-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_onnx.py
405 lines (357 loc) · 8.73 KB
/
test_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import logging
import cv2
import numpy as np
import onnxruntime as ort
from onnx import ModelProto
from onnxconverter_common.float16 import convert_float_to_float16
from onnxmltools.utils import load_model
CARD_NAMES = [
"empty",
"archer_queen",
"archers",
"baby_dragon",
"arrows",
"balloon",
"bandit",
"barbarians",
"barbarian_barrel",
"bats",
"inferno_dragon",
"clone",
"battle_ram",
"bomber",
"log",
"royal_delivery",
"bowler",
"graveyard",
"freeze",
"cannon_cart",
"dark_prince",
"dart_goblin",
"e_dragon",
"e_giant",
"e_spirit",
"lightning",
"tornado",
"earthquake",
"fireball",
"rocket",
"e_wizard",
"elite_barbarians",
"elixir_golem",
"executioner",
"firecracker",
"fire_spirit",
"fisherman",
"flying_machine",
"giant_regular",
"giant_skeleton",
"goblin_gang",
"goblin_giant",
"goblins",
"golden_knight",
"golem",
"guards",
"healer",
"heal_spirit",
"hog_rider",
"hunter",
"ice_golem",
"ice_spirit",
"ice_wizard",
"goblin_demolisher",
"knight",
"lava_hound",
"little_prince",
"lumberjack",
"magic_archer",
"mega_knight",
"mega_minion",
"mighty_miner",
"miner",
"mini_pekka",
"minion_horde",
"minions",
"monk",
"mother_witch",
"musketeer",
"night_witch",
"pekka",
"phoenix",
"_prince",
"princess",
"ram_rider",
"rascals",
"royal_ghost",
"royal_giant",
"royal_hogs",
"poison",
"royal_recruits",
"skeleton_army",
"skeleton_barrel",
"skeleton_dragons",
"skeleton_king",
"skeletons",
"sparky",
"spear_goblins",
"three_musketeers",
"valkyrie",
"wall_breakers",
"wizard",
"bomb_tower",
"cannon_tower",
"inferno_tower",
"mortar",
"tesla",
"xbow",
"barbarian_hut",
"elixir_collector",
"furnace",
"goblin_cage",
"goblin_drill",
"snowball",
"goblin_hut",
"rage",
"tombstone",
"witch",
"zap_spell",
"zappies",
]
#sort card_names alphabetically
CARD_NAMES = sorted(CARD_NAMES)
def make_card_name_list():
index2name = {
0: "_prince",
1: "archer_queen",
2: "archers",
3: "arrows",
4: "",
5: "",
6: "",
7: "",
8: "",
9: "",
10: "",
11: "",
12: "",
13: "",
14: "",
15: "",
16: "",
17: "",
18: "",
19: "",
20: "",
21: "",
22: "",
23: "",
24: "",
25: "",
26: "",
27: "",
28: "empty",
29: "",
30: "",
31: "",
32: "",
33: "",
34: "",
35: "",
36: "",
37: "giant",
38: "",
39: "",
40: "",
41: "",
42: "",
43: "",
44: "goblin_hut",
45: "",
46: "",
47: "",
48: "",
49: "",
50: "",
51: "",
52: "",
53: "",
54: "",
55: "ice_spirit",
56: "",
57: "inferno_dragon",
58: "",
59: "",
60: "",
61: "",
62: "",
63: "",
64: "",
65: "",
66: "",
67: "",
68: "",
69: "",
70: "",
71: "",
72: "",
73: "",
74: "",
75: "",
76: "",
77: "",
78: "",
79: "",
80: "",
81: "",
82: "",
83: "",
84: "",
85: "",
86: "",
87: "",
88: "",
89: "",
90: "",
91: "",
92: "",
93: "",
94: "",
95: "",
96: "snowball",
97: "",
98: "",
99: "",
100: "",
101: "",
102: "",
103: "",
104: "",
105: "",
106: "",
107: "",
108: "",
109: "",
}
pass
class OnnxDetector:
def __init__(self, model_path, use_gpu=False):
self.model_path = model_path
providers = list(
set(ort.get_available_providers())
& {"CUDAExecutionProvider" if use_gpu else None, "CPUExecutionProvider"}
)
logging.info(f"Using providers: {providers}")
mdl_in = load_model(model_path)
mdl: ModelProto = convert_float_to_float16(mdl_in)
self.sess = ort.InferenceSession(
mdl.SerializeToString(),
providers=providers,
)
self.output_name = self.sess.get_outputs()[0].name
input_ = self.sess.get_inputs()[0]
self.input_name = input_.name
self.model_height, self.model_width = input_.shape[2:]
def preprocess(self, x: np.ndarray):
x = cv2.resize(x, (self.model_width, self.model_height))
return x
def fix_bboxes(self, x, width, height, padding):
x[:, [0, 2]] -= padding[0]
x[:, [1, 3]] -= padding[2]
x[..., [0, 2]] *= width / (self.model_width - padding[0] - padding[1])
x[..., [1, 3]] *= height / (self.model_height - padding[2] - padding[3])
return x
def _infer(self, x: np.ndarray):
"""
x,y,3 -> 1,3,x,y
"""
if x.dtype == np.uint8:
x = x.astype(np.float16) / 255.0
else:
x = x.astype(np.float16)
x = np.expand_dims(x.transpose(2, 0, 1), axis=0)
return self.sess.run([self.output_name], {self.input_name: x})[0]
def run(self, image):
raise NotImplementedError
import os
import random
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
# init the model
model_path = r"runs\classify\train16\weights\best.onnx"
use_gpu = True
detector = OnnxDetector(model_path, use_gpu)
# get inputs
val_images_path = r"dataset\val"
def get_random_val_image_path():
label_folder = random.choice(os.listdir(val_images_path))
random_image_file = random.choice(
os.listdir(os.path.join(val_images_path, label_folder))
)
random_image_path = os.path.join(val_images_path, label_folder, random_image_file)
return random_image_path
def convert_image_path_to_numpy_input(image_path):
def resize_pil_image(image, width, height):
return image.resize((width, height))
image = Image.open(image_path)
image = resize_pil_image(image, detector.model_width, detector.model_height)
iar = np.array(image)
return iar
def detect_on_1_image(image_path):
def graph_all_outputs(data):
names = list(data.keys())
values = list(data.values())
# Create the bar graph
plt.bar(names, values)
# Add labels and title
plt.xlabel("Names")
plt.ylabel("Values")
plt.title("Bar Graph of Names and Values")
# Show the plot
plt.show()
def show_image(np_iar):
plt.imshow(np_iar)
plt.axis("off") # Turn off axis labels
plt.show()
def parse_output(output):
cardName2prob = {}
for i in range(len(output)):
cardName2prob[CARD_NAMES[i]] = output[i]
# sort cardName2prob by prob
cardName2prob = dict(
sorted(cardName2prob.items(), key=lambda item: item[1], reverse=True)
)
# graph_all_outputs(cardName2prob)
# for card, prob in cardName2prob.items():
# print(f"{card}: {prob}")
# get the highest card name, highest card index, and highest card prob
highest_card_name = list(cardName2prob.keys())[0]
highest_card_index = CARD_NAMES.index(highest_card_name)
highest_card_prob = cardName2prob[highest_card_name]
return highest_card_name, highest_card_index, highest_card_prob
np_iar = convert_image_path_to_numpy_input(image_path)
show_image(np_iar)
model_output = detector._infer(np_iar)[0]
highest_card_name, highest_card_index, highest_card_prob = parse_output(
model_output
)
print(
"{:^20} : {:^3} : {:%}".format(
highest_card_name, highest_card_index, highest_card_prob
)
)
def get_all_images_for_label(label):
label_folder = os.path.join(val_images_path, label)
return [os.path.join(label_folder, image) for image in os.listdir(label_folder)]
def check_label_folder(label_folder_name,_1_image_per=False):
image_paths = get_all_images_for_label(label_folder_name)
for image_path in image_paths:
detect_on_1_image(image_path)
if _1_image_per:
break
def check_all_label_folders():
label_folders = os.listdir(val_images_path)
random.shuffle(label_folders)
for label_folder in label_folders:
check_label_folder(label_folder,_1_image_per=True)
check_all_label_folders()