-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dpp.py
248 lines (211 loc) · 11 KB
/
train_dpp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import numpy as np
import time
import os
from six.moves import cPickle
import opts
import models
from dataloader import *
import eval_utils
import misc.utils as utils
import copy
from misc.rewards import init_scorer
try:
import tensorflow as tf
from tensorboardX import SummaryWriter
except ImportError:
print("Tensorflow not installed; No tensorboard logging.")
tf = None
def train(opt):
opt.use_att = utils.if_use_att(opt)
loader = DataLoader(opt)
opt.vocab_size = loader.vocab_size
opt.seq_length = loader.seq_length
tf_summary_writer = tf and SummaryWriter(opt.checkpoint_path)
infos = {}
histories = {}
if opt.start_from is not None:
# open old infos and check if models are compatible
with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl')) as f:
infos = cPickle.load(f)
saved_model_opt = infos['opt']
need_be_same = ["caption_model", "rnn_type", "rnn_size", "num_layers"]
for checkme in need_be_same:
assert vars(saved_model_opt)[checkme] == vars(opt)[
checkme], "Command line argument and saved model disagree on '%s' " % checkme
if os.path.isfile(os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')):
with open(os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')) as f:
histories = cPickle.load(f)
iteration = infos.get('iter', 0)
epoch = infos.get('epoch', 0)
val_result_history = histories.get('val_result_history', {})
loss_history = histories.get('loss_history', {})
lr_history = histories.get('lr_history', {})
ss_prob_history = histories.get('ss_prob_history', {})
loader.iterators = infos.get('iterators', loader.iterators)
loader.split_ix = infos.get('split_ix', loader.split_ix)
if opt.load_best_score == 1:
best_val_score = infos.get('best_val_score', None)
best_val_score_vse = infos.get('best_val_score_vse', None)
model = models.JointModel3(opt)
model.cuda()
update_lr_flag = True
# Assure in training mode
model.train()
optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad], lr=opt.learning_rate,
weight_decay=opt.weight_decay)
# Load the optimizer
if vars(opt).get('start_from', None) is not None and os.path.isfile(os.path.join(opt.start_from, 'optimizer.pth')):
state_dict = torch.load(os.path.join(opt.start_from, 'optimizer.pth'))
if len(state_dict['state']) == len(optimizer.state_dict()['state']):
optimizer.load_state_dict(state_dict)
else:
print('Optimizer param group number not matched? There must be new parameters. Reinit the optimizer.')
init_scorer(opt.cached_tokens)
while True:
if update_lr_flag:
# Assign the learning rate
if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0:
frac = (epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every
decay_factor = opt.learning_rate_decay_rate ** frac
opt.current_lr = opt.learning_rate * decay_factor
utils.set_lr(optimizer, opt.current_lr) # set the decayed rate
else:
opt.current_lr = opt.learning_rate
# Assign the scheduled sampling prob
if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0:
frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every
opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob)
model.caption_generator.ss_prob = opt.ss_prob
# Assign retrieval loss weight
if epoch > opt.retrieval_reward_weight_decay_start and opt.retrieval_reward_weight_decay_start >= 0:
frac = (epoch - opt.retrieval_reward_weight_decay_start) // opt.retrieval_reward_weight_decay_every
model.retrieval_reward_weight = opt.retrieval_reward_weight * (
opt.retrieval_reward_weight_decay_rate ** frac)
update_lr_flag = False
start = time.time()
# Load data from train split (0)
data = loader.get_batch('train')
print('Read data:', time.time() - start)
torch.cuda.synchronize()
start = time.time()
tmp = [data['fc_feats'], data['att_feats'], data['att_masks'], data['labels'], data['masks']]
tmp = utils.var_wrapper(tmp)
fc_feats, att_feats, att_masks, labels, masks = tmp
optimizer.zero_grad()
loss = model(fc_feats, att_feats, att_masks, labels, masks, data)
loss.backward()
utils.clip_gradient(optimizer, opt.grad_clip)
optimizer.step()
train_loss = loss.data[0]
torch.cuda.synchronize()
end = time.time()
print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \
.format(iteration, epoch, train_loss, end - start))
prt_str = ""
for k, v in model.loss().items():
prt_str += "{} = {:.3f} ".format(k, v)
print(prt_str)
# Update the iteration and epoch
iteration += 1
if data['bounds']['wrapped']:
epoch += 1
update_lr_flag = True
# Write the training loss summary
if (iteration % opt.losses_log_every == 0):
if tf is not None:
tf_summary_writer.add_scalar('train_loss', train_loss, iteration)
for k, v in model.loss().items():
tf_summary_writer.add_scalar(k, v, iteration)
tf_summary_writer.add_scalar('learning_rate', opt.current_lr, iteration)
tf_summary_writer.add_scalar('scheduled_sampling_prob', model.caption_generator.ss_prob, iteration)
tf_summary_writer.add_scalar('retrieval_reward_weight', model.retrieval_reward_weight, iteration)
tf_summary_writer.file_writer.flush()
loss_history[iteration] = train_loss
lr_history[iteration] = opt.current_lr
ss_prob_history[iteration] = model.caption_generator.ss_prob
# make evaluation on validation set, and save model
if (iteration % opt.save_checkpoint_every == 0):
# eval model
eval_kwargs = {'split': 'val',
'dataset': opt.input_json}
eval_kwargs.update(vars(opt))
# Load the retrieval model for evaluation
val_loss, predictions, lang_stats = eval_utils.eval_split(model, loader, eval_kwargs)
# Write validation result into summary
if tf is not None:
for k, v in val_loss.items():
tf_summary_writer.add_scalar('validation ' + k, v, iteration)
for k, v in lang_stats.items():
tf_summary_writer.add_scalar(k, v, iteration)
tf_summary_writer.add_text('Captions', '.\n\n'.join([_['caption'] for _ in predictions[:100]]),
iteration)
# tf_summary_writer.add_image('images', utils.make_summary_image(), iteration)
# utils.make_html(opt.id, iteration)
tf_summary_writer.file_writer.flush()
val_result_history[iteration] = {'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions}
# Save model if is improving on validation result
if opt.language_eval == 1:
current_score = lang_stats['SPICE'] * 100
else:
current_score = - val_loss['loss_cap']
current_score_vse = val_loss.get(opt.vse_eval_criterion, 0) * 100
best_flag = False
best_flag_vse = False
if True: # if true
if best_val_score is None or current_score > best_val_score:
best_val_score = current_score
best_flag = True
if best_val_score_vse is None or current_score_vse > best_val_score_vse:
best_val_score_vse = current_score_vse
best_flag_vse = True
checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth')
torch.save(model.state_dict(), checkpoint_path)
print("model saved to {}".format(checkpoint_path))
checkpoint_path = os.path.join(opt.checkpoint_path, 'model-%d.pth' % (iteration))
torch.save(model.state_dict(), checkpoint_path)
print("model saved to {}".format(checkpoint_path))
optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth')
torch.save(optimizer.state_dict(), optimizer_path)
# Dump miscalleous informations
infos['iter'] = iteration
infos['epoch'] = epoch
infos['iterators'] = loader.iterators
infos['split_ix'] = loader.split_ix
infos['best_val_score'] = best_val_score
infos['best_val_score_vse'] = best_val_score_vse
infos['opt'] = opt
infos['vocab'] = loader.get_vocab()
histories['val_result_history'] = val_result_history
histories['loss_history'] = loss_history
histories['lr_history'] = lr_history
histories['ss_prob_history'] = ss_prob_history
with open(os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '.pkl'), 'wb') as f:
cPickle.dump(infos, f)
with open(os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '-%d.pkl' % (iteration)), 'wb') as f:
cPickle.dump(infos, f)
with open(os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '.pkl'), 'wb') as f:
cPickle.dump(histories, f)
if best_flag:
checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth')
torch.save(model.state_dict(), checkpoint_path)
print("model saved to {}".format(checkpoint_path))
with open(os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '-best.pkl'), 'wb') as f:
cPickle.dump(infos, f)
if best_flag_vse:
checkpoint_path = os.path.join(opt.checkpoint_path, 'model_vse-best.pth')
torch.save(model.state_dict(), checkpoint_path)
print("model saved to {}".format(checkpoint_path))
with open(os.path.join(opt.checkpoint_path, 'infos_vse_' + opt.id + '-best.pkl'), 'wb') as f:
cPickle.dump(infos, f)
# Stop if reaching max epochs
if epoch >= opt.max_epochs and opt.max_epochs != -1:
break
opt = opts.parse_opt()
train(opt)