-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
104 lines (85 loc) · 2.81 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import yaml
from copy import deepcopy
import torch.optim as optim
from adamp import AdamP
from networks.Attention import Attention
from networks.SATRN import SATRN
def get_network(
model_type,
FLAGS,
model_checkpoint,
device,
train_dataset,
):
"""Get network
Args:
model_type (str): Model name that wants to use.
FLAGS (Flag): Configs of model.
model_checkpoint (dict): model checkpoint.
device (torch.device): Device type to use.
train_dataset (list): train_dataset
Returns:
model : model
"""
model = None
if model_type == "SATRN":
model = SATRN(FLAGS, train_dataset, model_checkpoint).to(device)
elif model_type == "CRNN":
model = CRNN()
elif model_type == "Attention":
model = Attention(FLAGS, train_dataset, model_checkpoint).to(device)
else:
raise NotImplementedError
return model
def get_optimizer(optimizer, params, lr, weight_decay=None):
"""Get Optimizer
Args:
optimizer (optimizer): optimizer.
params (optimizer.params): optimizer.params
lr (optimizer.lr): optimizer LR
weight_decay (float, optional): weight decay (L2 penalty). Defaults to None.
Returns:
optimizer: optimizer
"""
if optimizer == "AdamP":
optimizer = AdamP(params, lr=lr)
elif optimizer == "Adam":
optimizer = optim.Adam(params, lr=lr)
elif optimizer == "Adadelta":
optim.Adadelta(params, lr=lr, weight_decay=weight_decay)
else:
raise NotImplementedError
return optimizer
def get_wandb_config(config_file):
"""Get Wandb config from config_file
Args:
config_file (str): config_file path
Returns:
config (dict): original config
"""
# load config file
with open(config_file, 'r') as f:
option = yaml.safe_load(f)
config = deepcopy(option)
# remove all except network
keys = ["checkpoint", "input_size", "data", "optimizer", "wandb", "prefix"]
for key in keys:
del config[key]
# modify some config key-value
new_config = {
"log_path": option['prefix'],
"dataset_proportions": option['data']['dataset_proportions'],
"test_proportions": option['data']['test_proportions'],
"crop": option['data']['crop'],
"rgb": "grayscale" if option['data']['rgb']==1 else "color",
"input_size": (option['input_size']['height'], option['input_size']['width']),
"optimizer": option['optimizer']['optimizer'],
"learning_rate": option['optimizer']['lr'],
"weight_decay": option['optimizer']['weight_decay'],
"is_cycle": option['optimizer']['is_cycle'],
}
# merge
config.update(new_config)
# print log
print("wandb save configs below:\n", list(config.keys()))
return config