diff --git a/docs/how-to-guides/lucj_mps.ipynb b/docs/how-to-guides/lucj_mps.ipynb index d0272a63a..37ed8d95a 100644 --- a/docs/how-to-guides/lucj_mps.ipynb +++ b/docs/how-to-guides/lucj_mps.ipynb @@ -42,23 +42,29 @@ "output_type": "stream", "text": [ "converged SCF energy = -77.8266321248745\n", - "Parsing /tmp/tmpnxxef5hr\n", - "converged SCF energy = -77.8266321248745\n", - "CASCI E = -77.8742165643863 E(CI) = -4.02122442107773 S^2 = 0.0000000\n", - "norb = 4\n", - "nelec = (2, 2)\n" + "Parsing /tmp/tmpn_bkseqz\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "Overwritten attributes get_hcore get_ovlp of \n", + "Overwritten attributes get_ovlp get_hcore of \n", "/home/bart/PycharmProjects/ffsim/.ffsim_dev/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable\n", " warnings.warn(msg)\n", "/home/bart/PycharmProjects/ffsim/.ffsim_dev/lib/python3.12/site-packages/pyscf/gto/mole.py:1294: UserWarning: Function mol.dumps drops attribute intor_symmetric because it is not JSON-serializable\n", " warnings.warn(msg)\n" ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "converged SCF energy = -77.8266321248744\n", + "CASCI E = -77.8742165643862 E(CI) = -4.02122442107773 S^2 = 0.0000000\n", + "norb = 4\n", + "nelec = (2, 2)\n" + ] } ], "source": [ @@ -126,17 +132,17 @@ }, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "E(CCSD) = -77.87421536374033 E_corr = -0.0475832388658431\n" + " does not have attributes converged\n" ] }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - " does not have attributes converged\n" + "E(CCSD) = -77.87421536374035 E_corr = -0.04758323886585134\n" ] } ], @@ -307,9 +313,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "LUCJ (MPS) energy = -77.78472901487439\n", - "LUCJ energy = -77.84651018653346\n", - "FCI energy = -77.8742165643863\n" + "LUCJ (MPS) energy = -77.77102552350499\n", + "LUCJ energy = -77.84651018653344\n", + "FCI energy = -77.87421656438623\n" ] } ], @@ -351,7 +357,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAFzCAYAAABcurqFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZy0lEQVR4nOzdeXxU5dn/8c/MZM+QkD2EAAnIkrAkQCCAgtDGUkRwpbZ9FFC06k+0PqgVahW0FdqiPljFUhVBWrW4FFS0uICICxAIBgkEREgIW0JCNpKQbWZ+f0RGYhYSSHIyyff9ep1XmDP3uc81DMzkOvd9rtvkcDgciIiIiIiISJsxGx2AiIiIiIhIZ6NETEREREREpI0pERMREREREWljSsRERERERETamBIxERERERGRNqZETEREREREpI0pERMREREREWljSsRERERERETamJvRAXQEdrud48eP06VLF0wmk9HhiIi4FIfDwenTp4mIiMBs1vXB9kDfayIiF66p32tKxFrA8ePH6dGjh9FhiIi4tCNHjhAZGWl0GIK+10REWsL5vteUiLWALl26ADV/2X5+fgZHIyLiWoqLi+nRo4fzs1SMp+81EZEL19TvNSViLeDstA0/Pz99YYmIXCBNgWs/9L0mInLxzve9psn4IiIiIiIibUyJmIiIiIiISBtTIiYiIiIiItLGXOIesU2bNjFhwoR6n0tOTmbEiBFATanIp556ihdeeIHDhw8THBzM//t//4+HH3640f7ff/99Hn/8cb755hu8vLy4/PLLWbt2bUu/DBGh5v9pdXU1NpvN6FCkjVgsFtzc3HQPmIiIyDlcIhEbM2YMJ06cqLXvkUceYcOGDSQkJDj3/fa3v+Wjjz7iySefZPDgweTn55Ofn99o32+//Ta33347Cxcu5Cc/+QnV1dWkpaW1yusQ6ewqKys5ceIEZWVlRocibczHx4du3brh4eFhdCgiIiLtgkskYh4eHoSHhzsfV1VV8c4773DPPfc4r7Cmp6fz97//nbS0NPr37w9AdHR0o/1WV1fz29/+lsWLFzNr1izn/tjY2FZ4FSKdm91uJyMjA4vFQkREBB4eHhoh6QQcDgeVlZXk5uaSkZFB3759tWiziIgILpKI/di7777LqVOnuOWWW5z73nvvPXr37s26dev4+c9/jsPhICkpib/+9a8EBgbW28/OnTs5duwYZrOZoUOHkp2dTXx8PIsXL2bQoEENnr+iooKKigrn4+Li4pZ7cSIdVGVlJXa7nR49euDj42N0ONKGvL29cXd35/Dhw1RWVuLl5WV0SCIiIoZzycuSy5cvZ+LEibVWqj506BCHDx/mzTffZNWqVaxcuZKUlBRuuOGGBvs5dOgQAAsWLOAPf/gD69atIyAggPHjxzc6pXHRokX4+/s7tx49erTcixPp4DQa0jnpfW9769ato3///vTt25eXXnrJ6HBERORHDP1mnDt3LiaTqdFt3759tY45evQoH374Ya2phFAz7amiooJVq1YxduxYxo8fz/Lly/n000/Zv39/vee32+0APPzww1x//fUMHz6cFStWYDKZePPNNxuMe968eRQVFTm3I0eOXPDfQc7Rg6R9+R45Rw9ecB8iIiLnqq6uZs6cOWzcuJGvv/6axYsXc+rUqTY5t77XRESaxtCpiffffz8zZ85stE3v3r1rPV6xYgVBQUFMnTq11v5u3brh5uZGv379nPtiYmIAyMrKct439uNjoPY9YZ6envTu3ZusrKwGY/L09MTT07PRuJti25tPMSLtj4SZHNgcJpKHLGDk9fdddL8iItK5JScnM3DgQLp37w7ApEmT+Oijj/jVr37Vuud9ewkJ3yzQ95qISBMYOiIWEhLCgAEDGt3OrbDlcDhYsWIF06dPx93dvVZfl156KdXV1Rw8+MMVuG+//RaAXr161Xv+4cOH4+npWWvErKqqiszMzAaPaSk5Rw+SkPZHzCYHABaTg2HfPKYriCIiwubNm5kyZQoRERGYTKZ6l1RZunQpUVFReHl5kZiYSHJysvO548ePO5MwgO7du3Ps2LFWjTnn6EGGf7Og1vfaiG/ms+X537Dnqw+oKFe1VBGRc7nUpP2NGzeSkZHBbbfdVue5pKQkhg0bxq233srXX39NSkoKd9xxB1dccYVzlCw5OZkBAwY4v4z8/Py48847mT9/Ph999BH79+/nrrvuAmDatGmt+lpyD+/F8v2X1VluJjt5h/c1cISIiHQWpaWlxMXFsXTp0nqfX716NXPmzGH+/Pns3LmTuLg4Jk6cyMmTJ9s40h/U971mMsHok6sZ+NGvcCzqSdqiy9my4iH2bfuIyopygyIVEWkfXKpq4vLlyxkzZgwDBgyo85zZbOa9997jnnvuYdy4cfj6+jJp0iSeeuopZ5uysjL2799PVVWVc9/ixYtxc3Pj5ptv5syZMyQmJrJx40YCAgJa9bWE9IrF5jDV+tKqdpgJ7lX3tYmItDeFhYUkJSVRXV3tXArk9ttvNzqsDmPSpElMmjSpweeffvppbr/9dmf14GXLlvH+++/z8ssvM3fuXCIiImqNgB07doyRI0c22F9LVAOu73vN7jCxy2cUPc6kE2wqZFBFKhxOhcPLKPvAk33egyjtNprAgT+lT9xluLlrnTkR6TxMDofDcf5m0pji4mL8/f0pKirCz8+vycednUtvNjlwOGD7kMc0l146rPLycjIyMoiOjlb58g7AZrNRUVGBj48PpaWlDBo0iB07dhAUFFRv+8be/wv9DO0sTCYTa9as4ZprrgFqloLw8fHhrbfecu4DmDFjBoWFhbzzzjtUV1cTExPDpk2b8Pf3Z/jw4Xz11VcNvj8LFizgscceq7P/Qr7Xhn3zGG4mO9UOMzuHzGfk9ffhsNvJ+jaV7F0f437kC6JLUgmgdrJX4vDmoM9gznQfQ9CgJHoPGo3FzaWuF4uIAE3/XtMnnIFGXn8fqQHdiN/8GwpNvoy49l6jQxKRBsydO5f/+7//4/rrr+e1114zOhzDWSwW53pwFRUVOBwOdF2vbeTl5WGz2QgLC6u1PywszFlp2M3NjaeeeooJEyZgt9v53e9+12ASBjXVgOfMmeN8XFxcfEFLs4y8/j5yEqeQd3gfwb0GMDKyDwAms5leA4bRa8Aw4CHsNhsZ+3aQ880neB75kt5lqfibSok7kwzfJcN3Syhe68tBnzgqIscQMvgKomNHYLZYmh2TiEh7pUTMYDFjplD5mYUAUyknjhygW6+61R1FxHjz5s0jMjKSe+65h8cff5xLLrnE6JAatHnzZhYvXkxKSgonTpyoNZpyrqVLl7J48WKys7OJi4vj2WefbXT62o8VFhZy+eWXc+DAARYvXkxwcHALvgq5WFOnTq1TYbghLVUNGCAssg9h3ydgDTFbLEQPTCR6YCIAtupqvtuzjby0T/A6+hV9ynbhZyplaNlX8O1X8O2TFLzdhQzfeKp6XEpY3BX06j8Mk9anExEXpkTMYJ5ePnznFsUltoOcSN+iREyknfL392fWrFn89re/Zffu3e06ETtb6OHWW2/luuuuq7fN2WIPy5YtIzExkSVLljBx4kT2799PaGgoAPHx8VRXV9c59qOPPiIiIoKuXbuya9cucnJyuO6667jhhhvqjNJIywsODsZisZCTk1Nrf05ODuHh4QZFdXEsbm5cEncpl8RdCkB1VSXf7t5Cfton+BzfwiVnviHAdJqA0s9h3+ew78+cwp9M61Cqe15Gt/gr6HHJkFqJWc7Rg+Qe3ktIr9jzJoYiIkZQItYOnPIfyCX5B6nISgFmGh2OSLt3ougMGXmlRAf70s3fu83OW11djY+PD2lpaVx77bVtdt7mOl+hBzh/sQeA1NTUJp0vLCyMuLg4Pv/8c2644YaLil3Oz8PDg+HDh7NhwwbnSKfdbmfDhg3Mnj3b2OBaiJu7B/2GXQ7DLgegqrKCfbs+p3DPRnxPfMUl5XsIMhURVLIJ9m6CvX8ilwAO+w3H3usybCW5jDz0vNYzE5F2TYlYO2CKGAr572I9tdvoUETajMPh4EyVrdnHvZ1ylPnv7sHuALMJHps6kOuHRzarD293CyaTqdnn/sMf/kBJSQlpaWnNPvZCLFy4kIULFzbaZu/evfTs2bNZ/VZWVpKSksK8efOc+8xmM0lJSWzZsqVJfeTk5ODj40OXLl0oKipi8+bNzuU/5OKVlJTw3XffOR9nZGSQmppKYGAgPXv2ZM6cOcyYMYOEhARGjhzJkiVLKC0tdSbWHY27hycDRiTBiCQAKsrL2Ju6maK9G/HL3sIlFemEmAoIKf4Edn9Sc9D3/8UtJgcJ3yxgy6kMLEFRuPkG4NElCO8uQfj4B2HtGoK1S1dNcxSRNqdErB0I7JsIadCz4lscdru+DKRTOFNlI/bRDy+qD7sDHnlnD4+8s6dZx+19fCI+Hs37+EtJSWHZsmVMnjy5zRKxO++8k1/84heNtomIiGh2v00p9nA+hw8f5je/+Y2zSMc999zD4MGDmx2L1G/Hjh1MmDDB+fhsIY0ZM2awcuVKbrzxRnJzc3n00UfJzs4mPj6e9evXd5qpoZ5ePsSO+jmM+jkA5WdKSdu5kZL0Twk7/gnR9sO12ptNDkYfXwnH6++v2mHmtMlKicnKGYuVcjd/Kt39sHn6Y/fqism7K2afANx9A/HsEoS3XyA+/sH4BYTi5e3b6Pe2pkiKSEOUiLUDPQcMp8Lhjr+plGOZ++neO8bokETkHHa7nTvuuIPZs2eTmJjITTfdRFVVFe7u7k3u4/jx4zz44IO8+uqrTT4mMDCQwMDACwm51Y0cObLJUxel+caPH3/eKpSzZ8/uMFMRL5aXty+DLp0Cl04h5+hBbC8O/9F6ZpDqOxazowrP6mJ8bKfxtZ+mi6MUT1MVbiY7ARQT4CiGamq2cuD0+c9d6XCj2GSl1GzljMWPCrcuVH2fxHmUHCWubCthppo11baGXIfPoMlYPLxx8/DCzdMHd08v3D29cff0wcPLBy9vX9zdPVr8oqwSQpH2R4lYO+Dh6cW37tH0q/6W7H1fKRGTTsHb3cLexyc265jsonKSnv4M+zm/n5pN8Mmcywn3b/raZN7uzSuB/eyzz5KXl8fjjz9OVlYWVVVV7Nu3r1kjQBEREc1KwqD1piZ2xGIPImeFRfYheciCetczq095WQnFBbmUFuVxpvgUFcV5VJUWYC8rwHGmAHN5IZbKYtwri/A6m8Q5SvBzlOBmsuNhqiaYQoLthWAHqoAz55zg+ymSZpODUXlvw6a3z/sa7A4T5bhTaXKnEg+qTD9s1SYPqi2e2Mwe2Mye2C2e2M0eONy8cFg8cbh5gpsXJjdPTO7emNy94Oh2EvI/IMzkwO4wsaX33Qy+9gF8rf6ahSNiICVi7USBfyyc+paqrBRgltHhiLQ6k8nU7OmBvUOsLLpuML//Txo2hwOLycTC6wbRO8TaSlHCsWPHeOSRR3j99dfx9fWlb9++eHp6kpaWxuDBg8nMzOTqq69m0KBBJCcnk5SUxMSJE1m0aBGlpaWsWbOGvn37kpmZyQ033MBbb73F1VdfTXx8PMnJyQwZMoR///vf9d6z1lpTEztDsQfp3Bpaz6w+Xj5WvHys0D26Wedw2O2UlBRRUphHadEpzhTnUlWST1VJAfayfNxOppFwekOd444Sjs3shrujEg9HJR5U4eGoxMtU5WxjNjnwphJvKoFScFCznVW3mOn5nZMQjs54Dp5+jkqHG4UmP0rMfpS5d6XCI4BqzwDs3kGYfYOwdAnGs0soPl1D6BLUDb/AmqmYF0MjcyI/UCLWTpi7D4NTa+mS3zb3noi4qhtH9GRcvxAy88qICvZp9aqJ9957L5MmTWLy5MlAzUK5MTExte4TS09P54033uCSSy5h0KBBWK1Wtm3bxj/+8Q+ee+45nnnmmVp9pqen8/rrrxMTE8OECRP44osvGDt2bJ1zX+jUxPMVegA6XbEH6Xyasp7ZxTCZzVj9ArD6BQB96zxf3xTJaocZ99s/ILKeuBx2O5WV5VSUn6GyvIyqijKqKs5QVV5GVeUZbBXl2CrPYKsqx1Z1BntlOY6qchzVNT+proDqCkzVZzDZKjB/v/mU5xBTnV7va/AwVRNKPqH2fKigZjvPdMxShxdFZj9KLf6ccetKpUdXqr2DwDsIk28QHn7BePqF4ts1FGtgGP6Bobi5ewCQ/PYShn+zQNUsRb6nRKydCOo3Cr6pKdhht9kwW5o3dUqkM+nm790mZevXrVvHxo0bSU+v/UvM4MGDayVi/fv3p3//mjUAY2JiSEpKcrb74IMP6vTbv39/YmNjARg6dCiZmZn1JmIX6nyFHoBOX+xBpLU1OEWygeTQZDbj6eWDp5cPENRicTSUEJ74n89w9/ahJD+bM4UnqSjOpbokD0pPYTpzCveKAjwrC/CpLqKLvQh/x2ncTTZ8TeX4Osqh+uQP99IVN3x+u8NEocmXUnwZ4cjB9ONqllXldOkxEGtgN/yDu+MfGKrfgaTTUCLWTvTsP5RyhztdTGc4ciiNHn3jjA5JpNO76qqrKCgoqLN/1apVtR57eno6/2w2m52PzWYzNlvdEv3ntrdYLPW2uRhNKfQAKvYg0tqaM0WytTSYEPYbUtOgR9MWp3fY7RQXF3A6P5uS/BzOFJ2ksjgXe2kejtJ8LOU1yZtXVSHW6kK6OIrpSglmk4OulNCVEuf0yLPMJgej9y2Cc4q1VjksnDL5UWwJoNQ9kArPIGzewWANwdIlDK+u4fgERuAfEkHXoHDnaFtzaYqktAdKxNoJN3cPvnO/hAHV6eTs36ZETEREpANo7SmSTdESCaHJbMavaxB+XYOg98AmHVNdVUlxQS6n83M4lfkN8Vvuw/yjapb73QfgYy/F315AV0pwN9kIoYAQWwHYDtWMuBXV37/dYaLA1IUic1dK3AMp9wii2jsYh28Ibl1C8egahk9ABF2CIwgIifh+tFFTJKX9UCLWjhQFDITcdKqP7DQ6FBEREelAjEgI3dw9CAztTmBod3oNGEZyaWGj1SwrK8opzDtBcd4xSvNPUFmUg604B0pzcTuTi2fFKaxVBXSxFxLgKMJictQsO2Avhoqs897jVowvxXRhhCO71hTJ4d8s4ETClXTr1a81/zpE6jA5mjJ/RRpVXFyMv78/RUVF+Pn5XXA/29cuZUTq79nrMZjY33/RghGKGK+8vJyMjAyio6Px8mp6qXnpGBp7/1vqM1Rajt4TaS05Rw86R+YuJjG0VVdTeCqb4rxjlJzKpqLwBNWnc3CU5OF2JheP8jx8q/LxsxXQ1VGEh6nxKeClDk8OecVSEhyPd9RIIgdfRnB485YGETmrqZ+hGhFrR0L6J0Iq9Ko4gK26Goub3h4RERHpOFpqZM7i5kZQWCRBYZHnbeuw2ykqPEVh7jHyDu5k6LY5taZIOhzga6pgcMXXcOxrOLYCvoRsgjnuG0tF+FD8+owiavAYfLt0vejYRc7Sb/rtSI++8ZQ5PPE1lXP4u2/oNWCY0SGJiIiIuDST2Yx/YAj+gSH06h9P8pniWlMkUwY9THD/0eTt34LpWAohxXvoZcsi3JRHeOlmOLgZDj6D7UMTGZae5PoNxNF9OEH9x9BrwHDcPTzPH4RIPZSItSMWNzcOe1xCTNUeTu7fqkRMREREpIX9uHhJ4vcjdH2GXOpsU1JcwOG0LZz+bgseJ1OJKNlLuCmPaPthogsPQ+EHsAfOODz4zuMSigKH4NYzgW4xlxER1R+T2WzUyxMXokSsnSkKGAQn92A7qoIdIiIiIq3hfFMkrX4BDBxzJYy50rkv7/hhju75kvLMbVjzdtGzYj9+pjJiqvZCzl7I+TdshwK6kOUdQ1lwPD7RI+k5+DICQrq1xcsSF6NErJ1xixwGJ1fjX7jH6FBERERE5HvBEb0IjugF/BoAu81G1sHd5KR/hf3IDgIKdxNVdZAA02kCziTDkWQ48gJshqOmcLKtA6kKH0rXvqOIGjgab1+r1jPr5JSItTOhA0bBTuhVeZDqqsoLXqhQRERERFqP2WKhZ794evaLd+6rKC/j273JFHy7BfOJnYQXp9HDcZxIRzaRp7Ph9AY4AFXvW8g2BRDqyCPMhNYz66SUiLUzkX0GU+Lwxmo6Q8aBXUTHjjA6JBERERFpAk8vH/oNGw/Dxjv3FRXkcmT3l5Qc2obXyVR6lO0lyFRIOHlwznpmw755jJzEKRoZ60SUiLUzZouFw56XMLByN7n7tyoRExEREXFh/gEh+I+7BsZdA9SU00/5YDnDdzxQq52byU7e4X1KxDoRlXRph04HDALAcUwFO0REREQ6EpPZTGT8T7A5TLX2VzvMBPcaYFBUYgQlYu2QW8/hAHRVwQ4RERGRDicssg8pQxY4kzGHA5ZaZ2s0rJNRItYOhfcfDUBU1SGqKisMjkZEpH4ZGRlMmDCB2NhYBg8eTGlpqdEhiYi4jJHX30fhda8BUIgvz+SP4njhGYOjkrakRKwd6t47lmJ88DRVkbX/a6PDERGp18yZM3n88cfZu3cvn332GZ6enkaHJCLiUoL61ywiHWAqxcdRxmvbsgyOSNqSErF2yGQ2k+XZD4BT3241OBoRAZg7dy6enp78+te/NjqUdmHPnj24u7szduxYAAIDA3FzU/0nEZFm8fIH70AAephyeT05i4pqm8FBSVtRItZOnQ4cAoDjuEbERNqDefPm8dRTT/H666/z3XffGR1OozZv3syUKVOIiIjAZDKxdu3aetstXbqUqKgovLy8SExMJDk5ucnnOHDgAFarlSlTpjBs2DAWLlzYQtGLiHQygdEAxPkWcKq0kv/uzjY4IGkrSsTaKY8ewwAILFLBDpH2wN/fn1mzZmE2m9m9e7fR4TSqtLSUuLg4li5d2mCb1atXM2fOHObPn8/OnTuJi4tj4sSJnDx50tkmPj6eQYMG1dmOHz9OdXU1n3/+Oc8//zxbtmzh448/5uOPP26Llyci0rEERAFwVc9KAF7ZkmlcLNKmNI+kneoWMxqSoVfVISrKy/D08jE6JJFOr7q6Gh8fH9LS0rj22muNDqdBkyZNYtKkSY22efrpp7n99tu55ZZbAFi2bBnvv/8+L7/8MnPnzgUgNTW1weO7d+9OQkICPXr0AODKK68kNTWVK664omVehIhIZ/F9Ija8SxHuFhNfZxWy+2gRgyP9jY1LWp1GxNqpbr36UYgVD5ONrH0pRocj0r4UHYOMzTU/29Af/vAHSkpKSEtLa5PzLVy4EKvV2uiWldX8G7srKytJSUkhKSnJuc9sNpOUlMSWLVua1MeIESM4efIkBQUF2O12Nm/eTExMTLNjERHp9L5PxLxLspg8uBsAqzQq1iloRKydMpnNZHn1p2t5CvkHtkH8WKNDEmlZDgdUlTX/uNTX4L+/A4cdTGaY9FeIb2YBDXcfMJnO3+4cKSkpLFu2jMmTJ7dZInbnnXfyi1/8otE2ERERze43Ly8Pm81GWFhYrf1hYWHs27evSX24ubmxcOFCxo0bh8Ph4Gc/+xlXXXVVs2MREen0vk/EKMjk5qujWJt6nHd3Hef3V8YQ4OthaGjSupSItWOlQYPhWAomFeyQjqiqDBY2P4moxWGHDx6o2Zrj98fBw7fJze12O3fccQezZ88mMTGRm266iaqqKtzd3Zvcx/Hjx3nwwQd59dVXm3xMYGAggYGBTW7f1poyBVJERM7jbCJWmMWwyC4M6u5H2rFi3thxhDsu1wLPHZlLTE3ctGkTJpOp3m379u3Odg6HgyeffJJ+/frh6elJ9+7deeKJJxrt+9tvv+Xqq68mODgYPz8/LrvsMj799NPWfklN4tkzAYDA4nSDIxHp3J599lny8vJ4/PHHGTx4MFVVVU0eOTorIiKiWUkYtN7UxODgYCwWCzk5ObX25+TkEB4e3uz+RETkIvh1B7M72KswnT7B9FFRAPxr22FsdoexsUmrcokRsTFjxnDixIla+x555BE2bNhAQkKCc99vf/tbPvroI5588kkGDx5Mfn4++fn5jfZ91VVX0bdvXzZu3Ii3tzdLlizhqquu4uDBg4b/QhIROxq2QK/qTMrPlOLl3fQr+CLtnrtPzchUcxQfh6Uja0bCzjJZ4O5t4NeM0TX3phe/OXbsGI888givv/46vr6+9O3bF09PT9LS0hg8eDCZmZlcffXVDBo0iOTkZJKSkpg4cSKLFi2itLSUNWvW0LdvXzIzM7nhhht46623uPrqq4mPjyc5OZkhQ4bw73//G1M9UyVba2qih4cHw4cPZ8OGDVxzzTVAzajfhg0bmD17drP7ExGRi2C2QNeekH8QCjKZGj+Ghf9N50j+GTbtP8lPY8LO34e4JJdIxDw8PGolRVVVVbzzzjvcc889zl9e0tPT+fvf/05aWhr9+/cHIDo6utF+8/LyOHDgAMuXL2fIkJp1u/785z/z/PPPk5aWZngiFta9N/n4EWgqJiN9O/2GjTc0HpEWZTI1a3ogAMF9Ycoz8N594LDVJGFTltTsbyX33nsvkyZNYvLkyUDNvVExMTG17hNLT0/njTfe4JJLLmHQoEFYrVa2bdvGP/7xD5577jmeeeaZWn2mp6fz+uuvExMTw4QJE/jiiy+cCyOf60KnJpaUlNRa6ywjI4PU1FQCAwPp2bMnAHPmzGHGjBkkJCQwcuRIlixZQmlpqbOKori2I0eOcPPNN3Py5Enc3Nx45JFHmDZtmtFhiUhDAqKciZhX9Fh+kdCDFzYfYtWWw0rEOjCXSMR+7N133+XUqVO1fmF477336N27N+vWrePnP/85DoeDpKQk/vrXvzb4i0xQUBD9+/dn1apVDBs2DE9PT/7xj38QGhrK8OHDGzx/RUUFFRUVzsfFxcUt9+LOYTKbOeLVn8Dy7RQc2AZKxERg2HTo81PIPwSBvcG/e6udat26dWzcuJH09NrTgwcPHlwrEevfv7/zAlBMTIyzGuHgwYP54IMP6vTbv39/YmNjARg6dCiZmZn1JmIXaseOHUyYMMH5eM6cOQDMmDGDlStXAnDjjTeSm5vLo48+SnZ2NvHx8axfv75OAQ9xTW5ubixZsoT4+Hiys7MZPnw4V155Jb6+mlkh0i6dU7AD4KbEXrz4+SE++zaXjLxSooP1f7cjcslEbPny5UycOJHIyEjnvkOHDnH48GHefPNNVq1ahc1m43//93+54YYb2LhxY739mEwmPvnkE6655hq6dOmC2WwmNDSU9evXExAQ0OD5Fy1axGOPPdbir6s+Z4KHwNHtmE6ktsn5RFyCf/dWTcDOuuqqqygoKKizf9WqVbUee3p6Ov9sNpudj81mMzabrc7x57a3WCz1trkY48ePx+E4/30Fs2fP1lTEDqpbt25061ZTBjs8PJzg4GDy8/OViIm0V85ELAOAnkE+TOgfysZ9J/nX1sM8clWscbFJqzG0WMfcuXMbLMJxdvvxDfFHjx7lww8/ZNasWbX22+12KioqWLVqFWPHjmX8+PEsX76cTz/9lP3799d7fofDwd13301oaCiff/45ycnJXHPNNUyZMqXOPWnnmjdvHkVFRc7tyJEjF/+X0QCvXjX3wIUU7221c4iISNvavHkzU6ZMISIiApPJxNq1a+u0Wbp0KVFRUXh5eZGYmEhycvIFnSslJQWbzeZcfFtE2qEfjYgBTB/dC4A3dhyhrLK67WOSVmfoiNj999/PzJkzG23Tu3fvWo9XrFhBUFAQU6dOrbW/W7duuLm50a9fP+e+s4uLZmVlOacNnWvjxo2sW7eOgoIC/Pz8AHj++ef5+OOPeeWVV5g7d269MXl6eta6ot2aug8cA19CT9thzpSextu3S5ucV0REWk9paSlxcXHceuutXHfddXWeX716NXPmzGHZsmUkJiayZMkSJk6cyP79+wkNDQUgPj6e6uq6v5x99NFHziIu+fn5TJ8+nRdffLF1X5CIXJx6ErFxfUOICvIh81QZa78+zq8TexoSmrQeQxOxkJAQQkJCmtze4XCwYsUKpk+fXmf9nksvvZTq6moOHjxInz41ay58++23APTq1ave/srKahaTNZtrDwyazWbsdnt9h7S5kIgocgkgxFTA4b3bGDAiyeiQROQcUVFR7Nixw/n4rbfecv551KhRrFu3rk67c9s/+eSTbRSptCfnW4Pt6aef5vbbb3feC71s2TLef/99Xn75ZedFwtTU1EbPUVFRwTXXXMPcuXMZM2bMedu2xb3PItKAs4lY2SkoLwYvP8xmEzeN6sWf3k9n1ZZMfjWyR70VdsV1ucQ6Ymdt3LiRjIwMbrvttjrPJSUlMWzYMG699Va+/vprUlJSuOOOO7jiiiuco2TJyckMGDCAY8eOATB69GgCAgKYMWMGu3bt4ttvv+XBBx8kIyPDWSGtPTjmMwCAwu8ubFqKiIi4jsrKSlJSUpxFX6DmAmFSUhJbtmxpUh8Oh4OZM2fyk5/8hJtvvvm87RctWoS/v79z0zRGkTbm5Qc+QTV/Ljzs3D1teA+83M3syz7N9sy69yyLa3OpRGz58uWMGTOGAQMG1HnObDbz3nvvERwczLhx45g8eTIxMTH8+9//drYpKytj//79VFVVATWLmq5fv56SkhJ+8pOfkJCQwBdffME777xDXFxcm72u8zkTPBgAS3aqsYGIiEiry8vLw2az1algGRYWRnZ2dpP6+PLLL1m9ejVr164lPj6e+Ph4du/e3WD7trz3WUQaUM/0RH8fd64dWlOcatWWzDqHiGtzqaqJr732WqPPR0RE8Pbbbzf4fH2VxBISEvjwww9bJL7W4hM1HLIg5LQKdoiIyPlddtllzZpi35b3PotIAwKi4FgK5GfU2n3zqCheTz7C+rRsThaXE+rnZUx80uJcakSss+oeWzO3v6ftKKWnC40NRkREWlVwcDAWi4WcnJxa+3NycggPDzcoKhFpdfWMiAHERvgxIiqAaruD15Kz2jwsaT1KxFxAcHhPcgjCbHJweM9Wo8MREZFW5OHhwfDhw9mwYYNzn91uZ8OGDYwePdrAyESkVTWQiAHcPLrmude2ZVFlax8F5eTiKRFzEce/L9hRfFAFO0REXF1JSQmpqanOyocZGRmkpqaSlVVztXvOnDm8+OKLvPLKK6Snp3PXXXdRWlrqrKIoIh1QQHTNz3oSsZ8PDCekiycnT1fw4Z6m3Ssq7Z8SMRdRHjoEALecXQZHIiIiF2vHjh0MHTqUoUOHAjWJ19ChQ3n00UcBuPHGG3nyySd59NFHiY+PJzU1lfXr19cp4CEiHcjZEbHCLLDbaj3l4WbmVyNr1hFb9dVhpGNQIuYifKNGABBakm5wJCIicrHOFo/68bZy5Upnm9mzZ3P48GEqKirYtm0biYmJxgUsIq3PLwLM7mCvguLjdZ7+n8SeuJlNJGfmk35Ca/11BErEXESPgd8X7LAf43RRvsHRiIiIiEiLMluga82oFwUZdZ4O8/Ni4sCagj2rtmhUrCNQIuYiAkK6cYIQALLSmragp4iIiIi4kEYKdgBMH90LgLVfH6PoTFXbxCStRomYCznhGwPA6QwV7BARERHpcM6TiI2MDqR/WBfOVNl4K+Vom4UlrUOJmAup+L5gh7sKdoi0ucsvvxyTyVRnmz59utGhiYhIRxHYcOVEoOZ7Z0zNqNi/th7Gbne0UWDSGpSIuRBr9EgAwlSwQ6RNORwOvv76a5588klOnDhRa3v++eeNDk9ERDqK84yIAVwT350unm5k5JXy+Xd5bRKWtA4lYi6k56Cagh2RjmyK8nMNjkak8zhw4ACnT59m3LhxhIeH19qsVqvR4YmISEfRhETM19ONGxIiAfjnlobbSfvnZnQA0nT+gSEcNYUT6cjmyJ6v8B97tdEhiVy00tLSBp+zWCx4eXk1qa3ZbMbb2/u8bX19fZsdY0pKCm5ubgwZMqTZx4qIiDRZ15pph5SdgvJi8PKrt9nNo3qx4stMNuw7yZH8MnoE+rRhkNJSNCLmYnJ8BwBwOmOHwZGItAyr1drgdv3119dqGxoa2mDbSZMm1WobFRVVb7sLsXPnTmw2G0FBQbX6uuOOOwAIDg6uc0xmZiYJCQm19s2cOZN169YBcPToUa677jr69OlDQkIC06ZNIycnp8H+RESkE/DyA5+gmj83MirWO8TK2L7BOBzwr20qZe+qlIi5mKqwOAA8T6YaG4hIJ7Jz505+9atfkZqaWmtbtGjRBfXncDi4+uqrmTx5MgcPHmTHjh3ce++95OZqyrGISKfXhOmJANNH17Rbvf0I5VW2Vg1JWoemJroYa+8RcBDCS/cZHYpIiygpKWnwOYvFUuvxyZMnG2xrNte+rpSZmXlRcZ1r586dPPHEE1xyySUt0t+GDRuwWq3MmjXLuW/s2LEt0reIiLi4gGg4lnLeROwnA0Lp3tWbY4VneG/XcaYl9Gib+KTFKBFzMT0HjoGPIcJxkoLcEwSEdDM6JJGL0px7tlqrbWMOHTpEYWEhcXFxLdIfwN69exk2bFiL9SciIh1IE0fELGYTN43qxV/W72PVlsPcMDwSk8nU6uFJy9HURBfj1zWII6YIAI7s+crgaEQ6vpSUFADCwsLIzs6utdnt9gaPa+jLUF+SIiLSqCYmYgA3juiBh5uZ3ceKSD1S2JpRSStQIuaCcrrEAlCaud3gSEQ6vp07dwLQt29funXr5tyioqKorq5u8LigoCAKCgpq7cvPzyc4OJiYmBi+/vrrVo1bRERcVDMSsUBfD6YMqblAv2qLina4GiViLqj6+4IdXrm7DY5EpONbtGgRDoejzlZeXo6Hh0eDx1mtVrp27cpXX9WMXB89epTdu3czcOBAkpKSKC4uZuXKlc72X3zxBWlpaa39ckREpL07m4gVZoH9/EU4ZoypKXn//jcnyCupaMXApKUpEXNBfr1HANBNBTtE2oWCggIiIyOd2+uvvw7AK6+8wty5c4mPj+eaa67hH//4B1arFZPJxNq1a1m7di19+vRh4MCBPPvss4SEhFBdXY2np6fBr0hERAzjFwFmd7BXQfGx8zYfEtmV+B5dqbTZWb39SBsEKC1FxTpcUM+Bo7CvNxFuyiMv+wjB4aqSI2Ikm63+K5aDBg1i8+bN9T7Xs2dP1q5dW2f/rl27iI6ObsnwRETElZgt0LUn5B+smZ7Yted5D5k+uhepRwr519bD3DGuN24WjbW4Ar1LLsjqF8ARSyQAx/ZuMTgaEWkpK1as4Ne//jULFiwwOhQRETFS4PcX5JpwnxjAlYO7EeTrwYmicj5Jb3ipF2lflIi5qJNdYgAoy9xhcCQi0lJuueUW9uzZQ1JSktGhiIiIkZpRsAPAy93CjSNqZkit2tK0Y8R4SsRclC08HgDvvG+MDUREREREWlYzEzGA/xnVC7MJvjp4iu9Onm6VsKRlKRFzUV37jASge5kKdoiIiIh0KGcTsfyMJh/Svas3STFhgErZuwolYi6q18BR2BwmQigg93im0eGIiIiISEu5gBExgBljao57O+Uop8urWjQkaXlKxFyUt28Xsiw1VXRUsENERESkAzmbiJ3Jh/KiJh82pk8QfUJ8Ka20sebr85e+F2MpEXNheX6xAJw5rIIdIiIiIh2GZxfwCa75c0HTpxmaTCamj44CaqYnOhyOVghOWooSMRdm7xYPgI8KdoiIiIh0LBc4PfG6Yd3x9bDw3ckSthw81eJhSctRIubCzhbsiDyzH4fdbnA0IiIiItJiLjAR6+LlznXDatabVdGO9k2JmAvrFTuSKoeFIIrIOXbI6HBEREREpKU4E7GmV0486+bRvQD4aG82xwvPtGBQ0pKUiLkwLx8rWW41/9GOq2CHiIiISMdxgSNiAP3CujC6dxB2B7y2LatFw5KWo0TMxZ36vmBHRVaKwZGIiIiISIu5iEQMYPr3o2KvJ2dRUW1rmZikRSkRc3GO7wt2+J7abWwgIh3c5ZdfjslkqrNNnz7d6NBERKQjCoyu+VmYBfbmJ1JXxIbRzd+LU6WV/Hd3dgsHJy1BiZiLC+ybCECPchXsEGktDoeDr7/+mieffJITJ07U2p5//nmjwxMRkY6oSzeweIC9GoqbvyaYm8XMr0fWrDn7ypbMFg5OWoJLJGKbNm2q90q0yWRi+/btACxYsKDe5319fRvtOysri8mTJ+Pj40NoaCgPPvgg1dXVbfGyWkTPmAQqHRYCOM2JrANGhyPSIR04cIDTp08zbtw4wsPDa21Wq9Xo8EQaVFZWRq9evXjggQeMDkVEmstsga41idSFTk/85cieuFtMfJ1VyO6jTV8YWtqGSyRiY8aMqXMV+rbbbiM6OpqEhAQAHnjggTptYmNjmTZtWoP92mw2Jk+eTGVlJV999RWvvPIKK1eu5NFHH22rl3bRPL18OOxWM3Sdnf6VwdGINF9paSmlpaW1Fp2srKyktLSUioqKetvazxn9raqqorS0lPLy8ia1vRApKSm4ubkxZMiQCzpexChPPPEEo0aNMjoMEblQF3mfWEgXT64c3A2AVRoVa3dcIhHz8PCodQU6KCiId955h1tuuQWTyQSA1Wqt1SYnJ4e9e/cya9asBvv96KOP2Lt3L//617+Ij49n0qRJ/PGPf2Tp0qVUVla21cu7aPldBwJQkbXT4EhEms9qtWK1WsnLy3PuW7x4MVarldmzZ9dqGxoaitVqJSvrhwpQS5cuxWq11vm/HhUVhdVqJT093blv5cqVFxTjzp07sdlsBAUFOeO1Wq3ccccdALi5uREfH+/czpypKRV89OhRrrvuOvr06UNCQgLTpk0jJycHgODg4AuKRaSpDhw4wL59+5g0aZLRoYjIhTqbiOU3v4T9WdNH1/Tx7q7jFJS6zu+3nYFLJGI/9u6773Lq1CluueWWBtu89NJL9OvXj7FjxzbYZsuWLQwePJiwsDDnvokTJ1JcXMyePXsaPK6iooLi4uJam5FMEUMB6JL/jaFxiHRUO3fu5Fe/+hWpqam1tkWLFgHQtWvXWvu9vb1xOBxcffXVTJ48mYMHD7Jjxw7uvfdecnNzDX410h5s3ryZKVOmEBERgclkYu3atXXaLF26lKioKLy8vEhMTCQ5OblZ53jggQec/0ZFxEVd5IgYwLCeXRkY4UdFtZ03dhxpkbCkZbhkIrZ8+XImTpxIZGRkvc+Xl5fz6quvNjoaBpCdnV0rCQOcj7OzG64us2jRIvz9/Z1bjx49mvkKWlbgJSMB6FlxQAU7xOWUlJRQUlJSa4TowQcfpKSkhOeee65W25MnT1JSUkLPnj2d++6++25KSkpYvnx5rbaZmZmUlJQQExPj3Ddz5swLinHnzp1ceumlXHLJJbW2wMDABo/ZsGFDnZG6sWPHMmjQoAuKQTqW0tJS4uLiWLp0ab3Pr169mjlz5jB//nx27txJXFwcEydO5OTJk8428fHxDBo0qM52/Phx3nnnHfr160e/fv3a6iWJSGsI+L5y4kUkYiaTiRnfj4r9a9thbHZH4wdIm3Ez8uRz587lL3/5S6Nt0tPTGTBggPPx0aNH+fDDD3njjTcaPGbNmjWcPn2aGTNmtFis55o3bx5z5sxxPi4uLjY0Ges5YDgVDnf8TKUcy0yne++BhsUi0lz1FdTx8PDAw8OjSW3d3d1xd3dvctvmOnToEIWFhcTFxTXYprCwkPj4eAASEhJ46aWX2Lt3L8OGDWv2+aRzmDRpUqNTBp9++mluv/1258yPZcuW8f777/Pyyy8zd+5cAFJTUxs8fuvWrfz73//mzTffpKSkhKqqKvz8/Bq8B7qioqLWPZlGz/QQke+1wIgYwJS4CJ74IJ0j+WfYtP8kP40JO/9B0uoMTcTuv//+816h7t27d63HK1asICgoiKlTpzZ4zEsvvcRVV11VZ7Trx8LDw+tM9Th7/0Z4eHiDx3l6euLp6dlo323Jw9OLb92j6Vf9LdnpW5SIibSglJSaxdLDwsLqjJSHhoZiNpudUxNFWkJlZSUpKSnMmzfPuc9sNpOUlMSWLVua1MeiRYuc0xJXrlxJWlpao4WoFi1axGOPPXZxgYtIywuoWZSZM/lQXgRe/hfUjbeHhRtH9OCFzYd4ZcthJWLthKGJWEhICCEhIU1u73A4WLFiBdOnT2/wynZGRgaffvop77777nn7Gz16NE888QQnT54kNDQUgI8//hg/Pz9iY2ObHFd7UNB1EOR9S9URFewQaUk7d9b8n+rbt2+t/Z6enhQXF9c7cgcQExPDf/7zn1aPTzqevLw8bDZbvVPn9+3b1yrnbG8zPUTke55dwCcYyvKg4DB0u/DqvTcl9uLFzw+x+dtcMvJKiQ5ufIknaX0udY/Yxo0bycjI4Lbbbmuwzcsvv0y3bt3qnfKxZs2aWtMcf/aznxEbG8vNN9/Mrl27+PDDD/nDH/7A3Xff3a5GvJrC1P1swY7dBkci0rEsWrQIh8NRZysvL28wCQNISkqiuLi4VqXGL774grS0tDaIWuQHM2fO5Mknn2y0jaenJ35+frU2EWknnNMTL7xyIkDPIB8m9K8ZePjnlsMXGZS0BJdKxJYvX86YMWNqJVPnstvtrFy5kpkzZ2KxWOo8X1RUxP79+52PLRYL69atw2KxMHr0aG666SamT5/O448/3mqvobWE9EsEoFfFAew2m8HRiMjZSnhr166lT58+DBw4kGeffbZZswCkcwoODsZisTinyp+Vk5PT6LR5EemgWug+MYCbR9dMdXwz5QhlldUX3Z9cHEOnJjbXa6+91ujzZrOZI0caLss5c+bMOvek9erViw8++KAlwjNUj35DOePwwGo6Q9bB3fTsF290SCKdxrlroJ2rZ8+e9ZYlb+wYEQ8PD4YPH86GDRu45pprgJoLjRs2bKiztp6IdAItmIhd3jeEXkE+HD5Vxtqvj/PrxJ7nP0hajUuNiEnD3Nw9OOzeB4CT+7YaHI2IiDSmpKTEue4c1NzfnJqa6lysfM6cObz44ou88sorpKenc9ddd1FaWtro+pki0kEFXnwJ+7PMZhM3j6oZFVu1JROHQ6XsjeRSI2LSuKKAgZCbTvWxr40ORUREGrFjxw4mTJjgfHy2UMaMGTNYuXIlN954I7m5uTz66KNkZ2cTHx/P+vXrz1sNWEQ6oBYcEQOYNrwHT360n33Zp9meWcDI6IbXxJTWpUSsAzF3Hwa5b+GXr2IAIiLt2fjx4897JXr27NmaiigiPyRihVlgt4G5bh2E5vD3ceea+O78e/sRVm3JVCJmIE1N7EBC+48CIKryALZq3YApIiIi4vK6dAOLB9iroehoi3R5tmjH+rRsThaXt0if0nxKxDqQyL5xlDk88TFVcPTALqPDEREREZGLZbZA1++LarTQ9MSBEf4k9Aqg2u7gteSsFulTmk+JWAdicXMj06Nm0dmT+1WwQ9onu91udAhiAL3vIiIXoYXvEwOYPqamz9e2ZVFl02e0EXSPWAdTHDgIctKwH9tpdCgitXh4eGA2mzl+/DghISF4eHhgMpmMDktamcPhoLKyktzcXMxmc6OLYIuISAMCWq5y4lk/HxhOsNWTk6cr+HBPNlcNiWixvqVplIh1MG7dh0LOv/Ev2GN0KCK1mM1moqOjOXHiBMePHzc6HGljPj4+9OzZE7NZEzFERJqtFUbEPNzM/DqxJ3/bcIBVXx1WImYAJWIdTOiAUbATelUdpLqqEjd3XX2W9sPDw4OePXtSXV2NzWYzOhxpIxaLBTc3N42AiohcqFZIxAB+PbInSz/9juTMfNJPFBPTza9F+5fGKRHrYCL7DKbE4Y3VdIaMb78memCi0SGJ1GIymXB3d8fd3d3oUERERFyDMxHLaNFuw/29+PnAcN7ffYLFH+7niWsH0c3fu0XP0Rwnis6QkVdKdLBvp4hDiVgHY7ZYOOzZl4GV35D77TYlYiIiIiKuLqCm3DxnCuBMIXh3bbGuuwfUJBob951kzKKN3DiiB6P7BLVY/0215eApVm8/ggMwQfuIwwR/vm4wN47o2SrnUiLWAZ0OHAzZ3+A49rXRoYiIiIjIxfLsAj7BUJYHhYdbLBE7UXSGlz4/5HzsAP69/Qj/3n6kRfq/UO0mDgf8/j9pjOsX0iojY0rEOiD3HsMg+1UCCtOMDkVEREREWkJgdE0iVpAJ3eJapMuMvFLsjrr7B0X44e/TdrcQFJZVsed4cbuMw+ZwkJlXpkRMmiY8ZjRsh15VGVRWlOPh6WV0SCIiIiJyMQKi4Oj2Fi3YER3si9lErWTMYjLx4oyENr1H60TRGS7988Z2G0dUsE+rnE91hDugiKgYivHF01RF1r4Uo8MRERERkYvVCpUTu/l7s+i6wVi+r2prMZlYeF3bF+zorHFoRKwDMpnNZHn2ZVBFKvnfJUPcpUaHJCLSbkRHR19QKf377ruPe++9txUiEhFpglYqYX/jiJ6M6xdCZl4ZUcE+hlUr7IxxKBHroE4HDoETqTiOq2CHiMi5Vq5ceUHHRUVFtWgcIiLNcjYRy2/ZEvZQMxJkZLn4zhqHErEOyrPnMDixisDCPUaHIiLSrlx++eVGhyAi0nxnE7GiI2CrBot+jXd1ukesgwqPGQNAr+oMKsrLDI5GRERERC5KlwiweIC9GoqPGR2NtAAlYh1Ut559KaALHiYbWek7jA5HRKRdCwkJITQ0tN6tR48ejBs3jk8//dToMEWkMzOboev3Czu38H1iYgyNaXZQJrOZI179CSjfQf6BbTB0nNEhiYi0W7m5uQ0+Z7PZSEtL46abbmL37t1tGJWIyI8ERMGpA98nYppm7eo0ItaBlQYNAsB0QgU7REQak5uby969e+vs37t3L/n5+cTFxXH//fcbEJmIyDlaqXKiGEOJWAfm2TMBgKDidIMjERFp32bPnk1BQUGd/QUFBc6S9TNnzmzjqEREfsSZiLV85URpe0rEOrCI2NEA9Kw+THlZicHRiIi0XxkZGVx6ad01Fy+99FLS0tIMiEhEpB4aEetQlIh1YGHde3MKf9xNNg7vTTY6HBGRdqu+0bCzzpw504aRiIg0QolYh6JErAMzmc0c9e4PQOFBJWIiIg0ZMmRIvQs9r1q1isGDB7d9QCIi9TmbiJ0pgDOFRkYiLUBVEzu4suAhcCQZ84lUo0MREWm3/va3v3H11VfzyiuvMGzYMAB27tzJ6dOnWbt2rbHBiYic5WkF3xAozYXCw+Dd1eiI5CIoEevgvHslwJGXCC6uWw1MRERqdO/enR07drBhwwZn9cRJkyaRlJRkcGQiIj8SEFWTiBVkQrc4o6ORi6BErIPrHjsavoCetizKSorwsfobHZKISLvzwQcfOP/cp08fTCYT/v7+lJWV4ePjY2BkIiI/EhAFR7dDvionujolYh1cSEQUuQQQYioga28yA0ZeYXRIIiLtzptvvllnX35+Pmlpabzwwgv89Kc/NSAqEZF6qGBHh6FErBM45jOAkLItNQU7lIiJiNSxYsWKevcfPXqU6667juRkFTwSkXZCiViHoaqJncCZ4CEAWLJTjQ1ERMTFREZGUlVVZXQYIiI/CIiu+alEzOUpEesEfKISAAg9nW5wJCIirmXLli34+fkZHcYFycjIYMKECcTGxjJ48GBKS0uNDklEWsLZEbGiI2CrNjQUuTiamtgJdI8dDZuhh+0oJcUFWP0CjA5JRKRdGTFiBCaTqda+/Px8AgICeOWVVwyK6uLMnDmTP/3pT4wdO5b8/Hw8PT2NDklEWkKXbmDxAFslFB+DgF5GRyQXyCVGxDZt2oTJZKp32759OwALFiyo93lfX98G+921axe/+tWv6NGjB97e3sTExPDMM8+01ctqM8HhPcgmGLPJQdaerUaHIyLS7rz11lu8+eabzu2tt95i165dbN++nd27dxsdXrPt2bMHd3d3xo4dC0BgYCBubrr2KtIhmM3Q9fvkq0CVE12ZSyRiY8aM4cSJE7W22267jejoaBISaqbdPfDAA3XaxMbGMm3atAb7TUlJITQ0lH/961/s2bOHhx9+mHnz5vHcc8+11UtrMyd8+gNQfEg3nIuI/FivXr1qbT179nReyHvwwQdb/HybN29mypQpREREYDKZ6l00eunSpURFReHl5UViYmKzCoYcOHAAq9XKlClTGDZsGAsXLmzB6EXEcCrY0SG4xOUxDw8PwsPDnY+rqqp45513uOeee5xTSaxWK1ar1dlm165d7N27l2XLljXY76233lrrce/evdmyZQv/+c9/mD17dgu/CmOVhw6BzC9xy95ldCgiIi7F4XC0eJ+lpaXExcVx6623ct1119V5fvXq1cyZM4dly5aRmJjIkiVLmDhxIvv37yc0NBSA+Ph4qqvr3h/y0UcfUV1dzeeff05qaiqhoaH8/Oc/Z8SIEVxxhSrninQISsQ6BJdIxH7s3Xff5dSpU9xyyy0NtnnppZfo16+fc1pGUxUVFREYGNhom4qKCioqKpyPi4uLm3UOI/hGjYDMvxNWooIdIiLN8eN7x1rCpEmTmDRpUoPPP/3009x+++3O77lly5bx/vvv8/LLLzN37lwAUlNTGzy+e/fuJCQk0KNHDwCuvPJKUlNTG0zEXPF7TaRTC1TlxI7AJaYm/tjy5cuZOHEikZGR9T5fXl7Oq6++yqxZs5rV71dffcXq1av5zW9+02i7RYsW4e/v79zOftG1Zz0Gjqn56ThOceEpg6MREWlfQkJCCA0NrbOFhIRw4sSJNo2lsrKSlJQUkpKSnPvMZjNJSUls2bKlSX2MGDGCkydPUlBQgN1uZ/PmzcTExDTY3hW/10Q6NY2IdQiGJmJz585tsAjH2W3fvn21jjl69Cgffvhho0nWmjVrOH36NDNmzGhyLGlpaVx99dXMnz+fn/3sZ422nTdvHkVFRc7tyJEjTT6PUQJCunHcVDOdJWvPVwZHIyLSvuTm5nLy5Mk6W25ubpuvI5aXl4fNZiMsLKzW/rCwMLKzs5vUh5ubGwsXLmTcuHEMGTKEvn37ctVVVzXY3hW/10Q6NSViHYKhUxPvv/9+Zs6c2Wib3r1713q8YsUKgoKCmDp1aoPHvPTSS1x11VV1vsQasnfvXn7605/ym9/8hj/84Q/nbe/p6emSZYCzfQcQUXKSkkPb4dIpRocjImKYmTNn8vzzz+Pj42N0KK3mfNMfz+Wq32sindbZqolnCuBMIXh3NTIauUCGJmIhISGEhIQ0ub3D4WDFihVMnz4dd3f3ettkZGTw6aef8u677zapzz179vCTn/yEGTNm8MQTTzQ5FldUERoPJZtxz1HBDhHp3P75z3/y17/+1ZmI3XXXXSxatIiuXbs621RXVxtS8j04OBiLxUJOTk6t/Tk5ObUKV4lIJ+ZpBd8QKM2tGRXzjjc6IrkATZ6aOHPmTMrKylozlvPauHEjGRkZ3HbbbQ22efnll+nWrVu9VwHXrFnDgAEDnI/T0tKYMGECP/vZz5gzZw7Z2dlkZ2eTm5vbKvEbzRpVU+o/vFQFO0Skc/txJcRXX32V/Px85+OcnBz8/PzaOiygplLw8OHD2bBhg3Of3W5nw4YNjB492pCYRKQd0vREl9fkROyf//wnJSUlzsd33XUXhYWFtdrUV0a3JS1fvpwxY8bUSqbOZbfbWblyJTNnzsRisdR5vqioiP379zsfv/XWW+Tm5vKvf/2Lbt26ObcRI0a02mswUs9BNQU7ujtyKDqVc57WIiKdR30l6svLy1vtfCUlJaSmpjorH2ZkZJCamkpWVhYAc+bM4cUXX+SVV14hPT2du+66i9LS0karBYtIJ6NEzOU1ORFrD1cPX3vtNb788ssGnzebzRw5cqTBKYYzZ86s9ToWLFiAw+Gos2VmZrZ06O2Cf2AIR00101qy9mw1OBoRkfatNcrWn7Vjxw6GDh3K0KFDgZrEa+jQoTz66KMA3HjjjTz55JM8+uijxMfHk5qayvr165t877OIdAIBKmHv6i548ntbXz2UlpFjjSHydDYlGckw7mqjwxERMcxrr73GuHHjGDx4cJufe/z48eddKHr27NnMnj27jSISEZejETGX16J3Ibfm1UNpGVVhcXD6UzxPfmN0KCIihhk7dizz58/n9OnTuLu7U11dzfz587n00kuJj49vViEpERFDKBFzec1KxIy8eigto0v0SPgOuqlgh4h0Yp999hkABw4cICUlhZ07d7Jz505+//vfU1hYqAuLItL+nU3Eio6ArRoshhZDlwvQ5HdMVw87hp6DRsPH0I1c8k8eIzC0u9EhiYgYpm/fvvTt25df/vKXzn0ZGRns2LGDr7/+2sDIRETOo0s3sHiArRKKj/6QmInLaHIipquHHUMX/0COmCLo4TjO0T1bCAy9weiQRETalejoaKKjo5k2bZrRoYiINMxsrlnY+dSBmumJSsRcTrPHMHX10PXldImlR/FxSjO3A0rERERERFxSYPQPiZi4nBaZTKqrh66lOiwOij/BK3e30aGIiIiIyIVSwQ6X1uR1xKTj8OszEoCIsn0GRyIi0n58++23VFdXGx2GiEjTKRFzaUrEOqFeA0dhd5gI4xR52VlGhyMi0i7ExMRw6NAho8MQEWm6s4lYfoahYciFUSLWCfl26UqWJRKAY3u/MjgaEZH24XwLLIuItDsaEXNpSsQ6qdwusQCUZaYYHImIiIiIXJCuvWp+lhfCmQJDQ5HmUyLWSdnC4wDwzv3G4EhERERE5IJ4WsE3tObPBYeNjUWaTYlYJ9X1+4IdkWdUsENERETEZWl6ostSItZJ9Ro4CpvDRDCF5B7PNDocEREREbkQSsRclhKxTsrbtwtZlpp5xcf2qGCHiIiIiEtSIuaylIh1Yrl+NQU7yg/vMDgSEREREbkgzkRMJexdjRKxTszRLR4A7zwV7BAReeihhwgKCjI6DBGR5tGImMtyMzoAMU5A30RIhx7l+3HY7ZjMystFpPNatGiR0SGIiDRfYHTNz8IjYKsGi369dxX6zbsT6xkzgiqHhUCKyTl60OhwRERERKS5rOFg8QSHDYqPGh2NNIMSsU7My9uXLLeagh0n0lWwQ0RERMTlmM0Q8P3Czpqe6FKUiHVyp5wFO1IMjkRERERELojuE3NJSsQ6OUfEUAB889MMjkREpO3MnDmTsrIyo8MQEWkZZxOxfFVOdCVKxDq5wL6JAPT8vmCHiEhn8M9//pOSkhLn47vuuovCwsJabaqrq9s4KhGRC6QRMZekRKyT6zlgOJUON7pSwonD3xodjohIm3A4HLUev/rqq+Tn5zsf5+Tk4Ofn19ZhiYhcGCViLkmJWCfn6eXDYfeasqcn0rcYHI2IiDF+nJgBlJeXGxCJiMgFCPi+hL0SMZeiREzI968p2FF5ZIfBkYiItB8mk8noEEREmuZs1cTyQjhTYGgo0nRKxATT9wU7QnK+0npiItJpvPbaa+zcuZOqqiqjQxERuTgevuAbWvPngsPGxiJNpkRMsBXULP53if0QwS8OJ/ntJcYGJCLSysaOHcv8+fNJSEjAarVSVlbG/PnzWbZsGVu3bq1VyENExCU47xNT5URX4WZ0AGKsnKMHGXlkOXw/A8dicjD8m8fISZxCWGQfY4MTEWkln332GQAHDhwgJSWFnTt3snPnTn7/+99TWFioaYki4noCouBosu4TcyFKxDq53MN7CTPVvkndYrJzOPl9wiLvNSgqEZG20bdvX/r27csvf/lL575Dhw6RkpLC119/bWBkIiLNpMqJLkdTEzu5kF6x2Bx1r/zG7XqMbf9epLXFRKTT6d27N9OmTWPhwoVGh3JR/u///o+BAwcSGxvLvffeW29lSBHpQAJVOdHVaESskwuL7EPykAUM++Yx3Ex2bA4zhy096G0/TOK+P7Nr8Ua6z3iZ4PAeRocqItIioqOjL2jq4X333ce997rGTIHc3Fyee+459uzZg7u7O+PGjWPr1q2MHj3a6NBEpLVoRMzlKBETRl5/HzmJU8g7vI/gXgOIjohm6+o/M3Tf08SdSSZ/2Rh2jVtM3E9+ef7ORETauZUrV17QcVFRUS0aR2urrq52roVWVVVFaGiowRGJSKs6m4gVHgFbNVj0a357p3dIgJqRsXOLc4z61e/J2HsFvHUb0fZMAjffwba9HxJ367N4+VgNjFRE5OJcfvnlRofA5s2bWbx4MSkpKZw4cYI1a9ZwzTXX1GqzdOlSFi9eTHZ2NnFxcTz77LOMHDmySf2HhITwwAMP0LNnT9zc3Ljzzjvp00cFmEQ6NGs4WDzBVgFFR36Yqijtlu4RkwZFx46g24NfsTX0RgAS8/5D9pOjOLh7q8GRiYi4ttLSUuLi4li6dGm9z69evZo5c+Ywf/58du7cSVxcHBMnTuTkyZPONvHx8QwaNKjOdvz4cQoKCli3bh2ZmZkcO3aMr776is2bN7fVyxMRI5jNPyzsrOmJLsElErFNmzZhMpnq3bZv3w7AggUL6n3e19e3Sec4deoUkZGRmEwmCgsLW/HVuBYvb19G/b8X+Oby5eTRlSj7EXq8NZmtrz6O3WYzOjwREZc0adIk/vSnP3HttdfW+/zTTz/N7bffzi233EJsbCzLli3Dx8eHl19+2dkmNTWVtLS0OltERASffPIJl1xyCYGBgXh7ezN58mS2bm34IlpFRQXFxcW1NhFxQbpPzKW4RCI2ZswYTpw4UWu77bbbiI6OJiEhAYAHHnigTpvY2FimTZvWpHPMmjWLIUOGtObLcGlDJtyA+f99RarPaDxM1Yw68BR7/ppE7vFMo0MTEelQKisrSUlJISkpybnPbDaTlJTEli1bmtRHjx49+OqrrygvL8dms7Fp0yb69+/fYPtFixbh7+/v3Hr0UIEmEZcUoMqJrsQlEjEPDw/Cw8OdW1BQEO+88w633HKLs/KV1Wqt1SYnJ4e9e/cya9as8/b/97//ncLCQh544IHWfikuLTC0O3EPfMC22D9wxuHB4IqduL1wGV9/9C+jQxMR6TDy8vKw2WyEhYXV2h8WFkZ2dnaT+hg1ahRXXnklQ4cOZciQIfTp04epU6c22H7evHkUFRU5tyNHjlzUaxARg2hEzKW4ZLGOd999l1OnTnHLLbc02Oall16iX79+jB07ttG+9u7dy+OPP862bds4dOhQk85fUVFBRUWF83FnmsJhMptJ/MWDHN73U6rfnEUf2yECvrqbbfs/YvAtz+Jj9Tc6RBERAZ544gmeeOKJJrX19PTE09OzlSMSkVanRMyluMSI2I8tX76ciRMnEhkZWe/z5eXlvPrqq+cdDauoqOBXv/oVixcvpmfPnk0+v6ZwQK8Bw4h88Eu2hv8PAImn3iHv6dF8t+sLgyMTEXFtwcHBWCwWcnJyau3PyckhPDzcoKhExCUoEXMphiZic+fObbAIx9lt3759tY45evQoH374YaNJ1po1azh9+jQzZsxo9Pzz5s0jJiaGm266qVlxawpHDU8vH0bd+Ty7f7KKkwTS036Mnv+ZytZVj6iQh4jIBfLw8GD48OFs2LDBuc9ut7NhwwYtyCwijTtbNbG8EM4UGBqKnJ+hUxPvv/9+Zs6c2Wib3r1713q8YsUKgoKCGp3r/tJLL3HVVVfVmV//Yxs3bmT37t289dZbADgcDqDmauTDDz/MY489Vu9xmsJR2+BxV1MYm8jXK2YxtPQLRh36G2l/3UzIzS/XWptMRERqlJSU8N133zkfZ2RkkJqaSmBgID179mTOnDnMmDGDhIQERo4cyZIlSygtLW10Sr6ICB6+4BsKpSdrRsW8A4yOSBphaCIWEhJCSEhIk9s7HA5WrFjB9OnTcXd3r7dNRkYGn376Ke++++55+3v77bc5c+aM8/H27du59dZb+fzzz7XwZTN1DQ4n/v73SF7zDIO+WcSgilSKXhrLzlELGfbzmUaHJyLSruzYsYMJEyY4H8+ZMweAGTNmsHLlSm688UZyc3N59NFHyc7OJj4+nvXr15/3AqOICIHRPyRiEUONjkYa4VLFOjZu3EhGRga33XZbg21efvllunXrxqRJk+o8t2bNGubNm+ec7vjjZCsvLw+AmJgYunbt2nKBdxIms5mR1/8vR4b8hGP/vpW+tu8YtvW3JO/7kIGz/o5vl65Ghygi0i6MHz/eOQujIbNnz2b27NltFJGIdBgBUXBkm+4TcwEuVaxj+fLljBkzhgEDBtT7vN1uZ+XKlcycOROLxVLn+aKiIvbv39/aYXZ6PfrG0et3X7IlYgZ2h4mRhR9Q8PQovt35mdGhiYiIiHRsKtjhMkyO812Sk/MqLi7G39+foqIi/Pz8jA6nXdnz1QcEfzSbME5R5bCQEn0nI256HIubSw3Gikgr0mdo+6P3RMSFpb4Ga++C3uNh+jtGR9MpNfUz1KVGxMT1DBxzJV73bmOn9XLcTTZGZS5l/18uJzvrgNGhiYiIiHQ8Z0fE8jMMDUPOT4mYtDr/wBCGzlnL9vgnKHV4EVuVhs/L40h5/yWjQxMRERHpWM4mYkVHwVZlaCjSOCVi0iZMZjMjrplN4YyN7Hfrjx9lDN9+P9v/7xecLso3OjwRERGRjsEaDhZPcNhqkjFpt5SISZvq3nsgvX/3OVsjZ2FzmBhR9CGnl4xi3/ZPjA5NRERExPWZzSrY4SKUiEmbc/fwZNRtT/Ptlas5QQgRjhwuWTeNLS8/yPHMfaR9+R45Rw8aHaaIiIiIa1Ii5hKUiIlhYhIn4nvfNnb4JeFmsjM66wW6rUhk0Mc3EfzicJLfXmJ0iCIiIiKuR4mYS1AiJoby6xpEwpy32dr/dzgcYDLV7LeYHCR8s4Bdm97CYbcbGqOIiIiIS3EmYqqc2J5pMSdpF6w9h2D60VrbZpODuE2zyNt0Pxn+IzFdkkTvxKsIDO1uTJAiIiIirkAjYi5BiZi0CyG9YrE5TFhMP6wv7nBAOR4EmwoJLvoIUj7CvuMhDrj1IS/8MvwH/Zy+w3+Cu4engZGLiIiItDNKxFyCEjFpF8Ii+5A8ZAHDvnkMN5OdaoeZnUPmEzf5N6Tt+ITTez4k9OSX9LFl0Nf2HX2PfQfHVlKy3ps036FURk0gMmEK3XvHGP1SRERERIx1NhErL4IzBeAdYGg4Uj+Tw+FwnL+ZNKa4uBh/f3+Kiorw8/MzOhyXlnP0IHmH9xHcawBhkX3qPJ93/DAZye9hOriRPqe3E0BxreePmCI4HjQaz5if0Xfkz/Ht0rWNIheRC6XP0PZH74lIB/BkPyjJgd9sgoihRkfTqTT1M1QjYtKuhEX2qTcBOys4ohfB18wGZmO32TjwzZfk7foA/2Of069yLz04To+8t+Hzt6ncbGGP5yBOR15OyNDJ9B44EpNZ9WlERESkEwiIqknECjKViLVTSsTEZZktFvoOHUffoeMAKC48xXfbPqDq24/pkb+FCE4ysHIXHNoFh/5G3ttdyfBPxHTJT1X0Q0RERDq2gCg4sg3yVTmxvVIiJh2GX9cghk28GSbejMNu58jB3Rzb8T7eWZvoW5b6fdGPDyHlw3OKfozFf/DP6TtsQq2iHzlHD5J7eC8hvWIbHaETERERaZdUsKPdUyImHZLJbKZH3zh69I0Dfk9FeRlpOz6hJG09oSe/pLc985yiHys4/V9v0nyHURk1AfuZQkYeWkqYyYHNYSJ5yAJGXn+f0S9JREREpOmUiLV7SsSkU/D08mHQZVPhsqlAPUU/TMUMLfsS9n5Zc8A5C0sP++YxchKnaGRMREREXEdAdM1PJWLtlhIx6ZQaKvoRlvVfetsza7V1M9nJPpiqRExERERcx9kRsaKjYKsCi7uh4UhdKiEnnd7Zoh+jZ/4Z31v/g81hqtMm9NPfsfO/K3DY7QZEKCIiItJM1jBw8wKHrSYZk3ZHiZjIOcIi+5AyZAHVjpr/GnaHiSJ86EYew7bdR/qisRxI/dzgKEVERETOw2yGrr1q/qzpie2SEjGRHxl5/X2cun0He654jdzbU3B/YB9betzOGYcHsVVp9Fkzhe1Lfknu8UyjQxURERFpmLNgh0rYt0dKxETqERbZh4GXTiYssg8+Vn9Gz3qSotu2sMMvCbPJwYjC/+L7j5FsWfEQZ0pPGx2uiIiISF2qnNiuKRETaaLwHpeQMOdt9l+1hv1uA/AxVTD68DKKFsezY90Lun9MRERE2hclYu2aEjGRZuqf8BP6/X4LO0Y8STbBhJNHwo4H+XbhaPbt2GB0eCIiIiI1AlXCvj1TIiZyAUxmMwmTb6fr73axJeouyhye9K/ex4B117Hj6evJPvKd0SGKiIhIZ6cRsXZNiZjIRfDysTJ65p8pvSOZ5K5XYneYSCj+BP+XRrP1pTmUni40OkQRERHprM5WTSwvgjMFxsYidSgRE2kBIRFRjLzvdQ5e+x573Qfhbapk1NHllD41lO1rn8NusxkdooiIiHQ2Hj4164kB5KtyYnujREykBfWNH0vMvM/ZOeoZjpvCCCWfEakPc3BRIunbPjQ6PBEREelsND2x3VIiJtLCTGYzw34+k8Dffc3W3vdS4vCmb/UBYv77C3Y+OZXjGfuMDlFEREQ6CyVi7ZYSMZFW4uXty6jpf6T8ru1sC5yKzWFiWMlnBK28jC0v3MPponyjQxQRF3fttdcSEBDADTfcUOe5devW0b9/f/r27ctLL71kQHQi0i4EqHJie6VETKSVBYf3IPHef5J5w3rSPOPxNFUx+vgqKv5vKMlv/x+26mqjQxQRF/Xb3/6WVatW1dlfXV3NnDlz2LhxI19//TWLFy/m1KlTBkQoIobTiFi7pURMpI30GTyKgQ99Suqlf+eIKYJgChm5ewGZixJI+/I9o8MTERc0fvx4unTpUmd/cnIyAwcOpHv37litViZNmsRHH31kQIQiYjglYu2WEjGRNmQym4m/4teEzf2arX3vpxgf+tgyGPTxTXz91ys5+l2a0SGKSAvZvHkzU6ZMISIiApPJxNq1a+u0Wbp0KVFRUXh5eZGYmEhycnKLnPv48eN0797d+bh79+4cO3asRfoWERdzNhErOgq2KkNDkdqUiIkYwMPTi1H/8yi2u3eyLfg6qh1mhpZ9Seg/x7H173dSVJBndIgicpFKS0uJi4tj6dKl9T6/evVq5syZw/z589m5cydxcXFMnDiRkydPOtvEx8czaNCgOtvx48fb6mWIiKuzhoGbFzhsUHTE6GjkHG5GByDSmQWEdCNx9goOp8+m6J3fMaR8B6NyXqfgmffZFnsPPUZOJf/YAUJ6xRIW2cfocEWkGSZNmsSkSZMafP7pp5/m9ttv55ZbbgFg2bJlvP/++7z88svMnTsXgNTU1As6d0RERK0RsGPHjjFy5MgG21dUVFBRUeF8XFxcfEHnFZF2yGyuWdg5b3/N9MTA3kZHJN9ziRGxTZs2YTKZ6t22b98OwIIFC+p93tfX97z9r1y5kiFDhuDl5UVoaCh33313a78kkVp6xQxnyNwN7Lr8JQ6bexBAMYl7n6DbikQGfXwTwS8OJ/ntJUaHKSItpLKykpSUFJKSkpz7zGYzSUlJbNmy5aL7HzlyJGlpaRw7doySkhL++9//MnHixAbbL1q0CH9/f+fWo0ePi45BRNqRQFVObI9cIhEbM2YMJ06cqLXddtttREdHk5CQAMADDzxQp01sbCzTpk1rtO+nn36ahx9+mLlz57Jnzx4++eSTRr+sRFpT3IRpRMxNYUuvO3E4wGSq2W8xORj+zQKysw4YGp+ItIy8vDxsNhthYWG19oeFhZGdnd3kfpKSkpg2bRoffPABkZGRziTOzc2Np556igkTJhAfH8/9999PUFBQg/3MmzePoqIi53bkiKYviXQoKtjRLrnE1EQPDw/Cw8Odj6uqqnjnnXe45557MH3/m6rVasVqtTrb7Nq1i71797Js2bIG+y0oKOAPf/gD7733Hj/96U+d+4cMGdIKr0Kkadw9POnS7zJMh2v/27WYHNhensyOhAcY+vNbsbi5xH9fEWlFn3zySYPPTZ06lalTpzapH09PTzw9PVsqLBFpb5SItUsuMSL2Y++++y6nTp1yzquvz0svvUS/fv0YO3Zsg20+/vhj7HY7x44dIyYmhsjISH7xi1/oSqAYLqRXLDaHqdY+hwO6k0PCjgc58cQgkt/+PyrKywyKUEQuRnBwMBaLhZycnFr7c3Jyal14FBFpEWcTsfwMQ8OQ2lwyEVu+fDkTJ04kMjKy3ufLy8t59dVXmTVrVqP9HDp0CLvdzsKFC1myZAlvvfUW+fn5XHHFFVRWVjZ4XEVFBcXFxbU2kZYUFtmHlCELqHbU/BetdpjZNuB3bOl1J4VYiXScYOTuBRT9eSBbX/sjZSVFBkcsIs3h4eHB8OHD2bBhg3Of3W5nw4YNjB492sDIRKRDOndEzOEwMhI5h6GJ2Ny5cxsswnF227dvX61jjh49yocffthokrVmzRpOnz7NjBkzGj2/3W6nqqqKv/3tb0ycOJFRo0bx+uuvc+DAAT799NMGj9NNzdIWRl5/H6du38GeK17j1O07GPWrhxl9y19wv38PW/vez0kCCSWfUd8+ScWTA9my4iGVvRdpR0pKSkhNTXVWPszIyCA1NZWsrCwA5syZw4svvsgrr7xCeno6d911F6WlpY3O9hARuSBde9X8rCiGMwXGxiJOJofDuLQ4NzeXU6dONdqmd+/eeHh4OB//8Y9/5Nlnn+XYsWO4u7vXe8xPf/pT/Pz8WLNmTaN9r1ixgltvvZUjR47UGl0LCwvjT3/6E7fffnu9x9VX5rdHjx4UFRXh5+fX6DlFWkpFeRmp7/2dyL3/oLujZnpTicOb3d2n0Xfq7wgO1wUCcQ3FxcX4+/t3uM/QTZs2MWHChDr7Z8yYwcqVKwF47rnnWLx4MdnZ2cTHx/O3v/2NxMTENo60ro76noh0ak/2h5JsuP1T6D7M6Gg6tKZ+hhp6t39ISAghISFNbu9wOFixYgXTp09vMAnLyMjg008/5d133z1vf5deeikA+/fvdyZi+fn55OXl0atXrwaP003N0h54evmQOO1+qqvuYcf6FQR//RxR9ixGH19F+d9fZ1vIVHpOeYhuvfobHapIpzR+/HjOd61z9uzZzJ49u40iank2m42qqiqjw5A24u7ujsViMToMuVABUTWJWEGmErF2wqXKrm3cuJGMjAxuu+22Btu8/PLLdOvWrd5FNNesWcO8efOc0x379evH1VdfzW9/+1teeOEF/Pz8mDdvHgMGDKj3KqZIe+Tm7kHClDuwX3kbqRtX47Pt/+hX/S2JeW9T9fJatgf8jNBJc+nVP97oUEWkg3A4HGRnZ1NYWGh0KNLGunbtSnh4uLNqtbiQgCg4slWVE9sRl0rEli9fzpgxYxgwYEC9z9vtdlauXMnMmTPrvWJTVFTE/v37a+1btWoV//u//8vkyZMxm81cfvnlrF+/vsERN5H2ymyxEH/Fr3H89JekfbUOPn+KQRWpjCj8L/bX1rOzy1j8rniIS+IuMzpUEXFxZ5Ow0NBQfHx89Et5J+BwOCgrK+PkyZMAdOvWzeCIpNlUwr7dMfQesY5Cc+mlvdq/YyNlGxcztOwr575vvEbgPuFBYhK1cLm0D/oMbX8ae09sNhvffvstoaGhjS4SLR3TqVOnOHnyJP369dM0RVeT+jqsvROix8GM94yOpkNr6veaS5avF5Gm6Z/wE4b+7r9kTPuIHX5J2BwmhpRvJ+a/v2DvE5fyzadv4bDbjQ5TRFzI2XvCfHx8DI5EjHD2fde9gS5II2LtjhIxkU4gemAiCXPeJnvGl2wLnEqlw43YqjSGfDaLg08ksPO/K7DbbEaHKSIuRNMROye97y7sbCJWdBRsSqTbAyViIp1I994DSbz3nxT+Zgdbw35FmcOTS2wHGbbtPo48MYTta5+jqrLi/B2JiIiIa+kSDm5e4LBD0RGjoxGUiIl0SqHdoxl11zIqZu9iS4/bKMaXXvajjEh9mFMLB7Jt9Z8pLysxOkwRERFpKSaTpie2M0rERDqxgJBujJ71FKb/TWNr73vJoyvh5JKYvojSv8ayZdUjnC7KJ+foQdK+fI+coweNDllEREQulBKxdkWJmIjQxT+QUdP/iPV3e9gW83tOEEIQRYw+9DcsT/cn5MVhDPr4JoJfHE7y20uMDldERFpIYWEhCQkJxMfHM2jQIF588UWjQ5LWdDYRy88wNAypoURMRJy8fKwk3vgQwb/fw/b4hRwlHB9TJebv7822mBwM/+YxjYyJiHQQXbp0YfPmzaSmprJt2zYWLlzIqVOnjA5LWotGxNoVJWIiUoe7hycjrrmbwp8urvOcxWTn6NcbDIhKROTizZ07F09PT379618bHUq7YLFYnCXpKyoqcDgcaInZDkyJWLuiRExEGhQSPRCbo26p4pgdD7Ptjb+q5L2IuJx58+bx1FNP8frrr/Pdd98ZHU6jNm/ezJQpU4iIiMBkMrF27dp62y1dupSoqCi8vLxITEwkOTm5WecpLCwkLi6OyMhIHnzwQYKDg1sgemmXAqJrfhZkghJuwykRE5EGhUX2IWXIAqodNR8VNoeJI6Zu+JgqSdz7BHv/+hOOZ+43OEoRkabz9/dn1qxZmM1mdu/ebXQ4jSotLSUuLo6lS5c22Gb16tXMmTOH+fPns3PnTuLi4pg4cSInT550tjl7/9ePt+PHjwPQtWtXdu3aRUZGBq+99ho5OTmt/trEIF171vysKIYzBcbGIrgZHYCItG8jr7+PnMQp5B3eR3CvAXTvFsXWN/5M3L4lDKpIpXTFOLYNepCR18/BZNa1HRFpuhNFZ8jIKyU62Jdu/t5tdt7q6mp8fHxIS0vj2muvbbPzNtekSZOYNGlSo22efvppbr/9dm655RYAli1bxvvvv8/LL7/M3LlzAUhNTW3S+cLCwoiLi+Pzzz/nhhtuuKjYpZ3y8AFrOJRk14yK+QQaHVGnpt+aROS8wiL7MPDSyYRF9sFssTDqVw9z6uaN7HOPxddUTuKeP5L2l5+SnXXA6FBFpI05HA7KKqubvf1zSyaX/nkjv35xG5f+eSP/3JLZ7D4u9F6mP/zhD5SUlJCWltbCfxv1W7hwIVartdEtKyur2f1WVlaSkpJCUlKSc5/ZbCYpKYktW7Y0qY+cnBxOnz4NQFFREZs3b6Z///7NjkVciPM+MVVONJpGxETkgkReMhjbQ5+zdfVC4r/9G4MrdlKyfCzJQx5ixLW/1eiYSCdxpspG7KMfXlQfdgc88s4eHnlnT7OO2/v4RHw8mverTEpKCsuWLWPy5Mltlojdeeed/OIXv2i0TURERLP7zcvLw2azERYWVmt/WFgY+/bta1Ifhw8f5je/+Y2zSMc999zD4MGDmx2LuJCAKDiyVQU72gElYiJywSxuboz6n0c58u1USt+8kwFV6YzcvYBvDqwj9H9eILxHH6NDFBFxstvt3HHHHcyePZvExERuuukmqqqqcHd3b3Ifx48f58EHH+TVV19t8jGBgYEEBrbPKWAjR45s8tRF6SBUObHdUCImIhetR794bA99wdZ//4mhB55jSPkOil+6jOS4eYy4ZrZGx0Q6MG93C3sfn9isY7KLykl6+jPs58wsNJvgkzmXE+7v1axzN8ezzz5LXl4ejz/+OFlZWVRVVbFv375mjQBFREQ0KwmDmqmJCxcubLTN3r176dmzZ7P6DQ4OxmKx1CmukZOTQ3h4eLP6kk4k8JzKiWIo/XYkIi3C4ubGqJsWkP3rT9jv1h8/Uxkjv3mEbxZP5OQxzUMX6ahMJhM+Hm7N2nqHWFl03WAspprlMSwmE4uuG0zvEGuz+jGZ6i6v0ZBjx47xyCOPsHTpUnx9fenbty+enp7O6YmZmZnExcXxP//zP/Tt25e77rqLtWvXkpiYyKBBgzhw4ICzXUJCgrP9jBkziImJ4cYbb2zwnrU777yT1NTURrcLmZro4eHB8OHD2bDhh7Ud7XY7GzZsYPTo0c3uTzoJjYi1GxoRE5EW1at/PLa5X7L1tccZdvB54s4kU/zipSTHP8yIqXdpdExEALhxRE/G9QshM6+MqGCfVq+aeO+99zJp0iQmT54MgJubGzExMbXuE0tPT+eNN97gkksuYdCgQVitVrZt28Y//vEPnnvuOZ555plafaanp/P6668TExPDhAkT+OKLLxg7dmydc1/o1MSSkpJaa51lZGSQmppKYGCgc/Rszpw5zJgxg4SEBEaOHMmSJUsoLS11VlEUqeNsIlZ0FGxVYGn61FxpWUrERKTFWdzcGTX9jxzedw0Vb91Jv+pvGZn6e77e/x6RN/+DkIheRocoIu1AN3/vNilbv27dOjZu3Eh6enqt/YMHD66ViPXv399ZMTAmJsZZjXDw4MF88MEHdfrt378/sbGxAAwdOpTMzMx6E7ELtWPHDiZMmOB8PGfOHABmzJjBypUrAbjxxhvJzc3l0UcfJTs7m/j4eNavX1+ngIeIkzUM3LyguhyKjkBgb6Mj6rSUiIlIq+k1YDjVD33J1tcWMOzQMoae2ULRC6PZPuxREq76jUbHRKRNXHXVVRQU1F28dtWqVbUee3p6Ov9sNpudj81mMzabrc7x57a3WCz1trkY48ePb1KJ/tmzZzN79uwWPbd0YCZTzahY7j7Iz1AiZiD9FiQircrN3YNRMxZy/MYPOWC5BH9KGbHzIVKfnExedvPXzREREZGLpPvE2gUlYiLSJqJiRxD90FdsjbqLSoeFoWVf4bZsNDvWvYDDbjc6PBERkc4jQJUT2wOT40KXpRen4uJi/P39KSoqws/Pz+hwRNq9jD3bsP/nTvrYDgGw03csPacvIzgs0uDIxAj6DG1/GntPysvLycjIIDo6Gi+vppeal45B738HsXUZrH8IYqbCjf80OpoOp6nfaxoRE5E2Fz0wkZ4PbWVrz99Q5bAwrPRzLH8fxY73lzfpfggRERG5CJqa2C4oERMRQ7h7eDLq1sVkXf8+hyxRBHCahO1z2PnU1Zw6eczo8ERERDqucxMxXQA1jBIxETFUnyGj6fHQNrb2mEW1w8zwks8wPT+KlP+uNDo0ERGRjqlrzTp0VBTDmboVRaVtKBETEcO5e3gxatbTHL7uXTLMvQikmOHbfsuOJ68h/+Rxo8MTERHpWDx8wBpe8+eCDGNj6cSUiIlIu9Enbizdf7eNrZG3UO0wk1DyKY7nR7Fz/arzHyzSSV177bUEBARwww031Np/5MgRxo8fT2xsLEOGDOHNN980KEIRaZd0n5jhlIiJSLvi4eXNqNuWkHnNOxw29yCIIoZtvYftT13PobRtpH35HjlHDxodpki78dvf/rbOwsQAbm5uLFmyhL179/LRRx9x3333UVpaakCEItIuBaqEvdGUiIlIu3TJ0HGE/24b2yJmYHOYGHH6E6Lf/BmDPr6J4BeHk/z2EqNDFGkXxo8fT5cuXers79atG/Hx8QCEh4cTHBxMfn5+G0cnIu2WRsQMp0RMRNotTy9fEn/zN3aP/TsOB5hMNfstJgfDv1mgkTFp9zZv3syUKVOIiIjAZDKxdu3aOm2WLl1KVFQUXl5eJCYmkpyc3OJxpKSkYLPZ6NGjR4v3LSIuSomY4ZSIiUi75+ZtdSZhZ1lMDg6v/h2lpwsNiUmkKUpLS4mLi2Pp0qX1Pr969WrmzJnD/Pnz2blzJ3FxcUycOJGTJ08628THxzNo0KA62/HjTStkk5+fz/Tp03nhhRda5DWJSAdxNhHLzzQyik7NzegARETOJ6RXLDaHCYup9lonI09/wsmnhpI+fC7DJ9+OyaxrS9K+TJo0iUmTJjX4/NNPP83tt9/OLbfcAsCyZct4//33efnll5k7dy4AqampF3z+iooKrrnmGubOncuYMWMabVdRUeF8XFxcfMHnFBEXcTYRKz4K1ZXg5mFoOJ2RfmsRkXYvLLIPKUMWUO2o+ciqdpjZFnwdJ0yhhJJPQsrvSF90GQdSvzQ4UpGmq6ysJCUlhaSkJOc+s9lMUlISW7Zsuej+HQ4HM2fO5Cc/+Qk333xzo20XLVqEv7+/c9MURpFOwBoGbt7gsEPREaOj6ZSUiImISxh5/X2cun0He654jVO37yBx9goCHvyarVF3UebwJLZqD33WTGbb324m/+Qxo8MVOa+8vDxsNhthYWG19oeFhZGdnd3kfpKSkpg2bRoffPABkZGRziTuyy+/ZPXq1axdu5b4+Hji4+PZvXt3vX3MmzePoqIi53bkiH4p60wyMjKYMGECsbGxDB48WNU1OwuTSfeJGUxTE0XEZYRF9iEsso/zsZePlVEz/8zJo7ezb/UDDDu9kcT8dyl+fgNb+s0mYdoDuLtrqoV0bJ988km9+y+77DLsdnuT+vD09MTT07MlwxIXMnPmTP70pz8xduxY8vPz9W+hMwmIgtx0JWIGcYkRsU2bNmEymerdtm/fDsCCBQvqfd7X17fRvrdv385Pf/pTunbtSkBAABMnTmTXrl1t8bJEpIWERvZh2P1rSP/5vzlkicaPUkZ/+xeOLhrO7s/fMTo8kXoFBwdjsVjIycmptT8nJ4fw8HCDour45s6di6enJ7/+9a+NDqVd2LNnD+7u7owdOxaAwMBA3Nx0nb7T0IiYoVwiERszZgwnTpyotd12221ER0eTkJAAwAMPPFCnTWxsLNOmTWuw35KSEn7+85/Ts2dPtm3bxhdffEGXLl2YOHEiVVVVbfXyRKSFxIyaRK95O9g+8BEK6EK0PYvBG6azc/FVHM/cb3R4IrV4eHgwfPhwNmzY4Nxnt9vZsGEDo0ePNjCyjm3evHk89dRTvP7663z33XdGh9Oopix/ABe3BMKBAwewWq1MmTKFYcOGsXDhwhaKXlyCMxHLMDSMzsolEjEPDw/Cw8OdW1BQEO+88w633HILpu9rWlut1lptcnJy2Lt3L7NmzWqw33379pGfn8/jjz9O//79GThwIPPnzycnJ4fDhw+31csTkRZkcXNjxLQHsNyzk20hN2BzmBhW+jmBKy5ly0v3U1aqanDSdkpKSkhNTXVWPszIyCA1NZWsrCwA5syZw4svvsgrr7xCeno6d911F6Wlpc4qitLy/P39mTVrFmazucF75tqL8y1/ABe/BEJ1dTWff/45zz//PFu2bOHjjz/m448/bouXJ+2BRsQM5ZJjz++++y6nTp1q9IvqpZdeol+/fs6h9vr079+foKAgli9fzu9//3tsNhvLly8nJiaGqKioBo9TmV+R9s8vKJTEu5eTufcOSt95gIEVuxh99CWyF69l78iHGf7zmSp3L61ux44dTJgwwfl4zpw5AMyYMYOVK1dy4403kpuby6OPPkp2djbx8fGsX7++TgGPDqvoGOQfhMA+4N+9zU5bXV2Nj48PaWlpXHvttW123uY63/IHcPFLIHTv3p2EhARnpcwrr7yS1NRUrrjiipZ5EdK+OROxw+BwUGfRTmlVLvlbyPLly5k4cSKRkZH1Pl9eXs6rr77a6GgYQJcuXdi0aRP/+te/8Pb2xmq1sn79ev773/82Oj9aZX5FXEdU7EhiH9rE16OWkG0KIZw8EpL/l71/HsfB3duMDk86uPHjx+NwOOpsK1eudLaZPXs2hw8fpqKigm3btpGYmGhcwBfC4YDK0uZvyS/CkkHwypSan8kvNr8Ph+P88dXjD3/4AyUlJaSlpbXwX0b9Fi5ciNVqbXQ7O0raHC2xBMKIESM4efIkBQUF2O12Nm/eTExMTLNjERcV0KvmZ0UxnCkwNpZOyNARsblz5/KXv/yl0Tbp6ekMGDDA+fjo0aN8+OGHvPHGGw0es2bNGk6fPs2MGTMa7fvMmTPMmjWLSy+9lNdffx2bzcaTTz7J5MmT2b59O97e3vUeN2/ePOdVTagZEVMyJtJ+mcxmhv78FsrH3cDWfz9O/OEVDKzcje2tiWz97BoG/PLPdA1WcQSRC1JVBgsjLq4Phx0+eKBma47fHwePxoty/VhKSgrLli1j8uTJbZaI3XnnnfziF79otE1ERPP/DhtbAmHfvn1N6sPNzY2FCxcybtw4HA4HP/vZz7jqqquaHYu4KHdv6NINTp+ouU/MJ9DoiDoVQxOx+++/n5kzZzbapnfv3rUer1ixgqCgIKZOndrgMS+99BJXXXXVead2vPbaa2RmZrJlyxbM309Reu211wgICOCdd97hl7/8Zb3HqcyviGvy8unCqFsXk511O8ffeIBhJZ8xKm8Nhc99zNaY35Jw3f/i5u5udJgi0krsdjt33HEHs2fPJjExkZtuuomqqircm/H//vjx4zz44IO8+uqrTT4mMDCQwMD2+wtuU6ZASgcWEPV9IpYJ3YcbHU2nYmgiFhISQkhISJPbOxwOVqxYwfTp0xv80MzIyODTTz/l3XffPW9/ZWVlmM1mZ8EPwPm4qWuviIjrCe/Zj/AH3mXvV+vw/uT3RNsPMyr9CQ4tepUzSYsYOOZKo0MUcR3uPjUjU81RfByWjqwZCTvLZIG7t4FfM0aG3H2addpnn32WvLw8Hn/8cbKysqiqqmLfvn0MHjy4yX1EREQ0KwmDmqmJ56tGuHfvXnr27NmsfrUEgrSIgCjI2qKCHQZwqXvENm7cSEZGBrfddluDbV5++WW6detW75WdNWvW1JrmeMUVV1BQUMDdd99Neno6e/bs4ZZbbsHNza3WzdUi0jHFjrmKHvN2sC3m9xThS297JgM/+hU7nryG7CPtu6y1SLthMtVMD2zOFtwXpjxTk3xBzc8pS2r2N6efZhQWOHbsGI888ghLly7F19eXvn374unp6ZyemJmZSVxcHP/zP/9D3759ueuuu1i7di2JiYkMGjSIAwcOONslJCQ428+YMYOYmBhuvPFGHA3cs3bnnXc6q2c2tF3I1EQtgSAt4mzBjnyVsG9rLlU1cfny5YwZM6ZWMnUuu93OypUrmTlzJhaLpc7zRUVF7N//w1pCAwYM4L333uOxxx5j9OjRmM1mhg4dyvr16+nWrVurvQ4RaT/c3D1IvPEhCnOns+3f80jIW0tCyaeceWk0W3rdytBfPoKXj9XoMEU6nmHToc9PIf8QBPZu9aqJ9957L5MmTWLy5MlAzb1RMTExte4TS09P54033uCSSy5h0KBBWK1Wtm3bxj/+8Q+ee+45nnnmmVp9pqen8/rrrxMTE8OECRP44osv6q3WfKFTE0tKSmqtdXZ2+YPAwEDn6NmcOXOYMWMGCQkJjBw5kiVLlmgJBGkelbA3jEslYq+99lqjz5vNZo4cOdLg8zNnzqxzT9oVV1yhEq0iQteQbiTes5KD32yhYt0DxFamMTprGccX/4fsxD8w9Gc3q9y9SEvz794mZevXrVvHxo0bSU9Pr7V/8ODBtRKx/v37079/fwBiYmKc1QgHDx7MBx98UKff/v37ExsbC8DQoUPJzMxsdNmc5jrf8geAlkCQixcQXfOzQGvotjWXSsRERFpbnyGjcQz6nJT1LxOZvJAIx0kitt5L2tcv43v1U0THJhgdoog001VXXUVBQd3S3KtWrar1+NxCXGaz2fnYbDZjs9nqHH9ue4vFUm+bi3F2+YPzmT17NrNnz27Rc0sncnZErPgoVFeCm4eh4XQmurwrIvIjJrOZ4Vfeht8DqWyNvJUKhzuDKlLpsfoKti69jYy920n78j1yjh40NM6cowcVh4iIXBxrKFi8aornHNthbCxFxyBjc83PThCHRsRaUGlpab33plksFry8vGq1a4jZbK61fllz2paVlTV45cxkMuHj43NBbc+cOdNoFUlfX98LalteXt7o1cPmtPXx8XFWv6yoqKC6urpF2np7ezuXNqisrKSqqqpF2np5eTn/rTSnbVVVFZWVlQ229fT0dC5G3py21dXVVFRUNNjWw8PDWam0OW1tNhvl5eUNtnV3d8fDw6PZbe12O2fOnGmRtm5ubs6r2g6Hg7Kysh+eNFkY/Ks/cSTzZk6uncfwM1sYlfsmjtVvAg5KKk18GngVHn0vr9Ov2WzC0+OHq4pnyhv+O2tOW5PJhJenB5XffsrIU2uxVtmxO+qP42zbpvQL4O31w9X9prat/PZTBmevwYoDm8PEZ4N+T8I1ta/Mn+8zorHPORERaWVf/xNs33//rrgSEm6F3uPbPo5Dm2DHy4ADMLWPOEzmmsJCw6a3yqlMjqaMeUujiouL8ff3b/D5K6+8kvfff9/52NfXt/Yve+e4/PLL2bRpk/NxSEgIeXl59bZNSEhg+/btzsdRUVEcPlz//N7Y2Fj27NnjfDxw4ED27t1bb9tevXqRmZnpfDxixAh27Kj/CklwcDC5ubnOx+PHj+ezzz6rt62Pj0+tX7gmT55c75z7s879pzlt2jTeeuutBtuWlJQ4f9mbOXMmr7zySoNtT5486Vw24e677+b5559vsG1GRgZRUVEAPPjggzz55JMNtk1LS2PgwIEALFiwgMcee6zBtsnJyYwYMQKAxYsX87vf/a7Btp9++injx48HYOnSpY1OP1m3bp3zRvSVK1c2erP2G2+8wbRp0wB48803G11sdMWKFc77K99///1GF/t87rnnuPvuuwHYtGlToxVI//rXv/Lggw8CsH37dkaOHNlg2/nz57NgwQIA9uzZw6BBgxps+8ADD7B48WKgpsJZdHR0g23/3//7fyxduhSA3NxcQkNDG2w7+SejeO+yvZhMUFrpwLrodINtb4h1481pP1zQMD1W3GDbK/u68f6vf2jru7CYsgZy88t7Wdg084fEJmTxafLK6v8YT4gws/32HwqNRC05zeGi+tvGhpjZ8/9+aDvw+RL25tZ/UaWXv4nM+7o4H494sYQdx+tv25zPiKKiIvz8/Op9TtrW2e+1+t6T8vJyMjIyiI6OrnWRUToHvf8dTNExWDKo9lISUpvJAvftbtb9rI19hp5LI2IiIk1k8fRpcrXs0yY/9rn3O2fP1gbblpis7HP/oRqsg2Sg/i/FMpMPGeaeRNuzzhtDucmbfe6xzsdVpp1A/aOkFSbPWm0rTLuA+kcSq0zu7HOPxdNW0qQ4RESknco/WH8SFhIDXg0PMrS48iLITa+7vz3E4bDVVHdthcJCGhFrAWez3uPHj9eb9WpqYv1tNTVRUxPb/dTEHzmVfZjuq8ZgMTlq2lZBtcPMqVs+J6x771ptm/P/vrmfEcWnjhP84nAsJgellTX/j+uLo7U/I3KOHiT4xeFUVtuxf9+0vjjO9xlRXFxMRESERsTaEY2ISUP0/ncw9Y2IXcAIkOKoTSNiBvD19a31C0dj7ZrTZ1Od+0tUS7Y99xe5lmzbnA/w5rT19PSsVcmqpdp6eHg4f7k3qq27u7szyWnJtm5ubs6krCXbWiyWJv8bbk5bs9ncKm1NJlOjbX37xJI8ZAHDvnkMN5MdT3cze4bMZ2S/weftuyX/33tH9nHG4ethp9rRtDha+jMi7Jw43ExNi6O+z4iWrjQnIiJN5N+95h6o9+6rGfk5u7h6WyY/nTgOjYi1gKZmvSLSMeQcPUje4X0E9xpAWGQfxXGRcegztP3RiJg0RO9/B1V0rM0WV+8McWhEzAClpaV06dLFOe3t7JSzc6c+nW0HtaeynZ1G1tAUpaa0PTuV6NypbGenkTU0Rakpbc9OJTp3KtvZaWTNafvjqU9npxvWN5WtKW3PnXJ27gjC2emGDU1PO1/bc6ennTuN8ez72Zy2TXnvW+LfSX3vZ0v8Ozn7fl7sv5OGprte6L+Tht7Pi/13cu772VjbsMg+hHbvTVlZGaWlpc167y/030l972dYZB+sAeHO12nUZ4RfUATWgPBar6G5nxHienQdt3PS+95BtdHi6oqjNq0j1oIiIiJqVThcvHgxVqu1TpW70NBQrFYrWVk/3OS+dOlSrFYrs2bNqtU2KioKq9VKevoPNw6uXLkSq9XKL3/5y1ptY2NjsVqt7Ny507lv9erVWK1Wpk6dWqvtiBEjsFqtfP75585969atw2q1kpSUVKvtuHHjsFqtfPjhh859GzduxGq1Mnr06FptJ02ahNVqZc2aNc59W7duxWq1EhcXV6vt9ddfj9Vq5dVXX3Xu2717N1arlb59+9Zqe/PNN2O1WnnhhRec+w4ePIjVaqV799r/Ue644w6sVivPPPOMc9+JEyewWq107dq1Vts5c+ZgtVpZuHChc19RURFWqxWr1Vrr/rGHH34Yq9XKww8/7NxXXV3tbFtUVOTcv3DhQqxWK3PmzKl1vq5du2K1Wjlx4oRz3zPPPIPVauWOO+6o1bZ79+5YrVYOHvxhbaYXXngBq9XKzTffXKtt3759sVqt7N6927nv1VdfxWq1cv3119dqGxcXh9VqZevWH4pHrFmzBqvVyqRJk2q1HT16NFarlY0bNzr3ffjhh1itVsaNG1erbVJSElarlXXr1jn3ff7551itVmeFyLOmTp2K1Wpl9erVzn07d+7EarUSGxtbq+0vf/lLrFYrK1eudO5LT0/HarU6K1qeNWvWLKxWq7MKIkBWVhZWq7VONcTZs2djtVqd1RUB8vLynO/nuR566CGsVmutSphlZWXOtufeV/bYY49htVp56KGHavVxtq0+I+p+Rpxb/VXav7MXORq7n1I6rrPve1OnvotIwzQiJiIiIk1msVjo2rUrJ0+eBGqP8krHdXbGwMmTJ+natWu966aKSPPoHrEWcG7VxPDwcE1N1NRETU3s4FMTf9zWqKmJzW3bXj8jCgoKCAwM1D1i7cj57m9wOBxkZ2dTWFjY9sGJobp27Vrrdx0Rqaup94gpEWsButFcROTC6TO0/Wnqe2Kz2RpdfkM6Fnd3d42EiTSBinWIiIhIq7JYLPrFXETkAqlYh4iIiIiISBtTIiYiIiIiItLGlIiJiIiIiIi0Md0j1gLO1jspLi42OBIREddz9rNTtaPaD32viYhcuKZ+rykRawGnT58GoEePHgZHIiLiuk6fPo2/v7/RYQj6XhMRaQnn+15T+foWYLfbOX78OF26dGn2uhrFxcX06NGDI0eOGFq2WXEoDsWhOIyKw+FwcPr0aSIiIpxroYmx9L2mOBSH4lAcrf+9phGxFmA2m4mMjLyoPvz8/NrF+jmKQ3EoDsVhRBwaCWtf9L2mOBSH4lAcrf+9pkuPIiIiIiIibUyJmIiIiIiISBtTImYwT09P5s+fj6enp+JQHIpDcSgOcXnt5d+D4lAcikNxtPc4VKxDRERERESkjWlETEREREREpI0pERMREREREWljSsRERERERETamBIxERERERGRNqZEzCCLFi1ixIgRdOnShdDQUK655hr2799vaEx//vOfMZlM3HfffYac/9ixY9x0000EBQXh7e3N4MGD2bFjR5vGYLPZeOSRR4iOjsbb25s+ffrwxz/+kdauabN582amTJlCREQEJpOJtWvX1nre4XDw6KOP0q1bN7y9vUlKSuLAgQNtGkdVVRUPPfQQgwcPxtfXl4iICKZPn87x48fbNI4fu/POOzGZTCxZssSQONLT05k6dSr+/v74+voyYsQIsrKy2jSOkpISZs+eTWRkJN7e3sTGxrJs2bIWjQGa9rlVXl7O3XffTVBQEFarleuvv56cnJwWj0XaH32v1aXvNX2vNSWOH9P3Wuf5XlMiZpDPPvuMu+++m61bt/Lxxx9TVVXFz372M0pLSw2JZ/v27fzjH/9gyJAhhpy/oKCASy+9FHd3d/773/+yd+9ennrqKQICAto0jr/85S/8/e9/57nnniM9PZ2//OUv/PWvf+XZZ59t1fOWlpYSFxfH0qVL633+r3/9K3/7299YtmwZ27Ztw9fXl4kTJ1JeXt5mcZSVlbFz504eeeQRdu7cyX/+8x/279/P1KlTWzSG88VxrjVr1rB161YiIiJaPIamxHHw4EEuu+wyBgwYwKZNm/jmm2945JFH8PLyatM45syZw/r16/nXv/5Feno69913H7Nnz+bdd99t0Tia8rn1v//7v7z33nv/v707D4rizN8A/kw4ZDgEQRkYdWC8uIKKkELRQIzGoyxWY1ZGlxAM1G5KUMF1J6Y0ZkniFbzjud4m0RAoCw9cBczCrDF4IhqVBUVXySoSE4nHYoDh/f3hj15HThV6sHw+VVOVebun32+3r/349vR0kJaWBoPBgOvXr2P8+PGtWge1T8w1U8w15lpL63gUc+2hFybXBLUL5eXlAoAwGAyy93337l3Ru3dvkZ2dLcLCwkRCQoLsNcyaNUsMGTJE9n4fN2bMGBETE2PSNn78eBEZGSlbDQBEenq69L62tla4ubmJxYsXS20VFRWiQ4cO4uuvv5atjoYcP35cABBXr16VvY4ff/xRdO3aVZw7d054eHiI5cuXt1kNjdWh0+nE22+/3ab9tqQOPz8/8cknn5i0DRgwQMyZM6dNa3n8vFVRUSGsrKxEWlqatE5hYaEAIPLy8tq0Fmp/mGvMtTrMtZbVwVz7nxcl1/iNWDvx66+/AgCcnZ1l7zs+Ph5jxozB8OHDZe+7zt69exEUFIQJEybA1dUVAQEB2Lhxo+x1hISE4Ntvv0VxcTEA4MyZM/juu+8wevRo2Wupc+XKFZSVlZn8+Tg6OiI4OBh5eXlmqwt4OG4VCgWcnJxk7be2thZRUVHQ6/Xw8/OTte9Ha9i/fz/69OmDkSNHwtXVFcHBwU3ebtJWQkJCsHfvXvznP/+BEAI5OTkoLi7GiBEj2rTfx89bp06dQnV1tclY9fb2hkajMftYJfkx15hrjWGu1cdcM/Wi5BonYu1AbW0tEhMTMXjwYLz88suy9p2SkoL8/HwsXLhQ1n4fd/nyZaxbtw69e/dGZmYmpkyZgunTp2P79u2y1vHBBx9g4sSJ8Pb2hpWVFQICApCYmIjIyEhZ63hUWVkZAEClUpm0q1QqaZk5PHjwALNmzcKkSZPQsWNHWfv+7LPPYGlpienTp8va76PKy8tx7949LFq0CKNGjUJWVhbefPNNjB8/HgaDQdZaVq1aBV9fX3Tr1g3W1tYYNWoU1qxZg9DQ0Dbrs6HzVllZGaytrev9A8bcY5Xkx1xjrjWFuVYfc83Ui5Jrls+8BXpm8fHxOHfuHL777jtZ+y0tLUVCQgKys7Nb/d7fJ1VbW4ugoCAsWLAAABAQEIBz585h/fr1iI6Olq2O1NRU7NixAzt37oSfnx8KCgqQmJgItVotax3tXXV1NSIiIiCEwLp162Tt+9SpU1i5ciXy8/OhUChk7ftRtbW1AICxY8dixowZAID+/fvj+++/x/r16xEWFiZbLatWrcLRo0exd+9eeHh44J///Cfi4+OhVqvb7BsBc5236PnAXGOuPW+Ya8w1c5y3+I2YmU2dOhUZGRnIyclBt27dZO371KlTKC8vx4ABA2BpaQlLS0sYDAZ8/vnnsLS0hNFolK0Wd3d3+Pr6mrT5+Pi0+lN6mqPX66Wrh/7+/oiKisKMGTPMemXVzc0NAOo9oefmzZvSMjnVhdXVq1eRnZ0t+1XDw4cPo7y8HBqNRhq3V69excyZM+Hp6SlbHZ07d4alpaXZx21lZSVmz56NZcuWITw8HH379sXUqVOh0+mwZMmSNumzsfOWm5sbqqqqUFFRYbK+ucYqmQdz7SHmWuOYa6aYa6ZepFzjRMxMhBCYOnUq0tPT8Y9//ANarVb2GoYNG4YffvgBBQUF0isoKAiRkZEoKCiAhYWFbLUMHjy43uNCi4uL4eHhIVsNwMMnKL30kulfCwsLC+kqkTlotVq4ubnh22+/ldru3LmDY8eOYdCgQbLWUhdWFy9exKFDh+Di4iJr/wAQFRWFs2fPmoxbtVoNvV6PzMxM2eqwtrbGK6+8YvZxW11djerqalnGbXPnrcDAQFhZWZmM1aKiIly7dk32sUryY66ZYq41jrlmirlm6kXKNd6aaCbx8fHYuXMn9uzZAwcHB+k+U0dHRyiVSllqcHBwqHfvvp2dHVxcXGS/p3/GjBkICQnBggULEBERgePHj2PDhg3YsGGDrHWEh4dj/vz50Gg08PPzw+nTp7Fs2TLExMS0ab/37t3DpUuXpPdXrlxBQUEBnJ2dodFokJiYiHnz5qF3797QarWYO3cu1Go1xo0bJ1sd7u7u+P3vf4/8/HxkZGTAaDRK49bZ2RnW1tay1KHRaOoFpZWVFdzc3ODl5dVqNbSkDr1eD51Oh9DQUAwdOhQHDx7Evn37kJubK2sdYWFh0Ov1UCqV8PDwgMFgwBdffIFly5a1ah3NnbccHR0RGxuLP//5z3B2dkbHjh0xbdo0DBo0CAMHDmzVWqj9Ya6ZYq4x11paB3PtBc61Z37uIj0VAA2+tm7data6zPWYXyGE2Ldvn3j55ZdFhw4dhLe3t9iwYYPsNdy5c0ckJCQIjUYjbGxsRI8ePcScOXPEb7/91qb95uTkNDgeoqOjhRAPH/U7d+5coVKpRIcOHcSwYcNEUVGRrHVcuXKl0XGbk5MjWx0NaavH/Lakjs2bN4tevXoJGxsb0a9fP7F7927Z67hx44aYPHmyUKvVwsbGRnh5eYmlS5eK2traVq2jJeetyspKERcXJzp16iRsbW3Fm2++KW7cuNGqdVD7xFyrj7nGXGtJHQ1hrr0Yuab4/yKIiIiIiIhIJvyNGBERERERkcw4ESMiIiIiIpIZJ2JEREREREQy40SMiIiIiIhIZpyIERERERERyYwTMSIiIiIiIplxIkZERERERCQzTsToubJt2zY4OTmZu4znjqenJ1asWGGWvl977TUkJiY+0WeSkpLQv39/6f3kyZMxbty4Vq2rLZjzOBPR84m59nSYa/JgrrUtTsTouaLT6VBcXGzuMlosNzcXCoUCnTp1woMHD0yWnThxAgqFAgqFot76dS+VSoW33noLly9fltY5c+YMfve738HV1RU2Njbw9PSETqdDeXm5bPslt5UrV2Lbtm3mLqNZJ06cwJ/+9Cdzl0FEzxHmGnOtPWOutS1OxOi5olQq4erqau4ynpiDgwPS09NN2jZv3gyNRtPg+kVFRbh+/TrS0tJw/vx5hIeHw2g04qeffsKwYcPg7OyMzMxMFBYWYuvWrVCr1bh//74cu2IWjo6Oz8UV4y5dusDW1tbcZRDRc4S5xlxrz5hrbYsTMXoqr732GqZNm4bExER06tQJKpUKGzduxP379/Huu+/CwcEBvXr1woEDB6TPGI1GxMbGQqvVQqlUwsvLCytXrpSWP3jwAH5+fiZXXkpKSuDg4IAtW7YAqH8LR91X/Vu2bIFGo4G9vT3i4uJgNBqRnJwMNzc3uLq6Yv78+dJn/v3vf0OhUKCgoEBqq6iogEKhQG5uLoD/XcHLzMxEQEAAlEolXn/9dZSXl+PAgQPw8fFBx44d8Yc//AH//e9/mz1e0dHR0j4AQGVlJVJSUhAdHd3g+q6urnB3d0doaCg++ugjXLhwAZcuXcKRI0fw66+/YtOmTQgICIBWq8XQoUOxfPlyaLXaJmu4e/cuJk2aBDs7O3Tt2hVr1qwxWX7t2jWMHTsW9vb26NixIyIiInDz5s16x/rLL7+Ep6cnHB0dMXHiRNy9e1da5/79+3jnnXdgb28Pd3d3LF26tNljAwCLFi2CSqWCg4MDYmNj611lffwWjqcZfwBw7tw5jB49Gvb29lCpVIiKisKtW7dMtjt9+nS8//77cHZ2hpubG5KSkqTlQggkJSVBo9GgQ4cOUKvVmD59urT88Vs4WuOYEpE8mGvMNeYac01unIjRU9u+fTs6d+6M48ePY9q0aZgyZQomTJiAkJAQ5OfnY8SIEYiKipJO6LW1tejWrRvS0tJw4cIFfPTRR5g9ezZSU1MBADY2NtixYwe2b9+OPXv2wGg04u2338Ybb7yBmJiYRusoKSnBgQMHcPDgQXz99dfYvHkzxowZgx9//BEGgwGfffYZPvzwQxw7duyJ9zEpKQmrV6/G999/j9LSUkRERGDFihXYuXMn9u/fj6ysLKxatarZ7URFReHw4cO4du0aAGDXrl3w9PTEgAEDmv2sUqkEAFRVVcHNzQ01NTVIT0+HEOKJ9mXx4sXo168fTp8+jQ8++AAJCQnIzs4G8PDPZuzYsfjll19gMBiQnZ2Ny5cvQ6fTmWyjpKQEu3fvRkZGBjIyMmAwGLBo0SJpuV6vh8FgwJ49e5CVlYXc3Fzk5+c3WVdqaiqSkpKwYMECnDx5Eu7u7li7dm2z+/Ok46+iogKvv/46AgICcPLkSRw8eBA3b95EREREve3a2dnh2LFjSE5OxieffCIdp127dmH58uX429/+hosXL2L37t3w9/dvsL7WOqZEJB/mGnONucZck5UgegphYWFiyJAh0vuamhphZ2cnoqKipLYbN24IACIvL6/R7cTHx4u33nrLpC05OVl07txZTJ06Vbi7u4tbt25Jy7Zu3SocHR2l93/961+Fra2tuHPnjtQ2cuRI4enpKYxGo9Tm5eUlFi5cKIQQ4sqVKwKAOH36tLT89u3bAoDIyckRQgiRk5MjAIhDhw5J6yxcuFAAECUlJVLbe++9J0aOHNno/tVt5/bt22LcuHHi448/FkIIMXToULFy5UqRnp4uHv1r+Oj6Qghx/fp1ERISIrp27Sp+++03IYQQs2fPFpaWlsLZ2VmMGjVKJCcni7KyskZrEEIIDw8PMWrUKJM2nU4nRo8eLYQQIisrS1hYWIhr165Jy8+fPy8AiOPHjwshGj7Wer1eBAcHCyGEuHv3rrC2thapqanS8p9//lkolUqRkJDQaG2DBg0ScXFxJm3BwcGiX79+0vvo6GgxduxY6f3TjL9PP/1UjBgxwqSf0tJSAUAUFRU1uF0hhHjllVfErFmzhBBCLF26VPTp00dUVVU1uC8eHh5i+fLlQojWOaZEJB/m2kPMNebao5hrbYvfiNFT69u3r/TfFhYWcHFxMbmKolKpAMDkx7Zr1qxBYGAgunTpAnt7e2zYsEG6mlZn5syZ6NOnD1avXo0tW7bAxcWlyTo8PT3h4OBg0q+vry9eeuklk7an+dHvo/uoUqlga2uLHj16PNV2Y2JisG3bNly+fBl5eXmIjIxsdN1u3brBzs5Oukd+165dsLa2BgDMnz8fZWVlWL9+Pfz8/LB+/Xp4e3vjhx9+aLL/QYMG1XtfWFgIACgsLET37t3RvXt3abmvry+cnJykdYD6x9rd3V3a/5KSElRVVSE4OFha7uzsDC8vrybrKiwsNPlMQ7U25EnH35kzZ5CTkwN7e3vp5e3tLdXe0HYf38cJEyagsrISPXr0wB//+Eekp6ejpqam0f161mNKRPJirjHXmGvMNTlxIkZPzcrKyuS9QqEwaat7alJtbS0AICUlBX/5y18QGxuLrKwsFBQU4N1330VVVZXJdsrLy1FcXAwLCwtcvHjxmeuoa6uroy7IxCO3QFRXVze77ea225zRo0ejsrISsbGxCA8PbzKIDx8+jLNnz+LOnTsoKCiod0J3cXHBhAkTsGTJEhQWFkKtVmPJkiUtquNZPMv+y1FLU+Pv3r17CA8PR0FBgcnr4sWLCA0NbXK7ddvo3r07ioqKsHbtWiiVSsTFxSE0NLTR8fO0+2GuY0r0omOuMdeYa8w1OXEiRrI5cuQIQkJCEBcXh4CAAPTq1cvkik2dmJgY+Pv7Y/v27Zg1a5bJVZbW0KVLFwDAjRs3pLZHf+DcViwtLfHOO+8gNze3yd8GAIBWq0XPnj1Nrig1xtraGj179mz26VJHjx6t997HxwcA4OPjg9LSUpSWlkrLL1y4gIqKCvj6+jZbAwD07NkTVlZWJr9ZuH37drOPZfbx8an3O4fHa20NAwYMwPnz5+Hp6YlevXqZvOzs7Fq8HaVSifDwcHz++efIzc1FXl5eg1dtW+OYElH7xlxjrjWEuUYtZWnuAujF0bt3b3zxxRfIzMyEVqvFl19+iRMnTpg8FWnNmjXIy8vD2bNn0b17d+zfvx+RkZE4evSodAvDs1IqlRg4cCAWLVoErVaL8vJyfPjhh62y7eZ8+umn0Ov1zd6W0piMjAykpKRg4sSJ6NOnD4QQ2LdvH/7+979j69atTX72yJEjSE5Oxrhx45CdnY20tDTs378fADB8+HD4+/sjMjISK1asQE1NDeLi4hAWFoagoKAW1WZvb4/Y2Fhp/1xdXTFnzhyTW2kakpCQgMmTJyMoKAiDBw/Gjh07cP78eZNbZVpDfHw8Nm7ciEmTJklPj7p06RJSUlKwadMmWFhYNLuNbdu2wWg0Ijg4GLa2tvjqq6+gVCrh4eFRb93WOKZE1L4x15hrDWGuUUvxGzGSzXvvvYfx48dDp9MhODgYP//8M+Li4qTl//rXv6DX67F27Vrp/uO1a9fi1q1bmDt3bqvWsmXLFtTU1CAwMBCJiYmYN29eq26/MdbW1ujcubPJ/+zySfj6+sLW1hYzZ85E//79MXDgQKSmpmLTpk2Iiopq8rMzZ87EyZMnERAQgHnz5mHZsmUYOXIkgIe3DezZswedOnVCaGgohg8fjh49euCbb755ovoWL16MV199FeHh4Rg+fDiGDBmCwMDAJj+j0+kwd+5cvP/++wgMDMTVq1cxZcqUJ+q3JdRqNY4cOQKj0YgRI0bA398fiYmJcHJyajZU6zg5OWHjxo0YPHgw+vbti0OHDmHfvn0N/gOktY4pEbVfzDXmWkOYa9RSCiGe8FmhRERERERE9Ez4jRgREREREZHMOBEjIiIiIiKSGSdiREREREREMuNEjIiIiIiISGaciBEREREREcmMEzEiIiIiIiKZcSJGREREREQkM07EiIiIiIiIZMaJGBERERERkcw4ESMiIiIiIpIZJ2JEREREREQy40SMiIiIiIhIZv8Hkwho0msHWvEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAFzCAYAAABcurqFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcs0lEQVR4nOzdeXxU1f3/8dedyZ6QfScbOwmBBAgJYBHQWIwI4oK0agUUam1x+SG2YBXUVui3LqVVWlrZtAUFtSCiohWwuACBhAAhAQETSAhkgex7Zu7vjyFTYhaSMMmdST7Px+M+krlz7p33kDCTz5xzz1FUVVURQgghhBBCCNFtdFoHEEIIIYQQQojeRgoxIYQQQgghhOhmUogJIYQQQgghRDeTQkwIIYQQQgghupkUYkIIIYQQQgjRzaQQE0IIIYQQQohuJoWYEEIIIYQQQnQzKcSEEEIIIYQQopvZaR2gJzAajeTl5dGnTx8URdE6jhBC2BRVVSkvLyc4OBidTj4ftAbyviaEEJ3X3vc1KcQsIC8vj9DQUK1jCCGETcvJySEkJETrGAJ5XxNCCEu41vuaFGIW0KdPH8D0j+3u7q5xGiGEsC1lZWWEhoaaX0uF9uR9TQghOq+972tSiFlA47ANd3d3ecMSQohOkiFwlrVjxw6eeuopjEYjv/nNb5g3b167j5X3NSGEuH7Xel+TQkwIIYToYRoaGli4cCF79uzBw8OD0aNHc+edd+Lj46N1NCGEEFfIVdFCCCFED5OcnMywYcPo27cvbm5uJCUl8fnnn2sdSwghxFWkEBNCCCGszN69e5k2bRrBwcEoisK2bduatVm1ahURERE4OTmRkJBAcnKy+b68vDz69u1rvt23b1/Onz/fHdGFEEK0kwxNFEJ0K4PBQH19vdYxRDfS6/XY2dnJNWAdUFlZSUxMDA899BB33XVXs/s3b97MwoULWb16NQkJCaxcuZIpU6Zw8uRJ/P39O/x4tbW11NbWmm+XlZVdV34hhBDXJoWYEKLbVFRUkJubi6qqWkcR3czFxYWgoCAcHBy0jmITkpKSSEpKavX+1157jfnz5zN37lwAVq9ezccff8y6detYvHgxwcHBTXrAzp8/T3x8fKvnW7FiBS+88ILlnoAQQohrkkJMCNEtDAYDubm5uLi44OfnJ70jvYSqqtTV1VFYWEhWVhaDBg2SRZuvU11dHSkpKSxZssS8T6fTkZiYyL59+wCIj48nPT2d8+fP4+Hhwaeffspzzz3X6jmXLFnCwoULzbcbp14WQgjRdaQQE0J0i/r6elRVxc/PD2dnZ63jiG7k7OyMvb09Z8+epa6uDicnJ60j2bSioiIMBgMBAQFN9gcEBHDixAkA7OzsePXVV5k8eTJGo5Ff//rXbc6Y6OjoiKOjY5fmFkII0ZQUYkKIbiU9Yb2T9IJ1v+nTpzN9+nStYwghhGiFvDMKAPJzz5D+zUfk557ROooQQog2+Pr6otfryc/Pb7I/Pz+fwMBAjVJZH3lfE0JYOynEBMkfrMT3zdFE/+cBfN8cTfIHK7WOJIQQohUODg6MHj2aXbt2mfcZjUZ27drFuHHjNExmPQ68/xp+V72v7X/3D1pHEkKIZmRoYi+Xn3uG0UefR6+YZrHTKyqjjr5AfsI0AkIGaBtOCCF6qYqKCk6fPm2+nZWVRVpaGt7e3oSFhbFw4UJmz55NXFwc8fHxrFy5ksrKSvMsir1RVUUpJ7/9CMPR94kv30PjKGi9ojL2xArKnl9JoT6QcocAal2DMbqHYO8Vgqt/BJ6BEfgGRWDvINfJCSG6jxRivVzh2QwClKZTidspRorOnpBCTAghNHLo0CEmT55svt04o+Hs2bPZsGEDs2bNorCwkKVLl3Lx4kViY2PZuXNnswk8erqL505xdt+/cc76D0Oq0xipXFmjsIVLUd2pxt2QBdVZUA0UNb3foCrkK94U2/lT6RxIvWsweITg6BNGn4AIfIIH4OkTgCLXOwohLEQKsV7OLzwKo6qgu6oYa1B1+IYP1TCVEMLalZSUkJiYSENDAw0NDTzxxBPMnz9f61g9xqRJk6653t6CBQtYsGBBNyWyDoaGBk6l/Zfiw9sJuPAl/Y3ZmK+KUyBPCSDHYxRjinc2eV8zqDoyEjdgbKijpugcxpIc7CrO41J9Ec/6fPyMRTgoBgK4REDDJSjPhHLgYtPHr1YdKNL5UuIQQLVzEIY+fbHzCsXJNwyPwH749R2As2ufJsfk556h8GwGfuFR8gGnEKIJKcR6uYCQARx3HMawunTzvoPh8xgnbxZCiDb06dOHvXv34uLiQmVlJdHR0dx1111tTpEuRGeUl17m1L7tGE7sZEDJNwylzHyfQVX4ziGKktCbCR4zg7AhIwnW6Uj+YCWjjr6AnWKkQdWROmIZ8RPuaPUxjAYDRYXnuZz3PRUF2dRdOgeluThUXsCt9iLeDQX4UoKzUkeomkdobR7UHoYSIKfpuYrpwyW9P+WOAdg3VBJVe4QABYyqwr6AmXiMuhsHZzccnN1wdOmDk4s7zq59cHDs2mUdpCAUwvpIISZwMNYCUKk64qrUotRVapxICOuzePFi/vSnP3H33XezadMmreNoTq/X4+LiAkBtbS2qql6zB0eI9srLOsG5/R/gmv0FQ2qOMEoxmO8rV535rk8C6uBbGTBuBpF+Qc2Oj7/7SfITplF09gS+4UOJv0bhodPr8Q0MwzcwrNU2tTVVFOVlUXIhm6rCbBqKz6Erz8O56gLudRfxMxTiqtTgRTlehnKoujJb45VhkjpFZVzBFti5pcXz16t6qhUnanCkVnGiVudMvc6Jer0zDXpnDHbOGO1cUO2cUR1cUa5sOkdX9I6u6J3csHdyw97ZDQfnPji6uOHs0gcn1z4c2fF3Rh97gQBFxaAqJI94nvi7n2z7hyCE6HJSiPVy9XW1hNdngQLHBi9g7KlXGXjxY+rrauWiZSGusmTJEkJCQnjsscd48cUXGThwoNaRWrV3715efvllUlJSuHDhAlu3bmXGjBnN2q1atYqXX36ZixcvEhMTw+uvv058fHy7H6ekpISJEydy6tQpXn75ZXx9fS34LERv0lBfx6nUPZSk7SAofw8RxhyCG+9UIFcJItd/Im4jbmfImB8zuh3vTwEhAyza8+Po5ELf/sPo239Yi/erRiOlpZe5nHeGsvwsqk/sYmxB86IrH28UwIkanNVa7K8UmfaKAXsqcacSVMBwZau//uxjVJpMXjLm6DKOnPqIWucAjI6eqM6e6Fy8sXP1wsHNF2cPH1zcfXHz8qOPu5dFr4uzlp45a8khejcpxHq5cycPM0BpoAwXRt3zay6veBNfSkj7aiuxN/9E63hCWA0PDw8efvhhnnjiCY4dO2bVhVhlZSUxMTE89NBD3HXXXS222bx5MwsXLmT16tUkJCSwcuVKpkyZwsmTJ/H39wcgNjaWhoaGZsd+/vnnBAcH4+npyZEjR8jPz+euu+7innvu6XWTRYjOKyu5xKlvtqKe3MnAsn1EUmG+r0HVcdJxGOVhiQTHzyBscCwhGmZtD0Wnw8PLFw8vXxiWQP7gMRjefM88KzGYnhfzv8D/qj/862prqK4sp6aqjNqqcmqryqmvrqC+pgJDTQWG2kqMtZWodZWodVUo9VUo9ZXoGqrQN1RjZ6jG3lCNvbEGR2M1jmoNTtTipNbgcKXIU34weYmiQEzNIai59vNqUHWUK65UKH2o0veh1s6dOgcPDA4eGJ29UJw90bt4Y9/HByc3b5w9fHH19MPdy6/ZcMvkD1Yy+ujz3d4zZzQYaGiox9BQT0NDPcc/+RtjTrwsPYRCc1KI9XKXTiczAMhxGMQwRye+C7iNsfnvYkz9F0ghJqzUhdJqsooq6efrSpCHc7c9bkNDAy4uLqSnp3PnnXd22+N2VFJSEklJSW22ee2115g/f755uvPVq1fz8ccfs27dOhYvXgxAWlpaux4vICCAmJgYvvrqK+65557ryi56tpzTxzh/YCt9zn7B4Np0Rl815LAUV065j4MhtzJo3AyGeftpmPT6BYQMIHnE882vVftB74uDoxMOjk54dMHzraut4fyZY4RtvqVJQWhQFZL7PQqoKNUl6GpLsa8rwbG+DGdDOa7GctzVcpyUeuwUo2m4pVoODZi2dhRwAFWqI2VKH6p0btTqnBhTf6JJz1zc0WUcytqDqndEUQ0oxgbTV9WATm248vXqreF/32NAb/5qNH29stmpV32PEZ2i4nBVrrFgHjLamGNf0Rnchk4mJGocXi0MdxWiK0gh1sup59MAKPeKAsB/wkPw/rtEV3xLceEFeTESXUZVVarrDddu+AMfpOSybPtxjCroFHhh+jDuHt2xz8qd7fUoP/yIuB2effZZKioqSE9Pv3ZjC1i+fDnLly9vs01GRgZhYa1f19KSuro6UlJSWLJkiXmfTqcjMTGRffv2tesc+fn5uLi40KdPH0pLS9m7dy+PPvpoh3KInunqIV/e/iF8d/ALyo9+RHDhXsKM5wltbKjAWV0IF/wn4h4zjcFxNxNn79DWqW1OR69VszQHRyf6RY1psSAc144eoJqqCspLiqgsLaKqtIjasiLqK4sxVl1GrSpGV1uKXW0J9vWlODWU42Iow02twF2tRKeouCi1uFALxiIw0mxZAZ0CcRVfWv6Jd/DlXafAuAtvw4W3YQ9cxI8LLoOp8RuOS/hI+g4dh29wuOVzil5PCrFezqM0EwC7kJEA9I9O4PTWAQw0nCH1i3WM/elvtYwnerDqegNRSz+7rnMYVXjuw+M89+HxDh2X8eIUXBw69vKXkpLC6tWrmTp1arcVYr/4xS+4995722wTHBzc5v0tKSoqwmAwNBtGGBAQwIkTJ9p1jrNnz/Lzn//cPEnHY489xvDhwzucRfQsVw89U1WoxoFhSp35/npVz0mn4VSE30JI/AzCB0bT0/+8tfS1ap3R2YLQycUNJxc3/IIjOvR4RoOB0tLLVJQUUVVaSE1ZEZUXviM+8w9NlhUwqgoHgn+G4uoNOjsUnZ3pq970Vae3A70dOp0dit4e5arvdXo7dHamtnrzbXt0env0V77X29mht7M33W9nj52dHcX5uQT980dNegiNqsIR5wR8a88RquYRSCGBVYVw9hs4C+yFIjw57zyYKp9onMJGEzQ0gYCQAbKunLguUoj1YoaGBsLqzoACfoMTzPuLBt7DwJP/h9/p9wEpxIQwGo088sgjLFiwgISEBB544AHq6+uxt7dv9zny8vJ4+umn2bhxY7uP8fb2xtvbuzORu1x8fHy7hy6K3iE/9wyjjz5v/gNXUcCFOopx5bTHj9ANSWLQ+OlEe8oSB1rozoJQp9fj4e13ZbhlpHl/8gdOneqZsyTXPp4tDxm9kqO89DI5GQcoyzqE3cUj+FacINSQi69Sgm91MuQmQ+46+Na0VEGu4yAqvKNxCI0lYHACfftHSXEm2k0KsV4s9/RRwpVaqlRHQgZEm/cPveUh6k68ygDD95w5+i0DRozXMKXoqZzt9WS8OKVDx1wsrSHxtf9ivGqWdJ0CXyycSKBH+9fgcbbXd+hxX3/9dYqKinjxxRc5d+4c9fX1nDhxokM9QMHBwR0qwqDrhib6+vqi1+vJz89vsj8/P5/AwMBWjhKibYVnMwhQmi9hkHvzasZMmK5BImFttB6q2Z4cfTy8iRqXBOP+d51tVUUp5zIPUvr9IZQLR/ApP0FYw1m8lHK8alPhQqppWGMylOFCjsNAyr2GYdc3Fr/B8YQMHIHeTv7kFs3Jb0UvVvhdMuHAWYcBRF71AuHpG0hqn/GMqthL4dfrpRATXUJRlA4PD+zv58aKu4bzzL/TMagqekVh+V3R9Pdz66KUcP78eZ577jneeecdXF1dGTRoEI6OjqSnpzN8+HCys7O54447iI6OJjk5mcTERKZMmcKKFSuorKxk69atDBo0iOzsbO655x7ef/997rjjDmJjY0lOTmbEiBG8++67LV6z1lVDEx0cHBg9ejS7du0yT2tvNBrZtWsXCxYs6PD5hADwC4/CoCrNZgn079fydO+id7KGoZodzeHi5sHQMYkwJtG8r7amilMnUig+nQwXjuBZmkl4fRbuShXD6o5C/lHIfwdSTZOWnHMYQKlHJErfWHwHJRA6OBZ7B0eZRr+Xk0KsF2u4MlFHmWdUs/v0o+6HvXsZUrCTutqaZlPQCqGVWWPCuHGwH9lFVUT4unT5rImPP/44SUlJTJ06FQA7OzsiIyObXCeWmZnJli1bGDhwINHR0bi5uXHgwAH+/ve/88Ybb/DnP/+5yTkzMzN55513iIyMZPLkyXz99ddMmDCh2WN3dmhiRUUFp0+fNt/OysoiLS0Nb29vc+/ZwoULmT17NnFxccTHx7Ny5UoqKyvNsygK0VHtnSVQiJ7A0cmFQbETIPZ/r931dbV8/10aRaeSUfPScC/JILzuDC5KLUPrM6AoA4o+gCNQq9qTp3gRpBYQoCDT6PdSUoj1Yn2KMwBQgmOb3Tdswl0U7f0NvpSQ+uV7jJrys25OJ0Trgjycu2Xa+h07drB7924yMzOb7B8+fHiTQmzIkCEMGTIEgMjISBITE83tPvnkk2bnHTJkCFFRpg9ARo4cSXZ2douFWGcdOnSIyZMnm28vXLgQgNmzZ7NhwwYAZs2aRWFhIUuXLuXixYvExsayc+dOWQdMXBdrGXomhBbsHRzpH51A/+j/XXdvaGjg7Jl0ir7bT31uGn2KjxNWd4o+SjXBFDSZRn/U0RfIT5gmPWO9iBRivZRqNBJadwoAn4Fjmt1vZ+/A6cCp+F7ciHJkE0ghJnqh22+/neLi4mb733777Sa3HR0dzd/rdDrzbZ1Oh8HQfIr+q9vr9foW21yPSZMmoarNr9X5oQULFshQRGFx1jL0TAhroLezI3xILOFDYs37VKOBgzv+wZjUxU3a2ilGis6ekP8/vYhM69JL5WWfxJ0q6lQ7woaMbLFN0KR5AAyv3E/RxZzujCeEEEII0SMpOj1ho36MQW16bXCDqsM3fKhGqYQWpBDrpfJP7gfgrH0/7B0cW2wTPnQUJ+2GYKcYOf3F2u6MJ4QQQgjRYwWEDCBlxPMYrxRjRhXe9nlSesN6GRma2EvV5hwG4LJ7ZJvtSgbPhIzfE/D9v1GNS2VtDCF+ICIigkOHDplvv//+++bvx44dy44dO5q1u7r9K6+80k1JhRBCWJP4u5+kxM8Jz92/IV2N4K9l43mgwYiDnfyt1VvIT7qXcr183PRNUEyb7YbeMpda1Z5+xrOcPvJ1NyQTQgghhOgdPAfEAxCsK6Gooo7PMy5qnEh0JynEeiHVaCSk5jsAvAY0n6jjah5evqS7m2Zzu/zN+i7PJoQQQgjRa3hFAOBLCY7UsXH/OW3ziG4lhVgvVJCXhTdlNKg6wiLjrtneIc40Y+LQos+oqa7s6nhCCCGEEL2Dsxc49AEgTFfIvu8vcaawQuNQortIIdYLXcg8AMA5fRhOzq7XbB91w3Ty8cGDSo7veber4wkhhBBC9A6KAl7hAEwNrQfgnQPSK9Zb2EQh9uWXX6IoSovbwYMHAXj++edbvN/V9dqFBsClS5cICQlBURRKSkq68Nlor/pcKgCXrjFRRyO9nR3f950GgN3Rd7oslxBCCCFEr+MZBkBSSB0A76fmUlNv2fUlhXWyiUJs/PjxXLhwock2b948+vXrR1ycaWjdokWLmrWJiopi5syZ7XqMhx9+mBEjRnTl07AazpfSATAEtP/5hkw2rSkWXX2IgvNZXZJLCCGEEKLX8TT1iA1yuERfT2dKqur55NgFjUOJ7mAThZiDgwOBgYHmzcfHhw8//JC5c+eiKKb1F9zc3Jq0yc/PJyMjg4cffvia5//b3/5GSUkJixYt6uqnYhWCq04C4Nn/2teHNQodOJxM+yj0isqZXeu6KpoQQgghRO9yZWiiruQsP40PBWCjDE/sFWyiEPuh7du3c+nSJebOndtqmzVr1jB48GAmTJjQ5rkyMjJ48cUXefvtt9G1c42s2tpaysrKmmy2ouhiDv5cxqgqhEbFd+jY8qGzAOib/QGq0dgV8YQQQgghepcrPWKUnOPeuFDsdAopZ4vJvGA7f1+KzrHJQmzt2rVMmTKFkJCQFu+vqalh48aN1+wNq62t5ac//Skvv/wyYWFh7X78FStW4OHhYd5CQ0M7lF9LeVcm6sjR98W1j2eHjo26ZTZVqiNhxvOcTN3TBemEEEIIIXqZK9eIUXIWf3cnfjwsAIBN0ivW42laiC1evLjVSTgatxMnTjQ5Jjc3l88++6zNImvr1q2Ul5cze/bsNh9/yZIlREZG8sADD3Qo95IlSygtLTVvOTk5HTpeS1VnTRN1FLoN7fCxbu5eHPecCEDptxssGUsIIYQQone6MjSR6mKoKeP+BNPtrYfPU1nboGEw0dXstHzwp556ijlz5rTZpn///k1ur1+/Hh8fH6ZPn97qMWvWrOH2228nICCgzXPv3r2bY8eO8f777wOgqioAvr6+/Pa3v+WFF15o8ThHR0ccHR3bPLe1cig6BkCDf3SnjneOfxD+8zlRl/5DdWU5zq59LBlPCCGEEKJ3cewDzt5QfRlKzjKufzT9fF3JKqrkoyN5/CS+/aO2hG3RtBDz8/PDz8+v3e1VVWX9+vU8+OCD2Nvbt9gmKyuLPXv2sH379mue74MPPqC6utp8++DBgzz00EN89dVXDBgwoN25bElApWmiDreI0Z06PmrsbeR94U8wBRzavYm4aY9YMp4QwoZkZWXx0EMPkZ+fj16vZ//+/e1eMkQIIcRVvMKvFGLn0AUO56fxoSz/5AQbD5yTQqwHs6lrxHbv3k1WVhbz5s1rtc26desICgoiKSmp2X1bt25l6ND/DckbMGAA0dHR5q1fv34AREZG4u/vb/knoLHSy4X0VfMBCI0a16lz6PR6zobcAYBjuqwpJkRvNmfOHF588UUyMjL473//a7MjBYQQQnON14kVnwXgntGhOOh1HDtfytHcEu1yiS5lU4XY2rVrGT9+fJNi6mpGo5ENGzYwZ84c9Hp9s/tLS0s5efJkV8e0WjmZ+wHIUwLw8G5/T+QPhd9kKoSH1aRx8dwpi2QTwtotXrwYR0dH7rvvPq2jWIXjx49jb29vnpnW29sbOztNB1mIq+Tk5DBp0iSioqIYMWIE7733ntaRhBBtMc+caCrEvF0duG14IAAb98ukHT2VTRVimzZt4ptvvmn1fp1OR05ODi+99FKL98+ZM8d8HVhLJk2ahKqqeHp6Xm9Uq1SRlQLARZch13We4H5DOe4wAp2ikrVrjSWiCWH1lixZwquvvso777zD6dOntY7Tpr179zJt2jSCg4NRFIVt27a12G7VqlVERETg5OREQkICycnJ7X6MU6dO4ebmxrRp0xg1ahTLly+3UHphCXZ2dqxcuZKMjAw+//xznnzySSorK7WOJYRoTeOEHVd6xADuH2vat/1IHmU19VqkEl3MpgoxcX3sCkwTddT5Db/uc1VF/QSA0HPbZE0x0St4eHjw8MMPo9PpOHbsmNZx2lRZWUlMTAyrVq1qtc3mzZtZuHAhy5YtIzU1lZiYGKZMmUJBQYG5TWxsbJPh241bXl4eDQ0NfPXVV/z1r39l3759/Oc//+E///lPdzw90Q5BQUHExsYCEBgYiK+vL5cvX9Y2lBCidZ4Rpq8l/+v9igv3YnCAG9X1BrYdPq9NLtGlpBDrRfwqTEsBuISPuu5zDUt8gErViRD1IpnJn1/3+YTokNLzkLXX9LUbNTQ04OLiQnp6erc+bkclJSXx+9//njvvvLPVNq+99hrz589n7ty5REVFsXr1alxcXFi3bp25TVpaGunp6c224OBg+vbtS1xcHKGhoTg6OnLbbbeRlpbWDc+uZ2hPr+X19FheLSUlBYPBYFNrXgrR61y1lhhXRm8pimKeyn7j/nNtjuoStkkKsV6isryEUIPpj9bgyITrPp+LmwfHvW4CoGL/W9d9PtELqSrUVXZ8S34TVkbDW9NMX5Pf7Pg5Ovlm9uyzz1JRUdFthdjy5ctxc3Nrczt3ruPXDtTV1ZGSkkJiYqJ5n06nIzExkX379rXrHGPGjKGgoIDi4mKMRiN79+4lMjKyw1l6q2v1Wl5vj2Wjy5cv8+CDD/KPf/yjy5+TEOI6NBZidRVQ9b/e6xkj++Jkr+NkfjkpZ4s1Cie6ilxZ3UvkZCQzVFEpwBv/QMt8Kuo2djbs/ITo4l1Ulpfg2sfTIucVvUR9FSwPvr5zqEb4ZJFp64hn8sChY9Osp6SksHr1aqZOndpthdgvfvEL7r333jbbBAd3/N+wqKgIg8HQbK3FgIAATpw40a5z2NnZsXz5cm688UZUVeXHP/4xt99+e4ez9FZJSUktzu7b6OoeS4DVq1fz8ccfs27dOhYvXgxwzR7I2tpaZsyYweLFixk/fvw129bW1ppvl5WVtfOZCCEswt4J3AKh4iKUZIOrDwAezvZMjwlmy6FcNh44R1yEt7Y5hUVJj1gvUfL9IQDyrnOijqtFxv+YXCUIF6WWjF3/sth5hbA2RqORRx55hAULFvDggw9y6tQp6us7duF0Xl4e999/f4eO8fb2ZuDAgW1uWs5UmJSUxLFjx0hPT+e1117TLEdPY4keS1VVmTNnDjfddBM/+9nPrtl+xYoVeHh4mDcZxiiEBhon7ChpOtKhcXjix8cuUFxZ192pRBeSHrFeQp9/FIBqn2iLnVPR6cgJn0FI9t9wydgMMxZY7NyiF7B3MfVMdURZHqyKN/WENVL08KsD4N6BniF7lw497Ouvv05RUREvvvgi586do76+nhMnTjB8ePsnvgkODmbjxo0detzly5dfczbCjIwMwsI6ttinr68ver2e/Pz8Jvvz8/MJDAzs0LmE5Vmix/Kbb75h8+bNjBgxwnz92T//+c9Wf2eXLFnCwoULzbfLysqkGBOiu3mGQc6BJjMnAowI8SC6rzvp58v4IDWXeRP6axRQWJr0iPUSPmWZADiHXf9EHVfrd/M8jKrCsLqjnP8+06LnFj2copiGB3Zk8x0E0/5sKr7A9HXaStP+jpxHUdod8/z58zz33HOsWrUKV1dXBg0ahKOjo3l4YnZ2NjExMdx///0MGjSIRx99lG3btpGQkEB0dDSnTp0yt4uLizO3nz17NpGRkcyaNavVC7B/8YtfkJaW1ubWmaGJDg4OjB49ml27dpn3GY1Gdu3axbhxnVvsXViXH/3oRxiNxia/K219cODo6Ii7u3uTTQjRzX6wllijJpN2HJBJO3oS6RHrBWqqKwkznAMFgiwwUcfVAkMHcsxpJMNrUzm3Zw19+79q0fML0cyoB2HAzXD5e/DuDx59u/ThHn/8cZKSkpg6dSpgujYqMjKyyXVimZmZbNmyhYEDBxIdHY2bmxsHDhzg73//O2+88QZ//vOfm5wzMzOTd955h8jISCZPnszXX39tXhj5at7e3nh7d/x6gIqKiiZrnWVlZZGWloa3t7e592zhwoXMnj2buLg44uPjWblyJZWVleZrkoR2pMdSiF6qhbXEGk2PCealjzPJKqpk35lLjB/o283hRFeQHrFe4FzmIewUI5dxxz+4n8XPXxttWlMsIudDjAaDxc8vRDMefaHfhC4vwnbs2MHu3bubFVLDhw9vUogNGTKEIUOGoNfriYyMNF/bM3z4cLKzs5udd8iQIURFRaEoCiNHjmyxzfU4dOgQI0eOZOTIkYCp6Bo5ciRLly41t5k1axavvPIKS5cuJTY2lrS0NHbu3NlsOJzoftJjKUQv5dnyNWIAro52zBhpGgGx8UDHZ8sV1kl6xHqB4jMHAch1GoS3zvK1d/TN91OW8jxBFJK+72OifzTd4o8hhBZuv/12ioubTxf89ttvN7nt6Oho/l6n05lv63Q6DC18OHF1e71e32Kb6zFp0qR2DV1ZsGABCxbItZ1auFavpfRYCtELmdcSOwdGI/zgb7b74sP51/5zfHb8IgXlNfj3cdIgpLAk6RHrDS6aJuqo9B7WJad3cnEj0+cWAKoP/rNLHkMIIXqSa/VaSo+lEL2QRwgoOjDUQkV+s7ujgt0ZFeZJg1HlvUO5GgQUliaFWC/gVWqaRMMhxLITdVzNY9xsAKJLvqS89PI1WgshRO/W2Gv5w23Dhg3mNgsWLODs2bPU1tZy4MABEhIse42vEMLK6O3BPcT0fQvDE+F/U9m/k3wOg1Em7bB1Uoj1cPV1tYTXZwEQODS+yx5nyKjJnNWF4KzUkfnF29c+QIgeIiIigkOHDplvv//++0yaNAmAsWPHsmPHjibtftj+lVdeYc6cOd0ZWQghhLXyannmxEZTRwTh4WxPbnE1e08VdmMw0RWkEOvhcr5Lw1GppwwXgiMiu+xxFJ2OvIi7AOhzYnOXPY4QQgghRI/VeJ1YCzMnAjjZ67lntKnXbON+mbTD1kkh1sMVnUoGIMdhIEoXTNRxtYGJD2NQFSLrM8g5daRLH0sIIYQQoscxz5yY3WqTn8abirXdJ/LJK6nuhlCiq0gh1sOpeWkAlHt1zUQdV/MLjiDdZQwAuV+u6/LHE0IIIYToUbxan8K+0UB/N8b298aowrsHc7opmOgKUoj1cO4lGQDY9Y3tlsdrGH4fAAPOb8fQ0NAtjymEEEII0SN4tr6o89UaJ+3YfPAcDQZjV6cSXUQKsR7M0NBAeN0ZAPwGd91EHVeLvmkWpbjiz2UyvtneLY8phBBCCNEjNF4jVpoLhtY/0J4yLBAfVwfyy2rZdaKgm8IJS5NCrAfLPZOOi1JLlepIyMAR3fKYjk4unPCdAkDdIVlTTAghhBCi3foEgd4BVAOUnW+1mYOdjnvHhAKw8YBM2mGrpBDrwQq/OwDAOYcB6O3suu1xvX/0EADRZV9RWlzUbY8rhBBCCGHTdDrwMBVYbV0nBvDTMWEoCuz9rpBzl6q6IZywNCnEerCG3MMAlHp03bT1LRk44gaydBE4KvWc+M/6bn1sIYQQQgibdo21xBqF+bgwYZAfAJuSpVfMFkkh1oP1KTZN1KF000QdjRSdjvwBpjXFvL7b0q2PLYQQQghh066xltjV7k8wtX3vUA51DTJph62RQqyHUo1GQutOAeAzsHsm6rjaoMSHqVf1DG74jrOZKd3++EIIIYQQNsmzfT1iADcP9SfA3ZFLlXV8dvxiFwcTliaFWA+Vl30Sd6qoU+0IGzKy2x/fJyCEdNcEAC78d223P74QljZx4kQURWm2Pfjgg1pHE0II0ZO0Yy2xRnZ6HT8ZY+oV23jg2oWbsC5SiPVQ+Sf3A3DWLgJ7B0dtQsTeD8DAix/TUF+nTQYhLEBVVQ4fPswrr7zChQsXmmx//etftY4nhBCiJ2nnWmKNfhIfik6B/d9f5nRBRRcGE5YmhVgPVZubBkBxN0/UcbXoSTO5jDu+lHD8q39rlkOI63Xq1CnKy8u58cYbCQwMbLK5ublpHU8IIURP0liIlV+AhtprNg/ycObmyAAANslU9jZFCrEeyvXScQDUwBjNMtg7OPKdfxIAhpSNmuUQ1q2ysrLVraampt1tq6ur29W2M1JSUrCzs2PEiO5Zj08IIUQv5uoL9i6ACiU57TrkviuTdryfkkNNvaELwwlLkkKsB1KNRkJqTgLgNXCMpln8b3wYgOiKbygpkotIRXNubm6tbnfffXeTtv7+/q22TUpKatI2IiKixXadkZqaisFgwMfHp8m5HnnkEQB8fX2bHZOdnU1cXFyTfXPmzGHHjh0A5ObmctdddzFgwADi4uKYOXMm+fn5rZ5PCCFEL6EoHZqwA+DGQX6EeDlTVtPAjqMXujCcsCQpxHqgwgtn8aaMBlVH2NC4ax/QhfpHJ3BaPwAHxcCJ/6zTNIsQnZWamspPf/pT0tLSmmwrVqzo1PlUVeWOO+5g6tSpnDlzhkOHDvH4449TWFho4eRCCCFsUuMU9u0sxPQ6hZ/Gm47ZJJN22Aw7rQMIy8vL3I8/kKMPo5+L9tevFA28h4En/w/f0+8Dz2gdR1iZiorWLyzW6/VNbhcUFLTaVqdr+rlSdnb2deW6WmpqKi+99BIDBw60yPl27dqFm5sbDz/8sHnfhAkTLHJuIYQQPYBXxybsALg3LpQ//ec7Us+VkJFXRlSwexeFE5YiPWI9UPW5VACK+gzVOInJkMS51Kl6BhrO8H36Aa3jCCvj6ura6ubk5NTuts7Ozu1q21Hff/89JSUlxMRY7nrLjIwMRo0aZbHzCSGE6GE6ODQRwK+PI1OiAwHYlCy9YrZACrEeyKkoHQBDoHVMLODlF0S62w0AFHwlwxOFbUlJMS1IHhAQwMWLF5tsRqOx1eMURenQfiGEEMKsA2uJXe3+K5N2bE09T0Vtg6VTCQuTQqwHCq4yTdTh0V/b68Ouph9tWlNscP4n1NddeypWIaxFaqqph3nQoEEEBQWZt4iICBoaWn+T8/Hxobi4uMm+y5cv4+vrS2RkJIcPH+7S3EIIIWxY4zViHRiaCDCuvw/9fV2prDOwPS2vC4IJS5JCrIe5lJ9LAJcwqgqhkfFaxzEbNuEuivDEmzLSv3xP6zhCtNuKFStQVbXZVlNTg4ODQ6vHubm54enpybfffguYZkk8duwYw4YNIzExkbKyMjZs2GBu//XXX5Oent7VT0cIIYQtaByaWFUEte1fpFlRFPNU9hsPnEVV1a5IJyxECrEe5nym6RqsXH0wbu5eGqf5Hzt7B04HTjXdSJM1xUTPUlxcTEhIiHl75513AHjrrbdYvHgxsbGxzJgxg7///e+4ubmhKArbtm1j27ZtDBgwgGHDhvH666/j5+dHQ0MDjo6OGj8jIYQQmnL2BCcP0/cdHJ5496gQHOx0HM8r42huqeWzCYuRWRN7mMqzputZClyHEqZxlh8KmvgwbN5IdOUBLuXn4hMQonUkISzCYGh58czo6Gj27t3b4n1hYWFs27at2f4jR47Qr18/S8YTQghhizzD4eJRUyEWENXuw7xcHbh9eBD/PnyejQfOEhPq2XUZxXWRHrEexrHwGAANAcM1TtJceORovrMbjL1i4NQXMmmHED+0fv167rvvPp5//nmtowghhNBaB9cSu9r9Y03Hbj+SR2l1vSVTCQuSQqyHCag0TdThFm6dU2MXD74XgIAzH6C2MeOcEL3R3LlzOX78OImJiVpHEUIIoTWvCNPXDk7YATAqzIuhgX2oqTeyNTXXsrmExUgh1oOUXi6kr5oPQGjUWI3TtGxo4hxqVXv6GbM5c+xbreMIIYQQQlinTqwl1qjppB3nZNIOKyWFWA+Sk7kfgDzFHw+fAI3TtMzD24909wkAXJI1xYQQQgghWubV+UIMYMbIvjjb6zlVUMGhs8XXPkB0OynEepCKbNN6RxddhmicpG32ox8AYEjRZ9TWVGmcRgghhBDCCpnXEuvYrImN3J3suSM2GICN+ztXzImuJYVYD2KXfxSAWr9ojZO0bdiP7iAfHzyp4PiezVrHEUIIIYSwPo2FWG0pVHeuR+v+BFOv2ifHLnK5ss5SyYSFSCHWg/hVmCbqcAkfrXGStunt7Pi+7zTT90c3aZxGCCF6pqqqKsLDw1m0aJHWUYQQneHgCq5+pu87uJZYo+EhHowI8aDOYOT9lBwLhhOWYBOF2JdffomiKC1uBw8eBOD5559v8X5XV9c2z93SMe+++253PC2LqqooJdRgmhWnb6R1TtRxtZBJDwEQXXWQojzpLhdCCEt76aWXGDvW+t8PhBBtaJywoxMzJza6/8qkHZsOnMNolEk7rIlNFGLjx4/nwoULTbZ58+bRr18/4uLiAFi0aFGzNlFRUcycOfOa51+/fn2T42bMmNHFz8jyzmUko1NUCvDGNzBU6zjXFDoohkz7KPSKyukv1mgdRwghepRTp05x4sQJkpKStI4ihLge17GWWKNpMcH0cbQj+1IV3565ZKFgwhJsohBzcHAgMDDQvPn4+PDhhx8yd+5cFEUBwM3NrUmb/Px8MjIyePjhh695fk9PzybHOjk5dfVTsrjS7w8BkOc8WOMk7Vc+1LSmWFD2v2VNMSFEr7F3716mTZtGcHAwiqKwbdu2Zm1WrVpFREQETk5OJCQkkJyc3KHHWLRoEStWrLBQYiGEZryuv0fMxcGOO0f1BWBTsoxCsiY2UYj90Pbt27l06RJz585ttc2aNWsYPHgwEyZMuOb5fvWrX+Hr60t8fDzr1q275loLtbW1lJWVNdm0plw0TdRR7WvdE3VcLTJxNtWqA+HGXL5L/VLrOEII0S0qKyuJiYlh1apVLd6/efNmFi5cyLJly0hNTSUmJoYpU6ZQUFBgbhMbG0t0dHSzLS8vjw8//JDBgwczeHD7P5izxvc1IQRXrSXWuWvEGjWuKfb58XwKymquN5WwEDutA3TG2rVrmTJlCiEhIS3eX1NTw8aNG1m8ePE1z/Xiiy9y00034eLiwueff84vf/lLKioqePzxx1s9ZsWKFbzwwgudzt8VfMozAXAKHalxkvbr4+HNQc9JjCn9nJJ9GyDuJq0jCSFEl0tKSmpzyOBrr73G/PnzzR82rl69mo8//ph169aZ39fS0tJaPX7//v28++67vPfee1RUVFBfX4+7uztLly5t9RhrfF8TQnDda4k1GhroTly4F4fOFrPlUA4LbhpkgXDiemnaI7Z48eJWJ+Fo3E6cONHkmNzcXD777LM2hxxu3bqV8vJyZs+efc0Mzz33HDfccAMjR47kN7/5Db/+9a95+eWX2zxmyZIllJaWmrecHG1noampriSswfRJSZANTNRxNecxPwMg8tJ/qKmq0DiNEK2bOHFii69RDz74oNbRRA9SV1dHSkoKiYmJ5n06nY7ExET27dvXrnOsWLGCnJwcsrOzeeWVV5g/f36bRRhY3/uaEOKKq3vErjFi61ruH2vqFXsnOQeDTNphFTTtEXvqqaeYM2dOm2369+/f5Pb69evx8fFh+vTprR6zZs0abr/9dgICAjqcKSEhgd/97nfU1tbi6OjYYhtHR8dW79NCzokUBikGinEnoG//ax9gRaLGTeXCF34EUcih3ZuIu/3nWkcSohlVVTl8+DCvvPIK999/f5P73NzcNEoleqKioiIMBkOz96+AgIBmH0xakrW9rwkhrvAIARSor4LKQnDz7/SpkqKDeOGjDM6XVPPf7wq4aWjH/04WlqVpIebn54efn1+726uqyvr163nwwQext7dvsU1WVhZ79uxh+/btncqUlpaGl5eXTb0hXT5tmsI/13EgXjrbuuxPp9eTHXoHQTlrcEh/F6QQE1bo1KlTlJeXc+ONNxIYGKh1HCHa7VofdgohrJydI7gHQ9l5U6/YdRRiTvZ67hkVwpqvs9h04JwUYlbApv5q3717N1lZWcybN6/VNuvWrSMoKKjF8fdbt25l6NCh5tsfffQRa9asIT09ndOnT/O3v/2N5cuX89hjj3VJ/i5z8QgAFd62M1HH1cImm36e0dWpXMw5rXEa0d0qKyuprKxsMklOXV0dlZWV1NbWttjWeNUsm/X19VRWVlJTU9Outp2RkpKCnZ0dI0aM6NTxQrSXr68ver2e/Pz8Jvvz8/PlQwAheivzWmLZ132qn16ZtGP3iQLOl1Rf9/nE9bGpQmzt2rWMHz++STF1NaPRyIYNG5gzZw56vb7Z/aWlpZw8edJ8297enlWrVjFu3DhiY2P5+9//zmuvvcayZcu67Dl0Ba9S00QdDqGx2gbppL79IznuMBydopK1S9YU623c3Nxwc3OjqKjIvO/ll1/Gzc2NBQsWNGnr7++Pm5sb5879b/aoVatW4ebm1uy60YiICNzc3MjMzDTv27BhQ6cypqamYjAY8PHxMed1c3PjkUceAcDOzo7Y2FjzVl1tenPLzc3lrrvuYsCAAcTFxTFz5kzzH9i+vr6dyiJ6NgcHB0aPHs2uXbvM+4xGI7t27WLcuHEaJhNCaMYCa4k1GuDnxvgBPhhV2Jx8fTMxiutnU7Mmbtq0qc37dTpdmxcYz5kzp8kwjVtvvZVbb73VUvE0UV9XS3h9FigQMDhB6zidVhX1E0g7RujZbajG5Sg2NsRS9Gypqan89Kc/bTarnLe3N2Bai/CHs9ipqsodd9zBL3/5S/79738D8NVXX1FYWNip61dFz1FRUcHp0//r/c/KyiItLQ1vb2/CwsJYuHAhs2fPJi4ujvj4eFauXEllZWWbS7YIIXowC6wldrX7E8L59swl3j2Yw2M3D8JeL39zacWmCjHRXM53afRX6ilXnQnuF6l1nE4blvgzKg//jhAusP/dFfS78ScEhAzQOpboBhUVptkyXVxczPuefvppnnzySezsmr5ENa6j5OzsbN73q1/9ivnz5zfrBc/Ozm7WtrPXy6SmpvLSSy8xcODAdh+za9euZj117VnXUPR8hw4dYvLkyebbCxcuBGD27Nls2LCBWbNmUVhYyNKlS7l48SKxsbHs3LlTCngheisLrSXW6JaoAHzdHCkor2VXZj63RgdZ5Lyi46QEtnFFp5IBOOc4EF0LwzFthYubB+fsTTM+jv3uj/i+OZrkD1ZqG0p0C1dXV1xdXVEUxbzPwcEBV1fXZpPmNLbVXdVjam9vj6urK05OTu1q21Hff/89JSUlxMTEtNqmpKTEPCyx8RrWjIwMRo0a1eHHEz3fpEmTUFW12Xb10NkFCxZw9uxZamtrOXDgAAkJtjviQQhxnSy0llgjBzsds8aY1uLdeECGJ2pJesRsnDHPNFFHudcwjZNcn/zcMwypz4Qrf4vrFZVRR18gP2Ga9IwJTaWkpACm6cMvXrzY5D5/f390Ol2LQxOFEEIIizBfI5YDRgPorv+D95+MCeOvX57hq1NFnL1USbiP63WfU3Sc9IjZOI+SDADs+sZqG+Q6FZ7NQKc0XVzQTjFS8P0xjRIJYZKamgrAoEGDCAoKMm8RERE0NDS0elxkZCSHDx/urphCCCF6Kve+oLMDYz2UX7DIKUO9XZg42LSE1CaZtEMzUojZMKPBQHid6YJvv0HxGqe5Pn7hURhUpdl+py9fIC/7ZAtHCNE9VqxY0eIwspqaGhwcHFo9LjExkbKysibDzb7++mvS09O7IbUQQogeQ6e/srAzFrtODEyTdgC8dyiX2gaDxc4r2k8KMRuWe+YYLkot1aoDIYNav37FFgSEDCBlxPM0qKZfSYOqUKU6MMj4PW4bJpP62T81TihExyiKwrZt29i2bRsDBgxg2LBhvP766x1axF4IIYQA/jc80UIzJwJMHuJHkIcTlyvr2Jl+8doHCIuTa8RsWMF3yYQBZ+0HMNTO9n+U8Xc/SX7CNIrOnsA3fCiGhgZy/vUgQxpOMGrfAg6c2kPMw6/j5CzjmIV1uXoNtKuFhYWxbdu2Dh0jhBBCNONp2Qk7AOz0On4yJow/ffEdGw+c447YvhY7t2gf6RGzYQ25aQCUetrutPU/FBAygGE3TCUgZADBEUPo/+u97At6AICEog/IfWUCOaflujEhhBBC9CIWXkus0awxoeh1CslZlzmVX27Rc4trk0LMhrkVHwdAFxyrbZAuZO/gyLhHVnFk4hqKcWeg4Qze/0zk0I5/aB1NCCGEEKJ7eEaYvlrwGjGAQA8nbh7qD8Crn5/kQmm1Rc/fURdKq/n2TFGvyWH749l6KdVoJKz2FADeA8donKbrxUyeScHgODLe+hlRdceIO/Q0yWf+y/B5q3F27aN1PCGEEEKIrmOewt6yPWIAId4uAOw8ns9nx/OZPMSfqGB3iz/OtWTklbHnZAEqptWMrCKHAn+4azizxoR1yWNJIWajLpz9jmAqqVP1hA7pHYvG+vfth/fTu9n39hISzq0lvngH2a+OR5m5gfDI0VrHE0IIIYToGo1DE8vOg6Ee9PYWOe2F0mo2fJNlvq0Cu08WsPtkgUXO31lWk0OFZ/6dzo2D/QjycLb4+aUQs1EXT+4nGDhnF8FARyet43QbO3sHxj38KulfTyTwi8eIMJ6j+t1bORjzLHEzHkPRyWhbIYQQQvQwbgFg5wQNNVCaA979LXLarKJKjGrz/VOGBXRJ4dGaC6XVfHY83ypzGFSV7KIqKcTE/9TmmBaKvezecybq6IjoH02naOBIjq1/kOG1qYw5upRD2XsZOm8Nbu5eWscTbVDVFl7xRY9nNBq1jiCEELZLUUzDE4u+M10nZqFCrJ+vKzqFJsWYXlF4fvqwbi+A/pORb7U5InxduuTxpBCzUa6XTBN1qEG2vX7Y9fANDMX711+w719LGfP9X4kr+4KcP40n/861DBgxXut44gfs7e1RFIXCwkL8/PxQlOYLeIueR1VV6urqKCwsRKfTtbkIthBCiDY0FmIWnDkxyMOZFXcN55l/p2NQVfSKwvK7oru1+OnNOaQQs0Gq0UhIzUkAPPvHaZxGWzq9nnGzX+LEgYl4fvoooWoetR9M50Dm08TPfFqGKloRvV5PSEgIubm5ZGdnax1HdDMXFxfCwsLQyf9JIYTonC5YSwxg1pgwbhzsR3ZRFRG+Lt1e/PTmHFKI2aDCC2fxp4wGVUd4VLzWcazC0IQfUzLgG9LWzSG2ah8JmctJffVrBsxbj4eXr9bxxBVubm4MGjSI+vp6raOIbqTX67Gzs5NeUCGEuB6NE3ZYeAp7MPUEaVX49OYcUojZoLzM/fgDOfpQ+rm4aR3Hanj6BhKz6BP2v/sSo07+iVGVe8n7yzguTv07Q+Ju0jqeuEKv16PX67WOIYQQQtgWz65Z1FloR8aI2KDqc6aJOor6DNU4ifVRdDrG3vccZ2ds47wSQLBaQP+P7mH/v57HaDBoHU8IIYQQonO6cC0xoQ0pxGyQU9ExAAwBIzROYr0GjbyRPk/sI9VtIvaKgbGn/8SxV5IoLrygdTQhhBBCiI7zijB9rciH+mpNowjLkELMBgVVfQeAey+fqONa3D19GLlwGweGPUetak9M9QHqV40nY/9OraMJIYQQQnSMsxc49DF9X5KjbRZhEVKI2ZjLBecJpAiAsKgEjdNYP0WnI2HmIs7P/Jhzur74c5khn/6Efet/g6GhQet4QgghhBDtoyhXTdghwxN7AinEbMz5zAMA5CjBsnBxB/SPTsDn/33LQY8p6BWVcWdXk/nyzRRdtPzMQ0IIIYQQXaLxOrHibE1jCMuQQszGVGSnAFDgJhN1dJRrH0/G/L8tHIx9iSrVkejaNJTVP+LY3g+1jiaEEEIIcW1dtJaY0IZMX29jHAtNE3XU+w/XOIntGjNjAWeHjse4ZS79jNl47ZrNvpNzGDPnj9jZO2gdTwjRxfr169epNc2efPJJHn/88S5IJIQQ7dSFa4mJ7ieFmI3xrzwJgGv4aI2T2LbwoaOoWfQNB9b+koRLHzLu/Hoy/5iM9+x/EhAyQOt4QogutGHDhk4dFxERYdEcQgjRYbKWWI8ihZgNKS0uIkS9CECoTNRx3Zxc3Eh47G1SPl7DkORniaw/TsmaG0mb8CpBQ8ZQeDYDv/AoKcyE6GEmTpyodQQhhOgcWUusR5FCzIbkZhzAA7iAH0G+gVrH6TFGT51H7pCxXHhnNoMMp4n96hGMeyFAAYOqkDzieeLvflLrmEIIIYTo7RqHJlYXQ00ZOLlrm0dcF5msw4aUZx8C4KLrEI2T9DwhA6MJe/orDnhOBUB35fIRvaIy6ugL5Oee0TCdEKKr+fn54e/v3+IWGhrKjTfeyJ49e7SOKYTo7Rz7gLO36Xu5TszmSY+YDbHLPwpAjW+0xkl6JkcnF1zH/BT+83GT/XaKkaKzJ2SIohA9WGFhYav3GQwG0tPTeeCBBzh27Fg3phJCiBZ4hUP1ZdPwxED5m9CWSY+YDfGrME3U4SITdXQZv/AoDGrT2dRUFeyd3TRKJIToDoWFhWRkZDTbn5GRweXLl4mJieGpp57SIJkQQvyAeS0xuU7M1kkhZiOqKkoJNeQC0DdqrMZpeq6AkAGkjHieBtX0X0NVTQvZu3z0cy6cPalxOiFEV1mwYAHFxcXN9hcXF5unrJ8zZ043pxJCiBbIWmI9hhRiNuJcRjI6RaUQL3wDw7SO06PF3/0kl+Yf4vgtmzh5+wecVwIIUS+irJ/K+e+Pax1PCNEFsrKyuOGGG5rtv+GGG0hPT9cg0fXLyspi8uTJREVFMXz4cCorK7WOJISwBFlLrMeQQsxGlGalAJDnPFjjJL1DQMgAht0wlaFjErGf9xk5SjCBFGL/9u2cPZmmdTwhhIW11BvWqLq6uhuTWM6cOXN48cUXycjI4L///S+Ojo5aRxJCWIJnhOmrDE20eVKI2QjlwhEAqn3koszu5t+3H86PfEa2Lgx/LuP2znSyjh/QOpYQwoJGjBjR4kLPb7/9NsOHD+/+QNfp+PHj2NvbM2HCBAC8vb2xs5P5uYToEa5eS0xVtc0irosUYjbCp/wEAI5hozRO0jv5Bobh8ejnnNYPwIdSvN67i9NHvtY6lhDCQv7yl7/wxhtvMHnyZJ566imeeuopJk+ezF/+8hdef/11iz/e3r17mTZtGsHBwSiKwrZt25q1WbVqFRERETg5OZGQkEBycnK7z3/q1Cnc3NyYNm0ao0aNYvny5RZML4TQVGMhVlcBVZe1zSKui3w8ZgNqa6oIazgLCgQNTdA6Tq/l5ReE7lefcfKvUxnScBLd1pmcqP8XQ+Nu1jqaEOI69e3bl0OHDrFr1y7z7IlJSUkkJiZ2yeNVVlYSExPDQw89xF133dXs/s2bN7Nw4UJWr15NQkICK1euZMqUKZw8eRJ/f38AYmNjaWhoaHbs559/TkNDA1999RVpaWn4+/tz6623MmbMGG655ZYueT5CiG5k7wRugVBx0dQr5uqjdSLRSVKI2YBzJ1IYpBgopo+sZaUxD28/dI/tJPON24msP47+o/vIqN9A1LgkraMJIa7DJ598Yv5+wIABKIqCh4cHVVVVuLi4WPzxkpKSSEpq/XXjtddeY/78+cydOxeA1atX8/HHH7Nu3ToWL14MQFpaWqvH9+3bl7i4OEJDQwG47bbbSEtLa7UQq62tpba21ny7rKyso09JCNGdvML/V4j1ldFStkoKMRtQfPogALmOg/DSyWhSrfXx8Cb8iU9Jf3060bVp9Nv5IMfq1zD8xju0jiaE6KT33nuv2b7Lly+Tnp7OP/7xD26+uft6vuvq6khJSWHJkiXmfTqdjsTERPbt29euc4wZM4aCggKKi4vx8PBg7969PPLII622X7FiBS+88MJ1ZxdCdBPPMMg5IBN22DgpxGyAemWijgrvKI2TiEYubh4MfOJjjrx+JzHVyQze9TBHGqqJueknWkcTQnTC+vXrW9yfm5vLXXfd1aHrs65XUVERBoOBgICAJvsDAgI4ceJEu85hZ2fH8uXLufHGG1FVlR//+MfcfvvtrbZfsmQJCxcuNN8uKysz96YJIayQrCXWI0ghZgO8Sk3XKziEjNQ4ibiak4sbQ5/4kMN/uYeRVd8Q+d9fklpfz6gpP9M6mhDCQkJCQqivr9c6Rqdca/jj1RwdHWV6eyFsiawl1iPIODcrV19XS3h9FgD+Q2SiDmvj6ORC9JNbSekzGQfFwIhvH+fQjn9oHUsIYSH79u3D3d29Wx/T19cXvV5Pfn5+k/35+fkEBgZ2axYhhJVq7BGToYk2TXrErFzuqTT6KfVUqM707SdDE62RvYMjsU+8z8HX72NM6WeMOvhrkutrib/zMa2jCSHaacyYMSiK0mTf5cuX8fLy4q233urWLA4ODowePZpdu3YxY8YMAIxGI7t27WLBggXdmkUIYaXMa4mdA6MRZA4Bm2QTP7Uvv/wSRVFa3A4eNE1k8fzzz7d4v6ur6zXPv2HDBkaMGIGTkxP+/v786le/6uqn1G5Fp0zP75zjQHR6vcZpRGv0dnaMfvwdDnhPR6eoxB95lgPvvaJ1LCFEO73//vu899575u3999/nyJEjHDx4kGPHjln88SoqKkhLSzPPfJiVlUVaWhrnzpmGGS1cuJA333yTt956i8zMTB599FEqKyvNsygKIXo5jxBQdGCohYr8a7cXVskmesTGjx/PhQsXmux77rnn2LVrF3FxcQAsWrSIX/ziF03a3HzzzYwZM6bNc7/22mu8+uqrvPzyyyQkJFBZWUl2drZF818Pw/k0AMo8pTfM2un0euIXvMX+v/2csYXvkXD8d+yvr2Hsfc9qHU0IcQ3h4eGt3vf0008za9Ysiz7eoUOHmDx5svl240QZs2fPZsOGDcyaNYvCwkKWLl3KxYsXiY2NZefOnc0m8BBC9FJ6e3APgdJzpl4x9yCtE4lOsIlCzMHBocm4+Pr6ej788EMee+wx81ASNzc33NzczG2OHDlCRkYGq1evbvW8xcXFPPvss3z00UdNpiYeMWJEFzyLzvEoMU3Uoe8bq20Q0S6KTkfCo/9g35vOjLvwNmO/e5l9b1UzbvZLWkcTQnSSqqoWP+ekSZOued4FCxbIUEQhROs8w64UYmchTOYRsEU2MTTxh7Zv386lS5faHKKxZs0aBg8ezIQJE1pt85///Aej0cj58+eJjIwkJCSEe++9l5ycnDYfv7a2lrKysiZbVzAaDITXnQbAb3B8lzyGsDxFp2Ps/D+zL+znAIzLeoN9axehGo0aJxNCdMYPrx0TQgir4CUTdtg6myzE1q5dy5QpUwgJCWnx/pqaGjZu3MjDDz/c5nm+//57jEYjy5cvZ+XKlbz//vtcvnyZW265hbq6ulaPW7FiBR4eHuatq9ZayT1zDBellmrVgZCB1tNLJ65N0ekY99DL7Ov/OADjct5k/5uPSTEmhJXy8/PD39+/2ebn59dsaLwQQlgFWUvM5mlaiC1evLjVSTgatx8uXpmbm8tnn33WZpG1detWysvLmT17dpuPbzQaqa+v5y9/+QtTpkxh7NixvPPOO5w6dYo9e/a0etySJUsoLS01b9fqQeusgsaJOuz7Y2fv0CWPIbrWuAd/x/7BT5u+v/AvDvzt51KMCWGFCgsLKSgoaLYVFhba7DpiQogezksKMVun6TViTz31FHPmzGmzTf/+/ZvcXr9+PT4+PkyfPr3VY9asWcPtt99+zYuag4JMFzZGRf1vIgw/Pz98fX3NM1e1pLsWvmzIOQxAiUzUYdPG3vcsB95zIuH47xhb+B4H3qhlzK82yCyYQmhozpw5/PWvf8XFxUXrKEII0TmNU9jL0ESbpWmPmJ+fH0OHDm1zc3D4X0+QqqqsX7+eBx98EHt7+xbPmZWVxZ49e645LBHghhtuAODkyZPmfZcvX6aoqKjNGbS6i1vxcQCUoBiNk4jrlTBzEQdjX8KgKiRc3k7KX35KQ33rw1+FEF3rn//8JxUVFebbjz76KCUlJU3aNDQ0dHMqIYTogMahiaW5YJDXK1vU7kJszpw5VFVVdWWWa9q9ezdZWVnMmzev1Tbr1q0jKCiIpKSkZvdt3bqVoUOHmm8PHjyYO+64gyeeeIJvv/2W9PR0Zs+ezdChQ5tMK6wF1WgktPYUAN4D256CX9iGMTMWcDj+ZRpUHWNKP+PIn2dSX1erdSwheqUfzli4ceNGLl++bL6dn5+Pu7t7d8cSQoj26xMEegdQDVCep3Ua0QntLsSs4dPDtWvXMn78+CbF1NWMRiMbNmxgzpw56FsY9lVaWtqk9wvg7bffJiEhgalTpzJx4kTs7e3ZuXNnqz1u3eXCuVN4UEmdqids6GhNswjLiZs6n6Pj/0Kdqmd0xZekr5xBbY22H3C0R37uGdK/+Yj83DNaRxGiS7Q0lXxNTY0GSYQQop10OvC4MmGcDE+0Se0uxKzh08NNmzbxzTfftHq/TqcjJyeHl15qec2mOXPmNHse7u7urF27luLiYi5dusS///3vLpsFsSPyT+4H4JxdBA6OThqnEZY0asrPyJy4mlrVnpFV33Jy5XRqqiqufaBGkj9Yie+bo4n+zwP4vjma5A9Wah1JiG4h09YLIaxe43ViMmGHTer0NWLy6WHXqjlnmqjjsnvLvX/CtsXcdC/f3byWatWBETUHOf3nqVRVlGodq4ny0sukfLqeuKPL0Cum/+96RWXU0RekZ0z0CJs2bSI1NVVmRRRC2C5ZS8ymWXTWRPn00HJcLqUDoAbKRB091fAb7yDDwZHwT2cTXZtG5p+TCFmwgz4e3t2epbz0MufS91GedRC7/KMEVGTS13iB0YoKP/hvbacYKTp7goCQAd2eUwhLmTBhAsuWLaO8vBx7e3saGhpYtmwZN9xwA7Gxsfj5+WkdUQghrs28lljrs30L69WhQmzTpk3ceOONDB8+vKvyCEwTdYTUfAeAx4A4jdOIrhQ19lZO2G0ieMcDRNYf57vXp2D85Sd4eHfdH4FlJZc4d/xbKrIOYZ9/FP+KE4SqeQz7YUMFCvHEVy3h6s9YDKoO33DpqRW27b///S8Ap06dIiUlhdTUVFJTU3nmmWcoKSmRDxaFELZB1hKzae0uxOTTw+5TdPEcfpRiUBXCI+O1jiO62NC4mzlt/x6GrT9hcMN3nFn1Y4y/+AQvv6DrPndpcRE5jUVXwVECKk4Qol4guoW2F/HlgssQavyG4xIRR0jUOPwCQkj+YCWjj76AXjEtRH3caRQjpDdM9BCDBg1i0KBB/OQnPzHvy8rK4tChQxw+fFjDZEII0Q6eMjTRlilqSxd7teGHnx6mpqY2+fTQYDB0SVBrVlZWhoeHB6WlpRaZsCRt17vEfvUI2bowIpYes0BCYQuyMg7ivuVufCglWxeG288/xjcwrN3Hl14ubFp0VZ4gRL3YYtuL+HHB1VR0uYbHETJsHN7+fVs9d37uGb7/Yi3jsldRq9pT/PA+AsMGdfg5CtESS7+GiusnPxMhbERFIbwyEFDg2Xywc9Q6kaD9r6EdvkZMPj3setVnUwEo7DOUCG2jiG7UL2oMZ3+6HcM7dxJhPEfO36fw3bS/UVddjl94VJNrskov5ZuHFzoWHiWw8iTBaj4eLZw3T/HnostQav2H43alpyvQL4jADmQLCBmA/4O/5/gf9jKs7hg5HzxL4P/bfN3PWQghhBDXwdUX7F2gvsq0sLOPjFixJRaZrKNfv37069ePmTNnWuJ0vZ5TkakXzBAwQuMkoruFD4nl/IM7uPj2HYSqeagf3oGigFFVSHW7AdARWHWCYLWAlq7UzFMCuOg6hFq/Ebj1iyM0ahzBvoEEWyCbotNhf+vvYfsdjC75jO/TD9A/OsECZxZCCCFEpyiKaXhiYSYUZ0shZmMsOmuisIygKtNEHe79ZKKO3qhv/2GcmLqagB13myfJ0Ckqoyq/btLuvBJAvutQav1jcIuII2zYWIJ9AixSdLVm8KhJpOyexOiKL6nY8VuI/qILH02I7vXdd9/Rv39/7OzkrVEIYUM8w0yFmEzYYXPk3cbKFBdeIJAiAEKjpLeht2qoq6alSdsOeE3DddRMQoeNp6+3H61f1dV1Au9aTt1bExhRc5D0rz4kesIdGqQQwvIiIyPJzMxk8ODBWkcRQoj2k7XEbFanF3QWXSM3cz8AOUqwJutJCevgFx6FQW1aiTWoOiLufoHoCXd06fT219K3/zAO+98JgNOXL2DshRP0iJ6pg3NXCSGEdZC1xGyWFGJWpiLbNFFHgdsQjZMILQWEDCBlxPM0qKb/og2qjtQRy6xmEeVBM1+kQnVmoOEMqZ+s0TqOEEII0XvJWmI2SwoxK+NQcBSAej9ZNLu3i7/7SS7NP8TxWzZxaf4h4u9+UutIZt7+fTnWbw4AwamvUFtTpW0gIYQQorfyvLLUjQxNtDlSiFmZgMqTALhGjNI4ibAGASEDGHbDVKvpCbta7MzfUoA3wWoBhz94Res4QgghRO/UODSxqghqK7TNIjpECjErUlZyiRD1AgAhkWM1TiNE25xd+5A9/HEAhp76O6XFRRonEkIIIXohZ09wurKSaGmOplFEx0ghZkVyMg4AcBE/vPyCNE4jxLWNmv4rsnWheFJBxpYXtI4jhBBC9E6eMnOiLZJCzIqUZx0C4IKLTJ0sbIOdvQMl438LwMi8d7iYc1rjREIIIUQv1HidmEzYYVOkELMidvmmiTpqZKIOYUNibppFhsNwnJR6cj54Vus4QnTab37zG3x8fLSOIYQQHecVYfoqPWI2RQoxK+JbcQIAl/CRGicRov0UnQ79j18EYHTxTrKOH9A4kRCds2LFCinEhBC2yVOmsLdFUohZiaqKUkINuQD0HTpO4zRCdMyQuJtIdZuITlEp++i3WscRQgghehdZS8wmSSFmJc5lHkSvqBThiW9wuNZxhOgw/xnLqVf1xNQcJP3r7VrHEUIIIXoP81pi57TNITpECjErUfq9aaKO884yUYewTSEDo0n1mwGA454XMBoM2gYSQggheovGQqy2FKpLNI0i2k8KMSuhXDgCQJVPtMZJhOi8gTNfpEJ1ZpDhNKk712kdR4hWzZkzh6qqKq1jCCGEZTi4gquf6XsZnmgzpBCzEj7lpok6HENHaZxEiM7zCQjhWMRsAIIPvUxtjfyhK6zTP//5TyoqKsy3H330UUpKSpq0aWho6OZUlvWnP/2JYcOGERUVxeOPP46qqlpHEkJ0JVlLzOZIIWYFamuqCGsw/acJGhqvcRohrk/MzGcoxItgNZ/D/35N6zhCtOiHRcnGjRu5fPmy+XZ+fj7u7u7dHctiCgsLeeONN0hJSeHYsWOkpKSwf/9+rWMJIbqSrCVmc6QQswI5J1OxVwyU4EZg6CCt4whxXVzcPMiKfhyAId+tprTkksaJhLi2lnqLampqNEhiOQ0NDdTU1FBfX099fT3+/v5aRxJCdCXzzIkyYYetkELMClw+fRCAHMdBKDr5kQjbN+qOBZzVheJFORlbXtA6jhCdoihKl5177969TJs2jeDgYBRFYdu2bc3arFq1ioiICJycnEhISCA5Obnd5/fz82PRokWEhYURHBxMYmIiAwYMsOAzEEJYHRmaaHPkr34roOalAVDpFaVtECEsxM7egeJxzwAw8vwm8nPPaJxIiOY2bdpEamoq9fX13f7YlZWVxMTEsGrVqhbv37x5MwsXLmTZsmWkpqYSExPDlClTKCgoMLeJjY0lOjq62ZaXl0dxcTE7duwgOzub8+fP8+2337J3795W89TW1lJWVtZkE0LYGBmaaHPstA4gwLM0EwC70JEaJxHCcmJu/gkZyauIqk/n6PvPEvDkO1pHEsJswoQJLFu2jPLycuzt7WloaGDZsmXccMMNxMbG4ufn16WPn5SURFJSUqv3v/baa8yfP5+5c+cCsHr1aj7++GPWrVvH4sWLAUhLS2v1+Pfee4+BAwfi7e0NwNSpU9m/fz833nhji+1XrFjBCy9I77UQNs0rwvS15ByoKnRhr76wDOkR01hDfR3h9d8DEDBYJuoQPYei06Gb8iIAo4s/5fuM9g+rEqKr/fe//6W0tJSTJ0/y1ltv8dRTT3HhwgWeeeYZxo8fz+DB2q3pWFdXR0pKComJieZ9Op2OxMRE9u3b165zhIaG8u2331JTU4PBYODLL79kyJAhrbZfsmQJpaWl5i0nJ+e6n4cQopt5hAAK1FdBZZHWaUQ7SI+YxnJOHaGfUk+l6kTf/rKGmOhZhsbdTOqXNzKqYi9lHz0LUZ9rHUmIJgYNGsSgQYP4yU9+Yt73/fffk5KSwuHDhzXJVFRUhMFgICAgoMn+gIAATpw40a5zjB07lttuu42RI0ei0+m4+eabmT59eqvtHR0dcXR0vK7cQgiN2TmCezCUnTcNT3Tr2p59cf2kR0xjRd+ZegnOOgxEp9drnEYIy/ObsZx6VU9s9QHSv9mhdRwhrql///7MnDmT5cuXax3lurz00ktkZmZy/Phx/vKXv3Tp5CNCCCvReJ1YcbamMUT7SI+YxozZXwNQ7hqmcRIhukbowOEc8LuDhKJ/47jneYxjk+RDB6Gpfv36daooefLJJ3n88ce7IFFTvr6+6PV68vPzm+zPz88nMDCwyx9fCGHDPMPh3D6ZsMNGSCGmoeQPVhJf/AkoMKb4U9Ptu5/UOpYQFjdw5u+o/OsnDGo4RcrO9YyeOk/rSKIX27BhQ6eOi4iIsGiO1jg4ODB69Gh27drFjBkzADAajezatYsFCxZ0SwYhhI2StcRsihRiGsnPPcPoo8+bJ7TRKSqjjr5AfsI0AkJkrRfRs/gEhLAvYg7jzq4m8NAfqUt8AAdHJ61jiV5q4sSJWkegoqKC06dPm29nZWWRlpaGt7c3YWFhLFy4kNmzZxMXF0d8fDwrV66ksrLSPIuiEEK0SNYSsylyjZhGCs9moFfUJvvsFCNFZ9t3IbYQtiZm5jMU4UlfNZ/Uf7+qdRwhNHXo0CFGjhzJyJGmZUsWLlzIyJEjWbp0KQCzZs3ilVdeYenSpcTGxpKWlsbOnTubTeAhhBBNyFpiNkV6xDTiFx6FQVWaFGMNqg7f8KEaphKi67i4eXBs2OP4Hn+RISf/RlnJL3D39NE6lhCamDRpEqqqttlmwYIFMhRRCNEx5qGJOWA0gE6uybZm0iOmkYCQAaSMeJ4G1fQjaFB1pI5YJsMSRY82esZjnNWF4EU5x997Ues4QgghRM/i3hd0dmCsh/KLWqcR1yCFmIbi736SS/MPcfyWTVyaf0gm6hA9np29A5fHLgEgNncTBeezNE4khBBC9CA6/ZWFnZHhiTZACjGNBYQMYNgNU6UnTPQasYn3kWk/DGeljuz3f6t1HCGEEKJnMa8lJoWYtZNCTAjRrRSdDuXHpmGJoy9/QlbGIY0TCSGEED1I48yJ0iNm9aQQE0J0u6FjEkl1vRG9olL6kfSKCSGEEBYja4nZDCnEhBCa8JvxexpUHbHV+zn+7SdaxxFCCCF6Bs8I01cZmmj1pBATQmgidFAMKX4zALDfvQzVaNQ2kBBCCNETyFpiNsMmCrEvv/wSRVFa3A4ePAjA888/3+L9rq6urZ53w4YNrZ63oKCgu56eEL3WgHtepFJ1YnDDd6TuXK91HCGEEML2NQ5NLDsPhnpts4g22UQhNn78eC5cuNBkmzdvHv369SMuLg6ARYsWNWsTFRXFzJkzWz3vrFmzmh0zZcoUJk6ciL+/f3c9PSF6Ld/AUI6GzwYg4OAfqaut0TiREEIIYePcAsDOCVQjlOZqnUa0wSYKMQcHBwIDA82bj48PH374IXPnzkVRFADc3NyatMnPzycjI4OHH3641fM6Ozs3OUav17N79+42jxFCWNaImc9QhCch6kVS//2a1nGEEEII26YoMjzRRthEIfZD27dv59KlS8ydO7fVNmvWrGHw4MFMmDCh3ed9++23cXFx4Z577mmzXW1tLWVlZU02IUTnuPbx5MywxwAYcvJvlJde1jiREEIIYeNkLTGbYJOF2Nq1a5kyZQohISEt3l9TU8PGjRs73LO1du1a7rvvPpydndtst2LFCjw8PMxbaGhohx5HCNHU6BmPc07XFy/KSN/yotZxhBBCCNsma4nZBE0LscWLF7c6WUbjduLEiSbH5Obm8tlnn7VZZG3dupXy8nJmz57d7iz79u0jMzOzXcXbkiVLKC0tNW85OTntfhwhRHN29g5cGvsMALG5Gyk4n61tICGEEMKWyVpiNsFOywd/6qmnmDNnTptt+vfv3+T2+vXr8fHxYfr06a0es2bNGm6//XYCAgLanWXNmjXExsYyevToa7Z1dHTE0dGx3ecWQlxbbOJ9nDi4iqH1GRx7/7f4P7FR60hCCCGEbWrsEZOhiVZN00LMz88PPz+/drdXVZX169fz4IMPYm9v32KbrKws9uzZw/bt29t93oqKCrZs2cKKFSvafYwQwrIUnQ5ueRE+uYfRlz/mbGYK4ZHX/mBECCGEED8gk3XYBJu6Rmz37t1kZWUxb968VtusW7eOoKAgkpKSmt23detWhg4d2mz/5s2baWho4IEHHrBoXiFExwyNv4XDrj9Cr6gUf/RbreMIIYQQtskrwvS1Ih/qqzWNIlpnU4XY2rVrGT9+fIvFFIDRaGTDhg3MmTMHvV7f7P7S0lJOnjzZ4nnvuusuPD09LR1ZCNFBPne8RIOqI7ZqHxn7PtU6jhBCCGF7nL3AoY/p+xKZy8BaKaqqqlqHsHVlZWV4eHhQWlqKu7u71nGEsHkHXp9NwqVtnLQbwuBn9puGLYoeS15DrY/8TIToAf52A+Snw/3vw6BbtE7Tq7T3NVT+uhFCWJ0BM39HlerIkIaTpH72ltZxhBBCCNtjXkssW9MYonVSiAkhrI5vYBhHwh4EICD5/6irrdE4kRBCCGFjPGUKe2snhZgQwioNn/lbivAkRL3A4a1/0jqOEEIIYVu8ZFFnayeFmBDCKrm5e3Em6lcADDrxV8pLL2ucSAghhLAhspaY1ZNCTAhhtUbNeIIcJRhvykh/73daxxFCCCFsh6wlZvWkEBNCWC17B0cKxz4DQEzORgrzsrUNJIQQQtiKxqGJ1cVQU6ZtFtEiKcSEEFZt5C33c8I+Chellqz3n9U6jhBCCGEbHPuAs7fpe5mwwypJISaEsGqKTgeJLwAw+tJHJP/7L+TnntE4lRBCCGEDZMIOqyaFmBDC6g1N+DGn9f3RKxB/9Dl83xxN8gcrtY4lhBBCWDfzWmJSiFkjKcSEEFYvP/cM/RqyzLf1isqooy9Iz5gQQgjRFllLzKpJISaEsHqFZzPQK2qTfXaKkaKzJzRKJIQQQtgAGZpo1aQQE0JYPb/wKAyq0mSfUVXwDR+qUSIhhBDCBshaYlZNCjEhhNULCBlAyojnaVD/95JVprji4ROoYSohtHfnnXfi5eXFPffc0+y+HTt2MGTIEAYNGsSaNWs0SCeE0JznVT1iqtp2W9HtpBATQtiE+Luf5NL8QxyduJZCPPGkgsPv/UHrWEJo6oknnuDtt99utr+hoYGFCxeye/duDh8+zMsvv8ylS5c0SCiE0FTjZB11Fab1xIRVkUJMCGEzAkIGMGLyPWSP/A0A0Wfe5HLBeY1TCaGdSZMm0adPn2b7k5OTGTZsGH379sXNzY2kpCQ+//xzDRIKITRl7wRuV0aPFGdrGkU0J4WYEMLmjL79EU7rB9BHqebUFlnkWVinvXv3Mm3aNIKDg1EUhW3btjVrs2rVKiIiInByciIhIYHk5GSLPHZeXh59+/Y13+7bty/nz8uHFkL0So29YjJhh9WRQkwIYXN0ej01N11Z5LlwG2dPpmkbSIgWVFZWEhMTw6pVq1q8f/PmzSxcuJBly5aRmppKTEwMU6ZMoaCgwNwmNjaW6OjoZlteXp5Fs9bW1lJWVtZkE0L0EF4yYYe1stM6gBBCdEb0DdNI+2YcsVX7uPzhEsJ//anWkYRoIikpiaSkpFbvf+2115g/fz5z584FYPXq1Xz88cesW7eOxYsXA5CWltapxw4ODm7SA3b+/Hni4+Nbbb9ixQpeeOGFTj2WEMLKyVpiVkt6xIQQNsvrjj/QoOoYWfUtx7/5WOs4QrRbXV0dKSkpJCYmmvfpdDoSExPZt2/fdZ8/Pj6e9PR0zp8/T0VFBZ9++ilTpkxptf2SJUsoLS01bzk5OdedQQhhJWQtMaslhZgQwmaFD4klxW8GAA67l2I0GLQNJEQ7FRUVYTAYCAgIaLI/ICCAixcvtvs8iYmJzJw5k08++YSQkBBzEWdnZ8err77K5MmTiY2N5amnnsLHx6fV8zg6OuLu7t5kE0L0EI3XiMnQRKsjQxOFEDZt0L2/p2LVpwwynObgjn8w5o5HtY4kRLf54osvWr1v+vTpTJ8+vRvTCCGs0tVDE41G0Ek/jLWQn4QQwqZ5+/flWP+HAQg9/Ao1VRUaJxLi2nx9fdHr9eTn5zfZn5+fT2CgLFQuhLAgjxBQdGCohcqCa7cX3UYKMSGEzRs5cwkX8SOQIg6/t1zrOEJck4ODA6NHj2bXrl3mfUajkV27djFu3DgNkwkhehy9PbiHmL6X4YlWRQoxIYTNc3JxI3fUIgCGf7+OovxcjRMJARUVFaSlpZlnPszKyiItLY1z50wzly1cuJA333yTt956i8zMTB599FEqKyvNsygKIYTFyFpiVkkKMSFEjzBq6nxO2Q3CTanmzJbfah1HCA4dOsTIkSMZOXIkYCq8Ro4cydKlSwGYNWsWr7zyCkuXLiU2Npa0tDR27tzZbAIPIYS4brKWmFWSyTqEED2CTq+n/qYX4fOfMrpoO2dPpBI+dJTWsUQvNmnSJFRVbbPNggULWLBgQTclEkL0Wp4yhb01kh4xIUSPETX+NtJcxmOnGCn+cInWcYQQQgjrIGuJWSUpxIQQPYrPnX+gXtUTW72f9K+3ax1HCCGE0J6sJWaVpBATQvQooYNiSPW/EwCnPc/LIs9CCCFE49DEsvNgaNA2izCTQkwI0eMMvvf3lOPMQMMZDn20Wus4QgghhLb6BIHeAYwNUJ6ndRpxhRRiQogex8sviOP95wMQkfYK1ZXlGicSQgghNKTTgUeo6XsZnmg1pBATQvRIsTMXcwE//LlM2paXtI4jhBBCaEvWErM6Mn29EKJHcnJ2JS/uNwQdWsSI7PUUXvwlfoFhWscSoscwGo3U1dVpHUN0I3t7e/R6vdYxRGeZZ048p20OYSaFmBCixxp128N8l/YPBjd8R/qWZ/F7/G2tIwnRI9TV1ZGVlYXRaNQ6iuhmnp6eBAYGoiiK1lFER3nKos7WRgoxIUSPpeh0GG75PXx6L3GXtpOdmUJE5GitYwlh01RV5cKFC+j1ekJDQ9Hp5CqH3kBVVaqqqigoKAAgKChI40Siw2QtMasjhZgQokeLTJhC6t4JjKr8itLtiyHyP1pHEsKmNTQ0UFVVRXBwMC4uLlrHEd3I2dkZgIKCAvz9/WWYoq2RHjGrIx9jCSF6PP87V1Cv6ompTubY3m1axxHCphmurM3n4OCgcRKhhcbiu76+XuMkosMaC7HyC9BQq20WAUghJoToBUIGDicl4G4AXL58HkODLGYpxPWSa4R6J/m52zBXX7B3AVQozdU6jUAKMSFELzH03t9RhgsDjFmkfPQ3reMIIYQQ3UtRrhqemK1pFGEihZgQolfw9A0kY+AjAEQceY2qilKNEwkhhBDdTNYSsypSiAkheo2R9/yaPMUffy5zZMtyreMIIYQQ3UvWErMqUogJIXoNRycXLoz5DQAxZ9dTlCefCAohereSkhLi4uKIjY0lOjqaN998U+tIoivJzIlWxSYKsS+//BJFUVrcDh48CMDzzz/f4v2urq5tnvvgwYPcfPPNeHp64uXlxZQpUzhy5Eh3PC0hhAZG3foQJ+2G4KLUcua932odRwghNNWnTx/27t1LWloaBw4cYPny5Vy6dEnrWKKryFpiVsUmCrHx48dz4cKFJtu8efPo168fcXFxACxatKhZm6ioKGbOnNnqeSsqKrj11lsJCwvjwIEDfP311/Tp04cpU6bItKxC9FCKTof645cAiLu8g+8zkjVOJIToTosXL8bR0ZH77rtP6yhWQa/Xm6ekr62tRVVVVFXVOJXoMo3XiEmPmFWwiULMwcGBwMBA8+bj48OHH37I3LlzzdOourm5NWmTn59PRkYGDz/8cKvnPXHiBJcvX+bFF19kyJAhDBs2jGXLlpGfn8/Zs/ILKkRPNTT+FlLdbkSvqJRvf0brOEKIbrRkyRJeffVV3nnnHU6fPq11nDbt3buXadOmERwcjKIobNu2rcV2q1atIiIiAicnJxISEkhO7tgHTCUlJcTExBASEsLTTz+Nr6+vBdILq9Q4NLGqCOoqtc0ibKMQ+6Ht27dz6dIl5s6d22qbNWvWMHjwYCZMmNBqmyFDhuDj48PatWupq6ujurqatWvXEhkZSURERKvH1dbWUlZW1mQTQtiWgLv+QJ2qJ6bmIEf/+2+t4wghuomHhwcPP/wwOp2OY8eOaR2nTZWVlcTExLBq1apW22zevJmFCxeybNkyUlNTiYmJYcqUKRQUFJjbNF7/9cMtLy8PAE9PT44cOUJWVhabNm0iPz+/y5+b0IizJzh5mL6XCTs0Z5OF2Nq1a5kyZQohISEt3l9TU8PGjRvb7A0D07joL7/8kn/96184Ozvj5ubGzp07+fTTT7Gzs2v1uBUrVuDh4WHeQkNDr+v5CCG6X9/+w0gNNA1d7vPfF2SRZyE0cKG0mm/PFHGhtLpbH7ehoQEXFxfS09O79XE7Kikpid///vfceeedrbZ57bXXmD9/PnPnziUqKorVq1fj4uLCunXrzG3S0tJIT09vtgUHBzc5V0BAADExMXz11Vdd9pyEFZAJO6yGpoXY4sWLW52Eo3E7ceJEk2Nyc3P57LPP2iyytm7dSnl5ObNnz27z8aurq3n44Ye54YYb2L9/P9988w3R0dFMnTqV6urW3xSWLFlCaWmpecvJyenYExdCWIXIe1+kFFf6GbNJ2d76J85CiNapqkpVXUOHt3/uy+aGP+zmvjcPcMMfdvPPfdkdPkdnr2V69tlnqaio6LZCbPny5bi5ubW5nTvX8d6Juro6UlJSSExMNO/T6XQkJiayb9++dp0jPz+f8vJyAEpLS9m7dy9DhgzpcBZhQ2QtMavRerdPN3jqqaeYM2dOm2369+/f5Pb69evx8fFh+vTprR6zZs0abr/9dgICAto896ZNm8jOzmbfvn3odDrzPi8vLz788EN+8pOftHico6Mjjo6ObZ5bCGH9PHwC2D/oF4w99Sr9jv6Jyltm49rHU+tYQtiU6noDUUs/u65zGFV47sPjPPfh8Q4dl/HiFFwcOvanTEpKCqtXr2bq1KndVoj94he/4N57722zzQ97p9qjqKgIg8HQ7O+dgICAZh9kt+bs2bP8/Oc/N0/S8dhjjzF8+PAOZxE2xCvC9FWGJmpO00LMz88PPz+/drdXVZX169fz4IMPYm9v32KbrKws9uzZw/bt2695vqqqKnQ6nXnCD8B822g0tjuXEMJ2jbr7ac7/37/oq+azb8tLjHv4Za0jCSG6iNFo5JFHHmHBggUkJCTwwAMPUF9f3+rfFC3Jy8vj6aefZuPGje0+xtvbG29v785E7nLx8fGkpaVpHUN0J/PQxGxNYwiNC7GO2r17N1lZWcybN6/VNuvWrSMoKIikpKRm923dupUlS5aYPyW65ZZbePrpp/nVr37FY489htFo5A9/+AN2dnZMnjy5y56HEMJ6ODg5kx+/hL4HniTm3FsU5v0Kv+AIrWMJYTOc7fVkvDilQ8dcLK0h8bX/YrxqZKFOgS8WTiTQw6lDj90Rr7/+OkVFRbz44oucO3eO+vp6Tpw40aEeoODg4A4VYWAamrh8+fI222RkZBAWFtah8/r6+qLX65tNrpGfn09gYGCHziV6ERmaaDVsarKOtWvXMn78eIYOHdri/UajkQ0bNjBnzhz0+uYvzqWlpZw8edJ8e+jQoXz00UccPXqUcePGMWHCBPLy8ti5cydBQUFd9jyEENZl5JTZnLCPwkWpJes9mc5eiI5QFAUXB7sObf393Fhx13D0V0ak6BWFFXcNp7+fW4fOc/WIlms5f/48zz33HKtWrcLV1ZVBgwbh6OhoHp6YnZ1NTEwM999/P4MGDeLRRx9l27ZtJCQkEB0dzalTp8zt4uLizO1nz55NZGQks2bNavWatV/84hekpaW1uXVmaKKDgwOjR49m165d5n1Go5Fdu3Yxbty4Dp9P9BKNizoXy9BErdlUj9imTZvavF+n07U5ccacOXOaXZN2yy23cMstt1ginhDCRik6HUz5Pey4i7jLn3Dm2AEGDE/QOpYQPdqsMWHcONiP7KIqInxdCPJw7tLHe/zxx0lKSmLq1KkA2NnZERkZ2eQ6sczMTLZs2cLAgQOJjo7Gzc2NAwcO8Pe//5033niDP//5z03OmZmZyTvvvENkZCSTJ0/m66+/bnHZnM4OTayoqGiy1llWVhZpaWl4e3ube88WLlzI7NmziYuLIz4+npUrV1JZWdnmEj+il2vsEastheoS05T2QhM2VYgJIURXGRp3MylfTmJ0xZdU7liCGr2rQ5+2CyE6LsjDucsLMIAdO3awe/duMjMzm+wfPnx4k0JsyJAh5hkDIyMjzbMRDh8+nE8++aTZeYcMGUJUVBQAI0eOJDs7u831Szvq0KFDTS6VWLhwIQCzZ89mw4YNAMyaNYvCwkKWLl3KxYsXiY2NZefOndecsEz0Yg6u4OoHlYWm4YlSiGlGCjEhhLgi6O7/o27DDYyoTeHIlx8QM/kerSMJISzg9ttvp7i4uNn+t99+u8ntq2dE1ul05ts6nQ6DwdDs+Kvb6/X6Fttcj0mTJrVriv4FCxawYMECiz626OE8w0yFWPFZCIrROk2vZVPXiAkhRFcK7jeU1CDTFNPuX71AQ32dxomEuLY777wTLy8v7rmn6QcHOTk5TJo0iaioKEaMGMF7772nUUIhhNVpnDlRprDXlBRiQghxlch7X6QEN/oZz8kiz8ImPPHEE816dsB0DdTKlSvJyMjg888/58knn6SyslKDhEIIq9M4YYfMnKgpGZoohBBX8fD248CQR0k4+TIDjq2k4sdzcZNFnoUVmzRpEl9++WWz/UFBQeYZgAMDA/H19eXy5cu4urp2c0LbEBERwaFDh8y333//ffP3Y8eOZceOHc3aXd3+lVde6aakQliAeS0xKcS0JD1iQgjxAyPvWkSuEoQvJRzb/Dut4wgbtnfvXqZNm0ZwcDCKorBt27ZmbVatWkVERAROTk4kJCSQnJxs8RwpKSkYDAZCQ0Mtfm4hhA2StcSsghRiQgjxAw6OThSONa0nFpvzNvnnv9c4kbBVlZWVxMTEsGpVy8NcN2/ezMKFC1m2bBmpqanExMQwZcoUCgoKzG1iY2OJjo5utuXl5bUrw+XLl3nwwQf5xz/+YZHnJIToAbwiTF9LzkE7JoQRXUOGJgohRAtib3mAzEOriaw/zrH3fkvAk+9oHUnYoKSkJJKSklq9/7XXXmP+/PnmNZ9Wr17Nxx9/zLp161i8eDEAaWlpnX782tpaZsyYweLFixk/fnyb7Wpra823y8rKOv2YQggb4BECKFBfBZVF4OandaJeSXrEhBCiBYpOh/7WlwCIK/6UM0e/1TiR6Gnq6upISUkxr1UFpmnSExMT2bdv33WfX1VV5syZw0033cTPfvazNtuuWLECDw8P8yZDGIXo4ewcwT3Y9L0MT9SMFGJCCNGKwaMnk9LnJnSKSvXHS1CNRq0jiR6kqKgIg8HQbOHdgIAALl682O7zJCYmMnPmTD755BNCQkLMRdw333zD5s2b2bZtG7GxscTGxnLs2LEWz7FkyRJKS0vNW05OTuefmBDCNjReJ1acrWmM3kyGJgohRBuC7v4DdevHE12bxpEv3yPmpllaRxKiiS+++KLF/T/60Y8wtvPDA0dHxyaLEwshegHPcDi3T9YS05D0iAkhRBuCI4aQGmwqvjy+/p0s8iwsxtfXF71eT35+fpP9+fn5BAYGapRKCNFryFpimpNCTAghriFq1osU04cIYw4pW/+idRzRQzg4ODB69Gh27dpl3mc0Gtm1axfjxo3TMJkQoleQtcQ0J4WYEEJcg7unL98N/SUAAzP+QnnpZY0TCVtRUVFBWlqaeebDrKws0tLSOHfONBRo4cKFvPnmm7z11ltkZmby6KOPUllZaZ5FUQghuoysJaY5KcSEEKIdRt31FDlKMD6Ukr7lRa3jCBtx6NAhRo4cyciRIwFT4TVy5EiWLl0KwKxZs3jllVdYunQpsbGxpKWlsXPnzmYTeAghhMWZhybmgExGpQmZrEMIIdrB3sGRonG/JfTbXzEy958c+ng4oTGTCAgZoFmm/NwzFJ7NwC88SnJYqUmTJqFeY7HUBQsWsGDBgm5KJIQQV7j3BZ0dGOuh/AJ49NU6Ua8jhZgFVVZWotfrm+3X6/U4OTk1adcanU6Hs7Nzp9pWVVW1+oavKAouLi6daltdXd3mzFuurq6daltTU4PBYLBIWxcXFxRFAUwLkzY0NFikrbOzMzqdqeO4rq6O+vp6i7R1cnIy/650pG19fT11da1PFuHo6IidnV2H2zY0NDRZzPWHHBwcsLe373Bbg8FATU1Nq23t7e1xcHDocFuj0Uh1dbVF2trZ2Zlni1NVlaqqqlbbRk64m5x9LxFKHqOT/x/lXyvs7vdzQsY1n0lRp9fjdNUsdG2dtyNtFZ0OZycncr7eSPz3q3CrN2JQW87R2LZRdXV1m//vr349aW/bnK83MvzkG7ihYlAV/hv9DHEzmhYV13qNaOt1TgjR9bKysnjooYfIz89Hr9ezf//+Jv9vRQ+l05sWdi7ONg1PlEKs+6niupWWlqpAq9ttt93WpL2Li0urbSdOnNikra+vb6tt4+LimrQNDw9vtW1UVFSTtlFRUa22DQ8Pb9I2Li6u1ba+vr5N2k6cOLHVti4uLk3a3nbbbW3+u13tnnvuabNtRUWFue3s2bPbbFtQUGBu+8tf/rLNtllZWea2ixYtarNtenq6ue2yZcvabJucnGxu+8c//rHNtnv27DG3feONN9psu2PHDnPb9evXt9l2y5Yt5rZbtmxps+369evNbXfs2NFm2zfeeMPcds+ePW22/eMf/2hum5yc3GbbZcuWmdump6e32XbRokXmtllZWW22/eUvf2luW1BQ0Gbbe++5SzUs9VDVZe5qxZI+bba9J8pOVZe5m7e22t42qGlbF/vW204M1zdp6+uitNo2LljXpG24R+tto/yato3y07XaNtxDadI2Lrj1th15jSgtLVWFdWh8X2vpZ1JdXa1mZGSo1dXVGiQTXeHGG29U9+7dq6qqql66dEmtr69vta38/HuYDbebXssPb9I6SY/S1mvo1eQaMSGEaKeayhJ0itqutg2qnkrVyby1xaDq2t8WHdWqfbsyGGl6XhWljbZKk7bGNtqqV9q2N4cQ1mTx4sU4Ojpy3333aR3FKhw/fhx7e3smTJgAgLe3t3m0hOgFGmdOlLXENKGo6jUGr4trKisrw8PDg7y8PNzd3ZvdL0MTW24rQxNlaKKtDU28dPEsfd8ej15RTW3roUHVcWnuVwT07d+kbUf+33f0NaLsUh6+b45Gr6hU1pn+H7eUo6tfI/Jzz+D75mjqGowYrzRtKce1XiPKysoIDg6mtLS0xddQ0f0a39da+pnU1NSQlZVFv379mvze2orS0lL++c9/8thjj3Hq1CkGDhyodaRW7d27l5dffpmUlBQuXLjA1q1bmTFjRrN2q1at4uWXX+bixYvExMTw+uuvEx8f367H2LZtGxs2bMBgMHD+/HnuuecennnmmVbb2/rPX/zA3pdh9+8h9n6Y8Vet0/QYbb2GXk0+8rAgV1fXdo2p7si46460vfqPKEu2vfoPOUu27cgLeEfaOjo6mv+wtmRbBwcH8x/3WrW1t7c3FzmWbGtnZ9fuT0A70lav17f7d7gjbXU6XZe0VRSlzbauA6JIHvE8o46+gJ1ixNFex/ERy4gfPPya57bk/3vnkAHmHK4ORhrU9uWw9GtEwFU57JT25WjpNaKtD1mEsDQPDw8efvhhnnjiCY4dO2bVhVhlZSUxMTE89NBD3HXXXS222bx5MwsXLmT16tUkJCSwcuVKpkyZwsmTJ/H39wcgNja2xQ8dP//8cxoaGvjqq69IS0vD39+fW2+9lTFjxnDLLbd06XMTVsIzwvRV1hLThBRiQgjRAfF3P0l+wjSKzp7AN3wo8RrNEig5RI9Qeh4unwHvAd06UUBDQwMuLi6kp6dz5513dtvjdlRSUhJJSUlttnnttdeYP3++ee251atX8/HHH7Nu3ToWL14MYF7HriV9+/YlLi6O0NBQAG677TbS0tKkEOstZC0xTUkhJoQQHRQQMsAqpmmXHMIqqCrUtz6kt1Vpm+DTX4NqBEUHSX+E2A5et2XvAkrr1zO25tlnn6WiooL09PQOH9sZy5cvZ/ny5W22ycjIICwsrEPnraurIyUlhSVLlpj36XQ6EhMT2bdvX7vOMWbMGAoKCiguLsbDw4O9e/fyyCOPdCiHsGGNa4mVnQdDPejl2t/uJIWYEEIIITqvvgqWB1/fOVQjfLLItHXEM3ng0LFp1lNSUli9ejVTp07ttkLsF7/4Bffee2+bbYKDO/5vWFRUhMFgaLYAeEBAACdOnGjXOezs7Fi+fDk33ngjqqry4x//mNtvv73DWYSNcgsAOydoqIHSXPDup3WiXkUKMSGEEEL0CkajkUceeYQFCxaQkJDAAw88QH19fbuvpwXIy8vj6aefZuPGje0+xtvbG29v785E7hbtGQIpeihFMQ1PLPrONDxRCrFuJYWYEEIIITrP3sXUM9URZXmwKt7UE9ZI0cOvDoB7B3qG7Ns/AQ3A66+/TlFRES+++CLnzp2jvr6eEydOMHz4tSfcaRQcHNyhIgy6bmiir68ver2e/Pz8Jvvz8/MJDAzs0LlEL9ZYiMmEHd1OCjEhhBBCdJ6idHh4IL6DYNqf4aMnQTWYirBpK037u8j58+d57rnneOedd3B1dWXQoEE4OjqSnp7O8OHDyc7O5o477iA6Oprk5GQSExOZMmUKK1asoLKykq1btzJo0CCys7O55557eP/997njjjuIjY0lOTmZESNG8O6775qXR7laVw1NdHBwYPTo0ezatcs8rb3RaGTXrl0sWLCgw+cTvZSsJaYZKcSEEEII0f1GPQgDbobL34N3/y6fNfHxxx8nKSmJqVOnAqZroyIjI5tcJ5aZmcmWLVsYOHAg0dHRuLm5ceDAAf7+97/zxhtv8Oc//7nJOTMzM3nnnXeIjIxk8uTJfP311+aFka/W2aGJFRUVnD592nw7KyuLtLQ0vL29zb1nCxcuZPbs2cTFxREfH8/KlSuprKw0z6IoxDU1TtghMyd2OynEhBBCCKENj77dMm39jh072L17N5mZmU32Dx8+vEkhNmTIEIYMGQJAZGQkiYmJ5naffPJJs/MOGTKEqKgoAEaOHEl2dnaLhVhnHTp0iMmTJ5tvL1y4EIDZs2ezYcMGAGbNmkVhYSFLly7l4sWLxMbGsnPnzmYTeAjRqsYeMRma2O2kEBNCCCFEj3b77bdTXFzcbP/bb7/d5Lajo6P5e51OZ76t0+laXHj86vZ6vd7ii5NPmjQJVVWv2W7BggUyFFF0nqwlphmd1gGEEEIIIYQQGvGKMH2tyIdLZzSNQul5yNpr+toLckiPmAVVVlbSp08f84W6dXV11NfXY2dn1+RTs8rKSgCcnZ3R6Uy1cH19PXV1dej1epycnDrVtqqqClVVcXJyQq/XA9DQ0EBtbS06nQ5nZ+dOta2ursZoNOLo6IidnelXxmAwUFNT06G2iqLg4vK/Ga5qamowGAw4ODiYpw7uSFuj0Uh1dTUArq7/u1C8traWhoYG7O3tcXBw6HBbVVWpqjItTuri4tLs59mRtu352Vvi96Sln6clfk8af57X+3vyw5/n9f6etPbzvN7fk6t/ntf7e9Laz7Ozvyc9/TVCCCGERjI/+t/3r4+GuIeg/6Tuz/H9l3BoHaACinXkUHSmiYVGPdg1j6WK61ZaWqqaflqoBQUF5v2///3vVUCdN29ek/YuLi4qoGZlZZn3/elPf1IB9b777mvS1tfXVwXU9PR0875//OMfKqDecccdTdqGh4ergJqcnGze969//UsF1MTExCZto6KiVEDds2ePed/WrVtVQB0/fnyTtnFxcSqg7tixw7zv888/VwE1JiamSduJEyeqgLplyxbzvq+//loF1IEDBzZpe9ttt6mAun79evO+w4cPq4AaHBzcpO0999yjAuobb7xh3vfdd9+pgOrh4dGk7ezZs1VA/eMf/2jel5ubqwKqnZ1dk7a//OUvVUBdtmyZeV9xcbH551lXV2fev2jRIhVQFy1aZN5XV1dnbltcXGzev2zZMhVQf/nLXzZ5PDs7OxVQc3Nzzfv++Mc/qoA6e/bsJm09PDxUQP3uu+/M+9544w0VUO+5554mbYODg1VAPXz4sHnf+vXrVUC97bbbmrQdOHCgCqhff/21ed+WLVtUQJ04cWKTtjExMSqgfv755+Z9O3bsUAE1Li6uSdvx48ergLp161bzvj179qiAGhUV1aRtYmKiCqj/+te/zPuSk5NVQA0PD2/S9o477lAB9R//+Id5X3p6ugqovr6+Tdred999KqD+6U9/Mu/LyspSAdXFxaVJ23nz5qmA+vvf/968r6CgwPzzvNoTTzyhAuozzzxj3ldRUWFuW1FRYd7/zDPPqID6xBNPNDmHvEaYtPQa8dlnn6mAWlpaqgrr0Pi+1tLPpLq6Ws3IyFCrq6s1SCa0Jj//HqYkV1Wf91TVZe6ytbY972X6d+qAtl5DryY9YkIIIYQQQvRGl880Xc+vkV8kOHl0X46aUijMbL7fGnKoBtPsrl0wsZCiqu24ClS0qaysDA8PD/Ly8ggMDJRhRzI0UYYmytBEGZrYgdeI4uJivL29KS0txd3dHaG9xve1ln4mNTU1ZGVl0a9fvya/X6J3kJ9/D1N6HlZGN19c/clj3TKjaU/N0dZr6NWkELOA9v5jCyGEaE5eQ62PFGKiNfLz74FS326+uHpXXRPVS3K0931NhiYKIYQQQgjRW3Xz4uqS43+kEBNCCCFEh8mAmt5Jfu49VDctri45mpJ1xIQQQgjRbo3XDNbV1WmcRGih8drYxutwhRCdJz1iQgghhGg3Ozs7XFxcKCwsxN7e3jxJjOjZGicoKigowNPT01yQCyE6TwoxIYQQQrSboigEBQWRlZXF2bNntY4jupmnpyeBgYFaxxCiR5BCTAghhBAd4uDgwKBBg2R4Yi9jb28vPWFCWJAUYkIIIYToMJ1OJ9OXCyHEdbCJgd1ffvkliqK0uB08eBCA559/vsX7r16UtSW7du1i/Pjx9OnTh8DAQH7zm9/Q0NDQHU9LCCGEEEII0UvZRCE2fvx4Lly40GSbN28e/fr1Iy4uDoBFixY1axMVFcXMmTNbPe+RI0e47bbbuPXWWzl8+DCbN29m+/btLF68uLuemhBCCCGEEKIXsomhiQ4ODk0uDK2vr+fDDz/kscceQ1EUANzc3HBzczO3OXLkCBkZGaxevbrV827evJkRI0awdOlSAAYOHMgf//hH7r33XpYtW0afPn266BkJIYQQQgghejObKMR+aPv27Vy6dIm5c+e22mbNmjUMHjyYCRMmtNqmtra22fh2Z2dnampqSElJYdKkSa0eV1tba75dWloKQFlZWQeehRBCCPjfa6csFGs9Gn8W8r4mhBAd1+73NdUGJSUlqUlJSa3eX11drXp5ean/93//1+Z5PvvsM1Wn06mbNm1SGxoa1NzcXHXChAkqoG7atKnV45YtW6YCsskmm2yyWXDLycnp9PuCsKycnBzNfx9kk0022Wx9u9b7mqKq2n0EuXjxYv7v//6vzTaZmZkMHTrUfDs3N5fw8HC2bNnC3Xff3eIx77zzDg8++CC5ubkEBAS0ef7XXnuNF154gcrKShwdHXnuuedYsmQJ7777LrNmzWrxmB/2iBmNRi5fvoyPj495qGR7lZWVERoaSk5ODu7u7h061pIkh+SQHJJDqxyqqlJeXk5wcLAsDmwljEYjeXl59OnTR97XJIfkkBySo4Pa+76m6dDEp556ijlz5rTZpn///k1ur1+/Hh8fH6ZPn97qMWvWrOH222+/ZhEGsHDhQv7f//t/XLhwAS8vL7Kzs1myZEmzx72ao6Mjjo6OTfZ5enpe87Ha4u7urukvnOSQHJJDcmiZw8PDw8JpxPXQ6XSEhIRc1zl6wu+l5JAckkNydOX7mqaFmJ+fH35+fu1ur6oq69ev58EHH8Te3r7FNllZWezZs4ft27e3+7yKohAcHAyYetNCQ0MZNWpUu48XQgghhBBCiI6wqTEgu3fvJisri3nz5rXaZt26dQQFBZGUlNTsvq1btzYZ5gjw8ssvc+zYMY4fP87vfvc7/vCHP/CXv/xFVo4XQgghhBBCdBmbmjVx7dq1jB8/vlkx1choNLJhwwbmzJnTYiFVWlrKyZMnm+z79NNPeemll6itrSUmJoYPP/ywxSKuqzg6OrJs2bJmQx27m+SQHJJDcth6DmEdrOX3QXJIDskhOaw9h6aTdQghhBBCCCFEb2RTQxOFEEIIIYQQoieQQkwIIYQQQgghupkUYkIIIYQQQgjRzaQQE0IIIYT4/+3deVAUZ/oH8O+EQ4YBuZSBEQfGiyuoCBYKLsTIgpaFEo2MBhEDtZsVUMa4E1IaXDZeiPeBEu8jGhbKoIJRwCxMjAEvRKPOAqIrJIqsWYlKIMDw/v7wR68jpwo9WD6fqqmyj+n36falv7w9PQ0hhPCMBmI6smrVKowePRqmpqawtrZGcHBwqyc68i0xMRECgQAKhUIn7f/888+YPXs2rKysIBQK4ebmhosXL/Jag0ajQXx8PGQyGYRCIQYPHoxly5ahp59p89133yEoKAgSiQQCgQBHjx7VWs4Yw9KlS2FrawuhUAh/f3+UlZXxWkdjYyPi4uLg5uYGkUgEiUSCOXPm4O7du7zW8by//OUvEAgE2Lhxo07qUKvVmDJlCszMzCASiTB69GhUVFTwWseTJ08QExMDOzs7CIVCuLi4ICUlpVtrALp23qqvr0d0dDSsrKxgYmKC6dOn4/79+91eC+l9KNdao1yjXOtKHc+jXHtzco0GYjqiUqkQHR2NwsJC5ObmorGxEQEBAaitrdVJPRcuXMAXX3yB4cOH66T9hw8fwsfHBwYGBjh58iRu3LiBdevWwcLCgtc6Vq9eje3bt2Pr1q1Qq9VYvXo1kpKSsGXLlh5tt7a2FiNGjEBycnKby5OSkrB582akpKTg3LlzEIlECAwMRH19PW91/PbbbygqKkJ8fDyKiorw9ddfo6SkBFOmTOnWGjqr41kZGRkoLCzk/iA733WUl5dj3LhxcHJyQn5+Pq5evYr4+HgYGRnxWsfHH3+MU6dO4csvv4RarYZCoUBMTMwL/WH7rujKeWvhwoXIzMxEeno6VCoV7t69i2nTpnVrHaR3olzTRrlGudbVOp5FufbUG5NrjPQK1dXVDABTqVS8t/348WM2dOhQlpuby/z8/FhsbCzvNcTFxbFx48bx3u7zJk+ezCIiIrTmTZs2jYWGhvJWAwCWkZHBTTc3NzMbGxu2Zs0abl5NTQ3r06cP++qrr3iroy3nz59nANidO3d4r+Onn35iAwYMYNeuXWP29vZsw4YNPVZDe3XI5XI2e/bsHm23K3W4urqyzz//XGveqFGj2JIlS3q0lufPWzU1NczAwIClp6dz66jVagaAFRQU9GgtpPehXKNca0G51rU6KNf+503JNfpErJf49ddfAQCWlpa8tx0dHY3JkyfD39+f97ZbHD9+HJ6enpgxYwasra3h7u6OnTt38l6Ht7c3vv32W5SWlgIArly5gu+//57XP/L9vNu3b6Oqqkrr/8fMzAxeXl4oKCjQWV3A034rEAhgbm7Oa7vNzc0ICwuDUqmEq6srr20/W8OJEycwbNgwBAYGwtraGl5eXh3ebtJTvL29cfz4cfz8889gjCEvLw+lpaUICAjo0XafP29dunQJjY2NWn3VyckJUqlU532V8I9yjXKtPZRrrVGuaXtTco0GYr1Ac3MzFAoFfHx88Pbbb/PadmpqKoqKirBq1Spe233erVu3sH37dgwdOhTZ2dmYN28eFixYgP379/Nax6effoqZM2fCyckJBgYGcHd3h0KhQGhoKK91PKuqqgoAIBaLteaLxWJumS7U19cjLi4Os2bNQt++fXlte/Xq1dDX18eCBQt4bfdZ1dXVePLkCRITEzFx4kTk5OTgvffew7Rp06BSqXitZcuWLXBxcYGdnR0MDQ0xceJEJCcnw9fXt8fabOu8VVVVBUNDw1a/wOi6rxL+Ua5RrnWEcq01yjVtb0qu6b/yFsgri46OxrVr1/D999/z2m5lZSViY2ORm5vb7ff+vqjm5mZ4enpi5cqVAAB3d3dcu3YNKSkpCA8P562OtLQ0HDp0CIcPH4arqyuKi4uhUCggkUh4raO3a2xsREhICBhj2L59O69tX7p0CZs2bUJRUREEAgGvbT+rubkZADB16lQsXLgQADBy5Ej88MMPSElJgZ+fH2+1bNmyBYWFhTh+/Djs7e3x3XffITo6GhKJpMc+EdDVeYu8HijXKNdeN5RrlGu6OG/RJ2I6FhMTg6ysLOTl5cHOzo7Xti9duoTq6mqMGjUK+vr60NfXh0qlwubNm6Gvrw+NRsNbLba2tnBxcdGa5+zs3O1P6emMUqnkrh66ubkhLCwMCxcu1OmVVRsbGwBo9YSe+/fvc8v41BJWd+7cQW5uLu9XDc+cOYPq6mpIpVKu3965cweLFi2Cg4MDb3X069cP+vr6Ou+3dXV1WLx4MdavX4+goCAMHz4cMTExkMvlWLt2bY+02d55y8bGBg0NDaipqdFaX1d9legG5dpTlGvto1zTRrmm7U3KNRqI6QhjDDExMcjIyMA///lPyGQy3muYMGECfvzxRxQXF3MvT09PhIaGori4GHp6erzV4uPj0+pxoaWlpbC3t+etBuDpE5Teekv7x0JPT4+7SqQLMpkMNjY2+Pbbb7l5jx49wrlz5zB27Fhea2kJq7KyMpw+fRpWVla8tg8AYWFhuHr1qla/lUgkUCqVyM7O5q0OQ0NDjB49Wuf9trGxEY2Njbz0287OWx4eHjAwMNDqqyUlJaioqOC9rxL+Ua5po1xrH+WaNso1bW9SrtGtiToSHR2Nw4cP49ixYzA1NeXuMzUzM4NQKOSlBlNT01b37otEIlhZWfF+T//ChQvh7e2NlStXIiQkBOfPn8eOHTuwY8cOXusICgrCihUrIJVK4erqisuXL2P9+vWIiIjo0XafPHmCmzdvctO3b99GcXExLC0tIZVKoVAosHz5cgwdOhQymQzx8fGQSCQIDg7mrQ5bW1u8//77KCoqQlZWFjQaDddvLS0tYWhoyEsdUqm0VVAaGBjAxsYGjo6O3VZDV+pQKpWQy+Xw9fXF+PHjcerUKWRmZiI/P5/XOvz8/KBUKiEUCmFvbw+VSoUDBw5g/fr13VpHZ+ctMzMzREZG4uOPP4alpSX69u2L+fPnY+zYsRgzZky31kJ6H8o1bZRrlGtdrYNy7Q3OtVd+7iJ5KQDafO3du1endenqMb+MMZaZmcnefvtt1qdPH+bk5MR27NjBew2PHj1isbGxTCqVMiMjIzZo0CC2ZMkS9vvvv/dou3l5eW32h/DwcMbY00f9xsfHM7FYzPr06cMmTJjASkpKeK3j9u3b7fbbvLw83upoS0895rcrdezevZsNGTKEGRkZsREjRrCjR4/yXse9e/fY3LlzmUQiYUZGRszR0ZGtW7eONTc3d2sdXTlv1dXVsaioKGZhYcGMjY3Ze++9x+7du9etdZDeiXKtNco1yrWu1NEWyrU3I9cE/18EIYQQQgghhBCe0HfECCGEEEIIIYRnNBAjhBBCCCGEEJ7RQIwQQgghhBBCeEYDMUIIIYQQQgjhGQ3ECCGEEEIIIYRnNBAjhBBCCCGEEJ7RQIwQQgghhBBCeEYDMUIIIYQQQgjhGQ3EyGtl3759MDc313UZrx0HBwds3LhRJ22/8847UCgUL/SehIQEjBw5kpueO3cugoODu7WunqDL40wIeT1Rrr0cyjV+UK71LBqIkdeKXC5HaWmprsvosvz8fAgEAlhYWKC+vl5r2YULFyAQCCAQCFqt3/ISi8WYPn06bt26xa1z5coVTJkyBdbW1jAyMoKDgwPkcjmqq6t52y++bdq0Cfv27dN1GZ26cOEC/vznP+u6DELIa4RyjXKtN6Nc61k0ECOvFaFQCGtra12X8cJMTU2RkZGhNW/37t2QSqVtrl9SUoK7d+8iPT0d169fR1BQEDQaDf7zn/9gwoQJsLS0RHZ2NtRqNfbu3QuJRILa2lo+dkUnzMzMXosrxv3794exsbGuyyCEvEYo1yjXejPKtZ5FAzHyUt555x3Mnz8fCoUCFhYWEIvF2LlzJ2pra/Hhhx/C1NQUQ4YMwcmTJ7n3aDQaREZGQiaTQSgUwtHREZs2beKW19fXw9XVVevKS3l5OUxNTbFnzx4ArW/haPmof8+ePZBKpTAxMUFUVBQ0Gg2SkpJgY2MDa2trrFixgnvPv//9bwgEAhQXF3PzampqIBAIkJ+fD+B/V/Cys7Ph7u4OoVCId999F9XV1Th58iScnZ3Rt29ffPDBB/jtt986PV7h4eHcPgBAXV0dUlNTER4e3ub61tbWsLW1ha+vL5YuXYobN27g5s2bOHv2LH799Vfs2rUL7u7ukMlkGD9+PDZs2ACZTNZhDY8fP8asWbMgEokwYMAAJCcnay2vqKjA1KlTYWJigr59+yIkJAT3799vdawPHjwIBwcHmJmZYebMmXj8+DG3Tm1tLebMmQMTExPY2tpi3bp1nR4bAEhMTIRYLIapqSkiIyNbXWV9/haOl+l/AHDt2jVMmjQJJiYmEIvFCAsLw4MHD7S2u2DBAnzyySewtLSEjY0NEhISuOWMMSQkJEAqlaJPnz6QSCRYsGABt/z5Wzi645gSQvhBuUa5RrlGucY3GoiRl7Z//37069cP58+fx/z58zFv3jzMmDED3t7eKCoqQkBAAMLCwrgTenNzM+zs7JCeno4bN25g6dKlWLx4MdLS0gAARkZGOHToEPbv349jx45Bo9Fg9uzZ+OMf/4iIiIh26ygvL8fJkydx6tQpfPXVV9i9ezcmT56Mn376CSqVCqtXr8Znn32Gc+fOvfA+JiQkYOvWrfjhhx9QWVmJkJAQbNy4EYcPH8aJEyeQk5ODLVu2dLqdsLAwnDlzBhUVFQCAI0eOwMHBAaNGjer0vUKhEADQ0NAAGxsbNDU1ISMjA4yxF9qXNWvWYMSIEbh8+TI+/fRTxMbGIjc3F8DT/5upU6fiv//9L1QqFXJzc3Hr1i3I5XKtbZSXl+Po0aPIyspCVlYWVCoVEhMTueVKpRIqlQrHjh1DTk4O8vPzUVRU1GFdaWlpSEhIwMqVK3Hx4kXY2tpi27Ztne7Pi/a/mpoavPvuu3B3d8fFixdx6tQp3L9/HyEhIa22KxKJcO7cOSQlJeHzzz/njtORI0ewYcMGfPHFFygrK8PRo0fh5ubWZn3ddUwJIfyhXKNco1yjXOMVI+Ql+Pn5sXHjxnHTTU1NTCQSsbCwMG7evXv3GABWUFDQ7naio6PZ9OnTteYlJSWxfv36sZiYGGZra8sePHjALdu7dy8zMzPjpv/2t78xY2Nj9ujRI25eYGAgc3BwYBqNhpvn6OjIVq1axRhj7Pbt2wwAu3z5Mrf84cOHDADLy8tjjDGWl5fHALDTp09z66xatYoBYOXl5dy8jz76iAUGBra7fy3befjwIQsODmZ///vfGWOMjR8/nm3atIllZGSwZ38Mn12fMcbu3r3LvL292YABA9jvv//OGGNs8eLFTF9fn1laWrKJEyeypKQkVlVV1W4NjDFmb2/PJk6cqDVPLpezSZMmMcYYy8nJYXp6eqyiooJbfv36dQaAnT9/njHW9rFWKpXMy8uLMcbY48ePmaGhIUtLS+OW//LLL0woFLLY2Nh2axs7diyLiorSmufl5cVGjBjBTYeHh7OpU6dy0y/T/5YtW8YCAgK02qmsrGQAWElJSZvbZYyx0aNHs7i4OMYYY+vWrWPDhg1jDQ0Nbe6Lvb0927BhA2Ose44pIYQ/lGtPUa5Rrj2Lcq1n0Sdi5KUNHz6c+7eenh6srKy0rqKIxWIA0PqybXJyMjw8PNC/f3+YmJhgx44d3NW0FosWLcKwYcOwdetW7NmzB1ZWVh3W4eDgAFNTU612XVxc8NZbb2nNe5kv/T67j2KxGMbGxhg0aNBLbTciIgL79u3DrVu3UFBQgNDQ0HbXtbOzg0gk4u6RP3LkCAwNDQEAK1asQFVVFVJSUuDq6oqUlBQ4OTnhxx9/7LD9sWPHtppWq9UAALVajYEDB2LgwIHcchcXF5ibm3PrAK2Pta2tLbf/5eXlaGhogJeXF7fc0tISjo6OHdalVqu13tNWrW150f535coV5OXlwcTEhHs5OTlxtbe13ef3ccaMGairq8OgQYPwpz/9CRkZGWhqamp3v171mBJC+EW5RrlGuUa5xicaiJGXZmBgoDUtEAi05rU8Nam5uRkAkJqair/+9a+IjIxETk4OiouL8eGHH6KhoUFrO9XV1SgtLYWenh7KyspeuY6WeS11tAQZe+YWiMbGxk633dl2OzNp0iTU1dUhMjISQUFBHQbxmTNncPXqVTx69AjFxcWtTuhWVlaYMWMG1q5dC7VaDYlEgrVr13apjlfxKvvPRy0d9b8nT54gKCgIxcXFWq+ysjL4+vp2uN2WbQwcOBAlJSXYtm0bhEIhoqKi4Ovr227/edn90NUxJeRNR7lGuUa5RrnGJxqIEd6cPXsW3t7eiIqKgru7O4YMGaJ1xaZFREQE3NzcsH//fsTFxWldZekO/fv3BwDcu3ePm/fsF5x7ir6+PubMmYP8/PwOvxsAADKZDIMHD9a6otQeQ0NDDB48uNOnSxUWFraadnZ2BgA4OzujsrISlZWV3PIbN26gpqYGLi4undYAAIMHD4aBgYHWdxYePnzY6WOZnZ2dW33P4flau8OoUaNw/fp1ODg4YMiQIVovkUjU5e0IhUIEBQVh8+bNyM/PR0FBQZtXbbvjmBJCejfKNcq1tlCuka7S13UB5M0xdOhQHDhwANnZ2ZDJZDh48CAuXLig9VSk5ORkFBQU4OrVqxg4cCBOnDiB0NBQFBYWcrcwvCqhUIgxY8YgMTERMpkM1dXV+Oyzz7pl251ZtmwZlEplp7eltCcrKwupqamYOXMmhg0bBsYYMjMz8c0332Dv3r0dvvfs2bNISkpCcHAwcnNzkZ6ejhMnTgAA/P394ebmhtDQUGzcuBFNTU2IioqCn58fPD09u1SbiYkJIiMjuf2ztrbGkiVLtG6laUtsbCzmzp0LT09P+Pj44NChQ7h+/brWrTLdITo6Gjt37sSsWbO4p0fdvHkTqamp2LVrF/T09Drdxr59+6DRaODl5QVjY2N8+eWXEAqFsLe3b7VudxxTQkjvRrlGudYWyjXSVfSJGOHNRx99hGnTpkEul8PLywu//PILoqKiuOX/+te/oFQqsW3bNu7+423btuHBgweIj4/v1lr27NmDpqYmeHh4QKFQYPny5d26/fYYGhqiX79+Wn/s8kW4uLjA2NgYixYtwsiRIzFmzBikpaVh165dCAsL6/C9ixYtwsWLF+Hu7o7ly5dj/fr1CAwMBPD0toFjx47BwsICvr6+8Pf3x6BBg/CPf/zjhepbs2YN/vCHPyAoKAj+/v4YN24cPDw8OnyPXC5HfHw8PvnkE3h4eODOnTuYN2/eC7XbFRKJBGfPnoVGo0FAQADc3NygUChgbm7eaai2MDc3x86dO+Hj44Phw4fj9OnTyMzMbPMXkO46poSQ3otyjXKtLZRrpKsEjL3gs0IJIYQQQgghhLwS+kSMEEIIIYQQQnhGAzFCCCGEEEII4RkNxAghhBBCCCGEZzQQI4QQQgghhBCe0UCMEEIIIYQQQnhGAzFCCCGEEEII4RkNxAghhBBCCCGEZzQQI4QQQgghhBCe0UCMEEIIIYQQQnhGAzFCCCGEEEII4RkNxAghhBBCCCGEZ/8H9xqG8igDOwcAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/tests/python/tenpy/gates/basic_gates_test.py b/tests/python/tenpy/gates/basic_gates_test.py index 50d478c91..4fc3eab6e 100644 --- a/tests/python/tenpy/gates/basic_gates_test.py +++ b/tests/python/tenpy/gates/basic_gates_test.py @@ -24,6 +24,7 @@ num_num_interaction, on_site_interaction, ) +from ffsim.tenpy.hamiltonians.molecular_hamiltonian import MolecularHamiltonianMPOModel from ffsim.tenpy.util import bitstring_to_mps @@ -64,6 +65,16 @@ def test_givens_rotation(norb: int, nelec: tuple[int, int], spin: Spin): mps = bitstring_to_mps((int(strings_a[0], 2), int(strings_b[0], 2)), norb) original_mps = deepcopy(mps) + # generate a random molecular Hamiltonian + mol_hamiltonian = ffsim.random.random_molecular_hamiltonian(norb, seed=rng) + hamiltonian = ffsim.linear_operator(mol_hamiltonian, norb, nelec) + + # convert molecular Hamiltonian to MPO + mol_hamiltonian_mpo_model = MolecularHamiltonianMPOModel.from_molecular_hamiltonian( + mol_hamiltonian + ) + mol_hamiltonian_mpo = mol_hamiltonian_mpo_model.H_MPO + # generate random Givens rotation parameters theta = 2 * np.pi * rng.random() phi = 2 * np.pi * rng.random() @@ -76,11 +87,12 @@ def test_givens_rotation(norb: int, nelec: tuple[int, int], spin: Spin): # apply random orbital rotation to MPS eng = TEBDEngine(mps, None, {}) - ffsim.tenpy.apply_two_site(eng, givens_rotation(theta, spin, phi=phi), (p, p + 1)) + ffsim.tenpy.apply_two_site(eng, givens_rotation(theta, spin, phi=phi), (p + 1, p)) # test expectation is preserved - original_expectation = np.vdot(original_vec, vec) - mpo_expectation = original_mps.overlap(mps) + original_expectation = np.vdot(original_vec, hamiltonian @ vec) + mol_hamiltonian_mpo.apply_naively(mps) + mpo_expectation = mps.overlap(original_mps) np.testing.assert_allclose(original_expectation, mpo_expectation) @@ -121,6 +133,16 @@ def test_num_interaction(norb: int, nelec: tuple[int, int], spin: Spin): mps = bitstring_to_mps((int(strings_a[0], 2), int(strings_b[0], 2)), norb) original_mps = deepcopy(mps) + # generate a random molecular Hamiltonian + mol_hamiltonian = ffsim.random.random_molecular_hamiltonian(norb, seed=rng) + hamiltonian = ffsim.linear_operator(mol_hamiltonian, norb, nelec) + + # convert molecular Hamiltonian to MPO + mol_hamiltonian_mpo_model = MolecularHamiltonianMPOModel.from_molecular_hamiltonian( + mol_hamiltonian + ) + mol_hamiltonian_mpo = mol_hamiltonian_mpo_model.H_MPO + # generate random number interaction parameters theta = 2 * np.pi * rng.random() p = rng.integers(0, norb) @@ -133,7 +155,8 @@ def test_num_interaction(norb: int, nelec: tuple[int, int], spin: Spin): ffsim.tenpy.apply_single_site(eng, num_interaction(theta, spin), p) # test expectation is preserved - original_expectation = np.vdot(original_vec, vec) + original_expectation = np.vdot(original_vec, hamiltonian @ vec) + mol_hamiltonian_mpo.apply_naively(mps) mpo_expectation = original_mps.overlap(mps) np.testing.assert_allclose(original_expectation, mpo_expectation) @@ -170,6 +193,16 @@ def test_on_site_interaction( mps = bitstring_to_mps((int(strings_a[0], 2), int(strings_b[0], 2)), norb) original_mps = deepcopy(mps) + # generate a random molecular Hamiltonian + mol_hamiltonian = ffsim.random.random_molecular_hamiltonian(norb, seed=rng) + hamiltonian = ffsim.linear_operator(mol_hamiltonian, norb, nelec) + + # convert molecular Hamiltonian to MPO + mol_hamiltonian_mpo_model = MolecularHamiltonianMPOModel.from_molecular_hamiltonian( + mol_hamiltonian + ) + mol_hamiltonian_mpo = mol_hamiltonian_mpo_model.H_MPO + # generate random on-site interaction parameters theta = 2 * np.pi * rng.random() p = rng.integers(0, norb) @@ -182,7 +215,8 @@ def test_on_site_interaction( ffsim.tenpy.apply_single_site(eng, on_site_interaction(theta), p) # test expectation is preserved - original_expectation = np.vdot(original_vec, vec) + original_expectation = np.vdot(original_vec, hamiltonian @ vec) + mol_hamiltonian_mpo.apply_naively(mps) mpo_expectation = original_mps.overlap(mps) np.testing.assert_allclose(original_expectation, mpo_expectation) @@ -224,6 +258,16 @@ def test_num_num_interaction(norb: int, nelec: tuple[int, int], spin: Spin): mps = bitstring_to_mps((int(strings_a[0], 2), int(strings_b[0], 2)), norb) original_mps = deepcopy(mps) + # generate a random molecular Hamiltonian + mol_hamiltonian = ffsim.random.random_molecular_hamiltonian(norb, seed=rng) + hamiltonian = ffsim.linear_operator(mol_hamiltonian, norb, nelec) + + # convert molecular Hamiltonian to MPO + mol_hamiltonian_mpo_model = MolecularHamiltonianMPOModel.from_molecular_hamiltonian( + mol_hamiltonian + ) + mol_hamiltonian_mpo = mol_hamiltonian_mpo_model.H_MPO + # generate random number-number interaction parameters theta = 2 * np.pi * rng.random() p = rng.integers(0, norb - 1) @@ -238,6 +282,7 @@ def test_num_num_interaction(norb: int, nelec: tuple[int, int], spin: Spin): ffsim.tenpy.apply_two_site(eng, num_num_interaction(theta, spin), (p, p + 1)) # test expectation is preserved - original_expectation = np.vdot(original_vec, vec) + original_expectation = np.vdot(original_vec, hamiltonian @ vec) + mol_hamiltonian_mpo.apply_naively(mps) mpo_expectation = original_mps.overlap(mps) np.testing.assert_allclose(original_expectation, mpo_expectation) diff --git a/tests/python/tenpy/gates/diag_coulomb_test.py b/tests/python/tenpy/gates/diag_coulomb_test.py index 64d7ffc3f..ee85a684e 100644 --- a/tests/python/tenpy/gates/diag_coulomb_test.py +++ b/tests/python/tenpy/gates/diag_coulomb_test.py @@ -17,6 +17,7 @@ from tenpy.algorithms.tebd import TEBDEngine import ffsim +from ffsim.tenpy.hamiltonians.molecular_hamiltonian import MolecularHamiltonianMPOModel from ffsim.tenpy.util import bitstring_to_mps @@ -49,6 +50,16 @@ def test_apply_diag_coulomb_evolution(norb: int, nelec: tuple[int, int]): mps = bitstring_to_mps((int(strings_a[0], 2), int(strings_b[0], 2)), norb) original_mps = deepcopy(mps) + # generate a random molecular Hamiltonian + mol_hamiltonian = ffsim.random.random_molecular_hamiltonian(norb, seed=rng) + hamiltonian = ffsim.linear_operator(mol_hamiltonian, norb, nelec) + + # convert molecular Hamiltonian to MPO + mol_hamiltonian_mpo_model = MolecularHamiltonianMPOModel.from_molecular_hamiltonian( + mol_hamiltonian + ) + mol_hamiltonian_mpo = mol_hamiltonian_mpo_model.H_MPO + # generate random diagonal Coulomb evolution parameters mat_aa = np.diag(rng.standard_normal(norb - 1), k=-1) mat_aa += mat_aa.T @@ -66,6 +77,7 @@ def test_apply_diag_coulomb_evolution(norb: int, nelec: tuple[int, int]): ffsim.tenpy.apply_diag_coulomb_evolution(eng, diag_coulomb_mats[:2], time) # test expectation is preserved - original_expectation = np.vdot(original_vec, vec) + original_expectation = np.vdot(original_vec, hamiltonian @ vec) + mol_hamiltonian_mpo.apply_naively(mps) mpo_expectation = original_mps.overlap(mps) np.testing.assert_allclose(original_expectation, mpo_expectation) diff --git a/tests/python/tenpy/gates/orbital_rotation_test.py b/tests/python/tenpy/gates/orbital_rotation_test.py index 4829dff3f..0d60a127b 100644 --- a/tests/python/tenpy/gates/orbital_rotation_test.py +++ b/tests/python/tenpy/gates/orbital_rotation_test.py @@ -17,6 +17,7 @@ from tenpy.algorithms.tebd import TEBDEngine import ffsim +from ffsim.tenpy.hamiltonians.molecular_hamiltonian import MolecularHamiltonianMPOModel from ffsim.tenpy.util import bitstring_to_mps @@ -52,6 +53,16 @@ def test_apply_orbital_rotation( mps = bitstring_to_mps((int(strings_a[0], 2), int(strings_b[0], 2)), norb) original_mps = deepcopy(mps) + # generate a random molecular Hamiltonian + mol_hamiltonian = ffsim.random.random_molecular_hamiltonian(norb, seed=rng) + hamiltonian = ffsim.linear_operator(mol_hamiltonian, norb, nelec) + + # convert molecular Hamiltonian to MPO + mol_hamiltonian_mpo_model = MolecularHamiltonianMPOModel.from_molecular_hamiltonian( + mol_hamiltonian + ) + mol_hamiltonian_mpo = mol_hamiltonian_mpo_model.H_MPO + # generate a random orbital rotation mat = ffsim.random.random_unitary(norb, seed=rng) @@ -63,6 +74,7 @@ def test_apply_orbital_rotation( ffsim.tenpy.apply_orbital_rotation(eng, mat) # test expectation is preserved - original_expectation = np.vdot(original_vec, vec) + original_expectation = np.vdot(original_vec, hamiltonian @ vec) + mol_hamiltonian_mpo.apply_naively(mps) mpo_expectation = mps.overlap(original_mps) np.testing.assert_allclose(original_expectation, mpo_expectation)