diff --git a/dev/.doctrees/environment.pickle b/dev/.doctrees/environment.pickle index f347be00b..281d55c95 100644 Binary files a/dev/.doctrees/environment.pickle and b/dev/.doctrees/environment.pickle differ diff --git a/dev/.doctrees/explanations/hamiltonians.doctree b/dev/.doctrees/explanations/hamiltonians.doctree index caa2ba033..9dfc7d1d6 100644 Binary files a/dev/.doctrees/explanations/hamiltonians.doctree and b/dev/.doctrees/explanations/hamiltonians.doctree differ diff --git a/dev/.doctrees/how-to-guides/entanglement-forging.doctree b/dev/.doctrees/how-to-guides/entanglement-forging.doctree index 43f5b0753..79ab251fa 100644 Binary files a/dev/.doctrees/how-to-guides/entanglement-forging.doctree and b/dev/.doctrees/how-to-guides/entanglement-forging.doctree differ diff --git a/dev/.doctrees/how-to-guides/fermion-operator.doctree b/dev/.doctrees/how-to-guides/fermion-operator.doctree index c45b88359..144c3ef18 100644 Binary files a/dev/.doctrees/how-to-guides/fermion-operator.doctree and b/dev/.doctrees/how-to-guides/fermion-operator.doctree differ diff --git a/dev/.doctrees/how-to-guides/lucj.doctree b/dev/.doctrees/how-to-guides/lucj.doctree index dc5274f69..fcd47725b 100644 Binary files a/dev/.doctrees/how-to-guides/lucj.doctree and b/dev/.doctrees/how-to-guides/lucj.doctree differ diff --git a/dev/.doctrees/how-to-guides/qiskit-circuits.doctree b/dev/.doctrees/how-to-guides/qiskit-circuits.doctree index 01ac96ea9..4ca09ba3d 100644 Binary files a/dev/.doctrees/how-to-guides/qiskit-circuits.doctree and b/dev/.doctrees/how-to-guides/qiskit-circuits.doctree differ diff --git a/dev/.doctrees/how-to-guides/qiskit-sampler.doctree b/dev/.doctrees/how-to-guides/qiskit-sampler.doctree index c7ea5aefb..563e13df0 100644 Binary files a/dev/.doctrees/how-to-guides/qiskit-sampler.doctree and b/dev/.doctrees/how-to-guides/qiskit-sampler.doctree differ diff --git a/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb b/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb index 22cc240d1..54d844466 100644 --- a/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb @@ -33,10 +33,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:12.408056Z", - "iopub.status.busy": "2024-07-30T19:20:12.407860Z", - "iopub.status.idle": "2024-07-30T19:20:13.116407Z", - "shell.execute_reply": "2024-07-30T19:20:13.115888Z" + "iopub.execute_input": "2024-08-01T02:14:34.594232Z", + "iopub.status.busy": "2024-08-01T02:14:34.594035Z", + "iopub.status.idle": "2024-08-01T02:14:35.320216Z", + "shell.execute_reply": "2024-08-01T02:14:35.319540Z" } }, "outputs": [], @@ -68,10 +68,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.119167Z", - "iopub.status.busy": "2024-07-30T19:20:13.118840Z", - "iopub.status.idle": "2024-07-30T19:20:13.122048Z", - "shell.execute_reply": "2024-07-30T19:20:13.121555Z" + "iopub.execute_input": "2024-08-01T02:14:35.323653Z", + "iopub.status.busy": "2024-08-01T02:14:35.322998Z", + "iopub.status.idle": "2024-08-01T02:14:35.326178Z", + "shell.execute_reply": "2024-08-01T02:14:35.325671Z" } }, "outputs": [], @@ -99,10 +99,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.124628Z", - "iopub.status.busy": "2024-07-30T19:20:13.124169Z", - "iopub.status.idle": "2024-07-30T19:20:13.127514Z", - "shell.execute_reply": "2024-07-30T19:20:13.127032Z" + "iopub.execute_input": "2024-08-01T02:14:35.328664Z", + "iopub.status.busy": "2024-08-01T02:14:35.328172Z", + "iopub.status.idle": "2024-08-01T02:14:35.331571Z", + "shell.execute_reply": "2024-08-01T02:14:35.330995Z" } }, "outputs": [], @@ -127,10 +127,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.129666Z", - "iopub.status.busy": "2024-07-30T19:20:13.129478Z", - "iopub.status.idle": "2024-07-30T19:20:13.134459Z", - "shell.execute_reply": "2024-07-30T19:20:13.133840Z" + "iopub.execute_input": "2024-08-01T02:14:35.333938Z", + "iopub.status.busy": "2024-08-01T02:14:35.333573Z", + "iopub.status.idle": "2024-08-01T02:14:35.338699Z", + "shell.execute_reply": "2024-08-01T02:14:35.338045Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.137300Z", - "iopub.status.busy": "2024-07-30T19:20:13.136888Z", - "iopub.status.idle": "2024-07-30T19:20:13.158225Z", - "shell.execute_reply": "2024-07-30T19:20:13.157548Z" + "iopub.execute_input": "2024-08-01T02:14:35.341657Z", + "iopub.status.busy": "2024-08-01T02:14:35.341058Z", + "iopub.status.idle": "2024-08-01T02:14:35.361876Z", + "shell.execute_reply": "2024-08-01T02:14:35.361120Z" } }, "outputs": [ { "data": { "text/plain": [ - "np.float64(-99.5571707255159)" + "np.float64(-99.55717072551539)" ] }, "execution_count": 5, @@ -191,10 +191,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.191994Z", - "iopub.status.busy": "2024-07-30T19:20:13.191582Z", - "iopub.status.idle": "2024-07-30T19:20:13.659417Z", - "shell.execute_reply": "2024-07-30T19:20:13.658766Z" + "iopub.execute_input": "2024-08-01T02:14:35.398061Z", + "iopub.status.busy": "2024-08-01T02:14:35.397623Z", + "iopub.status.idle": "2024-08-01T02:14:35.809715Z", + "shell.execute_reply": "2024-08-01T02:14:35.809085Z" } }, "outputs": [ @@ -202,7 +202,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_4336/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", + "/tmp/ipykernel_4408/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", " evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)\n" ] } @@ -224,10 +224,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.663445Z", - "iopub.status.busy": "2024-07-30T19:20:13.662427Z", - "iopub.status.idle": "2024-07-30T19:20:14.103478Z", - "shell.execute_reply": "2024-07-30T19:20:14.102862Z" + "iopub.execute_input": "2024-08-01T02:14:35.813853Z", + "iopub.status.busy": "2024-08-01T02:14:35.812871Z", + "iopub.status.idle": "2024-08-01T02:14:36.176944Z", + "shell.execute_reply": "2024-08-01T02:14:36.176300Z" } }, "outputs": [], diff --git a/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb b/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb index 59e6929f5..87492e27d 100644 --- a/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb @@ -62,10 +62,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:16.963843Z", - "iopub.status.busy": "2024-07-30T19:20:16.963642Z", - "iopub.status.idle": "2024-07-30T19:20:17.667200Z", - "shell.execute_reply": "2024-07-30T19:20:17.666657Z" + "iopub.execute_input": "2024-08-01T02:14:39.146486Z", + "iopub.status.busy": "2024-08-01T02:14:39.145978Z", + "iopub.status.idle": "2024-08-01T02:14:39.882254Z", + "shell.execute_reply": "2024-08-01T02:14:39.881656Z" } }, "outputs": [], diff --git a/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb b/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb index dc7596d11..fc0e0c7e2 100644 --- a/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:19.139654Z", - "iopub.status.busy": "2024-07-30T19:20:19.139261Z", - "iopub.status.idle": "2024-07-30T19:20:20.696972Z", - "shell.execute_reply": "2024-07-30T19:20:20.696318Z" + "iopub.execute_input": "2024-08-01T02:14:41.655860Z", + "iopub.status.busy": "2024-08-01T02:14:41.655663Z", + "iopub.status.idle": "2024-08-01T02:14:43.261530Z", + "shell.execute_reply": "2024-08-01T02:14:43.260955Z" } }, "outputs": [ @@ -81,10 +81,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:20.699538Z", - "iopub.status.busy": "2024-07-30T19:20:20.699231Z", - "iopub.status.idle": "2024-07-30T19:20:20.889767Z", - "shell.execute_reply": "2024-07-30T19:20:20.889163Z" + "iopub.execute_input": "2024-08-01T02:14:43.264122Z", + "iopub.status.busy": "2024-08-01T02:14:43.263821Z", + "iopub.status.idle": "2024-08-01T02:14:43.477981Z", + "shell.execute_reply": "2024-08-01T02:14:43.477359Z" } }, "outputs": [ @@ -119,10 +119,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:20.892384Z", - "iopub.status.busy": "2024-07-30T19:20:20.892021Z", - "iopub.status.idle": "2024-07-30T19:20:21.002126Z", - "shell.execute_reply": "2024-07-30T19:20:21.001543Z" + "iopub.execute_input": "2024-08-01T02:14:43.480610Z", + "iopub.status.busy": "2024-08-01T02:14:43.480243Z", + "iopub.status.idle": "2024-08-01T02:14:43.594735Z", + "shell.execute_reply": "2024-08-01T02:14:43.594160Z" } }, "outputs": [ @@ -156,10 +156,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:21.004535Z", - "iopub.status.busy": "2024-07-30T19:20:21.004184Z", - "iopub.status.idle": "2024-07-30T19:20:21.114334Z", - "shell.execute_reply": "2024-07-30T19:20:21.113808Z" + "iopub.execute_input": "2024-08-01T02:14:43.597312Z", + "iopub.status.busy": "2024-08-01T02:14:43.596927Z", + "iopub.status.idle": "2024-08-01T02:14:43.710029Z", + "shell.execute_reply": "2024-08-01T02:14:43.709418Z" } }, "outputs": [ @@ -196,10 +196,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:21.116766Z", - "iopub.status.busy": "2024-07-30T19:20:21.116386Z", - "iopub.status.idle": "2024-07-30T19:20:21.301403Z", - "shell.execute_reply": "2024-07-30T19:20:21.300774Z" + "iopub.execute_input": "2024-08-01T02:14:43.712543Z", + "iopub.status.busy": "2024-08-01T02:14:43.712189Z", + "iopub.status.idle": "2024-08-01T02:14:43.900757Z", + "shell.execute_reply": "2024-08-01T02:14:43.900109Z" } }, "outputs": [ @@ -250,10 +250,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:21.303917Z", - "iopub.status.busy": "2024-07-30T19:20:21.303716Z", - "iopub.status.idle": "2024-07-30T19:20:21.527796Z", - "shell.execute_reply": "2024-07-30T19:20:21.527157Z" + "iopub.execute_input": "2024-08-01T02:14:43.903417Z", + "iopub.status.busy": "2024-08-01T02:14:43.903026Z", + "iopub.status.idle": "2024-08-01T02:14:44.128784Z", + "shell.execute_reply": "2024-08-01T02:14:44.128114Z" } }, "outputs": [ @@ -292,10 +292,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:21.530486Z", - "iopub.status.busy": "2024-07-30T19:20:21.530014Z", - "iopub.status.idle": "2024-07-30T19:20:21.666199Z", - "shell.execute_reply": "2024-07-30T19:20:21.665632Z" + "iopub.execute_input": "2024-08-01T02:14:44.131439Z", + "iopub.status.busy": "2024-08-01T02:14:44.131115Z", + "iopub.status.idle": "2024-08-01T02:14:44.269828Z", + "shell.execute_reply": "2024-08-01T02:14:44.269281Z" } }, "outputs": [ @@ -334,10 +334,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:21.668690Z", - "iopub.status.busy": "2024-07-30T19:20:21.668290Z", - "iopub.status.idle": "2024-07-30T19:20:22.184258Z", - "shell.execute_reply": "2024-07-30T19:20:22.183647Z" + "iopub.execute_input": "2024-08-01T02:14:44.272453Z", + "iopub.status.busy": "2024-08-01T02:14:44.271966Z", + "iopub.status.idle": "2024-08-01T02:14:44.820116Z", + "shell.execute_reply": "2024-08-01T02:14:44.819439Z" } }, "outputs": [ @@ -383,10 +383,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:22.186838Z", - "iopub.status.busy": "2024-07-30T19:20:22.186438Z", - "iopub.status.idle": "2024-07-30T19:20:22.357087Z", - "shell.execute_reply": "2024-07-30T19:20:22.356448Z" + "iopub.execute_input": "2024-08-01T02:14:44.822528Z", + "iopub.status.busy": "2024-08-01T02:14:44.822241Z", + "iopub.status.idle": "2024-08-01T02:14:44.997432Z", + "shell.execute_reply": "2024-08-01T02:14:44.996787Z" } }, "outputs": [ @@ -425,10 +425,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:22.359697Z", - "iopub.status.busy": "2024-07-30T19:20:22.359320Z", - "iopub.status.idle": "2024-07-30T19:20:22.539221Z", - "shell.execute_reply": "2024-07-30T19:20:22.538718Z" + "iopub.execute_input": "2024-08-01T02:14:44.999947Z", + "iopub.status.busy": "2024-08-01T02:14:44.999740Z", + "iopub.status.idle": "2024-08-01T02:14:45.182700Z", + "shell.execute_reply": "2024-08-01T02:14:45.182041Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:22.541772Z", - "iopub.status.busy": "2024-07-30T19:20:22.541306Z", - "iopub.status.idle": "2024-07-30T19:20:22.673266Z", - "shell.execute_reply": "2024-07-30T19:20:22.672649Z" + "iopub.execute_input": "2024-08-01T02:14:45.185278Z", + "iopub.status.busy": "2024-08-01T02:14:45.184903Z", + "iopub.status.idle": "2024-08-01T02:14:45.316767Z", + "shell.execute_reply": "2024-08-01T02:14:45.316181Z" } }, "outputs": [ @@ -513,10 +513,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:22.675838Z", - "iopub.status.busy": "2024-07-30T19:20:22.675367Z", - "iopub.status.idle": "2024-07-30T19:20:22.855012Z", - "shell.execute_reply": "2024-07-30T19:20:22.854400Z" + "iopub.execute_input": "2024-08-01T02:14:45.319329Z", + "iopub.status.busy": "2024-08-01T02:14:45.318963Z", + "iopub.status.idle": "2024-08-01T02:14:45.502852Z", + "shell.execute_reply": "2024-08-01T02:14:45.502200Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:22.857624Z", - "iopub.status.busy": "2024-07-30T19:20:22.857147Z", - "iopub.status.idle": "2024-07-30T19:20:23.024576Z", - "shell.execute_reply": "2024-07-30T19:20:23.023943Z" + "iopub.execute_input": "2024-08-01T02:14:45.505414Z", + "iopub.status.busy": "2024-08-01T02:14:45.505018Z", + "iopub.status.idle": "2024-08-01T02:14:45.668584Z", + "shell.execute_reply": "2024-08-01T02:14:45.667927Z" } }, "outputs": [ @@ -593,10 +593,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:23.027077Z", - "iopub.status.busy": "2024-07-30T19:20:23.026692Z", - "iopub.status.idle": "2024-07-30T19:20:23.157306Z", - "shell.execute_reply": "2024-07-30T19:20:23.156813Z" + "iopub.execute_input": "2024-08-01T02:14:45.671023Z", + "iopub.status.busy": "2024-08-01T02:14:45.670816Z", + "iopub.status.idle": "2024-08-01T02:14:45.804141Z", + "shell.execute_reply": "2024-08-01T02:14:45.803550Z" } }, "outputs": [ @@ -630,10 +630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:23.159699Z", - "iopub.status.busy": "2024-07-30T19:20:23.159329Z", - "iopub.status.idle": "2024-07-30T19:20:23.317157Z", - "shell.execute_reply": "2024-07-30T19:20:23.316606Z" + "iopub.execute_input": "2024-08-01T02:14:45.806861Z", + "iopub.status.busy": "2024-08-01T02:14:45.806369Z", + "iopub.status.idle": "2024-08-01T02:14:46.077531Z", + "shell.execute_reply": "2024-08-01T02:14:46.076932Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:23.319500Z", - "iopub.status.busy": "2024-07-30T19:20:23.319165Z", - "iopub.status.idle": "2024-07-30T19:20:23.730771Z", - "shell.execute_reply": "2024-07-30T19:20:23.730147Z" + "iopub.execute_input": "2024-08-01T02:14:46.080044Z", + "iopub.status.busy": "2024-08-01T02:14:46.079675Z", + "iopub.status.idle": "2024-08-01T02:14:46.417670Z", + "shell.execute_reply": "2024-08-01T02:14:46.417094Z" } }, "outputs": [ @@ -736,16 +736,16 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:23.733285Z", - "iopub.status.busy": "2024-07-30T19:20:23.732939Z", - "iopub.status.idle": "2024-07-30T19:20:24.190058Z", - "shell.execute_reply": "2024-07-30T19:20:24.189435Z" + "iopub.execute_input": "2024-08-01T02:14:46.420418Z", + "iopub.status.busy": "2024-08-01T02:14:46.419956Z", + "iopub.status.idle": "2024-08-01T02:14:46.886380Z", + "shell.execute_reply": "2024-08-01T02:14:46.885768Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWp0lEQVR4nOzdeXhU1f3H8fcsISE7CWtCyEJYwpYgCLLJALGKraAiKooiS+uuWNcKWFTAorVVq6IUVKAFUdSC/kAWJSIYiSxhJyQQwg5CgARC1pnfHyOBISEBksxkhs/refIkc+6Ze773cpk5851zzjXYbDYbIiIiIiIiIiIiHsDo6gBERERERERERESqi5JdIiIiIiIiIiLiMZTsEhERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hpJdIiIiIiIiIiLiMZTsEhERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hpJdIiIiIiIiIiLiMZTsEhERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hpJdIiIiIiIiIiLiMZTsEhERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGOYXR1AbVaYm8fxbXtcHYbHqBfXjDoBvpXWO1UEGTlOCKgcsYHg7+WatkVERERERESk6pTsqsDxbXtYNHCsq8PwGP3nT6BRl9aV1svIgVGrnBBQOab1gIRQ17QtIiIiIiIiIlWnaYwiIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEY2iBevEIaWMsnN6ejMHshcFkxie8NWFDJxIY38/VoYmIiIiIiIiIE2lkl3iMsKET6Tj3FB1mHMavVTd2TrqVktMnXR2WiIiIiIiIiDiRkl3icYxe3tS/YSTW/FPkH8xwdTgiIiIiIiIi4kRKdonHsRac4ejSaRh9A/EJa+HqcERERERERETEidwm2VVYWMi4ceOIiIigbt269O3bl5SUFAwGA/Pnz3d1eFILHJg9jtR7gtn0xyjyMjcQO/YbTL6Brg7LJU4VwdYTkHYSiq2ujsZz5ZfA9hP2n/xiV0cjUjU2G+zMgc3HIbvA1dGIVN2hPPv1vO+0qyMREXeRVwzbTsD2k1BY4upoRKQq3GKBepvNxuDBg0lJSWH8+PHExsYye/ZsbrvtNgA6duzo1HgMJiPXjh9G80HXYzAa2f1/P7P6xWmUFBQ5NQ5xFHbPqzS+7RlXh+FSxwvg/e3wf3uh8LckV706cFc0PNACzG6T3q7d8ovhwzT4MgtO/5bk8jPDwGbwYGv73yLuwmaD/+2BGemwL89eZgQsTeCROIjyd2l4Ipdt/TGYsh3WHTtX1iYY/tQKejZyWVgiUovlFtlfNxbssX+ZCRDoBYOiYFRL8Da5NDwRuQJu8ZFs6tSpLFy4kNTUVNq2bQuAxWIhOjqakJAQmjVr5tR4OjxxO427t2N+36cpKSqm3yfP02nsfaSM+8ipcYicL7sAhv8IB/Pg/MFcxwvhgzT7SK83uoDJ4KoIPUN+CTycbB8tYDuv/HQxzNll/3A1tQf4usWrqwj8axvMzIDzXxqsQNJBWP0rfNQTml+dg2TFDa08DE+n2JO459t2Ap5aDX9NgD84t9soIrXcqSIYtRJ25Tr27XKK4ON02JQN71wHdZTwEnErbjHOY/LkyQwdOrQ00QVgMpmIjo4uHdW1Y8cOunXrRsuWLenWrRvp6ek1Fk+Le/ux6Z0vyTuUTcGxHFLf/IzYuywYjG5xOsVDvbetbKLrfCsOw8K9Tg3JI83eCZsuSHSdZcM+dXSm7osgbmLz8XPX64XXtBU4Uwyvpjo5KJErVFACL60Dq63se6Htt58JG+BEoQuCE5Faa9qOsomu8605BvN2OzMiEakOtT47k56eTmZmJoMGDSqzbe/evaXJroceeohHH32UHTt28Oijj/Lggw/WSDx1An3xD29A9pbM0rJjmzKpE+CLf0SDGmlTpDK5RbBo38UTXWD/z/5ZZgUVpFIlNvh8d8V1bMAXu7VWmriHL3ZX3BGwAptPwI6TzolHpCq+P2gfiXGxD6wAxTb4Zo/TQhKRWq6gBL7Kqvh1w4C9D33hiFERqd1q/USb/fv3A9CwYUOH8u3bt5OVlUXHjh05cuQI69atY+nSpQAMGTKExx57jF9//ZUGDSpPQAUEBFBYWPZrvubmejwX2NOhzOxfF4DCk3mlZYUn7Sufev22TcrXp4+FncXHK63n26obzSckXda+W028vPoX06ePhby05GrZlzPVbdGF2Ek/VljHCmzNLsbb2885QXkgU2AD2kzfV2m944UQ3LQ5RccqryviSi3+sR6fiDaV1rv+zj9yPGmmEyISuXJNhr1OaP9HMZgu3r21lRQx/sN5jHznAecFJiK1lndYK1q+vbHCOjbsa1rWDaqHrSCvwroiUr1sNhtms5lDhw4RGHh562rU+pFdoaGhAGRknJsXZLPZeP7557FarXTs2JG9e/cSHh6OyWSfSG0ymQgLC2Pv3uqfs1V86gwAXoG+pWV1guzJg6Lftok4Xcml3QrQZtVtZarEeum3XNS5Fndg02uHeBD79VzZwpQGXc8iUsp2GX079Noh4nQ2m40zZ86wadOmy35urR/ZFRcXR2xsLC+++CJeXl74+/szZcoU1q9fj6+vL61atWL9+vVVaiM3N7fc8sMp21k0cKxDWWFOHqf2/0pI2yhydh4AILRdNIW5eZza+2uV4vB0y5cn0ahL60rrpR6DUaucEFA5li9PIiHUNW1XRWEJ3LTEPn3jYowG6BHuzbqCAucF5mFsNhiSBDsrWNfBADTzh18O7sagmwFILff2FvjPzsqnb2xY8BGN6+omLFK7JR+Bx3+uuI7BZObt0UP5w5tDnROUiNRqJTYYsBQO51+8jhFoWw/WnMpxWlwiYrdq1Sp69uxZecVy1PqRXWazmXnz5tGkSROGDRvG6NGj6d+/P71796ZDhw4YjUYiIiLYv38/JSX2bHtJSQkHDhwgIiKiRmJK/+93dHj8Nuo2qod3aCAJT99JxtwkbFYt0iOuUccEg6MrrmO1wd0xzonHUxkMcE/zihMDNmBINEp0iVsYFFXxtWoEejeGxpqlL26gawOI8Lt459YIBHnBDWHOjEpEajOTAYZU0j+2UnkdEal9an2yCyA+Pp7k5GTy8vJIS0vj4YcfZv369aWL0zds2JCEhATmzJkDwJw5c+jYseMlrdd1JTa+8yWHft7GrUn/ZNBP/+JE+j7WTvxPjbQlcqlGtYRuv13y5392Pfuf/I8toVvDC58ll+uWCLgt0v73+S+gZ//+fVO4PcrJQYlcoaZ+8EpH+/VbXocgyh/Gxjs7KpErYzTAm10gsE7ZyYxGwNsE/+xq/y0ictaQ5pD4WxK8vL7dkBglyUXcUa2fxlieM2fOkJaWxujRo0vLPvjgA4YNG8Yrr7xCvXr1mDmz5hbStZVYSRn3ESnjNKXD2U5tXcm+j58Bg5F63QfR6NanHbYXHT/Epj9F025KOnXqNyVtTB/OjsNp9uD71G1W+ULM7srLaO/EL9hjv2NMxm+zc7s2sI/o6tHItfF5CoMBXuwAXerDp5mwIdte3rYe3BUNN4ZrVJe4l5ua2kfDzN4Fi+33hKFJXfuorzuiwN/LldGJXJ6YAJjd2/76vGAPnPjt/kN3RMM9MfYEr4jI+UwGmNgJejaEz3bD1hP28o6h9j60pbH6diLuyC2TXRs3bqSkpKR0ZBdA69atWb16tQujEmeo0yiGlpNWYPSqQ9qYPjTo/zBG73M3Czjyzb/wa9m19LHBaKLlq8tcEapLmI32UUW3R0HnBfayf3VzZUSeyWCAG8LtP2fP88e9XBuTSFW0rWfv6J9Ndn19g2vjEamKhnXhiTb2n7Ov0c+1d21MIlK7mQzwh2b2n7OvGx/2cG1MIlI1bpns6tq1KzZbRavmiKeqE3puDLHBaALDucHGxadOUJx7FO+GUec9w0baGAvejWNp9uC7GOv4OC9YEREREREREXE6t1izS+RCOalL8W7S3CF59evC92hw00MO9WKen0eriUnUjYjj6NLpzg5TRERERERERJxMyS5xO4VH93Fo3ms0Hf5maZm14Az5e7fiG9PRoa7Zvx4AQV0GkL93i1PjFBERERERERHnU7JL3Iq1qIDdbz9As4emYKrrX1pecGQ3BYd2kj7+JnJSl7Lnw0cBKMmzr9J+ensydRpGuyRmEREREREREXEet1yzS65e2T/MJn/vVrKmPAhA+NCJFBzaRWif+2j9xs8A7H77AcLunQDAjpcSMXrVweQXTPRT/3FZ3CIiIiIiIiLiHEp2iVupnzic+onDHcr84xxvlRL15Celf8f9XXfoFBEREREREbmaaBqjiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RhaoF5qndhAmNaj8no11baIiIiIiIiIuC8lu6TW8feChFBXRyEiIiIiIiIi7kjTGEWuUklJSURHR2OxWBg2bFiZ7RMnTiQ9Pf2iz8/OzqZTp074+/uXuz0lJYUePXrQvXt3xo4dW279bdu2MXny5KofjIiIiIiIiMhvlOwSuYqNHDmSpKQkgoKCSE5OLi23Wq1s3LiRFi1aXPS5AQEBLF26lOuuu67c7R07dmTVqlX89NNPJCcnYzKZytSPi4tj3bp12Gy26jsoERERERERuaop2SUitGvXjv3795c+3rBhAy1btqzwOV5eXoSEhFS4HaCkpISwsDD8/PzKrR8TE8OWLVuuMHIRERERERERR0p2iQjJycnExsaWPk5PTycqKqrK+509ezZxcXEEBwdjNpe/RGBkZCQ7duyoclsiIiIiIiIioGSXyFVt+vTpWCwWwsPDSUhIKLfO1q1bsVgsDj9/+9vfLmn/99xzD9u3b+fAgQNs2rSpGiMXERERERERKZ/uxihyFRs5ciRjx44tU96iRQu+/PJLANq0aUNSUtJl77ugoABvb2+MRiMBAQH4+PiUWy8rK4sePXpc9v5FREREREREyqORXSJSRnx8PGlpaZXWS0xMZP369SQmJrJ582YOHTrEG2+8AcCCBQuwWCxcf/31NG3alBYtWpSpD5CRkUG7du1q9HhERERERETk6qGRXSJXqbNTEstjNBrp0KED6enpFd6RcdmyZWXKnn32WQAGDx7M4MGDK6y/bds2OnXqhMFguMzoRURERERERMqnZJeIlKu86Y3VLS4ujri4uBpvR0RERERERK4emsYoIiIiIiIiIiIeQ8kuERERERERERHxGJrGKLXOqSLIyHFN27GB4O/lmrZFREREREREpOqU7JJaJyMHRq1yTdvTekBCqGvaFhEREREREZGq0zRGERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jG0QL14hLQxFk5vT8Zg9sJgMuMT3pqwoRMJjO/n6tBERERERERExIk0sks8RtjQiXSce4oOMw7j16obOyfdSsnpk64OS0REREREREScSMku8ThGL2/q3zASa/4p8g9muDocEREREREREXEiJbvE41gLznB06TSMvoH4hLVwdTgiIiIiIiIi4kRuk+wqLCxk3LhxREREULduXfr27UtKSgoGg4H58+e7OjypBQ7MHkfqPcFs+mMUeZkbiB37DSbfQFeH5RKFJef+ttlcF4dIdbDZ4FAe7DsNBSWV1xep7Y4XwJ5TcKrI1ZGIiLvIL4G9p+DQGfXtxP1ZbXDgt75dkdXV0YincosF6m02G4MHDyYlJYXx48cTGxvL7Nmzue222wDo2LGj02KJuqUbcaNuJqRtFAXZuczr8ojT2paKhd3zKo1ve8bVYbjUqSL4KB2+yjpXdtt3MKQ5DI4Co8FloYlcNpsNvsiC2Tthz2l7mZ8Zbm0GI1tCYB3XxidyuX751f4a/ctR+2OjAfo2gVEtIfbq/G5GRCpxvACm74AFeyDvty98ov1haCwMiACD+nbiRkps8Oku+8/BM/ayIC+4PQpGtIC6bpGdEHfhFpfT1KlTWbhwIampqbRt2xYAi8VCdHQ0ISEhNGvWzGmxFJw8zfaPvsWnQRBt//QHp7UrUpncIhi1Enblwvlf+O3Pgzc2wdbj8NeOSniJe7DZYOIG+N8eOP+SPV0Ms3fBqiMwvScEKeElbuLbfTBuneP1bLXB9wdg5WGY0g3ah7gsPBGphY7lw4iV9hEw5/ftdp+CV1MhIwf+3FYJL3EPJTZ4cQ18d9DxvfBkEXySDj8fgQ97gK9bZCjEHbjFNMbJkyczdOjQ0kQXgMlkIjo6unRU1zPPPEN0dDQGg4HNmzfXWCwHV2wkc/4qTu/7tcbaELkS728rm+iCc4//bx8sPeDsqESuTNIhe6ILyr+m95yCd7Y6OyqRK3O8AMavt1+7F87WsGKfev6XtfYPAiIiZ725GQ7mXbxvN2cXrNZHEnETX++xJ7qg/Gt6+0n4d5qzoxJPVuuTXenp6WRmZjJo0KAy2/bu3Vua7Lr11ltZsWIFkZGRzg5RxOVOF8PXe8u+cZzPCMzd5ayIRKrms8yK36CswKJ9kFPorIhErtz8PVBcwQu0Ffs6PMlHnBaSiNRyx/LtiYGKljMyGmBuptNCEqmSzzIdR3RdyIZ9KRatzyrVpdYPEty/fz8ADRs2dCjfvn07WVlZpcmunj17XnEbAQEBFBaW/cTU3FyP5wKvfL/iqE8fCzuLj1daz7dVN5pPSLqsfbeaeHn1L6ZPHwt5acnVsi9nqht7LbGvraywjhXY8GsR3t7+zgnqKtHus3wAvL19XByJZ2n7n+MYvX0rrFNohcgu/cjbVvG1L5dO13PNaPbsZwR2+gMGk+midWzWEoY8+zeOzH3FiZF5Pl3T4q78E24kesyCCutYbbA8/Sje14c7Kaqrg143aoDJTPtPT1da7VQxNGjVkYK9Gr4vdlbrld/BoNaP7AoNDQUgIyOjtMxms/H8889jtVqduji9SK1lu9QXAc2REfdgu9RrWrekEndgtXJJr7+6nkXkLPXtxJNczvub3gulmtT6kV1xcXHExsby4osv4uXlhb+/P1OmTGH9+vX4+vrSqlWrKreRm5tbbvnhlO0sGji2yvsXu+XLk2jUpXWl9VKPwahVTgioHMuXJ5EQ6pq2qyK/GG5cYp/OeDFGoFPjOqwtKHBaXFeDzr996Vqg81qtnvwZkn+1f2t9MT4m2Lf2e/xq/TuZ+9D1XDNm74R/bKm4jsFo4ot/jKXLLPU7qpOuaXFXJwrhpsUVT4E2Aje1bkCqru9qpdeNmvHACth6ouKpucF14Fh6Kl61fkiOOMuqVauueBZfrb+MzGYz8+bNo0mTJgwbNozRo0fTv39/evfuTYcOHTAanXsIBqMRk7cXBrMZDAZM3l4Y6+iTlriWjxlui6x4HrwVuCvaWRGJVM1dMRUnugzAgGYo0SVu4Q8R4G28+Gu0EWjmB9fWd2ZUIlKbBdeB/k0r79vdqb6duIm7YypOdAEMjkKJLqk2bnEpxcfHk5ycTF5eHmlpaTz88MOsX7/eJVMYm99xPfftnkOffz+Nf9MG3Ld7DrevfMfpcYhc6KFW0L5e2fKz/8mHxEDvxk4NSeSKdW8I98fa/y7vjap1EDwW59SQRK5YYB34W2cwGcpez0bAzwtevxYMFX2qFZGrzp/bQfOAsgmvs68jf2oF17jhjAS5Ot0YDrc2s/99/nvh2ev72vowvIWzoxJP5pbfiZ85c4a0tDRGjx5dWvbEE0/w5ZdfcujQIRITEwkNDWXLlkrmDFyBjM+SyPgsqdr3K5fv1NaV7Pv4GTAYqdd9EI1ufbp0W9oYCwDFJ38lMOEGIka95ZogncjHDO93h093weeZcNi+tiZxwfZE143h+iAl7uXxOGgTDP/dCZt+u7dFAx/7t35DYqCuW76DydWqV2P4uBfMzIClB+xlPib7qK/7mkO4n2vjE5HaJ8ALpvWEObvg892Q/dusuvgQuLc5WJq4NDyRy2IwwJh4SAiB2btgR469vImvfYTiXdEa1SXVyy0/KmzcuJGSkhKHkV3vvPMO77yjEVZXkzqNYmg5aQVGrzqkjelDg/4Pl9697ezdGffP/AsB7fu4MErn8jHBAy3sI2JOF9tHEfi65f9yEXunKDHM/nN2/Yz/u8F+q3URdxQXDK91hqW/Xc9J/cGsjr2IVMDfC/7YCka2hC5f28v+rZvFi5syGOAPzew/Z/t28/vpC3mpGW75Mbhr167YdJeGq16d0LDSvw1GExjKfmLI3ZxEkyEvOzOsWsFosH8bKOJplOgST6JEl4hcKr3/iadSoktqirpZ4vZyUpfi3aQ5xjo+DuX5BzOo0yASo1cdF0UmIiIiIiIiIs7mliO7RM4qPLqPQ/Neo/mYBWW2nVw9n+CuA10QlYiIiIiIiIi4ikZ2iduyFhWw++0HaPbQFEx1/ctsP7l2IUGdbnZBZCIiIiIiIiLiKhrZJW4r+4fZ5O/dStaUBwEIHzqRgkO7CO1zH8U5RzGYvDD5Bbk4ShERERERERFxJiW7xG3VTxxO/cThDmX+cT0AMAfWp8X4b10RloiIiIiIiIi4kKYxioiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hBeql1okNhGk9XNe2SHVJSkpi+PDhREZGEhkZyYwZMxy2z5o1iyZNmpCYmEivXr1Yv34927dvp2nTpg71/vKXv/DDDz9gMpl4//33ad++Pf/4xz948803efjhhxk7diwAjz76KK+//jp+fn5OO8ba4nLO9aRJk1i0aBEJCQn861//cqhX3nkdNmwYO3fuxNvbm5kzZxIeHk5GRgaPPfYYBQUFPPXUU9x888089NBDTJs2zWnHLCIiIiIi5dPILql1/L0gIdQ1P/5erj568TQjR44kKSmJoKAgkpOTHbZ9/fXX9OvXD4DPP/+cO+64o9x9PPjgg/z000988sknvPbaawAMHTqUWbNmOdS75ZZbmDt3bg0chXu4lHN9+PBh1q1bx48//ojZbGbNmjUO9co7ry+//DIrV67kxRdf5L333ist+/TTT1m+fDkDBgzAbDbToEEDdu7cWbMHKSIiIiIilVKyS0TECdq1a8f+/ftLH2dnZ+Pj44PBYACgcePGF31uVFQUACaTqbR+w4YNMRodX8Kvv/56Fi9eXM2Ru5+KzvWaNWvo3bs3AH379iUlJcXhueWd1wvPf2FhIXv37uX+++9n4MCBHD58GACLxcKiRYtq8MhERERERORSKNklIuIEycnJxMbGlj7OyMggMjLysvYxbtw4HnnkkYtu9/X15fjx41cco6eo6FyfOHGCwED7fOWAgABOnDhxSfu0Wq1MmjSJkSNHcvToUTZv3syMGTMYPXp06Wi7yMhIduzYUb0HIyIiIiIil03JLhGRGjR9+nQsFgvh4eEkJCRc8X7+/e9/Ex0dTY8eLlrQzg1cyrkODg4mJycHgNzcXIKDgy9p3+PGjePuu+8mJiaGoKAg2rdvT7169ejVqxdpaWnVdAQiIiIiIlIdlOwSEalBZ9eRmjBhgkN5bGwsWVlZl7SP5ORkFi5cyPjx4yusl5eXd8nJG090Kee6U6dOrFixAoDly5fTpUuXSvf7xRdfkJ2dzYgRIwDw8/PDx8eHgoICNm/eXDrNMSsrixYtWlTjEYmIiIiIyJVQsktExAVCQkLIy8srfTx06FCWLFnCkCFD+O677wB4+umnAXjhhRfIysqib9++PP744wDMnDmTp59+mk8++YTnnnsOgBUrVvC73/3OyUdS+51/rhs3bkyHDh3o1asXBQUFdO7cmUOHDvHGG28A5Z/XP//5z2zYsAGLxcLEiRMB+79Nv379ePLJJ0vrJSUl0b9/fxccoYiIiIiInM9gs9lsrg6itjqcsp1FA8e6OgyP0X/+BBp1ae3qMESqVecF9t9rBlz+c2fOnElYWBiJiYnVEsujjz7K5MmT8ff3r5b91SZVOc9Q/ef6QsXFxTz44INMnz69RvbvLFU9z3JpdJ6dR+daPImuZ+fQeXYOnWe5FKtWraJnz56sXLnyspdzMddQTCIiUon777+/Wvf33nvvVev+PEl1n+sLmc1mt090iYiIiIh4Ck1jFBERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DC9RLrXOqCDJyXNN2bCD4e7mmbRERERERERGpOiW7pNbJyIFRq1zT9rQekBDqmrZFREREREREpOo0jVFERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DC1QLx4hbYyF09uTMZi9MJjM+IS3JmzoRALj+7k6NBERERERERFxIo3sEo8RNnQiHeeeosOMw/i16sbOSbdScvqkq8MSERERERERESdSsks8jtHLm/o3jMSaf4r8gxmuDkdEREREREREnEjJLvE41oIzHF06DaNvID5hLVwdjoiIiIiIiIg4kdskuwoLCxk3bhwRERHUrVuXvn37kpKSgsFgYP78+a4OT2qBA7PHkXpPMJv+GEVe5gZix36DyTfQ1WGJB7PZyv9bao5V51lEpFYptsKJAsgvdnUkIiJyobxiOFEIJVdhH9otFqi32WwMHjyYlJQUxo8fT2xsLLNnz+a2224DoGPHjk6LxVjHzHWTRtGkZ3t8QgPJO3ycbR8tYvtHi5wWg5Qv7J5XaXzbM64OQ64CJTb4ajd8mnmubND3cFcMDIoEs9t8jVC72Wyw9ADM3nmu7PdLYVAU3BsDdd3iHUxExDMdzYeZGTB/D5wuBgPQvSHcFwud67s6OhGRq9sPh+A/GbA+2/64Xh17H3poc/D3cmloTuMWHxWmTp3KwoULSU1NpW3btgBYLBaio6MJCQmhWbNmTovFaDJx5sgJltz9KrlZhwlpE8kNc8aS/+sJdn+d7LQ4RMQ1Smzw4hr47qC9Y3/W3tPwxiZYfQRev1YJr+rwzlaYtdNxCPKv+fDBdvjhIHzQA/zc4l1MRMSzHMiDkSvtCa+zgwVsQPKv8NMRGJcAA5zXPRcRkfN8tAPe3w7G8z6sHC+E6TvguwPw754QXMd18TmLW3wcmzx5MkOHDi1NdAGYTCaio6Pp2LEjx44d4+abb6ZVq1a0b9+e22+/nV9//bVGYik+U8D61z8ld/chsNnI3rKbvUvW0LBLXI20JyK1y5e77YkuONfBP//vFYcdR3zJlVl12J7oArCWs337SXh3q1NDEhGR37y0Do7lO74Pgn2quQ2YkAr7T7sgMBGRq9zGbHuiC8ou/2EDsk7B3zc5PSyXqPXJrvT0dDIzMxk0aFCZbXv37qVjx44YDAaee+450tLS2LRpE82bN+eFF15wSnwGs4lGXeM4vi3LKe2JiOvYbDBnl+OIrgsZgLm7tLZUVX2W6fht1IVswNd77VNnRETEeTJyIDW7/C8izrIBX6prLCLidJ9lVpzksWJfJuRYvrMicp1aPwFk//79ADRs2NChfPv27WRlZdGxY0dCQkKwWCyl26677jqmTJlyyW0EBARQWFhYpry5uR7PBfas8LnXTRpJ0akz7Pz8h0tu72rVp4+FncXHK63n26obzSckXda+W028vPoX06ePhbw0TUeV8pkCQmnz0YEK69iAg2cgICya4uyK68rFtZ2VjdHHr8I6+SXQtFNf8ravclJUnq/dZ/aej7e3j4sj8Ww6z86jc139Qn73IOF/fKfCOjbg/YU/80zH3s4J6iqh69k5dJ6dQ+e5ZrT+cDdeIU0qrFNig1Z9byd37f85KaorZ7VW9NVKxWr9yK7Q0FAAMjIySstsNhvPP/88Vqu1zOL0VquVKVOmMGDAgBqP7drxw2jQqRVL752ItUjDC0Q8nqGiMV1lKtdYGFeFSz3Xl/VvIiIiVXaJr7sGvQ+KiDif+tClav3Irri4OGJjY3nxxRfx8vLC39+fKVOmsH79enx9fWnVqpVD/ccffxx/f38ee+yxS24jNze33PLDKdtZNHBsudu6vPIATXq259vBL1OQXf7zxdHy5Uk06tK60nqpx2CUiwZqLF+eREKoa9qW2s9qg4HL4NCZsuuUnK+BD6w+sAuT57+H1JiHf4K1RyueJlPHCFkp3xF4FSyw6SydF9h/FxQUuDYQD6fz7Dw619Vv2wm4b0XFdQzAqJu68udndN6rk65n59B5dg6d55rx3C+QdKjiJVWMwNZlX9CwrtPCumKrVq2iZ8+KZ9tdTK0f2WU2m5k3bx5NmjRh2LBhjB49mv79+9O7d286dOiA0XjuEJ555hnS09OZO3euQ3l16/LqCJr06mBPdB3LqbF2RKR2MRrgrpiKE10Ag6NQoquK7oquONFlAPo3RYkuEREniwuGNsEVr6sI9lvci4iIc90ZXXmiy9IEt0h0VVWtH9kFEB8fT3Ky4zpK7777Lr17n1sH4MUXX2Tt2rX83//9H97e3jUWi1/T+rQZdTMl+YXcsfq90vLDq7ez7N6JNdauiNQOd0fD6iP226uXp3MoDG3u3Jg8Ue/GcFskfJVlT2yd/55tACL94Yk2LgpOROQq90pHGLESThU5fjFhxP746Xb212kREXGuzvXhvub2u5qX14duVBeea++i4JzMLZJdFzpz5gxpaWmMHj0agC1btvDaa6/RsmVLunfvDkB0dDRfffVVtbd9et9RPmlyR7XvVyq3Z+rjnMlMJfCa/jQZ/GJpecaEWyjJy8FgMhPz7FzMgfUByNuVyrZnrqXTl0UUHT/Err/fDUDh0b00/P3jNBow2hWHIW7ObIR/dIX/7oS5mfDrb3cyqe8Nd0TD/c2hjsm1MXoCgwFe7ACtg2D2LvttkgH8zfYk2PAWGtUlIuIqUQEw63qYng6L9kHRbxmvdvXggRZwfWPXxicicjV7og3EBsKsDMj4bcWluiYY2AxGtISQmhsbVKu4ZbJr48aNlJSUlC5O37ZtW2y2yiYWiTs7nb4Gg9FMq9d+ZOff7qDoxGG8ghsB0PyFLzGYvTi2fBbZP8ym4S1PAPDrt1PwjbkGAK96jUvv2Ljr70MI6nSzS45DPIOX0d6Zvy8Wjvy2fldDH3siTKqPwWCfBnN7JBzJt3+YauijZKKISG0Q7gcvJcAz7eD6hfayj3q5NCQREcHeh/59BNzcFK792l629Cbwucr60G6Z7OratauSW1eZ0ztWE9ChLwAB7XqTl7GWoM72hJXB7AWAtSgfn4g4APIPpGMObICpboDDfmzFRRQezsQnvKUToxdPZTJAE19XR+H5DAb7kGsREal9fN3y04SIiOc7/4aLV1uiC9xggXoRgJLTJzD5BgJgrBtAyekTpduKc7PZ/lx3jnzzDj5N7cmuI1+/TcPfl70jZ+7mJPzbWZwRsoiIiIiIiIi4gJJd4hZMfsGU5NnvfGk9k4vJL7h0mzkghNav/0T4vRM4vOCfFB47ANinLl7oRMoCgrsOdErMIiIiIiIiIuJ8SnaJW/Br2YXcTcsByN2yAt/YTgDYrFZsJcUAmHyDMHr5kL93K3mZqaSPv4m8zFT2TH2idD+nd6zGr2VX5x+AiIiIiIiIiDiFZtmLW/BrcS3HvvuEtL/0IrDjjRRlHyRn/RKCu95KxoQ/gMGI0cubqCc/wateYwITEgHYMS6RZn96B4C8XevxjYrHYFSOV0RERERERMRTKdklbqPZQ+85PPaNSQCg1aQfLvqclq8uO69+RyIf+3eNxCYiIiIiIiIitYOGuIiIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoQXqpdaJDYRpPVzXtoiIiCslJSUxfPhwIiMjiYyMZMaMGQ7bZ82aRZMmTYiIiGDEiBEYjUY6d+7MP//5T4d6w4YNY+fOnXh7ezNz5kzCw8N5++23mTNnDmazmU8++YSoqCgeeughpk2b5sxDFBEREalRSnZJrePvBQmhro5CRETEdUaOHMnYsWN54oknSE5Oplu3bqXbvv76a+bOnUt2djaLFy/G39+f++67jx07dtCyZcvSei+//DJRUVF89913vPfee0yaNIk5c+aQnJxMcnIyH3zwAX//+99p0KABO3fupHnz5q44VBEREZFqp2mMIiIicsmSkpKIjo7GYrEwbNiwMtsnTpxIenp6hft4/PHH6dWrF5MmTXIo//bbb7FYLFgsFkJDQ0lNTQXgww8/pF+/flgsFoqKikrrv/XWWyQmJgKwbds2Jk+eXMWjq33atWvH/v37Sx9nZ2fj4+ODwWAgNDQUf39/AEwmEwaDweG5UVFRZbZFRERQUFDAyZMnCQkJAcBisbBo0SInHI1crWrydeNi2y98fObMGW6++WZ69+7N8OHDAVi5ciXXXXcd3bt358033wQ897VERORqo2SXiIiIXJaRI0eSlJREUFAQycnJpeVWq5WNGzfSokWLiz53zZo1mM1mfvzxR9atW8fhw4dLt910000kJSWxfPlyYmJiiI+PZ8+ePWzatInvvvuOpKQkvLy8ACgqKipNhgHExcWxbt06bDZb9R+wCyUnJxMbG1v6OCMjg8jISIc6W7Zs4ejRo+Wed6vVyqRJkxg5ciQAPXv2JC4ujocffpgHHngAgMjISHbs2FFzByFCzb1ulLd99erVZeovWbKEnj178sMPP+Dl5cXmzZuJiYlhxYoV/PTTT3zzzTfk5eV57GuJiMjVRskuERERuSIXjjrasGGDwzS68qxevZq+ffsC0Lt3b9auXVumzi+//ELnzp0xGAwsWbKE06dP07dvX8aPH19aZ9asWQwZMsTheTExMWzZsqUKR1R7TJ8+HYvFQnh4OAkJCRetl5OTw2OPPcbUqVPL3T5u3DjuvvtuYmJiyMnJ4YsvviA9PZ2vvvrK4XyKOEtNvG5cuH3NmjVl6kdHR3P69GkATp06RVBQEGFhYdSpUwewj4A0Gu0fjTzptURE5GqlZJeIiIhckQtHHaWnp5dOnbuYEydOEBhovxtIQEAAJ06cKFNn/vz5DBw4EIAjR45gMBj4/vvvyczMJDU1FavVyuLFi7nxxhsdnudJI5TOjoKZMGGCQ3lsbCxZWVkA2Gw2RowYwSuvvEJYWFiZfXzxxRdkZ2czYsQIAAwGA35+fpjNZkJCQkrPfVZWVoWjakSqU028bpS3/cLHsbGx/Pjjj8TFxWEwGIiIiCh9/tKlS2nevDk+Pj6AZ72WiIhcrbRAvYiIiFyW6dOns2zZMnr27HnRUUdbt27lkUcecSi76aabCA4OJicnB4Dc3NxyF0Vfvnw5f/3rXwEICgqid+/eAFx//fWkpaWRkZHBgAEDqvGI3EdISAh5eXmAfR2k77//nqNHjwLw5ptvEh4ezqxZs3j22Wf585//THh4OBaLhRtuuIExY8bQrVs3evToQUlJCe+8807pfs5OcxSpKTX5unHh9vLqz5gxg7vuuotHH32UJ598kp9++onu3buzb98+XnvtNRYsWFDNRywiIq6kZJeIiIhclrN3CrxQixYt+PLLLwFo06YNSUlJZer88ssvzJkzh1tuuYUVK1Zw5513OmzftWsXTZs2LZ1a1K1bN2bPng3Apk2bGDJkCMuWLSMpKYlZs2aRmprKtGnTGDVqFFlZWfTo0aOaj9b5zi7SfzEDBgxg2bJlJCYmkp2dXWb7s88+C1A6Aux8L730Ei+99FLp4+LiYo4cOeIw0kakJtTk60aXLl0ctj/zzDPMnTvXoX5mZmbpTRnOjmwsKCjggQceYMqUKaU3ewA85rVERORqpmmMIiIiUi3i4+NJS0ursM61115LQUEBvXr1Ij4+nkaNGnHo0CHeeOMNwHEKI8A111xDcXExFouFvLw8unbtypgxY1i6dCnffvstCQkJjBo1CrAv3t6uXbuaO8Ba4v777y+9C2VVmc1mpk+fXi37ErkS1fG6ceH2rl27lql/zz338PHHH2OxWEhNTeWGG25g9uzZbN26lQcffBCLxVK6ltjV8loiIuLJNLJLRERELllFo46MRiMdOnQgPT29wjWg3nvvPYfHjRs3Lh2N9NRTT5Wp/9Zbb110X8uWLQNg27ZtdOrUCYPBUMkRiIiz1fTrRnnbL3xcr149lixZ4lA2fPhwhg8f7lCm1xIREc+gZJeIiIhUm/KmKTlDXFwccXFxLmlbRKrGVa8b5dFriYiIZ9A0RhERERERERER8RhKdomIiIiIiIiIiMfQNEapdU4VQUaOa9qODQR/L9e0LSIiIiIiIiJVp2SX1DoZOTBqlWvantYDEkJd07aIiIiIiIiIVJ2mMYqIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoQXqxSOkjbFwensyBrMXBpMZn/DWhA2dSGB8P1eHJiIiIiIiIiJOpJFd4jHChk6k49xTdJhxGL9W3dg56VZKTp90dVgiIiIiIiIi4kRKdonHMXp5U/+GkVjzT5F/MMPV4YiIiIiIiIiIEynZJR7HWnCGo0unYfQNxCeshavDEREREREREREncptkV2FhIePGjSMiIoK6devSt29fUlJSMBgMzJ8/39XhSS1wYPY4Uu8JZtMfo8jL3EDs2G8w+Qa6OiwRERERERERcSK3WKDeZrMxePBgUlJSGD9+PLGxscyePZvbbrsNgI4dOzo1nuteG0XEDZ3xCvSl6NQZsr5JZs2r/8FaVOzUOMRR2D2v0vi2Z1wdhoiI29l8HGbvPPf4D0thUBQMjgJ/L1dF5Xl258J/d517fMO3MLAZ3B0D9X1cF5fIlcgphM8y4Yusc2Xj1sG9MdA62GVhiYiIAG6S7Jo6dSoLFy4kNTWVtm3bAmCxWIiOjiYkJIRmzZo5NZ5tH3/LmldmUXymAO+QACxTn6bDE7eT+uZnTo1DRESkqhbuhfHrAcO5skNn4L1t9m3/7gHB3i4Lz2OsOQpP/AzF1nNlxwthRgZ8/dt5bubvuvhELsfRfBi1EvblOZYv3gdL9sOkTtAvzDWxiYiIgJtMY5w8eTJDhw4tTXQBmEwmoqOjS0d13XrrrcTHx9OxY0d69epFampqjcVzcsc+is8U2B8YDNisNgJimtRYeyIiIjVh32kYnwpWwGoruz3rFEzY4OyoPM/pYng6xZ7osl6wzYY96fXcL2Ar599ApDb663o4kFe2/OxryZi1cOSM08MSEREpVeuTXenp6WRmZjJo0KAy2/bu3Vua7JoxYwYbNmxg/fr1PPPMM4wYMaJG42r/2K3cmzGLIZs/IqRtJFunflOj7YmIiFS3L3ZXnGCxAj8cgkPlfKiVS7dorz3hdWGi6yyrDTJyYUO2U8MSuSK7T8HqXy9+PduAEht8lXWRCiIiIk5Q66cx7t+/H4CGDRs6lG/fvp2srKzSZFdQUFDptpMnT2I0XnoeLyAggMLCwjLlzc31eC6wZ7nP2fTu/9j07v8IahFOzO29OHPk+CW3d7Xq08fCzuLKz5Nvq240n5B0WftuNfHy6l9Mnz4W8tKSq2VfIiK1Xewbv1A3qkOFdWxA/MARnFjxX+cE5YGaPT2HwGsHYDBdvNtls1q55cmJHPl8ghMj83ztPssHwNtbi6JVl5Ab/kj4n96tsI7VZuOtr3/miXiLc4K6Suh6dg6dZ+fQeXYOdz/PVuvFvlqpXK0f2RUaGgpARkZGaZnNZuP555/HarU6LE4/atQomjVrxpgxY5gxY4ZT4juZvp/sLVn0+tcTTmlPRESkulSUfHGoZzTVcCQezmgGg6GSSjadZ3ELl/K6YTAYdD2LiIhL1fqRXXFxccTGxvLiiy/i5eWFv78/U6ZMYf369fj6+tKqVavSutOmTQNg1qxZPPvssyxcuPCS2sjNzS23/HDKdhYNHFvp841eJgK1Zlelli9PolGX1pXWSz0Go1Y5IaByLF+eREKoa9oWEXG2l9fD/+29+HSks1Z89m9aBv3bKTF5omlp8EFaxXUMRhMzJr9In5kvOieoq0TnBfbfBQUFrg3Eg2zMhhErK65jBIbd0IXnn9Z5r066np1D59k5dJ6dw93P86pVq+jZs/zZdpWp9SO7zGYz8+bNo0mTJgwbNozRo0fTv39/evfuTYcOHcqdrnjfffexfPlyjh07Vu3xeAX4EnunhTqBvgDUi4skfvQgDiRpBV8REXEvg6IqTnQZgfb1oGVQBZWkUrdGgrGCgV1GINQbejVyWkgiV6x9PWgeUPGHCCv21xcRERFXqfUjuwDi4+NJTnZcR+ndd9+ld+/eAJw6dYrjx48TEREBwNdff01ISAghISHVH4zNRsyg67l2/DCMdczkH80ha+FqUt+YW/1tiYiI1KB29WBYLMzIAAP29bnOMgK+Zhgb76LgPEh9H3i+Pby20X5ez08wGrEnwiZcA+Za/xWkiH1G7svXwB9XQkGJ4/V89nXkoVYQG+iiAEVERHCTZNeFzpw5Q1paGqNHjwbg9OnTDB48mNOnT2MymQgJCeHrr7/GUOn6GJev6NQZltz1SrXvV0RExBUei4MIP3vCa+9pe5nRAH0bw8NxEOnv2vg8xaAo++itaTtg+8lz5V0awEOt7YlHEXfROgg+6QVTttvv2Ho2UR7pD8NbwO8jXBqeiIiIeya7Nm7cSElJSeni9I0aNeLnn392cVTiLMW52aT/9Qby96fRce4ph215mRvY88EjGMx1iB49kzoNIsg/mMHeDx/DWlRAowFPEdx1gIsiFxGpfQwG+zS7gc1g9yk4UwJN6kI9b1dH5nksTew/+07DyUJo4AMN67o6KpEr0zwQ/t4FjuXD4Xz7SNBIv0u4F4OIiIgTuGWyq2vXrthstsorikcy1Q2gxctL2fX6nWW2HZz7Cs3/8hVFxw9y6MvJNHvwXQ5++jLRz3yK2T/Y+cGKiLgJgwGiA1wdxdWhqZ/9R8QThPrYf0RERGoTt0x2ydXNYPbCHFD+emzW/NN4BTfEK7ghBQczsBYVUnh0L7vfuh8MBiIfnYpXsFYAFhEREREREfFUWgpVPIrNZnX4uzjnKGeyNhM1egaNbhnNoXmvuTA6EREREREREalpSnaJRzEYjA5/m/yCqBvZHrN/Pfzb9iJ/f5oLoxMRERERERGRmqZpjOJRjN6+FJ38laLjB/FuEovJxw9jHR+sRQXk791GnYZRrg5RRERERERERGqQkl3ilnaMSyQvcz07xiUSNmQ8p7Yn0/j2Z2ly1zh2TroVg9mL6NEzAWg08Gl2jOuHwWgi6slPXBu4iIiIiIiIiNQoJbvELbV8dZnDY/82PQHwjelI68mrHLYFJiQSmJDotNhERERERERExHW0ZpeIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ2t21TI933qUotP5rB4z3dWhlHFvxiwW3foS2Zsza7Sd2ECY1qNGm6iwbREREfF8SUlJDB8+nMjISCIjI5kxY4bD9lmzZtGkSRNatWrFXXfdhdlspnnz5nz00UcYDIbSeg888ABpaWl4e3vz0ksv0bdvX4YPH16mnoiIiDiPkl01qHH3tiQ8fSehHWIAOLZxF6l//4xDyVtcHJldwtN3EhrfnO/uf+2S6v839r4ajsjO3wsSQp3SlIiIiFzFRo4cydixY3niiSdITk6mW7dupdu+/vpr5s6di9VqZdWqVRgMBkaOHMmmTZvo0KGDw34+//xzmjZtWvq4a9euLF++nL59+zrtWEREROQcTWOsIU0TO3HD7LHsXbaWz655kM+ueZC9y9Zyw5yxNO13TbnPMZiq75/DYDZV275EREREPFm7du3Yv39/6ePs7Gx8fHwwGAyYTKbSEVre3t6EhYU5PNdgMHDXXXdx5513kp2dDUCfPn1YuHCh8w5ARMTDJCUlER0djcViYdiwYWW2T5w4kfT09Ar38fjjj9OrVy8mTZp00TpvvfUWiYmJZGdn06lTJ/z9/R22f/jhh/Tr1w+LxUJRURHbtm1j8uTJV3ZQ4lRKdtWQrhNGkPF5ElumLKAoN4+i3Dy2TFnAznk/0GXCCADuSHmfDqMHcfOCiQzd9V/qxzcHwMvPB8vUp7k3fRa3/vBPwizxlbbXuFtb7s2YRcuhidzxyxQGLPs7AE2u78AfFk/mnrQZDPjuTZrddC0AzW66lvZP3EZ4nwTuzZjFvRmzMNapeKDfAwfnERrfHIPJyD07ZhLcKsLedve2PHBwHpF/sH8bWrdhMPfv+RQv/7pXdvJEREREnCg5OZnY2NjSxxkZGURGRpY+/v777+nQoQOHDh0iKCjI4bn/+Mc/WLVqFXfddRevvWYfLR8ZGcmOHTucE7yIiIcaOXIkSUlJBAUFkZycXFputVrZuHEjLVq0uOhz16xZg9ls5scff2TdunUcPny4TJ2ioiJSU1MBCAgIYOnSpVx33XWl2/fs2cOmTZv47rvvSEpKwsvLi7i4ONatW4fNZqu+A5UaoWRXDQhsHkZAZCMy/7eqzLZdX60kMKoxgTFNAIgdbGHV0+/z39j7OPbbWljRt/Zk11c/Mrv1MDb+6yv6fvQcvo1DKm3XXNeb+gmx/O/60XzT/3kCohqTOOMFNr/7P+a0Gc7aif+h95SnCGkbxZ5vf2HTO1+xf3kq/429j//G3oe1sPiSjs9WYuXw6m006dkegCa92pOTeZAmPdvZH/dsz7GNuyg6deaS9iciIiLiCtOnT8disRAeHk5CQsJF6/Xt25eNGzcSGRnJt99+67CtXr16AAwYMIAtW2rHUhUiIp7kwtG3GzZsoGXLlhU+Z/Xq1aVTyXv37s3atWvL1Jk1axZDhgwBwMvLi5AQx8/cS5Ys4fTp0/Tt25fx48eXlsfExOj13g0o2VUDfEICADhzOLvMtjNHjtvrhNpXQk+btZST6fuxWa2lyaZDP29lz6IUbCVWds1bwfGtWUTd0q3Mvi5kMBpZO+m/FJ8poORMIdEDu3N49TZ2f52MrcTK/u/Xs2fJGpoP7l3lYzy0crNDciv175+VJr8a92jHwVWbq9yGiIiISE06O2pgwoQJDuWxsbFkZWUBUFhYWFoeFBSEj4+PQ93c3FzAPjosOjoagKysrApHHIiIyKW7cPRteno6UVFRFT7nxIkTBAbaP3MHBARw4sQJh+1Wq5XFixdz4403XnQfR44cwWAw8P3335OZmVk6Ckyjd92Dkl01ID/b3ump26jsaKy6De3f/uUfywHg9P5fy9Q5vc+x7NTeXy9pZFfxmQIKfmsbwLdJKKcu3FfWYXybVH3194MrN9HoujbUCfQlMCaMzP+twlTHjG+TEJr0bMfBHzdVuQ0RERERVwgJCSEvLw+AlJQUrr/+eiwWC/v27aNfv34cOnSIN954A4D777+fnj178vLLL/PCCy8AsHz5cvr37++y+EVEPMGljL7dunUrFovF4edvf/sbwcHB5OTYP3Pn5uYSHBzs8Lwvv/ySAQMGVNh+UFAQvXvbB4pcf/31pKWlVfmYxHl0N8YakLPzALl7DhM9oDuHLhjhFD2wO7l7DpOz6yAANmvZub5+TRs4PPaPaMCv6yrPHNusVofHeQeP0bhb2wv21ZC8g8fKrX85srfsxma10uaPf+DIL9uxWa0cXLmZlvck4tuwHkd+2X7F+xYRERGpaWc/FF3MgAEDWLZsGYmJiaxYscJhW+PGjXn22WcB+Oqrr8o8d/Xq1fzpT3+q1nhFRK42Z++Ye6EWLVrw5ZdfAtCmTRuSkpLK1Pnll1+YM2cOt9xyCytWrODOO+902J6WlkZSUhKzZs0iNTWVadOmMWrUKIc63bp1Y/bs2QBs2rSpdMpjVlYWPXr0qI5DlBqkkV01JOWlT4i9qw9tH7wFL/+6eAX40ubBPxB7Zx9Sxn1c4XMbX9eGiN91xmAyEnN7L+q1iWT3//182TFkzv+JRl3jiPx9VwxGI+F9Eoi4sTM759k7bGeOnsQvvP4V3wXy0E9baPOn33NwpX0U18FVm2jzp99zZO0OSgqKrmifIiIiIrXB/fffT2Ji4hU99+OPP8ZoVDdbRKQmxMfHVzrK6tprr6WgoIBevXoRHx9Po0aNHEbljhkzhqVLl/Ltt9+SkJDAqFGjSExMZP369SQmJrJ582auueYaiouLsVgs5OXl0bVrV8B+E5N27drV+HFK1WhkVw3Zu/gXlg2dRPyf7yDhWXsW+djGXSwbOqk0OXQxmf9bSfPBvbn+vSc5ffAYy0f9nbwDxy47htzdh/h+xOtc85d76fHPRzm971dWPPYO2b8thL/762Ribu3J3Zs/wmAw8GmHkZe8SD3AwR83EfWHbhxcaR+9dnDlZuoE+mm9LhEREREREbliFY2+NRqNdOjQgfT09ArXR3zvvfccHp8/Kvd8y5Ytc/h9vrfeesvh8bZt2+jUqRMGg6GSIxBXU7KrBh1cuanCxNa8Lo+UKVs5+r1yalbuUPIW/ht7X5ny/ctT2b88tdznFJ44xbeD/npJ+zf89u3k+cmwtJlLSJu5pPTxmcPH+aTJHZcRtYiIiIiIiMjlKW96ozPExcURFxfnkrbl8mh8tVySem0jsRYVl7ugvoiIiIiIiIhIbaGRXW5kYNI/8W9av0z53iVrWfHIW1Xef+J/x9Coa+sy5UWn8jF6mVg7aTaFOXlVbkdEREREREREpKYo2eVG5lueqtH9L7t3Yo3uX0RERERERESkpinZJbXOqSLIyHFN27GB4O/lmrZFREREREREpOqU7JJaJyMHRq1yTdvTekBCqGvaFhEREREREZGq0wL1IiIiIiIiIiLiMZTsEhERERERERERj6Fkl4iIiIiIiIiIeAyt2SUeIW2MhdPbkzGYvTCYzPiEtyZs6EQC4/u5OjQRERERERERcSKN7BKPETZ0Ih3nnqLDjMP4terGzkm3UnL6pKvDEhEREREREREnUrJLPI7Ry5v6N4zEmn+K/IMZrg5HRERERERERJxIyS7xONaCMxxdOg2jbyA+YS1cHY6IiIiIiIiIOJFbJLsKCwsZN24cERER1K1bl759+5KSkoLBYGD+/PmuDk9qiQOzx5F6TzCb/hhFXuYGYsd+g8k30NVhiYiIiIiIiIgT1foF6m02G4MHDyYlJYXx48cTGxvL7Nmzue222wDo2LGjS+Iy+dRh4PdvUrdhMP+Nvc8lMYijsHtepfFtz7g6DJey2uC7A/BZJqSdBJMBujWEu2IgPsTV0XmW5CP287zumP1xfAjcGQ09GoLB4NrYRC5XZi7MzYRlByC/BJr5we1R8IcI8DG5OjqRy3OiEL7cDfP3nCt7fxsMjoYGPi4LS0REgLVH7X2Osx7+CQZHQZ8m6kNL9ar1ya6pU6eycOFCUlNTadu2LQAWi4Xo6GhCQkJo1qyZS+Lq+OxdnNp3lLoNg13SvsiFiq0wdp39w6oRsP5WvuwgLDkAT7WFe5u7MkLPYLPBO1th1k7H8/zzr/DTEbg7Gp5upzdrcR8/HILnf7Eny89ez+k58LeNsGAPvN8N/L1cGqLIJdt3Gv60Co7kO5Z/nA7zdsOU7tAqyCWhiYhc9abvgCnbwXheP3ntUfjlKPy+Kfy1o+M2kaqo9dMYJ0+ezNChQ0sTXQAmk4no6Ogyo7pefvllDAYDmzdvrtGYQjvEEN4ngc3v/a9G2xG5HDMy7IkuOPeBFewfYAH+ucX+ZiJVs3i/PdEF5Z/nTzPhm71OD0vkihzKgxfWQInN8Xr+7XJm2wl70kvEHdhs8HQKHM0vZxtwqgie/BmKrGW3i4hIzVp12J7ognP9ZjjX//i/ffDpLqeHJR6sVie70tPTyczMZNCgQWW27d271yHZtW7dOn7++WciIyNrNCaDyUj3vz/Ezy9Ow1pYXKNtiVyqYmvlbw5G9AZSHWbvqviF0wD8d6f9Q5dIbfdllv3142KXqw37yNDykgcitc3aY7Az1zFxez4rcLQAlh90ZlQiIgIwZ1flo7Zm73JMhIlURa2exrh//34AGjZs6FC+fft2srKySpNdBQUFPProo8yZMweLxXLZ7QQEBFBYWFimvLm5Hs8F9nQoa/fIQI5tyuTwz9to3K1tmefIxfXpY2Fn8fFK6/m26kbzCUmXte9WEy+v/sX06WMhLy25WvblTD4xHWkx+ecK61iB7/bk491L8zeulNEvmLafHK6wjg3IyAX/xs0oPlFxXRFXi30jBZ/IDhgqmHdrtUHbPzzAiR/nODEykcvX+N6J1B/wFAbjxReas5UU8/Cbs9n33h+dGJlI9Wj3mf2bB29vLT5Xk3Sea4DRSLtPT2MwVDzW5tAZCI7pQMGBNCcF5vnc/Xq2Wq98OHatHtkVGhoKQEZGRmmZzWbj+eefx2q1lia7XnrpJYYOHUpUVFSNxhMQ1ZhW9/+ONa/OqtF2RC6XwXRpC+pcaj0p3+WcP4O5Tg1GIlI9DKY6FSa6SuvpehY3YDB7ga3yTrGuZxER5zIYzZUmukrrmvV5RapHrR7ZFRcXR2xsLC+++CJeXl74+/szZcoU1q9fj6+vL61atSI5OZk1a9bwt7/97Yrbyc3NLbf8cMp2Fg0cW/q4UZfW1K0fxO2r3gHAaDbh5VeXu7d8xPKRb3D4521XHMPVYPnyJBp1aV1pvdRjMGqVEwIqx/LlSSSEuqbtqjhRCDcthuIKhv0agNhgE2sLCpwWl6cpsdnP8/GyA0EdBHrB8b0ZeNXqrxNEYMxaWHqg8ikD382ZStt6U50TlMgVWrAHXkmtuI7BZGbMH+9m+Ot3OyUmkerUeYH9d4H6cjVK57lm3LoM9uddfOkEAG8jHNi2Fr9anaVwL+5+Pa9atYqePXtWXrEctfqjmNlsZt68eTRp0oRhw4YxevRo+vfvT+/evenQoQNGo5EffviBbdu2ER0dTVRUFPv27ePGG29kyZIl1R5P5tc/8UX3x1iQ+AwLEp9h1dMfUJSXz4LEZ/h1XXq1tydyqYLrwA3hFf+HtgF3RjsrIs9kMsAdUfbE4cUYgNsiUaJL3MIdURUnuoxAy0BoE+ykgESq4Hdh4Guq+DXaZIABEU4LSUREfjM4uuJElxH4fQRKdEm1qfUfx+Lj40lOTiYvL4+0tDQefvhh1q9fXzqF8YUXXuDAgQPs3r2b3bt307RpUxYvXszvfve7ao+l5EwheQezS38KjuWAzUbewWwtVi8u91gchPpc/D9151C4pZlTQ/JIQ2OheUD5H6aMQKQ/PNDC2VGJXJmEEBh0kfu6GLEnbccmwCXMdBRxOR8zjEuw/33hJXv28Z/b2d8rRUTEue6Igg71Lt6HblQXHmzl5KDEo9X6ZNeFzpw5Q1pamsOdGF3lUPIW/ht7n6vDEAHsbxAf94K+TRzvdOJrgntj4O3rNNqoOviZ4d894dZIqHPe+fQy2r+Nmt4TArTUgLgJgwGe7wBPtIEQb8dtnerD9F4a1SXu5YZw+GdXiA10LI/wg4md4C6NcBYRcQlvE7zXzT7TxOe8+4iYDPbX7o976csIqV5uN0hw48aNlJSUXDTZtXv3bucGJE51autK9n38DBiM1Os+iEa3Pu2wvej4ITb9KZp2U9KpU78paWP6cHbAbLMH36duszYuiNp5GteFv10LR/Phpt9m8i6+Eeq63f/02i3AC8bE2xMEfRbZy779HQRpzWNxQ0YD3B8L98TAdd/Yy/7XD5r6uTYukSvVsxH0aAg7c+3vh8F1oFWQRiiKiLhaXTM82x4eiYNtJ+xLKcQGlv3CTaQ6uN1H4K5du2KzVbKSrnisOo1iaDlpBUavOqSN6UOD/g9j9PYt3X7km3/h17Jr6WOD0UTLV5e5IlSXqn/etyJKdNWc80dwKdEl7s583khFJbrE3RkM9g9QF47wEhER1/MzQ+f6ro5CPJ0mNYlbqRMahtHLnlUwGE1w3i1si0+doDj3KN4No857ho20MRZ2/2sU1sJ85wYrIiIiIiIiIk6nZJe4pZzUpXg3aY6xzrkhTL8ufI8GNz3kUC/m+Xm0mphE3Yg4ji6d7uwwRURERERERMTJlOwSt1N4dB+H5r1G0+FvlpZZC86Qv3crvjGOa7mZ/esBENRlAPl7tzg1ThERERERERFxPiW7xK1YiwrY/fYDNHtoCqa6/qXlBUd2U3BoJ+njbyIndSl7PnwUgJK8XABOb0+mTkPdgklERERERETE02npanEr2T/MJn/vVrKmPAhA+NCJFBzaRWif+2j9xs8A7H77AcLunQDAjpcSMXrVweQXTPRT/3FZ3CIiIiIiIiLiHEp2iVupnzic+onDHcr843o4PI568pPSv+P+vtoZYYmIiIiIiIhILaFpjCIiIiIiIiIi4jGU7BIREREREREREY+hZJeIiIiIiIiIiHgMrdkltU5sIEzrUXm9mmpbRERERMSdJCUlMXz4cCIjI4mMjGTGjBkO22fNmkWTJk2IiIhgxIgRGI1GOnfuzD//+U+Hehs2bOCRRx6hTp06zJw5k4iICD766COmTZtGw4YNmTVrFnXr1uWhhx5i2rRpzjxEEZHLomSX1Dr+XpAQ6uooRERERETcx8iRIxk7dixPPPEEycnJdOvWrXTb119/zdy5c8nOzmbx4sX4+/tz3333sWPHDlq2bFla75VXXuGrr77i4MGDTJ48mbfeeosZM2awcuVKFi5cyLRp03jqqado0KABO3fupHnz5q44VBGRSmkao8hVKikpiejoaCwWC8OGDSuzfeLEiaSnp1/0+dnZ2XTq1Al/f/9yt6ekpNCjRw+6d+/O2LFjy62/bds2Jk+eXPWDEREREREA2rVrx/79+0sfZ2dn4+Pjg8FgIDQ0tLQvZjKZMBgMDs89ffo0DRs2JD4+noyMDI4ePUqzZs0wGo20b9+e5ORkACwWC4sWLXLeQdUiVe1DAzz++OP06tWLSZMmXbTOW2+9RWJi4kX73B9++CH9+vXDYrFQVFSkfrXIBZTsErmKjRw5kqSkJIKCgko7LwBWq5WNGzfSokWLiz43ICCApUuXct1115W7vWPHjqxatYqffvqJ5ORkTCZTmfpxcXGsW7cOm81WfQclIiIichVLTk4mNja29HFGRgaRkZEOdbZs2cLRo0fL9PWsVqvD3w0aNCAjI4P8/HxWrFjByZMnAYiMjGTHjh01eBS1W1X60GvWrMFsNvPjjz+ybt06Dh8+XKZOUVERqampQPl97j179rBp0ya+++47kpKS8PLyUr9a5AJKdolImW8AN2zY4DCkvTxeXl6EhIRUuB2gpKSEsLAw/Pz8yq0fExPDli1brjByEREREQGYPn06FouF8PBwEhISLlovJyeHxx57jKlTp5bZZjQaHf42mUw8++yz3HTTTWzYsIFGjRrVROhu60r60KtXr6Zv374A9O7dm7Vr15apM2vWLIYMGQKU3+desmQJp0+fpm/fvowfP760XP1qkXOU7BKRMt8ApqenExUVVeX9zp49m7i4OIKDgzGby18i8Gr/ZlBERESkOpwdbTRhwgSH8tjYWLKysgCw2WyMGDGCV155hbCwsDL78PX15ddff2Xjxo2lfcPbb7+dpKQkunbtSv/+/QHIysqqcPTS1eJK+tAnTpwgMNB+V6yAgABOnDjhsN1qtbJ48WJuvPHGi+7jyJEjGAwGvv/+ezIzM0tHgalfLXKOFqgXuYpNnz6dZcuW0bNnz4t+A7h161YeeeQRh7KbbrqJF154odL933PPPdx9990MHjyYTZs20b59++oIW0REREQuUUhICHl5eYB9vanvv/+eo0ePAvDmm28SHh7OrFmzePbZZxk3bhy33norXl5ezJw5E4BHHnmEtLQ02rRpw1tvvVW6n5EjR7rkeGqDqvShg4ODycnJASA3N7fMIv9ffvklAwYMqLD9oKAgevfuDcD1119PWlpahaP5RK5GSnaJXMXO3rXnQi1atODLL78EoE2bNiQlJV32vgsKCvD29sZoNBIQEICPj0+59bKysujRo8dl719ERERE7CwWCxaL5aLbBwwYwLJly0oXPL/Qs88+C5xbc/V877//vsPj4uJijhw54jCi6WpTlT70L7/8wpw5c7jllltYsWIFd955p8P2tLQ0kpKSmDVrFqmpqUybNo1Ro0Y51OnWrRuzZ88GYNOmTaVTHtWvFjlH0xhFpIz4+HjS0tIqrZeYmMj69etJTExk8+bNHDp0iDfeeAOABQsWYLFYuP7662natCktWrQoUx/si6a2a9euRo9HRERE5Gp2//33k5iYWC37MpvNTJ8+vVr25WkupQ997bXXUlBQQK9evYiPj6dRo0YOfegxY8awdOlSvv32WxISEhg1alSZPvQ111xDcXExFouFvLw8unbtCqhfLXI+jewSuUpV9A2g0WikQ4cOpKenV7gew7Jly8qUnf1mcPDgwQwePLjC+tu2baNTp05lbnstIiIiIlIbVUcf+r333nN43Lhx49I+9PnO9p3L63OfnVJ6lvrVIo6U7BKRcpU3NLu6xcXFERcXV+PtiIiIiIg4gzP60OVRv1rEkaYxioiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jG0ZpfUOqeKICPHNW3HBoK/l2vaFhEREREREZGqU7JLap2MHBi1yjVtT+sBCaGuaVtEREREREREqk7TGEVERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYWrNLPELaGAuntydjMHthMJnxCW9N2NCJBMb3c3VoIiIiIiIiIuJEGtklHiNs6EQ6zj1FhxmH8WvVjZ2TbqXk9ElXhyUiIiIiIiIiTqRkl3gco5c39W8YiTX/FPkHM1wdjoiIiIiIiIg4kZJd4nGsBWc4unQaRt9AfMJauDocEREREREREXEit0l2FRYWMm7cOCIiIqhbty59+/YlJSUFg8HA/PnzXR2e1AIHZo8j9Z5gNv0xirzMDcSO/QaTb6CrwxIRERERERERJ3KLBeptNhuDBw8mJSWF8ePHExsby+zZs7ntttsA6Nixo9Ni6fnWo0Tf1hNrUXFpWdIf32T/8lSnxSDlC7vnVRrf9oyrw3Apmw1W/wrzdp8r+9tGuCMKYpX3EzeUmQuf74aVh6HYCq2C7Ndz94ZgMLg6OpHLc6IA/rcHvt0HJwqhsS8MbAb9w8HHLXpkIuJsVpv9PfCL3efK3twMg6Ogmb+rovJM647B55nnHr+SCndGQetgFwUkIlXiFl2rqVOnsnDhQlJTU2nbti0AFouF6OhoQkJCaNasmVPj2fGfZaweM92pbYpUxmqD1zbCV1lgPC8J8OVuewdpbIL9Q5WIu1i4F8anAjaw/lZ2NB9+PAy/bwovdQSTEl7iJjJy4OGf4HjhubJjBbD5OMzZBR90hxBv18UnIrVPsRXGroNlBxyn43y6y56UmdgJ+oW5LDyPYbPBO1th1k7H8/zNHliwB/7cFu5p7rLwROQKucU0xsmTJzN06NDSRBeAyWQiOjq6dFRXVFQUrVu3JiEhgYSEBBYvXuyqcEVcYs4ue6IL7Imvs6yADZiQCpuyXRCYyBXYfhLGr7dfy9bzys/+/X/7YJbuPyFuorAEHv8ZThY6lp99qd6dC39Z4/SwRKSW+/cOe6ILHN8LbUCJDV5cax8BLVXz9V57ogvK73P8Ywv8fMTZUYlIVdX6ZFd6ejqZmZkMGjSozLa9e/c6TGGcN28eqamppKamcuONN9ZYTDG392LI1o+5dcVbdHjydgymWn8axcOV2OA/OyuuYwA+zay4jkhtMXdX5XX+u9P+rbdIbffdQfg13/FD1PmswNpjsOOkM6MSkdosv6Ti90Ib9hFJn6lvVyU2m/3Ls4oGihux9zlExL3U+mmM+/fvB6Bhw4YO5du3bycrK6ta1usKCAigsLCwTHlzcz2eC+zpULZ1+kLWvDqL/OxcQjvE0Pv90Zi867D+9U+rHIen69PHws7i45XW823VjeYTki5r360mXl79i+nTx0JeWnK17MuZfKI60OKNXyqsYwUW7crj793rOSeoq0S7z/IB8Pb2cXEknqXNx4cw+Vd8rR4vhPodenEmPcVJUXk+Xc81I2L0LIKuux2D6eLdLpvNSt+HXubXL//mxMhEpLbya2ch5q8Vz1SxArPXHeCla6OdE5QH8moQSev3d1RYxwr8dMSKj18gtuIi5wQmUk3cvW9ntV75N9u1fkhSaGgoABkZ5+ar2Gw2nn/+eaxWq0Oy695776VDhw488sgjnDhxokbiyd6USf6xHLDZOLZhJ+v/PpfogT1qpC2RS2WsU/eS6hm8tCCMuAdDnUt7Q77Ua1/ElYx16lZ+RwWrDaO3rmcRsbvkvp3eB6vkks+zwYjBrH60iDup9SO74uLiiI2N5cUXX8TLywt/f3+mTJnC+vXr8fX1pVWrVgD8+OOPREREUFBQwOjRo3nsscf4z3/+c0lt5OaWP9n9cMp2Fg0cW/GTrbaKx71KqeXLk2jUpXWl9VKPwahVTgioHMuXJ5EQ6pq2qyK7AG5a4rhW14UMQFSgibUFBU6L62rQeYH9d4HOa7W6JwnSc86taVQeA7Bt1RIaqZ9fbXQ914x3ttqnyVR4PZtMfPDqC9z8yQtOi0tEaq+9p+C27yuuYwQ6RdQjVa/ZVyyvGBK/hcJKBo+EekPeiWO6E7S4HXfv261atYqePXtWXrEctX5kl9lsZt68eTRp0oRhw4YxevRo+vfvT+/evenQoQNGo/0QIiIiAPD29uaRRx5h1aqayZZEDeiOV4AvAPXiIol/ejC7v3G/aW/iWUK8oU/jiv9D24A7opwUkEgV3RFVcWLACPRshBJd4hZua1Z54tbfDH11VzUR+U2EP3QOrbhvZwXu0AzGKvE1w+8jKj7PBmBwVOUDdEWkdqn1I7sA4uPjSU52TCi9++679O7dG4DTp09TXFxMUFAQNpuNTz/9lISEhBqJpfUDN9Jt8p8wepk4c/gEO+f9wMZ/fVUjbYlcjsfbwC9H4VRx2RFeBqBNMNzazBWRiVy+P0TY77i4MbtsksBoAF8TPNnGJaGJXLYIfxjeAj5OL7vNgP0af6ED+JicHZmI1GZPt4MRK6GgpPwbXHSpDzcoSV5lf2wJKw/DsXJuJGIEovzh7hhXRCYiVeEWya4LnTlzhrS0NEaPHg3A4cOHGTRoECUlJZSUlNCmTRvef//9Gmn729v/WiP7Famqpn7wcS/420Z70ussswH6N4Vn2oOPW/6Pl6tRHRO8e539dt/f7IWi83qfCSH2xEBUgOviE7lcj7SGenXsCa/j590TJ9wXnmijUV0iUlaLIJjeEyZvgg3Z58rrGGFgM3iyLZhr/Tyd2q9hXfi4J7y2EX46cu5LNqPBnkx8rj34e7k0RBG5Am750Xfjxo2UlJSULk4fExPD+vXrXRyVONuprSvZ9/EzYDBSr/sgGt36dOm2tDEWAIpP/kpgwg1EjHrLNUE6WaQ/TOkOe07Bjhx7oishBIK1nqa4obpmGBMPj8VBv2/tZfP62r9hFXE3BgPc0xzujIbrvrGXTesB8SGaGiMiF9fyt4TXrlz7j5cROoUq+VLdGvvC29fBgTzYdsI+6rZDCNR3zxvYiQhumuzq2rUrNltFq1/I1aBOoxhaTlqB0asOaWP60KD/wxi97euptZqYBMD+mX8hoH0fF0bpGs387T8iniCozrm/legSd3f+KAx3vCGKiLhGTID9R2pWmK/9R0Tcnwa+ituqExqG0cv+KdhgNIGh7OWcuzkJ/3YWJ0cmIiIiIiIiIq6iZJe4vZzUpXg3aY6xjuM44/yDGdRpEFmaEBMRERERERERz+eW0xhFzio8uo9D816j+ZgFZbadXD2f4K4DXRCViIiIiIiIiLiKRnaJ27IWFbD77Qdo9tAUTHXLLuRzcu1Cgjrd7ILIRERERERERMRVNLJL3Fb2D7PJ37uVrCkPAhA+dCIFh3YR2uc+inOOYjB5YfILcnGUIiIiIiIiIuJMSnaJ26qfOJz6icMdyvzjegBgDqxPi/HfuiIsEREREREREXEhTWMUERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEY2jNLql1YgNhWg/XtS1SXZKSkhg+fDiRkZFERkYyY8YMh+2zZs2iSZMmJCYm0qtXL9avX8/27dtp2rSpQ72//OUv/PDDD5hMJt5//33at2/PP/7xD958800efvhhxo4dC8Cjjz7K66+/jp+fn9OOsba4nHM9adIkFi1aREJCAv/6178c6pV3XocNG8bOnTvx9vZm5syZhIeHk5GRwWOPPUZBQQFPPfUUN998Mw899BDTpk1z2jGLiIiIiFTFpfahIyIiGDFiBEajkc6dO/PPf/7ToV55/eW3336bOXPmYDab+eSTT4iKinJqf1kju6TW8feChFDX/Ph7ufroxdOMHDmSpKQkgoKCSE5Odtj29ddf069fPwA+//xz7rjjjnL38eCDD/LTTz/xySef8NprrwEwdOhQZs2a5VDvlltuYe7cuTVwFO7hUs714cOHWbduHT/++CNms5k1a9Y41CvvvL788susXLmSF198kffee6+07NNPP2X58uUMGDAAs9lMgwYN2LlzZ80epIiIiIhINbqUPnT9+vVZvHgxP/74I0ePHmXHjh0O9crrL8+ZM4fk5GRef/11PvjgA6f3l5XsEhFxgnbt2rF///7Sx9nZ2fj4+GAwGABo3LjxRZ8bFRUFgMlkKq3fsGFDjEbHl/Drr7+exYsXV3Pk7qeic71mzRp69+4NQN++fUlJSXF4bnnn9cLzX1hYyN69e7n//vsZOHAghw8fBsBisbBo0aIaPDIRERERkZpRUR86NDQUf39/wPEzyVnlfV6JiIigoKCAkydPEhISAji3v6xkl4iIEyQnJxMbG1v6OCMjg8jIyMvax7hx43jkkUcuut3X15fjx49fcYyeoqJzfeLECQID7fOVAwICOHHixCXt02q1MmnSJEaOHMnRo0fZvHkzM2bMYPTo0aWj7SIjI8t8yyUiIiIi4g4u5fPKli1bOHr0KC1atCjz/PP7ywA9e/YkLi6Ohx9+mAceeABwbn9ZyS4RkRo0ffp0LBYL4eHhJCQkXPF+/v3vfxMdHU2PHi5a0M4NXMq5Dg4OJicnB4Dc3FyCg4Mvad/jxo3j7rvvJiYmhqCgINq3b0+9evXo1asXaWlp1XQEIiIiIiLOdamfV3JycnjssceYOnVqudvP7y/n5OTwxRdfkJ6ezldffcX48eNrJvgKaIF6EZEaNHLkyNKFzs8XGxtLVlbWJe0jOTmZhQsX8sUXX1RYLy8v75KTN57oUs51p06d+OSTT3j88cdZvnw599xzT6X7/eKLL8jOzmbixIkA+Pn54ePjQ0FBAdu2bSsdtp2VlVXut1wiIiIiIrXVpfShbTYbI0aM4JVXXiEsLKxM3Qv7ywaDAT8/P8xmMyEhIaWzKZzZX9bILhERFwgJCSEvL6/08dChQ1myZAlDhgzhu+++A+Dpp58G4IUXXiArK4u+ffvy+OOPAzBz5kyefvppPvnkE5577jkAVqxYwe9+9zsnH0ntd/65bty4MR06dKBXr14UFBTQuXNnDh06xBtvvAGUf17//Oc/s2HDBiwWS+kb+NNPP02/fv148sknS+slJSXRv39/FxyhiIiIiEj1Or8PnZSUxPfff8+4ceOwWCysXbvWoQ99YX85ICCAbt260aNHD+666y6eeeaZ0v04q79ssNlsNqe05IYOp2xn0cCyGU65Mv3nT6BRl9auDkOkWnVeYP+9ZsDlP3fmzJmEhYWRmJhYLbE8+uijTJ48uXTxSE9SlfMM1X+uL1RcXMyDDz7I9OnTa2T/zlLV8yyXRudZREREnKE29aGvpL+8atUqevbsycqVKy97ORdNYxQRcZH777+/Wvd39ja/UlZ1n+sLmc1mt090iYiIiIicrzr70M7uL2sao4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYSnaJiIiIiIiIiIjH0N0YpdY5VQQZOa5pOzYQ/L1c07aIiIiIiIiIVJ2SXVLrZOTAqFWuaXtaD0gIdU3bIiIiIiIiIlJ1msYoIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIYWqBePkDbGwuntyRjMXhhMZnzCWxM2dCKB8f1cHZqIiIiIiIiIOJFGdonHCBs6kY5zT9FhxmH8WnVj56RbKTl90tVhiYiIiIiIiIgTKdklHsfo5U39G0ZizT9F/sEMV4cjIiIiIiIiIk7kNsmuwsJCxo0bR0REBHXr1qVv376kpKRgMBiYP3++q8OTWsRacIajS6dh9A3EJ6yFq8MRERERERERESdyizW7bDYbgwcPJiUlhfHjxxMbG8vs2bO57bbbAOjYsaPTY2ra7xo6Pn83gc3DKD51hs0ffM2WKQucHoecc2D2OA59PgGD2RufiDbEjv0Gk2+gq8MSD7X7FHyx+9zj1zfBHVEQE+CqiDzT4TPwVda5x+PXw6BIaFcPDAbXxSUitVeRFb4/CF/vgV/zIbgO3BwBN4aBj1v0fEVERKrmaD7M33Pu8Zi1MCgKOoZcPX1ot3jLnzp1KgsXLiQ1NZW2bdsCYLFYiI6OJiQkhGbNmjk1nrDe8XR740FWPvEuh5K3YK7rjV94fafGIGWF3fMqjW97xtVhyFXg80x7cut88zLhs0z4c1u4p7lr4vI0PxyCF9ZAsfVc2cK98M1eGBJjP9dXy5u1iFyaEwXwaDKk5dinL1ix/157DD7eAR90h8a+Lg5SRESkBqX8Cn9OgfySc2VLD8Di/XBLBIxNANNV0Id2i2mMkydPZujQoaWJLgCTyUR0dHTpqK78/HwefvhhWrRoQfv27fnTn/5UY/F0fO5uNr71BQdXbsJWYqXo1BlOpO2tsfZEpPb4+QhM3gQ27D9nnc3H/GMLrDjkgsA8zM4ceP4Xe6KrvPM8ZxfMzXRFZCJSmz2/BtJz7H+ffb04+/tAHjzxM1ht5T1TRETE/R3Mg6dWQ0GJY/nZ976v98JHO5wflyvU+mRXeno6mZmZDBo0qMy2vXv3lia7nnvuOXx8fNixYwebNm3i1VdfrZF4zHW9qZ/QnLoNgrntx7e5a+M0+n7yPP4RDWukPRGpXWZmVPzCafytjlTN3Ez7m3JFn0lnZECJPrSKyG+2nbCP4LJeZLsV2HUKko84MSgREREnmrcbCq0V96Fn7yqbDPNEtX4a4/79+wFo2NAxmbR9+3aysrLo2LEjp06dYubMmezbtw/Db3NaGjVqdMltBAQEUFhYWKa8ubkezwX2dCirE+yHwWgk8vddWTpkAmeOnaTLK8PpM/1Zvv7ds5d7eFeVPn0s7Cw+Xmk931bdaD4hqabDKVefPhby0pJd0rbUfkYff9rOOlZhHSuQmg2+9cMoya24rlxc3EcHMQeEVFjn13wIbdudMzvXOikqz9fus3wAvL19XByJZ9N5rhmN7h5Pg9uew2A0XbSOraSY+ybOYP+HjzgxMhEREedo+e42vBvFVFgntwjCrruZUxu/c1JUV85qvdhXWJWr9SO7QkNDAcjIODdUwmaz8fzzz2O1WunYsSM7d+4kNDSUl19+mc6dO2OxWFi5cmWNxFN0yt5B3TptIaf2/UrJmULWvTab0PbRWrfLhVpNTNJ6XVLjjD5+l17X+9LrSllG70tbVMfo41/DkYiIuzD6+IOt8k6xXjdERMRTmS7xPe5yPte4q1o/sisuLo7Y2FhefPFFvLy88Pf3Z8qUKaxfvx5fX19atWpFamoqu3btomPHjrzxxhusXr2aW265hYyMDAIDK78bX25ubrnlh1O2s2jgWIeyotw8Tu09AjbNnblcy5cn0ahL60rrpR6DUaucEFA5li9PIiHUNW1L7VdshX7fwuniiuv5mODonnR8Lj64QCox+Hv7HS8re6XdsnIJTbTYdLXp/NtNhQsKClwbiIfTea4ZczPhjU0V1zGazPx5+F088vpdzglKRETEiUb+CJuOX3xK/1k/ffM5LYKcElKVrFq1ip49e1ZesRy1fmSX2Wxm3rx5NGnShGHDhjF69Gj69+9P79696dChA0ajkWbNmmE2mxkyZAgAXbt2pX79+uzYUTMrr6XNXELcqN/jGxaKyduLjs/dzdENOzm9/2iNtCcitYPZCAOaQUU3LzECf4hAia4qGhRVcaLLCFzXACW6RKRU/3Cocwk924HOvYm3iIiI09weVXGiywi0CcYtEl1VVeuTXQDx8fEkJyeTl5dHWloaDz/8MOvXry9dnL5+/fr06dOHpUuXArBjxw6OHDlCbGxsjcSz6b357P9+PQOWvM7gdVPxbRTC8pFv1EhbIlK7DIuF+j7lv3gagWBvGN7C2VF5noHNoGVg+YlFI1DHBI+3cXZUIlKbBdaBR+MqrnNfLIR7/swNERG5Sv0uHBJCyu9DGwCjAf7c1tlRuYZbJLsudObMGdLS0kqTXQAffPABkyZNon379tx9993MmjWL4ODgmgnAZmPtxP/wabuRfNp2ON8Pn6xRXSJXifo+8FFPuKac6a7xIfZtjeo6Py5PU9cMH3SHPk3KvlnHBMCH3aHVVfCNlIhcnnubwwvtIdDLsdzXBI+0hscrSYaJiIi4My8jvHMd9G9qT2ydr5k/vN+dq2bZnlq/Zld5Nm7cSElJiUOyKyYmhqSkJNcFJTVuz9THOZOZSuA1/Wky+MXS8owJt1CSl4PBZCbm2bmYA+03Csjblcq2Z66l05dFFB0/xK6/3w1A4dG9NPz94zQaMNoVhyEeoIkvfNADMnNhQ7a9rH09aF75EoFyGQLrwOvXwqEz8MuvUGSFlkHQNhgMFc0lFZGr2h3R9innPx2BZ36xly25EXzcstcrIiJyeXzN8Mo18EQb+PkIFFiheYD9i/mrqQ/tlm/7Xbt2xaYF4q8qp9PXYDCaafXaj+z82x0UnTiMV3AjAJq/8CUGsxfHls8i+4fZNLzlCQB+/XYKvjHXAOBVrzGtJiYBsOvvQwjqdLNLjkM8S3SA/UdqVuO6cIvW2BGRy1DHBJYm5x4r0SUiIleb+j7wh6u4D+2W0xjl6nN6x2oCOvQFIKBdb/Iy1pZuM5jtcxWsRfn4RNjnJ+QfSMcc2ABTXcdMhK24iMLDmfiEt3RS5CIiIiIiIiLiTEp2iVsoOX0Ck699jpixbgAlp0+UbivOzWb7c9058s07+DS1J7uOfP02DX//WJn95G5Owr+dxRkhi4iIiIiIiIgLKNklbsHkF0xJXg4A1jO5mPyCS7eZA0Jo/fpPhN87gcML/knhsQOAferihU6kLCC460CnxCwiIiIiIiIizqdkl7gFv5ZdyN20HIDcLSvwje0EgM1qxVZSDIDJNwijlw/5e7eSl5lK+vibyMtMZc/UJ0r3c3rHavxadnX+AYiIiIiIiIiIU2i5TnELfi2u5dh3n5D2l14EdryRouyD5KxfQnDXW8mY8AcwGDF6eRP15Cd41WtMYEIiADvGJdLsT+8AkLdrPb5R8RiMyvGKiIiIiIiIeColu8RtNHvoPYfHvjEJALSa9MNFn9Py1WXn1e9I5GP/rpHYRERERERERKR20BAXERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIbW7JJaJzYQpvVwXdsiIiKulJSUxPDhw4mMjCQyMpIZM2Y4bJ81axZNmjQhIiKCESNGYDQa6dy5M//85z8d6g0bNoydO3fi7e3NzJkzCQ8P5+2332bOnDmYzWY++eQToqKieOihh5g2bZozD1FERESkRinZJbWOvxckhLo6ChEREdcZOXIkY8eO5YknniA5OZlu3bqVbvv666+ZO3cu2dnZLF68GH9/f+677z527NhBy5YtS+u9/PLLREVF8d133/Hee+8xadIk5syZQ3JyMsnJyXzwwQf8/e9/p0GDBuzcuZPmzZu74lBFREREqp2mMYqIiMglS0pKIjo6GovFwrBhw8psnzhxIunp6RXu4/HHH6dXr15MmjTJofzbb7/FYrFgsVgIDQ0lNTUVgA8//JB+/fphsVgoKioqrf/WW2+RmJgIwLZt25g8eXIVj672adeuHfv37y99nJ2djY+PDwaDgdDQUPz9/QEwmUwYDAaH50ZFRZXZFhERQUFBASdPniQkJAQAi8XCokWLnHA0tU9NXs8X237h4zNnznDzzTfTu3dvhg8fDsDKlSu57rrr6N69O2+++Sbgude4iIhITVCyS0RERC7LyJEjSUpKIigoiOTk5NJyq9XKxo0badGixUWfu2bNGsxmMz/++CPr1q3j8OHDpdtuuukmkpKSWL58OTExMcTHx7Nnzx42bdrEd999R1JSEl5eXgAUFRWVJsMA4uLiWLduHTabrfoP2IWSk5OJjY0tfZyRkUFkZKRDnS1btnD06NFyz7vVamXSpEmMHDkSgJ49exIXF8fDDz/MAw88AEBkZCQ7duyouYOo5Wrqei5v++rVq8vUX7JkCT179uSHH37Ay8uLzZs3ExMTw4oVK/jpp5/45ptvyMvL89hrXEREpCYo2SUiIiJX5MJRRxs2bHCYRlee1atX07dvXwB69+7N2rVry9T55Zdf6Ny5MwaDgSVLlnD69Gn69u3L+PHjS+vMmjWLIUOGODwvJiaGLVu2VOGIao/p06djsVgIDw8nISHhovVycnJ47LHHmDp1arnbx40bx913301MTAw5OTl88cUXpKen89VXXzmcT6mZ6/nC7WvWrClTPzo6mtOnTwNw6tQpgoKCCAsLo06dOoB9ZJ7RaO+ye9I1LiIiUpOU7BIREZErcuGoo/T09NKpcxdz4sQJAgPtdwMJCAjgxIkTZerMnz+fgQMHAnDkyBEMBgPff/89mZmZpKamYrVaWbx4MTfeeKPD8zxphNLZ0UYTJkxwKI+NjSUrKwsAm83GiBEjeOWVVwgLCyuzjy+++ILs7GxGjBgBgMFgwM/PD7PZTEhISOm5z8rKqnD00tWiJq7n8rZf+Dg2NpYff/yRuLg4DAYDERERpc9funQpzZs3x8fHB/Csa1xERKQmaYF6ERERuSzTp09n2bJl9OzZ86KjjrZu3cojjzziUHbTTTcRHBxMTk4OALm5ueUuir58+XL++te/AhAUFETv3r0BuP7660lLSyMjI4MBAwZU4xG5j5CQEPLy8gD7elPff/89R48eBeDNN98kPDycWbNm8eyzz/LnP/+Z8PBwLBYLN9xwA2PGjKFbt2706NGDkpIS3nnnndL9nJ3meDWqyev5wu3l1Z8xYwZ33XUXjz76KE8++SQ//fQT3bt3Z9++fbz22mssWLCgmo9YRETE8ynZJSIiIpfl7J0CL9SiRQu+/PJLANq0aUNSUlKZOr/88gtz5szhlltuYcWKFdx5550O23ft2kXTpk1Lp3B169aN2bNnA7Bp0yaGDBnCsmXLSEpKYtasWaSmpjJt2jRGjRpFVlYWPXr0qOajdb6zi/RfzIABA1i2bBmJiYlkZ2eX2f7ss88ClI4AO99LL73ESy+9VPq4uLiYI0eOOIxoutrU5PXcpUsXh+3PPPMMc+fOdaifmZlZerOAsyPuCgoKeOCBB5gyZUrpTQgAj7nGRUREapqmMYqIiEi1iI+PJy0trcI61157LQUFBfTq1Yv4+HgaNWrEoUOHeOONNwDHKYwA11xzDcXFxVgsFvLy8ujatStjxoxh6dKlfPvttyQkJDBq1CjAvnh7u3btau4Aa4n777+/9C6UVWU2m5k+fXq17MvTVMf1fOH2rl27lql/zz338PHHH2OxWEhNTeWGG25g9uzZbN26lQcffBCLxVK6ltjVco2LiIhUlcGmW7pc1OGU7SwaWPabPrky/edPoFGX1q4OQ0RELqLzb7Ol1lRhhuCECRO46667nL4G1LZt25g/fz4vvPCCU9u9EtVxnuXSVPVcu+p6Lo87XeMiIiLVYdWqVfTs2ZOVK1de9shmTWMUERGRalPedDBniIuLIy4uziVti+dy1fVcHl3jIiIil07TGEVERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYWrNLap1TRZCR45q2YwPB38s1bYuIiIiIiIhI1SnZJbVORg6MWuWatqf1gIRQ17QtIiIiIiIiIlWnaYwiIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEY2iBevEIaWMsnN6ejMHshcFkxie8NWFDJxIY38/VoYmIiIiIiIiIE2lkl3iMsKET6Tj3FB1mHMavVTd2TrqVktMnXR2WiIiIiIiIiDiRkl3icYxe3tS/YSTW/FPkH8xwdTgiIiIiIiIi4kRKdonHsRac4ejSaRh9A/EJa+HqcERERERERETEidwm2VVYWMi4ceOIiIigbt269O3bl5SUFAwGA/Pnz3daHPdmzHL4uX/Ppwz47k2ntS8Xd2D2OFLvCWbTH6PIy9xA7NhvMPkGujosEZFaL78Y/pd17vHEDbDluOvi8VTFVlh24Nzjcesg5Vew2VwXkyey2iD5CIxZe65s+UH7+RcREZGrg1ssUG+z2Rg8eDApKSmMHz+e2NhYZs+ezW233QZAx44dnRbLf2Pvc3g84Ls3yZy/ymnty8WF3fMqjW97xtVhiIi4lYwceDQZjhWcK5ufBV9lwYAIGJMAJoPLwvMYR87Yz3PmqXNli/fDon1wXQN441qo6xa9strtVBE8tRrWZ4PxvOv22V+gRSC8ex2E+rguPhEREXEOt+hWTZ06lYULF5Kamkrbtm0BsFgsREdHExISQrNmzVwSV/2EWIJbNiVj7nKXtC8iIlIVuUXwyE9wotCx/OwAmAV77YmBR+OcHppHKbHBYz9D1inHcutvI7pW/wqvpMJrnZ0emscZuw5Ss+1/Wy8YMbczB55KgRm9wKAEroiIiEdzi2TX5MmTGTp0aGmiC8BkMhEdHY2Xlxe7d+/m1ltvLd124sQJcnJyyM7OrtG4WtzTl/3fr+fMYc31EBER9/PNXsgurLjOnF3wQAvwc4seQ+206jDsyr34dhv26Y2Pnoamfk4Ly+Nk5MDKwxffbgW2noA1R+HaBs6KSkRERFyh1ndd09PTyczM5J133imzbe/evQwaNIioqChSU1NLy0ePHk1xcfEltxEQEEBhYdnefnNzPZ4L7Fnuc8x1vYke2IMfn3j3ktu52vXpY2FnceWJQd9W3Wg+IammwylXnz4W8tKSXdK2iIizxUz8Ad/YLhiMF1/CM78EovrdTc7PXzkxMs/S9PGPCO5xFwbTxbtdVpuNrg+M4egCrQN6pRreOY6Gg16s8Hq2lRRz58sfc+DfjzkxMhEREbkSVuuVL7hZ65Nd+/fvB6Bhw4YO5du3bycrK6vMel2FhYX897//ZfHixTUaV9Qt3Sg+U8i+ZWsrryw1rtXEJFeHICLidkx+9SpMDJTW8w1yQjSey+QbVPm8OWsJJj/dVKUqTL5BYCuh4vsv2XTzGhERkatArU92hYaGApCRkUGXLl0A+4L1zz//PFartUyya8GCBYSHh3PNNddcchu5ueXPLTicsp1FA8eWu63Fvf3Y+VkSthLd2udSLV+eRKMurSutl3oMRrlozf/ly5NICHVN2yIizvbEz/DzkXNrdF3M/Jkf0rXBh06JyRO9vgnmZVZ8ng0mM2+Nf4HbP3nBaXF5mv/uhH9uqbiO0eTFkw/cxeOv3+WcoEREROSK5eTksGnTJtq3b3/Zz63861wXi4uLIzY2lhdffJHPP/+cRYsWMXDgQNatW4evry+tWrVyqP/RRx8xYsSIGo0psHkYDTu3Ysec72q0HRERkZp0a7NKEjBAIx/oXN9ZEXmmgZWcZ4A6RvhduFPC8Vj9m4K5kgF0NuAW19zXSERERC5TYGAgPXr0IDDw8kdl1/pkl9lsZt68eTRp0oRhw4YxevRo+vfvT+/evenQoQPG86Zf7N+/nx9++IF77723RmNqMaQvh1dvIzfzUI22IyIiUpOubwwdQ+xJrQsZsCcGnmoHJt25rkpaBcHvm1Zc56HW4O/lnHg8VYg3jGhZcZ1BkRDl75x4RERExHVq/TRGgPj4eJKTHRcNf/fdd+ndu7dD2YwZM/j9739fOvWxpqyd8J8a3b+IiIgzmI3w1nXwaip8d8Ce3Dor0AuebQ+JYa6KzrOMS7Ans77YDcXnnei6JniwNdwb46rIPMsfW9pHd32Ubr+5wllmAwyJgcfauC42ERERcR63SHZd6MyZM6SlpTF69GiH8k8++aTcuzaKZynOzSb9rzeQvz+NjnNPOWzLy9zAng8ewWCuQ/TomdRpEEH+wQz2fvgY1qICGg14iuCuA1wUuYhI7eNnhr91hgN5sOKQPUEQ4Wcf9eVV68d/uw+z0Z48HNkSlh+EnCJo6AN9moCvW/bGaieDwT66685o+3k+WgDBdeznObiOq6MTERERZ3HL7tXGjRspKSkpszj9jh07XBSROJOpbgAtXl7KrtfvLLPt4NxXaP6Xryg6fpBDX06m2YPvcvDTl4l+5lPM/sHOD1ZExE2E+cLdGl1U40K8YVCUq6PwfP5eWptLRETkauaWya6uXbtis9kqrygeyWD2whwQUu42a/5pvIIb4hXckIKDGViLCik8upfdb90PBgORj07FK7iRkyMWEREREREREWfRBAXxKDab1eHv4pyjnMnaTNToGTS6ZTSH5r3mwuhEREREREREpKYp2SUexWAwOvxt8guibmR7zP718G/bi/z9aS6MTkRERERERERqmltOYxS5GKO3L0Unf6Xo+EG8m8Ri8vHDWMcHa1EB+Xu3UadhlKtDFBEREREREZEapGSXuKUd4xLJy1zPjnGJhA0Zz6ntyf/f3p3HR1Xf+x9/TRY2w2JQFjVAIKgBBFIQlEWGRa5LUVGpGxWt/al1u7SutdBLrRvX9tZrpbaodUHRtlxbpEVFWiIoS0RAEFkCQgQUFBDZQiDJ/P6YEoyBsCUzmcPr+XjkQc73nDn5nPF45sx7vt/v0OzSu2l+xUhWPnwJoZRUMoe/CEDTi+9k+cj+hJKSafWfz8e3cEmSJEmSVK0Mu5SQTv3l1HLLae16AVCvdQ6nj36v3LoGnQfQoPOAmNUmSZIkSZLixzm7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFRigSiUTiXURNtXvbTr5a8mm8ywiM47NbUKt+vYNut30PrNgag4L2I6sBpKXG529LkiRJkqSjZ9glSZIkSZKkwHAYoyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICIyXeBUiSJEmSpGPX7m07+WrJp/EuIzCOz25Brfr14l1GXBl2SZIkSZKkuPlqyae8cfGIeJcRGOdPfJCm3U6Pdxlx5TBGSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCoyECbt2797NyJEjycjIoG7duvTr14+8vDxCoRATJ06Md3kKqK93w/iV8MsFMHohvLsBSiLxrkqSFInAh5vh1x/BAwvgmWWwvjDeVUmSpKoUSk6i2y+v56qPn+PqpS/Q49c/Irl2arzLUgJIiXcBhyISiTBkyBDy8vIYNWoUWVlZjB8/nsGDBwOQk5MT5woVRK+thsc+gj2lkByCCPCX1ZBxHPymO7RKi3OBknSM2lIEd70PCzZHP7ULhaA0An9YBt/PgtuyISkU7yolSdLR6njHpTTr0YGJ/e6kZE8x/Z+/ly4jvk/eyD/GuzTVcAnRs2vs2LFMnjyZqVOnctNNN9G/f3/Gjh1LcnIy6enptGjRIt4lKmDeXgcPL4wGXRDtzVX67x5d63bCze9F32xJkmKruBRumw0LN0eXS4leoyNEf15cAc8sj2OBkiSpyrS9pj+LnniNnes3U7RpKwt+/WeyrggTSkqIKENxlBBnyOjRoxk6dCjt27cva0tOTiYzM7OsV9fy5cs5++yzOfXUUzn77LPJz8+PV7lKcJEI/G4pHKhTQGkENhbBXz+NaVmSJKLDyZd+HQ25DuSFfNi+J2YlSZKkalCrQT3STj6RzYtXlbVtWrSKWvXrkZZxYhwrUyKo8cMY8/PzWbVqFU888USFdWvWrOGyyy4D4Oabb+bWW29l6NChvPTSS9x0003861//Ouj+t27dSrNmzSguLiYUcsyDoG6bLmQ9OrPSbSKRUv7nnyu5uUOHGFUlSQJoceerNDhzEKHkA9/CFJVCmwtvYMs7L8WwMkmSdKTapBzPPQ16lWtLSasLwO6vd5a17f56BwCp/16n/evbN8zK4q/iXUaVqFWrFtu2bTvsx9X4nl3r1q0DoEmTJuXaly5dSkFBATk5OXzxxRfMmzePq666CoCrrrqKefPm8eWXXx50/4sWLaKwsJBIxFnHFZXSsMlBtwmFkg5pO0lS1Upp1LTSoKtsO6/RkiQltOLt0W+eSW1Qr6ytVsPjANiz3W+lUeVqfM+uxo0bA7BixQq6desGRCesv/feeyktLSUnJ4c1a9Zw8sknk5ycDESHOJ500kmsWbOGE088tO6Nubm59OzZs3oOQgll8VcwbMbBt8ts0pD5RU7cJUmxdPf78M7nlQ9jBPjD/zzCd//ySExqkiRJR2dD3lLeuHhEubbdW3eyfd2XpLdvxdaVnwHQuEMmu7ftZPuag3dsOZZNm5ZL026nx7uMuKrxYVd2djZZWVncf//9pKamkpaWxlNPPcX8+fOpV68ep512GvPnz493mQqQdo2gxXGwZkd0suMDucjvRZCkmLvwFJj2eeXb1EmGcLPY1CNJkqpP/sv/pOPtg9kwZwmlxSV0vvN7rPhTLpHSg33spWNdjQ+7UlJSmDBhAjfffDPDhg0jIyOD4cOH06BBA1auXElSUhIZGRmsW7eOkpISkpOTKSkp4bPPPiMjIyPe5SsBhUJwSzbcN3f/65OAxnXgkpYxLUuSBPRqGv1QYumWA/fuui4L0lJjWJQkSaoWC594jdrpDbgk9zeEkkKs/vtsPnjIOTl1cDU+7ALo1KkTs2bNKtf25JNP0qdPHyA6n1fnzp155ZVXGDp0KK+88go5OTmHPIRR+rYBJ8GITvDfi2D3t95NnXIcPN4dGtWKT22SdCxLSYInzoK782D+5n3toX//XJsFN5war+okSVJVipSUkjfyj+SN/GO8S1GCSYiw69sKCwtZtmwZw4cPL2v7/e9/z7Bhw3jggQc4/vjjefHFF+NXoALhkpbQrzlMXgu/+ija9sRZcNaJkOQXd0pS3DSqBWN7wuItcN2/51j80enw3Qxo4pczSZIkHfMSMuxauHAhJSUl5OTklLWdfvrpzJkzJ45VKYga1IIrW+8Lu3r45V6SVCOEQtDh+H3LP7A3lyRJkv4tIcOu7t27E4lUNnW4JEmSJEmSjkVJ8S5AkiRJkiRJqiqGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTASJuzavXs3I0eOJCMjg7p169KvXz/y8vIIhUJMnDgx3uVJUo1XGoHZX8CTH8P/Loa318Ge0nhXJUkC+KoIXvkEHl8MzyyHgu3xrkiS4q/VoLM5f+IvuWbFOC7P+128y1ECSYl3AYciEokwZMgQ8vLyGDVqFFlZWYwfP57BgwcDkJOTE+cKJalmW7kV7n4fPt2x71OOUuD4WvBgF+h+Yjyrk6RjVyQCY5fBc/lQHIHkUPTDid8vhf7NYVQO1E2IO3ZJqnpFX+9g6R/fpM6JDWl/43fjXY4SSEK8dI4dO5bJkyezYMEC2rdvD0A4HCYzM5P09HRatGgR5wolqeZaXwg3vgfb9kSXv9mZ6+vd8J+z4Zle0OH4uJQnSce0Z5fD08v3LZdE9v3+r89hZzE8cRaEQrGvTZLi7fPpCwFocd6Zca5EiSYhhjGOHj2aoUOHlgVdAMnJyWRmZpb16rrrrrvIzMwkFArx0UcfxatUSapxXlkJW/eUD7n2KiXag+APS2NdlSRp2x74Y/6B10eAWV/C/M0xK0mSpECo8WFXfn4+q1at4rLLLquwbs2aNWVh1yWXXML06dNp2bJlrEuUpBorEoGJn0bfMB1IKTD7S9i4K1ZVSZIApn4Guw8yd2JSCCZ9Gpt6JEkKiho/jHHdunUANGnSpFz70qVLKSgoKAu7evXqdVR/JxwOk5RU47M/xUmHP0dTgNq168S5EunwhFJq0eGVbQfdLgK06dSNXas/rP6ipCrk9VmJrMnlP6PJkBGEKrkHLSmNMH7SVB4+y7lqJAVXm5TjuafB0b2n1z59+4ZZWfxVvMuoErVq1WLbtoO/n/m2Gp/uNG7cGIAVK1aUtUUiEe69915KS0udnF6SKhEp3k1p0c5D2rZku+NkJCmWSrZvrjToAqC0hJLtm2JTkCRJAVHje3ZlZ2eTlZXF/fffT2pqKmlpaTz11FPMnz+fevXqcdppp1XJ38nNzaVnz55Vsi8FT9fXo/8WFRXFtxDpCDz0IUws2P+cXRD91KPD8TB33YoDbCHVXF6flcg27oIL3o7OnXggoeQUnr/zSnr995WxK0ySYmxD3lLeuHhEhfZQUhJJqcmEUlIgFCK5diqRSITS3cVxqDJxTJuWS9Nup8e7jLiq8WFXSkoKEyZM4Oabb2bYsGFkZGQwfPhwGjRowMqVKx16KEkHcU1rmLwG9pTuP/CKAP+vaj43kCQdhhPqwOWt4M+r9r8+CWjbEM5usv/1khR0bS4/h17/e1vZ8vdXv8L2NV8wodstcaxKiaDGh10AnTp1YtasWeXannzySfr06ROniiQpcbSqH/3a+jvzYPu3PgRLCcGIzr6RkqR4+Ul72LEH/rE2Gm5980OJ0xvB490hORSn4iQpzlb8OZcVf86NdxlKQAnZLaqwsJBly5aVm6/rjjvu4JRTTmHt2rUMGDCA9u3bx7FCSapZupwAbwyEEZ32td3RDt4cCN/NiF9dknSsS0mCX3wHXg3Dla33tY85G57vDem141aaJEkJKyHDroULF1JSUlIu7HriiSdYu3YtxcXFrF+/nsWLF8exQkmqeeqmwCUt9y1fmwWNfBMlSTVCVgP4SYd9y91PhCR7dEmSdEQSYhjjt3Xv3p1IpJKZPCVJkiRJknRMSsieXZIkSZIkSdL+GHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTASJiwa/fu3YwcOZKMjAzq1q1Lv379yMvLIxQKMXHixHiXJ+koRCLw/pfwfD68kA8ffRVtkxLV6u3w0kr443LI/RyKS+NdkSRJsVMSgfc2wHP5MG4FLPs63hUpESXVSqHHr27mstljuCZ/HIPffYLTf3B+vMtSgkiJdwGHIhKJMGTIEPLy8hg1ahRZWVmMHz+ewYMHA5CTkxPnCiUdqSVb4GcfwKc7yref1hAe6QIt0uJSlnREtuyGn8+DmV+Ub0+vBT/rDH2axaUsSZJiZt6m6Gvh+sLy7Z3T4aEu0LRufOpS4klKTqbwiy1MufKXbCvYQHq7lpz7ygh2fbmF1ZNmxbs81XAJ0bNr7NixTJ48malTp3LTTTfRv39/xo4dS3JyMunp6bRo0SLeJUo6Ap9sgxvfg7U7Kq7L3wo/fBe+KKy4TqqJdpXALTNh9hcV1321G+7KqxiCSZIUJB99BbfO2v/928LN0Xu7r3fHvi4lpuLCIub/96tsW70eIhE2L17NmilzadItO96lKQEkRNg1evRohg4dSvv27cvakpOTyczMJCcnh02bNnHBBRdw2mmnccYZZ3DppZfy5ZdfxrFiSYfi6WVQVAL7G+FVGokGBC+vjHlZ0hF5cy0s37r/83nvqNzHFztEV5IUXL9bAiWlB7i3Az4vhAmrY1yUAiOUkkzT7tl8taQg3qUoAdT4sCs/P59Vq1Zx2WWXVVi3Zs0acnJyCIVC3HPPPSxbtoxFixbRpk0b7rvvvjhUK+lQbd0N//x8/zdDe0WAv30aDb6kmu6vBRCqZH2EaG/GJc5bIkkKoPU7IW9j5fd2EH29lI7EWQ/fwJ7thaz8yzvxLkUJoMbP2bVu3ToAmjRpUq596dKlFBQUkJOTQ3p6OuFwuGzdWWedxVNPPXVYfyccDpOUVOOzP8VJhz/vAqB27TpxriQ4ap98Oqc+/uFBt9tRDMeln0jpzq0xqOrY4PlcPbKfXkNKoyYH3a7PRVewdc7fqr+gY4Tns4LGc1qJqt5pZ9PmwdyDbvf5jhJq165X/QUpobRJOZ57GvQ64PozRw3jxC6n8daQUZTuKY5hZYmpb98wK4u/incZVaJWrVps27btsB9X49Odxo0bA7BixYqytkgkwr333ktpaWmFyelLS0t56qmnuOiii2Jap6TDU7Lz0Lq3REqKKS3aWc3VSEevZOcWIocwRrFkh127JEnBc6j3dqWFh/+mVce2bg9cx0nndOSt7/2Cos2ePzo0Nb5nV3Z2NllZWdx///2kpqaSlpbGU089xfz586lXrx6nnXZaue1vv/120tLSuO222w7r7+Tm5tKzZ8+qLF0B0vX16L9FRUXxLSRgfjAjOpHpgbq7JwH9M1L4YOd+ZrDXEfN8rh5jl0V/KnN8Ldjw/puk1viPmhKH57OCxnNaiSoSgcunwafb981V+W1JwOXtG3Gf57e+ZUPeUt64eESF9m6//AHNe3XgzctHUbTJkR6Hatq0XJp2Oz3eZcRVjQ+7UlJSmDBhAjfffDPDhg0jIyOD4cOH06BBA1auXFlu6OFdd91Ffn4+kyZNckiilAB+cCoMn7P/dSEgFIKhbWJaknTELm0Jr3wCO/YcOMAd1haDLklSIIVC8MNTYeS8A6wHUpLgysyYlqUEdtwpJ9DuhxdQsms3l88ZU9a+Yc5Spl7zUBwrUyKo8WEXQKdOnZg1a1a5tieffJI+ffqULd9///188MEH/OMf/6B27dqxLlHSEejVFH7aEUYvjH4C+M1PAVOS4KHvQPvj41WddHhOqANPngV3zIav9+xrTyIafg1tA9e0jld1kiRVv/NPgQ2F8OSSaLj1zXu7Osnw2JnQqn68qlOi2bF2I883vzzeZShBJeTny4WFhSxbtqxsvq7FixfzyCOP8Nlnn9GjRw86d+7M4MGD41ylpENxWSt4fUC0l9det2XDP86FfifFrSzpiLQ/Hl4/Nxri7jUkE14Nw/D20U+9JUkKsuvawl/7le+d/5P20Xu7sw7+PS6SVCUSomfXty1cuJCSkpKysKt9+/aHNCmwpJqpWT340enw7PLo8nVt41uPdDSOS4mGuI8sjC7ffUZcy5EkKeYy0uA/28O4ldHlq52WQlKMJWTY1b17d8MtSZIkSZIkVZCQwxglSZIkSZKk/THskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgZEwYdfu3bsZOXIkGRkZ1K1bl379+pGXl0coFGLixInxLi/mSiIw8wv4yyr4xxrYsjveFUmSpCDaVQxTP4vec/zrMygqiXdF0pErjUDel9Hz+e+fwqZd8a5IOjort8Jrq6M/K7bGu5qqd9YjP2TI3N9z9fIXGTLvD3R74DqSUlPiXZYSQEKcJZFIhCFDhpCXl8eoUaPIyspi/PjxDB48GICcnJw4Vxhb//oMHvsIvvzGi3NKCC5tBT9uD6kJE2FKkqSaKhKBF1bAc/mwo3hfe1oK3HgaXNUaQqH41ScdrplfwCMfwueF+9qSQ3DhKXDPGVAnId4ZSVHrdsCo+TB/c/n2zukwKgdOOS4+dVW1Jc+9ydwHxlFcWETt9PqEx95JxzsuZcGv/xzv0lTDJcQlfezYsUyePJkFCxbQvn17AMLhMJmZmaSnp9OiRYs4Vxg7//wM7ptbsb04An9eBV8UwmNnevMpSZKOzlNL4Y/5Fdu3F8P/LIZdJfCDU2Nfl3QkZn8Bw+dEQ9xvKonApDXRAOy3Z0GKHxorAXy5C254FzYXVVy3cDNcPwPG9YFmdWNfW1X7evnafQuhEJHSCPVbN49fQUoYCXE5Hz16NEOHDi0LugCSk5PJzMws69V1ySWX0KlTJ3JycujduzcLFiyIU7XVp7gUfrUo+nvkANvkroe5G2NWkiRJCqD1hdEeXZUZu2z/b7SkmiYSiY6KiET2fw8dAd7fCNPXx7oy6ci8kB+9/pbuZ10p8PVueP4g1/BEcsZtl3DNinFc9dEfSW/fko/H/j3eJSkB1PiwKz8/n1WrVnHZZZdVWLdmzZqysOuFF17gww8/ZP78+dx111384Ac/iHWp1W72l/Bl0YGDLoCkEPy1IGYlSZKkAJr06cG3KY7A5DXVX4t0tBZ+BQXbD3IPDbzmPbQSwJ5SeP3T/Qdde5UCf18T7YEbBIue/BsvZ32fv57znyx7cQqFX3wV75KUAGr8MMZ169YB0KRJk3LtS5cupaCgoCzsatiwYdm6r7/+mqSkw8vxwuHwYT8m1hqfdwsn3fCbSrcpjcDfZszj1z3PjlFVx4YOf45OkFa7dp04VxJsPs+x4fMcGz7PseHzXD1OufUZGvW+klBy6gG3iRTvYeRv/sgNz9wRw8qCz3O66jU652oybn+u0m1KgekfraJ2+PTYFHWM8HyueimNmpH99MGT2V0lcEKLLPZsTIxPJdqkHM89DXpVus3X+evYvLiA3r+9g7cuHxWbwhJU375hVhYHIxSsVasW27ZtO+zH1fiwq3HjxgCsWLGCbt26AdEJ6++9915KS0vLTU7/wx/+kClTphCJRHjzzTfjUm91Ktl18P/AkdISSgsP/0SQJEnaq3TXduAgE4AmJf17O6lmKy08+HkaiZRS4j20EkBp0Y5D33bXoW+bKJJSk2ngnF06BDU+7MrOziYrK4v777+f1NRU0tLSeOqpp5g/fz716tXjtNNOK9v2mWeeAWDcuHHcfffdTJ48+ZD/Tm5uLj179qzy+qvS5iK4YEp02MCBhJKSeeCqPnzvfifRqEpdX4/+W1Tk81qdfJ5jw+c5NnyeY8PnuXq8/yX8aFbl24SSkvnHr+6kw7N3xqaoY4TndNXbUQz/8VblQ7pCoSR+cl5HbrjD570qeT5Xj1tmRudpPtBQxqQQdDoe5m76PKZ1HY0NeUt54+IR5dpS69ej5fnd+PTNPHZv3cnx2S3pNPwyPsv9ME5VJo5p03Jp2u3Y7qlas8ftASkpKUyYMIHmzZszbNgwhg8fzvnnn0+fPn3o2LHjfocefv/732fatGls2rQpDhVXn/TacFElXzyZFILja8EFp8SuJkmSFDxdT4DTGh74RjGJ6Nfbt28Uw6KkI3RcClyReeD1Sf/e5pJj5wveleCuzTrInF0RGNY2ZuVUn0iE1pedw2Wzx3DNinH0e+4e1v5zPnN+9my8K1MCqPE9uwA6derErFnlP1588skn6dOnDwDbt2/nq6++IiMjA4BJkyaRnp5Oenp6zGutbnd2gC92wbsbouFW6Td6eTVIhSfPhrQDT68hSZJ0UKEQPN4dfjQTVn9jBFgS0TdYbRrAf58Z3U5KBD86HT4vhCnrKt5D102BJ86Cxk4rpQRxVhO4ryOMXhhd3ns6770k39kBejWNR2VVa8/2QqZc8UC8y1CCSoiw69sKCwtZtmwZw4cPB2DHjh0MGTKEHTt2kJycTHp6OpMmTSIUwDuw2snwP90g78voN8b86989U+/qABdmQH2DLkmSVAVOrAMv94F/fgY/nx9t634ifLcF9GsOqTV+fIC0T0oSPPQduLRl9JvL34p+Bxb/2Q4GtYBGteJbn3S4Lm8FZ54A/7caxn8SbbuyNVzWElrVj2dlUs2QkGHXwoULKSkpKZucvmnTpsyePTvOVcVOUiia5p/VZN84+Ctbx7cmSZIUPLWT4YKMfWHXb/2yZyWwUCg6RLfrCfvCru9nxbcm6Wi0TIOfdNgXdt3ZIb71SDVJQoZd3bt3JxKpZJZ2SZIkSZIkHZPsgC5JkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskpQQcnNzyczMJBwOM2zYsArrx40bx9SpUwF4+OGH6d27N7fffnuF7a688krC4TBdunThkksuKWtfv349devWZe3atQBcf/31RCKR6jkYSZIkSXHV6/Fb6f7QDfEuY7+uWTGO9A6Z8S4joRl2SUoYN9xwA7m5uTRs2JBZs2aVWzdp0iT69+/Phg0bmDdvHjNmzCAlJYW5c+eW2+7VV18lNzeXG2+8kQsuuKCs/be//S3du3cvW+7evTvTpk2r3gOSJEmSdNSa9WjPef/3C67JH8c1+eM47/9+QbOz28e7rDKd7/we/V/86SFv/3LW99n80apqrCj4DLskJZwOHTqwbt26suXNmzdTp04dQqEQc+fOpU+fPgD069ePvLy8/e5j0qRJDBo0CIAtW7awceNGWrVqVba+b9++TJ48ufoOQpIC5mA9cB966CHy8/Mr3cftt99O7969efjhh8u1FxYWcsEFF9CnTx+uv/56AFavXk3z5s0Jh8Nce+21QPT1oEuXLqSlpZU9dsmSJYwePfpoD0+SVEOdMqAL544fwZqpH/Dn79zEn79zE2umfsC5r4zglP7f2e9jQslVF4WEUpKrbF+qOoZdkhLOrFmzyMrKKltesWIFLVu2BKLBVYMGDQCoX78+W7ZsqfD47du3s23bNpo3bw7AmDFjuPnmm8tt07JlS5YvX15NRyBJwXSgHrilpaUsXLiQtm3bHvCxc+fOJSUlhRkzZjBv3jw2bNhQtm7KlCn06tWLd955h9TUVD766CMALrzwQnJzc3nxxReB6HX/7bff5qyzzip7bHZ2NvPmzXNouiQFVPcHf8CKv+Sy+KnX2bNtJ3u27WTxU6+zcsI7dHvwBwBcnvc7Og6/jAtef4ihn7zMCZ3aAJB6XB3CY+/kmvxxXPLObzgp3Omgf6/Z2e25ZsU4Th06gMvff4qLpv4KgObndOS7b43m6mUvcNE/f02L884EoMV5Z3LGHYM5uW9nrlkxjmtWjCOpVkqlf+O6zyfQuFMbQslJXL38RRqdlhH92z3ac93nE2j53bMBqNukEdd++iqpaXWP7MkLMMMuSQnj2WefJRwOc/LJJ9O5c+f9btOoUSO2bt0KwLZt22jUqFGFbd566y3OO+88INpb4OOPPyYnJ6e6ypakY863e+B++OGHnHrqqZU+Zs6cOfTr1w+APn368MEHH5Sty8zMZMeOHUD0A4uGDRsC0et57969efnllwFITU0lPT29wr5bt27N4sWLj+6gJEk1ToM2J1G/ZVNW/e29Cus++eu7NGjVjAatox9wZw0J896dv+PlrO+z6d9DBDMv6cUnf53B+NOHsfC3f6XfH++hXrOKryPfllK3Nid0zuJv5wzn7+ffS/1WzRjwwn189OTfeKXd9Xzw0Ev0eerHpLdvxadvvs+iJ/7KumkLeDnr+7yc9X1Kdxcf0vFFSkrZMGcJzXudAUDz3mewddXnNO/VIbrc6ww2LfyEPdsLD2l/xxLDLkkJY2+PgQcffLBce1ZWFgUFBQB06dKF6dOnAzBt2jS6detWYT8TJ07k4osvBqLDYFauXMl5553H22+/za233gpAQUFBpT0QJEkH9u0euPn5+eWGiu9PZT1zs7KymDFjBtnZ2YRCITIyMmjevDnLli1jypQp/OEPf2DTpk0H3Le9dSUpmOqk1wegcMPmCusKv/gquk3j6GvLsnFv83X+OiKlpWVh0/rZH/PpG3lESkr5ZMJ0vvq4gFaDzj7o3w0lJfHBwy9TXFhESeFuMi/uwYY5S1g9aRaRklLW/Ws+n06ZS5shfY76GNe/+1G5cGvBr/5cFn4169mBz9/76Kj/RhAZdklKeOnp6ezcuROAZs2a0bFjR3r37k1RURFdu3Zl/fr1PPbYYwCUlJSwfPly2rVrB0SHt8yePZs333yTc889lzFjxgDRoOz888+PzwFJUoI6lB64H3/8MeFwuNzPo48+WmnP3BdeeIErrriCJUuWcMIJJzBz5kxq165NvXr1qFu3Lr1792blypUxOEJJUk2ya/M2AOo2rdgbq26T46PbbIq+tuxY92WFbXasLd+2fc2Xh9Szq7iwiKJ//22Aes0bs/3b+yrYQL3mjQ+6r4P5/N1FND2rHbUa1KNB65NY9bf3SK6VQr3m6TTv1YHPZyw66r8RRJUPFJWkGmLvG6IDueiii5g6dSoDBgxg5MiRjBw5smxds2bNuPvuuwFITk5m9uzZ+93H888/X/b7nDlzuPHGG6ukdkk6Vtxwww2MGDGiQnvbtm157bXXAGjXrh25ubkVtnn//fd55ZVXGDRoENOnT+d73/te2brS0tKy4Ynp6els2bKF7du3k5aWRiQSYe7cudx2220HrKugoICePXse5dFJkmqarSs/Y9unG8i8qAfrv9XDKfPiHmz7dANbP/kcgEhpxbkbjzvlxHLLaRkn8uW8g/cEjpSWllve+fmmCt/+mJbRhJ2fb9rv9odj8+LVREpLaff/vssX7y8lUlrK5+9+xKlXD6Bek+P54v2lR7zvILNnl6RAuPbaaxkwYECV7e+5554jKclLpCRVhU6dOrFs2bJKtznzzDMpKiqid+/edOrUiaZNm5b1zL366qt57rnnCIfDLFiwgHPPPZeZM2fStWtXevTowcCBA8u+dGTAgAHMnz+fAQMGlE1kv2LFCjp06FDtxylJir28nz9P1hV9aX/TIFLT6pJavx7tbvouWd/rS97I5yp9bLOz2pExsCuh5CRaX9qb49u1ZPU/9v/BeGVWTZxJ0+7ZtLywO6GkJE7u25mM/+jKygnR6VUKN37NcSefcMTfArl+5mLa3Xghn78b7cX1+XuLaHfjhXzxwXJKivYc0T6Dzp5dkiRJOmqV9cBNSkqiY8eO5OfnVzof4t6h5Ht9s2fulClTyq0bOHAgAwcOrLCPqVOnlltesmQJXbp0IRQKHcphSJISzJq33mfq0Ifp9JPL6Xx3tFfwpoWfMHXow2Xh0IGs+tu7tBnSh3PG/Cc7Pt/EtB/+ip2fHXgOyAPZtno9//rBf/Odn15Dz9/cyo61XzL9tifY/O+J8FdPmkXrS3px5Ud/JBQK8WrHGw55knqAz2csotV3z+bzd6Mf4nz+7kfUanCc83VVwrBLkiRJ1W5/wxtjITs7m+zs7Lj8bUlSbHz+7qJKg60J3W6p0Pbu8DH72fLg1s9azMtZ36/Qvm7aAtZNW7Dfx+zesp03L/uvQ9p/6N+jS74Zhi17cQrLXtz3oU/hhq94vvnlh1H1sccxOpIkSZIkSTXA8e1bUrqneL8T6uvQ2bNLkiRJkiTp3y7O/Q1pp5xQoX3NlA+YfsvjR73/AS//jKbdT6/Qvmf7LpJSk/ng4fHs3rrzqP/OscywS5IkSZIk6d8mhn9crfufes1D1bp/OYxRkiRJkiRJAWLYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYGREGHX7t27GTlyJBkZGdStW5d+/fqRl5dHKBRi4sSJ8S5PUhVYu2Pf71/uil8dkqTyikv3/T53I5RE4leLJOnYlFynFpfO/C3XrBgX71KUIGp82BWJRBgyZAjPPPMMI0aM4O9//zuZmZkMHjwYgJycnDhXKOlofL4Tbp8Fg/+5r+3CKXDfXNhSFL+6JEnw2mq48O19yzfPhO++DX//NG4lSZKOQTl3X8H2tRvjXYYSSEq8CziYsWPHMnnyZBYsWED79u0BCIfDZGZmkp6eTosWLeJcoaQj9UUhXD8DNhfBNzsKlAL/+gxWbIXnekP91HhVKEnHrhfy4bdLKrZ/uQtGLYAdJXBFZszLkiQdYxp3bM3JfTvz/i9epO+zd8W7HCWIGt+za/To0QwdOrQs6AJITk4mMzOzQq+uX/ziF4RCIT766KNYlynpCDy9PBp0le5nXSmweju88kmsq5IkbdwFY5ZWvs3ji2Hr7tjUI0k6NoWSk+jxq5uZff8zlO4ujnc5SiA1OuzKz89n1apVXHbZZRXWrVmzplzYNW/ePGbPnk3Lli1jWaKkI7SzGP6xZv9B1zdNWA0R54eRpJiatAZKD3Lt3VMKk9fGph5J0rGpwy0Xs2nRKjbM3k9XY6kSNXoY47p16wBo0qRJufalS5dSUFBQFnYVFRVx66238sorrxAOh4/ob4XDYZKSanT2t18d/hydybt27TpxriTYfJ6rXu2TTuPU/1140O02F0G940+gtHBbDKo6Nng+x4bPc2z4PFePU259mka9riKUcuBx5JHiPfz0139k2DN3xLCy4POcjg2f59jweY6NIDzPbVKO554Gvcq11W/VjNOuHcjr594dp6oSV9++YVYWfxXvMqpErVq12Lbt8N8L1uiwq3HjxgCsWLGCbt26AdEJ6++9915KS0vLwq6f//znDB06lFatWsWrVEmHqXR34SFtF4mUEtnj1zNKUiyV7t4FoVDlG4VClBbtjE1BkqRjTtNup1P3hIZc+t4TACSlJJN6XF2uXPxHpt3wmL29VKkaHXZlZ2eTlZXF/fffT2pqKmlpaTz11FPMnz+fevXqcdpppzFr1izmzp3Lo48+elR/Kzc3l549e1ZR5bHT9fXov0VFfm1ddfJ5rnqRCFyRC6u2lZ+c/puSgO5Nkvhgx/YYVhZ8ns+x4fMcGz7P1eO9DfCfcyrfJpScwl9H/5jvPPPj2BR1jPCcjg2f59jweY6NIDzPG/KW8sbFI8q1rZo0k89m7BsJcmKX0+j1v7fy+oC72LVpa6xLTCjTpuXStNvp8S4jrmr0uL2UlBQmTJhA8+bNGTZsGMOHD+f888+nT58+dOzYkaSkJN555x2WLFlCZmYmrVq1Yu3atfzHf/wHU6ZMiXf5kioRCsG1WQcOuiA6n9c1bWJVkSRpr7ObQKu0A98oJgGnNYSc9FhWJUk6lpQU7mbn55vLfoo2bYVIhJ2fb3ayeh1UjQ67ADp16sSsWbPYuXMny5Yt40c/+hHz588vG8J433338dlnn7F69WpWr17NKaecwltvvcXAgQPjXLmkg7nwFLi+bfT3b16M9v5+Vwc4q8m3HyVJqm5JIfjf7tCkbnR574DGvf+efBz8T7eDj3SUJKmqrJ+1mJezvh/vMpQgavQwxv0pLCxk2bJlDB8+PN6lSDpKoRDcmg09m8BfVsPCzdG27ifC5a2ivQYkSfFx8nHwahj+vib67bmbiuDEOjAoA87PgOMS7i5SkiQdKxLuNmXhwoWUlJSU9ez6ttWrV8e2IElHrXPj6I8kqWZJS4UrW0d/JEmSEkXChV3du3cnEqlslh9JkiRJkiQdq2r8nF2SJEmSJEnSoTLskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkKQ5yc3PJzMwkHA4zbNiwCuvHjRvH1KlTAXj44Yfp3bs3t99+e4XtvvzySwYPHkzfvn0ZO3YsAIMGDaJPnz7079+fjRs3sn79esLhMOFwmDZt2vD444+zefNmfvKTn1TvQUpSAjqc63Pv3r1JS0tj7dq1FbZ79dVXyczM5Ic//GFZ209/+lN69OhB7969WbRoEQC33norO3bsqKajkaRjk2GXJElxcsMNN5Cbm0vDhg2ZNWtWuXWTJk2if//+bNiwgXnz5jFjxgxSUlKYO3duue0eeOABHn/8caZNm8aNN94IwGuvvcY777zDddddx/jx42nWrBm5ubnk5ubSrVs3LrjgAtLT09myZQvbt2+P2fFKUqI4lOszwF/+8hcuv/zy/e7j3HPP5e233y7XdtNNNzFz5kyef/55HnnkESD6AcWf/vSnajgKSTp2GXZJkhRnHTp0YN26dWXLmzdvpk6dOoRCIebOnUufPn0A6NevH3l5eeUeu3z5cu677z4GDhzIsmXLAEhNTQVg165dZGdnl227Z88eVq1axamnngpA9+7dyc3Nrc5Dk6SEVtn1GaBZs2YHfGzjxo1JSUkp19aqVSsAkpOTy/Zxzjnn8NZbb1Vx5ZJ0bDPskiQpzmbNmkVWVlbZ8ooVK2jZsiUAW7ZsoUGDBgDUr1+fLVu2lHvsu+++y4MPPsiYMWP42c9+BkTfjPXo0YMnnniiXNiVm5tLOBwuW27ZsiXLly+vpqOSpMRX2fX5aIwcOZJbbrkFgHr16vHVV18d9T4lSfsYdkmSFCfPPvss4XCYk08+mc6dO+93m0aNGrF161YAtm3bRqNGjcqtb9++PW3atKFt27Z8/fXXAKSnpzNz5kwefPBBfvOb35Rt+/rrr3PxxRdXy7FIUpAcyvX5SD399NNkZmbSs2fPKt2vJGkfwy5JkuJk75wwDz74YLn2rKwsCgoKAOjSpQvTp08HYNq0aXTr1q3ctq1atWLjxo1s2LCBevXqUVpaSnFxMQANGzakTp06ZdvOmTOH7t27ly0XFBTQtm3bajk2SUpkh3J9PhKzZs1i8uTJjBo1qqxt586dFT7IkCQdHcMuSZJqmPT0dHbu3AlE54Pp2LEjvXv3pqioiK5du7J+/Xoee+wxAEaMGMGll17K4MGDGTlyJDt27KB///707duXRx99tOwbHOfPn0+nTp1IStr30j979uxywxolSZX75vUZYOjQoUyZMoWrrrqKf/7znwDceeedAEyZMoWhQ4fyxhtvlH2r43333UdBQQH9+vUruz5Pnz6dgQMHxvhIJCnYUg6+iSRJqmrhcLjSoOmiiy5i6tSpDBgwgJEjRzJy5Miydc2aNePuu+8GoGPHjmU9v/Z65513KuwvJyeHp59+umx58+bNNGrUiPr16x/lkUhSsBzO9fmll16qsP7Xv/41AAMHDqwQYu3v+jxp0iRGjx59dEVLksox7JIkqQa69tprq3X/6enp5ebzkiQdmqq+Po8ZM6ZK9ydJchijJEmSJEmSAsSwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGAkTdu3evZuRI0eSkZFB3bp16devH3l5eYRCISZOnBjv8iRJKlNUsu/3z3fGrw5JUkVrd+z7fU9p/OqQVLlej9/K9wte4ZoV48p+Tu7bOd5lKUGkxLuAQxGJRBgyZAh5eXmMGjWKrKwsxo8fz+DBgwHIycmJc4WSJEFxKTy7HF5dta/toqnQ/UT4SQdoXT9+tUnSsW751/CbxfD+xn1t570FV7eB69pCcih+tUnav+UvTWXOz56NdxlKQAkRdo0dO5bJkyezYMEC2rdvD0A4HCYzM5P09HRatGgR5wolSce60giMmAdTPyvfHgHyvoTrZ8Afe0GbBnEpT5KOaUu/hh++C7tLyrd/vQeeWgqfbodRORAy8JKkQEiIYYyjR49m6NChZUEXQHJyMpmZmWW9ulq1asXpp59O586d6dy5M2+99Va8ypUkHYOmr68YdO1VChSWwGOLYlqSJOnfHvkwGnQdaNTiP9ZC3sYDrJQUN60v7c1VHz/HJdMfp+N/XkooOSEiDNUANb5nV35+PqtWreKJJ56osG7NmjVcdtllZcsTJkygQ4cOsSxPkiQAJqyGpFC0h9f+lEZg7iYo2A4t02JamiQd05Z/DYu3VL5NUggmrIoOO5dUM3z87GTm/nIcuzZvo3HH1vT53XCSa9di/n+/Gu/SlABqfNi1bt06AJo0aVKufenSpRQUFFTZfF3hcJikpMRLiTv8eRcAtWvXiXMlwebzrCDxfK4epz/9KamNmh50u67nD2Fr3usxqOjY4PmsoPGcrnqNel9Fxh3PV7pNaQTeXPAJT/TOjk1RxwjP59gIwvPcJuV47mnQq1zb5kX7JkHd9OFK5v/qT+TcdYVh1yHo2zfMyuKv4l1GlahVqxbbtm077MfV+HSncePGAKxYsaKsLRKJcO+991JaWlou7Lrmmmvo2LEjt9xyC1u2bIl1qZKkY1hkT9GhbVe8p5orkSR9U+khX58PbTtJcVIaAefV0yGq8T27srOzycrK4v777yc1NZW0tDSeeuop5s+fT7169TjttNMAmDFjBhkZGRQVFTF8+HBuu+02XnrppUP+O7m5ufTs2bO6DqPadP1354CiIl+cq5PPs4LE87l6jF4I/7f6wPPBANROgtXT/0ZaaqyqCj7PZwWN53TV21IE502B4gMMM4fo++cbw9nc4fNepTyfYyMIz/OGvKW8cfGIcm2tLurBumkL2LNtJ8dnt6TTnUNY/fdZcaowsUyblkvTbqfHu4y4qvFhV0pKChMmTODmm29m2LBhZGRkMHz4cBo0aMDKlSvLhh5mZGQAULt2bW655RYuuuiieJYtSTrGDMmE/ysg+vWL+xECBrfEoEuSYqxRbbgwA17/dP+X6BCQHIJLW8a6MkmVOf26/+Ds0TeSlJpM4YYtrJzwDgt/+9d4l6UEUePDLoBOnToxa1b5BPfJJ5+kT58+AOzYsYPi4mIaNmxIJBLh1VdfpXPnznGoVJJ0rGpdHx7IgZ/PByL7englEf39zBPg9nbxq0+SjmV3dYh+QciCzfuuyxD9PSkEj3SFU46LY4GSKnjz0v+KdwlKYAkRdn1bYWEhy5YtY/jw4QBs2LCByy67jJKSEkpKSmjXrh2/+93v4lukJOmYc94p0KY+/Hk1TPscdpdGQ7DLW8F5J0NKjZ8pU5KCqW4K/O5seGNddMj56u1QJwn6nQTfy4xeqyVJwZGQYdfChQspKSkpm5y+devWzJ8/P85VSZIEbRvCzzpFfyRJNUetZLi4RfRHkhRsCRl2de/enUikkhkmJUmSJEmSdExyQIUkSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwSzpKubm5ZGZmEg6HGTZsWIX148aNY+rUqQA8/PDD9O7dm9tvv73CdldeeSXhcJguXbpwySWXlLWvX7+eunXrsnbtWgCuv/56IpFI9RyMRNWd019++SWDBw+mb9++jB07FoBBgwbRp08f+vfvz8aNG1m/fj3hcJhwOEybNm14/PHH2bx5Mz/5yU+q9yAlSZIkBZZhl1QFbrjhBnJzc2nYsCGzZs0qt27SpEn079+fDRs2MG/ePGbMmEFKSgpz584tt92rr75Kbm4uN954IxdccEFZ+29/+1u6d+9etty9e3emTZtWvQekY15VnNMPPPAAjz/+ONOmTePGG28E4LXXXuOdd97huuuuY/z48TRr1ozc3Fxyc3Pp1q0bF1xwAenp6WzZsoXt27fH7HglSZIkBYdhl1SFOnTowLp168qWN2/eTJ06dQiFQsydO5c+ffoA0K9fP/Ly8va7j0mTJjFo0CAAtmzZwsaNG2nVqlXZ+r59+zJ58uTqOwjpG47mnF6+fDn33XcfAwcOZNmyZQCkpqYCsGvXLrKzs8u23bNnD6tWreLUU08FoqFubm5udR6aJEnSMeFgvfYfeugh8vPzK93H7bffTu/evXn44YcrrMvLy6Nnz5706NGDESNG8Oabb5b13G/cuDELFixg8+bNdOnShbS0tLLHLVmyhNGjRx/9AUr7YdglVaFZs2aRlZVVtrxixQpatmwJRIOrBg0aAFC/fn22bNlS4fHbt29n27ZtNG/eHIAxY8Zw8803l9umZcuWLF++vJqOQCrvaM7pd999lwcffJAxY8bws5/9DIiGZT169OCJJ54oF3bl5uYSDofLlj3PJUmSqs6Beu2XlpaycOFC2rZte8DHzp07l5SUFGbMmMG8efPYsGFDufU5OTm89957zJw5k1mzZtGjRw9yc3OZNm0arVu3plOnTtSvX5+3336bs846q+xx2dnZzJs3zylaVC0Mu6Qq8OyzzxIOhzn55JPp3Lnzfrdp1KgRW7duBWDbtm00atSowjZvvfUW5513HgCFhYV8/PHH5OTkVFfZ0gFVxTndvn172rRpQ9u2bfn6668BSE9PZ+bMmTz44IP85je/Kdv29ddf5+KLL66WY5EkSVLUt3vtf/jhh2U96w9kzpw59OvXD4A+ffrwwQcflFu/t+d+SUkJJ510EvXq1QPg/fffp2vXroRCIVJTU0lPT6+w79atW7N48eKjOiZpfwy7pCqw95OSBx98sFx7VlYWBQUFAHTp0oXp06cDMG3aNLp161ZhPxMnTix7w7969WpWrlzJeeedx9tvv82tt94KQEFBQaWfvEhVoSrO6VatWrFx40Y2bNhAvXr1KC0tpbi4GICGDRtSp06dsm3nzJlTbm46z3NJkqSq9+1e+/n5+eWmTNmfQxmhMn78eLKzs2nUqBEpKSlA+fc2B2JvflUXwy6pGqWnp7Nz504AmjVrRseOHenduzdFRUV07dqV9evX89hjjwHRT0KWL19Ou3btgGi33tmzZ/Pmm29y7rnnMmbMGCAaKpx//vnxOSAd8w7nnB4xYgSXXnopgwcPZuTIkezYsYP+/fvTt29fHn300bJvcJw/fz6dOnUiKWnfS9Ls2bPLDWuUJEnSkTuUXvsff/xx2Vxbe38effTRQxqhcvXVV7N06VI+++wzFi1aBETft+ztESbFWkq8C5AS3d4XggO56KKLmDp1KgMGDGDkyJGMHDmybF2zZs24++67AUhOTmb27Nn73cfzzz9f9vucOXPKvtlOqg5VdU537NixrOfXXu+8806F/eXk5PD000+XLW/evJlGjRpRv379ozwSSZIkQbTX/ogRIyq0t23bltdeew2Adu3a7fcLgt5//31eeeUVBg0axPTp0/ne975Xbn1RURG1a9cmKSmJ+vXrU6dOHT755BNOOeUUatWqVWldBQUF9OzZEwqP/Nik/bFnl1TNrr32WgYMGFBl+3vuuefK9YCRYq2qz+lvS09PLzeflyRJkqpHp06dyr41+0DOPPNMioqK6N27N506daJp06blevO//vrrhMNhzjnnHE455RTatm273yGMAwYMYP78+QwYMICPPvoIiH75UYcOHarn4HRMs2eXJEmSJEkBVVmv/aSkJDp27Eh+fn6l86XunVJlr2/25h8yZAhDhgwpt/7HP/5xhX1MnTq13PKSJUvo0qULoVDoUA5DOiyGXZIkSZIkHaP2N7wxFrKzs8nOzo7L31bwORZKkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTASJuzavXs3I0eOJCMjg7p169KvXz/y8vIIhUJMnDgx3uUpwL7eve/34tL41SFVhd0l+37fURy/OiRJknT0dn3j3m6X93ZSmZR4F3AoIpEIQ4YMIS8vj1GjRpGVlcX48eMZPHgwADk5OXGuUEG0vhB+twSmrNvXNuhtuKoNDG0DSaH41SYdrt0l8Gw+/GXVvraBb8J3M+CWbGhYK361SZIk6fAUFsMflsFfC/a1DXwLLm4JPzod6iXEO/1Dc0r/75Bz75U0aHMSxdsL+ej3k1j81OvxLks1XEL8LzB27FgmT57MggULaN++PQDhcJjMzEzS09Np0aJFnCtU0KzfCcNmwFdF8M3OXF8WwRMfw4qt8IscCBl4KQEUl8KP82DOl+Xbi0rhtQKYuwn+2MvAS5IkKRHsKoYfzYTFWyDyjfadJfDqJ7BgE/yhZzACr5P6dOLsx27i3TueZP2sxaTUrc1xJ58Q77KUABJiGOPo0aMZOnRoWdAFkJycTGZmZlmvrl27dvGjH/2Itm3bcsYZZ3DjjTfGq1wFwK8+qhh0fdPktfDO+piWJB2xvxZUDLr2igCfboffL41pSZIkSTpCL30CH20pH3TtFQGWfg0vrohxUdUk554rWfj4//H5u4uIlJSyZ3shW5atiXdZSgA1PuzKz89n1apVXHbZZRXWrVmzpizsuueee6hTpw7Lly9n0aJF/PKXv4x1qQqILwqjQVZl03MlheAvq2NVkXR0/rwKKuuEGAEmrYl2h5ckSVLNVRKBCasq3yYC/N/qxJ9vOKVubU7o3Ia6JzZi8Iz/5YqFz9Dv+XtJy2gS79KUAGp8x8Z166ITJjVpUv6EXrp0KQUFBeTk5LB9+3ZefPFF1q5dS+jf48qaNm16WH8nHA6TlFTjs78KOvx5FwC1a9eJcyXBkdb5P8j8WeVjwEsj8N4nm6kdbh6jqqQjlJzCGa/uOOhmu0qgWXYXdn36UQyKkqqOr4MKGs9pBYnnc9VLadiE7GcO3rPpq93Q8OTWFG9ed9Bta4I2KcdzT4Ne5dpqNTqOUFISLS/szttXPUjhpq/p9sD19H32biYNvDtOlSaGvn3DrCz+Kt5lVIlatWqxbdu2w35cjU93GjduDMCKFfv6YUYiEe69915KS0vJyclh5cqVNG7cmF/84hd07dqVcDjMu+++G6+SlehKD7F7S2nJwbeR4i1SSiRyaB/rRTynJUmSarRIyWF0xU/we7s926Nh6cfPTGb72i8pKdzNvEfG0/iMTOft0kHV+J5d2dnZZGVlcf/995OamkpaWhpPPfUU8+fPp169epx22mksWLCATz75hJycHB577DHmzJnDoEGDWLFiBQ0aNDikv5Obm0vPnj2r+WiqXtd/d0AqKiqKbyEBsn0P/Mdb0cm7DyQJuKj9iSzweVcCuOk9mL+p8qG5J9SG2fkLSKnxH4FI5fk6qKDxnFaQeD5XvUgErsqFldv2P2cXRKevaJkG768vSJgv1NqQt5Q3Lh5Rrm3Ptp1sX/NF9KB1WKZNy6Vpt9PjXUZc1fi3NSkpKUyYMIHmzZszbNgwhg8fzvnnn0+fPn3o2LEjSUlJtGjRgpSUFK666ioAunfvzgknnMDy5cvjXL0SUVpq9Ct7K3tdKAW+lxmriqSjc1XryoMugCtaY9AlSZJUw4VCcHWbAwddEF13VetgfHP8shenkP3DC6l3UmOSa6eSc8+VbPxwJTvWbYx3aarhanzPLoBOnToxa9ascm1PPvkkffr0AeCEE06gb9++vP322wwcOJDly5fzxRdfkJWVFY9yFQB3ZMPyr2HB5mjotffFJCkUna/rrg7Q4fh4VigdunBzuC4Lnl8R/YRjb/C19/dwM/h+m/jVJ0mSpEM3KAMWfRX9xu393dsNyoDBLeNXX1VaNGYitRqmcdGU/4ZQEl/kLWXaDY/FuywlgIQIu76tsLCQZcuWMXz48LK23//+9/zgBz/gzjvvJDU1lXHjxtGoUaO41ajEVicFxpwNEz+NfpNdwXZIDkGvpnBla+jqEHElmNvaQcd0+NMqmLsxGtqe2jDaQ/HCjOj5LUmSpJovFIL7O0K3E6L3dgs3R9s7HB/trT/wpGD06gIgEuGDh17ig4deinclSjAJGXYtXLiQkpIScnJyytpat25Nbm5u/IpS4NROjgYB38uMBgMhAvSioWPSOc2iP5FItLdikuezJElSQgqF4NyToz97p7TyvYq0T0KGXd27dyfiJHWKIUMBBUkoVPmcdJIkSUochlxSRU5HLEmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOwKsNzcXDIzMwmHwwwbNqzC+nHjxjF16lTWrFlDjx49OOecc7j++uuJRCLltnvzzTc5++yzGThwIJ999hkA4XCYcDhM+/btGT58OMXFxfzwhz+MyXFJkiQdiw713g6gd+/epKWlsXbt2grbvfrqq2RmZpa7d/vpT39Kjx496N27N4sWLQLg1ltvZceOHdV0NJIkVR/DroC74YYbyM3NpWHDhsyaNavcukmTJtG/f39OOukk3nvvPaZPn05SUlLZDc5eo0ePZtq0afzP//wPo0ePBqI3W7m5uVx00UVccMEFpKSkcOKJJ7Jy5cqYHZskSdKx5lDu7QD+8pe/cPnll+93H+eeey5vv/12ubabbrqJmTNn8vzzz/PII48AMGjQIP70pz9Vw1FIklS9DLuOER06dGDdunVly5s3b6ZOnTqEQiGSk5MJhUIA1K5dm5NOOqncY1NSUqhTpw7t27cnLy+v3Lrc3FzC4TAQ7e31xhtvVO+BSJJ0GA7WE+ahhx4iPz+/0n3cfvvt9O7dm4cffrhce2FhIRdccAF9+vTh+uuvB2D16tU0b96ccDjMtddeC0Rfc7t06UJaWlrZY5csWVL2AZJ0JCq7twNo1qzZAR/buHFjUlJSyrW1atUKoNx94TnnnMNbb71VxZVL+1TnNRogLy+Pnj170qNHD0aMGMGbb75ZNkKlcePGLFiwwGu0FFCGXceIWbNmkZWVVba8YsUKWrZsWbb8r3/9i44dO7J+/XoaNmxY7rF79uxh06ZNvPvuu2zevLnCPmrVqgVAy5YtWb58eTUfiSRJh+dAPWFKS0tZuHAhbdu2PeBj586dS0pKCjNmzGDevHls2LChbN2UKVPo1asX77zzDqmpqXz00UcAXHjhheTm5vLiiy8CUL9+fd5++23OOuusssdmZ2czb968ClMHSIfqYPd2R2rkyJHccsstANSrV4+vvvrqqPcpVaa6rtEAOTk5vPfee8ycOZNZs2bRo0cPcnNzmTZtGq1bt6ZTp05eo6WAMuwKuGeffZZwOMzJJ59M586dD7hdv379WLhwIS1btuTNN98st+7BBx/k8ssv55VXXqFdu3Zl7RMnTuTiiy+urtIlSapS3+4J8+GHH3LqqadW+pg5c+bQr18/APr06cMHH3xQti4zM7NsPqPt27eXfVj01ltv0bt3b15++WUAUlNTSU9Pr7Dv1q1bs3jx4qM7KB1zDvXe7kg8/fTTZGZm0rNnzyrdr3QoqvoaDdHrL0BJSQknnXQS9erVA+D999+na9euhEIhr9FSQBl2BdzeT0oefPDBcu1ZWVkUFBQAsHv37rL2hg0bUqdOnXLb9urVi2nTpnHdddfRvXv3svbJkydzwQUXlC0XFBRU+smLJEnx9O2eMPn5+WVDtw5ky5YtNGjQAIj20NqyZUvZuqysLGbMmEF2djahUIiMjAyaN2/OsmXLmDJlCn/4wx/YtGnTAfdtj2gdiUO5tzsSs2bNYvLkyYwaNaqsbefOnTRq1OiI9ykdjqq+Ru81fvx4srOzadSoUdnw3UP50N5rtJTYDLuOUenp6ezcuROIjmU/55xzCIfDrF27lv79+7N+/Xoee+wxAB544AH69evHb3/7W+644w4ANm7cSGpqarkhj7m5uZx//vmxPxhJkipxKD1hPv7447J5XPb+PProozRq1IitW7cCsG3btnJv/F944QWuuOIKlixZwgknnMDMmTOpXbs29erVo27duvTu3dsvblHMfPPeDmDo0KFMmTKFq666in/+858A3HnnnUB0CO7QoUN54403yuZJuu+++ygoKKBfv37cfvvtAEyfPp2BAwfG+Eh0rKmua/ReV199NUuXLuWzzz4r+yKuadOmlfUIkxRMKQffRIlq7wvBgVx00UVMnTqVAQMGMH369HLrmjVrxt133w3Az3/+c37+85+XW3/CCSeUG+5YXFzMF198Ue7TGEmSaoIbbriBESNGVGhv27Ytr732GgDt2rUjNze3wjbvv/8+r7zyCoMGDWL69Ol873vfK1tXWlpaNvQlPT2dLVu2sH37dtLS0ohEIsydO5fbbrvtgHUVFBQ4XEyH5XDu7V566aUK63/9618DMHDgwAoh1jvvvFNh+0mTJjlJt6pddV2jAYqKiqhduzZJSUnUr1+fOnXq8Mknn3DKKaeUzTt8IF6jpcRmz65j2LXXXsuAAQOqZF8pKSk8++yzVbIvSZJioVOnTixbtqzSbc4880yKioro3bs3nTp1omnTpmW9n6+++mqee+45wuEwCxYs4Nxzz2XmzJl07dqVHj16MHDgQJo3bw7AgAEDmD9/PgMGDCibyH7FihV06NCh2o9Tx46qvLcDGDNmTLlvqJNi6Wiv0QCvv/464XCYc845h1NOOYW2bdvudwij12gpeOzZJUmSAquynjBJSUl07NiR/Pz8SuecHDNmTLnlb/Z+njJlSrl1++sxAzB16tRyy0uWLKFLly6EQqFDOQxJCqTqvkYPGTKEIUOGlFv/4x//uMI+vEZLwWPYJUmSjln7GzoTC9nZ2WRnZ8flb0tSovAaLelIOYxRkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTASJuzavXs3I0eOJCMjg7p169KvXz/y8vIIhUJMnDgx3uXFxY7ieFcgSVLNsH1PvCuQjp7nsYJkd8m+30sj8atD0rEpJd4FHIpIJMKQIUPIy8tj1KhRZGVlMX78eAYPHgxATk5OnCuMrbU74Nnl8Oa6fW3XTYfr2kK4efzqkiQpVmash+fy9y0PeBPOPRn+36nQIi1+dUlH4pNt8Mwy+Ofn+9pufBd+cCqc1SR+dUlHYvue6HuVvxbsaxv8T7i6DQxpBUmhuJWmBHPNinHllpNrpbIlfx2v978zThUpkSRE2DV27FgmT57MggULaN++PQDhcJjMzEzS09Np0aJFnCuMnVXb4IZ3oy8ipd9o/3gL3PU+/Lg9XNMmXtVJklT9/rIKRi8q3z29OAJvrYuGYM/0gqwGcStPOiwfb4Gb3oOikvL3dgs2w+2z4eedYdCxc6urBLdtT/S9yqpt8M3OXJ/thMcWwcdfwX/lGHjp0Lyc9f1yyxf989esmvhenKpRokmIYYyjR49m6NChZUEXQHJyMpmZmeTk5LB69Wo6d+5c9tOqVSvS09PjWHH1+a/5sL24/M0Q7Fv+zWJYvS3WVUmSFBtrd8B/L4r+XuG1MAI7i+FnH0DEITNKAKURuH9uxaALossR4Jcfwpe74lCcdATGLKkYdMG+5X+shbc/i3VVCoITOmfR6NRTWPGnafEuRQmixodd+fn5rFq1issuu6zCujVr1pCTk0OrVq1YsGBB2c8ll1zC1VdfHYdqq9eSLdFP/yob8x4C/q/gwOslSUpkrx3kNa4UWLkNFn4Vk3Kko5L3JazdWTHo+qbSCPzNezslgO17YNKnFYOub0oC/rwqVhUpSNpe3Y91/5pP4QZf4HVoavwwxnXrohNTNWlSfsKCpUuXUlBQUGG+rt27d/Pyyy/z1ltvHdbfCYfDJCXV7OwvfeBNnPz/nqh0mwjw7Ft53N+ld2yKkiQphjJHvU1a+3MOut35P7ybTf+o/DVTircTL72Pplf+F6HQge9BI6WlPPbKW9z2yCWxK0w6AnXbdiPr4RmVblMKLPhiN7Vr149NUUoYbVKO554Gvfa7LqVubTIv7smMO56McVWJq2/fMCuLgxEM1qpVi23bDn/4Ws1Od4DGjRsDsGLFirK2SCTCvffeS2lpaYWw6/XXX+fkk0/mO9/5TkzrjIlIZZ/7fXM7x25IkgIqUkrkUF7nfC1UIvDeTkFyiOezp7MOV6tBZ1NcuJu1Uz+IdylKIKHIId0xxk9xcTHZ2dns2bOHxx57jLS0NJ566inmz5/P5s2b2bZtW7keWRdccAHnnXced9xxxyHtf+vWrSxatIgzzjiDBg1q9my2K7fCFbmVbxMChmXBbe1iUZEkSbH1h6XwzPLKh8kAvHQOnN4oFhVJR27BJvjhIcy1fEc7uDar+uuRjsauYviPKbCj+MDbJIXgzBNgzNmxq0uJYUPeUt64eMR+150/8Zd8MWcpHzz8coyrSlznT3yQpt1Oj3cZcVXje3alpKQwYcIEmjdvzrBhwxg+fDjnn38+ffr0oWPHjuWCrnXr1vHOO+9wzTXXHPL+GzRoQM+ePWt80AXQpgF8p3Hl/9FCwOCWsapIkqTYGtyy8m/xSgI6NDLoUmLolA5t6h/4nA4BtZLgooyYliUdkTop0Wt0ZV+0WBqB72XGrCQFQIM2J9Gk62ksf+Wf8S5FCabGh10AnTp1YtasWezcuZNly5bxox/9iPnz51cYwvjCCy9w4YUXlg19DKIHcuCEOhVfRJKItv28M5x8XOzrkiQpFprUhV/kRF/3vh0QhIDja8ODXeJRmXT4QiEY3RUapO7n3i4U/Xm4CzSqHZfypMN282lwxvEV2/e+6bymNZzTNKYlKcG1vaofG+YsYduq9fEuRQmmxk9Qvz+FhYUsW7aM4cOHl2t//vnneeKJYE9G26wejDsHXloJfy2A7cXRm6OeTeH7WdGeX5IkBdl5p0DzejBuBbyzPjqk8bgUuLhF9LXwxDrxrlA6dK3qR4fdjlsJr38KhSXRkKtfMxiaBR32ExxINVWdFPhdD/jTJ/CX1bC+MNre7ni4ujWce1I05JUO1QcPvhTvEpSgavycXfszZ84czjrrLN5//326du0a73LipiQCO/ZA7eTojyRJx5rdJbCrBI5LhWTfQCnBFZdG5zuqmwy1vLdTgotEoudzcgjqJmQXC8VSZXN26fA5Z1eC9uzq3r37oX0TU8Alh6BBrXhXIUlS/NQyFFCApCRBQ+/tFBChEKSlxrsKSceqhJizS5IkSZIkSToUhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGKFIJBKJdxGSJEmSJOnYtHvbTr5a8mm8ywiM47NbUKt+vXiXEVeGXZIkSZIkSQoMhzFKkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCoz/D16aeqBtx9/LAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRhElEQVR4nOzdeXxU1f3/8dfMJGQPIUEgbEkgEMOWpCA7MkCwUguICIqiiFirdSmtaxWsVVHRav36K6VaXBBlUYoiFmXRRAQja8JOSCCEfQ0hK9lmfn+MjISEJJBkJjN5Px+PecA998w9nztc7tz7mXPONVitVisiIiIiIiIiIiJuwOjsAEREREREREREROqKkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbXg4O4CGrDi3gLO7Dzo7DLfRLLo9TQJ8q62XVwLpOQ4IqBKRgeDv6Zy2RURERERERKT2lOyqwtndB/l69DRnh+E2Rix9iZa9r622XnoO3LfOAQFVYs4AiA1xTtsiIiIiIiIiUnsaxigiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchiaoF7eQ+qyZ/D1JGDw8MZg88G5zLa0nziAwZpizQxMRERERERERB1LPLnEbrSfOIG5RHj3mnsAvqh/7Xr6Zsvxzzg5LRERERERERBxIyS5xO0ZPL5oPn4LlfB7nj6U7OxwRERERERERcSAlu8TtWIoKOb1qDkbfQLxbd3J2OCIiIiIiIiLiQC6T7CouLmb69Om0a9cOHx8fhg4dyoYNGzAYDCxdutTZ4UkDcHT+dFLuCGL778IpyNhK5LSvMPkGOjssp8grgV3ZkHoOSi3OjsZ9nS+DPdm21/lSZ0cjUjtWK+zLgR1nIavI2dGI1N7xAtvxfDjf2ZGIiKsoKIXd2bDnHBSXOTsaEakNl5ig3mq1Mm7cODZs2MDzzz9PZGQk8+fPZ8yYMQDExcU5NB6Dych1z0+i49jrMRiNHPjfT6x/Zg5lRSUOjUPKa33Hi7Qa87izw3Cqs0Xwrz3wv0NQ/HOSq1kTuC0C7ukEHi6T3m7YzpfCO6mwJBPyf05y+XnA6Pbw+2ttfxdxFVYrfHEQ5qbB4QJbmREwh8IfoiHc36nhiVyx5DMwew9sOfNLWZcguD8KBrZ0Wlgi0oDlltjOG18etP2YCRDoCWPD4b7O4GVyangichVc4pbs3XffZfny5aSkpNC1a1cAzGYzERERBAcH0759e4fG0+PRW2jVvxtLhz5GWUkpwz58ip7T7mLD9PcdGofIxbKKYPIPcKwALu7MdbYY/p1q6+n1em8wGZwVoXs4XwYPJtl6C1gvKs8vhQX7bTdX7w4AX5c4u4rA/9sNH6XDxacGC5B4DNafgvcHQsfG2UlWXNDaE/DYBlsS92K7s+FP6+GvsfBbx142ikgDl1cC962F/bnlr+1ySuCDNNieBW/3hSZKeIm4FJfo5zFz5kwmTpxoT3QBmEwmIiIi7L269u7dS79+/ejcuTP9+vUjLS2t3uLpdOcwtr+9hILjWRSdySHljU+JvM2MwegSH6e4qVm7Kya6LrbmBCw/5NCQ3NL8fbD9kkTXBVZsQ0c/0nMRxEXsOPvL8XrpMW0BCkvhxRQHByVylYrK4LktYLFW/C60/vx6aStkFzshOBFpsObsrZjoutimM7D4gCMjEpG60OCzM2lpaWRkZDB27NgK6w4dOmRPdj3wwAM89NBD7N27l4ceeojf//739RJPk0Bf/NtcQ9bODHvZme0ZNAnwxb/dNfXSpkh1ckvg68OXT3SB7T/7pxlVVJBqlVnhswNV17EC/z2gudLENfz3QNUXAhZgRzbsPeeYeERq47tjtp4Yl7thBSi1wlcHHRaSiDRwRWXweWbV5w0DtmvoS3uMikjD1uAH2hw5cgSAFi1alCvfs2cPmZmZxMXFcfLkSbZs2cKqVasAmDBhAg8//DCnTp3immuqT0AFBARQXFzxZ76OHs14MnBguTIPfx8Ais8V2MuKz9lmPvX8eZ1UbsgQM/tKz1ZbzzeqHx1fSryibUfNuLL6lzNkiJmC1KQ62ZYj+XTqTeTLP1RZxwLsyirFy8vPMUG5IVPgNXR573C19c4WQ1DbjpScqb6uiDN1ejMZ73Zdqq13/fjfcTbxIwdEJHL1Qie9RsiIhzCYLn95ay0r4fl3FjPl7XscF5iINFheraPo/H/bqqxjxTanpU/TZliLCqqsKyJ1y2q14uHhwfHjxwkMvLJ5NRp8z66QkBAA0tN/GRdktVp56qmnsFgsxMXFcejQIdq0aYPJZBtIbTKZaN26NYcO1f2YrdK8QgA8A33tZU2a2pIHJT+vE3G4spo9CtBq0WNlasVS80cu6rMWV2DVuUPciO14rm5iSoOOZxGxs17BtR06d4g4nNVqpbCwkO3bt1/xext8z67o6GgiIyN55pln8PT0xN/fn9mzZ5OcnIyvry9RUVEkJyfXqo3c3NxKy09s2MPXo6eVKyvOKSDvyCmCu4aTs+8oACHdIijOLSDv0KlaxeHuEhISadn72mrrpZyB+9Y5IKBKJCQkEhvinLZro7gMblxpG75xOUYDDGjjxZaiIscF5masVpiQCPuqmNfBALT3h43HDmDQwwCkgfu/nfDxvuqHb2z98n1a+eghLNKwJZ2ER36quo7B5MH/TZ3Ib9+Y6JigRKRBK7PCqFVw4vzl6xiBrs1gU16Ow+ISEZt169YxcODA6itWosH37PLw8GDx4sWEhoYyadIkpk6dyogRIxg8eDA9evTAaDTSrl07jhw5QlmZLdteVlbG0aNHadeuXb3ElPbJt/R4ZAw+LZvhFRJI7GPjSV+UiNWiSXrEOZqYYFxE1XUsVri9g2PicVcGA9zRserEgBWYEIESXeISxoZXfawagcGtoJVG6YsL6HMNtPO7/MWtEWjqCcNbOzIqEWnITAaYUM31sYXq64hIw9Pgk10AMTExJCUlUVBQQGpqKg8++CDJycn2yelbtGhBbGwsCxYsAGDBggXExcXVaL6uq7Ht7SUc/2k3Nyf+g7E//j+y0w6zecbH9dKWSE3d1xn6/XzIX3zveuE/+e86Q78Wl75LrtTIdjAmzPb3i0+gF/5+U1u4JdzBQYlcpbZ+8EKc7fit7IIg3B+mxTg6KpGrYzTAG70hsEnFwYxGwMsE/+hj+1NE5IIJHSH+5yR4Zdd2EzooSS7iihr8MMbKFBYWkpqaytSpU+1l//73v5k0aRIvvPACzZo146OP6m8iXWuZhQ3T32fDdA3pcIbS3CzS/jqc80dSiVuUV27dgf+7h/NHUjF4ehF623ME9hjK+WPpHHrnYSwlRbQc9SeC+oxyUuT1y9Nou4j/8qDtiTHpP4/O7XONrUfXgJbOjc9dGAzwTA/o3RwWZsDWLFt512ZwWwT8uo16dYlrubGtrTfM/P2wwvZMGEJ9bL2+bg0Hf09nRidyZToEwPzBtvPzlwch++fnD90aAXd0sCV4RUQuZjLAjJ4wsAV8egB2ZdvK40Js19DmVrq2E3FFLpns2rZtG2VlZfaeXQDXXnst69evd2JU4igmnwA6/W0V+18bX+n6Dk9+RpPmbe3Lxxb+jYjHF+LhH+SgCJ3Hw2jrVXRLOPT60lb2//o5MyL3ZDDA8Da214XP+YNBzo1JpDa6NrNd6F9Idi0b7tx4RGqjhQ882sX2unCOfrK7c2MSkYbNZIDftre9Lpw33hng3JhEpHZcMtnVp08frNaqZs0Rd2bw8MQjIPhya9n/+m00CWlD+wf/jdHbn+LThzjw1t1gMBD20Lt4BqmLk4iIiIiIiIi7cok5u0Rqqu2UN7l25jqaDbyN44tfoTTnNIWZOwifOpeWI6dyfPErzg5RREREREREROqRkl3iVjz8mwEQ1HsUhYd2YvJrik9Ydzz8m+HfdRDnj6Q6OUIRERERERERqU9KdolbKSuwzcqel5qEV4sITN5+GJt4YykpojBzB01ahDs3QBERERERERGpVy45Z5fI3unxFGQks3d6PK0nPE/eniRa3fIEB966m5KcUxg9vQh/9EMAWo5+jL3Th2Ewmgj/44dOjVtERERERERE6peSXeKSOr+4utyyf5eBAHR85vMKdQNj4wmMjXdIXCIiIiIiIiLiXBrGKCIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGJqiXBicyEOYMcF7bIiIiIiIiIuK6lOySBsffE2JDnB2FiIiIiIiIiLgiDWMUaaQSExOJiIjAbDYzadKkCutnzJhBWlraZd+flZVFz5498ff3v2ydRx55hEGDBvHyyy/zzTffYDabMZvNhISEkJKSwu7du5k5c2ad7I+IiIiIiIgIKNkl0qhNmTKFxMREmjZtSlJSkr3cYrGwbds2OnXqdNn3BgQEsGrVKvr27Vvp+k2bNuHh4cEPP/zAli1biIuLIzExkYSEBDp06EBMTAzR0dFs2bIFq9Va5/smIiIiIiIijZOSXSJCt27dOHLkiH1569atdO7cucr3eHp6EhwcfNn169evZ+jQoQAMHjyYzZs3A7Bx40Z69eqFwWAAoEOHDuzcubO2uyAiIiIiIiICKNklIkBSUhKRkZH25bS0NMLDw2u1zezsbAIDbTP+BwQEkJ2dDcDSpUsZPXq0vV5YWBh79+6tVVsiIiIiIiIiFyjZJdKIvffee5jNZtq0aUNsbGyldXbt2mWfa+vC69VXX61220FBQeTk5ACQm5tLUFAQAAkJCfYeXyIiIiIiIiJ1TU9jFGnEpkyZwrRp0yqUd+rUiSVLlgDQpUsXEhMTr3jbvXv3ZsGCBYwcOZI1a9Ywfvx49u/fT9u2bWnSpIm9XmZmJgMGDLjqfRARERERERG5mHp2iUgFMTExpKamVlsvPj6e5ORk4uPj2bFjB8ePH+f1118H4LrrrqOoqIhBgwYRExNDy5YtKwxhBEhPT6dbt271sh8iIiIiIiLS+Khnl0gjdWFIYmWMRiM9evQgLS2tyicyrl69ukLZE088Yf/7rFmzyq3705/+VG559+7d9OzZ0z5ZvYiIiIiIiEhtKdklIpWqbHhjXYuOjiY6Orre2xEREREREZHGQ8MYRURERERERETEbSjZJSIiIiIiIiIibkPDGKXBySuB9BzntB0ZCP6ezmlbRERERERERGpPyS5pcNJz4L51zml7zgCIDXFO2yIiIiIiIiJSexrGKCIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGJqgXt5D6rJn8PUkYPDwxmDzwbnMtrSfOIDBmmLNDExEREREREREHUs8ucRutJ84gblEePeaewC+qH/tevpmy/HPODktEREREREREHEjJLnE7Rk8vmg+fguV8HuePpTs7HBERERERERFxICW7xO1Yigo5vWoORt9AvFt3cnY4IiIiIiIiIuJALpPsKi4uZvr06bRr1w4fHx+GDh3Khg0bMBgMLF261NnhSQNwdP50Uu4IYvvvwinI2ErktK8w+QY6OyynKC775e9Wq/PiEKkLViscL4DD+VBUVn19kYbubBEczIO8EmdHIiKu4nwZHMqD44W6thPXZ7HC0Z+v7Uoszo5G3JVLTFBvtVoZN24cGzZs4PnnnycyMpL58+czZswYAOLi4hwWS/jIfkTf9xuCu4ZTlJXL4t5/cFjbUrXWd7xIqzGPOzsMp8orgffT4PPMX8rGfAsTOsK4cDAanBaayBWzWuG/mTB/HxzMt5X5ecDN7WFKZwhs4tz4RK7UxlO2c/TG07ZlowGGhsJ9nSGycf42IyLVOFsE7+2FLw9Cwc8/+ET4w8RIGNUODLq2ExdSZoWF+22vY4W2sqaecEs43NsJfFwiOyGuwiUOp3fffZfly5eTkpJC165dATCbzURERBAcHEz79u0dFkvRuXz2vP8N3tc0pev9v3VYuyLVyS2B+9bC/ly4+Ae/IwXw+nbYdRb+GqeEl7gGqxVmbIUvDsLFh2x+KczfD+tOwnsDoakSXuIivjkM07eUP54tVvjuKKw9AbP7Qfdgp4UnIg3QmfNw71pbD5iLr+0O5MGLKZCeA3/uqoSXuIYyKzyzCb49Vv678FwJfJgGP52EdwaAr0tkKMQVuMQwxpkzZzJx4kR7ogvAZDIRERFh79X1+OOPExERgcFgYMeOHfUWy7E128hYuo78w6fqrQ2Rq/Gv3RUTXfDL8v8Ow6qjjo5K5OokHrcluqDyY/pgHry9y9FRiVyds0XwfLLt2L10tIYF29Dzv2y23QiIiFzwxg44VnD5a7sF+2G9bknERSw7aEt0QeXH9J5z8J9UR0cl7qzBJ7vS0tLIyMhg7NixFdYdOnTInuy6+eabWbNmDWFhYY4OUcTp8kth2aGKXxwXMwKL9jsqIpHa+TSj6i8oC/D1YcgpdlREIldv6UEoreIEbcE2D0/SSYeFJCIN3JnztsRAVdMZGQ2wKMNhIYnUyqcZ5Xt0XcqKbSoWzc8qdaXBdxI8cuQIAC1atChXvmfPHjIzM+3JroEDB151GwEBARQXV7xj6ujRjCcDr367Ut6QIWb2lZ6ttp5vVD86vpR4RduOmnFl9S9nyBAzBalJdbItR/KJvI7IV9ZWWccCbD1VgpeXv2OCaiS6fXoeAC8vbydH4l66fnwWo5dvlXWKLRDWexgFu6s+9qXmdDzXj/ZPfEpgz99iMJkuW8dqKWPCE69yctELDozM/emYFlflH/trIp79sso6FiskpJ3G6/o2DoqqcdB5ox6YPOi+ML/aanmlcE1UHEWH1H1fbCyWq3+CQYPv2RUSEgJAenq6vcxqtfLUU09hsVgcOjm9SINlrelJQGNkxDVYa3pM65FU4gosFmp0/tXxLCIX6NpO3MmVfL/pu1DqSIPv2RUdHU1kZCTPPPMMnp6e+Pv7M3v2bJKTk/H19SUqKqrWbeTm5lZafmLDHr4ePa3W2xebhIREWva+ttp6KWfgvnUOCKgSCQmJxIY4p+3aOF8Kv15pG854OUagZ6smbC4qclhcjUGvn390LdLnWqf++BMknbL9an053iY4vPk7/Br8N5nr0PFcP+bvgzd3Vl3HYDTx3zen0Xuerjvqko5pcVXZxXDjiqqHQBuBG6+9hhQd33VK5436cc8a2JVd9dDcoCZwJi0FzwbfJUccZd26dVc9iq/BH0YeHh4sXryY0NBQJk2axNSpUxkxYgSDBw+mR48eGI2O3QWD0YjJyxODhwcYDJi8PDE20Z2WOJe3B4wJq3ocvAW4LcJREYnUzm0dqk50GYBR7VGiS1zCb9uBl/Hy52gj0N4PrmvuyKhEpCELagIj2lZ/bTde13biIm7vUHWiC2BcOEp0SZ1xiUMpJiaGpKQkCgoKSE1N5cEHHyQ5OdkpQxg73no9dx1YwJD/PIZ/22u468ACbln7tsPjELnUA1HQvVnF8gv/ySd0gMGtHBqSyFXr3wLujrT9vbIvqmubwsPRDg1J5KoFNoFXe4HJUPF4NgJ+nvDadWCo6q5WRBqdP3eDjgEVE14XziP3R8GvXHBEgjROv24DN7e3/f3i78ILx/d1zWFyJ0dHJe7MJX8TLywsJDU1lalTp9rLHn30UZYsWcLx48eJj48nJCSEnTurGTNwFdI/TST908Q6365U7+C7j1CYkULgr0YQOu4Ze/mJZf/H2TULwORB+B8/xOTtz/6/3w5A8elDtLjpEVqM/CMH/nEXxacPYfILosOTn2H0bOKsXakX3h7wr/6wcD98lgEnbHNrEh1kS3T9uo1upMS1PBINXYLgk32w/ednW1zjbfvVb0IH8HHJbzBprAa1gg8GwUfpsOqorczbZOv1dVdHaOPn3PhEpOEJ8IQ5A2HBfvjsAGT9PKouJhju7AjmUKeGJ3JFDAZ4NgZig2H+ftibYysP9bX1ULwtQr26pG655K3Ctm3bKCsrK9ez6+233+btt9XDyl3lp23CYPQg6pUf2PfqrZRkn8AzqCUAZ9csIOq1JPL3JHH6m3/TdvLf7U9n3P/3CTTt+RsKD2zD6OVL1Mvfc+yzl8lJWUnQdb914h7VD28T3NPJ1iMmv9TWi8DXJf+Xi9guiuJb214X5s/433Dbo9ZFXFF0ELzSC1b9fDwnjgAPXdiLSBX8PeF3UTClM/ReZiv7jx4WLy7KYIDftre9LlzbLR2mH+SlfrjkbXCfPn2w6ikNjUr+3vUE9BgKQEC3wRSkb6Zpr98A4Nm8HdaSIsoKzmHyD7a/x1paQvGJDLzbdKbk3CmsljIAygrO4XFRPXdkNNh+DRRxN0p0iTtRoktEakrff+KulOiS+uKSyS5pfMryszGFdQPA6BNAWX62fZ1/l4HsfCgasBL16o/28twdifh3MwPg4R9MWf45dj4UjUfTFrS56xUHRi8iIiIiIiIijqLfFMUlmPyCKCuwDey2FOZi8gsCoKwgh+wf/0u3f6fR8S+fc2zh8/b3ZG/4kqA+owHISVmJV8sIus7aTVCfmzn7w0JH74KIiIiIiIiIOICSXeIS/Dr3Jnd7AgC5O9fgG9nz5zUGjN5+GEwemPyDy/X4yt+7Hr/OfWwLVgumANvQRY+AYEovqiciIiIiIiIi7kPJLnEJfp2uw1pSROpfBuEbEUNJ1jHOJMzD5BuAX1Q/9jw1gIzXb6PlzY8DULA/Gd/wGAxG2yEeGHsDBWkbSX3WzJmEeQRfP8GZuyMiIiIiIiIi9URzdonLaP/ArHLLvh1iAWh9+3O0vv25S9bFEfbwf+zLBg9POv5lSb3HKCIiIiIiIiLOpZ5dIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG1ognppcCIDYc4A57UtUlcSExOZPHkyYWFhhIWFMXfu3HLr582bR2hoKPHx8QwaNIjk5GT27NlD27Zty9V77rnn+P777ykqKuLNN9+kf//+3H777Rw/fpzc3FzatWvHF198weTJk3n//fcxGAyO3E0REREREZEGRckuaXD8PSE2xNlRiNSNKVOmMG3aNB599FGSkpLo16+ffd2yZctYtGgRAJ999hlPP/10pduYPn06L7zwAocOHeKPf/wjS5YsYeHChQC888479uRWnz59SEhIYOjQofW8VyIiIiIiIg2XhjGKiDhAt27dOHLkiH05KysLb29ve6KqVatWl32vp6cnAHl5eXTv3r3cumXLljFy5EgAhgwZwvLly+s6dJeQmJhIREQEZrOZSZMmVVg/Y8YM0tLSqtzGI488wqBBg3j55ZcrrMvKyqJnz574+/sD8M0332A2mzGbzYSEhJCSkkJJSQnjx4/HbDbz+uuvA7B7925mzpxZB3soIiIiIiI1pWSXiIgDJCUlERkZaV9OT08nLCysxu+/6667GD58OEOGDLGX5eXlkZubS2hoKABhYWHs3bu37oJ2MVOmTCExMZGmTZuSlJRkL7dYLGzbto1OnTpd9r2bNm3Cw8ODH374gS1btnDixIly6wMCAli1ahV9+/YF4MYbbyQxMZGEhAQ6dOhATEwMS5YsoX///iQmJrJ582ZOnTpFdHQ0W7ZswWq11s9Oi4iIiIhIBUp2iYjUo/feew+z2UybNm2IjY296u3MmzePDRs28Nxzz9nLVqxYwY033lgHUbqXS3vRbd26lc6dO1f5nvXr19uHfw4ePJjNmzeXW+/p6UlwcHCF923cuJFevXphMBjIyMiw97yLjo5m48aNAHTo0IGdO3fWap9ERERERKTmlOwSEalHF3obvfTSS+XKIyMjyczMrNE2ioqKAPD398fPz89evnTpUkaPHm1fzszMrLL3UmNxaS+6tLQ0wsPDq3xPdnY2gYG2J1QEBASQnZ1do7Yu/jeIiori+++/x2q18sMPP3Du3DlAPe5ERERERBxNyS4REScIDg6moKDAvjxx4kRWrlzJhAkT+PbbbwF47LHHAHjwwQcxm83cdNNNPPvsswCUlZWxd+9eunTpYt9GQkICI0aMcOBeNCw16UW3a9cu+1xbF16vvvoqQUFB5OTkAJCbm0tQUFCN2rz4gQCjRo3i1KlTDB8+nGuuuYYWLVrUxW6JiIiIiMgV0tMYRUTqyYVkyuWMGjWK1atXEx8fz8cff1xh/RtvvAHA+++/X2GdyWTip59+Kle2fv167r///toF7cIuPPnyUp06dWLJkiUAdOnShcTExAp1Nm7cyIIFCxg5ciRr1qxh/Pjx1ba3f/9+2rZtS5MmTQDbv8ns2bOxWq1MmjTJ/uTNzMxMBgwYUIs9ExERERGRK6GeXSIiTnL33XcTHx9fZ9v74IMPMBp1Wr9UTEwMqampVda57rrrKCoqYtCgQcTExNCyZUuOHz9uf6oiQHx8PMnJycTHx7Njx44Kw0gPHjyI2Wxm2LBh3Hrrrfj6+gK2hxF069atfnZOREREREQqUM8uERFxeVX1ojMajfTo0YO0tLQq5zSbNWtWueVWrVrxxBNP2JdXr15dbv2lCaz27dtX6DW2e/duevbsicFgqMFeiIiIiIhIXVCyS0RE3F5lwxsdITo6mujoaKe0LSIiIiLSWGm8i4iIiIiIiIiIuA0lu0RERERERERExG1oGKM0OHklkJ7jnLYjA8Hf0zlti4iIiIiIiEjtKdklDU56Dty3zjltzxkAsSHOaVtEREREREREak/DGEVERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjb0AT14hZSnzWTvycJg4cnBpMH3m2upfXEGQTGDHN2aCIiIiIiIiLiQOrZJW6j9cQZxC3Ko8fcE/hF9WPfyzdTln/O2WGJiIiIiIiIiAMp2SVux+jpRfPhU7Ccz+P8sXRnhyMiIiIiIiIiDqRkl7gdS1Ehp1fNwegbiHfrTs4OR0REREREREQcyGWSXcXFxUyfPp127drh4+PD0KFD2bBhAwaDgaVLlzo7PGkAjs6fTsodQWz/XTgFGVuJnPYVJt9AZ4clbsxqrfzvUn8s+pxFRBqUUgtkF8H5UmdHIiIilyoohexiKGuE19AuMUG91Wpl3LhxbNiwgeeff57IyEjmz5/PmDFjAIiLi3NYLMYmHvR9+T5CB3bHOySQghNn2f3+1+x5/2uHxSCVa33Hi7Qa87izw5BGoMwKnx+AhRm/lI39Dm7rAGPDwMNlfkZo2KxWWHUU5u/7peymVTA2HO7sAD4u8Q0mIuKeTp+Hj9Jh6UHILwUD0L8F3BUJvZo7OzoRkcbt++PwcTokZ9mWmzWxXUNP7Aj+nk4NzWFc4lbh3XffZfny5aSkpNC1a1cAzGYzERERBAcH0759e4fFYjSZKDyZzcrbXyQ38wTBXcIYvmAa509lc2BZksPiEBHnKLPCM5vg22O2C/sLDuXD69th/Ul47TolvOrC27tg3r7yXZBPnYd/74Hvj8G/B4CfS3yLiYi4l6MFMGWtLeF1obOAFUg6BT+ehOmxMMpxl+ciInKR9/fCv/aA8aKblbPF8N5e+PYo/GcgBDVxXnyO4hK3YzNnzmTixIn2RBeAyWQiIiKCuLg4zpw5w29+8xuioqLo3r07t9xyC6dOnaqXWEoLi0h+bSG5B46D1UrWzgMcWrmJFr2j66U9EWlYlhywJbrglwv8i/++5kT5Hl9yddadsCW6ACyVrN9zDv65y6EhiYjIz57bAmfOl/8eBNtQcyvwUgocyXdCYCIijdy2LFuiCypO/2EFMvPg79sdHpZTNPhkV1paGhkZGYwdO7bCukOHDhEXF4fBYODJJ58kNTWV7du307FjR55++mmHxGfwMNGyTzRnd2c6pD0RcR6rFRbsL9+j61IGYNF+zS1VW59mlP816lJWYNkh29AZERFxnPQcSMmq/IeIC6zAEl0ai4g43KcZVSd5LNimCTlz3lEROU+DHwBy5MgRAFq0aFGufM+ePWRmZhIXF0dwcDBms9m+rm/fvsyePbvGbQQEBFBcXFyhvKNHM54MHFjle/u+PIWSvEL2ffZ9jdtrrIYMMbOv9Gy19Xyj+tHxpcQr2nbUjCurfzlDhpgpSNVwVKmcKSCELu8frbKOFThWCAGtIyjNqrquXF7XeVkYvf2qrHO+DNr2HErBnnUOisr9dfvUduXj5eXt5Ejcmz5nx9FnXfeCb/g9bX73dpV1rMC/lv/E43GDHRNUI6Hj2TH0OTuGPuf6ce07B/AMDq2yTpkVoobeQu7m/zkoqqtnsVT100rVGnzPrpCQEADS09PtZVarlaeeegqLxVJhcnqLxcLs2bMZNWpUvcd23fOTuKZnFKvunIGlRN0LRNyeoao+XRUq11sYjUJNP+sr+jcREZFaq+F516DvQRERx9M1tF2D79kVHR1NZGQkzzzzDJ6envj7+zN79mySk5Px9fUlKiqqXP1HHnkEf39/Hn744Rq3kZubW2n5iQ17+Hr0tErX9X7hHkIHduebcX+jKKvy90t5CQmJtOx9bbX1Us7AfU7qqJGQkEhsiHPalobPYoXRq+F4YcV5Si52jTesP7ofk/t/h9SbB3+EzaerHibTxAiZG74lsBFMsOkovb60/VlUVOTcQNycPmfH0Wdd93Znw11rqq5jAO67sQ9/flyfe13S8ewY+pwdQ59z/XhyIyQer3pKFSOwa/V/aeHjsLCu2rp16xg4sOrRdpfT4Ht2eXh4sHjxYkJDQ5k0aRJTp05lxIgRDB48mB49emA0/rILjz/+OGlpaSxatKhceV3r/eK9hA7qYUt0ncmpt3ZEpGExGuC2DlUnugDGhaNEVy3dFlF1ossAjGiLEl0iIg4WHQRdgqqeVxFsj7gXERHHGh9RfaLLHIpLJLpqq8H37AKIiYkhKan8PEr//Oc/GTz4l3kAnnnmGTZv3sz//vc/vLy86i0Wv7bN6XLfbyg7X8yt62fZy0+s38PqO2fUW7si0jDcHgHrT9oer16ZXiEwsaNjY3JHg1vBmDD4PNOW2Lr4O9sAhPnDo12cFJyISCP3QhzcuxbySsr/MGHEtvxYN9t5WkREHKtXc7iro+2p5pVdQ7f0gSe7Oyk4B3OJZNelCgsLSU1NZerUqQDs3LmTV155hc6dO9O/f38AIiIi+Pzzz+u87fzDp/kw9NY6365cudLcLNL+OpzzR1KJW5RXbt2JpW9y4os3uGbEg4SOr3woqsjV8DDCm33gk32wKANO/fwkk+ZecGsE3N0RmpicG6M7MBjgmR5wbVOYv9/2mGQAfw9bEmxyJ/XqEhFxlvAAmHc9vJcGXx+Gkp8zXt2awT2d4PpWzo1PRKQxe7QLRAbCvHRI/3nGJR8TjG4P93aG4PrrG9SguGSya9u2bZSVldknp+/atStWa3UDi8TdmHwC6PS3Vex/bXyFdcGDJ+ITEUv+nh+dEJm4O0+j7WL+rkg4+fP8XS28bYkwqTsGg20YzC1hcPK87WaqhbeSiSIiDUEbP3guFh7vBtcvt5W9P8ipIYmICLZr6JvawW/awnXLbGWrbgTvRnYN7ZLJrj59+ii5JRg8PPEICK50nWdQC84fUuZB6pfJAKG+zo7C/RkMti7XIiLS8Pi65N2EiIj7u/iBi40t0QUuMEG9iIiIiIiIiIhITSnZJSIiIiIiIiIibkPJLhERERERERERcRtKdolL2zs9noKMZPZOjydv11qOL3kdgDPffcThDx7jzLcfcvjDJ50cpYiIiIiIiIg4iqaUFJfW+cXV5Zb9uwwEIGTo3YQMvdsZIYmIiIiIiIiIE6lnl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbmqBeGpzIQJgzwHlti4iIOFNiYiKTJ08mLCyMsLAw5s6dW279vHnzCA0NJT4+nkGDBpGcnMyePXto27ZtuXoLFy7kL3/5C8OGDWPOnDkATJ06lZSUFEpKSsjPzyclJYWHHnqI1157DT8/P4fto4iIiEh9UrJLGhx/T4gNcXYUIiIizjNlyhSmTZvGo48+SlJSEv369bOvW7ZsGYsWLQLgs88+4+mnn650G8OHD6dXr168+uqr9rK33noLgBUrVvD9998DMHLkSBYtWsS9995bT3sjIiIi4lgaxigiIiI1kpiYSEREBGazmUmTJlVYP2PGDNLS0i77/qysLHr27Im/v3+FdWvXrqVv377079+fN954A4ANGzYwYMAA+vfvz7Rp0wDYvXs3M2fOrKM9avi6devGkSNH7MtZWVl4e3tjMBgAaNWq1WXfGxISgodH5b9rLl26lNGjRwNw/fXXs2LFijqMWqS82p47AB555BEGDRrEyy+/XGHdgQMHCA0NxWw2c/fdd1dYhsrPMY3tfCIi0pgo2SUiIiI1NmXKFBITE2natClJSUn2covFwrZt2+jUqdNl3xsQEMCqVavo27dvhXUdOnRgzZo1/Pjjj3z11VcUFBQQFxfHunXr+PHHH0lKSiInJ4fo6Gi2bNmC1Wqtl/1raJKSkoiMjLQvp6enExYWVuvtbtq0id69ewPg6+vL2bNna71NkarU5tyxadMmPDw8+OGHH9iyZQsnTpyoUOemm24iMTGRjz76qNLlys4xje18IiLSmCjZJSIiIlfs0h5HW7dupXPnzlW+x9PTk+Dg4ErXtW7dmiZNmgBgMpkwGo14enoCUFZWRuvWrfH19QVsN607d+6si91osN577z3MZjNt2rQhNja2Tre9efNm4uLi7L3DRBzpas4d69evZ+jQoQAMHjyYzZs3V6izYsUKBg0axCeffFLpcmXnGGgc5xMRkcZIyS4RERG5Ypf2OEpLSyM8PLzW2121ahUdO3bE29sbgPnz5xMdHU1QUJB9SF5YWBh79+6tdVsN2YVeMC+99FK58sjISDIzM2u17YuHMAIUFBQQFBRUq22K1NTVnDuys7MJDLQ9RSggIIDs7Oxy60NDQ0lNTWXlypW88847+Pj4lFs+c+aMve6l55jGcD4REWmMlOwSERGRGqtJj6Ndu3ZhNpvLvS6eJP1yDh8+zCuvvGKfTwfgjjvuYM+ePRw9epTt27fX1W64rODgYAoKCuzLEydOZOXKlUyYMIFvv/0WgMceewyAlStXMnHiRL7++uty8yR99913DBs2zL68Zs0abrjhBgftgTRWtTl3BAUFkZOTA0Bubm6F5KyXlxe+vr74+PgwaNAgMjMzyy3v27cPqPwcIyIi7klPYxQREZEau/CUwEt16tSJJUuWANClSxcSExOvaLtFRUXcc889zJ492z6BfVFREV5eXhiNRgICAuw9MTIzMxkwYEDtdqQBu3CTfzmjRo1i9erVxMfH8/HHH1dYf+FG/oYbbqg0ibV27dpyy8uWLdMk3VLvanPu2LhxIwsWLGDkyJGsWbOG8ePHl1ufl5eHv78/VquVTZs28cADDwDYlx9++OFKzzHg/ucTEZHGSj27REREpNZiYmJITU2ttl58fDzJycnEx8ezY8cOjh8/zuuvv878+fPZtWsXv//97zGbzRw5coQvv/wSs9nM9ddfT9u2be0TWKenp9OtW7f63qUG6+677yY+Pr7Otjdr1qxKn5Ap4gg1OXdcd911FBUVMWjQIGJiYmjZsqX93AHw448/0qtXL/r3788NN9zA7t27yy2HhoZWeo4BnU9ERNyVenaJiIhIjVTV48hoNNKjRw/S0tKqfKra6tWrK5Q98cQTAEyePLlc+bhx4xg3bly5st27d9OzZ09Nri7iQuri3DFr1qxyy61atbKfOyrrxXjp8uTJkyucY3Q+ERFxX0p2iYiISJ2obIhSXYuOjiY6Orre2xERx3HEuaMyOp+IiLgvDWMUERERERERERG3oWSXiIiIiIiIiIi4DQ1jlAYnrwTSc5zTdmQg+Hs6p20RERERERERqT0lu6TBSc+B+9Y5p+05AyA2xDlti4iIiIiIiEjtaRijiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRuaoF7cQuqzZvL3JGHw8MRg8sC7zbW0njiDwJhhzg5NRERERERERBxIPbvEbbSeOIO4RXn0mHsCv6h+7Hv5Zsryzzk7LBERERERERFxICW7xO0YPb1oPnwKlvN5nD+W7uxwRERERERERMSBlOwSt2MpKuT0qjkYfQPxbt3J2eGIiIiIiIiIiAO5TLKruLiY6dOn065dO3x8fBg6dCgbNmzAYDCwdOlSZ4cnDcDR+dNJuSOI7b8LpyBjK5HTvsLkG+jssERERERERETEgVxignqr1cq4cePYsGEDzz//PJGRkcyfP58xY8YAEBcX59B4+r5yH+2G98Iz0JeSvEIyv0pi04sfYykpdWgcUl7rO16k1ZjHnR2GiIjL2XEW5u/7Zfm3q2BsOIwLB39PZ0Xlfg7kwif7f1ke/g2Mbg+3d4Dm3s6LS+Rq5BTDpxnw38xfyqZvgTs7wLVBTgtLREQEcJFk17vvvsvy5ctJSUmha9euAJjNZiIiIggODqZ9+/YOjWf3B9+w6YV5lBYW4RUcgPndx+jx6C2kvPGpQ+MQERGpreWH4PlkwPBL2fFCmLXbtu4/AyDIy2nhuY1Np+HRn6DU8kvZ2WKYmw7Lfv6c2/s7Lz6RK3H6PNy3Fg4XlC9fcRhWHoGXe8Kw1s6JTUREBFxkGOPMmTOZOHGiPdEFYDKZiIiIsPfquvnmm4mJiSEuLo5BgwaRkpJSb/Gc23uY0sIi24LBgNViJaBDaL21JyIiUh8O58PzKWABLNaK6zPz4KWtjo7K/eSXwmMbbIkuyyXrrNiSXk9uBGsl/wYiDdFfk+FoQcXyC+eSZzfDyUKHhyUiImLX4JNdaWlpZGRkMHbs2ArrDh06ZE92zZ07l61bt5KcnMzjjz/OvffeW69xdX/4Zu5Mn8eEHe8T3DWMXe9+Va/tiYiI1LX/Hqg6wWIBvj8Oxyu5qZWa+/qQLeF1aaLrAosV0nNha5ZDwxK5KgfyYP2pyx/PVqDMCp9nXqaCiIiIAzT4YYxHjhwBoEWLFuXK9+zZQ2Zmpj3Z1bRpU/u6c+fOYTTWPI8XEBBAcXFxhfKOHs14MnBgpe/Z/s8v2P7PL2jaqQ0dbhlE4cmzNW6vsRoyxMy+0uo/J9+ofnR8KfGKth0148rqX86QIWYKUpPqZFsiIg1d5Osb8QnvUWUdKxAz+l6y13zimKDcUPvHFhB43SgMpstfdlktFkb+cQYnP3vJgZG5v26fngfAy0uTotWV4OG/o839/6yyjsVq5a1lP/FojNkxQTUSOp4dQ5+zY+hzdgxX/5wtlsv9tFK9Bt+zKyQkBID09HR7mdVq5amnnsJisZSbnP6+++6jffv2PPvss8ydO9ch8Z1LO0LWzkwG/b9HHdKeiIhIXakq+VKuntFUz5G4OaMHGAzVVLLqcxaXUJPzhsFg0PEsIiJO1eB7dkVHRxMZGckzzzyDp6cn/v7+zJ49m+TkZHx9fYmKirLXnTNnDgDz5s3jiSeeYPny5TVqIzc3t9LyExv28PXoadW+3+hpIlBzdlUrISGRlr2vrbZeyhm4b50DAqpEQkIisSHOaVtExNH+lgz/O3T54UgXrPn0P3Ru+h+HxOSO5qTCv1OrrmMwmpg78xmGfPSMY4JqJHp9afuzqKjIuYG4kW1ZcO/aqusYgUnDe/PUY/rc65KOZ8fQ5+wY+pwdw9U/53Xr1jFwYOWj7arT4Ht2eXh4sHjxYkJDQ5k0aRJTp05lxIgRDB48mB49elQ6XPGuu+4iISGBM2fO1Hk8ngG+RI430yTQF4Bm0WHETB3L0UTN4CsiIq5lbHjViS4j0L0ZdG5aRSWp1s1hYKyiY5cRCPGCQS0dFpLIVeveDDoGVH0TYcF2fhEREXGWBt+zCyAmJoakpPLzKP3zn/9k8ODBAOTl5XH27FnatWsHwLJlywgODiY4OLjug7Fa6TD2eq57fhLGJh6cP51D5vL1pLy+qO7bEhERqUfdmsGkSJibDgZs83NdYAR8PWBajJOCcyPNveGp7vDKNtvnenGC0YgtEfbSr8Cjwf8EKWIbkfu3X8Hv1kJRWfnj+cJ55IEoiAx0UoAiIiK4SLLrUoWFhaSmpjJ16lQA8vPzGTduHPn5+ZhMJoKDg1m2bBmGaufHuHIleYWsvO2FOt+uiIiIMzwcDe38bAmvQ/m2MqMBhraCB6MhzN+58bmLseG23ltz9sKec7+U974GHrjWlngUcRXXNoUPB8HsPbYntl5IlIf5w+ROcFM7p4YnIiLimsmubdu2UVZWZp+cvmXLlvz0009Ojkrq28F3H6EwI4XAX40gdNwvc5qcP5bOoXcexlJSRMtRfyKozyh2PhSNR5BtPEjHp5fgERBM6l8GUbA/ma6z9tCkeVtn7YaISINiMNiG2Y1uDwfyoLAMQn2gmZezI3M/5lDb63A+nCuGa7yhhY+zoxK5Oh0D4e+94cx5OHHe1hM0zK8Gz2IQERFxAJdMdvXp0wer1Vp9RXEb+WmbMBg9iHrlB/a9eisl2Sfw/DmZdWzh34h4fCEe/kH2+p7Bbej84upy2+jw5Gcc+ehpR4YtIuIyDAaICHB2FI1DWz/bS8QdhHjbXiIiIg2JZocQl5C/dz0BPYYCENBtMAXpmwGwlBRTfPoQB966m/QZoynJPgFAybkTpP7leg5/+KQ9MerZrJVzghcRERERERERh1GyS1xCWX42Jl/bTKdGnwDK8rMBKM05TWHmDsKnzqXlyKkcX/wKAFEvryHqlTVYis+Ts3m5s8IWEREREREREQdTsktcgskviLKCHAAshbmY/IJ+Lm+KT1h3PPyb4d91EOePpALg4W+b6Teo90gKD+50SswiIiIiIiIi4nhKdolL8Ovcm9ztCQDk7lyDb2RPAEzefhibeGMpKaIwcwdNWoRjLS3BUlIEQN6eJLxaRjgtbhERERERERFxLCW7xCX4dboOa0kRqX8ZhG9EDCVZxziTMA+AlqMfY+/0YRya80da3fIkZQXnSH2qP6l/uZ6iI6kE9R0DQMabE8lJXknGGxPI2fqtM3dHREREREREROqJSz6NURqn9g/MKrfs2yEWgMDYeAJj48uti35zc4X3R/z543qLTUREREREREQaBvXsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG1ozq4GZuBbD1GSf571z77n7FAquDN9Hl/f/BxZOzLqtZ3IQJgzoF6bqLJtERERcX+JiYlMnjyZsLAwwsLCmDt3brn18+bNIzQ0lPj4eB588EH27NlDXFwcb775Zrl6t99+O8ePHyc3N5d27drxxRdfAHD8+HEiIiJIS0ujbdu2TJ48mffffx+DweCoXRQREWm0lOyqR636dyX2sfGE9OgAwJlt+0n5+6ccT9rp5MhsYh8bT0hMR769+5Ua1f8k8q56jsjG3xNiQxzSlIiIiDRiU6ZMYdq0aTz66KMkJSXRr18/+7ply5axaNEi1q9fj5eXFwkJCTz++OMkJycTFxdnr7dw4UIA3nnnnXKJrP/3//4fffr0sS/36dOHhIQEhg4d6oA9ExERadw0jLGetI3vyfD50zi0ejOf/ur3fPqr33No9WaGL5hG22G/qvQ9BlPd/XMYPEx1ti0RERERd9atWzeOHDliX87KysLb2xuDwUBGRgbdu3cHoHv37iQlJVW6jWXLljFy5EgAsrOzOX36NOHh4fb1Q4YMYfny5fW3EyIibiQxMZGIiAjMZjOTJk2qsH7GjBmkpaVVu5233nqL+Pj4CuVZWVn07NkTf39/e9k777zDsGHDMJvNlJSUsHv3bmbOnFm7HRGnUbKrnvR56V7SP0tk5+wvKcktoCS3gJ2zv2Tf4u/p/dK9ANy64V/0mDqW33w5g4n7P6F5TEcAPP28Mb/7GHemzePm7/9Ba3NMte216teVO9Pn0XliPLdunM2o1X8HIPT6Hvx2xUzuSJ3LqG/foP2N1wHQ/sbr6P7oGNoMieXO9HncmT4PY5OqO/rdc2wxITEdMZiM3LH3I4Ki2tna7t+Ve44tJuy3tl9DfVoEcffBhXj6+1zdhyciIiLiQElJSURGRtqX09PTCQsLAyAqKorvv/8egDVr1nDu3LkK78/LyyM3N5fQ0FAAZs2axQMPPFCuTlhYGHv37q2vXRARcTtTpkwhMTGRpk2blvuhwWKxsG3bNjp16lTl+0tKSkhJSal0XUBAAKtWraJv374AHDx4kO3bt/Ptt9+SmJiIp6cn0dHRbNmyBavVWmf7JI6jZFc9COzYmoCwlmR8sa7Cuv2fryUwvBWBHWwXQ5HjzKx77F98EnkXZ36eCyvi5oHs//wH5l87iW3/73OGvv8kvq2Cq23Xw8eL5rGRfHH9VL4a8RQB4a2In/s0O/75BQu6TGbzjI8ZPPtPBHcN5+A3G9n+9uccSUjhk8i7+CTyLizFpTXaP2uZhRPrdxM60PYrZ+ig7uRkHCN0YDfb8sDunNm2n5K8whptT0RERMQZ3nvvPcxmM23atCE2NrbSOnFxcYSHh9uHH7Zo0aJCnRUrVnDjjTcCUFhYyK5du8oNdRQRkat3ae/brVu30rlz52rfN2/ePCZMmFDpOk9PT4KDf7nHXrlyJfn5+QwdOpTnn3/eXt6hQwd27mwY0xDJlVGyqx54BwcAUHgiq8K6wpNnbXVCbDOhp85bxbm0I1gtFnuy6fhPuzj49QasZRb2L17D2V2ZhI/sV2FblzIYjWx++RNKC4soKywmYnR/TqzfzYFlSVjLLBz5LpmDKzfRcdzgWu/j8bU7yiW3Uv7+qT351WpAN46t21HrNkRERETq04VeAy+99FK58sjISDIzM+3LL7zwAt999x3+/v7ccMMNFbazdOlSRo8eDcCBAwfYt28fN954I6tWreKhhx4CIDMzs9peCCIiUtGlvW/T0tLKDROvjMViYcWKFfz617+uURsnT57EYDDw3XffkZGRYe8Rpl65rkvJrnpwPisXAJ+WFXtj+bRoZqtzJgeA/COnKtTJP1y+LO/QqRr17CotLKLo57YBfENDyLt0W5kn8A2t/ezvx9Zup2XfLjQJ9CWwQ2syvliHqYkHvqHBhA7sxrEftte6DRERERFnCA4OpqCgALANgzGbzQwbNowuXbrQrl07jh8/zuuvvw5AWVkZe/fupUuXLgBER0fz008/8c033zB8+HBmzZoFQEJCAiNGjHDODomIuKCa9L7dtWsXZrO53OvVV19lyZIljBo1qsZtNW3alMGDbZ1Crr/+elJTU+tiF8SJ9DTGepCz7yi5B08QMao/xy/p4RQxuj+5B0+Qs/8YAFZLxfG/fm2vKbfs3+4aTm2pPptstVjKLRccO0Orfl0v2VYLCo6dqbT+lcjaeQCrxUKX3/2Wkxv3YLVYOLZ2B53viMe3RTNObtxz1dsWERERqW8XboouZ9SoUaxevZr4+HgSExPLrWvVqhVPPPEEACaTiZ9++qnSbXz44Yf2v69fv57777+/tmGLiDQaF56Ye6lOnTqxZMkSALp06VLhHA22CewTExOZN28eKSkpzJkzh/vuu++ybfXr14/58+cDsH37dvvwx8zMTAYMGFAHeyOOpp5d9WTDcx8SedsQuv5+JJ7+PngG+NLl978lcvwQNkz/oMr3turbhXY39MJgMtLhlkE06xLGgf9VfhFVlYylP9KyTzRhN/XBYDTSZkgs7X7di32L1wBQePocfm2aX/VTII//uJMu99/EsbW2XlzH1m2ny/03cXLzXsqKSq5qmyIiIiINwd13313pE7yu1gcffIDRqEtvEZHaiomJqbbn1bPPPsuqVav45ptviI2N5b777ivXKxcgPj6e5ORk4uPjadKkCaWlpZjNZgoKCujTpw9ge2BJt27d6nV/pH6oZ1c9ObRiI6snvkzMn28l9onxAJzZtp/VE1+2J4cuJ+OLtXQcN5jrZ/2R/GNnSLjv7xQcPXPFMeQeOM53977Gr/5yJwP+8RD5h0+x5uG3yfp5IvwDy5LocPNAbt/xPgaDgYU9ptR4knqAYz9sJ/y3/Ti21tZ77djaHTQJ9NN8XSIiIiIiInLVqup9azQa6dGjB2lpaTWaC3H16tVA+V65F5df8NZbb5Vb3r17Nz179sRgMFxZ8NIgKNlVj46t3V5lYmtx7z9UKFs7ddZVtXU8aSefRN5VofxIQgpHElIqfU9xdh7fjP1rjbZv+PmXyIuTYakfrST1o5X25cITZ/kw9NYriFpERERERETkylQ2vLGuRUdHEx0dXe/tSP1QX2qpkWZdw7CUlFY6ob6IiIiIiIiISEOhnl0uZHTiP/Bv27xC+aGVm1nzh7dqvf34T56lZZ9rK5SX5J3H6Gli88vzKc4pqHU7IiIiIiIiIiL1RckuF7LU/Kd63f7qO2fU6/ZFREREREREROqbkl3S4OSVQHqOc9qODAR/T+e0LSIiIiIiIiK1p2SXNDjpOXDfOue0PWcAxIY4p20RERERERERqT1NUC8iIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjb0Jxd4hZSnzWTvycJg4cnBpMH3m2upfXEGQTGDHN2aCIiIiIiIiLiQOrZJW6j9cQZxC3Ko8fcE/hF9WPfyzdTln/O2WGJiIiIiIiIiAMp2SVux+jpRfPhU7Ccz+P8sXRnhyMiIiIiIiIiDqRkl7gdS1Ehp1fNwegbiHfrTs4OR0REREREREQcyCWSXcXFxUyfPp127drh4+PD0KFD2bBhAwaDgaVLlzo7PGkgjs6fTsodQWz/XTgFGVuJnPYVJt9AZ4clIiIiIiIiIg7U4Ceot1qtjBs3jg0bNvD8888TGRnJ/PnzGTNmDABxcXFOicvk3YTR372BT4sgPom8yykxSHmt73iRVmMed3YYTmWxwrdH4dMMSD0HJgP0awG3dYCYYGdH516STto+5y1nbMsxwTA+Aga0AIPBubGJXKmMXFiUAauPwvkyaO8Ht4TDb9uBt8nZ0YlcmexiWHIAlh78pexfu2FcBFzj7bSwREQE2Hzads1xwYM/wrhwGBKqa2ipWw0+2fXuu++yfPlyUlJS6Nq1KwBms5mIiAiCg4Np3769U+KKe+I28g6fxqdFkFPaF7lUqQWmbbHdrBoBy8/lq4/ByqPwp65wZ0dnRugerFZ4exfM21f+c/7pFPx4Em6PgMe66ctaXMf3x+GpjbZk+YXjOS0HXt0GXx6Ef/UDf0+nhihSY4fz4f51cPJ8+fIP0mDxAZjdH6KaOiU0EZFG7729MHsPGC+6Tt58Gjaehpvawl/jyq8TqY0GP4xx5syZTJw40Z7oAjCZTERERFTo1fW3v/0Ng8HAjh076jWmkB4daDMklh2zvqjXdkSuxNx0W6ILfrlhBdsNLMA/dtq+TKR2VhyxJbqg8s95YQZ8dcjhYYlcleMF8PQmKLOWP55/PpzZnW1Leom4AqsVHtsAp89Xsg7IK4E//gQllorrRUSkfq07YUt0wS/XzfDL9cf/DsPC/Q4PS9xYg052paWlkZGRwdixYyusO3ToULlk15YtW/jpp58ICwur15gMJiP9//4APz0zB0txab22JVJTpZbqvxyM6AukLszfX/WJ0wB8ss920yXS0C3JtJ0/Lne4WrH1DK0seSDS0Gw+A/tyyyduL2YBThdBwjFHRiUiIgAL9lffa2v+/vKJMJHaaNDDGI8cOQJAixYtypXv2bOHzMxMe7KrqKiIhx56iAULFmA2m6+4nYCAAIqLiyuUd/RoxpOBA8uVdfvDaM5sz+DET7tp1a9rhffI5Q0ZYmZf6dlq6/lG9aPjS4lXtO2oGVdW/3KGDDFTkJpUJ9tyJO8OcXSa+VOVdSzAtwfP4zVI4zeultEviK4fnqiyjhVIzwX/Vu0pza66roizRb6+Ae+wHhiqGHdrsULX395D9g8LHBiZyJVrdecMmo/6Ewbj5Seas5aV8uAb8zk863cOjEykbnT71PbLg5eXJp+rT/qc64HRSLeF+RgMVfe1OV4IQR16UHQ01UGBuT9XP54tlqvvjt2ge3aFhIQAkJ6ebi+zWq089dRTWCwWe7LrueeeY+LEiYSHh9drPAHhrYi6+wY2vTivXtsRuVIGU80m1KlpPanclXx+Bo8m9RiJSN0wmJpUmeiy19PxLC7A4OEJ1uovinU8i4g4lsHoUW2iy17XQ/crUjcadM+u6OhoIiMjeeaZZ/D09MTf35/Zs2eTnJyMr68vUVFRJCUlsWnTJl599dWrbic3N7fS8hMb9vD16Gn25Za9r8WneVNuWfc2AEYPE55+Pty+830SprzOiZ92X3UMjUFCQiIte19bbb2UM3DfOgcEVImEhERiQ5zTdm1kF8ONK6C0im6/BiAyyMTmoiKHxeVuyqy2z/lsxY6g5QR6wtlD6Xg26J8TRODZzbDqaPVDBr5d8C5dm73rmKBErtKXB+GFlKrrGEwePPu725n82u0OiUmkLvX60vZnka7l6pU+5/px82o4UnD5qRMAvIxwdPdm/Bp0lsK1uPrxvG7dOgYOHFh9xUo06FsxDw8PFi9eTGhoKJMmTWLq1KmMGDGCwYMH06NHD4xGI99//z27d+8mIiKC8PBwDh8+zK9//WtWrlxZ5/FkLPuR//Z/mC/jH+fL+MdZ99i/KSk4z5fxj3NqS1qdtydSU0FNYHibqv9DW4HxEY6KyD2ZDHBruC1xeDkGYEwYSnSJS7g1vOpElxHoHAhdghwUkEgt3NAafE1Vn6NNBhjVzmEhiYjIz8ZFVJ3oMgI3tUOJLqkzDf52LCYmhqSkJAoKCkhNTeXBBx8kOTnZPoTx6aef5ujRoxw4cIADBw7Qtm1bVqxYwQ033FDnsZQVFlNwLMv+KjqTA1YrBceyNFm9ON3D0RDiffn/1L1CYGR7h4bkliZGQseAym+mjECYP9zTydFRiVyd2GAYe5nnuhixJW2nxUINRjqKOJ23B0yPtf390kP2wvKfu9m+K0VExLFuDYcezS5/Dd3SB34f5eCgxK01+GTXpQoLC0lNTS33JEZnOZ60k08i73J2GCKA7Qvig0EwNLT8k058TXBnB/i/vuptVBf8POA/A+HmMGhy0efpabT9GvXeQAjQVAPiIgwGeKoHPNoFgr3Kr+vZHN4bpF5d4lqGt4F/9IHIwPLl7fxgRk+4TT2cRUScwssEs/rZRpp4X/QcEZPBdu7+YJB+jJC65XKdBLdt20ZZWdllk10HDhxwbEDicKW5WaT9dTjnj6QStyiv3LoD/3cP54+kYvD0IvS25wjsMZTzx9I59M7DWEqKaDnqTwT1GeWkyOtfKx949To4fR5u/Hkk74pfg4/L/U9v2AI84dkYW4JgyNe2sm9ugKaa81hckNEAd0fCHR2g71e2si+GQVs/58YlcrUGtoQBLWBfru37MKgJRDVVD0UREWfz8YAnusMfomF3tm0qhcjAij+4idQFl7sF7tOnD1ZrNTPpilsz+QTQ6W+r2P/a+ErXd3jyM5o0b2tfPrbwb0Q8vhAP/yAHReh8zS/6VUSJrvpzcQ8uJbrE1Xlc1FNRiS5xdQaD7Qbq0h5eIiLifH4e0Ku5s6MQd6dBTeJyDB6eeAQEX24t+1+/jf2vjac0NwtLSTHFpw9x4K27SZ8xmpLsEw6NVUREREREREQcS8kucSttp7zJtTPX0WzgbRxf/AqlOacpzNxB+NS5tBw5leOLX3F2iCIiIiIiIiJSj5TsErfi4d8MgKDeoyg8tBOTX1N8wrrj4d8M/66DOH8k1ckRioiIiIiIiEh9UrJL3EpZQS4AealJeLWIwOTth7GJN5aSIgozd9CkRbhzAxQRERERERGReqWpq8Ul7Z0eT0FGMnunx9N6wvPk7Umi1S1PcOCtuynJOYXR04vwRz8EoOXox9g7fRgGo4nwP37o1LhFREREREREpH4p2SUuqfOLq8st+3cZCEDHZz6vUDcwNp7A2HiHxCUiIiIiIiIizqVhjCIiIiIiIiIi4jaU7BIREREREREREbehZJeIiIiIiIiIiLgNzdklDU5kIMwZ4Ly2RURERERcSWJiIpMnTyYsLIywsDDmzp1bbv28efMIDQ2lefPmTJ06FYC0tDRmzZrFzTffbK93zz33kJqaipeXF8899xxDhw7l8ccfZ+7cufzjH/9g4sSJAEyePJn3338fg8HgqF0UEbkiSnZJg+PvCbEhzo5CRERERMR1TJkyhWnTpvHoo4+SlJREv3797OuWLVvGokWLMBgMJCYmAmA2mxk2bFiF7Xz22We0bdvWvvzEE0/QrVu3cnX69OlDQkICQ4cOrZ+dERGpJQ1jFGmkEhMTiYiIwGw2M2nSpArrZ8yYQVpa2mXfn5WVRc+ePfH3979snUceeYRBgwbx8ssv880332A2mzGbzYSEhJCSksLu3buZOXNmneyPiIiIiEC3bt04cuSIfTkrKwtvb+9yvbCOHz+On58fAQEB5d5rMBi47bbbGD9+PFlZWQC0bNmyQhtDhgxh+fLl9bQHDVttr6EveOutt4iPr/jE+Mqusd955x2GDRuG2WympKRE19AiNaBkl0gjNmXKFBITE2natClJSUn2covFwrZt2+jUqdNl3xsQEMCqVavo27dvpes3bdqEh4cHP/zwA1u2bCEuLo7ExEQSEhLo0KEDMTExREdHs2XLFqxWa53vm4iIiEhjlJSURGRkpH05PT2dsLCwcnWWLVvGyJEjK7z3zTffZN26ddx222288sorl20jLCyMvXv31l3QLqY219AAJSUlpKSkVLru0mvsgwcPsn37dr799lsSExPx9PTUNbRIDSjZJSIVfgHcunUrnTt3rvI9np6eBAcHX3b9+vXr7V3bBw8ezObNmwHYuHEjvXr1sv+62KFDB3bu3FnbXRARERFp1N577z3MZjNt2rQhNja2yrrLli1j1KhRFcqbNWsGwKhRo3R9VgNXcw0NtjnUJkyYUOm6S6+xV65cSX5+PkOHDuX555+3l+saWqRqSnaJSIVfANPS0ggPD6/VNrOzswkMtM34HxAQQHZ2NgBLly5l9OjR9nqN/ZdBERERkbpwobfRSy+9VK48MjKSzMxM+3J+fj7nzp2jdevWFbaRm5sL2K4NIyIiLttWZmZmtb2XGoOruYa2WCysWLGCX//61zVq4+TJkxgMBr777jsyMjLsPcJ0DS1SNU1QL9KIvffee6xevZqBAwde9hfAXbt28Yc//KFc2Y033sjTTz9d5baDgoLIyckBbBdOHTt2BCAhIYG//vWvtQ9eRERERKoVHBxMQUGBfXnlypXccMMN9uXjx48zb948nnjiCe6++25OnTqFl5cXH374IQCvv/46H374IQaDgZMnT/LnP/+ZhIQERowY4ehdaTBqcw0dGRlZaa+6y2natCmDBw8G4Prrryc1NbXannsiomSXSKN24ak9l+rUqRNLliwBoEuXLvan9lyJ3r17s2DBAkaOHMmaNWsYP348+/fvp23btjRp0sReLzMzkwEDBlz1PoiIiIg0dhceAnQ5o0aNYvXq1cTHxzNmzBjGjBljX9eqVSueeOIJAD7//PMK733iiSfs6y9Yv349999/f90E74Jqcw09Y8YMEhMTmTdvHikpKcyZM4f77rvvsm3169eP+fPnA7B9+3b78EddQ4tUTcMYRaSCmJgYUlNTq60XHx9PcnIy8fHx7Nixg+PHj/P6668DcN1111FUVMSgQYOIiYmhZcuWFYYwgm3S1EsfZy0iIiIidefuu++u9Ml/V+uDDz7AaNSt5KVqcg397LPPsmrVKr755htiY2O57777yl1DQ/lr7CZNmlBaWorZbKagoIA+ffoAuoYWqY56dok0UlX9Amg0GunRowdpaWlVzsewevXqCmUX//I3a9ascuv+9Kc/lVvevXs3PXv2LPcobBERERGRhqourqEvuHAtfXHvuovLL3jrrbfKLesaWqR6SnaJSKUq65pd16Kjo4mOjq73dkREREREHEHX0CINg/qeioiIiIiIiIiI21CyS0RERERERERE3IaSXSIiIiIiIiIi4jY0Z5c0OHklkJ7jnLYjA8Hf0zlti4iIiIiIiEjtKdklDU56Dty3zjltzxkAsSHOaVtEREREREREak/DGEVERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbmrNL3ELqs2by9yRh8PDEYPLAu821tJ44g8CYYc4OTUREREREREQcSD27xG20njiDuEV59Jh7Ar+ofux7+WbK8s85OywRERERERERcSAlu8TtGD29aD58CpbzeZw/lu7scERERERERETEgZTsErdjKSrk9Ko5GH0D8W7dydnhiIiIiIiIiIgDuUyyq7i4mOnTp9OuXTt8fHwYOnQoGzZswGAwsHTpUmeHJw3A0fnTSbkjiO2/C6cgYyuR077C5Bvo7LBERERERERExIFcYoJ6q9XKuHHj2LBhA88//zyRkZHMnz+fMWPGABAXF+ewWAa+9RARYwZiKSm1lyX+7g2OJKQ4LAapXOs7XqTVmMedHYZTWa2w/hQsPvBL2avb4NZwiFTeT1xQRi58dgDWnoBSC0Q1tR3P/VuAweDs6ESuTHYRfHEQvjkM2cXQyhdGt4cRbcDbJa7IRMTRLFbbd+B/D/xS9sYOGBcO7f2dFZV72nIGPsv4ZfmFFBgfDtcGOSkgEakVl7i0evfdd1m+fDkpKSl07doVALPZTEREBMHBwbRv396h8ez9eDXrn33PoW2KVMdihVe2weeZYLwoCbDkgO0CaVqs7aZKxFUsPwTPpwBWsPxcdvo8/HACbmoLz8WBSQkvcRHpOfDgj3C2+JeyM0Ww4yws2A//7g/BXs6LT0QanlILTNsCq4+WH46zcL8tKTOjJwxr7bTw3IbVCm/vgnn7yn/OXx2ELw/Cn7vCHR2dFp6IXCWXGMY4c+ZMJk6caE90AZhMJiIiIuy9usLDw7n22muJjY0lNjaWFStWOCtcEadYsN+W6AJb4usCC2AFXkqB7VlOCEzkKuw5B88n245ly0XlF/7+v8MwT8+fEBdRXAaP/ATnisuXXzhVH8iFv2xyeFgi0sD9Z68t0QXlvwutQJkVntls6wEttbPskC3RBZVfc7y5E3466eioRKS2GnyyKy0tjYyMDMaOHVth3aFDh8oNYVy8eDEpKSmkpKTw61//ut5i6nDLICbs+oCb17xFjz/egsHU4D9GcXNlVvh4X9V1DMDCjKrriDQUi/ZXX+eTfbZfvUUaum+Pwanz5W+iLmYBNp+BveccGZWINGTny6r+LrRi65H0qa7tasVqtf14VlVHcSO2aw4RcS0NfhjjkSNHAGjRokW58j179pCZmVkn83UFBARQXFxcobyjRzOeDBxYrmzXe8vZ9OI8zmflEtKjA4P/NRWTVxOSX1tY6zjc3ZAhZvaVnq22nm9UPzq+lHhF246acWX1L2fIEDMFqUl1si1H8g7vQafXN1ZZxwJ8vb+Av/dv5pigGolun54HwMvL28mRuJcuHxzH5F/1sXq2GJr3GERh2gYHReX+dDzXj3ZT59G07y0YTJe/7LJaLQx94G+cWvKqAyMTkYbKr5uZDn+teqSKBZi/5SjPXRfhmKDckOc1YVz7r71V1rEAP5604O0XiLW0xDGBidQRV7+2s1iu/pftBt8lKSQkBID09F/Gq1itVp566iksFku5ZNedd95Jjx49+MMf/kB2dna9xJO1PYPzZ3LAauXM1n0k/30REaMH1EtbIjVlbOJTo3oGT00II67B0KRmX8g1PfZFnMnYxKf6JypYrBi9dDyLiE2Nr+30PVgrNf6cDUYMHrqOFnElDb5nV3R0NJGRkTzzzDN4enri7+/P7NmzSU5OxtfXl6ioKAB++OEH2rVrR1FREVOnTuXhhx/m448/rlEbubmVD3Y/sWEPX4+eVvWbLdaq+72KXUJCIi17X1ttvZQzcN86BwRUiYSERGJDnNN2bWQVwY0ry8/VdSkDEB5oYnNRkcPiagx6fWn7s0ifa526IxHScn6Z06gyBmD3upW01HV+ndHxXD/e3mUbJlPl8Wwy8e8Xn+Y3Hz7tsLhEpOE6lAdjvqu6jhHo2a4ZKTpnX7WCUoj/Boqr6TwS4gUF2Wf0JGhxOa5+bbdu3ToGDhxYfcVKNPieXR4eHixevJjQ0FAmTZrE1KlTGTFiBIMHD6ZHjx4YjbZdaNeuHQBeXl784Q9/YN26+smWhI/qj2eALwDNosOIeWwcB75yvWFv4l6CvWBIq6r/Q1uBW8MdFJBILd0aXnViwAgMbIkSXeISxrSvPnHr7wFD9VQ1EflZO3/oFVL1tZ0FuFUjGGvF1wNualf152wAxoVX30FXRBqWBt+zCyAmJoakpPIJpX/+858MHjwYgPz8fEpLS2natClWq5WFCxcSGxtbL7Fce8+v6TfzfoyeJgpPZLNv8fds+3+f10tbIlfikS6w8TTklVbs4WUAugTBze2dEZnIlfttO9sTF7dlVUwSGA3ga4I/dnFKaCJXrJ0/TO4EH6RVXGfAdow/3QO8TY6OTEQasse6wb1roais8gdc9G4Ow5Ukr7XfdYa1J+BMJQ8SMQLh/nB7B2dEJiK14RLJrksVFhaSmprK1KlTAThx4gRjx46lrKyMsrIyunTpwr/+9a96afubW/5aL9sVqa22fvDBIHh1my3pdYGHAUa0hce7g7dL/o+XxqiJCf7Z1/a4768OQclFV5+xwbbEQHiA8+ITuVJ/uBaaNbElvM5e9EycNr7waBf16hKRijo1hfcGwsztsDXrl/ImRhjdHv7YFTwa/Didhq+FD3wwEF7ZBj+e/OVHNqPBlkx8sjv4ezo1RBG5Ci5567tt2zbKysrsk9N36NCB5ORkJ0cl9e3gu49QmJFC4K9GEDruGXv5iWX/x9k1C8DkQfgfP8Tk7c/+v98OQPHpQ7S46RFajPwjB/5xF8WnD2HyC6LDk59h9GzirF2pN2H+MLs/HMyDvTm2RFdsMARpPk1xQT4e8GwMPBwNw76xlS0eavuFVcTVGAxwR0cYHwF9v7KVzRkAMcEaGiMil9f554TX/lzby9MIPUOUfKlrrXzh//rC0QLYnW3rddsjGJq75gPsRAQXTXb16dMHq7Wq2S/E3eSnbcJg9CDqlR/Y9+qtlGSfwDOoJQBn1ywg6rUk8vckcfqbf9N28t+JmpEIwP6/T6Bpz99QeGAbRi9fol7+nmOfvUxOykqCrvutE/eofrX3t71E3EHTi/LSSnSJq7u4F4YrPhBFRJyjQ4DtJfWrta/tJSKuTx1fxSXk711PQI+hAAR0G0xB+mb7Os/m7bCWFFFWcA6Tf7C93FpaQvGJDLzbdMYzuDVWSxkAZQXn8LionoiIiIiIiIi4D5fs2SWNT1l+NqawbgAYfQIoy8+2r/PvMpCdD0UDVqJe/dFenrsjEf9uZgA8/IMpyz/Hzoei8WjagjZ3veLA6EVERERERETEUdSzS1yCyS+IsoIcACyFuZj8ggAoK8gh+8f/0u3faXT8y+ccW/i8/T3ZG74kqM9oAHJSVuLVMoKus3YT1Odmzv6w0NG7ICIiIiIiIiIOoGSXuAS/zr3J3Z4AQO7ONfhG9vx5jQGjtx8Gkwcm/+ByPb7y967Hr3Mf24LVginANnTRIyCY0ovqiYiIiIiIiIj7ULJLXIJfp+uwlhSR+pdB+EbEUJJ1jDMJ8zD5BuAX1Y89Tw0g4/XbaHnz4wAU7E/GNzwGg9F2iAfG3kBB2kZSnzVzJmEewddPcObuiIiIiIiIiEg90Zxd4jLaPzCr3LJvh1gAWt/+HK1vf+6SdXGEPfwf+7LBw5OOf1lS7zGKiIiIiIiIiHOpZ5eIiIiIiIiIiLgNJbtERERERERERMRtKNklIiIiIiIiIiJuQ3N2SYMTGQhzBjivbZG6kpiYyOTJkwkLCyMsLIy5c+eWWz9v3jxCQ0OJj49n0KBBJCcns2fPHtq2bVuu3nPPPcf3339PUVERb775Jv379+f222/n+PHj5Obm0q5dO7744gsmT57M+++/j8FgcORuioiIiIiIC6rp/Uq7du249957MRqN9OrVi3/84x/l6lV2b/L+++8zZ84cWrRowbx58/Dx8eGBBx5gzpw5Dtk3JbukwfH3hNgQZ0chUjemTJnCtGnTePTRR0lKSqJfv372dcuWLWPRokUAfPbZZzz99NOVbmP69Om88MILHDp0iD/+8Y8sWbKEhQsXAvDOO+/Yk1t9+vQhISGBoUOH1vNeiYiIiIiIO6jJ/UpWVhYrVqzA39+fu+66i71799K5c2d7vUvvTUpLS5k7dy5r165l+fLlzJkzhz/96U9cc8017Nu3j44dO9b7fmkYo4iIA3Tr1o0jR47Yl7OysvD29rYnqlq1anXZ93p6egKQl5dH9+7dy61btmwZI0eOBGDIkCEsX768rkN3CYmJiURERGA2m5k0aVKF9TNmzCAtLa3KbTzyyCMMGjSIl19+ucK6rKwsevbsib+/PwDffPMNZrMZs9lMSEgIKSkplJSUMH78eMxmM6+//joAu3fvZubMmXWwhyIiIiIi9aeq+5WQkBD7dbDJZLrsSJIL9yanT5+mffv2GI1GunfvTlJSEgBms5mvv/66/ncGJbtERBwiKSmJyMhI+3J6ejphYWE1fv9dd93F8OHDGTJkiL0sLy+P3NxcQkNDAQgLC2Pv3r11F7SLmTJlComJiTRt2tT+hQpgsVjYtm0bnTp1uux7N23ahIeHBz/88ANbtmzhxIkT5dYHBASwatUq+vbtC8CNN95IYmIiCQkJdOjQgZiYGJYsWUL//v1JTExk8+bNnDp1iujoaLZs2YLVaq2fnRYRERERqQM1uV/ZuXMnp0+frvS6+uJ7k2uuuYb09HTOnz/PmjVrOHfuHODY+xUlu0RE6tF7772H2WymTZs2xMbGXvV25s2bx4YNG3juuefsZStWrODGG2+sgyjdy6W/Sm3durVcN+vKrF+/3j78c/DgwWzevLncek9PT4KDgyu8b+PGjfTq1QuDwUBGRoa95110dDQbN24EoEOHDuzcubNW+yQiIiIiUh9qer+Sk5PDww8/zLvvvlvp+ovvTUwmE0888QQ33ngjW7dupWXLlvURepWU7BIRqUcXehu99NJL5cojIyPJzMys0TaKiooA8Pf3x8/Pz16+dOlSRo8ebV/OzMyssvdSY3Hpr1JpaWmEh4dX+Z7s7GwCA21PqAgICCA7O7tGbV38bxAVFcX333+P1Wrlhx9+cMovWCIiIiIiV6Im9ytWq5V7772XF154gdatW1e6nUvvTW655RYSExPp06cPI0aMABx7v6Jkl4iIEwQHB1NQUGBfnjhxIitXrmTChAl8++23ADz22GMAPPjgg5jNZm666SaeffZZAMrKyti7dy9dunSxbyMhIcH+RdIY1eRXqV27dtnn2rrwevXVVwkKCiInJweA3NxcgoKCatTmxQ8EGDVqFKdOnWL48OFcc801tGjRoi52S0RERETE4S6+X0lMTOS7775j+vTpmM1mNm/ezPHjx+3z1FZ2b/KHP/yBYcOGsWbNGsaPH2/fjqPuV/Q0RhGRenIhmXI5o0aNYvXq1cTHx/Pxxx9XWP/GG28A8P7771dYZzKZ+Omnn8qVrV+/nvvvv792QbuwC0+SuVSnTp1YsmQJAF26dCExMbFCnY0bN7JgwQJGjhxZ7gu5Kvv376dt27Y0adIEsP2bzJ49G6vVyqRJk+xPssnMzGTAgAG12DMRERERkbp3JfcrWVlZFdY/8cQTQOX3Jv/617/KLZeWlnLy5MlyIzDqk3p2iYg4yd133018fHydbe+DDz7AaNRp/VIxMTGkpqZWWee6666jqKiIQYMGERMTQ8uWLcv9WgUQHx9PcnIy8fHx7Nixo0JX7YMHD2I2mxk2bBi33norvr6+gG1yz27dutXPzomIiIiI1JO6vF/x8PDgvffeq5Nt1ag9h7UkIiJST6r6VcpoNNKjRw/S0tKqnCNg1qxZ5ZZbtWpl/7UKYPXq1eXWX5rAat++fYVeY7t376Znz56XfTyziIiIiIjUPSW7RETE7VU2vNERoqOjiY6OdkrbIiIiIiKNlca7iIiIiIiIiIiI21CyS0RERERERERE3IaSXSIiIiIiIiIi4jY0Z5c0OHklkJ7jnLYjA8Hf0zlti4iIiIiIiEjtKdklDU56Dty3zjltzxkAsSHOaVtEREREREREak/DGEVERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjb0AT14hZSnzWTvycJg4cnBpMH3m2upfXEGQTGDHN2aCIiIiIiIiLiQOrZJW6j9cQZxC3Ko8fcE/hF9WPfyzdTln/O2WGJiIiIiIiIiAMp2SVux+jpRfPhU7Ccz+P8sXRnhyMiIiIiIiIiDuQyya7i4mKmT59Ou3bt8PHxYejQoWzYsAGDwcDSpUudHZ40IJaiQk6vmoPRNxDv1p2cHY6IiIiIiIiIOJBLzNlltVoZN24cGzZs4PnnnycyMpL58+czZswYAOLi4hweU9thvyLuqdsJ7Nia0rxCdvx7GTtnf+nwOOQXR+dP5/hnL2Hw8MK7XRcip32FyTfQ2WGJmzqQB/898Mvya9vh1nDoEOCsiNzTiUL4PPOX5eeTYWwYdGsGBoPz4hKRhqvEAt8dg2UH4dR5CGoCv2kHv24N3i5x5SsiIlI7p8/D0oO/LD+7GcaGQ1xw47mGdomv/HfffZfly5eTkpJC165dATCbzURERBAcHEz79u0dGk/rwTH0e/33rH30nxxP2omHjxd+bZo7NAapqPUdL9JqzOPODkMagc8ybMmtiy3OgE8z4M9d4Y6OzonL3Xx/HJ7eBKWWX8qWH4KvDsGEDrbPurF8WYtIzWQXwUNJkJpjG75gwfbn5jPwwV74d39o5evkIEVEROrRhlPw5w1wvuyXslVHYcURGNkOpsWCqRFcQ7vEMMaZM2cyceJEe6ILwGQyERERYe/Vdf78eR588EE6depE9+7duf/+++stnrgnb2fbW//l2NrtWMsslOQVkp16qN7aE5GG46eTMHM7WLG9LriQj3lzJ6w57oTA3My+HHhqoy3RVdnnvGA/LMpwRmQi0pA9tQnScmx/v3C+uPDn0QJ49CewWCt7p4iIiOs7VgB/Wg9FZeXLL3z3LTsE7+91fFzO0OCTXWlpaWRkZDB27NgK6w4dOmRPdj355JN4e3uzd+9etm/fzosvvlgv8Xj4eNE8tiM+1wQx5of/47Ztcxj64VP4t2tRL+2JSMPyUXrVJ07jz3WkdhZl2L6Uq7onnZsOZbppFZGf7c629eCyXGa9BdifB0knHRiUiIiIAy0+AMWWqq+h5++vmAxzRw1+GOORI0cAaNGifDJpz549ZGZmEhcXR15eHh999BGHDx/G8POYlpYtW9a4jYCAAIqLiyuUd/RoxpOBA8uVNQnyw2A0EnZTH1ZNeInCM+fo/cJkhrz3BMtueOJKd69RGTLEzL7Ss9XW843qR8eXEus7nEoNGWKmIDXJKW1Lw2f09qfrvDNV1rEAKVng27w1ZblV15XLi37/GB4BwVXWOXUeQrr2p3DfZgdF5f66fXoeAC8vbydH4t70OdePlrc/zzVjnsRgNF22jrWslLtmzOXIO39wYGQiIiKO0fmfu/Fq2aHKOrkl0Lrvb8jb9q2Dorp6FsvlfsKqXoPv2RUSEgJAevovXSWsVitPPfUUFouFuLg49u3bR0hICH/729/o1asXZrOZtWvX1ks8JXm2C9Rdc5aTd/gUZYXFbHllPiHdIzRvlxNFzUjUfF1S74zefjWv61XzulKR0atmk+oYvf3rORIRcRVGb3+wVn9RrPOGiIi4K1MNv+Ou5L7GVTX4nl3R0dFERkbyzDPP4Onpib+/P7NnzyY5ORlfX1+ioqJISUlh//79xMXF8frrr7N+/XpGjhxJeno6gYHVP40vNze30vITG/bw9ehp5cpKcgvIO3QSrBo7c6USEhJp2fvaauulnIH71jkgoEokJCQSG+KctqXhK7XAsG8gv7Tqet4mOH0wDe/Ldy6Qaoz7zvbEy+rOtDvXriRUk03XmV4/P1S4qKjIuYG4OX3O9WNRBry+veo6RpMHf558G3947TbHBCUiIuJAU36A7WcvP6T/gh+/+oxOTR0SUq2sW7eOgQMHVl+xEg2+Z5eHhweLFy8mNDSUSZMmMXXqVEaMGMHgwYPp0aMHRqOR9u3b4+HhwYQJEwDo06cPzZs3Z+/e+pl5LfWjlUTfdxO+rUMweXkS9+TtnN66j/wjp+ulPRFpGDyMMKo9VPXwEiPw23Yo0VVLY8OrTnQZgb7XoESXiNiNaANNanBlO9qxD/EWERFxmFvCq050GYEuQbhEoqu2GnyyCyAmJoakpCQKCgpITU3lwQcfJDk52T45ffPmzRkyZAirVq0CYO/evZw8eZLIyMh6iWf7rKUc+S6ZUStfY9yWd/FtGUzClNfrpS0RaVgmRUJz78pPnkYgyAsmd3J0VO5ndHvoHFh5YtEINDHBI10cHZWINGSBTeCh6Krr3BUJbdx/5IaIiDRSN7SB2ODKr6ENgNEAf+7q6KicwyWSXZcqLCwkNTXVnuwC+Pe//83LL79M9+7duf3225k3bx5BQUH1E4DVyuYZH7Ow2xQWdp3Md5NnqleXSCPR3BveHwi/qmS4a0ywbV1LH8fH5W58PODf/WFIaMUv6w4B8E5/iGoEv0iJyJW5syM83R0CPcuX+5rgD9fCI9Ukw0RERFyZpxHe7gsj2toSWxdr7w//6k+jmbanwc/ZVZlt27ZRVlZWLtnVoUMHEhMTnReUOFxpbhZpfx3O+SOpxC3KK7fuxNI3OfHFG1wz4kFCx0+7zBZErk6oL/x7AGTkwtYsW1n3ZtCx+ikC5QoENoHXroPjhbDxFJRYoHNT6BoEhqrGkopIo3ZrhG3I+Y8n4fGNtrKVvwZvl7zqFRERuTK+HvDCr+DRLvDTSSiyQMcA2w/zjeka2iW/9vv06YNVE8Q3eiafADr9bRX7XxtfYV3w4In4RMSSv+dHJ0QmjUVEgO0l9auVD4zUHDsicgWamMAc+suyEl0iItLYNPeG3zbia2iXHMYoAmDw8MQjILjSdZ5BLTAYdHiLiIiIiIiINDbKBoiIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSl7Z3ejwFGcnsnR5P3q61HF/yOgBnvvuIwx88xplvP+Twh086OUoRERERERERcRQ9m0ZcWucXV5db9u8yEICQoXcTMvRuZ4QkIiIiIiIiIk6knl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4Dc3ZJQ1OZCDMGeC8tkVERJwpMTGRyZMnExYWRlhYGHPnzi23ft68eYSGhhIfH8+gQYNITk5mz549tG3btly9hQsX8pe//IVhw4YxZ84cAKZOnUpKSgolJSXk5+eTkpLCQw89xGuvvYafn5/D9lFERESkPinZJQ2OvyfEhjg7ChEREeeZMmUK06ZN49FHHyUpKYl+/frZ1y1btoxFixYB8Nlnn/H0009Xuo3hw4fTq1cvXn31VXvZW2+9BcCKFSv4/vvvARg5ciSLFi3i3nvvrae9EREREXEsDWMUERGRGklMTCQiIgKz2cykSZMqrJ8xYwZpaWmXfX9WVhY9e/bE39+/wrq1a9fSt29f+vfvzxtvvAHAhg0bGDBgAP3792fatGkA7N69m5kzZ9bRHjV83bp148iRI/blrKwsvL29MRgMALRq1eqy7w0JCcHDo/LfNZcuXcro0aMBuP7661mxYkUdRu0aans8AzzyyCMMGjSIl19+ucK6AwcOEBoaitls5u67766wDJUf943tGBcREakPSnaJiIhIjU2ZMoXExESaNm1KUlKSvdxisbBt2zY6dep02fcGBASwatUq+vbtW2Fdhw4dWLNmDT/++CNfffUVBQUFxMXFsW7dOn788UeSkpLIyckhOjqaLVu2YLVa62X/GpqkpCQiIyPty+np6YSFhdV6u5s2baJ3794A+Pr6cvbs2Vpv0xXV5njetGkTHh4e/PDDD2zZsoUTJ05UqHPTTTeRmJjIRx99VOlyZcd9YzvGRURE6oOSXSIiInLFLu1xtHXrVjp37lzlezw9PQkODq50XevWrWnSpAkAJpMJo9GIp6cnAGVlZbRu3RpfX1/AliDYuXNnXexGg/Xee+9hNptp06YNsbGxdbrtzZs3ExcXZ+8dJld3PK9fv56hQ4cCMHjwYDZv3lyhzooVKxg0aBCffPJJpcuVHffQOI5xERGR+qRkl4iIiFyxS3scpaWlER4eXuvtrlq1io4dO+Lt7Q3A/PnziY6OJigoyD4kLywsjL1799a6rYbsQo+jl156qVx5ZGQkmZmZtdr2xUMYAQoKCggKCqrVNl3d1RzP2dnZBAbanmwTEBBAdnZ2ufWhoaGkpqaycuVK3nnnHXx8fMotnzlzxl730uO+MRzjIiIi9UnJLhEREamxmvQ42rVrF2azudzr4knSL+fw4cO88sor9rmLAO644w727NnD0aNH2b59e13thssKDg6moKDAvjxx4kRWrlzJhAkT+PbbbwF47LHHAFi5ciUTJ07k66+/Ljcn1XfffcewYcPsy2vWrOGGG25w0B40LLU5noOCgsjJyQEgNze3QsLQy8sLX19ffHx8GDRoEJmZmeWW9+3bB1R+3IuIiEjt6GmMIiIiUmMXnhJ4qU6dOrFkyRIAunTpQmJi4hVtt6ioiHvuuYfZs2fbJ7AvKirCy8sLo9FIQECAvddLZmYmAwYMqN2ONGAXEiqXM2rUKFavXk18fDwff/xxhfUXkiY33HBDpUmstWvXlltetmxZo50QvTbH88aNG1mwYAEjR45kzZo1jB8/vtz6vLw8/P39sVqtbNq0iQceeADAvvzwww9XetyD+x/jIiIi9U09u0RERKTWYmJiSE1NrbZefHw8ycnJxMfHs2PHDo4fP87rr7/O/Pnz2bVrF7///e8xm80cOXKEL7/8ErPZzPXXX0/btm3tk4Wnp6fTrVu3+t6lBuvuu+8mPj6+zrY3a9asSp+Q2ZjV5Hi+7rrrKCoqYtCgQcTExNCyZUv78Qzw448/0qtXL/r3788NN9zA7t27yy2HhoZWetyDjnEREZHaMlj1qJfLOrFhD1+Prvhrn1ydEUtfomXva50dhoiIXEavL21/bhp1de9/6aWXuO2226p8gl1t7d69m6VLl/L000/XWxv1rbafs9RcbT5rRxzPlXGHY1xERKQurFu3joEDB7J27dor7vGsYYwiIiJSJyobDlbXoqOjiY6Orvd2RBxxPFdGx7iIiEjtaRijiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkNzdkmDk1cC6TnOaTsyEPw9ndO2iIiIiIiIiNSekl3S4KTnwH3rnNP2nAEQG+KctkVERERERESk9jSMUURERERERERE3IaSXSIiIiIiIiIi4jaU7BIREREREREREbehZJeIiIiIiIiIiLgNTVAvbiH1WTP5e5IweHhiMHng3eZaWk+cQWDMMGeHJiIiIiIiIiIOpJ5d4jZaT5xB3KI8esw9gV9UP/a9fDNl+eecHZaIiIiIiIiIOJCSXeJ2jJ5eNB8+Bcv5PM4fS3d2OCIiIiIiIiLiQEp2iduxFBVyetUcjL6BeLfu5OxwRERERERERMSBXCbZVVxczPTp02nXrh0+Pj4MHTqUDRs2YDAYWLp0qcPiuDN9XrnX3QcXMurbNxzWvlze0fnTSbkjiO2/C6cgYyuR077C5Bvo7LBERBq886XwReYvyzO2ws6zzovHXZVaYPXRX5anb4ENp8BqdV5M7shihaST8OzmX8oSjtk+fxEREWkcXGKCeqvVyrhx49iwYQPPP/88kZGRzJ8/nzFjxgAQFxfnsFg+ibyr3PKob98gY+k6h7Uvl9f6jhdpNeZxZ4chIuJS0nPgoSQ4U/RL2dJM+DwTRrWDZ2PBZHBaeG7jZKHtc87I+6VsxRH4+jD0vQZevw58XOKqrGHLK4E/rYfkLDBedNw+sRE6BcI/+0KIt/PiExEREcdwicuqd999l+XLl5OSkkLXrl0BMJvNREREEBwcTPv27Z0SV/PYSII6tyV9UYJT2hcREamN3BL4w4+QXVy+/EIHmC8P2RIDD0U7PDS3UmaFh3+CzLzy5Zafe3StPwUvpMArvRwemtuZtgVSsmx/t1zSY25fDvxpA8wdBAYlcEVERNyaSyS7Zs6cycSJE+2JLgCTyURERASenp4cOHCAm2++2b4uOzubnJwcsrKy6jWuTncM5ch3yRSe0FgPERFxPV8dgqziquss2A/3dAI/l7hiaJjWnYD9uZdfb8U2vPGhfGjr57Cw3E56Dqw9cfn1FmBXNmw6Dddd46ioRERExBka/KVrWloaGRkZvP322xXWHTp0iLFjxxIeHk5KSoq9fOrUqZSWlta4jYCAAIqLK17td/RoxpOBAyt9j4ePFxGjB/DDo/+scTuN3ZAhZvaVVp8Y9I3qR8eXEus7nEoNGWKmIDXJKW2LiDhahxnf4xvZG4Px8lN4ni+D8GG3k/PT5w6MzL20feR9ggbchsF0+csui9VKn3ue5fSXmgf0arUYP50WY5+p8ni2lpUy/m8fcPQ/DzswMhEREbkaFsvVT7jZ4JNdR44cAaBFixblyvfs2UNmZmaF+bqKi4v55JNPWLFiRb3GFT6yH6WFxRxevbn6ylLvomYkOjsEERGXY/JrVmViwF7Pt6kDonFfJt+m1Y+bs5Rh8tNDVWrD5NsUrGVU/fwlqx5eIyIi0gg0+GRXSEgIAOnp6fTu3RuwTVj/1FNPYbFYKiS7vvzyS9q0acOvfvWrGreRm1v52IITG/bw9ehpla7rdOcw9n2aiLVMj/apqYSERFr2vrbaeiln4D4nzfmfkJBIbIhz2hYRcbRHf4KfTv4yR9flLP3oHfpc845DYnJHr22HxRlVf84GkwdvPf80t3z4tMPicjef7IN/7Ky6jtHkyR/vuY1HXrvNMUGJiIjIVcvJyWH79u107979it9b/c+5ThYdHU1kZCTPPPMMn332GV9//TWjR49my5Yt+Pr6EhUVVa7++++/z7333luvMQV2bE2LXlHsXfBtvbYjIiJSn25uX00CBmjpDb2aOyoi9zS6ms8ZoIkRbmjjkHDc1oi24FFNBzorMNI5zzUSERGRKxQYGMiAAQMIDLzyXtkNPtnl4eHB4sWLCQ0NZdKkSUydOpURI0YwePBgevTogfGi4RdHjhzh+++/584776zXmDpNGMqJ9bvJzTher+2IiIjUp+tbQVywLal1KQO2xMCfuoFJT66rlaimcFPbqus8cC34ezomHncV7AX3dq66ztgwCPd3TDwiIiLiPA1+GCNATEwMSUnlJw3/5z//yeDBg8uVzZ07l5tuusk+9LG+bH7p43rdvoiIiCN4GOGtvvBiCnx71JbcuiDQE57oDvGtnRWde5kea0tm/fcAlF70QfuY4PfXwp0dnBWZe/ldZ1vvrvfTbA9XuMDDABM6wMNdnBebiIiIOI5LJLsuVVhYSGpqKlOnTi1X/uGHH1b61EZxDwfffYTCjBQCfzWC0HHP2MvPH0vn0DsPYykpouWoPxHUZxQ7H4rGI6glAB2fXoJHQDCpfxlEwf5kus7aQ5Pm1fzELiLSSPh5wKu94GgBrDluSxC087P1+vJs8P2/XYeH0ZY8nNIZEo5BTgm08IYhoeDrkldjDZPBYOvdNT7C9jmfLoKgJrbPOaiJs6MTERERR3HJy6tt27ZRVlZWYXL6vXv3OikiqW/5aZswGD2IeuUH9r16KyXZJ/D8OZl1bOHfiHh8IR7+Qfb6nsFt6Pzi6nLb6PDkZxz5SBP/iohUprUv3K7eRfUu2AvGhjs7Cvfn76m5uURERBozl/zNtk+fPlitVnr16uXsUMRB8veuJ6DHUAACug2mIH0zAJaSYopPH+LAW3eTPmM0JdknACg5d4LUv1zP4Q+fxGq1jRfxbNbKOcGLiIiIiIiIiMO4ZLJLGp+y/GxMvrYnMBh9AijLzwagNOc0hZk7CJ86l5Yjp3J88SsARL28hqhX1mApPk/O5uXOCltEREREREREHEzJLnEJJr8gygpyALAU5mLyC/q5vCk+Yd3x8G+Gf9dBnD+SCoCHfzMAgnqPpPDgTqfELCIiIiIiIiKOp2SXuAS/zr3J3Z4AQO7ONfhG9gTA5O2HsYk3lpIiCjN30KRFONbSEiwlRQDk7UnCq2WE0+IWEREREREREcdSsktcgl+n67CWFJH6l0H4RsRQknWMMwnzAGg5+jH2Th/GoTl/pNUtT1JWcI7Up/qT+pfrKTqSSlDfMQBkvDmRnOSVZLwxgZyt3zpzd0RERERERESknrjk0xilcWr/wKxyy74dYgEIjI0nMDa+3LroNzdXeH/Enz+ut9hEROT/t3fn8VGVd///X5OFTdaAyGKAQBADCEQUFBAGsL3VVhQVqxVFpXVpraV1689Kv7R1KaW96+1tpeXWtkpFb8tti7RUESUgiEYFBFkDQlgURBHZE5KZ3x8jgZAQgpCZ5OT1fDzmYc51zsx8ZjieOfM+13WNJEmSVD3Ys0uSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmCEotFoNNFFVFeFu/by+YoNiS4jMJpltaNOowbH3G73AVizMw4FlSOzMTRMTcxzS5IkSZKkE2fYJUmSJEmSpMBwGKMkSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAiMl0QVIkiRJklQdFe7ay+crNiS6jMBoltWOOo0aJLoM1QKGXZIkSZIklePzFRv492UPJLqMwLh42oOc1ufMRJehWsBhjJIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYNSbsKiwsZOzYsaSnp1O/fn2GDBlCbm4uoVCIadOmJbo8BdQXhTBlLfxyMYxfAvO2QnE00VVJkqJReH87/PYD+MVieHIVbNmX6KokSbVFKDmJPr+8iWuX/5lvr3yafr+9neS6qYkuS9KXUhJdQGVEo1FGjBhBbm4u48aNIzMzkylTpjB8+HAAsrOzE1yhgujF9TDhAzgQgeQQRIG/rYf0U+B3faFDwwQXKEm11I4CuPsdWLw9dtUuFIJIFP64Cq7PhDuyICmU6ColSUHW484raNWvO9OG3EXxgSKG/uU+ej9wPblj/5To0iRRQ3p2TZo0iRkzZjBr1ixuvfVWhg4dyqRJk0hOTiYtLY127dolukQFzKub4eElsaALYr25Il/26Nq8F26bH/uyJUmKr6II3PEWLNkeW44QO0ZHid2eWQNPrk5ggZKkWqHzdUNZ+tiL7N2ynYLPdrL4ty+Q+a0woaQa8RVbCrwa8X/i+PHjGTlyJN26dStpS05OJiMjo6RX1+rVqzn//PM544wzOP/888nLy0tUuarholF4YiUcrVNAJAqfFsDfN8S1LEkSseHkK7+IhVxH83Qe7D4Qt5IkSbVMncYNaNj2VLYvW1fS9tnSddRp1ICG6acmsDJJB1X7YYx5eXmsW7eOxx57rMy6jRs3cuWVVwJw22238f3vf5+RI0fy17/+lVtvvZXXX3/9mI+/c+dOWrVqRVFREaGQYx4E9Tv1JvNXb1a4TTQa4T9fW8tt3bvHqSpJEkC7u56n8bmXEko++ilMQQQ6fWM0O+b8NY6VSZKCqFNKM+5tPKBUW0rD+gAUfrG3pK3wiz0ApH65TuUbPDjM2qLPE12GapA6deqwa9eu475fte/ZtXnzZgBatmxZqn3lypXk5+eTnZ3NJ598wsKFC7n22msBuPbaa1m4cCHbtm075uMvXbqUffv2EY0667hiUpq0POY2oVBSpbaTJJ1cKU1PqzDoKtnOY7QkqYoU7Y79Ikpq4wYlbXWanALAgd3+WopUHVT7nl3NmzcHYM2aNfTp0weITVh/3333EYlEyM7OZuPGjbRt25bk5GQgNsSxTZs2bNy4kVNPrVw30pycHPr37181L0I1yrLPYdQbx94uo2UTFhU4cZckxdM978Ccjysexgjwx/98hG/+7ZG41CRJCq6tuSv592UPlGor3LmX3Zu3kdatAzvXfgRA8+4ZFO7ay+6Nx+5wUZvNnp3DaX3OTHQZqgWqfdiVlZVFZmYm999/P6mpqTRs2JCJEyeyaNEiGjRoQJcuXVi0aFGiy1SAdG0K7U6BjXtikx0fzTB/F0GS4u4bp8Psjyvepl4yhFvFpx5JUu2U9+xr9PjBcLa+vYJIUTG97rqaNf+bQzRyrMsxkuKh2oddKSkpTJ06ldtuu41Ro0aRnp7OmDFjaNy4MWvXriUpKYn09HQ2b95McXExycnJFBcX89FHH5Genp7o8lUDhULwvSz4ybvlr08CmteDy9vHtSxJEjDgtNhFiZU7jt6768ZMaJgax6IkSbXOksdepG5aYy7P+R2hpBDr//kW7z3kXJFSdVHtwy6Anj17smDBglJtjz/+OIMGDQJi83n16tWL5557jpEjR/Lcc8+RnZ1d6SGM0pEubAMP9IRfL4XCI75NnX4KPNoXmtZJTG2SVJulJMFj58E9ubBo+6H20Je3GzJh9BmJqk6SVFtEiyPkjv0TuWP/lOhSJJWjRoRdR9q3bx+rVq1izJgxJW1/+MMfGDVqFL/4xS9o1qwZzzzzTOIKVCBc3h6GtIYZm+A3H8TaHjsPzjsVkvzhTklKmKZ1YFJ/WLYDbvxyjsXbz4RvpkNLfwRLkiSp1quRYdeSJUsoLi4mOzu7pO3MM8/k7bffTmBVCqLGdeCajofCrn7+uJckVQuhEHRvdmj5ZntzSZIk6Us1Muzq27cv0WhFU4dLkiRJkiSpNkpKdAGSJEmSJEnSyWLYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAqPGhF2FhYWMHTuW9PR06tevz5AhQ8jNzSUUCjFt2rRElydJ1V4kCm99Ao8vh/9aBq9uhgORRFclSQL4vACe+xAeXQZProb83YmuSFJFOlx6PhdP+yXXrZnMVblPJLocSUdISXQBlRGNRhkxYgS5ubmMGzeOzMxMpkyZwvDhwwHIzs5OcIWSVL2t3Qn3vAMb9hy6yhEBmtWBB3tD31MTWZ0k1V7RKExaBX/Og6IoJIdiFyf+sBKGtoZx2VC/RpyxS7VLwRd7WPmnl6l3ahO63fLNRJcj6Qg14qNz0qRJzJgxg8WLF9OtWzcAwuEwGRkZpKWl0a5duwRXKEnV15Z9cMt82HUgtnx4Z64vCuGHb8GTA6B7s4SUJ0m12lOr4X9WH1oujh76+/WPYW8RPHYehELxr03S0X08dwkA7S46N8GVSCpPjRjGOH78eEaOHFkSdAEkJyeTkZFR0qvr7rvvJiMjg1AoxAcffJCoUiWp2nluLew8UDrkOihCrAfBH1fGuypJ0q4D8Ke8o6+PAgu2waLtcStJkqRAqPZhV15eHuvWrePKK68ss27jxo0lYdfll1/O3Llzad++fbxLlKRqKxqFaRtiX5iOJgK8tQ0+3R+vqiRJALM+gsJjzJ2YFILpG+JTjyRJQVHthzFu3rwZgJYtW5ZqX7lyJfn5+SVh14ABA07oecLhMElJ1T77U4J0fyGWAtStWy/BlUjHJ5RSh+7P7TrmdlGgU88+7F//ftUXJZ1EHp9Vk7W86qe0HPEAoQrOQYsjUaZMn8XD5zknkJQInVKacW/jE/uuqUMGDw6ztujzRJehGqROnTrs2nXs7zNHqvbpTvPmzQFYs2ZNSVs0GuW+++4jEok4Ob0kVSBaVEikYG+lti3e7TgZSYqn4t3bKwy6AIgUU7z7s/gUJElSQFT7nl1ZWVlkZmZy//33k5qaSsOGDZk4cSKLFi2iQYMGdOnS5aQ8T05ODv379z8pj6XgOeel2H8LCgoSW4j0FTz0PkzLL3/OLohd9ejeDN7dvOYoW0jVl8dn1WSf7odLXo3NnXg0oeQU/nLXNQz49TXxK0xSia25K/n3ZQ+UaQ8lJZGUmkwoJQVCIZLrphKNRokUFiWgyppj9uwcTutzZqLLUC1Q7cOulJQUpk6dym233caoUaNIT09nzJgxNG7cmLVr1zr0UJKO4bqOMGMjHIiUH3hFge+enOsGkqTj0KIeXNUBXlhX/vokoHMTOL9l+eslJU6nqwYy4L/uKFm+fv1z7N74CVP7fC+BVUk6qNqHXQA9e/ZkwYIFpdoef/xxBg0alKCKJKnm6NAo9rP1d+XC7iMuNqaE4IFefpGSpET5cTfYcwD+tSkWbh1+UeLMpvBoX0gOJag4SUe15oUc1ryQk+gyJB1FjewWtW/fPlatWlVqvq4777yT008/nU2bNnHhhRfSrVu3BFYoSdVL7xbw76/DAz0Ptd3ZFV7+OnwzPXF1SVJtl5IEPz8bng/DNR0Ptf/+fPjLBZBWN2GlSZJUY9XIsGvJkiUUFxeXCrsee+wxNm3aRFFREVu2bGHZsmUJrFCSqp/6KXB5+0PLN2RCU79ESVK1kNkYftz90HLfUyHJHl2SJH0lNWIY45H69u1LNFrBTJ6SJEmSJEmqlWpkzy5JkiRJkiSpPIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMGpM2FVYWMjYsWNJT0+nfv36DBkyhNzcXEKhENOmTUt0eZJOQDQK72yDv+TB03nwweexNqmmWr8b/roW/rQacj6GokiiK5Ikqayt++D5D+Gp1fDvTbC/KNEV1QxJdVLo95vbuPKt33Nd3mSGz3uMM2++ONFlSTpMSqILqIxoNMqIESPIzc1l3LhxZGZmMmXKFIYPHw5AdnZ2giuU9FWt2AE/fQ827Cnd3qUJPNIb2jVMSFnSV7KjEH62EN78pHR7Wh34aS8Y1CohZUmSVMr+YvjVEpixEQ6/HnNKCvywK1zRIVGV1QxJycns+2QHM6/5Jbvyt5LWtT1fe+4B9m/bwfrpCxJdniRqSNg1adIkZsyYweLFi+nWrRsA4XCYjIwM0tLSaNeuXYIrlPRVfLgLbpkPBcVl1+XthO/Mg78Ogpb141+bdLz2F8P33oQ1O8uu+7wQ7s6F/zoP+rWMf22SJB0UjcJ978D8T8qu21MEDy+BUAiGt49/bTVF0b4CFv36+ZLl7cvWs3Hmu7Tsk2XYJVUTNWIY4/jx4xk5cmRJ0AWQnJxMRkYG2dnZfPbZZ1xyySV06dKFs846iyuuuIJt27YlsGJJlfE/q2JBV3kjvCLRWEDw7Nq4lyV9JS9vgtU7y9+fD47KfXSZQ3QlSYn17qflB12H++/l5V+MVPlCKcmc1jeLz1fkJ7oUSV+q9mFXXl4e69at48orryyzbuPGjWRnZxMKhbj33ntZtWoVS5cupVOnTvzkJz9JQLWSKmtnIbz2cfnBwEFR4B8bYsGXVN39PR9CFayPEuvNuOKLeFUkSVJZ0zZAUkUfWMDOAzB3S3zqCYLzHh7Ngd37WPu3OYkuRdKXqv0wxs2bNwPQsmXpcR8rV64kPz+f7Oxs0tLSCIfDJevOO+88Jk6ceFzPEw6HSUqq9tmfEqT7C/sBqFu3XoIrCY66bc/kjEffP+Z2e4rglLRTiewtZ2yYvhL356qR9T8bSWl67DGKg4Z9i51v/6PqC6ol3J8VNO7Tqmodf5nDKWeef8ztbvzhT/h0+u+qvJ7qrlNKM+5tPOCo688dN4pTe3fhlRHjiBxwhv9jGTw4zNqizxNdhmqQOnXqsGvXruO+X7VPd5o3bw7AmjVrStqi0Sj33XcfkUikzOT0kUiEiRMnMmzYsLjWKen4FO+tXPeWaHERkYK9VVyNdOKK9+4gWokxisV77NolSUqc4r07iEaOPUaxsudqtVmfX9xIm4E9eOXqn1Ow/fi/jEuqOtW+Z1dWVhaZmZncf//9pKam0rBhQyZOnMiiRYto0KABXbp0KbX9D37wAxo2bMgdd9xxXM+Tk5ND//79T2bpCpBzXor9t6CgILGFBMzNb8AHnx99KGMSMDQ9hff27jnKFvoq3J+rxqRVsVtFmtWBre+8TGq1v9RUc7g/K2jcp1XV/rkRxi2qeJuUEKz4+0Sa1T2+0TJBtDV3Jf++7IEy7X1+eTOtB3Tn5avGUfCZIxAqa/bsHE7rc2aiy1AtUO3DrpSUFKZOncptt93GqFGjSE9PZ8yYMTRu3Ji1a9eWGnp49913k5eXx/Tp0x2SKNUAN58BY94uf12I2C8BjewU15Kkr+yK9vDch7DnwNED3FGdMeiSJCXU19rELs5s2Xv0z6srOkCzuvGsqmY55fQWdP3OJRTvL+Sqt39f0r717ZXMuu6hBFYm6aBqH3YB9OzZkwULSv+E6+OPP86gQYNKlu+//37ee+89/vWvf1G3rkdmqSYYcBr8fz1g/JLY5N2HDwBLSYKHzoZuzRJVnXR8WtSDx8+DO9+CLw4cak8i9mViZCe4rmOiqpMkKaZuMjxxPnxvAXx02EwRBz+vvtYGftQtUdXVDHs2fcpfWl+V6DIkVaBGXl/et28fq1atKpmva9myZTzyyCN89NFH9OvXj169ejF8+PAEVympMq7sAC9dGOvlddAdWfCvr8GQNgkrS/pKujWDl74WC3EPGpEBz4dhTLdYb0VJkhLt9FNg6mB48OxDbZe2gz8PgId72wtZUs1XI3p2HWnJkiUUFxeXhF3dunWr1KTAkqqnVg3g9jPhqdWx5Rs7J7Ye6USckhILcR9ZElu+56yEliNJUrnqJMNFp8MDC2PLY3sltBxJOqlqZNjVt29fwy1JkiRJkiSVYQdVSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCowaE3YVFhYyduxY0tPTqV+/PkOGDCE3N5dQKMS0adMSXV7cFUfhzU/gb+vgXxthR2GiK5IkSUG0vwhmfRQ753j9IygoTnRF0lcXiULuttj+/M8N8Nn+RFek47X7ALy8KfZvOGcLHIgkpo7zHvkOI979A99e/QwjFv6RPr+4kaTUlMQUI6mMGvF/YzQaZcSIEeTm5jJu3DgyMzOZMmUKw4cPByA7OzvBFcbX6x/BhA9g22EfzikhuKID/KgbpNaYCFOSJFVX0Sg8vQb+nAd7ig61N0yBW7rAtR0hFEpcfdLxevMTeOR9+HjfobbkEHzjdLj3LKhXI74Z1V6RKPxxFTy7FvYfFro3rQN3ZMHl7eNbz4o/v8y7v5hM0b4C6qY1IjzpLnrceQWLf/tCfAuRVK4acUifNGkSM2bMYPHixXTr1g2AcDhMRkYGaWlptGvXLsEVxs9rH8FP3i3bXhSFF9bBJ/tgwrmefEqSpBMzcSX8Ka9s++4i+M9lsS+bN58R/7qkr+KtT2DM27EQ93DFUZi+MRaA/fd5kOJF42prwlL42/qy7TsK4cH3Y9+HruoQv3q+WL3p0EIoRDQSpVHH1vErQFKFasThfPz48YwcObIk6AJITk4mIyOjpFfX5ZdfTs+ePcnOzuaCCy5g8eLFCaq26hRF4DdLY39Hj7JNzhZ499O4lSRJkgJoy75Yj66KTFoF2wviU490IqLR2KiIaLT8c+go8M6nMHdLvCtTZa3dWX7Qdbj/WgZ7iyre5mQ7647LuW7NZK794E+kdWvP8kn/jG8Bko6q2oddeXl5rFu3jiuvvLLMuo0bN5aEXU8//TTvv/8+ixYt4u677+bmm2+Od6lV7q1tsK3g6EEXQFII/p4ft5IkSVIATd9w7G2KojBjY9XXIp2oJZ9D/u5jnEMDL3oOXW39Y8Oxv7juK4ZXP4pLOSWWPv4Pns28nr8P/CGrnpnJvk8+j28Bko6q2g9j3Lx5MwAtW7Ys1b5y5Ury8/NLwq4mTZqUrPviiy9ISjq+HC8cDh/3feKt+UXfo83o31W4TSQK/3hjIb/tf36cqqodur8QmyCtbt16Ca4k2Hyf48P3OT58n+PD97lqnP79J2l6wTWEklOPuk206ABjf/cnRj95ZxwrCz736ZOv6cBvk/6DP1e4TQSY+8E66obPjE9R1UhN2Ofa3/cijc6+iFBS8lG3iUaK+cHYX3P18+NO6nN3SmnGvY0HVLjNF3mb2b4snwv++05euerkPn/QDB4cZm2RoaAqr06dOuzateu471ftw67mzZsDsGbNGvr06QPEJqy/7777iEQipSan/853vsPMmTOJRqO8/PLLCam3KhXvP/Y/cDRSTGTf8e8IkiRJB0X27waOMQFoUtKX20nVW2TfsffTaDRCsefQ1VZk/66yE64dKRQisn9PfAoqR1JqMo2ds0uqNkLR6LGOGolVVFREVlYWBw4cYMKECTRs2JCJEyeyaNEitm/fzq5du8r0yJo8eTLPPfccM2bMOObjz58/nwEDBjBv3jz69+9fVS/jpNheAJfMjA0bqMi9Z8HVGfGpqbY456XYf98dltg6gs73OT58n+PD9zk+fJ+rxjvb4PYFx97uLxdA92ZVX09t4j598u0pgv94pfQv+JXn9jNhdC380YWasM/NOsqPdB1p6hDo0PDkPvfW3JX8+7IHSrWlNmpA+4v7sOHlXAp37qVZVnsG/WEM297LY/6Pnzi5BQTMxdMe5LQ+ta8HpeKv2vfsSklJYerUqdx2222MGjWK9PR0xowZQ+PGjVm7dm25Qw+vv/56brnlFj777LOSnmFBkFYXhrU7+nwCSSFokgqXnB7fuiRJUrCc0wK6NIG8L2LDu46UBPRIg25N41yY9BWckgLfyoCn15S/PgmonwKX154feK9xwq3g9Abw0d7yj0khYOBpJz/oOqpolI5XDuTccaNIqpPC/k93kj/jbRZP+N84FSDpWKp92AXQs2dPFiwofXnx8ccfZ9CgQQDs3r2bzz//nPT0dACmT59OWloaaWlpca+1qt3VHT7ZD/O2xsKtyGG9vBqnwuPnQ8OjT68hSZJ0TKEQPNoXbn8T1h82AiyJ2BfNTo3h1+fGtpNqgtvPhI/3wczNZc+h66fAY+dB8+o7ZVWtl5IU+55z+5uxf8eDDh6TzmoGPz87fvUc2L2Pmd/6RfyeUNJxqxFh15H27dvHqlWrGDNmDAB79uxhxIgR7Nmzh+TkZNLS0pg+fTqhAJ6B1U2G/+wDudtiPbxe/zjWfnd3+EY6NDLokiRJJ8Gp9eDZQfDaR/CzRbG2vqfCN9vBkNaQWr1/10cqJSUJHjobrmgf++XyV2K/gcUPu8Kl7aBpncTWp2M7/RR4YXDs3+7B92Nt/U+Dy9rBgNNi/8aSdFCNDLuWLFlCcXFxyeT0p512Gm+99VaCq4qfpBCc1zJ2OzjG/pqOia1JkiQFT91kuCT9UNj13/7Ys2qwUCg2RPecFofCruszE1uTjk/9FLi8/aGw63d9E1uPpOqrRoZdffv2pZrPqy9JkiRJkqQEsLOnJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSpGpiwKPfp+9DoxNdRrmuWzOZtO4ZiS5DOqaURBcgSZIkSVIQterXjV53XU3zHh0B+GzJhyz+zQtsWbAswZXF9Lrrapr37MRrNzxSqe2fzby+iiuSTg57dkmqMXJycsjIyCAcDjNq1Kgy6x966CHy8vKOev/c3Fz69+9Pv379eOCBB8qsP3DgAFdffTXhcJgJEyawYsUKxo8ff1JfgyQF0YkenwH++Mc/MnToUMLhMAcOHChpnzdvHueddx79+vXjt7/9LYDHZ0k1wukX9uZrUx5g46z3eOHsW3nh7FvZOOs9vvbcA5w+9Oxy7xNKPnlf0UMpySftsaSaxrBLUo0yevRocnJyaNKkCQsWLChpj0QiLFmyhM6dOx/1vtnZ2cyfP58333yTBQsWsHPnzlLrX3zxRfr160dOTg7vvfceLVq0YOHChUSj0Sp7PZIUFCdyfN6wYQNLly7ltddeIycnh9TU1JJ1HTt2ZO7cubz55pv885//ZO/evWRlZXl8llTt9X3wZtb8LYdlE1/iwK69HNi1l2UTX2Lt1Dn0efBmAK7KfYIeY67kkpceYuSHz9KiZycAUk+pR3jSXVyXN5nL5/yONuGex3y+Vud347o1kzlj5IVc9c5Ehs36DQCtB/bgm6+M59urnmbYa7+l3UXnAtDuonM5687htB3ci+vWTOa6NZNJqlPx4K8bP55K856dCCUn8e3Vz9C0S3rsuft148aPp9L+m+cDUL9lU27Y8DypDet/tTdPOkGGXZJqpO7du7N58+aS5ffff58zzjijwvsc/PJUXFxMmzZtaNCgQan169at46yzzgIgKyuLd955h44dO7JsWfXoZi5JNcFXOT7PnDmTPXv2MGTIEMaNG1dqXZs2bahTpw4AycnJJCXFTl89Pkuqzhp3akOj9qex7h/zy6z78O/zaNyhFY07tgYgc0SY+Xc9wbOZ1/PZB+sAyLh8AB/+/Q2mnDmKJf/9d4b86V4atEo75vOm1K9Li16Z/GPgGP558X006tCKC5/+CR88/g+e63oT7z30VwZN/BFp3Tqw4eV3WPrY39k8ezHPZl7Ps5nXEyksqtTrixZH2Pr2CloPiJ07t77gLHau+5jWA7rHlgecxWdLPuTA7n2VejzpZDPsklQjLViwgMzMzJLlvLw8OnTocMz7TZkyhaysLJo2bUpKSukrV126dGHOnDlEo1HeeOMNvvjiC9q3b8/q1atPdvmSFFhf5fj8ySefEAqFeP3111m3bh2LFy8us82rr75Kp06dqFevHoDHZ0nVWr20RgDs27q9zLp9n3we26Z5YwBWTX6VL/I2E41ESsKmLW8tZ8O/c4kWR/hw6lw+X55Ph0vPP+bzhpKSeO/hZynaV0DxvkIyLuvH1rdXsH76AqLFETa/vogNM9+l04hBJ/wat8z7oFS4tfg3L5SEX636d+fj+R+c8HNIX5Vhl6Qa5amnniIcDtO2bVt69epV7jbLly8nHA6Xuv3qV78C4Nvf/jYrV67ko48+YunSpaXuN2zYMLZt28bXvvY1Tj31VFq2bFnVL0eSAuNEjs9NmjRh0KDYF6+BAweyatWqUvfbtGkTjzzySMmcXZJU3e3fvguA+qeV7Y1Vv2Wz2DafxabU2LN5W5lt9mwq3bZ747ZK9ewq2ldAwZfPDdCgdXN2H/lY+Vtp0Lr5MR/rWD6et5TTzutKncYNaNyxDev+MZ/kOik0aJ1G6wHd+fiNpcd+EKmK+GuMkmqU0aNHlzu5fOfOnXnxxRcB6Nq1Kzk5OWW2KSgooG7duiQlJdGoUaOS3gEHJScnM3HiRKLRKKNGjeL8889n1qxZ9O/fv0peiyQFyYkcnxcuXMiUKVMAWLp0Kddee23JuoKCAm688UYmTpxIw4YNS9rz8/M9Pkuqtnau/YhdG7aSMawfW47o4ZRxWT92bdjKzg8/BiAaKTv/4Cmnn1pquWH6qWxbeOzerNFIpNTy3o8/o9X53Y54rJbs/fizcrc/HtuXrScaidD1u9/kk3dWEo1E+HjeB5zx7Qtp0LIZn7yz8is/tnSi7NklKRB69uxZpifAkV566SXC4TADBw7k9NNPp3PnzmzZsoUJEyYAsQmSw+EwQ4cO5aqrrqJBgwasWbOG7t27x+MlSFIgVeb4fPbZZ1NUVEQ4HGbv3r307du35Pg8ZcoUli9fzq233ko4HC6ZD8zjs6TqLvdnfyHzW4PpduulpDasT2qjBnS99ZtkXj2Y3LF/rvC+rc7rSvrXzyGUnETHKy6gWdf2rP/XW8ddw7ppb3Ja3yzaf6MvoaQk2g7uRfp/nMPaqXMB2PfpF5zStsVX/hXILW8uo+st3+DjebFeXB/PX0rXW77BJ++tprjgwDHuLVUde3ZJqjEODnkpT1JSEj169CAvL++ov/g1YsQIRowYUaqtVatW3HPPPQC0a9euVI+DFStW0Lt3b0Kh0EmpX5KC6kSPzwCPPvpoqeXDj8833XRTqXUenyXVBBtfeYdZIx+m54+votc9VwPw2ZIPmTXy4ZJw6GjW/WMenUYMYuDvf8iejz9j9nd+w96PPjvuGnat38LrN/+as/+/6+j/u++zZ9M25t7xGNu/nAh//fQFdLx8ANd88CdCoRDP9xhd6UnqAT5+Yykdvnk+H8+L9V77eN4H1Gl8ivN1KeEMuyQFRnnDZ05EVlYWWVlZJ/UxJak28vgsqbb6eN7SCoOtqX2+V6Zt3pjff6Xn2rJgGc9mXl+mffPsxWyevbjc+xTu2M3LV/6/Sj1+6Mtfwz08DFv1zExWPTOzZHnf1s/5S+urjqNqqWo4jFGSJEmSJFWoWbf2RA4UlTuhvlTd2LNLkiRJkqQa4LKc39Hw9BZl2jfOfI+533v0hB//wmd/yml9zyzTfmD3fpJSk3nv4SkU7tx7ws8jVTXDLkmSJEmSaoBp4R9V6ePPuu6hKn18KV4cxihJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwKgRYVdhYSFjx44lPT2d+vXrM2TIEHJzcwmFQkybNi3R5Uk6CTbtOfT3tv2Jq0OSVFpR5NDf734KxdHE1SJJ1U1yvTpc8eZ/c92ayYkuRdJhqn3YFY1GGTFiBE8++SQPPPAA//znP8nIyGD48OEAZGdnJ7hCSSfi473wgwUw/LVDbd+YCT95F3YUJK4uSRK8uB6+8eqh5dvehG++Cv/ckLCSJKlayb7nW+ze9Gmiy5B0hJREF3AskyZNYsaMGSxevJhu3boBEA6HycjIIC0tjXbt2iW4Qklf1Sf74KY3YHsBHN5RIAK8/hGs2Ql/vgAapSaqQkmqvZ7Og/9eUbZ9234Ytxj2FMO3MuJeliRVG817dKTt4F688/NnGPzU3YkuR9Jhqn3PrvHjxzNy5MiSoAsgOTmZjIyMMr26fv7znxMKhfjggw/iXaakr+B/VseCrkg56yLA+t3w3IfxrkqS9Ol++P3Kird5dBnsLIxPPZJU3YSSk+j3m9t46/4niRQWJbocSUeo1mFXXl4e69at48orryyzbuPGjaXCroULF/LWW2/Rvn37eJYo6SvaWwT/2lh+0HW4qesh6vwwkhRX0zdC5BjH3gMRmLEpPvVIUnXT/XuX8dnSdWx9q5wusJISrloPY9y8eTMALVu2LNW+cuVK8vPzS8KugoICvv/97/Pcc88RDoe/0nOFw2GSkqp19leu7i/EZvKuW7degisJNt/nk69umy6c8V9Ljrnd9gJo0KwFkX274lBV7eD+HB++z/Hh+1w1Tv/+/9B0wLWEUo4+jjxadID/77d/YtSTd8axsuBzn44P3+dDauJ7Ec+aO6U0497GA0q1NerQii43fJ2XvnZPlT9/0AweHGZt0eeJLkM1SJ06ddi16/i/C1brsKt58+YArFmzhj59+gCxCevvu+8+IpFISdj1s5/9jJEjR9KhQ4dElSrpOEUK91Vqu2g0QvSAP88oSfEUKdwPoVDFG4VCRAr2xqcgSapGTutzJvVbNOGK+Y8BkJSSTOop9blm2Z+YPXqCvb2kaqBah11ZWVlkZmZy//33k5qaSsOGDZk4cSKLFi2iQYMGdOnShQULFvDuu+/yq1/96oSeKycnh/79+5+kyuPnnJdi/y0o8GfrqpLv88kXjcK3cmDdrtKT0x8uCejbMon39uyOY2XB5/4cH77P8eH7XDXmb4Ufvl3xNqHkFP4+/kec/eSP4lNULeE+HR++z4fUxPcinjVvzV3Jvy97oFTbuulv8tEbh0YonNq7CwP+6/u8dOHd7P9sZ5XXVJPNnp3DaX3OTHQZqgWq9bi9lJQUpk6dSuvWrRk1ahRjxozh4osvZtCgQfTo0YOkpCTmzJnDihUryMjIoEOHDmzatIn/+I//YObMmYkuX1IFQiG4IfPoQRfE5vO6rlO8KpIkHXR+S+jQ8OgniklAlyaQnRbPqiSpeijeV8jej7eX3Ao+2wnRKHs/3u5k9VI1Ua3DLoCePXuyYMEC9u7dy6pVq7j99ttZtGhRyRDGn/zkJ3z00UesX7+e9evXc/rpp/PKK6/w9a9/PcGVSzqWb5wON3WO/X34wejg33d3h/NaHnkvSVJVSwrBf/WFlvVjywcHNB78b9tT4D/7HHukoyTVBlsWLOPZzOsTXYakw1TrYYzl2bdvH6tWrWLMmDGJLkXSCQqF4PtZ0L8l/G09LNkea+t7KlzVIdZrQJKUGG1PgefD8M+NsV/P/awATq0Hl6bDxelwSo07i5QkSbVFjTtNWbJkCcXFxSU9u460fv36+BYk6YT1ah67SZKql4apcE3H2E2SJKmmqHFhV9++fYlGK5rlR5IkSZIkSbVVtZ+zS5IkSZIkSaoswy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZISICcnh4yMDMLhMKNGjSqzfvLkycyaNQuAhx9+mAsuuIAf/OAHZbb77ne/y6BBgxgwYACrV68GIBwOEw6H6datG2PGjOHAgQP079+fQYMGMWzYMPbv38/27dv58Y9/XLUvUpJqoMoenzdu3Ei/fv0YOHAgN910E9FotNR211xzDeFwmN69e3P55ZcDlLudJOnkM+ySJClBRo8eTU5ODk2aNGHBggWl1k2fPp2hQ4eydetWFi5cyBtvvEFKSgrvvvtuqe2eeOIJ5syZwyOPPMIf/vAHIPZFLScnh2HDhnHJJZeQmprKnDlzmDNnDueeey4zZ84kLS2NHTt2sHv37ri9XkmqKSpzfG7Tpg3z589n7ty5JCUlsXTp0lLbPf/88+Tk5HDLLbdwySWXANC3b19mz54dt9chSbWVYZckSQnWvXt3Nm/eXLK8fft26tWrRygU4t1332XQoEEADBkyhNzc3FL3TU1NBWD37t1079691LqcnBzC4TAAKSkpAEQiETp16gTEvnTl5ORUxUuSpECo6PicnJxMKBQCoG7durRp06bcx5g+fTqXXnopAIMHD2bGjBlVX7gk1XKGXZIkJdiCBQvIzMwsWV6zZg3t27cHYMeOHTRu3BiARo0asWPHjjL3Hzp0KHfccQfnnntumceoU6cOAMuXL+fcc8/l1VdfJT09HYD27duXDH2UJJVV0fEZ4PXXX6dHjx5s2bKFJk2alLn/7t272bVrF61btwY87kpSvBh2SZKUIE899RThcJi2bdvSq1evcrdp2rQpO3fuBGDXrl00bdq0zDavvfYaL774IuPGjStpmzZtGpdddlnJcteuXXnnnXcYMWIETz/99Ml8GZIUOJU5PkOsx+2SJUto3749L7/8cpn1r7zyChdddFEVVipJKo9hlyRJCXJwTpgHH3ywVHtmZib5+fkA9O7dm7lz5wIwe/Zs+vTpU2rbgoICAJo0aUL9+vVL2mfMmFEyR8yBAwdKJkRu0qQJ9erVAyA/P5/OnTtXwSuTpJqtMsfnwsLCkvbDj62HO/LCg8ddSYoPwy5JkqqZtLQ09u7dC0CrVq3o0aMHF1xwAQUFBZxzzjls2bKFCRMmADB8+HAGDx7MzTffzE9/+lMAPv30U1JTU0uG1OTn5xMOhxk8eDAvvfQS1113HQBvvfVWyZxekqRjO/z4nJuby8CBAwmHw2zatImhQ4eWOj4XFxezevVqunbtWnL/2bNnc/HFFyekdkmqTVISXYAkSbVROByuMGgaNmwYs2bN4sILL2Ts2LGMHTu2ZF2rVq245557AMqd6LhFixalhtNkZmYyZ86cUtts376dpk2b0qhRoxN8JZIULMdzfD7Y8/agw4/PycnJvPXWW6XWv/3229xyyy0nvWZJUmmGXZIkVUM33HBDlT5+Wloav/vd76r0OSQpiE7k+PznP//5JFYiSToahzFKkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBUWPCrsLCQsaOHUt6ejr169dnyJAh5ObmEgqFmDZtWqLLkySpREHxob8/3pu4OiRJZW3ac+jvA5HE1aGaa8Cj3+f6/Oe4bs3kklvbwb0SXZakw6QkuoDKiEajjBgxgtzcXMaNG0dmZiZTpkxh+PDhAGRnZye4QkmSoCgCT62G59cdahs2C/qeCj/uDh0bJa42SartVn8Bv1sG73x6qO2iV+DbneDGzpAcSlxtqnlW/3UWb//0qUSXIekoakTYNWnSJGbMmMHixYvp1q0bAOFwmIyMDNLS0mjXrl2CK5Qk1XaRKDywEGZ9VLo9CuRug5vegD8NgE6NE1KeJNVqK7+A78yDwuLS7V8cgIkrYcNuGJcNIQMvSQqEGjGMcfz48YwcObIk6AJITk4mIyOjpFdXhw4dOPPMM+nVqxe9evXilVdeSVS5kqRaaO6WskHXQRFgXzFMWBrXkiRJX3rk/VjQdbRRi//aBLmfHmWlVI6OV1zAtcv/zOVzH6XHD68glFwjvlpLtUa179mVl5fHunXreOyxx8qs27hxI1deeWXJ8tSpU+nevXs8y5MkCYCp6yEpFOvhVZ5IFN79DPJ3Q/uGcS1Nkmq11V/Ash0Vb5MUgqnrYsPOpWNZ/tQM3v3lZPZv30XzHh0Z9MQYkuvWYdGvn090aZK+VO3Drs2bNwPQsmXLUu0rV64kPz//pM3XFQ6HSUqqeWl89xf2A1C3br0EVxJsvs8KEvfnqnHm/2wgtelpx9zunItHsDP3pThUVDu4Pyto3KdPvqYXXEv6nX+pcJtIFF5e/CGPXZAVn6KqkZq4z8Wz5k4pzbi38YBSbduXHpqc87P317LoN/9L9t3fMuyqhMGDw6wt+jzRZagGqVOnDrt27Tru+1X7dKd58+YArFmzpqQtGo1y3333EYlESoVd1113HT169OB73/seO3bsiHepkqRaLHqgoHLbFR2o4kokSYeLVPr4XLntpDIiUXC+N6laqfY9u7KyssjMzOT+++8nNTWVhg0bMnHiRBYtWkSDBg3o0qULAG+88Qbp6ekUFBQwZswY7rjjDv76179W+nlycnLo379/Vb2MKnPOl50DCgr8cK5Kvs8KEvfnqjF+Cfzf+qPPBwNQNwnWz/0HDVPjVVXwuT8raNynT74dBXDRTCg6yjBziOUUt4SzuLMWvu81cZ+LZ81bc1fy78seKNXWYVg/Ns9ezIFde2mW1Z6ed41g/T8XVHktQTB7dg6n9Tkz0WWoFqj2YVdKSgpTp07ltttuY9SoUaSnpzNmzBgaN27M2rVrS4YepqenA1C3bl2+973vMWzYsESWLUmqZUZkwP/lE/v5xXKEgOHtMeiSpDhrWhe+kQ4vbSj/EB0CkkNwRft4V6aa6swb/4Pzx99CUmoy+7buYO3UOSz5778nuixJh6n2YRdAz549WbCgdFL++OOPM2jQIAD27NlDUVERTZo0IRqN8vzzz9OrV68EVCpJqq06NoJfZMPPFgHRQz28koj9fW4L+EHXxNUnSbXZ3d1jPxCyePuh4zLE/k4KwSPnwOmnJLBA1SgvX/H/El2CpGOoEWHXkfbt28eqVasYM2YMAFu3buXKK6+kuLiY4uJiunbtyhNPPJHYIiVJtc5Fp0OnRvDCepj9MRRGYiHYVR3goraQUu1nypSkYKqfAk+cD//eHBtyvn431EuCIW3g6ozYsVqSFBw1MuxasmQJxcXFJZPTd+zYkUWLFiW4KkmSoHMT+GnP2E2SVH3USYbL2sVukqRgq5FhV9++fYlGK5hhUpIkSZIkSbWSAyokSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZKkUnJycsjIyCAcDjNq1Kgy6ydPnsysWbMAePjhh7ngggv4wQ9+UGa77373uwwaNIgBAwawevVqAMLhMOFwmG7dujFmzBgOHDhA//79GTRoEMOGDWP//v1s376dH//4x1X7IiVJUiBV9jxm48aN9OvXj4EDB3LTTTcRjUZZsWIF48ePT0DVkk42wy5JUhmjR48mJyeHJk2asGDBglLrpk+fztChQ9m6dSsLFy7kjTfeICUlhXfffbfUdk888QRz5szhkUce4Q9/+AMQOwHNyclh2LBhXHLJJaSmpjJnzhzmzJnDueeey8yZM0lLS2PHjh3s3r07bq9XkiQFR2XOY9q0acP8+fOZO3cuSUlJLF26lKysLBYuXEg0Gk1Q5ZJOFsMu6QQd6+rRQw89RF5e3lHvn5ubS//+/enXrx8PPPBAmfUHDhzg6quvJhwOM2HCBK84Ka66d+/O5s2bS5a3b99OvXr1CIVCvPvuuwwaNAiAIUOGkJubW+q+qampAOzevZvu3buXWpeTk0M4HAYgJSUFgEgkQqdOnQDo27cvOTk5VfGSJElSLVHReUxycjKhUAiAunXr0qZNGwA6duzIsmXLElKvpJPHsEs6CY529SgSibBkyRI6d+581PtmZ2czf/583nzzTRYsWMDOnTtLrX/xxRfp168fOTk5vPfee7Ro0cIrToqbBQsWkJmZWbK8Zs0a2rdvD8COHTto3LgxAI0aNWLHjh1l7j906FDuuOMOzj333DKPUadOHQCWL1/Oueeey6uvvkp6ejoA7du3Lxn6KEmS9FVUdB4D8Prrr9OjRw+2bNlCkyZNAM9BpKAw7JJOoiOvHr3//vucccYZFd7nYO+X4uJi2rRpQ4MGDUqtX7duHWeddRYAWVlZvPPOO15xUpV76qmnCIfDtG3bll69epW7TdOmTUvC2V27dtG0adMy27z22mu8+OKLjBs3rqRt2rRpXHbZZSXLXbt25Z133mHEiBE8/fTTJ/NlSJKkWqgy5zEQ65m+ZMkS2rdvz8svvxy/AiVVOcMu6SQ68upRXl4eHTp0OOb9pkyZQlZWFk2bNi0Z0nVQly5dmDNnDtFolDfeeIMvvvjCK06qcgd7Kz744IOl2jMzM8nPzwegd+/ezJ07F4DZs2fTp0+fUtsWFBQA0KRJE+rXr1/SPmPGDC655BIgNkz3YC/FJk2aUK9ePQDy8/Mr7BEpSZJ0NJU5jyksLCxp9xxECh7DLukkqMzVo+XLl5f8Et3B269+9SsAvv3tb7Ny5Uo++ugjli5dWup+w4YNY9u2bXzta1/j1FNPpWXLllX9cqSjSktLY+/evQC0atWKHj16cMEFF1BQUMA555zDli1bmDBhAgDDhw9n8ODB3Hzzzfz0pz8F4NNPPyU1NbVkqEB+fj7hcJjBgwfz0ksvcd111wHw1ltvlczpJUmSdDIcfh6Tm5vLwIEDCYfDbNq0iaFDhwKxoY5HzjUqqeZJOfYmko5l9OjR5U4u37lzZ1588UUgNlSrvAm3CwoKqFu3LklJSTRq1KjkqtJBycnJTJw4kWg0yqhRozj//POZNWsW/fv3r5LXIh0MY49m2LBhzJo1iwsvvJCxY8cyduzYknWtWrXinnvuAWI9uI7UokWLUsMEMjMzmTNnTqlttm/fTtOmTWnUqNEJvhJJklTbHM95zMEe6getWLGC3r17l0xcL6nmMuySqlDPnj155JFHKtzmpZde4ve//z2RSISBAwfSuXNntmzZwuTJk7nnnnvYsGEDN9xwA0lJSYwZM4YGDRp4xUkJdcMNN1Tp46elpfG73/2uSp9DkiTVThWdx2RlZZGVlRXHaiRVFcMu6QRVdPUoKSmJHj16kJeXd9Sx/yNGjGDEiBGl2g7vHdOuXbtSPcK84iRJkiRJ0tEZdklVrLzhjSfCK06SJEmSJB2dE9RLkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBUaNCbsKCwsZO3Ys6enp1K9fnyFDhpCbm0soFGLatGmJLk8B9kXhob+LIomrQzoZCosP/b2nKHF1SJIkfRXR6KG/t+xLXB2SqreURBdQGdFolBEjRpCbm8u4cePIzMxkypQpDB8+HIDs7OwEV6gg2rIPnlgBMzcfarv0Vbi2E4zsBEmhxNUmHa/CYngqD/627lDb11+Gb6bD97KgSZ3E1SZJklQZsz+G/1l1aPmbr0KfFnD7mXBWWvzrOX3o2WTfdw2NO7WhaPc+PvjDdJZNfCn+hUgqo0aEXZMmTWLGjBksXryYbt26ARAOh8nIyCAtLY127doluEIFzZa9MOoN+LwADu/Mta0AHlsOa3bCz7MhZOClGqAoAj/Khbe3lW4viMCL+fDuZ/CnAQZekiSp+pq6Dn61FI48/X73U/jufHjsPOhzavzqaTOoJ+dPuJV5dz7OlgXLSKlfl1PatohfAZIqVCOGMY4fP56RI0eWBF0AycnJZGRklPTq2r9/P7fffjudO3fmrLPO4pZbbklUuQqA33xQNug63IxNMGdLXEuSvrK/55cNug6KAht2wx9WxrUkSZKkStu2H379Qezv6BHrIkAkCmMXxnfKkex7r2HJo//Hx/OWEi2OcGD3Pnas2hi/AiRVqNqHXXl5eaxbt44rr7yyzLqNGzeWhF333nsv9erVY/Xq1SxdupRf/vKX8S5VAfHJvliQVdFnZVII/rY+XhVJJ+aFdWWvgh4uCkzfCPucw0uSJFVDf8+PBVpHEwE+K4A3tsannpT6dWnRqxP1T23K8Df+i28teZIhf7mPhukt41OApGOq9sMYN2+OTZjUsmXpA8fKlSvJz88nOzub3bt388wzz7Bp0yZCX44rO+20047recLhMElJ1T77K6P7C/sBqFu3XoIrCY6Gvf6DjJ9WPNY+EoX5H26nbrh1nKqSvqLkFM56fs8xN9tfDK2yerN/wwdxKEo6efwcVNC4TyveasI+1/7eqTTqfQmhpOSjbhONFDPqvvFs/d+fn9Tn7pTSjHsbDyjVVqfpKYSSkmj/jb68eu2D7PvsC/r84iYGP3UP079+z0l9/qAZPDjM2qLPE12GapA6deqwa9eu475ftU93mjdvDsCaNWtK2qLRKPfddx+RSITs7GzWrl1L8+bN+fnPf84555xDOBxm3rx5iSpZNV2kkt1bIsXH3kZKtGiEaLRyffqj7tOSJKkaihYXlf4ZxnKFYtvFwYHdsYBw+ZMz2L1pG8X7Cln4yBSan5XhvF1SNVHte3ZlZWWRmZnJ/fffT2pqKg0bNmTixIksWrSIBg0a0KVLFxYvXsyHH35IdnY2EyZM4O233+bSSy9lzZo1NG7cuFLPk5OTQ//+/av41Zx853zZAamgoCCxhQTI7gPwH6/EJu8+miRgWLdTWez7rhrg1vmw6LOKh+a2qAtv5S0mpdpfApFK83NQQeM+rXirCfvcwcnpKxJKSmL6Yz+j17M/O6nPvTV3Jf++7IFSbQd27WX3xk8qEcDpSLNn53BanzMTXYZqgWr/tSYlJYWpU6fSunVrRo0axZgxY7j44osZNGgQPXr0ICkpiXbt2pGSksK1114LQN++fWnRogWrV69OcPWqiRqmwmXtK57jKAJcnRGviqQTc23HioMugG91xKBLkiRVSxenQ8OUo395TQrBGY2hZ1r8alr1zEyyvvMNGrRpTnLdVLLvvYZP31/Lns2fxq8ISUdVI77a9OzZkwULFrB3715WrVrF7bffzqJFi0omp2/RogWDBw/m1VdfBWD16tV88sknZGZmJrJs1WB3Zh36sDw89Er6cuHu7tC9WdzLkr6ScGu48cvD4eEH/YN/h1vB9Z3iXZUkSVLlnJICv+0DqUllv8CGgOZ14NfnQqiiq9Un2dLfT2Pz64sYNvPXjFg4iQanpTF79IT4FSCpQtV+GGN59u3bx6pVqxgzZkxJ2x/+8Aduvvlm7rrrLlJTU5k8eTJNmzZNWI2q2eqlwO/Ph2kbYr9kl78bkkMw4DS4piOc41B81TB3dIUeafC/6+DdT2M/snBGk1gPxW+kx/ZvSZKk6qp3C3g2DM9/CP/eBHuKIK0uDG8PV3eA5vGeXz8a5b2H/sp7D/01zk8sqTJqZNi1ZMkSiouLS3p2AXTs2JGcnJzEFaXAqZscCwKuzogFAyHie7VIOtkGtordolGIcqinoiRJUk3QoSH8pEfsFol6LiPp6Gpk2NW3b1+iTgaoOPKDVEESClU8J50kSVJ15/m5pIrUiDm7JEmSJEmSpMow7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOwKsJycHDIyMgiHw4waNarM+smTJzNr1iwAmjVrRjgc5utf/3qZ7UaNGsWAAQMYOnQomzdvBmDNmjVcdNFFDB48mJdeeomioiK+853vVO0LkiRJqsUqe263ceNG+vXrx8CBA7npppuIRqOltrvmmmsIh8P07t2byy+/HKDc7aQT2edWrFjB+PHjE1C1JBl2Bd7o0aPJycmhSZMmLFiwoNS66dOnM3ToUAB69+5NTk4OM2fOLPMYP//5z5k3bx73338/v//970vann/+eWbPns2wYcNISUnh1FNPZe3atVX/oiRJkmqpypzbtWnThvnz5zN37lySkpJYunRpqe2ef/55cnJyuOWWW7jkkksA6Nu3L7Nnz47b61DN8VX3uaysLBYuXGiIKikhDLtqie7du5f0ygLYvn079erVIxQKAfD+++9zwQUX8Nvf/rbMfTt06ABAcnIyoVCIwsJCNm7cyA033MBll13G1q1bAQiHw/z73/+u+hcjSVIlHatXwkMPPUReXl6Fj/HHP/6RoUOHEg6HOXDgQEn7vHnzOO+88+jXr1/J56c9GRQvFZ3bHTxnA6hbty5t2rQp9zGmT5/OpZdeCsDgwYOZMWNG1ReuGuur7HMdO3Zk2bJlCalXUu1m2FVLLFiwgMzMzJLlNWvW0L59+5Ll1atXk5OTw7x58/jggw/K3D8SifDwww8zevRoPv30Uz744AOefvppxowZwyOPPAJA+/btWb16ddW/GEmSjsPReiVEIhGWLFlC586dj3rfDRs2sHTpUl577TVycnJITU0tWdexY0fmzp3Lm2++yT//+U/27t1rTwbFzbHO7V5//XV69OjBli1baNKkSZn77969m127dtG6dWvA8zgd21fZ59yvJCWKYVfAPfXUU4TDYdq2bUuvXr2Oul2zZs1ITk7mkksuYfny5WXWjx07lmuuuYaOHTvSpEkTzjrrLJo1a8YFF1zAqlWrqvAVSJJ0chzZK+H999/njDPOqPA+M2fOZM+ePQwZMoRx48aVWtemTRvq1KkDxHo/JyXFTqvsyaCqVNlzuyFDhrBkyRLat2/Pyy+/XGb9K6+8wkUXXVSFlSooTtY+J0nxZNgVcAevZj/44IOl2jMzM8nPzwdg7969FBcXA7ErNhkZGaW2/b//+z+2b9/OzTffDMApp5xCvXr1KCgo4IMPPigZ5pifn1/h1XFJkhLpyF4JeXl5JZ9hR/PJJ58QCoV4/fXXWbduHYsXLy6zzauvvkqnTp2oV68eYE8GVa3KnNsVFhaWtDdp0qRk3zzctGnTuOyyy0qWPY/T0ZzIPud+JSlRDLtqqbS0NPbu3QvA2rVr6dOnDwMGDKBp06ace+65bNmyhQkTJgDw4x//mPfff59wOMxDDz0EwF133cXQoUP54Q9/yL333gvE5kW5+OKLE/OCJEk6isr0Sli+fDnhcLjU7Ve/+hVNmjRh0KBBAAwcOLBMb+ZNmzbxyCOPlDvnpRRPh5/b5ebmMnDgQMLhMJs2bWLo0KGlzu2Ki4tZvXo1Xbt2Lbn/7NmzPY/TcTnWPgexoY7du3dPZJmSaqmURBegqnPwZP1ohg0bxqxZs7jwwgt57733Sq1r1aoV99xzD0DJFZvDXXjhhVx44YUly0VFRXzyySelrphLklQdjB49mgceeKBMe+fOnXnxxRcB6Nq1Kzk5OWW2WbhwIVOmTAFg6dKlXHvttSXrCgoKuPHGG5k4cSINGzYsac/Pz6d///4n+VVIx3duN3fu3FLrDj+3S05O5q233iq1/u233+aWW2456TWrZjuRfW7FihX07t27ZOJ6SYonw65a7IYbbjhpj5WSksJTTz110h5PkqSq1rNnz5IfWTmas88+m2eeeYZwOMwZZ5xB37592bJlC5MnT6ZFixYsX76cW2+9FYBnn32Wtm3b2pNBCXMi53Z//vOfT2Ilqi0q2ueysrLIysqKYzWSdIhhlyRJCqyKeiUkJSXRo0cP8vLyKpxT5tFHHy21fHgPmZtuuqnUOnsySJIkJZ5hlyRJqrXKG954IuzJIEmSlHhOUC9JkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGDUm7CosLGTs2LGkp6dTv359hgwZQm5uLqFQiGnTpiW6vITYU5ToCiRJqh52H0h0BdKJcz9WIrn/SQqSlEQXUBnRaJQRI0aQm5vLuHHjyMzMZMqUKQwfPhyA7OzsBFcYX5v2wFOr4eXNh9punAs3doZw68TVJUlSvLyxBf6cd2j5wpfha23hu2dAu4aJq0v6Kj7cBU+ugtc+PtR2yzy4+Qw4r2Xi6lKwlXcc/Xpb+I7H0WO6bs3kUsvJdVLZkbeZl4belaCKJB2pRoRdkyZNYsaMGSxevJhu3boBEA6HycjIIC0tjXbt2iW4wvhZtwtGz4tdeYkc1r58B9z9DvyoG1zXKVHVSZJU9f62DsYvLd09vSgKr2yOfXl7cgBkNk5YedJxWb4Dbp0PBcWlz+0Wb4cfvAU/6wWX1p5TXcXJ0Y6jL2+CuR5Hj+nZzOtLLQ977besmzY/QdVIKk+NGMY4fvx4Ro4cWRJ0ASQnJ5ORkUF2djbr16+nV69eJbcOHTqQlpaWwIqrzv9bBLuLSp8MwaHl3y2D9bviXZUkSfGxaQ/8emns7zKfhVHYWwQ/fQ+i0biXJh23SBTuf7ds0AWx5Sjwy/dh2/4EFKfAqvA4Suw4+oDH0Upr0SuTpmeczpr/nZ3oUiQdptqHXXl5eaxbt44rr7yyzLqNGzeSnZ1Nhw4dWLx4ccnt8ssv59vf/nYCqq1aK3bErv5FKvjgCQH/lx+ngiRJirMXj/EZFwHW7oIln8elHOmE5G6DTXvLBg6Hi0ThH57b6SSqzHF0jcfRSuv87SFsfn0R+7b6hknVSbUfxrh5c2xiqpYtS09YsHLlSvLz88vM11VYWMizzz7LK6+8clzPEw6HSUqq3tlf2tdvpe13H6twmyjw1Cu53N/7gvgUJUlSHGWMe5WG3QYec7uLv3MPn/2r4s9MKdFOveInnHbN/yMUOvo5aDQSYcJzr3DHI5fHrzAFWsbPZ9Gw67G/K3gcjemU0ox7Gw8od11K/bpkXNafN+58PM5V1VyDB4dZW2QwqMqrU6cOu3Yd//C16p3uAM2bNwdgzZo1JW3RaJT77ruPSCRSJux66aWXaNu2LWeffXZc64yLaEXX/Q7fzj7HkqSAikaIVuZzzs9C1QSe2ykRKn0creT+WYt1uPR8ivYVsmnWe4kuRdIRQtFKHekSp6ioiKysLA4cOMCECRNo2LAhEydOZNGiRWzfvp1du3aV6pF1ySWXcNFFF3HnnXdW6vF37tzJ0qVLOeuss2jcuHrPwrh2J3wrp+JtQsCoTLijazwqkiQpvv64Ep5cHevJXJG/DoQzm8ajIumrW/wZfKcSc1rf2RVuyKz6elQ7eBw9PltzV/Lvyx4od93F037JJ2+v5L2Hn41zVTXXxdMe5LQ+Zya6DNUC1b5nV0pKClOnTqV169aMGjWKMWPGcPHFFzNo0CB69OhRKujavHkzc+bM4brrrqv04zdu3Jj+/ftX+6ALoFNjOLt5xf9oIWB4+3hVJElSfA1vD0mho69PAro39QuaaoaeadCp0dH36RBQJwmGpce1LAVcpY6jzTyOHkvjTm1oeU4XVj/3WqJLkVSOah92AfTs2ZMFCxawd+9eVq1axe23386iRYvKDGF8+umn+cY3vlEy9DGIfpENLerFTn4Ol0Ss7We9oO0p8a9LkqR4aFkffp4d+9w78staCGhWFx7snYjKpOMXCsH4c6BxajnndqHY7eHe0LRuQspTQFXqOBrAGWFOts7XDmHr2yvYtW5LokuRVI5qP0F9efbt28eqVasYM2ZMqfa//OUvPPZYsCdRbNUAJg+Ev66Fv+fD7qLYh1L/0+D6zFjPL0mSguyi06F1A5i8BuZsiQ3FOSUFLmsX+yw8tV6iK5Qqr0Oj2HCxyWvhpQ2wrzgWQAxpBSMzYz1spJPtaMfRy9vF9juPo8f23oN/TXQJkipQI8OuJUuWUFxcXKZn1+rVqxNUUXw1rwc/7Babl2vPAaibHLtJklRb9EyDnn2gsBj2F8MpqZBcwbAcqTpr1QDuOQt+1A32FEH9ZKjjuZ2q2OHH0X3F0NDjqKQAqZFhV9++fSv3CyIBlxyCxnUSXYUkSYlTx1BAAZKSBE08t1OceRyVFEQ1Ys4uSZIkSZIkqTIMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwQtFoNJroIiRJkiRJqm4Kd+3l8xUbEl1GYDTLakedRg0SXYZqAcMuSZIkSZIkBYbDGCVJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFxv8PFJj4Bfw0+IYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -776,10 +776,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:24.192611Z", - "iopub.status.busy": "2024-07-30T19:20:24.192225Z", - "iopub.status.idle": "2024-07-30T19:20:24.458500Z", - "shell.execute_reply": "2024-07-30T19:20:24.457625Z" + "iopub.execute_input": "2024-08-01T02:14:46.888838Z", + "iopub.status.busy": "2024-08-01T02:14:46.888636Z", + "iopub.status.idle": "2024-08-01T02:14:47.154030Z", + "shell.execute_reply": "2024-08-01T02:14:47.153449Z" } }, "outputs": [ diff --git a/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb b/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb index bcd890406..7e5925f94 100644 --- a/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb @@ -26,10 +26,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:26.906747Z", - "iopub.status.busy": "2024-07-30T19:20:26.906545Z", - "iopub.status.idle": "2024-07-30T19:20:27.613634Z", - "shell.execute_reply": "2024-07-30T19:20:27.612996Z" + "iopub.execute_input": "2024-08-01T02:14:49.587549Z", + "iopub.status.busy": "2024-08-01T02:14:49.587346Z", + "iopub.status.idle": "2024-08-01T02:14:50.307655Z", + "shell.execute_reply": "2024-08-01T02:14:50.307026Z" } }, "outputs": [ @@ -74,10 +74,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.616232Z", - "iopub.status.busy": "2024-07-30T19:20:27.615948Z", - "iopub.status.idle": "2024-07-30T19:20:27.622812Z", - "shell.execute_reply": "2024-07-30T19:20:27.622273Z" + "iopub.execute_input": "2024-08-01T02:14:50.310235Z", + "iopub.status.busy": "2024-08-01T02:14:50.309922Z", + "iopub.status.idle": "2024-08-01T02:14:50.317245Z", + "shell.execute_reply": "2024-08-01T02:14:50.316619Z" } }, "outputs": [ @@ -120,10 +120,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.625029Z", - "iopub.status.busy": "2024-07-30T19:20:27.624835Z", - "iopub.status.idle": "2024-07-30T19:20:27.629598Z", - "shell.execute_reply": "2024-07-30T19:20:27.629044Z" + "iopub.execute_input": "2024-08-01T02:14:50.319785Z", + "iopub.status.busy": "2024-08-01T02:14:50.319414Z", + "iopub.status.idle": "2024-08-01T02:14:50.323837Z", + "shell.execute_reply": "2024-08-01T02:14:50.323266Z" } }, "outputs": [ @@ -157,10 +157,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.631936Z", - "iopub.status.busy": "2024-07-30T19:20:27.631552Z", - "iopub.status.idle": "2024-07-30T19:20:27.635830Z", - "shell.execute_reply": "2024-07-30T19:20:27.635342Z" + "iopub.execute_input": "2024-08-01T02:14:50.326096Z", + "iopub.status.busy": "2024-08-01T02:14:50.325872Z", + "iopub.status.idle": "2024-08-01T02:14:50.330257Z", + "shell.execute_reply": "2024-08-01T02:14:50.329773Z" } }, "outputs": [ @@ -199,10 +199,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.637924Z", - "iopub.status.busy": "2024-07-30T19:20:27.637736Z", - "iopub.status.idle": "2024-07-30T19:20:27.643581Z", - "shell.execute_reply": "2024-07-30T19:20:27.642992Z" + "iopub.execute_input": "2024-08-01T02:14:50.332778Z", + "iopub.status.busy": "2024-08-01T02:14:50.332311Z", + "iopub.status.idle": "2024-08-01T02:14:50.338267Z", + "shell.execute_reply": "2024-08-01T02:14:50.337780Z" } }, "outputs": [ @@ -245,10 +245,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.645929Z", - "iopub.status.busy": "2024-07-30T19:20:27.645574Z", - "iopub.status.idle": "2024-07-30T19:20:27.651334Z", - "shell.execute_reply": "2024-07-30T19:20:27.650782Z" + "iopub.execute_input": "2024-08-01T02:14:50.340689Z", + "iopub.status.busy": "2024-08-01T02:14:50.340489Z", + "iopub.status.idle": "2024-08-01T02:14:50.346175Z", + "shell.execute_reply": "2024-08-01T02:14:50.345645Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.653560Z", - "iopub.status.busy": "2024-07-30T19:20:27.653233Z", - "iopub.status.idle": "2024-07-30T19:20:27.658266Z", - "shell.execute_reply": "2024-07-30T19:20:27.657700Z" + "iopub.execute_input": "2024-08-01T02:14:50.348736Z", + "iopub.status.busy": "2024-08-01T02:14:50.348275Z", + "iopub.status.idle": "2024-08-01T02:14:50.353951Z", + "shell.execute_reply": "2024-08-01T02:14:50.353336Z" } }, "outputs": [ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png index 18f337fda..5f10d3527 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png differ diff --git a/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb index 1d33a28ba..bebb58e09 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:29.377905Z", - "iopub.status.busy": "2024-07-30T19:20:29.377709Z", - "iopub.status.idle": "2024-07-30T19:20:30.364086Z", - "shell.execute_reply": "2024-07-30T19:20:30.363497Z" + "iopub.execute_input": "2024-08-01T02:14:52.228409Z", + "iopub.status.busy": "2024-08-01T02:14:52.227956Z", + "iopub.status.idle": "2024-08-01T02:14:53.247197Z", + "shell.execute_reply": "2024-08-01T02:14:53.246590Z" } }, "outputs": [ @@ -36,7 +36,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Parsing /tmp/tmp6y6xfhk7\n", + "Parsing /tmp/tmp2r5b2_je\n", "converged SCF energy = -75.6787887956314\n" ] }, @@ -123,10 +123,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:30.367430Z", - "iopub.status.busy": "2024-07-30T19:20:30.366861Z", - "iopub.status.idle": "2024-07-30T19:20:30.371417Z", - "shell.execute_reply": "2024-07-30T19:20:30.370827Z" + "iopub.execute_input": "2024-08-01T02:14:53.250338Z", + "iopub.status.busy": "2024-08-01T02:14:53.249861Z", + "iopub.status.idle": "2024-08-01T02:14:53.254573Z", + "shell.execute_reply": "2024-08-01T02:14:53.253956Z" } }, "outputs": [], @@ -166,10 +166,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:30.373699Z", - "iopub.status.busy": "2024-07-30T19:20:30.373373Z", - "iopub.status.idle": "2024-07-30T19:20:30.376406Z", - "shell.execute_reply": "2024-07-30T19:20:30.375913Z" + "iopub.execute_input": "2024-08-01T02:14:53.257067Z", + "iopub.status.busy": "2024-08-01T02:14:53.256733Z", + "iopub.status.idle": "2024-08-01T02:14:53.259991Z", + "shell.execute_reply": "2024-08-01T02:14:53.259410Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:30.378653Z", - "iopub.status.busy": "2024-07-30T19:20:30.378459Z", - "iopub.status.idle": "2024-07-30T19:20:30.499548Z", - "shell.execute_reply": "2024-07-30T19:20:30.498928Z" + "iopub.execute_input": "2024-08-01T02:14:53.262218Z", + "iopub.status.busy": "2024-08-01T02:14:53.261893Z", + "iopub.status.idle": "2024-08-01T02:14:53.401262Z", + "shell.execute_reply": "2024-08-01T02:14:53.400682Z" } }, "outputs": [ @@ -209,7 +209,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialialization: -75.67794403659724\n" + "Energy at initialialization: -75.67794403659721\n" ] } ], @@ -236,10 +236,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:30.502057Z", - "iopub.status.busy": "2024-07-30T19:20:30.501705Z", - "iopub.status.idle": "2024-07-30T19:20:38.618309Z", - "shell.execute_reply": "2024-07-30T19:20:38.617653Z" + "iopub.execute_input": "2024-08-01T02:14:53.403986Z", + "iopub.status.busy": "2024-08-01T02:14:53.403575Z", + "iopub.status.idle": "2024-08-01T02:15:01.425313Z", + "shell.execute_reply": "2024-08-01T02:15:01.424673Z" } }, "outputs": [ @@ -251,10 +251,10 @@ " message: STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT\n", " success: False\n", " status: 1\n", - " fun: -75.68381558699649\n", - " x: [-1.603e-01 6.414e-03 ... 5.748e-02 -1.005e-01]\n", + " fun: -75.68381558366461\n", + " x: [-1.603e-01 6.417e-03 ... 5.748e-02 -1.005e-01]\n", " nit: 3\n", - " jac: [ 2.032e-04 1.066e-04 ... -4.752e-03 7.407e-03]\n", + " jac: [ 2.203e-04 1.180e-04 ... -4.745e-03 7.449e-03]\n", " nfev: 112\n", " njev: 7\n", " hess_inv: <15x15 LbfgsInvHessProduct with dtype=float64>\n" diff --git a/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb index 49e931973..5959ada9e 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb @@ -29,10 +29,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.129711Z", - "iopub.status.busy": "2024-07-30T19:20:40.129179Z", - "iopub.status.idle": "2024-07-30T19:20:40.822257Z", - "shell.execute_reply": "2024-07-30T19:20:40.821711Z" + "iopub.execute_input": "2024-08-01T02:15:02.995372Z", + "iopub.status.busy": "2024-08-01T02:15:02.995170Z", + "iopub.status.idle": "2024-08-01T02:15:03.713503Z", + "shell.execute_reply": "2024-08-01T02:15:03.712842Z" } }, "outputs": [ @@ -40,9 +40,9 @@ "data": { "text/plain": [ "FermionOperator({\n", + " (cre_a(0), des_a(3)): 0.5,\n", " (cre_b(1), des_b(5), cre_a(4)): 1+1j,\n", - " (cre_a(3), des_a(0)): -0.25,\n", - " (cre_a(0), des_a(3)): 0.5\n", + " (cre_a(3), des_a(0)): -0.25\n", "})" ] }, @@ -76,17 +76,17 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.824814Z", - "iopub.status.busy": "2024-07-30T19:20:40.824385Z", - "iopub.status.idle": "2024-07-30T19:20:40.828630Z", - "shell.execute_reply": "2024-07-30T19:20:40.828110Z" + "iopub.execute_input": "2024-08-01T02:15:03.716141Z", + "iopub.status.busy": "2024-08-01T02:15:03.715643Z", + "iopub.status.idle": "2024-08-01T02:15:03.719694Z", + "shell.execute_reply": "2024-08-01T02:15:03.719165Z" } }, "outputs": [ { "data": { "text/plain": [ - "'FermionOperator({((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 3), (False, False, 0)): -0.25+0j, ((True, False, 0), (False, False, 3)): 0.5+0j})'" + "'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 3), (False, False, 0)): -0.25+0j})'" ] }, "execution_count": 2, @@ -110,10 +110,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.831014Z", - "iopub.status.busy": "2024-07-30T19:20:40.830519Z", - "iopub.status.idle": "2024-07-30T19:20:40.834980Z", - "shell.execute_reply": "2024-07-30T19:20:40.834509Z" + "iopub.execute_input": "2024-08-01T02:15:03.722023Z", + "iopub.status.busy": "2024-08-01T02:15:03.721669Z", + "iopub.status.idle": "2024-08-01T02:15:03.726029Z", + "shell.execute_reply": "2024-08-01T02:15:03.725556Z" } }, "outputs": [ @@ -121,17 +121,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", + " (des_a(3), des_b(3)): 0.0625,\n", + " (cre_a(3), des_a(0)): -0.5,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,\n", - " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", + " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", + " (cre_a(0), des_a(3)): 1,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", - " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", + " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", " (cre_b(2)): 0-0.25j,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", - " (cre_a(3), des_a(0)): -0.5,\n", - " (cre_a(0), des_a(3)): 1,\n", - " (des_a(3), des_b(3)): 0.0625\n", + " (cre_b(1), des_b(5), cre_a(4)): 2+2j\n", "})" ] }, @@ -170,10 +170,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.837346Z", - "iopub.status.busy": "2024-07-30T19:20:40.836985Z", - "iopub.status.idle": "2024-07-30T19:20:40.841028Z", - "shell.execute_reply": "2024-07-30T19:20:40.840425Z" + "iopub.execute_input": "2024-08-01T02:15:03.728303Z", + "iopub.status.busy": "2024-08-01T02:15:03.727962Z", + "iopub.status.idle": "2024-08-01T02:15:03.731751Z", + "shell.execute_reply": "2024-08-01T02:15:03.731255Z" } }, "outputs": [ @@ -181,17 +181,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", + " (des_a(3), des_b(3)): 0-1.25j,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,\n", - " (cre_a(3), des_a(0), cre_b(2)): -1,\n", + " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", " (cre_a(0), des_a(3), cre_b(2)): 2,\n", - " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", + " (cre_a(3), des_a(0), cre_b(2)): -1,\n", " (cre_b(2)): -5,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", - " (cre_a(0), des_a(3)): 0-6j,\n", - " (des_a(3), des_b(3)): 0-1.25j\n", + " (cre_b(1), des_b(5), cre_a(4)): 12-12j\n", "})" ] }, @@ -220,10 +220,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.843289Z", - "iopub.status.busy": "2024-07-30T19:20:40.843043Z", - "iopub.status.idle": "2024-07-30T19:20:40.847315Z", - "shell.execute_reply": "2024-07-30T19:20:40.846822Z" + "iopub.execute_input": "2024-08-01T02:15:03.734093Z", + "iopub.status.busy": "2024-08-01T02:15:03.733743Z", + "iopub.status.idle": "2024-08-01T02:15:03.737557Z", + "shell.execute_reply": "2024-08-01T02:15:03.736979Z" } }, "outputs": [ @@ -231,16 +231,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", - " (cre_b(2), cre_a(0), des_a(3)): 2,\n", " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", - " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_b(2)): -5,\n", " (cre_a(3), des_a(0)): 0+3j,\n", - " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", + " (des_b(3), des_a(3)): 0+1.25j,\n", " (cre_b(1), cre_a(4), des_b(5)): -12+12j,\n", + " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", " (cre_b(2), cre_a(3), des_a(0)): -1,\n", - " (cre_b(2)): -5,\n", - " (des_b(3), des_a(3)): 0+1.25j\n", + " (cre_b(2), cre_a(0), des_a(3)): 2,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j\n", "})" ] }, @@ -265,10 +265,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.849418Z", - "iopub.status.busy": "2024-07-30T19:20:40.849243Z", - "iopub.status.idle": "2024-07-30T19:20:40.852377Z", - "shell.execute_reply": "2024-07-30T19:20:40.851786Z" + "iopub.execute_input": "2024-08-01T02:15:03.739953Z", + "iopub.status.busy": "2024-08-01T02:15:03.739608Z", + "iopub.status.idle": "2024-08-01T02:15:03.742596Z", + "shell.execute_reply": "2024-08-01T02:15:03.741975Z" } }, "outputs": [ @@ -298,10 +298,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.854709Z", - "iopub.status.busy": "2024-07-30T19:20:40.854346Z", - "iopub.status.idle": "2024-07-30T19:20:40.858697Z", - "shell.execute_reply": "2024-07-30T19:20:40.858190Z" + "iopub.execute_input": "2024-08-01T02:15:03.744793Z", + "iopub.status.busy": "2024-08-01T02:15:03.744464Z", + "iopub.status.idle": "2024-08-01T02:15:03.748472Z", + "shell.execute_reply": "2024-08-01T02:15:03.747891Z" } }, "outputs": [ @@ -341,10 +341,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.861099Z", - "iopub.status.busy": "2024-07-30T19:20:40.860730Z", - "iopub.status.idle": "2024-07-30T19:20:40.866540Z", - "shell.execute_reply": "2024-07-30T19:20:40.865977Z" + "iopub.execute_input": "2024-08-01T02:15:03.750631Z", + "iopub.status.busy": "2024-08-01T02:15:03.750437Z", + "iopub.status.idle": "2024-08-01T02:15:03.757184Z", + "shell.execute_reply": "2024-08-01T02:15:03.756585Z" } }, "outputs": [ @@ -353,7 +353,7 @@ "text/plain": [ "array([ 0. +0.j , 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", - " -0.3185146+0.03258348j, 0. +0.j ,\n", + " -0.0129265+0.03603956j, 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", " 0. +0.j ])" ] @@ -380,10 +380,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.868674Z", - "iopub.status.busy": "2024-07-30T19:20:40.868460Z", - "iopub.status.idle": "2024-07-30T19:20:40.879881Z", - "shell.execute_reply": "2024-07-30T19:20:40.879313Z" + "iopub.execute_input": "2024-08-01T02:15:03.759697Z", + "iopub.status.busy": "2024-08-01T02:15:03.759258Z", + "iopub.status.idle": "2024-08-01T02:15:03.770529Z", + "shell.execute_reply": "2024-08-01T02:15:03.769937Z" } }, "outputs": [ diff --git a/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb index 2aa126521..81580fc7a 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:42.520621Z", - "iopub.status.busy": "2024-07-30T19:20:42.520402Z", - "iopub.status.idle": "2024-07-30T19:20:43.507932Z", - "shell.execute_reply": "2024-07-30T19:20:43.507195Z" + "iopub.execute_input": "2024-08-01T02:15:05.497077Z", + "iopub.status.busy": "2024-08-01T02:15:05.496876Z", + "iopub.status.idle": "2024-08-01T02:15:06.495921Z", + "shell.execute_reply": "2024-08-01T02:15:06.495327Z" } }, "outputs": [ @@ -27,22 +27,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "converged SCF energy = -77.8266321248745\n" + "converged SCF energy = -77.8266321248744\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Parsing /tmp/tmpwu132bfo\n", - "converged SCF energy = -77.8266321248745\n" + "Parsing /tmp/tmpj45xqv5x\n", + "converged SCF energy = -77.8266321248744\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CASCI E = -77.8742165643863 E(CI) = -4.02122442107773 S^2 = 0.0000000\n" + "CASCI E = -77.8742165643862 E(CI) = -4.02122442107773 S^2 = 0.0000000\n" ] }, { @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:43.510875Z", - "iopub.status.busy": "2024-07-30T19:20:43.510528Z", - "iopub.status.idle": "2024-07-30T19:20:43.581220Z", - "shell.execute_reply": "2024-07-30T19:20:43.580643Z" + "iopub.execute_input": "2024-08-01T02:15:06.499196Z", + "iopub.status.busy": "2024-08-01T02:15:06.498740Z", + "iopub.status.idle": "2024-08-01T02:15:06.568178Z", + "shell.execute_reply": "2024-08-01T02:15:06.567558Z" } }, "outputs": [ @@ -132,14 +132,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(CCSD) = -77.87421536374038 E_corr = -0.04758323886585477\n" + "E(CCSD) = -77.87421536374026 E_corr = -0.04758323886585879\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialization: -77.87160024816276\n" + "Energy at initialization: -77.87160024816279\n" ] } ], @@ -180,10 +180,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:43.584677Z", - "iopub.status.busy": "2024-07-30T19:20:43.584416Z", - "iopub.status.idle": "2024-07-30T19:21:53.848384Z", - "shell.execute_reply": "2024-07-30T19:21:53.847663Z" + "iopub.execute_input": "2024-08-01T02:15:06.571816Z", + "iopub.status.busy": "2024-08-01T02:15:06.571582Z", + "iopub.status.idle": "2024-08-01T02:16:16.428318Z", + "shell.execute_reply": "2024-08-01T02:16:16.427695Z" } }, "outputs": [ @@ -195,10 +195,10 @@ " message: STOP: TOTAL NO. of ITERATIONS REACHED LIMIT\n", " success: False\n", " status: 1\n", - " fun: -77.87387392663813\n", - " x: [-4.776e-01 -1.087e-04 ... 1.284e-04 1.285e-01]\n", + " fun: -77.87387387354954\n", + " x: [-1.153e+00 -1.260e-03 ... 3.360e-04 1.287e-01]\n", " nit: 10\n", - " jac: [-3.553e-05 1.563e-05 ... 7.105e-06 1.137e-05]\n", + " jac: [-3.695e-05 -3.837e-05 ... 7.105e-06 1.705e-05]\n", " nfev: 949\n", " njev: 13\n", " hess_inv: <72x72 LbfgsInvHessProduct with dtype=float64>\n" @@ -242,10 +242,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:21:53.851589Z", - "iopub.status.busy": "2024-07-30T19:21:53.851335Z", - "iopub.status.idle": "2024-07-30T19:22:17.907960Z", - "shell.execute_reply": "2024-07-30T19:22:17.907327Z" + "iopub.execute_input": "2024-08-01T02:16:16.431431Z", + "iopub.status.busy": "2024-08-01T02:16:16.431092Z", + "iopub.status.idle": "2024-08-01T02:16:41.150705Z", + "shell.execute_reply": "2024-08-01T02:16:41.150095Z" } }, "outputs": [ @@ -257,10 +257,10 @@ " message: CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n", " success: True\n", " status: 0\n", - " fun: -77.87363426617898\n", - " x: [-4.774e-01 -9.140e-05 ... 3.519e-02 2.561e-01]\n", + " fun: -77.87363426394428\n", + " x: [-1.153e+00 -1.027e-04 ... 3.520e-02 2.561e-01]\n", " nit: 5\n", - " jac: [ 1.847e-05 -1.990e-05 ... 5.684e-06 -2.842e-06]\n", + " jac: [-5.684e-06 2.274e-05 ... 9.948e-06 -2.842e-06]\n", " nfev: 329\n", " njev: 7\n", " hess_inv: <46x46 LbfgsInvHessProduct with dtype=float64>\n" @@ -305,10 +305,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:22:17.912351Z", - "iopub.status.busy": "2024-07-30T19:22:17.911173Z", - "iopub.status.idle": "2024-07-30T19:23:01.309529Z", - "shell.execute_reply": "2024-07-30T19:23:01.308897Z" + "iopub.execute_input": "2024-08-01T02:16:41.153702Z", + "iopub.status.busy": "2024-08-01T02:16:41.153482Z", + "iopub.status.idle": "2024-08-01T02:16:56.451086Z", + "shell.execute_reply": "2024-08-01T02:16:56.450406Z" } }, "outputs": [ @@ -317,61 +317,36 @@ "output_type": "stream", "text": [ "Number of parameters: 46\n", - " message: Stop: Total number of iterations reached limit.\n", - " success: False\n", - " fun: -77.8737294738008\n", - " x: [-4.713e-01 1.887e-02 ... 3.496e-02 2.563e-01]\n", - " nit: 10\n", - " jac: [-5.100e-04 7.045e-04 ... -8.032e-05 -9.903e-04]\n", - " nfev: 1456\n", - " njev: 10\n", - " nlinop: 996\n", + " message: Convergence: Norm of projected gradient <= gtol.\n", + " success: True\n", + " fun: -77.87363431750812\n", + " x: [-1.152e+00 2.495e-04 ... 3.487e-02 2.558e-01]\n", + " nit: 4\n", + " jac: [ 1.160e-06 2.366e-06 ... -8.677e-08 -8.466e-08]\n", + " nfev: 634\n", + " njev: 5\n", + " nlinop: 404\n", "\n", "Iteration 1\n", - " Energy: -77.87362938613155\n", - " Norm of gradient: 0.0012753677751103098\n", - " Regularization hyperparameter: 0.000767994604823012\n", - " Variation hyperparameter: 0.9908983723991553\n", + " Energy: -77.87363195924814\n", + " Norm of gradient: 0.0011074889449176437\n", + " Regularization hyperparameter: 0.0019227722411710023\n", + " Variation hyperparameter: 0.999207765530762\n", "Iteration 2\n", - " Energy: -77.8736342620794\n", - " Norm of gradient: 9.947142002605689e-05\n", - " Regularization hyperparameter: 0.004617146884357865\n", - " Variation hyperparameter: 0.9903551715726496\n", + " Energy: -77.87363429588754\n", + " Norm of gradient: 5.8763353258522626e-05\n", + " Regularization hyperparameter: 0.00192277163885033\n", + " Variation hyperparameter: 0.9992077655348396\n", "Iteration 3\n", - " Energy: -77.87363444305669\n", - " Norm of gradient: 6.62051367568589e-05\n", - " Regularization hyperparameter: 0.0007469794869116219\n", - " Variation hyperparameter: 0.9887262011056199\n", + " Energy: -77.87363430303687\n", + " Norm of gradient: 2.3616896960424702e-05\n", + " Regularization hyperparameter: 0.05751420783821811\n", + " Variation hyperparameter: 0.9988280540317593\n", "Iteration 4\n", - " Energy: -77.87369161757285\n", - " Norm of gradient: 0.0049409335588901085\n", - " Regularization hyperparameter: 8.184891976726621e-05\n", - " Variation hyperparameter: 0.9887108144805501\n", - "Iteration 5\n", - " Energy: -77.87370126269155\n", - " Norm of gradient: 0.004306717922292566\n", - " Regularization hyperparameter: 1.0181757878933262\n", - " Variation hyperparameter: 0.9887023581408309\n", - "Iteration 6\n", - " Energy: -77.87370915262531\n", - " Norm of gradient: 0.0038113319089807533\n", - " Regularization hyperparameter: 0.9031044956560692\n", - " Variation hyperparameter: 0.9031324767940594\n", - "Iteration 7\n", - " Energy: -77.87371551723568\n", - " Norm of gradient: 0.0034373307371360177\n", - " Regularization hyperparameter: 0.9031045032759374\n", - " Variation hyperparameter: 0.9031324772479508\n", - "Iteration 8\n", - " Energy: -77.87372083380427\n", - " Norm of gradient: 0.003153217120992378\n", - " Regularization hyperparameter: 0.9031046184822257\n", - " Variation hyperparameter: 0.9031324846718976\n", - "Iteration 9\n", - " Energy: -77.87372541558348\n", - " Norm of gradient: 0.002936748331524959\n", - " Regularization hyperparameter: 0.9031046620111555\n", - " Variation hyperparameter: 0.9031324921853551\n" + " Energy: -77.87363431750812\n", + " Norm of gradient: 9.99877730752604e-06\n", + " Regularization hyperparameter: 0.008936658723049901\n", + " Variation hyperparameter: 0.998510578821955\n" ] } ], diff --git a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb index bb067f614..4571d1df4 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:02.870714Z", - "iopub.status.busy": "2024-07-30T19:23:02.870515Z", - "iopub.status.idle": "2024-07-30T19:23:03.556590Z", - "shell.execute_reply": "2024-07-30T19:23:03.556012Z" + "iopub.execute_input": "2024-08-01T02:16:58.242203Z", + "iopub.status.busy": "2024-08-01T02:16:58.242000Z", + "iopub.status.idle": "2024-08-01T02:16:58.943627Z", + "shell.execute_reply": "2024-08-01T02:16:58.943073Z" } }, "outputs": [], @@ -54,10 +54,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:03.559243Z", - "iopub.status.busy": "2024-07-30T19:23:03.558948Z", - "iopub.status.idle": "2024-07-30T19:23:04.134127Z", - "shell.execute_reply": "2024-07-30T19:23:04.133571Z" + "iopub.execute_input": "2024-08-01T02:16:58.946671Z", + "iopub.status.busy": "2024-08-01T02:16:58.946136Z", + "iopub.status.idle": "2024-08-01T02:16:59.535752Z", + "shell.execute_reply": "2024-08-01T02:16:59.535108Z" } }, "outputs": [ @@ -103,10 +103,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.137040Z", - "iopub.status.busy": "2024-07-30T19:23:04.136282Z", - "iopub.status.idle": "2024-07-30T19:23:04.345433Z", - "shell.execute_reply": "2024-07-30T19:23:04.344904Z" + "iopub.execute_input": "2024-08-01T02:16:59.538929Z", + "iopub.status.busy": "2024-08-01T02:16:59.538025Z", + "iopub.status.idle": "2024-08-01T02:16:59.750110Z", + "shell.execute_reply": "2024-08-01T02:16:59.749476Z" } }, "outputs": [ @@ -160,17 +160,17 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.347831Z", - "iopub.status.busy": "2024-07-30T19:23:04.347606Z", - "iopub.status.idle": "2024-07-30T19:23:04.351725Z", - "shell.execute_reply": "2024-07-30T19:23:04.351185Z" + "iopub.execute_input": "2024-08-01T02:16:59.752545Z", + "iopub.status.busy": "2024-08-01T02:16:59.752341Z", + "iopub.status.idle": "2024-08-01T02:16:59.756842Z", + "shell.execute_reply": "2024-08-01T02:16:59.756252Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -195,17 +195,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.354014Z", - "iopub.status.busy": "2024-07-30T19:23:04.353817Z", - "iopub.status.idle": "2024-07-30T19:23:04.358719Z", - "shell.execute_reply": "2024-07-30T19:23:04.358131Z" + "iopub.execute_input": "2024-08-01T02:16:59.759369Z", + "iopub.status.busy": "2024-08-01T02:16:59.759019Z", + "iopub.status.idle": "2024-08-01T02:16:59.764256Z", + "shell.execute_reply": "2024-08-01T02:16:59.763672Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -242,17 +242,17 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.361016Z", - "iopub.status.busy": "2024-07-30T19:23:04.360662Z", - "iopub.status.idle": "2024-07-30T19:23:04.365146Z", - "shell.execute_reply": "2024-07-30T19:23:04.364631Z" + "iopub.execute_input": "2024-08-01T02:16:59.766645Z", + "iopub.status.busy": "2024-08-01T02:16:59.766281Z", + "iopub.status.idle": "2024-08-01T02:16:59.771074Z", + "shell.execute_reply": "2024-08-01T02:16:59.770578Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -279,17 +279,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.367351Z", - "iopub.status.busy": "2024-07-30T19:23:04.367155Z", - "iopub.status.idle": "2024-07-30T19:23:04.371565Z", - "shell.execute_reply": "2024-07-30T19:23:04.370959Z" + "iopub.execute_input": "2024-08-01T02:16:59.773335Z", + "iopub.status.busy": "2024-08-01T02:16:59.772961Z", + "iopub.status.idle": "2024-08-01T02:16:59.777453Z", + "shell.execute_reply": "2024-08-01T02:16:59.776955Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -315,17 +315,17 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.374031Z", - "iopub.status.busy": "2024-07-30T19:23:04.373683Z", - "iopub.status.idle": "2024-07-30T19:23:04.378066Z", - "shell.execute_reply": "2024-07-30T19:23:04.377496Z" + "iopub.execute_input": "2024-08-01T02:16:59.779897Z", + "iopub.status.busy": "2024-08-01T02:16:59.779462Z", + "iopub.status.idle": "2024-08-01T02:16:59.783816Z", + "shell.execute_reply": "2024-08-01T02:16:59.783335Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -354,17 +354,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.380374Z", - "iopub.status.busy": "2024-07-30T19:23:04.379988Z", - "iopub.status.idle": "2024-07-30T19:23:04.385057Z", - "shell.execute_reply": "2024-07-30T19:23:04.384576Z" + "iopub.execute_input": "2024-08-01T02:16:59.786146Z", + "iopub.status.busy": "2024-08-01T02:16:59.785793Z", + "iopub.status.idle": "2024-08-01T02:16:59.791173Z", + "shell.execute_reply": "2024-08-01T02:16:59.790571Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -391,17 +391,17 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.387324Z", - "iopub.status.busy": "2024-07-30T19:23:04.386973Z", - "iopub.status.idle": "2024-07-30T19:23:04.392486Z", - "shell.execute_reply": "2024-07-30T19:23:04.391906Z" + "iopub.execute_input": "2024-08-01T02:16:59.793453Z", + "iopub.status.busy": "2024-08-01T02:16:59.793105Z", + "iopub.status.idle": "2024-08-01T02:16:59.798744Z", + "shell.execute_reply": "2024-08-01T02:16:59.798234Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 10, @@ -428,17 +428,17 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.394702Z", - "iopub.status.busy": "2024-07-30T19:23:04.394362Z", - "iopub.status.idle": "2024-07-30T19:23:04.400213Z", - "shell.execute_reply": "2024-07-30T19:23:04.399609Z" + "iopub.execute_input": "2024-08-01T02:16:59.801172Z", + "iopub.status.busy": "2024-08-01T02:16:59.800801Z", + "iopub.status.idle": "2024-08-01T02:16:59.806272Z", + "shell.execute_reply": "2024-08-01T02:16:59.805688Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 11, diff --git a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb index 49b8d738c..9f6a7a33d 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:06.510312Z", - "iopub.status.busy": "2024-07-30T19:23:06.510116Z", - "iopub.status.idle": "2024-07-30T19:23:07.218313Z", - "shell.execute_reply": "2024-07-30T19:23:07.217758Z" + "iopub.execute_input": "2024-08-01T02:17:01.716792Z", + "iopub.status.busy": "2024-08-01T02:17:01.716595Z", + "iopub.status.idle": "2024-08-01T02:17:02.415722Z", + "shell.execute_reply": "2024-08-01T02:17:02.415150Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:07.221278Z", - "iopub.status.busy": "2024-07-30T19:23:07.220794Z", - "iopub.status.idle": "2024-07-30T19:23:07.284751Z", - "shell.execute_reply": "2024-07-30T19:23:07.284088Z" + "iopub.execute_input": "2024-08-01T02:17:02.418690Z", + "iopub.status.busy": "2024-08-01T02:17:02.418192Z", + "iopub.status.idle": "2024-08-01T02:17:02.482341Z", + "shell.execute_reply": "2024-08-01T02:17:02.481703Z" } }, "outputs": [ @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:07.287566Z", - "iopub.status.busy": "2024-07-30T19:23:07.287168Z", - "iopub.status.idle": "2024-07-30T19:23:07.594085Z", - "shell.execute_reply": "2024-07-30T19:23:07.593481Z" + "iopub.execute_input": "2024-08-01T02:17:02.484990Z", + "iopub.status.busy": "2024-08-01T02:17:02.484663Z", + "iopub.status.idle": "2024-08-01T02:17:02.850432Z", + "shell.execute_reply": "2024-08-01T02:17:02.849799Z" } }, "outputs": [ @@ -174,7 +174,7 @@ "text": [ "norb = 14\n", "nelec = (3, 3)\n", - "E(CCSD) = -108.9630419334855 E_corr = -0.1278053627110062\n" + "E(CCSD) = -108.9630419334854 E_corr = -0.1278053627110059\n" ] }, { @@ -269,10 +269,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:07.596492Z", - "iopub.status.busy": "2024-07-30T19:23:07.596288Z", - "iopub.status.idle": "2024-07-30T19:23:08.129379Z", - "shell.execute_reply": "2024-07-30T19:23:08.128749Z" + "iopub.execute_input": "2024-08-01T02:17:02.853001Z", + "iopub.status.busy": "2024-08-01T02:17:02.852605Z", + "iopub.status.idle": "2024-08-01T02:17:03.391990Z", + "shell.execute_reply": "2024-08-01T02:17:03.391342Z" } }, "outputs": [ @@ -287,7 +287,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "SCF energy = -75.3484557058534\n" + "SCF energy = -75.3484557088027\n" ] }, { @@ -305,7 +305,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(UCCSD) = -75.45619739147656 E_corr = -0.107741685623149\n" + "E(UCCSD) = -75.45619739094874 E_corr = -0.1077416821460872\n" ] }, { diff --git a/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb b/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb index c225399c9..23cee463d 100644 --- a/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb +++ b/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:09.891133Z", - "iopub.status.busy": "2024-07-30T19:23:09.890939Z", - "iopub.status.idle": "2024-07-30T19:23:10.719898Z", - "shell.execute_reply": "2024-07-30T19:23:10.719297Z" + "iopub.execute_input": "2024-08-01T02:17:04.976247Z", + "iopub.status.busy": "2024-08-01T02:17:04.976047Z", + "iopub.status.idle": "2024-08-01T02:17:05.830855Z", + "shell.execute_reply": "2024-08-01T02:17:05.830221Z" } }, "outputs": [ @@ -80,10 +80,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.724325Z", - "iopub.status.busy": "2024-07-30T19:23:10.722982Z", - "iopub.status.idle": "2024-07-30T19:23:10.728057Z", - "shell.execute_reply": "2024-07-30T19:23:10.727492Z" + "iopub.execute_input": "2024-08-01T02:17:05.835411Z", + "iopub.status.busy": "2024-08-01T02:17:05.834034Z", + "iopub.status.idle": "2024-08-01T02:17:05.839699Z", + "shell.execute_reply": "2024-08-01T02:17:05.839098Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.730759Z", - "iopub.status.busy": "2024-07-30T19:23:10.730309Z", - "iopub.status.idle": "2024-07-30T19:23:10.735159Z", - "shell.execute_reply": "2024-07-30T19:23:10.734578Z" + "iopub.execute_input": "2024-08-01T02:17:05.842124Z", + "iopub.status.busy": "2024-08-01T02:17:05.841762Z", + "iopub.status.idle": "2024-08-01T02:17:05.846828Z", + "shell.execute_reply": "2024-08-01T02:17:05.846208Z" } }, "outputs": [ @@ -172,10 +172,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.737642Z", - "iopub.status.busy": "2024-07-30T19:23:10.737180Z", - "iopub.status.idle": "2024-07-30T19:23:10.741267Z", - "shell.execute_reply": "2024-07-30T19:23:10.740721Z" + "iopub.execute_input": "2024-08-01T02:17:05.849408Z", + "iopub.status.busy": "2024-08-01T02:17:05.849011Z", + "iopub.status.idle": "2024-08-01T02:17:05.853290Z", + "shell.execute_reply": "2024-08-01T02:17:05.852705Z" } }, "outputs": [ @@ -208,10 +208,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.743689Z", - "iopub.status.busy": "2024-07-30T19:23:10.743333Z", - "iopub.status.idle": "2024-07-30T19:23:10.747123Z", - "shell.execute_reply": "2024-07-30T19:23:10.746530Z" + "iopub.execute_input": "2024-08-01T02:17:05.855822Z", + "iopub.status.busy": "2024-08-01T02:17:05.855445Z", + "iopub.status.idle": "2024-08-01T02:17:05.859228Z", + "shell.execute_reply": "2024-08-01T02:17:05.858682Z" } }, "outputs": [ @@ -242,10 +242,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.749597Z", - "iopub.status.busy": "2024-07-30T19:23:10.749230Z", - "iopub.status.idle": "2024-07-30T19:23:10.767204Z", - "shell.execute_reply": "2024-07-30T19:23:10.766725Z" + "iopub.execute_input": "2024-08-01T02:17:05.861587Z", + "iopub.status.busy": "2024-08-01T02:17:05.861238Z", + "iopub.status.idle": "2024-08-01T02:17:05.880173Z", + "shell.execute_reply": "2024-08-01T02:17:05.879499Z" } }, "outputs": [ @@ -253,7 +253,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Maximum error in a tensor entry: 0.036685417309833435\n" + "Maximum error in a tensor entry: 0.03668541730983732\n" ] } ], @@ -302,10 +302,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.769527Z", - "iopub.status.busy": "2024-07-30T19:23:10.769159Z", - "iopub.status.idle": "2024-07-30T19:23:10.773470Z", - "shell.execute_reply": "2024-07-30T19:23:10.772876Z" + "iopub.execute_input": "2024-08-01T02:17:05.882799Z", + "iopub.status.busy": "2024-08-01T02:17:05.882413Z", + "iopub.status.idle": "2024-08-01T02:17:05.886918Z", + "shell.execute_reply": "2024-08-01T02:17:05.886234Z" } }, "outputs": [], @@ -360,10 +360,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.775913Z", - "iopub.status.busy": "2024-07-30T19:23:10.775580Z", - "iopub.status.idle": "2024-07-30T19:23:10.779210Z", - "shell.execute_reply": "2024-07-30T19:23:10.778606Z" + "iopub.execute_input": "2024-08-01T02:17:05.890026Z", + "iopub.status.busy": "2024-08-01T02:17:05.889546Z", + "iopub.status.idle": "2024-08-01T02:17:05.893992Z", + "shell.execute_reply": "2024-08-01T02:17:05.893290Z" } }, "outputs": [], @@ -400,10 +400,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.781552Z", - "iopub.status.busy": "2024-07-30T19:23:10.781137Z", - "iopub.status.idle": "2024-07-30T19:23:10.839559Z", - "shell.execute_reply": "2024-07-30T19:23:10.839007Z" + "iopub.execute_input": "2024-08-01T02:17:05.897100Z", + "iopub.status.busy": "2024-08-01T02:17:05.896661Z", + "iopub.status.idle": "2024-08-01T02:17:05.956062Z", + "shell.execute_reply": "2024-08-01T02:17:05.955393Z" } }, "outputs": [], @@ -439,10 +439,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.842796Z", - "iopub.status.busy": "2024-07-30T19:23:10.842390Z", - "iopub.status.idle": "2024-07-30T19:23:10.892960Z", - "shell.execute_reply": "2024-07-30T19:23:10.892462Z" + "iopub.execute_input": "2024-08-01T02:17:05.959698Z", + "iopub.status.busy": "2024-08-01T02:17:05.959228Z", + "iopub.status.idle": "2024-08-01T02:17:06.009922Z", + "shell.execute_reply": "2024-08-01T02:17:06.009440Z" } }, "outputs": [ @@ -450,7 +450,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9402428512128193\n" + "Fidelity of Trotter-evolved state with exact state: 0.9402435115134989\n" ] } ], @@ -480,10 +480,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.895325Z", - "iopub.status.busy": "2024-07-30T19:23:10.894846Z", - "iopub.status.idle": "2024-07-30T19:23:11.108409Z", - "shell.execute_reply": "2024-07-30T19:23:11.107796Z" + "iopub.execute_input": "2024-08-01T02:17:06.012328Z", + "iopub.status.busy": "2024-08-01T02:17:06.011978Z", + "iopub.status.idle": "2024-08-01T02:17:06.226697Z", + "shell.execute_reply": "2024-08-01T02:17:06.226042Z" } }, "outputs": [ @@ -491,7 +491,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212764978459\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212854198972\n" ] } ], @@ -521,10 +521,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:11.111059Z", - "iopub.status.busy": "2024-07-30T19:23:11.110475Z", - "iopub.status.idle": "2024-07-30T19:23:11.239146Z", - "shell.execute_reply": "2024-07-30T19:23:11.238685Z" + "iopub.execute_input": "2024-08-01T02:17:06.229290Z", + "iopub.status.busy": "2024-08-01T02:17:06.228932Z", + "iopub.status.idle": "2024-08-01T02:17:06.372363Z", + "shell.execute_reply": "2024-08-01T02:17:06.371850Z" } }, "outputs": [ @@ -532,7 +532,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212764978977\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212854198656\n" ] } ], @@ -563,10 +563,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:11.241523Z", - "iopub.status.busy": "2024-07-30T19:23:11.241174Z", - "iopub.status.idle": "2024-07-30T19:23:11.342292Z", - "shell.execute_reply": "2024-07-30T19:23:11.341700Z" + "iopub.execute_input": "2024-08-01T02:17:06.374737Z", + "iopub.status.busy": "2024-08-01T02:17:06.374540Z", + "iopub.status.idle": "2024-08-01T02:17:06.478411Z", + "shell.execute_reply": "2024-08-01T02:17:06.477759Z" } }, "outputs": [ @@ -574,7 +574,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9996731172097888\n" + "Fidelity of Trotter-evolved state with exact state: 0.9996731164188294\n" ] } ], diff --git a/dev/.doctrees/tutorials/double-factorized-trotter.doctree b/dev/.doctrees/tutorials/double-factorized-trotter.doctree index 1c8fb8d76..89eaa46ce 100644 Binary files a/dev/.doctrees/tutorials/double-factorized-trotter.doctree and b/dev/.doctrees/tutorials/double-factorized-trotter.doctree differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_34_0.png b/dev/_images/explanations_qiskit-gate-decompositions_34_0.png index 18f337fda..5f10d3527 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_34_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_34_0.png differ diff --git a/dev/_modules/ffsim/states/slater.html b/dev/_modules/ffsim/states/slater.html index 6f5c90d55..2ee6ede76 100644 --- a/dev/_modules/ffsim/states/slater.html +++ b/dev/_modules/ffsim/states/slater.html @@ -346,7 +346,7 @@

Source code for ffsim.states.slater

     rng = np.random.default_rng(seed)
 
     if isinstance(nelec, int):
-        # Spinless case.
+        # Spinless case
         rdm = cast(np.ndarray, rdm)
         norb, _ = rdm.shape
         if orbs is None:
@@ -360,50 +360,46 @@ 

Source code for ffsim.states.slater

             bitstring_type,
             length=len(orbs),
         )
-    else:
-        # Spinful case
-        rdm_a, rdm_b = rdm
-        n_a, n_b = nelec
-        norb, _ = rdm_a.shape
-        if orbs is None:
-            orbs = (range(norb), range(norb))
-        orbs_a, orbs_b = orbs
-        orbs_a = cast(Sequence[int], orbs_a)
-        orbs_b = cast(Sequence[int], orbs_b)
-        strings_a = _sample_slater_spinless(rdm_a, n_a, shots, rng)
-        strings_b = _sample_slater_spinless(rdm_b, n_b, shots, rng)
-        strings_a = restrict_bitstrings(
-            strings_a, orbs_a, bitstring_type=BitstringType.INT
-        )
-        strings_b = restrict_bitstrings(
-            strings_b, orbs_b, bitstring_type=BitstringType.INT
-        )
-
-        if concatenate:
-            strings = concatenate_bitstrings(
-                strings_a,
-                strings_b,
-                BitstringType.INT,
-                length=len(orbs_a),
-            )
-            return convert_bitstring_type(
-                strings,
-                BitstringType.INT,
-                bitstring_type,
-                length=len(orbs_a) + len(orbs_b),
-            )
 
-        return convert_bitstring_type(
+    # Spinful case
+    rdm_a, rdm_b = rdm
+    n_a, n_b = nelec
+    norb, _ = rdm_a.shape
+    if orbs is None:
+        orbs = (range(norb), range(norb))
+    orbs_a, orbs_b = orbs
+    orbs_a = cast(Sequence[int], orbs_a)
+    orbs_b = cast(Sequence[int], orbs_b)
+    strings_a = _sample_slater_spinless(rdm_a, n_a, shots, rng)
+    strings_b = _sample_slater_spinless(rdm_b, n_b, shots, rng)
+    strings_a = restrict_bitstrings(strings_a, orbs_a, bitstring_type=BitstringType.INT)
+    strings_b = restrict_bitstrings(strings_b, orbs_b, bitstring_type=BitstringType.INT)
+
+    if concatenate:
+        strings = concatenate_bitstrings(
             strings_a,
+            strings_b,
             BitstringType.INT,
-            bitstring_type,
             length=len(orbs_a),
-        ), convert_bitstring_type(
-            strings_b,
+        )
+        return convert_bitstring_type(
+            strings,
             BitstringType.INT,
             bitstring_type,
-            length=len(orbs_b),
-        )
+ length=len(orbs_a) + len(orbs_b), + ) + + return convert_bitstring_type( + strings_a, + BitstringType.INT, + bitstring_type, + length=len(orbs_a), + ), convert_bitstring_type( + strings_b, + BitstringType.INT, + bitstring_type, + length=len(orbs_b), + )
diff --git a/dev/explanations/hamiltonians.html b/dev/explanations/hamiltonians.html index d2c1c62e0..de85f6a28 100644 --- a/dev/explanations/hamiltonians.html +++ b/dev/explanations/hamiltonians.html @@ -378,7 +378,7 @@

Operator action via SciPy LinearOperators
-np.float64(-99.5571707255159)
+np.float64(-99.55717072551539)
 

Time evolution by the Hamiltonian can be computed using expm_multiply:

@@ -396,7 +396,7 @@

Operator action via SciPy LinearOperators
-/tmp/ipykernel_4336/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.
+/tmp/ipykernel_4408/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.
   evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)
 
diff --git a/dev/explanations/hamiltonians.ipynb b/dev/explanations/hamiltonians.ipynb index 22cc240d1..54d844466 100644 --- a/dev/explanations/hamiltonians.ipynb +++ b/dev/explanations/hamiltonians.ipynb @@ -33,10 +33,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:12.408056Z", - "iopub.status.busy": "2024-07-30T19:20:12.407860Z", - "iopub.status.idle": "2024-07-30T19:20:13.116407Z", - "shell.execute_reply": "2024-07-30T19:20:13.115888Z" + "iopub.execute_input": "2024-08-01T02:14:34.594232Z", + "iopub.status.busy": "2024-08-01T02:14:34.594035Z", + "iopub.status.idle": "2024-08-01T02:14:35.320216Z", + "shell.execute_reply": "2024-08-01T02:14:35.319540Z" } }, "outputs": [], @@ -68,10 +68,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.119167Z", - "iopub.status.busy": "2024-07-30T19:20:13.118840Z", - "iopub.status.idle": "2024-07-30T19:20:13.122048Z", - "shell.execute_reply": "2024-07-30T19:20:13.121555Z" + "iopub.execute_input": "2024-08-01T02:14:35.323653Z", + "iopub.status.busy": "2024-08-01T02:14:35.322998Z", + "iopub.status.idle": "2024-08-01T02:14:35.326178Z", + "shell.execute_reply": "2024-08-01T02:14:35.325671Z" } }, "outputs": [], @@ -99,10 +99,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.124628Z", - "iopub.status.busy": "2024-07-30T19:20:13.124169Z", - "iopub.status.idle": "2024-07-30T19:20:13.127514Z", - "shell.execute_reply": "2024-07-30T19:20:13.127032Z" + "iopub.execute_input": "2024-08-01T02:14:35.328664Z", + "iopub.status.busy": "2024-08-01T02:14:35.328172Z", + "iopub.status.idle": "2024-08-01T02:14:35.331571Z", + "shell.execute_reply": "2024-08-01T02:14:35.330995Z" } }, "outputs": [], @@ -127,10 +127,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.129666Z", - "iopub.status.busy": "2024-07-30T19:20:13.129478Z", - "iopub.status.idle": "2024-07-30T19:20:13.134459Z", - "shell.execute_reply": "2024-07-30T19:20:13.133840Z" + "iopub.execute_input": "2024-08-01T02:14:35.333938Z", + "iopub.status.busy": "2024-08-01T02:14:35.333573Z", + "iopub.status.idle": "2024-08-01T02:14:35.338699Z", + "shell.execute_reply": "2024-08-01T02:14:35.338045Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.137300Z", - "iopub.status.busy": "2024-07-30T19:20:13.136888Z", - "iopub.status.idle": "2024-07-30T19:20:13.158225Z", - "shell.execute_reply": "2024-07-30T19:20:13.157548Z" + "iopub.execute_input": "2024-08-01T02:14:35.341657Z", + "iopub.status.busy": "2024-08-01T02:14:35.341058Z", + "iopub.status.idle": "2024-08-01T02:14:35.361876Z", + "shell.execute_reply": "2024-08-01T02:14:35.361120Z" } }, "outputs": [ { "data": { "text/plain": [ - "np.float64(-99.5571707255159)" + "np.float64(-99.55717072551539)" ] }, "execution_count": 5, @@ -191,10 +191,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.191994Z", - "iopub.status.busy": "2024-07-30T19:20:13.191582Z", - "iopub.status.idle": "2024-07-30T19:20:13.659417Z", - "shell.execute_reply": "2024-07-30T19:20:13.658766Z" + "iopub.execute_input": "2024-08-01T02:14:35.398061Z", + "iopub.status.busy": "2024-08-01T02:14:35.397623Z", + "iopub.status.idle": "2024-08-01T02:14:35.809715Z", + "shell.execute_reply": "2024-08-01T02:14:35.809085Z" } }, "outputs": [ @@ -202,7 +202,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_4336/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", + "/tmp/ipykernel_4408/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", " evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)\n" ] } @@ -224,10 +224,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:13.663445Z", - "iopub.status.busy": "2024-07-30T19:20:13.662427Z", - "iopub.status.idle": "2024-07-30T19:20:14.103478Z", - "shell.execute_reply": "2024-07-30T19:20:14.102862Z" + "iopub.execute_input": "2024-08-01T02:14:35.813853Z", + "iopub.status.busy": "2024-08-01T02:14:35.812871Z", + "iopub.status.idle": "2024-08-01T02:14:36.176944Z", + "shell.execute_reply": "2024-08-01T02:14:36.176300Z" } }, "outputs": [], diff --git a/dev/explanations/orbital-rotation.ipynb b/dev/explanations/orbital-rotation.ipynb index 59e6929f5..87492e27d 100644 --- a/dev/explanations/orbital-rotation.ipynb +++ b/dev/explanations/orbital-rotation.ipynb @@ -62,10 +62,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:16.963843Z", - "iopub.status.busy": "2024-07-30T19:20:16.963642Z", - "iopub.status.idle": "2024-07-30T19:20:17.667200Z", - "shell.execute_reply": "2024-07-30T19:20:17.666657Z" + "iopub.execute_input": "2024-08-01T02:14:39.146486Z", + "iopub.status.busy": "2024-08-01T02:14:39.145978Z", + "iopub.status.idle": "2024-08-01T02:14:39.882254Z", + "shell.execute_reply": "2024-08-01T02:14:39.881656Z" } }, "outputs": [], diff --git a/dev/explanations/qiskit-gate-decompositions.ipynb b/dev/explanations/qiskit-gate-decompositions.ipynb index dc7596d11..fc0e0c7e2 100644 --- a/dev/explanations/qiskit-gate-decompositions.ipynb +++ b/dev/explanations/qiskit-gate-decompositions.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:19.139654Z", - "iopub.status.busy": "2024-07-30T19:20:19.139261Z", - "iopub.status.idle": "2024-07-30T19:20:20.696972Z", - "shell.execute_reply": "2024-07-30T19:20:20.696318Z" + "iopub.execute_input": "2024-08-01T02:14:41.655860Z", + "iopub.status.busy": "2024-08-01T02:14:41.655663Z", + "iopub.status.idle": "2024-08-01T02:14:43.261530Z", + "shell.execute_reply": "2024-08-01T02:14:43.260955Z" } }, "outputs": [ @@ -81,10 +81,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:20.699538Z", - "iopub.status.busy": "2024-07-30T19:20:20.699231Z", - "iopub.status.idle": "2024-07-30T19:20:20.889767Z", - "shell.execute_reply": "2024-07-30T19:20:20.889163Z" + "iopub.execute_input": "2024-08-01T02:14:43.264122Z", + "iopub.status.busy": "2024-08-01T02:14:43.263821Z", + "iopub.status.idle": "2024-08-01T02:14:43.477981Z", + "shell.execute_reply": "2024-08-01T02:14:43.477359Z" } }, "outputs": [ @@ -119,10 +119,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:20.892384Z", - "iopub.status.busy": "2024-07-30T19:20:20.892021Z", - "iopub.status.idle": "2024-07-30T19:20:21.002126Z", - "shell.execute_reply": "2024-07-30T19:20:21.001543Z" + "iopub.execute_input": "2024-08-01T02:14:43.480610Z", + "iopub.status.busy": "2024-08-01T02:14:43.480243Z", + "iopub.status.idle": "2024-08-01T02:14:43.594735Z", + "shell.execute_reply": "2024-08-01T02:14:43.594160Z" } }, "outputs": [ @@ -156,10 +156,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:21.004535Z", - "iopub.status.busy": "2024-07-30T19:20:21.004184Z", - "iopub.status.idle": "2024-07-30T19:20:21.114334Z", - "shell.execute_reply": "2024-07-30T19:20:21.113808Z" + "iopub.execute_input": "2024-08-01T02:14:43.597312Z", + "iopub.status.busy": "2024-08-01T02:14:43.596927Z", + "iopub.status.idle": "2024-08-01T02:14:43.710029Z", + "shell.execute_reply": "2024-08-01T02:14:43.709418Z" } }, "outputs": [ @@ -196,10 +196,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:21.116766Z", - "iopub.status.busy": "2024-07-30T19:20:21.116386Z", - "iopub.status.idle": "2024-07-30T19:20:21.301403Z", - "shell.execute_reply": "2024-07-30T19:20:21.300774Z" + "iopub.execute_input": "2024-08-01T02:14:43.712543Z", + "iopub.status.busy": "2024-08-01T02:14:43.712189Z", + "iopub.status.idle": "2024-08-01T02:14:43.900757Z", + "shell.execute_reply": "2024-08-01T02:14:43.900109Z" } }, "outputs": [ @@ -250,10 +250,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:21.303917Z", - "iopub.status.busy": "2024-07-30T19:20:21.303716Z", - "iopub.status.idle": "2024-07-30T19:20:21.527796Z", - "shell.execute_reply": "2024-07-30T19:20:21.527157Z" + "iopub.execute_input": "2024-08-01T02:14:43.903417Z", + "iopub.status.busy": "2024-08-01T02:14:43.903026Z", + "iopub.status.idle": "2024-08-01T02:14:44.128784Z", + "shell.execute_reply": "2024-08-01T02:14:44.128114Z" } }, "outputs": [ @@ -292,10 +292,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:21.530486Z", - "iopub.status.busy": "2024-07-30T19:20:21.530014Z", - "iopub.status.idle": "2024-07-30T19:20:21.666199Z", - "shell.execute_reply": "2024-07-30T19:20:21.665632Z" + "iopub.execute_input": "2024-08-01T02:14:44.131439Z", + "iopub.status.busy": "2024-08-01T02:14:44.131115Z", + "iopub.status.idle": "2024-08-01T02:14:44.269828Z", + "shell.execute_reply": "2024-08-01T02:14:44.269281Z" } }, "outputs": [ @@ -334,10 +334,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:21.668690Z", - "iopub.status.busy": "2024-07-30T19:20:21.668290Z", - "iopub.status.idle": "2024-07-30T19:20:22.184258Z", - "shell.execute_reply": "2024-07-30T19:20:22.183647Z" + "iopub.execute_input": "2024-08-01T02:14:44.272453Z", + "iopub.status.busy": "2024-08-01T02:14:44.271966Z", + "iopub.status.idle": "2024-08-01T02:14:44.820116Z", + "shell.execute_reply": "2024-08-01T02:14:44.819439Z" } }, "outputs": [ @@ -383,10 +383,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:22.186838Z", - "iopub.status.busy": "2024-07-30T19:20:22.186438Z", - "iopub.status.idle": "2024-07-30T19:20:22.357087Z", - "shell.execute_reply": "2024-07-30T19:20:22.356448Z" + "iopub.execute_input": "2024-08-01T02:14:44.822528Z", + "iopub.status.busy": "2024-08-01T02:14:44.822241Z", + "iopub.status.idle": "2024-08-01T02:14:44.997432Z", + "shell.execute_reply": "2024-08-01T02:14:44.996787Z" } }, "outputs": [ @@ -425,10 +425,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:22.359697Z", - "iopub.status.busy": "2024-07-30T19:20:22.359320Z", - "iopub.status.idle": "2024-07-30T19:20:22.539221Z", - "shell.execute_reply": "2024-07-30T19:20:22.538718Z" + "iopub.execute_input": "2024-08-01T02:14:44.999947Z", + "iopub.status.busy": "2024-08-01T02:14:44.999740Z", + "iopub.status.idle": "2024-08-01T02:14:45.182700Z", + "shell.execute_reply": "2024-08-01T02:14:45.182041Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:22.541772Z", - "iopub.status.busy": "2024-07-30T19:20:22.541306Z", - "iopub.status.idle": "2024-07-30T19:20:22.673266Z", - "shell.execute_reply": "2024-07-30T19:20:22.672649Z" + "iopub.execute_input": "2024-08-01T02:14:45.185278Z", + "iopub.status.busy": "2024-08-01T02:14:45.184903Z", + "iopub.status.idle": "2024-08-01T02:14:45.316767Z", + "shell.execute_reply": "2024-08-01T02:14:45.316181Z" } }, "outputs": [ @@ -513,10 +513,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:22.675838Z", - "iopub.status.busy": "2024-07-30T19:20:22.675367Z", - "iopub.status.idle": "2024-07-30T19:20:22.855012Z", - "shell.execute_reply": "2024-07-30T19:20:22.854400Z" + "iopub.execute_input": "2024-08-01T02:14:45.319329Z", + "iopub.status.busy": "2024-08-01T02:14:45.318963Z", + "iopub.status.idle": "2024-08-01T02:14:45.502852Z", + "shell.execute_reply": "2024-08-01T02:14:45.502200Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:22.857624Z", - "iopub.status.busy": "2024-07-30T19:20:22.857147Z", - "iopub.status.idle": "2024-07-30T19:20:23.024576Z", - "shell.execute_reply": "2024-07-30T19:20:23.023943Z" + "iopub.execute_input": "2024-08-01T02:14:45.505414Z", + "iopub.status.busy": "2024-08-01T02:14:45.505018Z", + "iopub.status.idle": "2024-08-01T02:14:45.668584Z", + "shell.execute_reply": "2024-08-01T02:14:45.667927Z" } }, "outputs": [ @@ -593,10 +593,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:23.027077Z", - "iopub.status.busy": "2024-07-30T19:20:23.026692Z", - "iopub.status.idle": "2024-07-30T19:20:23.157306Z", - "shell.execute_reply": "2024-07-30T19:20:23.156813Z" + "iopub.execute_input": "2024-08-01T02:14:45.671023Z", + "iopub.status.busy": "2024-08-01T02:14:45.670816Z", + "iopub.status.idle": "2024-08-01T02:14:45.804141Z", + "shell.execute_reply": "2024-08-01T02:14:45.803550Z" } }, "outputs": [ @@ -630,10 +630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:23.159699Z", - "iopub.status.busy": "2024-07-30T19:20:23.159329Z", - "iopub.status.idle": "2024-07-30T19:20:23.317157Z", - "shell.execute_reply": "2024-07-30T19:20:23.316606Z" + "iopub.execute_input": "2024-08-01T02:14:45.806861Z", + "iopub.status.busy": "2024-08-01T02:14:45.806369Z", + "iopub.status.idle": "2024-08-01T02:14:46.077531Z", + "shell.execute_reply": "2024-08-01T02:14:46.076932Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:23.319500Z", - "iopub.status.busy": "2024-07-30T19:20:23.319165Z", - "iopub.status.idle": "2024-07-30T19:20:23.730771Z", - "shell.execute_reply": "2024-07-30T19:20:23.730147Z" + "iopub.execute_input": "2024-08-01T02:14:46.080044Z", + "iopub.status.busy": "2024-08-01T02:14:46.079675Z", + "iopub.status.idle": "2024-08-01T02:14:46.417670Z", + "shell.execute_reply": "2024-08-01T02:14:46.417094Z" } }, "outputs": [ @@ -736,16 +736,16 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:23.733285Z", - "iopub.status.busy": "2024-07-30T19:20:23.732939Z", - "iopub.status.idle": "2024-07-30T19:20:24.190058Z", - "shell.execute_reply": "2024-07-30T19:20:24.189435Z" + "iopub.execute_input": "2024-08-01T02:14:46.420418Z", + "iopub.status.busy": "2024-08-01T02:14:46.419956Z", + "iopub.status.idle": "2024-08-01T02:14:46.886380Z", + "shell.execute_reply": "2024-08-01T02:14:46.885768Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWp0lEQVR4nOzdeXhU1f3H8fcsISE7CWtCyEJYwpYgCLLJALGKraAiKooiS+uuWNcKWFTAorVVq6IUVKAFUdSC/kAWJSIYiSxhJyQQwg5CgARC1pnfHyOBISEBksxkhs/refIkc+6Ze773cpk5851zzjXYbDYbIiIiIiIiIiIiHsDo6gBERERERERERESqi5JdIiIiIiIiIiLiMZTsEhERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hpJdIiIiIiIiIiLiMZTsEhERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hpJdIiIiIiIiIiLiMZTsEhERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYSnaJiIiIiIiIiIjHULJLREREREREREQ8hpJdIiIiIiIiIiLiMZTsEhERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGOYXR1AbVaYm8fxbXtcHYbHqBfXjDoBvpXWO1UEGTlOCKgcsYHg7+WatkVERERERESk6pTsqsDxbXtYNHCsq8PwGP3nT6BRl9aV1svIgVGrnBBQOab1gIRQ17QtIiIiIiIiIlWnaYwiIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEY2iBevEIaWMsnN6ejMHshcFkxie8NWFDJxIY38/VoYmIiIiIiIiIE2lkl3iMsKET6Tj3FB1mHMavVTd2TrqVktMnXR2WiIiIiIiIiDiRkl3icYxe3tS/YSTW/FPkH8xwdTgiIiIiIiIi4kRKdonHsRac4ejSaRh9A/EJa+HqcERERERERETEidwm2VVYWMi4ceOIiIigbt269O3bl5SUFAwGA/Pnz3d1eFILHJg9jtR7gtn0xyjyMjcQO/YbTL6Brg7LJU4VwdYTkHYSiq2ujsZz5ZfA9hP2n/xiV0cjUjU2G+zMgc3HIbvA1dGIVN2hPPv1vO+0qyMREXeRVwzbTsD2k1BY4upoRKQq3GKBepvNxuDBg0lJSWH8+PHExsYye/ZsbrvtNgA6duzo1HgMJiPXjh9G80HXYzAa2f1/P7P6xWmUFBQ5NQ5xFHbPqzS+7RlXh+FSxwvg/e3wf3uh8LckV706cFc0PNACzG6T3q7d8ovhwzT4MgtO/5bk8jPDwGbwYGv73yLuwmaD/+2BGemwL89eZgQsTeCROIjyd2l4Ipdt/TGYsh3WHTtX1iYY/tQKejZyWVgiUovlFtlfNxbssX+ZCRDoBYOiYFRL8Da5NDwRuQJu8ZFs6tSpLFy4kNTUVNq2bQuAxWIhOjqakJAQmjVr5tR4OjxxO427t2N+36cpKSqm3yfP02nsfaSM+8ipcYicL7sAhv8IB/Pg/MFcxwvhgzT7SK83uoDJ4KoIPUN+CTycbB8tYDuv/HQxzNll/3A1tQf4usWrqwj8axvMzIDzXxqsQNJBWP0rfNQTml+dg2TFDa08DE+n2JO459t2Ap5aDX9NgD84t9soIrXcqSIYtRJ25Tr27XKK4ON02JQN71wHdZTwEnErbjHOY/LkyQwdOrQ00QVgMpmIjo4uHdW1Y8cOunXrRsuWLenWrRvp6ek1Fk+Le/ux6Z0vyTuUTcGxHFLf/IzYuywYjG5xOsVDvbetbKLrfCsOw8K9Tg3JI83eCZsuSHSdZcM+dXSm7osgbmLz8XPX64XXtBU4Uwyvpjo5KJErVFACL60Dq63se6Htt58JG+BEoQuCE5Faa9qOsomu8605BvN2OzMiEakOtT47k56eTmZmJoMGDSqzbe/evaXJroceeohHH32UHTt28Oijj/Lggw/WSDx1An3xD29A9pbM0rJjmzKpE+CLf0SDGmlTpDK5RbBo38UTXWD/z/5ZZgUVpFIlNvh8d8V1bMAXu7VWmriHL3ZX3BGwAptPwI6TzolHpCq+P2gfiXGxD6wAxTb4Zo/TQhKRWq6gBL7Kqvh1w4C9D33hiFERqd1q/USb/fv3A9CwYUOH8u3bt5OVlUXHjh05cuQI69atY+nSpQAMGTKExx57jF9//ZUGDSpPQAUEBFBYWPZrvubmejwX2NOhzOxfF4DCk3mlZYUn7Sufev22TcrXp4+FncXHK63n26obzSckXda+W028vPoX06ePhby05GrZlzPVbdGF2Ek/VljHCmzNLsbb2885QXkgU2AD2kzfV2m944UQ3LQ5RccqryviSi3+sR6fiDaV1rv+zj9yPGmmEyISuXJNhr1OaP9HMZgu3r21lRQx/sN5jHznAecFJiK1lndYK1q+vbHCOjbsa1rWDaqHrSCvwroiUr1sNhtms5lDhw4RGHh562rU+pFdoaGhAGRknJsXZLPZeP7557FarXTs2JG9e/cSHh6OyWSfSG0ymQgLC2Pv3uqfs1V86gwAXoG+pWV1guzJg6Lftok4Xcml3QrQZtVtZarEeum3XNS5Fndg02uHeBD79VzZwpQGXc8iUsp2GX079Noh4nQ2m40zZ86wadOmy35urR/ZFRcXR2xsLC+++CJeXl74+/szZcoU1q9fj6+vL61atWL9+vVVaiM3N7fc8sMp21k0cKxDWWFOHqf2/0pI2yhydh4AILRdNIW5eZza+2uV4vB0y5cn0ahL60rrpR6DUaucEFA5li9PIiHUNW1XRWEJ3LTEPn3jYowG6BHuzbqCAucF5mFsNhiSBDsrWNfBADTzh18O7sagmwFILff2FvjPzsqnb2xY8BGN6+omLFK7JR+Bx3+uuI7BZObt0UP5w5tDnROUiNRqJTYYsBQO51+8jhFoWw/WnMpxWlwiYrdq1Sp69uxZecVy1PqRXWazmXnz5tGkSROGDRvG6NGj6d+/P71796ZDhw4YjUYiIiLYv38/JSX2bHtJSQkHDhwgIiKiRmJK/+93dHj8Nuo2qod3aCAJT99JxtwkbFYt0iOuUccEg6MrrmO1wd0xzonHUxkMcE/zihMDNmBINEp0iVsYFFXxtWoEejeGxpqlL26gawOI8Lt459YIBHnBDWHOjEpEajOTAYZU0j+2UnkdEal9an2yCyA+Pp7k5GTy8vJIS0vj4YcfZv369aWL0zds2JCEhATmzJkDwJw5c+jYseMlrdd1JTa+8yWHft7GrUn/ZNBP/+JE+j7WTvxPjbQlcqlGtYRuv13y5392Pfuf/I8toVvDC58ll+uWCLgt0v73+S+gZ//+fVO4PcrJQYlcoaZ+8EpH+/VbXocgyh/Gxjs7KpErYzTAm10gsE7ZyYxGwNsE/+xq/y0ictaQ5pD4WxK8vL7dkBglyUXcUa2fxlieM2fOkJaWxujRo0vLPvjgA4YNG8Yrr7xCvXr1mDmz5hbStZVYSRn3ESnjNKXD2U5tXcm+j58Bg5F63QfR6NanHbYXHT/Epj9F025KOnXqNyVtTB/OjsNp9uD71G1W+ULM7srLaO/EL9hjv2NMxm+zc7s2sI/o6tHItfF5CoMBXuwAXerDp5mwIdte3rYe3BUNN4ZrVJe4l5ua2kfDzN4Fi+33hKFJXfuorzuiwN/LldGJXJ6YAJjd2/76vGAPnPjt/kN3RMM9MfYEr4jI+UwGmNgJejaEz3bD1hP28o6h9j60pbH6diLuyC2TXRs3bqSkpKR0ZBdA69atWb16tQujEmeo0yiGlpNWYPSqQ9qYPjTo/zBG73M3Czjyzb/wa9m19LHBaKLlq8tcEapLmI32UUW3R0HnBfayf3VzZUSeyWCAG8LtP2fP88e9XBuTSFW0rWfv6J9Ndn19g2vjEamKhnXhiTb2n7Ov0c+1d21MIlK7mQzwh2b2n7OvGx/2cG1MIlI1bpns6tq1KzZbRavmiKeqE3puDLHBaALDucHGxadOUJx7FO+GUec9w0baGAvejWNp9uC7GOv4OC9YEREREREREXE6t1izS+RCOalL8W7S3CF59evC92hw00MO9WKen0eriUnUjYjj6NLpzg5TRERERERERJxMyS5xO4VH93Fo3ms0Hf5maZm14Az5e7fiG9PRoa7Zvx4AQV0GkL93i1PjFBERERERERHnU7JL3Iq1qIDdbz9As4emYKrrX1pecGQ3BYd2kj7+JnJSl7Lnw0cBKMmzr9J+ensydRpGuyRmEREREREREXEet1yzS65e2T/MJn/vVrKmPAhA+NCJFBzaRWif+2j9xs8A7H77AcLunQDAjpcSMXrVweQXTPRT/3FZ3CIiIiIiIiLiHEp2iVupnzic+onDHcr84xxvlRL15Celf8f9XXfoFBEREREREbmaaBqjiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RhaoF5qndhAmNaj8no11baIiIiIiIiIuC8lu6TW8feChFBXRyEiIiIiIiIi7kjTGEWuUklJSURHR2OxWBg2bFiZ7RMnTiQ9Pf2iz8/OzqZTp074+/uXuz0lJYUePXrQvXt3xo4dW279bdu2MXny5KofjIiIiIiIiMhvlOwSuYqNHDmSpKQkgoKCSE5OLi23Wq1s3LiRFi1aXPS5AQEBLF26lOuuu67c7R07dmTVqlX89NNPJCcnYzKZytSPi4tj3bp12Gy26jsoERERERERuaop2SUitGvXjv3795c+3rBhAy1btqzwOV5eXoSEhFS4HaCkpISwsDD8/PzKrR8TE8OWLVuuMHIRERERERERR0p2iQjJycnExsaWPk5PTycqKqrK+509ezZxcXEEBwdjNpe/RGBkZCQ7duyoclsiIiIiIiIioGSXyFVt+vTpWCwWwsPDSUhIKLfO1q1bsVgsDj9/+9vfLmn/99xzD9u3b+fAgQNs2rSpGiMXERERERERKZ/uxihyFRs5ciRjx44tU96iRQu+/PJLANq0aUNSUtJl77ugoABvb2+MRiMBAQH4+PiUWy8rK4sePXpc9v5FREREREREyqORXSJSRnx8PGlpaZXWS0xMZP369SQmJrJ582YOHTrEG2+8AcCCBQuwWCxcf/31NG3alBYtWpSpD5CRkUG7du1q9HhERERERETk6qGRXSJXqbNTEstjNBrp0KED6enpFd6RcdmyZWXKnn32WQAGDx7M4MGDK6y/bds2OnXqhMFguMzoRURERERERMqnZJeIlKu86Y3VLS4ujri4uBpvR0RERERERK4emsYoIiIiIiIiIiIeQ8kuERERERERERHxGJrGKLXOqSLIyHFN27GB4O/lmrZFREREREREpOqU7JJaJyMHRq1yTdvTekBCqGvaFhEREREREZGq0zRGERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jG0QL14hLQxFk5vT8Zg9sJgMuMT3pqwoRMJjO/n6tBERERERERExIk0sks8RtjQiXSce4oOMw7j16obOyfdSsnpk64OS0REREREREScSMku8ThGL2/q3zASa/4p8g9muDocEREREREREXEiJbvE41gLznB06TSMvoH4hLVwdTgiIiIiIiIi4kRuk+wqLCxk3LhxREREULduXfr27UtKSgoGg4H58+e7OjypBQ7MHkfqPcFs+mMUeZkbiB37DSbfQFeH5RKFJef+ttlcF4dIdbDZ4FAe7DsNBSWV1xep7Y4XwJ5TcKrI1ZGIiLvIL4G9p+DQGfXtxP1ZbXDgt75dkdXV0YincosF6m02G4MHDyYlJYXx48cTGxvL7Nmzue222wDo2LGj02KJuqUbcaNuJqRtFAXZuczr8ojT2paKhd3zKo1ve8bVYbjUqSL4KB2+yjpXdtt3MKQ5DI4Co8FloYlcNpsNvsiC2Tthz2l7mZ8Zbm0GI1tCYB3XxidyuX751f4a/ctR+2OjAfo2gVEtIfbq/G5GRCpxvACm74AFeyDvty98ov1haCwMiACD+nbiRkps8Oku+8/BM/ayIC+4PQpGtIC6bpGdEHfhFpfT1KlTWbhwIampqbRt2xYAi8VCdHQ0ISEhNGvWzGmxFJw8zfaPvsWnQRBt//QHp7UrUpncIhi1Enblwvlf+O3Pgzc2wdbj8NeOSniJe7DZYOIG+N8eOP+SPV0Ms3fBqiMwvScEKeElbuLbfTBuneP1bLXB9wdg5WGY0g3ah7gsPBGphY7lw4iV9hEw5/ftdp+CV1MhIwf+3FYJL3EPJTZ4cQ18d9DxvfBkEXySDj8fgQ97gK9bZCjEHbjFNMbJkyczdOjQ0kQXgMlkIjo6unRU1zPPPEN0dDQGg4HNmzfXWCwHV2wkc/4qTu/7tcbaELkS728rm+iCc4//bx8sPeDsqESuTNIhe6ILyr+m95yCd7Y6OyqRK3O8AMavt1+7F87WsGKfev6XtfYPAiIiZ725GQ7mXbxvN2cXrNZHEnETX++xJ7qg/Gt6+0n4d5qzoxJPVuuTXenp6WRmZjJo0KAy2/bu3Vua7Lr11ltZsWIFkZGRzg5RxOVOF8PXe8u+cZzPCMzd5ayIRKrms8yK36CswKJ9kFPorIhErtz8PVBcwQu0Ffs6PMlHnBaSiNRyx/LtiYGKljMyGmBuptNCEqmSzzIdR3RdyIZ9KRatzyrVpdYPEty/fz8ADRs2dCjfvn07WVlZpcmunj17XnEbAQEBFBaW/cTU3FyP5wKvfL/iqE8fCzuLj1daz7dVN5pPSLqsfbeaeHn1L6ZPHwt5acnVsi9nqht7LbGvraywjhXY8GsR3t7+zgnqKtHus3wAvL19XByJZ2n7n+MYvX0rrFNohcgu/cjbVvG1L5dO13PNaPbsZwR2+gMGk+midWzWEoY8+zeOzH3FiZF5Pl3T4q78E24kesyCCutYbbA8/Sje14c7Kaqrg143aoDJTPtPT1da7VQxNGjVkYK9Gr4vdlbrld/BoNaP7AoNDQUgIyOjtMxms/H8889jtVqduji9SK1lu9QXAc2REfdgu9RrWrekEndgtXJJr7+6nkXkLPXtxJNczvub3gulmtT6kV1xcXHExsby4osv4uXlhb+/P1OmTGH9+vX4+vrSqlWrKreRm5tbbvnhlO0sGji2yvsXu+XLk2jUpXWl9VKPwahVTgioHMuXJ5EQ6pq2qyK/GG5cYp/OeDFGoFPjOqwtKHBaXFeDzr996Vqg81qtnvwZkn+1f2t9MT4m2Lf2e/xq/TuZ+9D1XDNm74R/bKm4jsFo4ot/jKXLLPU7qpOuaXFXJwrhpsUVT4E2Aje1bkCqru9qpdeNmvHACth6ouKpucF14Fh6Kl61fkiOOMuqVauueBZfrb+MzGYz8+bNo0mTJgwbNozRo0fTv39/evfuTYcOHTAanXsIBqMRk7cXBrMZDAZM3l4Y6+iTlriWjxlui6x4HrwVuCvaWRGJVM1dMRUnugzAgGYo0SVu4Q8R4G28+Gu0EWjmB9fWd2ZUIlKbBdeB/k0r79vdqb6duIm7YypOdAEMjkKJLqk2bnEpxcfHk5ycTF5eHmlpaTz88MOsX7/eJVMYm99xPfftnkOffz+Nf9MG3Ld7DrevfMfpcYhc6KFW0L5e2fKz/8mHxEDvxk4NSeSKdW8I98fa/y7vjap1EDwW59SQRK5YYB34W2cwGcpez0bAzwtevxYMFX2qFZGrzp/bQfOAsgmvs68jf2oF17jhjAS5Ot0YDrc2s/99/nvh2ev72vowvIWzoxJP5pbfiZ85c4a0tDRGjx5dWvbEE0/w5ZdfcujQIRITEwkNDWXLlkrmDFyBjM+SyPgsqdr3K5fv1NaV7Pv4GTAYqdd9EI1ufbp0W9oYCwDFJ38lMOEGIka95ZogncjHDO93h093weeZcNi+tiZxwfZE143h+iAl7uXxOGgTDP/dCZt+u7dFAx/7t35DYqCuW76DydWqV2P4uBfMzIClB+xlPib7qK/7mkO4n2vjE5HaJ8ALpvWEObvg892Q/dusuvgQuLc5WJq4NDyRy2IwwJh4SAiB2btgR469vImvfYTiXdEa1SXVyy0/KmzcuJGSkhKHkV3vvPMO77yjEVZXkzqNYmg5aQVGrzqkjelDg/4Pl9697ezdGffP/AsB7fu4MErn8jHBAy3sI2JOF9tHEfi65f9yEXunKDHM/nN2/Yz/u8F+q3URdxQXDK91hqW/Xc9J/cGsjr2IVMDfC/7YCka2hC5f28v+rZvFi5syGOAPzew/Z/t28/vpC3mpGW75Mbhr167YdJeGq16d0LDSvw1GExjKfmLI3ZxEkyEvOzOsWsFosH8bKOJplOgST6JEl4hcKr3/iadSoktqirpZ4vZyUpfi3aQ5xjo+DuX5BzOo0yASo1cdF0UmIiIiIiIiIs7mliO7RM4qPLqPQ/Neo/mYBWW2nVw9n+CuA10QlYiIiIiIiIi4ikZ2iduyFhWw++0HaPbQFEx1/ctsP7l2IUGdbnZBZCIiIiIiIiLiKhrZJW4r+4fZ5O/dStaUBwEIHzqRgkO7CO1zH8U5RzGYvDD5Bbk4ShERERERERFxJiW7xG3VTxxO/cThDmX+cT0AMAfWp8X4b10RloiIiIiIiIi4kKYxioiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hBeql1okNhGk9XNe2SHVJSkpi+PDhREZGEhkZyYwZMxy2z5o1iyZNmpCYmEivXr1Yv34927dvp2nTpg71/vKXv/DDDz9gMpl4//33ad++Pf/4xz948803efjhhxk7diwAjz76KK+//jp+fn5OO8ba4nLO9aRJk1i0aBEJCQn861//cqhX3nkdNmwYO3fuxNvbm5kzZxIeHk5GRgaPPfYYBQUFPPXUU9x888089NBDTJs2zWnHLCIiIiIi5dPILql1/L0gIdQ1P/5erj568TQjR44kKSmJoKAgkpOTHbZ9/fXX9OvXD4DPP/+cO+64o9x9PPjgg/z000988sknvPbaawAMHTqUWbNmOdS75ZZbmDt3bg0chXu4lHN9+PBh1q1bx48//ojZbGbNmjUO9co7ry+//DIrV67kxRdf5L333ist+/TTT1m+fDkDBgzAbDbToEEDdu7cWbMHKSIiIiIilVKyS0TECdq1a8f+/ftLH2dnZ+Pj44PBYACgcePGF31uVFQUACaTqbR+w4YNMRodX8Kvv/56Fi9eXM2Ru5+KzvWaNWvo3bs3AH379iUlJcXhueWd1wvPf2FhIXv37uX+++9n4MCBHD58GACLxcKiRYtq8MhERERERORSKNklIuIEycnJxMbGlj7OyMggMjLysvYxbtw4HnnkkYtu9/X15fjx41cco6eo6FyfOHGCwED7fOWAgABOnDhxSfu0Wq1MmjSJkSNHcvToUTZv3syMGTMYPXp06Wi7yMhIduzYUb0HIyIiIiIil03JLhGRGjR9+nQsFgvh4eEkJCRc8X7+/e9/Ex0dTY8eLlrQzg1cyrkODg4mJycHgNzcXIKDgy9p3+PGjePuu+8mJiaGoKAg2rdvT7169ejVqxdpaWnVdAQiIiIiIlIdlOwSEalBZ9eRmjBhgkN5bGwsWVlZl7SP5ORkFi5cyPjx4yusl5eXd8nJG090Kee6U6dOrFixAoDly5fTpUuXSvf7xRdfkJ2dzYgRIwDw8/PDx8eHgoICNm/eXDrNMSsrixYtWlTjEYmIiIiIyJVQsktExAVCQkLIy8srfTx06FCWLFnCkCFD+O677wB4+umnAXjhhRfIysqib9++PP744wDMnDmTp59+mk8++YTnnnsOgBUrVvC73/3OyUdS+51/rhs3bkyHDh3o1asXBQUFdO7cmUOHDvHGG28A5Z/XP//5z2zYsAGLxcLEiRMB+79Nv379ePLJJ0vrJSUl0b9/fxccoYiIiIiInM9gs9lsrg6itjqcsp1FA8e6OgyP0X/+BBp1ae3qMESqVecF9t9rBlz+c2fOnElYWBiJiYnVEsujjz7K5MmT8ff3r5b91SZVOc9Q/ef6QsXFxTz44INMnz69RvbvLFU9z3JpdJ6dR+daPImuZ+fQeXYOnWe5FKtWraJnz56sXLnyspdzMddQTCIiUon777+/Wvf33nvvVev+PEl1n+sLmc1mt090iYiIiIh4Ck1jFBERERERERERj6Fkl4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DC9RLrXOqCDJyXNN2bCD4e7mmbRERERERERGpOiW7pNbJyIFRq1zT9rQekBDqmrZFREREREREpOo0jVFERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DC1QLx4hbYyF09uTMZi9MJjM+IS3JmzoRALj+7k6NBERERERERFxIo3sEo8RNnQiHeeeosOMw/i16sbOSbdScvqkq8MSERERERERESdSsks8jtHLm/o3jMSaf4r8gxmuDkdEREREREREnEjJLvE41oIzHF06DaNvID5hLVwdjoiIiIiIiIg4kdskuwoLCxk3bhwRERHUrVuXvn37kpKSgsFgYP78+a4OT2qBA7PHkXpPMJv+GEVe5gZix36DyTfQ1WGJB7PZyv9bao5V51lEpFYptsKJAsgvdnUkIiJyobxiOFEIJVdhH9otFqi32WwMHjyYlJQUxo8fT2xsLLNnz+a2224DoGPHjk6LxVjHzHWTRtGkZ3t8QgPJO3ycbR8tYvtHi5wWg5Qv7J5XaXzbM64OQ64CJTb4ajd8mnmubND3cFcMDIoEs9t8jVC72Wyw9ADM3nmu7PdLYVAU3BsDdd3iHUxExDMdzYeZGTB/D5wuBgPQvSHcFwud67s6OhGRq9sPh+A/GbA+2/64Xh17H3poc/D3cmloTuMWHxWmTp3KwoULSU1NpW3btgBYLBaio6MJCQmhWbNmTovFaDJx5sgJltz9KrlZhwlpE8kNc8aS/+sJdn+d7LQ4RMQ1Smzw4hr47qC9Y3/W3tPwxiZYfQRev1YJr+rwzlaYtdNxCPKv+fDBdvjhIHzQA/zc4l1MRMSzHMiDkSvtCa+zgwVsQPKv8NMRGJcAA5zXPRcRkfN8tAPe3w7G8z6sHC+E6TvguwPw754QXMd18TmLW3wcmzx5MkOHDi1NdAGYTCaio6Pp2LEjx44d4+abb6ZVq1a0b9+e22+/nV9//bVGYik+U8D61z8ld/chsNnI3rKbvUvW0LBLXI20JyK1y5e77YkuONfBP//vFYcdR3zJlVl12J7oArCWs337SXh3q1NDEhGR37y0Do7lO74Pgn2quQ2YkAr7T7sgMBGRq9zGbHuiC8ou/2EDsk7B3zc5PSyXqPXJrvT0dDIzMxk0aFCZbXv37qVjx44YDAaee+450tLS2LRpE82bN+eFF15wSnwGs4lGXeM4vi3LKe2JiOvYbDBnl+OIrgsZgLm7tLZUVX2W6fht1IVswNd77VNnRETEeTJyIDW7/C8izrIBX6prLCLidJ9lVpzksWJfJuRYvrMicp1aPwFk//79ADRs2NChfPv27WRlZdGxY0dCQkKwWCyl26677jqmTJlyyW0EBARQWFhYpry5uR7PBfas8LnXTRpJ0akz7Pz8h0tu72rVp4+FncXHK63n26obzSckXda+W028vPoX06ePhbw0TUeV8pkCQmnz0YEK69iAg2cgICya4uyK68rFtZ2VjdHHr8I6+SXQtFNf8ravclJUnq/dZ/aej7e3j4sj8Ww6z86jc139Qn73IOF/fKfCOjbg/YU/80zH3s4J6iqh69k5dJ6dQ+e5ZrT+cDdeIU0qrFNig1Z9byd37f85KaorZ7VW9NVKxWr9yK7Q0FAAMjIySstsNhvPP/88Vqu1zOL0VquVKVOmMGDAgBqP7drxw2jQqRVL752ItUjDC0Q8nqGiMV1lKtdYGFeFSz3Xl/VvIiIiVXaJr7sGvQ+KiDif+tClav3Irri4OGJjY3nxxRfx8vLC39+fKVOmsH79enx9fWnVqpVD/ccffxx/f38ee+yxS24jNze33PLDKdtZNHBsudu6vPIATXq259vBL1OQXf7zxdHy5Uk06tK60nqpx2CUiwZqLF+eREKoa9qW2s9qg4HL4NCZsuuUnK+BD6w+sAuT57+H1JiHf4K1RyueJlPHCFkp3xF4FSyw6SydF9h/FxQUuDYQD6fz7Dw619Vv2wm4b0XFdQzAqJu68udndN6rk65n59B5dg6d55rx3C+QdKjiJVWMwNZlX9CwrtPCumKrVq2iZ8+KZ9tdTK0f2WU2m5k3bx5NmjRh2LBhjB49mv79+9O7d286dOiA0XjuEJ555hnS09OZO3euQ3l16/LqCJr06mBPdB3LqbF2RKR2MRrgrpiKE10Ag6NQoquK7oquONFlAPo3RYkuEREniwuGNsEVr6sI9lvci4iIc90ZXXmiy9IEt0h0VVWtH9kFEB8fT3Ky4zpK7777Lr17n1sH4MUXX2Tt2rX83//9H97e3jUWi1/T+rQZdTMl+YXcsfq90vLDq7ez7N6JNdauiNQOd0fD6iP226uXp3MoDG3u3Jg8Ue/GcFskfJVlT2yd/55tACL94Yk2LgpOROQq90pHGLESThU5fjFhxP746Xb212kREXGuzvXhvub2u5qX14duVBeea++i4JzMLZJdFzpz5gxpaWmMHj0agC1btvDaa6/RsmVLunfvDkB0dDRfffVVtbd9et9RPmlyR7XvVyq3Z+rjnMlMJfCa/jQZ/GJpecaEWyjJy8FgMhPz7FzMgfUByNuVyrZnrqXTl0UUHT/Err/fDUDh0b00/P3jNBow2hWHIW7ObIR/dIX/7oS5mfDrb3cyqe8Nd0TD/c2hjsm1MXoCgwFe7ACtg2D2LvttkgH8zfYk2PAWGtUlIuIqUQEw63qYng6L9kHRbxmvdvXggRZwfWPXxicicjV7og3EBsKsDMj4bcWluiYY2AxGtISQmhsbVKu4ZbJr48aNlJSUlC5O37ZtW2y2yiYWiTs7nb4Gg9FMq9d+ZOff7qDoxGG8ghsB0PyFLzGYvTi2fBbZP8ym4S1PAPDrt1PwjbkGAK96jUvv2Ljr70MI6nSzS45DPIOX0d6Zvy8Wjvy2fldDH3siTKqPwWCfBnN7JBzJt3+YauijZKKISG0Q7gcvJcAz7eD6hfayj3q5NCQREcHeh/59BNzcFK792l629Cbwucr60G6Z7OratauSW1eZ0ztWE9ChLwAB7XqTl7GWoM72hJXB7AWAtSgfn4g4APIPpGMObICpboDDfmzFRRQezsQnvKUToxdPZTJAE19XR+H5DAb7kGsREal9fN3y04SIiOc7/4aLV1uiC9xggXoRgJLTJzD5BgJgrBtAyekTpduKc7PZ/lx3jnzzDj5N7cmuI1+/TcPfl70jZ+7mJPzbWZwRsoiIiIiIiIi4gJJd4hZMfsGU5NnvfGk9k4vJL7h0mzkghNav/0T4vRM4vOCfFB47ANinLl7oRMoCgrsOdErMIiIiIiIiIuJ8SnaJW/Br2YXcTcsByN2yAt/YTgDYrFZsJcUAmHyDMHr5kL93K3mZqaSPv4m8zFT2TH2idD+nd6zGr2VX5x+AiIiIiIiIiDiFZtmLW/BrcS3HvvuEtL/0IrDjjRRlHyRn/RKCu95KxoQ/gMGI0cubqCc/wateYwITEgHYMS6RZn96B4C8XevxjYrHYFSOV0RERERERMRTKdklbqPZQ+85PPaNSQCg1aQfLvqclq8uO69+RyIf+3eNxCYiIiIiIiIitYOGuIiIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoQXqpdaJDYRpPVzXtoiIiCslJSUxfPhwIiMjiYyMZMaMGQ7bZ82aRZMmTYiIiGDEiBEYjUY6d+7MP//5T4d6w4YNY+fOnXh7ezNz5kzCw8N5++23mTNnDmazmU8++YSoqCgeeughpk2b5sxDFBEREalRSnZJrePvBQmhro5CRETEdUaOHMnYsWN54oknSE5Oplu3bqXbvv76a+bOnUt2djaLFy/G39+f++67jx07dtCyZcvSei+//DJRUVF89913vPfee0yaNIk5c+aQnJxMcnIyH3zwAX//+99p0KABO3fupHnz5q44VBEREZFqp2mMIiIicsmSkpKIjo7GYrEwbNiwMtsnTpxIenp6hft4/PHH6dWrF5MmTXIo//bbb7FYLFgsFkJDQ0lNTQXgww8/pF+/flgsFoqKikrrv/XWWyQmJgKwbds2Jk+eXMWjq33atWvH/v37Sx9nZ2fj4+ODwWAgNDQUf39/AEwmEwaDweG5UVFRZbZFRERQUFDAyZMnCQkJAcBisbBo0SInHI1crWrydeNi2y98fObMGW6++WZ69+7N8OHDAVi5ciXXXXcd3bt358033wQ897VERORqo2SXiIiIXJaRI0eSlJREUFAQycnJpeVWq5WNGzfSokWLiz53zZo1mM1mfvzxR9atW8fhw4dLt910000kJSWxfPlyYmJiiI+PZ8+ePWzatInvvvuOpKQkvLy8ACgqKipNhgHExcWxbt06bDZb9R+wCyUnJxMbG1v6OCMjg8jISIc6W7Zs4ejRo+Wed6vVyqRJkxg5ciQAPXv2JC4ujocffpgHHngAgMjISHbs2FFzByFCzb1ulLd99erVZeovWbKEnj178sMPP+Dl5cXmzZuJiYlhxYoV/PTTT3zzzTfk5eV57GuJiMjVRskuERERuSIXjjrasGGDwzS68qxevZq+ffsC0Lt3b9auXVumzi+//ELnzp0xGAwsWbKE06dP07dvX8aPH19aZ9asWQwZMsTheTExMWzZsqUKR1R7TJ8+HYvFQnh4OAkJCRetl5OTw2OPPcbUqVPL3T5u3DjuvvtuYmJiyMnJ4YsvviA9PZ2vvvrK4XyKOEtNvG5cuH3NmjVl6kdHR3P69GkATp06RVBQEGFhYdSpUwewj4A0Gu0fjTzptURE5GqlZJeIiIhckQtHHaWnp5dOnbuYEydOEBhovxtIQEAAJ06cKFNn/vz5DBw4EIAjR45gMBj4/vvvyczMJDU1FavVyuLFi7nxxhsdnudJI5TOjoKZMGGCQ3lsbCxZWVkA2Gw2RowYwSuvvEJYWFiZfXzxxRdkZ2czYsQIAAwGA35+fpjNZkJCQkrPfVZWVoWjakSqU028bpS3/cLHsbGx/Pjjj8TFxWEwGIiIiCh9/tKlS2nevDk+Pj6AZ72WiIhcrbRAvYiIiFyW6dOns2zZMnr27HnRUUdbt27lkUcecSi76aabCA4OJicnB4Dc3NxyF0Vfvnw5f/3rXwEICgqid+/eAFx//fWkpaWRkZHBgAEDqvGI3EdISAh5eXmAfR2k77//nqNHjwLw5ptvEh4ezqxZs3j22Wf585//THh4OBaLhRtuuIExY8bQrVs3evToQUlJCe+8807pfs5OcxSpKTX5unHh9vLqz5gxg7vuuotHH32UJ598kp9++onu3buzb98+XnvtNRYsWFDNRywiIq6kZJeIiIhclrN3CrxQixYt+PLLLwFo06YNSUlJZer88ssvzJkzh1tuuYUVK1Zw5513OmzftWsXTZs2LZ1a1K1bN2bPng3Apk2bGDJkCMuWLSMpKYlZs2aRmprKtGnTGDVqFFlZWfTo0aOaj9b5zi7SfzEDBgxg2bJlJCYmkp2dXWb7s88+C1A6Aux8L730Ei+99FLp4+LiYo4cOeIw0kakJtTk60aXLl0ctj/zzDPMnTvXoX5mZmbpTRnOjmwsKCjggQceYMqUKaU3ewA85rVERORqpmmMIiIiUi3i4+NJS0ursM61115LQUEBvXr1Ij4+nkaNGnHo0CHeeOMNwHEKI8A111xDcXExFouFvLw8unbtypgxY1i6dCnffvstCQkJjBo1CrAv3t6uXbuaO8Ba4v777y+9C2VVmc1mpk+fXi37ErkS1fG6ceH2rl27lql/zz338PHHH2OxWEhNTeWGG25g9uzZbN26lQcffBCLxVK6ltjV8loiIuLJNLJLRERELllFo46MRiMdOnQgPT29wjWg3nvvPYfHjRs3Lh2N9NRTT5Wp/9Zbb110X8uWLQNg27ZtdOrUCYPBUMkRiIiz1fTrRnnbL3xcr149lixZ4lA2fPhwhg8f7lCm1xIREc+gZJeIiIhUm/KmKTlDXFwccXFxLmlbRKrGVa8b5dFriYiIZ9A0RhERERERERER8RhKdomIiIiIiIiIiMfQNEapdU4VQUaOa9qODQR/L9e0LSIiIiIiIiJVp2SX1DoZOTBqlWvantYDEkJd07aIiIiIiIiIVJ2mMYqIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoQXqxSOkjbFwensyBrMXBpMZn/DWhA2dSGB8P1eHJiIiIiIiIiJOpJFd4jHChk6k49xTdJhxGL9W3dg56VZKTp90dVgiIiIiIiIi4kRKdonHMXp5U/+GkVjzT5F/MMPV4YiIiIiIiIiIEynZJR7HWnCGo0unYfQNxCeshavDEREREREREREncptkV2FhIePGjSMiIoK6devSt29fUlJSMBgMzJ8/39XhSS1wYPY4Uu8JZtMfo8jL3EDs2G8w+Qa6OiwRERERERERcSK3WKDeZrMxePBgUlJSGD9+PLGxscyePZvbbrsNgI4dOzo1nuteG0XEDZ3xCvSl6NQZsr5JZs2r/8FaVOzUOMRR2D2v0vi2Z1wdhoiI29l8HGbvPPf4D0thUBQMjgJ/L1dF5Xl258J/d517fMO3MLAZ3B0D9X1cF5fIlcgphM8y4Yusc2Xj1sG9MdA62GVhiYiIAG6S7Jo6dSoLFy4kNTWVtm3bAmCxWIiOjiYkJIRmzZo5NZ5tH3/LmldmUXymAO+QACxTn6bDE7eT+uZnTo1DRESkqhbuhfHrAcO5skNn4L1t9m3/7gHB3i4Lz2OsOQpP/AzF1nNlxwthRgZ8/dt5bubvuvhELsfRfBi1EvblOZYv3gdL9sOkTtAvzDWxiYiIgJtMY5w8eTJDhw4tTXQBmEwmoqOjS0d13XrrrcTHx9OxY0d69epFampqjcVzcsc+is8U2B8YDNisNgJimtRYeyIiIjVh32kYnwpWwGoruz3rFEzY4OyoPM/pYng6xZ7osl6wzYY96fXcL2Ar599ApDb663o4kFe2/OxryZi1cOSM08MSEREpVeuTXenp6WRmZjJo0KAy2/bu3Vua7JoxYwYbNmxg/fr1PPPMM4wYMaJG42r/2K3cmzGLIZs/IqRtJFunflOj7YmIiFS3L3ZXnGCxAj8cgkPlfKiVS7dorz3hdWGi6yyrDTJyYUO2U8MSuSK7T8HqXy9+PduAEht8lXWRCiIiIk5Q66cx7t+/H4CGDRs6lG/fvp2srKzSZFdQUFDptpMnT2I0XnoeLyAggMLCwjLlzc31eC6wZ7nP2fTu/9j07v8IahFOzO29OHPk+CW3d7Xq08fCzuLKz5Nvq240n5B0WftuNfHy6l9Mnz4W8tKSq2VfIiK1Xewbv1A3qkOFdWxA/MARnFjxX+cE5YGaPT2HwGsHYDBdvNtls1q55cmJHPl8ghMj83ztPssHwNtbi6JVl5Ab/kj4n96tsI7VZuOtr3/miXiLc4K6Suh6dg6dZ+fQeXYOdz/PVuvFvlqpXK0f2RUaGgpARkZGaZnNZuP555/HarU6LE4/atQomjVrxpgxY5gxY4ZT4juZvp/sLVn0+tcTTmlPRESkulSUfHGoZzTVcCQezmgGg6GSSjadZ3ELl/K6YTAYdD2LiIhL1fqRXXFxccTGxvLiiy/i5eWFv78/U6ZMYf369fj6+tKqVavSutOmTQNg1qxZPPvssyxcuPCS2sjNzS23/HDKdhYNHFvp841eJgK1Zlelli9PolGX1pXWSz0Go1Y5IaByLF+eREKoa9oWEXG2l9fD/+29+HSks1Z89m9aBv3bKTF5omlp8EFaxXUMRhMzJr9In5kvOieoq0TnBfbfBQUFrg3Eg2zMhhErK65jBIbd0IXnn9Z5r066np1D59k5dJ6dw93P86pVq+jZs/zZdpWp9SO7zGYz8+bNo0mTJgwbNozRo0fTv39/evfuTYcOHcqdrnjfffexfPlyjh07Vu3xeAX4EnunhTqBvgDUi4skfvQgDiRpBV8REXEvg6IqTnQZgfb1oGVQBZWkUrdGgrGCgV1GINQbejVyWkgiV6x9PWgeUPGHCCv21xcRERFXqfUjuwDi4+NJTnZcR+ndd9+ld+/eAJw6dYrjx48TEREBwNdff01ISAghISHVH4zNRsyg67l2/DCMdczkH80ha+FqUt+YW/1tiYiI1KB29WBYLMzIAAP29bnOMgK+Zhgb76LgPEh9H3i+Pby20X5ez08wGrEnwiZcA+Za/xWkiH1G7svXwB9XQkGJ4/V89nXkoVYQG+iiAEVERHCTZNeFzpw5Q1paGqNHjwbg9OnTDB48mNOnT2MymQgJCeHrr7/GUOn6GJev6NQZltz1SrXvV0RExBUei4MIP3vCa+9pe5nRAH0bw8NxEOnv2vg8xaAo++itaTtg+8lz5V0awEOt7YlHEXfROgg+6QVTttvv2Ho2UR7pD8NbwO8jXBqeiIiIeya7Nm7cSElJSeni9I0aNeLnn392cVTiLMW52aT/9Qby96fRce4ph215mRvY88EjGMx1iB49kzoNIsg/mMHeDx/DWlRAowFPEdx1gIsiFxGpfQwG+zS7gc1g9yk4UwJN6kI9b1dH5nksTew/+07DyUJo4AMN67o6KpEr0zwQ/t4FjuXD4Xz7SNBIv0u4F4OIiIgTuGWyq2vXrthstsorikcy1Q2gxctL2fX6nWW2HZz7Cs3/8hVFxw9y6MvJNHvwXQ5++jLRz3yK2T/Y+cGKiLgJgwGiA1wdxdWhqZ/9R8QThPrYf0RERGoTt0x2ydXNYPbCHFD+emzW/NN4BTfEK7ghBQczsBYVUnh0L7vfuh8MBiIfnYpXsFYAFhEREREREfFUWgpVPIrNZnX4uzjnKGeyNhM1egaNbhnNoXmvuTA6EREREREREalpSnaJRzEYjA5/m/yCqBvZHrN/Pfzb9iJ/f5oLoxMRERERERGRmqZpjOJRjN6+FJ38laLjB/FuEovJxw9jHR+sRQXk791GnYZRrg5RRERERERERGqQkl3ilnaMSyQvcz07xiUSNmQ8p7Yn0/j2Z2ly1zh2TroVg9mL6NEzAWg08Gl2jOuHwWgi6slPXBu4iIiIiIiIiNQoJbvELbV8dZnDY/82PQHwjelI68mrHLYFJiQSmJDotNhERERERERExHW0ZpeIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ2t21TI933qUotP5rB4z3dWhlHFvxiwW3foS2Zsza7Sd2ECY1qNGm6iwbREREfF8SUlJDB8+nMjISCIjI5kxY4bD9lmzZtGkSRNatWrFXXfdhdlspnnz5nz00UcYDIbSeg888ABpaWl4e3vz0ksv0bdvX4YPH16mnoiIiDiPkl01qHH3tiQ8fSehHWIAOLZxF6l//4xDyVtcHJldwtN3EhrfnO/uf+2S6v839r4ajsjO3wsSQp3SlIiIiFzFRo4cydixY3niiSdITk6mW7dupdu+/vpr5s6di9VqZdWqVRgMBkaOHMmmTZvo0KGDw34+//xzmjZtWvq4a9euLF++nL59+zrtWEREROQcTWOsIU0TO3HD7LHsXbaWz655kM+ueZC9y9Zyw5yxNO13TbnPMZiq75/DYDZV275EREREPFm7du3Yv39/6ePs7Gx8fHwwGAyYTKbSEVre3t6EhYU5PNdgMHDXXXdx5513kp2dDUCfPn1YuHCh8w5ARMTDJCUlER0djcViYdiwYWW2T5w4kfT09Ar38fjjj9OrVy8mTZp00TpvvfUWiYmJZGdn06lTJ/z9/R22f/jhh/Tr1w+LxUJRURHbtm1j8uTJV3ZQ4lRKdtWQrhNGkPF5ElumLKAoN4+i3Dy2TFnAznk/0GXCCADuSHmfDqMHcfOCiQzd9V/qxzcHwMvPB8vUp7k3fRa3/vBPwizxlbbXuFtb7s2YRcuhidzxyxQGLPs7AE2u78AfFk/mnrQZDPjuTZrddC0AzW66lvZP3EZ4nwTuzZjFvRmzMNapeKDfAwfnERrfHIPJyD07ZhLcKsLedve2PHBwHpF/sH8bWrdhMPfv+RQv/7pXdvJEREREnCg5OZnY2NjSxxkZGURGRpY+/v777+nQoQOHDh0iKCjI4bn/+Mc/WLVqFXfddRevvWYfLR8ZGcmOHTucE7yIiIcaOXIkSUlJBAUFkZycXFputVrZuHEjLVq0uOhz16xZg9ls5scff2TdunUcPny4TJ2ioiJSU1MBCAgIYOnSpVx33XWl2/fs2cOmTZv47rvvSEpKwsvLi7i4ONatW4fNZqu+A5UaoWRXDQhsHkZAZCMy/7eqzLZdX60kMKoxgTFNAIgdbGHV0+/z39j7OPbbWljRt/Zk11c/Mrv1MDb+6yv6fvQcvo1DKm3XXNeb+gmx/O/60XzT/3kCohqTOOMFNr/7P+a0Gc7aif+h95SnCGkbxZ5vf2HTO1+xf3kq/429j//G3oe1sPiSjs9WYuXw6m006dkegCa92pOTeZAmPdvZH/dsz7GNuyg6deaS9iciIiLiCtOnT8disRAeHk5CQsJF6/Xt25eNGzcSGRnJt99+67CtXr16AAwYMIAtW2rHUhUiIp7kwtG3GzZsoGXLlhU+Z/Xq1aVTyXv37s3atWvL1Jk1axZDhgwBwMvLi5AQx8/cS5Ys4fTp0/Tt25fx48eXlsfExOj13g0o2VUDfEICADhzOLvMtjNHjtvrhNpXQk+btZST6fuxWa2lyaZDP29lz6IUbCVWds1bwfGtWUTd0q3Mvi5kMBpZO+m/FJ8poORMIdEDu3N49TZ2f52MrcTK/u/Xs2fJGpoP7l3lYzy0crNDciv175+VJr8a92jHwVWbq9yGiIiISE06O2pgwoQJDuWxsbFkZWUBUFhYWFoeFBSEj4+PQ93c3FzAPjosOjoagKysrApHHIiIyKW7cPRteno6UVFRFT7nxIkTBAbaP3MHBARw4sQJh+1Wq5XFixdz4403XnQfR44cwWAw8P3335OZmVk6Ckyjd92Dkl01ID/b3ump26jsaKy6De3f/uUfywHg9P5fy9Q5vc+x7NTeXy9pZFfxmQIKfmsbwLdJKKcu3FfWYXybVH3194MrN9HoujbUCfQlMCaMzP+twlTHjG+TEJr0bMfBHzdVuQ0RERERVwgJCSEvLw+AlJQUrr/+eiwWC/v27aNfv34cOnSIN954A4D777+fnj178vLLL/PCCy8AsHz5cvr37++y+EVEPMGljL7dunUrFovF4edvf/sbwcHB5OTYP3Pn5uYSHBzs8Lwvv/ySAQMGVNh+UFAQvXvbB4pcf/31pKWlVfmYxHl0N8YakLPzALl7DhM9oDuHLhjhFD2wO7l7DpOz6yAANmvZub5+TRs4PPaPaMCv6yrPHNusVofHeQeP0bhb2wv21ZC8g8fKrX85srfsxma10uaPf+DIL9uxWa0cXLmZlvck4tuwHkd+2X7F+xYRERGpaWc/FF3MgAEDWLZsGYmJiaxYscJhW+PGjXn22WcB+Oqrr8o8d/Xq1fzpT3+q1nhFRK42Z++Ye6EWLVrw5ZdfAtCmTRuSkpLK1Pnll1+YM2cOt9xyCytWrODOO+902J6WlkZSUhKzZs0iNTWVadOmMWrUKIc63bp1Y/bs2QBs2rSpdMpjVlYWPXr0qI5DlBqkkV01JOWlT4i9qw9tH7wFL/+6eAX40ubBPxB7Zx9Sxn1c4XMbX9eGiN91xmAyEnN7L+q1iWT3//182TFkzv+JRl3jiPx9VwxGI+F9Eoi4sTM759k7bGeOnsQvvP4V3wXy0E9baPOn33NwpX0U18FVm2jzp99zZO0OSgqKrmifIiIiIrXB/fffT2Ji4hU99+OPP8ZoVDdbRKQmxMfHVzrK6tprr6WgoIBevXoRHx9Po0aNHEbljhkzhqVLl/Ltt9+SkJDAqFGjSExMZP369SQmJrJ582auueYaiouLsVgs5OXl0bVrV8B+E5N27drV+HFK1WhkVw3Zu/gXlg2dRPyf7yDhWXsW+djGXSwbOqk0OXQxmf9bSfPBvbn+vSc5ffAYy0f9nbwDxy47htzdh/h+xOtc85d76fHPRzm971dWPPYO2b8thL/762Ribu3J3Zs/wmAw8GmHkZe8SD3AwR83EfWHbhxcaR+9dnDlZuoE+mm9LhEREREREbliFY2+NRqNdOjQgfT09ArXR3zvvfccHp8/Kvd8y5Ytc/h9vrfeesvh8bZt2+jUqRMGg6GSIxBXU7KrBh1cuanCxNa8Lo+UKVs5+r1yalbuUPIW/ht7X5ny/ctT2b88tdznFJ44xbeD/npJ+zf89u3k+cmwtJlLSJu5pPTxmcPH+aTJHZcRtYiIiIiIiMjlKW96ozPExcURFxfnkrbl8mh8tVySem0jsRYVl7ugvoiIiIiIiIhIbaGRXW5kYNI/8W9av0z53iVrWfHIW1Xef+J/x9Coa+sy5UWn8jF6mVg7aTaFOXlVbkdEREREREREpKYo2eVG5lueqtH9L7t3Yo3uX0RERERERESkpinZJbXOqSLIyHFN27GB4O/lmrZFREREREREpOqU7JJaJyMHRq1yTdvTekBCqGvaFhEREREREZGq0wL1IiIiIiIiIiLiMZTsEhERERERERERj6Fkl4iIiIiIiIiIeAyt2SUeIW2MhdPbkzGYvTCYzPiEtyZs6EQC4/u5OjQRERERERERcSKN7BKPETZ0Ih3nnqLDjMP4terGzkm3UnL6pKvDEhEREREREREnUrJLPI7Ry5v6N4zEmn+K/IMZrg5HRERERERERJxIyS7xONaCMxxdOg2jbyA+YS1cHY6IiIiIiIiIOJFbJLsKCwsZN24cERER1K1bl759+5KSkoLBYGD+/PmuDk9qiQOzx5F6TzCb/hhFXuYGYsd+g8k30NVhiYiIiIiIiIgT1foF6m02G4MHDyYlJYXx48cTGxvL7Nmzue222wDo2LGjS+Iy+dRh4PdvUrdhMP+Nvc8lMYijsHtepfFtz7g6DJey2uC7A/BZJqSdBJMBujWEu2IgPsTV0XmW5CP287zumP1xfAjcGQ09GoLB4NrYRC5XZi7MzYRlByC/BJr5we1R8IcI8DG5OjqRy3OiEL7cDfP3nCt7fxsMjoYGPi4LS0REgLVH7X2Osx7+CQZHQZ8m6kNL9ar1ya6pU6eycOFCUlNTadu2LQAWi4Xo6GhCQkJo1qyZS+Lq+OxdnNp3lLoNg13SvsiFiq0wdp39w6oRsP5WvuwgLDkAT7WFe5u7MkLPYLPBO1th1k7H8/zzr/DTEbg7Gp5upzdrcR8/HILnf7Eny89ez+k58LeNsGAPvN8N/L1cGqLIJdt3Gv60Co7kO5Z/nA7zdsOU7tAqyCWhiYhc9abvgCnbwXheP3ntUfjlKPy+Kfy1o+M2kaqo9dMYJ0+ezNChQ0sTXQAmk4no6Ogyo7pefvllDAYDmzdvrtGYQjvEEN4ngc3v/a9G2xG5HDMy7IkuOPeBFewfYAH+ucX+ZiJVs3i/PdEF5Z/nTzPhm71OD0vkihzKgxfWQInN8Xr+7XJm2wl70kvEHdhs8HQKHM0vZxtwqgie/BmKrGW3i4hIzVp12J7ognP9ZjjX//i/ffDpLqeHJR6sVie70tPTyczMZNCgQWW27d271yHZtW7dOn7++WciIyNrNCaDyUj3vz/Ezy9Ow1pYXKNtiVyqYmvlbw5G9AZSHWbvqviF0wD8d6f9Q5dIbfdllv3142KXqw37yNDykgcitc3aY7Az1zFxez4rcLQAlh90ZlQiIgIwZ1flo7Zm73JMhIlURa2exrh//34AGjZs6FC+fft2srKySpNdBQUFPProo8yZMweLxXLZ7QQEBFBYWFimvLm5Hs8F9nQoa/fIQI5tyuTwz9to3K1tmefIxfXpY2Fn8fFK6/m26kbzCUmXte9WEy+v/sX06WMhLy25WvblTD4xHWkx+ecK61iB7/bk491L8zeulNEvmLafHK6wjg3IyAX/xs0oPlFxXRFXi30jBZ/IDhgqmHdrtUHbPzzAiR/nODEykcvX+N6J1B/wFAbjxReas5UU8/Cbs9n33h+dGJlI9Wj3mf2bB29vLT5Xk3Sea4DRSLtPT2MwVDzW5tAZCI7pQMGBNCcF5vnc/Xq2Wq98OHatHtkVGhoKQEZGRmmZzWbj+eefx2q1lia7XnrpJYYOHUpUVFSNxhMQ1ZhW9/+ONa/OqtF2RC6XwXRpC+pcaj0p3+WcP4O5Tg1GIlI9DKY6FSa6SuvpehY3YDB7ga3yTrGuZxER5zIYzZUmukrrmvV5RapHrR7ZFRcXR2xsLC+++CJeXl74+/szZcoU1q9fj6+vL61atSI5OZk1a9bwt7/97Yrbyc3NLbf8cMp2Fg0cW/q4UZfW1K0fxO2r3gHAaDbh5VeXu7d8xPKRb3D4521XHMPVYPnyJBp1aV1pvdRjMGqVEwIqx/LlSSSEuqbtqjhRCDcthuIKhv0agNhgE2sLCpwWl6cpsdnP8/GyA0EdBHrB8b0ZeNXqrxNEYMxaWHqg8ikD382ZStt6U50TlMgVWrAHXkmtuI7BZGbMH+9m+Ot3OyUmkerUeYH9d4H6cjVK57lm3LoM9uddfOkEAG8jHNi2Fr9anaVwL+5+Pa9atYqePXtWXrEctfqjmNlsZt68eTRp0oRhw4YxevRo+vfvT+/evenQoQNGo5EffviBbdu2ER0dTVRUFPv27ePGG29kyZIl1R5P5tc/8UX3x1iQ+AwLEp9h1dMfUJSXz4LEZ/h1XXq1tydyqYLrwA3hFf+HtgF3RjsrIs9kMsAdUfbE4cUYgNsiUaJL3MIdURUnuoxAy0BoE+ykgESq4Hdh4Guq+DXaZIABEU4LSUREfjM4uuJElxH4fQRKdEm1qfUfx+Lj40lOTiYvL4+0tDQefvhh1q9fXzqF8YUXXuDAgQPs3r2b3bt307RpUxYvXszvfve7ao+l5EwheQezS38KjuWAzUbewWwtVi8u91gchPpc/D9151C4pZlTQ/JIQ2OheUD5H6aMQKQ/PNDC2VGJXJmEEBh0kfu6GLEnbccmwCXMdBRxOR8zjEuw/33hJXv28Z/b2d8rRUTEue6Igg71Lt6HblQXHmzl5KDEo9X6ZNeFzpw5Q1pamsOdGF3lUPIW/ht7n6vDEAHsbxAf94K+TRzvdOJrgntj4O3rNNqoOviZ4d894dZIqHPe+fQy2r+Nmt4TArTUgLgJgwGe7wBPtIEQb8dtnerD9F4a1SXu5YZw+GdXiA10LI/wg4md4C6NcBYRcQlvE7zXzT7TxOe8+4iYDPbX7o976csIqV5uN0hw48aNlJSUXDTZtXv3bucGJE51autK9n38DBiM1Os+iEa3Pu2wvej4ITb9KZp2U9KpU78paWP6cHbAbLMH36duszYuiNp5GteFv10LR/Phpt9m8i6+Eeq63f/02i3AC8bE2xMEfRbZy779HQRpzWNxQ0YD3B8L98TAdd/Yy/7XD5r6uTYukSvVsxH0aAg7c+3vh8F1oFWQRiiKiLhaXTM82x4eiYNtJ+xLKcQGlv3CTaQ6uN1H4K5du2KzVbKSrnisOo1iaDlpBUavOqSN6UOD/g9j9PYt3X7km3/h17Jr6WOD0UTLV5e5IlSXqn/etyJKdNWc80dwKdEl7s583khFJbrE3RkM9g9QF47wEhER1/MzQ+f6ro5CPJ0mNYlbqRMahtHLnlUwGE1w3i1si0+doDj3KN4No857ho20MRZ2/2sU1sJ85wYrIiIiIiIiIk6nZJe4pZzUpXg3aY6xzrkhTL8ufI8GNz3kUC/m+Xm0mphE3Yg4ji6d7uwwRURERERERMTJlOwSt1N4dB+H5r1G0+FvlpZZC86Qv3crvjGOa7mZ/esBENRlAPl7tzg1ThERERERERFxPiW7xK1YiwrY/fYDNHtoCqa6/qXlBUd2U3BoJ+njbyIndSl7PnwUgJK8XABOb0+mTkPdgklERERERETE02npanEr2T/MJn/vVrKmPAhA+NCJFBzaRWif+2j9xs8A7H77AcLunQDAjpcSMXrVweQXTPRT/3FZ3CIiIiIiIiLiHEp2iVupnzic+onDHcr843o4PI568pPSv+P+vtoZYYmIiIiIiIhILaFpjCIiIiIiIiIi4jGU7BIREREREREREY+hZJeIiIiIiIiIiHgMrdkltU5sIEzrUXm9mmpbRERERMSdJCUlMXz4cCIjI4mMjGTGjBkO22fNmkWTJk2IiIhgxIgRGI1GOnfuzD//+U+Hehs2bOCRRx6hTp06zJw5k4iICD766COmTZtGw4YNmTVrFnXr1uWhhx5i2rRpzjxEEZHLomSX1Dr+XpAQ6uooRERERETcx8iRIxk7dixPPPEEycnJdOvWrXTb119/zdy5c8nOzmbx4sX4+/tz3333sWPHDlq2bFla75VXXuGrr77i4MGDTJ48mbfeeosZM2awcuVKFi5cyLRp03jqqado0KABO3fupHnz5q44VBGRSmkao8hVKikpiejoaCwWC8OGDSuzfeLEiaSnp1/0+dnZ2XTq1Al/f/9yt6ekpNCjRw+6d+/O2LFjy62/bds2Jk+eXPWDEREREREA2rVrx/79+0sfZ2dn4+Pjg8FgIDQ0tLQvZjKZMBgMDs89ffo0DRs2JD4+noyMDI4ePUqzZs0wGo20b9+e5ORkACwWC4sWLXLeQdUiVe1DAzz++OP06tWLSZMmXbTOW2+9RWJi4kX73B9++CH9+vXDYrFQVFSkfrXIBZTsErmKjRw5kqSkJIKCgko7LwBWq5WNGzfSokWLiz43ICCApUuXct1115W7vWPHjqxatYqffvqJ5ORkTCZTmfpxcXGsW7cOm81WfQclIiIichVLTk4mNja29HFGRgaRkZEOdbZs2cLRo0fL9PWsVqvD3w0aNCAjI4P8/HxWrFjByZMnAYiMjGTHjh01eBS1W1X60GvWrMFsNvPjjz+ybt06Dh8+XKZOUVERqampQPl97j179rBp0ya+++47kpKS8PLyUr9a5AJKdolImW8AN2zY4DCkvTxeXl6EhIRUuB2gpKSEsLAw/Pz8yq0fExPDli1brjByEREREQGYPn06FouF8PBwEhISLlovJyeHxx57jKlTp5bZZjQaHf42mUw8++yz3HTTTWzYsIFGjRrVROhu60r60KtXr6Zv374A9O7dm7Vr15apM2vWLIYMGQKU3+desmQJp0+fpm/fvowfP760XP1qkXOU7BKRMt8ApqenExUVVeX9zp49m7i4OIKDgzGby18i8Gr/ZlBERESkOpwdbTRhwgSH8tjYWLKysgCw2WyMGDGCV155hbCwsDL78PX15ddff2Xjxo2lfcPbb7+dpKQkunbtSv/+/QHIysqqcPTS1eJK+tAnTpwgMNB+V6yAgABOnDjhsN1qtbJ48WJuvPHGi+7jyJEjGAwGvv/+ezIzM0tHgalfLXKOFqgXuYpNnz6dZcuW0bNnz4t+A7h161YeeeQRh7KbbrqJF154odL933PPPdx9990MHjyYTZs20b59++oIW0REREQuUUhICHl5eYB9vanvv/+eo0ePAvDmm28SHh7OrFmzePbZZxk3bhy33norXl5ezJw5E4BHHnmEtLQ02rRpw1tvvVW6n5EjR7rkeGqDqvShg4ODycnJASA3N7fMIv9ffvklAwYMqLD9oKAgevfuDcD1119PWlpahaP5RK5GSnaJXMXO3rXnQi1atODLL78EoE2bNiQlJV32vgsKCvD29sZoNBIQEICPj0+59bKysujRo8dl719ERERE7CwWCxaL5aLbBwwYwLJly0oXPL/Qs88+C5xbc/V877//vsPj4uJijhw54jCi6WpTlT70L7/8wpw5c7jllltYsWIFd955p8P2tLQ0kpKSmDVrFqmpqUybNo1Ro0Y51OnWrRuzZ88GYNOmTaVTHtWvFjlH0xhFpIz4+HjS0tIqrZeYmMj69etJTExk8+bNHDp0iDfeeAOABQsWYLFYuP7662natCktWrQoUx/si6a2a9euRo9HRERE5Gp2//33k5iYWC37MpvNTJ8+vVr25WkupQ997bXXUlBQQK9evYiPj6dRo0YOfegxY8awdOlSvv32WxISEhg1alSZPvQ111xDcXExFouFvLw8unbtCqhfLXI+jewSuUpV9A2g0WikQ4cOpKenV7gew7Jly8qUnf1mcPDgwQwePLjC+tu2baNTp05lbnstIiIiIlIbVUcf+r333nN43Lhx49I+9PnO9p3L63OfnVJ6lvrVIo6U7BKRcpU3NLu6xcXFERcXV+PtiIiIiIg4gzP60OVRv1rEkaYxioiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jG0ZpfUOqeKICPHNW3HBoK/l2vaFhEREREREZGqU7JLap2MHBi1yjVtT+sBCaGuaVtEREREREREqk7TGEVERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYWrNLPELaGAuntydjMHthMJnxCW9N2NCJBMb3c3VoIiIiIiIiIuJEGtklHiNs6EQ6zj1FhxmH8WvVjZ2TbqXk9ElXhyUiIiIiIiIiTqRkl3gco5c39W8YiTX/FPkHM1wdjoiIiIiIiIg4kZJd4nGsBWc4unQaRt9AfMJauDocEREREREREXEit0l2FRYWMm7cOCIiIqhbty59+/YlJSUFg8HA/PnzXR2e1AIHZo8j9Z5gNv0xirzMDcSO/QaTb6CrwxIRERERERERJ3KLBeptNhuDBw8mJSWF8ePHExsby+zZs7ntttsA6Nixo9Ni6fnWo0Tf1hNrUXFpWdIf32T/8lSnxSDlC7vnVRrf9oyrw3Apmw1W/wrzdp8r+9tGuCMKYpX3EzeUmQuf74aVh6HYCq2C7Ndz94ZgMLg6OpHLc6IA/rcHvt0HJwqhsS8MbAb9w8HHLXpkIuJsVpv9PfCL3efK3twMg6Ogmb+rovJM647B55nnHr+SCndGQetgFwUkIlXiFl2rqVOnsnDhQlJTU2nbti0AFouF6OhoQkJCaNasmVPj2fGfZaweM92pbYpUxmqD1zbCV1lgPC8J8OVuewdpbIL9Q5WIu1i4F8anAjaw/lZ2NB9+PAy/bwovdQSTEl7iJjJy4OGf4HjhubJjBbD5OMzZBR90hxBv18UnIrVPsRXGroNlBxyn43y6y56UmdgJ+oW5LDyPYbPBO1th1k7H8/zNHliwB/7cFu5p7rLwROQKucU0xsmTJzN06NDSRBeAyWQiOjq6dFRXVFQUrVu3JiEhgYSEBBYvXuyqcEVcYs4ue6IL7Imvs6yADZiQCpuyXRCYyBXYfhLGr7dfy9bzys/+/X/7YJbuPyFuorAEHv8ZThY6lp99qd6dC39Z4/SwRKSW+/cOe6ILHN8LbUCJDV5cax8BLVXz9V57ogvK73P8Ywv8fMTZUYlIVdX6ZFd6ejqZmZkMGjSozLa9e/c6TGGcN28eqamppKamcuONN9ZYTDG392LI1o+5dcVbdHjydgymWn8axcOV2OA/OyuuYwA+zay4jkhtMXdX5XX+u9P+rbdIbffdQfg13/FD1PmswNpjsOOkM6MSkdosv6Ti90Ib9hFJn6lvVyU2m/3Ls4oGihux9zlExL3U+mmM+/fvB6Bhw4YO5du3bycrK6ta1usKCAigsLCwTHlzcz2eC+zpULZ1+kLWvDqL/OxcQjvE0Pv90Zi867D+9U+rHIen69PHws7i45XW823VjeYTki5r360mXl79i+nTx0JeWnK17MuZfKI60OKNXyqsYwUW7crj793rOSeoq0S7z/IB8Pb2cXEknqXNx4cw+Vd8rR4vhPodenEmPcVJUXk+Xc81I2L0LIKuux2D6eLdLpvNSt+HXubXL//mxMhEpLbya2ch5q8Vz1SxArPXHeCla6OdE5QH8moQSev3d1RYxwr8dMSKj18gtuIi5wQmUk3cvW9ntV75N9u1fkhSaGgoABkZ5+ar2Gw2nn/+eaxWq0Oy695776VDhw488sgjnDhxokbiyd6USf6xHLDZOLZhJ+v/PpfogT1qpC2RS2WsU/eS6hm8tCCMuAdDnUt7Q77Ua1/ElYx16lZ+RwWrDaO3rmcRsbvkvp3eB6vkks+zwYjBrH60iDup9SO74uLiiI2N5cUXX8TLywt/f3+mTJnC+vXr8fX1pVWrVgD8+OOPREREUFBQwOjRo3nsscf4z3/+c0lt5OaWP9n9cMp2Fg0cW/GTrbaKx71KqeXLk2jUpXWl9VKPwahVTgioHMuXJ5EQ6pq2qyK7AG5a4rhW14UMQFSgibUFBU6L62rQeYH9d4HOa7W6JwnSc86taVQeA7Bt1RIaqZ9fbXQ914x3ttqnyVR4PZtMfPDqC9z8yQtOi0tEaq+9p+C27yuuYwQ6RdQjVa/ZVyyvGBK/hcJKBo+EekPeiWO6E7S4HXfv261atYqePXtWXrEctX5kl9lsZt68eTRp0oRhw4YxevRo+vfvT+/evenQoQNGo/0QIiIiAPD29uaRRx5h1aqayZZEDeiOV4AvAPXiIol/ejC7v3G/aW/iWUK8oU/jiv9D24A7opwUkEgV3RFVcWLACPRshBJd4hZua1Z54tbfDH11VzUR+U2EP3QOrbhvZwXu0AzGKvE1w+8jKj7PBmBwVOUDdEWkdqn1I7sA4uPjSU52TCi9++679O7dG4DTp09TXFxMUFAQNpuNTz/9lISEhBqJpfUDN9Jt8p8wepk4c/gEO+f9wMZ/fVUjbYlcjsfbwC9H4VRx2RFeBqBNMNzazBWRiVy+P0TY77i4MbtsksBoAF8TPNnGJaGJXLYIfxjeAj5OL7vNgP0af6ED+JicHZmI1GZPt4MRK6GgpPwbXHSpDzcoSV5lf2wJKw/DsXJuJGIEovzh7hhXRCYiVeEWya4LnTlzhrS0NEaPHg3A4cOHGTRoECUlJZSUlNCmTRvef//9Gmn729v/WiP7Famqpn7wcS/420Z70ussswH6N4Vn2oOPW/6Pl6tRHRO8e539dt/f7IWi83qfCSH2xEBUgOviE7lcj7SGenXsCa/j590TJ9wXnmijUV0iUlaLIJjeEyZvgg3Z58rrGGFgM3iyLZhr/Tyd2q9hXfi4J7y2EX46cu5LNqPBnkx8rj34e7k0RBG5Am750Xfjxo2UlJSULk4fExPD+vXrXRyVONuprSvZ9/EzYDBSr/sgGt36dOm2tDEWAIpP/kpgwg1EjHrLNUE6WaQ/TOkOe07Bjhx7oishBIK1nqa4obpmGBMPj8VBv2/tZfP62r9hFXE3BgPc0xzujIbrvrGXTesB8SGaGiMiF9fyt4TXrlz7j5cROoUq+VLdGvvC29fBgTzYdsI+6rZDCNR3zxvYiQhumuzq2rUrNltFq1/I1aBOoxhaTlqB0asOaWP60KD/wxi97euptZqYBMD+mX8hoH0fF0bpGs387T8iniCozrm/legSd3f+KAx3vCGKiLhGTID9R2pWmK/9R0Tcnwa+ituqExqG0cv+KdhgNIGh7OWcuzkJ/3YWJ0cmIiIiIiIiIq6iZJe4vZzUpXg3aY6xjuM44/yDGdRpEFmaEBMRERERERERz+eW0xhFzio8uo9D816j+ZgFZbadXD2f4K4DXRCViIiIiIiIiLiKRnaJ27IWFbD77Qdo9tAUTHXLLuRzcu1Cgjrd7ILIRERERERERMRVNLJL3Fb2D7PJ37uVrCkPAhA+dCIFh3YR2uc+inOOYjB5YfILcnGUIiIiIiIiIuJMSnaJ26qfOJz6icMdyvzjegBgDqxPi/HfuiIsEREREREREXEhTWMUERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEY2jNLql1YgNhWg/XtS1SXZKSkhg+fDiRkZFERkYyY8YMh+2zZs2iSZMmJCYm0qtXL9avX8/27dtp2rSpQ72//OUv/PDDD5hMJt5//33at2/PP/7xD958800efvhhxo4dC8Cjjz7K66+/jp+fn9OOsba4nHM9adIkFi1aREJCAv/6178c6pV3XocNG8bOnTvx9vZm5syZhIeHk5GRwWOPPUZBQQFPPfUUN998Mw899BDTpk1z2jGLiIiIiFTFpfahIyIiGDFiBEajkc6dO/PPf/7ToV55/eW3336bOXPmYDab+eSTT4iKinJqf1kju6TW8feChFDX/Ph7ufroxdOMHDmSpKQkgoKCSE5Odtj29ddf069fPwA+//xz7rjjjnL38eCDD/LTTz/xySef8NprrwEwdOhQZs2a5VDvlltuYe7cuTVwFO7hUs714cOHWbduHT/++CNms5k1a9Y41CvvvL788susXLmSF198kffee6+07NNPP2X58uUMGDAAs9lMgwYN2LlzZ80epIiIiIhINbqUPnT9+vVZvHgxP/74I0ePHmXHjh0O9crrL8+ZM4fk5GRef/11PvjgA6f3l5XsEhFxgnbt2rF///7Sx9nZ2fj4+GAwGABo3LjxRZ8bFRUFgMlkKq3fsGFDjEbHl/Drr7+exYsXV3Pk7qeic71mzRp69+4NQN++fUlJSXF4bnnn9cLzX1hYyN69e7n//vsZOHAghw8fBsBisbBo0aIaPDIRERERkZpRUR86NDQUf39/wPEzyVnlfV6JiIigoKCAkydPEhISAji3v6xkl4iIEyQnJxMbG1v6OCMjg8jIyMvax7hx43jkkUcuut3X15fjx49fcYyeoqJzfeLECQID7fOVAwICOHHixCXt02q1MmnSJEaOHMnRo0fZvHkzM2bMYPTo0aWj7SIjI8t8yyUiIiIi4g4u5fPKli1bOHr0KC1atCjz/PP7ywA9e/YkLi6Ohx9+mAceeABwbn9ZyS4RkRo0ffp0LBYL4eHhJCQkXPF+/v3vfxMdHU2PHi5a0M4NXMq5Dg4OJicnB4Dc3FyCg4Mvad/jxo3j7rvvJiYmhqCgINq3b0+9evXo1asXaWlp1XQEIiIiIiLOdamfV3JycnjssceYOnVqudvP7y/n5OTwxRdfkJ6ezldffcX48eNrJvgKaIF6EZEaNHLkyNKFzs8XGxtLVlbWJe0jOTmZhQsX8sUXX1RYLy8v75KTN57oUs51p06d+OSTT3j88cdZvnw599xzT6X7/eKLL8jOzmbixIkA+Pn54ePjQ0FBAdu2bSsdtp2VlVXut1wiIiIiIrXVpfShbTYbI0aM4JVXXiEsLKxM3Qv7ywaDAT8/P8xmMyEhIaWzKZzZX9bILhERFwgJCSEvL6/08dChQ1myZAlDhgzhu+++A+Dpp58G4IUXXiArK4u+ffvy+OOPAzBz5kyefvppPvnkE5577jkAVqxYwe9+9zsnH0ntd/65bty4MR06dKBXr14UFBTQuXNnDh06xBtvvAGUf17//Oc/s2HDBiwWS+kb+NNPP02/fv148sknS+slJSXRv39/FxyhiIiIiEj1Or8PnZSUxPfff8+4ceOwWCysXbvWoQ99YX85ICCAbt260aNHD+666y6eeeaZ0v04q79ssNlsNqe05IYOp2xn0cCyGU65Mv3nT6BRl9auDkOkWnVeYP+9ZsDlP3fmzJmEhYWRmJhYLbE8+uijTJ48uXTxSE9SlfMM1X+uL1RcXMyDDz7I9OnTa2T/zlLV8yyXRudZREREnKE29aGvpL+8atUqevbsycqVKy97ORdNYxQRcZH777+/Wvd39ja/UlZ1n+sLmc1mt090iYiIiIicrzr70M7uL2sao4iIiIiIiIiIeAwlu0RERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYSnaJiIiIiIiIiIjH0N0YpdY5VQQZOa5pOzYQ/L1c07aIiIiIiIiIVJ2SXVLrZOTAqFWuaXtaD0gIdU3bIiIiIiIiIlJ1msYoIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIYWqBePkDbGwuntyRjMXhhMZnzCWxM2dCKB8f1cHZqIiIiIiIiIOJFGdonHCBs6kY5zT9FhxmH8WnVj56RbKTl90tVhiYiIiIiIiIgTKdklHsfo5U39G0ZizT9F/sEMV4cjIiIiIiIiIk7kNsmuwsJCxo0bR0REBHXr1qVv376kpKRgMBiYP3++q8OTWsRacIajS6dh9A3EJ6yFq8MRERERERERESdyizW7bDYbgwcPJiUlhfHjxxMbG8vs2bO57bbbAOjYsaPTY2ra7xo6Pn83gc3DKD51hs0ffM2WKQucHoecc2D2OA59PgGD2RufiDbEjv0Gk2+gq8MSD7X7FHyx+9zj1zfBHVEQE+CqiDzT4TPwVda5x+PXw6BIaFcPDAbXxSUitVeRFb4/CF/vgV/zIbgO3BwBN4aBj1v0fEVERKrmaD7M33Pu8Zi1MCgKOoZcPX1ot3jLnzp1KgsXLiQ1NZW2bdsCYLFYiI6OJiQkhGbNmjk1nrDe8XR740FWPvEuh5K3YK7rjV94fafGIGWF3fMqjW97xtVhyFXg80x7cut88zLhs0z4c1u4p7lr4vI0PxyCF9ZAsfVc2cK98M1eGBJjP9dXy5u1iFyaEwXwaDKk5dinL1ix/157DD7eAR90h8a+Lg5SRESkBqX8Cn9OgfySc2VLD8Di/XBLBIxNANNV0Id2i2mMkydPZujQoaWJLgCTyUR0dHTpqK78/HwefvhhWrRoQfv27fnTn/5UY/F0fO5uNr71BQdXbsJWYqXo1BlOpO2tsfZEpPb4+QhM3gQ27D9nnc3H/GMLrDjkgsA8zM4ceP4Xe6KrvPM8ZxfMzXRFZCJSmz2/BtJz7H+ffb04+/tAHjzxM1ht5T1TRETE/R3Mg6dWQ0GJY/nZ976v98JHO5wflyvU+mRXeno6mZmZDBo0qMy2vXv3lia7nnvuOXx8fNixYwebNm3i1VdfrZF4zHW9qZ/QnLoNgrntx7e5a+M0+n7yPP4RDWukPRGpXWZmVPzCafytjlTN3Ez7m3JFn0lnZECJPrSKyG+2nbCP4LJeZLsV2HUKko84MSgREREnmrcbCq0V96Fn7yqbDPNEtX4a4/79+wFo2NAxmbR9+3aysrLo2LEjp06dYubMmezbtw/Db3NaGjVqdMltBAQEUFhYWKa8ubkezwX2dCirE+yHwWgk8vddWTpkAmeOnaTLK8PpM/1Zvv7ds5d7eFeVPn0s7Cw+Xmk931bdaD4hqabDKVefPhby0pJd0rbUfkYff9rOOlZhHSuQmg2+9cMoya24rlxc3EcHMQeEVFjn13wIbdudMzvXOikqz9fus3wAvL19XByJZ9N5rhmN7h5Pg9uew2A0XbSOraSY+ybOYP+HjzgxMhEREedo+e42vBvFVFgntwjCrruZUxu/c1JUV85qvdhXWJWr9SO7QkNDAcjIODdUwmaz8fzzz2O1WunYsSM7d+4kNDSUl19+mc6dO2OxWFi5cmWNxFN0yt5B3TptIaf2/UrJmULWvTab0PbRWrfLhVpNTNJ6XVLjjD5+l17X+9LrSllG70tbVMfo41/DkYiIuzD6+IOt8k6xXjdERMRTmS7xPe5yPte4q1o/sisuLo7Y2FhefPFFvLy88Pf3Z8qUKaxfvx5fX19atWpFamoqu3btomPHjrzxxhusXr2aW265hYyMDAIDK78bX25ubrnlh1O2s2jgWIeyotw8Tu09AjbNnblcy5cn0ahL60rrpR6DUaucEFA5li9PIiHUNW1L7VdshX7fwuniiuv5mODonnR8Lj64QCox+Hv7HS8re6XdsnIJTbTYdLXp/NtNhQsKClwbiIfTea4ZczPhjU0V1zGazPx5+F088vpdzglKRETEiUb+CJuOX3xK/1k/ffM5LYKcElKVrFq1ip49e1ZesRy1fmSX2Wxm3rx5NGnShGHDhjF69Gj69+9P79696dChA0ajkWbNmmE2mxkyZAgAXbt2pX79+uzYUTMrr6XNXELcqN/jGxaKyduLjs/dzdENOzm9/2iNtCcitYPZCAOaQUU3LzECf4hAia4qGhRVcaLLCFzXACW6RKRU/3Cocwk924HOvYm3iIiI09weVXGiywi0CcYtEl1VVeuTXQDx8fEkJyeTl5dHWloaDz/8MOvXry9dnL5+/fr06dOHpUuXArBjxw6OHDlCbGxsjcSz6b357P9+PQOWvM7gdVPxbRTC8pFv1EhbIlK7DIuF+j7lv3gagWBvGN7C2VF5noHNoGVg+YlFI1DHBI+3cXZUIlKbBdaBR+MqrnNfLIR7/swNERG5Sv0uHBJCyu9DGwCjAf7c1tlRuYZbJLsudObMGdLS0kqTXQAffPABkyZNon379tx9993MmjWL4ODgmgnAZmPtxP/wabuRfNp2ON8Pn6xRXSJXifo+8FFPuKac6a7xIfZtjeo6Py5PU9cMH3SHPk3KvlnHBMCH3aHVVfCNlIhcnnubwwvtIdDLsdzXBI+0hscrSYaJiIi4My8jvHMd9G9qT2ydr5k/vN+dq2bZnlq/Zld5Nm7cSElJiUOyKyYmhqSkJNcFJTVuz9THOZOZSuA1/Wky+MXS8owJt1CSl4PBZCbm2bmYA+03Csjblcq2Z66l05dFFB0/xK6/3w1A4dG9NPz94zQaMNoVhyEeoIkvfNADMnNhQ7a9rH09aF75EoFyGQLrwOvXwqEz8MuvUGSFlkHQNhgMFc0lFZGr2h3R9innPx2BZ36xly25EXzcstcrIiJyeXzN8Mo18EQb+PkIFFiheYD9i/mrqQ/tlm/7Xbt2xaYF4q8qp9PXYDCaafXaj+z82x0UnTiMV3AjAJq/8CUGsxfHls8i+4fZNLzlCQB+/XYKvjHXAOBVrzGtJiYBsOvvQwjqdLNLjkM8S3SA/UdqVuO6cIvW2BGRy1DHBJYm5x4r0SUiIleb+j7wh6u4D+2W0xjl6nN6x2oCOvQFIKBdb/Iy1pZuM5jtcxWsRfn4RNjnJ+QfSMcc2ABTXcdMhK24iMLDmfiEt3RS5CIiIiIiIiLiTEp2iVsoOX0Ck699jpixbgAlp0+UbivOzWb7c9058s07+DS1J7uOfP02DX//WJn95G5Owr+dxRkhi4iIiIiIiIgLKNklbsHkF0xJXg4A1jO5mPyCS7eZA0Jo/fpPhN87gcML/knhsQOAferihU6kLCC460CnxCwiIiIiIiIizqdkl7gFv5ZdyN20HIDcLSvwje0EgM1qxVZSDIDJNwijlw/5e7eSl5lK+vibyMtMZc/UJ0r3c3rHavxadnX+AYiIiIiIiIiIU2i5TnELfi2u5dh3n5D2l14EdryRouyD5KxfQnDXW8mY8AcwGDF6eRP15Cd41WtMYEIiADvGJdLsT+8AkLdrPb5R8RiMyvGKiIiIiIiIeColu8RtNHvoPYfHvjEJALSa9MNFn9Py1WXn1e9I5GP/rpHYRERERERERKR20BAXERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIbW7JJaJzYQpvVwXdsiIiKulJSUxPDhw4mMjCQyMpIZM2Y4bJ81axZNmjQhIiKCESNGYDQa6dy5M//85z8d6g0bNoydO3fi7e3NzJkzCQ8P5+2332bOnDmYzWY++eQToqKieOihh5g2bZozD1FERESkRinZJbWOvxckhLo6ChEREdcZOXIkY8eO5YknniA5OZlu3bqVbvv666+ZO3cu2dnZLF68GH9/f+677z527NhBy5YtS+u9/PLLREVF8d133/Hee+8xadIk5syZQ3JyMsnJyXzwwQf8/e9/p0GDBuzcuZPmzZu74lBFREREqp2mMYqIiMglS0pKIjo6GovFwrBhw8psnzhxIunp6RXu4/HHH6dXr15MmjTJofzbb7/FYrFgsVgIDQ0lNTUVgA8//JB+/fphsVgoKioqrf/WW2+RmJgIwLZt25g8eXIVj672adeuHfv37y99nJ2djY+PDwaDgdDQUPz9/QEwmUwYDAaH50ZFRZXZFhERQUFBASdPniQkJAQAi8XCokWLnHA0tU9NXs8X237h4zNnznDzzTfTu3dvhg8fDsDKlSu57rrr6N69O2+++Sbgude4iIhITVCyS0RERC7LyJEjSUpKIigoiOTk5NJyq9XKxo0badGixUWfu2bNGsxmMz/++CPr1q3j8OHDpdtuuukmkpKSWL58OTExMcTHx7Nnzx42bdrEd999R1JSEl5eXgAUFRWVJsMA4uLiWLduHTabrfoP2IWSk5OJjY0tfZyRkUFkZKRDnS1btnD06NFyz7vVamXSpEmMHDkSgJ49exIXF8fDDz/MAw88AEBkZCQ7duyouYOo5Wrqei5v++rVq8vUX7JkCT179uSHH37Ay8uLzZs3ExMTw4oVK/jpp5/45ptvyMvL89hrXEREpCYo2SUiIiJX5MJRRxs2bHCYRlee1atX07dvXwB69+7N2rVry9T55Zdf6Ny5MwaDgSVLlnD69Gn69u3L+PHjS+vMmjWLIUOGODwvJiaGLVu2VOGIao/p06djsVgIDw8nISHhovVycnJ47LHHmDp1arnbx40bx913301MTAw5OTl88cUXpKen89VXXzmcT6mZ6/nC7WvWrClTPzo6mtOnTwNw6tQpgoKCCAsLo06dOoB9ZJ7RaO+ye9I1LiIiUpOU7BIREZErcuGoo/T09NKpcxdz4sQJAgPtdwMJCAjgxIkTZerMnz+fgQMHAnDkyBEMBgPff/89mZmZpKamYrVaWbx4MTfeeKPD8zxphNLZ0UYTJkxwKI+NjSUrKwsAm83GiBEjeOWVVwgLCyuzjy+++ILs7GxGjBgBgMFgwM/PD7PZTEhISOm5z8rKqnD00tWiJq7n8rZf+Dg2NpYff/yRuLg4DAYDERERpc9funQpzZs3x8fHB/Csa1xERKQmaYF6ERERuSzTp09n2bJl9OzZ86KjjrZu3cojjzziUHbTTTcRHBxMTk4OALm5ueUuir58+XL++te/AhAUFETv3r0BuP7660lLSyMjI4MBAwZU4xG5j5CQEPLy8gD7elPff/89R48eBeDNN98kPDycWbNm8eyzz/LnP/+Z8PBwLBYLN9xwA2PGjKFbt2706NGDkpIS3nnnndL9nJ3meDWqyev5wu3l1Z8xYwZ33XUXjz76KE8++SQ//fQT3bt3Z9++fbz22mssWLCgmo9YRETE8ynZJSIiIpfl7J0CL9SiRQu+/PJLANq0aUNSUlKZOr/88gtz5szhlltuYcWKFdx5550O23ft2kXTpk1Lp3B169aN2bNnA7Bp0yaGDBnCsmXLSEpKYtasWaSmpjJt2jRGjRpFVlYWPXr0qOajdb6zi/RfzIABA1i2bBmJiYlkZ2eX2f7ss88ClI4AO99LL73ESy+9VPq4uLiYI0eOOIxoutrU5PXcpUsXh+3PPPMMc+fOdaifmZlZerOAsyPuCgoKeOCBB5gyZUrpTQgAj7nGRUREapqmMYqIiEi1iI+PJy0trcI61157LQUFBfTq1Yv4+HgaNWrEoUOHeOONNwDHKYwA11xzDcXFxVgsFvLy8ujatStjxoxh6dKlfPvttyQkJDBq1CjAvnh7u3btau4Aa4n777+/9C6UVWU2m5k+fXq17MvTVMf1fOH2rl27lql/zz338PHHH2OxWEhNTeWGG25g9uzZbN26lQcffBCLxVK6ltjVco2LiIhUlcGmW7pc1OGU7SwaWPabPrky/edPoFGX1q4OQ0RELqLzb7Ol1lRhhuCECRO46667nL4G1LZt25g/fz4vvPCCU9u9EtVxnuXSVPVcu+p6Lo87XeMiIiLVYdWqVfTs2ZOVK1de9shmTWMUERGRalPedDBniIuLIy4uziVti+dy1fVcHl3jIiIil07TGEVERERERERExGMo2SUiIiIiIiIiIh5DyS4REREREREREfEYWrNLap1TRZCR45q2YwPB38s1bYuIiIiIiIhI1SnZJbVORg6MWuWatqf1gIRQ17QtIiIiIiIiIlWnaYwiIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEY2iBevEIaWMsnN6ejMHshcFkxie8NWFDJxIY38/VoYmIiIiIiIiIE2lkl3iMsKET6Tj3FB1mHMavVTd2TrqVktMnXR2WiIiIiIiIiDiRkl3icYxe3tS/YSTW/FPkH8xwdTgiIiIiIiIi4kRKdonHsRac4ejSaRh9A/EJa+HqcERERERERETEidwm2VVYWMi4ceOIiIigbt269O3bl5SUFAwGA/Pnz3daHPdmzHL4uX/Ppwz47k2ntS8Xd2D2OFLvCWbTH6PIy9xA7NhvMPkGujosEZFaL78Y/pd17vHEDbDluOvi8VTFVlh24Nzjcesg5Vew2VwXkyey2iD5CIxZe65s+UH7+RcREZGrg1ssUG+z2Rg8eDApKSmMHz+e2NhYZs+ezW233QZAx44dnRbLf2Pvc3g84Ls3yZy/ymnty8WF3fMqjW97xtVhiIi4lYwceDQZjhWcK5ufBV9lwYAIGJMAJoPLwvMYR87Yz3PmqXNli/fDon1wXQN441qo6xa9strtVBE8tRrWZ4PxvOv22V+gRSC8ex2E+rguPhEREXEOt+hWTZ06lYULF5Kamkrbtm0BsFgsREdHExISQrNmzVwSV/2EWIJbNiVj7nKXtC8iIlIVuUXwyE9wotCx/OwAmAV77YmBR+OcHppHKbHBYz9D1inHcutvI7pW/wqvpMJrnZ0emscZuw5Ss+1/Wy8YMbczB55KgRm9wKAEroiIiEdzi2TX5MmTGTp0aGmiC8BkMhEdHY2Xlxe7d+/m1ltvLd124sQJcnJyyM7OrtG4WtzTl/3fr+fMYc31EBER9/PNXsgurLjOnF3wQAvwc4seQ+206jDsyr34dhv26Y2Pnoamfk4Ly+Nk5MDKwxffbgW2noA1R+HaBs6KSkRERFyh1ndd09PTyczM5J133imzbe/evQwaNIioqChSU1NLy0ePHk1xcfEltxEQEEBhYdnefnNzPZ4L7Fnuc8x1vYke2IMfn3j3ktu52vXpY2FnceWJQd9W3Wg+IammwylXnz4W8tKSXdK2iIizxUz8Ad/YLhiMF1/CM78EovrdTc7PXzkxMs/S9PGPCO5xFwbTxbtdVpuNrg+M4egCrQN6pRreOY6Gg16s8Hq2lRRz58sfc+DfjzkxMhEREbkSVuuVL7hZ65Nd+/fvB6Bhw4YO5du3bycrK6vMel2FhYX897//ZfHixTUaV9Qt3Sg+U8i+ZWsrryw1rtXEJFeHICLidkx+9SpMDJTW8w1yQjSey+QbVPm8OWsJJj/dVKUqTL5BYCuh4vsv2XTzGhERkatArU92hYaGApCRkUGXLl0A+4L1zz//PFartUyya8GCBYSHh3PNNddcchu5ueXPLTicsp1FA8eWu63Fvf3Y+VkSthLd2udSLV+eRKMurSutl3oMRrlozf/ly5NICHVN2yIizvbEz/DzkXNrdF3M/Jkf0rXBh06JyRO9vgnmZVZ8ng0mM2+Nf4HbP3nBaXF5mv/uhH9uqbiO0eTFkw/cxeOv3+WcoEREROSK5eTksGnTJtq3b3/Zz63861wXi4uLIzY2lhdffJHPP/+cRYsWMXDgQNatW4evry+tWrVyqP/RRx8xYsSIGo0psHkYDTu3Ysec72q0HRERkZp0a7NKEjBAIx/oXN9ZEXmmgZWcZ4A6RvhduFPC8Vj9m4K5kgF0NuAW19zXSERERC5TYGAgPXr0IDDw8kdl1/pkl9lsZt68eTRp0oRhw4YxevRo+vfvT+/evenQoQPG86Zf7N+/nx9++IF77723RmNqMaQvh1dvIzfzUI22IyIiUpOubwwdQ+xJrQsZsCcGnmoHJt25rkpaBcHvm1Zc56HW4O/lnHg8VYg3jGhZcZ1BkRDl75x4RERExHVq/TRGgPj4eJKTHRcNf/fdd+ndu7dD2YwZM/j9739fOvWxpqyd8J8a3b+IiIgzmI3w1nXwaip8d8Ce3Dor0AuebQ+JYa6KzrOMS7Ans77YDcXnnei6JniwNdwb46rIPMsfW9pHd32Ubr+5wllmAwyJgcfauC42ERERcR63SHZd6MyZM6SlpTF69GiH8k8++aTcuzaKZynOzSb9rzeQvz+NjnNPOWzLy9zAng8ewWCuQ/TomdRpEEH+wQz2fvgY1qICGg14iuCuA1wUuYhI7eNnhr91hgN5sOKQPUEQ4Wcf9eVV68d/uw+z0Z48HNkSlh+EnCJo6AN9moCvW/bGaieDwT66685o+3k+WgDBdeznObiOq6MTERERZ3HL7tXGjRspKSkpszj9jh07XBSROJOpbgAtXl7KrtfvLLPt4NxXaP6Xryg6fpBDX06m2YPvcvDTl4l+5lPM/sHOD1ZExE2E+cLdGl1U40K8YVCUq6PwfP5eWptLRETkauaWya6uXbtis9kqrygeyWD2whwQUu42a/5pvIIb4hXckIKDGViLCik8upfdb90PBgORj07FK7iRkyMWEREREREREWfRBAXxKDab1eHv4pyjnMnaTNToGTS6ZTSH5r3mwuhEREREREREpKYp2SUexWAwOvxt8guibmR7zP718G/bi/z9aS6MTkRERERERERqmltOYxS5GKO3L0Unf6Xo+EG8m8Ri8vHDWMcHa1EB+Xu3UadhlKtDFBEREREREZEapGSXuKUd4xLJy1zPjnGJhA0Zz6ntyf/f3p3HR1Xf+x9/TRY2w2JQFjVAIKgBBFIQlEWGRa5LUVGpGxWt/al1u7SutdBLrRvX9tZrpbaodUHRtlxbpEVFWiIoS0RAEFkCQgQUFBDZQiDJ/P6YEoyBsCUzmcPr+XjkQc73nDn5nPF45sx7vt/v0OzSu2l+xUhWPnwJoZRUMoe/CEDTi+9k+cj+hJKSafWfz8e3cEmSJEmSVK0Mu5SQTv3l1HLLae16AVCvdQ6nj36v3LoGnQfQoPOAmNUmSZIkSZLixzm7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFRigSiUTiXURNtXvbTr5a8mm8ywiM47NbUKt+vYNut30PrNgag4L2I6sBpKXG529LkiRJkqSjZ9glSZIkSZKkwHAYoyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICIyXeBUiSJEmSpGPX7m07+WrJp/EuIzCOz25Brfr14l1GXBl2SZIkSZKkuPlqyae8cfGIeJcRGOdPfJCm3U6Pdxlx5TBGSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCoyECbt2797NyJEjycjIoG7duvTr14+8vDxCoRATJ06Md3kKqK93w/iV8MsFMHohvLsBSiLxrkqSFInAh5vh1x/BAwvgmWWwvjDeVUmSpKoUSk6i2y+v56qPn+PqpS/Q49c/Irl2arzLUgJIiXcBhyISiTBkyBDy8vIYNWoUWVlZjB8/nsGDBwOQk5MT5woVRK+thsc+gj2lkByCCPCX1ZBxHPymO7RKi3OBknSM2lIEd70PCzZHP7ULhaA0An9YBt/PgtuyISkU7yolSdLR6njHpTTr0YGJ/e6kZE8x/Z+/ly4jvk/eyD/GuzTVcAnRs2vs2LFMnjyZqVOnctNNN9G/f3/Gjh1LcnIy6enptGjRIt4lKmDeXgcPL4wGXRDtzVX67x5d63bCze9F32xJkmKruBRumw0LN0eXS4leoyNEf15cAc8sj2OBkiSpyrS9pj+LnniNnes3U7RpKwt+/WeyrggTSkqIKENxlBBnyOjRoxk6dCjt27cva0tOTiYzM7OsV9fy5cs5++yzOfXUUzn77LPJz8+PV7lKcJEI/G4pHKhTQGkENhbBXz+NaVmSJKLDyZd+HQ25DuSFfNi+J2YlSZKkalCrQT3STj6RzYtXlbVtWrSKWvXrkZZxYhwrUyKo8cMY8/PzWbVqFU888USFdWvWrOGyyy4D4Oabb+bWW29l6NChvPTSS9x0003861//Ouj+t27dSrNmzSguLiYUcsyDoG6bLmQ9OrPSbSKRUv7nnyu5uUOHGFUlSQJoceerNDhzEKHkA9/CFJVCmwtvYMs7L8WwMkmSdKTapBzPPQ16lWtLSasLwO6vd5a17f56BwCp/16n/evbN8zK4q/iXUaVqFWrFtu2bTvsx9X4nl3r1q0DoEmTJuXaly5dSkFBATk5OXzxxRfMmzePq666CoCrrrqKefPm8eWXXx50/4sWLaKwsJBIxFnHFZXSsMlBtwmFkg5pO0lS1Upp1LTSoKtsO6/RkiQltOLt0W+eSW1Qr6ytVsPjANiz3W+lUeVqfM+uxo0bA7BixQq6desGRCesv/feeyktLSUnJ4c1a9Zw8sknk5ycDESHOJ500kmsWbOGE088tO6Nubm59OzZs3oOQgll8VcwbMbBt8ts0pD5RU7cJUmxdPf78M7nlQ9jBPjD/zzCd//ySExqkiRJR2dD3lLeuHhEubbdW3eyfd2XpLdvxdaVnwHQuEMmu7ftZPuag3dsOZZNm5ZL026nx7uMuKrxYVd2djZZWVncf//9pKamkpaWxlNPPcX8+fOpV68ep512GvPnz493mQqQdo2gxXGwZkd0suMDucjvRZCkmLvwFJj2eeXb1EmGcLPY1CNJkqpP/sv/pOPtg9kwZwmlxSV0vvN7rPhTLpHSg33spWNdjQ+7UlJSmDBhAjfffDPDhg0jIyOD4cOH06BBA1auXElSUhIZGRmsW7eOkpISkpOTKSkp4bPPPiMjIyPe5SsBhUJwSzbcN3f/65OAxnXgkpYxLUuSBPRqGv1QYumWA/fuui4L0lJjWJQkSaoWC594jdrpDbgk9zeEkkKs/vtsPnjIOTl1cDU+7ALo1KkTs2bNKtf25JNP0qdPHyA6n1fnzp155ZVXGDp0KK+88go5OTmHPIRR+rYBJ8GITvDfi2D3t95NnXIcPN4dGtWKT22SdCxLSYInzoK782D+5n3toX//XJsFN5war+okSVJVipSUkjfyj+SN/GO8S1GCSYiw69sKCwtZtmwZw4cPL2v7/e9/z7Bhw3jggQc4/vjjefHFF+NXoALhkpbQrzlMXgu/+ija9sRZcNaJkOQXd0pS3DSqBWN7wuItcN2/51j80enw3Qxo4pczSZIkHfMSMuxauHAhJSUl5OTklLWdfvrpzJkzJ45VKYga1IIrW+8Lu3r45V6SVCOEQtDh+H3LP7A3lyRJkv4tIcOu7t27E4lUNnW4JEmSJEmSjkVJ8S5AkiRJkiRJqiqGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTASJuzavXs3I0eOJCMjg7p169KvXz/y8vIIhUJMnDgx3uVJUo1XGoHZX8CTH8P/Loa318Ge0nhXJUkC+KoIXvkEHl8MzyyHgu3xrkiS4q/VoLM5f+IvuWbFOC7P+128y1ECSYl3AYciEokwZMgQ8vLyGDVqFFlZWYwfP57BgwcDkJOTE+cKJalmW7kV7n4fPt2x71OOUuD4WvBgF+h+Yjyrk6RjVyQCY5fBc/lQHIHkUPTDid8vhf7NYVQO1E2IO3ZJqnpFX+9g6R/fpM6JDWl/43fjXY4SSEK8dI4dO5bJkyezYMEC2rdvD0A4HCYzM5P09HRatGgR5wolqeZaXwg3vgfb9kSXv9mZ6+vd8J+z4Zle0OH4uJQnSce0Z5fD08v3LZdE9v3+r89hZzE8cRaEQrGvTZLi7fPpCwFocd6Zca5EiSYhhjGOHj2aoUOHlgVdAMnJyWRmZpb16rrrrrvIzMwkFArx0UcfxatUSapxXlkJW/eUD7n2KiXag+APS2NdlSRp2x74Y/6B10eAWV/C/M0xK0mSpECo8WFXfn4+q1at4rLLLquwbs2aNWVh1yWXXML06dNp2bJlrEuUpBorEoGJn0bfMB1IKTD7S9i4K1ZVSZIApn4Guw8yd2JSCCZ9Gpt6JEkKiho/jHHdunUANGnSpFz70qVLKSgoKAu7evXqdVR/JxwOk5RU47M/xUmHP0dTgNq168S5EunwhFJq0eGVbQfdLgK06dSNXas/rP6ipCrk9VmJrMnlP6PJkBGEKrkHLSmNMH7SVB4+y7lqJAVXm5TjuafB0b2n1z59+4ZZWfxVvMuoErVq1WLbtoO/n/m2Gp/uNG7cGIAVK1aUtUUiEe69915KS0udnF6SKhEp3k1p0c5D2rZku+NkJCmWSrZvrjToAqC0hJLtm2JTkCRJAVHje3ZlZ2eTlZXF/fffT2pqKmlpaTz11FPMnz+fevXqcdppp1XJ38nNzaVnz55Vsi8FT9fXo/8WFRXFtxDpCDz0IUws2P+cXRD91KPD8TB33YoDbCHVXF6flcg27oIL3o7OnXggoeQUnr/zSnr995WxK0ySYmxD3lLeuHhEhfZQUhJJqcmEUlIgFCK5diqRSITS3cVxqDJxTJuWS9Nup8e7jLiq8WFXSkoKEyZM4Oabb2bYsGFkZGQwfPhwGjRowMqVKx16KEkHcU1rmLwG9pTuP/CKAP+vaj43kCQdhhPqwOWt4M+r9r8+CWjbEM5usv/1khR0bS4/h17/e1vZ8vdXv8L2NV8wodstcaxKiaDGh10AnTp1YtasWeXannzySfr06ROniiQpcbSqH/3a+jvzYPu3PgRLCcGIzr6RkqR4+Ul72LEH/rE2Gm5980OJ0xvB490hORSn4iQpzlb8OZcVf86NdxlKQAnZLaqwsJBly5aVm6/rjjvu4JRTTmHt2rUMGDCA9u3bx7FCSapZupwAbwyEEZ32td3RDt4cCN/NiF9dknSsS0mCX3wHXg3Dla33tY85G57vDem141aaJEkJKyHDroULF1JSUlIu7HriiSdYu3YtxcXFrF+/nsWLF8exQkmqeeqmwCUt9y1fmwWNfBMlSTVCVgP4SYd9y91PhCR7dEmSdEQSYhjjt3Xv3p1IpJKZPCVJkiRJknRMSsieXZIkSZIkSdL+GHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTASJiwa/fu3YwcOZKMjAzq1q1Lv379yMvLIxQKMXHixHiXJ+koRCLw/pfwfD68kA8ffRVtkxLV6u3w0kr443LI/RyKS+NdkSRJsVMSgfc2wHP5MG4FLPs63hUpESXVSqHHr27mstljuCZ/HIPffYLTf3B+vMtSgkiJdwGHIhKJMGTIEPLy8hg1ahRZWVmMHz+ewYMHA5CTkxPnCiUdqSVb4GcfwKc7yref1hAe6QIt0uJSlnREtuyGn8+DmV+Ub0+vBT/rDH2axaUsSZJiZt6m6Gvh+sLy7Z3T4aEu0LRufOpS4klKTqbwiy1MufKXbCvYQHq7lpz7ygh2fbmF1ZNmxbs81XAJ0bNr7NixTJ48malTp3LTTTfRv39/xo4dS3JyMunp6bRo0SLeJUo6Ap9sgxvfg7U7Kq7L3wo/fBe+KKy4TqqJdpXALTNh9hcV1321G+7KqxiCSZIUJB99BbfO2v/928LN0Xu7r3fHvi4lpuLCIub/96tsW70eIhE2L17NmilzadItO96lKQEkRNg1evRohg4dSvv27cvakpOTyczMJCcnh02bNnHBBRdw2mmnccYZZ3DppZfy5ZdfxrFiSYfi6WVQVAL7G+FVGokGBC+vjHlZ0hF5cy0s37r/83nvqNzHFztEV5IUXL9bAiWlB7i3Az4vhAmrY1yUAiOUkkzT7tl8taQg3qUoAdT4sCs/P59Vq1Zx2WWXVVi3Zs0acnJyCIVC3HPPPSxbtoxFixbRpk0b7rvvvjhUK+lQbd0N//x8/zdDe0WAv30aDb6kmu6vBRCqZH2EaG/GJc5bIkkKoPU7IW9j5fd2EH29lI7EWQ/fwJ7thaz8yzvxLkUJoMbP2bVu3ToAmjRpUq596dKlFBQUkJOTQ3p6OuFwuGzdWWedxVNPPXVYfyccDpOUVOOzP8VJhz/vAqB27TpxriQ4ap98Oqc+/uFBt9tRDMeln0jpzq0xqOrY4PlcPbKfXkNKoyYH3a7PRVewdc7fqr+gY4Tns4LGc1qJqt5pZ9PmwdyDbvf5jhJq165X/QUpobRJOZ57GvQ64PozRw3jxC6n8daQUZTuKY5hZYmpb98wK4u/incZVaJWrVps27btsB9X49Odxo0bA7BixYqytkgkwr333ktpaWmFyelLS0t56qmnuOiii2Jap6TDU7Lz0Lq3REqKKS3aWc3VSEevZOcWIocwRrFkh127JEnBc6j3dqWFh/+mVce2bg9cx0nndOSt7/2Cos2ePzo0Nb5nV3Z2NllZWdx///2kpqaSlpbGU089xfz586lXrx6nnXZaue1vv/120tLSuO222w7r7+Tm5tKzZ8+qLF0B0vX16L9FRUXxLSRgfjAjOpHpgbq7JwH9M1L4YOd+ZrDXEfN8rh5jl0V/KnN8Ldjw/puk1viPmhKH57OCxnNaiSoSgcunwafb981V+W1JwOXtG3Gf57e+ZUPeUt64eESF9m6//AHNe3XgzctHUbTJkR6Hatq0XJp2Oz3eZcRVjQ+7UlJSmDBhAjfffDPDhg0jIyOD4cOH06BBA1auXFlu6OFdd91Ffn4+kyZNckiilAB+cCoMn7P/dSEgFIKhbWJaknTELm0Jr3wCO/YcOMAd1haDLklSIIVC8MNTYeS8A6wHUpLgysyYlqUEdtwpJ9DuhxdQsms3l88ZU9a+Yc5Spl7zUBwrUyKo8WEXQKdOnZg1a1a5tieffJI+ffqULd9///188MEH/OMf/6B27dqxLlHSEejVFH7aEUYvjH4C+M1PAVOS4KHvQPvj41WddHhOqANPngV3zIav9+xrTyIafg1tA9e0jld1kiRVv/NPgQ2F8OSSaLj1zXu7Osnw2JnQqn68qlOi2bF2I883vzzeZShBJeTny4WFhSxbtqxsvq7FixfzyCOP8Nlnn9GjRw86d+7M4MGD41ylpENxWSt4fUC0l9det2XDP86FfifFrSzpiLQ/Hl4/Nxri7jUkE14Nw/D20U+9JUkKsuvawl/7le+d/5P20Xu7sw7+PS6SVCUSomfXty1cuJCSkpKysKt9+/aHNCmwpJqpWT340enw7PLo8nVt41uPdDSOS4mGuI8sjC7ffUZcy5EkKeYy0uA/28O4ldHlq52WQlKMJWTY1b17d8MtSZIkSZIkVZCQwxglSZIkSZKk/THskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgZEwYdfu3bsZOXIkGRkZ1K1bl379+pGXl0coFGLixInxLi/mSiIw8wv4yyr4xxrYsjveFUmSpCDaVQxTP4vec/zrMygqiXdF0pErjUDel9Hz+e+fwqZd8a5IOjort8Jrq6M/K7bGu5qqd9YjP2TI3N9z9fIXGTLvD3R74DqSUlPiXZYSQEKcJZFIhCFDhpCXl8eoUaPIyspi/PjxDB48GICcnJw4Vxhb//oMHvsIvvzGi3NKCC5tBT9uD6kJE2FKkqSaKhKBF1bAc/mwo3hfe1oK3HgaXNUaQqH41ScdrplfwCMfwueF+9qSQ3DhKXDPGVAnId4ZSVHrdsCo+TB/c/n2zukwKgdOOS4+dVW1Jc+9ydwHxlFcWETt9PqEx95JxzsuZcGv/xzv0lTDJcQlfezYsUyePJkFCxbQvn17AMLhMJmZmaSnp9OiRYs4Vxg7//wM7ptbsb04An9eBV8UwmNnevMpSZKOzlNL4Y/5Fdu3F8P/LIZdJfCDU2Nfl3QkZn8Bw+dEQ9xvKonApDXRAOy3Z0GKHxorAXy5C254FzYXVVy3cDNcPwPG9YFmdWNfW1X7evnafQuhEJHSCPVbN49fQUoYCXE5Hz16NEOHDi0LugCSk5PJzMws69V1ySWX0KlTJ3JycujduzcLFiyIU7XVp7gUfrUo+nvkANvkroe5G2NWkiRJCqD1hdEeXZUZu2z/b7SkmiYSiY6KiET2fw8dAd7fCNPXx7oy6ci8kB+9/pbuZ10p8PVueP4g1/BEcsZtl3DNinFc9dEfSW/fko/H/j3eJSkB1PiwKz8/n1WrVnHZZZdVWLdmzZqysOuFF17gww8/ZP78+dx111384Ac/iHWp1W72l/Bl0YGDLoCkEPy1IGYlSZKkAJr06cG3KY7A5DXVX4t0tBZ+BQXbD3IPDbzmPbQSwJ5SeP3T/Qdde5UCf18T7YEbBIue/BsvZ32fv57znyx7cQqFX3wV75KUAGr8MMZ169YB0KRJk3LtS5cupaCgoCzsatiwYdm6r7/+mqSkw8vxwuHwYT8m1hqfdwsn3fCbSrcpjcDfZszj1z3PjlFVx4YOf45OkFa7dp04VxJsPs+x4fMcGz7PseHzXD1OufUZGvW+klBy6gG3iRTvYeRv/sgNz9wRw8qCz3O66jU652oybn+u0m1KgekfraJ2+PTYFHWM8HyueimNmpH99MGT2V0lcEKLLPZsTIxPJdqkHM89DXpVus3X+evYvLiA3r+9g7cuHxWbwhJU375hVhYHIxSsVasW27ZtO+zH1fiwq3HjxgCsWLGCbt26AdEJ6++9915KS0vLTU7/wx/+kClTphCJRHjzzTfjUm91Ktl18P/AkdISSgsP/0SQJEnaq3TXduAgE4AmJf17O6lmKy08+HkaiZRS4j20EkBp0Y5D33bXoW+bKJJSk2ngnF06BDU+7MrOziYrK4v777+f1NRU0tLSeOqpp5g/fz716tXjtNNOK9v2mWeeAWDcuHHcfffdTJ48+ZD/Tm5uLj179qzy+qvS5iK4YEp02MCBhJKSeeCqPnzvfifRqEpdX4/+W1Tk81qdfJ5jw+c5NnyeY8PnuXq8/yX8aFbl24SSkvnHr+6kw7N3xqaoY4TndNXbUQz/8VblQ7pCoSR+cl5HbrjD570qeT5Xj1tmRudpPtBQxqQQdDoe5m76PKZ1HY0NeUt54+IR5dpS69ej5fnd+PTNPHZv3cnx2S3pNPwyPsv9ME5VJo5p03Jp2u3Y7qlas8ftASkpKUyYMIHmzZszbNgwhg8fzvnnn0+fPn3o2LHjfocefv/732fatGls2rQpDhVXn/TacFElXzyZFILja8EFp8SuJkmSFDxdT4DTGh74RjGJ6Nfbt28Uw6KkI3RcClyReeD1Sf/e5pJj5wveleCuzTrInF0RGNY2ZuVUn0iE1pedw2Wzx3DNinH0e+4e1v5zPnN+9my8K1MCqPE9uwA6derErFnlP1588skn6dOnDwDbt2/nq6++IiMjA4BJkyaRnp5Oenp6zGutbnd2gC92wbsbouFW6Td6eTVIhSfPhrQDT68hSZJ0UKEQPN4dfjQTVn9jBFgS0TdYbRrAf58Z3U5KBD86HT4vhCnrKt5D102BJ86Cxk4rpQRxVhO4ryOMXhhd3ns6770k39kBejWNR2VVa8/2QqZc8UC8y1CCSoiw69sKCwtZtmwZw4cPB2DHjh0MGTKEHTt2kJycTHp6OpMmTSIUwDuw2snwP90g78voN8b86989U+/qABdmQH2DLkmSVAVOrAMv94F/fgY/nx9t634ifLcF9GsOqTV+fIC0T0oSPPQduLRl9JvL34p+Bxb/2Q4GtYBGteJbn3S4Lm8FZ54A/7caxn8SbbuyNVzWElrVj2dlUs2QkGHXwoULKSkpKZucvmnTpsyePTvOVcVOUiia5p/VZN84+Ctbx7cmSZIUPLWT4YKMfWHXb/2yZyWwUCg6RLfrCfvCru9nxbcm6Wi0TIOfdNgXdt3ZIb71SDVJQoZd3bt3JxKpZJZ2SZIkSZIkHZPsgC5JkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskpQQcnNzyczMJBwOM2zYsArrx40bx9SpUwF4+OGH6d27N7fffnuF7a688krC4TBdunThkksuKWtfv349devWZe3atQBcf/31RCKR6jkYSZIkSXHV6/Fb6f7QDfEuY7+uWTGO9A6Z8S4joRl2SUoYN9xwA7m5uTRs2JBZs2aVWzdp0iT69+/Phg0bmDdvHjNmzCAlJYW5c+eW2+7VV18lNzeXG2+8kQsuuKCs/be//S3du3cvW+7evTvTpk2r3gOSJEmSdNSa9WjPef/3C67JH8c1+eM47/9+QbOz28e7rDKd7/we/V/86SFv/3LW99n80apqrCj4DLskJZwOHTqwbt26suXNmzdTp04dQqEQc+fOpU+fPgD069ePvLy8/e5j0qRJDBo0CIAtW7awceNGWrVqVba+b9++TJ48ufoOQpIC5mA9cB966CHy8/Mr3cftt99O7969efjhh8u1FxYWcsEFF9CnTx+uv/56AFavXk3z5s0Jh8Nce+21QPT1oEuXLqSlpZU9dsmSJYwePfpoD0+SVEOdMqAL544fwZqpH/Dn79zEn79zE2umfsC5r4zglP7f2e9jQslVF4WEUpKrbF+qOoZdkhLOrFmzyMrKKltesWIFLVu2BKLBVYMGDQCoX78+W7ZsqfD47du3s23bNpo3bw7AmDFjuPnmm8tt07JlS5YvX15NRyBJwXSgHrilpaUsXLiQtm3bHvCxc+fOJSUlhRkzZjBv3jw2bNhQtm7KlCn06tWLd955h9TUVD766CMALrzwQnJzc3nxxReB6HX/7bff5qyzzip7bHZ2NvPmzXNouiQFVPcHf8CKv+Sy+KnX2bNtJ3u27WTxU6+zcsI7dHvwBwBcnvc7Og6/jAtef4ihn7zMCZ3aAJB6XB3CY+/kmvxxXPLObzgp3Omgf6/Z2e25ZsU4Th06gMvff4qLpv4KgObndOS7b43m6mUvcNE/f02L884EoMV5Z3LGHYM5uW9nrlkxjmtWjCOpVkqlf+O6zyfQuFMbQslJXL38RRqdlhH92z3ac93nE2j53bMBqNukEdd++iqpaXWP7MkLMMMuSQnj2WefJRwOc/LJJ9O5c+f9btOoUSO2bt0KwLZt22jUqFGFbd566y3OO+88INpb4OOPPyYnJ6e6ypakY863e+B++OGHnHrqqZU+Zs6cOfTr1w+APn368MEHH5Sty8zMZMeOHUD0A4uGDRsC0et57969efnllwFITU0lPT29wr5bt27N4sWLj+6gJEk1ToM2J1G/ZVNW/e29Cus++eu7NGjVjAatox9wZw0J896dv+PlrO+z6d9DBDMv6cUnf53B+NOHsfC3f6XfH++hXrOKryPfllK3Nid0zuJv5wzn7+ffS/1WzRjwwn189OTfeKXd9Xzw0Ev0eerHpLdvxadvvs+iJ/7KumkLeDnr+7yc9X1Kdxcf0vFFSkrZMGcJzXudAUDz3mewddXnNO/VIbrc6ww2LfyEPdsLD2l/xxLDLkkJY2+PgQcffLBce1ZWFgUFBQB06dKF6dOnAzBt2jS6detWYT8TJ07k4osvBqLDYFauXMl5553H22+/za233gpAQUFBpT0QJEkH9u0euPn5+eWGiu9PZT1zs7KymDFjBtnZ2YRCITIyMmjevDnLli1jypQp/OEPf2DTpk0H3Le9dSUpmOqk1wegcMPmCusKv/gquk3j6GvLsnFv83X+OiKlpWVh0/rZH/PpG3lESkr5ZMJ0vvq4gFaDzj7o3w0lJfHBwy9TXFhESeFuMi/uwYY5S1g9aRaRklLW/Ws+n06ZS5shfY76GNe/+1G5cGvBr/5cFn4169mBz9/76Kj/RhAZdklKeOnp6ezcuROAZs2a0bFjR3r37k1RURFdu3Zl/fr1PPbYYwCUlJSwfPly2rVrB0SHt8yePZs333yTc889lzFjxgDRoOz888+PzwFJUoI6lB64H3/8MeFwuNzPo48+WmnP3BdeeIErrriCJUuWcMIJJzBz5kxq165NvXr1qFu3Lr1792blypUxOEJJUk2ya/M2AOo2rdgbq26T46PbbIq+tuxY92WFbXasLd+2fc2Xh9Szq7iwiKJ//22Aes0bs/3b+yrYQL3mjQ+6r4P5/N1FND2rHbUa1KNB65NY9bf3SK6VQr3m6TTv1YHPZyw66r8RRJUPFJWkGmLvG6IDueiii5g6dSoDBgxg5MiRjBw5smxds2bNuPvuuwFITk5m9uzZ+93H888/X/b7nDlzuPHGG6ukdkk6Vtxwww2MGDGiQnvbtm157bXXAGjXrh25ubkVtnn//fd55ZVXGDRoENOnT+d73/te2brS0tKy4Ynp6els2bKF7du3k5aWRiQSYe7cudx2220HrKugoICePXse5dFJkmqarSs/Y9unG8i8qAfrv9XDKfPiHmz7dANbP/kcgEhpxbkbjzvlxHLLaRkn8uW8g/cEjpSWllve+fmmCt/+mJbRhJ2fb9rv9odj8+LVREpLaff/vssX7y8lUlrK5+9+xKlXD6Bek+P54v2lR7zvILNnl6RAuPbaaxkwYECV7e+5554jKclLpCRVhU6dOrFs2bJKtznzzDMpKiqid+/edOrUiaZNm5b1zL366qt57rnnCIfDLFiwgHPPPZeZM2fStWtXevTowcCBA8u+dGTAgAHMnz+fAQMGlE1kv2LFCjp06FDtxylJir28nz9P1hV9aX/TIFLT6pJavx7tbvouWd/rS97I5yp9bLOz2pExsCuh5CRaX9qb49u1ZPU/9v/BeGVWTZxJ0+7ZtLywO6GkJE7u25mM/+jKygnR6VUKN37NcSefcMTfArl+5mLa3Xghn78b7cX1+XuLaHfjhXzxwXJKivYc0T6Dzp5dkiRJOmqV9cBNSkqiY8eO5OfnVzof4t6h5Ht9s2fulClTyq0bOHAgAwcOrLCPqVOnlltesmQJXbp0IRQKHcphSJISzJq33mfq0Ifp9JPL6Xx3tFfwpoWfMHXow2Xh0IGs+tu7tBnSh3PG/Cc7Pt/EtB/+ip2fHXgOyAPZtno9//rBf/Odn15Dz9/cyo61XzL9tifY/O+J8FdPmkXrS3px5Ud/JBQK8WrHGw55knqAz2csotV3z+bzd6Mf4nz+7kfUanCc83VVwrBLkiRJ1W5/wxtjITs7m+zs7Lj8bUlSbHz+7qJKg60J3W6p0Pbu8DH72fLg1s9azMtZ36/Qvm7aAtZNW7Dfx+zesp03L/uvQ9p/6N+jS74Zhi17cQrLXtz3oU/hhq94vvnlh1H1sccxOpIkSZIkSTXA8e1bUrqneL8T6uvQ2bNLkiRJkiTp3y7O/Q1pp5xQoX3NlA+YfsvjR73/AS//jKbdT6/Qvmf7LpJSk/ng4fHs3rrzqP/OscywS5IkSZIk6d8mhn9crfufes1D1bp/OYxRkiRJkiRJAWLYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYGREGHX7t27GTlyJBkZGdStW5d+/fqRl5dHKBRi4sSJ8S5PUhVYu2Pf71/uil8dkqTyikv3/T53I5RE4leLJOnYlFynFpfO/C3XrBgX71KUIGp82BWJRBgyZAjPPPMMI0aM4O9//zuZmZkMHjwYgJycnDhXKOlofL4Tbp8Fg/+5r+3CKXDfXNhSFL+6JEnw2mq48O19yzfPhO++DX//NG4lSZKOQTl3X8H2tRvjXYYSSEq8CziYsWPHMnnyZBYsWED79u0BCIfDZGZmkp6eTosWLeJcoaQj9UUhXD8DNhfBNzsKlAL/+gxWbIXnekP91HhVKEnHrhfy4bdLKrZ/uQtGLYAdJXBFZszLkiQdYxp3bM3JfTvz/i9epO+zd8W7HCWIGt+za/To0QwdOrQs6AJITk4mMzOzQq+uX/ziF4RCIT766KNYlynpCDy9PBp0le5nXSmweju88kmsq5IkbdwFY5ZWvs3ji2Hr7tjUI0k6NoWSk+jxq5uZff8zlO4ujnc5SiA1OuzKz89n1apVXHbZZRXWrVmzplzYNW/ePGbPnk3Lli1jWaKkI7SzGP6xZv9B1zdNWA0R54eRpJiatAZKD3Lt3VMKk9fGph5J0rGpwy0Xs2nRKjbM3k9XY6kSNXoY47p16wBo0qRJufalS5dSUFBQFnYVFRVx66238sorrxAOh4/ob4XDYZKSanT2t18d/hydybt27TpxriTYfJ6rXu2TTuPU/1140O02F0G940+gtHBbDKo6Nng+x4bPc2z4PFePU259mka9riKUcuBx5JHiPfz0139k2DN3xLCy4POcjg2f59jweY6NIDzPbVKO554Gvcq11W/VjNOuHcjr594dp6oSV9++YVYWfxXvMqpErVq12Lbt8N8L1uiwq3HjxgCsWLGCbt26AdEJ6++9915KS0vLwq6f//znDB06lFatWsWrVEmHqXR34SFtF4mUEtnj1zNKUiyV7t4FoVDlG4VClBbtjE1BkqRjTtNup1P3hIZc+t4TACSlJJN6XF2uXPxHpt3wmL29VKkaHXZlZ2eTlZXF/fffT2pqKmlpaTz11FPMnz+fevXqcdpppzFr1izmzp3Lo48+elR/Kzc3l549e1ZR5bHT9fXov0VFfm1ddfJ5rnqRCFyRC6u2lZ+c/puSgO5Nkvhgx/YYVhZ8ns+x4fMcGz7P1eO9DfCfcyrfJpScwl9H/5jvPPPj2BR1jPCcjg2f59jweY6NIDzPG/KW8sbFI8q1rZo0k89m7BsJcmKX0+j1v7fy+oC72LVpa6xLTCjTpuXStNvp8S4jrmr0uL2UlBQmTJhA8+bNGTZsGMOHD+f888+nT58+dOzYkaSkJN555x2WLFlCZmYmrVq1Yu3atfzHf/wHU6ZMiXf5kioRCsG1WQcOuiA6n9c1bWJVkSRpr7ObQKu0A98oJgGnNYSc9FhWJUk6lpQU7mbn55vLfoo2bYVIhJ2fb3ayeh1UjQ67ADp16sSsWbPYuXMny5Yt40c/+hHz588vG8J433338dlnn7F69WpWr17NKaecwltvvcXAgQPjXLmkg7nwFLi+bfT3b16M9v5+Vwc4q8m3HyVJqm5JIfjf7tCkbnR574DGvf+efBz8T7eDj3SUJKmqrJ+1mJezvh/vMpQgavQwxv0pLCxk2bJlDB8+PN6lSDpKoRDcmg09m8BfVsPCzdG27ifC5a2ivQYkSfFx8nHwahj+vib67bmbiuDEOjAoA87PgOMS7i5SkiQdKxLuNmXhwoWUlJSU9ez6ttWrV8e2IElHrXPj6I8kqWZJS4UrW0d/JEmSEkXChV3du3cnEqlslh9JkiRJkiQdq2r8nF2SJEmSJEnSoTLskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkKQ5yc3PJzMwkHA4zbNiwCuvHjRvH1KlTAXj44Yfp3bs3t99+e4XtvvzySwYPHkzfvn0ZO3YsAIMGDaJPnz7079+fjRs3sn79esLhMOFwmDZt2vD444+zefNmfvKTn1TvQUpSAjqc63Pv3r1JS0tj7dq1FbZ79dVXyczM5Ic//GFZ209/+lN69OhB7969WbRoEQC33norO3bsqKajkaRjk2GXJElxcsMNN5Cbm0vDhg2ZNWtWuXWTJk2if//+bNiwgXnz5jFjxgxSUlKYO3duue0eeOABHn/8caZNm8aNN94IwGuvvcY777zDddddx/jx42nWrBm5ubnk5ubSrVs3LrjgAtLT09myZQvbt2+P2fFKUqI4lOszwF/+8hcuv/zy/e7j3HPP5e233y7XdtNNNzFz5kyef/55HnnkESD6AcWf/vSnajgKSTp2GXZJkhRnHTp0YN26dWXLmzdvpk6dOoRCIebOnUufPn0A6NevH3l5eeUeu3z5cu677z4GDhzIsmXLAEhNTQVg165dZGdnl227Z88eVq1axamnngpA9+7dyc3Nrc5Dk6SEVtn1GaBZs2YHfGzjxo1JSUkp19aqVSsAkpOTy/Zxzjnn8NZbb1Vx5ZJ0bDPskiQpzmbNmkVWVlbZ8ooVK2jZsiUAW7ZsoUGDBgDUr1+fLVu2lHvsu+++y4MPPsiYMWP42c9+BkTfjPXo0YMnnniiXNiVm5tLOBwuW27ZsiXLly+vpqOSpMRX2fX5aIwcOZJbbrkFgHr16vHVV18d9T4lSfsYdkmSFCfPPvss4XCYk08+mc6dO+93m0aNGrF161YAtm3bRqNGjcqtb9++PW3atKFt27Z8/fXXAKSnpzNz5kwefPBBfvOb35Rt+/rrr3PxxRdXy7FIUpAcyvX5SD399NNkZmbSs2fPKt2vJGkfwy5JkuJk75wwDz74YLn2rKwsCgoKAOjSpQvTp08HYNq0aXTr1q3ctq1atWLjxo1s2LCBevXqUVpaSnFxMQANGzakTp06ZdvOmTOH7t27ly0XFBTQtm3bajk2SUpkh3J9PhKzZs1i8uTJjBo1qqxt586dFT7IkCQdHcMuSZJqmPT0dHbu3AlE54Pp2LEjvXv3pqioiK5du7J+/Xoee+wxAEaMGMGll17K4MGDGTlyJDt27KB///707duXRx99tOwbHOfPn0+nTp1IStr30j979uxywxolSZX75vUZYOjQoUyZMoWrrrqKf/7znwDceeedAEyZMoWhQ4fyxhtvlH2r43333UdBQQH9+vUruz5Pnz6dgQMHxvhIJCnYUg6+iSRJqmrhcLjSoOmiiy5i6tSpDBgwgJEjRzJy5Miydc2aNePuu+8GoGPHjmU9v/Z65513KuwvJyeHp59+umx58+bNNGrUiPr16x/lkUhSsBzO9fmll16qsP7Xv/41AAMHDqwQYu3v+jxp0iRGjx59dEVLksox7JIkqQa69tprq3X/6enp5ebzkiQdmqq+Po8ZM6ZK9ydJchijJEmSJEmSAsSwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGAkTdu3evZuRI0eSkZFB3bp16devH3l5eYRCISZOnBjv8iRJKlNUsu/3z3fGrw5JUkVrd+z7fU9p/OqQVLlej9/K9wte4ZoV48p+Tu7bOd5lKUGkxLuAQxGJRBgyZAh5eXmMGjWKrKwsxo8fz+DBgwHIycmJc4WSJEFxKTy7HF5dta/toqnQ/UT4SQdoXT9+tUnSsW751/CbxfD+xn1t570FV7eB69pCcih+tUnav+UvTWXOz56NdxlKQAkRdo0dO5bJkyezYMEC2rdvD0A4HCYzM5P09HRatGgR5wolSce60giMmAdTPyvfHgHyvoTrZ8Afe0GbBnEpT5KOaUu/hh++C7tLyrd/vQeeWgqfbodRORAy8JKkQEiIYYyjR49m6NChZUEXQHJyMpmZmWW9ulq1asXpp59O586d6dy5M2+99Va8ypUkHYOmr68YdO1VChSWwGOLYlqSJOnfHvkwGnQdaNTiP9ZC3sYDrJQUN60v7c1VHz/HJdMfp+N/XkooOSEiDNUANb5nV35+PqtWreKJJ56osG7NmjVcdtllZcsTJkygQ4cOsSxPkiQAJqyGpFC0h9f+lEZg7iYo2A4t02JamiQd05Z/DYu3VL5NUggmrIoOO5dUM3z87GTm/nIcuzZvo3HH1vT53XCSa9di/n+/Gu/SlABqfNi1bt06AJo0aVKufenSpRQUFFTZfF3hcJikpMRLiTv8eRcAtWvXiXMlwebzrCDxfK4epz/9KamNmh50u67nD2Fr3usxqOjY4PmsoPGcrnqNel9Fxh3PV7pNaQTeXPAJT/TOjk1RxwjP59gIwvPcJuV47mnQq1zb5kX7JkHd9OFK5v/qT+TcdYVh1yHo2zfMyuKv4l1GlahVqxbbtm077MfV+HSncePGAKxYsaKsLRKJcO+991JaWlou7Lrmmmvo2LEjt9xyC1u2bIl1qZKkY1hkT9GhbVe8p5orkSR9U+khX58PbTtJcVIaAefV0yGq8T27srOzycrK4v777yc1NZW0tDSeeuop5s+fT7169TjttNMAmDFjBhkZGRQVFTF8+HBuu+02XnrppUP+O7m5ufTs2bO6DqPadP1354CiIl+cq5PPs4LE87l6jF4I/7f6wPPBANROgtXT/0ZaaqyqCj7PZwWN53TV21IE502B4gMMM4fo++cbw9nc4fNepTyfYyMIz/OGvKW8cfGIcm2tLurBumkL2LNtJ8dnt6TTnUNY/fdZcaowsUyblkvTbqfHu4y4qvFhV0pKChMmTODmm29m2LBhZGRkMHz4cBo0aMDKlSvLhh5mZGQAULt2bW655RYuuuiieJYtSTrGDMmE/ysg+vWL+xECBrfEoEuSYqxRbbgwA17/dP+X6BCQHIJLW8a6MkmVOf26/+Ds0TeSlJpM4YYtrJzwDgt/+9d4l6UEUePDLoBOnToxa1b5BPfJJ5+kT58+AOzYsYPi4mIaNmxIJBLh1VdfpXPnznGoVJJ0rGpdHx7IgZ/PByL7englEf39zBPg9nbxq0+SjmV3dYh+QciCzfuuyxD9PSkEj3SFU46LY4GSKnjz0v+KdwlKYAkRdn1bYWEhy5YtY/jw4QBs2LCByy67jJKSEkpKSmjXrh2/+93v4lukJOmYc94p0KY+/Hk1TPscdpdGQ7DLW8F5J0NKjZ8pU5KCqW4K/O5seGNddMj56u1QJwn6nQTfy4xeqyVJwZGQYdfChQspKSkpm5y+devWzJ8/P85VSZIEbRvCzzpFfyRJNUetZLi4RfRHkhRsCRl2de/enUikkhkmJUmSJEmSdExyQIUkSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwSzpKubm5ZGZmEg6HGTZsWIX148aNY+rUqQA8/PDD9O7dm9tvv73CdldeeSXhcJguXbpwySWXlLWvX7+eunXrsnbtWgCuv/56IpFI9RyMRNWd019++SWDBw+mb9++jB07FoBBgwbRp08f+vfvz8aNG1m/fj3hcJhwOEybNm14/PHH2bx5Mz/5yU+q9yAlSZIkBZZhl1QFbrjhBnJzc2nYsCGzZs0qt27SpEn079+fDRs2MG/ePGbMmEFKSgpz584tt92rr75Kbm4uN954IxdccEFZ+29/+1u6d+9etty9e3emTZtWvQekY15VnNMPPPAAjz/+ONOmTePGG28E4LXXXuOdd97huuuuY/z48TRr1ozc3Fxyc3Pp1q0bF1xwAenp6WzZsoXt27fH7HglSZIkBYdhl1SFOnTowLp168qWN2/eTJ06dQiFQsydO5c+ffoA0K9fP/Ly8va7j0mTJjFo0CAAtmzZwsaNG2nVqlXZ+r59+zJ58uTqOwjpG47mnF6+fDn33XcfAwcOZNmyZQCkpqYCsGvXLrKzs8u23bNnD6tWreLUU08FoqFubm5udR6aJEnSMeFgvfYfeugh8vPzK93H7bffTu/evXn44YcrrMvLy6Nnz5706NGDESNG8Oabb5b13G/cuDELFixg8+bNdOnShbS0tLLHLVmyhNGjRx/9AUr7YdglVaFZs2aRlZVVtrxixQpatmwJRIOrBg0aAFC/fn22bNlS4fHbt29n27ZtNG/eHIAxY8Zw8803l9umZcuWLF++vJqOQCrvaM7pd999lwcffJAxY8bws5/9DIiGZT169OCJJ54oF3bl5uYSDofLlj3PJUmSqs6Beu2XlpaycOFC2rZte8DHzp07l5SUFGbMmMG8efPYsGFDufU5OTm89957zJw5k1mzZtGjRw9yc3OZNm0arVu3plOnTtSvX5+3336bs846q+xx2dnZzJs3zylaVC0Mu6Qq8OyzzxIOhzn55JPp3Lnzfrdp1KgRW7duBWDbtm00atSowjZvvfUW5513HgCFhYV8/PHH5OTkVFfZ0gFVxTndvn172rRpQ9u2bfn6668BSE9PZ+bMmTz44IP85je/Kdv29ddf5+KLL66WY5EkSVLUt3vtf/jhh2U96w9kzpw59OvXD4A+ffrwwQcflFu/t+d+SUkJJ510EvXq1QPg/fffp2vXroRCIVJTU0lPT6+w79atW7N48eKjOiZpfwy7pCqw95OSBx98sFx7VlYWBQUFAHTp0oXp06cDMG3aNLp161ZhPxMnTix7w7969WpWrlzJeeedx9tvv82tt94KQEFBQaWfvEhVoSrO6VatWrFx40Y2bNhAvXr1KC0tpbi4GICGDRtSp06dsm3nzJlTbm46z3NJkqSq9+1e+/n5+eWmTNmfQxmhMn78eLKzs2nUqBEpKSlA+fc2B2JvflUXwy6pGqWnp7Nz504AmjVrRseOHenduzdFRUV07dqV9evX89hjjwHRT0KWL19Ou3btgGi33tmzZ/Pmm29y7rnnMmbMGCAaKpx//vnxOSAd8w7nnB4xYgSXXnopgwcPZuTIkezYsYP+/fvTt29fHn300bJvcJw/fz6dOnUiKWnfS9Ls2bPLDWuUJEnSkTuUXvsff/xx2Vxbe38effTRQxqhcvXVV7N06VI+++wzFi1aBETft+ztESbFWkq8C5AS3d4XggO56KKLmDp1KgMGDGDkyJGMHDmybF2zZs24++67AUhOTmb27Nn73cfzzz9f9vucOXPKvtlOqg5VdU537NixrOfXXu+8806F/eXk5PD000+XLW/evJlGjRpRv379ozwSSZIkQbTX/ogRIyq0t23bltdeew2Adu3a7fcLgt5//31eeeUVBg0axPTp0/ne975Xbn1RURG1a9cmKSmJ+vXrU6dOHT755BNOOeUUatWqVWldBQUF9OzZEwqP/Nik/bFnl1TNrr32WgYMGFBl+3vuuefK9YCRYq2qz+lvS09PLzeflyRJkqpHp06dyr41+0DOPPNMioqK6N27N506daJp06blevO//vrrhMNhzjnnHE455RTatm273yGMAwYMYP78+QwYMICPPvoIiH75UYcOHarn4HRMs2eXJEmSJEkBVVmv/aSkJDp27Eh+fn6l86XunVJlr2/25h8yZAhDhgwpt/7HP/5xhX1MnTq13PKSJUvo0qULoVDoUA5DOiyGXZIkSZIkHaP2N7wxFrKzs8nOzo7L31bwORZKkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTASJuzavXs3I0eOJCMjg7p169KvXz/y8vIIhUJMnDgx3uUpwL7eve/34tL41SFVhd0l+37fURy/OiRJknT0dn3j3m6X93ZSmZR4F3AoIpEIQ4YMIS8vj1GjRpGVlcX48eMZPHgwADk5OXGuUEG0vhB+twSmrNvXNuhtuKoNDG0DSaH41SYdrt0l8Gw+/GXVvraBb8J3M+CWbGhYK361SZIk6fAUFsMflsFfC/a1DXwLLm4JPzod6iXEO/1Dc0r/75Bz75U0aHMSxdsL+ej3k1j81OvxLks1XEL8LzB27FgmT57MggULaN++PQDhcJjMzEzS09Np0aJFnCtU0KzfCcNmwFdF8M3OXF8WwRMfw4qt8IscCBl4KQEUl8KP82DOl+Xbi0rhtQKYuwn+2MvAS5IkKRHsKoYfzYTFWyDyjfadJfDqJ7BgE/yhZzACr5P6dOLsx27i3TueZP2sxaTUrc1xJ58Q77KUABJiGOPo0aMZOnRoWdAFkJycTGZmZlmvrl27dvGjH/2Itm3bcsYZZ3DjjTfGq1wFwK8+qhh0fdPktfDO+piWJB2xvxZUDLr2igCfboffL41pSZIkSTpCL30CH20pH3TtFQGWfg0vrohxUdUk554rWfj4//H5u4uIlJSyZ3shW5atiXdZSgA1PuzKz89n1apVXHbZZRXWrVmzpizsuueee6hTpw7Lly9n0aJF/PKXv4x1qQqILwqjQVZl03MlheAvq2NVkXR0/rwKKuuEGAEmrYl2h5ckSVLNVRKBCasq3yYC/N/qxJ9vOKVubU7o3Ia6JzZi8Iz/5YqFz9Dv+XtJy2gS79KUAGp8x8Z166ITJjVpUv6EXrp0KQUFBeTk5LB9+3ZefPFF1q5dS+jf48qaNm16WH8nHA6TlFTjs78KOvx5FwC1a9eJcyXBkdb5P8j8WeVjwEsj8N4nm6kdbh6jqqQjlJzCGa/uOOhmu0qgWXYXdn36UQyKkqqOr4MKGs9pBYnnc9VLadiE7GcO3rPpq93Q8OTWFG9ed9Bta4I2KcdzT4Ne5dpqNTqOUFISLS/szttXPUjhpq/p9sD19H32biYNvDtOlSaGvn3DrCz+Kt5lVIlatWqxbdu2w35cjU93GjduDMCKFfv6YUYiEe69915KS0vJyclh5cqVNG7cmF/84hd07dqVcDjMu+++G6+SlehKD7F7S2nJwbeR4i1SSiRyaB/rRTynJUmSarRIyWF0xU/we7s926Nh6cfPTGb72i8pKdzNvEfG0/iMTOft0kHV+J5d2dnZZGVlcf/995OamkpaWhpPPfUU8+fPp169epx22mksWLCATz75hJycHB577DHmzJnDoEGDWLFiBQ0aNDikv5Obm0vPnj2r+WiqXtd/d0AqKiqKbyEBsn0P/Mdb0cm7DyQJuKj9iSzweVcCuOk9mL+p8qG5J9SG2fkLSKnxH4FI5fk6qKDxnFaQeD5XvUgErsqFldv2P2cXRKevaJkG768vSJgv1NqQt5Q3Lh5Rrm3Ptp1sX/NF9KB1WKZNy6Vpt9PjXUZc1fi3NSkpKUyYMIHmzZszbNgwhg8fzvnnn0+fPn3o2LEjSUlJtGjRgpSUFK666ioAunfvzgknnMDy5cvjXL0SUVpq9Ct7K3tdKAW+lxmriqSjc1XryoMugCtaY9AlSZJUw4VCcHWbAwddEF13VetgfHP8shenkP3DC6l3UmOSa6eSc8+VbPxwJTvWbYx3aarhanzPLoBOnToxa9ascm1PPvkkffr0AeCEE06gb9++vP322wwcOJDly5fzxRdfkJWVFY9yFQB3ZMPyr2HB5mjotffFJCkUna/rrg7Q4fh4VigdunBzuC4Lnl8R/YRjb/C19/dwM/h+m/jVJ0mSpEM3KAMWfRX9xu393dsNyoDBLeNXX1VaNGYitRqmcdGU/4ZQEl/kLWXaDY/FuywlgIQIu76tsLCQZcuWMXz48LK23//+9/zgBz/gzjvvJDU1lXHjxtGoUaO41ajEVicFxpwNEz+NfpNdwXZIDkGvpnBla+jqEHElmNvaQcd0+NMqmLsxGtqe2jDaQ/HCjOj5LUmSpJovFIL7O0K3E6L3dgs3R9s7HB/trT/wpGD06gIgEuGDh17ig4deinclSjAJGXYtXLiQkpIScnJyytpat25Nbm5u/IpS4NROjgYB38uMBgMhAvSioWPSOc2iP5FItLdikuezJElSQgqF4NyToz97p7TyvYq0T0KGXd27dyfiJHWKIUMBBUkoVPmcdJIkSUochlxSRU5HLEmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOwKsNzcXDIzMwmHwwwbNqzC+nHjxjF16lTWrFlDjx49OOecc7j++uuJRCLltnvzzTc5++yzGThwIJ999hkA4XCYcDhM+/btGT58OMXFxfzwhz+MyXFJkiQdiw713g6gd+/epKWlsXbt2grbvfrqq2RmZpa7d/vpT39Kjx496N27N4sWLQLg1ltvZceOHdV0NJIkVR/DroC74YYbyM3NpWHDhsyaNavcukmTJtG/f39OOukk3nvvPaZPn05SUlLZDc5eo0ePZtq0afzP//wPo0ePBqI3W7m5uVx00UVccMEFpKSkcOKJJ7Jy5cqYHZskSdKx5lDu7QD+8pe/cPnll+93H+eeey5vv/12ubabbrqJmTNn8vzzz/PII48AMGjQIP70pz9Vw1FIklS9DLuOER06dGDdunVly5s3b6ZOnTqEQiGSk5MJhUIA1K5dm5NOOqncY1NSUqhTpw7t27cnLy+v3Lrc3FzC4TAQ7e31xhtvVO+BSJJ0GA7WE+ahhx4iPz+/0n3cfvvt9O7dm4cffrhce2FhIRdccAF9+vTh+uuvB2D16tU0b96ccDjMtddeC0Rfc7t06UJaWlrZY5csWVL2AZJ0JCq7twNo1qzZAR/buHFjUlJSyrW1atUKoNx94TnnnMNbb71VxZVL+1TnNRogLy+Pnj170qNHD0aMGMGbb75ZNkKlcePGLFiwwGu0FFCGXceIWbNmkZWVVba8YsUKWrZsWbb8r3/9i44dO7J+/XoaNmxY7rF79uxh06ZNvPvuu2zevLnCPmrVqgVAy5YtWb58eTUfiSRJh+dAPWFKS0tZuHAhbdu2PeBj586dS0pKCjNmzGDevHls2LChbN2UKVPo1asX77zzDqmpqXz00UcAXHjhheTm5vLiiy8CUL9+fd5++23OOuusssdmZ2czb968ClMHSIfqYPd2R2rkyJHccsstANSrV4+vvvrqqPcpVaa6rtEAOTk5vPfee8ycOZNZs2bRo0cPcnNzmTZtGq1bt6ZTp05eo6WAMuwKuGeffZZwOMzJJ59M586dD7hdv379WLhwIS1btuTNN98st+7BBx/k8ssv55VXXqFdu3Zl7RMnTuTiiy+urtIlSapS3+4J8+GHH3LqqadW+pg5c+bQr18/APr06cMHH3xQti4zM7NsPqPt27eXfVj01ltv0bt3b15++WUAUlNTSU9Pr7Dv1q1bs3jx4qM7KB1zDvXe7kg8/fTTZGZm0rNnzyrdr3QoqvoaDdHrL0BJSQknnXQS9erVA+D999+na9euhEIhr9FSQBl2BdzeT0oefPDBcu1ZWVkUFBQAsHv37rL2hg0bUqdOnXLb9urVi2nTpnHdddfRvXv3svbJkydzwQUXlC0XFBRU+smLJEnx9O2eMPn5+WVDtw5ky5YtNGjQAIj20NqyZUvZuqysLGbMmEF2djahUIiMjAyaN2/OsmXLmDJlCn/4wx/YtGnTAfdtj2gdiUO5tzsSs2bNYvLkyYwaNaqsbefOnTRq1OiI9ykdjqq+Ru81fvx4srOzadSoUdnw3UP50N5rtJTYDLuOUenp6ezcuROIjmU/55xzCIfDrF27lv79+7N+/Xoee+wxAB544AH69evHb3/7W+644w4ANm7cSGpqarkhj7m5uZx//vmxPxhJkipxKD1hPv7447J5XPb+PProozRq1IitW7cCsG3btnJv/F944QWuuOIKlixZwgknnMDMmTOpXbs29erVo27duvTu3dsvblHMfPPeDmDo0KFMmTKFq666in/+858A3HnnnUB0CO7QoUN54403yuZJuu+++ygoKKBfv37cfvvtAEyfPp2BAwfG+Eh0rKmua/ReV199NUuXLuWzzz4r+yKuadOmlfUIkxRMKQffRIlq7wvBgVx00UVMnTqVAQMGMH369HLrmjVrxt133w3Az3/+c37+85+XW3/CCSeUG+5YXFzMF198Ue7TGEmSaoIbbriBESNGVGhv27Ytr732GgDt2rUjNze3wjbvv/8+r7zyCoMGDWL69Ol873vfK1tXWlpaNvQlPT2dLVu2sH37dtLS0ohEIsydO5fbbrvtgHUVFBQ4XEyH5XDu7V566aUK63/9618DMHDgwAoh1jvvvFNh+0mTJjlJt6pddV2jAYqKiqhduzZJSUnUr1+fOnXq8Mknn3DKKaeUzTt8IF6jpcRmz65j2LXXXsuAAQOqZF8pKSk8++yzVbIvSZJioVOnTixbtqzSbc4880yKioro3bs3nTp1omnTpmW9n6+++mqee+45wuEwCxYs4Nxzz2XmzJl07dqVHj16MHDgQJo3bw7AgAEDmD9/PgMGDCibyH7FihV06NCh2o9Tx46qvLcDGDNmTLlvqJNi6Wiv0QCvv/464XCYc845h1NOOYW2bdvudwij12gpeOzZJUmSAquynjBJSUl07NiR/Pz8SuecHDNmTLnlb/Z+njJlSrl1++sxAzB16tRyy0uWLKFLly6EQqFDOQxJCqTqvkYPGTKEIUOGlFv/4x//uMI+vEZLwWPYJUmSjln7GzoTC9nZ2WRnZ8flb0tSovAaLelIOYxRkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTASJuzavXs3I0eOJCMjg7p169KvXz/y8vIIhUJMnDgx3uXFxY7ieFcgSVLNsH1PvCuQjp7nsYJkd8m+30sj8atD0rEpJd4FHIpIJMKQIUPIy8tj1KhRZGVlMX78eAYPHgxATk5OnCuMrbU74Nnl8Oa6fW3XTYfr2kK4efzqkiQpVmash+fy9y0PeBPOPRn+36nQIi1+dUlH4pNt8Mwy+Ofn+9pufBd+cCqc1SR+dUlHYvue6HuVvxbsaxv8T7i6DQxpBUmhuJWmBHPNinHllpNrpbIlfx2v978zThUpkSRE2DV27FgmT57MggULaN++PQDhcJjMzEzS09Np0aJFnCuMnVXb4IZ3oy8ipd9o/3gL3PU+/Lg9XNMmXtVJklT9/rIKRi8q3z29OAJvrYuGYM/0gqwGcStPOiwfb4Gb3oOikvL3dgs2w+2z4eedYdCxc6urBLdtT/S9yqpt8M3OXJ/thMcWwcdfwX/lGHjp0Lyc9f1yyxf989esmvhenKpRokmIYYyjR49m6NChZUEXQHJyMpmZmeTk5LB69Wo6d+5c9tOqVSvS09PjWHH1+a/5sL24/M0Q7Fv+zWJYvS3WVUmSFBtrd8B/L4r+XuG1MAI7i+FnH0DEITNKAKURuH9uxaALossR4Jcfwpe74lCcdATGLKkYdMG+5X+shbc/i3VVCoITOmfR6NRTWPGnafEuRQmixodd+fn5rFq1issuu6zCujVr1pCTk0OrVq1YsGBB2c8ll1zC1VdfHYdqq9eSLdFP/yob8x4C/q/gwOslSUpkrx3kNa4UWLkNFn4Vk3Kko5L3JazdWTHo+qbSCPzNezslgO17YNKnFYOub0oC/rwqVhUpSNpe3Y91/5pP4QZf4HVoavwwxnXrohNTNWlSfsKCpUuXUlBQUGG+rt27d/Pyyy/z1ltvHdbfCYfDJCXV7OwvfeBNnPz/nqh0mwjw7Ft53N+ld2yKkiQphjJHvU1a+3MOut35P7ybTf+o/DVTircTL72Pplf+F6HQge9BI6WlPPbKW9z2yCWxK0w6AnXbdiPr4RmVblMKLPhiN7Vr149NUUoYbVKO554Gvfa7LqVubTIv7smMO56McVWJq2/fMCuLgxEM1qpVi23bDn/4Ws1Od4DGjRsDsGLFirK2SCTCvffeS2lpaYWw6/XXX+fkk0/mO9/5TkzrjIlIZZ/7fXM7x25IkgIqUkrkUF7nfC1UIvDeTkFyiOezp7MOV6tBZ1NcuJu1Uz+IdylKIKHIId0xxk9xcTHZ2dns2bOHxx57jLS0NJ566inmz5/P5s2b2bZtW7keWRdccAHnnXced9xxxyHtf+vWrSxatIgzzjiDBg1q9my2K7fCFbmVbxMChmXBbe1iUZEkSbH1h6XwzPLKh8kAvHQOnN4oFhVJR27BJvjhIcy1fEc7uDar+uuRjsauYviPKbCj+MDbJIXgzBNgzNmxq0uJYUPeUt64eMR+150/8Zd8MWcpHzz8coyrSlznT3yQpt1Oj3cZcVXje3alpKQwYcIEmjdvzrBhwxg+fDjnn38+ffr0oWPHjuWCrnXr1vHOO+9wzTXXHPL+GzRoQM+ePWt80AXQpgF8p3Hl/9FCwOCWsapIkqTYGtyy8m/xSgI6NDLoUmLolA5t6h/4nA4BtZLgooyYliUdkTop0Wt0ZV+0WBqB72XGrCQFQIM2J9Gk62ksf+Wf8S5FCabGh10AnTp1YtasWezcuZNly5bxox/9iPnz51cYwvjCCy9w4YUXlg19DKIHcuCEOhVfRJKItv28M5x8XOzrkiQpFprUhV/kRF/3vh0QhIDja8ODXeJRmXT4QiEY3RUapO7n3i4U/Xm4CzSqHZfypMN282lwxvEV2/e+6bymNZzTNKYlKcG1vaofG+YsYduq9fEuRQmmxk9Qvz+FhYUsW7aM4cOHl2t//vnneeKJYE9G26wejDsHXloJfy2A7cXRm6OeTeH7WdGeX5IkBdl5p0DzejBuBbyzPjqk8bgUuLhF9LXwxDrxrlA6dK3qR4fdjlsJr38KhSXRkKtfMxiaBR32ExxINVWdFPhdD/jTJ/CX1bC+MNre7ni4ujWce1I05JUO1QcPvhTvEpSgavycXfszZ84czjrrLN5//326du0a73LipiQCO/ZA7eTojyRJx5rdJbCrBI5LhWTfQCnBFZdG5zuqmwy1vLdTgotEoudzcgjqJmQXC8VSZXN26fA5Z1eC9uzq3r37oX0TU8Alh6BBrXhXIUlS/NQyFFCApCRBQ+/tFBChEKSlxrsKSceqhJizS5IkSZIkSToUhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGKFIJBKJdxGSJEmSJOnYtHvbTr5a8mm8ywiM47NbUKt+vXiXEVeGXZIkSZIkSQoMhzFKkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCoz/D16aeqBtx9/LAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRhElEQVR4nOzdeXxU1f3/8dfMJGQPIUEgbEkgEMOWpCA7MkCwUguICIqiiFirdSmtaxWsVVHRav36K6VaXBBlUYoiFmXRRAQja8JOSCCEfQ0hK9lmfn+MjISEJJBkJjN5Px+PecA998w9nztc7tz7mXPONVitVisiIiIiIiIiIiJuwOjsAEREREREREREROqKkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbXg4O4CGrDi3gLO7Dzo7DLfRLLo9TQJ8q62XVwLpOQ4IqBKRgeDv6Zy2RURERERERKT2lOyqwtndB/l69DRnh+E2Rix9iZa9r622XnoO3LfOAQFVYs4AiA1xTtsiIiIiIiIiUnsaxigiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchiaoF7eQ+qyZ/D1JGDw8MZg88G5zLa0nziAwZpizQxMRERERERERB1LPLnEbrSfOIG5RHj3mnsAvqh/7Xr6Zsvxzzg5LRERERERERBxIyS5xO0ZPL5oPn4LlfB7nj6U7OxwRERERERERcSAlu8TtWIoKOb1qDkbfQLxbd3J2OCIiIiIiIiLiQC6T7CouLmb69Om0a9cOHx8fhg4dyoYNGzAYDCxdutTZ4UkDcHT+dFLuCGL778IpyNhK5LSvMPkGOjssp8grgV3ZkHoOSi3OjsZ9nS+DPdm21/lSZ0cjUjtWK+zLgR1nIavI2dGI1N7xAtvxfDjf2ZGIiKsoKIXd2bDnHBSXOTsaEakNl5ig3mq1Mm7cODZs2MDzzz9PZGQk8+fPZ8yYMQDExcU5NB6Dych1z0+i49jrMRiNHPjfT6x/Zg5lRSUOjUPKa33Hi7Qa87izw3Cqs0Xwrz3wv0NQ/HOSq1kTuC0C7ukEHi6T3m7YzpfCO6mwJBPyf05y+XnA6Pbw+2ttfxdxFVYrfHEQ5qbB4QJbmREwh8IfoiHc36nhiVyx5DMwew9sOfNLWZcguD8KBrZ0Wlgi0oDlltjOG18etP2YCRDoCWPD4b7O4GVyangichVc4pbs3XffZfny5aSkpNC1a1cAzGYzERERBAcH0759e4fG0+PRW2jVvxtLhz5GWUkpwz58ip7T7mLD9PcdGofIxbKKYPIPcKwALu7MdbYY/p1q6+n1em8wGZwVoXs4XwYPJtl6C1gvKs8vhQX7bTdX7w4AX5c4u4rA/9sNH6XDxacGC5B4DNafgvcHQsfG2UlWXNDaE/DYBlsS92K7s+FP6+GvsfBbx142ikgDl1cC962F/bnlr+1ySuCDNNieBW/3hSZKeIm4FJfo5zFz5kwmTpxoT3QBmEwmIiIi7L269u7dS79+/ejcuTP9+vUjLS2t3uLpdOcwtr+9hILjWRSdySHljU+JvM2MwegSH6e4qVm7Kya6LrbmBCw/5NCQ3NL8fbD9kkTXBVZsQ0c/0nMRxEXsOPvL8XrpMW0BCkvhxRQHByVylYrK4LktYLFW/C60/vx6aStkFzshOBFpsObsrZjoutimM7D4gCMjEpG60OCzM2lpaWRkZDB27NgK6w4dOmRPdj3wwAM89NBD7N27l4ceeojf//739RJPk0Bf/NtcQ9bODHvZme0ZNAnwxb/dNfXSpkh1ckvg68OXT3SB7T/7pxlVVJBqlVnhswNV17EC/z2gudLENfz3QNUXAhZgRzbsPeeYeERq47tjtp4Yl7thBSi1wlcHHRaSiDRwRWXweWbV5w0DtmvoS3uMikjD1uAH2hw5cgSAFi1alCvfs2cPmZmZxMXFcfLkSbZs2cKqVasAmDBhAg8//DCnTp3immuqT0AFBARQXFzxZ76OHs14MnBguTIPfx8Ais8V2MuKz9lmPvX8eZ1UbsgQM/tKz1ZbzzeqHx1fSryibUfNuLL6lzNkiJmC1KQ62ZYj+XTqTeTLP1RZxwLsyirFy8vPMUG5IVPgNXR573C19c4WQ1DbjpScqb6uiDN1ejMZ73Zdqq13/fjfcTbxIwdEJHL1Qie9RsiIhzCYLn95ay0r4fl3FjPl7XscF5iINFheraPo/H/bqqxjxTanpU/TZliLCqqsKyJ1y2q14uHhwfHjxwkMvLJ5NRp8z66QkBAA0tN/GRdktVp56qmnsFgsxMXFcejQIdq0aYPJZBtIbTKZaN26NYcO1f2YrdK8QgA8A33tZU2a2pIHJT+vE3G4spo9CtBq0WNlasVS80cu6rMWV2DVuUPciO14rm5iSoOOZxGxs17BtR06d4g4nNVqpbCwkO3bt1/xext8z67o6GgiIyN55pln8PT0xN/fn9mzZ5OcnIyvry9RUVEkJyfXqo3c3NxKy09s2MPXo6eVKyvOKSDvyCmCu4aTs+8oACHdIijOLSDv0KlaxeHuEhISadn72mrrpZyB+9Y5IKBKJCQkEhvinLZro7gMblxpG75xOUYDDGjjxZaiIscF5masVpiQCPuqmNfBALT3h43HDmDQwwCkgfu/nfDxvuqHb2z98n1a+eghLNKwJZ2ER36quo7B5MH/TZ3Ib9+Y6JigRKRBK7PCqFVw4vzl6xiBrs1gU16Ow+ISEZt169YxcODA6itWosH37PLw8GDx4sWEhoYyadIkpk6dyogRIxg8eDA9evTAaDTSrl07jhw5QlmZLdteVlbG0aNHadeuXb3ElPbJt/R4ZAw+LZvhFRJI7GPjSV+UiNWiSXrEOZqYYFxE1XUsVri9g2PicVcGA9zRserEgBWYEIESXeISxoZXfawagcGtoJVG6YsL6HMNtPO7/MWtEWjqCcNbOzIqEWnITAaYUM31sYXq64hIw9Pgk10AMTExJCUlUVBQQGpqKg8++CDJycn2yelbtGhBbGwsCxYsAGDBggXExcXVaL6uq7Ht7SUc/2k3Nyf+g7E//j+y0w6zecbH9dKWSE3d1xn6/XzIX3zveuE/+e86Q78Wl75LrtTIdjAmzPb3i0+gF/5+U1u4JdzBQYlcpbZ+8EKc7fit7IIg3B+mxTg6KpGrYzTAG70hsEnFwYxGwMsE/+hj+1NE5IIJHSH+5yR4Zdd2EzooSS7iihr8MMbKFBYWkpqaytSpU+1l//73v5k0aRIvvPACzZo146OP6m8iXWuZhQ3T32fDdA3pcIbS3CzS/jqc80dSiVuUV27dgf+7h/NHUjF4ehF623ME9hjK+WPpHHrnYSwlRbQc9SeC+oxyUuT1y9Nou4j/8qDtiTHpP4/O7XONrUfXgJbOjc9dGAzwTA/o3RwWZsDWLFt512ZwWwT8uo16dYlrubGtrTfM/P2wwvZMGEJ9bL2+bg0Hf09nRidyZToEwPzBtvPzlwch++fnD90aAXd0sCV4RUQuZjLAjJ4wsAV8egB2ZdvK40Js19DmVrq2E3FFLpns2rZtG2VlZfaeXQDXXnst69evd2JU4igmnwA6/W0V+18bX+n6Dk9+RpPmbe3Lxxb+jYjHF+LhH+SgCJ3Hw2jrVXRLOPT60lb2//o5MyL3ZDDA8Da214XP+YNBzo1JpDa6NrNd6F9Idi0b7tx4RGqjhQ882sX2unCOfrK7c2MSkYbNZIDftre9Lpw33hng3JhEpHZcMtnVp08frNaqZs0Rd2bw8MQjIPhya9n/+m00CWlD+wf/jdHbn+LThzjw1t1gMBD20Lt4BqmLk4iIiIiIiIi7cok5u0Rqqu2UN7l25jqaDbyN44tfoTTnNIWZOwifOpeWI6dyfPErzg5RREREREREROqRkl3iVjz8mwEQ1HsUhYd2YvJrik9Ydzz8m+HfdRDnj6Q6OUIRERERERERqU9KdolbKSuwzcqel5qEV4sITN5+GJt4YykpojBzB01ahDs3QBERERERERGpVy45Z5fI3unxFGQks3d6PK0nPE/eniRa3fIEB966m5KcUxg9vQh/9EMAWo5+jL3Th2Ewmgj/44dOjVtERERERERE6peSXeKSOr+4utyyf5eBAHR85vMKdQNj4wmMjXdIXCIiIiIiIiLiXBrGKCIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGJqiXBicyEOYMcF7bIiIiIiIiIuK6lOySBsffE2JDnB2FiIiIiIiIiLgiDWMUaaQSExOJiIjAbDYzadKkCutnzJhBWlraZd+flZVFz5498ff3v2ydRx55hEGDBvHyyy/zzTffYDabMZvNhISEkJKSwu7du5k5c2ad7I+IiIiIiIgIKNkl0qhNmTKFxMREmjZtSlJSkr3cYrGwbds2OnXqdNn3BgQEsGrVKvr27Vvp+k2bNuHh4cEPP/zAli1biIuLIzExkYSEBDp06EBMTAzR0dFs2bIFq9Va5/smIiIiIiIijZOSXSJCt27dOHLkiH1569atdO7cucr3eHp6EhwcfNn169evZ+jQoQAMHjyYzZs3A7Bx40Z69eqFwWAAoEOHDuzcubO2uyAiIiIiIiICKNklIkBSUhKRkZH25bS0NMLDw2u1zezsbAIDbTP+BwQEkJ2dDcDSpUsZPXq0vV5YWBh79+6tVVsiIiIiIiIiFyjZJdKIvffee5jNZtq0aUNsbGyldXbt2mWfa+vC69VXX61220FBQeTk5ACQm5tLUFAQAAkJCfYeXyIiIiIiIiJ1TU9jFGnEpkyZwrRp0yqUd+rUiSVLlgDQpUsXEhMTr3jbvXv3ZsGCBYwcOZI1a9Ywfvx49u/fT9u2bWnSpIm9XmZmJgMGDLjqfRARERERERG5mHp2iUgFMTExpKamVlsvPj6e5ORk4uPj2bFjB8ePH+f1118H4LrrrqOoqIhBgwYRExNDy5YtKwxhBEhPT6dbt271sh8iIiIiIiLS+Khnl0gjdWFIYmWMRiM9evQgLS2tyicyrl69ukLZE088Yf/7rFmzyq3705/+VG559+7d9OzZ0z5ZvYiIiIiIiEhtKdklIpWqbHhjXYuOjiY6Orre2xEREREREZHGQ8MYRURERERERETEbSjZJSIiIiIiIiIibkPDGKXBySuB9BzntB0ZCP6ezmlbRERERERERGpPyS5pcNJz4L51zml7zgCIDXFO2yIiIiIiIiJSexrGKCIiIiIiIiIibkPJLhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGJqgXt5D6rJn8PUkYPDwxmDzwbnMtrSfOIDBmmLNDExEREREREREHUs8ucRutJ84gblEePeaewC+qH/tevpmy/HPODktEREREREREHEjJLnE7Rk8vmg+fguV8HuePpTs7HBERERERERFxICW7xO1Yigo5vWoORt9AvFt3cnY4IiIiIiIiIuJALpPsKi4uZvr06bRr1w4fHx+GDh3Khg0bMBgMLF261NnhSQNwdP50Uu4IYvvvwinI2ErktK8w+QY6OyynKC775e9Wq/PiEKkLViscL4DD+VBUVn19kYbubBEczIO8EmdHIiKu4nwZHMqD44W6thPXZ7HC0Z+v7Uoszo5G3JVLTFBvtVoZN24cGzZs4PnnnycyMpL58+czZswYAOLi4hwWS/jIfkTf9xuCu4ZTlJXL4t5/cFjbUrXWd7xIqzGPOzsMp8orgffT4PPMX8rGfAsTOsK4cDAanBaayBWzWuG/mTB/HxzMt5X5ecDN7WFKZwhs4tz4RK7UxlO2c/TG07ZlowGGhsJ9nSGycf42IyLVOFsE7+2FLw9Cwc8/+ET4w8RIGNUODLq2ExdSZoWF+22vY4W2sqaecEs43NsJfFwiOyGuwiUOp3fffZfly5eTkpJC165dATCbzURERBAcHEz79u0dFkvRuXz2vP8N3tc0pev9v3VYuyLVyS2B+9bC/ly4+Ae/IwXw+nbYdRb+GqeEl7gGqxVmbIUvDsLFh2x+KczfD+tOwnsDoakSXuIivjkM07eUP54tVvjuKKw9AbP7Qfdgp4UnIg3QmfNw71pbD5iLr+0O5MGLKZCeA3/uqoSXuIYyKzyzCb49Vv678FwJfJgGP52EdwaAr0tkKMQVuMQwxpkzZzJx4kR7ogvAZDIRERFh79X1+OOPExERgcFgYMeOHfUWy7E128hYuo78w6fqrQ2Rq/Gv3RUTXfDL8v8Ow6qjjo5K5OokHrcluqDyY/pgHry9y9FRiVyds0XwfLLt2L10tIYF29Dzv2y23QiIiFzwxg44VnD5a7sF+2G9bknERSw7aEt0QeXH9J5z8J9UR0cl7qzBJ7vS0tLIyMhg7NixFdYdOnTInuy6+eabWbNmDWFhYY4OUcTp8kth2aGKXxwXMwKL9jsqIpHa+TSj6i8oC/D1YcgpdlREIldv6UEoreIEbcE2D0/SSYeFJCIN3JnztsRAVdMZGQ2wKMNhIYnUyqcZ5Xt0XcqKbSoWzc8qdaXBdxI8cuQIAC1atChXvmfPHjIzM+3JroEDB151GwEBARQXV7xj6ujRjCcDr367Ut6QIWb2lZ6ttp5vVD86vpR4RduOmnFl9S9nyBAzBalJdbItR/KJvI7IV9ZWWccCbD1VgpeXv2OCaiS6fXoeAC8vbydH4l66fnwWo5dvlXWKLRDWexgFu6s+9qXmdDzXj/ZPfEpgz99iMJkuW8dqKWPCE69yctELDozM/emYFlflH/trIp79sso6FiskpJ3G6/o2DoqqcdB5ox6YPOi+ML/aanmlcE1UHEWH1H1fbCyWq3+CQYPv2RUSEgJAenq6vcxqtfLUU09hsVgcOjm9SINlrelJQGNkxDVYa3pM65FU4gosFmp0/tXxLCIX6NpO3MmVfL/pu1DqSIPv2RUdHU1kZCTPPPMMnp6e+Pv7M3v2bJKTk/H19SUqKqrWbeTm5lZafmLDHr4ePa3W2xebhIREWva+ttp6KWfgvnUOCKgSCQmJxIY4p+3aOF8Kv15pG854OUagZ6smbC4qclhcjUGvn390LdLnWqf++BMknbL9an053iY4vPk7/Br8N5nr0PFcP+bvgzd3Vl3HYDTx3zen0Xuerjvqko5pcVXZxXDjiqqHQBuBG6+9hhQd33VK5436cc8a2JVd9dDcoCZwJi0FzwbfJUccZd26dVc9iq/BH0YeHh4sXryY0NBQJk2axNSpUxkxYgSDBw+mR48eGI2O3QWD0YjJyxODhwcYDJi8PDE20Z2WOJe3B4wJq3ocvAW4LcJREYnUzm0dqk50GYBR7VGiS1zCb9uBl/Hy52gj0N4PrmvuyKhEpCELagIj2lZ/bTde13biIm7vUHWiC2BcOEp0SZ1xiUMpJiaGpKQkCgoKSE1N5cEHHyQ5OdkpQxg73no9dx1YwJD/PIZ/22u468ACbln7tsPjELnUA1HQvVnF8gv/ySd0gMGtHBqSyFXr3wLujrT9vbIvqmubwsPRDg1J5KoFNoFXe4HJUPF4NgJ+nvDadWCo6q5WRBqdP3eDjgEVE14XziP3R8GvXHBEgjROv24DN7e3/f3i78ILx/d1zWFyJ0dHJe7MJX8TLywsJDU1lalTp9rLHn30UZYsWcLx48eJj48nJCSEnTurGTNwFdI/TST908Q6365U7+C7j1CYkULgr0YQOu4Ze/mJZf/H2TULwORB+B8/xOTtz/6/3w5A8elDtLjpEVqM/CMH/nEXxacPYfILosOTn2H0bOKsXakX3h7wr/6wcD98lgEnbHNrEh1kS3T9uo1upMS1PBINXYLgk32w/ednW1zjbfvVb0IH8HHJbzBprAa1gg8GwUfpsOqorczbZOv1dVdHaOPn3PhEpOEJ8IQ5A2HBfvjsAGT9PKouJhju7AjmUKeGJ3JFDAZ4NgZig2H+ftibYysP9bX1ULwtQr26pG655K3Ctm3bKCsrK9ez6+233+btt9XDyl3lp23CYPQg6pUf2PfqrZRkn8AzqCUAZ9csIOq1JPL3JHH6m3/TdvLf7U9n3P/3CTTt+RsKD2zD6OVL1Mvfc+yzl8lJWUnQdb914h7VD28T3NPJ1iMmv9TWi8DXJf+Xi9guiuJb214X5s/433Dbo9ZFXFF0ELzSC1b9fDwnjgAPXdiLSBX8PeF3UTClM/ReZiv7jx4WLy7KYIDftre9LlzbLR2mH+SlfrjkbXCfPn2w6ikNjUr+3vUE9BgKQEC3wRSkb6Zpr98A4Nm8HdaSIsoKzmHyD7a/x1paQvGJDLzbdKbk3CmsljIAygrO4XFRPXdkNNh+DRRxN0p0iTtRoktEakrff+KulOiS+uKSyS5pfMryszGFdQPA6BNAWX62fZ1/l4HsfCgasBL16o/28twdifh3MwPg4R9MWf45dj4UjUfTFrS56xUHRi8iIiIiIiIijqLfFMUlmPyCKCuwDey2FOZi8gsCoKwgh+wf/0u3f6fR8S+fc2zh8/b3ZG/4kqA+owHISVmJV8sIus7aTVCfmzn7w0JH74KIiIiIiIiIOICSXeIS/Dr3Jnd7AgC5O9fgG9nz5zUGjN5+GEwemPyDy/X4yt+7Hr/OfWwLVgumANvQRY+AYEovqiciIiIiIiIi7kPJLnEJfp2uw1pSROpfBuEbEUNJ1jHOJMzD5BuAX1Q/9jw1gIzXb6PlzY8DULA/Gd/wGAxG2yEeGHsDBWkbSX3WzJmEeQRfP8GZuyMiIiIiIiIi9URzdonLaP/ArHLLvh1iAWh9+3O0vv25S9bFEfbwf+zLBg9POv5lSb3HKCIiIiIiIiLOpZ5dIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG1ognppcCIDYc4A57UtUlcSExOZPHkyYWFhhIWFMXfu3HLr582bR2hoKPHx8QwaNIjk5GT27NlD27Zty9V77rnn+P777ykqKuLNN9+kf//+3H777Rw/fpzc3FzatWvHF198weTJk3n//fcxGAyO3E0REREREZEGRckuaXD8PSE2xNlRiNSNKVOmMG3aNB599FGSkpLo16+ffd2yZctYtGgRAJ999hlPP/10pduYPn06L7zwAocOHeKPf/wjS5YsYeHChQC888479uRWnz59SEhIYOjQofW8VyIiIiIiIg2XhjGKiDhAt27dOHLkiH05KysLb29ve6KqVatWl32vp6cnAHl5eXTv3r3cumXLljFy5EgAhgwZwvLly+s6dJeQmJhIREQEZrOZSZMmVVg/Y8YM0tLSqtzGI488wqBBg3j55ZcrrMvKyqJnz574+/sD8M0332A2mzGbzYSEhJCSkkJJSQnjx4/HbDbz+uuvA7B7925mzpxZB3soIiIiIiI1pWSXiIgDJCUlERkZaV9OT08nLCysxu+/6667GD58OEOGDLGX5eXlkZubS2hoKABhYWHs3bu37oJ2MVOmTCExMZGmTZuSlJRkL7dYLGzbto1OnTpd9r2bNm3Cw8ODH374gS1btnDixIly6wMCAli1ahV9+/YF4MYbbyQxMZGEhAQ6dOhATEwMS5YsoX///iQmJrJ582ZOnTpFdHQ0W7ZswWq11s9Oi4iIiIhIBUp2iYjUo/feew+z2UybNm2IjY296u3MmzePDRs28Nxzz9nLVqxYwY033lgHUbqXS3vRbd26lc6dO1f5nvXr19uHfw4ePJjNmzeXW+/p6UlwcHCF923cuJFevXphMBjIyMiw97yLjo5m48aNAHTo0IGdO3fWap9ERERERKTmlOwSEalHF3obvfTSS+XKIyMjyczMrNE2ioqKAPD398fPz89evnTpUkaPHm1fzszMrLL3UmNxaS+6tLQ0wsPDq3xPdnY2gYG2J1QEBASQnZ1do7Yu/jeIiori+++/x2q18sMPP3Du3DlAPe5ERERERBxNyS4REScIDg6moKDAvjxx4kRWrlzJhAkT+PbbbwF47LHHAHjwwQcxm83cdNNNPPvsswCUlZWxd+9eunTpYt9GQkICI0aMcOBeNCw16UW3a9cu+1xbF16vvvoqQUFB5OTkAJCbm0tQUFCN2rz4gQCjRo3i1KlTDB8+nGuuuYYWLVrUxW6JiIiIiMgV0tMYRUTqyYVkyuWMGjWK1atXEx8fz8cff1xh/RtvvAHA+++/X2GdyWTip59+Kle2fv167r///toF7cIuPPnyUp06dWLJkiUAdOnShcTExAp1Nm7cyIIFCxg5ciRr1qxh/Pjx1ba3f/9+2rZtS5MmTQDbv8ns2bOxWq1MmjTJ/uTNzMxMBgwYUIs9ExERERGRK6GeXSIiTnL33XcTHx9fZ9v74IMPMBp1Wr9UTEwMqampVda57rrrKCoqYtCgQcTExNCyZUuOHz9uf6oiQHx8PMnJycTHx7Njx44Kw0gPHjyI2Wxm2LBh3Hrrrfj6+gK2hxF069atfnZOREREREQqUM8uERFxeVX1ojMajfTo0YO0tLQq5zSbNWtWueVWrVrxxBNP2JdXr15dbv2lCaz27dtX6DW2e/duevbsicFgqMFeiIiIiIhIXVCyS0RE3F5lwxsdITo6mujoaKe0LSIiIiLSWGm8i4iIiIiIiIiIuA0lu0RERERERERExG1oGKM0OHklkJ7jnLYjA8Hf0zlti4iIiIiIiEjtKdklDU56Dty3zjltzxkAsSHOaVtEREREREREak/DGEVERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjb0AT14hZSnzWTvycJg4cnBpMH3m2upfXEGQTGDHN2aCIiIiIiIiLiQOrZJW6j9cQZxC3Ko8fcE/hF9WPfyzdTln/O2WGJiIiIiIiIiAMp2SVux+jpRfPhU7Ccz+P8sXRnhyMiIiIiIiIiDqRkl7gdS1Ehp1fNwegbiHfrTs4OR0REREREREQcyGWSXcXFxUyfPp127drh4+PD0KFD2bBhAwaDgaVLlzo7PGkAjs6fTsodQWz/XTgFGVuJnPYVJt9AZ4clbsxqrfzvUn8s+pxFRBqUUgtkF8H5UmdHIiIilyoohexiKGuE19AuMUG91Wpl3LhxbNiwgeeff57IyEjmz5/PmDFjAIiLi3NYLMYmHvR9+T5CB3bHOySQghNn2f3+1+x5/2uHxSCVa33Hi7Qa87izw5BGoMwKnx+AhRm/lI39Dm7rAGPDwMNlfkZo2KxWWHUU5u/7peymVTA2HO7sAD4u8Q0mIuKeTp+Hj9Jh6UHILwUD0L8F3BUJvZo7OzoRkcbt++PwcTokZ9mWmzWxXUNP7Aj+nk4NzWFc4lbh3XffZfny5aSkpNC1a1cAzGYzERERBAcH0759e4fFYjSZKDyZzcrbXyQ38wTBXcIYvmAa509lc2BZksPiEBHnKLPCM5vg22O2C/sLDuXD69th/Ul47TolvOrC27tg3r7yXZBPnYd/74Hvj8G/B4CfS3yLiYi4l6MFMGWtLeF1obOAFUg6BT+ehOmxMMpxl+ciInKR9/fCv/aA8aKblbPF8N5e+PYo/GcgBDVxXnyO4hK3YzNnzmTixIn2RBeAyWQiIiKCuLg4zpw5w29+8xuioqLo3r07t9xyC6dOnaqXWEoLi0h+bSG5B46D1UrWzgMcWrmJFr2j66U9EWlYlhywJbrglwv8i/++5kT5Hl9yddadsCW6ACyVrN9zDv65y6EhiYjIz57bAmfOl/8eBNtQcyvwUgocyXdCYCIijdy2LFuiCypO/2EFMvPg79sdHpZTNPhkV1paGhkZGYwdO7bCukOHDhEXF4fBYODJJ58kNTWV7du307FjR55++mmHxGfwMNGyTzRnd2c6pD0RcR6rFRbsL9+j61IGYNF+zS1VW59mlP816lJWYNkh29AZERFxnPQcSMmq/IeIC6zAEl0ai4g43KcZVSd5LNimCTlz3lEROU+DHwBy5MgRAFq0aFGufM+ePWRmZhIXF0dwcDBms9m+rm/fvsyePbvGbQQEBFBcXFyhvKNHM54MHFjle/u+PIWSvEL2ffZ9jdtrrIYMMbOv9Gy19Xyj+tHxpcQr2nbUjCurfzlDhpgpSNVwVKmcKSCELu8frbKOFThWCAGtIyjNqrquXF7XeVkYvf2qrHO+DNr2HErBnnUOisr9dfvUduXj5eXt5Ejcmz5nx9FnXfeCb/g9bX73dpV1rMC/lv/E43GDHRNUI6Hj2TH0OTuGPuf6ce07B/AMDq2yTpkVoobeQu7m/zkoqqtnsVT100rVGnzPrpCQEADS09PtZVarlaeeegqLxVJhcnqLxcLs2bMZNWpUvcd23fOTuKZnFKvunIGlRN0LRNyeoao+XRUq11sYjUJNP+sr+jcREZFaq+F516DvQRERx9M1tF2D79kVHR1NZGQkzzzzDJ6envj7+zN79mySk5Px9fUlKiqqXP1HHnkEf39/Hn744Rq3kZubW2n5iQ17+Hr0tErX9X7hHkIHduebcX+jKKvy90t5CQmJtOx9bbX1Us7AfU7qqJGQkEhsiHPalobPYoXRq+F4YcV5Si52jTesP7ofk/t/h9SbB3+EzaerHibTxAiZG74lsBFMsOkovb60/VlUVOTcQNycPmfH0Wdd93Znw11rqq5jAO67sQ9/flyfe13S8ewY+pwdQ59z/XhyIyQer3pKFSOwa/V/aeHjsLCu2rp16xg4sOrRdpfT4Ht2eXh4sHjxYkJDQ5k0aRJTp05lxIgRDB48mB49emA0/rILjz/+OGlpaSxatKhceV3r/eK9hA7qYUt0ncmpt3ZEpGExGuC2DlUnugDGhaNEVy3dFlF1ossAjGiLEl0iIg4WHQRdgqqeVxFsj7gXERHHGh9RfaLLHIpLJLpqq8H37AKIiYkhKan8PEr//Oc/GTz4l3kAnnnmGTZv3sz//vc/vLy86i0Wv7bN6XLfbyg7X8yt62fZy0+s38PqO2fUW7si0jDcHgHrT9oer16ZXiEwsaNjY3JHg1vBmDD4PNOW2Lr4O9sAhPnDo12cFJyISCP3QhzcuxbySsr/MGHEtvxYN9t5WkREHKtXc7iro+2p5pVdQ7f0gSe7Oyk4B3OJZNelCgsLSU1NZerUqQDs3LmTV155hc6dO9O/f38AIiIi+Pzzz+u87fzDp/kw9NY6365cudLcLNL+OpzzR1KJW5RXbt2JpW9y4os3uGbEg4SOr3woqsjV8DDCm33gk32wKANO/fwkk+ZecGsE3N0RmpicG6M7MBjgmR5wbVOYv9/2mGQAfw9bEmxyJ/XqEhFxlvAAmHc9vJcGXx+Gkp8zXt2awT2d4PpWzo1PRKQxe7QLRAbCvHRI/3nGJR8TjG4P93aG4PrrG9SguGSya9u2bZSVldknp+/atStWa3UDi8TdmHwC6PS3Vex/bXyFdcGDJ+ITEUv+nh+dEJm4O0+j7WL+rkg4+fP8XS28bYkwqTsGg20YzC1hcPK87WaqhbeSiSIiDUEbP3guFh7vBtcvt5W9P8ipIYmICLZr6JvawW/awnXLbGWrbgTvRnYN7ZLJrj59+ii5JRg8PPEICK50nWdQC84fUuZB6pfJAKG+zo7C/RkMti7XIiLS8Pi65N2EiIj7u/iBi40t0QUuMEG9iIiIiIiIiIhITSnZJSIiIiIiIiIibkPJLhERERERERERcRtKdolL2zs9noKMZPZOjydv11qOL3kdgDPffcThDx7jzLcfcvjDJ50cpYiIiIiIiIg4iqaUFJfW+cXV5Zb9uwwEIGTo3YQMvdsZIYmIiIiIiIiIE6lnl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbmqBeGpzIQJgzwHlti4iIOFNiYiKTJ08mLCyMsLAw5s6dW279vHnzCA0NJT4+nkGDBpGcnMyePXto27ZtuXoLFy7kL3/5C8OGDWPOnDkATJ06lZSUFEpKSsjPzyclJYWHHnqI1157DT8/P4fto4iIiEh9UrJLGhx/T4gNcXYUIiIizjNlyhSmTZvGo48+SlJSEv369bOvW7ZsGYsWLQLgs88+4+mnn650G8OHD6dXr168+uqr9rK33noLgBUrVvD9998DMHLkSBYtWsS9995bT3sjIiIi4lgaxigiIiI1kpiYSEREBGazmUmTJlVYP2PGDNLS0i77/qysLHr27Im/v3+FdWvXrqVv377079+fN954A4ANGzYwYMAA+vfvz7Rp0wDYvXs3M2fOrKM9avi6devGkSNH7MtZWVl4e3tjMBgAaNWq1WXfGxISgodH5b9rLl26lNGjRwNw/fXXs2LFijqMWqS82p47AB555BEGDRrEyy+/XGHdgQMHCA0NxWw2c/fdd1dYhsrPMY3tfCIi0pgo2SUiIiI1NmXKFBITE2natClJSUn2covFwrZt2+jUqdNl3xsQEMCqVavo27dvhXUdOnRgzZo1/Pjjj3z11VcUFBQQFxfHunXr+PHHH0lKSiInJ4fo6Gi2bNmC1Wqtl/1raJKSkoiMjLQvp6enExYWVuvtbtq0id69ewPg6+vL2bNna71NkarU5tyxadMmPDw8+OGHH9iyZQsnTpyoUOemm24iMTGRjz76qNLlys4xje18IiLSmCjZJSIiIlfs0h5HW7dupXPnzlW+x9PTk+Dg4ErXtW7dmiZNmgBgMpkwGo14enoCUFZWRuvWrfH19QVsN607d+6si91osN577z3MZjNt2rQhNja2Tre9efNm4uLi7L3DRBzpas4d69evZ+jQoQAMHjyYzZs3V6izYsUKBg0axCeffFLpcmXnGGgc5xMRkcZIyS4RERG5Ypf2OEpLSyM8PLzW2121ahUdO3bE29sbgPnz5xMdHU1QUJB9SF5YWBh79+6tdVsN2YVeMC+99FK58sjISDIzM2u17YuHMAIUFBQQFBRUq22K1NTVnDuys7MJDLQ9RSggIIDs7Oxy60NDQ0lNTWXlypW88847+Pj4lFs+c+aMve6l55jGcD4REWmMlOwSERGRGqtJj6Ndu3ZhNpvLvS6eJP1yDh8+zCuvvGKfTwfgjjvuYM+ePRw9epTt27fX1W64rODgYAoKCuzLEydOZOXKlUyYMIFvv/0WgMceewyAlStXMnHiRL7++uty8yR99913DBs2zL68Zs0abrjhBgftgTRWtTl3BAUFkZOTA0Bubm6F5KyXlxe+vr74+PgwaNAgMjMzyy3v27cPqPwcIyIi7klPYxQREZEau/CUwEt16tSJJUuWANClSxcSExOvaLtFRUXcc889zJ492z6BfVFREV5eXhiNRgICAuw9MTIzMxkwYEDtdqQBu3CTfzmjRo1i9erVxMfH8/HHH1dYf+FG/oYbbqg0ibV27dpyy8uWLdMk3VLvanPu2LhxIwsWLGDkyJGsWbOG8ePHl1ufl5eHv78/VquVTZs28cADDwDYlx9++OFKzzHg/ucTEZHGSj27REREpNZiYmJITU2ttl58fDzJycnEx8ezY8cOjh8/zuuvv878+fPZtWsXv//97zGbzRw5coQvv/wSs9nM9ddfT9u2be0TWKenp9OtW7f63qUG6+677yY+Pr7Otjdr1qxKn5Ap4gg1OXdcd911FBUVMWjQIGJiYmjZsqX93AHw448/0qtXL/r3788NN9zA7t27yy2HhoZWeo4BnU9ERNyVenaJiIhIjVTV48hoNNKjRw/S0tKqfKra6tWrK5Q98cQTAEyePLlc+bhx4xg3bly5st27d9OzZ09Nri7iQuri3DFr1qxyy61atbKfOyrrxXjp8uTJkyucY3Q+ERFxX0p2iYiISJ2obIhSXYuOjiY6Orre2xERx3HEuaMyOp+IiLgvDWMUERERERERERG3oWSXiIiIiIiIiIi4DQ1jlAYnrwTSc5zTdmQg+Hs6p20RERERERERqT0lu6TBSc+B+9Y5p+05AyA2xDlti4iIiIiIiEjtaRijiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRuaoF7cQuqzZvL3JGHw8MRg8sC7zbW0njiDwJhhzg5NRERERERERBxIPbvEbbSeOIO4RXn0mHsCv6h+7Hv5Zsryzzk7LBERERERERFxICW7xO0YPb1oPnwKlvN5nD+W7uxwRERERERERMSBlOwSt2MpKuT0qjkYfQPxbt3J2eGIiIiIiIiIiAO5TLKruLiY6dOn065dO3x8fBg6dCgbNmzAYDCwdOlSZ4cnDcDR+dNJuSOI7b8LpyBjK5HTvsLkG+jssERERERERETEgVxignqr1cq4cePYsGEDzz//PJGRkcyfP58xY8YAEBcX59B4+r5yH+2G98Iz0JeSvEIyv0pi04sfYykpdWgcUl7rO16k1ZjHnR2GiIjL2XEW5u/7Zfm3q2BsOIwLB39PZ0Xlfg7kwif7f1ke/g2Mbg+3d4Dm3s6LS+Rq5BTDpxnw38xfyqZvgTs7wLVBTgtLREQEcJFk17vvvsvy5ctJSUmha9euAJjNZiIiIggODqZ9+/YOjWf3B9+w6YV5lBYW4RUcgPndx+jx6C2kvPGpQ+MQERGpreWH4PlkwPBL2fFCmLXbtu4/AyDIy2nhuY1Np+HRn6DU8kvZ2WKYmw7Lfv6c2/s7Lz6RK3H6PNy3Fg4XlC9fcRhWHoGXe8Kw1s6JTUREBFxkGOPMmTOZOHGiPdEFYDKZiIiIsPfquvnmm4mJiSEuLo5BgwaRkpJSb/Gc23uY0sIi24LBgNViJaBDaL21JyIiUh8O58PzKWABLNaK6zPz4KWtjo7K/eSXwmMbbIkuyyXrrNiSXk9uBGsl/wYiDdFfk+FoQcXyC+eSZzfDyUKHhyUiImLX4JNdaWlpZGRkMHbs2ArrDh06ZE92zZ07l61bt5KcnMzjjz/OvffeW69xdX/4Zu5Mn8eEHe8T3DWMXe9+Va/tiYiI1LX/Hqg6wWIBvj8Oxyu5qZWa+/qQLeF1aaLrAosV0nNha5ZDwxK5KgfyYP2pyx/PVqDMCp9nXqaCiIiIAzT4YYxHjhwBoEWLFuXK9+zZQ2Zmpj3Z1bRpU/u6c+fOYTTWPI8XEBBAcXFxhfKOHs14MnBgpe/Z/s8v2P7PL2jaqQ0dbhlE4cmzNW6vsRoyxMy+0uo/J9+ofnR8KfGKth0148rqX86QIWYKUpPqZFsiIg1d5Osb8QnvUWUdKxAz+l6y13zimKDcUPvHFhB43SgMpstfdlktFkb+cQYnP3vJgZG5v26fngfAy0uTotWV4OG/o839/6yyjsVq5a1lP/FojNkxQTUSOp4dQ5+zY+hzdgxX/5wtlsv9tFK9Bt+zKyQkBID09HR7mdVq5amnnsJisZSbnP6+++6jffv2PPvss8ydO9ch8Z1LO0LWzkwG/b9HHdKeiIhIXakq+VKuntFUz5G4OaMHGAzVVLLqcxaXUJPzhsFg0PEsIiJO1eB7dkVHRxMZGckzzzyDp6cn/v7+zJ49m+TkZHx9fYmKirLXnTNnDgDz5s3jiSeeYPny5TVqIzc3t9LyExv28PXoadW+3+hpIlBzdlUrISGRlr2vrbZeyhm4b50DAqpEQkIisSHOaVtExNH+lgz/O3T54UgXrPn0P3Ru+h+HxOSO5qTCv1OrrmMwmpg78xmGfPSMY4JqJHp9afuzqKjIuYG4kW1ZcO/aqusYgUnDe/PUY/rc65KOZ8fQ5+wY+pwdw9U/53Xr1jFwYOWj7arT4Ht2eXh4sHjxYkJDQ5k0aRJTp05lxIgRDB48mB49elQ6XPGuu+4iISGBM2fO1Hk8ngG+RI430yTQF4Bm0WHETB3L0UTN4CsiIq5lbHjViS4j0L0ZdG5aRSWp1s1hYKyiY5cRCPGCQS0dFpLIVeveDDoGVH0TYcF2fhEREXGWBt+zCyAmJoakpPLzKP3zn/9k8ODBAOTl5XH27FnatWsHwLJlywgODiY4OLjug7Fa6TD2eq57fhLGJh6cP51D5vL1pLy+qO7bEhERqUfdmsGkSJibDgZs83NdYAR8PWBajJOCcyPNveGp7vDKNtvnenGC0YgtEfbSr8Cjwf8EKWIbkfu3X8Hv1kJRWfnj+cJ55IEoiAx0UoAiIiK4SLLrUoWFhaSmpjJ16lQA8vPzGTduHPn5+ZhMJoKDg1m2bBmGaufHuHIleYWsvO2FOt+uiIiIMzwcDe38bAmvQ/m2MqMBhraCB6MhzN+58bmLseG23ltz9sKec7+U974GHrjWlngUcRXXNoUPB8HsPbYntl5IlIf5w+ROcFM7p4YnIiLimsmubdu2UVZWZp+cvmXLlvz0009Ojkrq28F3H6EwI4XAX40gdNwvc5qcP5bOoXcexlJSRMtRfyKozyh2PhSNR5BtPEjHp5fgERBM6l8GUbA/ma6z9tCkeVtn7YaISINiMNiG2Y1uDwfyoLAMQn2gmZezI3M/5lDb63A+nCuGa7yhhY+zoxK5Oh0D4e+94cx5OHHe1hM0zK8Gz2IQERFxAJdMdvXp0wer1Vp9RXEb+WmbMBg9iHrlB/a9eisl2Sfw/DmZdWzh34h4fCEe/kH2+p7Bbej84upy2+jw5Gcc+ehpR4YtIuIyDAaICHB2FI1DWz/bS8QdhHjbXiIiIg2JZocQl5C/dz0BPYYCENBtMAXpmwGwlBRTfPoQB966m/QZoynJPgFAybkTpP7leg5/+KQ9MerZrJVzghcRERERERERh1GyS1xCWX42Jl/bTKdGnwDK8rMBKM05TWHmDsKnzqXlyKkcX/wKAFEvryHqlTVYis+Ts3m5s8IWEREREREREQdTsktcgskviLKCHAAshbmY/IJ+Lm+KT1h3PPyb4d91EOePpALg4W+b6Teo90gKD+50SswiIiIiIiIi4nhKdolL8Ovcm9ztCQDk7lyDb2RPAEzefhibeGMpKaIwcwdNWoRjLS3BUlIEQN6eJLxaRjgtbhERERERERFxLCW7xCX4dboOa0kRqX8ZhG9EDCVZxziTMA+AlqMfY+/0YRya80da3fIkZQXnSH2qP6l/uZ6iI6kE9R0DQMabE8lJXknGGxPI2fqtM3dHREREREREROqJSz6NURqn9g/MKrfs2yEWgMDYeAJj48uti35zc4X3R/z543qLTUREREREREQaBvXsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG1ozq4GZuBbD1GSf571z77n7FAquDN9Hl/f/BxZOzLqtZ3IQJgzoF6bqLJtERERcX+JiYlMnjyZsLAwwsLCmDt3brn18+bNIzQ0lPj4eB588EH27NlDXFwcb775Zrl6t99+O8ePHyc3N5d27drxxRdfAHD8+HEiIiJIS0ujbdu2TJ48mffffx+DweCoXRQREWm0lOyqR636dyX2sfGE9OgAwJlt+0n5+6ccT9rp5MhsYh8bT0hMR769+5Ua1f8k8q56jsjG3xNiQxzSlIiIiDRiU6ZMYdq0aTz66KMkJSXRr18/+7ply5axaNEi1q9fj5eXFwkJCTz++OMkJycTFxdnr7dw4UIA3nnnnXKJrP/3//4fffr0sS/36dOHhIQEhg4d6oA9ExERadw0jLGetI3vyfD50zi0ejOf/ur3fPqr33No9WaGL5hG22G/qvQ9BlPd/XMYPEx1ti0RERERd9atWzeOHDliX87KysLb2xuDwUBGRgbdu3cHoHv37iQlJVW6jWXLljFy5EgAsrOzOX36NOHh4fb1Q4YMYfny5fW3EyIibiQxMZGIiAjMZjOTJk2qsH7GjBmkpaVVu5233nqL+Pj4CuVZWVn07NkTf39/e9k777zDsGHDMJvNlJSUsHv3bmbOnFm7HRGnUbKrnvR56V7SP0tk5+wvKcktoCS3gJ2zv2Tf4u/p/dK9ANy64V/0mDqW33w5g4n7P6F5TEcAPP28Mb/7GHemzePm7/9Ba3NMte216teVO9Pn0XliPLdunM2o1X8HIPT6Hvx2xUzuSJ3LqG/foP2N1wHQ/sbr6P7oGNoMieXO9HncmT4PY5OqO/rdc2wxITEdMZiM3LH3I4Ki2tna7t+Ve44tJuy3tl9DfVoEcffBhXj6+1zdhyciIiLiQElJSURGRtqX09PTCQsLAyAqKorvv/8egDVr1nDu3LkK78/LyyM3N5fQ0FAAZs2axQMPPFCuTlhYGHv37q2vXRARcTtTpkwhMTGRpk2blvuhwWKxsG3bNjp16lTl+0tKSkhJSal0XUBAAKtWraJv374AHDx4kO3bt/Ptt9+SmJiIp6cn0dHRbNmyBavVWmf7JI6jZFc9COzYmoCwlmR8sa7Cuv2fryUwvBWBHWwXQ5HjzKx77F98EnkXZ36eCyvi5oHs//wH5l87iW3/73OGvv8kvq2Cq23Xw8eL5rGRfHH9VL4a8RQB4a2In/s0O/75BQu6TGbzjI8ZPPtPBHcN5+A3G9n+9uccSUjhk8i7+CTyLizFpTXaP2uZhRPrdxM60PYrZ+ig7uRkHCN0YDfb8sDunNm2n5K8whptT0RERMQZ3nvvPcxmM23atCE2NrbSOnFxcYSHh9uHH7Zo0aJCnRUrVnDjjTcCUFhYyK5du8oNdRQRkat3ae/brVu30rlz52rfN2/ePCZMmFDpOk9PT4KDf7nHXrlyJfn5+QwdOpTnn3/eXt6hQwd27mwY0xDJlVGyqx54BwcAUHgiq8K6wpNnbXVCbDOhp85bxbm0I1gtFnuy6fhPuzj49QasZRb2L17D2V2ZhI/sV2FblzIYjWx++RNKC4soKywmYnR/TqzfzYFlSVjLLBz5LpmDKzfRcdzgWu/j8bU7yiW3Uv7+qT351WpAN46t21HrNkRERETq04VeAy+99FK58sjISDIzM+3LL7zwAt999x3+/v7ccMMNFbazdOlSRo8eDcCBAwfYt28fN954I6tWreKhhx4CIDMzs9peCCIiUtGlvW/T0tLKDROvjMViYcWKFfz617+uURsnT57EYDDw3XffkZGRYe8Rpl65rkvJrnpwPisXAJ+WFXtj+bRoZqtzJgeA/COnKtTJP1y+LO/QqRr17CotLKLo57YBfENDyLt0W5kn8A2t/ezvx9Zup2XfLjQJ9CWwQ2syvliHqYkHvqHBhA7sxrEftte6DRERERFnCA4OpqCgALANgzGbzQwbNowuXbrQrl07jh8/zuuvvw5AWVkZe/fupUuXLgBER0fz008/8c033zB8+HBmzZoFQEJCAiNGjHDODomIuKCa9L7dtWsXZrO53OvVV19lyZIljBo1qsZtNW3alMGDbZ1Crr/+elJTU+tiF8SJ9DTGepCz7yi5B08QMao/xy/p4RQxuj+5B0+Qs/8YAFZLxfG/fm2vKbfs3+4aTm2pPptstVjKLRccO0Orfl0v2VYLCo6dqbT+lcjaeQCrxUKX3/2Wkxv3YLVYOLZ2B53viMe3RTNObtxz1dsWERERqW8XboouZ9SoUaxevZr4+HgSExPLrWvVqhVPPPEEACaTiZ9++qnSbXz44Yf2v69fv57777+/tmGLiDQaF56Ye6lOnTqxZMkSALp06VLhHA22CewTExOZN28eKSkpzJkzh/vuu++ybfXr14/58+cDsH37dvvwx8zMTAYMGFAHeyOOpp5d9WTDcx8SedsQuv5+JJ7+PngG+NLl978lcvwQNkz/oMr3turbhXY39MJgMtLhlkE06xLGgf9VfhFVlYylP9KyTzRhN/XBYDTSZkgs7X7di32L1wBQePocfm2aX/VTII//uJMu99/EsbW2XlzH1m2ny/03cXLzXsqKSq5qmyIiIiINwd13313pE7yu1gcffIDRqEtvEZHaiomJqbbn1bPPPsuqVav45ptviI2N5b777ivXKxcgPj6e5ORk4uPjadKkCaWlpZjNZgoKCujTpw9ge2BJt27d6nV/pH6oZ1c9ObRiI6snvkzMn28l9onxAJzZtp/VE1+2J4cuJ+OLtXQcN5jrZ/2R/GNnSLjv7xQcPXPFMeQeOM53977Gr/5yJwP+8RD5h0+x5uG3yfp5IvwDy5LocPNAbt/xPgaDgYU9ptR4knqAYz9sJ/y3/Ti21tZ77djaHTQJ9NN8XSIiIiIiInLVqup9azQa6dGjB2lpaTWaC3H16tVA+V65F5df8NZbb5Vb3r17Nz179sRgMFxZ8NIgKNlVj46t3V5lYmtx7z9UKFs7ddZVtXU8aSefRN5VofxIQgpHElIqfU9xdh7fjP1rjbZv+PmXyIuTYakfrST1o5X25cITZ/kw9NYriFpERERERETkylQ2vLGuRUdHEx0dXe/tSP1QX2qpkWZdw7CUlFY6ob6IiIiIiIiISEOhnl0uZHTiP/Bv27xC+aGVm1nzh7dqvf34T56lZZ9rK5SX5J3H6Gli88vzKc4pqHU7IiIiIiIiIiL1RckuF7LU/Kd63f7qO2fU6/ZFREREREREROqbkl3S4OSVQHqOc9qODAR/T+e0LSIiIiIiIiK1p2SXNDjpOXDfOue0PWcAxIY4p20RERERERERqT1NUC8iIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjb0Jxd4hZSnzWTvycJg4cnBpMH3m2upfXEGQTGDHN2aCIiIiIiIiLiQOrZJW6j9cQZxC3Ko8fcE/hF9WPfyzdTln/O2WGJiIiIiIiIiAMp2SVux+jpRfPhU7Ccz+P8sXRnhyMiIiIiIiIiDqRkl7gdS1Ehp1fNwegbiHfrTs4OR0REREREREQcyCWSXcXFxUyfPp127drh4+PD0KFD2bBhAwaDgaVLlzo7PGkgjs6fTsodQWz/XTgFGVuJnPYVJt9AZ4clIiIiIiIiIg7U4Ceot1qtjBs3jg0bNvD8888TGRnJ/PnzGTNmDABxcXFOicvk3YTR372BT4sgPom8yykxSHmt73iRVmMed3YYTmWxwrdH4dMMSD0HJgP0awG3dYCYYGdH516STto+5y1nbMsxwTA+Aga0AIPBubGJXKmMXFiUAauPwvkyaO8Ht4TDb9uBt8nZ0YlcmexiWHIAlh78pexfu2FcBFzj7bSwREQE2Hzads1xwYM/wrhwGBKqa2ipWw0+2fXuu++yfPlyUlJS6Nq1KwBms5mIiAiCg4Np3769U+KKe+I28g6fxqdFkFPaF7lUqQWmbbHdrBoBy8/lq4/ByqPwp65wZ0dnRugerFZ4exfM21f+c/7pFPx4Em6PgMe66ctaXMf3x+GpjbZk+YXjOS0HXt0GXx6Ef/UDf0+nhihSY4fz4f51cPJ8+fIP0mDxAZjdH6KaOiU0EZFG7729MHsPGC+6Tt58Gjaehpvawl/jyq8TqY0GP4xx5syZTJw40Z7oAjCZTERERFTo1fW3v/0Ng8HAjh076jWmkB4daDMklh2zvqjXdkSuxNx0W6ILfrlhBdsNLMA/dtq+TKR2VhyxJbqg8s95YQZ8dcjhYYlcleMF8PQmKLOWP55/PpzZnW1Leom4AqsVHtsAp89Xsg7IK4E//gQllorrRUSkfq07YUt0wS/XzfDL9cf/DsPC/Q4PS9xYg052paWlkZGRwdixYyusO3ToULlk15YtW/jpp58ICwur15gMJiP9//4APz0zB0txab22JVJTpZbqvxyM6AukLszfX/WJ0wB8ss920yXS0C3JtJ0/Lne4WrH1DK0seSDS0Gw+A/tyyyduL2YBThdBwjFHRiUiIgAL9lffa2v+/vKJMJHaaNDDGI8cOQJAixYtypXv2bOHzMxMe7KrqKiIhx56iAULFmA2m6+4nYCAAIqLiyuUd/RoxpOBA8uVdfvDaM5sz+DET7tp1a9rhffI5Q0ZYmZf6dlq6/lG9aPjS4lXtO2oGVdW/3KGDDFTkJpUJ9tyJO8OcXSa+VOVdSzAtwfP4zVI4zeultEviK4fnqiyjhVIzwX/Vu0pza66roizRb6+Ae+wHhiqGHdrsULX395D9g8LHBiZyJVrdecMmo/6Ewbj5Seas5aV8uAb8zk863cOjEykbnT71PbLg5eXJp+rT/qc64HRSLeF+RgMVfe1OV4IQR16UHQ01UGBuT9XP54tlqvvjt2ge3aFhIQAkJ6ebi+zWq089dRTWCwWe7LrueeeY+LEiYSHh9drPAHhrYi6+wY2vTivXtsRuVIGU80m1KlpPanclXx+Bo8m9RiJSN0wmJpUmeiy19PxLC7A4OEJ1uovinU8i4g4lsHoUW2iy17XQ/crUjcadM+u6OhoIiMjeeaZZ/D09MTf35/Zs2eTnJyMr68vUVFRJCUlsWnTJl599dWrbic3N7fS8hMb9vD16Gn25Za9r8WneVNuWfc2AEYPE55+Pty+830SprzOiZ92X3UMjUFCQiIte19bbb2UM3DfOgcEVImEhERiQ5zTdm1kF8ONK6C0im6/BiAyyMTmoiKHxeVuyqy2z/lsxY6g5QR6wtlD6Xg26J8TRODZzbDqaPVDBr5d8C5dm73rmKBErtKXB+GFlKrrGEwePPu725n82u0OiUmkLvX60vZnka7l6pU+5/px82o4UnD5qRMAvIxwdPdm/Bp0lsK1uPrxvG7dOgYOHFh9xUo06FsxDw8PFi9eTGhoKJMmTWLq1KmMGDGCwYMH06NHD4xGI99//z27d+8mIiKC8PBwDh8+zK9//WtWrlxZ5/FkLPuR//Z/mC/jH+fL+MdZ99i/KSk4z5fxj3NqS1qdtydSU0FNYHibqv9DW4HxEY6KyD2ZDHBruC1xeDkGYEwYSnSJS7g1vOpElxHoHAhdghwUkEgt3NAafE1Vn6NNBhjVzmEhiYjIz8ZFVJ3oMgI3tUOJLqkzDf52LCYmhqSkJAoKCkhNTeXBBx8kOTnZPoTx6aef5ujRoxw4cIADBw7Qtm1bVqxYwQ033FDnsZQVFlNwLMv+KjqTA1YrBceyNFm9ON3D0RDiffn/1L1CYGR7h4bkliZGQseAym+mjECYP9zTydFRiVyd2GAYe5nnuhixJW2nxUINRjqKOJ23B0yPtf390kP2wvKfu9m+K0VExLFuDYcezS5/Dd3SB34f5eCgxK01+GTXpQoLC0lNTS33JEZnOZ60k08i73J2GCKA7Qvig0EwNLT8k058TXBnB/i/vuptVBf8POA/A+HmMGhy0efpabT9GvXeQAjQVAPiIgwGeKoHPNoFgr3Kr+vZHN4bpF5d4lqGt4F/9IHIwPLl7fxgRk+4TT2cRUScwssEs/rZRpp4X/QcEZPBdu7+YJB+jJC65XKdBLdt20ZZWdllk10HDhxwbEDicKW5WaT9dTjnj6QStyiv3LoD/3cP54+kYvD0IvS25wjsMZTzx9I59M7DWEqKaDnqTwT1GeWkyOtfKx949To4fR5u/Hkk74pfg4/L/U9v2AI84dkYW4JgyNe2sm9ugKaa81hckNEAd0fCHR2g71e2si+GQVs/58YlcrUGtoQBLWBfru37MKgJRDVVD0UREWfz8YAnusMfomF3tm0qhcjAij+4idQFl7sF7tOnD1ZrNTPpilsz+QTQ6W+r2P/a+ErXd3jyM5o0b2tfPrbwb0Q8vhAP/yAHReh8zS/6VUSJrvpzcQ8uJbrE1Xlc1FNRiS5xdQaD7Qbq0h5eIiLifH4e0Ku5s6MQd6dBTeJyDB6eeAQEX24t+1+/jf2vjac0NwtLSTHFpw9x4K27SZ8xmpLsEw6NVUREREREREQcS8kucSttp7zJtTPX0WzgbRxf/AqlOacpzNxB+NS5tBw5leOLX3F2iCIiIiIiIiJSj5TsErfi4d8MgKDeoyg8tBOTX1N8wrrj4d8M/66DOH8k1ckRioiIiIiIiEh9UrJL3EpZQS4AealJeLWIwOTth7GJN5aSIgozd9CkRbhzAxQRERERERGReqWpq8Ul7Z0eT0FGMnunx9N6wvPk7Umi1S1PcOCtuynJOYXR04vwRz8EoOXox9g7fRgGo4nwP37o1LhFREREREREpH4p2SUuqfOLq8st+3cZCEDHZz6vUDcwNp7A2HiHxCUiIiIiIiIizqVhjCIiIiIiIiIi4jaU7BIREREREREREbehZJeIiIiIiIiIiLgNzdklDU5kIMwZ4Ly2RURERERcSWJiIpMnTyYsLIywsDDmzp1bbv28efMIDQ2lefPmTJ06FYC0tDRmzZrFzTffbK93zz33kJqaipeXF8899xxDhw7l8ccfZ+7cufzjH/9g4sSJAEyePJn3338fg8HgqF0UEbkiSnZJg+PvCbEhzo5CRERERMR1TJkyhWnTpvHoo4+SlJREv3797OuWLVvGokWLMBgMJCYmAmA2mxk2bFiF7Xz22We0bdvWvvzEE0/QrVu3cnX69OlDQkICQ4cOrZ+dERGpJQ1jFGmkEhMTiYiIwGw2M2nSpArrZ8yYQVpa2mXfn5WVRc+ePfH3979snUceeYRBgwbx8ssv880332A2mzGbzYSEhJCSksLu3buZOXNmneyPiIiIiEC3bt04cuSIfTkrKwtvb+9yvbCOHz+On58fAQEB5d5rMBi47bbbGD9+PFlZWQC0bNmyQhtDhgxh+fLl9bQHDVttr6EveOutt4iPr/jE+Mqusd955x2GDRuG2WympKRE19AiNaBkl0gjNmXKFBITE2natClJSUn2covFwrZt2+jUqdNl3xsQEMCqVavo27dvpes3bdqEh4cHP/zwA1u2bCEuLo7ExEQSEhLo0KEDMTExREdHs2XLFqxWa53vm4iIiEhjlJSURGRkpH05PT2dsLCwcnWWLVvGyJEjK7z3zTffZN26ddx222288sorl20jLCyMvXv31l3QLqY219AAJSUlpKSkVLru0mvsgwcPsn37dr799lsSExPx9PTUNbRIDSjZJSIVfgHcunUrnTt3rvI9np6eBAcHX3b9+vXr7V3bBw8ezObNmwHYuHEjvXr1sv+62KFDB3bu3FnbXRARERFp1N577z3MZjNt2rQhNja2yrrLli1j1KhRFcqbNWsGwKhRo3R9VgNXcw0NtjnUJkyYUOm6S6+xV65cSX5+PkOHDuX555+3l+saWqRqSnaJSIVfANPS0ggPD6/VNrOzswkMtM34HxAQQHZ2NgBLly5l9OjR9nqN/ZdBERERkbpwobfRSy+9VK48MjKSzMxM+3J+fj7nzp2jdevWFbaRm5sL2K4NIyIiLttWZmZmtb2XGoOruYa2WCysWLGCX//61zVq4+TJkxgMBr777jsyMjLsPcJ0DS1SNU1QL9KIvffee6xevZqBAwde9hfAXbt28Yc//KFc2Y033sjTTz9d5baDgoLIyckBbBdOHTt2BCAhIYG//vWvtQ9eRERERKoVHBxMQUGBfXnlypXccMMN9uXjx48zb948nnjiCe6++25OnTqFl5cXH374IQCvv/46H374IQaDgZMnT/LnP/+ZhIQERowY4ehdaTBqcw0dGRlZaa+6y2natCmDBw8G4Prrryc1NbXannsiomSXSKN24ak9l+rUqRNLliwBoEuXLvan9lyJ3r17s2DBAkaOHMmaNWsYP348+/fvp23btjRp0sReLzMzkwEDBlz1PoiIiIg0dhceAnQ5o0aNYvXq1cTHxzNmzBjGjBljX9eqVSueeOIJAD7//PMK733iiSfs6y9Yv349999/f90E74Jqcw09Y8YMEhMTmTdvHikpKcyZM4f77rvvsm3169eP+fPnA7B9+3b78EddQ4tUTcMYRaSCmJgYUlNTq60XHx9PcnIy8fHx7Nixg+PHj/P6668DcN1111FUVMSgQYOIiYmhZcuWFYYwgm3S1EsfZy0iIiIidefuu++u9Ml/V+uDDz7AaNSt5KVqcg397LPPsmrVKr755htiY2O57777yl1DQ/lr7CZNmlBaWorZbKagoIA+ffoAuoYWqY56dok0UlX9Amg0GunRowdpaWlVzsewevXqCmUX//I3a9ascuv+9Kc/lVvevXs3PXv2LPcobBERERGRhqourqEvuHAtfXHvuovLL3jrrbfKLesaWqR6SnaJSKUq65pd16Kjo4mOjq73dkREREREHEHX0CINg/qeioiIiIiIiIiI21CyS0RERERERERE3IaSXSIiIiIiIiIi4jY0Z5c0OHklkJ7jnLYjA8Hf0zlti4iIiIiIiEjtKdklDU56Dty3zjltzxkAsSHOaVtEREREREREak/DGEVERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbmrNL3ELqs2by9yRh8PDEYPLAu821tJ44g8CYYc4OTUREREREREQcSD27xG20njiDuEV59Jh7Ar+ofux7+WbK8s85OywRERERERERcSAlu8TtGD29aD58CpbzeZw/lu7scERERERERETEgZTsErdjKSrk9Ko5GH0D8W7dydnhiIiIiIiIiIgDuUyyq7i4mOnTp9OuXTt8fHwYOnQoGzZswGAwsHTpUmeHJw3A0fnTSbkjiO2/C6cgYyuR077C5Bvo7LBERERERERExIFcYoJ6q9XKuHHj2LBhA88//zyRkZHMnz+fMWPGABAXF+ewWAa+9RARYwZiKSm1lyX+7g2OJKQ4LAapXOs7XqTVmMedHYZTWa2w/hQsPvBL2avb4NZwiFTeT1xQRi58dgDWnoBSC0Q1tR3P/VuAweDs6ESuTHYRfHEQvjkM2cXQyhdGt4cRbcDbJa7IRMTRLFbbd+B/D/xS9sYOGBcO7f2dFZV72nIGPsv4ZfmFFBgfDtcGOSkgEakVl7i0evfdd1m+fDkpKSl07doVALPZTEREBMHBwbRv396h8ez9eDXrn33PoW2KVMdihVe2weeZYLwoCbDkgO0CaVqs7aZKxFUsPwTPpwBWsPxcdvo8/HACbmoLz8WBSQkvcRHpOfDgj3C2+JeyM0Ww4yws2A//7g/BXs6LT0QanlILTNsCq4+WH46zcL8tKTOjJwxr7bTw3IbVCm/vgnn7yn/OXx2ELw/Cn7vCHR2dFp6IXCWXGMY4c+ZMJk6caE90AZhMJiIiIuy9usLDw7n22muJjY0lNjaWFStWOCtcEadYsN+W6AJb4usCC2AFXkqB7VlOCEzkKuw5B88n245ly0XlF/7+v8MwT8+fEBdRXAaP/ATnisuXXzhVH8iFv2xyeFgi0sD9Z68t0QXlvwutQJkVntls6wEttbPskC3RBZVfc7y5E3466eioRKS2GnyyKy0tjYyMDMaOHVth3aFDh8oNYVy8eDEpKSmkpKTw61//ut5i6nDLICbs+oCb17xFjz/egsHU4D9GcXNlVvh4X9V1DMDCjKrriDQUi/ZXX+eTfbZfvUUaum+Pwanz5W+iLmYBNp+BveccGZWINGTny6r+LrRi65H0qa7tasVqtf14VlVHcSO2aw4RcS0NfhjjkSNHAGjRokW58j179pCZmVkn83UFBARQXFxcobyjRzOeDBxYrmzXe8vZ9OI8zmflEtKjA4P/NRWTVxOSX1tY6zjc3ZAhZvaVnq22nm9UPzq+lHhF246acWX1L2fIEDMFqUl1si1H8g7vQafXN1ZZxwJ8vb+Av/dv5pigGolun54HwMvL28mRuJcuHxzH5F/1sXq2GJr3GERh2gYHReX+dDzXj3ZT59G07y0YTJe/7LJaLQx94G+cWvKqAyMTkYbKr5uZDn+teqSKBZi/5SjPXRfhmKDckOc1YVz7r71V1rEAP5604O0XiLW0xDGBidQRV7+2s1iu/pftBt8lKSQkBID09F/Gq1itVp566iksFku5ZNedd95Jjx49+MMf/kB2dna9xJO1PYPzZ3LAauXM1n0k/30REaMH1EtbIjVlbOJTo3oGT00II67B0KRmX8g1PfZFnMnYxKf6JypYrBi9dDyLiE2Nr+30PVgrNf6cDUYMHrqOFnElDb5nV3R0NJGRkTzzzDN4enri7+/P7NmzSU5OxtfXl6ioKAB++OEH2rVrR1FREVOnTuXhhx/m448/rlEbubmVD3Y/sWEPX4+eVvWbLdaq+72KXUJCIi17X1ttvZQzcN86BwRUiYSERGJDnNN2bWQVwY0ry8/VdSkDEB5oYnNRkcPiagx6fWn7s0ifa526IxHScn6Z06gyBmD3upW01HV+ndHxXD/e3mUbJlPl8Wwy8e8Xn+Y3Hz7tsLhEpOE6lAdjvqu6jhHo2a4ZKTpnX7WCUoj/Boqr6TwS4gUF2Wf0JGhxOa5+bbdu3ToGDhxYfcVKNPieXR4eHixevJjQ0FAmTZrE1KlTGTFiBIMHD6ZHjx4YjbZdaNeuHQBeXl784Q9/YN26+smWhI/qj2eALwDNosOIeWwcB75yvWFv4l6CvWBIq6r/Q1uBW8MdFJBILd0aXnViwAgMbIkSXeISxrSvPnHr7wFD9VQ1EflZO3/oFVL1tZ0FuFUjGGvF1wNualf152wAxoVX30FXRBqWBt+zCyAmJoakpPIJpX/+858MHjwYgPz8fEpLS2natClWq5WFCxcSGxtbL7Fce8+v6TfzfoyeJgpPZLNv8fds+3+f10tbIlfikS6w8TTklVbs4WUAugTBze2dEZnIlfttO9sTF7dlVUwSGA3ga4I/dnFKaCJXrJ0/TO4EH6RVXGfAdow/3QO8TY6OTEQasse6wb1roais8gdc9G4Ow5Ukr7XfdYa1J+BMJQ8SMQLh/nB7B2dEJiK14RLJrksVFhaSmprK1KlTAThx4gRjx46lrKyMsrIyunTpwr/+9a96afubW/5aL9sVqa22fvDBIHh1my3pdYGHAUa0hce7g7dL/o+XxqiJCf7Z1/a4768OQclFV5+xwbbEQHiA8+ITuVJ/uBaaNbElvM5e9EycNr7waBf16hKRijo1hfcGwsztsDXrl/ImRhjdHv7YFTwa/Didhq+FD3wwEF7ZBj+e/OVHNqPBlkx8sjv4ezo1RBG5Ci5567tt2zbKysrsk9N36NCB5ORkJ0cl9e3gu49QmJFC4K9GEDruGXv5iWX/x9k1C8DkQfgfP8Tk7c/+v98OQPHpQ7S46RFajPwjB/5xF8WnD2HyC6LDk59h9GzirF2pN2H+MLs/HMyDvTm2RFdsMARpPk1xQT4e8GwMPBwNw76xlS0eavuFVcTVGAxwR0cYHwF9v7KVzRkAMcEaGiMil9f554TX/lzby9MIPUOUfKlrrXzh//rC0QLYnW3rddsjGJq75gPsRAQXTXb16dMHq7Wq2S/E3eSnbcJg9CDqlR/Y9+qtlGSfwDOoJQBn1ywg6rUk8vckcfqbf9N28t+JmpEIwP6/T6Bpz99QeGAbRi9fol7+nmOfvUxOykqCrvutE/eofrX3t71E3EHTi/LSSnSJq7u4F4YrPhBFRJyjQ4DtJfWrta/tJSKuTx1fxSXk711PQI+hAAR0G0xB+mb7Os/m7bCWFFFWcA6Tf7C93FpaQvGJDLzbdMYzuDVWSxkAZQXn8LionoiIiIiIiIi4D5fs2SWNT1l+NqawbgAYfQIoy8+2r/PvMpCdD0UDVqJe/dFenrsjEf9uZgA8/IMpyz/Hzoei8WjagjZ3veLA6EVERERERETEUdSzS1yCyS+IsoIcACyFuZj8ggAoK8gh+8f/0u3faXT8y+ccW/i8/T3ZG74kqM9oAHJSVuLVMoKus3YT1Odmzv6w0NG7ICIiIiIiIiIOoGSXuAS/zr3J3Z4AQO7ONfhG9vx5jQGjtx8Gkwcm/+ByPb7y967Hr3Mf24LVginANnTRIyCY0ovqiYiIiIiIiIj7ULJLXIJfp+uwlhSR+pdB+EbEUJJ1jDMJ8zD5BuAX1Y89Tw0g4/XbaHnz4wAU7E/GNzwGg9F2iAfG3kBB2kZSnzVzJmEewddPcObuiIiIiIiIiEg90Zxd4jLaPzCr3LJvh1gAWt/+HK1vf+6SdXGEPfwf+7LBw5OOf1lS7zGKiIiIiIiIiHOpZ5eIiIiIiIiIiLgNJbtERERERERERMRtKNklIiIiIiIiIiJuQ3N2SYMTGQhzBjivbZG6kpiYyOTJkwkLCyMsLIy5c+eWWz9v3jxCQ0OJj49n0KBBJCcns2fPHtq2bVuu3nPPPcf3339PUVERb775Jv379+f222/n+PHj5Obm0q5dO7744gsmT57M+++/j8FgcORuioiIiIiIC6rp/Uq7du249957MRqN9OrVi3/84x/l6lV2b/L+++8zZ84cWrRowbx58/Dx8eGBBx5gzpw5Dtk3JbukwfH3hNgQZ0chUjemTJnCtGnTePTRR0lKSqJfv372dcuWLWPRokUAfPbZZzz99NOVbmP69Om88MILHDp0iD/+8Y8sWbKEhQsXAvDOO+/Yk1t9+vQhISGBoUOH1vNeiYiIiIiIO6jJ/UpWVhYrVqzA39+fu+66i71799K5c2d7vUvvTUpLS5k7dy5r165l+fLlzJkzhz/96U9cc8017Nu3j44dO9b7fmkYo4iIA3Tr1o0jR47Yl7OysvD29rYnqlq1anXZ93p6egKQl5dH9+7dy61btmwZI0eOBGDIkCEsX768rkN3CYmJiURERGA2m5k0aVKF9TNmzCAtLa3KbTzyyCMMGjSIl19+ucK6rKwsevbsib+/PwDffPMNZrMZs9lMSEgIKSkplJSUMH78eMxmM6+//joAu3fvZubMmXWwhyIiIiIi9aeq+5WQkBD7dbDJZLrsSJIL9yanT5+mffv2GI1GunfvTlJSEgBms5mvv/66/ncGJbtERBwiKSmJyMhI+3J6ejphYWE1fv9dd93F8OHDGTJkiL0sLy+P3NxcQkNDAQgLC2Pv3r11F7SLmTJlComJiTRt2tT+hQpgsVjYtm0bnTp1uux7N23ahIeHBz/88ANbtmzhxIkT5dYHBASwatUq+vbtC8CNN95IYmIiCQkJdOjQgZiYGJYsWUL//v1JTExk8+bNnDp1iujoaLZs2YLVaq2fnRYRERERqQM1uV/ZuXMnp0+frvS6+uJ7k2uuuYb09HTOnz/PmjVrOHfuHODY+xUlu0RE6tF7772H2WymTZs2xMbGXvV25s2bx4YNG3juuefsZStWrODGG2+sgyjdy6W/Sm3durVcN+vKrF+/3j78c/DgwWzevLncek9PT4KDgyu8b+PGjfTq1QuDwUBGRoa95110dDQbN24EoEOHDuzcubNW+yQiIiIiUh9qer+Sk5PDww8/zLvvvlvp+ovvTUwmE0888QQ33ngjW7dupWXLlvURepWU7BIRqUcXehu99NJL5cojIyPJzMys0TaKiooA8Pf3x8/Pz16+dOlSRo8ebV/OzMyssvdSY3Hpr1JpaWmEh4dX+Z7s7GwCA21PqAgICCA7O7tGbV38bxAVFcX333+P1Wrlhx9+cMovWCIiIiIiV6Im9ytWq5V7772XF154gdatW1e6nUvvTW655RYSExPp06cPI0aMABx7v6Jkl4iIEwQHB1NQUGBfnjhxIitXrmTChAl8++23ADz22GMAPPjgg5jNZm666SaeffZZAMrKyti7dy9dunSxbyMhIcH+RdIY1eRXqV27dtnn2rrwevXVVwkKCiInJweA3NxcgoKCatTmxQ8EGDVqFKdOnWL48OFcc801tGjRoi52S0RERETE4S6+X0lMTOS7775j+vTpmM1mNm/ezPHjx+3z1FZ2b/KHP/yBYcOGsWbNGsaPH2/fjqPuV/Q0RhGRenIhmXI5o0aNYvXq1cTHx/Pxxx9XWP/GG28A8P7771dYZzKZ+Omnn8qVrV+/nvvvv792QbuwC0+SuVSnTp1YsmQJAF26dCExMbFCnY0bN7JgwQJGjhxZ7gu5Kvv376dt27Y0adIEsP2bzJ49G6vVyqRJk+xPssnMzGTAgAG12DMRERERkbp3JfcrWVlZFdY/8cQTQOX3Jv/617/KLZeWlnLy5MlyIzDqk3p2iYg4yd133018fHydbe+DDz7AaNRp/VIxMTGkpqZWWee6666jqKiIQYMGERMTQ8uWLcv9WgUQHx9PcnIy8fHx7Nixo0JX7YMHD2I2mxk2bBi33norvr6+gG1yz27dutXPzomIiIiI1JO6vF/x8PDgvffeq5Nt1ag9h7UkIiJST6r6VcpoNNKjRw/S0tKqnCNg1qxZ5ZZbtWpl/7UKYPXq1eXWX5rAat++fYVeY7t376Znz56XfTyziIiIiIjUPSW7RETE7VU2vNERoqOjiY6OdkrbIiIiIiKNlca7iIiIiIiIiIiI21CyS0RERERERERE3IaSXSIiIiIiIiIi4jY0Z5c0OHklkJ7jnLYjA8Hf0zlti4iIiIiIiEjtKdklDU56Dty3zjltzxkAsSHOaVtEREREREREak/DGEVERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjb0AT14hZSnzWTvycJg4cnBpMH3m2upfXEGQTGDHN2aCIiIiIiIiLiQOrZJW6j9cQZxC3Ko8fcE/hF9WPfyzdTln/O2WGJiIiIiIiIiAMp2SVux+jpRfPhU7Ccz+P8sXRnhyMiIiIiIiIiDuQyya7i4mKmT59Ou3bt8PHxYejQoWzYsAGDwcDSpUudHZ40IJaiQk6vmoPRNxDv1p2cHY6IiIiIiIiIOJBLzNlltVoZN24cGzZs4PnnnycyMpL58+czZswYAOLi4hweU9thvyLuqdsJ7Nia0rxCdvx7GTtnf+nwOOQXR+dP5/hnL2Hw8MK7XRcip32FyTfQ2WGJmzqQB/898Mvya9vh1nDoEOCsiNzTiUL4PPOX5eeTYWwYdGsGBoPz4hKRhqvEAt8dg2UH4dR5CGoCv2kHv24N3i5x5SsiIlI7p8/D0oO/LD+7GcaGQ1xw47mGdomv/HfffZfly5eTkpJC165dATCbzURERBAcHEz79u0dGk/rwTH0e/33rH30nxxP2omHjxd+bZo7NAapqPUdL9JqzOPODkMagc8ybMmtiy3OgE8z4M9d4Y6OzonL3Xx/HJ7eBKWWX8qWH4KvDsGEDrbPurF8WYtIzWQXwUNJkJpjG75gwfbn5jPwwV74d39o5evkIEVEROrRhlPw5w1wvuyXslVHYcURGNkOpsWCqRFcQ7vEMMaZM2cyceJEe6ILwGQyERERYe/Vdf78eR588EE6depE9+7duf/+++stnrgnb2fbW//l2NrtWMsslOQVkp16qN7aE5GG46eTMHM7WLG9LriQj3lzJ6w57oTA3My+HHhqoy3RVdnnvGA/LMpwRmQi0pA9tQnScmx/v3C+uPDn0QJ49CewWCt7p4iIiOs7VgB/Wg9FZeXLL3z3LTsE7+91fFzO0OCTXWlpaWRkZDB27NgK6w4dOmRPdj355JN4e3uzd+9etm/fzosvvlgv8Xj4eNE8tiM+1wQx5of/47Ztcxj64VP4t2tRL+2JSMPyUXrVJ07jz3WkdhZl2L6Uq7onnZsOZbppFZGf7c629eCyXGa9BdifB0knHRiUiIiIAy0+AMWWqq+h5++vmAxzRw1+GOORI0cAaNGifDJpz549ZGZmEhcXR15eHh999BGHDx/G8POYlpYtW9a4jYCAAIqLiyuUd/RoxpOBA8uVNQnyw2A0EnZTH1ZNeInCM+fo/cJkhrz3BMtueOJKd69RGTLEzL7Ss9XW843qR8eXEus7nEoNGWKmIDXJKW1Lw2f09qfrvDNV1rEAKVng27w1ZblV15XLi37/GB4BwVXWOXUeQrr2p3DfZgdF5f66fXoeAC8vbydH4t70OdePlrc/zzVjnsRgNF22jrWslLtmzOXIO39wYGQiIiKO0fmfu/Fq2aHKOrkl0Lrvb8jb9q2Dorp6FsvlfsKqXoPv2RUSEgJAevovXSWsVitPPfUUFouFuLg49u3bR0hICH/729/o1asXZrOZtWvX1ks8JXm2C9Rdc5aTd/gUZYXFbHllPiHdIzRvlxNFzUjUfF1S74zefjWv61XzulKR0atmk+oYvf3rORIRcRVGb3+wVn9RrPOGiIi4K1MNv+Ou5L7GVTX4nl3R0dFERkbyzDPP4Onpib+/P7NnzyY5ORlfX1+ioqJISUlh//79xMXF8frrr7N+/XpGjhxJeno6gYHVP40vNze30vITG/bw9ehp5cpKcgvIO3QSrBo7c6USEhJp2fvaauulnIH71jkgoEokJCQSG+KctqXhK7XAsG8gv7Tqet4mOH0wDe/Ldy6Qaoz7zvbEy+rOtDvXriRUk03XmV4/P1S4qKjIuYG4OX3O9WNRBry+veo6RpMHf558G3947TbHBCUiIuJAU36A7WcvP6T/gh+/+oxOTR0SUq2sW7eOgQMHVl+xEg2+Z5eHhweLFy8mNDSUSZMmMXXqVEaMGMHgwYPp0aMHRqOR9u3b4+HhwYQJEwDo06cPzZs3Z+/e+pl5LfWjlUTfdxO+rUMweXkS9+TtnN66j/wjp+ulPRFpGDyMMKo9VPXwEiPw23Yo0VVLY8OrTnQZgb7XoESXiNiNaANNanBlO9qxD/EWERFxmFvCq050GYEuQbhEoqu2GnyyCyAmJoakpCQKCgpITU3lwQcfJDk52T45ffPmzRkyZAirVq0CYO/evZw8eZLIyMh6iWf7rKUc+S6ZUStfY9yWd/FtGUzClNfrpS0RaVgmRUJz78pPnkYgyAsmd3J0VO5ndHvoHFh5YtEINDHBI10cHZWINGSBTeCh6Krr3BUJbdx/5IaIiDRSN7SB2ODKr6ENgNEAf+7q6KicwyWSXZcqLCwkNTXVnuwC+Pe//83LL79M9+7duf3225k3bx5BQUH1E4DVyuYZH7Ow2xQWdp3Md5NnqleXSCPR3BveHwi/qmS4a0ywbV1LH8fH5W58PODf/WFIaMUv6w4B8E5/iGoEv0iJyJW5syM83R0CPcuX+5rgD9fCI9Ukw0RERFyZpxHe7gsj2toSWxdr7w//6k+jmbanwc/ZVZlt27ZRVlZWLtnVoUMHEhMTnReUOFxpbhZpfx3O+SOpxC3KK7fuxNI3OfHFG1wz4kFCx0+7zBZErk6oL/x7AGTkwtYsW1n3ZtCx+ikC5QoENoHXroPjhbDxFJRYoHNT6BoEhqrGkopIo3ZrhG3I+Y8n4fGNtrKVvwZvl7zqFRERuTK+HvDCr+DRLvDTSSiyQMcA2w/zjeka2iW/9vv06YNVE8Q3eiafADr9bRX7XxtfYV3w4In4RMSSv+dHJ0QmjUVEgO0l9auVD4zUHDsicgWamMAc+suyEl0iItLYNPeG3zbia2iXHMYoAmDw8MQjILjSdZ5BLTAYdHiLiIiIiIiINDbKBoiIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2lOwSl7Z3ejwFGcnsnR5P3q61HF/yOgBnvvuIwx88xplvP+Twh086OUoRERERERERcRQ9m0ZcWucXV5db9u8yEICQoXcTMvRuZ4QkIiIiIiIiIk6knl0iIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4Dc3ZJQ1OZCDMGeC8tkVERJwpMTGRyZMnExYWRlhYGHPnzi23ft68eYSGhhIfH8+gQYNITk5mz549tG3btly9hQsX8pe//IVhw4YxZ84cAKZOnUpKSgolJSXk5+eTkpLCQw89xGuvvYafn5/D9lFERESkPinZJQ2OvyfEhjg7ChEREeeZMmUK06ZN49FHHyUpKYl+/frZ1y1btoxFixYB8Nlnn/H0009Xuo3hw4fTq1cvXn31VXvZW2+9BcCKFSv4/vvvARg5ciSLFi3i3nvvrae9EREREXEsDWMUERGRGklMTCQiIgKz2cykSZMqrJ8xYwZpaWmXfX9WVhY9e/bE39+/wrq1a9fSt29f+vfvzxtvvAHAhg0bGDBgAP3792fatGkA7N69m5kzZ9bRHjV83bp148iRI/blrKwsvL29MRgMALRq1eqy7w0JCcHDo/LfNZcuXcro0aMBuP7661mxYkUdRu0aans8AzzyyCMMGjSIl19+ucK6AwcOEBoaitls5u67766wDJUf943tGBcREakPSnaJiIhIjU2ZMoXExESaNm1KUlKSvdxisbBt2zY6dep02fcGBASwatUq+vbtW2Fdhw4dWLNmDT/++CNfffUVBQUFxMXFsW7dOn788UeSkpLIyckhOjqaLVu2YLVa62X/GpqkpCQiIyPty+np6YSFhdV6u5s2baJ3794A+Pr6cvbs2Vpv0xXV5njetGkTHh4e/PDDD2zZsoUTJ05UqHPTTTeRmJjIRx99VOlyZcd9YzvGRURE6oOSXSIiInLFLu1xtHXrVjp37lzlezw9PQkODq50XevWrWnSpAkAJpMJo9GIp6cnAGVlZbRu3RpfX1/AliDYuXNnXexGg/Xee+9hNptp06YNsbGxdbrtzZs3ExcXZ+8dJld3PK9fv56hQ4cCMHjwYDZv3lyhzooVKxg0aBCffPJJpcuVHffQOI5xERGR+qRkl4iIiFyxS3scpaWlER4eXuvtrlq1io4dO+Lt7Q3A/PnziY6OJigoyD4kLywsjL1799a6rYbsQo+jl156qVx5ZGQkmZmZtdr2xUMYAQoKCggKCqrVNl3d1RzP2dnZBAbanmwTEBBAdnZ2ufWhoaGkpqaycuVK3nnnHXx8fMotnzlzxl730uO+MRzjIiIi9UnJLhEREamxmvQ42rVrF2azudzr4knSL+fw4cO88sor9rmLAO644w727NnD0aNH2b59e13thssKDg6moKDAvjxx4kRWrlzJhAkT+PbbbwF47LHHAFi5ciUTJ07k66+/Ljcn1XfffcewYcPsy2vWrOGGG25w0B40LLU5noOCgsjJyQEgNze3QsLQy8sLX19ffHx8GDRoEJmZmeWW9+3bB1R+3IuIiEjt6GmMIiIiUmMXnhJ4qU6dOrFkyRIAunTpQmJi4hVtt6ioiHvuuYfZs2fbJ7AvKirCy8sLo9FIQECAvddLZmYmAwYMqN2ONGAXEiqXM2rUKFavXk18fDwff/xxhfUXkiY33HBDpUmstWvXlltetmxZo50QvTbH88aNG1mwYAEjR45kzZo1jB8/vtz6vLw8/P39sVqtbNq0iQceeADAvvzwww9XetyD+x/jIiIi9U09u0RERKTWYmJiSE1NrbZefHw8ycnJxMfHs2PHDo4fP87rr7/O/Pnz2bVrF7///e8xm80cOXKEL7/8ErPZzPXXX0/btm3tk4Wnp6fTrVu3+t6lBuvuu+8mPj6+zrY3a9asSp+Q2ZjV5Hi+7rrrKCoqYtCgQcTExNCyZUv78Qzw448/0qtXL/r3788NN9zA7t27yy2HhoZWetyDjnEREZHaMlj1qJfLOrFhD1+Prvhrn1ydEUtfomXva50dhoiIXEavL21/bhp1de9/6aWXuO2226p8gl1t7d69m6VLl/L000/XWxv1rbafs9RcbT5rRxzPlXGHY1xERKQurFu3joEDB7J27dor7vGsYYwiIiJSJyobDlbXoqOjiY6Orvd2RBxxPFdGx7iIiEjtaRijiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkNzdkmDk1cC6TnOaTsyEPw9ndO2iIiIiIiIiNSekl3S4KTnwH3rnNP2nAEQG+KctkVERERERESk9jSMUURERERERERE3IaSXSIiIiIiIiIi4jaU7BIREREREREREbehZJeIiIiIiIiIiLgNTVAvbiH1WTP5e5IweHhiMHng3eZaWk+cQWDMMGeHJiIiIiIiIiIOpJ5d4jZaT5xB3KI8esw9gV9UP/a9fDNl+eecHZaIiIiIiIiIOJCSXeJ2jJ5eNB8+Bcv5PM4fS3d2OCIiIiIiIiLiQEp2iduxFBVyetUcjL6BeLfu5OxwRERERERERMSBXCbZVVxczPTp02nXrh0+Pj4MHTqUDRs2YDAYWLp0qcPiuDN9XrnX3QcXMurbNxzWvlze0fnTSbkjiO2/C6cgYyuR077C5Bvo7LBERBq886XwReYvyzO2ws6zzovHXZVaYPXRX5anb4ENp8BqdV5M7shihaST8OzmX8oSjtk+fxEREWkcXGKCeqvVyrhx49iwYQPPP/88kZGRzJ8/nzFjxgAQFxfnsFg+ibyr3PKob98gY+k6h7Uvl9f6jhdpNeZxZ4chIuJS0nPgoSQ4U/RL2dJM+DwTRrWDZ2PBZHBaeG7jZKHtc87I+6VsxRH4+jD0vQZevw58XOKqrGHLK4E/rYfkLDBedNw+sRE6BcI/+0KIt/PiExEREcdwicuqd999l+XLl5OSkkLXrl0BMJvNREREEBwcTPv27Z0SV/PYSII6tyV9UYJT2hcREamN3BL4w4+QXVy+/EIHmC8P2RIDD0U7PDS3UmaFh3+CzLzy5Zafe3StPwUvpMArvRwemtuZtgVSsmx/t1zSY25fDvxpA8wdBAYlcEVERNyaSyS7Zs6cycSJE+2JLgCTyURERASenp4cOHCAm2++2b4uOzubnJwcsrKy6jWuTncM5ch3yRSe0FgPERFxPV8dgqziquss2A/3dAI/l7hiaJjWnYD9uZdfb8U2vPGhfGjr57Cw3E56Dqw9cfn1FmBXNmw6Dddd46ioRERExBka/KVrWloaGRkZvP322xXWHTp0iLFjxxIeHk5KSoq9fOrUqZSWlta4jYCAAIqLK17td/RoxpOBAyt9j4ePFxGjB/DDo/+scTuN3ZAhZvaVVp8Y9I3qR8eXEus7nEoNGWKmIDXJKW2LiDhahxnf4xvZG4Px8lN4ni+D8GG3k/PT5w6MzL20feR9ggbchsF0+csui9VKn3ue5fSXmgf0arUYP50WY5+p8ni2lpUy/m8fcPQ/DzswMhEREbkaFsvVT7jZ4JNdR44cAaBFixblyvfs2UNmZmaF+bqKi4v55JNPWLFiRb3GFT6yH6WFxRxevbn6ylLvomYkOjsEERGXY/JrVmViwF7Pt6kDonFfJt+m1Y+bs5Rh8tNDVWrD5NsUrGVU/fwlqx5eIyIi0gg0+GRXSEgIAOnp6fTu3RuwTVj/1FNPYbFYKiS7vvzyS9q0acOvfvWrGreRm1v52IITG/bw9ehpla7rdOcw9n2aiLVMj/apqYSERFr2vrbaeiln4D4nzfmfkJBIbIhz2hYRcbRHf4KfTv4yR9flLP3oHfpc845DYnJHr22HxRlVf84GkwdvPf80t3z4tMPicjef7IN/7Ky6jtHkyR/vuY1HXrvNMUGJiIjIVcvJyWH79u107979it9b/c+5ThYdHU1kZCTPPPMMn332GV9//TWjR49my5Yt+Pr6EhUVVa7++++/z7333luvMQV2bE2LXlHsXfBtvbYjIiJSn25uX00CBmjpDb2aOyoi9zS6ms8ZoIkRbmjjkHDc1oi24FFNBzorMNI5zzUSERGRKxQYGMiAAQMIDLzyXtkNPtnl4eHB4sWLCQ0NZdKkSUydOpURI0YwePBgevTogfGi4RdHjhzh+++/584776zXmDpNGMqJ9bvJzTher+2IiIjUp+tbQVywLal1KQO2xMCfuoFJT66rlaimcFPbqus8cC34ezomHncV7AX3dq66ztgwCPd3TDwiIiLiPA1+GCNATEwMSUnlJw3/5z//yeDBg8uVzZ07l5tuusk+9LG+bH7p43rdvoiIiCN4GOGtvvBiCnx71JbcuiDQE57oDvGtnRWde5kea0tm/fcAlF70QfuY4PfXwp0dnBWZe/ldZ1vvrvfTbA9XuMDDABM6wMNdnBebiIiIOI5LJLsuVVhYSGpqKlOnTi1X/uGHH1b61EZxDwfffYTCjBQCfzWC0HHP2MvPH0vn0DsPYykpouWoPxHUZxQ7H4rGI6glAB2fXoJHQDCpfxlEwf5kus7aQ5Pm1fzELiLSSPh5wKu94GgBrDluSxC087P1+vJs8P2/XYeH0ZY8nNIZEo5BTgm08IYhoeDrkldjDZPBYOvdNT7C9jmfLoKgJrbPOaiJs6MTERERR3HJy6tt27ZRVlZWYXL6vXv3OikiqW/5aZswGD2IeuUH9r16KyXZJ/D8OZl1bOHfiHh8IR7+Qfb6nsFt6Pzi6nLb6PDkZxz5SBP/iohUprUv3K7eRfUu2AvGhjs7Cvfn76m5uURERBozl/zNtk+fPlitVnr16uXsUMRB8veuJ6DHUAACug2mIH0zAJaSYopPH+LAW3eTPmM0JdknACg5d4LUv1zP4Q+fxGq1jRfxbNbKOcGLiIiIiIiIiMO4ZLJLGp+y/GxMvrYnMBh9AijLzwagNOc0hZk7CJ86l5Yjp3J88SsARL28hqhX1mApPk/O5uXOCltEREREREREHEzJLnEJJr8gygpyALAU5mLyC/q5vCk+Yd3x8G+Gf9dBnD+SCoCHfzMAgnqPpPDgTqfELCIiIiIiIiKOp2SXuAS/zr3J3Z4AQO7ONfhG9gTA5O2HsYk3lpIiCjN30KRFONbSEiwlRQDk7UnCq2WE0+IWEREREREREcdSsktcgl+n67CWFJH6l0H4RsRQknWMMwnzAGg5+jH2Th/GoTl/pNUtT1JWcI7Up/qT+pfrKTqSSlDfMQBkvDmRnOSVZLwxgZyt3zpzd0RERERERESknrjk0xilcWr/wKxyy74dYgEIjI0nMDa+3LroNzdXeH/Enz+ut9hEROT/t3fn8VGVd///X5OFTdaAyGKAQBADCEQUFBAGsL3VVhQVqxVFpXVpraV1689Kv7R1KaW96+1tpeXWtkpFb8tti7RUESUgiEYFBFkDQlgURBHZE5KZ3x8jgZAQgpCZ5OT1fDzmYc51zsx8ZjieOfM+13WNJEmSVD3Ys0uSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmCEotFoNNFFVFeFu/by+YoNiS4jMJpltaNOowbH3G73AVizMw4FlSOzMTRMTcxzS5IkSZKkE2fYJUmSJEmSpMBwGKMkSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAiMl0QVIkiRJklQdFe7ay+crNiS6jMBoltWOOo0aJLoM1QKGXZIkSZIklePzFRv492UPJLqMwLh42oOc1ufMRJehWsBhjJIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYNSbsKiwsZOzYsaSnp1O/fn2GDBlCbm4uoVCIadOmJbo8BdQXhTBlLfxyMYxfAvO2QnE00VVJkqJReH87/PYD+MVieHIVbNmX6KokSbVFKDmJPr+8iWuX/5lvr3yafr+9neS6qYkuS9KXUhJdQGVEo1FGjBhBbm4u48aNIzMzkylTpjB8+HAAsrOzE1yhgujF9TDhAzgQgeQQRIG/rYf0U+B3faFDwwQXKEm11I4CuPsdWLw9dtUuFIJIFP64Cq7PhDuyICmU6ColSUHW484raNWvO9OG3EXxgSKG/uU+ej9wPblj/5To0iRRQ3p2TZo0iRkzZjBr1ixuvfVWhg4dyqRJk0hOTiYtLY127dolukQFzKub4eElsaALYr25Il/26Nq8F26bH/uyJUmKr6II3PEWLNkeW44QO0ZHid2eWQNPrk5ggZKkWqHzdUNZ+tiL7N2ynYLPdrL4ty+Q+a0woaQa8RVbCrwa8X/i+PHjGTlyJN26dStpS05OJiMjo6RX1+rVqzn//PM544wzOP/888nLy0tUuarholF4YiUcrVNAJAqfFsDfN8S1LEkSseHkK7+IhVxH83Qe7D4Qt5IkSbVMncYNaNj2VLYvW1fS9tnSddRp1ICG6acmsDJJB1X7YYx5eXmsW7eOxx57rMy6jRs3cuWVVwJw22238f3vf5+RI0fy17/+lVtvvZXXX3/9mI+/c+dOWrVqRVFREaGQYx4E9Tv1JvNXb1a4TTQa4T9fW8tt3bvHqSpJEkC7u56n8bmXEko++ilMQQQ6fWM0O+b8NY6VSZKCqFNKM+5tPKBUW0rD+gAUfrG3pK3wiz0ApH65TuUbPDjM2qLPE12GapA6deqwa9eu475fte/ZtXnzZgBatmxZqn3lypXk5+eTnZ3NJ598wsKFC7n22msBuPbaa1m4cCHbtm075uMvXbqUffv2EY0667hiUpq0POY2oVBSpbaTJJ1cKU1PqzDoKtnOY7QkqYoU7Y79Ikpq4wYlbXWanALAgd3+WopUHVT7nl3NmzcHYM2aNfTp0weITVh/3333EYlEyM7OZuPGjbRt25bk5GQgNsSxTZs2bNy4kVNPrVw30pycHPr37181L0I1yrLPYdQbx94uo2UTFhU4cZckxdM978Ccjysexgjwx/98hG/+7ZG41CRJCq6tuSv592UPlGor3LmX3Zu3kdatAzvXfgRA8+4ZFO7ay+6Nx+5wUZvNnp3DaX3OTHQZqgWqfdiVlZVFZmYm999/P6mpqTRs2JCJEyeyaNEiGjRoQJcuXVi0aFGiy1SAdG0K7U6BjXtikx0fzTB/F0GS4u4bp8Psjyvepl4yhFvFpx5JUu2U9+xr9PjBcLa+vYJIUTG97rqaNf+bQzRyrMsxkuKh2oddKSkpTJ06ldtuu41Ro0aRnp7OmDFjaNy4MWvXriUpKYn09HQ2b95McXExycnJFBcX89FHH5Genp7o8lUDhULwvSz4ybvlr08CmteDy9vHtSxJEjDgtNhFiZU7jt6768ZMaJgax6IkSbXOksdepG5aYy7P+R2hpBDr//kW7z3kXJFSdVHtwy6Anj17smDBglJtjz/+OIMGDQJi83n16tWL5557jpEjR/Lcc8+RnZ1d6SGM0pEubAMP9IRfL4XCI75NnX4KPNoXmtZJTG2SVJulJMFj58E9ubBo+6H20Je3GzJh9BmJqk6SVFtEiyPkjv0TuWP/lOhSJJWjRoRdR9q3bx+rVq1izJgxJW1/+MMfGDVqFL/4xS9o1qwZzzzzTOIKVCBc3h6GtIYZm+A3H8TaHjsPzjsVkvzhTklKmKZ1YFJ/WLYDbvxyjsXbz4RvpkNLfwRLkiSp1quRYdeSJUsoLi4mOzu7pO3MM8/k7bffTmBVCqLGdeCajofCrn7+uJckVQuhEHRvdmj5ZntzSZIk6Us1Muzq27cv0WhFU4dLkiRJkiSpNkpKdAGSJEmSJEnSyWLYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAqPGhF2FhYWMHTuW9PR06tevz5AhQ8jNzSUUCjFt2rRElydJ1V4kCm99Ao8vh/9aBq9uhgORRFclSQL4vACe+xAeXQZProb83YmuSFJFOlx6PhdP+yXXrZnMVblPJLocSUdISXQBlRGNRhkxYgS5ubmMGzeOzMxMpkyZwvDhwwHIzs5OcIWSVL2t3Qn3vAMb9hy6yhEBmtWBB3tD31MTWZ0k1V7RKExaBX/Og6IoJIdiFyf+sBKGtoZx2VC/RpyxS7VLwRd7WPmnl6l3ahO63fLNRJcj6Qg14qNz0qRJzJgxg8WLF9OtWzcAwuEwGRkZpKWl0a5duwRXKEnV15Z9cMt82HUgtnx4Z64vCuGHb8GTA6B7s4SUJ0m12lOr4X9WH1oujh76+/WPYW8RPHYehELxr03S0X08dwkA7S46N8GVSCpPjRjGOH78eEaOHFkSdAEkJyeTkZFR0qvr7rvvJiMjg1AoxAcffJCoUiWp2nluLew8UDrkOihCrAfBH1fGuypJ0q4D8Ke8o6+PAgu2waLtcStJkqRAqPZhV15eHuvWrePKK68ss27jxo0lYdfll1/O3Llzad++fbxLlKRqKxqFaRtiX5iOJgK8tQ0+3R+vqiRJALM+gsJjzJ2YFILpG+JTjyRJQVHthzFu3rwZgJYtW5ZqX7lyJfn5+SVh14ABA07oecLhMElJ1T77U4J0fyGWAtStWy/BlUjHJ5RSh+7P7TrmdlGgU88+7F//ftUXJZ1EHp9Vk7W86qe0HPEAoQrOQYsjUaZMn8XD5zknkJQInVKacW/jE/uuqUMGDw6ztujzRJehGqROnTrs2nXs7zNHqvbpTvPmzQFYs2ZNSVs0GuW+++4jEok4Ob0kVSBaVEikYG+lti3e7TgZSYqn4t3bKwy6AIgUU7z7s/gUJElSQFT7nl1ZWVlkZmZy//33k5qaSsOGDZk4cSKLFi2iQYMGdOnS5aQ8T05ODv379z8pj6XgOeel2H8LCgoSW4j0FTz0PkzLL3/OLohd9ejeDN7dvOYoW0jVl8dn1WSf7odLXo3NnXg0oeQU/nLXNQz49TXxK0xSia25K/n3ZQ+UaQ8lJZGUmkwoJQVCIZLrphKNRokUFiWgyppj9uwcTutzZqLLUC1Q7cOulJQUpk6dym233caoUaNIT09nzJgxNG7cmLVr1zr0UJKO4bqOMGMjHIiUH3hFge+enOsGkqTj0KIeXNUBXlhX/vokoHMTOL9l+eslJU6nqwYy4L/uKFm+fv1z7N74CVP7fC+BVUk6qNqHXQA9e/ZkwYIFpdoef/xxBg0alKCKJKnm6NAo9rP1d+XC7iMuNqaE4IFefpGSpET5cTfYcwD+tSkWbh1+UeLMpvBoX0gOJag4SUe15oUc1ryQk+gyJB1FjewWtW/fPlatWlVqvq4777yT008/nU2bNnHhhRfSrVu3BFYoSdVL7xbw76/DAz0Ptd3ZFV7+OnwzPXF1SVJtl5IEPz8bng/DNR0Ptf/+fPjLBZBWN2GlSZJUY9XIsGvJkiUUFxeXCrsee+wxNm3aRFFREVu2bGHZsmUJrFCSqp/6KXB5+0PLN2RCU79ESVK1kNkYftz90HLfUyHJHl2SJH0lNWIY45H69u1LNFrBTJ6SJEmSJEmqlWpkzy5JkiRJkiSpPIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMGpM2FVYWMjYsWNJT0+nfv36DBkyhNzcXEKhENOmTUt0eZJOQDQK72yDv+TB03nwweexNqmmWr8b/roW/rQacj6GokiiK5Ikqayt++D5D+Gp1fDvTbC/KNEV1QxJdVLo95vbuPKt33Nd3mSGz3uMM2++ONFlSTpMSqILqIxoNMqIESPIzc1l3LhxZGZmMmXKFIYPHw5AdnZ2giuU9FWt2AE/fQ827Cnd3qUJPNIb2jVMSFnSV7KjEH62EN78pHR7Wh34aS8Y1CohZUmSVMr+YvjVEpixEQ6/HnNKCvywK1zRIVGV1QxJycns+2QHM6/5Jbvyt5LWtT1fe+4B9m/bwfrpCxJdniRqSNg1adIkZsyYweLFi+nWrRsA4XCYjIwM0tLSaNeuXYIrlPRVfLgLbpkPBcVl1+XthO/Mg78Ogpb141+bdLz2F8P33oQ1O8uu+7wQ7s6F/zoP+rWMf22SJB0UjcJ978D8T8qu21MEDy+BUAiGt49/bTVF0b4CFv36+ZLl7cvWs3Hmu7Tsk2XYJVUTNWIY4/jx4xk5cmRJ0AWQnJxMRkYG2dnZfPbZZ1xyySV06dKFs846iyuuuIJt27YlsGJJlfE/q2JBV3kjvCLRWEDw7Nq4lyV9JS9vgtU7y9+fD47KfXSZQ3QlSYn17qflB12H++/l5V+MVPlCKcmc1jeLz1fkJ7oUSV+q9mFXXl4e69at48orryyzbuPGjWRnZxMKhbj33ntZtWoVS5cupVOnTvzkJz9JQLWSKmtnIbz2cfnBwEFR4B8bYsGXVN39PR9CFayPEuvNuOKLeFUkSVJZ0zZAUkUfWMDOAzB3S3zqCYLzHh7Ngd37WPu3OYkuRdKXqv0wxs2bNwPQsmXpcR8rV64kPz+f7Oxs0tLSCIfDJevOO+88Jk6ceFzPEw6HSUqq9tmfEqT7C/sBqFu3XoIrCY66bc/kjEffP+Z2e4rglLRTiewtZ2yYvhL356qR9T8bSWl67DGKg4Z9i51v/6PqC6ol3J8VNO7Tqmodf5nDKWeef8ztbvzhT/h0+u+qvJ7qrlNKM+5tPOCo688dN4pTe3fhlRHjiBxwhv9jGTw4zNqizxNdhmqQOnXqsGvXruO+X7VPd5o3bw7AmjVrStqi0Sj33XcfkUikzOT0kUiEiRMnMmzYsLjWKen4FO+tXPeWaHERkYK9VVyNdOKK9+4gWokxisV77NolSUqc4r07iEaOPUaxsudqtVmfX9xIm4E9eOXqn1Ow/fi/jEuqOtW+Z1dWVhaZmZncf//9pKam0rBhQyZOnMiiRYto0KABXbp0KbX9D37wAxo2bMgdd9xxXM+Tk5ND//79T2bpCpBzXor9t6CgILGFBMzNb8AHnx99KGMSMDQ9hff27jnKFvoq3J+rxqRVsVtFmtWBre+8TGq1v9RUc7g/K2jcp1XV/rkRxi2qeJuUEKz4+0Sa1T2+0TJBtDV3Jf++7IEy7X1+eTOtB3Tn5avGUfCZIxAqa/bsHE7rc2aiy1AtUO3DrpSUFKZOncptt93GqFGjSE9PZ8yYMTRu3Ji1a9eWGnp49913k5eXx/Tp0x2SKNUAN58BY94uf12I2C8BjewU15Kkr+yK9vDch7DnwNED3FGdMeiSJCXU19rELs5s2Xv0z6srOkCzuvGsqmY55fQWdP3OJRTvL+Sqt39f0r717ZXMuu6hBFYm6aBqH3YB9OzZkwULSv+E6+OPP86gQYNKlu+//37ee+89/vWvf1G3rkdmqSYYcBr8fz1g/JLY5N2HDwBLSYKHzoZuzRJVnXR8WtSDx8+DO9+CLw4cak8i9mViZCe4rmOiqpMkKaZuMjxxPnxvAXx02EwRBz+vvtYGftQtUdXVDHs2fcpfWl+V6DIkVaBGXl/et28fq1atKpmva9myZTzyyCN89NFH9OvXj169ejF8+PAEVympMq7sAC9dGOvlddAdWfCvr8GQNgkrS/pKujWDl74WC3EPGpEBz4dhTLdYb0VJkhLt9FNg6mB48OxDbZe2gz8PgId72wtZUs1XI3p2HWnJkiUUFxeXhF3dunWr1KTAkqqnVg3g9jPhqdWx5Rs7J7Ye6USckhILcR9ZElu+56yEliNJUrnqJMNFp8MDC2PLY3sltBxJOqlqZNjVt29fwy1JkiRJkiSVYQdVSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCowaE3YVFhYyduxY0tPTqV+/PkOGDCE3N5dQKMS0adMSXV7cFUfhzU/gb+vgXxthR2GiK5IkSUG0vwhmfRQ753j9IygoTnRF0lcXiULuttj+/M8N8Nn+RFek47X7ALy8KfZvOGcLHIgkpo7zHvkOI979A99e/QwjFv6RPr+4kaTUlMQUI6mMGvF/YzQaZcSIEeTm5jJu3DgyMzOZMmUKw4cPByA7OzvBFcbX6x/BhA9g22EfzikhuKID/KgbpNaYCFOSJFVX0Sg8vQb+nAd7ig61N0yBW7rAtR0hFEpcfdLxevMTeOR9+HjfobbkEHzjdLj3LKhXI74Z1V6RKPxxFTy7FvYfFro3rQN3ZMHl7eNbz4o/v8y7v5hM0b4C6qY1IjzpLnrceQWLf/tCfAuRVK4acUifNGkSM2bMYPHixXTr1g2AcDhMRkYGaWlptGvXLsEVxs9rH8FP3i3bXhSFF9bBJ/tgwrmefEqSpBMzcSX8Ka9s++4i+M9lsS+bN58R/7qkr+KtT2DM27EQ93DFUZi+MRaA/fd5kOJF42prwlL42/qy7TsK4cH3Y9+HruoQv3q+WL3p0EIoRDQSpVHH1vErQFKFasThfPz48YwcObIk6AJITk4mIyOjpFfX5ZdfTs+ePcnOzuaCCy5g8eLFCaq26hRF4DdLY39Hj7JNzhZ499O4lSRJkgJoy75Yj66KTFoF2wviU490IqLR2KiIaLT8c+go8M6nMHdLvCtTZa3dWX7Qdbj/WgZ7iyre5mQ7647LuW7NZK794E+kdWvP8kn/jG8Bko6q2oddeXl5rFu3jiuvvLLMuo0bN5aEXU8//TTvv/8+ixYt4u677+bmm2+Od6lV7q1tsK3g6EEXQFII/p4ft5IkSVIATd9w7G2KojBjY9XXIp2oJZ9D/u5jnEMDL3oOXW39Y8Oxv7juK4ZXP4pLOSWWPv4Pns28nr8P/CGrnpnJvk8+j28Bko6q2g9j3Lx5MwAtW7Ys1b5y5Ury8/NLwq4mTZqUrPviiy9ISjq+HC8cDh/3feKt+UXfo83o31W4TSQK/3hjIb/tf36cqqodur8QmyCtbt16Ca4k2Hyf48P3OT58n+PD97lqnP79J2l6wTWEklOPuk206ABjf/cnRj95ZxwrCz736ZOv6cBvk/6DP1e4TQSY+8E66obPjE9R1UhN2Ofa3/cijc6+iFBS8lG3iUaK+cHYX3P18+NO6nN3SmnGvY0HVLjNF3mb2b4snwv++05euerkPn/QDB4cZm2RoaAqr06dOuzateu471ftw67mzZsDsGbNGvr06QPEJqy/7777iEQipSan/853vsPMmTOJRqO8/PLLCam3KhXvP/Y/cDRSTGTf8e8IkiRJB0X27waOMQFoUtKX20nVW2TfsffTaDRCsefQ1VZk/66yE64dKRQisn9PfAoqR1JqMo2ds0uqNkLR6LGOGolVVFREVlYWBw4cYMKECTRs2JCJEyeyaNEitm/fzq5du8r0yJo8eTLPPfccM2bMOObjz58/nwEDBjBv3jz69+9fVS/jpNheAJfMjA0bqMi9Z8HVGfGpqbY456XYf98dltg6gs73OT58n+PD9zk+fJ+rxjvb4PYFx97uLxdA92ZVX09t4j598u0pgv94pfQv+JXn9jNhdC380YWasM/NOsqPdB1p6hDo0PDkPvfW3JX8+7IHSrWlNmpA+4v7sOHlXAp37qVZVnsG/WEM297LY/6Pnzi5BQTMxdMe5LQ+ta8HpeKv2vfsSklJYerUqdx2222MGjWK9PR0xowZQ+PGjVm7dm25Qw+vv/56brnlFj777LOSnmFBkFYXhrU7+nwCSSFokgqXnB7fuiRJUrCc0wK6NIG8L2LDu46UBPRIg25N41yY9BWckgLfyoCn15S/PgmonwKX154feK9xwq3g9Abw0d7yj0khYOBpJz/oOqpolI5XDuTccaNIqpPC/k93kj/jbRZP+N84FSDpWKp92AXQs2dPFiwofXnx8ccfZ9CgQQDs3r2bzz//nPT0dACmT59OWloaaWlpca+1qt3VHT7ZD/O2xsKtyGG9vBqnwuPnQ8OjT68hSZJ0TKEQPNoXbn8T1h82AiyJ2BfNTo3h1+fGtpNqgtvPhI/3wczNZc+h66fAY+dB8+o7ZVWtl5IU+55z+5uxf8eDDh6TzmoGPz87fvUc2L2Pmd/6RfyeUNJxqxFh15H27dvHqlWrGDNmDAB79uxhxIgR7Nmzh+TkZNLS0pg+fTqhAJ6B1U2G/+wDudtiPbxe/zjWfnd3+EY6NDLokiRJJ8Gp9eDZQfDaR/CzRbG2vqfCN9vBkNaQWr1/10cqJSUJHjobrmgf++XyV2K/gcUPu8Kl7aBpncTWp2M7/RR4YXDs3+7B92Nt/U+Dy9rBgNNi/8aSdFCNDLuWLFlCcXFxyeT0p512Gm+99VaCq4qfpBCc1zJ2OzjG/pqOia1JkiQFT91kuCT9UNj13/7Ys2qwUCg2RPecFofCruszE1uTjk/9FLi8/aGw63d9E1uPpOqrRoZdffv2pZrPqy9JkiRJkqQEsLOnJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSpGpiwKPfp+9DoxNdRrmuWzOZtO4ZiS5DOqaURBcgSZIkSVIQterXjV53XU3zHh0B+GzJhyz+zQtsWbAswZXF9Lrrapr37MRrNzxSqe2fzby+iiuSTg57dkmqMXJycsjIyCAcDjNq1Kgy6x966CHy8vKOev/c3Fz69+9Pv379eOCBB8qsP3DgAFdffTXhcJgJEyawYsUKxo8ff1JfgyQF0YkenwH++Mc/MnToUMLhMAcOHChpnzdvHueddx79+vXjt7/9LYDHZ0k1wukX9uZrUx5g46z3eOHsW3nh7FvZOOs9vvbcA5w+9Oxy7xNKPnlf0UMpySftsaSaxrBLUo0yevRocnJyaNKkCQsWLChpj0QiLFmyhM6dOx/1vtnZ2cyfP58333yTBQsWsHPnzlLrX3zxRfr160dOTg7vvfceLVq0YOHChUSj0Sp7PZIUFCdyfN6wYQNLly7ltddeIycnh9TU1JJ1HTt2ZO7cubz55pv885//ZO/evWRlZXl8llTt9X3wZtb8LYdlE1/iwK69HNi1l2UTX2Lt1Dn0efBmAK7KfYIeY67kkpceYuSHz9KiZycAUk+pR3jSXVyXN5nL5/yONuGex3y+Vud347o1kzlj5IVc9c5Ehs36DQCtB/bgm6+M59urnmbYa7+l3UXnAtDuonM5687htB3ci+vWTOa6NZNJqlPx4K8bP55K856dCCUn8e3Vz9C0S3rsuft148aPp9L+m+cDUL9lU27Y8DypDet/tTdPOkGGXZJqpO7du7N58+aS5ffff58zzjijwvsc/PJUXFxMmzZtaNCgQan169at46yzzgIgKyuLd955h44dO7JsWfXoZi5JNcFXOT7PnDmTPXv2MGTIEMaNG1dqXZs2bahTpw4AycnJJCXFTl89Pkuqzhp3akOj9qex7h/zy6z78O/zaNyhFY07tgYgc0SY+Xc9wbOZ1/PZB+sAyLh8AB/+/Q2mnDmKJf/9d4b86V4atEo75vOm1K9Li16Z/GPgGP558X006tCKC5/+CR88/g+e63oT7z30VwZN/BFp3Tqw4eV3WPrY39k8ezHPZl7Ps5nXEyksqtTrixZH2Pr2CloPiJ07t77gLHau+5jWA7rHlgecxWdLPuTA7n2VejzpZDPsklQjLViwgMzMzJLlvLw8OnTocMz7TZkyhaysLJo2bUpKSukrV126dGHOnDlEo1HeeOMNvvjiC9q3b8/q1atPdvmSFFhf5fj8ySefEAqFeP3111m3bh2LFy8us82rr75Kp06dqFevHoDHZ0nVWr20RgDs27q9zLp9n3we26Z5YwBWTX6VL/I2E41ESsKmLW8tZ8O/c4kWR/hw6lw+X55Ph0vPP+bzhpKSeO/hZynaV0DxvkIyLuvH1rdXsH76AqLFETa/vogNM9+l04hBJ/wat8z7oFS4tfg3L5SEX636d+fj+R+c8HNIX5Vhl6Qa5amnniIcDtO2bVt69epV7jbLly8nHA6Xuv3qV78C4Nvf/jYrV67ko48+YunSpaXuN2zYMLZt28bXvvY1Tj31VFq2bFnVL0eSAuNEjs9NmjRh0KDYF6+BAweyatWqUvfbtGkTjzzySMmcXZJU3e3fvguA+qeV7Y1Vv2Wz2DafxabU2LN5W5lt9mwq3bZ747ZK9ewq2ldAwZfPDdCgdXN2H/lY+Vtp0Lr5MR/rWD6et5TTzutKncYNaNyxDev+MZ/kOik0aJ1G6wHd+fiNpcd+EKmK+GuMkmqU0aNHlzu5fOfOnXnxxRcB6Nq1Kzk5OWW2KSgooG7duiQlJdGoUaOS3gEHJScnM3HiRKLRKKNGjeL8889n1qxZ9O/fv0peiyQFyYkcnxcuXMiUKVMAWLp0Kddee23JuoKCAm688UYmTpxIw4YNS9rz8/M9Pkuqtnau/YhdG7aSMawfW47o4ZRxWT92bdjKzg8/BiAaKTv/4Cmnn1pquWH6qWxbeOzerNFIpNTy3o8/o9X53Y54rJbs/fizcrc/HtuXrScaidD1u9/kk3dWEo1E+HjeB5zx7Qtp0LIZn7yz8is/tnSi7NklKRB69uxZpifAkV566SXC4TADBw7k9NNPp3PnzmzZsoUJEyYAsQmSw+EwQ4cO5aqrrqJBgwasWbOG7t27x+MlSFIgVeb4fPbZZ1NUVEQ4HGbv3r307du35Pg8ZcoUli9fzq233ko4HC6ZD8zjs6TqLvdnfyHzW4PpduulpDasT2qjBnS99ZtkXj2Y3LF/rvC+rc7rSvrXzyGUnETHKy6gWdf2rP/XW8ddw7ppb3Ja3yzaf6MvoaQk2g7uRfp/nMPaqXMB2PfpF5zStsVX/hXILW8uo+st3+DjebFeXB/PX0rXW77BJ++tprjgwDHuLVUde3ZJqjEODnkpT1JSEj169CAvL++ov/g1YsQIRowYUaqtVatW3HPPPQC0a9euVI+DFStW0Lt3b0Kh0EmpX5KC6kSPzwCPPvpoqeXDj8833XRTqXUenyXVBBtfeYdZIx+m54+votc9VwPw2ZIPmTXy4ZJw6GjW/WMenUYMYuDvf8iejz9j9nd+w96PPjvuGnat38LrN/+as/+/6+j/u++zZ9M25t7xGNu/nAh//fQFdLx8ANd88CdCoRDP9xhd6UnqAT5+Yykdvnk+H8+L9V77eN4H1Gl8ivN1KeEMuyQFRnnDZ05EVlYWWVlZJ/UxJak28vgsqbb6eN7SCoOtqX2+V6Zt3pjff6Xn2rJgGc9mXl+mffPsxWyevbjc+xTu2M3LV/6/Sj1+6Mtfwz08DFv1zExWPTOzZHnf1s/5S+urjqNqqWo4jFGSJEmSJFWoWbf2RA4UlTuhvlTd2LNLkiRJkqQa4LKc39Hw9BZl2jfOfI+533v0hB//wmd/yml9zyzTfmD3fpJSk3nv4SkU7tx7ws8jVTXDLkmSJEmSaoBp4R9V6ePPuu6hKn18KV4cxihJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwKgRYVdhYSFjx44lPT2d+vXrM2TIEHJzcwmFQkybNi3R5Uk6CTbtOfT3tv2Jq0OSVFpR5NDf734KxdHE1SJJ1U1yvTpc8eZ/c92ayYkuRdJhqn3YFY1GGTFiBE8++SQPPPAA//znP8nIyGD48OEAZGdnJ7hCSSfi473wgwUw/LVDbd+YCT95F3YUJK4uSRK8uB6+8eqh5dvehG++Cv/ckLCSJKlayb7nW+ze9Gmiy5B0hJREF3AskyZNYsaMGSxevJhu3boBEA6HycjIIC0tjXbt2iW4Qklf1Sf74KY3YHsBHN5RIAK8/hGs2Ql/vgAapSaqQkmqvZ7Og/9eUbZ9234Ytxj2FMO3MuJeliRVG817dKTt4F688/NnGPzU3YkuR9Jhqn3PrvHjxzNy5MiSoAsgOTmZjIyMMr26fv7znxMKhfjggw/iXaakr+B/VseCrkg56yLA+t3w3IfxrkqS9Ol++P3Kird5dBnsLIxPPZJU3YSSk+j3m9t46/4niRQWJbocSUeo1mFXXl4e69at48orryyzbuPGjaXCroULF/LWW2/Rvn37eJYo6SvaWwT/2lh+0HW4qesh6vwwkhRX0zdC5BjH3gMRmLEpPvVIUnXT/XuX8dnSdWx9q5wusJISrloPY9y8eTMALVu2LNW+cuVK8vPzS8KugoICvv/97/Pcc88RDoe/0nOFw2GSkqp19leu7i/EZvKuW7degisJNt/nk69umy6c8V9Ljrnd9gJo0KwFkX274lBV7eD+HB++z/Hh+1w1Tv/+/9B0wLWEUo4+jjxadID/77d/YtSTd8axsuBzn44P3+dDauJ7Ec+aO6U0497GA0q1NerQii43fJ2XvnZPlT9/0AweHGZt0eeJLkM1SJ06ddi16/i/C1brsKt58+YArFmzhj59+gCxCevvu+8+IpFISdj1s5/9jJEjR9KhQ4dElSrpOEUK91Vqu2g0QvSAP88oSfEUKdwPoVDFG4VCRAr2xqcgSapGTutzJvVbNOGK+Y8BkJSSTOop9blm2Z+YPXqCvb2kaqBah11ZWVlkZmZy//33k5qaSsOGDZk4cSKLFi2iQYMGdOnShQULFvDuu+/yq1/96oSeKycnh/79+5+kyuPnnJdi/y0o8GfrqpLv88kXjcK3cmDdrtKT0x8uCejbMon39uyOY2XB5/4cH77P8eH7XDXmb4Ufvl3xNqHkFP4+/kec/eSP4lNULeE+HR++z4fUxPcinjVvzV3Jvy97oFTbuulv8tEbh0YonNq7CwP+6/u8dOHd7P9sZ5XXVJPNnp3DaX3OTHQZqgWq9bi9lJQUpk6dSuvWrRk1ahRjxozh4osvZtCgQfTo0YOkpCTmzJnDihUryMjIoEOHDmzatIn/+I//YObMmYkuX1IFQiG4IfPoQRfE5vO6rlO8KpIkHXR+S+jQ8OgniklAlyaQnRbPqiSpeijeV8jej7eX3Ao+2wnRKHs/3u5k9VI1Ua3DLoCePXuyYMEC9u7dy6pVq7j99ttZtGhRyRDGn/zkJ3z00UesX7+e9evXc/rpp/PKK6/w9a9/PcGVSzqWb5wON3WO/X34wejg33d3h/NaHnkvSVJVSwrBf/WFlvVjywcHNB78b9tT4D/7HHukoyTVBlsWLOPZzOsTXYakw1TrYYzl2bdvH6tWrWLMmDGJLkXSCQqF4PtZ0L8l/G09LNkea+t7KlzVIdZrQJKUGG1PgefD8M+NsV/P/awATq0Hl6bDxelwSo07i5QkSbVFjTtNWbJkCcXFxSU9u460fv36+BYk6YT1ah67SZKql4apcE3H2E2SJKmmqHFhV9++fYlGK5rlR5IkSZIkSbVVtZ+zS5IkSZIkSaoswy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZISICcnh4yMDMLhMKNGjSqzfvLkycyaNQuAhx9+mAsuuIAf/OAHZbb77ne/y6BBgxgwYACrV68GIBwOEw6H6datG2PGjOHAgQP079+fQYMGMWzYMPbv38/27dv58Y9/XLUvUpJqoMoenzdu3Ei/fv0YOHAgN910E9FotNR211xzDeFwmN69e3P55ZcDlLudJOnkM+ySJClBRo8eTU5ODk2aNGHBggWl1k2fPp2hQ4eydetWFi5cyBtvvEFKSgrvvvtuqe2eeOIJ5syZwyOPPMIf/vAHIPZFLScnh2HDhnHJJZeQmprKnDlzmDNnDueeey4zZ84kLS2NHTt2sHv37ri9XkmqKSpzfG7Tpg3z589n7ty5JCUlsXTp0lLbPf/88+Tk5HDLLbdwySWXANC3b19mz54dt9chSbWVYZckSQnWvXt3Nm/eXLK8fft26tWrRygU4t1332XQoEEADBkyhNzc3FL3TU1NBWD37t1079691LqcnBzC4TAAKSkpAEQiETp16gTEvnTl5ORUxUuSpECo6PicnJxMKBQCoG7durRp06bcx5g+fTqXXnopAIMHD2bGjBlVX7gk1XKGXZIkJdiCBQvIzMwsWV6zZg3t27cHYMeOHTRu3BiARo0asWPHjjL3Hzp0KHfccQfnnntumceoU6cOAMuXL+fcc8/l1VdfJT09HYD27duXDH2UJJVV0fEZ4PXXX6dHjx5s2bKFJk2alLn/7t272bVrF61btwY87kpSvBh2SZKUIE899RThcJi2bdvSq1evcrdp2rQpO3fuBGDXrl00bdq0zDavvfYaL774IuPGjStpmzZtGpdddlnJcteuXXnnnXcYMWIETz/99Ml8GZIUOJU5PkOsx+2SJUto3749L7/8cpn1r7zyChdddFEVVipJKo9hlyRJCXJwTpgHH3ywVHtmZib5+fkA9O7dm7lz5wIwe/Zs+vTpU2rbgoICAJo0aUL9+vVL2mfMmFEyR8yBAwdKJkRu0qQJ9erVAyA/P5/OnTtXwSuTpJqtMsfnwsLCkvbDj62HO/LCg8ddSYoPwy5JkqqZtLQ09u7dC0CrVq3o0aMHF1xwAQUFBZxzzjls2bKFCRMmADB8+HAGDx7MzTffzE9/+lMAPv30U1JTU0uG1OTn5xMOhxk8eDAvvfQS1113HQBvvfVWyZxekqRjO/z4nJuby8CBAwmHw2zatImhQ4eWOj4XFxezevVqunbtWnL/2bNnc/HFFyekdkmqTVISXYAkSbVROByuMGgaNmwYs2bN4sILL2Ts2LGMHTu2ZF2rVq245557AMqd6LhFixalhtNkZmYyZ86cUtts376dpk2b0qhRoxN8JZIULMdzfD7Y8/agw4/PycnJvPXWW6XWv/3229xyyy0nvWZJUmmGXZIkVUM33HBDlT5+Wloav/vd76r0OSQpiE7k+PznP//5JFYiSToahzFKkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBUWPCrsLCQsaOHUt6ejr169dnyJAh5ObmEgqFmDZtWqLLkySpREHxob8/3pu4OiRJZW3ac+jvA5HE1aGaa8Cj3+f6/Oe4bs3kklvbwb0SXZakw6QkuoDKiEajjBgxgtzcXMaNG0dmZiZTpkxh+PDhAGRnZye4QkmSoCgCT62G59cdahs2C/qeCj/uDh0bJa42SartVn8Bv1sG73x6qO2iV+DbneDGzpAcSlxtqnlW/3UWb//0qUSXIekoakTYNWnSJGbMmMHixYvp1q0bAOFwmIyMDNLS0mjXrl2CK5Qk1XaRKDywEGZ9VLo9CuRug5vegD8NgE6NE1KeJNVqK7+A78yDwuLS7V8cgIkrYcNuGJcNIQMvSQqEGjGMcfz48YwcObIk6AJITk4mIyOjpFdXhw4dOPPMM+nVqxe9evXilVdeSVS5kqRaaO6WskHXQRFgXzFMWBrXkiRJX3rk/VjQdbRRi//aBLmfHmWlVI6OV1zAtcv/zOVzH6XHD68glFwjvlpLtUa179mVl5fHunXreOyxx8qs27hxI1deeWXJ8tSpU+nevXs8y5MkCYCp6yEpFOvhVZ5IFN79DPJ3Q/uGcS1Nkmq11V/Ash0Vb5MUgqnrYsPOpWNZ/tQM3v3lZPZv30XzHh0Z9MQYkuvWYdGvn090aZK+VO3Drs2bNwPQsmXLUu0rV64kPz//pM3XFQ6HSUqqeWl89xf2A1C3br0EVxJsvs8KEvfnqnHm/2wgtelpx9zunItHsDP3pThUVDu4Pyto3KdPvqYXXEv6nX+pcJtIFF5e/CGPXZAVn6KqkZq4z8Wz5k4pzbi38YBSbduXHpqc87P317LoN/9L9t3fMuyqhMGDw6wt+jzRZagGqVOnDrt27Tru+1X7dKd58+YArFmzpqQtGo1y3333EYlESoVd1113HT169OB73/seO3bsiHepkqRaLHqgoHLbFR2o4kokSYeLVPr4XLntpDIiUXC+N6laqfY9u7KyssjMzOT+++8nNTWVhg0bMnHiRBYtWkSDBg3o0qULAG+88Qbp6ekUFBQwZswY7rjjDv76179W+nlycnLo379/Vb2MKnPOl50DCgr8cK5Kvs8KEvfnqjF+Cfzf+qPPBwNQNwnWz/0HDVPjVVXwuT8raNynT74dBXDRTCg6yjBziOUUt4SzuLMWvu81cZ+LZ81bc1fy78seKNXWYVg/Ns9ezIFde2mW1Z6ed41g/T8XVHktQTB7dg6n9Tkz0WWoFqj2YVdKSgpTp07ltttuY9SoUaSnpzNmzBgaN27M2rVrS4YepqenA1C3bl2+973vMWzYsESWLUmqZUZkwP/lE/v5xXKEgOHtMeiSpDhrWhe+kQ4vbSj/EB0CkkNwRft4V6aa6swb/4Pzx99CUmoy+7buYO3UOSz5778nuixJh6n2YRdAz549WbCgdFL++OOPM2jQIAD27NlDUVERTZo0IRqN8vzzz9OrV68EVCpJqq06NoJfZMPPFgHRQz28koj9fW4L+EHXxNUnSbXZ3d1jPxCyePuh4zLE/k4KwSPnwOmnJLBA1SgvX/H/El2CpGOoEWHXkfbt28eqVasYM2YMAFu3buXKK6+kuLiY4uJiunbtyhNPPJHYIiVJtc5Fp0OnRvDCepj9MRRGYiHYVR3goraQUu1nypSkYKqfAk+cD//eHBtyvn431EuCIW3g6ozYsVqSFBw1MuxasmQJxcXFJZPTd+zYkUWLFiW4KkmSoHMT+GnP2E2SVH3USYbL2sVukqRgq5FhV9++fYlGK5hhUpIkSZIkSbWSAyokSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZKkUnJycsjIyCAcDjNq1Kgy6ydPnsysWbMAePjhh7ngggv4wQ9+UGa77373uwwaNIgBAwawevVqAMLhMOFwmG7dujFmzBgOHDhA//79GTRoEMOGDWP//v1s376dH//4x1X7IiVJUiBV9jxm48aN9OvXj4EDB3LTTTcRjUZZsWIF48ePT0DVkk42wy5JUhmjR48mJyeHJk2asGDBglLrpk+fztChQ9m6dSsLFy7kjTfeICUlhXfffbfUdk888QRz5szhkUce4Q9/+AMQOwHNyclh2LBhXHLJJaSmpjJnzhzmzJnDueeey8yZM0lLS2PHjh3s3r07bq9XkiQFR2XOY9q0acP8+fOZO3cuSUlJLF26lKysLBYuXEg0Gk1Q5ZJOFsMu6QQd6+rRQw89RF5e3lHvn5ubS//+/enXrx8PPPBAmfUHDhzg6quvJhwOM2HCBK84Ka66d+/O5s2bS5a3b99OvXr1CIVCvPvuuwwaNAiAIUOGkJubW+q+qampAOzevZvu3buXWpeTk0M4HAYgJSUFgEgkQqdOnQDo27cvOTk5VfGSJElSLVHReUxycjKhUAiAunXr0qZNGwA6duzIsmXLElKvpJPHsEs6CY529SgSibBkyRI6d+581PtmZ2czf/583nzzTRYsWMDOnTtLrX/xxRfp168fOTk5vPfee7Ro0cIrToqbBQsWkJmZWbK8Zs0a2rdvD8COHTto3LgxAI0aNWLHjh1l7j906FDuuOMOzj333DKPUadOHQCWL1/Oueeey6uvvkp6ejoA7du3Lxn6KEmS9FVUdB4D8Prrr9OjRw+2bNlCkyZNAM9BpKAw7JJOoiOvHr3//vucccYZFd7nYO+X4uJi2rRpQ4MGDUqtX7duHWeddRYAWVlZvPPOO15xUpV76qmnCIfDtG3bll69epW7TdOmTUvC2V27dtG0adMy27z22mu8+OKLjBs3rqRt2rRpXHbZZSXLXbt25Z133mHEiBE8/fTTJ/NlSJKkWqgy5zEQ65m+ZMkS2rdvz8svvxy/AiVVOcMu6SQ68upRXl4eHTp0OOb9pkyZQlZWFk2bNi0Z0nVQly5dmDNnDtFolDfeeIMvvvjCK06qcgd7Kz744IOl2jMzM8nPzwegd+/ezJ07F4DZs2fTp0+fUtsWFBQA0KRJE+rXr1/SPmPGDC655BIgNkz3YC/FJk2aUK9ePQDy8/Mr7BEpSZJ0NJU5jyksLCxp9xxECh7DLukkqMzVo+XLl5f8Et3B269+9SsAvv3tb7Ny5Uo++ugjli5dWup+w4YNY9u2bXzta1/j1FNPpWXLllX9cqSjSktLY+/evQC0atWKHj16cMEFF1BQUMA555zDli1bmDBhAgDDhw9n8ODB3Hzzzfz0pz8F4NNPPyU1NbVkqEB+fj7hcJjBgwfz0ksvcd111wHw1ltvlczpJUmSdDIcfh6Tm5vLwIEDCYfDbNq0iaFDhwKxoY5HzjUqqeZJOfYmko5l9OjR5U4u37lzZ1588UUgNlSrvAm3CwoKqFu3LklJSTRq1KjkqtJBycnJTJw4kWg0yqhRozj//POZNWsW/fv3r5LXIh0MY49m2LBhzJo1iwsvvJCxY8cyduzYknWtWrXinnvuAWI9uI7UokWLUsMEMjMzmTNnTqlttm/fTtOmTWnUqNEJvhJJklTbHM95zMEe6getWLGC3r17l0xcL6nmMuySqlDPnj155JFHKtzmpZde4ve//z2RSISBAwfSuXNntmzZwuTJk7nnnnvYsGEDN9xwA0lJSYwZM4YGDRp4xUkJdcMNN1Tp46elpfG73/2uSp9DkiTVThWdx2RlZZGVlRXHaiRVFcMu6QRVdPUoKSmJHj16kJeXd9Sx/yNGjGDEiBGl2g7vHdOuXbtSPcK84iRJkiRJ0tEZdklVrLzhjSfCK06SJEmSJB2dE9RLkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBUaNCbsKCwsZO3Ys6enp1K9fnyFDhpCbm0soFGLatGmJLk8B9kXhob+LIomrQzoZCosP/b2nKHF1SJIkfRXR6KG/t+xLXB2SqreURBdQGdFolBEjRpCbm8u4cePIzMxkypQpDB8+HIDs7OwEV6gg2rIPnlgBMzcfarv0Vbi2E4zsBEmhxNUmHa/CYngqD/627lDb11+Gb6bD97KgSZ3E1SZJklQZsz+G/1l1aPmbr0KfFnD7mXBWWvzrOX3o2WTfdw2NO7WhaPc+PvjDdJZNfCn+hUgqo0aEXZMmTWLGjBksXryYbt26ARAOh8nIyCAtLY127doluEIFzZa9MOoN+LwADu/Mta0AHlsOa3bCz7MhZOClGqAoAj/Khbe3lW4viMCL+fDuZ/CnAQZekiSp+pq6Dn61FI48/X73U/jufHjsPOhzavzqaTOoJ+dPuJV5dz7OlgXLSKlfl1PatohfAZIqVCOGMY4fP56RI0eWBF0AycnJZGRklPTq2r9/P7fffjudO3fmrLPO4pZbbklUuQqA33xQNug63IxNMGdLXEuSvrK/55cNug6KAht2wx9WxrUkSZKkStu2H379Qezv6BHrIkAkCmMXxnfKkex7r2HJo//Hx/OWEi2OcGD3Pnas2hi/AiRVqNqHXXl5eaxbt44rr7yyzLqNGzeWhF333nsv9erVY/Xq1SxdupRf/vKX8S5VAfHJvliQVdFnZVII/rY+XhVJJ+aFdWWvgh4uCkzfCPucw0uSJFVDf8+PBVpHEwE+K4A3tsannpT6dWnRqxP1T23K8Df+i28teZIhf7mPhukt41OApGOq9sMYN2+OTZjUsmXpA8fKlSvJz88nOzub3bt388wzz7Bp0yZCX44rO+20047recLhMElJ1T77K6P7C/sBqFu3XoIrCY6Gvf6DjJ9WPNY+EoX5H26nbrh1nKqSvqLkFM56fs8xN9tfDK2yerN/wwdxKEo6efwcVNC4TyveasI+1/7eqTTqfQmhpOSjbhONFDPqvvFs/d+fn9Tn7pTSjHsbDyjVVqfpKYSSkmj/jb68eu2D7PvsC/r84iYGP3UP079+z0l9/qAZPDjM2qLPE12GapA6deqwa9eu475ftU93mjdvDsCaNWtK2qLRKPfddx+RSITs7GzWrl1L8+bN+fnPf84555xDOBxm3rx5iSpZNV2kkt1bIsXH3kZKtGiEaLRyffqj7tOSJKkaihYXlf4ZxnKFYtvFwYHdsYBw+ZMz2L1pG8X7Cln4yBSan5XhvF1SNVHte3ZlZWWRmZnJ/fffT2pqKg0bNmTixIksWrSIBg0a0KVLFxYvXsyHH35IdnY2EyZM4O233+bSSy9lzZo1NG7cuFLPk5OTQ//+/av41Zx853zZAamgoCCxhQTI7gPwH6/EJu8+miRgWLdTWez7rhrg1vmw6LOKh+a2qAtv5S0mpdpfApFK83NQQeM+rXirCfvcwcnpKxJKSmL6Yz+j17M/O6nPvTV3Jf++7IFSbQd27WX3xk8qEcDpSLNn53BanzMTXYZqgWr/tSYlJYWpU6fSunVrRo0axZgxY7j44osZNGgQPXr0ICkpiXbt2pGSksK1114LQN++fWnRogWrV69OcPWqiRqmwmXtK57jKAJcnRGviqQTc23HioMugG91xKBLkiRVSxenQ8OUo395TQrBGY2hZ1r8alr1zEyyvvMNGrRpTnLdVLLvvYZP31/Lns2fxq8ISUdVI77a9OzZkwULFrB3715WrVrF7bffzqJFi0omp2/RogWDBw/m1VdfBWD16tV88sknZGZmJrJs1WB3Zh36sDw89Er6cuHu7tC9WdzLkr6ScGu48cvD4eEH/YN/h1vB9Z3iXZUkSVLlnJICv+0DqUllv8CGgOZ14NfnQqiiq9Un2dLfT2Pz64sYNvPXjFg4iQanpTF79IT4FSCpQtV+GGN59u3bx6pVqxgzZkxJ2x/+8Aduvvlm7rrrLlJTU5k8eTJNmzZNWI2q2eqlwO/Ph2kbYr9kl78bkkMw4DS4piOc41B81TB3dIUeafC/6+DdT2M/snBGk1gPxW+kx/ZvSZKk6qp3C3g2DM9/CP/eBHuKIK0uDG8PV3eA5vGeXz8a5b2H/sp7D/01zk8sqTJqZNi1ZMkSiouLS3p2AXTs2JGcnJzEFaXAqZscCwKuzogFAyHie7VIOtkGtordolGIcqinoiRJUk3QoSH8pEfsFol6LiPp6Gpk2NW3b1+iTgaoOPKDVEESClU8J50kSVJ15/m5pIrUiDm7JEmSJEmSpMow7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOwKsJycHDIyMgiHw4waNarM+smTJzNr1iwAmjVrRjgc5utf/3qZ7UaNGsWAAQMYOnQomzdvBmDNmjVcdNFFDB48mJdeeomioiK+853vVO0LkiRJqsUqe263ceNG+vXrx8CBA7npppuIRqOltrvmmmsIh8P07t2byy+/HKDc7aQT2edWrFjB+PHjE1C1JBl2Bd7o0aPJycmhSZMmLFiwoNS66dOnM3ToUAB69+5NTk4OM2fOLPMYP//5z5k3bx73338/v//970vann/+eWbPns2wYcNISUnh1FNPZe3atVX/oiRJkmqpypzbtWnThvnz5zN37lySkpJYunRpqe2ef/55cnJyuOWWW7jkkksA6Nu3L7Nnz47b61DN8VX3uaysLBYuXGiIKikhDLtqie7du5f0ygLYvn079erVIxQKAfD+++9zwQUX8Nvf/rbMfTt06ABAcnIyoVCIwsJCNm7cyA033MBll13G1q1bAQiHw/z73/+u+hcjSVIlHatXwkMPPUReXl6Fj/HHP/6RoUOHEg6HOXDgQEn7vHnzOO+88+jXr1/J56c9GRQvFZ3bHTxnA6hbty5t2rQp9zGmT5/OpZdeCsDgwYOZMWNG1ReuGuur7HMdO3Zk2bJlCalXUu1m2FVLLFiwgMzMzJLlNWvW0L59+5Ll1atXk5OTw7x58/jggw/K3D8SifDwww8zevRoPv30Uz744AOefvppxowZwyOPPAJA+/btWb16ddW/GEmSjsPReiVEIhGWLFlC586dj3rfDRs2sHTpUl577TVycnJITU0tWdexY0fmzp3Lm2++yT//+U/27t1rTwbFzbHO7V5//XV69OjBli1baNKkSZn77969m127dtG6dWvA8zgd21fZ59yvJCWKYVfAPfXUU4TDYdq2bUuvXr2Oul2zZs1ITk7mkksuYfny5WXWjx07lmuuuYaOHTvSpEkTzjrrLJo1a8YFF1zAqlWrqvAVSJJ0chzZK+H999/njDPOqPA+M2fOZM+ePQwZMoRx48aVWtemTRvq1KkDxHo/JyXFTqvsyaCqVNlzuyFDhrBkyRLat2/Pyy+/XGb9K6+8wkUXXVSFlSooTtY+J0nxZNgVcAevZj/44IOl2jMzM8nPzwdg7969FBcXA7ErNhkZGaW2/b//+z+2b9/OzTffDMApp5xCvXr1KCgo4IMPPigZ5pifn1/h1XFJkhLpyF4JeXl5JZ9hR/PJJ58QCoV4/fXXWbduHYsXLy6zzauvvkqnTp2oV68eYE8GVa3KnNsVFhaWtDdp0qRk3zzctGnTuOyyy0qWPY/T0ZzIPud+JSlRDLtqqbS0NPbu3QvA2rVr6dOnDwMGDKBp06ace+65bNmyhQkTJgDw4x//mPfff59wOMxDDz0EwF133cXQoUP54Q9/yL333gvE5kW5+OKLE/OCJEk6isr0Sli+fDnhcLjU7Ve/+hVNmjRh0KBBAAwcOLBMb+ZNmzbxyCOPlDvnpRRPh5/b5ebmMnDgQMLhMJs2bWLo0KGlzu2Ki4tZvXo1Xbt2Lbn/7NmzPY/TcTnWPgexoY7du3dPZJmSaqmURBegqnPwZP1ohg0bxqxZs7jwwgt57733Sq1r1aoV99xzD0DJFZvDXXjhhVx44YUly0VFRXzyySelrphLklQdjB49mgceeKBMe+fOnXnxxRcB6Nq1Kzk5OWW2WbhwIVOmTAFg6dKlXHvttSXrCgoKuPHGG5k4cSINGzYsac/Pz6d///4n+VVIx3duN3fu3FLrDj+3S05O5q233iq1/u233+aWW2456TWrZjuRfW7FihX07t27ZOJ6SYonw65a7IYbbjhpj5WSksJTTz110h5PkqSq1rNnz5IfWTmas88+m2eeeYZwOMwZZ5xB37592bJlC5MnT6ZFixYsX76cW2+9FYBnn32Wtm3b2pNBCXMi53Z//vOfT2Ilqi0q2ueysrLIysqKYzWSdIhhlyRJCqyKeiUkJSXRo0cP8vLyKpxT5tFHHy21fHgPmZtuuqnUOnsySJIkJZ5hlyRJqrXKG954IuzJIEmSlHhOUC9JkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGDUm7CosLGTs2LGkp6dTv359hgwZQm5uLqFQiGnTpiW6vITYU5ToCiRJqh52H0h0BdKJcz9WIrn/SQqSlEQXUBnRaJQRI0aQm5vLuHHjyMzMZMqUKQwfPhyA7OzsBFcYX5v2wFOr4eXNh9punAs3doZw68TVJUlSvLyxBf6cd2j5wpfha23hu2dAu4aJq0v6Kj7cBU+ugtc+PtR2yzy4+Qw4r2Xi6lKwlXcc/Xpb+I7H0WO6bs3kUsvJdVLZkbeZl4belaCKJB2pRoRdkyZNYsaMGSxevJhu3boBEA6HycjIIC0tjXbt2iW4wvhZtwtGz4tdeYkc1r58B9z9DvyoG1zXKVHVSZJU9f62DsYvLd09vSgKr2yOfXl7cgBkNk5YedJxWb4Dbp0PBcWlz+0Wb4cfvAU/6wWX1p5TXcXJ0Y6jL2+CuR5Hj+nZzOtLLQ977besmzY/QdVIKk+NGMY4fvx4Ro4cWRJ0ASQnJ5ORkUF2djbr16+nV69eJbcOHTqQlpaWwIqrzv9bBLuLSp8MwaHl3y2D9bviXZUkSfGxaQ/8emns7zKfhVHYWwQ/fQ+i0biXJh23SBTuf7ds0AWx5Sjwy/dh2/4EFKfAqvA4Suw4+oDH0Upr0SuTpmeczpr/nZ3oUiQdptqHXXl5eaxbt44rr7yyzLqNGzeSnZ1Nhw4dWLx4ccnt8ssv59vf/nYCqq1aK3bErv5FKvjgCQH/lx+ngiRJirMXj/EZFwHW7oIln8elHOmE5G6DTXvLBg6Hi0ThH57b6SSqzHF0jcfRSuv87SFsfn0R+7b6hknVSbUfxrh5c2xiqpYtS09YsHLlSvLz88vM11VYWMizzz7LK6+8clzPEw6HSUqq3tlf2tdvpe13H6twmyjw1Cu53N/7gvgUJUlSHGWMe5WG3QYec7uLv3MPn/2r4s9MKdFOveInnHbN/yMUOvo5aDQSYcJzr3DHI5fHrzAFWsbPZ9Gw67G/K3gcjemU0ox7Gw8od11K/bpkXNafN+58PM5V1VyDB4dZW2QwqMqrU6cOu3Yd//C16p3uAM2bNwdgzZo1JW3RaJT77ruPSCRSJux66aWXaNu2LWeffXZc64yLaEXX/Q7fzj7HkqSAikaIVuZzzs9C1QSe2ykRKn0creT+WYt1uPR8ivYVsmnWe4kuRdIRQtFKHekSp6ioiKysLA4cOMCECRNo2LAhEydOZNGiRWzfvp1du3aV6pF1ySWXcNFFF3HnnXdW6vF37tzJ0qVLOeuss2jcuHrPwrh2J3wrp+JtQsCoTLijazwqkiQpvv64Ep5cHevJXJG/DoQzm8ajIumrW/wZfKcSc1rf2RVuyKz6elQ7eBw9PltzV/Lvyx4od93F037JJ2+v5L2Hn41zVTXXxdMe5LQ+Zya6DNUC1b5nV0pKClOnTqV169aMGjWKMWPGcPHFFzNo0CB69OhRKujavHkzc+bM4brrrqv04zdu3Jj+/ftX+6ALoFNjOLt5xf9oIWB4+3hVJElSfA1vD0mho69PAro39QuaaoaeadCp0dH36RBQJwmGpce1LAVcpY6jzTyOHkvjTm1oeU4XVj/3WqJLkVSOah92AfTs2ZMFCxawd+9eVq1axe23386iRYvKDGF8+umn+cY3vlEy9DGIfpENLerFTn4Ol0Ss7We9oO0p8a9LkqR4aFkffp4d+9w78staCGhWFx7snYjKpOMXCsH4c6BxajnndqHY7eHe0LRuQspTQFXqOBrAGWFOts7XDmHr2yvYtW5LokuRVI5qP0F9efbt28eqVasYM2ZMqfa//OUvPPZYsCdRbNUAJg+Ev66Fv+fD7qLYh1L/0+D6zFjPL0mSguyi06F1A5i8BuZsiQ3FOSUFLmsX+yw8tV6iK5Qqr0Oj2HCxyWvhpQ2wrzgWQAxpBSMzYz1spJPtaMfRy9vF9juPo8f23oN/TXQJkipQI8OuJUuWUFxcXKZn1+rVqxNUUXw1rwc/7Babl2vPAaibHLtJklRb9EyDnn2gsBj2F8MpqZBcwbAcqTpr1QDuOQt+1A32FEH9ZKjjuZ2q2OHH0X3F0NDjqKQAqZFhV9++fSv3CyIBlxyCxnUSXYUkSYlTx1BAAZKSBE08t1OceRyVFEQ1Ys4uSZIkSZIkqTIMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwQtFoNJroIiRJkiRJqm4Kd+3l8xUbEl1GYDTLakedRg0SXYZqAcMuSZIkSZIkBYbDGCVJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFxv8PFJj4Bfw0+IYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -776,10 +776,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:24.192611Z", - "iopub.status.busy": "2024-07-30T19:20:24.192225Z", - "iopub.status.idle": "2024-07-30T19:20:24.458500Z", - "shell.execute_reply": "2024-07-30T19:20:24.457625Z" + "iopub.execute_input": "2024-08-01T02:14:46.888838Z", + "iopub.status.busy": "2024-08-01T02:14:46.888636Z", + "iopub.status.idle": "2024-08-01T02:14:47.154030Z", + "shell.execute_reply": "2024-08-01T02:14:47.153449Z" } }, "outputs": [ diff --git a/dev/explanations/state-vectors-and-gates.ipynb b/dev/explanations/state-vectors-and-gates.ipynb index bcd890406..7e5925f94 100644 --- a/dev/explanations/state-vectors-and-gates.ipynb +++ b/dev/explanations/state-vectors-and-gates.ipynb @@ -26,10 +26,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:26.906747Z", - "iopub.status.busy": "2024-07-30T19:20:26.906545Z", - "iopub.status.idle": "2024-07-30T19:20:27.613634Z", - "shell.execute_reply": "2024-07-30T19:20:27.612996Z" + "iopub.execute_input": "2024-08-01T02:14:49.587549Z", + "iopub.status.busy": "2024-08-01T02:14:49.587346Z", + "iopub.status.idle": "2024-08-01T02:14:50.307655Z", + "shell.execute_reply": "2024-08-01T02:14:50.307026Z" } }, "outputs": [ @@ -74,10 +74,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.616232Z", - "iopub.status.busy": "2024-07-30T19:20:27.615948Z", - "iopub.status.idle": "2024-07-30T19:20:27.622812Z", - "shell.execute_reply": "2024-07-30T19:20:27.622273Z" + "iopub.execute_input": "2024-08-01T02:14:50.310235Z", + "iopub.status.busy": "2024-08-01T02:14:50.309922Z", + "iopub.status.idle": "2024-08-01T02:14:50.317245Z", + "shell.execute_reply": "2024-08-01T02:14:50.316619Z" } }, "outputs": [ @@ -120,10 +120,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.625029Z", - "iopub.status.busy": "2024-07-30T19:20:27.624835Z", - "iopub.status.idle": "2024-07-30T19:20:27.629598Z", - "shell.execute_reply": "2024-07-30T19:20:27.629044Z" + "iopub.execute_input": "2024-08-01T02:14:50.319785Z", + "iopub.status.busy": "2024-08-01T02:14:50.319414Z", + "iopub.status.idle": "2024-08-01T02:14:50.323837Z", + "shell.execute_reply": "2024-08-01T02:14:50.323266Z" } }, "outputs": [ @@ -157,10 +157,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.631936Z", - "iopub.status.busy": "2024-07-30T19:20:27.631552Z", - "iopub.status.idle": "2024-07-30T19:20:27.635830Z", - "shell.execute_reply": "2024-07-30T19:20:27.635342Z" + "iopub.execute_input": "2024-08-01T02:14:50.326096Z", + "iopub.status.busy": "2024-08-01T02:14:50.325872Z", + "iopub.status.idle": "2024-08-01T02:14:50.330257Z", + "shell.execute_reply": "2024-08-01T02:14:50.329773Z" } }, "outputs": [ @@ -199,10 +199,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.637924Z", - "iopub.status.busy": "2024-07-30T19:20:27.637736Z", - "iopub.status.idle": "2024-07-30T19:20:27.643581Z", - "shell.execute_reply": "2024-07-30T19:20:27.642992Z" + "iopub.execute_input": "2024-08-01T02:14:50.332778Z", + "iopub.status.busy": "2024-08-01T02:14:50.332311Z", + "iopub.status.idle": "2024-08-01T02:14:50.338267Z", + "shell.execute_reply": "2024-08-01T02:14:50.337780Z" } }, "outputs": [ @@ -245,10 +245,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.645929Z", - "iopub.status.busy": "2024-07-30T19:20:27.645574Z", - "iopub.status.idle": "2024-07-30T19:20:27.651334Z", - "shell.execute_reply": "2024-07-30T19:20:27.650782Z" + "iopub.execute_input": "2024-08-01T02:14:50.340689Z", + "iopub.status.busy": "2024-08-01T02:14:50.340489Z", + "iopub.status.idle": "2024-08-01T02:14:50.346175Z", + "shell.execute_reply": "2024-08-01T02:14:50.345645Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:27.653560Z", - "iopub.status.busy": "2024-07-30T19:20:27.653233Z", - "iopub.status.idle": "2024-07-30T19:20:27.658266Z", - "shell.execute_reply": "2024-07-30T19:20:27.657700Z" + "iopub.execute_input": "2024-08-01T02:14:50.348736Z", + "iopub.status.busy": "2024-08-01T02:14:50.348275Z", + "iopub.status.idle": "2024-08-01T02:14:50.353951Z", + "shell.execute_reply": "2024-08-01T02:14:50.353336Z" } }, "outputs": [ diff --git a/dev/how-to-guides/entanglement-forging.html b/dev/how-to-guides/entanglement-forging.html index 9ffc16fd2..0fd96a136 100644 --- a/dev/how-to-guides/entanglement-forging.html +++ b/dev/how-to-guides/entanglement-forging.html @@ -336,7 +336,7 @@

Build a molecule @@ -470,10 +470,10 @@

Optimize energy\n" diff --git a/dev/how-to-guides/fermion-operator.html b/dev/how-to-guides/fermion-operator.html index 5337c6640..6c5490bd4 100644 --- a/dev/how-to-guides/fermion-operator.html +++ b/dev/how-to-guides/fermion-operator.html @@ -316,9 +316,9 @@

How to use the FermionOperator class
 FermionOperator({
+    (cre_a(0), des_a(3)): 0.5,
     (cre_b(1), des_b(5), cre_a(4)): 1+1j,
-    (cre_a(3), des_a(0)): -0.25,
-    (cre_a(0), des_a(3)): 0.5
+    (cre_a(3), des_a(0)): -0.25
 })
 
@@ -337,7 +337,7 @@

How to use the FermionOperator class
-'FermionOperator({((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 3), (False, False, 0)): -0.25+0j, ((True, False, 0), (False, False, 3)): 0.5+0j})'
+'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 3), (False, False, 0)): -0.25+0j})'
 

FermionOperators support arithmetic operations. Note that when multiplying a FermionOperator by a scalar, the scalar must go on the left, i.e. 2 * op and not op * 2.

@@ -365,17 +365,17 @@

How to use the FermionOperator class
 FermionOperator({
-    (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,
+    (des_a(3), des_b(3)): 0.0625,
+    (cre_a(3), des_a(0)): -0.5,
     (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,
-    (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,
+    (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,
+    (cre_a(0), des_a(3)): 1,
+    (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,
+    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,
     (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,
-    (cre_b(1), des_b(5), cre_a(4)): 2+2j,
+    (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,
     (cre_b(2)): 0-0.25j,
-    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,
-    (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,
-    (cre_a(3), des_a(0)): -0.5,
-    (cre_a(0), des_a(3)): 1,
-    (des_a(3), des_b(3)): 0.0625
+    (cre_b(1), des_b(5), cre_a(4)): 2+2j
 })
 
@@ -404,17 +404,17 @@

How to use the FermionOperator class
 FermionOperator({
-    (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,
+    (des_a(3), des_b(3)): 0-1.25j,
+    (cre_a(3), des_a(0)): 0+3j,
     (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,
-    (cre_a(3), des_a(0), cre_b(2)): -1,
+    (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,
+    (cre_a(0), des_a(3)): 0-6j,
+    (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,
+    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,
     (cre_a(0), des_a(3), cre_b(2)): 2,
-    (cre_b(1), des_b(5), cre_a(4)): 12-12j,
+    (cre_a(3), des_a(0), cre_b(2)): -1,
     (cre_b(2)): -5,
-    (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,
-    (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,
-    (cre_a(3), des_a(0)): 0+3j,
-    (cre_a(0), des_a(3)): 0-6j,
-    (des_a(3), des_b(3)): 0-1.25j
+    (cre_b(1), des_b(5), cre_a(4)): 12-12j
 })
 
@@ -435,16 +435,16 @@

How to use the FermionOperator class
 FermionOperator({
-    (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,
-    (cre_b(2), cre_a(0), des_a(3)): 2,
     (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,
-    (cre_a(0), des_a(3)): 0-6j,
+    (cre_b(2)): -5,
     (cre_a(3), des_a(0)): 0+3j,
-    (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,
+    (des_b(3), des_a(3)): 0+1.25j,
     (cre_b(1), cre_a(4), des_b(5)): -12+12j,
+    (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,
     (cre_b(2), cre_a(3), des_a(0)): -1,
-    (cre_b(2)): -5,
-    (des_b(3), des_a(3)): 0+1.25j
+    (cre_b(2), cre_a(0), des_a(3)): 2,
+    (cre_a(0), des_a(3)): 0-6j,
+    (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j
 })
 
@@ -515,7 +515,7 @@

How to use the FermionOperator class
 array([ 0.       +0.j        ,  0.       +0.j        ,
         0.       +0.j        ,  0.       +0.j        ,
-       -0.3185146+0.03258348j,  0.       +0.j        ,
+       -0.0129265+0.03603956j,  0.       +0.j        ,
         0.       +0.j        ,  0.       +0.j        ,
         0.       +0.j        ])
 
diff --git a/dev/how-to-guides/fermion-operator.ipynb b/dev/how-to-guides/fermion-operator.ipynb index 49e931973..5959ada9e 100644 --- a/dev/how-to-guides/fermion-operator.ipynb +++ b/dev/how-to-guides/fermion-operator.ipynb @@ -29,10 +29,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.129711Z", - "iopub.status.busy": "2024-07-30T19:20:40.129179Z", - "iopub.status.idle": "2024-07-30T19:20:40.822257Z", - "shell.execute_reply": "2024-07-30T19:20:40.821711Z" + "iopub.execute_input": "2024-08-01T02:15:02.995372Z", + "iopub.status.busy": "2024-08-01T02:15:02.995170Z", + "iopub.status.idle": "2024-08-01T02:15:03.713503Z", + "shell.execute_reply": "2024-08-01T02:15:03.712842Z" } }, "outputs": [ @@ -40,9 +40,9 @@ "data": { "text/plain": [ "FermionOperator({\n", + " (cre_a(0), des_a(3)): 0.5,\n", " (cre_b(1), des_b(5), cre_a(4)): 1+1j,\n", - " (cre_a(3), des_a(0)): -0.25,\n", - " (cre_a(0), des_a(3)): 0.5\n", + " (cre_a(3), des_a(0)): -0.25\n", "})" ] }, @@ -76,17 +76,17 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.824814Z", - "iopub.status.busy": "2024-07-30T19:20:40.824385Z", - "iopub.status.idle": "2024-07-30T19:20:40.828630Z", - "shell.execute_reply": "2024-07-30T19:20:40.828110Z" + "iopub.execute_input": "2024-08-01T02:15:03.716141Z", + "iopub.status.busy": "2024-08-01T02:15:03.715643Z", + "iopub.status.idle": "2024-08-01T02:15:03.719694Z", + "shell.execute_reply": "2024-08-01T02:15:03.719165Z" } }, "outputs": [ { "data": { "text/plain": [ - "'FermionOperator({((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 3), (False, False, 0)): -0.25+0j, ((True, False, 0), (False, False, 3)): 0.5+0j})'" + "'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 3), (False, False, 0)): -0.25+0j})'" ] }, "execution_count": 2, @@ -110,10 +110,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.831014Z", - "iopub.status.busy": "2024-07-30T19:20:40.830519Z", - "iopub.status.idle": "2024-07-30T19:20:40.834980Z", - "shell.execute_reply": "2024-07-30T19:20:40.834509Z" + "iopub.execute_input": "2024-08-01T02:15:03.722023Z", + "iopub.status.busy": "2024-08-01T02:15:03.721669Z", + "iopub.status.idle": "2024-08-01T02:15:03.726029Z", + "shell.execute_reply": "2024-08-01T02:15:03.725556Z" } }, "outputs": [ @@ -121,17 +121,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", + " (des_a(3), des_b(3)): 0.0625,\n", + " (cre_a(3), des_a(0)): -0.5,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,\n", - " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", + " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", + " (cre_a(0), des_a(3)): 1,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", - " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", + " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", " (cre_b(2)): 0-0.25j,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", - " (cre_a(3), des_a(0)): -0.5,\n", - " (cre_a(0), des_a(3)): 1,\n", - " (des_a(3), des_b(3)): 0.0625\n", + " (cre_b(1), des_b(5), cre_a(4)): 2+2j\n", "})" ] }, @@ -170,10 +170,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.837346Z", - "iopub.status.busy": "2024-07-30T19:20:40.836985Z", - "iopub.status.idle": "2024-07-30T19:20:40.841028Z", - "shell.execute_reply": "2024-07-30T19:20:40.840425Z" + "iopub.execute_input": "2024-08-01T02:15:03.728303Z", + "iopub.status.busy": "2024-08-01T02:15:03.727962Z", + "iopub.status.idle": "2024-08-01T02:15:03.731751Z", + "shell.execute_reply": "2024-08-01T02:15:03.731255Z" } }, "outputs": [ @@ -181,17 +181,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", + " (des_a(3), des_b(3)): 0-1.25j,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,\n", - " (cre_a(3), des_a(0), cre_b(2)): -1,\n", + " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", + " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", " (cre_a(0), des_a(3), cre_b(2)): 2,\n", - " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", + " (cre_a(3), des_a(0), cre_b(2)): -1,\n", " (cre_b(2)): -5,\n", - " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", - " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", - " (cre_a(0), des_a(3)): 0-6j,\n", - " (des_a(3), des_b(3)): 0-1.25j\n", + " (cre_b(1), des_b(5), cre_a(4)): 12-12j\n", "})" ] }, @@ -220,10 +220,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.843289Z", - "iopub.status.busy": "2024-07-30T19:20:40.843043Z", - "iopub.status.idle": "2024-07-30T19:20:40.847315Z", - "shell.execute_reply": "2024-07-30T19:20:40.846822Z" + "iopub.execute_input": "2024-08-01T02:15:03.734093Z", + "iopub.status.busy": "2024-08-01T02:15:03.733743Z", + "iopub.status.idle": "2024-08-01T02:15:03.737557Z", + "shell.execute_reply": "2024-08-01T02:15:03.736979Z" } }, "outputs": [ @@ -231,16 +231,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", - " (cre_b(2), cre_a(0), des_a(3)): 2,\n", " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", - " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_b(2)): -5,\n", " (cre_a(3), des_a(0)): 0+3j,\n", - " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", + " (des_b(3), des_a(3)): 0+1.25j,\n", " (cre_b(1), cre_a(4), des_b(5)): -12+12j,\n", + " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", " (cre_b(2), cre_a(3), des_a(0)): -1,\n", - " (cre_b(2)): -5,\n", - " (des_b(3), des_a(3)): 0+1.25j\n", + " (cre_b(2), cre_a(0), des_a(3)): 2,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", + " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j\n", "})" ] }, @@ -265,10 +265,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.849418Z", - "iopub.status.busy": "2024-07-30T19:20:40.849243Z", - "iopub.status.idle": "2024-07-30T19:20:40.852377Z", - "shell.execute_reply": "2024-07-30T19:20:40.851786Z" + "iopub.execute_input": "2024-08-01T02:15:03.739953Z", + "iopub.status.busy": "2024-08-01T02:15:03.739608Z", + "iopub.status.idle": "2024-08-01T02:15:03.742596Z", + "shell.execute_reply": "2024-08-01T02:15:03.741975Z" } }, "outputs": [ @@ -298,10 +298,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.854709Z", - "iopub.status.busy": "2024-07-30T19:20:40.854346Z", - "iopub.status.idle": "2024-07-30T19:20:40.858697Z", - "shell.execute_reply": "2024-07-30T19:20:40.858190Z" + "iopub.execute_input": "2024-08-01T02:15:03.744793Z", + "iopub.status.busy": "2024-08-01T02:15:03.744464Z", + "iopub.status.idle": "2024-08-01T02:15:03.748472Z", + "shell.execute_reply": "2024-08-01T02:15:03.747891Z" } }, "outputs": [ @@ -341,10 +341,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.861099Z", - "iopub.status.busy": "2024-07-30T19:20:40.860730Z", - "iopub.status.idle": "2024-07-30T19:20:40.866540Z", - "shell.execute_reply": "2024-07-30T19:20:40.865977Z" + "iopub.execute_input": "2024-08-01T02:15:03.750631Z", + "iopub.status.busy": "2024-08-01T02:15:03.750437Z", + "iopub.status.idle": "2024-08-01T02:15:03.757184Z", + "shell.execute_reply": "2024-08-01T02:15:03.756585Z" } }, "outputs": [ @@ -353,7 +353,7 @@ "text/plain": [ "array([ 0. +0.j , 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", - " -0.3185146+0.03258348j, 0. +0.j ,\n", + " -0.0129265+0.03603956j, 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", " 0. +0.j ])" ] @@ -380,10 +380,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:40.868674Z", - "iopub.status.busy": "2024-07-30T19:20:40.868460Z", - "iopub.status.idle": "2024-07-30T19:20:40.879881Z", - "shell.execute_reply": "2024-07-30T19:20:40.879313Z" + "iopub.execute_input": "2024-08-01T02:15:03.759697Z", + "iopub.status.busy": "2024-08-01T02:15:03.759258Z", + "iopub.status.idle": "2024-08-01T02:15:03.770529Z", + "shell.execute_reply": "2024-08-01T02:15:03.769937Z" } }, "outputs": [ diff --git a/dev/how-to-guides/lucj.html b/dev/how-to-guides/lucj.html index 216ad1828..585e6c513 100644 --- a/dev/how-to-guides/lucj.html +++ b/dev/how-to-guides/lucj.html @@ -331,10 +331,10 @@

How to simulate the local unitary cluster Jastrow (LUCJ) ansatz
-converged SCF energy = -77.8266321248745
-Parsing /tmp/tmpwu132bfo
-converged SCF energy = -77.8266321248745
-CASCI E = -77.8742165643863  E(CI) = -4.02122442107773  S^2 = 0.0000000
+converged SCF energy = -77.8266321248744
+Parsing /tmp/tmpj45xqv5x
+converged SCF energy = -77.8266321248744
+CASCI E = -77.8742165643862  E(CI) = -4.02122442107773  S^2 = 0.0000000
 norb = 4
 nelec = (2, 2)
 
@@ -387,8 +387,8 @@

General UCJ ansatz
-E(CCSD) = -77.87421536374038  E_corr = -0.04758323886585477
-Energy at initialization: -77.87160024816276
+E(CCSD) = -77.87421536374026  E_corr = -0.04758323886585879
+Energy at initialization: -77.87160024816279
 

To variationally optimize the ansatz, we’ll take advantage of methods for conversion to and from real-valued parameter vectors. In the following code cell, we define an objective function that takes a parameter vector as input and outputs the energy of the associated ansatz state. We then optimize this objective function using scipy.optimize.minimize, with an initial guess obtained from the operator we initialized previously from t2 amplitudes.

@@ -426,10 +426,10 @@

General UCJ ansatz
 Number of parameters: 46
- message: Stop: Total number of iterations reached limit.
- success: False
-     fun: -77.8737294738008
-       x: [-4.713e-01  1.887e-02 ...  3.496e-02  2.563e-01]
-     nit: 10
-     jac: [-5.100e-04  7.045e-04 ... -8.032e-05 -9.903e-04]
-    nfev: 1456
-    njev: 10
-  nlinop: 996
+ message: Convergence: Norm of projected gradient <= gtol.
+ success: True
+     fun: -77.87363431750812
+       x: [-1.152e+00  2.495e-04 ...  3.487e-02  2.558e-01]
+     nit: 4
+     jac: [ 1.160e-06  2.366e-06 ... -8.677e-08 -8.466e-08]
+    nfev: 634
+    njev: 5
+  nlinop: 404
 
 Iteration 1
-    Energy: -77.87362938613155
-    Norm of gradient: 0.0012753677751103098
-    Regularization hyperparameter: 0.000767994604823012
-    Variation hyperparameter: 0.9908983723991553
+    Energy: -77.87363195924814
+    Norm of gradient: 0.0011074889449176437
+    Regularization hyperparameter: 0.0019227722411710023
+    Variation hyperparameter: 0.999207765530762
 Iteration 2
-    Energy: -77.8736342620794
-    Norm of gradient: 9.947142002605689e-05
-    Regularization hyperparameter: 0.004617146884357865
-    Variation hyperparameter: 0.9903551715726496
+    Energy: -77.87363429588754
+    Norm of gradient: 5.8763353258522626e-05
+    Regularization hyperparameter: 0.00192277163885033
+    Variation hyperparameter: 0.9992077655348396
 Iteration 3
-    Energy: -77.87363444305669
-    Norm of gradient: 6.62051367568589e-05
-    Regularization hyperparameter: 0.0007469794869116219
-    Variation hyperparameter: 0.9887262011056199
+    Energy: -77.87363430303687
+    Norm of gradient: 2.3616896960424702e-05
+    Regularization hyperparameter: 0.05751420783821811
+    Variation hyperparameter: 0.9988280540317593
 Iteration 4
-    Energy: -77.87369161757285
-    Norm of gradient: 0.0049409335588901085
-    Regularization hyperparameter: 8.184891976726621e-05
-    Variation hyperparameter: 0.9887108144805501
-Iteration 5
-    Energy: -77.87370126269155
-    Norm of gradient: 0.004306717922292566
-    Regularization hyperparameter: 1.0181757878933262
-    Variation hyperparameter: 0.9887023581408309
-Iteration 6
-    Energy: -77.87370915262531
-    Norm of gradient: 0.0038113319089807533
-    Regularization hyperparameter: 0.9031044956560692
-    Variation hyperparameter: 0.9031324767940594
-Iteration 7
-    Energy: -77.87371551723568
-    Norm of gradient: 0.0034373307371360177
-    Regularization hyperparameter: 0.9031045032759374
-    Variation hyperparameter: 0.9031324772479508
-Iteration 8
-    Energy: -77.87372083380427
-    Norm of gradient: 0.003153217120992378
-    Regularization hyperparameter: 0.9031046184822257
-    Variation hyperparameter: 0.9031324846718976
-Iteration 9
-    Energy: -77.87372541558348
-    Norm of gradient: 0.002936748331524959
-    Regularization hyperparameter: 0.9031046620111555
-    Variation hyperparameter: 0.9031324921853551
+    Energy: -77.87363431750812
+    Norm of gradient: 9.99877730752604e-06
+    Regularization hyperparameter: 0.008936658723049901
+    Variation hyperparameter: 0.998510578821955
 
diff --git a/dev/how-to-guides/lucj.ipynb b/dev/how-to-guides/lucj.ipynb index 2aa126521..81580fc7a 100644 --- a/dev/how-to-guides/lucj.ipynb +++ b/dev/how-to-guides/lucj.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:42.520621Z", - "iopub.status.busy": "2024-07-30T19:20:42.520402Z", - "iopub.status.idle": "2024-07-30T19:20:43.507932Z", - "shell.execute_reply": "2024-07-30T19:20:43.507195Z" + "iopub.execute_input": "2024-08-01T02:15:05.497077Z", + "iopub.status.busy": "2024-08-01T02:15:05.496876Z", + "iopub.status.idle": "2024-08-01T02:15:06.495921Z", + "shell.execute_reply": "2024-08-01T02:15:06.495327Z" } }, "outputs": [ @@ -27,22 +27,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "converged SCF energy = -77.8266321248745\n" + "converged SCF energy = -77.8266321248744\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Parsing /tmp/tmpwu132bfo\n", - "converged SCF energy = -77.8266321248745\n" + "Parsing /tmp/tmpj45xqv5x\n", + "converged SCF energy = -77.8266321248744\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CASCI E = -77.8742165643863 E(CI) = -4.02122442107773 S^2 = 0.0000000\n" + "CASCI E = -77.8742165643862 E(CI) = -4.02122442107773 S^2 = 0.0000000\n" ] }, { @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:43.510875Z", - "iopub.status.busy": "2024-07-30T19:20:43.510528Z", - "iopub.status.idle": "2024-07-30T19:20:43.581220Z", - "shell.execute_reply": "2024-07-30T19:20:43.580643Z" + "iopub.execute_input": "2024-08-01T02:15:06.499196Z", + "iopub.status.busy": "2024-08-01T02:15:06.498740Z", + "iopub.status.idle": "2024-08-01T02:15:06.568178Z", + "shell.execute_reply": "2024-08-01T02:15:06.567558Z" } }, "outputs": [ @@ -132,14 +132,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(CCSD) = -77.87421536374038 E_corr = -0.04758323886585477\n" + "E(CCSD) = -77.87421536374026 E_corr = -0.04758323886585879\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialization: -77.87160024816276\n" + "Energy at initialization: -77.87160024816279\n" ] } ], @@ -180,10 +180,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:20:43.584677Z", - "iopub.status.busy": "2024-07-30T19:20:43.584416Z", - "iopub.status.idle": "2024-07-30T19:21:53.848384Z", - "shell.execute_reply": "2024-07-30T19:21:53.847663Z" + "iopub.execute_input": "2024-08-01T02:15:06.571816Z", + "iopub.status.busy": "2024-08-01T02:15:06.571582Z", + "iopub.status.idle": "2024-08-01T02:16:16.428318Z", + "shell.execute_reply": "2024-08-01T02:16:16.427695Z" } }, "outputs": [ @@ -195,10 +195,10 @@ " message: STOP: TOTAL NO. of ITERATIONS REACHED LIMIT\n", " success: False\n", " status: 1\n", - " fun: -77.87387392663813\n", - " x: [-4.776e-01 -1.087e-04 ... 1.284e-04 1.285e-01]\n", + " fun: -77.87387387354954\n", + " x: [-1.153e+00 -1.260e-03 ... 3.360e-04 1.287e-01]\n", " nit: 10\n", - " jac: [-3.553e-05 1.563e-05 ... 7.105e-06 1.137e-05]\n", + " jac: [-3.695e-05 -3.837e-05 ... 7.105e-06 1.705e-05]\n", " nfev: 949\n", " njev: 13\n", " hess_inv: <72x72 LbfgsInvHessProduct with dtype=float64>\n" @@ -242,10 +242,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:21:53.851589Z", - "iopub.status.busy": "2024-07-30T19:21:53.851335Z", - "iopub.status.idle": "2024-07-30T19:22:17.907960Z", - "shell.execute_reply": "2024-07-30T19:22:17.907327Z" + "iopub.execute_input": "2024-08-01T02:16:16.431431Z", + "iopub.status.busy": "2024-08-01T02:16:16.431092Z", + "iopub.status.idle": "2024-08-01T02:16:41.150705Z", + "shell.execute_reply": "2024-08-01T02:16:41.150095Z" } }, "outputs": [ @@ -257,10 +257,10 @@ " message: CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n", " success: True\n", " status: 0\n", - " fun: -77.87363426617898\n", - " x: [-4.774e-01 -9.140e-05 ... 3.519e-02 2.561e-01]\n", + " fun: -77.87363426394428\n", + " x: [-1.153e+00 -1.027e-04 ... 3.520e-02 2.561e-01]\n", " nit: 5\n", - " jac: [ 1.847e-05 -1.990e-05 ... 5.684e-06 -2.842e-06]\n", + " jac: [-5.684e-06 2.274e-05 ... 9.948e-06 -2.842e-06]\n", " nfev: 329\n", " njev: 7\n", " hess_inv: <46x46 LbfgsInvHessProduct with dtype=float64>\n" @@ -305,10 +305,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:22:17.912351Z", - "iopub.status.busy": "2024-07-30T19:22:17.911173Z", - "iopub.status.idle": "2024-07-30T19:23:01.309529Z", - "shell.execute_reply": "2024-07-30T19:23:01.308897Z" + "iopub.execute_input": "2024-08-01T02:16:41.153702Z", + "iopub.status.busy": "2024-08-01T02:16:41.153482Z", + "iopub.status.idle": "2024-08-01T02:16:56.451086Z", + "shell.execute_reply": "2024-08-01T02:16:56.450406Z" } }, "outputs": [ @@ -317,61 +317,36 @@ "output_type": "stream", "text": [ "Number of parameters: 46\n", - " message: Stop: Total number of iterations reached limit.\n", - " success: False\n", - " fun: -77.8737294738008\n", - " x: [-4.713e-01 1.887e-02 ... 3.496e-02 2.563e-01]\n", - " nit: 10\n", - " jac: [-5.100e-04 7.045e-04 ... -8.032e-05 -9.903e-04]\n", - " nfev: 1456\n", - " njev: 10\n", - " nlinop: 996\n", + " message: Convergence: Norm of projected gradient <= gtol.\n", + " success: True\n", + " fun: -77.87363431750812\n", + " x: [-1.152e+00 2.495e-04 ... 3.487e-02 2.558e-01]\n", + " nit: 4\n", + " jac: [ 1.160e-06 2.366e-06 ... -8.677e-08 -8.466e-08]\n", + " nfev: 634\n", + " njev: 5\n", + " nlinop: 404\n", "\n", "Iteration 1\n", - " Energy: -77.87362938613155\n", - " Norm of gradient: 0.0012753677751103098\n", - " Regularization hyperparameter: 0.000767994604823012\n", - " Variation hyperparameter: 0.9908983723991553\n", + " Energy: -77.87363195924814\n", + " Norm of gradient: 0.0011074889449176437\n", + " Regularization hyperparameter: 0.0019227722411710023\n", + " Variation hyperparameter: 0.999207765530762\n", "Iteration 2\n", - " Energy: -77.8736342620794\n", - " Norm of gradient: 9.947142002605689e-05\n", - " Regularization hyperparameter: 0.004617146884357865\n", - " Variation hyperparameter: 0.9903551715726496\n", + " Energy: -77.87363429588754\n", + " Norm of gradient: 5.8763353258522626e-05\n", + " Regularization hyperparameter: 0.00192277163885033\n", + " Variation hyperparameter: 0.9992077655348396\n", "Iteration 3\n", - " Energy: -77.87363444305669\n", - " Norm of gradient: 6.62051367568589e-05\n", - " Regularization hyperparameter: 0.0007469794869116219\n", - " Variation hyperparameter: 0.9887262011056199\n", + " Energy: -77.87363430303687\n", + " Norm of gradient: 2.3616896960424702e-05\n", + " Regularization hyperparameter: 0.05751420783821811\n", + " Variation hyperparameter: 0.9988280540317593\n", "Iteration 4\n", - " Energy: -77.87369161757285\n", - " Norm of gradient: 0.0049409335588901085\n", - " Regularization hyperparameter: 8.184891976726621e-05\n", - " Variation hyperparameter: 0.9887108144805501\n", - "Iteration 5\n", - " Energy: -77.87370126269155\n", - " Norm of gradient: 0.004306717922292566\n", - " Regularization hyperparameter: 1.0181757878933262\n", - " Variation hyperparameter: 0.9887023581408309\n", - "Iteration 6\n", - " Energy: -77.87370915262531\n", - " Norm of gradient: 0.0038113319089807533\n", - " Regularization hyperparameter: 0.9031044956560692\n", - " Variation hyperparameter: 0.9031324767940594\n", - "Iteration 7\n", - " Energy: -77.87371551723568\n", - " Norm of gradient: 0.0034373307371360177\n", - " Regularization hyperparameter: 0.9031045032759374\n", - " Variation hyperparameter: 0.9031324772479508\n", - "Iteration 8\n", - " Energy: -77.87372083380427\n", - " Norm of gradient: 0.003153217120992378\n", - " Regularization hyperparameter: 0.9031046184822257\n", - " Variation hyperparameter: 0.9031324846718976\n", - "Iteration 9\n", - " Energy: -77.87372541558348\n", - " Norm of gradient: 0.002936748331524959\n", - " Regularization hyperparameter: 0.9031046620111555\n", - " Variation hyperparameter: 0.9031324921853551\n" + " Energy: -77.87363431750812\n", + " Norm of gradient: 9.99877730752604e-06\n", + " Regularization hyperparameter: 0.008936658723049901\n", + " Variation hyperparameter: 0.998510578821955\n" ] } ], diff --git a/dev/how-to-guides/qiskit-circuits.html b/dev/how-to-guides/qiskit-circuits.html index 0e7cc503f..44cae39b0 100644 --- a/dev/how-to-guides/qiskit-circuits.html +++ b/dev/how-to-guides/qiskit-circuits.html @@ -392,7 +392,7 @@

Prepare Hartree-Fock state
-<qiskit.circuit.instructionset.InstructionSet at 0x7f5b8dfa82b0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f1c6232fdf0>
 
@@ -421,7 +421,7 @@

Prepare Slater determinant
-<qiskit.circuit.instructionset.InstructionSet at 0x7f5b8df1c1f0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f1c623942b0>
 
@@ -448,7 +448,7 @@

Orbital rotation
-<qiskit.circuit.instructionset.InstructionSet at 0x7f5bf8e0a920>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f1c6232faf0>
 
@@ -470,7 +470,7 @@

Number operator sum evolution
-<qiskit.circuit.instructionset.InstructionSet at 0x7f5b8d51b250>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f1c6232f9d0>
 
@@ -495,7 +495,7 @@

Diagonal Coulomb evolution
-<qiskit.circuit.instructionset.InstructionSet at 0x7f5b8de2d930>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f1c619c94b0>
 
@@ -518,7 +518,7 @@

Spin-balanced unitary cluster Jastrow (UCJ) operator
-<qiskit.circuit.instructionset.InstructionSet at 0x7f5b8d55ce20>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f1c6232f940>
 
@@ -541,7 +541,7 @@

Spin-unbalanced unitary cluster Jastrow (UCJ) operator
-<qiskit.circuit.instructionset.InstructionSet at 0x7f5b8e0d8eb0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f1c6232d630>
 
@@ -568,7 +568,7 @@

Trotter simulation of double-factorized Hamiltonian
-<qiskit.circuit.instructionset.InstructionSet at 0x7f5b8dfa8130>
+<qiskit.circuit.instructionset.InstructionSet at 0x7f1c623966b0>
 
diff --git a/dev/how-to-guides/qiskit-circuits.ipynb b/dev/how-to-guides/qiskit-circuits.ipynb index bb067f614..4571d1df4 100644 --- a/dev/how-to-guides/qiskit-circuits.ipynb +++ b/dev/how-to-guides/qiskit-circuits.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:02.870714Z", - "iopub.status.busy": "2024-07-30T19:23:02.870515Z", - "iopub.status.idle": "2024-07-30T19:23:03.556590Z", - "shell.execute_reply": "2024-07-30T19:23:03.556012Z" + "iopub.execute_input": "2024-08-01T02:16:58.242203Z", + "iopub.status.busy": "2024-08-01T02:16:58.242000Z", + "iopub.status.idle": "2024-08-01T02:16:58.943627Z", + "shell.execute_reply": "2024-08-01T02:16:58.943073Z" } }, "outputs": [], @@ -54,10 +54,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:03.559243Z", - "iopub.status.busy": "2024-07-30T19:23:03.558948Z", - "iopub.status.idle": "2024-07-30T19:23:04.134127Z", - "shell.execute_reply": "2024-07-30T19:23:04.133571Z" + "iopub.execute_input": "2024-08-01T02:16:58.946671Z", + "iopub.status.busy": "2024-08-01T02:16:58.946136Z", + "iopub.status.idle": "2024-08-01T02:16:59.535752Z", + "shell.execute_reply": "2024-08-01T02:16:59.535108Z" } }, "outputs": [ @@ -103,10 +103,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.137040Z", - "iopub.status.busy": "2024-07-30T19:23:04.136282Z", - "iopub.status.idle": "2024-07-30T19:23:04.345433Z", - "shell.execute_reply": "2024-07-30T19:23:04.344904Z" + "iopub.execute_input": "2024-08-01T02:16:59.538929Z", + "iopub.status.busy": "2024-08-01T02:16:59.538025Z", + "iopub.status.idle": "2024-08-01T02:16:59.750110Z", + "shell.execute_reply": "2024-08-01T02:16:59.749476Z" } }, "outputs": [ @@ -160,17 +160,17 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.347831Z", - "iopub.status.busy": "2024-07-30T19:23:04.347606Z", - "iopub.status.idle": "2024-07-30T19:23:04.351725Z", - "shell.execute_reply": "2024-07-30T19:23:04.351185Z" + "iopub.execute_input": "2024-08-01T02:16:59.752545Z", + "iopub.status.busy": "2024-08-01T02:16:59.752341Z", + "iopub.status.idle": "2024-08-01T02:16:59.756842Z", + "shell.execute_reply": "2024-08-01T02:16:59.756252Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -195,17 +195,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.354014Z", - "iopub.status.busy": "2024-07-30T19:23:04.353817Z", - "iopub.status.idle": "2024-07-30T19:23:04.358719Z", - "shell.execute_reply": "2024-07-30T19:23:04.358131Z" + "iopub.execute_input": "2024-08-01T02:16:59.759369Z", + "iopub.status.busy": "2024-08-01T02:16:59.759019Z", + "iopub.status.idle": "2024-08-01T02:16:59.764256Z", + "shell.execute_reply": "2024-08-01T02:16:59.763672Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -242,17 +242,17 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.361016Z", - "iopub.status.busy": "2024-07-30T19:23:04.360662Z", - "iopub.status.idle": "2024-07-30T19:23:04.365146Z", - "shell.execute_reply": "2024-07-30T19:23:04.364631Z" + "iopub.execute_input": "2024-08-01T02:16:59.766645Z", + "iopub.status.busy": "2024-08-01T02:16:59.766281Z", + "iopub.status.idle": "2024-08-01T02:16:59.771074Z", + "shell.execute_reply": "2024-08-01T02:16:59.770578Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -279,17 +279,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.367351Z", - "iopub.status.busy": "2024-07-30T19:23:04.367155Z", - "iopub.status.idle": "2024-07-30T19:23:04.371565Z", - "shell.execute_reply": "2024-07-30T19:23:04.370959Z" + "iopub.execute_input": "2024-08-01T02:16:59.773335Z", + "iopub.status.busy": "2024-08-01T02:16:59.772961Z", + "iopub.status.idle": "2024-08-01T02:16:59.777453Z", + "shell.execute_reply": "2024-08-01T02:16:59.776955Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -315,17 +315,17 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.374031Z", - "iopub.status.busy": "2024-07-30T19:23:04.373683Z", - "iopub.status.idle": "2024-07-30T19:23:04.378066Z", - "shell.execute_reply": "2024-07-30T19:23:04.377496Z" + "iopub.execute_input": "2024-08-01T02:16:59.779897Z", + "iopub.status.busy": "2024-08-01T02:16:59.779462Z", + "iopub.status.idle": "2024-08-01T02:16:59.783816Z", + "shell.execute_reply": "2024-08-01T02:16:59.783335Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -354,17 +354,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.380374Z", - "iopub.status.busy": "2024-07-30T19:23:04.379988Z", - "iopub.status.idle": "2024-07-30T19:23:04.385057Z", - "shell.execute_reply": "2024-07-30T19:23:04.384576Z" + "iopub.execute_input": "2024-08-01T02:16:59.786146Z", + "iopub.status.busy": "2024-08-01T02:16:59.785793Z", + "iopub.status.idle": "2024-08-01T02:16:59.791173Z", + "shell.execute_reply": "2024-08-01T02:16:59.790571Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -391,17 +391,17 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.387324Z", - "iopub.status.busy": "2024-07-30T19:23:04.386973Z", - "iopub.status.idle": "2024-07-30T19:23:04.392486Z", - "shell.execute_reply": "2024-07-30T19:23:04.391906Z" + "iopub.execute_input": "2024-08-01T02:16:59.793453Z", + "iopub.status.busy": "2024-08-01T02:16:59.793105Z", + "iopub.status.idle": "2024-08-01T02:16:59.798744Z", + "shell.execute_reply": "2024-08-01T02:16:59.798234Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 10, @@ -428,17 +428,17 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:04.394702Z", - "iopub.status.busy": "2024-07-30T19:23:04.394362Z", - "iopub.status.idle": "2024-07-30T19:23:04.400213Z", - "shell.execute_reply": "2024-07-30T19:23:04.399609Z" + "iopub.execute_input": "2024-08-01T02:16:59.801172Z", + "iopub.status.busy": "2024-08-01T02:16:59.800801Z", + "iopub.status.idle": "2024-08-01T02:16:59.806272Z", + "shell.execute_reply": "2024-08-01T02:16:59.805688Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 11, diff --git a/dev/how-to-guides/qiskit-sampler.html b/dev/how-to-guides/qiskit-sampler.html index af495562d..042ea37e0 100644 --- a/dev/how-to-guides/qiskit-sampler.html +++ b/dev/how-to-guides/qiskit-sampler.html @@ -460,7 +460,7 @@

Sampling from an LUCJ circuit for a closed-shell molecule @@ -548,13 +548,13 @@

Sampling from an LUCJ circuit for an open-shell molecule
 SCF not converged.
-SCF energy = -75.3484557058534
+SCF energy = -75.3484557088027
 norb = 11
 nelec = (5, 4)
 
 WARN: RCCSD method does not support ROHF method. ROHF object is converted to UHF object and UCCSD method is called.
 
-E(UCCSD) = -75.45619739147656  E_corr = -0.107741685623149
+E(UCCSD) = -75.45619739094874  E_corr = -0.1077416821460872
 
diff --git a/dev/how-to-guides/qiskit-sampler.ipynb b/dev/how-to-guides/qiskit-sampler.ipynb index 49b8d738c..9f6a7a33d 100644 --- a/dev/how-to-guides/qiskit-sampler.ipynb +++ b/dev/how-to-guides/qiskit-sampler.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:06.510312Z", - "iopub.status.busy": "2024-07-30T19:23:06.510116Z", - "iopub.status.idle": "2024-07-30T19:23:07.218313Z", - "shell.execute_reply": "2024-07-30T19:23:07.217758Z" + "iopub.execute_input": "2024-08-01T02:17:01.716792Z", + "iopub.status.busy": "2024-08-01T02:17:01.716595Z", + "iopub.status.idle": "2024-08-01T02:17:02.415722Z", + "shell.execute_reply": "2024-08-01T02:17:02.415150Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:07.221278Z", - "iopub.status.busy": "2024-07-30T19:23:07.220794Z", - "iopub.status.idle": "2024-07-30T19:23:07.284751Z", - "shell.execute_reply": "2024-07-30T19:23:07.284088Z" + "iopub.execute_input": "2024-08-01T02:17:02.418690Z", + "iopub.status.busy": "2024-08-01T02:17:02.418192Z", + "iopub.status.idle": "2024-08-01T02:17:02.482341Z", + "shell.execute_reply": "2024-08-01T02:17:02.481703Z" } }, "outputs": [ @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:07.287566Z", - "iopub.status.busy": "2024-07-30T19:23:07.287168Z", - "iopub.status.idle": "2024-07-30T19:23:07.594085Z", - "shell.execute_reply": "2024-07-30T19:23:07.593481Z" + "iopub.execute_input": "2024-08-01T02:17:02.484990Z", + "iopub.status.busy": "2024-08-01T02:17:02.484663Z", + "iopub.status.idle": "2024-08-01T02:17:02.850432Z", + "shell.execute_reply": "2024-08-01T02:17:02.849799Z" } }, "outputs": [ @@ -174,7 +174,7 @@ "text": [ "norb = 14\n", "nelec = (3, 3)\n", - "E(CCSD) = -108.9630419334855 E_corr = -0.1278053627110062\n" + "E(CCSD) = -108.9630419334854 E_corr = -0.1278053627110059\n" ] }, { @@ -269,10 +269,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:07.596492Z", - "iopub.status.busy": "2024-07-30T19:23:07.596288Z", - "iopub.status.idle": "2024-07-30T19:23:08.129379Z", - "shell.execute_reply": "2024-07-30T19:23:08.128749Z" + "iopub.execute_input": "2024-08-01T02:17:02.853001Z", + "iopub.status.busy": "2024-08-01T02:17:02.852605Z", + "iopub.status.idle": "2024-08-01T02:17:03.391990Z", + "shell.execute_reply": "2024-08-01T02:17:03.391342Z" } }, "outputs": [ @@ -287,7 +287,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "SCF energy = -75.3484557058534\n" + "SCF energy = -75.3484557088027\n" ] }, { @@ -305,7 +305,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(UCCSD) = -75.45619739147656 E_corr = -0.107741685623149\n" + "E(UCCSD) = -75.45619739094874 E_corr = -0.1077416821460872\n" ] }, { diff --git a/dev/searchindex.js b/dev/searchindex.js index 4daa93f03..7467a427f 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API reference": [[7, null]], "Application to the double-factorized Hamiltonian": [[8, "Application-to-the-double-factorized-Hamiltonian"]], "Application to time evolution via Trotter-Suzuki formulas": [[8, "Application-to-time-evolution-via-Trotter-Suzuki-formulas"]], "Brief background on Trotter-Suzuki formulas": [[8, "Brief-background-on-Trotter-Suzuki-formulas"]], "Build a molecule": [[15, "Build-a-molecule"]], "Build the Hamiltonian": [[23, "Build-the-Hamiltonian"]], "Choose reference occupations": [[15, "Choose-reference-occupations"]], "Circuit transpilation": [[19, "Circuit-transpilation"]], "Citing ffsim": [[21, "citing-ffsim"]], "Code example": [[21, "code-example"]], "Compute energy": [[15, "Compute-energy"]], "Contents": [[21, "contents"]], "Criteria for circuits that FfsimSampler can sample": [[20, "Criteria-for-circuits-that-FfsimSampler-can-sample"]], "Data representation": [[9, "Data-representation"]], "Diagonal Coulomb evolution": [[13, "Diagonal-Coulomb-evolution"], [19, "Diagonal-Coulomb-evolution"]], "Double-factorized representation": [[8, "Double-factorized-representation"]], "Double-factorized representation of the molecular Hamiltonian": [[8, null]], "Example of using FfsimSampler": [[20, "Example-of-using-FfsimSampler"]], "Explanations": [[10, null]], "Gates": [[14, "Gates"]], "General UCJ ansatz": [[18, "General-UCJ-ansatz"]], "Hamiltonians": [[9, null]], "Hartree-Fock and Slater determinant preparation": [[13, "Hartree-Fock-and-Slater-determinant-preparation"]], "How to build and transpile Qiskit quantum circuits": [[19, null]], "How to simulate entanglement forging": [[15, null]], "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz": [[18, null]], "How to use ffsim\u2019s Qiskit Sampler primitive": [[20, null]], "How to use the FermionOperator class": [[16, null]], "How-to guides": [[17, null]], "Implement Trotter simulation": [[23, "Implement-Trotter-simulation"]], "Implementing Trotter simulation of the double-factorized Hamiltonian": [[23, null]], "Initialize ansatz operator": [[15, "Initialize-ansatz-operator"]], "Install from source": [[22, "install-from-source"]], "Installation": [[21, "installation"], [22, null]], "LUCJ ansatz": [[18, "LUCJ-ansatz"]], "Locality in the UCJ operator": [[13, "Locality-in-the-UCJ-operator"]], "Merging orbital rotations": [[13, "Merging-orbital-rotations"]], "More examples": [[20, "More-examples"]], "Number operator sum evolution": [[13, "Number-operator-sum-evolution"], [19, "Number-operator-sum-evolution"]], "Operator action via SciPy LinearOperators": [[9, "Operator-action-via-SciPy-LinearOperators"]], "Optimize energy": [[15, "Optimize-energy"]], "Optimize with the linear method": [[18, "Optimize-with-the-linear-method"]], "Orbital rotation": [[13, "Orbital-rotation"], [19, "Orbital-rotation"]], "Orbital rotations": [[12, "Orbital-rotations"]], "Orbital rotations and quadratic Hamiltonians": [[12, null]], "Overview of gates": [[19, "Overview-of-gates"]], "Pip install": [[22, "pip-install"]], "Prepare Hartree-Fock state": [[19, "Prepare-Hartree-Fock-state"]], "Prepare Slater determinant": [[19, "Prepare-Slater-determinant"]], "Qubit gate decompositions of fermionic gates": [[13, null]], "Sampling from an LUCJ circuit for a closed-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-a-closed-shell-molecule"]], "Sampling from an LUCJ circuit for an open-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-an-open-shell-molecule"]], "Spin-balanced and spin-unbalanced ansatzes": [[11, "Spin-balanced-and-spin-unbalanced-ansatzes"]], "Spin-balanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-balanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "Spin-unbalanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-unbalanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "State preparation gates": [[19, "State-preparation-gates"]], "State vectors": [[14, "State-vectors"]], "State vectors and gates": [[14, null]], "The general unitary cluster Jastrow (UCJ) ansatz": [[11, "The-general-unitary-cluster-Jastrow-(UCJ)-ansatz"]], "The local UCJ (LUCJ) ansatz": [[11, "The-local-UCJ-(LUCJ)-ansatz"]], "The local unitary cluster Jastrow (LUCJ) ansatz": [[11, null]], "Time evolution by a quadratic Hamiltonian": [[12, "Time-evolution-by-a-quadratic-Hamiltonian"]], "Treating spinless fermions": [[14, "Treating-spinless-fermions"]], "Trotter simulation of double-factorized Hamiltonian": [[13, "Trotter-simulation-of-double-factorized-Hamiltonian"], [19, "Trotter-simulation-of-double-factorized-Hamiltonian"]], "Tutorials": [[24, null]], "Unitary cluster Jastrow (UCJ) operator": [[13, "Unitary-cluster-Jastrow-(UCJ)-operator"]], "Unitary transformation gates": [[19, "Unitary-transformation-gates"]], "Use within Docker": [[22, "use-within-docker"]], "ffsim": [[0, null], [21, null]], "ffsim.contract": [[1, null]], "ffsim.linalg": [[2, null]], "ffsim.optimize": [[3, null]], "ffsim.qiskit": [[4, null]], "ffsim.random": [[5, null]], "ffsim.testing": [[6, null]]}, "docnames": ["api/ffsim", "api/ffsim.contract", "api/ffsim.linalg", "api/ffsim.optimize", "api/ffsim.qiskit", "api/ffsim.random", "api/ffsim.testing", "api/index", "explanations/double-factorized", "explanations/hamiltonians", "explanations/index", "explanations/lucj", "explanations/orbital-rotation", "explanations/qiskit-gate-decompositions", "explanations/state-vectors-and-gates", "how-to-guides/entanglement-forging", "how-to-guides/fermion-operator", "how-to-guides/index", "how-to-guides/lucj", "how-to-guides/qiskit-circuits", "how-to-guides/qiskit-sampler", "index", "install", "tutorials/double-factorized-trotter", "tutorials/index"], "envversion": {"nbsphinx": 4, "sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["api/ffsim.rst", "api/ffsim.contract.rst", "api/ffsim.linalg.rst", "api/ffsim.optimize.rst", "api/ffsim.qiskit.rst", "api/ffsim.random.rst", "api/ffsim.testing.rst", "api/index.md", "explanations/double-factorized.ipynb", "explanations/hamiltonians.ipynb", "explanations/index.md", "explanations/lucj.ipynb", "explanations/orbital-rotation.ipynb", "explanations/qiskit-gate-decompositions.ipynb", "explanations/state-vectors-and-gates.ipynb", "how-to-guides/entanglement-forging.ipynb", "how-to-guides/fermion-operator.ipynb", "how-to-guides/index.md", "how-to-guides/lucj.ipynb", "how-to-guides/qiskit-circuits.ipynb", "how-to-guides/qiskit-sampler.ipynb", "index.md", "install.md", "tutorials/double-factorized-trotter.ipynb", "tutorials/index.md"], "indexentries": {"__init__() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.__init__", false]], "__init__() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.__init__", false]], "__init__() (ffsim.qiskit.givensansatzoperatorjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzoperatorspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.numnumansatzopspinbalancedjw method)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockspinlessjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantspinlessjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdoublefactorizedjw method)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjoperatorjw method)": [[4, "ffsim.qiskit.UCJOperatorJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinlessjw method)": [[4, "ffsim.qiskit.UCJOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinunbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW.__init__", false]], "__init_subclass__() (ffsim.qiskit.givensansatzoperatorjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__init_subclass__", false]], "__init_subclass__() (ffsim.qiskit.givensansatzoperatorspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__init_subclass__", false]], "__init_subclass__() (ffsim.qiskit.ucjoperatorjw method)": [[4, "ffsim.qiskit.UCJOperatorJW.__init_subclass__", false]], "__new__() (ffsim.qiskit.givensansatzoperatorjw static method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__new__", false]], "__new__() (ffsim.qiskit.givensansatzoperatorspinlessjw static method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__new__", false]], "__new__() (ffsim.qiskit.ucjoperatorjw static method)": [[4, "ffsim.qiskit.UCJOperatorJW.__new__", false]], "action (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.action", false]], "active_space (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.active_space", false]], "addresses_to_strings() (in module ffsim)": [[0, "ffsim.addresses_to_strings", false]], "alpha (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA", false]], "alpha_and_beta (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA_AND_BETA", false]], "apply_diag_coulomb_evolution() (in module ffsim)": [[0, "ffsim.apply_diag_coulomb_evolution", false]], "apply_fsim_gate() (in module ffsim)": [[0, "ffsim.apply_fsim_gate", false]], "apply_fswap_gate() (in module ffsim)": [[0, "ffsim.apply_fswap_gate", false]], "apply_givens_rotation() (in module ffsim)": [[0, "ffsim.apply_givens_rotation", false]], "apply_hop_gate() (in module ffsim)": [[0, "ffsim.apply_hop_gate", false]], "apply_matrix_to_slices() (in module ffsim.linalg)": [[2, "ffsim.linalg.apply_matrix_to_slices", false]], "apply_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_interaction", false]], "apply_num_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_num_interaction", false]], "apply_num_op_prod_interaction() (in module ffsim)": [[0, "ffsim.apply_num_op_prod_interaction", false]], "apply_num_op_sum_evolution() (in module ffsim)": [[0, "ffsim.apply_num_op_sum_evolution", false]], "apply_on_site_interaction() (in module ffsim)": [[0, "ffsim.apply_on_site_interaction", false]], "apply_orbital_rotation() (in module ffsim)": [[0, "ffsim.apply_orbital_rotation", false]], "apply_tunneling_interaction() (in module ffsim)": [[0, "ffsim.apply_tunneling_interaction", false]], "apply_unitary() (in module ffsim)": [[0, "ffsim.apply_unitary", false]], "approx_eq() (in module ffsim)": [[0, "ffsim.approx_eq", false]], "assert_allclose_up_to_global_phase() (in module ffsim.testing)": [[6, "ffsim.testing.assert_allclose_up_to_global_phase", false]], "atom (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.atom", false]], "basis (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.basis", false]], "beta (ffsim.spin attribute)": [[0, "ffsim.Spin.BETA", false]], "bit_array (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.BIT_ARRAY", false]], "bitstringtype (class in ffsim)": [[0, "ffsim.BitstringType", false]], "c (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.c", false]], "ccsd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_energy", false]], "ccsd_t1 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t1", false]], "ccsd_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t2", false]], "cisd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_energy", false]], "cisd_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_vec", false]], "coeffs (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.coeffs", false]], "conserves_particle_number() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_particle_number", false]], "conserves_spin_z() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_spin_z", false]], "constant (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.constant", false]], "constant (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.constant", false]], "constant (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.constant", false]], "constant (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.constant", false]], "contract_diag_coulomb() (in module ffsim.contract)": [[1, "ffsim.contract.contract_diag_coulomb", false]], "contract_num_op_sum() (in module ffsim.contract)": [[1, "ffsim.contract.contract_num_op_sum", false]], "contract_one_body() (in module ffsim.contract)": [[1, "ffsim.contract.contract_one_body", false]], "core_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.core_energy", false]], "cre() (in module ffsim)": [[0, "ffsim.cre", false]], "cre_a() (in module ffsim)": [[0, "ffsim.cre_a", false]], "cre_b() (in module ffsim)": [[0, "ffsim.cre_b", false]], "des() (in module ffsim)": [[0, "ffsim.des", false]], "des_a() (in module ffsim)": [[0, "ffsim.des_a", false]], "des_b() (in module ffsim)": [[0, "ffsim.des_b", false]], "diag() (in module ffsim)": [[0, "ffsim.diag", false]], "diag_coulomb_linop() (in module ffsim.contract)": [[1, "ffsim.contract.diag_coulomb_linop", false]], "diag_coulomb_mats (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.diag_coulomb_mats", false]], "diag_coulomb_mats_alpha_alpha (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.diag_coulomb_mats_alpha_alpha", false]], "diag_coulomb_mats_alpha_alpha (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_alpha", false]], "diag_coulomb_mats_alpha_beta (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.diag_coulomb_mats_alpha_beta", false]], "diag_coulomb_mats_alpha_beta (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_beta", false]], "diagcoulombevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW", false]], "diagcoulombevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW", false]], "diagonalcoulombhamiltonian (class in ffsim)": [[0, "ffsim.DiagonalCoulombHamiltonian", false]], "dim() (in module ffsim)": [[0, "ffsim.dim", false]], "dims() (in module ffsim)": [[0, "ffsim.dims", false]], "dipole_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.dipole_integrals", false]], "double_factorized() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized", false]], "double_factorized_t2() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2", false]], "double_factorized_t2_alpha_beta() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2_alpha_beta", false]], "doublefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.DoubleFactorizedHamiltonian", false]], "dropnegligible (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DropNegligible", false]], "expectation_one_body_power() (in module ffsim)": [[0, "ffsim.expectation_one_body_power", false]], "expectation_one_body_product() (in module ffsim)": [[0, "ffsim.expectation_one_body_product", false]], "expectation_product_state() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.expectation_product_state", false]], "expm_multiply_taylor() (in module ffsim.linalg)": [[2, "ffsim.linalg.expm_multiply_taylor", false]], "fci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_energy", false]], "fci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_vec", false]], "fermi_hubbard_1d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_1d", false]], "fermi_hubbard_2d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_2d", false]], "fermion_operator() (in module ffsim)": [[0, "ffsim.fermion_operator", false]], "fermionaction (class in ffsim)": [[0, "ffsim.FermionAction", false]], "fermionoperator (class in ffsim)": [[0, "ffsim.FermionOperator", false]], "ffsim": [[0, "module-ffsim", false]], "ffsim.contract": [[1, "module-ffsim.contract", false]], "ffsim.linalg": [[2, "module-ffsim.linalg", false]], "ffsim.optimize": [[3, "module-ffsim.optimize", false]], "ffsim.qiskit": [[4, "module-ffsim.qiskit", false]], "ffsim.random": [[5, "module-ffsim.random", false]], "ffsim.testing": [[6, "module-ffsim.testing", false]], "ffsim_vec_to_qiskit_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.ffsim_vec_to_qiskit_vec", false]], "ffsimsampler (class in ffsim.qiskit)": [[4, "ffsim.qiskit.FfsimSampler", false]], "final_orbital_rotation (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.final_orbital_rotation", false]], "final_state_vector() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.final_state_vector", false]], "from_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_diag_coulomb_mats", false]], "from_fcidump() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_fcidump", false]], "from_fcidump() (ffsim.molecularhamiltonian static method)": [[0, "ffsim.MolecularHamiltonian.from_fcidump", false]], "from_fermion_operator() (ffsim.diagonalcoulombhamiltonian static method)": [[0, "ffsim.DiagonalCoulombHamiltonian.from_fermion_operator", false]], "from_json() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_json", false]], "from_mole() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_mole", false]], "from_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian static method)": [[0, "ffsim.DoubleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_molecular_hamiltonian() (ffsim.singlefactorizedhamiltonian static method)": [[0, "ffsim.SingleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_orbital_rotation() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_orbital_rotation", false]], "from_parameters() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_parameters", false]], "from_parameters() (ffsim.givensansatzoperator static method)": [[0, "ffsim.GivensAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.hopgateansatzoperator static method)": [[0, "ffsim.HopGateAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.from_parameters", false]], "from_parameters() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_parameters", false]], "from_parameters() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_parameters", false]], "from_parameters() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_parameters", false]], "from_scf() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_scf", false]], "from_t_amplitudes() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_t_amplitudes", false]], "generate_norb_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec", false]], "generate_norb_nelec_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec_spin", false]], "generate_norb_nocc() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nocc", false]], "generate_norb_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_spin", false]], "givens_decomposition() (in module ffsim.linalg)": [[2, "ffsim.linalg.givens_decomposition", false]], "givensansatzop (class in ffsim)": [[0, "ffsim.GivensAnsatzOp", false]], "givensansatzoperator (class in ffsim)": [[0, "ffsim.GivensAnsatzOperator", false]], "givensansatzoperatorjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW", false]], "givensansatzoperatorspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW", false]], "givensansatzopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpJW", false]], "givensansatzopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW", false]], "givensrotation (class in ffsim.linalg)": [[2, "ffsim.linalg.GivensRotation", false]], "hamiltonian (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.hamiltonian", false]], "hartree_fock_state() (in module ffsim)": [[0, "ffsim.hartree_fock_state", false]], "hf_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_energy", false]], "hf_mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_coeff", false]], "hf_mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_occ", false]], "hopgateansatzoperator (class in ffsim)": [[0, "ffsim.HopGateAnsatzOperator", false]], "i (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.i", false]], "indices_to_strings() (in module ffsim)": [[0, "ffsim.indices_to_strings", false]], "init_cache() (in module ffsim)": [[0, "ffsim.init_cache", false]], "int (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.INT", false]], "interaction_pairs (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.interaction_pairs", false]], "interaction_pairs (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.interaction_pairs", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.inverse", false]], "is_antihermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_antihermitian", false]], "is_hermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_hermitian", false]], "is_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_orthogonal", false]], "is_real_symmetric() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_real_symmetric", false]], "is_special_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_special_orthogonal", false]], "is_unitary() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_unitary", false]], "j (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.j", false]], "jordan_wigner() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.jordan_wigner", false]], "linear_operator() (in module ffsim)": [[0, "ffsim.linear_operator", false]], "lup() (in module ffsim.linalg)": [[2, "ffsim.linalg.lup", false]], "many_body_order() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.many_body_order", false]], "match_global_phase() (in module ffsim.linalg)": [[2, "ffsim.linalg.match_global_phase", false]], "mergeorbitalrotations (class in ffsim.qiskit)": [[4, "ffsim.qiskit.MergeOrbitalRotations", false]], "minimize_linear_method() (in module ffsim.optimize)": [[3, "ffsim.optimize.minimize_linear_method", false]], "mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_coeff", false]], "mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_occ", false]], "modified_cholesky() (in module ffsim.linalg)": [[2, "ffsim.linalg.modified_cholesky", false]], "module": [[0, "module-ffsim", false], [1, "module-ffsim.contract", false], [2, "module-ffsim.linalg", false], [3, "module-ffsim.optimize", false], [4, "module-ffsim.qiskit", false], [5, "module-ffsim.random", false], [6, "module-ffsim.testing", false]], "mole (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.mole", false]], "moleculardata (class in ffsim)": [[0, "ffsim.MolecularData", false]], "molecularhamiltonian (class in ffsim)": [[0, "ffsim.MolecularHamiltonian", false]], "mp2_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_energy", false]], "mp2_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_t2", false]], "multireference_state() (in module ffsim)": [[0, "ffsim.multireference_state", false]], "multireference_state_prod() (in module ffsim)": [[0, "ffsim.multireference_state_prod", false]], "n_params() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.n_params", false]], "n_params() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.n_params", false]], "n_params() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.n_params", false]], "n_params() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.n_params", false]], "n_params() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.n_params", false]], "n_params() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.n_params", false]], "n_params() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.n_params", false]], "n_reps (ffsim.realucjoperator property)": [[0, "ffsim.RealUCJOperator.n_reps", false]], "n_reps (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.n_reps", false]], "n_reps (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.n_reps", false]], "n_reps (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.n_reps", false]], "n_reps (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.n_reps", false]], "nelec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.nelec", false]], "nelec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.nelec", false]], "norb (ffsim.diagonalcoulombhamiltonian property)": [[0, "ffsim.DiagonalCoulombHamiltonian.norb", false]], "norb (ffsim.doublefactorizedhamiltonian property)": [[0, "ffsim.DoubleFactorizedHamiltonian.norb", false]], "norb (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.norb", false]], "norb (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.norb", false]], "norb (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.norb", false]], "norb (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.norb", false]], "norb (ffsim.molecularhamiltonian property)": [[0, "ffsim.MolecularHamiltonian.norb", false]], "norb (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.norb", false]], "norb (ffsim.realucjoperator property)": [[0, "ffsim.RealUCJOperator.norb", false]], "norb (ffsim.singlefactorizedhamiltonian property)": [[0, "ffsim.SingleFactorizedHamiltonian.norb", false]], "norb (ffsim.statevector attribute)": [[0, "ffsim.StateVector.norb", false]], "norb (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.norb", false]], "norb (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.norb", false]], "norb (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.norb", false]], "norb (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.norb", false]], "normal_ordered() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.normal_ordered", false]], "num_op_sum_linop() (in module ffsim.contract)": [[1, "ffsim.contract.num_op_sum_linop", false]], "number_operator() (in module ffsim)": [[0, "ffsim.number_operator", false]], "numnumansatzopspinbalanced (class in ffsim)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced", false]], "numnumansatzopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW", false]], "numopsumevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW", false]], "numopsumevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW", false]], "one_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.one_body_integrals", false]], "one_body_linop() (in module ffsim.contract)": [[1, "ffsim.contract.one_body_linop", false]], "one_body_squares (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_squares", false]], "one_body_tensor (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_tensor", false]], "one_hot() (in module ffsim)": [[0, "ffsim.one_hot", false]], "one_hot() (in module ffsim.linalg)": [[2, "ffsim.linalg.one_hot", false]], "orb (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.orb", false]], "orbital_rotations (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.orbital_rotations", false]], "orbital_rotations (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.orbital_rotations", false]], "orbital_rotations (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.orbital_rotations", false]], "orbital_symmetries (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.orbital_symmetries", false]], "orbitalrotationjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationJW", false]], "orbitalrotationspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW", false]], "phase_angles (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phase_angles", false]], "phis (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phis", false]], "pre_init (in module ffsim.qiskit)": [[4, "ffsim.qiskit.PRE_INIT", false]], "pre_init_passes() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.pre_init_passes", false]], "preparehartreefockjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockJW", false]], "preparehartreefockspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW", false]], "prepareslaterdeterminantjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW", false]], "prepareslaterdeterminantspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW", false]], "productstatesum (class in ffsim)": [[0, "ffsim.ProductStateSum", false]], "qiskit_vec_to_ffsim_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.qiskit_vec_to_ffsim_vec", false]], "random_antihermitian() (in module ffsim.random)": [[5, "ffsim.random.random_antihermitian", false]], "random_double_factorized_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_double_factorized_hamiltonian", false]], "random_fermion_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_hamiltonian", false]], "random_fermion_operator() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_operator", false]], "random_hermitian() (in module ffsim.random)": [[5, "ffsim.random.random_hermitian", false]], "random_molecular_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_molecular_hamiltonian", false]], "random_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.random_nelec", false]], "random_occupied_orbitals() (in module ffsim.testing)": [[6, "ffsim.testing.random_occupied_orbitals", false]], "random_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_orthogonal", false]], "random_real_symmetric_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_real_symmetric_matrix", false]], "random_special_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_special_orthogonal", false]], "random_state_vector() (in module ffsim.random)": [[5, "ffsim.random.random_state_vector", false]], "random_statevector() (in module ffsim.random)": [[5, "ffsim.random.random_statevector", false]], "random_t2_amplitudes() (in module ffsim.random)": [[5, "ffsim.random.random_t2_amplitudes", false]], "random_two_body_tensor() (in module ffsim.random)": [[5, "ffsim.random.random_two_body_tensor", false]], "random_ucj_op_spin_balanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_balanced", false]], "random_ucj_op_spin_unbalanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_unbalanced", false]], "random_ucj_op_spinless() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spinless", false]], "random_ucj_operator() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_operator", false]], "random_unitary() (in module ffsim.random)": [[5, "ffsim.random.random_unitary", false]], "rdm() (in module ffsim)": [[0, "ffsim.rdm", false]], "rdms() (in module ffsim)": [[0, "ffsim.rdms", false]], "realucjoperator (class in ffsim)": [[0, "ffsim.RealUCJOperator", false]], "reduced_matrix() (in module ffsim.linalg)": [[2, "ffsim.linalg.reduced_matrix", false]], "reduced_matrix_product_states() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.reduced_matrix_product_states", false]], "rotated() (ffsim.molecularhamiltonian method)": [[0, "ffsim.MolecularHamiltonian.rotated", false]], "run() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.run", false]], "run() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.run", false]], "run() (ffsim.qiskit.mergeorbitalrotations method)": [[4, "ffsim.qiskit.MergeOrbitalRotations.run", false]], "run_ccsd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_ccsd", false]], "run_cisd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_cisd", false]], "run_fci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_fci", false]], "run_mp2() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_mp2", false]], "run_sci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_sci", false]], "s (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.s", false]], "sample_slater_determinant() (in module ffsim)": [[0, "ffsim.sample_slater_determinant", false]], "sample_state_vector() (in module ffsim)": [[0, "ffsim.sample_state_vector", false]], "scf (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.scf", false]], "sci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_energy", false]], "sci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_vec", false]], "simulate_qdrift_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_qdrift_double_factorized", false]], "simulate_trotter_diag_coulomb_split_op() (in module ffsim)": [[0, "ffsim.simulate_trotter_diag_coulomb_split_op", false]], "simulate_trotter_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_trotter_double_factorized", false]], "simulatetrotterdoublefactorizedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW", false]], "singlefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.SingleFactorizedHamiltonian", false]], "slater_determinant() (in module ffsim)": [[0, "ffsim.slater_determinant", false]], "slater_determinant_rdm() (in module ffsim)": [[0, "ffsim.slater_determinant_rdm", false]], "slater_determinant_rdms() (in module ffsim)": [[0, "ffsim.slater_determinant_rdms", false]], "spin (class in ffsim)": [[0, "ffsim.Spin", false]], "spin (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.spin", false]], "spin (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.spin", false]], "spin_square() (in module ffsim)": [[0, "ffsim.spin_square", false]], "states (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.states", false]], "statevector (class in ffsim)": [[0, "ffsim.StateVector", false]], "string (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.STRING", false]], "strings_to_addresses() (in module ffsim)": [[0, "ffsim.strings_to_addresses", false]], "strings_to_indices() (in module ffsim)": [[0, "ffsim.strings_to_indices", false]], "supportsapplyunitary (class in ffsim)": [[0, "ffsim.SupportsApplyUnitary", false]], "supportsapproximateequality (class in ffsim)": [[0, "ffsim.SupportsApproximateEquality", false]], "supportsdiagonal (class in ffsim)": [[0, "ffsim.SupportsDiagonal", false]], "supportsfermionoperator (class in ffsim)": [[0, "ffsim.SupportsFermionOperator", false]], "supportslinearoperator (class in ffsim)": [[0, "ffsim.SupportsLinearOperator", false]], "supportstrace (class in ffsim)": [[0, "ffsim.SupportsTrace", false]], "symmetry (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.symmetry", false]], "thetas (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.thetas", false]], "thetas (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.thetas", false]], "thetas (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.thetas", false]], "thetas (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.thetas", false]], "to_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_diag_coulomb_mats", false]], "to_fcidump() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_fcidump", false]], "to_json() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_json", false]], "to_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_molecular_hamiltonian", false]], "to_number_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_number_representation", false]], "to_orbital_rotation() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_orbital_rotation", false]], "to_parameters() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_parameters", false]], "to_parameters() (ffsim.givensansatzoperator method)": [[0, "ffsim.GivensAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.hopgateansatzoperator method)": [[0, "ffsim.HopGateAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.realucjoperator method)": [[0, "ffsim.RealUCJOperator.to_parameters", false]], "to_parameters() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_parameters", false]], "to_parameters() (ffsim.ucjopspinbalanced method)": [[0, "ffsim.UCJOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.ucjopspinless method)": [[0, "ffsim.UCJOpSpinless.to_parameters", false]], "to_parameters() (ffsim.ucjopspinunbalanced method)": [[0, "ffsim.UCJOpSpinUnbalanced.to_parameters", false]], "to_t_amplitudes() (ffsim.realucjoperator method)": [[0, "ffsim.RealUCJOperator.to_t_amplitudes", false]], "to_t_amplitudes() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_t_amplitudes", false]], "to_z_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_z_representation", false]], "trace() (in module ffsim)": [[0, "ffsim.trace", false]], "two_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.two_body_integrals", false]], "two_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.two_body_tensor", false]], "ucjoperator (class in ffsim)": [[0, "ffsim.UCJOperator", false]], "ucjoperatorjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOperatorJW", false]], "ucjopspinbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinBalanced", false]], "ucjopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW", false]], "ucjopspinless (class in ffsim)": [[0, "ffsim.UCJOpSpinless", false]], "ucjopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinlessJW", false]], "ucjopspinunbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinUnbalanced", false]], "ucjopspinunbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW", false]], "vec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.vec", false]], "z_representation (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.z_representation", false]]}, "objects": {"": [[0, 0, 0, "-", "ffsim"]], "ffsim": [[0, 1, 1, "", "BitstringType"], [0, 1, 1, "", "DiagonalCoulombHamiltonian"], [0, 1, 1, "", "DoubleFactorizedHamiltonian"], [0, 1, 1, "", "FermionAction"], [0, 1, 1, "", "FermionOperator"], [0, 1, 1, "", "GivensAnsatzOp"], [0, 1, 1, "", "GivensAnsatzOperator"], [0, 1, 1, "", "HopGateAnsatzOperator"], [0, 1, 1, "", "MolecularData"], [0, 1, 1, "", "MolecularHamiltonian"], [0, 1, 1, "", "NumNumAnsatzOpSpinBalanced"], [0, 1, 1, "", "ProductStateSum"], [0, 1, 1, "", "RealUCJOperator"], [0, 1, 1, "", "SingleFactorizedHamiltonian"], [0, 1, 1, "", "Spin"], [0, 1, 1, "", "StateVector"], [0, 1, 1, "", "SupportsApplyUnitary"], [0, 1, 1, "", "SupportsApproximateEquality"], [0, 1, 1, "", "SupportsDiagonal"], [0, 1, 1, "", "SupportsFermionOperator"], [0, 1, 1, "", "SupportsLinearOperator"], [0, 1, 1, "", "SupportsTrace"], [0, 1, 1, "", "UCJOpSpinBalanced"], [0, 1, 1, "", "UCJOpSpinUnbalanced"], [0, 1, 1, "", "UCJOpSpinless"], [0, 1, 1, "", "UCJOperator"], [0, 5, 1, "", "addresses_to_strings"], [0, 5, 1, "", "apply_diag_coulomb_evolution"], [0, 5, 1, "", "apply_fsim_gate"], [0, 5, 1, "", "apply_fswap_gate"], [0, 5, 1, "", "apply_givens_rotation"], [0, 5, 1, "", "apply_hop_gate"], [0, 5, 1, "", "apply_num_interaction"], [0, 5, 1, "", "apply_num_num_interaction"], [0, 5, 1, "", "apply_num_op_prod_interaction"], [0, 5, 1, "", "apply_num_op_sum_evolution"], [0, 5, 1, "", "apply_on_site_interaction"], [0, 5, 1, "", "apply_orbital_rotation"], [0, 5, 1, "", "apply_tunneling_interaction"], [0, 5, 1, "", "apply_unitary"], [0, 5, 1, "", "approx_eq"], [1, 0, 0, "-", "contract"], [0, 5, 1, "", "cre"], [0, 5, 1, "", "cre_a"], [0, 5, 1, "", "cre_b"], [0, 5, 1, "", "des"], [0, 5, 1, "", "des_a"], [0, 5, 1, "", "des_b"], [0, 5, 1, "", "diag"], [0, 5, 1, "", "dim"], [0, 5, 1, "", "dims"], [0, 5, 1, "", "expectation_one_body_power"], [0, 5, 1, "", "expectation_one_body_product"], [0, 5, 1, "", "fermi_hubbard_1d"], [0, 5, 1, "", "fermi_hubbard_2d"], [0, 5, 1, "", "fermion_operator"], [0, 5, 1, "", "hartree_fock_state"], [0, 5, 1, "", "indices_to_strings"], [0, 5, 1, "", "init_cache"], [2, 0, 0, "-", "linalg"], [0, 5, 1, "", "linear_operator"], [0, 5, 1, "", "multireference_state"], [0, 5, 1, "", "multireference_state_prod"], [0, 5, 1, "", "number_operator"], [0, 5, 1, "", "one_hot"], [3, 0, 0, "-", "optimize"], [4, 0, 0, "-", "qiskit"], [5, 0, 0, "-", "random"], [0, 5, 1, "", "rdm"], [0, 5, 1, "", "rdms"], [0, 5, 1, "", "sample_slater_determinant"], [0, 5, 1, "", "sample_state_vector"], [0, 5, 1, "", "simulate_qdrift_double_factorized"], [0, 5, 1, "", "simulate_trotter_diag_coulomb_split_op"], [0, 5, 1, "", "simulate_trotter_double_factorized"], [0, 5, 1, "", "slater_determinant"], [0, 5, 1, "", "slater_determinant_rdm"], [0, 5, 1, "", "slater_determinant_rdms"], [0, 5, 1, "", "spin_square"], [0, 5, 1, "", "strings_to_addresses"], [0, 5, 1, "", "strings_to_indices"], [6, 0, 0, "-", "testing"], [0, 5, 1, "", "trace"]], "ffsim.BitstringType": [[0, 2, 1, "", "BIT_ARRAY"], [0, 2, 1, "", "INT"], [0, 2, 1, "", "STRING"]], "ffsim.DiagonalCoulombHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_fermion_operator"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"]], "ffsim.DoubleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_molecular_hamiltonian"], [0, 3, 1, "", "to_number_representation"], [0, 3, 1, "", "to_z_representation"], [0, 2, 1, "", "z_representation"]], "ffsim.FermionAction": [[0, 2, 1, "", "action"], [0, 2, 1, "", "orb"], [0, 2, 1, "", "spin"]], "ffsim.FermionOperator": [[0, 3, 1, "", "conserves_particle_number"], [0, 3, 1, "", "conserves_spin_z"], [0, 3, 1, "", "many_body_order"], [0, 3, 1, "", "normal_ordered"]], "ffsim.GivensAnsatzOp": [[0, 3, 1, "", "from_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "phase_angles"], [0, 2, 1, "", "phis"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_orbital_rotation"], [0, 3, 1, "", "to_parameters"]], "ffsim.GivensAnsatzOperator": [[0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.HopGateAnsatzOperator": [[0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.MolecularData": [[0, 2, 1, "", "active_space"], [0, 2, 1, "", "atom"], [0, 2, 1, "", "basis"], [0, 2, 1, "", "ccsd_energy"], [0, 2, 1, "", "ccsd_t1"], [0, 2, 1, "", "ccsd_t2"], [0, 2, 1, "", "cisd_energy"], [0, 2, 1, "", "cisd_vec"], [0, 2, 1, "", "core_energy"], [0, 2, 1, "", "dipole_integrals"], [0, 2, 1, "", "fci_energy"], [0, 2, 1, "", "fci_vec"], [0, 3, 1, "", "from_fcidump"], [0, 3, 1, "", "from_json"], [0, 3, 1, "", "from_mole"], [0, 3, 1, "", "from_scf"], [0, 4, 1, "", "hamiltonian"], [0, 2, 1, "", "hf_energy"], [0, 2, 1, "", "hf_mo_coeff"], [0, 2, 1, "", "hf_mo_occ"], [0, 2, 1, "", "mo_coeff"], [0, 2, 1, "", "mo_occ"], [0, 4, 1, "", "mole"], [0, 2, 1, "", "mp2_energy"], [0, 2, 1, "", "mp2_t2"], [0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "one_body_integrals"], [0, 2, 1, "", "orbital_symmetries"], [0, 3, 1, "", "run_ccsd"], [0, 3, 1, "", "run_cisd"], [0, 3, 1, "", "run_fci"], [0, 3, 1, "", "run_mp2"], [0, 3, 1, "", "run_sci"], [0, 4, 1, "", "scf"], [0, 2, 1, "", "sci_energy"], [0, 2, 1, "", "sci_vec"], [0, 2, 1, "", "spin"], [0, 2, 1, "", "symmetry"], [0, 3, 1, "", "to_fcidump"], [0, 3, 1, "", "to_json"], [0, 2, 1, "", "two_body_integrals"]], "ffsim.MolecularHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "from_fcidump"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "rotated"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.NumNumAnsatzOpSpinBalanced": [[0, 3, 1, "", "from_diag_coulomb_mats"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_diag_coulomb_mats"], [0, 3, 1, "", "to_parameters"]], "ffsim.ProductStateSum": [[0, 2, 1, "", "coeffs"], [0, 2, 1, "", "states"]], "ffsim.RealUCJOperator": [[0, 2, 1, "", "diag_coulomb_mats_alpha_alpha"], [0, 2, 1, "", "diag_coulomb_mats_alpha_beta"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"], [0, 3, 1, "", "to_t_amplitudes"]], "ffsim.SingleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "expectation_product_state"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_squares"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "reduced_matrix_product_states"]], "ffsim.Spin": [[0, 2, 1, "", "ALPHA"], [0, 2, 1, "", "ALPHA_AND_BETA"], [0, 2, 1, "", "BETA"]], "ffsim.StateVector": [[0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "vec"]], "ffsim.UCJOpSpinBalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinUnbalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinless": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOperator": [[0, 2, 1, "", "diag_coulomb_mats_alpha_alpha"], [0, 2, 1, "", "diag_coulomb_mats_alpha_beta"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"], [0, 3, 1, "", "to_t_amplitudes"]], "ffsim.contract": [[1, 5, 1, "", "contract_diag_coulomb"], [1, 5, 1, "", "contract_num_op_sum"], [1, 5, 1, "", "contract_one_body"], [1, 5, 1, "", "diag_coulomb_linop"], [1, 5, 1, "", "num_op_sum_linop"], [1, 5, 1, "", "one_body_linop"]], "ffsim.linalg": [[2, 1, 1, "", "GivensRotation"], [2, 5, 1, "", "apply_matrix_to_slices"], [2, 5, 1, "", "double_factorized"], [2, 5, 1, "", "double_factorized_t2"], [2, 5, 1, "", "double_factorized_t2_alpha_beta"], [2, 5, 1, "", "expm_multiply_taylor"], [2, 5, 1, "", "givens_decomposition"], [2, 5, 1, "", "is_antihermitian"], [2, 5, 1, "", "is_hermitian"], [2, 5, 1, "", "is_orthogonal"], [2, 5, 1, "", "is_real_symmetric"], [2, 5, 1, "", "is_special_orthogonal"], [2, 5, 1, "", "is_unitary"], [2, 5, 1, "", "lup"], [2, 5, 1, "", "match_global_phase"], [2, 5, 1, "", "modified_cholesky"], [2, 5, 1, "", "one_hot"], [2, 5, 1, "", "reduced_matrix"]], "ffsim.linalg.GivensRotation": [[2, 2, 1, "", "c"], [2, 2, 1, "", "i"], [2, 2, 1, "", "j"], [2, 2, 1, "", "s"]], "ffsim.optimize": [[3, 5, 1, "", "minimize_linear_method"]], "ffsim.qiskit": [[4, 1, 1, "", "DiagCoulombEvolutionJW"], [4, 1, 1, "", "DiagCoulombEvolutionSpinlessJW"], [4, 1, 1, "", "DropNegligible"], [4, 1, 1, "", "FfsimSampler"], [4, 1, 1, "", "GivensAnsatzOpJW"], [4, 1, 1, "", "GivensAnsatzOpSpinlessJW"], [4, 1, 1, "", "GivensAnsatzOperatorJW"], [4, 1, 1, "", "GivensAnsatzOperatorSpinlessJW"], [4, 1, 1, "", "MergeOrbitalRotations"], [4, 1, 1, "", "NumNumAnsatzOpSpinBalancedJW"], [4, 1, 1, "", "NumOpSumEvolutionJW"], [4, 1, 1, "", "NumOpSumEvolutionSpinlessJW"], [4, 1, 1, "", "OrbitalRotationJW"], [4, 1, 1, "", "OrbitalRotationSpinlessJW"], [4, 6, 1, "", "PRE_INIT"], [4, 1, 1, "", "PrepareHartreeFockJW"], [4, 1, 1, "", "PrepareHartreeFockSpinlessJW"], [4, 1, 1, "", "PrepareSlaterDeterminantJW"], [4, 1, 1, "", "PrepareSlaterDeterminantSpinlessJW"], [4, 1, 1, "", "SimulateTrotterDoubleFactorizedJW"], [4, 1, 1, "", "UCJOpSpinBalancedJW"], [4, 1, 1, "", "UCJOpSpinUnbalancedJW"], [4, 1, 1, "", "UCJOpSpinlessJW"], [4, 1, 1, "", "UCJOperatorJW"], [4, 5, 1, "", "ffsim_vec_to_qiskit_vec"], [4, 5, 1, "", "final_state_vector"], [4, 5, 1, "", "jordan_wigner"], [4, 5, 1, "", "pre_init_passes"], [4, 5, 1, "", "qiskit_vec_to_ffsim_vec"]], "ffsim.qiskit.DiagCoulombEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DropNegligible": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.FfsimSampler": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.GivensAnsatzOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOperatorJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.qiskit.MergeOrbitalRotations": [[4, 3, 1, "", "run"]], "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.NumOpSumEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.NumOpSumEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.PrepareHartreeFockJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareHartreeFockSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinUnbalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOperatorJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.random": [[5, 5, 1, "", "random_antihermitian"], [5, 5, 1, "", "random_double_factorized_hamiltonian"], [5, 5, 1, "", "random_fermion_hamiltonian"], [5, 5, 1, "", "random_fermion_operator"], [5, 5, 1, "", "random_hermitian"], [5, 5, 1, "", "random_molecular_hamiltonian"], [5, 5, 1, "", "random_orthogonal"], [5, 5, 1, "", "random_real_symmetric_matrix"], [5, 5, 1, "", "random_special_orthogonal"], [5, 5, 1, "", "random_state_vector"], [5, 5, 1, "", "random_statevector"], [5, 5, 1, "", "random_t2_amplitudes"], [5, 5, 1, "", "random_two_body_tensor"], [5, 5, 1, "", "random_ucj_op_spin_balanced"], [5, 5, 1, "", "random_ucj_op_spin_unbalanced"], [5, 5, 1, "", "random_ucj_op_spinless"], [5, 5, 1, "", "random_ucj_operator"], [5, 5, 1, "", "random_unitary"]], "ffsim.testing": [[6, 5, 1, "", "assert_allclose_up_to_global_phase"], [6, 5, 1, "", "generate_norb_nelec"], [6, 5, 1, "", "generate_norb_nelec_spin"], [6, 5, 1, "", "generate_norb_nocc"], [6, 5, 1, "", "generate_norb_spin"], [6, 5, 1, "", "random_nelec"], [6, 5, 1, "", "random_occupied_orbitals"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"], "6": ["py", "data", "Python data"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function", "6": "py:data"}, "terms": {"": [0, 2, 4, 8, 9, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23], "0": [0, 2, 3, 4, 6, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23], "000": 20, "0000000": [15, 18], "0000000000011100000000000111": 20, "0000000000011100000000011100": 20, "0000000000011100100000001100": 20, "0000000000110100000000001101": 20, "0000000000110100010000000101": 20, "0000000001011000000000010110": 20, "0000000001011000100000000110": 20, "0000000001110000000000000111": 20, "0000000111100000011111": 20, "0000000111100110000111": 20, "0000010101100001011011": 20, "0000010110100001011011": 20, "0000100101100000111011": 20, "0000100110100000111011": 20, "0000111100001111": 20, "0000111100011011": 20, "0000111100011101": 20, "0000111100101011": 20, "0001": 3, "0001000001010000000000000111": 20, "0001110100001111": 20, "0007469794869116219": 18, "000767994604823012": 18, "0010000000011000000000010110": 20, "0010011100101101": 20, "0010101100001111": 20, "0010101100101101": 20, "001011": [0, 14], "0010110100100111": 20, "0010110100101011": 20, "001101": [0, 14], "001110": [0, 14], "0012753677751103098": 18, "002936748331524959": 18, "003153217120992378": 18, "0034373307371360177": 18, "0038113319089807533": 18, "004306717922292566": 18, "004617146884357865": 18, "0049409335588901085": 18, "005e": 15, "01": [15, 18], "0100000110100100001111": 20, "010011": [0, 14], "0101": 0, "0101000001100000011111": 20, "010101": [0, 14], "010110": [0, 14], "0110": 0, "0181757878933262": 18, "02": [15, 18], "02122442107773": 18, "02242": 2, "02459434j": 14, "02625": 2, "02998708j": 14, "03": 15, "03101213j": 14, "03258348j": 16, "032e": [15, 18], "03525116j": 14, "036685417309833435": 23, "04": [15, 18], "045e": 18, "04758323886585477": 18, "05": [0, 2, 3, 4, 18], "05395": 4, "06": 18, "0609050": 5, "0625": [0, 16], "06273307": 14, "06551571": 14, "06677383j": 14, "066e": 15, "06844774j": 14, "07": 6, "08": [0, 2, 3, 4], "087e": 18, "08957": 2, "09723851": 14, "0b001011": 0, "0b010101": 0, "0b010110": 0, "0b100101": 0, "0b100110": 0, "0j": 16, "0x7f5b8d51b250": 19, "0x7f5b8d55ce20": 19, "0x7f5b8de2d930": 19, "0x7f5b8df1c1f0": 19, "0x7f5b8dfa8130": 19, "0x7f5b8dfa82b0": 19, "0x7f5b8e0d8eb0": 19, "0x7f5bf8e0a920": 19, "1": [0, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "10": [13, 18, 19, 20, 23], "100": 15, "1000": 3, "1000000101100000111011": 20, "100011": [0, 14], "100101": [0, 14], "100110": [0, 14], "100e": 18, "101": 20, "1024": 4, "104": [15, 21], "105e": 18, "107741685623149": 20, "108": [20, 23], "10_000": 20, "11": [0, 13, 19, 20, 23], "1102529j": 14, "11157654": 14, "112": 15, "12": [2, 13, 15, 16, 18, 23], "1207": 0, "12204343": 14, "1234": [9, 13, 14, 15, 19, 21], "12345": 20, "125": [0, 16], "1278053627110062": 20, "1284": [15, 18], "12j": 16, "13": [0, 13, 18, 23], "13113848": 14, "133": 20, "13327423j": 14, "137e": 18, "13957088j": 14, "14": [13, 20], "140e": 18, "1456": 18, "15": [13, 15], "1561685j": 14, "15624569": 14, "15828306": 14, "15x15": 15, "16": [13, 20], "17": 13, "1711": [2, 4], "17181289596": 21, "17276745j": 14, "17558331": 14, "18": 13, "180": 15, "18007105": 14, "1808": 2, "184891976726621e": 18, "18j": 16, "19": 0, "1e": [0, 2, 3, 4, 6, 15, 23], "1j": [0, 9, 16, 23], "2": [0, 1, 2, 4, 5, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "20835741": 14, "20881506": 14, "21": 0, "210": 20, "2104": 2, "2190712273": 9, "21928194": 14, "21984743e": 16, "22392824": 14, "23": 15, "23550198": 14, "23611476": 14, "24": [13, 19], "25": [0, 16], "25j": [0, 16], "26": 23, "26121865": 14, "284e": 18, "285e": 18, "29821173j": 14, "2d": 0, "2j": [0, 2, 16], "2n": 14, "3": [0, 2, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "30052742j": 14, "3185146": 16, "31980058j": 14, "31g": [20, 21], "32": [13, 19], "329": 18, "33731417j": 14, "339": 18, "3484557058534": 20, "35": [0, 23], "36730125j": 14, "3714141": 14, "38435478j": 14, "39": [13, 14, 15, 16, 18, 19, 20], "39075171": 14, "3j": 16, "4": [0, 2, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "407e": 15, "414e": 15, "4390672": 14, "45619739147656": 20, "46": 18, "464957764796": 23, "46x46": 18, "47": 20, "478": 15, "48": [13, 20], "49094286j": 14, "496e": 18, "4j": 16, "5": [0, 3, 9, 13, 14, 15, 16, 18, 19, 20, 23], "51253171j": 14, "519e": 18, "553e": 18, "5571707255159": 9, "56": [13, 19, 20], "561e": 18, "5626": 18, "563e": 18, "57": 20, "58888": 22, "5j": [0, 16], "6": [0, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "603e": 15, "6083": 0, "62051367568589e": 18, "6332495815006": 15, "64": 14, "65": 20, "66": 20, "67794403659724": 15, "6787887956297": 15, "6787887956314": 15, "68381558699649": 15, "684e": 18, "6g": [0, 15, 18, 23], "6j": 16, "7": [0, 9, 13, 14, 15, 16, 18, 19, 23], "70": 20, "713e": 18, "72": 18, "7288249991515": 15, "72x72": 18, "73105542j": 14, "748e": 15, "75": [15, 20], "752e": 15, "77": 18, "774e": 18, "776e": 18, "8": [0, 13, 15, 16, 18, 19, 20, 23], "8266321248745": 18, "835236570774": 20, "842e": 18, "847e": 18, "87160024816276": 18, "87362938613155": 18, "8736342620794": 18, "87363426617898": 18, "87363444305669": 18, "87369161757285": 18, "87370126269155": 18, "87370915262531": 18, "87371551723568": 18, "87372083380427": 18, "87372541558348": 18, "8737294738008": 18, "87387392663813": 18, "87421536374038": 18, "8742165643863": 18, "887e": 18, "9": [13, 14, 16, 18, 19, 23], "9031044956560692": 18, "9031045032759374": 18, "9031046184822257": 18, "9031046620111555": 18, "9031324767940594": 18, "9031324772479508": 18, "9031324846718976": 18, "9031324921853551": 18, "903e": 18, "9289": 18, "9402428512128193": 23, "947142002605689e": 18, "949": 18, "958": 15, "9630419334855": 20, "9887023581408309": 18, "9887108144805501": 18, "9887262011056199": 18, "99": 9, "9903551715726496": 18, "9908983723991553": 18, "990e": 18, "9924": 20, "996": 18, "9985212764978459": 23, "9985212764978977": 23, "9991": 20, "9996731172097888": 23, "A": [0, 1, 2, 3, 4, 5, 6, 8, 12, 13, 14, 16, 22, 23], "AND": 15, "As": [0, 11, 13, 14, 18, 19, 23], "By": 21, "For": [0, 3, 4, 8, 9, 11, 14, 15, 16, 22, 23], "If": [0, 1, 2, 3, 4, 5, 6, 13, 16], "In": [0, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "It": [0, 2, 3, 4, 13, 14, 16, 18, 20, 22], "Its": [3, 4], "NO": [15, 18], "No": 2, "Of": 11, "On": [14, 22], "One": [0, 23], "Such": 16, "That": [0, 3, 12, 16], "The": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "Their": 19, "Then": [0, 13], "There": 13, "These": [0, 11, 16, 19], "To": [0, 8, 9, 11, 14, 18, 23], "With": [11, 14, 23], "_": [0, 1, 2, 4, 8, 11, 12, 15, 23], "_1": 12, "_2": 12, "__init__": 4, "__init_subclass__": 4, "__new__": 4, "_factr": 18, "_i": [0, 4], "_k": [0, 8, 11], "_nestedsequ": 4, "_supportsarrai": 4, "a_": [0, 4, 8, 9, 12, 16], "a_j": 1, "a_p": 0, "a_q": 0, "ab": [0, 23], "abil": 8, "abl": 22, "about": 21, "abov": [13, 16], "absenc": [0, 1, 4], "absolut": [0, 2, 4, 6], "acceler": 22, "accept": [12, 18], "access": [0, 9, 22], "accommod": 4, "accomod": 8, "accur": 8, "achiev": [2, 23], "across": 22, "act": [0, 2, 4, 9, 13, 15, 16], "action": [0, 1, 12, 16, 22, 23], "activ": [0, 15, 18, 20, 23], "active_spac": [0, 15, 18, 20, 21, 23], "actual": [6, 11], "ad": [0, 13, 18], "add": [13, 18], "addit": [0, 8, 16, 23], "addition": 2, "address": [0, 13], "addresses_to_str": [0, 7, 14], "adjac": 13, "advantag": 18, "after": [3, 18], "al": 2, "algebra": [2, 9, 16], "algorithm": [0, 2, 3, 18, 21], "alia": [0, 2], "align": [0, 11, 12], "all": [0, 1, 2, 3, 4, 6, 11, 13, 16, 20, 22], "alloc": 0, "allow": [0, 2, 11, 13, 18, 22, 23], "along": 0, "alpha": [0, 1, 2, 4, 6, 9, 11, 13, 14, 15, 16, 19, 20], "alpha_alpha_indic": 0, "alpha_and_beta": 0, "alpha_beta_indic": 0, "alpha_i": 0, "alpha_j": 0, "alreadi": [0, 4, 12], "also": [0, 2, 3, 9, 12, 14, 16, 18, 23], "altern": [0, 8], "alwai": [0, 2, 5, 12, 14, 23], "amen": 13, "amplitud": [0, 2, 5, 18, 20], "an": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "angl": 0, "ani": [0, 3, 4, 11, 12, 19, 20], "annihil": [0, 16], "anoth": [2, 6], "ansatz": [0, 3, 4, 5, 10, 13, 17, 19, 20, 21], "ansatz_oper": 0, "ansatz_st": 18, "anti": [2, 5], "anticommut": 12, "ao": 0, "ap": 2, "api": [14, 21], "appear": [0, 2, 13, 16, 20], "append": [0, 6, 13, 18, 19, 20], "appli": [0, 1, 2, 3, 4, 9, 11, 12, 13, 14, 18, 19, 20, 21, 23], "applic": 12, "apply_": 14, "apply_diag_coulomb_evolut": [0, 7, 8, 23], "apply_fsim_g": [0, 7], "apply_fswap_g": [0, 7], "apply_givens_rot": [0, 7], "apply_hop_g": [0, 7], "apply_matrix_to_slic": [2, 7], "apply_num_interact": [0, 7], "apply_num_num_interact": [0, 7], "apply_num_op_prod_interact": [0, 7], "apply_num_op_sum_evolut": [0, 7, 12, 23], "apply_on_site_interact": [0, 7, 14], "apply_orbital_rot": [0, 7, 12, 14, 21], "apply_quad_ham_evolut": 12, "apply_tunneling_interact": [0, 7, 14], "apply_unitari": [0, 7, 18], "appropri": [0, 11], "approx": 8, "approx_eq": [0, 7], "approxim": [0, 2, 3, 8, 18, 23], "apt": 22, "ar": [0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 19, 20, 22], "arbitrari": [4, 20], "arch": 22, "arg": [0, 4], "argument": [0, 2, 3, 8, 9, 12, 14, 23], "aris": 8, "arithmet": 16, "around": 23, "arrai": [0, 1, 2, 4, 6, 9, 11, 14, 16], "arxiv": [0, 2, 4, 5], "ascend": 20, "assembl": 2, "assert": 14, "assert_allclose_up_to_global_phas": [6, 7], "assertionerror": 6, "associ": [0, 3, 14, 16, 18], "assum": [0, 4, 14], "asterisk": 0, "asymmetr": 8, "atol": [0, 2, 4, 6], "atom": [0, 15, 18, 20, 21, 23], "attempt": 2, "attribut": [0, 3, 9, 15, 18], "author": 21, "auto": 0, "avail": [9, 19, 22], "avoid": [0, 9, 16], "awar": 16, "ax": [0, 2], "axi": [0, 2], "b": [0, 2, 3, 6, 12, 15, 18], "back": 4, "backend": [13, 19], "backflow": 3, "background": 23, "balanc": [0, 4, 5, 18, 20], "barrier": 20, "base": [0, 2, 4], "basepass": 4, "basesamplerv2": 4, "basi": [0, 2, 4, 12, 15, 18, 20, 21, 23], "basic": [9, 13], "basis_g": [13, 19], "bear": 23, "becaus": [0, 2, 8, 9, 13, 15, 16, 18], "been": [0, 8], "befor": [0, 13, 16, 22, 23], "begin": [0, 2, 11, 12, 14, 20, 23], "behavior": [2, 4, 5, 19], "being": [2, 16, 18], "below": [0, 18, 23], "benchmark": 0, "beta": [0, 1, 2, 4, 6, 9, 11, 13, 14, 15, 16, 19, 20], "beta_i": 0, "beta_j": 0, "better": 8, "between": [0, 1, 2, 3, 11, 13], "bfg": [0, 2, 3, 15, 18], "bibtex": 21, "bit": [0, 13, 14], "bit_arrai": 0, "bitstr": [0, 14, 20], "bitstring_typ": [0, 14], "bitstringtyp": [0, 7, 14], "bla": 22, "bloc": 20, "block": 2, "block_diag": [0, 2], "bmod": 0, "bodi": [0, 1, 2, 5, 8, 9, 18, 23], "bond": 15, "bond_angle_deg": 15, "bond_dist": 18, "bool": [0, 1, 2, 3, 4, 5, 6], "both": [0, 1, 2, 4, 11, 15], "bound": [0, 2], "boundari": 0, "box": 13, "bq": 2, "bracket": 0, "braket": 0, "branch": 21, "brickwork": 15, "browser": 22, "buffer": 4, "build": [13, 17, 18, 20, 21, 22], "built": [19, 20, 23], "byte": [0, 4], "bz2": 0, "c": [2, 18], "c2v": 15, "cach": 0, "calcul": [0, 14, 18], "call": [0, 3, 4, 8, 9, 12, 14, 16, 18, 20, 23], "callabl": [3, 18], "callback": [0, 2, 3, 18], "can": [0, 1, 2, 4, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23], "cannot": 20, "canon": 0, "casci": [15, 18], "case": [0, 6, 13, 15], "categori": 21, "caus": 0, "cc": [18, 20], "ccsd": [0, 18, 20], "ccsd_energi": 0, "ccsd_t1": 0, "ccsd_t2": 0, "cd": 22, "cdot": 2, "cell": [9, 13, 14, 18, 19, 20, 23], "certain": [2, 13], "challeng": 11, "character": 0, "check": [2, 4, 6], "chemcor": 23, "chemic": 0, "chemical_potenti": 0, "chemistri": 21, "choic": [0, 6, 13, 14], "choleski": [0, 2], "choos": [2, 14], "chosen": 0, "ci": [15, 18], "circuit": [0, 4, 8, 13, 14, 17, 21], "circul": 0, "cisd": 0, "cisd_energi": 0, "cisd_vec": 0, "class": [0, 2, 4, 5, 9, 11, 15, 17, 18, 21, 23], "clement": 2, "clone": 22, "close": [11, 18], "cluster": [0, 4, 5, 10, 17, 21], "co": [0, 15], "code": [4, 9, 13, 14, 16, 18, 19, 20, 23], "coeff": [0, 1, 4, 13, 19], "coeffici": [0, 1, 2, 4, 12, 16], "collect": [0, 2, 4, 18], "column": [0, 2, 12, 14], "com": [21, 22], "comb": 4, "combin": [0, 1, 4, 12, 13, 16], "command": 22, "commonli": [8, 20], "commun": [21, 22], "commut": [0, 8], "compact": [8, 23], "compar": [0, 6, 23], "compil": 22, "complet": 0, "complex": [0, 1, 2, 4, 5, 9], "compon": [0, 16, 21], "compos": [4, 22], "compress": [0, 2], "compris": [0, 16], "comput": [0, 2, 4, 9, 12, 18, 21, 23], "concaten": [0, 14], "concret": 9, "condit": 0, "configur": [0, 4, 13, 14, 22], "conflict": 6, "conj": [2, 12, 20], "conjug": 2, "connect": [0, 11, 13], "consecut": [4, 20], "conserv": [0, 5, 16, 21], "conserves_particle_numb": [0, 16], "conserves_spin_z": [0, 16], "consid": [11, 12, 13], "consist": [0, 9, 13], "constant": [0, 5, 8, 9, 11, 13, 19], "constrain": 2, "constraint": [11, 18], "construct": [0, 1, 3, 4, 13, 14, 15, 16, 18, 19, 20, 23], "contain": [0, 2, 3, 13, 16, 20, 21, 22], "contract": [2, 7, 21], "contract_diag_coulomb": [1, 7], "contract_num_op_sum": [1, 7], "contract_one_bodi": [1, 7], "contrast": 14, "control": [3, 13], "conveni": 14, "convent": 0, "converg": [3, 15, 18, 20, 23], "convers": [11, 18], "convert": [0, 1, 4, 14, 16, 18, 20, 21, 23], "coordin": 0, "coov": 20, "copi": [0, 16], "core": 0, "core_energi": 0, "correl": 3, "correspond": [0, 2, 3, 4, 8, 12, 13, 14, 18], "cost": 0, "coulomb": [0, 1, 2, 4, 8, 11, 23], "count": [0, 13, 20], "count_op": [13, 19], "cours": 11, "cp": [13, 19], "cphaseg": 13, "cre": [0, 7], "cre_a": [0, 7, 16], "cre_b": [0, 7, 16], "creat": [0, 4, 13, 14, 16, 19, 20, 21, 23], "creation": [0, 4, 12, 16], "criteria": 16, "current": [0, 2, 18], "d": [2, 22], "d2h": 18, "dag": 4, "dagcircuit": 4, "dagger": [0, 1, 2, 8, 11, 12, 16], "dagger_": [0, 4, 8, 9, 12], "dagger_i": 1, "dagger_p": 0, "dagger_q": 0, "data": [0, 5, 13, 15, 16, 18, 20, 21, 23], "daunt": 8, "de": [0, 7], "decompos": [2, 4, 8, 13, 19], "decomposit": [0, 2, 4, 8, 10, 19, 21, 23], "decreas": [0, 18], "def": [2, 12, 15, 18, 23], "default": [0, 2, 3, 4, 5, 8, 9, 23], "default_rng": [0, 4, 5, 6, 9, 13, 15, 19, 20], "default_shot": [4, 20], "defaultdict": 18, "defin": [0, 2, 13, 15, 18, 20, 23], "definit": [0, 2, 3, 14], "demonstr": [14, 18, 20], "denot": [0, 1, 2, 4, 12], "dens": 15, "densiti": 0, "depend": [0, 2, 3, 22, 23], "deprec": [0, 4, 5], "depth": 11, "deriv": 8, "des_a": [0, 7, 16], "des_b": [0, 7, 16], "descend": [0, 16], "describ": [0, 1, 2, 8, 11, 12, 13, 16, 23], "descript": [0, 4], "design": [0, 2, 12], "desir": [0, 2, 5, 6], "destroi": [0, 16], "detail": [13, 19], "determin": [0, 2, 4, 14], "determinant": 0, "dev": 22, "devel": 22, "develop": [4, 21], "devic": [13, 19], "df_hamiltonian": [13, 19, 23], "df_hamiltonian_alt": 23, "diag": [0, 7], "diag_coulomb_indic": [0, 2], "diag_coulomb_jw": 13, "diag_coulomb_linop": [1, 7], "diag_coulomb_mat": [0, 2, 13, 19, 20, 23], "diag_coulomb_mats_alpha_alpha": 0, "diag_coulomb_mats_alpha_beta": 0, "diagcoulombevolutionjw": [4, 7, 13, 19, 20], "diagcoulombevolutionspinlessjw": [4, 7], "diagon": [0, 1, 2, 4, 8, 11, 23], "diagonal_coulomb_mat": 2, "diagonalcoulombhamiltonian": [0, 7], "dict": [0, 2, 3, 15, 18], "dictionari": [0, 16], "did": 0, "differ": [0, 1, 2, 3, 9, 11, 13, 18, 22, 23], "dim": [0, 5, 7, 14, 16], "dim_a": [0, 14], "dim_b": [0, 14], "dimens": [0, 2, 5, 14], "dimension": [0, 2, 4, 14], "dipol": 0, "dipole_integr": 0, "direct": [0, 23], "directli": [0, 13, 18, 22, 23], "directori": 22, "discuss": [8, 12, 13], "disjoint": 2, "disk": 0, "displai": [13, 16, 20], "distinguish": 14, "distribut": 5, "divid": 8, "divis": [0, 16], "dnf": 22, "do": [8, 13, 16], "doc": [15, 18, 21], "docker": 21, "dockerfil": 22, "docstr": 0, "document": [0, 2], "doe": [0, 4, 16, 20], "don": 11, "dooh": [20, 21, 23], "dot": 0, "doubl": [0, 2, 4, 5, 10, 21, 24], "double_factor": [0, 2, 7], "double_factorized_t2": [2, 7], "double_factorized_t2_alpha_beta": [2, 7], "doublefactorizedhamiltonian": [0, 4, 5, 7, 23], "down": 14, "draw": [13, 19], "drop": [4, 15, 18], "dropneglig": [4, 7], "dtype": [0, 2, 4, 5, 9, 15, 18], "due": 20, "dump": [15, 18], "duplic": 0, "dure": 4, "e": [0, 2, 4, 8, 9, 11, 15, 16, 18, 20], "e_corr": [18, 20], "each": [0, 2, 3, 4, 8, 11, 14, 16, 18, 22, 23], "edg": 0, "effect": [0, 4, 13], "effici": [8, 13, 16], "eig": [9, 16], "eigendecomposit": 12, "eigenvalu": [0, 2, 3, 9], "eigenvector": [0, 2], "eigh": [12, 23], "eigsh": 9, "einsum": 23, "either": [0, 1, 2, 4, 6, 11], "electon": 4, "electron": [0, 1, 4, 5, 9, 13, 14, 15, 19, 20, 23], "element": [0, 1, 2, 4, 20, 23], "ell": 2, "els": [0, 5, 14], "elsewher": 0, "enabl": 2, "encount": 20, "end": [0, 2, 11, 12, 20, 23], "energi": [0, 3, 9, 12, 18, 20, 21, 23], "energy_nuc": [15, 18], "enforc": 0, "enough": 4, "ensur": 9, "entangl": [0, 17, 21], "entir": [2, 8], "entri": [0, 2, 4, 11, 14, 23], "enum": 0, "enumer": [0, 18], "environ": 22, "epsilon": 3, "epsmch": 18, "equal": [0, 2, 6, 13], "equal_nan": 6, "equilibrium": 15, "equival": [0, 4], "err_msg": 6, "error": [0, 2, 4, 6, 23], "especi": 16, "estim": 9, "et": 2, "etc": 0, "ethen": 18, "evalu": [3, 15], "even": 13, "everi": 12, "everywher": 14, "evolut": [0, 4, 9, 23], "evolv": [0, 23], "evolved_vec": 9, "evolved_vec_2": 9, "exact": [2, 8, 9, 23], "exact_st": 23, "exampl": [0, 4, 9, 11, 13, 14, 15, 16, 18, 19, 22], "exce": [2, 15, 23], "except": [0, 2, 3], "excit": 13, "exist": [2, 4], "exp": [0, 2, 4, 6], "expand": 0, "expanded_diag_coulomb_mat": 2, "expanded_orbital_rot": 2, "expans": [2, 3], "expect": [0, 3], "expectation_one_body_pow": [0, 7], "expectation_one_body_product": [0, 7], "expectation_product_st": 0, "expens": [0, 2], "explain": [9, 11, 13, 14, 18, 23], "explan": [0, 19, 21], "explicit": 0, "explicitli": 0, "exploit": 21, "expm": 2, "expm_multipli": [9, 23], "expm_multiply_taylor": [2, 7], "exponenti": [8, 9, 23], "expos": [4, 13], "express": [11, 14, 23], "extend": 4, "extra": 8, "extract": 20, "f": [3, 14, 15, 18, 20, 23], "facilit": 11, "fact": 15, "factor": [0, 2, 4, 5, 10, 21, 24], "failur": 6, "fake_provid": [13, 19], "fals": [0, 1, 2, 4, 5, 15, 16, 18], "far": 16, "fast": 0, "faster": [18, 21], "fault": 11, "fci": [0, 14, 15, 18], "fci_energi": 0, "fci_vec": 0, "fcidump": 0, "fcivec": 0, "fedora": 22, "feenberg": 3, "fermi": 0, "fermi_hubbard_1d": [0, 7], "fermi_hubbard_2d": [0, 7], "fermion": [0, 4, 5, 6, 8, 10, 11, 12, 16, 19, 20, 21], "fermion_oper": [0, 7], "fermionact": [0, 7], "fermionoper": [0, 4, 5, 7, 17, 21], "few": [14, 22], "fewer": [13, 19, 23], "ffsim": [7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23], "ffsim_vec_to_qiskit_vec": [4, 7], "ffsimsampl": [4, 7], "fidel": 23, "field": [0, 2], "fifth": 13, "file": [0, 22], "filter": 0, "final": [0, 3, 4, 5, 13, 19, 23], "final_orbital_rot": 0, "final_st": [18, 23], "final_state_vector": [4, 7], "finish": 23, "finit": 3, "first": [0, 2, 4, 8, 13, 14, 18, 20, 23], "fix": 14, "flag": 0, "float": [0, 2, 3, 4, 5, 6, 9, 12, 23], "float64": [9, 15, 18], "fock": [0, 4, 11, 14, 18, 21, 23], "focu": 9, "follow": [0, 2, 3, 4, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23], "foot": 0, "forg": [0, 17, 21], "form": [0, 1, 2, 4, 8, 9, 11, 12, 16, 20, 23], "format": [0, 4], "formula": [0, 23], "fourth": [8, 13], "frac": [0, 2], "frac12": [0, 8, 9, 11], "frac18": 0, "framework": 22, "from": [0, 2, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "from_diag_coulomb_mat": 0, "from_fcidump": 0, "from_fermion_oper": 0, "from_json": 0, "from_mol": 0, "from_molecular_hamiltonian": [0, 23], "from_orbital_rot": 0, "from_paramet": [0, 13, 18], "from_scf": [0, 15, 18, 20, 21, 23], "from_t_amplitud": [0, 18, 20], "frozen": [18, 20], "fsim": 0, "fswap": 0, "full": [0, 2, 13, 14, 15], "fulli": 9, "fun": [3, 15, 18], "function": [0, 1, 2, 3, 5, 8, 9, 12, 14, 15, 16, 18, 19, 23], "fundament": 12, "further": [13, 14], "furthermor": [0, 2], "g": [0, 4, 15], "g_": 2, "g_1": 2, "g_k": 2, "g_l": 2, "gate": [0, 4, 10, 11, 15, 20, 21], "gener": [0, 3, 4, 5, 6, 8, 13, 14, 15, 19, 20, 21], "generate_norb_nelec": [6, 7], "generate_norb_nelec_spin": [6, 7], "generate_norb_nocc": [6, 7], "generate_norb_spin": [6, 7], "generate_preset_pass_manag": [13, 19], "genericbackendv2": [13, 19], "get": [0, 14, 15, 18, 20, 21, 23], "get_count": 20, "get_hcor": [15, 18], "get_ovlp": [15, 18], "git": 22, "github": [21, 22], "give": [0, 2, 8, 14, 19], "given": [0, 2, 4, 6, 8, 12], "givens_ansatz_op": 4, "givens_ansatz_oper": 4, "givens_decomposit": [2, 7], "givensansatzop": [0, 4, 7], "givensansatzoper": [0, 4, 7], "givensansatzoperatorjw": [4, 7], "givensansatzoperatorspinlessjw": [4, 7], "givensansatzopjw": [4, 7], "givensansatzopspinlessjw": [4, 7], "givensrot": [2, 7], "global": [4, 6], "go": [0, 13, 16], "good": 16, "gradient": [2, 3, 18], "greater": 3, "ground": [9, 18], "gt": [15, 18, 19], "gto": [15, 18, 20, 21, 23], "gtol": 3, "guarante": [4, 19], "guess": [3, 18], "guid": [11, 15, 18, 19, 20, 21], "gzip": 0, "h": [0, 8, 9, 15, 18, 20, 23], "h1_x": 15, "h2_x": 15, "h2_y": 15, "h_": [0, 2, 8, 9], "h_0": [8, 23], "h_k": [8, 23], "ha": [0, 1, 2, 4, 8, 11, 12, 13, 14, 18], "haar": 5, "ham": 14, "hamiltonian": [0, 3, 4, 5, 10, 15, 18, 20, 21, 24], "hand": 14, "handl": [20, 23], "happen": 13, "hardwar": 13, "hartre": [0, 4, 11, 14, 18, 21, 23], "hartree_fock": 0, "hartree_fock_jw": 13, "hartree_fock_st": [0, 7, 9, 14, 18, 21, 23], "hasattr": 18, "hash": 16, "have": [0, 2, 8, 9, 11, 12, 13, 14, 16, 22], "height": 5, "helper": 16, "here": [0, 2, 8, 12, 13, 15, 23], "hermitian": [0, 2, 5, 12], "hess_inv": [15, 18], "hf": [15, 18], "hf_energi": 0, "hf_mo_coeff": 0, "hf_mo_occ": 0, "high": 13, "higher": [0, 8, 23], "ho": 20, "hold": [0, 3], "home": [15, 18, 22], "hop": [0, 15], "hopgateansatzoper": [0, 7, 15], "hot": [0, 2], "how": [0, 8, 9, 11, 12, 13, 14, 21, 23], "howev": [8, 13, 21], "http": [0, 21, 22], "hubbard": 0, "hydroxyl": 20, "hyperparamet": [3, 18], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "idea": 11, "ident": 0, "ignor": [0, 2, 8], "ij": [0, 1, 2, 4, 8, 11, 12], "ijab": 2, "ik": 12, "imag": 22, "implement": [0, 1, 3, 4, 8, 9, 11, 12, 13, 15, 18, 20, 21, 22, 24], "import": [0, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "impos": [11, 18], "improv": [3, 23], "includ": [0, 2, 4, 5, 8, 9, 12, 13, 14, 15, 18, 19, 21, 22], "incorpor": 0, "increas": [0, 14, 23], "increment": 3, "incur": 3, "independ": [0, 1, 4, 15], "index": [0, 2, 11, 14, 16], "indic": [0, 1, 2, 4, 11, 14, 16], "indices_to_str": [0, 7], "individu": [8, 14, 16], "info": 18, "inform": [0, 9, 16, 18, 21, 23], "init_cach": [0, 7], "initi": [0, 3, 4, 5, 6, 9, 11, 13, 18, 19, 20, 23], "initial_st": 23, "initiali": 15, "input": [0, 1, 3, 4, 5, 6, 18, 20], "insert": 13, "instanc": [5, 9, 23], "instead": [0, 2, 4, 5, 18, 23], "instruct": [21, 22], "instructionset": 19, "int": [0, 1, 2, 3, 4, 5, 6, 12, 15, 23], "int32": 0, "integ": [0, 2, 4, 6, 14], "integr": [0, 4], "interact": [0, 1, 2, 4, 11, 13, 18, 20], "interaction_pair": [0, 13, 15, 18, 20], "interfac": [18, 22], "interferomet": 2, "intermedi": 18, "intermediate_result": [3, 18], "intern": 16, "interpret": [0, 11], "introduc": [11, 12, 23], "invers": 4, "involv": [0, 12, 13], "ip": 2, "ipykernel_4336": 9, "is_antihermitian": [2, 7], "is_hermitian": [2, 7], "is_orthogon": [2, 7], "is_real_symmetr": [2, 7], "is_special_orthogon": [2, 7], "is_unitari": [2, 7], "isclos": 0, "isn": 4, "issu": [9, 13], "item": 20, "iter": [0, 3, 4, 6, 18], "itertool": 2, "its": [0, 2, 4, 9, 13, 14, 15, 16, 23], "itself": [0, 14, 16], "j": [0, 1, 2, 4, 8, 11, 12, 14, 15, 16], "jac": [3, 15, 18], "jastrow": [0, 3, 4, 5, 10, 17, 21], "ji": [0, 4, 11, 12], "jk": 12, "job": [4, 20], "jordan": [0, 4], "jordan_wign": [4, 7], "jq": 2, "json": [0, 15, 18], "jupyt": 22, "just": [0, 14, 18, 22, 23], "jwt": 4, "k": [0, 2, 8, 9, 11, 16, 20, 23], "kappa": 0, "kappa_": 0, "keep": [0, 2], "kei": 20, "kij": 23, "know": 15, "known": [0, 8], "kpi": 23, "kqi": 23, "krj": 23, "kron": 0, "ksj": 23, "kwarg": [0, 4], "l": [0, 2, 3, 8, 11, 15, 18, 23], "label": [4, 14], "ladder": [8, 11], "lambda": [0, 4, 20], "lambda_i": [0, 1, 4, 12], "lambda_k": 12, "langl": 0, "larger": [0, 2, 3, 16], "last": [0, 2, 3, 4], "later": [19, 23], "lattic": [0, 11, 13, 18, 20], "layer": [0, 2, 13, 20], "lbfgsinvhessproduct": [15, 18], "ldot": [0, 2, 8, 11, 23], "lead": 0, "least": 2, "left": [0, 4, 12, 14, 16], "len": [15, 18, 23], "length": [0, 4, 5, 14, 15], "leq": [0, 2], "less": [2, 11], "let": [0, 13, 14, 16, 18, 19, 20, 23], "level": 23, "lexicograph": [0, 16], "lib": [15, 18], "libopenbla": 22, "librari": [0, 21], "like": [4, 11, 18, 22], "limit": [0, 2, 11, 13, 15, 18], "linalg": [0, 7, 9, 12, 16, 18, 21, 23], "lindep": 3, "line": [0, 11, 13, 18], "linear": [0, 1, 2, 3, 4, 9, 12, 13, 16], "linear_oper": [0, 7, 9, 16, 18, 21, 23], "linearli": 8, "linearoper": [0, 1, 3, 16, 18, 21, 23], "linop": [9, 16, 21, 23], "linux": 22, "list": [0, 2, 4, 6, 11, 14, 15, 18, 20, 23], "ll": [9, 12, 13, 15, 18, 20, 23], "lm": 16, "load": 0, "local": [10, 17, 21], "localhost": 22, "log": [0, 4], "logarithm": 11, "logic": [12, 15], "longer": 11, "longest": 0, "lookup": 0, "losslessli": 0, "low": [0, 8, 23], "lower": [0, 2], "lowest": [0, 13, 14], "lt": [15, 18, 19], "lu": 2, "lucj": [10, 13, 17, 21], "lup": [2, 7], "lvert": [0, 4, 11, 14], "lzma": 0, "m": [0, 1, 2, 12], "m_": [0, 1, 2], "maco": 22, "made": 23, "magnitud": 0, "mai": [0, 2, 3, 4, 11, 22, 23], "main": [18, 22], "maintain": 8, "make": [11, 13], "manag": [4, 13, 19, 22], "mani": [0, 9, 12, 14, 21], "manual": 23, "many_body_ord": 0, "map": [0, 4, 12, 13, 16], "mapsto": [0, 4, 12], "mat": [0, 1, 2, 4, 12, 14], "mat_aa": 2, "mat_ab": 2, "mat_alpha_beta": 1, "mat_bb": 2, "match": [0, 2], "match_global_phas": [2, 7], "math": [5, 15], "mathbf": [0, 8, 11, 12], "mathcal": [0, 1, 4, 8, 11, 12], "matric": [0, 1, 2, 4, 11, 12, 23], "matrix": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 14, 16], "max": 23, "max_error": 23, "max_term_length": 5, "max_vec": [0, 2, 23], "maxfun": 15, "maximum": [0, 2, 3, 5, 23], "maxit": [3, 18], "mcscf": [15, 18], "mea": 20, "meant": [4, 19], "measur": [5, 8, 20], "measure_al": 20, "mention": 8, "merg": [4, 19], "mergeorbitalrot": [4, 7, 13], "messag": [6, 15, 18], "method": [0, 2, 3, 4, 11, 15, 16, 20, 21], "mid": 20, "might": 2, "mind": 23, "minim": [0, 2, 3, 13, 15, 18], "minimize_linear_method": [3, 7, 18], "minimizz": 15, "minimum": 4, "mk": 2, "mkap": 2, "mkbq": 2, "mkip": 2, "mkjq": 2, "mkpq": 2, "mo_coeff": 0, "mo_occ": 0, "mode": 12, "model": 0, "modifi": [0, 2], "modified_choleski": [2, 7], "modul": [0, 14, 15, 19, 20], "mol": [15, 18, 20, 21, 23], "mol_data": [15, 18, 20, 21, 23], "mol_hamiltonian": [9, 15, 18, 20, 23], "mole": [0, 15, 18, 20, 21, 23], "molecul": [0, 18, 21, 23], "molecular": [0, 5, 9, 10, 14, 15, 18, 20, 21, 23], "moleculardata": [0, 7, 15, 18, 20, 21, 23], "molecularhamiltonian": [0, 5, 7, 9, 23], "more": [0, 2, 3, 4, 8, 9, 11, 13, 14, 19, 23], "most": [0, 2, 16, 20], "motiv": 13, "mp2": 0, "mp2_energi": 0, "mp2_t2": 0, "mpl": [13, 19], "msg": [15, 18], "mu": 0, "much": [0, 2, 8, 13, 21], "multipl": [0, 9, 16, 23], "multipli": [0, 16], "multiport": 2, "multirefer": 0, "multireference_st": [0, 7], "multireference_state_prod": [0, 7, 15], "must": [0, 2, 3, 4, 16, 20], "n": [0, 2, 8, 9, 11, 12, 14, 20, 21, 23], "n2": [20, 21, 23], "n_": [0, 1, 4, 8, 11, 12, 14], "n_alpha": [4, 6, 20], "n_beta": [4, 6, 20], "n_frozen": [20, 23], "n_i": 4, "n_j": 4, "n_layer": 15, "n_p": 0, "n_param": [0, 13], "n_qubit": 4, "n_rep": [0, 5, 13, 18, 19, 20], "n_sampl": 0, "n_step": [0, 4, 13, 19, 23], "n_term": 5, "n_vec": 2, "n_x": 0, "n_y": 0, "name": [0, 9, 13, 14, 19, 22], "namedtupl": [0, 2], "nan": 6, "nao_nr": [15, 18, 20, 21, 23], "nativ": 21, "navig": 22, "ndarrai": [0, 1, 2, 3, 4, 5, 6, 12, 18, 23], "nearest": 0, "nearest_neighbor_interact": 0, "need": [0, 4, 9, 11, 13, 20, 22, 23], "neg": [0, 4], "neglig": 4, "neighbor": [0, 13], "nelec": [0, 1, 4, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "nelectron": 18, "neq": 0, "nest": 2, "network": 11, "new": [0, 4, 12, 16], "newli": 0, "next": [13, 15, 23], "nfev": [3, 15, 18], "nit": [15, 18], "nitrogen": [20, 23], "njev": [15, 18], "nlinop": [3, 18], "nn": 0, "nocc": [0, 5, 6], "nocc_a": 2, "nocc_b": 2, "noisi": 11, "non": [4, 11], "none": [0, 1, 2, 3, 4, 5, 6], "nonzero": [0, 2, 11], "norb": [0, 1, 2, 4, 5, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "norb_i": 0, "norb_rang": 6, "norb_x": 0, "norm": [0, 3, 18], "normal": [0, 15, 16], "normal_ord": [0, 16], "note": [0, 2, 3, 13, 14, 16, 19, 21], "notebook": 22, "noth": 4, "notic": 18, "notimplementederror": 4, "now": [9, 13, 15, 18, 20, 23], "np": [0, 2, 4, 5, 6, 9, 12, 13, 15, 18, 19, 20, 21, 23], "num_num_ansatz_op": 4, "num_op_sum_linop": [1, 7], "number": [0, 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 18, 21, 23], "number_oper": [0, 7], "numer": [0, 2, 4, 16], "numnumansatzopspinbalanc": [0, 4, 7], "numnumansatzopspinbalancedjw": [4, 7], "numopsumevolutionjw": [4, 7, 13, 19], "numopsumevolutionspinlessjw": [4, 7], "numpi": [0, 1, 2, 4, 6, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23], "o": [0, 15, 20], "o_1": 0, "o_2": 0, "o_k": 0, "obj": 0, "object": [0, 2, 3, 4, 9, 16, 18, 20], "obtain": [0, 8, 9, 12, 13, 18, 23], "occ_a": 6, "occ_b": 6, "occup": [0, 6, 8, 12, 14], "occupi": [0, 4, 5, 6, 13, 14], "occupied_orbit": [0, 4, 13, 19, 20], "often": [8, 11, 18], "onc": [12, 13, 22], "one": [0, 1, 2, 4, 5, 8, 9, 13, 14, 18, 20, 22, 23], "one_body_basis_chang": 23, "one_body_energi": 23, "one_body_integr": 0, "one_body_linop": [1, 7], "one_body_squar": 0, "one_body_tensor": [0, 9, 23], "one_hot": [0, 2, 7], "one_rdm": 0, "ones": 9, "onli": [0, 2, 4, 8, 11, 12, 13, 20, 22], "onsit": 0, "onto": [13, 16], "op": [0, 4, 16], "op1": [0, 16], "op2": [0, 16], "op3": 16, "op4": 16, "opaqu": 13, "open": [0, 11], "openbla": 22, "oper": [0, 1, 2, 3, 4, 5, 8, 11, 12, 16, 18, 22, 23], "oppos": 13, "opposit": [18, 20], "optim": [0, 2, 4, 7, 11, 13, 19, 21], "optimization_level": [13, 19], "optimize_kwarg": 3, "optimize_regular": 3, "optimize_vari": 3, "optimizeresult": [3, 18], "option": [0, 1, 2, 3, 4, 9, 15, 18, 22], "orb": [0, 16], "orbit": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 18, 20, 21, 23], "orbital_rot": [0, 1, 2, 4, 12, 13, 14, 19, 20, 21, 23], "orbital_rotation_a": 2, "orbital_rotation_b": 2, "orbital_symmetri": 0, "orbitalrotationjw": [4, 7, 13, 19, 20], "orbitalrotationspinlessjw": [4, 7], "order": [0, 1, 2, 4, 8, 9, 13, 14, 16, 19, 20, 23], "ordereddict": [13, 19], "org": 0, "origin": [0, 2, 11, 13, 23], "orthogon": [2, 5], "other": [0, 4, 11, 14, 18, 19, 20], "otherwis": 0, "our": [15, 18, 20, 23], "out": [2, 23], "output": [0, 3, 4, 13, 18, 20], "over": 0, "overrid": [0, 2], "overridden": 4, "overwritten": [0, 15, 18], "own": 4, "p": [0, 2, 8, 9, 11, 13, 18, 19, 20], "packag": [15, 18, 22], "pacman": 22, "pad": 0, "page": [8, 9, 11, 12, 13, 14], "pair": [0, 1, 2, 4, 6, 11, 13, 14], "pairs_aa": [13, 18, 20], "pairs_ab": [13, 18, 20], "pairs_bb": 20, "paper": 11, "parallel": [2, 11, 13], "param": 0, "paramet": [0, 1, 2, 3, 4, 5, 6, 11, 15, 18], "parameter_valu": 4, "params_to_vec": [3, 18], "pars": [15, 18], "part": [0, 5, 8, 12, 14, 15], "particl": [0, 5, 6, 12, 16, 21], "pass": [0, 1, 2, 4, 9, 12, 13, 14, 15, 16, 18, 19], "pass_manag": [13, 19], "passmanag": [4, 13], "path": 0, "pathlik": 0, "pattern": [13, 15], "pauli": 0, "per": 23, "perform": [0, 2, 3, 8, 9, 12, 13, 20, 23], "period": 0, "permut": 2, "persist": 22, "ph": 5, "phase": [0, 2, 4, 6, 13], "phase_angl": 0, "phaseg": 13, "phi": [0, 2, 6], "phi_0": 11, "pi": [0, 15], "piec": [9, 16], "pip": 21, "pipelin": 13, "pivot": 2, "pk": 2, "place": [0, 2, 11, 13, 16, 22], "plain": 14, "pmatrix": [0, 2], "point": 0, "polar": 0, "posit": [2, 3, 14], "possibl": [0, 2, 6, 20, 21], "possibli": [0, 18], "potenti": 0, "power": 0, "pq": [0, 2, 8, 9], "pqr": [0, 2, 8, 9, 23], "practic": 8, "pre": [11, 19], "pre_init": [4, 7, 13, 19], "pre_init_pass": [4, 7, 19], "precis": 6, "prepar": [0, 4, 20], "preparehartreefockjw": [4, 7, 13, 19, 20], "preparehartreefockspinlessjw": [4, 7, 20], "prepareslaterdeterminantjw": [4, 7, 13, 19, 20], "prepareslaterdeterminantspinlessjw": [4, 7, 20], "present": 3, "preserv": [16, 20], "preset_passmanag": [13, 19], "previou": [18, 20], "previous": [8, 13, 14, 18], "primit": [4, 17, 21], "primitivejob": 4, "primitiveresult": 4, "print": [0, 6, 13, 14, 15, 16, 18, 20, 21, 23], "probabl": 0, "problem": 3, "process": 0, "processor": 11, "prod": 15, "prod_": [0, 4, 11], "prod_k": 8, "prod_state_sum": 0, "produc": [0, 13], "product": [0, 2, 8, 14, 15, 16], "productstatesum": [0, 7], "programmat": 16, "project": 3, "properti": [0, 2, 12], "proport": [0, 8], "protocol": 0, "provid": [9, 13, 19, 22], "pseudorandom": [0, 4, 5, 6], "psi": [0, 11], "pub": [4, 20], "pub_result": 20, "put": 15, "py": [9, 15, 18], "pypi": 22, "pyscf": [0, 4, 14, 15, 18, 20, 21, 23], "python3": [15, 18], "q": [0, 8, 9, 13, 19], "qdrift": 0, "qi": 0, "qiskit": [7, 13, 17, 21, 22], "qiskit_vec_to_ffsim_vec": [4, 7], "qk": 2, "quadrat": [8, 10, 21, 23], "qualnam": 0, "quantifi": 2, "quantiti": 0, "quantum": [0, 4, 8, 11, 13, 14, 17, 20, 21], "quantumcircuit": [4, 13, 19, 20], "quantumregist": [13, 19, 20], "qubit": [0, 4, 10, 11, 15, 19, 20, 21], "r": [0, 2, 8, 9], "radic": 20, "radius_1": 15, "radius_2": 15, "rais": [0, 2, 4, 6], "random": [0, 4, 6, 7, 9, 13, 14, 15, 16, 19, 20, 21], "random_antihermitian": [5, 7], "random_double_factorized_hamiltonian": [5, 7, 13, 19], "random_fermion_hamiltonian": [5, 7], "random_fermion_oper": [5, 7], "random_hermitian": [5, 7], "random_molecular_hamiltonian": [5, 7], "random_nelec": [6, 7], "random_occupied_orbit": [6, 7], "random_orthogon": [5, 7], "random_real_symmetric_matrix": [5, 7, 9, 13, 19, 20], "random_special_orthogon": [5, 7], "random_state_vector": [5, 7, 16], "random_statevector": [5, 7], "random_t2_amplitud": [5, 7], "random_two_body_tensor": [5, 7, 9], "random_ucj_op_spin_balanc": [5, 7, 13, 19], "random_ucj_op_spin_unbalanc": [5, 7, 19], "random_ucj_op_spinless": [5, 7], "random_ucj_oper": [5, 7], "random_unitari": [5, 7, 13, 14, 19, 20, 21], "rang": [0, 2, 6, 13, 14, 15, 18, 20, 21, 23], "rangl": [0, 4, 11, 14], "rank": [0, 2, 5, 8, 13], "rather": [0, 12, 14], "rccsd": 20, "rdm": [0, 7], "rdm1": 0, "rdm2": 0, "rdm3": 0, "rdm4": 0, "reach": 18, "read": 0, "real": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 18, 21], "realucjoper": [0, 7], "reason": [4, 12], "recal": 13, "recommend": [4, 13, 16, 19, 21], "reconstruct": [0, 2, 23], "reconstruct_t2_alpha_beta": 2, "recover": 0, "reduc": [0, 2, 13], "reduced_matrix": [2, 7], "reduced_matrix_product_st": 0, "redund": 11, "refer": [0, 2, 3, 4, 5, 6, 11, 12, 14, 18, 21], "reference_occup": [0, 15], "reference_occupations_spati": 15, "reference_st": 18, "regress": 0, "regular": [3, 18], "rel": [0, 2, 4, 6], "rel_reduction_of_f_": 18, "relat": 12, "releas": 21, "reorder": [0, 8], "rep": 13, "repeat": 15, "repeatedli": 12, "repetit": [0, 5, 11, 13, 18], "repositori": 22, "repr": 16, "repres": [0, 2, 3, 4, 6, 9, 11, 14, 16, 18, 19], "represent": [0, 1, 2, 4, 5, 10, 14, 16, 21, 23], "reproduc": 23, "requir": [0, 9, 11, 13, 14, 22], "reshap": 14, "respect": [0, 2, 3, 23], "rest": [0, 13], "restrict": [0, 13, 18], "result": [0, 1, 2, 3, 4, 5, 8, 9, 11, 13, 15, 18, 19, 20, 23], "retain": [0, 13], "retriev": 20, "return": [0, 1, 2, 3, 4, 5, 6, 12, 15, 16, 18, 23], "return_lower_rank": 0, "revers": 20, "rewrit": 0, "rewritten": 12, "rhf": [0, 15, 18, 20, 21, 23], "right": [0, 4, 12, 14, 16], "ring": 0, "rise": [2, 8], "rng": [9, 13, 15, 19, 20], "rohf": 20, "root": 0, "rotat": [0, 1, 2, 4, 5, 8, 10, 11, 14, 21, 23], "rotated_vec": 14, "routin": [2, 9, 16], "row": [0, 2, 14], "rtol": [0, 2, 4, 6], "rtype": [0, 2, 4], "run": [0, 4, 13, 15, 18, 19, 20, 21, 22, 23], "run_ccsd": 0, "run_cisd": 0, "run_fci": [0, 15, 18], "run_mp2": 0, "run_sci": 0, "rung": 11, "runner": [15, 18], "rust": 22, "rvert": 0, "s_": [0, 14], "s_a": 0, "s_b": 0, "sa": 9, "same": [0, 9, 11, 12, 13, 14, 15, 18, 20], "sampl": [0, 4, 5, 6, 9], "sample_slater_determin": [0, 7], "sample_state_vector": [0, 7], "sampler": [0, 4, 17, 21], "samplerpubresult": 4, "sandwich": 13, "satisfi": [0, 12, 16, 20, 22], "save": [0, 18, 22], "scalar": [0, 16], "scale": [8, 13, 15, 19], "scf": [0, 15, 18, 20, 21, 23], "scf_func": 0, "scheme": 8, "sci": 0, "sci_energi": 0, "sci_vec": 0, "scipi": [0, 2, 3, 15, 16, 18, 21, 23], "search": 14, "second": [0, 2, 4, 8], "section": [8, 19], "sector": [0, 1, 2, 4, 15], "see": [0, 2, 4, 11, 13, 14, 19, 22, 23], "seed": [0, 4, 5, 6, 9, 13, 14, 19, 20, 21], "seen": 20, "select": 3, "sens": [13, 23], "separ": [0, 11, 14], "sequenc": [0, 2, 4, 13], "seri": 2, "serial": 0, "serializ": [15, 18], "set": [0, 1, 2, 4, 5, 8, 11, 12, 13, 19, 23], "setup": 11, "sever": [9, 13], "shape": [0, 2, 5, 11, 23], "share": 11, "shell": [11, 18], "shot": [0, 4, 20], "should": [0, 1, 2, 4, 5, 6, 9, 12, 22], "show": [13, 15, 16, 18, 19, 20], "shown": 16, "side": 0, "sigma": [0, 1, 4, 8, 9, 11, 12], "sign": 0, "signatur": 3, "signific": 23, "significantli": 13, "similar": 18, "simpl": [20, 22], "simpler": 0, "simpli": [4, 13, 14], "simplist": 23, "simul": [0, 8, 11, 12, 14, 17, 21, 24], "simulate_qdrift_double_factor": [0, 7], "simulate_trotter_diag_coulomb_split_op": [0, 7], "simulate_trotter_double_factor": [0, 7, 8, 23], "simulate_trotter_step_double_factor": 23, "simulatetrotterdoublefactorizedjw": [4, 7, 13, 19], "sin": [0, 15], "sinc": [0, 2, 11, 12, 15, 18], "singl": [0, 1, 4, 6, 8, 13, 23], "singlefactorizedhamiltonian": [0, 7], "singular": [0, 2], "site": [0, 15, 18], "size": [0, 3, 15], "slater": [0, 4], "slater_determin": [0, 7], "slater_determinant_rdm": [0, 7], "slice": 2, "small": 2, "smaller": [0, 2, 8, 16, 23], "so": [0, 2, 6, 8, 11, 12, 13, 15, 16, 22, 23], "softwar": [0, 21], "solv": 3, "some": [0, 2, 6, 9, 13, 14, 16, 18, 20], "sometim": [0, 14], "sort": 20, "sourc": [0, 1, 2, 3, 4, 5, 6, 21], "space": [0, 9, 14, 15, 18, 20, 23], "span": [0, 2], "spars": [9, 16, 23], "sparsepauliop": 4, "sparsiti": 11, "spatial": [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 23], "speci": [4, 6], "special": [2, 5, 11, 13, 21], "specif": 14, "specifi": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 15, 23], "spectral": 0, "spin": [0, 1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 16, 18, 20, 21], "spin_squar": [0, 7], "spin_sum": 0, "spinless": [0, 4, 5, 6], "split": [0, 23], "squar": [0, 2, 11, 13, 18, 20], "stack": 0, "stage": [4, 13, 19], "standard": 18, "standard_norm": [9, 13, 19], "star": 2, "start": 0, "state": [0, 1, 3, 4, 5, 9, 10, 11, 12, 13, 18, 20, 21, 23], "statevector": [0, 4, 7], "static": [0, 4], "statist": 20, "statu": [15, 18], "step": [0, 4, 8, 12, 15, 19, 23], "step_tim": 23, "still": [0, 8], "sto": [0, 15, 18, 23], "stop": [15, 18], "store": [0, 2, 4, 6, 9, 11, 13, 18, 19, 23], "store_cisd_vec": 0, "store_fci_vec": 0, "store_sci_vec": 0, "store_t1": 0, "store_t2": 0, "str": [0, 2, 4, 6], "straightforward": 2, "strategi": 0, "strength": 0, "strictli": 3, "string": [0, 14, 16], "strings_a": 0, "strings_b": 0, "strings_to_address": [0, 7], "strings_to_indic": [0, 7], "structur": [0, 8], "sub": 0, "subclass": 4, "subdirectori": 22, "submit": 20, "subroutin": 12, "subspac": [0, 2, 16], "substitut": 0, "subsystem": [14, 22], "subtract": [0, 16], "success": [15, 18], "sudo": 22, "suffix": 15, "suggest": 19, "sum": [0, 4, 8, 23], "sum_": [0, 1, 2, 4, 8, 9, 11, 12, 23], "sum_j": 12, "sum_k": [8, 12], "sum_p": 0, "sum_t": 0, "summat": 0, "support": [0, 2, 9, 14, 16, 20, 22], "supportsapplyunitari": [0, 7], "supportsapproximateequ": [0, 7], "supportsdiagon": [0, 7], "supportsfermionoper": [0, 7], "supportslinearoper": [0, 7], "supportstrac": [0, 7], "suzuki": [0, 23], "swap": [0, 11, 13], "symmetr": [0, 2, 4, 5, 8, 11], "symmetri": [0, 12, 15, 18, 20, 21, 23], "system": [0, 4, 6, 12, 14, 22], "t": [0, 2, 4, 8, 11, 12, 20, 21], "t1": 0, "t1a": 0, "t1b": 0, "t2": [0, 2, 5, 18, 20], "t2_amplitud": 2, "t2aa": 0, "t2ab": 0, "t2bb": 0, "t_": 2, "tabl": [0, 16], "take": [0, 3, 18, 19], "taken": 11, "target": [2, 13], "target_orb": 0, "tau": [0, 1, 4, 8, 9, 11], "taylor": 2, "tensor": [0, 1, 2, 5, 8, 9, 18, 23], "term": [0, 2, 5, 8, 11, 16, 23], "test": [7, 21, 23], "text": [0, 8, 9], "th": [2, 12], "than": [0, 4, 12, 13, 14, 18, 21], "thei": [0, 9, 11, 12, 16], "them": [11, 13, 14], "therefor": [0, 2, 11], "theta": [0, 15], "thi": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23], "think": 2, "third": [0, 2], "those": [3, 18], "though": 13, "three": [0, 1, 4, 9, 16], "threshold": [0, 2, 3], "thu": 8, "time": [0, 2, 3, 4, 9, 13, 14, 19, 20, 23], "titl": 21, "tmp": [9, 15, 18], "tmp6y6xfhk7": 15, "tmpwu132bfo": 18, "to_diag_coulomb_mat": 0, "to_fcidump": 0, "to_json": 0, "to_molecular_hamiltonian": 0, "to_number_represent": 0, "to_orbital_rot": 0, "to_paramet": [0, 18], "to_t_amplitud": 0, "to_z_represent": 0, "tol": [0, 2, 23], "toler": [0, 2, 4, 6, 11, 23], "too": 2, "top": 20, "topologi": [11, 13, 18], "toru": 0, "total": [0, 4, 8, 15, 18, 23], "tox": [15, 18], "trace": [0, 7, 9, 23], "tracea": [9, 23], "trajectori": 0, "transform": [0, 1, 4], "transformationpass": 4, "transpil": [4, 13, 17, 21], "transpiled_opt": 13, "treat": 0, "triangl": 11, "trianglular": [0, 2], "triangular": [0, 2, 4], "triplet": 6, "trotter": [0, 4, 21, 24], "true": [0, 2, 3, 4, 6, 16, 18, 20], "truncat": 8, "try": 23, "tunnel": 0, "tupl": [0, 1, 2, 4, 6, 12, 15, 16, 23], "tutori": [21, 23], "twice": [0, 15, 19], "two": [0, 2, 5, 8, 9, 11, 13, 14, 15, 18, 22, 23], "two_body_integr": 0, "two_body_tensor": [0, 2, 9, 23], "type": [0, 1, 2, 3, 4, 5, 6, 20, 22], "typeerror": 0, "typic": 0, "u": [0, 1, 2, 4, 11], "u_": 4, "u_k": 0, "ubuntu": 22, "uccsd": 20, "ucj": [0, 4, 5], "ucj_balanced_jw": 13, "ucj_op": [4, 13, 19, 20], "ucj_oper": 4, "ucjoper": [0, 4, 5, 7], "ucjoperatorjw": [4, 7], "ucjopspinbalanc": [0, 4, 5, 7, 11, 13, 18, 20], "ucjopspinbalancedjw": [4, 7, 13, 19, 20], "ucjopspinless": [0, 4, 5, 7], "ucjopspinlessjw": [4, 7], "ucjopspinunbalanc": [0, 4, 5, 7, 11, 20], "ucjopspinunbalancedjw": [4, 7, 13, 19, 20], "uhf": 20, "unbalanc": [0, 4, 5, 20], "uncorrel": 0, "under": [0, 4], "underli": 4, "unifi": 20, "uniform": [0, 5], "unimpl": 4, "union": [2, 4], "unit": 2, "unitari": [0, 1, 2, 4, 5, 8, 10, 12, 14, 17, 21], "univers": 2, "unlik": 0, "unord": 0, "untouch": 0, "up": [0, 2, 6, 8, 14, 22], "updat": [0, 8], "upon": 16, "upper": [0, 2, 4, 11], "url": 21, "us": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23], "usag": [0, 2, 16, 19], "user": 22, "userwarn": [9, 15, 18], "usual": 0, "util": [2, 5, 6, 8], "v": [0, 20], "v_": 0, "v_i": 2, "v_j": 2, "vacuum": 4, "valid": [0, 4, 5, 6], "valu": [0, 1, 2, 3, 4, 6, 9, 11, 18, 19, 23], "valueerror": [0, 2, 4], "vari": [0, 4], "variabl": [14, 23], "variant": [11, 13, 18], "variat": [0, 3, 11, 18], "variation": 18, "varphi": 0, "vdot": [18, 21, 23], "ve": 23, "vec": [0, 1, 2, 4, 9, 12, 14, 16, 21, 23], "vec_a": 0, "vec_b": 0, "vector": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 15, 16, 18, 21], "verbos": 6, "verifi": 2, "version": 4, "vertic": 0, "via": [0, 23], "view": [0, 16], "volum": 22, "w": [0, 8, 12], "w_k": 0, "wa": [0, 3, 4, 11], "wai": 11, "want": 13, "warn": [9, 15, 18, 20], "water": 15, "wavefunct": [3, 18], "we": [0, 2, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "web": 22, "weight": 14, "well": [3, 14, 21, 22, 23], "when": [0, 3, 4, 9, 11, 13, 14, 16, 19, 21], "whenev": 0, "where": [0, 1, 2, 3, 4, 8, 11, 12, 14, 22, 23], "whether": [0, 1, 2, 3, 4, 5, 16], "which": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 22, 23], "while": [8, 11], "whose": [0, 2, 14], "width": 5, "wigner": [0, 4], "william": 2, "window": [21, 22], "wise": 2, "with_final_orbital_rot": [0, 5], "with_phase_angl": 0, "with_phi": 0, "within": [0, 2, 13, 16, 18, 21], "without": [11, 13, 18], "won": 21, "word": [0, 11, 20], "work": [9, 13, 15, 18, 19, 21, 22], "workflow": 20, "would": [13, 14], "wrapper": 23, "write": 23, "written": 8, "wrote": 23, "wsl": 22, "x": [0, 3, 4, 13, 15, 18, 19, 20], "x0": [3, 15, 18], "xx_plus_yi": [13, 19], "xxplusyyg": [13, 19], "y": 0, "yaml": 22, "yet": [9, 18], "yield": [0, 2, 4, 8, 11, 15, 23], "you": [0, 1, 2, 4, 9, 14, 18, 21, 22, 23], "your": [19, 22], "z": [0, 1, 2, 4, 5, 12, 16, 21], "z_represent": [0, 1, 4, 5], "zero": [0, 2, 4, 9, 19], "zip": [0, 15, 18, 23], "\u03c8": 18}, "titles": ["ffsim", "ffsim.contract", "ffsim.linalg", "ffsim.optimize", "ffsim.qiskit", "ffsim.random", "ffsim.testing", "API reference", "Double-factorized representation of the molecular Hamiltonian", "Hamiltonians", "Explanations", "The local unitary cluster Jastrow (LUCJ) ansatz", "Orbital rotations and quadratic Hamiltonians", "Qubit gate decompositions of fermionic gates", "State vectors and gates", "How to simulate entanglement forging", "How to use the FermionOperator class", "How-to guides", "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz", "How to build and transpile Qiskit quantum circuits", "How to use ffsim\u2019s Qiskit Sampler primitive", "ffsim", "Installation", "Implementing Trotter simulation of the double-factorized Hamiltonian", "Tutorials"], "titleterms": {"": 20, "The": 11, "action": 9, "an": 20, "ansatz": [11, 15, 18], "api": 7, "applic": 8, "background": 8, "balanc": [11, 19], "brief": 8, "build": [15, 19, 23], "can": 20, "choos": 15, "circuit": [19, 20], "cite": 21, "class": 16, "close": 20, "cluster": [11, 13, 18, 19], "code": 21, "comput": 15, "content": 21, "contract": 1, "coulomb": [13, 19], "criteria": 20, "data": 9, "decomposit": 13, "determin": [13, 19], "diagon": [13, 19], "docker": 22, "doubl": [8, 13, 19, 23], "energi": 15, "entangl": 15, "evolut": [8, 12, 13, 19], "exampl": [20, 21], "explan": 10, "factor": [8, 13, 19, 23], "fermion": [13, 14], "fermionoper": 16, "ffsim": [0, 1, 2, 3, 4, 5, 6, 20, 21], "ffsimsampl": 20, "fock": [13, 19], "forg": 15, "formula": 8, "from": [20, 22], "gate": [13, 14, 19], "gener": [11, 18], "guid": 17, "hamiltonian": [8, 9, 12, 13, 19, 23], "hartre": [13, 19], "how": [15, 16, 17, 18, 19, 20], "implement": 23, "initi": 15, "instal": [21, 22], "jastrow": [11, 13, 18, 19], "linalg": 2, "linear": 18, "linearoper": 9, "local": [11, 13, 18], "lucj": [11, 18, 20], "merg": 13, "method": 18, "molecul": [15, 20], "molecular": 8, "more": 20, "number": [13, 19], "occup": 15, "open": 20, "oper": [9, 13, 15, 19], "optim": [3, 15, 18], "orbit": [12, 13, 19], "overview": 19, "pip": 22, "prepar": [13, 19], "primit": 20, "qiskit": [4, 19, 20], "quadrat": 12, "quantum": 19, "qubit": 13, "random": 5, "refer": [7, 15], "represent": [8, 9], "rotat": [12, 13, 19], "sampl": 20, "sampler": 20, "scipi": 9, "shell": 20, "simul": [13, 15, 18, 19, 23], "slater": [13, 19], "sourc": 22, "spin": [11, 19], "spinless": 14, "state": [14, 19], "sum": [13, 19], "suzuki": 8, "test": 6, "time": [8, 12], "transform": 19, "transpil": 19, "treat": 14, "trotter": [8, 13, 19, 23], "tutori": 24, "ucj": [11, 13, 18, 19], "unbalanc": [11, 19], "unitari": [11, 13, 18, 19], "us": [16, 20, 22], "vector": 14, "via": [8, 9], "within": 22}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API reference": [[7, null]], "Application to the double-factorized Hamiltonian": [[8, "Application-to-the-double-factorized-Hamiltonian"]], "Application to time evolution via Trotter-Suzuki formulas": [[8, "Application-to-time-evolution-via-Trotter-Suzuki-formulas"]], "Brief background on Trotter-Suzuki formulas": [[8, "Brief-background-on-Trotter-Suzuki-formulas"]], "Build a molecule": [[15, "Build-a-molecule"]], "Build the Hamiltonian": [[23, "Build-the-Hamiltonian"]], "Choose reference occupations": [[15, "Choose-reference-occupations"]], "Circuit transpilation": [[19, "Circuit-transpilation"]], "Citing ffsim": [[21, "citing-ffsim"]], "Code example": [[21, "code-example"]], "Compute energy": [[15, "Compute-energy"]], "Contents": [[21, "contents"]], "Criteria for circuits that FfsimSampler can sample": [[20, "Criteria-for-circuits-that-FfsimSampler-can-sample"]], "Data representation": [[9, "Data-representation"]], "Diagonal Coulomb evolution": [[13, "Diagonal-Coulomb-evolution"], [19, "Diagonal-Coulomb-evolution"]], "Double-factorized representation": [[8, "Double-factorized-representation"]], "Double-factorized representation of the molecular Hamiltonian": [[8, null]], "Example of using FfsimSampler": [[20, "Example-of-using-FfsimSampler"]], "Explanations": [[10, null]], "Gates": [[14, "Gates"]], "General UCJ ansatz": [[18, "General-UCJ-ansatz"]], "Hamiltonians": [[9, null]], "Hartree-Fock and Slater determinant preparation": [[13, "Hartree-Fock-and-Slater-determinant-preparation"]], "How to build and transpile Qiskit quantum circuits": [[19, null]], "How to simulate entanglement forging": [[15, null]], "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz": [[18, null]], "How to use ffsim\u2019s Qiskit Sampler primitive": [[20, null]], "How to use the FermionOperator class": [[16, null]], "How-to guides": [[17, null]], "Implement Trotter simulation": [[23, "Implement-Trotter-simulation"]], "Implementing Trotter simulation of the double-factorized Hamiltonian": [[23, null]], "Initialize ansatz operator": [[15, "Initialize-ansatz-operator"]], "Install from source": [[22, "install-from-source"]], "Installation": [[21, "installation"], [22, null]], "LUCJ ansatz": [[18, "LUCJ-ansatz"]], "Locality in the UCJ operator": [[13, "Locality-in-the-UCJ-operator"]], "Merging orbital rotations": [[13, "Merging-orbital-rotations"]], "More examples": [[20, "More-examples"]], "Number operator sum evolution": [[13, "Number-operator-sum-evolution"], [19, "Number-operator-sum-evolution"]], "Operator action via SciPy LinearOperators": [[9, "Operator-action-via-SciPy-LinearOperators"]], "Optimize energy": [[15, "Optimize-energy"]], "Optimize with the linear method": [[18, "Optimize-with-the-linear-method"]], "Orbital rotation": [[13, "Orbital-rotation"], [19, "Orbital-rotation"]], "Orbital rotations": [[12, "Orbital-rotations"]], "Orbital rotations and quadratic Hamiltonians": [[12, null]], "Overview of gates": [[19, "Overview-of-gates"]], "Pip install": [[22, "pip-install"]], "Prepare Hartree-Fock state": [[19, "Prepare-Hartree-Fock-state"]], "Prepare Slater determinant": [[19, "Prepare-Slater-determinant"]], "Qubit gate decompositions of fermionic gates": [[13, null]], "Sampling from an LUCJ circuit for a closed-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-a-closed-shell-molecule"]], "Sampling from an LUCJ circuit for an open-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-an-open-shell-molecule"]], "Spin-balanced and spin-unbalanced ansatzes": [[11, "Spin-balanced-and-spin-unbalanced-ansatzes"]], "Spin-balanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-balanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "Spin-unbalanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-unbalanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "State preparation gates": [[19, "State-preparation-gates"]], "State vectors": [[14, "State-vectors"]], "State vectors and gates": [[14, null]], "The general unitary cluster Jastrow (UCJ) ansatz": [[11, "The-general-unitary-cluster-Jastrow-(UCJ)-ansatz"]], "The local UCJ (LUCJ) ansatz": [[11, "The-local-UCJ-(LUCJ)-ansatz"]], "The local unitary cluster Jastrow (LUCJ) ansatz": [[11, null]], "Time evolution by a quadratic Hamiltonian": [[12, "Time-evolution-by-a-quadratic-Hamiltonian"]], "Treating spinless fermions": [[14, "Treating-spinless-fermions"]], "Trotter simulation of double-factorized Hamiltonian": [[13, "Trotter-simulation-of-double-factorized-Hamiltonian"], [19, "Trotter-simulation-of-double-factorized-Hamiltonian"]], "Tutorials": [[24, null]], "Unitary cluster Jastrow (UCJ) operator": [[13, "Unitary-cluster-Jastrow-(UCJ)-operator"]], "Unitary transformation gates": [[19, "Unitary-transformation-gates"]], "Use within Docker": [[22, "use-within-docker"]], "ffsim": [[0, null], [21, null]], "ffsim.contract": [[1, null]], "ffsim.linalg": [[2, null]], "ffsim.optimize": [[3, null]], "ffsim.qiskit": [[4, null]], "ffsim.random": [[5, null]], "ffsim.testing": [[6, null]]}, "docnames": ["api/ffsim", "api/ffsim.contract", "api/ffsim.linalg", "api/ffsim.optimize", "api/ffsim.qiskit", "api/ffsim.random", "api/ffsim.testing", "api/index", "explanations/double-factorized", "explanations/hamiltonians", "explanations/index", "explanations/lucj", "explanations/orbital-rotation", "explanations/qiskit-gate-decompositions", "explanations/state-vectors-and-gates", "how-to-guides/entanglement-forging", "how-to-guides/fermion-operator", "how-to-guides/index", "how-to-guides/lucj", "how-to-guides/qiskit-circuits", "how-to-guides/qiskit-sampler", "index", "install", "tutorials/double-factorized-trotter", "tutorials/index"], "envversion": {"nbsphinx": 4, "sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["api/ffsim.rst", "api/ffsim.contract.rst", "api/ffsim.linalg.rst", "api/ffsim.optimize.rst", "api/ffsim.qiskit.rst", "api/ffsim.random.rst", "api/ffsim.testing.rst", "api/index.md", "explanations/double-factorized.ipynb", "explanations/hamiltonians.ipynb", "explanations/index.md", "explanations/lucj.ipynb", "explanations/orbital-rotation.ipynb", "explanations/qiskit-gate-decompositions.ipynb", "explanations/state-vectors-and-gates.ipynb", "how-to-guides/entanglement-forging.ipynb", "how-to-guides/fermion-operator.ipynb", "how-to-guides/index.md", "how-to-guides/lucj.ipynb", "how-to-guides/qiskit-circuits.ipynb", "how-to-guides/qiskit-sampler.ipynb", "index.md", "install.md", "tutorials/double-factorized-trotter.ipynb", "tutorials/index.md"], "indexentries": {"__init__() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.__init__", false]], "__init__() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.__init__", false]], "__init__() (ffsim.qiskit.givensansatzoperatorjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzoperatorspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.numnumansatzopspinbalancedjw method)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockspinlessjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantspinlessjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdoublefactorizedjw method)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjoperatorjw method)": [[4, "ffsim.qiskit.UCJOperatorJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinlessjw method)": [[4, "ffsim.qiskit.UCJOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinunbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW.__init__", false]], "__init_subclass__() (ffsim.qiskit.givensansatzoperatorjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__init_subclass__", false]], "__init_subclass__() (ffsim.qiskit.givensansatzoperatorspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__init_subclass__", false]], "__init_subclass__() (ffsim.qiskit.ucjoperatorjw method)": [[4, "ffsim.qiskit.UCJOperatorJW.__init_subclass__", false]], "__new__() (ffsim.qiskit.givensansatzoperatorjw static method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW.__new__", false]], "__new__() (ffsim.qiskit.givensansatzoperatorspinlessjw static method)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW.__new__", false]], "__new__() (ffsim.qiskit.ucjoperatorjw static method)": [[4, "ffsim.qiskit.UCJOperatorJW.__new__", false]], "action (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.action", false]], "active_space (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.active_space", false]], "addresses_to_strings() (in module ffsim)": [[0, "ffsim.addresses_to_strings", false]], "alpha (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA", false]], "alpha_and_beta (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA_AND_BETA", false]], "apply_diag_coulomb_evolution() (in module ffsim)": [[0, "ffsim.apply_diag_coulomb_evolution", false]], "apply_fsim_gate() (in module ffsim)": [[0, "ffsim.apply_fsim_gate", false]], "apply_fswap_gate() (in module ffsim)": [[0, "ffsim.apply_fswap_gate", false]], "apply_givens_rotation() (in module ffsim)": [[0, "ffsim.apply_givens_rotation", false]], "apply_hop_gate() (in module ffsim)": [[0, "ffsim.apply_hop_gate", false]], "apply_matrix_to_slices() (in module ffsim.linalg)": [[2, "ffsim.linalg.apply_matrix_to_slices", false]], "apply_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_interaction", false]], "apply_num_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_num_interaction", false]], "apply_num_op_prod_interaction() (in module ffsim)": [[0, "ffsim.apply_num_op_prod_interaction", false]], "apply_num_op_sum_evolution() (in module ffsim)": [[0, "ffsim.apply_num_op_sum_evolution", false]], "apply_on_site_interaction() (in module ffsim)": [[0, "ffsim.apply_on_site_interaction", false]], "apply_orbital_rotation() (in module ffsim)": [[0, "ffsim.apply_orbital_rotation", false]], "apply_tunneling_interaction() (in module ffsim)": [[0, "ffsim.apply_tunneling_interaction", false]], "apply_unitary() (in module ffsim)": [[0, "ffsim.apply_unitary", false]], "approx_eq() (in module ffsim)": [[0, "ffsim.approx_eq", false]], "assert_allclose_up_to_global_phase() (in module ffsim.testing)": [[6, "ffsim.testing.assert_allclose_up_to_global_phase", false]], "atom (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.atom", false]], "basis (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.basis", false]], "beta (ffsim.spin attribute)": [[0, "ffsim.Spin.BETA", false]], "bit_array (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.BIT_ARRAY", false]], "bitstringtype (class in ffsim)": [[0, "ffsim.BitstringType", false]], "c (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.c", false]], "ccsd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_energy", false]], "ccsd_t1 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t1", false]], "ccsd_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t2", false]], "cisd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_energy", false]], "cisd_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_vec", false]], "coeffs (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.coeffs", false]], "conserves_particle_number() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_particle_number", false]], "conserves_spin_z() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_spin_z", false]], "constant (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.constant", false]], "constant (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.constant", false]], "constant (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.constant", false]], "constant (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.constant", false]], "contract_diag_coulomb() (in module ffsim.contract)": [[1, "ffsim.contract.contract_diag_coulomb", false]], "contract_num_op_sum() (in module ffsim.contract)": [[1, "ffsim.contract.contract_num_op_sum", false]], "contract_one_body() (in module ffsim.contract)": [[1, "ffsim.contract.contract_one_body", false]], "core_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.core_energy", false]], "cre() (in module ffsim)": [[0, "ffsim.cre", false]], "cre_a() (in module ffsim)": [[0, "ffsim.cre_a", false]], "cre_b() (in module ffsim)": [[0, "ffsim.cre_b", false]], "des() (in module ffsim)": [[0, "ffsim.des", false]], "des_a() (in module ffsim)": [[0, "ffsim.des_a", false]], "des_b() (in module ffsim)": [[0, "ffsim.des_b", false]], "diag() (in module ffsim)": [[0, "ffsim.diag", false]], "diag_coulomb_linop() (in module ffsim.contract)": [[1, "ffsim.contract.diag_coulomb_linop", false]], "diag_coulomb_mats (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.diag_coulomb_mats", false]], "diag_coulomb_mats_alpha_alpha (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.diag_coulomb_mats_alpha_alpha", false]], "diag_coulomb_mats_alpha_alpha (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_alpha", false]], "diag_coulomb_mats_alpha_beta (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.diag_coulomb_mats_alpha_beta", false]], "diag_coulomb_mats_alpha_beta (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.diag_coulomb_mats_alpha_beta", false]], "diagcoulombevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW", false]], "diagcoulombevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW", false]], "diagonalcoulombhamiltonian (class in ffsim)": [[0, "ffsim.DiagonalCoulombHamiltonian", false]], "dim() (in module ffsim)": [[0, "ffsim.dim", false]], "dims() (in module ffsim)": [[0, "ffsim.dims", false]], "dipole_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.dipole_integrals", false]], "double_factorized() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized", false]], "double_factorized_t2() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2", false]], "double_factorized_t2_alpha_beta() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2_alpha_beta", false]], "doublefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.DoubleFactorizedHamiltonian", false]], "dropnegligible (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DropNegligible", false]], "expectation_one_body_power() (in module ffsim)": [[0, "ffsim.expectation_one_body_power", false]], "expectation_one_body_product() (in module ffsim)": [[0, "ffsim.expectation_one_body_product", false]], "expectation_product_state() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.expectation_product_state", false]], "expm_multiply_taylor() (in module ffsim.linalg)": [[2, "ffsim.linalg.expm_multiply_taylor", false]], "fci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_energy", false]], "fci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_vec", false]], "fermi_hubbard_1d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_1d", false]], "fermi_hubbard_2d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_2d", false]], "fermion_operator() (in module ffsim)": [[0, "ffsim.fermion_operator", false]], "fermionaction (class in ffsim)": [[0, "ffsim.FermionAction", false]], "fermionoperator (class in ffsim)": [[0, "ffsim.FermionOperator", false]], "ffsim": [[0, "module-ffsim", false]], "ffsim.contract": [[1, "module-ffsim.contract", false]], "ffsim.linalg": [[2, "module-ffsim.linalg", false]], "ffsim.optimize": [[3, "module-ffsim.optimize", false]], "ffsim.qiskit": [[4, "module-ffsim.qiskit", false]], "ffsim.random": [[5, "module-ffsim.random", false]], "ffsim.testing": [[6, "module-ffsim.testing", false]], "ffsim_vec_to_qiskit_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.ffsim_vec_to_qiskit_vec", false]], "ffsimsampler (class in ffsim.qiskit)": [[4, "ffsim.qiskit.FfsimSampler", false]], "final_orbital_rotation (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.final_orbital_rotation", false]], "final_state_vector() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.final_state_vector", false]], "from_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_diag_coulomb_mats", false]], "from_fcidump() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_fcidump", false]], "from_fcidump() (ffsim.molecularhamiltonian static method)": [[0, "ffsim.MolecularHamiltonian.from_fcidump", false]], "from_fermion_operator() (ffsim.diagonalcoulombhamiltonian static method)": [[0, "ffsim.DiagonalCoulombHamiltonian.from_fermion_operator", false]], "from_json() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_json", false]], "from_mole() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_mole", false]], "from_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian static method)": [[0, "ffsim.DoubleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_molecular_hamiltonian() (ffsim.singlefactorizedhamiltonian static method)": [[0, "ffsim.SingleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_orbital_rotation() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_orbital_rotation", false]], "from_parameters() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_parameters", false]], "from_parameters() (ffsim.givensansatzoperator static method)": [[0, "ffsim.GivensAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.hopgateansatzoperator static method)": [[0, "ffsim.HopGateAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.from_parameters", false]], "from_parameters() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_parameters", false]], "from_parameters() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_parameters", false]], "from_parameters() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_parameters", false]], "from_scf() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_scf", false]], "from_t_amplitudes() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_t_amplitudes", false]], "generate_norb_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec", false]], "generate_norb_nelec_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec_spin", false]], "generate_norb_nocc() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nocc", false]], "generate_norb_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_spin", false]], "givens_decomposition() (in module ffsim.linalg)": [[2, "ffsim.linalg.givens_decomposition", false]], "givensansatzop (class in ffsim)": [[0, "ffsim.GivensAnsatzOp", false]], "givensansatzoperator (class in ffsim)": [[0, "ffsim.GivensAnsatzOperator", false]], "givensansatzoperatorjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOperatorJW", false]], "givensansatzoperatorspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW", false]], "givensansatzopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpJW", false]], "givensansatzopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW", false]], "givensrotation (class in ffsim.linalg)": [[2, "ffsim.linalg.GivensRotation", false]], "hamiltonian (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.hamiltonian", false]], "hartree_fock_state() (in module ffsim)": [[0, "ffsim.hartree_fock_state", false]], "hf_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_energy", false]], "hf_mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_coeff", false]], "hf_mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_occ", false]], "hopgateansatzoperator (class in ffsim)": [[0, "ffsim.HopGateAnsatzOperator", false]], "i (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.i", false]], "indices_to_strings() (in module ffsim)": [[0, "ffsim.indices_to_strings", false]], "init_cache() (in module ffsim)": [[0, "ffsim.init_cache", false]], "int (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.INT", false]], "interaction_pairs (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.interaction_pairs", false]], "interaction_pairs (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.interaction_pairs", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.inverse", false]], "is_antihermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_antihermitian", false]], "is_hermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_hermitian", false]], "is_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_orthogonal", false]], "is_real_symmetric() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_real_symmetric", false]], "is_special_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_special_orthogonal", false]], "is_unitary() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_unitary", false]], "j (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.j", false]], "jordan_wigner() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.jordan_wigner", false]], "linear_operator() (in module ffsim)": [[0, "ffsim.linear_operator", false]], "lup() (in module ffsim.linalg)": [[2, "ffsim.linalg.lup", false]], "many_body_order() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.many_body_order", false]], "match_global_phase() (in module ffsim.linalg)": [[2, "ffsim.linalg.match_global_phase", false]], "mergeorbitalrotations (class in ffsim.qiskit)": [[4, "ffsim.qiskit.MergeOrbitalRotations", false]], "minimize_linear_method() (in module ffsim.optimize)": [[3, "ffsim.optimize.minimize_linear_method", false]], "mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_coeff", false]], "mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_occ", false]], "modified_cholesky() (in module ffsim.linalg)": [[2, "ffsim.linalg.modified_cholesky", false]], "module": [[0, "module-ffsim", false], [1, "module-ffsim.contract", false], [2, "module-ffsim.linalg", false], [3, "module-ffsim.optimize", false], [4, "module-ffsim.qiskit", false], [5, "module-ffsim.random", false], [6, "module-ffsim.testing", false]], "mole (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.mole", false]], "moleculardata (class in ffsim)": [[0, "ffsim.MolecularData", false]], "molecularhamiltonian (class in ffsim)": [[0, "ffsim.MolecularHamiltonian", false]], "mp2_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_energy", false]], "mp2_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_t2", false]], "multireference_state() (in module ffsim)": [[0, "ffsim.multireference_state", false]], "multireference_state_prod() (in module ffsim)": [[0, "ffsim.multireference_state_prod", false]], "n_params() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.n_params", false]], "n_params() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.n_params", false]], "n_params() (ffsim.realucjoperator static method)": [[0, "ffsim.RealUCJOperator.n_params", false]], "n_params() (ffsim.ucjoperator static method)": [[0, "ffsim.UCJOperator.n_params", false]], "n_params() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.n_params", false]], "n_params() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.n_params", false]], "n_params() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.n_params", false]], "n_reps (ffsim.realucjoperator property)": [[0, "ffsim.RealUCJOperator.n_reps", false]], "n_reps (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.n_reps", false]], "n_reps (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.n_reps", false]], "n_reps (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.n_reps", false]], "n_reps (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.n_reps", false]], "nelec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.nelec", false]], "nelec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.nelec", false]], "norb (ffsim.diagonalcoulombhamiltonian property)": [[0, "ffsim.DiagonalCoulombHamiltonian.norb", false]], "norb (ffsim.doublefactorizedhamiltonian property)": [[0, "ffsim.DoubleFactorizedHamiltonian.norb", false]], "norb (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.norb", false]], "norb (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.norb", false]], "norb (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.norb", false]], "norb (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.norb", false]], "norb (ffsim.molecularhamiltonian property)": [[0, "ffsim.MolecularHamiltonian.norb", false]], "norb (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.norb", false]], "norb (ffsim.realucjoperator property)": [[0, "ffsim.RealUCJOperator.norb", false]], "norb (ffsim.singlefactorizedhamiltonian property)": [[0, "ffsim.SingleFactorizedHamiltonian.norb", false]], "norb (ffsim.statevector attribute)": [[0, "ffsim.StateVector.norb", false]], "norb (ffsim.ucjoperator property)": [[0, "ffsim.UCJOperator.norb", false]], "norb (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.norb", false]], "norb (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.norb", false]], "norb (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.norb", false]], "normal_ordered() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.normal_ordered", false]], "num_op_sum_linop() (in module ffsim.contract)": [[1, "ffsim.contract.num_op_sum_linop", false]], "number_operator() (in module ffsim)": [[0, "ffsim.number_operator", false]], "numnumansatzopspinbalanced (class in ffsim)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced", false]], "numnumansatzopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW", false]], "numopsumevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW", false]], "numopsumevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW", false]], "one_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.one_body_integrals", false]], "one_body_linop() (in module ffsim.contract)": [[1, "ffsim.contract.one_body_linop", false]], "one_body_squares (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_squares", false]], "one_body_tensor (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_tensor", false]], "one_hot() (in module ffsim)": [[0, "ffsim.one_hot", false]], "one_hot() (in module ffsim.linalg)": [[2, "ffsim.linalg.one_hot", false]], "orb (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.orb", false]], "orbital_rotations (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.orbital_rotations", false]], "orbital_rotations (ffsim.realucjoperator attribute)": [[0, "ffsim.RealUCJOperator.orbital_rotations", false]], "orbital_rotations (ffsim.ucjoperator attribute)": [[0, "ffsim.UCJOperator.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.orbital_rotations", false]], "orbital_symmetries (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.orbital_symmetries", false]], "orbitalrotationjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationJW", false]], "orbitalrotationspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW", false]], "phase_angles (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phase_angles", false]], "phis (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phis", false]], "pre_init (in module ffsim.qiskit)": [[4, "ffsim.qiskit.PRE_INIT", false]], "pre_init_passes() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.pre_init_passes", false]], "preparehartreefockjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockJW", false]], "preparehartreefockspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW", false]], "prepareslaterdeterminantjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW", false]], "prepareslaterdeterminantspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW", false]], "productstatesum (class in ffsim)": [[0, "ffsim.ProductStateSum", false]], "qiskit_vec_to_ffsim_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.qiskit_vec_to_ffsim_vec", false]], "random_antihermitian() (in module ffsim.random)": [[5, "ffsim.random.random_antihermitian", false]], "random_double_factorized_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_double_factorized_hamiltonian", false]], "random_fermion_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_hamiltonian", false]], "random_fermion_operator() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_operator", false]], "random_hermitian() (in module ffsim.random)": [[5, "ffsim.random.random_hermitian", false]], "random_molecular_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_molecular_hamiltonian", false]], "random_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.random_nelec", false]], "random_occupied_orbitals() (in module ffsim.testing)": [[6, "ffsim.testing.random_occupied_orbitals", false]], "random_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_orthogonal", false]], "random_real_symmetric_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_real_symmetric_matrix", false]], "random_special_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_special_orthogonal", false]], "random_state_vector() (in module ffsim.random)": [[5, "ffsim.random.random_state_vector", false]], "random_statevector() (in module ffsim.random)": [[5, "ffsim.random.random_statevector", false]], "random_t2_amplitudes() (in module ffsim.random)": [[5, "ffsim.random.random_t2_amplitudes", false]], "random_two_body_tensor() (in module ffsim.random)": [[5, "ffsim.random.random_two_body_tensor", false]], "random_ucj_op_spin_balanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_balanced", false]], "random_ucj_op_spin_unbalanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_unbalanced", false]], "random_ucj_op_spinless() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spinless", false]], "random_ucj_operator() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_operator", false]], "random_unitary() (in module ffsim.random)": [[5, "ffsim.random.random_unitary", false]], "rdm() (in module ffsim)": [[0, "ffsim.rdm", false]], "rdms() (in module ffsim)": [[0, "ffsim.rdms", false]], "realucjoperator (class in ffsim)": [[0, "ffsim.RealUCJOperator", false]], "reduced_matrix() (in module ffsim.linalg)": [[2, "ffsim.linalg.reduced_matrix", false]], "reduced_matrix_product_states() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.reduced_matrix_product_states", false]], "rotated() (ffsim.molecularhamiltonian method)": [[0, "ffsim.MolecularHamiltonian.rotated", false]], "run() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.run", false]], "run() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.run", false]], "run() (ffsim.qiskit.mergeorbitalrotations method)": [[4, "ffsim.qiskit.MergeOrbitalRotations.run", false]], "run_ccsd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_ccsd", false]], "run_cisd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_cisd", false]], "run_fci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_fci", false]], "run_mp2() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_mp2", false]], "run_sci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_sci", false]], "s (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.s", false]], "sample_slater_determinant() (in module ffsim)": [[0, "ffsim.sample_slater_determinant", false]], "sample_state_vector() (in module ffsim)": [[0, "ffsim.sample_state_vector", false]], "scf (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.scf", false]], "sci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_energy", false]], "sci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_vec", false]], "simulate_qdrift_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_qdrift_double_factorized", false]], "simulate_trotter_diag_coulomb_split_op() (in module ffsim)": [[0, "ffsim.simulate_trotter_diag_coulomb_split_op", false]], "simulate_trotter_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_trotter_double_factorized", false]], "simulatetrotterdoublefactorizedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW", false]], "singlefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.SingleFactorizedHamiltonian", false]], "slater_determinant() (in module ffsim)": [[0, "ffsim.slater_determinant", false]], "slater_determinant_rdm() (in module ffsim)": [[0, "ffsim.slater_determinant_rdm", false]], "slater_determinant_rdms() (in module ffsim)": [[0, "ffsim.slater_determinant_rdms", false]], "spin (class in ffsim)": [[0, "ffsim.Spin", false]], "spin (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.spin", false]], "spin (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.spin", false]], "spin_square() (in module ffsim)": [[0, "ffsim.spin_square", false]], "states (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.states", false]], "statevector (class in ffsim)": [[0, "ffsim.StateVector", false]], "string (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.STRING", false]], "strings_to_addresses() (in module ffsim)": [[0, "ffsim.strings_to_addresses", false]], "strings_to_indices() (in module ffsim)": [[0, "ffsim.strings_to_indices", false]], "supportsapplyunitary (class in ffsim)": [[0, "ffsim.SupportsApplyUnitary", false]], "supportsapproximateequality (class in ffsim)": [[0, "ffsim.SupportsApproximateEquality", false]], "supportsdiagonal (class in ffsim)": [[0, "ffsim.SupportsDiagonal", false]], "supportsfermionoperator (class in ffsim)": [[0, "ffsim.SupportsFermionOperator", false]], "supportslinearoperator (class in ffsim)": [[0, "ffsim.SupportsLinearOperator", false]], "supportstrace (class in ffsim)": [[0, "ffsim.SupportsTrace", false]], "symmetry (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.symmetry", false]], "thetas (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.thetas", false]], "thetas (ffsim.givensansatzoperator attribute)": [[0, "ffsim.GivensAnsatzOperator.thetas", false]], "thetas (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.thetas", false]], "thetas (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.thetas", false]], "to_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_diag_coulomb_mats", false]], "to_fcidump() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_fcidump", false]], "to_json() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_json", false]], "to_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_molecular_hamiltonian", false]], "to_number_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_number_representation", false]], "to_orbital_rotation() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_orbital_rotation", false]], "to_parameters() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_parameters", false]], "to_parameters() (ffsim.givensansatzoperator method)": [[0, "ffsim.GivensAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.hopgateansatzoperator method)": [[0, "ffsim.HopGateAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.realucjoperator method)": [[0, "ffsim.RealUCJOperator.to_parameters", false]], "to_parameters() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_parameters", false]], "to_parameters() (ffsim.ucjopspinbalanced method)": [[0, "ffsim.UCJOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.ucjopspinless method)": [[0, "ffsim.UCJOpSpinless.to_parameters", false]], "to_parameters() (ffsim.ucjopspinunbalanced method)": [[0, "ffsim.UCJOpSpinUnbalanced.to_parameters", false]], "to_t_amplitudes() (ffsim.realucjoperator method)": [[0, "ffsim.RealUCJOperator.to_t_amplitudes", false]], "to_t_amplitudes() (ffsim.ucjoperator method)": [[0, "ffsim.UCJOperator.to_t_amplitudes", false]], "to_z_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_z_representation", false]], "trace() (in module ffsim)": [[0, "ffsim.trace", false]], "two_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.two_body_integrals", false]], "two_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.two_body_tensor", false]], "ucjoperator (class in ffsim)": [[0, "ffsim.UCJOperator", false]], "ucjoperatorjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOperatorJW", false]], "ucjopspinbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinBalanced", false]], "ucjopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW", false]], "ucjopspinless (class in ffsim)": [[0, "ffsim.UCJOpSpinless", false]], "ucjopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinlessJW", false]], "ucjopspinunbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinUnbalanced", false]], "ucjopspinunbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW", false]], "vec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.vec", false]], "z_representation (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.z_representation", false]]}, "objects": {"": [[0, 0, 0, "-", "ffsim"]], "ffsim": [[0, 1, 1, "", "BitstringType"], [0, 1, 1, "", "DiagonalCoulombHamiltonian"], [0, 1, 1, "", "DoubleFactorizedHamiltonian"], [0, 1, 1, "", "FermionAction"], [0, 1, 1, "", "FermionOperator"], [0, 1, 1, "", "GivensAnsatzOp"], [0, 1, 1, "", "GivensAnsatzOperator"], [0, 1, 1, "", "HopGateAnsatzOperator"], [0, 1, 1, "", "MolecularData"], [0, 1, 1, "", "MolecularHamiltonian"], [0, 1, 1, "", "NumNumAnsatzOpSpinBalanced"], [0, 1, 1, "", "ProductStateSum"], [0, 1, 1, "", "RealUCJOperator"], [0, 1, 1, "", "SingleFactorizedHamiltonian"], [0, 1, 1, "", "Spin"], [0, 1, 1, "", "StateVector"], [0, 1, 1, "", "SupportsApplyUnitary"], [0, 1, 1, "", "SupportsApproximateEquality"], [0, 1, 1, "", "SupportsDiagonal"], [0, 1, 1, "", "SupportsFermionOperator"], [0, 1, 1, "", "SupportsLinearOperator"], [0, 1, 1, "", "SupportsTrace"], [0, 1, 1, "", "UCJOpSpinBalanced"], [0, 1, 1, "", "UCJOpSpinUnbalanced"], [0, 1, 1, "", "UCJOpSpinless"], [0, 1, 1, "", "UCJOperator"], [0, 5, 1, "", "addresses_to_strings"], [0, 5, 1, "", "apply_diag_coulomb_evolution"], [0, 5, 1, "", "apply_fsim_gate"], [0, 5, 1, "", "apply_fswap_gate"], [0, 5, 1, "", "apply_givens_rotation"], [0, 5, 1, "", "apply_hop_gate"], [0, 5, 1, "", "apply_num_interaction"], [0, 5, 1, "", "apply_num_num_interaction"], [0, 5, 1, "", "apply_num_op_prod_interaction"], [0, 5, 1, "", "apply_num_op_sum_evolution"], [0, 5, 1, "", "apply_on_site_interaction"], [0, 5, 1, "", "apply_orbital_rotation"], [0, 5, 1, "", "apply_tunneling_interaction"], [0, 5, 1, "", "apply_unitary"], [0, 5, 1, "", "approx_eq"], [1, 0, 0, "-", "contract"], [0, 5, 1, "", "cre"], [0, 5, 1, "", "cre_a"], [0, 5, 1, "", "cre_b"], [0, 5, 1, "", "des"], [0, 5, 1, "", "des_a"], [0, 5, 1, "", "des_b"], [0, 5, 1, "", "diag"], [0, 5, 1, "", "dim"], [0, 5, 1, "", "dims"], [0, 5, 1, "", "expectation_one_body_power"], [0, 5, 1, "", "expectation_one_body_product"], [0, 5, 1, "", "fermi_hubbard_1d"], [0, 5, 1, "", "fermi_hubbard_2d"], [0, 5, 1, "", "fermion_operator"], [0, 5, 1, "", "hartree_fock_state"], [0, 5, 1, "", "indices_to_strings"], [0, 5, 1, "", "init_cache"], [2, 0, 0, "-", "linalg"], [0, 5, 1, "", "linear_operator"], [0, 5, 1, "", "multireference_state"], [0, 5, 1, "", "multireference_state_prod"], [0, 5, 1, "", "number_operator"], [0, 5, 1, "", "one_hot"], [3, 0, 0, "-", "optimize"], [4, 0, 0, "-", "qiskit"], [5, 0, 0, "-", "random"], [0, 5, 1, "", "rdm"], [0, 5, 1, "", "rdms"], [0, 5, 1, "", "sample_slater_determinant"], [0, 5, 1, "", "sample_state_vector"], [0, 5, 1, "", "simulate_qdrift_double_factorized"], [0, 5, 1, "", "simulate_trotter_diag_coulomb_split_op"], [0, 5, 1, "", "simulate_trotter_double_factorized"], [0, 5, 1, "", "slater_determinant"], [0, 5, 1, "", "slater_determinant_rdm"], [0, 5, 1, "", "slater_determinant_rdms"], [0, 5, 1, "", "spin_square"], [0, 5, 1, "", "strings_to_addresses"], [0, 5, 1, "", "strings_to_indices"], [6, 0, 0, "-", "testing"], [0, 5, 1, "", "trace"]], "ffsim.BitstringType": [[0, 2, 1, "", "BIT_ARRAY"], [0, 2, 1, "", "INT"], [0, 2, 1, "", "STRING"]], "ffsim.DiagonalCoulombHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_fermion_operator"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"]], "ffsim.DoubleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_molecular_hamiltonian"], [0, 3, 1, "", "to_number_representation"], [0, 3, 1, "", "to_z_representation"], [0, 2, 1, "", "z_representation"]], "ffsim.FermionAction": [[0, 2, 1, "", "action"], [0, 2, 1, "", "orb"], [0, 2, 1, "", "spin"]], "ffsim.FermionOperator": [[0, 3, 1, "", "conserves_particle_number"], [0, 3, 1, "", "conserves_spin_z"], [0, 3, 1, "", "many_body_order"], [0, 3, 1, "", "normal_ordered"]], "ffsim.GivensAnsatzOp": [[0, 3, 1, "", "from_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "phase_angles"], [0, 2, 1, "", "phis"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_orbital_rotation"], [0, 3, 1, "", "to_parameters"]], "ffsim.GivensAnsatzOperator": [[0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.HopGateAnsatzOperator": [[0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.MolecularData": [[0, 2, 1, "", "active_space"], [0, 2, 1, "", "atom"], [0, 2, 1, "", "basis"], [0, 2, 1, "", "ccsd_energy"], [0, 2, 1, "", "ccsd_t1"], [0, 2, 1, "", "ccsd_t2"], [0, 2, 1, "", "cisd_energy"], [0, 2, 1, "", "cisd_vec"], [0, 2, 1, "", "core_energy"], [0, 2, 1, "", "dipole_integrals"], [0, 2, 1, "", "fci_energy"], [0, 2, 1, "", "fci_vec"], [0, 3, 1, "", "from_fcidump"], [0, 3, 1, "", "from_json"], [0, 3, 1, "", "from_mole"], [0, 3, 1, "", "from_scf"], [0, 4, 1, "", "hamiltonian"], [0, 2, 1, "", "hf_energy"], [0, 2, 1, "", "hf_mo_coeff"], [0, 2, 1, "", "hf_mo_occ"], [0, 2, 1, "", "mo_coeff"], [0, 2, 1, "", "mo_occ"], [0, 4, 1, "", "mole"], [0, 2, 1, "", "mp2_energy"], [0, 2, 1, "", "mp2_t2"], [0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "one_body_integrals"], [0, 2, 1, "", "orbital_symmetries"], [0, 3, 1, "", "run_ccsd"], [0, 3, 1, "", "run_cisd"], [0, 3, 1, "", "run_fci"], [0, 3, 1, "", "run_mp2"], [0, 3, 1, "", "run_sci"], [0, 4, 1, "", "scf"], [0, 2, 1, "", "sci_energy"], [0, 2, 1, "", "sci_vec"], [0, 2, 1, "", "spin"], [0, 2, 1, "", "symmetry"], [0, 3, 1, "", "to_fcidump"], [0, 3, 1, "", "to_json"], [0, 2, 1, "", "two_body_integrals"]], "ffsim.MolecularHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "from_fcidump"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "rotated"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.NumNumAnsatzOpSpinBalanced": [[0, 3, 1, "", "from_diag_coulomb_mats"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_diag_coulomb_mats"], [0, 3, 1, "", "to_parameters"]], "ffsim.ProductStateSum": [[0, 2, 1, "", "coeffs"], [0, 2, 1, "", "states"]], "ffsim.RealUCJOperator": [[0, 2, 1, "", "diag_coulomb_mats_alpha_alpha"], [0, 2, 1, "", "diag_coulomb_mats_alpha_beta"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"], [0, 3, 1, "", "to_t_amplitudes"]], "ffsim.SingleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "expectation_product_state"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_squares"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "reduced_matrix_product_states"]], "ffsim.Spin": [[0, 2, 1, "", "ALPHA"], [0, 2, 1, "", "ALPHA_AND_BETA"], [0, 2, 1, "", "BETA"]], "ffsim.StateVector": [[0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "vec"]], "ffsim.UCJOpSpinBalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinUnbalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinless": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOperator": [[0, 2, 1, "", "diag_coulomb_mats_alpha_alpha"], [0, 2, 1, "", "diag_coulomb_mats_alpha_beta"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"], [0, 3, 1, "", "to_t_amplitudes"]], "ffsim.contract": [[1, 5, 1, "", "contract_diag_coulomb"], [1, 5, 1, "", "contract_num_op_sum"], [1, 5, 1, "", "contract_one_body"], [1, 5, 1, "", "diag_coulomb_linop"], [1, 5, 1, "", "num_op_sum_linop"], [1, 5, 1, "", "one_body_linop"]], "ffsim.linalg": [[2, 1, 1, "", "GivensRotation"], [2, 5, 1, "", "apply_matrix_to_slices"], [2, 5, 1, "", "double_factorized"], [2, 5, 1, "", "double_factorized_t2"], [2, 5, 1, "", "double_factorized_t2_alpha_beta"], [2, 5, 1, "", "expm_multiply_taylor"], [2, 5, 1, "", "givens_decomposition"], [2, 5, 1, "", "is_antihermitian"], [2, 5, 1, "", "is_hermitian"], [2, 5, 1, "", "is_orthogonal"], [2, 5, 1, "", "is_real_symmetric"], [2, 5, 1, "", "is_special_orthogonal"], [2, 5, 1, "", "is_unitary"], [2, 5, 1, "", "lup"], [2, 5, 1, "", "match_global_phase"], [2, 5, 1, "", "modified_cholesky"], [2, 5, 1, "", "one_hot"], [2, 5, 1, "", "reduced_matrix"]], "ffsim.linalg.GivensRotation": [[2, 2, 1, "", "c"], [2, 2, 1, "", "i"], [2, 2, 1, "", "j"], [2, 2, 1, "", "s"]], "ffsim.optimize": [[3, 5, 1, "", "minimize_linear_method"]], "ffsim.qiskit": [[4, 1, 1, "", "DiagCoulombEvolutionJW"], [4, 1, 1, "", "DiagCoulombEvolutionSpinlessJW"], [4, 1, 1, "", "DropNegligible"], [4, 1, 1, "", "FfsimSampler"], [4, 1, 1, "", "GivensAnsatzOpJW"], [4, 1, 1, "", "GivensAnsatzOpSpinlessJW"], [4, 1, 1, "", "GivensAnsatzOperatorJW"], [4, 1, 1, "", "GivensAnsatzOperatorSpinlessJW"], [4, 1, 1, "", "MergeOrbitalRotations"], [4, 1, 1, "", "NumNumAnsatzOpSpinBalancedJW"], [4, 1, 1, "", "NumOpSumEvolutionJW"], [4, 1, 1, "", "NumOpSumEvolutionSpinlessJW"], [4, 1, 1, "", "OrbitalRotationJW"], [4, 1, 1, "", "OrbitalRotationSpinlessJW"], [4, 6, 1, "", "PRE_INIT"], [4, 1, 1, "", "PrepareHartreeFockJW"], [4, 1, 1, "", "PrepareHartreeFockSpinlessJW"], [4, 1, 1, "", "PrepareSlaterDeterminantJW"], [4, 1, 1, "", "PrepareSlaterDeterminantSpinlessJW"], [4, 1, 1, "", "SimulateTrotterDoubleFactorizedJW"], [4, 1, 1, "", "UCJOpSpinBalancedJW"], [4, 1, 1, "", "UCJOpSpinUnbalancedJW"], [4, 1, 1, "", "UCJOpSpinlessJW"], [4, 1, 1, "", "UCJOperatorJW"], [4, 5, 1, "", "ffsim_vec_to_qiskit_vec"], [4, 5, 1, "", "final_state_vector"], [4, 5, 1, "", "jordan_wigner"], [4, 5, 1, "", "pre_init_passes"], [4, 5, 1, "", "qiskit_vec_to_ffsim_vec"]], "ffsim.qiskit.DiagCoulombEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DropNegligible": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.FfsimSampler": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.GivensAnsatzOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOperatorJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.qiskit.GivensAnsatzOperatorSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.qiskit.MergeOrbitalRotations": [[4, 3, 1, "", "run"]], "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.NumOpSumEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.NumOpSumEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.PrepareHartreeFockJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareHartreeFockSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinUnbalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOperatorJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__init_subclass__"], [4, 3, 1, "", "__new__"]], "ffsim.random": [[5, 5, 1, "", "random_antihermitian"], [5, 5, 1, "", "random_double_factorized_hamiltonian"], [5, 5, 1, "", "random_fermion_hamiltonian"], [5, 5, 1, "", "random_fermion_operator"], [5, 5, 1, "", "random_hermitian"], [5, 5, 1, "", "random_molecular_hamiltonian"], [5, 5, 1, "", "random_orthogonal"], [5, 5, 1, "", "random_real_symmetric_matrix"], [5, 5, 1, "", "random_special_orthogonal"], [5, 5, 1, "", "random_state_vector"], [5, 5, 1, "", "random_statevector"], [5, 5, 1, "", "random_t2_amplitudes"], [5, 5, 1, "", "random_two_body_tensor"], [5, 5, 1, "", "random_ucj_op_spin_balanced"], [5, 5, 1, "", "random_ucj_op_spin_unbalanced"], [5, 5, 1, "", "random_ucj_op_spinless"], [5, 5, 1, "", "random_ucj_operator"], [5, 5, 1, "", "random_unitary"]], "ffsim.testing": [[6, 5, 1, "", "assert_allclose_up_to_global_phase"], [6, 5, 1, "", "generate_norb_nelec"], [6, 5, 1, "", "generate_norb_nelec_spin"], [6, 5, 1, "", "generate_norb_nocc"], [6, 5, 1, "", "generate_norb_spin"], [6, 5, 1, "", "random_nelec"], [6, 5, 1, "", "random_occupied_orbitals"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"], "6": ["py", "data", "Python data"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function", "6": "py:data"}, "terms": {"": [0, 2, 4, 8, 9, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23], "0": [0, 2, 3, 4, 6, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23], "00": 18, "000": 20, "0000000": [15, 18], "0000000000011100000000000111": 20, "0000000000011100000000011100": 20, "0000000000011100100000001100": 20, "0000000000110100000000001101": 20, "0000000000110100010000000101": 20, "0000000001011000000000010110": 20, "0000000001011000100000000110": 20, "0000000001110000000000000111": 20, "0000000111100000011111": 20, "0000000111100110000111": 20, "0000010101100001011011": 20, "0000010110100001011011": 20, "0000100101100000111011": 20, "0000100110100000111011": 20, "0000111100001111": 20, "0000111100011011": 20, "0000111100011101": 20, "0000111100101011": 20, "0001": 3, "0001000001010000000000000111": 20, "0001110100001111": 20, "0010000000011000000000010110": 20, "0010011100101101": 20, "0010101100001111": 20, "0010101100101101": 20, "001011": [0, 14], "0010110100100111": 20, "0010110100101011": 20, "001101": [0, 14], "0011074889449176437": 18, "001110": [0, 14], "00192277163885033": 18, "0019227722411710023": 18, "005e": 15, "008936658723049901": 18, "01": [15, 18], "0100000110100100001111": 20, "010011": [0, 14], "0101": 0, "0101000001100000011111": 20, "010101": [0, 14], "010110": [0, 14], "0110": 0, "0129265": 16, "02": [15, 18], "02122442107773": 18, "02242": 2, "02459434j": 14, "02625": 2, "027e": 18, "02998708j": 14, "03": [15, 18], "03101213j": 14, "03525116j": 14, "03603956j": 16, "03668541730983732": 23, "04": [15, 18], "04758323886585879": 18, "05": [0, 2, 3, 4, 18], "05395": 4, "05751420783821811": 18, "06": 18, "0609050": 5, "0625": [0, 16], "06273307": 14, "06551571": 14, "06677383j": 14, "06844774j": 14, "07": 6, "08": [0, 2, 3, 4, 18], "08957": 2, "09723851": 14, "0b001011": 0, "0b010101": 0, "0b010110": 0, "0b100101": 0, "0b100110": 0, "0j": 16, "0x7f1c619c94b0": 19, "0x7f1c6232d630": 19, "0x7f1c6232f940": 19, "0x7f1c6232f9d0": 19, "0x7f1c6232faf0": 19, "0x7f1c6232fdf0": 19, "0x7f1c623942b0": 19, "0x7f1c623966b0": 19, "1": [0, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "10": [13, 18, 19, 20, 23], "100": 15, "1000": 3, "1000000101100000111011": 20, "100011": [0, 14], "100101": [0, 14], "100110": [0, 14], "101": 20, "1024": 4, "104": [15, 21], "105e": 18, "1077416821460872": 20, "108": [20, 23], "10_000": 20, "11": [0, 13, 19, 20, 23], "1102529j": 14, "11157654": 14, "112": 15, "12": [2, 13, 15, 16, 18, 23], "1207": 0, "12204343": 14, "1234": [9, 13, 14, 15, 19, 21], "12345": 20, "125": [0, 16], "1278053627110059": 20, "1284": [15, 18], "12j": 16, "13": [0, 13, 18, 23], "13113848": 14, "133": 20, "13327423j": 14, "13957088j": 14, "14": [13, 20], "15": [13, 15], "152e": 18, "153e": 18, "1561685j": 14, "15624569": 14, "15828306": 14, "15x15": 15, "16": [13, 20], "160e": 18, "17": 13, "1711": [2, 4], "17181289596": 21, "17276745j": 14, "17558331": 14, "18": 13, "180": 15, "18007105": 14, "1808": 2, "180e": 15, "18j": 16, "19": 0, "1e": [0, 2, 3, 4, 6, 15, 23], "1j": [0, 9, 16, 23], "2": [0, 1, 2, 4, 5, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "203e": 15, "20835741": 14, "20881506": 14, "21": 0, "210": 20, "2104": 2, "2190712273": 9, "21928194": 14, "21984743e": 16, "22392824": 14, "23": 15, "23550198": 14, "23611476": 14, "24": [13, 19], "25": [0, 16], "25j": [0, 16], "26": 23, "260e": 18, "26121865": 14, "274e": 18, "287e": 18, "29821173j": 14, "2d": 0, "2j": [0, 2, 16], "2n": 14, "3": [0, 2, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "30052742j": 14, "31980058j": 14, "31g": [20, 21], "32": [13, 19], "329": 18, "33731417j": 14, "339": 18, "3484557088027": 20, "35": [0, 23], "360e": 18, "3616896960424702e": 18, "366e": 18, "36730125j": 14, "3714141": 14, "38435478j": 14, "39": [13, 14, 15, 16, 18, 19, 20], "39075171": 14, "3j": 16, "4": [0, 2, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "404": 18, "417e": 15, "4390672": 14, "449e": 15, "45619739094874": 20, "46": 18, "464957764796": 23, "466e": 18, "46x46": 18, "47": 20, "478": 15, "48": [13, 20], "487e": 18, "49094286j": 14, "495e": 18, "4j": 16, "5": [0, 3, 9, 13, 14, 15, 16, 18, 19, 20, 23], "51253171j": 14, "520e": 18, "55717072551539": 9, "558e": 18, "56": [13, 19, 20], "561e": 18, "5626": 18, "57": 20, "58888": 22, "5j": [0, 16], "6": [0, 9, 13, 14, 15, 16, 19, 20, 21, 23], "603e": 15, "6083": 0, "6332495815006": 15, "634": 18, "64": 14, "65": 20, "66": 20, "67794403659721": 15, "677e": 18, "6787887956297": 15, "6787887956314": 15, "68381558366461": 15, "684e": 18, "695e": 18, "6g": [0, 15, 18, 23], "6j": 16, "7": [0, 9, 13, 14, 15, 16, 18, 19, 23], "70": 20, "705e": 18, "72": 18, "7288249991515": 15, "72x72": 18, "73105542j": 14, "745e": 15, "748e": 15, "75": [15, 20], "77": 18, "8": [0, 13, 15, 16, 18, 19, 20, 23], "8266321248744": 18, "835236570774": 20, "837e": 18, "842e": 18, "87160024816279": 18, "87363195924814": 18, "87363426394428": 18, "87363429588754": 18, "87363430303687": 18, "87363431750812": 18, "87387387354954": 18, "87421536374026": 18, "8742165643862": 18, "8763353258522626e": 18, "9": [13, 14, 16, 18, 19, 23], "9289": 18, "9402435115134989": 23, "948e": 18, "949": 18, "958": 15, "9630419334854": 20, "99": 9, "9924": 20, "998510578821955": 18, "9985212854198656": 23, "9985212854198972": 23, "99877730752604e": 18, "9988280540317593": 18, "9991": 20, "999207765530762": 18, "9992077655348396": 18, "9996731164188294": 23, "A": [0, 1, 2, 3, 4, 5, 6, 8, 12, 13, 14, 16, 22, 23], "AND": 15, "As": [0, 11, 13, 14, 18, 19, 23], "By": 21, "For": [0, 3, 4, 8, 9, 11, 14, 15, 16, 22, 23], "If": [0, 1, 2, 3, 4, 5, 6, 13, 16], "In": [0, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "It": [0, 2, 3, 4, 13, 14, 16, 18, 20, 22], "Its": [3, 4], "NO": [15, 18], "No": 2, "Of": 11, "On": [14, 22], "One": [0, 23], "Such": 16, "That": [0, 3, 12, 16], "The": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "Their": 19, "Then": [0, 13], "There": 13, "These": [0, 11, 16, 19], "To": [0, 8, 9, 11, 14, 18, 23], "With": [11, 14, 23], "_": [0, 1, 2, 4, 8, 11, 12, 15, 23], "_1": 12, "_2": 12, "__init__": 4, "__init_subclass__": 4, "__new__": 4, "_factr": 18, "_i": [0, 4], "_k": [0, 8, 11], "_nestedsequ": 4, "_supportsarrai": 4, "a_": [0, 4, 8, 9, 12, 16], "a_j": 1, "a_p": 0, "a_q": 0, "ab": [0, 23], "abil": 8, "abl": 22, "about": 21, "abov": [13, 16], "absenc": [0, 1, 4], "absolut": [0, 2, 4, 6], "acceler": 22, "accept": [12, 18], "access": [0, 9, 22], "accommod": 4, "accomod": 8, "accur": 8, "achiev": [2, 23], "across": 22, "act": [0, 2, 4, 9, 13, 15, 16], "action": [0, 1, 12, 16, 22, 23], "activ": [0, 15, 18, 20, 23], "active_spac": [0, 15, 18, 20, 21, 23], "actual": [6, 11], "ad": [0, 13, 18], "add": [13, 18], "addit": [0, 8, 16, 23], "addition": 2, "address": [0, 13], "addresses_to_str": [0, 7, 14], "adjac": 13, "advantag": 18, "after": [3, 18], "al": 2, "algebra": [2, 9, 16], "algorithm": [0, 2, 3, 18, 21], "alia": [0, 2], "align": [0, 11, 12], "all": [0, 1, 2, 3, 4, 6, 11, 13, 16, 20, 22], "alloc": 0, "allow": [0, 2, 11, 13, 18, 22, 23], "along": 0, "alpha": [0, 1, 2, 4, 6, 9, 11, 13, 14, 15, 16, 19, 20], "alpha_alpha_indic": 0, "alpha_and_beta": 0, "alpha_beta_indic": 0, "alpha_i": 0, "alpha_j": 0, "alreadi": [0, 4, 12], "also": [0, 2, 3, 9, 12, 14, 16, 18, 23], "altern": [0, 8], "alwai": [0, 2, 5, 12, 14, 23], "amen": 13, "amplitud": [0, 2, 5, 18, 20], "an": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "angl": 0, "ani": [0, 3, 4, 11, 12, 19, 20], "annihil": [0, 16], "anoth": [2, 6], "ansatz": [0, 3, 4, 5, 10, 13, 17, 19, 20, 21], "ansatz_oper": 0, "ansatz_st": 18, "anti": [2, 5], "anticommut": 12, "ao": 0, "ap": 2, "api": [14, 21], "appear": [0, 2, 13, 16, 20], "append": [0, 6, 13, 18, 19, 20], "appli": [0, 1, 2, 3, 4, 9, 11, 12, 13, 14, 18, 19, 20, 21, 23], "applic": 12, "apply_": 14, "apply_diag_coulomb_evolut": [0, 7, 8, 23], "apply_fsim_g": [0, 7], "apply_fswap_g": [0, 7], "apply_givens_rot": [0, 7], "apply_hop_g": [0, 7], "apply_matrix_to_slic": [2, 7], "apply_num_interact": [0, 7], "apply_num_num_interact": [0, 7], "apply_num_op_prod_interact": [0, 7], "apply_num_op_sum_evolut": [0, 7, 12, 23], "apply_on_site_interact": [0, 7, 14], "apply_orbital_rot": [0, 7, 12, 14, 21], "apply_quad_ham_evolut": 12, "apply_tunneling_interact": [0, 7, 14], "apply_unitari": [0, 7, 18], "appropri": [0, 11], "approx": 8, "approx_eq": [0, 7], "approxim": [0, 2, 3, 8, 18, 23], "apt": 22, "ar": [0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 19, 20, 22], "arbitrari": [4, 20], "arch": 22, "arg": [0, 4], "argument": [0, 2, 3, 8, 9, 12, 14, 23], "aris": 8, "arithmet": 16, "around": 23, "arrai": [0, 1, 2, 4, 6, 9, 11, 14, 16], "arxiv": [0, 2, 4, 5], "ascend": 20, "assembl": 2, "assert": 14, "assert_allclose_up_to_global_phas": [6, 7], "assertionerror": 6, "associ": [0, 3, 14, 16, 18], "assum": [0, 4, 14], "asterisk": 0, "asymmetr": 8, "atol": [0, 2, 4, 6], "atom": [0, 15, 18, 20, 21, 23], "attempt": 2, "attribut": [0, 3, 9, 15, 18], "author": 21, "auto": 0, "avail": [9, 19, 22], "avoid": [0, 9, 16], "awar": 16, "ax": [0, 2], "axi": [0, 2], "b": [0, 2, 3, 6, 12, 15, 18], "back": 4, "backend": [13, 19], "backflow": 3, "background": 23, "balanc": [0, 4, 5, 18, 20], "barrier": 20, "base": [0, 2, 4], "basepass": 4, "basesamplerv2": 4, "basi": [0, 2, 4, 12, 15, 18, 20, 21, 23], "basic": [9, 13], "basis_g": [13, 19], "bear": 23, "becaus": [0, 2, 8, 9, 13, 15, 16, 18], "been": [0, 8], "befor": [0, 13, 16, 22, 23], "begin": [0, 2, 11, 12, 14, 20, 23], "behavior": [2, 4, 5, 19], "being": [2, 16, 18], "below": [0, 18, 23], "benchmark": 0, "beta": [0, 1, 2, 4, 6, 9, 11, 13, 14, 15, 16, 19, 20], "beta_i": 0, "beta_j": 0, "better": 8, "between": [0, 1, 2, 3, 11, 13], "bfg": [0, 2, 3, 15, 18], "bibtex": 21, "bit": [0, 13, 14], "bit_arrai": 0, "bitstr": [0, 14, 20], "bitstring_typ": [0, 14], "bitstringtyp": [0, 7, 14], "bla": 22, "bloc": 20, "block": 2, "block_diag": [0, 2], "bmod": 0, "bodi": [0, 1, 2, 5, 8, 9, 18, 23], "bond": 15, "bond_angle_deg": 15, "bond_dist": 18, "bool": [0, 1, 2, 3, 4, 5, 6], "both": [0, 1, 2, 4, 11, 15], "bound": [0, 2], "boundari": 0, "box": 13, "bq": 2, "bracket": 0, "braket": 0, "branch": 21, "brickwork": 15, "browser": 22, "buffer": 4, "build": [13, 17, 18, 20, 21, 22], "built": [19, 20, 23], "byte": [0, 4], "bz2": 0, "c": [2, 18], "c2v": 15, "cach": 0, "calcul": [0, 14, 18], "call": [0, 3, 4, 8, 9, 12, 14, 16, 18, 20, 23], "callabl": [3, 18], "callback": [0, 2, 3, 18], "can": [0, 1, 2, 4, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23], "cannot": 20, "canon": 0, "casci": [15, 18], "case": [0, 6, 13, 15], "categori": 21, "caus": 0, "cc": [18, 20], "ccsd": [0, 18, 20], "ccsd_energi": 0, "ccsd_t1": 0, "ccsd_t2": 0, "cd": 22, "cdot": 2, "cell": [9, 13, 14, 18, 19, 20, 23], "certain": [2, 13], "challeng": 11, "character": 0, "check": [2, 4, 6], "chemcor": 23, "chemic": 0, "chemical_potenti": 0, "chemistri": 21, "choic": [0, 6, 13, 14], "choleski": [0, 2], "choos": [2, 14], "chosen": 0, "ci": [15, 18], "circuit": [0, 4, 8, 13, 14, 17, 21], "circul": 0, "cisd": 0, "cisd_energi": 0, "cisd_vec": 0, "class": [0, 2, 4, 5, 9, 11, 15, 17, 18, 21, 23], "clement": 2, "clone": 22, "close": [11, 18], "cluster": [0, 4, 5, 10, 17, 21], "co": [0, 15], "code": [4, 9, 13, 14, 16, 18, 19, 20, 23], "coeff": [0, 1, 4, 13, 19], "coeffici": [0, 1, 2, 4, 12, 16], "collect": [0, 2, 4, 18], "column": [0, 2, 12, 14], "com": [21, 22], "comb": 4, "combin": [0, 1, 4, 12, 13, 16], "command": 22, "commonli": [8, 20], "commun": [21, 22], "commut": [0, 8], "compact": [8, 23], "compar": [0, 6, 23], "compil": 22, "complet": 0, "complex": [0, 1, 2, 4, 5, 9], "compon": [0, 16, 21], "compos": [4, 22], "compress": [0, 2], "compris": [0, 16], "comput": [0, 2, 4, 9, 12, 18, 21, 23], "concaten": [0, 14], "concret": 9, "condit": 0, "configur": [0, 4, 13, 14, 22], "conflict": 6, "conj": [2, 12, 20], "conjug": 2, "connect": [0, 11, 13], "consecut": [4, 20], "conserv": [0, 5, 16, 21], "conserves_particle_numb": [0, 16], "conserves_spin_z": [0, 16], "consid": [11, 12, 13], "consist": [0, 9, 13], "constant": [0, 5, 8, 9, 11, 13, 19], "constrain": 2, "constraint": [11, 18], "construct": [0, 1, 3, 4, 13, 14, 15, 16, 18, 19, 20, 23], "contain": [0, 2, 3, 13, 16, 20, 21, 22], "contract": [2, 7, 21], "contract_diag_coulomb": [1, 7], "contract_num_op_sum": [1, 7], "contract_one_bodi": [1, 7], "contrast": 14, "control": [3, 13], "conveni": 14, "convent": 0, "converg": [3, 15, 18, 20, 23], "convers": [11, 18], "convert": [0, 1, 4, 14, 16, 18, 20, 21, 23], "coordin": 0, "coov": 20, "copi": [0, 16], "core": 0, "core_energi": 0, "correl": 3, "correspond": [0, 2, 3, 4, 8, 12, 13, 14, 18], "cost": 0, "coulomb": [0, 1, 2, 4, 8, 11, 23], "count": [0, 13, 20], "count_op": [13, 19], "cours": 11, "cp": [13, 19], "cphaseg": 13, "cre": [0, 7], "cre_a": [0, 7, 16], "cre_b": [0, 7, 16], "creat": [0, 4, 13, 14, 16, 19, 20, 21, 23], "creation": [0, 4, 12, 16], "criteria": 16, "current": [0, 2, 18], "d": [2, 22], "d2h": 18, "dag": 4, "dagcircuit": 4, "dagger": [0, 1, 2, 8, 11, 12, 16], "dagger_": [0, 4, 8, 9, 12], "dagger_i": 1, "dagger_p": 0, "dagger_q": 0, "data": [0, 5, 13, 15, 16, 18, 20, 21, 23], "daunt": 8, "de": [0, 7], "decompos": [2, 4, 8, 13, 19], "decomposit": [0, 2, 4, 8, 10, 19, 21, 23], "decreas": [0, 18], "def": [2, 12, 15, 18, 23], "default": [0, 2, 3, 4, 5, 8, 9, 23], "default_rng": [0, 4, 5, 6, 9, 13, 15, 19, 20], "default_shot": [4, 20], "defaultdict": 18, "defin": [0, 2, 13, 15, 18, 20, 23], "definit": [0, 2, 3, 14], "demonstr": [14, 18, 20], "denot": [0, 1, 2, 4, 12], "dens": 15, "densiti": 0, "depend": [0, 2, 3, 22, 23], "deprec": [0, 4, 5], "depth": 11, "deriv": 8, "des_a": [0, 7, 16], "des_b": [0, 7, 16], "descend": [0, 16], "describ": [0, 1, 2, 8, 11, 12, 13, 16, 23], "descript": [0, 4], "design": [0, 2, 12], "desir": [0, 2, 5, 6], "destroi": [0, 16], "detail": [13, 19], "determin": [0, 2, 4, 14], "determinant": 0, "dev": 22, "devel": 22, "develop": [4, 21], "devic": [13, 19], "df_hamiltonian": [13, 19, 23], "df_hamiltonian_alt": 23, "diag": [0, 7], "diag_coulomb_indic": [0, 2], "diag_coulomb_jw": 13, "diag_coulomb_linop": [1, 7], "diag_coulomb_mat": [0, 2, 13, 19, 20, 23], "diag_coulomb_mats_alpha_alpha": 0, "diag_coulomb_mats_alpha_beta": 0, "diagcoulombevolutionjw": [4, 7, 13, 19, 20], "diagcoulombevolutionspinlessjw": [4, 7], "diagon": [0, 1, 2, 4, 8, 11, 23], "diagonal_coulomb_mat": 2, "diagonalcoulombhamiltonian": [0, 7], "dict": [0, 2, 3, 15, 18], "dictionari": [0, 16], "did": 0, "differ": [0, 1, 2, 3, 9, 11, 13, 18, 22, 23], "dim": [0, 5, 7, 14, 16], "dim_a": [0, 14], "dim_b": [0, 14], "dimens": [0, 2, 5, 14], "dimension": [0, 2, 4, 14], "dipol": 0, "dipole_integr": 0, "direct": [0, 23], "directli": [0, 13, 18, 22, 23], "directori": 22, "discuss": [8, 12, 13], "disjoint": 2, "disk": 0, "displai": [13, 16, 20], "distinguish": 14, "distribut": 5, "divid": 8, "divis": [0, 16], "dnf": 22, "do": [8, 13, 16], "doc": [15, 18, 21], "docker": 21, "dockerfil": 22, "docstr": 0, "document": [0, 2], "doe": [0, 4, 16, 20], "don": 11, "dooh": [20, 21, 23], "dot": 0, "doubl": [0, 2, 4, 5, 10, 21, 24], "double_factor": [0, 2, 7], "double_factorized_t2": [2, 7], "double_factorized_t2_alpha_beta": [2, 7], "doublefactorizedhamiltonian": [0, 4, 5, 7, 23], "down": 14, "draw": [13, 19], "drop": [4, 15, 18], "dropneglig": [4, 7], "dtype": [0, 2, 4, 5, 9, 15, 18], "due": 20, "dump": [15, 18], "duplic": 0, "dure": 4, "e": [0, 2, 4, 8, 9, 11, 15, 16, 18, 20], "e_corr": [18, 20], "each": [0, 2, 3, 4, 8, 11, 14, 16, 18, 22, 23], "edg": 0, "effect": [0, 4, 13], "effici": [8, 13, 16], "eig": [9, 16], "eigendecomposit": 12, "eigenvalu": [0, 2, 3, 9], "eigenvector": [0, 2], "eigh": [12, 23], "eigsh": 9, "einsum": 23, "either": [0, 1, 2, 4, 6, 11], "electon": 4, "electron": [0, 1, 4, 5, 9, 13, 14, 15, 19, 20, 23], "element": [0, 1, 2, 4, 20, 23], "ell": 2, "els": [0, 5, 14], "elsewher": 0, "enabl": 2, "encount": 20, "end": [0, 2, 11, 12, 20, 23], "energi": [0, 3, 9, 12, 18, 20, 21, 23], "energy_nuc": [15, 18], "enforc": 0, "enough": 4, "ensur": 9, "entangl": [0, 17, 21], "entir": [2, 8], "entri": [0, 2, 4, 11, 14, 23], "enum": 0, "enumer": [0, 18], "environ": 22, "epsilon": 3, "epsmch": 18, "equal": [0, 2, 6, 13], "equal_nan": 6, "equilibrium": 15, "equival": [0, 4], "err_msg": 6, "error": [0, 2, 4, 6, 23], "especi": 16, "estim": 9, "et": 2, "etc": 0, "ethen": 18, "evalu": [3, 15], "even": 13, "everi": 12, "everywher": 14, "evolut": [0, 4, 9, 23], "evolv": [0, 23], "evolved_vec": 9, "evolved_vec_2": 9, "exact": [2, 8, 9, 23], "exact_st": 23, "exampl": [0, 4, 9, 11, 13, 14, 15, 16, 18, 19, 22], "exce": [2, 15, 23], "except": [0, 2, 3], "excit": 13, "exist": [2, 4], "exp": [0, 2, 4, 6], "expand": 0, "expanded_diag_coulomb_mat": 2, "expanded_orbital_rot": 2, "expans": [2, 3], "expect": [0, 3], "expectation_one_body_pow": [0, 7], "expectation_one_body_product": [0, 7], "expectation_product_st": 0, "expens": [0, 2], "explain": [9, 11, 13, 14, 18, 23], "explan": [0, 19, 21], "explicit": 0, "explicitli": 0, "exploit": 21, "expm": 2, "expm_multipli": [9, 23], "expm_multiply_taylor": [2, 7], "exponenti": [8, 9, 23], "expos": [4, 13], "express": [11, 14, 23], "extend": 4, "extra": 8, "extract": 20, "f": [3, 14, 15, 18, 20, 23], "facilit": 11, "fact": 15, "factor": [0, 2, 4, 5, 10, 21, 24], "failur": 6, "fake_provid": [13, 19], "fals": [0, 1, 2, 4, 5, 15, 16, 18], "far": 16, "fast": 0, "faster": [18, 21], "fault": 11, "fci": [0, 14, 15, 18], "fci_energi": 0, "fci_vec": 0, "fcidump": 0, "fcivec": 0, "fedora": 22, "feenberg": 3, "fermi": 0, "fermi_hubbard_1d": [0, 7], "fermi_hubbard_2d": [0, 7], "fermion": [0, 4, 5, 6, 8, 10, 11, 12, 16, 19, 20, 21], "fermion_oper": [0, 7], "fermionact": [0, 7], "fermionoper": [0, 4, 5, 7, 17, 21], "few": [14, 22], "fewer": [13, 19, 23], "ffsim": [7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23], "ffsim_vec_to_qiskit_vec": [4, 7], "ffsimsampl": [4, 7], "fidel": 23, "field": [0, 2], "fifth": 13, "file": [0, 22], "filter": 0, "final": [0, 3, 4, 5, 13, 19, 23], "final_orbital_rot": 0, "final_st": [18, 23], "final_state_vector": [4, 7], "finish": 23, "finit": 3, "first": [0, 2, 4, 8, 13, 14, 18, 20, 23], "fix": 14, "flag": 0, "float": [0, 2, 3, 4, 5, 6, 9, 12, 23], "float64": [9, 15, 18], "fock": [0, 4, 11, 14, 18, 21, 23], "focu": 9, "follow": [0, 2, 3, 4, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23], "foot": 0, "forg": [0, 17, 21], "form": [0, 1, 2, 4, 8, 9, 11, 12, 16, 20, 23], "format": [0, 4], "formula": [0, 23], "fourth": [8, 13], "frac": [0, 2], "frac12": [0, 8, 9, 11], "frac18": 0, "framework": 22, "from": [0, 2, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "from_diag_coulomb_mat": 0, "from_fcidump": 0, "from_fermion_oper": 0, "from_json": 0, "from_mol": 0, "from_molecular_hamiltonian": [0, 23], "from_orbital_rot": 0, "from_paramet": [0, 13, 18], "from_scf": [0, 15, 18, 20, 21, 23], "from_t_amplitud": [0, 18, 20], "frozen": [18, 20], "fsim": 0, "fswap": 0, "full": [0, 2, 13, 14, 15], "fulli": 9, "fun": [3, 15, 18], "function": [0, 1, 2, 3, 5, 8, 9, 12, 14, 15, 16, 18, 19, 23], "fundament": 12, "further": [13, 14], "furthermor": [0, 2], "g": [0, 4, 15], "g_": 2, "g_1": 2, "g_k": 2, "g_l": 2, "gate": [0, 4, 10, 11, 15, 20, 21], "gener": [0, 3, 4, 5, 6, 8, 13, 14, 15, 19, 20, 21], "generate_norb_nelec": [6, 7], "generate_norb_nelec_spin": [6, 7], "generate_norb_nocc": [6, 7], "generate_norb_spin": [6, 7], "generate_preset_pass_manag": [13, 19], "genericbackendv2": [13, 19], "get": [0, 14, 15, 18, 20, 21, 23], "get_count": 20, "get_hcor": [15, 18], "get_ovlp": [15, 18], "git": 22, "github": [21, 22], "give": [0, 2, 8, 14, 19], "given": [0, 2, 4, 6, 8, 12], "givens_ansatz_op": 4, "givens_ansatz_oper": 4, "givens_decomposit": [2, 7], "givensansatzop": [0, 4, 7], "givensansatzoper": [0, 4, 7], "givensansatzoperatorjw": [4, 7], "givensansatzoperatorspinlessjw": [4, 7], "givensansatzopjw": [4, 7], "givensansatzopspinlessjw": [4, 7], "givensrot": [2, 7], "global": [4, 6], "go": [0, 13, 16], "good": 16, "gradient": [2, 3, 18], "greater": 3, "ground": [9, 18], "gt": [15, 18, 19], "gto": [15, 18, 20, 21, 23], "gtol": [3, 18], "guarante": [4, 19], "guess": [3, 18], "guid": [11, 15, 18, 19, 20, 21], "gzip": 0, "h": [0, 8, 9, 15, 18, 20, 23], "h1_x": 15, "h2_x": 15, "h2_y": 15, "h_": [0, 2, 8, 9], "h_0": [8, 23], "h_k": [8, 23], "ha": [0, 1, 2, 4, 8, 11, 12, 13, 14, 18], "haar": 5, "ham": 14, "hamiltonian": [0, 3, 4, 5, 10, 15, 18, 20, 21, 24], "hand": 14, "handl": [20, 23], "happen": 13, "hardwar": 13, "hartre": [0, 4, 11, 14, 18, 21, 23], "hartree_fock": 0, "hartree_fock_jw": 13, "hartree_fock_st": [0, 7, 9, 14, 18, 21, 23], "hasattr": 18, "hash": 16, "have": [0, 2, 8, 9, 11, 12, 13, 14, 16, 22], "height": 5, "helper": 16, "here": [0, 2, 8, 12, 13, 15, 23], "hermitian": [0, 2, 5, 12], "hess_inv": [15, 18], "hf": [15, 18], "hf_energi": 0, "hf_mo_coeff": 0, "hf_mo_occ": 0, "high": 13, "higher": [0, 8, 23], "ho": 20, "hold": [0, 3], "home": [15, 18, 22], "hop": [0, 15], "hopgateansatzoper": [0, 7, 15], "hot": [0, 2], "how": [0, 8, 9, 11, 12, 13, 14, 21, 23], "howev": [8, 13, 21], "http": [0, 21, 22], "hubbard": 0, "hydroxyl": 20, "hyperparamet": [3, 18], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "idea": 11, "ident": 0, "ignor": [0, 2, 8], "ij": [0, 1, 2, 4, 8, 11, 12], "ijab": 2, "ik": 12, "imag": 22, "implement": [0, 1, 3, 4, 8, 9, 11, 12, 13, 15, 18, 20, 21, 22, 24], "import": [0, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "impos": [11, 18], "improv": [3, 23], "includ": [0, 2, 4, 5, 8, 9, 12, 13, 14, 15, 18, 19, 21, 22], "incorpor": 0, "increas": [0, 14, 23], "increment": 3, "incur": 3, "independ": [0, 1, 4, 15], "index": [0, 2, 11, 14, 16], "indic": [0, 1, 2, 4, 11, 14, 16], "indices_to_str": [0, 7], "individu": [8, 14, 16], "info": 18, "inform": [0, 9, 16, 18, 21, 23], "init_cach": [0, 7], "initi": [0, 3, 4, 5, 6, 9, 11, 13, 18, 19, 20, 23], "initial_st": 23, "initiali": 15, "input": [0, 1, 3, 4, 5, 6, 18, 20], "insert": 13, "instanc": [5, 9, 23], "instead": [0, 2, 4, 5, 18, 23], "instruct": [21, 22], "instructionset": 19, "int": [0, 1, 2, 3, 4, 5, 6, 12, 15, 23], "int32": 0, "integ": [0, 2, 4, 6, 14], "integr": [0, 4], "interact": [0, 1, 2, 4, 11, 13, 18, 20], "interaction_pair": [0, 13, 15, 18, 20], "interfac": [18, 22], "interferomet": 2, "intermedi": 18, "intermediate_result": [3, 18], "intern": 16, "interpret": [0, 11], "introduc": [11, 12, 23], "invers": 4, "involv": [0, 12, 13], "ip": 2, "ipykernel_4408": 9, "is_antihermitian": [2, 7], "is_hermitian": [2, 7], "is_orthogon": [2, 7], "is_real_symmetr": [2, 7], "is_special_orthogon": [2, 7], "is_unitari": [2, 7], "isclos": 0, "isn": 4, "issu": [9, 13], "item": 20, "iter": [0, 3, 4, 6, 18], "itertool": 2, "its": [0, 2, 4, 9, 13, 14, 15, 16, 23], "itself": [0, 14, 16], "j": [0, 1, 2, 4, 8, 11, 12, 14, 15, 16], "jac": [3, 15, 18], "jastrow": [0, 3, 4, 5, 10, 17, 21], "ji": [0, 4, 11, 12], "jk": 12, "job": [4, 20], "jordan": [0, 4], "jordan_wign": [4, 7], "jq": 2, "json": [0, 15, 18], "jupyt": 22, "just": [0, 14, 18, 22, 23], "jwt": 4, "k": [0, 2, 8, 9, 11, 16, 20, 23], "kappa": 0, "kappa_": 0, "keep": [0, 2], "kei": 20, "kij": 23, "know": 15, "known": [0, 8], "kpi": 23, "kqi": 23, "krj": 23, "kron": 0, "ksj": 23, "kwarg": [0, 4], "l": [0, 2, 3, 8, 11, 15, 18, 23], "label": [4, 14], "ladder": [8, 11], "lambda": [0, 4, 20], "lambda_i": [0, 1, 4, 12], "lambda_k": 12, "langl": 0, "larger": [0, 2, 3, 16], "last": [0, 2, 3, 4], "later": [19, 23], "lattic": [0, 11, 13, 18, 20], "layer": [0, 2, 13, 20], "lbfgsinvhessproduct": [15, 18], "ldot": [0, 2, 8, 11, 23], "lead": 0, "least": 2, "left": [0, 4, 12, 14, 16], "len": [15, 18, 23], "length": [0, 4, 5, 14, 15], "leq": [0, 2], "less": [2, 11], "let": [0, 13, 14, 16, 18, 19, 20, 23], "level": 23, "lexicograph": [0, 16], "lib": [15, 18], "libopenbla": 22, "librari": [0, 21], "like": [4, 11, 18, 22], "limit": [0, 2, 11, 13, 15, 18], "linalg": [0, 7, 9, 12, 16, 18, 21, 23], "lindep": 3, "line": [0, 11, 13, 18], "linear": [0, 1, 2, 3, 4, 9, 12, 13, 16], "linear_oper": [0, 7, 9, 16, 18, 21, 23], "linearli": 8, "linearoper": [0, 1, 3, 16, 18, 21, 23], "linop": [9, 16, 21, 23], "linux": 22, "list": [0, 2, 4, 6, 11, 14, 15, 18, 20, 23], "ll": [9, 12, 13, 15, 18, 20, 23], "lm": 16, "load": 0, "local": [10, 17, 21], "localhost": 22, "log": [0, 4], "logarithm": 11, "logic": [12, 15], "longer": 11, "longest": 0, "lookup": 0, "losslessli": 0, "low": [0, 8, 23], "lower": [0, 2], "lowest": [0, 13, 14], "lt": [15, 18, 19], "lu": 2, "lucj": [10, 13, 17, 21], "lup": [2, 7], "lvert": [0, 4, 11, 14], "lzma": 0, "m": [0, 1, 2, 12], "m_": [0, 1, 2], "maco": 22, "made": 23, "magnitud": 0, "mai": [0, 2, 3, 4, 11, 22, 23], "main": [18, 22], "maintain": 8, "make": [11, 13], "manag": [4, 13, 19, 22], "mani": [0, 9, 12, 14, 21], "manual": 23, "many_body_ord": 0, "map": [0, 4, 12, 13, 16], "mapsto": [0, 4, 12], "mat": [0, 1, 2, 4, 12, 14], "mat_aa": 2, "mat_ab": 2, "mat_alpha_beta": 1, "mat_bb": 2, "match": [0, 2], "match_global_phas": [2, 7], "math": [5, 15], "mathbf": [0, 8, 11, 12], "mathcal": [0, 1, 4, 8, 11, 12], "matric": [0, 1, 2, 4, 11, 12, 23], "matrix": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 14, 16], "max": 23, "max_error": 23, "max_term_length": 5, "max_vec": [0, 2, 23], "maxfun": 15, "maximum": [0, 2, 3, 5, 23], "maxit": [3, 18], "mcscf": [15, 18], "mea": 20, "meant": [4, 19], "measur": [5, 8, 20], "measure_al": 20, "mention": 8, "merg": [4, 19], "mergeorbitalrot": [4, 7, 13], "messag": [6, 15, 18], "method": [0, 2, 3, 4, 11, 15, 16, 20, 21], "mid": 20, "might": 2, "mind": 23, "minim": [0, 2, 3, 13, 15, 18], "minimize_linear_method": [3, 7, 18], "minimizz": 15, "minimum": 4, "mk": 2, "mkap": 2, "mkbq": 2, "mkip": 2, "mkjq": 2, "mkpq": 2, "mo_coeff": 0, "mo_occ": 0, "mode": 12, "model": 0, "modifi": [0, 2], "modified_choleski": [2, 7], "modul": [0, 14, 15, 19, 20], "mol": [15, 18, 20, 21, 23], "mol_data": [15, 18, 20, 21, 23], "mol_hamiltonian": [9, 15, 18, 20, 23], "mole": [0, 15, 18, 20, 21, 23], "molecul": [0, 18, 21, 23], "molecular": [0, 5, 9, 10, 14, 15, 18, 20, 21, 23], "moleculardata": [0, 7, 15, 18, 20, 21, 23], "molecularhamiltonian": [0, 5, 7, 9, 23], "more": [0, 2, 3, 4, 8, 9, 11, 13, 14, 19, 23], "most": [0, 2, 16, 20], "motiv": 13, "mp2": 0, "mp2_energi": 0, "mp2_t2": 0, "mpl": [13, 19], "msg": [15, 18], "mu": 0, "much": [0, 2, 8, 13, 21], "multipl": [0, 9, 16, 23], "multipli": [0, 16], "multiport": 2, "multirefer": 0, "multireference_st": [0, 7], "multireference_state_prod": [0, 7, 15], "must": [0, 2, 3, 4, 16, 20], "n": [0, 2, 8, 9, 11, 12, 14, 20, 21, 23], "n2": [20, 21, 23], "n_": [0, 1, 4, 8, 11, 12, 14], "n_alpha": [4, 6, 20], "n_beta": [4, 6, 20], "n_frozen": [20, 23], "n_i": 4, "n_j": 4, "n_layer": 15, "n_p": 0, "n_param": [0, 13], "n_qubit": 4, "n_rep": [0, 5, 13, 18, 19, 20], "n_sampl": 0, "n_step": [0, 4, 13, 19, 23], "n_term": 5, "n_vec": 2, "n_x": 0, "n_y": 0, "name": [0, 9, 13, 14, 19, 22], "namedtupl": [0, 2], "nan": 6, "nao_nr": [15, 18, 20, 21, 23], "nativ": 21, "navig": 22, "ndarrai": [0, 1, 2, 3, 4, 5, 6, 12, 18, 23], "nearest": 0, "nearest_neighbor_interact": 0, "need": [0, 4, 9, 11, 13, 20, 22, 23], "neg": [0, 4], "neglig": 4, "neighbor": [0, 13], "nelec": [0, 1, 4, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "nelectron": 18, "neq": 0, "nest": 2, "network": 11, "new": [0, 4, 12, 16], "newli": 0, "next": [13, 15, 23], "nfev": [3, 15, 18], "nit": [15, 18], "nitrogen": [20, 23], "njev": [15, 18], "nlinop": [3, 18], "nn": 0, "nocc": [0, 5, 6], "nocc_a": 2, "nocc_b": 2, "noisi": 11, "non": [4, 11], "none": [0, 1, 2, 3, 4, 5, 6], "nonzero": [0, 2, 11], "norb": [0, 1, 2, 4, 5, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "norb_i": 0, "norb_rang": 6, "norb_x": 0, "norm": [0, 3, 18], "normal": [0, 15, 16], "normal_ord": [0, 16], "note": [0, 2, 3, 13, 14, 16, 19, 21], "notebook": 22, "noth": 4, "notic": 18, "notimplementederror": 4, "now": [9, 13, 15, 18, 20, 23], "np": [0, 2, 4, 5, 6, 9, 12, 13, 15, 18, 19, 20, 21, 23], "num_num_ansatz_op": 4, "num_op_sum_linop": [1, 7], "number": [0, 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 18, 21, 23], "number_oper": [0, 7], "numer": [0, 2, 4, 16], "numnumansatzopspinbalanc": [0, 4, 7], "numnumansatzopspinbalancedjw": [4, 7], "numopsumevolutionjw": [4, 7, 13, 19], "numopsumevolutionspinlessjw": [4, 7], "numpi": [0, 1, 2, 4, 6, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23], "o": [0, 15, 20], "o_1": 0, "o_2": 0, "o_k": 0, "obj": 0, "object": [0, 2, 3, 4, 9, 16, 18, 20], "obtain": [0, 8, 9, 12, 13, 18, 23], "occ_a": 6, "occ_b": 6, "occup": [0, 6, 8, 12, 14], "occupi": [0, 4, 5, 6, 13, 14], "occupied_orbit": [0, 4, 13, 19, 20], "often": [8, 11, 18], "onc": [12, 13, 22], "one": [0, 1, 2, 4, 5, 8, 9, 13, 14, 18, 20, 22, 23], "one_body_basis_chang": 23, "one_body_energi": 23, "one_body_integr": 0, "one_body_linop": [1, 7], "one_body_squar": 0, "one_body_tensor": [0, 9, 23], "one_hot": [0, 2, 7], "one_rdm": 0, "ones": 9, "onli": [0, 2, 4, 8, 11, 12, 13, 20, 22], "onsit": 0, "onto": [13, 16], "op": [0, 4, 16], "op1": [0, 16], "op2": [0, 16], "op3": 16, "op4": 16, "opaqu": 13, "open": [0, 11], "openbla": 22, "oper": [0, 1, 2, 3, 4, 5, 8, 11, 12, 16, 18, 22, 23], "oppos": 13, "opposit": [18, 20], "optim": [0, 2, 4, 7, 11, 13, 19, 21], "optimization_level": [13, 19], "optimize_kwarg": 3, "optimize_regular": 3, "optimize_vari": 3, "optimizeresult": [3, 18], "option": [0, 1, 2, 3, 4, 9, 15, 18, 22], "orb": [0, 16], "orbit": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 18, 20, 21, 23], "orbital_rot": [0, 1, 2, 4, 12, 13, 14, 19, 20, 21, 23], "orbital_rotation_a": 2, "orbital_rotation_b": 2, "orbital_symmetri": 0, "orbitalrotationjw": [4, 7, 13, 19, 20], "orbitalrotationspinlessjw": [4, 7], "order": [0, 1, 2, 4, 8, 9, 13, 14, 16, 19, 20, 23], "ordereddict": [13, 19], "org": 0, "origin": [0, 2, 11, 13, 23], "orthogon": [2, 5], "other": [0, 4, 11, 14, 18, 19, 20], "otherwis": 0, "our": [15, 18, 20, 23], "out": [2, 23], "output": [0, 3, 4, 13, 18, 20], "over": 0, "overrid": [0, 2], "overridden": 4, "overwritten": [0, 15, 18], "own": 4, "p": [0, 2, 8, 9, 11, 13, 18, 19, 20], "packag": [15, 18, 22], "pacman": 22, "pad": 0, "page": [8, 9, 11, 12, 13, 14], "pair": [0, 1, 2, 4, 6, 11, 13, 14], "pairs_aa": [13, 18, 20], "pairs_ab": [13, 18, 20], "pairs_bb": 20, "paper": 11, "parallel": [2, 11, 13], "param": 0, "paramet": [0, 1, 2, 3, 4, 5, 6, 11, 15, 18], "parameter_valu": 4, "params_to_vec": [3, 18], "pars": [15, 18], "part": [0, 5, 8, 12, 14, 15], "particl": [0, 5, 6, 12, 16, 21], "pass": [0, 1, 2, 4, 9, 12, 13, 14, 15, 16, 18, 19], "pass_manag": [13, 19], "passmanag": [4, 13], "path": 0, "pathlik": 0, "pattern": [13, 15], "pauli": 0, "per": 23, "perform": [0, 2, 3, 8, 9, 12, 13, 20, 23], "period": 0, "permut": 2, "persist": 22, "ph": 5, "phase": [0, 2, 4, 6, 13], "phase_angl": 0, "phaseg": 13, "phi": [0, 2, 6], "phi_0": 11, "pi": [0, 15], "piec": [9, 16], "pip": 21, "pipelin": 13, "pivot": 2, "pk": 2, "place": [0, 2, 11, 13, 16, 22], "plain": 14, "pmatrix": [0, 2], "point": 0, "polar": 0, "posit": [2, 3, 14], "possibl": [0, 2, 6, 20, 21], "possibli": [0, 18], "potenti": 0, "power": 0, "pq": [0, 2, 8, 9], "pqr": [0, 2, 8, 9, 23], "practic": 8, "pre": [11, 19], "pre_init": [4, 7, 13, 19], "pre_init_pass": [4, 7, 19], "precis": 6, "prepar": [0, 4, 20], "preparehartreefockjw": [4, 7, 13, 19, 20], "preparehartreefockspinlessjw": [4, 7, 20], "prepareslaterdeterminantjw": [4, 7, 13, 19, 20], "prepareslaterdeterminantspinlessjw": [4, 7, 20], "present": 3, "preserv": [16, 20], "preset_passmanag": [13, 19], "previou": [18, 20], "previous": [8, 13, 14, 18], "primit": [4, 17, 21], "primitivejob": 4, "primitiveresult": 4, "print": [0, 6, 13, 14, 15, 16, 18, 20, 21, 23], "probabl": 0, "problem": 3, "process": 0, "processor": 11, "prod": 15, "prod_": [0, 4, 11], "prod_k": 8, "prod_state_sum": 0, "produc": [0, 13], "product": [0, 2, 8, 14, 15, 16], "productstatesum": [0, 7], "programmat": 16, "project": [3, 18], "properti": [0, 2, 12], "proport": [0, 8], "protocol": 0, "provid": [9, 13, 19, 22], "pseudorandom": [0, 4, 5, 6], "psi": [0, 11], "pub": [4, 20], "pub_result": 20, "put": 15, "py": [9, 15, 18], "pypi": 22, "pyscf": [0, 4, 14, 15, 18, 20, 21, 23], "python3": [15, 18], "q": [0, 8, 9, 13, 19], "qdrift": 0, "qi": 0, "qiskit": [7, 13, 17, 21, 22], "qiskit_vec_to_ffsim_vec": [4, 7], "qk": 2, "quadrat": [8, 10, 21, 23], "qualnam": 0, "quantifi": 2, "quantiti": 0, "quantum": [0, 4, 8, 11, 13, 14, 17, 20, 21], "quantumcircuit": [4, 13, 19, 20], "quantumregist": [13, 19, 20], "qubit": [0, 4, 10, 11, 15, 19, 20, 21], "r": [0, 2, 8, 9], "radic": 20, "radius_1": 15, "radius_2": 15, "rais": [0, 2, 4, 6], "random": [0, 4, 6, 7, 9, 13, 14, 15, 16, 19, 20, 21], "random_antihermitian": [5, 7], "random_double_factorized_hamiltonian": [5, 7, 13, 19], "random_fermion_hamiltonian": [5, 7], "random_fermion_oper": [5, 7], "random_hermitian": [5, 7], "random_molecular_hamiltonian": [5, 7], "random_nelec": [6, 7], "random_occupied_orbit": [6, 7], "random_orthogon": [5, 7], "random_real_symmetric_matrix": [5, 7, 9, 13, 19, 20], "random_special_orthogon": [5, 7], "random_state_vector": [5, 7, 16], "random_statevector": [5, 7], "random_t2_amplitud": [5, 7], "random_two_body_tensor": [5, 7, 9], "random_ucj_op_spin_balanc": [5, 7, 13, 19], "random_ucj_op_spin_unbalanc": [5, 7, 19], "random_ucj_op_spinless": [5, 7], "random_ucj_oper": [5, 7], "random_unitari": [5, 7, 13, 14, 19, 20, 21], "rang": [0, 2, 6, 13, 14, 15, 18, 20, 21, 23], "rangl": [0, 4, 11, 14], "rank": [0, 2, 5, 8, 13], "rather": [0, 12, 14], "rccsd": 20, "rdm": [0, 7], "rdm1": 0, "rdm2": 0, "rdm3": 0, "rdm4": 0, "reach": 18, "read": 0, "real": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 18, 21], "realucjoper": [0, 7], "reason": [4, 12], "recal": 13, "recommend": [4, 13, 16, 19, 21], "reconstruct": [0, 2, 23], "reconstruct_t2_alpha_beta": 2, "recover": 0, "reduc": [0, 2, 13], "reduced_matrix": [2, 7], "reduced_matrix_product_st": 0, "redund": 11, "refer": [0, 2, 3, 4, 5, 6, 11, 12, 14, 18, 21], "reference_occup": [0, 15], "reference_occupations_spati": 15, "reference_st": 18, "regress": 0, "regular": [3, 18], "rel": [0, 2, 4, 6], "rel_reduction_of_f_": 18, "relat": 12, "releas": 21, "reorder": [0, 8], "rep": 13, "repeat": 15, "repeatedli": 12, "repetit": [0, 5, 11, 13, 18], "repositori": 22, "repr": 16, "repres": [0, 2, 3, 4, 6, 9, 11, 14, 16, 18, 19], "represent": [0, 1, 2, 4, 5, 10, 14, 16, 21, 23], "reproduc": 23, "requir": [0, 9, 11, 13, 14, 22], "reshap": 14, "respect": [0, 2, 3, 23], "rest": [0, 13], "restrict": [0, 13, 18], "result": [0, 1, 2, 3, 4, 5, 8, 9, 11, 13, 15, 18, 19, 20, 23], "retain": [0, 13], "retriev": 20, "return": [0, 1, 2, 3, 4, 5, 6, 12, 15, 16, 18, 23], "return_lower_rank": 0, "revers": 20, "rewrit": 0, "rewritten": 12, "rhf": [0, 15, 18, 20, 21, 23], "right": [0, 4, 12, 14, 16], "ring": 0, "rise": [2, 8], "rng": [9, 13, 15, 19, 20], "rohf": 20, "root": 0, "rotat": [0, 1, 2, 4, 5, 8, 10, 11, 14, 21, 23], "rotated_vec": 14, "routin": [2, 9, 16], "row": [0, 2, 14], "rtol": [0, 2, 4, 6], "rtype": [0, 2, 4], "run": [0, 4, 13, 15, 18, 19, 20, 21, 22, 23], "run_ccsd": 0, "run_cisd": 0, "run_fci": [0, 15, 18], "run_mp2": 0, "run_sci": 0, "rung": 11, "runner": [15, 18], "rust": 22, "rvert": 0, "s_": [0, 14], "s_a": 0, "s_b": 0, "sa": 9, "same": [0, 9, 11, 12, 13, 14, 15, 18, 20], "sampl": [0, 4, 5, 6, 9], "sample_slater_determin": [0, 7], "sample_state_vector": [0, 7], "sampler": [0, 4, 17, 21], "samplerpubresult": 4, "sandwich": 13, "satisfi": [0, 12, 16, 20, 22], "save": [0, 18, 22], "scalar": [0, 16], "scale": [8, 13, 15, 19], "scf": [0, 15, 18, 20, 21, 23], "scf_func": 0, "scheme": 8, "sci": 0, "sci_energi": 0, "sci_vec": 0, "scipi": [0, 2, 3, 15, 16, 18, 21, 23], "search": 14, "second": [0, 2, 4, 8], "section": [8, 19], "sector": [0, 1, 2, 4, 15], "see": [0, 2, 4, 11, 13, 14, 19, 22, 23], "seed": [0, 4, 5, 6, 9, 13, 14, 19, 20, 21], "seen": 20, "select": 3, "sens": [13, 23], "separ": [0, 11, 14], "sequenc": [0, 2, 4, 13], "seri": 2, "serial": 0, "serializ": [15, 18], "set": [0, 1, 2, 4, 5, 8, 11, 12, 13, 19, 23], "setup": 11, "sever": [9, 13], "shape": [0, 2, 5, 11, 23], "share": 11, "shell": [11, 18], "shot": [0, 4, 20], "should": [0, 1, 2, 4, 5, 6, 9, 12, 22], "show": [13, 15, 16, 18, 19, 20], "shown": 16, "side": 0, "sigma": [0, 1, 4, 8, 9, 11, 12], "sign": 0, "signatur": 3, "signific": 23, "significantli": 13, "similar": 18, "simpl": [20, 22], "simpler": 0, "simpli": [4, 13, 14], "simplist": 23, "simul": [0, 8, 11, 12, 14, 17, 21, 24], "simulate_qdrift_double_factor": [0, 7], "simulate_trotter_diag_coulomb_split_op": [0, 7], "simulate_trotter_double_factor": [0, 7, 8, 23], "simulate_trotter_step_double_factor": 23, "simulatetrotterdoublefactorizedjw": [4, 7, 13, 19], "sin": [0, 15], "sinc": [0, 2, 11, 12, 15, 18], "singl": [0, 1, 4, 6, 8, 13, 23], "singlefactorizedhamiltonian": [0, 7], "singular": [0, 2], "site": [0, 15, 18], "size": [0, 3, 15], "slater": [0, 4], "slater_determin": [0, 7], "slater_determinant_rdm": [0, 7], "slice": 2, "small": 2, "smaller": [0, 2, 8, 16, 23], "so": [0, 2, 6, 8, 11, 12, 13, 15, 16, 22, 23], "softwar": [0, 21], "solv": 3, "some": [0, 2, 6, 9, 13, 14, 16, 18, 20], "sometim": [0, 14], "sort": 20, "sourc": [0, 1, 2, 3, 4, 5, 6, 21], "space": [0, 9, 14, 15, 18, 20, 23], "span": [0, 2], "spars": [9, 16, 23], "sparsepauliop": 4, "sparsiti": 11, "spatial": [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 23], "speci": [4, 6], "special": [2, 5, 11, 13, 21], "specif": 14, "specifi": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 15, 23], "spectral": 0, "spin": [0, 1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 16, 18, 20, 21], "spin_squar": [0, 7], "spin_sum": 0, "spinless": [0, 4, 5, 6], "split": [0, 23], "squar": [0, 2, 11, 13, 18, 20], "stack": 0, "stage": [4, 13, 19], "standard": 18, "standard_norm": [9, 13, 19], "star": 2, "start": 0, "state": [0, 1, 3, 4, 5, 9, 10, 11, 12, 13, 18, 20, 21, 23], "statevector": [0, 4, 7], "static": [0, 4], "statist": 20, "statu": [15, 18], "step": [0, 4, 8, 12, 15, 19, 23], "step_tim": 23, "still": [0, 8], "sto": [0, 15, 18, 23], "stop": [15, 18], "store": [0, 2, 4, 6, 9, 11, 13, 18, 19, 23], "store_cisd_vec": 0, "store_fci_vec": 0, "store_sci_vec": 0, "store_t1": 0, "store_t2": 0, "str": [0, 2, 4, 6], "straightforward": 2, "strategi": 0, "strength": 0, "strictli": 3, "string": [0, 14, 16], "strings_a": 0, "strings_b": 0, "strings_to_address": [0, 7], "strings_to_indic": [0, 7], "structur": [0, 8], "sub": 0, "subclass": 4, "subdirectori": 22, "submit": 20, "subroutin": 12, "subspac": [0, 2, 16], "substitut": 0, "subsystem": [14, 22], "subtract": [0, 16], "success": [15, 18], "sudo": 22, "suffix": 15, "suggest": 19, "sum": [0, 4, 8, 23], "sum_": [0, 1, 2, 4, 8, 9, 11, 12, 23], "sum_j": 12, "sum_k": [8, 12], "sum_p": 0, "sum_t": 0, "summat": 0, "support": [0, 2, 9, 14, 16, 20, 22], "supportsapplyunitari": [0, 7], "supportsapproximateequ": [0, 7], "supportsdiagon": [0, 7], "supportsfermionoper": [0, 7], "supportslinearoper": [0, 7], "supportstrac": [0, 7], "suzuki": [0, 23], "swap": [0, 11, 13], "symmetr": [0, 2, 4, 5, 8, 11], "symmetri": [0, 12, 15, 18, 20, 21, 23], "system": [0, 4, 6, 12, 14, 22], "t": [0, 2, 4, 8, 11, 12, 20, 21], "t1": 0, "t1a": 0, "t1b": 0, "t2": [0, 2, 5, 18, 20], "t2_amplitud": 2, "t2aa": 0, "t2ab": 0, "t2bb": 0, "t_": 2, "tabl": [0, 16], "take": [0, 3, 18, 19], "taken": 11, "target": [2, 13], "target_orb": 0, "tau": [0, 1, 4, 8, 9, 11], "taylor": 2, "tensor": [0, 1, 2, 5, 8, 9, 18, 23], "term": [0, 2, 5, 8, 11, 16, 23], "test": [7, 21, 23], "text": [0, 8, 9], "th": [2, 12], "than": [0, 4, 12, 13, 14, 18, 21], "thei": [0, 9, 11, 12, 16], "them": [11, 13, 14], "therefor": [0, 2, 11], "theta": [0, 15], "thi": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23], "think": 2, "third": [0, 2], "those": [3, 18], "though": 13, "three": [0, 1, 4, 9, 16], "threshold": [0, 2, 3], "thu": 8, "time": [0, 2, 3, 4, 9, 13, 14, 19, 20, 23], "titl": 21, "tmp": [9, 15, 18], "tmp2r5b2_je": 15, "tmpj45xqv5x": 18, "to_diag_coulomb_mat": 0, "to_fcidump": 0, "to_json": 0, "to_molecular_hamiltonian": 0, "to_number_represent": 0, "to_orbital_rot": 0, "to_paramet": [0, 18], "to_t_amplitud": 0, "to_z_represent": 0, "tol": [0, 2, 23], "toler": [0, 2, 4, 6, 11, 23], "too": 2, "top": 20, "topologi": [11, 13, 18], "toru": 0, "total": [0, 4, 8, 15, 18, 23], "tox": [15, 18], "trace": [0, 7, 9, 23], "tracea": [9, 23], "trajectori": 0, "transform": [0, 1, 4], "transformationpass": 4, "transpil": [4, 13, 17, 21], "transpiled_opt": 13, "treat": 0, "triangl": 11, "trianglular": [0, 2], "triangular": [0, 2, 4], "triplet": 6, "trotter": [0, 4, 21, 24], "true": [0, 2, 3, 4, 6, 16, 18, 20], "truncat": 8, "try": 23, "tunnel": 0, "tupl": [0, 1, 2, 4, 6, 12, 15, 16, 23], "tutori": [21, 23], "twice": [0, 15, 19], "two": [0, 2, 5, 8, 9, 11, 13, 14, 15, 18, 22, 23], "two_body_integr": 0, "two_body_tensor": [0, 2, 9, 23], "type": [0, 1, 2, 3, 4, 5, 6, 20, 22], "typeerror": 0, "typic": 0, "u": [0, 1, 2, 4, 11], "u_": 4, "u_k": 0, "ubuntu": 22, "uccsd": 20, "ucj": [0, 4, 5], "ucj_balanced_jw": 13, "ucj_op": [4, 13, 19, 20], "ucj_oper": 4, "ucjoper": [0, 4, 5, 7], "ucjoperatorjw": [4, 7], "ucjopspinbalanc": [0, 4, 5, 7, 11, 13, 18, 20], "ucjopspinbalancedjw": [4, 7, 13, 19, 20], "ucjopspinless": [0, 4, 5, 7], "ucjopspinlessjw": [4, 7], "ucjopspinunbalanc": [0, 4, 5, 7, 11, 20], "ucjopspinunbalancedjw": [4, 7, 13, 19, 20], "uhf": 20, "unbalanc": [0, 4, 5, 20], "uncorrel": 0, "under": [0, 4], "underli": 4, "unifi": 20, "uniform": [0, 5], "unimpl": 4, "union": [2, 4], "unit": 2, "unitari": [0, 1, 2, 4, 5, 8, 10, 12, 14, 17, 21], "univers": 2, "unlik": 0, "unord": 0, "untouch": 0, "up": [0, 2, 6, 8, 14, 22], "updat": [0, 8], "upon": 16, "upper": [0, 2, 4, 11], "url": 21, "us": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23], "usag": [0, 2, 16, 19], "user": 22, "userwarn": [9, 15, 18], "usual": 0, "util": [2, 5, 6, 8], "v": [0, 20], "v_": 0, "v_i": 2, "v_j": 2, "vacuum": 4, "valid": [0, 4, 5, 6], "valu": [0, 1, 2, 3, 4, 6, 9, 11, 18, 19, 23], "valueerror": [0, 2, 4], "vari": [0, 4], "variabl": [14, 23], "variant": [11, 13, 18], "variat": [0, 3, 11, 18], "variation": 18, "varphi": 0, "vdot": [18, 21, 23], "ve": 23, "vec": [0, 1, 2, 4, 9, 12, 14, 16, 21, 23], "vec_a": 0, "vec_b": 0, "vector": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 15, 16, 18, 21], "verbos": 6, "verifi": 2, "version": 4, "vertic": 0, "via": [0, 23], "view": [0, 16], "volum": 22, "w": [0, 8, 12], "w_k": 0, "wa": [0, 3, 4, 11], "wai": 11, "want": 13, "warn": [9, 15, 18, 20], "water": 15, "wavefunct": [3, 18], "we": [0, 2, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "web": 22, "weight": 14, "well": [3, 14, 21, 22, 23], "when": [0, 3, 4, 9, 11, 13, 14, 16, 19, 21], "whenev": 0, "where": [0, 1, 2, 3, 4, 8, 11, 12, 14, 22, 23], "whether": [0, 1, 2, 3, 4, 5, 16], "which": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 22, 23], "while": [8, 11], "whose": [0, 2, 14], "width": 5, "wigner": [0, 4], "william": 2, "window": [21, 22], "wise": 2, "with_final_orbital_rot": [0, 5], "with_phase_angl": 0, "with_phi": 0, "within": [0, 2, 13, 16, 18, 21], "without": [11, 13, 18], "won": 21, "word": [0, 11, 20], "work": [9, 13, 15, 18, 19, 21, 22], "workflow": 20, "would": [13, 14], "wrapper": 23, "write": 23, "written": 8, "wrote": 23, "wsl": 22, "x": [0, 3, 4, 13, 15, 18, 19, 20], "x0": [3, 15, 18], "xx_plus_yi": [13, 19], "xxplusyyg": [13, 19], "y": 0, "yaml": 22, "yet": [9, 18], "yield": [0, 2, 4, 8, 11, 15, 23], "you": [0, 1, 2, 4, 9, 14, 18, 21, 22, 23], "your": [19, 22], "z": [0, 1, 2, 4, 5, 12, 16, 21], "z_represent": [0, 1, 4, 5], "zero": [0, 2, 4, 9, 19], "zip": [0, 15, 18, 23], "\u03c8": 18}, "titles": ["ffsim", "ffsim.contract", "ffsim.linalg", "ffsim.optimize", "ffsim.qiskit", "ffsim.random", "ffsim.testing", "API reference", "Double-factorized representation of the molecular Hamiltonian", "Hamiltonians", "Explanations", "The local unitary cluster Jastrow (LUCJ) ansatz", "Orbital rotations and quadratic Hamiltonians", "Qubit gate decompositions of fermionic gates", "State vectors and gates", "How to simulate entanglement forging", "How to use the FermionOperator class", "How-to guides", "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz", "How to build and transpile Qiskit quantum circuits", "How to use ffsim\u2019s Qiskit Sampler primitive", "ffsim", "Installation", "Implementing Trotter simulation of the double-factorized Hamiltonian", "Tutorials"], "titleterms": {"": 20, "The": 11, "action": 9, "an": 20, "ansatz": [11, 15, 18], "api": 7, "applic": 8, "background": 8, "balanc": [11, 19], "brief": 8, "build": [15, 19, 23], "can": 20, "choos": 15, "circuit": [19, 20], "cite": 21, "class": 16, "close": 20, "cluster": [11, 13, 18, 19], "code": 21, "comput": 15, "content": 21, "contract": 1, "coulomb": [13, 19], "criteria": 20, "data": 9, "decomposit": 13, "determin": [13, 19], "diagon": [13, 19], "docker": 22, "doubl": [8, 13, 19, 23], "energi": 15, "entangl": 15, "evolut": [8, 12, 13, 19], "exampl": [20, 21], "explan": 10, "factor": [8, 13, 19, 23], "fermion": [13, 14], "fermionoper": 16, "ffsim": [0, 1, 2, 3, 4, 5, 6, 20, 21], "ffsimsampl": 20, "fock": [13, 19], "forg": 15, "formula": 8, "from": [20, 22], "gate": [13, 14, 19], "gener": [11, 18], "guid": 17, "hamiltonian": [8, 9, 12, 13, 19, 23], "hartre": [13, 19], "how": [15, 16, 17, 18, 19, 20], "implement": 23, "initi": 15, "instal": [21, 22], "jastrow": [11, 13, 18, 19], "linalg": 2, "linear": 18, "linearoper": 9, "local": [11, 13, 18], "lucj": [11, 18, 20], "merg": 13, "method": 18, "molecul": [15, 20], "molecular": 8, "more": 20, "number": [13, 19], "occup": 15, "open": 20, "oper": [9, 13, 15, 19], "optim": [3, 15, 18], "orbit": [12, 13, 19], "overview": 19, "pip": 22, "prepar": [13, 19], "primit": 20, "qiskit": [4, 19, 20], "quadrat": 12, "quantum": 19, "qubit": 13, "random": 5, "refer": [7, 15], "represent": [8, 9], "rotat": [12, 13, 19], "sampl": 20, "sampler": 20, "scipi": 9, "shell": 20, "simul": [13, 15, 18, 19, 23], "slater": [13, 19], "sourc": 22, "spin": [11, 19], "spinless": 14, "state": [14, 19], "sum": [13, 19], "suzuki": 8, "test": 6, "time": [8, 12], "transform": 19, "transpil": 19, "treat": 14, "trotter": [8, 13, 19, 23], "tutori": 24, "ucj": [11, 13, 18, 19], "unbalanc": [11, 19], "unitari": [11, 13, 18, 19], "us": [16, 20, 22], "vector": 14, "via": [8, 9], "within": 22}}) \ No newline at end of file diff --git a/dev/tutorials/double-factorized-trotter.html b/dev/tutorials/double-factorized-trotter.html index d732b061f..4f93153b8 100644 --- a/dev/tutorials/double-factorized-trotter.html +++ b/dev/tutorials/double-factorized-trotter.html @@ -456,7 +456,7 @@

Build the Hamiltonian
-Maximum error in a tensor entry: 0.036685417309833435
+Maximum error in a tensor entry: 0.03668541730983732
 

@@ -597,7 +597,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9402428512128193
+Fidelity of Trotter-evolved state with exact state: 0.9402435115134989
 

The fidelity of the final result can be improved by increasing the number of Trotter steps.

@@ -624,7 +624,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9985212764978459
+Fidelity of Trotter-evolved state with exact state: 0.9985212854198972
 

In the code cell below, we reproduce the results of our manually implemented function using ffsim’s built-in implementation.

@@ -652,7 +652,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9985212764978977
+Fidelity of Trotter-evolved state with exact state: 0.9985212854198656
 

A higher order formula achieves a higher fidelity with fewer Trotter steps:

@@ -680,7 +680,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9996731172097888
+Fidelity of Trotter-evolved state with exact state: 0.9996731164188294
 

You’ve made it to the end of this tutorial!

diff --git a/dev/tutorials/double-factorized-trotter.ipynb b/dev/tutorials/double-factorized-trotter.ipynb index c225399c9..23cee463d 100644 --- a/dev/tutorials/double-factorized-trotter.ipynb +++ b/dev/tutorials/double-factorized-trotter.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:09.891133Z", - "iopub.status.busy": "2024-07-30T19:23:09.890939Z", - "iopub.status.idle": "2024-07-30T19:23:10.719898Z", - "shell.execute_reply": "2024-07-30T19:23:10.719297Z" + "iopub.execute_input": "2024-08-01T02:17:04.976247Z", + "iopub.status.busy": "2024-08-01T02:17:04.976047Z", + "iopub.status.idle": "2024-08-01T02:17:05.830855Z", + "shell.execute_reply": "2024-08-01T02:17:05.830221Z" } }, "outputs": [ @@ -80,10 +80,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.724325Z", - "iopub.status.busy": "2024-07-30T19:23:10.722982Z", - "iopub.status.idle": "2024-07-30T19:23:10.728057Z", - "shell.execute_reply": "2024-07-30T19:23:10.727492Z" + "iopub.execute_input": "2024-08-01T02:17:05.835411Z", + "iopub.status.busy": "2024-08-01T02:17:05.834034Z", + "iopub.status.idle": "2024-08-01T02:17:05.839699Z", + "shell.execute_reply": "2024-08-01T02:17:05.839098Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.730759Z", - "iopub.status.busy": "2024-07-30T19:23:10.730309Z", - "iopub.status.idle": "2024-07-30T19:23:10.735159Z", - "shell.execute_reply": "2024-07-30T19:23:10.734578Z" + "iopub.execute_input": "2024-08-01T02:17:05.842124Z", + "iopub.status.busy": "2024-08-01T02:17:05.841762Z", + "iopub.status.idle": "2024-08-01T02:17:05.846828Z", + "shell.execute_reply": "2024-08-01T02:17:05.846208Z" } }, "outputs": [ @@ -172,10 +172,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.737642Z", - "iopub.status.busy": "2024-07-30T19:23:10.737180Z", - "iopub.status.idle": "2024-07-30T19:23:10.741267Z", - "shell.execute_reply": "2024-07-30T19:23:10.740721Z" + "iopub.execute_input": "2024-08-01T02:17:05.849408Z", + "iopub.status.busy": "2024-08-01T02:17:05.849011Z", + "iopub.status.idle": "2024-08-01T02:17:05.853290Z", + "shell.execute_reply": "2024-08-01T02:17:05.852705Z" } }, "outputs": [ @@ -208,10 +208,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.743689Z", - "iopub.status.busy": "2024-07-30T19:23:10.743333Z", - "iopub.status.idle": "2024-07-30T19:23:10.747123Z", - "shell.execute_reply": "2024-07-30T19:23:10.746530Z" + "iopub.execute_input": "2024-08-01T02:17:05.855822Z", + "iopub.status.busy": "2024-08-01T02:17:05.855445Z", + "iopub.status.idle": "2024-08-01T02:17:05.859228Z", + "shell.execute_reply": "2024-08-01T02:17:05.858682Z" } }, "outputs": [ @@ -242,10 +242,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.749597Z", - "iopub.status.busy": "2024-07-30T19:23:10.749230Z", - "iopub.status.idle": "2024-07-30T19:23:10.767204Z", - "shell.execute_reply": "2024-07-30T19:23:10.766725Z" + "iopub.execute_input": "2024-08-01T02:17:05.861587Z", + "iopub.status.busy": "2024-08-01T02:17:05.861238Z", + "iopub.status.idle": "2024-08-01T02:17:05.880173Z", + "shell.execute_reply": "2024-08-01T02:17:05.879499Z" } }, "outputs": [ @@ -253,7 +253,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Maximum error in a tensor entry: 0.036685417309833435\n" + "Maximum error in a tensor entry: 0.03668541730983732\n" ] } ], @@ -302,10 +302,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.769527Z", - "iopub.status.busy": "2024-07-30T19:23:10.769159Z", - "iopub.status.idle": "2024-07-30T19:23:10.773470Z", - "shell.execute_reply": "2024-07-30T19:23:10.772876Z" + "iopub.execute_input": "2024-08-01T02:17:05.882799Z", + "iopub.status.busy": "2024-08-01T02:17:05.882413Z", + "iopub.status.idle": "2024-08-01T02:17:05.886918Z", + "shell.execute_reply": "2024-08-01T02:17:05.886234Z" } }, "outputs": [], @@ -360,10 +360,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.775913Z", - "iopub.status.busy": "2024-07-30T19:23:10.775580Z", - "iopub.status.idle": "2024-07-30T19:23:10.779210Z", - "shell.execute_reply": "2024-07-30T19:23:10.778606Z" + "iopub.execute_input": "2024-08-01T02:17:05.890026Z", + "iopub.status.busy": "2024-08-01T02:17:05.889546Z", + "iopub.status.idle": "2024-08-01T02:17:05.893992Z", + "shell.execute_reply": "2024-08-01T02:17:05.893290Z" } }, "outputs": [], @@ -400,10 +400,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.781552Z", - "iopub.status.busy": "2024-07-30T19:23:10.781137Z", - "iopub.status.idle": "2024-07-30T19:23:10.839559Z", - "shell.execute_reply": "2024-07-30T19:23:10.839007Z" + "iopub.execute_input": "2024-08-01T02:17:05.897100Z", + "iopub.status.busy": "2024-08-01T02:17:05.896661Z", + "iopub.status.idle": "2024-08-01T02:17:05.956062Z", + "shell.execute_reply": "2024-08-01T02:17:05.955393Z" } }, "outputs": [], @@ -439,10 +439,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.842796Z", - "iopub.status.busy": "2024-07-30T19:23:10.842390Z", - "iopub.status.idle": "2024-07-30T19:23:10.892960Z", - "shell.execute_reply": "2024-07-30T19:23:10.892462Z" + "iopub.execute_input": "2024-08-01T02:17:05.959698Z", + "iopub.status.busy": "2024-08-01T02:17:05.959228Z", + "iopub.status.idle": "2024-08-01T02:17:06.009922Z", + "shell.execute_reply": "2024-08-01T02:17:06.009440Z" } }, "outputs": [ @@ -450,7 +450,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9402428512128193\n" + "Fidelity of Trotter-evolved state with exact state: 0.9402435115134989\n" ] } ], @@ -480,10 +480,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:10.895325Z", - "iopub.status.busy": "2024-07-30T19:23:10.894846Z", - "iopub.status.idle": "2024-07-30T19:23:11.108409Z", - "shell.execute_reply": "2024-07-30T19:23:11.107796Z" + "iopub.execute_input": "2024-08-01T02:17:06.012328Z", + "iopub.status.busy": "2024-08-01T02:17:06.011978Z", + "iopub.status.idle": "2024-08-01T02:17:06.226697Z", + "shell.execute_reply": "2024-08-01T02:17:06.226042Z" } }, "outputs": [ @@ -491,7 +491,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212764978459\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212854198972\n" ] } ], @@ -521,10 +521,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:11.111059Z", - "iopub.status.busy": "2024-07-30T19:23:11.110475Z", - "iopub.status.idle": "2024-07-30T19:23:11.239146Z", - "shell.execute_reply": "2024-07-30T19:23:11.238685Z" + "iopub.execute_input": "2024-08-01T02:17:06.229290Z", + "iopub.status.busy": "2024-08-01T02:17:06.228932Z", + "iopub.status.idle": "2024-08-01T02:17:06.372363Z", + "shell.execute_reply": "2024-08-01T02:17:06.371850Z" } }, "outputs": [ @@ -532,7 +532,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985212764978977\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212854198656\n" ] } ], @@ -563,10 +563,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T19:23:11.241523Z", - "iopub.status.busy": "2024-07-30T19:23:11.241174Z", - "iopub.status.idle": "2024-07-30T19:23:11.342292Z", - "shell.execute_reply": "2024-07-30T19:23:11.341700Z" + "iopub.execute_input": "2024-08-01T02:17:06.374737Z", + "iopub.status.busy": "2024-08-01T02:17:06.374540Z", + "iopub.status.idle": "2024-08-01T02:17:06.478411Z", + "shell.execute_reply": "2024-08-01T02:17:06.477759Z" } }, "outputs": [ @@ -574,7 +574,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9996731172097888\n" + "Fidelity of Trotter-evolved state with exact state: 0.9996731164188294\n" ] } ],