diff --git a/Doc/library/itertools.rst b/Doc/library/itertools.rst index 79b729e36f931a..cc7b63ea9cefcd 100644 --- a/Doc/library/itertools.rst +++ b/Doc/library/itertools.rst @@ -877,6 +877,11 @@ and :term:`generators ` which incur interpreter overhead. "Returns the sequence elements n times." return chain.from_iterable(repeat(tuple(iterable), n)) + def loops(n): + "Loop n times. Like range(n) but without creating integers." + # for _ in loops(100): ... + return repeat(None, n) + def tail(n, iterable): "Return an iterator over the last n items." # tail(3, 'ABCDEFG') → E F G @@ -1099,6 +1104,11 @@ The following recipes have a more mathematical flavor: data[p*p : n : p+p] = bytes(len(range(p*p, n, p+p))) yield from iter_index(data, 1, start=3) + def is_prime(n): + "Return True if n is prime." + # is_prime(1_000_000_000_000_403) → True + return n > 1 and all(n % p for p in sieve(math.isqrt(n) + 1)) + def factor(n): "Prime factors of n." # factor(99) → 3 3 11 @@ -1202,6 +1212,16 @@ The following recipes have a more mathematical flavor: [0, 2, 4, 6] + >>> for _ in loops(5): + ... print('hi') + ... + hi + hi + hi + hi + hi + + >>> list(tail(3, 'ABCDEFG')) ['E', 'F', 'G'] >>> # Verify the input is consumed greedily @@ -1475,6 +1495,23 @@ The following recipes have a more mathematical flavor: True + >>> small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] + >>> list(filter(is_prime, range(-100, 100))) == small_primes + True + >>> carmichael = {561, 1105, 1729, 2465, 2821, 6601, 8911} # https://oeis.org/A002997 + >>> any(map(is_prime, carmichael)) + False + >>> # https://www.wolframalpha.com/input?i=is+128884753939+prime + >>> is_prime(128_884_753_939) # large prime + True + >>> is_prime(999953 * 999983) # large semiprime + False + >>> is_prime(1_000_000_000_000_007) # factor() example + False + >>> is_prime(1_000_000_000_000_403) # factor() example + True + + >>> list(factor(99)) # Code example 1 [3, 3, 11] >>> list(factor(1_000_000_000_000_007)) # Code example 2