 2, 3, 11, 13], "bfg": [0, 2, 3, 15, 18], "bibtex": 21, "bit": [0, 13, 14], "bit_arrai": 0, "bitstr": [0, 14, 20], "bitstring_typ": [0, 14], "bitstringtyp": [0, 7, 14], "bla": 22, "bloc": 20, "block": 2, "block_diag": [0, 2], "bmod": 0, "bodi": [0, 1, 2, 5, 8, 9, 18, 23], "bond": 15, "bond_angle_deg": 15, "bond_dist": 18, "bool": [0, 1, 2, 3, 4, 5, 6], "both": [0, 1, 2, 4, 11, 15], "bound": [0, 2], "boundari": 0, "box": 13, "bq": 2, "bracket": 0, "braket": 0, "branch": 21, "brickwork": 15, "browser": 22, "buffer": 4, "build": [13, 17, 18, 20, 21, 22], "built": [19, 20, 23], "byte": [0, 4], "bz2": 0, "c": [2, 18], "c2v": 15, "cach": 0, "calcul": [0, 14, 18], "call": [0, 3, 4, 8, 9, 12, 14, 16, 18, 20, 23], "callabl": [3, 18], "callback": [0, 2, 3, 18], "can": [0, 1, 2, 4, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23], "cannot": 20, "canon": 0, "casci": [15, 18], "case": [0, 6, 13, 15], "categori": 21, "caus": 0, "cc": [18, 20], "ccsd": [0, 18, 20], "ccsd_energi": 0, "ccsd_t1": 0, "ccsd_t2": 0, "cd": 22, "cdot": 2, "cell": [9, 13, 14, 18, 19, 20, 23], "certain": [2, 13], "challeng": 11, "character": 0, "check": [2, 4, 6], "chemcor": 23, "chemic": 0, "chemical_potenti": 0, "chemistri": 21, "choic": [0, 6, 13, 14], "choleski": [0, 2], "choos": [2, 14], "chosen": 0, "ci": [15, 18], "circuit": [0, 4, 8, 13, 14, 17, 21], "circul": 0, "cisd": 0, "cisd_energi": 0, "cisd_vec": 0, "class": [0, 2, 4, 5, 9, 11, 15, 17, 18, 21, 23], "clement": 2, "clone": 22, "close": [11, 18], "cluster": [0, 4, 5, 10, 17, 21], "co": [0, 15], "code": [4, 9, 13, 14, 16, 18, 19, 20, 23], "coeff": [0, 1, 4, 13, 19], "coeffici": [0, 1, 2, 4, 12, 16], "collect": [2, 4, 18], "column": [0, 2, 12, 14], "com": [21, 22], "comb": 4, "combin": [0, 1, 4, 12, 13, 16], "command": 22, "commonli": [8, 20], "commun": [21, 22], "commut": [0, 8], "compact": [8, 23], "compar": [0, 6, 23], "compil": 22, "complet": 0, "complex": [0, 1, 2, 4, 5, 9], "compon": [0, 16, 21], "compos": [4, 22], "compress": [0, 2], "compris": [0, 16], "comput": [0, 2, 4, 9, 12, 18, 21, 23], "concaten": [0, 14], "concret": 9, "condit": 0, "configur": [0, 4, 13, 14, 22], "conflict": 6, "conj": [2, 12, 20], "conjug": 2, "connect": [0, 11, 13], "consecut": [4, 20], "conserv": [0, 5, 16, 21], "conserves_particle_numb": [0, 16], "conserves_spin_z": [0, 16], "consid": [11, 12, 13], "consist": [0, 9, 13], "constant": [0, 5, 8, 9, 11, 13, 19], "constrain": 2, "constraint": [11, 18], "construct": [0, 1, 3, 4, 13, 14, 15, 16, 18, 19, 20, 23], "contain": [0, 2, 3, 13, 16, 20, 21, 22], "contract": [2, 7, 21], "contract_diag_coulomb": [1, 7], "contract_num_op_sum": [1, 7], "contract_one_bodi": [1, 7], "contrast": 14, "control": [3, 13], "conveni": 14, "convent": 0, "converg": [3, 15, 18, 20, 23], "convers": [11, 18], "convert": [0, 1, 4, 14, 16, 18, 20, 21, 23], "coordin": 0, "coov": 20, "copi": [0, 16], "core": 0, "core_energi": 0, "correl": 3, "correspond": [0, 2, 3, 4, 8, 12, 13, 14, 18], "cost": 0, "coulomb": [0, 1, 2, 4, 8, 11, 23], "count": [0, 13, 20], "count_op": [13, 19], "cours": 11, "cp": [13, 19], "cphaseg": 13, "cre": [0, 7], "cre_a": [0, 7, 16], "cre_b": [0, 7, 16], "creat": [0, 4, 13, 14, 16, 19, 20, 21, 23], "creation": [0, 4, 12, 16], "criteria": 16, "current": [0, 2, 18], "d": [2, 22], "d2h": 18, "dag": 4, "dagcircuit": 4, "dagger": [0, 1, 2, 8, 11, 12, 16], "dagger_": [0, 4, 8, 9, 12], "dagger_i": 1, "data": [0, 5, 13, 15, 16, 18, 20, 21, 23], "daunt": 8, "de": [0, 7], "decompos": [2, 4, 8, 13, 19], "decomposit": [0, 2, 4, 8, 10, 19, 21, 23], "decreas": [0, 18], "def": [2, 12, 15, 18, 23], "default": [0, 2, 3, 4, 5, 8, 9, 23], "default_rng": [0, 4, 5, 6, 9, 13, 15, 19, 20], "default_shot": [4, 20], "defaultdict": 18, "defin": [0, 2, 13, 15, 18, 20, 23], "definit": [0, 2, 3, 14], "demonstr": [14, 18, 20], "denot": [0, 1, 2, 4, 12], "dens": 15, "densiti": 0, "depend": [0, 2, 3, 22, 23], "deprec": [0, 4, 5], "depth": 11, "deriv": 8, "des_a": [0, 7, 16], "des_b": [0, 7, 16], "descend": [0, 16], "describ": [0, 1, 2, 8, 11, 12, 13, 16, 23], "descript": [0, 4], "design": [0, 2, 12], "desir": [0, 2, 5, 6], "destroi": [0, 16], "detail": [13, 19], "determin": [0, 2, 4, 14], "dev": 22, "devel": 22, "develop": [4, 21], "devic": [13, 19], "df_hamiltonian": [13, 19, 23], "df_hamiltonian_alt": 23, "diag": [0, 7], "diag_coulomb_indic": [0, 2], "diag_coulomb_jw": 13, "diag_coulomb_linop": [1, 7], "diag_coulomb_mat": [0, 2, 13, 19, 20, 23], "diag_coulomb_mats_alpha_alpha": 0, "diag_coulomb_mats_alpha_beta": 0, "diagcoulombevolutionjw": [4, 7, 13, 19, 20], "diagcoulombevolutionspinlessjw": [4, 7], "diagon": [0, 1, 2, 4, 8, 11, 23], "diagonal_coulomb_mat": 2, "diagonalcoulombhamiltonian": [0, 7], "dict": [0, 2, 3, 15, 18], "dictionari": [0, 16], "did": 0, "differ": [0, 1, 2, 3, 9, 11, 13, 18, 22, 23], "dim": [0, 5, 7, 14, 16], "dim_a": [0, 14], "dim_b": [0, 14], "dimens": [0, 2, 5, 14], "dimension": [0, 2, 4, 14], "dipol": 0, "dipole_integr": 0, "direct": [0, 23], "directli": [0, 13, 18, 22, 23], "directori": 22, "discuss": [8, 12, 13], "disjoint": 2, "disk": 0, "displai": [13, 16, 20], "distinguish": 14, "distribut": 5, "divid": 8, "divis": [0, 16], "dnf": 22, "do": [8, 13, 16], "doc": [15, 18, 21], "docker": 21, "dockerfil": 22, "docstr": 0, "document": [0, 2], "doe": [0, 4, 16, 20], "don": 11, "dooh": [20, 21, 23], "dot": 0, "doubl": [0, 2, 4, 5, 10, 21, 24], "double_factor": [0, 2, 7], "double_factorized_t2": [2, 7], "double_factorized_t2_alpha_beta": [2, 7], "doublefactorizedhamiltonian": [0, 4, 5, 7, 23], "down": 14, "draw": [13, 19], "drop": [4, 15, 18], "dropneglig": [4, 7], "dtype": [0, 2, 4, 5, 9, 15, 18], "due": 20, "dump": [15, 18], "duplic": 0, "dure": 4, "e": [0, 2, 4, 8, 9, 11, 15, 16, 18, 20], "e_corr": [18, 20], "each": [0, 2, 3, 4, 8, 11, 14, 16, 18, 22, 23], "edg": 0, "effect": [0, 4, 13], "effici": [8, 13, 16], "eig": [9, 16], "eigendecomposit": 12, "eigenvalu": [0, 2, 3, 9], "eigenvector": [0, 2], "eigh": [12, 23], "eigsh": 9, "einsum": 23, "either": [0, 1, 2, 4, 6, 11], "electon": 4, "electron": [0, 1, 4, 5, 9, 13, 14, 15, 19, 20, 23], "element": [0, 1, 2, 4, 20, 23], "ell": 2, "els": [0, 5, 14], "elsewher": 0, "enabl": 2, "encount": 20, "end": [0, 2, 11, 12, 20, 23], "energi": [0, 3, 9, 12, 18, 20, 21, 23], "energy_nuc": [15, 18], "enforc": 0, "enough": 4, "ensur": 9, "entangl": [0, 17, 21], "entir": [2, 8], "entri": [0, 2, 4, 11, 14, 23], "enum": 0, "enumer": [0, 18], "environ": 22, "epsilon": 3, "epsmch": 18, "equal": [0, 2, 6, 13], "equal_nan": 6, "equilibrium": 15, "equival": [0, 4], "err_msg": 6, "error": [0, 2, 4, 6, 23], "especi": 16, "estim": 9, "et": 2, "etc": 0, "ethen": 18, "evalu": [3, 15], "even": 13, "everi": 12, "everywher": 14, "evolut": [0, 4, 9, 23], "evolv": [0, 23], "evolved_vec": 9, "evolved_vec_2": 9, "exact": [2, 8, 9, 23], "exact_st": 23, "exampl": [0, 4, 9, 11, 13, 14, 15, 16, 18, 19, 22], "exce": [2, 15, 23], "except": [0, 2, 3], "excit": 13, "exist": [2, 4], "exp": [0, 2, 4, 6], "expand": 0, "expanded_diag_coulomb_mat": 2, "expanded_orbital_rot": 2, "expans": [2, 3], "expect": [0, 3], "expectation_one_body_pow": [0, 7], "expectation_one_body_product": [0, 7], "expectation_product_st": 0, "expens": [0, 2], "explain": [9, 11, 13, 14, 18, 23], "explan": [0, 19, 21], "explicit": 0, "explicitli": 0, "exploit": 21, "expm": 2, "expm_multipli": [9, 23], "expm_multiply_taylor": [2, 7], "exponenti": [8, 9, 23], "expos": [4, 13], "express": [11, 14, 23], "extend": 4, "extra": 8, "extract": 20, "f": [3, 14, 15, 18, 20, 23], "facilit": 11, "fact": 15, "factor": [0, 2, 4, 5, 10, 21, 24], "failur": 6, "fake_provid": [13, 19], "fals": [0, 1, 2, 4, 5, 15, 16, 18], "far": 16, "fast": 0, "faster": [18, 21], "fault": 11, "fci": [0, 14, 15, 18], "fci_energi": 0, "fci_vec": 0, "fcidump": 0, "fcivec": 0, "fedora": 22, "feenberg": 3, "fermi": 0, "fermi_hubbard_1d": [0, 7], "fermi_hubbard_2d": [0, 7], "fermion": [0, 4, 5, 6, 8, 10, 11, 12, 16, 19, 20, 21], "fermion_oper": [0, 7], "fermionact": [0, 7], "fermionoper": [0, 4, 5, 7, 17, 21], "few": [14, 22], "fewer": [13, 19, 23], "ffsim": [7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23], "ffsim_vec_to_qiskit_vec": [4, 7], "ffsimsampl": [4, 7], "fidel": 23, "field": [0, 2], "fifth": 13, "file": [0, 22], "filter": 0, "final": [0, 3, 4, 5, 13, 19, 23], "final_orbital_rot": 0, "final_st": [18, 23], "final_state_vector": [4, 7], "finish": 23, "finit": 3, "first": [0, 2, 4, 8, 13, 14, 18, 20, 23], "fix": 14, "flag": 0, "float": [0, 2, 3, 4, 5, 6, 9, 12, 23], "float64": [9, 15, 18], "fock": [0, 4, 11, 14, 18, 21, 23], "focu": 9, "follow": [0, 2, 3, 4, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23], "foot": 0, "forg": [0, 17, 21], "form": [0, 1, 2, 4, 8, 9, 11, 12, 16, 20, 23], "format": [0, 4], "formula": [0, 23], "fourth": [8, 13], "frac": [0, 2], "frac12": [0, 8, 9, 11], "frac18": 0, "framework": 22, "from": [0, 2, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "from_diag_coulomb_mat": 0, "from_fcidump": 0, "from_fermion_oper": 0, "from_json": 0, "from_mol": 0, "from_molecular_hamiltonian": [0, 23], "from_orbital_rot": 0, "from_paramet": [0, 13, 18], "from_scf": [0, 15, 18, 20, 21, 23], "from_t_amplitud": [0, 18, 20], "frozen": [18, 20], "fsim": 0, "full": [0, 2, 13, 14, 15], "fulli": 9, "fun": [3, 15, 18], "function": [0, 1, 2, 3, 5, 8, 9, 12, 14, 15, 16, 18, 19, 23], "fundament": 12, "further": [13, 14], "furthermor": [0, 2], "g": [0, 4, 15], "g_": 2, "g_1": 2, "g_k": 2, "g_l": 2, "gate": [0, 4, 10, 11, 15, 20, 21], "gener": [0, 3, 4, 5, 6, 8, 13, 14, 15, 19, 20, 21], "generate_norb_nelec": [6, 7], "generate_norb_nelec_spin": [6, 7], "generate_norb_nocc": [6, 7], "generate_norb_spin": [6, 7], "generate_preset_pass_manag": [13, 19], "genericbackendv2": [13, 19], "get": [0, 14, 15, 18, 20, 21, 23], "get_count": 20, "get_hcor": [15, 18], "get_ovlp": [15, 18], "git": 22, "github": [21, 22], "give": [0, 2, 8, 14, 19], "given": [0, 2, 4, 6, 8, 12], "givens_ansatz_op": 4, "givens_ansatz_oper": 4, "givens_decomposit": [2, 7], "givensansatzop": [0, 4, 7], "givensansatzoper": [0, 4, 7], "givensansatzoperatorjw": [4, 7], "givensansatzoperatorspinlessjw": [4, 7], "givensansatzopjw": [4, 7], "givensansatzopspinlessjw": [4, 7], "givensrot": [2, 7], "global": [4, 6], "go": [0, 13, 16], "good": 16, "gradient": [2, 3, 18], "greater": 3, "ground": [9, 18], "gt": [15, 18, 19], "gto": [15, 18, 20, 21, 23], "gtol": [3, 18], "guarante": [4, 19], "guess": [3, 18], "guid": [11, 15, 18, 19, 20, 21], "gzip": 0, "h": [0, 8, 9, 15, 18, 20, 23], "h1_x": 15, "h2_x": 15, "h2_y": 15, "h_": [0, 2, 8, 9], "h_0": [8, 23], "h_k": [8, 23], "ha": [0, 1, 2, 4, 8, 11, 12, 13, 14, 18], "haar": 5, "ham": 14, "hamiltonian": [0, 3, 4, 5, 10, 15, 18, 20, 21, 24], "hand": 14, "handl": [20, 23], "happen": 13, "hardwar": 13, "hartre": [0, 4, 11, 14, 18, 21, 23], "hartree_fock": 0, "hartree_fock_jw": 13, "hartree_fock_st": [0, 7, 9, 14, 18, 21, 23], "hasattr": 18, "hash": 16, "have": [0, 2, 8, 9, 11, 12, 13, 14, 16, 22], "height": 5, "helper": 16, "here": [0, 2, 8, 12, 13, 15, 23], "hermitian": [0, 2, 5, 12], "hess_inv": [15, 18], "hf": [15, 18], "hf_energi": 0, "hf_mo_coeff": 0, "hf_mo_occ": 0, "high": 13, "higher": [0, 8, 23], "ho": 20, "hold": [0, 3], "home": [15, 18, 22], "hop": [0, 15], "hopgateansatzoper": [0, 7, 15], "hot": [0, 2], "how": [0, 8, 9, 11, 12, 13, 14, 21, 23], "howev": [8, 13, 21], "http": [21, 22], "hubbard": 0, "hydroxyl": 20, "hyperparamet": [3, 18], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "idea": 11, "ident": 0, "ignor": [0, 2, 8], "ij": [0, 1, 2, 4, 8, 11, 12], "ijab": 2, "ik": 12, "imag": 22, "implement": [0, 1, 3, 4, 8, 9, 11, 12, 13, 15, 18, 20, 21, 22, 24], "import": [0, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "impos": [11, 18], "improv": [3, 23], "includ": [0, 2, 4, 5, 8, 9, 12, 13, 14, 15, 18, 19, 21, 22], "incorpor": 0, "increas": [0, 14, 23], "increment": 3, "incur": 3, "independ": [0, 1, 4, 15], "index": [0, 2, 11, 14, 16], "indic": [0, 1, 2, 4, 11, 14, 16], "indices_to_str": [0, 7], "individu": [8, 14, 16], "info": 18, "inform": [0, 9, 16, 18, 21, 23], "init_cach": [0, 7], "initi": [0, 3, 4, 5, 6, 9, 11, 13, 18, 19, 20, 23], "initial_st": 23, "initiali": 15, "input": [0, 1, 3, 4, 5, 6, 18, 20], "insert": 13, "instanc": [5, 9, 23], "instead": [0, 2, 4, 5, 18, 23], "instruct": [21, 22], "instructionset": 19, "int": [0, 1, 2, 3, 4, 5, 6, 12, 15, 23], "int32": 0, "integ": [0, 2, 4, 6, 14], "integr": [0, 4], "interact": [0, 1, 2, 4, 11, 13, 18, 20], "interaction_pair": [0, 13, 15, 18, 20], "interfac": [18, 22], "interferomet": 2, "intermedi": 18, "intermediate_result": [3, 18], "intern": 16, "interpret": [0, 11], "introduc": [11, 12, 23], "invers": 4, "involv": [0, 12, 13], "ip": 2, "ipykernel_4307": 9, "is_antihermitian": [2, 7], "is_hermitian": [2, 7], "is_orthogon": [2, 7], "is_real_symmetr": [2, 7], "is_special_orthogon": [2, 7], "is_unitari": [2, 7], "isclos": 0, "isn": 4, "issu": [9, 13], "item": 20, "iter": [0, 3, 4, 6, 18], "itertool": 2, "its": [0, 2, 4, 9, 13, 14, 15, 16, 23], "itself": [0, 14, 16], "j": [0, 1, 2, 4, 8, 11, 12, 14, 15, 16], "jac": [3, 15, 18], "jastrow": [0, 3, 4, 5, 10, 17, 21], "ji": [0, 4, 11, 12], "jk": 12, "job": [4, 20], "jordan": [0, 4], "jordan_wign": [4, 7], "jq": 2, "json": [0, 15, 18], "jupyt": 22, "just": [0, 14, 18, 22, 23], "jwt": 4, "k": [0, 2, 8, 9, 11, 16, 20, 23], "kappa": 0, "kappa_": 0, "keep": [0, 2], "kei": 20, "kij": 23, "know": 15, "known": 8, "kpi": 23, "kqi": 23, "krj": 23, "kron": 0, "ksj": 23, "kwarg": [0, 4], "l": [0, 2, 3, 8, 11, 15, 18, 23], "label": [4, 14], "ladder": [8, 11], "lambda": [0, 4, 20], "lambda_i": [0, 1, 4, 12], "lambda_k": 12, "langl": 0, "larger": [0, 2, 3, 16], "last": [0, 2, 3, 4], "later": [19, 23], "lattic": [0, 11, 13, 18, 20], "layer": [0, 2, 13, 20], "lbfgsinvhessproduct": [15, 18], "ldot": [0, 2, 8, 11, 23], "lead": 0, "least": 2, "left": [0, 4, 12, 14, 16], "len": [15, 18, 23], "length": [0, 4, 5, 14, 15], "leq": [0, 2], "less": [2, 11], "let": [0, 13, 14, 16, 18, 19, 20, 23], "level": 23, "lexicograph": [0, 16], "lib": [15, 18], "libopenbla": 22, "librari": [0, 21], "like": [4, 11, 18, 22], "limit": [0, 2, 11, 13, 15, 18], "linalg": [0, 7, 9, 12, 16, 18, 21, 23], "lindep": 3, "line": [0, 11, 13, 18], "linear": [0, 1, 2, 3, 4, 9, 12, 13, 16], "linear_oper": [0, 7, 9, 16, 18, 21, 23], "linearli": 8, "linearoper": [0, 1, 3, 16, 18, 21, 23], "linop": [9, 16, 21, 23], "linux": 22, "list": [0, 2, 4, 6, 11, 14, 15, 18, 20, 23], "ll": [9, 12, 13, 15, 18, 20, 23], "lm": 16, "load": 0, "local": [10, 17, 21], "localhost": 22, "log": [0, 4], "logarithm": 11, "logic": [12, 15], "longer": 11, "longest": 0, "lookup": 0, "losslessli": 0, "low": [0, 8, 23], "lower": [0, 2], "lowest": [0, 13, 14], "lt": [15, 18, 19], "lu": 2, "lucj": [10, 13, 17, 21], "lup": [2, 7], "lvert": [0, 4, 11, 14], "lzma": 0, "m": [0, 1, 2, 12], "m_": [0, 1, 2], "maco": 22, "made": 23, "magnitud": 0, "mai": [0, 2, 3, 4, 11, 22, 23], "main": [18, 22], "maintain": 8, "make": [11, 13], "manag": [4, 13, 19, 22], "mani": [0, 9, 12, 14, 21], "manual": 23, "many_body_ord": 0, "map": [0, 4, 12, 13, 16], "mapsto": [0, 4, 12], "mat": [0, 1, 2, 4, 12, 14], "mat_aa": 2, "mat_ab": 2, "mat_alpha_beta": 1, "mat_bb": 2, "match": [0, 2], "match_global_phas": [2, 7], "math": [5, 15], "mathbf": [0, 8, 11, 12], "mathcal": [0, 1, 4, 8, 11, 12], "matric": [0, 1, 2, 4, 11, 12, 23], "matrix": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 14, 16], "max": 23, "max_error": 23, "max_term_length": 5, "max_vec": [0, 2, 23], "maxfun": 15, "maximum": [0, 2, 3, 5, 23], "maxit": [3, 18], "mcscf": [15, 18], "mea": 20, "meant": [4, 19], "measur": [5, 8, 20], "measure_al": 20, "mention": 8, "merg": [4, 19], "mergeorbitalrot": [4, 7, 13], "messag": [6, 15, 18], "method": [0, 2, 3, 4, 11, 15, 16, 20, 21], "mid": 20, "might": 2, "mind": 23, "minim": [0, 2, 3, 13, 15, 18], "minimize_linear_method": [3, 7, 18], "minimizz": 15, "minimum": 4, "mk": 2, "mkap": 2, "mkbq": 2, "mkip": 2, "mkjq": 2, "mkpq": 2, "mo_coeff": 0, "mo_occ": 0, "mode": 12, "model": 0, "modifi": [0, 2], "modified_choleski": [2, 7], "modul": [0, 14, 15, 19, 20], "mol": [15, 18, 20, 21, 23], "mol_data": [15, 18, 20, 21, 23], "mol_hamiltonian": [9, 15, 18, 20, 23], "mole": [0, 15, 18, 20, 21, 23], "molecul": [0, 18, 21, 23], "molecular": [0, 5, 9, 10, 14, 15, 18, 20, 21, 23], "moleculardata": [0, 7, 15, 18, 20, 21, 23], "molecularhamiltonian": [0, 5, 7, 9, 23], "more": [0, 2, 3, 4, 8, 9, 11, 13, 14, 19, 23], "most": [0, 2, 16, 20], "motiv": 13, "mp2": 0, "mp2_energi": 0, "mp2_t2": 0, "mpl": [13, 19], "msg": [15, 18], "mu": 0, "much": [0, 2, 8, 13, 21], "multipl": [0, 9, 16, 23], "multipli": [0, 16], "multiport": 2, "multirefer": 0, "multireference_st": [0, 7], "multireference_state_prod": [0, 7, 15], "must": [0, 2, 3, 4, 16, 20], "n": [0, 2, 8, 9, 11, 12, 14, 20, 21, 23], "n2": [20, 21, 23], "n_": [0, 1, 4, 8, 11, 12, 14], "n_alpha": [4, 6, 20], "n_beta": [4, 6, 20], "n_frozen": [20, 23], "n_i": 4, "n_j": 4, "n_layer": 15, "n_p": 0, "n_param": [0, 13], "n_qubit": 4, "n_rep": [0, 5, 13, 18, 19, 20], "n_sampl": 0, "n_step": [0, 4, 13, 19, 23], "n_term": 5, "n_vec": 2, "n_x": 0, "n_y": 0, "name": [0, 9, 13, 14, 19, 22], "namedtupl": [0, 2], "nan": 6, "nao_nr": [15, 18, 20, 21, 23], "nativ": 21, "navig": 22, "ndarrai": [0, 1, 2, 3, 4, 5, 6, 12, 18, 23], "nearest": 0, "nearest_neighbor_interact": 0, "need": [0, 4, 9, 11, 13, 20, 22, 23], "neg": [0, 4], "neglig": 4, "neighbor": [0, 13], "nelec": [0, 1, 4, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "nelectron": 18, "neq": 0, "nest": 2, "network": 11, "new": [0, 4, 12, 16], "newli": 0, "next": [13, 15, 23], "nfev": [3, 15, 18], "nit": [15, 18], "nitrogen": [20, 23], "njev": [15, 18], "nlinop": [3, 18], "nn": 0, "nocc": [0, 5, 6], "nocc_a": 2, "nocc_b": 2, "noisi": 11, "non": [4, 11], "none": [0, 1, 2, 3, 4, 5, 6], "nonzero": [0, 2, 11], "norb": [0, 1, 2, 4, 5, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "norb_i": 0, "norb_rang": 6, "norb_x": 0, "norm": [0, 3, 18], "normal": [0, 15, 16], "normal_ord": [0, 16], "note": [0, 2, 3, 13, 14, 16, 19, 21], "notebook": 22, "noth": 4, "notic": 18, "notimplementederror": 4, "now": [9, 13, 15, 18, 20, 23], "np": [0, 2, 4, 5, 6, 9, 12, 13, 15, 18, 19, 20, 21, 23], "num_num_ansatz_op": 4, "num_op_sum_linop": [1, 7], "number": [0, 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 18, 21, 23], "number_oper": [0, 7], "numer": [0, 2, 4, 16], "numnumansatzopspinbalanc": [0, 4, 7], "numnumansatzopspinbalancedjw": [4, 7], "numopsumevolutionjw": [4, 7, 13, 19], "numopsumevolutionspinlessjw": [4, 7], "numpi": [0, 1, 2, 4, 6, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23], "o": [0, 15, 20], "o_1": 0, "o_2": 0, "o_k": 0, "obj": 0, "object": [0, 2, 3, 4, 9, 16, 18, 20], "obtain": [0, 8, 9, 12, 13, 18, 23], "occ_a": 6, "occ_b": 6, "occup": [0, 6, 8, 12, 14], "occupi": [0, 4, 5, 6, 13, 14], "occupied_orbit": [0, 4, 13, 19, 20], "often": [8, 11, 18], "onc": [12, 13, 22], "one": [0, 1, 2, 4, 5, 8, 9, 13, 14, 18, 20, 22, 23], "one_body_basis_chang": 23, "one_body_energi": 23, "one_body_integr": 0, "one_body_linop": [1, 7], "one_body_squar": 0, "one_body_tensor": [0, 9, 23], "one_hot": [0, 2, 7], "one_rdm": 0, "ones": 9, "onli": [0, 2, 4, 8, 11, 12, 13, 20, 22], "onsit": 0, "onto": [13, 16], "op": [0, 4, 16], "op1": [0, 16], "op2": [0, 16], "op3": 16, "op4": 16, "opaqu": 13, "open": [0, 11], "openbla": 22, "oper": [0, 1, 2, 3, 4, 5, 8, 11, 12, 16, 18, 22, 23], "oppos": 13, "opposit": [18, 20], "optim": [0, 2, 4, 7, 11, 13, 19, 21], "optimization_level": [13, 19], "optimize_kwarg": 3, "optimize_regular": 3, "optimize_vari": 3, "optimizeresult": [3, 18], "option": [0, 1, 2, 3, 4, 9, 15, 18, 22], "orb": [0, 16], "orbit": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 18, 20, 21, 23], "orbital_rot": [0, 1, 2, 4, 12, 13, 14, 19, 20, 21, 23], "orbital_rotation_a": 2, "orbital_rotation_b": 2, "orbital_symmetri": 0, "orbitalrotationjw": [4, 7, 13, 19, 20], "orbitalrotationspinlessjw": [4, 7], "order": [0, 1, 2, 4, 8, 9, 13, 14, 16, 19, 20, 23], "ordereddict": [13, 19], "origin": [0, 2, 11, 13, 23], "orthogon": [2, 5], "other": [0, 4, 11, 14, 18, 19, 20], "otherwis": 0, "our": [15, 18, 20, 23], "out": [2, 23], "output": [0, 3, 4, 13, 18, 20], "over": 0, "overrid": [0, 2], "overridden": 4, "overwritten": [0, 15, 18], "own": 4, "p": [0, 2, 8, 9, 11, 13, 18, 19, 20], "packag": [15, 18, 22], "pacman": 22, "pad": 0, "page": [8, 9, 11, 12, 13, 14], "pair": [0, 1, 2, 4, 6, 11, 13, 14], "pairs_aa": [13, 18, 20], "pairs_ab": [13, 18, 20], "pairs_bb": 20, "paper": 11, "parallel": [2, 11, 13], "param": 0, "paramet": [0, 1, 2, 3, 4, 5, 6, 11, 15, 18], "parameter_valu": 4, "params_to_vec": [3, 18], "pars": [15, 18], "part": [0, 5, 8, 12, 14, 15], "particl": [0, 5, 6, 12, 16, 21], "pass": [0, 1, 2, 4, 9, 12, 13, 14, 15, 16, 18, 19], "pass_manag": [13, 19], "passmanag": [4, 13], "path": 0, "pathlik": 0, "pattern": [13, 15], "pauli": 0, "per": 23, "perform": [0, 2, 3, 8, 9, 12, 13, 20, 23], "period": 0, "permut": 2, "persist": 22, "ph": 5, "phase": [0, 2, 4, 6, 13], "phase_angl": 0, "phaseg": 13, "phi": [0, 2, 6], "phi_0": 11, "pi": [0, 15], "piec": [9, 16], "pip": 21, "pipelin": 13, "pivot": 2, "pk": 2, "place": [0, 2, 11, 13, 16, 22], "plain": 14, "pmatrix": [0, 2], "posit": [2, 3, 14], "possibl": [0, 2, 6, 20, 21], "possibli": [0, 18], "potenti": 0, "power": 0, "pq": [0, 2, 8, 9], "pqr": [0, 2, 8, 9, 23], "practic": 8, "pre": [11, 19], "pre_init": [4, 7, 13, 19], "pre_init_pass": [4, 7, 19], "precis": 6, "prepar": [0, 4, 20], "preparehartreefockjw": [4, 7, 13, 19, 20], "preparehartreefockspinlessjw": [4, 7, 20], "prepareslaterdeterminantjw": [4, 7, 13, 19, 20], "prepareslaterdeterminantspinlessjw": [4, 7, 20], "present": 3, "preserv": [16, 20], "preset_passmanag": [13, 19], "previou": [18, 20], "previous": [8, 13, 14, 18], "primit": [4, 17, 21], "primitivejob": 4, "primitiveresult": 4, "print": [0, 6, 13, 14, 15, 16, 18, 20, 21, 23], "probabl": 0, "problem": 3, "processor": 11, "prod": 15, "prod_": [0, 4, 11], "prod_k": 8, "prod_state_sum": 0, "produc": 13, "product": [0, 2, 8, 14, 15, 16], "productstatesum": [0, 7], "programmat": 16, "project": [3, 18], "properti": [0, 2, 12], "proport": [0, 8], "protocol": 0, "provid": [9, 13, 19, 22], "pseudorandom": [0, 4, 5, 6], "psi": [0, 11], "pub": [4, 20], "pub_result": 20, "put": 15, "py": [9, 15, 18], "pypi": 22, "pyscf": [0, 4, 14, 15, 18, 20, 21, 23], "python3": [15, 18], "q": [0, 8, 9, 13, 19], "qdrift": 0, "qi": 0, "qiskit": [7, 13, 17, 21, 22], "qiskit_vec_to_ffsim_vec": [4, 7], "qk": 2, "quadrat": [8, 10, 21, 23], "qualnam": 0, "quantifi": 2, "quantiti": 0, "quantum": [0, 4, 8, 11, 13, 14, 17, 20, 21], "quantumcircuit": [4, 13, 19, 20], "quantumregist": [13, 19, 20], "qubit": [0, 4, 10, 11, 15, 19, 20, 21], "r": [0, 2, 8, 9], "radic": 20, "radius_1": 15, "radius_2": 15, "rais": [0, 2, 4, 6], "random": [0, 4, 6, 7, 9, 13, 14, 15, 16, 19, 20, 21], "random_antihermitian": [5, 7], "random_double_factorized_hamiltonian": [5, 7, 13, 19], "random_fermion_hamiltonian": [5, 7], "random_fermion_oper": [5, 7], "random_hermitian": [5, 7], "random_molecular_hamiltonian": [5, 7], "random_nelec": [6, 7], "random_occupied_orbit": [6, 7], "random_orthogon": [5, 7], "random_real_symmetric_matrix": [5, 7, 9, 13, 19, 20], "random_special_orthogon": [5, 7], "random_state_vector": [5, 7, 16], "random_statevector": [5, 7], "random_t2_amplitud": [5, 7], "random_two_body_tensor": [5, 7, 9], "random_ucj_op_spin_balanc": [5, 7, 13, 19], "random_ucj_op_spin_unbalanc": [5, 7, 19], "random_ucj_op_spinless": [5, 7], "random_ucj_oper": [5, 7], "random_unitari": [5, 7, 13, 14, 19, 20, 21], "rang": [0, 2, 6, 13, 14, 15, 18, 20, 21, 23], "rangl": [0, 4, 11, 14], "rank": [0, 2, 5, 8, 13], "rather": [0, 12, 14], "rccsd": 20, "rdm": [0, 7], "rdm1": 0, "rdm2": 0, "rdm3": 0, "rdm4": 0, "reach": 18, "read": 0, "real": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 18, 21], "realucjoper": [0, 7], "reason": [4, 12], "recal": 13, "recommend": [4, 13, 16, 19, 21], "reconstruct": [0, 2, 23], "reconstruct_t2_alpha_beta": 2, "recover": 0, "reduc": [0, 2, 13], "reduced_matrix": [2, 7], "reduced_matrix_product_st": 0, "redund": 11, "refer": [0, 2, 3, 4, 5, 6, 11, 12, 14, 18, 21], "reference_occup": [0, 15], "reference_occupations_spati": 15, "reference_st": 18, "regular": [3, 18], "rel": [0, 2, 4, 6], "rel_reduction_of_f_": 18, "relat": 12, "releas": 21, "reorder": [0, 8], "rep": 13, "repeat": 15, "repeatedli": 12, "repetit": [0, 5, 11, 13, 18], "repositori": 22, "repr": 16, "repres": [0, 2, 3, 4, 6, 9, 11, 14, 16, 18, 19], "represent": [0, 1, 2, 4, 5, 10, 14, 16, 21, 23], "reproduc": 23, "requir": [0, 9, 11, 13, 14, 22], "reshap": 14, "respect": [0, 2, 3, 23], "rest": [0, 13], "restrict": [0, 13, 18], "result": [0, 1, 2, 3, 4, 5, 8, 9, 11, 13, 15, 18, 19, 20, 23], "retain": [0, 13], "retriev": 20, "return": [0, 1, 2, 3, 4, 5, 6, 12, 15, 16, 18, 23], "return_lower_rank": 0, "revers": 20, "rewrit": 0, "rewritten": 12, "rhf": [0, 15, 18, 20, 21, 23], "right": [0, 4, 12, 14, 16], "ring": 0, "rise": [2, 8], "rng": [9, 13, 15, 19, 20], "rohf": 20, "root": 0, "rotat": [0, 1, 2, 4, 5, 8, 10, 11, 14, 21, 23], "rotated_vec": 14, "routin": [2, 9, 16], "row": [0, 2, 14], "rtol": [0, 2, 4, 6], "rtype": [0, 2, 4], "run": [0, 4, 13, 15, 18, 19, 20, 21, 22, 23], "run_ccsd": 0, "run_cisd": 0, "run_fci": [0, 15, 18], "run_mp2": 0, "run_sci": 0, "rung": 11, "runner": [15, 18], "rust": 22, "rvert": 0, "s_": [0, 14], "s_a": 0, "s_b": 0, "sa": 9, "same": [0, 9, 11, 12, 13, 14, 15, 18, 20], "sampl": [0, 4, 5, 6, 9], "sample_state_vector": [0, 7], "sampler": [4, 17, 21], "samplerpubresult": 4, "sandwich": 13, "satisfi": [0, 12, 16, 20, 22], "save": [0, 18, 22], "scalar": [0, 16], "scale": [8, 13, 15, 19], "scf": [0, 15, 18, 20, 21, 23], "scf_func": 0, "scheme": 8, "sci": 0, "sci_energi": 0, "sci_vec": 0, "scipi": [0, 2, 3, 15, 16, 18, 21, 23], "search": 14, "second": [0, 2, 4, 8], "section": [8, 19], "sector": [0, 1, 2, 4, 15], "see": [0, 2, 4, 11, 13, 14, 19, 22, 23], "seed": [0, 4, 5, 6, 9, 13, 14, 19, 20, 21], "seen": 20, "select": 3, "sens": [13, 23], "separ": [0, 11, 14], "sequenc": [0, 2, 4, 13], "seri": 2, "serial": 0, "serializ": [15, 18], "set": [0, 1, 2, 4, 5, 8, 11, 12, 13, 19, 23], "setup": 11, "sever": [9, 13], "shape": [0, 2, 5, 11, 23], "share": 11, "shell": [11, 18], "shot": [0, 4, 20], "should": [0, 1, 2, 4, 5, 6, 9, 12, 22], "show": [13, 15, 16, 18, 19, 20], "shown": 16, "side": 0, "sigma": [0, 1, 4, 8, 9, 11, 12], "sign": 0, "signatur": 3, "signific": 23, "significantli": 13, "similar": 18, "simpl": [20, 22], "simpler": 0, "simpli": [4, 13, 14], "simplist": 23, "simul": [0, 8, 11, 12, 14, 17, 21, 24], "simulate_qdrift_double_factor": [0, 7], "simulate_trotter_diag_coulomb_split_op": [0, 7], "simulate_trotter_double_factor": [0, 7, 8, 23], "simulate_trotter_step_double_factor": 23, "simulatetrotterdoublefactorizedjw": [4, 7, 13, 19], "sin": [0, 15], "sinc": [0, 2, 11, 12, 15, 18], "singl": [0, 1, 4, 6, 8, 13, 23], "singlefactorizedhamiltonian": [0, 7], "singular": [0, 2], "site": [0, 15, 18], "size": [0, 3, 15], "slater": [0, 4], "slater_determin": [0, 7], "slater_determinant_rdm": [0, 7], "slice": 2, "small": 2, "smaller": [0, 2, 8, 16, 23], "so": [0, 2, 6, 8, 11, 12, 13, 15, 16, 22, 23], "softwar": [0, 21], "solv": 3, "some": [0, 2, 6, 9, 13, 14, 16, 18, 20], "sometim": [0, 14], "sort": 20, "sourc": [0, 1, 2, 3, 4, 5, 6, 21], "space": [0, 9, 14, 15, 18, 20, 23], "span": [0, 2], "spars": [9, 16, 23], "sparsepauliop": 4, "sparsiti": 11, "spatial": [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 23], "speci": [4, 6], "special": [2, 5, 11, 13, 21], "specif": 14, "specifi": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 15, 23], "spectral": 0, "spin": [0, 1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 16, 18, 20, 21], "spin_squar": [0, 7], "spin_sum": 0, "spinless": [0, 4, 5, 6], "split": [0, 23], "squar": [0, 2, 11, 13, 18, 20], "stack": 0, "stage": [4, 13, 19], "standard": 18, "standard_norm": [9, 13, 19], "star": 2, "start": 0, "state": [0, 1, 3, 4, 5, 9, 10, 11, 12, 13, 18, 20, 21, 23], "statevector": [0, 4, 7], "static": [0, 4], "statist": 20, "statu": [15, 18], "step": [0, 4, 8, 12, 15, 19, 23], "step_tim": 23, "still": [0, 8], "sto": [0, 15, 18, 23], "stop": [15, 18], "store": [0, 2, 4, 6, 9, 11, 13, 18, 19, 23], "store_cisd_vec": 0, "store_fci_vec": 0, "store_sci_vec": 0, "store_t1": 0, "store_t2": 0, "str": [0, 2, 4, 6], "straightforward": 2, "strength": 0, "strictli": 3, "string": [0, 14, 16], "strings_a": 0, "strings_b": 0, "strings_to_address": [0, 7], "strings_to_indic": [0, 7], "structur": [0, 8], "sub": 0, "subclass": 4, "subdirectori": 22, "submit": 20, "subroutin": 12, "subspac": [0, 2, 16], "substitut": 0, "subsystem": [14, 22], "subtract": [0, 16], "success": [15, 18], "sudo": 22, "suffix": 15, "suggest": 19, "sum": [0, 4, 8, 23], "sum_": [0, 1, 2, 4, 8, 9, 11, 12, 23], "sum_j": 12, "sum_k": [8, 12], "sum_p": 0, "sum_t": 0, "summat": 0, "support": [0, 2, 9, 14, 16, 20, 22], "supportsapplyunitari": [0, 7], "supportsapproximateequ": [0, 7], "supportsdiagon": [0, 7], "supportsfermionoper": [0, 7], "supportslinearoper": [0, 7], "supportstrac": [0, 7], "suzuki": [0, 23], "swap": [11, 13], "symmetr": [0, 2, 4, 5, 8, 11], "symmetri": [0, 12, 15, 18, 20, 21, 23], "system": [0, 4, 6, 12, 14, 22], "t": [0, 2, 4, 8, 11, 12, 20, 21], "t1": 0, "t1a": 0, "t1b": 0, "t2": [0, 2, 5, 18, 20], "t2_amplitud": 2, "t2aa": 0, "t2ab": 0, "t2bb": 0, "t_": 2, "tabl": [0, 16], "take": [0, 3, 18, 19], "taken": 11, "target": [2, 13], "target_orb": 0, "tau": [0, 1, 4, 8, 9, 11], "taylor": 2, "tensor": [0, 1, 2, 5, 8, 9, 18, 23], "term": [0, 2, 5, 8, 11, 16, 23], "test": [7, 21, 23], "text": [0, 8, 9], "th": [2, 12], "than": [0, 4, 12, 13, 14, 18, 21], "thei": [0, 9, 11, 12, 16], "them": [11, 13, 14], "therefor": [0, 2, 11], "theta": [0, 15], "thi": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23], "think": 2, "third": [0, 2], "those": [3, 18], "though": 13, "three": [0, 1, 4, 9, 16], "threshold": [0, 2, 3], "thu": 8, "time": [0, 2, 3, 4, 9, 13, 14, 19, 20, 23], "titl": 21, "tmp": [9, 15, 18], "tmpfegb262g": 15, "tmpz0beoxj6": 18, "to_diag_coulomb_mat": 0, "to_fcidump": 0, "to_json": 0, "to_molecular_hamiltonian": 0, "to_number_represent": 0, "to_orbital_rot": 0, "to_paramet": [0, 18], "to_t_amplitud": 0, "to_z_represent": 0, "tol": [0, 2, 23], "toler": [0, 2, 4, 6, 11, 23], "too": 2, "top": 20, "topologi": [11, 13, 18], "toru": 0, "total": [0, 4, 8, 15, 18, 23], "tox": [15, 18], "trace": [0, 7, 9, 23], "tracea": [9, 23], "trajectori": 0, "transform": [0, 1, 4], "transformationpass": 4, "transpil": [4, 13, 17, 21], "transpiled_opt": 13, "treat": 0, "triangl": 11, "trianglular": [0, 2], "triangular": [0, 2, 4], "triplet": 6, "trotter": [0, 4, 21, 24], "true": [0, 2, 3, 4, 6, 16, 18, 20], "truncat": 8, "try": 23, "tunnel": 0, "tupl": [0, 1, 2, 4, 6, 12, 15, 16, 23], "tutori": [21, 23], "twice": [0, 15, 19], "two": [0, 2, 5, 8, 9, 11, 13, 14, 15, 18, 22, 23], "two_body_integr": 0, "two_body_tensor": [0, 2, 9, 23], "type": [0, 1, 2, 3, 4, 5, 6, 20, 22], "typeerror": 0, "typic": 0, "u": [0, 1, 2, 4, 11], "u_": 4, "u_k": 0, "ubuntu": 22, "uccsd": 20, "ucj": [0, 4, 5], "ucj_balanced_jw": 13, "ucj_op": [4, 13, 19, 20], "ucj_oper": 4, "ucjoper": [0, 4, 5, 7], "ucjoperatorjw": [4, 7], "ucjopspinbalanc": [0, 4, 5, 7, 11, 13, 18, 20], "ucjopspinbalancedjw": [4, 7, 13, 19, 20], "ucjopspinless": [0, 4, 5, 7], "ucjopspinlessjw": [4, 7], "ucjopspinunbalanc": [0, 4, 5, 7, 11, 20], "ucjopspinunbalancedjw": [4, 7, 13, 19, 20], "uhf": 20, "unbalanc": [0, 4, 5, 20], "under": [0, 4], "underli": 4, "unifi": 20, "uniform": [0, 5], "unimpl": 4, "union": [2, 4], "unit": 2, "unitari": [0, 1, 2, 4, 5, 8, 10, 12, 14, 17, 21], "univers": 2, "unlik": 0, "unord": 0, "untouch": 0, "up": [0, 2, 6, 8, 14, 22], "updat": [0, 8], "upon": 16, "upper": [0, 2, 4, 11], "url": 21, "us": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23], "usag": [0, 2, 16, 19], "user": 22, "userwarn": [9, 15, 18], "usual": 0, "util": [2, 5, 6, 8], "v": [0, 20], "v_": 0, "v_i": 2, "v_j": 2, "vacuum": 4, "valid": [0, 4, 5, 6], "valu": [0, 1, 2, 3, 4, 6, 9, 11, 18, 19, 23], "valueerror": [0, 2, 4], "vari": [0, 4], "variabl": [14, 23], "variant": [11, 13, 18], "variat": [0, 3, 11, 18], "variation": 18, "varphi": 0, "vdot": [18, 21, 23], "ve": 23, "vec": [0, 1, 2, 4, 9, 12, 14, 16, 21, 23], "vec_a": 0, "vec_b": 0, "vector": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 15, 16, 18, 21], "verbos": 6, "verifi": 2, "version": 4, "vertic": 0, "via": [0, 23], "view": [0, 16], "volum": 22, "w": [0, 8, 12], "w_k": 0, "wa": [0, 3, 4, 11], "wai": 11, "want": 13, "warn": [9, 15, 18, 20], "water": 15, "wavefunct": [3, 18], "we": [0, 2, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "web": 22, "weight": 14, "well": [3, 14, 21, 22, 23], "when": [0, 3, 4, 9, 11, 13, 14, 16, 19, 21], "whenev": 0, "where": [0, 1, 2, 3, 4, 8, 11, 12, 14, 22, 23], "whether": [0, 1, 2, 3, 4, 5, 16], "which": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 22, 23], "while": [8, 11], "whose": [0, 2, 14], "width": 5, "wigner": [0, 4], "william": 2, "window": [21, 22], "wise": 2, "with_final_orbital_rot": [0, 5], "with_phase_angl": 0, "with_phi": 0, "within": [0, 2, 13, 16, 18, 21], "without": [11, 13, 18], "won": 21, "word": [0, 11, 20], "work": [9, 13, 15, 18, 19, 21, 22], "workflow": 20, "would": [13, 14], "wrapper": 23, "write": 23, "written": 8, "wrote": 23, "wsl": 22, "x": [0, 3, 4, 13, 15, 18, 19, 20], "x0": [3, 15, 18], "xx_plus_yi": [13, 19], "xxplusyyg": [13, 19], "y": 0, "yaml": 22, "yet": [9, 18], "yield": [0, 2, 4, 8, 11, 15, 23], "you": [0, 1, 2, 4, 9, 14, 18, 21, 22, 23], "your": [19, 22], "z": [0, 1, 2, 4, 5, 12, 16, 21], "z_represent": [0, 1, 4, 5], "zero": [0, 2, 4, 9, 19], "zip": [0, 15, 18, 23], "\u03c8": 18}, "titles": ["ffsim", "ffsim.contract", "ffsim.linalg", "ffsim.optimize", "ffsim.qiskit", "ffsim.random", "ffsim.testing", "API reference", "Double-factorized representation of the molecular Hamiltonian", "Hamiltonians", "Explanations", "The local unitary cluster Jastrow (LUCJ) ansatz", "Orbital rotations and quadratic Hamiltonians", "Qubit gate decompositions of fermionic gates", "State vectors and gates", "How to simulate entanglement forging", "How to use the FermionOperator class", "How-to guides", "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz", "How to build and transpile Qiskit quantum circuits", "How to use ffsim\u2019s Qiskit Sampler primitive", "ffsim", "Installation", "Implementing Trotter simulation of the double-factorized Hamiltonian", "Tutorials"], "titleterms": {"": 20, "The": 11, "action": 9, "an": 20, "ansatz": [11, 15, 18], "api": 7, "applic": 8, "background": 8, "balanc": [11, 19], "brief": 8, "build": [15, 19, 23], "can": 20, "choos": 15, "circuit": [19, 20], "cite": 21, "class": 16, "close": 20, "cluster": [11, 13, 18, 19], "code": 21, "comput": 15, "content": 21, "contract": 1, "coulomb": [13, 19], "criteria": 20, "data": 9, "decomposit": 13, "determin": [13, 19], "diagon": [13, 19], "docker": 22, "doubl": [8, 13, 19, 23], "energi": 15, "entangl": 15, "evolut": [8, 12, 13, 19], "exampl": [20, 21], "explan": 10, "factor": [8, 13, 19, 23], "fermion": [13, 14], "fermionoper": 16, "ffsim": [0, 1, 2, 3, 4, 5, 6, 20, 21], "ffsimsampl": 20, "fock": [13, 19], "forg": 15, "formula": 8, "from": [20, 22], "gate": [13, 14, 19], "gener": [11, 18], "guid": 17, "hamiltonian": [8, 9, 12, 13, 19, 23], "hartre": [13, 19], "how": [15, 16, 17, 18, 19, 20], "implement": 23, "initi": 15, "instal": [21, 22], "jastrow": [11, 13, 18, 19], "linalg": 2, "linear": 18, "linearoper": 9, "local": [11, 13, 18], "lucj": [11, 18, 20], "merg": 13, "method": 18, "molecul": [15, 20], "molecular": 8, "more": 20, "number": [13, 19], "occup": 15, "open": 20, "oper": [9, 13, 15, 19], "optim": [3, 15, 18], "orbit": [12, 13, 19], "overview": 19, "pip": 22, "prepar": [13, 19], "primit": 20, "qiskit": [4, 19, 20], "quadrat": 12, "quantum": 19, "qubit": 13, "random": 5, "refer": [7, 15], "represent": [8, 9], "rotat": [12, 13, 19], "sampl": 20, "sampler": 20, "scipi": 9, "shell": 20, "simul": [13, 15, 18, 19, 23], "slater": [13, 19], "sourc": 22, "spin": [11, 19], "spinless": 14, "state": [14, 19], "sum": [13, 19], "suzuki": 8, "test": 6, "time": [8, 12], "transform": 19, "transpil": 19, "treat": 14, "trotter": [8, 13, 19, 23], "tutori": 24, "ucj": [11, 13, 18, 19], "unbalanc": [11, 19], "unitari": [11, 13, 18, 19], "us": [16, 20, 22], "vector": 14, "via": [8, 9], "within": 22}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API reference": [[7, null]], "Application to the double-factorized Hamiltonian": [[8, "Application-to-the-double-factorized-Hamiltonian"]], "Application to time evolution via Trotter-Suzuki formulas": [[8, "Application-to-time-evolution-via-Trotter-Suzuki-formulas"]], "Brief background on Trotter-Suzuki formulas": [[8, "Brief-background-on-Trotter-Suzuki-formulas"]], "Build a molecule": [[15, "Build-a-molecule"]], "Build the Hamiltonian": [[23, "Build-the-Hamiltonian"]], "Choose reference occupations": [[15, "Choose-reference-occupations"]], "Circuit transpilation": [[19, "Circuit-transpilation"]], "Citing ffsim": [[21, "citing-ffsim"]], "Code example": [[21, "code-example"]], "Compute energy": [[15, "Compute-energy"]], "Contents": [[21, "contents"]], "Criteria for circuits that FfsimSampler can sample": [[20, "Criteria-for-circuits-that-FfsimSampler-can-sample"]], "Data representation": [[9, "Data-representation"]], "Diagonal Coulomb evolution": [[13, "Diagonal-Coulomb-evolution"], [19, "Diagonal-Coulomb-evolution"]], "Double-factorized representation": [[8, "Double-factorized-representation"]], "Double-factorized representation of the molecular Hamiltonian": [[8, null]], "Example of using FfsimSampler": [[20, "Example-of-using-FfsimSampler"]], "Explanations": [[10, null]], "Gates": [[14, "Gates"]], "General UCJ ansatz": [[18, "General-UCJ-ansatz"]], "Hamiltonians": [[9, null]], "Hartree-Fock and Slater determinant preparation": [[13, "Hartree-Fock-and-Slater-determinant-preparation"]], "How to build and transpile Qiskit quantum circuits": [[19, null]], "How to simulate entanglement forging": [[15, null]], "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz": [[18, null]], "How to use ffsim\u2019s Qiskit Sampler primitive": [[20, null]], "How to use the FermionOperator class": [[16, null]], "How-to guides": [[17, null]], "Implement Trotter simulation": [[23, "Implement-Trotter-simulation"]], "Implementing Trotter simulation of the double-factorized Hamiltonian": [[23, null]], "Initialize ansatz operator": [[15, "Initialize-ansatz-operator"]], "Install from source": [[22, "install-from-source"]], "Installation": [[21, "installation"], [22, null]], "LUCJ ansatz": [[18, "LUCJ-ansatz"]], "Locality in the UCJ operator": [[13, "Locality-in-the-UCJ-operator"]], "Merging orbital rotations": [[13, "Merging-orbital-rotations"]], "More examples": [[20, "More-examples"]], "Number operator sum evolution": [[13, "Number-operator-sum-evolution"], [19, "Number-operator-sum-evolution"]], "Operator action via SciPy LinearOperators": [[9, "Operator-action-via-SciPy-LinearOperators"]], "Optimize energy": [[15, "Optimize-energy"]], "Optimize with the linear method": [[18, "Optimize-with-the-linear-method"]], "Orbital rotation": [[13, "Orbital-rotation"], [19, "Orbital-rotation"]], "Orbital rotations": [[12, "Orbital-rotations"]], "Orbital rotations and quadratic Hamiltonians": [[12, null]], "Overview of gates": [[19, "Overview-of-gates"]], "Pip install": [[22, "pip-install"]], "Prepare Hartree-Fock state": [[19, "Prepare-Hartree-Fock-state"]], "Prepare Slater determinant": [[19, "Prepare-Slater-determinant"]], "Qubit gate decompositions of fermionic gates": [[13, null]], "Sampling from an LUCJ circuit for a closed-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-a-closed-shell-molecule"]], "Sampling from an LUCJ circuit for an open-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-an-open-shell-molecule"]], "Spin-balanced and spin-unbalanced ansatzes": [[11, "Spin-balanced-and-spin-unbalanced-ansatzes"]], "Spin-balanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-balanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "Spin-unbalanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-unbalanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "State preparation gates": [[19, "State-preparation-gates"]], "State vectors": [[14, "State-vectors"]], "State vectors and gates": [[14, null]], "The general unitary cluster Jastrow (UCJ) ansatz": [[11, "The-general-unitary-cluster-Jastrow-(UCJ)-ansatz"]], "The local UCJ (LUCJ) ansatz": [[11, "The-local-UCJ-(LUCJ)-ansatz"]], "The local unitary cluster Jastrow (LUCJ) ansatz": [[11, null]], "Time evolution by a quadratic Hamiltonian": [[12, "Time-evolution-by-a-quadratic-Hamiltonian"]], "Treating spinless fermions": [[14, "Treating-spinless-fermions"]], "Trotter simulation of double-factorized Hamiltonian": [[13, "Trotter-simulation-of-double-factorized-Hamiltonian"], [19, "Trotter-simulation-of-double-factorized-Hamiltonian"]], "Tutorials": [[24, null]], "Unitary cluster Jastrow (UCJ) operator": [[13, "Unitary-cluster-Jastrow-(UCJ)-operator"]], "Unitary transformation gates": [[19, "Unitary-transformation-gates"]], "Use within Docker": [[22, "use-within-docker"]], "ffsim": [[0, null], [21, null]], "ffsim.contract": [[1, null]], "ffsim.linalg": [[2, null]], "ffsim.optimize": [[3, null]], "ffsim.qiskit": [[4, null]], "ffsim.random": [[5, null]], "ffsim.testing": [[6, null]]}, "docnames": ["api/ffsim", "api/ffsim.contract", "api/ffsim.linalg", "api/ffsim.optimize", "api/ffsim.qiskit", "api/ffsim.random", "api/ffsim.testing", "api/index", "explanations/double-factorized", "explanations/hamiltonians", "explanations/index", "explanations/lucj", "explanations/orbital-rotation", "explanations/qiskit-gate-decompositions", "explanations/state-vectors-and-gates", "how-to-guides/entanglement-forging", "how-to-guides/fermion-operator", "how-to-guides/index", "how-to-guides/lucj", "how-to-guides/qiskit-circuits", "how-to-guides/qiskit-sampler", "index", "install", "tutorials/double-factorized-trotter", "tutorials/index"], "envversion": {"nbsphinx": 4, "sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["api/ffsim.rst", "api/ffsim.contract.rst", "api/ffsim.linalg.rst", "api/ffsim.optimize.rst", "api/ffsim.qiskit.rst", "api/ffsim.random.rst", "api/ffsim.testing.rst", "api/index.md", "explanations/double-factorized.ipynb", "explanations/hamiltonians.ipynb", "explanations/index.md", "explanations/lucj.ipynb", "explanations/orbital-rotation.ipynb", "explanations/qiskit-gate-decompositions.ipynb", "explanations/state-vectors-and-gates.ipynb", "how-to-guides/entanglement-forging.ipynb", "how-to-guides/fermion-operator.ipynb", "how-to-guides/index.md", "how-to-guides/lucj.ipynb", "how-to-guides/qiskit-circuits.ipynb", "how-to-guides/qiskit-sampler.ipynb", "index.md", "install.md", "tutorials/double-factorized-trotter.ipynb", "tutorials/index.md"], "indexentries": {"__init__() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.__init__", false]], "__init__() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.__init__", false]], "__init__() (ffsim.qiskit.givensansatzoperatorjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzoperatorspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.numnumansatzopspinbalancedjw method)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockspinlessjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantspinlessjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdoublefactorizedjw method)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjoperatorjw method)": [[4, "ffsim.qiskit.UCJOperatorJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinlessjw method)": [[4, "ffsim.qiskit.UCJOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinunbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW.__init__", false]], "__init_subclass__() (ffsim.qiskit.givensansatzoperatorjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__init_subclass__", false]], "__init_subclass__() (ffsim.qiskit.givensansatzoperatorspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__init_subclass__", false]], "__init_subclass__() (ffsim.qiskit.ucjoperatorjw method)": [[4, "ffsim.qiskit.UCJOperatorJW.__init_subclass__", false]], "__new__() (ffsim.qiskit.givensansatzoperatorjw static method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__new__", false]], "__new__() (ffsim.qiskit.givensansatzoperatorspinlessjw static method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__new__", false]], "__new__() (ffsim.qiskit.ucjoperatorjw static method)": [[4, "ffsim.qiskit.UCJOperatorJW.__new__", false]], "action (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.action", false]], "active_space (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.active_space", false]], "addresses_to_strings() (in module ffsim)": [[0, "ffsim.addresses_to_strings", false]], "alpha (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA", false]], "alpha_and_beta (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA_AND_BETA", false]], "apply_diag_coulomb_evolution() (in module ffsim)": [[0, "ffsim.apply_diag_coulomb_evolution", false]], "apply_fsim_gate() (in module ffsim)": [[0, "ffsim.apply_fsim_gate", false]], "apply_givens_rotation() (in module ffsim)": [[0, "ffsim.apply_givens_rotation", false]], "apply_hop_gate() (in module ffsim)": [[0, "ffsim.apply_hop_gate", false]], "apply_matrix_to_slices() (in module ffsim.linalg)": [[2, "ffsim.linalg.apply_matrix_to_slices", false]], "apply_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_interaction", false]], "apply_num_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_num_interaction", false]], "apply_num_op_prod_interaction() (in module ffsim)": [[0, "ffsim.apply_num_op_prod_interaction", false]], "apply_num_op_sum_evolution() (in module ffsim)": [[0, "ffsim.apply_num_op_sum_evolution", false]], "apply_on_site_interaction() (in module ffsim)": [[0, "ffsim.apply_on_site_interaction", false]], "apply_orbital_rotation() (in module ffsim)": [[0, "ffsim.apply_orbital_rotation", false]], "apply_tunneling_interaction() (in module ffsim)": [[0, "ffsim.apply_tunneling_interaction", false]], "apply_unitary() (in module ffsim)": [[0, "ffsim.apply_unitary", false]], "approx_eq() (in module ffsim)": [[0, "ffsim.approx_eq", false]], "assert_allclose_up_to_global_phase() (in module ffsim.testing)": [[6, "ffsim.testing.assert_allclose_up_to_global_phase", false]], "atom (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.atom", false]], "basis (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.basis", false]], "beta (ffsim.spin attribute)": [[0, "ffsim.Spin.BETA", false]], "bit_array (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.BIT_ARRAY", false]], "bitstringtype (class in ffsim)": [[0, "ffsim.BitstringType", false]], "c (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.c", false]], "ccsd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_energy", false]], "ccsd_t1 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t1", false]], "ccsd_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t2", false]], "cisd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_energy", false]], "cisd_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_vec", false]], "coeffs (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.coeffs", false]], "conserves_particle_number() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_particle_number", false]], "conserves_spin_z() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_spin_z", false]], "constant (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.constant", false]], "constant (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.constant", false]], "constant (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.constant", false]], "constant (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.constant", false]], "contract_diag_coulomb() (in module ffsim.contract)": [[1, "ffsim.contract.contract_diag_coulomb", false]], "contract_num_op_sum() (in module ffsim.contract)": [[1, "ffsim.contract.contract_num_op_sum", false]], "contract_one_body() (in module ffsim.contract)": [[1, "ffsim.contract.contract_one_body", false]], "core_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.core_energy", false]], "cre() (in module ffsim)": [[0, "ffsim.cre", false]], "cre_a() (in module ffsim)": [[0, "ffsim.cre_a", false]], "cre_b() (in module ffsim)": [[0, "ffsim.cre_b", false]], "des() (in module ffsim)": [[0, "ffsim.des", false]], "des_a() (in module ffsim)": [[0, "ffsim.des_a", false]], "des_b() (in module ffsim)": [[0, "ffsim.des_b", false]], "diag() (in module ffsim)": [[0, "ffsim.diag", false]], "diag_coulomb_linop() (in module ffsim.contract)": [[1, "ffsim.contract.diag_coulomb_linop", false]], "diag_coulomb_mats (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.diag_coulomb_mats", false]], "diag_coulomb_mats_alpha_alpha (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.diag_coulomb_mats_alpha_alpha", false]], "diag_coulomb_mats_alpha_alpha (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_alpha", false]], "diag_coulomb_mats_alpha_beta (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.diag_coulomb_mats_alpha_beta", false]], "diag_coulomb_mats_alpha_beta (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_beta", false]], "diagcoulombevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW", false]], "diagcoulombevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW", false]], "diagonalcoulombhamiltonian (class in ffsim)": [[0, "ffsim.DiagonalCoulombHamiltonian", false]], "dim() (in module ffsim)": [[0, "ffsim.dim", false]], "dims() (in module ffsim)": [[0, "ffsim.dims", false]], "dipole_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.dipole_integrals", false]], "double_factorized() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized", false]], "double_factorized_t2() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2", false]], "double_factorized_t2_alpha_beta() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2_alpha_beta", false]], "doublefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.DoubleFactorizedHamiltonian", false]], "dropnegligible (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DropNegligible", false]], "expectation_one_body_power() (in module ffsim)": [[0, "ffsim.expectation_one_body_power", false]], "expectation_one_body_product() (in module ffsim)": [[0, "ffsim.expectation_one_body_product", false]], "expectation_product_state() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.expectation_product_state", false]], "expm_multiply_taylor() (in module ffsim.linalg)": [[2, "ffsim.linalg.expm_multiply_taylor", false]], "fci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_energy", false]], "fci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_vec", false]], "fermi_hubbard_1d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_1d", false]], "fermi_hubbard_2d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_2d", false]], "fermion_operator() (in module ffsim)": [[0, "ffsim.fermion_operator", false]], "fermionaction (class in ffsim)": [[0, "ffsim.FermionAction", false]], "fermionoperator (class in ffsim)": [[0, "ffsim.FermionOperator", false]], "ffsim": [[0, "module-ffsim", false]], "ffsim.contract": [[1, "module-ffsim.contract", false]], "ffsim.linalg": [[2, "module-ffsim.linalg", false]], "ffsim.optimize": [[3, "module-ffsim.optimize", false]], "ffsim.qiskit": [[4, "module-ffsim.qiskit", false]], "ffsim.random": [[5, "module-ffsim.random", false]], "ffsim.testing": [[6, "module-ffsim.testing", false]], "ffsim_vec_to_qiskit_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.ffsim_vec_to_qiskit_vec", false]], "ffsimsampler (class in ffsim.qiskit)": [[4, "ffsim.qiskit.FfsimSampler", false]], "final_orbital_rotation (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.final_orbital_rotation", false]], "final_state_vector() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.final_state_vector", false]], "from_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_diag_coulomb_mats", false]], "from_fcidump() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_fcidump", false]], "from_fcidump() (ffsim.molecularhamiltonian static method)": [[0, "ffsim.MolecularHamiltonian.from_fcidump", false]], "from_fermion_operator() (ffsim.diagonalcoulombhamiltonian static method)": [[0, "ffsim.DiagonalCoulombHamiltonian.from_fermion_operator", false]], "from_json() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_json", false]], "from_mole() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_mole", false]], "from_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian static method)": [[0, "ffsim.DoubleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_molecular_hamiltonian() (ffsim.singlefactorizedhamiltonian static method)": [[0, "ffsim.SingleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_orbital_rotation() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_orbital_rotation", false]], "from_parameters() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_parameters", false]], "from_parameters() (ffsim.givensansatzoperator static method)": [[0, "ffsim.GivensAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.hopgateansatzoperator static method)": [[0, "ffsim.HopGateAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.from_parameters", false]], "from_parameters() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_parameters", false]], "from_parameters() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_parameters", false]], "from_parameters() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_parameters", false]], "from_scf() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_scf", false]], "from_t_amplitudes() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_t_amplitudes", false]], "generate_norb_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec", false]], "generate_norb_nelec_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec_spin", false]], "generate_norb_nocc() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nocc", false]], "generate_norb_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_spin", false]], "givens_decomposition() (in module ffsim.linalg)": [[2, "ffsim.linalg.givens_decomposition", false]], "givensansatzop (class in ffsim)": [[0, "ffsim.GivensAnsatzOp", false]], "givensansatzoperator (class in ffsim)": [[0, "ffsim.GivensAnsatzOperator", false]], "givensansatzoperatorjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW", false]], "givensansatzoperatorspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW", false]], "givensansatzopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpJW", false]], "givensansatzopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW", false]], "givensrotation (class in ffsim.linalg)": [[2, "ffsim.linalg.GivensRotation", false]], "hamiltonian (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.hamiltonian", false]], "hartree_fock_state() (in module ffsim)": [[0, "ffsim.hartree_fock_state", false]], "hf_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_energy", false]], "hf_mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_coeff", false]], "hf_mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_occ", false]], "hopgateansatzoperator (class in ffsim)": [[0, "ffsim.HopGateAnsatzOperator", false]], "i (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.i", false]], "indices_to_strings() (in module ffsim)": [[0, "ffsim.indices_to_strings", false]], "init_cache() (in module ffsim)": [[0, "ffsim.init_cache", false]], "int (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.INT", false]], "interaction_pairs (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.interaction_pairs", false]], "interaction_pairs (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.interaction_pairs", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.inverse", false]], "is_antihermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_antihermitian", false]], "is_hermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_hermitian", false]], "is_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_orthogonal", false]], "is_real_symmetric() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_real_symmetric", false]], "is_special_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_special_orthogonal", false]], "is_unitary() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_unitary", false]], "j (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.j", false]], "jordan_wigner() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.jordan_wigner", false]], "linear_operator() (in module ffsim)": [[0, "ffsim.linear_operator", false]], "lup() (in module ffsim.linalg)": [[2, "ffsim.linalg.lup", false]], "many_body_order() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.many_body_order", false]], "match_global_phase() (in module ffsim.linalg)": [[2, "ffsim.linalg.match_global_phase", false]], "mergeorbitalrotations (class in ffsim.qiskit)": [[4, "ffsim.qiskit.MergeOrbitalRotations", false]], "minimize_linear_method() (in module ffsim.optimize)": [[3, "ffsim.optimize.minimize_linear_method", false]], "mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_coeff", false]], "mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_occ", false]], "modified_cholesky() (in module ffsim.linalg)": [[2, "ffsim.linalg.modified_cholesky", false]], "module": [[0, "module-ffsim", false], [1, "module-ffsim.contract", false], [2, "module-ffsim.linalg", false], [3, "module-ffsim.optimize", false], [4, "module-ffsim.qiskit", false], [5, "module-ffsim.random", false], [6, "module-ffsim.testing", false]], "mole (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.mole", false]], "moleculardata (class in ffsim)": [[0, "ffsim.MolecularData", false]], "molecularhamiltonian (class in ffsim)": [[0, "ffsim.MolecularHamiltonian", false]], "mp2_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_energy", false]], "mp2_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_t2", false]], "multireference_state() (in module ffsim)": [[0, "ffsim.multireference_state", false]], "multireference_state_prod() (in module ffsim)": [[0, "ffsim.multireference_state_prod", false]], "n_params() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.n_params", false]], "n_params() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.n_params", false]], "n_params() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.n_params", false]], "n_params() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.n_params", false]], "n_params() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.n_params", false]], "n_params() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.n_params", false]], "n_params() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.n_params", false]], "n_reps (ffsim.realucjoperator property)": [[0, "ffsim.RealUCJOperator.n_reps", false]], "n_reps (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.n_reps", false]], "n_reps (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.n_reps", false]], "n_reps (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.n_reps", false]], "n_reps (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.n_reps", false]], "nelec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.nelec", false]], "nelec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.nelec", false]], "norb (ffsim.diagonalcoulombhamiltonian property)": [[0, "ffsim.DiagonalCoulombHamiltonian.norb", false]], "norb (ffsim.doublefactorizedhamiltonian property)": [[0, "ffsim.DoubleFactorizedHamiltonian.norb", false]], "norb (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.norb", false]], "norb (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.norb", false]], "norb (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.norb", false]], "norb (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.norb", false]], "norb (ffsim.molecularhamiltonian property)": [[0, "ffsim.MolecularHamiltonian.norb", false]], "norb (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.norb", false]], "norb (ffsim.realucjoperator property)": [[0, "ffsim.RealUCJOperator.norb", false]], "norb (ffsim.singlefactorizedhamiltonian property)": [[0, "ffsim.SingleFactorizedHamiltonian.norb", false]], "norb (ffsim.statevector attribute)": [[0, "ffsim.StateVector.norb", false]], "norb (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.norb", false]], "norb (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.norb", false]], "norb (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.norb", false]], "norb (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.norb", false]], "normal_ordered() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.normal_ordered", false]], "num_op_sum_linop() (in module ffsim.contract)": [[1, "ffsim.contract.num_op_sum_linop", false]], "number_operator() (in module ffsim)": [[0, "ffsim.number_operator", false]], "numnumansatzopspinbalanced (class in ffsim)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced", false]], "numnumansatzopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW", false]], "numopsumevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW", false]], "numopsumevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW", false]], "one_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.one_body_integrals", false]], "one_body_linop() (in module ffsim.contract)": [[1, "ffsim.contract.one_body_linop", false]], "one_body_squares (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_squares", false]], "one_body_tensor (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_tensor", false]], "one_hot() (in module ffsim)": [[0, "ffsim.one_hot", false]], "one_hot() (in module ffsim.linalg)": [[2, "ffsim.linalg.one_hot", false]], "orb (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.orb", false]], "orbital_rotations (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.orbital_rotations", false]], "orbital_rotations (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.orbital_rotations", false]], "orbital_rotations (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.orbital_rotations", false]], "orbital_symmetries (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.orbital_symmetries", false]], "orbitalrotationjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationJW", false]], "orbitalrotationspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW", false]], "phase_angles (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phase_angles", false]], "phis (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phis", false]], "pre_init (in module ffsim.qiskit)": [[4, "ffsim.qiskit.PRE_INIT", false]], "pre_init_passes() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.pre_init_passes", false]], "preparehartreefockjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockJW", false]], "preparehartreefockspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW", false]], "prepareslaterdeterminantjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW", false]], "prepareslaterdeterminantspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW", false]], "productstatesum (class in ffsim)": [[0, "ffsim.ProductStateSum", false]], "qiskit_vec_to_ffsim_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.qiskit_vec_to_ffsim_vec", false]], "random_antihermitian() (in module ffsim.random)": [[5, "ffsim.random.random_antihermitian", false]], "random_double_factorized_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_double_factorized_hamiltonian", false]], "random_fermion_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_hamiltonian", false]], "random_fermion_operator() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_operator", false]], "random_hermitian() (in module ffsim.random)": [[5, "ffsim.random.random_hermitian", false]], "random_molecular_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_molecular_hamiltonian", false]], "random_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.random_nelec", false]], "random_occupied_orbitals() (in module ffsim.testing)": [[6, "ffsim.testing.random_occupied_orbitals", false]], "random_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_orthogonal", false]], "random_real_symmetric_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_real_symmetric_matrix", false]], "random_special_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_special_orthogonal", false]], "random_state_vector() (in module ffsim.random)": [[5, "ffsim.random.random_state_vector", false]], "random_statevector() (in module ffsim.random)": [[5, "ffsim.random.random_statevector", false]], "random_t2_amplitudes() (in module ffsim.random)": [[5, "ffsim.random.random_t2_amplitudes", false]], "random_two_body_tensor() (in module ffsim.random)": [[5, "ffsim.random.random_two_body_tensor", false]], "random_ucj_op_spin_balanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_balanced", false]], "random_ucj_op_spin_unbalanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_unbalanced", false]], "random_ucj_op_spinless() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spinless", false]], "random_ucj_operator() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_operator", false]], "random_unitary() (in module ffsim.random)": [[5, "ffsim.random.random_unitary", false]], "rdm() (in module ffsim)": [[0, "ffsim.rdm", false]], "rdms() (in module ffsim)": [[0, "ffsim.rdms", false]], "realucjoperator (class in ffsim)": [[0, "ffsim.RealUCJOperator", false]], "reduced_matrix() (in module ffsim.linalg)": [[2, "ffsim.linalg.reduced_matrix", false]], "reduced_matrix_product_states() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.reduced_matrix_product_states", false]], "rotated() (ffsim.molecularhamiltonian method)": [[0, "ffsim.MolecularHamiltonian.rotated", false]], "run() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.run", false]], "run() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.run", false]], "run() (ffsim.qiskit.mergeorbitalrotations method)": [[4, "ffsim.qiskit.MergeOrbitalRotations.run", false]], "run_ccsd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_ccsd", false]], "run_cisd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_cisd", false]], "run_fci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_fci", false]], "run_mp2() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_mp2", false]], "run_sci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_sci", false]], "s (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.s", false]], "sample_state_vector() (in module ffsim)": [[0, "ffsim.sample_state_vector", false]], "scf (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.scf", false]], "sci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_energy", false]], "sci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_vec", false]], "simulate_qdrift_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_qdrift_double_factorized", false]], "simulate_trotter_diag_coulomb_split_op() (in module ffsim)": [[0, "ffsim.simulate_trotter_diag_coulomb_split_op", false]], "simulate_trotter_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_trotter_double_factorized", false]], "simulatetrotterdoublefactorizedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW", false]], "singlefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.SingleFactorizedHamiltonian", false]], "slater_determinant() (in module ffsim)": [[0, "ffsim.slater_determinant", false]], "slater_determinant_rdm() (in module ffsim)": [[0, "ffsim.slater_determinant_rdm", false]], "slater_determinant_rdms() (in module ffsim)": [[0, "ffsim.slater_determinant_rdms", false]], "spin (class in ffsim)": [[0, "ffsim.Spin", false]], "spin (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.spin", false]], "spin (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.spin", false]], "spin_square() (in module ffsim)": [[0, "ffsim.spin_square", false]], "states (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.states", false]], "statevector (class in ffsim)": [[0, "ffsim.StateVector", false]], "string (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.STRING", false]], "strings_to_addresses() (in module ffsim)": [[0, "ffsim.strings_to_addresses", false]], "strings_to_indices() (in module ffsim)": [[0, "ffsim.strings_to_indices", false]], "supportsapplyunitary (class in ffsim)": [[0, "ffsim.SupportsApplyUnitary", false]], "supportsapproximateequality (class in ffsim)": [[0, "ffsim.SupportsApproximateEquality", false]], "supportsdiagonal (class in ffsim)": [[0, "ffsim.SupportsDiagonal", false]], "supportsfermionoperator (class in ffsim)": [[0, "ffsim.SupportsFermionOperator", false]], "supportslinearoperator (class in ffsim)": [[0, "ffsim.SupportsLinearOperator", false]], "supportstrace (class in ffsim)": [[0, "ffsim.SupportsTrace", false]], "symmetry (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.symmetry", false]], "thetas (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.thetas", false]], "thetas (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.thetas", false]], "thetas (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.thetas", false]], "thetas (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.thetas", false]], "to_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_diag_coulomb_mats", false]], "to_fcidump() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_fcidump", false]], "to_json() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_json", false]], "to_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_molecular_hamiltonian", false]], "to_number_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_number_representation", false]], "to_orbital_rotation() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_orbital_rotation", false]], "to_parameters() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_parameters", false]], "to_parameters() (ffsim.givensansatzoperator method)": [[0, "ffsim.GivensAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.hopgateansatzoperator method)": [[0, "ffsim.HopGateAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.realucjoperator method)": [[0, "ffsim.RealUCJOperator.to_parameters", false]], "to_parameters() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_parameters", false]], "to_parameters() (ffsim.ucjopspinbalanced method)": [[0, "ffsim.UCJOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.ucjopspinless method)": [[0, "ffsim.UCJOpSpinless.to_parameters", false]], "to_parameters() (ffsim.ucjopspinunbalanced method)": [[0, "ffsim.UCJOpSpinUnbalanced.to_parameters", false]], "to_t_amplitudes() (ffsim.realucjoperator method)": [[0, "ffsim.RealUCJOperator.to_t_amplitudes", false]], "to_t_amplitudes() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_t_amplitudes", false]], "to_z_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_z_representation", false]], "trace() (in module ffsim)": [[0, "ffsim.trace", false]], "two_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.two_body_integrals", false]], "two_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.two_body_tensor", false]], "ucjoperator (class in ffsim)": [[0, "ffsim.UCJOperator", false]], "ucjoperatorjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOperatorJW", false]], "ucjopspinbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinBalanced", false]], "ucjopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW", false]], "ucjopspinless (class in ffsim)": [[0, "ffsim.UCJOpSpinless", false]], "ucjopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinlessJW", false]], "ucjopspinunbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinUnbalanced", false]], "ucjopspinunbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW", false]], "vec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.vec", false]], "z_representation (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.z_representation", false]]}, "objects": {"": [[0, 0, 0, "-", "ffsim"]], "ffsim": [[0, 1, 1, "", "BitstringType"], [0, 1, 1, "", "DiagonalCoulombHamiltonian"], [0, 1, 1, "", "DoubleFactorizedHamiltonian"], [0, 1, 1, "", "FermionAction"], [0, 1, 1, "", "FermionOperator"], [0, 1, 1, "", "GivensAnsatzOp"], [0, 1, 1, "", "GivensAnsatzOperator"], [0, 1, 1, "", "HopGateAnsatzOperator"], [0, 1, 1, "", "MolecularData"], [0, 1, 1, "", "MolecularHamiltonian"], [0, 1, 1, "", "NumNumAnsatzOpSpinBalanced"], [0, 1, 1, "", "ProductStateSum"], [0, 1, 1, "", "RealUCJOperator"], [0, 1, 1, "", "SingleFactorizedHamiltonian"], [0, 1, 1, "", "Spin"], [0, 1, 1, "", "StateVector"], [0, 1, 1, "", "SupportsApplyUnitary"], [0, 1, 1, "", "SupportsApproximateEquality"], [0, 1, 1, "", "SupportsDiagonal"], [0, 1, 1, "", "SupportsFermionOperator"], [0, 1, 1, "", "SupportsLinearOperator"], [0, 1, 1, "", "SupportsTrace"], [0, 1, 1, "", "UCJOpSpinBalanced"], [0, 1, 1, "", "UCJOpSpinUnbalanced"], [0, 1, 1, "", "UCJOpSpinless"], [0, 1, 1, "", "UCJOperator"], [0, 5, 1, "", "addresses_to_strings"], [0, 5, 1, "", "apply_diag_coulomb_evolution"], [0, 5, 1, "", "apply_fsim_gate"], [0, 5, 1, "", "apply_givens_rotation"], [0, 5, 1, "", "apply_hop_gate"], [0, 5, 1, "", "apply_num_interaction"], [0, 5, 1, "", "apply_num_num_interaction"], [0, 5, 1, "", "apply_num_op_prod_interaction"], [0, 5, 1, "", "apply_num_op_sum_evolution"], [0, 5, 1, "", "apply_on_site_interaction"], [0, 5, 1, "", "apply_orbital_rotation"], [0, 5, 1, "", "apply_tunneling_interaction"], [0, 5, 1, "", "apply_unitary"], [0, 5, 1, "", "approx_eq"], [1, 0, 0, "-", "contract"], [0, 5, 1, "", "cre"], [0, 5, 1, "", "cre_a"], [0, 5, 1, "", "cre_b"], [0, 5, 1, "", "des"], [0, 5, 1, "", "des_a"], [0, 5, 1, "", "des_b"], [0, 5, 1, "", "diag"], [0, 5, 1, "", "dim"], [0, 5, 1, "", "dims"], [0, 5, 1, "", "expectation_one_body_power"], [0, 5, 1, "", "expectation_one_body_product"], [0, 5, 1, "", "fermi_hubbard_1d"], [0, 5, 1, "", "fermi_hubbard_2d"], [0, 5, 1, "", "fermion_operator"], [0, 5, 1, "", "hartree_fock_state"], [0, 5, 1, "", "indices_to_strings"], [0, 5, 1, "", "init_cache"], [2, 0, 0, "-", "linalg"], [0, 5, 1, "", "linear_operator"], [0, 5, 1, "", "multireference_state"], [0, 5, 1, "", "multireference_state_prod"], [0, 5, 1, "", "number_operator"], [0, 5, 1, "", "one_hot"], [3, 0, 0, "-", "optimize"], [4, 0, 0, "-", "qiskit"], [5, 0, 0, "-", "random"], [0, 5, 1, "", "rdm"], [0, 5, 1, "", "rdms"], [0, 5, 1, "", "sample_state_vector"], [0, 5, 1, "", "simulate_qdrift_double_factorized"], [0, 5, 1, "", "simulate_trotter_diag_coulomb_split_op"], [0, 5, 1, "", "simulate_trotter_double_factorized"], [0, 5, 1, "", "slater_determinant"], [0, 5, 1, "", "slater_determinant_rdm"], [0, 5, 1, "", "slater_determinant_rdms"], [0, 5, 1, "", "spin_square"], [0, 5, 1, "", "strings_to_addresses"], [0, 5, 1, "", "strings_to_indices"], [6, 0, 0, "-", "testing"], [0, 5, 1, "", "trace"]], "ffsim.BitstringType": [[0, 2, 1, "", "BIT_ARRAY"], [0, 2, 1, "", "INT"], [0, 2, 1, "", "STRING"]], "ffsim.DiagonalCoulombHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_fermion_operator"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"]], "ffsim.DoubleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_molecular_hamiltonian"], [0, 3, 1, "", "to_number_representation"], [0, 3, 1, "", "to_z_representation"], [0, 2, 1, "", "z_representation"]], "ffsim.FermionAction": [[0, 2, 1, "", "action"], [0, 2, 1, "", "orb"], [0, 2, 1, "", "spin"]], "ffsim.FermionOperator": [[0, 3, 1, "", "conserves_particle_number"], [0, 3, 1, "", "conserves_spin_z"], [0, 3, 1, "", "many_body_order"], [0, 3, 1, "", "normal_ordered"]], "ffsim.GivensAnsatzOp": [[0, 3, 1, "", "from_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "phase_angles"], [0, 2, 1, "", "phis"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_orbital_rotation"], [0, 3, 1, "", "to_parameters"]], "ffsim.GivensAnsatzOperator": [[0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.HopGateAnsatzOperator": [[0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.MolecularData": [[0, 2, 1, "", "active_space"], [0, 2, 1, "", "atom"], [0, 2, 1, "", "basis"], [0, 2, 1, "", "ccsd_energy"], [0, 2, 1, "", "ccsd_t1"], [0, 2, 1, "", "ccsd_t2"], [0, 2, 1, "", "cisd_energy"], [0, 2, 1, "", "cisd_vec"], [0, 2, 1, "", "core_energy"], [0, 2, 1, "", "dipole_integrals"], [0, 2, 1, "", "fci_energy"], [0, 2, 1, "", "fci_vec"], [0, 3, 1, "", "from_fcidump"], [0, 3, 1, "", "from_json"], [0, 3, 1, "", "from_mole"], [0, 3, 1, "", "from_scf"], [0, 4, 1, "", "hamiltonian"], [0, 2, 1, "", "hf_energy"], [0, 2, 1, "", "hf_mo_coeff"], [0, 2, 1, "", "hf_mo_occ"], [0, 2, 1, "", "mo_coeff"], [0, 2, 1, "", "mo_occ"], [0, 4, 1, "", "mole"], [0, 2, 1, "", "mp2_energy"], [0, 2, 1, "", "mp2_t2"], [0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "one_body_integrals"], [0, 2, 1, "", "orbital_symmetries"], [0, 3, 1, "", "run_ccsd"], [0, 3, 1, "", "run_cisd"], [0, 3, 1, "", "run_fci"], [0, 3, 1, "", "run_mp2"], [0, 3, 1, "", "run_sci"], [0, 4, 1, "", "scf"], [0, 2, 1, "", "sci_energy"], [0, 2, 1, "", "sci_vec"], [0, 2, 1, "", "spin"], [0, 2, 1, "", "symmetry"], [0, 3, 1, "", "to_fcidump"], [0, 3, 1, "", "to_json"], [0, 2, 1, "", "two_body_integrals"]], "ffsim.MolecularHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "from_fcidump"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "rotated"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.NumNumAnsatzOpSpinBalanced": [[0, 3, 1, "", "from_diag_coulomb_mats"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_diag_coulomb_mats"], [0, 3, 1, "", "to_parameters"]], "ffsim.ProductStateSum": [[0, 2, 1, "", "coeffs"], [0, 2, 1, "", "states"]], "ffsim.RealUCJOperator": [[0, 2, 1, "", "diag_coulomb_mats_alpha_alpha"], [0, 2, 1, "", "diag_coulomb_mats_alpha_beta"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"], [0, 3, 1, "", "to_t_amplitudes"]], "ffsim.SingleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "expectation_product_state"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_squares"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "reduced_matrix_product_states"]], "ffsim.Spin": [[0, 2, 1, "", "ALPHA"], [0, 2, 1, "", "ALPHA_AND_BETA"], [0, 2, 1, "", "BETA"]], "ffsim.StateVector": [[0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "vec"]], "ffsim.UCJOpSpinBalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinUnbalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinless": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOperator": [[0, 2, 1, "", "diag_coulomb_mats_alpha_alpha"], [0, 2, 1, "", "diag_coulomb_mats_alpha_beta"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"], [0, 3, 1, "", "to_t_amplitudes"]], "ffsim.contract": [[1, 5, 1, "", "contract_diag_coulomb"], [1, 5, 1, "", "contract_num_op_sum"], [1, 5, 1, "", "contract_one_body"], [1, 5, 1, "", "diag_coulomb_linop"], [1, 5, 1, "", "num_op_sum_linop"], [1, 5, 1, "", "one_body_linop"]], "ffsim.linalg": [[2, 1, 1, "", "GivensRotation"], [2, 5, 1, "", "apply_matrix_to_slices"], [2, 5, 1, "", "double_factorized"], [2, 5, 1, "", "double_factorized_t2"], [2, 5, 1, "", "double_factorized_t2_alpha_beta"], [2, 5, 1, "", "expm_multiply_taylor"], [2, 5, 1, "", "givens_decomposition"], [2, 5, 1, "", "is_antihermitian"], [2, 5, 1, "", "is_hermitian"], [2, 5, 1, "", "is_orthogonal"], [2, 5, 1, "", "is_real_symmetric"], [2, 5, 1, "", "is_special_orthogonal"], [2, 5, 1, "", "is_unitary"], [2, 5, 1, "", "lup"], [2, 5, 1, "", "match_global_phase"], [2, 5, 1, "", "modified_cholesky"], [2, 5, 1, "", "one_hot"], [2, 5, 1, "", "reduced_matrix"]], "ffsim.linalg.GivensRotation": [[2, 2, 1, "", "c"], [2, 2, 1, "", "i"], [2, 2, 1, "", "j"], [2, 2, 1, "", "s"]], "ffsim.optimize": [[3, 5, 1, "", "minimize_linear_method"]], "ffsim.qiskit": [[4, 1, 1, "", "DiagCoulombEvolutionJW"], [4, 1, 1, "", "DiagCoulombEvolutionSpinlessJW"], [4, 1, 1, "", "DropNegligible"], [4, 1, 1, "", "FfsimSampler"], [4, 1, 1, "", "GivensAnsatzOpJW"], [4, 1, 1, "", "GivensAnsatzOpSpinlessJW"], [4, 1, 1, "", "GivensAnsatzOperatorJW"], [4, 1, 1, "", "GivensAnsatzOperatorSpinlessJW"], [4, 1, 1, "", "MergeOrbitalRotations"], [4, 1, 1, "", "NumNumAnsatzOpSpinBalancedJW"], [4, 1, 1, "", "NumOpSumEvolutionJW"], [4, 1, 1, "", "NumOpSumEvolutionSpinlessJW"], [4, 1, 1, "", "OrbitalRotationJW"], [4, 1, 1, "", "OrbitalRotationSpinlessJW"], [4, 6, 1, "", "PRE_INIT"], [4, 1, 1, "", "PrepareHartreeFockJW"], [4, 1, 1, "", "PrepareHartreeFockSpinlessJW"], [4, 1, 1, "", "PrepareSlaterDeterminantJW"], [4, 1, 1, "", "PrepareSlaterDeterminantSpinlessJW"], [4, 1, 1, "", "SimulateTrotterDoubleFactorizedJW"], [4, 1, 1, "", "UCJOpSpinBalancedJW"], [4, 1, 1, "", "UCJOpSpinUnbalancedJW"], [4, 1, 1, "", "UCJOpSpinlessJW"], [4, 1, 1, "", "UCJOperatorJW"], [4, 5, 1, "", "ffsim_vec_to_qiskit_vec"], [4, 5, 1, "", "final_state_vector"], [4, 5, 1, "", "jordan_wigner"], [4, 5, 1, "", "pre_init_passes"], [4, 5, 1, "", "qiskit_vec_to_ffsim_vec"]], "ffsim.qiskit.DiagCoulombEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DropNegligible": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.FfsimSampler": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.GivensAnsatzOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOperatorJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.qiskit.MergeOrbitalRotations": [[4, 3, 1, "", "run"]], "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.NumOpSumEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.NumOpSumEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.PrepareHartreeFockJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareHartreeFockSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinUnbalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOperatorJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.random": [[5, 5, 1, "", "random_antihermitian"], [5, 5, 1, "", "random_double_factorized_hamiltonian"], [5, 5, 1, "", "random_fermion_hamiltonian"], [5, 5, 1, "", "random_fermion_operator"], [5, 5, 1, "", "random_hermitian"], [5, 5, 1, "", "random_molecular_hamiltonian"], [5, 5, 1, "", "random_orthogonal"], [5, 5, 1, "", "random_real_symmetric_matrix"], [5, 5, 1, "", "random_special_orthogonal"], [5, 5, 1, "", "random_state_vector"], [5, 5, 1, "", "random_statevector"], [5, 5, 1, "", "random_t2_amplitudes"], [5, 5, 1, "", "random_two_body_tensor"], [5, 5, 1, "", "random_ucj_op_spin_balanced"], [5, 5, 1, "", "random_ucj_op_spin_unbalanced"], [5, 5, 1, "", "random_ucj_op_spinless"], [5, 5, 1, "", "random_ucj_operator"], [5, 5, 1, "", "random_unitary"]], "ffsim.testing": [[6, 5, 1, "", "assert_allclose_up_to_global_phase"], [6, 5, 1, "", "generate_norb_nelec"], [6, 5, 1, "", "generate_norb_nelec_spin"], [6, 5, 1, "", "generate_norb_nocc"], [6, 5, 1, "", "generate_norb_spin"], [6, 5, 1, "", "random_nelec"], [6, 5, 1, "", "random_occupied_orbitals"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"], "6": ["py", "data", "Python data"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function", "6": "py:data"}, "terms": {"": [0, 2, 4, 8, 9, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23], "0": [0, 2, 3, 4, 6, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23], "00": 18, "000": 20, "0000000": [15, 18], "0000000000011100000000000111": 20, "0000000000011100000000011100": 20, "0000000000011100100000001100": 20, "0000000000110100000000001101": 20, "0000000001011000000000010110": 20, "0000000001011000100000000110": 20, "0000000001110000000000000111": 20, "0000000111100000011111": 20, "0000000111100110000111": 20, "0000010101100001011011": 20, "0000010110100001011011": 20, "0000100101100000111011": 20, "0000100110100000111011": 20, "0000111100001111": 20, "0000111100011011": 20, "0000111100011101": 20, "0000111100101011": 20, "0001": 3, "0001000001010000000000000111": 20, "0001110100001111": 20, "0010000000011000000000010110": 20, "0010011100101101": 20, "0010101100001111": 20, "0010101100101101": 20, "001011": [0, 14], "0010110100100111": 20, "0010110100101011": 20, "001101": [0, 14], "001110": [0, 14], "0013279102867002953": 18, "0017032385482687053": 18, "003930328386391183": 18, "003930441707468886": 18, "0046215181009085105": 18, "005e": 15, "01": [15, 18], "0100000000100100000000000111": 20, "0100000110100100001111": 20, "010011": [0, 14], "0101": 0, "0101000001100000011111": 20, "010101": [0, 14], "010110": [0, 14], "0110": 0, "02": [15, 18], "02122442107772": 18, "02242": 2, "02459434j": 14, "02625": 2, "02998708j": 14, "03": 15, "03101213j": 14, "03525116j": 14, "03668541730983277": 23, "04": [15, 18], "04758323886585455": 18, "05": [0, 2, 3, 4, 18], "05395": 4, "06": 18, "0609050": 5, "0625": [0, 16], "06273307": 14, "06551571": 14, "06677383j": 14, "06844774j": 14, "07": [6, 18], "08": [0, 2, 3, 4, 18], "08957": 2, "08987947": 16, "094e": 15, "09723851": 14, "0b001011": 0, "0b010101": 0, "0b010110": 0, "0b100101": 0, "0b100110": 0, "0j": 16, "0x7f510ce69210": 19, "0x7f510ce6bfd0": 19, "0x7f510ce864d0": 19, "0x7f510ce86e90": 19, "0x7f510d4df670": 19, "0x7f510d650a00": 19, "0x7f510e92f3a0": 19, "0x7f517c465a20": 19, "1": [0, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "10": [13, 18, 19, 20, 23], "100": 15, "1000": 3, "1000000101100000111011": 20, "100011": [0, 14], "100101": [0, 14], "100110": [0, 14], "101": 20, "1024": 4, "104": [15, 21], "1077416837138922": 20, "108": [20, 23], "10_000": 20, "11": [0, 13, 19, 20, 23], "1102529j": 14, "11157654": 14, "112": 15, "117e": 15, "12": [2, 13, 15, 16, 18, 23], "12204343": 14, "1234": [9, 13, 14, 15, 19, 21], "12345": 20, "125": [0, 16], "1278053627110061": 20, "1284": [15, 18], "12j": 16, "13": [0, 13, 18, 23], "13113848": 14, "133": 20, "13327423j": 14, "13957088j": 14, "14": [13, 20], "15": [13, 15], "150e": 18, "151e": 18, "152e": 18, "153e": 18, "1561685j": 14, "15624569": 14, "15828306": 14, "15x15": 15, "16": 13, "17": 13, "1711": [2, 4], "17181289596": 21, "17276745j": 14, "17558331": 14, "18": 13, "180": 15, "18007105": 14, "1808": 2, "18917418j": 16, "18j": 16, "19": 0, "1990422739119957e": 18, "1e": [0, 2, 3, 4, 6, 15, 23], "1j": [0, 9, 16, 23], "2": [0, 1, 2, 4, 5, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "20835741": 14, "20881506": 14, "21": 0, "210": 20, "2104": 2, "2190712273": 9, "21928194": 14, "21984743e": 16, "220e": 18, "22392824": 14, "23": 15, "23550198": 14, "23611476": 14, "24": [13, 19], "25": [0, 16], "25j": [0, 16], "26": 23, "26121865": 14, "263e": 18, "273e": 18, "286e": 18, "29821173j": 14, "2j": [0, 2, 16], "2n": 14, "3": [0, 2, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "30052742j": 14, "303e": 18, "31980058j": 14, "31g": [20, 21], "32": [13, 19], "329": 18, "33731417j": 14, "339": 18, "3484557074732": 20, "35": [0, 23], "36730125j": 14, "3714141": 14, "38435478j": 14, "39": [13, 14, 15, 16, 18, 19, 20], "39075171": 14, "394e": 15, "3j": 16, "4": [0, 2, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "421e": [15, 18], "4390672": 14, "443": 18, "4561973911871": 20, "458e": 18, "46": 18, "464957764795": 23, "46x46": 18, "47": 20, "478": 15, "48": [13, 20], "49094286j": 14, "499606167408255e": 18, "4j": 16, "5": [0, 3, 9, 13, 14, 15, 16, 18, 19, 20, 23], "51253171j": 14, "522e": 18, "527e": 18, "547e": 18, "55717072551532": 9, "558e": 18, "56": [13, 19, 20], "561e": 18, "5626": 18, "57": 20, "579e": 18, "58888": 22, "5j": [0, 16], "6": [0, 9, 13, 14, 15, 16, 19, 20, 21, 23], "603e": 15, "6332495815006": 15, "64": 14, "65": 20, "66": 20, "666e": 18, "673": 18, "67794403659724": 15, "6787887956297": 15, "6787887956314": 15, "68381571652795": 15, "688e": 18, "6g": [0, 15, 18, 23], "6j": 16, "7": [0, 9, 13, 14, 15, 16, 18, 19, 23], "70": 20, "72": 18, "7288249991515": 15, "72x72": 18, "73105542j": 14, "741e": 15, "747e": 15, "75": [15, 20], "76635632092199e": 18, "77": 18, "8": [0, 13, 15, 16, 18, 19, 20, 23], "8266321248744": 18, "832e": 18, "835236570774": 20, "842e": 18, "847e": 18, "8716002481628": 18, "87362949017803": 18, "87363426271249": 18, "8736342750619": 18, "87363433061991": 18, "87363433452647": 18, "87387392307558": 18, "87421536374026": 18, "8742165643862": 18, "9": [13, 14, 16, 18, 19, 20, 23], "9289": 18, "9402387920714972": 23, "949": 18, "958": 15, "9630419334854": 20, "9872670159807396": 18, "9876996043582875": 18, "9876996345535829": 18, "9877849924912689": 18, "99": 9, "9924": 20, "9985210983146647": 23, "9985210983147164": 23, "9991": 20, "9996731173230704": 23, "A": [0, 1, 2, 3, 4, 5, 6, 8, 12, 13, 14, 16, 22, 23], "AND": 15, "As": [0, 11, 13, 14, 18, 19, 23], "By": 21, "For": [0, 3, 4, 8, 9, 11, 14, 15, 16, 22, 23], "If": [0, 1, 2, 3, 4, 5, 6, 13, 16], "In": [0, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "It": [0, 2, 3, 4, 13, 14, 16, 18, 20, 22], "Its": [3, 4], "NO": [15, 18], "No": 2, "Of": 11, "On": [14, 22], "One": [0, 23], "Such": 16, "That": [0, 3, 12, 16], "The": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "Their": 19, "Then": [0, 13], "There": 13, "These": [0, 11, 16, 19], "To": [0, 8, 9, 11, 14, 18, 23], "With": [11, 14, 23], "_": [0, 1, 2, 4, 8, 11, 12, 15, 23], "_1": 12, "_2": 12, "__init__": 4, "__init_subclass__": 4, "__new__": 4, "_factr": 18, "_i": [0, 4], "_k": [0, 8, 11], "_nestedsequ": 4, "_supportsarrai": 4, "a_": [0, 4, 8, 9, 12, 16], "a_j": 1, "a_p": 0, "a_q": 0, "ab": 23, "abil": 8, "abl": 22, "about": 21, "abov": [13, 16], "absenc": [0, 1, 4], "absolut": [0, 2, 4, 6], "acceler": 22, "accept": [12, 18], "access": [0, 9, 22], "accommod": 4, "accomod": 8, "accur": 8, "achiev": [2, 23], "across": 22, "act": [0, 2, 4, 9, 13, 15, 16], "action": [0, 1, 12, 16, 22, 23], "activ": [0, 15, 18, 20, 23], "active_spac": [0, 15, 18, 20, 21, 23], "actual": [6, 11], "ad": [0, 13, 18], "add": [13, 18], "addit": [0, 8, 16, 23], "addition": 2, "address": [0, 13], "addresses_to_str": [0, 7, 14], "adjac": 13, "advantag": 18, "after": [3, 18], "al": 2, "algebra": [2, 9, 16], "algorithm": [0, 2, 3, 18, 21], "alia": [0, 2], "align": [0, 11, 12], "all": [0, 1, 2, 3, 4, 6, 11, 13, 16, 20, 22], "alloc": 0, "allow": [0, 2, 11, 13, 18, 22, 23], "along": 0, "alpha": [0, 1, 2, 4, 6, 9, 11, 13, 14, 15, 16, 19, 20], "alpha_alpha_indic": 0, "alpha_and_beta": 0, "alpha_beta_indic": 0, "alpha_i": 0, "alpha_j": 0, "alreadi": [0, 4, 12], "also": [0, 2, 3, 9, 12, 14, 16, 18, 23], "altern": [0, 8], "alwai": [0, 2, 5, 12, 14, 23], "amen": 13, "amplitud": [0, 2, 5, 18, 20], "an": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "angl": 0, "ani": [0, 3, 4, 11, 12, 19, 20], "annihil": [0, 16], "anoth": [2, 6], "ansatz": [0, 3, 4, 5, 10, 13, 17, 19, 20, 21], "ansatz_oper": 0, "ansatz_st": 18, "anti": [2, 5], "anticommut": 12, "ao": 0, "ap": 2, "api": [14, 21], "appear": [0, 2, 13, 16, 20], "append": [0, 6, 13, 18, 19, 20], "appli": [0, 1, 2, 3, 4, 9, 11, 12, 13, 14, 18, 19, 20, 21, 23], "applic": 12, "apply_": 14, "apply_diag_coulomb_evolut": [0, 7, 8, 23], "apply_fsim_g": [0, 7], "apply_givens_rot": [0, 7], "apply_hop_g": [0, 7], "apply_matrix_to_slic": [2, 7], "apply_num_interact": [0, 7], "apply_num_num_interact": [0, 7], "apply_num_op_prod_interact": [0, 7], "apply_num_op_sum_evolut": [0, 7, 12, 23], "apply_on_site_interact": [0, 7, 14], "apply_orbital_rot": [0, 7, 12, 14, 21], "apply_quad_ham_evolut": 12, "apply_tunneling_interact": [0, 7, 14], "apply_unitari": [0, 7, 18], "appropri": [0, 11], "approx": 8, "approx_eq": [0, 7], "approxim": [0, 2, 3, 8, 18, 23], "apt": 22, "ar": [0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 19, 20, 22], "arbitrari": [4, 20], "arch": 22, "arg": [0, 4], "argument": [0, 2, 3, 8, 9, 12, 14, 23], "aris": 8, "arithmet": 16, "around": 23, "arrai": [0, 1, 2, 4, 6, 9, 11, 14, 16], "arxiv": [2, 4, 5], "ascend": 20, "assembl": 2, "assert": 14, "assert_allclose_up_to_global_phas": [6, 7], "assertionerror": 6, "associ": [0, 3, 14, 16, 18], "assum": [0, 4, 14], "asterisk": 0, "asymmetr": 8, "atol": [0, 2, 4, 6], "atom": [0, 15, 18, 20, 21, 23], "attempt": 2, "attribut": [0, 3, 9, 15, 18], "author": 21, "avail": [9, 19, 22], "avoid": [0, 9, 16], "awar": 16, "ax": [0, 2], "axi": [0, 2], "b": [0, 2, 3, 6, 12, 15, 18], "back": 4, "backend": [13, 19], "backflow": 3, "background": 23, "balanc": [0, 4, 5, 18, 20], "barrier": 20, "base": [0, 2, 4], "basepass": 4, "basesamplerv2": 4, "basi": [0, 2, 4, 12, 15, 18, 20, 21, 23], "basic": [9, 13], "basis_g": [13, 19], "bear": 23, "becaus": [0, 2, 8, 9, 13, 15, 16, 18], "been": [0, 8], "befor": [0, 13, 16, 22, 23], "begin": [0, 2, 11, 12, 14, 20, 23], "behavior": [2, 4, 5, 19], "being": [2, 16, 18], "below": [0, 18, 23], "benchmark": 0, "beta": [0, 1, 2, 4, 6, 9, 11, 13, 14, 15, 16, 19, 20], "beta_i": 0, "beta_j": 0, "better": 8, "between": [0, 1, 2, 3, 11, 13], "bfg": [0, 2, 3, 15, 18], "bibtex": 21, "bit": [0, 13, 14], "bit_arrai": 0, "bitstr": [0, 14, 20], "bitstring_typ": [0, 14], "bitstringtyp": [0, 7, 14], "bla": 22, "bloc": 20, "block": 2, "block_diag": [0, 2], "bmod": 0, "bodi": [0, 1, 2, 5, 8, 9, 18, 23], "bond": 15, "bond_angle_deg": 15, "bond_dist": 18, "bool": [0, 1, 2, 3, 4, 5, 6], "both": [0, 1, 2, 4, 11, 15], "bound": [0, 2], "boundari": 0, "box": 13, "bq": 2, "bracket": 0, "braket": 0, "branch": 21, "brickwork": 15, "browser": 22, "buffer": 4, "build": [13, 17, 18, 20, 21, 22], "built": [19, 20, 23], "byte": [0, 4], "bz2": 0, "c": [2, 18], "c2v": 15, "cach": 0, "calcul": [0, 14, 18], "call": [0, 3, 4, 8, 9, 12, 14, 16, 18, 20, 23], "callabl": [3, 18], "callback": [0, 2, 3, 18], "can": [0, 1, 2, 4, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23], "cannot": 20, "canon": 0, "casci": [15, 18], "case": [0, 6, 13, 15], "categori": 21, "caus": 0, "cc": [18, 20], "ccsd": [0, 18, 20], "ccsd_energi": 0, "ccsd_t1": 0, "ccsd_t2": 0, "cd": 22, "cdot": 2, "cell": [9, 13, 14, 18, 19, 20, 23], "certain": [2, 13], "challeng": 11, "character": 0, "check": [2, 4, 6], "chemcor": 23, "chemic": 0, "chemical_potenti": 0, "chemistri": 21, "choic": [0, 6, 13, 14], "choleski": [0, 2], "choos": [2, 14], "chosen": 0, "ci": [15, 18], "circuit": [0, 4, 8, 13, 14, 17, 21], "circul": 0, "cisd": 0, "cisd_energi": 0, "cisd_vec": 0, "class": [0, 2, 4, 5, 9, 11, 15, 17, 18, 21, 23], "clement": 2, "clone": 22, "close": [11, 18], "cluster": [0, 4, 5, 10, 17, 21], "co": [0, 15], "code": [4, 9, 13, 14, 16, 18, 19, 20, 23], "coeff": [0, 1, 4, 13, 19], "coeffici": [0, 1, 2, 4, 12, 16], "collect": [2, 4, 18], "column": [0, 2, 12, 14], "com": [21, 22], "comb": 4, "combin": [0, 1, 4, 12, 13, 16], "command": 22, "commonli": [8, 20], "commun": [21, 22], "commut": [0, 8], "compact": [8, 23], "compar": [0, 6, 23], "compil": 22, "complet": 0, "complex": [0, 1, 2, 4, 5, 9], "compon": [0, 16, 21], "compos": [4, 22], "compress": [0, 2], "compris": [0, 16], "comput": [0, 2, 4, 9, 12, 18, 21, 23], "concaten": [0, 14], "concret": 9, "condit": 0, "configur": [0, 4, 13, 14, 22], "conflict": 6, "conj": [2, 12, 20], "conjug": 2, "connect": [0, 11, 13], "consecut": [4, 20], "conserv": [0, 5, 16, 21], "conserves_particle_numb": [0, 16], "conserves_spin_z": [0, 16], "consid": [11, 12, 13], "consist": [0, 9, 13], "constant": [0, 5, 8, 9, 11, 13, 19], "constrain": 2, "constraint": [11, 18], "construct": [0, 1, 3, 4, 13, 14, 15, 16, 18, 19, 20, 23], "contain": [0, 2, 3, 13, 16, 20, 21, 22], "contract": [2, 7, 21], "contract_diag_coulomb": [1, 7], "contract_num_op_sum": [1, 7], "contract_one_bodi": [1, 7], "contrast": 14, "control": [3, 13], "conveni": 14, "convent": 0, "converg": [3, 15, 18, 20, 23], "convers": [11, 18], "convert": [0, 1, 4, 14, 16, 18, 20, 21, 23], "coordin": 0, "coov": 20, "copi": [0, 16], "core": 0, "core_energi": 0, "correl": 3, "correspond": [0, 2, 3, 4, 8, 12, 13, 14, 18], "cost": 0, "coulomb": [0, 1, 2, 4, 8, 11, 23], "count": [0, 13, 20], "count_op": [13, 19], "cours": 11, "cp": [13, 19], "cphaseg": 13, "cre": [0, 7], "cre_a": [0, 7, 16], "cre_b": [0, 7, 16], "creat": [0, 4, 13, 14, 16, 19, 20, 21, 23], "creation": [0, 4, 12, 16], "criteria": 16, "current": [0, 2, 18], "d": [2, 22], "d2h": 18, "dag": 4, "dagcircuit": 4, "dagger": [0, 1, 2, 8, 11, 12, 16], "dagger_": [0, 4, 8, 9, 12], "dagger_i": 1, "data": [0, 5, 13, 15, 16, 18, 20, 21, 23], "daunt": 8, "de": [0, 7], "decompos": [2, 4, 8, 13, 19], "decomposit": [0, 2, 4, 8, 10, 19, 21, 23], "decreas": [0, 18], "def": [2, 12, 15, 18, 23], "default": [0, 2, 3, 4, 5, 8, 9, 23], "default_rng": [0, 4, 5, 6, 9, 13, 15, 19, 20], "default_shot": [4, 20], "defaultdict": 18, "defin": [0, 2, 13, 15, 18, 20, 23], "definit": [0, 2, 3, 14], "demonstr": [14, 18, 20], "denot": [0, 1, 2, 4, 12], "dens": 15, "densiti": 0, "depend": [0, 2, 3, 22, 23], "deprec": [0, 4, 5], "depth": 11, "deriv": 8, "des_a": [0, 7, 16], "des_b": [0, 7, 16], "descend": [0, 16], "describ": [0, 1, 2, 8, 11, 12, 13, 16, 23], "descript": [0, 4], "design": [0, 2, 12], "desir": [0, 2, 5, 6], "destroi": [0, 16], "detail": [13, 19], "determin": [0, 2, 4, 14], "dev": 22, "devel": 22, "develop": [4, 21], "devic": [13, 19], "df_hamiltonian": [13, 19, 23], "df_hamiltonian_alt": 23, "diag": [0, 7], "diag_coulomb_indic": [0, 2], "diag_coulomb_jw": 13, "diag_coulomb_linop": [1, 7], "diag_coulomb_mat": [0, 2, 13, 19, 20, 23], "diag_coulomb_mats_alpha_alpha": 0, "diag_coulomb_mats_alpha_beta": 0, "diagcoulombevolutionjw": [4, 7, 13, 19, 20], "diagcoulombevolutionspinlessjw": [4, 7], "diagon": [0, 1, 2, 4, 8, 11, 23], "diagonal_coulomb_mat": 2, "diagonalcoulombhamiltonian": [0, 7], "dict": [0, 2, 3, 15, 18], "dictionari": [0, 16], "did": 0, "differ": [0, 1, 2, 3, 9, 11, 13, 18, 22, 23], "dim": [0, 5, 7, 14, 16], "dim_a": [0, 14], "dim_b": [0, 14], "dimens": [0, 2, 5, 14], "dimension": [0, 2, 4, 14], "dipol": 0, "dipole_integr": 0, "direct": [0, 23], "directli": [0, 13, 18, 22, 23], "directori": 22, "discuss": [8, 12, 13], "disjoint": 2, "disk": 0, "displai": [13, 16, 20], "distinguish": 14, "distribut": 5, "divid": 8, "divis": [0, 16], "dnf": 22, "do": [8, 13, 16], "doc": [15, 18, 21], "docker": 21, "dockerfil": 22, "docstr": 0, "document": [0, 2], "doe": [0, 4, 16, 20], "don": 11, "dooh": [20, 21, 23], "dot": 0, "doubl": [0, 2, 4, 5, 10, 21, 24], "double_factor": [0, 2, 7], "double_factorized_t2": [2, 7], "double_factorized_t2_alpha_beta": [2, 7], "doublefactorizedhamiltonian": [0, 4, 5, 7, 23], "down": 14, "draw": [13, 19], "drop": [4, 15, 18], "dropneglig": [4, 7], "dtype": [0, 2, 4, 5, 9, 15, 18], "due": 20, "dump": [15, 18], "duplic": 0, "dure": 4, "e": [0, 2, 4, 8, 9, 11, 15, 16, 18, 20], "e_corr": [18, 20], "each": [0, 2, 3, 4, 8, 11, 14, 16, 18, 22, 23], "edg": 0, "effect": [0, 4, 13], "effici": [8, 13, 16], "eig": [9, 16], "eigendecomposit": 12, "eigenvalu": [0, 2, 3, 9], "eigenvector": [0, 2], "eigh": [12, 23], "eigsh": 9, "einsum": 23, "either": [0, 1, 2, 4, 6, 11], "electon": 4, "electron": [0, 1, 4, 5, 9, 13, 14, 15, 19, 20, 23], "element": [0, 1, 2, 4, 20, 23], "ell": 2, "els": [0, 5, 14], "elsewher": 0, "enabl": 2, "encount": 20, "end": [0, 2, 11, 12, 20, 23], "energi": [0, 3, 9, 12, 18, 20, 21, 23], "energy_nuc": [15, 18], "enforc": 0, "enough": 4, "ensur": 9, "entangl": [0, 17, 21], "entir": [2, 8], "entri": [0, 2, 4, 11, 14, 23], "enum": 0, "enumer": [0, 18], "environ": 22, "epsilon": 3, "epsmch": 18, "equal": [0, 2, 6, 13], "equal_nan": 6, "equilibrium": 15, "equival": [0, 4], "err_msg": 6, "error": [0, 2, 4, 6, 23], "especi": 16, "estim": 9, "et": 2, "etc": 0, "ethen": 18, "evalu": [3, 15], "even": 13, "everi": 12, "everywher": 14, "evolut": [0, 4, 9, 23], "evolv": [0, 23], "evolved_vec": 9, "evolved_vec_2": 9, "exact": [2, 8, 9, 23], "exact_st": 23, "exampl": [0, 4, 9, 11, 13, 14, 15, 16, 18, 19, 22], "exce": [2, 15, 23], "except": [0, 2, 3], "excit": 13, "exist": [2, 4], "exp": [0, 2, 4, 6], "expand": 0, "expanded_diag_coulomb_mat": 2, "expanded_orbital_rot": 2, "expans": [2, 3], "expect": [0, 3], "expectation_one_body_pow": [0, 7], "expectation_one_body_product": [0, 7], "expectation_product_st": 0, "expens": [0, 2], "explain": [9, 11, 13, 14, 18, 23], "explan": [0, 19, 21], "explicit": 0, "explicitli": 0, "exploit": 21, "expm": 2, "expm_multipli": [9, 23], "expm_multiply_taylor": [2, 7], "exponenti": [8, 9, 23], "expos": [4, 13], "express": [11, 14, 23], "extend": 4, "extra": 8, "extract": 20, "f": [3, 14, 15, 18, 20, 23], "facilit": 11, "fact": 15, "factor": [0, 2, 4, 5, 10, 21, 24], "failur": 6, "fake_provid": [13, 19], "fals": [0, 1, 2, 4, 5, 15, 16, 18], "far": 16, "fast": 0, "faster": [18, 21], "fault": 11, "fci": [0, 14, 15, 18], "fci_energi": 0, "fci_vec": 0, "fcidump": 0, "fcivec": 0, "fedora": 22, "feenberg": 3, "fermi": 0, "fermi_hubbard_1d": [0, 7], "fermi_hubbard_2d": [0, 7], "fermion": [0, 4, 5, 6, 8, 10, 11, 12, 16, 19, 20, 21], "fermion_oper": [0, 7], "fermionact": [0, 7], "fermionoper": [0, 4, 5, 7, 17, 21], "few": [14, 22], "fewer": [13, 19, 23], "ffsim": [7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23], "ffsim_vec_to_qiskit_vec": [4, 7], "ffsimsampl": [4, 7], "fidel": 23, "field": [0, 2], "fifth": 13, "file": [0, 22], "filter": 0, "final": [0, 3, 4, 5, 13, 19, 23], "final_orbital_rot": 0, "final_st": [18, 23], "final_state_vector": [4, 7], "finish": 23, "finit": 3, "first": [0, 2, 4, 8, 13, 14, 18, 20, 23], "fix": 14, "flag": 0, "float": [0, 2, 3, 4, 5, 6, 9, 12, 23], "float64": [9, 15, 18], "fock": [0, 4, 11, 14, 18, 21, 23], "focu": 9, "follow": [0, 2, 3, 4, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23], "foot": 0, "forg": [0, 17, 21], "form": [0, 1, 2, 4, 8, 9, 11, 12, 16, 20, 23], "format": [0, 4], "formula": [0, 23], "fourth": [8, 13], "frac": [0, 2], "frac12": [0, 8, 9, 11], "frac18": 0, "framework": 22, "from": [0, 2, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "from_diag_coulomb_mat": 0, "from_fcidump": 0, "from_fermion_oper": 0, "from_json": 0, "from_mol": 0, "from_molecular_hamiltonian": [0, 23], "from_orbital_rot": 0, "from_paramet": [0, 13, 18], "from_scf": [0, 15, 18, 20, 21, 23], "from_t_amplitud": [0, 18, 20], "frozen": [18, 20], "fsim": 0, "full": [0, 2, 13, 14, 15], "fulli": 9, "fun": [3, 15, 18], "function": [0, 1, 2, 3, 5, 8, 9, 12, 14, 15, 16, 18, 19, 23], "fundament": 12, "further": [13, 14], "furthermor": [0, 2], "g": [0, 4, 15], "g_": 2, "g_1": 2, "g_k": 2, "g_l": 2, "gate": [0, 4, 10, 11, 15, 20, 21], "gener": [0, 3, 4, 5, 6, 8, 13, 14, 15, 19, 20, 21], "generate_norb_nelec": [6, 7], "generate_norb_nelec_spin": [6, 7], "generate_norb_nocc": [6, 7], "generate_norb_spin": [6, 7], "generate_preset_pass_manag": [13, 19], "genericbackendv2": [13, 19], "get": [0, 14, 15, 18, 20, 21, 23], "get_count": 20, "get_hcor": [15, 18], "get_ovlp": [15, 18], "git": 22, "github": [21, 22], "give": [0, 2, 8, 14, 19], "given": [0, 2, 4, 6, 8, 12], "givens_ansatz_op": 4, "givens_ansatz_oper": 4, "givens_decomposit": [2, 7], "givensansatzop": [0, 4, 7], "givensansatzoper": [0, 4, 7], "givensansatzoperatorjw": [4, 7], "givensansatzoperatorspinlessjw": [4, 7], "givensansatzopjw": [4, 7], "givensansatzopspinlessjw": [4, 7], "givensrot": [2, 7], "global": [4, 6], "go": [0, 13, 16], "good": 16, "gradient": [2, 3, 18], "greater": 3, "ground": [9, 18], "gt": [15, 18, 19], "gto": [15, 18, 20, 21, 23], "gtol": [3, 18], "guarante": [4, 19], "guess": [3, 18], "guid": [11, 15, 18, 19, 20, 21], "gzip": 0, "h": [0, 8, 9, 15, 18, 20, 23], "h1_x": 15, "h2_x": 15, "h2_y": 15, "h_": [0, 2, 8, 9], "h_0": [8, 23], "h_k": [8, 23], "ha": [0, 1, 2, 4, 8, 11, 12, 13, 14, 18], "haar": 5, "ham": 14, "hamiltonian": [0, 3, 4, 5, 10, 15, 18, 20, 21, 24], "hand": 14, "handl": [20, 23], "happen": 13, "hardwar": 13, "hartre": [0, 4, 11, 14, 18, 21, 23], "hartree_fock": 0, "hartree_fock_jw": 13, "hartree_fock_st": [0, 7, 9, 14, 18, 21, 23], "hasattr": 18, "hash": 16, "have": [0, 2, 8, 9, 11, 12, 13, 14, 16, 22], "height": 5, "helper": 16, "here": [0, 2, 8, 12, 13, 15, 23], "hermitian": [0, 2, 5, 12], "hess_inv": [15, 18], "hf": [15, 18], "hf_energi": 0, "hf_mo_coeff": 0, "hf_mo_occ": 0, "high": 13, "higher": [0, 8, 23], "ho": 20, "hold": [0, 3], "home": [15, 18, 22], "hop": [0, 15], "hopgateansatzoper": [0, 7, 15], "hot": [0, 2], "how": [0, 8, 9, 11, 12, 13, 14, 21, 23], "howev": [8, 13, 21], "http": [21, 22], "hubbard": 0, "hydroxyl": 20, "hyperparamet": [3, 18], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "idea": 11, "ident": 0, "ignor": [0, 2, 8], "ij": [0, 1, 2, 4, 8, 11, 12], "ijab": 2, "ik": 12, "imag": 22, "implement": [0, 1, 3, 4, 8, 9, 11, 12, 13, 15, 18, 20, 21, 22, 24], "import": [0, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "impos": [11, 18], "improv": [3, 23], "includ": [0, 2, 4, 5, 8, 9, 12, 13, 14, 15, 18, 19, 21, 22], "incorpor": 0, "increas": [0, 14, 23], "increment": 3, "incur": 3, "independ": [0, 1, 4, 15], "index": [0, 2, 11, 14, 16], "indic": [0, 1, 2, 4, 11, 14, 16], "indices_to_str": [0, 7], "individu": [8, 14, 16], "info": 18, "inform": [0, 9, 16, 18, 21, 23], "init_cach": [0, 7], "initi": [0, 3, 4, 5, 6, 9, 11, 13, 18, 19, 20, 23], "initial_st": 23, "initiali": 15, "input": [0, 1, 3, 4, 5, 6, 18, 20], "insert": 13, "instanc": [5, 9, 23], "instead": [0, 2, 4, 5, 18, 23], "instruct": [21, 22], "instructionset": 19, "int": [0, 1, 2, 3, 4, 5, 6, 12, 15, 23], "int32": 0, "integ": [0, 2, 4, 6, 14], "integr": [0, 4], "interact": [0, 1, 2, 4, 11, 13, 18, 20], "interaction_pair": [0, 13, 15, 18, 20], "interfac": [18, 22], "interferomet": 2, "intermedi": 18, "intermediate_result": [3, 18], "intern": 16, "interpret": [0, 11], "introduc": [11, 12, 23], "invers": 4, "involv": [0, 12, 13], "ip": 2, "ipykernel_4333": 9, "is_antihermitian": [2, 7], "is_hermitian": [2, 7], "is_orthogon": [2, 7], "is_real_symmetr": [2, 7], "is_special_orthogon": [2, 7], "is_unitari": [2, 7], "isclos": 0, "isn": 4, "issu": [9, 13], "item": 20, "iter": [0, 3, 4, 6, 18], "itertool": 2, "its": [0, 2, 4, 9, 13, 14, 15, 16, 23], "itself": [0, 14, 16], "j": [0, 1, 2, 4, 8, 11, 12, 14, 15, 16], "jac": [3, 15, 18], "jastrow": [0, 3, 4, 5, 10, 17, 21], "ji": [0, 4, 11, 12], "jk": 12, "job": [4, 20], "jordan": [0, 4], "jordan_wign": [4, 7], "jq": 2, "json": [0, 15, 18], "jupyt": 22, "just": [0, 14, 18, 22, 23], "jwt": 4, "k": [0, 2, 8, 9, 11, 16, 20, 23], "kappa": 0, "kappa_": 0, "keep": [0, 2], "kei": 20, "kij": 23, "know": 15, "known": 8, "kpi": 23, "kqi": 23, "krj": 23, "kron": 0, "ksj": 23, "kwarg": [0, 4], "l": [0, 2, 3, 8, 11, 15, 18, 23], "label": [4, 14], "ladder": [8, 11], "lambda": [0, 4, 20], "lambda_i": [0, 1, 4, 12], "lambda_k": 12, "langl": 0, "larger": [0, 2, 3, 16], "last": [0, 2, 3, 4], "later": [19, 23], "lattic": [0, 11, 13, 18, 20], "layer": [0, 2, 13, 20], "lbfgsinvhessproduct": [15, 18], "ldot": [0, 2, 8, 11, 23], "lead": 0, "least": 2, "left": [0, 4, 12, 14, 16], "len": [15, 18, 23], "length": [0, 4, 5, 14, 15], "leq": [0, 2], "less": [2, 11], "let": [0, 13, 14, 16, 18, 19, 20, 23], "level": 23, "lexicograph": [0, 16], "lib": [15, 18], "libopenbla": 22, "librari": [0, 21], "like": [4, 11, 18, 22], "limit": [0, 2, 11, 13, 15, 18], "linalg": [0, 7, 9, 12, 16, 18, 21, 23], "lindep": 3, "line": [0, 11, 13, 18], "linear": [0, 1, 2, 3, 4, 9, 12, 13, 16], "linear_oper": [0, 7, 9, 16, 18, 21, 23], "linearli": 8, "linearoper": [0, 1, 3, 16, 18, 21, 23], "linop": [9, 16, 21, 23], "linux": 22, "list": [0, 2, 4, 6, 11, 14, 15, 18, 20, 23], "ll": [9, 12, 13, 15, 18, 20, 23], "lm": 16, "load": 0, "local": [10, 17, 21], "localhost": 22, "log": [0, 4], "logarithm": 11, "logic": [12, 15], "longer": 11, "longest": 0, "lookup": 0, "losslessli": 0, "low": [0, 8, 23], "lower": [0, 2], "lowest": [0, 13, 14], "lt": [15, 18, 19], "lu": 2, "lucj": [10, 13, 17, 21], "lup": [2, 7], "lvert": [0, 4, 11, 14], "lzma": 0, "m": [0, 1, 2, 12], "m_": [0, 1, 2], "maco": 22, "made": 23, "magnitud": 0, "mai": [0, 2, 3, 4, 11, 22, 23], "main": [18, 22], "maintain": 8, "make": [11, 13], "manag": [4, 13, 19, 22], "mani": [0, 9, 12, 14, 21], "manual": 23, "many_body_ord": 0, "map": [0, 4, 12, 13, 16], "mapsto": [0, 4, 12], "mat": [0, 1, 2, 4, 12, 14], "mat_aa": 2, "mat_ab": 2, "mat_alpha_beta": 1, "mat_bb": 2, "match": [0, 2], "match_global_phas": [2, 7], "math": [5, 15], "mathbf": [0, 8, 11, 12], "mathcal": [0, 1, 4, 8, 11, 12], "matric": [0, 1, 2, 4, 11, 12, 23], "matrix": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 14, 16], "max": 23, "max_error": 23, "max_term_length": 5, "max_vec": [0, 2, 23], "maxfun": 15, "maximum": [0, 2, 3, 5, 23], "maxit": [3, 18], "mcscf": [15, 18], "mea": 20, "meant": [4, 19], "measur": [5, 8, 20], "measure_al": 20, "mention": 8, "merg": [4, 19], "mergeorbitalrot": [4, 7, 13], "messag": [6, 15, 18], "method": [0, 2, 3, 4, 11, 15, 16, 20, 21], "mid": 20, "might": 2, "mind": 23, "minim": [0, 2, 3, 13, 15, 18], "minimize_linear_method": [3, 7, 18], "minimizz": 15, "minimum": 4, "mk": 2, "mkap": 2, "mkbq": 2, "mkip": 2, "mkjq": 2, "mkpq": 2, "mo_coeff": 0, "mo_occ": 0, "mode": 12, "model": 0, "modifi": [0, 2], "modified_choleski": [2, 7], "modul": [0, 14, 15, 19, 20], "mol": [15, 18, 20, 21, 23], "mol_data": [15, 18, 20, 21, 23], "mol_hamiltonian": [9, 15, 18, 20, 23], "mole": [0, 15, 18, 20, 21, 23], "molecul": [0, 18, 21, 23], "molecular": [0, 5, 9, 10, 14, 15, 18, 20, 21, 23], "moleculardata": [0, 7, 15, 18, 20, 21, 23], "molecularhamiltonian": [0, 5, 7, 9, 23], "more": [0, 2, 3, 4, 8, 9, 11, 13, 14, 19, 23], "most": [0, 2, 16, 20], "motiv": 13, "mp2": 0, "mp2_energi": 0, "mp2_t2": 0, "mpl": [13, 19], "msg": [15, 18], "mu": 0, "much": [0, 2, 8, 13, 21], "multipl": [0, 9, 16, 23], "multipli": [0, 16], "multiport": 2, "multirefer": 0, "multireference_st": [0, 7], "multireference_state_prod": [0, 7, 15], "must": [0, 2, 3, 4, 16, 20], "n": [0, 2, 8, 9, 11, 12, 14, 20, 21, 23], "n2": [20, 21, 23], "n_": [0, 1, 4, 8, 11, 12, 14], "n_alpha": [4, 6, 20], "n_beta": [4, 6, 20], "n_frozen": [20, 23], "n_i": 4, "n_j": 4, "n_layer": 15, "n_p": 0, "n_param": [0, 13], "n_qubit": 4, "n_rep": [0, 5, 13, 18, 19, 20], "n_sampl": 0, "n_step": [0, 4, 13, 19, 23], "n_term": 5, "n_vec": 2, "n_x": 0, "n_y": 0, "name": [0, 9, 13, 14, 19, 22], "namedtupl": [0, 2], "nan": 6, "nao_nr": [15, 18, 20, 21, 23], "nativ": 21, "navig": 22, "ndarrai": [0, 1, 2, 3, 4, 5, 6, 12, 18, 23], "nearest": 0, "nearest_neighbor_interact": 0, "need": [0, 4, 9, 11, 13, 20, 22, 23], "neg": [0, 4], "neglig": 4, "neighbor": [0, 13], "nelec": [0, 1, 4, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "nelectron": 18, "neq": 0, "nest": 2, "network": 11, "new": [0, 4, 12, 16], "newli": 0, "next": [13, 15, 23], "nfev": [3, 15, 18], "nit": [15, 18], "nitrogen": [20, 23], "njev": [15, 18], "nlinop": [3, 18], "nn": 0, "nocc": [0, 5, 6], "nocc_a": 2, "nocc_b": 2, "noisi": 11, "non": [4, 11], "none": [0, 1, 2, 3, 4, 5, 6], "nonzero": [0, 2, 11], "norb": [0, 1, 2, 4, 5, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "norb_i": 0, "norb_rang": 6, "norb_x": 0, "norm": [0, 3, 18], "normal": [0, 15, 16], "normal_ord": [0, 16], "note": [0, 2, 3, 13, 14, 16, 19, 21], "notebook": 22, "noth": 4, "notic": 18, "notimplementederror": 4, "now": [9, 13, 15, 18, 20, 23], "np": [0, 2, 4, 5, 6, 9, 12, 13, 15, 18, 19, 20, 21, 23], "num_num_ansatz_op": 4, "num_op_sum_linop": [1, 7], "number": [0, 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 18, 21, 23], "number_oper": [0, 7], "numer": [0, 2, 4, 16], "numnumansatzopspinbalanc": [0, 4, 7], "numnumansatzopspinbalancedjw": [4, 7], "numopsumevolutionjw": [4, 7, 13, 19], "numopsumevolutionspinlessjw": [4, 7], "numpi": [0, 1, 2, 4, 6, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23], "o": [0, 15, 20], "o_1": 0, "o_2": 0, "o_k": 0, "obj": 0, "object": [0, 2, 3, 4, 9, 16, 18, 20], "obtain": [0, 8, 9, 12, 13, 18, 23], "occ_a": 6, "occ_b": 6, "occup": [0, 6, 8, 12, 14], "occupi": [0, 4, 5, 6, 13, 14], "occupied_orbit": [0, 4, 13, 19, 20], "often": [8, 11, 18], "onc": [12, 13, 22], "one": [0, 1, 2, 4, 5, 8, 9, 13, 14, 18, 20, 22, 23], "one_body_basis_chang": 23, "one_body_energi": 23, "one_body_integr": 0, "one_body_linop": [1, 7], "one_body_squar": 0, "one_body_tensor": [0, 9, 23], "one_hot": [0, 2, 7], "one_rdm": 0, "ones": 9, "onli": [0, 2, 4, 8, 11, 12, 13, 20, 22], "onsit": 0, "onto": [13, 16], "op": [0, 4, 16], "op1": [0, 16], "op2": [0, 16], "op3": 16, "op4": 16, "opaqu": 13, "open": [0, 11], "openbla": 22, "oper": [0, 1, 2, 3, 4, 5, 8, 11, 12, 16, 18, 22, 23], "oppos": 13, "opposit": [18, 20], "optim": [0, 2, 4, 7, 11, 13, 19, 21], "optimization_level": [13, 19], "optimize_kwarg": 3, "optimize_regular": 3, "optimize_vari": 3, "optimizeresult": [3, 18], "option": [0, 1, 2, 3, 4, 9, 15, 18, 22], "orb": [0, 16], "orbit": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 18, 20, 21, 23], "orbital_rot": [0, 1, 2, 4, 12, 13, 14, 19, 20, 21, 23], "orbital_rotation_a": 2, "orbital_rotation_b": 2, "orbital_symmetri": 0, "orbitalrotationjw": [4, 7, 13, 19, 20], "orbitalrotationspinlessjw": [4, 7], "order": [0, 1, 2, 4, 8, 9, 13, 14, 16, 19, 20, 23], "ordereddict": [13, 19], "origin": [0, 2, 11, 13, 23], "orthogon": [2, 5], "other": [0, 4, 11, 14, 18, 19, 20], "otherwis": 0, "our": [15, 18, 20, 23], "out": [2, 23], "output": [0, 3, 4, 13, 18, 20], "over": 0, "overrid": [0, 2], "overridden": 4, "overwritten": [0, 15, 18], "own": 4, "p": [0, 2, 8, 9, 11, 13, 18, 19, 20], "packag": [15, 18, 22], "pacman": 22, "pad": 0, "page": [8, 9, 11, 12, 13, 14], "pair": [0, 1, 2, 4, 6, 11, 13, 14], "pairs_aa": [13, 18, 20], "pairs_ab": [13, 18, 20], "pairs_bb": 20, "paper": 11, "parallel": [2, 11, 13], "param": 0, "paramet": [0, 1, 2, 3, 4, 5, 6, 11, 15, 18], "parameter_valu": 4, "params_to_vec": [3, 18], "pars": [15, 18], "part": [0, 5, 8, 12, 14, 15], "particl": [0, 5, 6, 12, 16, 21], "pass": [0, 1, 2, 4, 9, 12, 13, 14, 15, 16, 18, 19], "pass_manag": [13, 19], "passmanag": [4, 13], "path": 0, "pathlik": 0, "pattern": [13, 15], "pauli": 0, "per": 23, "perform": [0, 2, 3, 8, 9, 12, 13, 20, 23], "period": 0, "permut": 2, "persist": 22, "ph": 5, "phase": [0, 2, 4, 6, 13], "phase_angl": 0, "phaseg": 13, "phi": [0, 2, 6], "phi_0": 11, "pi": [0, 15], "piec": [9, 16], "pip": 21, "pipelin": 13, "pivot": 2, "pk": 2, "place": [0, 2, 11, 13, 16, 22], "plain": 14, "pmatrix": [0, 2], "posit": [2, 3, 14], "possibl": [0, 2, 6, 20, 21], "possibli": [0, 18], "potenti": 0, "power": 0, "pq": [0, 2, 8, 9], "pqr": [0, 2, 8, 9, 23], "practic": 8, "pre": [11, 19], "pre_init": [4, 7, 13, 19], "pre_init_pass": [4, 7, 19], "precis": 6, "prepar": [0, 4, 20], "preparehartreefockjw": [4, 7, 13, 19, 20], "preparehartreefockspinlessjw": [4, 7, 20], "prepareslaterdeterminantjw": [4, 7, 13, 19, 20], "prepareslaterdeterminantspinlessjw": [4, 7, 20], "present": 3, "preserv": [16, 20], "preset_passmanag": [13, 19], "previou": [18, 20], "previous": [8, 13, 14, 18], "primit": [4, 17, 21], "primitivejob": 4, "primitiveresult": 4, "print": [0, 6, 13, 14, 15, 16, 18, 20, 21, 23], "probabl": 0, "problem": 3, "processor": 11, "prod": 15, "prod_": [0, 4, 11], "prod_k": 8, "prod_state_sum": 0, "produc": 13, "product": [0, 2, 8, 14, 15, 16], "productstatesum": [0, 7], "programmat": 16, "project": [3, 18], "properti": [0, 2, 12], "proport": [0, 8], "protocol": 0, "provid": [9, 13, 19, 22], "pseudorandom": [0, 4, 5, 6], "psi": [0, 11], "pub": [4, 20], "pub_result": 20, "put": 15, "py": [9, 15, 18], "pypi": 22, "pyscf": [0, 4, 14, 15, 18, 20, 21, 23], "python3": [15, 18], "q": [0, 8, 9, 13, 19], "qdrift": 0, "qi": 0, "qiskit": [7, 13, 17, 21, 22], "qiskit_vec_to_ffsim_vec": [4, 7], "qk": 2, "quadrat": [8, 10, 21, 23], "qualnam": 0, "quantifi": 2, "quantiti": 0, "quantum": [0, 4, 8, 11, 13, 14, 17, 20, 21], "quantumcircuit": [4, 13, 19, 20], "quantumregist": [13, 19, 20], "qubit": [0, 4, 10, 11, 15, 19, 20, 21], "r": [0, 2, 8, 9], "radic": 20, "radius_1": 15, "radius_2": 15, "rais": [0, 2, 4, 6], "random": [0, 4, 6, 7, 9, 13, 14, 15, 16, 19, 20, 21], "random_antihermitian": [5, 7], "random_double_factorized_hamiltonian": [5, 7, 13, 19], "random_fermion_hamiltonian": [5, 7], "random_fermion_oper": [5, 7], "random_hermitian": [5, 7], "random_molecular_hamiltonian": [5, 7], "random_nelec": [6, 7], "random_occupied_orbit": [6, 7], "random_orthogon": [5, 7], "random_real_symmetric_matrix": [5, 7, 9, 13, 19, 20], "random_special_orthogon": [5, 7], "random_state_vector": [5, 7, 16], "random_statevector": [5, 7], "random_t2_amplitud": [5, 7], "random_two_body_tensor": [5, 7, 9], "random_ucj_op_spin_balanc": [5, 7, 13, 19], "random_ucj_op_spin_unbalanc": [5, 7, 19], "random_ucj_op_spinless": [5, 7], "random_ucj_oper": [5, 7], "random_unitari": [5, 7, 13, 14, 19, 20, 21], "rang": [0, 2, 6, 13, 14, 15, 18, 20, 21, 23], "rangl": [0, 4, 11, 14], "rank": [0, 2, 5, 8, 13], "rather": [0, 12, 14], "rccsd": 20, "rdm": [0, 7], "rdm1": 0, "rdm2": 0, "rdm3": 0, "rdm4": 0, "reach": 18, "read": 0, "real": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 18, 21], "realucjoper": [0, 7], "reason": [4, 12], "recal": 13, "recommend": [4, 13, 16, 19, 21], "reconstruct": [0, 2, 23], "reconstruct_t2_alpha_beta": 2, "recover": 0, "reduc": [0, 2, 13], "reduced_matrix": [2, 7], "reduced_matrix_product_st": 0, "redund": 11, "refer": [0, 2, 3, 4, 5, 6, 11, 12, 14, 18, 21], "reference_occup": [0, 15], "reference_occupations_spati": 15, "reference_st": 18, "regular": [3, 18], "rel": [0, 2, 4, 6], "rel_reduction_of_f_": 18, "relat": 12, "releas": 21, "reorder": [0, 8], "rep": 13, "repeat": 15, "repeatedli": 12, "repetit": [0, 5, 11, 13, 18], "repositori": 22, "repr": 16, "repres": [0, 2, 3, 4, 6, 9, 11, 14, 16, 18, 19], "represent": [0, 1, 2, 4, 5, 10, 14, 16, 21, 23], "reproduc": 23, "requir": [0, 9, 11, 13, 14, 22], "reshap": 14, "respect": [0, 2, 3, 23], "rest": [0, 13], "restrict": [0, 13, 18], "result": [0, 1, 2, 3, 4, 5, 8, 9, 11, 13, 15, 18, 19, 20, 23], "retain": [0, 13], "retriev": 20, "return": [0, 1, 2, 3, 4, 5, 6, 12, 15, 16, 18, 23], "return_lower_rank": 0, "revers": 20, "rewrit": 0, "rewritten": 12, "rhf": [0, 15, 18, 20, 21, 23], "right": [0, 4, 12, 14, 16], "ring": 0, "rise": [2, 8], "rng": [9, 13, 15, 19, 20], "rohf": 20, "root": 0, "rotat": [0, 1, 2, 4, 5, 8, 10, 11, 14, 21, 23], "rotated_vec": 14, "routin": [2, 9, 16], "row": [0, 2, 14], "rtol": [0, 2, 4, 6], "rtype": [0, 2, 4], "run": [0, 4, 13, 15, 18, 19, 20, 21, 22, 23], "run_ccsd": 0, "run_cisd": 0, "run_fci": [0, 15, 18], "run_mp2": 0, "run_sci": 0, "rung": 11, "runner": [15, 18], "rust": 22, "rvert": 0, "s_": [0, 14], "s_a": 0, "s_b": 0, "sa": 9, "same": [0, 9, 11, 12, 13, 14, 15, 18, 20], "sampl": [0, 4, 5, 6, 9], "sample_state_vector": [0, 7], "sampler": [4, 17, 21], "samplerpubresult": 4, "sandwich": 13, "satisfi": [0, 12, 16, 20, 22], "save": [0, 18, 22], "scalar": [0, 16], "scale": [8, 13, 15, 19], "scf": [0, 15, 18, 20, 21, 23], "scf_func": 0, "scheme": 8, "sci": 0, "sci_energi": 0, "sci_vec": 0, "scipi": [0, 2, 3, 15, 16, 18, 21, 23], "search": 14, "second": [0, 2, 4, 8], "section": [8, 19], "sector": [0, 1, 2, 4, 15], "see": [0, 2, 4, 11, 13, 14, 19, 22, 23], "seed": [0, 4, 5, 6, 9, 13, 14, 19, 20, 21], "seen": 20, "select": 3, "sens": [13, 23], "separ": [0, 11, 14], "sequenc": [0, 2, 4, 13], "seri": 2, "serial": 0, "serializ": [15, 18], "set": [0, 1, 2, 4, 5, 8, 11, 12, 13, 19, 23], "setup": 11, "sever": [9, 13], "shape": [0, 2, 5, 11, 23], "share": 11, "shell": [11, 18], "shot": [0, 4, 20], "should": [0, 1, 2, 4, 5, 6, 9, 12, 22], "show": [13, 15, 16, 18, 19, 20], "shown": 16, "side": 0, "sigma": [0, 1, 4, 8, 9, 11, 12], "sign": 0, "signatur": 3, "signific": 23, "significantli": 13, "similar": 18, "simpl": [20, 22], "simpler": 0, "simpli": [4, 13, 14], "simplist": 23, "simul": [0, 8, 11, 12, 14, 17, 21, 24], "simulate_qdrift_double_factor": [0, 7], "simulate_trotter_diag_coulomb_split_op": [0, 7], "simulate_trotter_double_factor": [0, 7, 8, 23], "simulate_trotter_step_double_factor": 23, "simulatetrotterdoublefactorizedjw": [4, 7, 13, 19], "sin": [0, 15], "sinc": [0, 2, 11, 12, 15, 18], "singl": [0, 1, 4, 6, 8, 13, 23], "singlefactorizedhamiltonian": [0, 7], "singular": [0, 2], "site": [0, 15, 18], "size": [0, 3, 15], "slater": [0, 4], "slater_determin": [0, 7], "slater_determinant_rdm": [0, 7], "slice": 2, "small": 2, "smaller": [0, 2, 8, 16, 23], "so": [0, 2, 6, 8, 11, 12, 13, 15, 16, 22, 23], "softwar": [0, 21], "solv": 3, "some": [0, 2, 6, 9, 13, 14, 16, 18, 20], "sometim": [0, 14], "sort": 20, "sourc": [0, 1, 2, 3, 4, 5, 6, 21], "space": [0, 9, 14, 15, 18, 20, 23], "span": [0, 2], "spars": [9, 16, 23], "sparsepauliop": 4, "sparsiti": 11, "spatial": [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 23], "speci": [4, 6], "special": [2, 5, 11, 13, 21], "specif": 14, "specifi": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 15, 23], "spectral": 0, "spin": [0, 1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 16, 18, 20, 21], "spin_squar": [0, 7], "spin_sum": 0, "spinless": [0, 4, 5, 6], "split": [0, 23], "squar": [0, 2, 11, 13, 18, 20], "stack": 0, "stage": [4, 13, 19], "standard": 18, "standard_norm": [9, 13, 19], "star": 2, "start": 0, "state": [0, 1, 3, 4, 5, 9, 10, 11, 12, 13, 18, 20, 21, 23], "statevector": [0, 4, 7], "static": [0, 4], "statist": 20, "statu": [15, 18], "step": [0, 4, 8, 12, 15, 19, 23], "step_tim": 23, "still": [0, 8], "sto": [0, 15, 18, 23], "stop": [15, 18], "store": [0, 2, 4, 6, 9, 11, 13, 18, 19, 23], "store_cisd_vec": 0, "store_fci_vec": 0, "store_sci_vec": 0, "store_t1": 0, "store_t2": 0, "str": [0, 2, 4, 6], "straightforward": 2, "strength": 0, "strictli": 3, "string": [0, 14, 16], "strings_a": 0, "strings_b": 0, "strings_to_address": [0, 7], "strings_to_indic": [0, 7], "structur": [0, 8], "sub": 0, "subclass": 4, "subdirectori": 22, "submit": 20, "subroutin": 12, "subspac": [0, 2, 16], "substitut": 0, "subsystem": [14, 22], "subtract": [0, 16], "success": [15, 18], "sudo": 22, "suffix": 15, "suggest": 19, "sum": [0, 4, 8, 23], "sum_": [0, 1, 2, 4, 8, 9, 11, 12, 23], "sum_j": 12, "sum_k": [8, 12], "sum_p": 0, "sum_t": 0, "summat": 0, "support": [0, 2, 9, 14, 16, 20, 22], "supportsapplyunitari": [0, 7], "supportsapproximateequ": [0, 7], "supportsdiagon": [0, 7], "supportsfermionoper": [0, 7], "supportslinearoper": [0, 7], "supportstrac": [0, 7], "suzuki": [0, 23], "swap": [11, 13], "symmetr": [0, 2, 4, 5, 8, 11], "symmetri": [0, 12, 15, 18, 20, 21, 23], "system": [0, 4, 6, 12, 14, 22], "t": [0, 2, 4, 8, 11, 12, 20, 21], "t1": 0, "t1a": 0, "t1b": 0, "t2": [0, 2, 5, 18, 20], "t2_amplitud": 2, "t2aa": 0, "t2ab": 0, "t2bb": 0, "t_": 2, "tabl": [0, 16], "take": [0, 3, 18, 19], "taken": 11, "target": [2, 13], "target_orb": 0, "tau": [0, 1, 4, 8, 9, 11], "taylor": 2, "tensor": [0, 1, 2, 5, 8, 9, 18, 23], "term": [0, 2, 5, 8, 11, 16, 23], "test": [7, 21, 23], "text": [0, 8, 9], "th": [2, 12], "than": [0, 4, 12, 13, 14, 18, 21], "thei": [0, 9, 11, 12, 16], "them": [11, 13, 14], "therefor": [0, 2, 11], "theta": [0, 15], "thi": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23], "think": 2, "third": [0, 2], "those": [3, 18], "though": 13, "three": [0, 1, 4, 9, 16], "threshold": [0, 2, 3], "thu": 8, "time": [0, 2, 3, 4, 9, 13, 14, 19, 20, 23], "titl": 21, "tmp": [9, 15, 18], "tmpjfp2fs73": 15, "tmpvt8_j8d0": 18, "to_diag_coulomb_mat": 0, "to_fcidump": 0, "to_json": 0, "to_molecular_hamiltonian": 0, "to_number_represent": 0, "to_orbital_rot": 0, "to_paramet": [0, 18], "to_t_amplitud": 0, "to_z_represent": 0, "tol": [0, 2, 23], "toler": [0, 2, 4, 6, 11, 23], "too": 2, "top": 20, "topologi": [11, 13, 18], "toru": 0, "total": [0, 4, 8, 15, 18, 23], "tox": [15, 18], "trace": [0, 7, 9, 23], "tracea": [9, 23], "trajectori": 0, "transform": [0, 1, 4], "transformationpass": 4, "transpil": [4, 13, 17, 21], "transpiled_opt": 13, "treat": 0, "triangl": 11, "trianglular": [0, 2], "triangular": [0, 2, 4], "triplet": 6, "trotter": [0, 4, 21, 24], "true": [0, 2, 3, 4, 6, 16, 18, 20], "truncat": 8, "try": 23, "tunnel": 0, "tupl": [0, 1, 2, 4, 6, 12, 15, 16, 23], "tutori": [21, 23], "twice": [0, 15, 19], "two": [0, 2, 5, 8, 9, 11, 13, 14, 15, 18, 22, 23], "two_body_integr": 0, "two_body_tensor": [0, 2, 9, 23], "type": [0, 1, 2, 3, 4, 5, 6, 20, 22], "typeerror": 0, "typic": 0, "u": [0, 1, 2, 4, 11], "u_": 4, "u_k": 0, "ubuntu": 22, "uccsd": 20, "ucj": [0, 4, 5], "ucj_balanced_jw": 13, "ucj_op": [4, 13, 19, 20], "ucj_oper": 4, "ucjoper": [0, 4, 5, 7], "ucjoperatorjw": [4, 7], "ucjopspinbalanc": [0, 4, 5, 7, 11, 13, 18, 20], "ucjopspinbalancedjw": [4, 7, 13, 19, 20], "ucjopspinless": [0, 4, 5, 7], "ucjopspinlessjw": [4, 7], "ucjopspinunbalanc": [0, 4, 5, 7, 11, 20], "ucjopspinunbalancedjw": [4, 7, 13, 19, 20], "uhf": 20, "unbalanc": [0, 4, 5, 20], "under": [0, 4], "underli": 4, "unifi": 20, "uniform": [0, 5], "unimpl": 4, "union": [2, 4], "unit": 2, "unitari": [0, 1, 2, 4, 5, 8, 10, 12, 14, 17, 21], "univers": 2, "unlik": 0, "unord": 0, "untouch": 0, "up": [0, 2, 6, 8, 14, 22], "updat": [0, 8], "upon": 16, "upper": [0, 2, 4, 11], "url": 21, "us": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23], "usag": [0, 2, 16, 19], "user": 22, "userwarn": [9, 15, 18], "usual": 0, "util": [2, 5, 6, 8], "v": [0, 20], "v_": 0, "v_i": 2, "v_j": 2, "vacuum": 4, "valid": [0, 4, 5, 6], "valu": [0, 1, 2, 3, 4, 6, 9, 11, 18, 19, 23], "valueerror": [0, 2, 4], "vari": [0, 4], "variabl": [14, 23], "variant": [11, 13, 18], "variat": [0, 3, 11, 18], "variation": 18, "varphi": 0, "vdot": [18, 21, 23], "ve": 23, "vec": [0, 1, 2, 4, 9, 12, 14, 16, 21, 23], "vec_a": 0, "vec_b": 0, "vector": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 15, 16, 18, 21], "verbos": 6, "verifi": 2, "version": 4, "vertic": 0, "via": [0, 23], "view": [0, 16], "volum": 22, "w": [0, 8, 12], "w_k": 0, "wa": [0, 3, 4, 11], "wai": 11, "want": 13, "warn": [9, 15, 18, 20], "water": 15, "wavefunct": [3, 18], "we": [0, 2, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "web": 22, "weight": 14, "well": [3, 14, 21, 22, 23], "when": [0, 3, 4, 9, 11, 13, 14, 16, 19, 21], "whenev": 0, "where": [0, 1, 2, 3, 4, 8, 11, 12, 14, 22, 23], "whether": [0, 1, 2, 3, 4, 5, 16], "which": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 22, 23], "while": [8, 11], "whose": [0, 2, 14], "width": 5, "wigner": [0, 4], "william": 2, "window": [21, 22], "wise": 2, "with_final_orbital_rot": [0, 5], "with_phase_angl": 0, "with_phi": 0, "within": [0, 2, 13, 16, 18, 21], "without": [11, 13, 18], "won": 21, "word": [0, 11, 20], "work": [9, 13, 15, 18, 19, 21, 22], "workflow": 20, "would": [13, 14], "wrapper": 23, "write": 23, "written": 8, "wrote": 23, "wsl": 22, "x": [0, 3, 4, 13, 15, 18, 19, 20], "x0": [3, 15, 18], "xx_plus_yi": [13, 19], "xxplusyyg": [13, 19], "y": 0, "yaml": 22, "yet": [9, 18], "yield": [0, 2, 4, 8, 11, 15, 23], "you": [0, 1, 2, 4, 9, 14, 18, 21, 22, 23], "your": [19, 22], "z": [0, 1, 2, 4, 5, 12, 16, 21], "z_represent": [0, 1, 4, 5], "zero": [0, 2, 4, 9, 19], "zip": [0, 15, 18, 23], "\u03c8": 18}, "titles": ["ffsim", "ffsim.contract", "ffsim.linalg", "ffsim.optimize", "ffsim.qiskit", "ffsim.random", "ffsim.testing", "API reference", "Double-factorized representation of the molecular Hamiltonian", "Hamiltonians", "Explanations", "The local unitary cluster Jastrow (LUCJ) ansatz", "Orbital rotations and quadratic Hamiltonians", "Qubit gate decompositions of fermionic gates", "State vectors and gates", "How to simulate entanglement forging", "How to use the FermionOperator class", "How-to guides", "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz", "How to build and transpile Qiskit quantum circuits", "How to use ffsim\u2019s Qiskit Sampler primitive", "ffsim", "Installation", "Implementing Trotter simulation of the double-factorized Hamiltonian", "Tutorials"], "titleterms": {"": 20, "The": 11, "action": 9, "an": 20, "ansatz": [11, 15, 18], "api": 7, "applic": 8, "background": 8, "balanc": [11, 19], "brief": 8, "build": [15, 19, 23], "can": 20, "choos": 15, "circuit": [19, 20], "cite": 21, "class": 16, "close": 20, "cluster": [11, 13, 18, 19], "code": 21, "comput": 15, "content": 21, "contract": 1, "coulomb": [13, 19], "criteria": 20, "data": 9, "decomposit": 13, "determin": [13, 19], "diagon": [13, 19], "docker": 22, "doubl": [8, 13, 19, 23], "energi": 15, "entangl": 15, "evolut": [8, 12, 13, 19], "exampl": [20, 21], "explan": 10, "factor": [8, 13, 19, 23], "fermion": [13, 14], "fermionoper": 16, "ffsim": [0, 1, 2, 3, 4, 5, 6, 20, 21], "ffsimsampl": 20, "fock": [13, 19], "forg": 15, "formula": 8, "from": [20, 22], "gate": [13, 14, 19], "gener": [11, 18], "guid": 17, "hamiltonian": [8, 9, 12, 13, 19, 23], "hartre": [13, 19], "how": [15, 16, 17, 18, 19, 20], "implement": 23, "initi": 15, "instal": [21, 22], "jastrow": [11, 13, 18, 19], "linalg": 2, "linear": 18, "linearoper": 9, "local": [11, 13, 18], "lucj": [11, 18, 20], "merg": 13, "method": 18, "molecul": [15, 20], "molecular": 8, "more": 20, "number": [13, 19], "occup": 15, "open": 20, "oper": [9, 13, 15, 19], "optim": [3, 15, 18], "orbit": [12, 13, 19], "overview": 19, "pip": 22, "prepar": [13, 19], "primit": 20, "qiskit": [4, 19, 20], "quadrat": 12, "quantum": 19, "qubit": 13, "random": 5, "refer": [7, 15], "represent": [8, 9], "rotat": [12, 13, 19], "sampl": 20, "sampler": 20, "scipi": 9, "shell": 20, "simul": [13, 15, 18, 19, 23], "slater": [13, 19], "sourc": 22, "spin": [11, 19], "spinless": 14, "state": [14, 19], "sum": [13, 19], "suzuki": 8, "test": 6, "time": [8, 12], "transform": 19, "transpil": 19, "treat": 14, "trotter": [8, 13, 19, 23], "tutori": 24, "ucj": [11, 13, 18, 19], "unbalanc": [11, 19], "unitari": [11, 13, 18, 19], "us": [16, 20, 22], "vector": 14, "via": [8, 9], "within": 22}}) \ No newline at end of file diff --git a/dev/tutorials/double-factorized-trotter.html b/dev/tutorials/double-factorized-trotter.html index 2a821f323..f39343021 100644 --- a/dev/tutorials/double-factorized-trotter.html +++ b/dev/tutorials/double-factorized-trotter.html @@ -319,7 +319,7 @@

Build the Hamiltonian
-converged SCF energy = -108.464957764796
+converged SCF energy = -108.464957764795
 norb = 8
 nelec = (5, 5)
 
@@ -456,7 +456,7 @@

Build the Hamiltonian
-Maximum error in a tensor entry: 0.0366854173098351
+Maximum error in a tensor entry: 0.03668541730983277
 

@@ -597,7 +597,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9402435387541026
+Fidelity of Trotter-evolved state with exact state: 0.9402387920714972
 

The fidelity of the final result can be improved by increasing the number of Trotter steps.

@@ -624,7 +624,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9985212861540083
+Fidelity of Trotter-evolved state with exact state: 0.9985210983147164
 

In the code cell below, we reproduce the results of our manually implemented function using ffsim’s built-in implementation.

@@ -652,7 +652,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9985212861540445
+Fidelity of Trotter-evolved state with exact state: 0.9985210983146647
 

A higher order formula achieves a higher fidelity with fewer Trotter steps:

@@ -680,7 +680,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9996731164193019
+Fidelity of Trotter-evolved state with exact state: 0.9996731173230704
 

You’ve made it to the end of this tutorial!

diff --git a/dev/tutorials/double-factorized-trotter.ipynb b/dev/tutorials/double-factorized-trotter.ipynb index c4bf1261c..4c8566e87 100644 --- a/dev/tutorials/double-factorized-trotter.ipynb +++ b/dev/tutorials/double-factorized-trotter.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:22.159866Z", - "iopub.status.busy": "2024-07-23T22:32:22.159677Z", - "iopub.status.idle": "2024-07-23T22:32:22.981232Z", - "shell.execute_reply": "2024-07-23T22:32:22.980641Z" + "iopub.execute_input": "2024-07-26T02:30:20.066089Z", + "iopub.status.busy": "2024-07-26T02:30:20.065808Z", + "iopub.status.idle": "2024-07-26T02:30:20.892018Z", + "shell.execute_reply": "2024-07-26T02:30:20.891393Z" } }, "outputs": [ @@ -29,7 +29,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "converged SCF energy = -108.464957764796\n" + "converged SCF energy = -108.464957764795\n" ] }, { @@ -80,10 +80,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:22.985729Z", - "iopub.status.busy": "2024-07-23T22:32:22.984358Z", - "iopub.status.idle": "2024-07-23T22:32:22.989085Z", - "shell.execute_reply": "2024-07-23T22:32:22.988617Z" + "iopub.execute_input": "2024-07-26T02:30:20.896601Z", + "iopub.status.busy": "2024-07-26T02:30:20.895255Z", + "iopub.status.idle": "2024-07-26T02:30:20.900547Z", + "shell.execute_reply": "2024-07-26T02:30:20.900092Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:22.991478Z", - "iopub.status.busy": "2024-07-23T22:32:22.991139Z", - "iopub.status.idle": "2024-07-23T22:32:22.996007Z", - "shell.execute_reply": "2024-07-23T22:32:22.995504Z" + "iopub.execute_input": "2024-07-26T02:30:20.903017Z", + "iopub.status.busy": "2024-07-26T02:30:20.902549Z", + "iopub.status.idle": "2024-07-26T02:30:20.907438Z", + "shell.execute_reply": "2024-07-26T02:30:20.906956Z" } }, "outputs": [ @@ -172,10 +172,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:22.998227Z", - "iopub.status.busy": "2024-07-23T22:32:22.997926Z", - "iopub.status.idle": "2024-07-23T22:32:23.002168Z", - "shell.execute_reply": "2024-07-23T22:32:23.001677Z" + "iopub.execute_input": "2024-07-26T02:30:20.909749Z", + "iopub.status.busy": "2024-07-26T02:30:20.909425Z", + "iopub.status.idle": "2024-07-26T02:30:20.913584Z", + "shell.execute_reply": "2024-07-26T02:30:20.913107Z" } }, "outputs": [ @@ -208,10 +208,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.004457Z", - "iopub.status.busy": "2024-07-23T22:32:23.004124Z", - "iopub.status.idle": "2024-07-23T22:32:23.007905Z", - "shell.execute_reply": "2024-07-23T22:32:23.007438Z" + "iopub.execute_input": "2024-07-26T02:30:20.915897Z", + "iopub.status.busy": "2024-07-26T02:30:20.915541Z", + "iopub.status.idle": "2024-07-26T02:30:20.919486Z", + "shell.execute_reply": "2024-07-26T02:30:20.918990Z" } }, "outputs": [ @@ -242,10 +242,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.010433Z", - "iopub.status.busy": "2024-07-23T22:32:23.009955Z", - "iopub.status.idle": "2024-07-23T22:32:23.028692Z", - "shell.execute_reply": "2024-07-23T22:32:23.028215Z" + "iopub.execute_input": "2024-07-26T02:30:20.921553Z", + "iopub.status.busy": "2024-07-26T02:30:20.921363Z", + "iopub.status.idle": "2024-07-26T02:30:20.944195Z", + "shell.execute_reply": "2024-07-26T02:30:20.943703Z" } }, "outputs": [ @@ -253,7 +253,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Maximum error in a tensor entry: 0.0366854173098351\n" + "Maximum error in a tensor entry: 0.03668541730983277\n" ] } ], @@ -302,10 +302,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.031049Z", - "iopub.status.busy": "2024-07-23T22:32:23.030662Z", - "iopub.status.idle": "2024-07-23T22:32:23.034937Z", - "shell.execute_reply": "2024-07-23T22:32:23.034466Z" + "iopub.execute_input": "2024-07-26T02:30:20.946610Z", + "iopub.status.busy": "2024-07-26T02:30:20.946258Z", + "iopub.status.idle": "2024-07-26T02:30:20.950335Z", + "shell.execute_reply": "2024-07-26T02:30:20.949843Z" } }, "outputs": [], @@ -360,10 +360,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.037172Z", - "iopub.status.busy": "2024-07-23T22:32:23.036832Z", - "iopub.status.idle": "2024-07-23T22:32:23.040500Z", - "shell.execute_reply": "2024-07-23T22:32:23.039904Z" + "iopub.execute_input": "2024-07-26T02:30:20.952435Z", + "iopub.status.busy": "2024-07-26T02:30:20.952242Z", + "iopub.status.idle": "2024-07-26T02:30:20.955825Z", + "shell.execute_reply": "2024-07-26T02:30:20.955345Z" } }, "outputs": [], @@ -400,10 +400,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.042799Z", - "iopub.status.busy": "2024-07-23T22:32:23.042440Z", - "iopub.status.idle": "2024-07-23T22:32:23.100212Z", - "shell.execute_reply": "2024-07-23T22:32:23.099662Z" + "iopub.execute_input": "2024-07-26T02:30:20.958140Z", + "iopub.status.busy": "2024-07-26T02:30:20.957721Z", + "iopub.status.idle": "2024-07-26T02:30:21.015611Z", + "shell.execute_reply": "2024-07-26T02:30:21.014968Z" } }, "outputs": [], @@ -439,10 +439,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.104134Z", - "iopub.status.busy": "2024-07-23T22:32:23.103026Z", - "iopub.status.idle": "2024-07-23T22:32:23.153546Z", - "shell.execute_reply": "2024-07-23T22:32:23.153026Z" + "iopub.execute_input": "2024-07-26T02:30:21.019706Z", + "iopub.status.busy": "2024-07-26T02:30:21.018540Z", + "iopub.status.idle": "2024-07-26T02:30:21.069515Z", + "shell.execute_reply": "2024-07-26T02:30:21.068997Z" } }, "outputs": [ @@ -450,7 +450,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9402435387541026\n" + "Fidelity of Trotter-evolved state with exact state: 0.9402387920714972\n" ] } ], @@ -480,10 +480,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.155729Z", - "iopub.status.busy": "2024-07-23T22:32:23.155540Z", - "iopub.status.idle": "2024-07-23T22:32:23.369803Z", - "shell.execute_reply": "2024-07-23T22:32:23.369296Z" + "iopub.execute_input": "2024-07-26T02:30:21.072027Z", + "iopub.status.busy": "2024-07-26T02:30:21.071666Z", + "iopub.status.idle": "2024-07-26T02:30:21.284884Z", + "shell.execute_reply": "2024-07-26T02:30:21.284270Z" } }, "outputs": [ @@ -491,7 +491,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212861540083\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985210983147164\n" ] } ], @@ -521,10 +521,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.372021Z", - "iopub.status.busy": "2024-07-23T22:32:23.371832Z", - "iopub.status.idle": "2024-07-23T22:32:23.503661Z", - "shell.execute_reply": "2024-07-23T22:32:23.503137Z" + "iopub.execute_input": "2024-07-26T02:30:21.287479Z", + "iopub.status.busy": "2024-07-26T02:30:21.287091Z", + "iopub.status.idle": "2024-07-26T02:30:21.414910Z", + "shell.execute_reply": "2024-07-26T02:30:21.414289Z" } }, "outputs": [ @@ -532,7 +532,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212861540445\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985210983146647\n" ] } ], @@ -563,10 +563,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-23T22:32:23.506087Z", - "iopub.status.busy": "2024-07-23T22:32:23.505870Z", - "iopub.status.idle": "2024-07-23T22:32:23.609736Z", - "shell.execute_reply": "2024-07-23T22:32:23.609161Z" + "iopub.execute_input": "2024-07-26T02:30:21.417207Z", + "iopub.status.busy": "2024-07-26T02:30:21.417017Z", + "iopub.status.idle": "2024-07-26T02:30:21.518377Z", + "shell.execute_reply": "2024-07-26T02:30:21.517863Z" } }, "outputs": [ @@ -574,7 +574,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9996731164193019\n" + "Fidelity of Trotter-evolved state with exact state: 0.9996731173230704\n" ] } ],