forked from LiDan456/MAD-GANs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
289 lines (232 loc) · 12.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import tensorflow as tf
import numpy as np
# from data_utils import get_batch
import data_utils
import pdb
import json
import sys
from mod_core_rnn_cell_impl import LSTMCell # modified to allow initializing bias in lstm
# from tensorflow.contrib.rnn import LSTMCell
tf.logging.set_verbosity(tf.logging.ERROR)
import mmd
from differential_privacy.dp_sgd.dp_optimizer import dp_optimizer
from differential_privacy.dp_sgd.dp_optimizer import sanitizer
from differential_privacy.privacy_accountant.tf import accountant
# ------------------------------- #
"""
Most of the models are copied from https://github.com/ratschlab/RGAN
"""
# --- to do with latent space --- #
def sample_Z(batch_size, seq_length, latent_dim, use_time=False, use_noisy_time=False):
sample = np.float32(np.random.normal(size=[batch_size, seq_length, latent_dim]))
if use_time:
print('WARNING: use_time has different semantics')
sample[:, :, 0] = np.linspace(0, 1.0 / seq_length, num=seq_length)
return sample
# --- samples for testing ---#
def sample_T(batch_size, batch_idx):
samples_aaa = np.load('./data/samples_aa.npy')
num_samples_t = samples_aaa.shape[0]
labels_aaa = np.load('./data/labels_aa.npy')
idx_aaa = np.load('./data/idx_aa.npy')
start_pos = batch_idx * batch_size
end_pos = start_pos + batch_size
T_mb = samples_aaa[start_pos:end_pos, :, :]
L_mb = labels_aaa[start_pos:end_pos, :, :]
I_mb = idx_aaa[start_pos:end_pos, :, :]
return T_mb, L_mb, I_mb, num_samples_t
def sample_TT(batch_size):
samples_aaa = np.load('./data/samples_aa.npy')
labels_aaa = np.load('./data/labels_aa.npy')
idx_aaa = np.load('./data/idx_aa.npy')
T_indices = np.random.choice(len(samples_aaa), size=batch_size, replace=False)
T_mb = samples_aaa[T_indices, :, :]
L_mb = labels_aaa[T_indices, :, :]
I_mb = idx_aaa[T_indices, :, :]
return T_mb, L_mb, I_mb
# --- to do with training --- #
def train_epoch(epoch, samples, labels, sess, Z, X, D_loss, G_loss, D_solver, G_solver,
batch_size, use_time, D_rounds, G_rounds, seq_length,
latent_dim, num_signals):
"""
Train generator and discriminator for one epoch.
"""
# for batch_idx in range(0, int(len(samples) / batch_size) - (D_rounds + (cond_dim > 0) * G_rounds), D_rounds + (cond_dim > 0) * G_rounds):
for batch_idx in range(0, int(len(samples) / batch_size) - (D_rounds + G_rounds), D_rounds + G_rounds):
# update the discriminator
X_mb, Y_mb = data_utils.get_batch(samples, batch_size, batch_idx, labels)
Z_mb = sample_Z(batch_size, seq_length, latent_dim, use_time)
for d in range(D_rounds):
# run the discriminator solver
_ = sess.run(D_solver, feed_dict={X: X_mb, Z: Z_mb})
# update the generator
for g in range(G_rounds):
# run the generator solver
_ = sess.run(G_solver, feed_dict={Z: sample_Z(batch_size, seq_length, latent_dim, use_time=use_time)})
# at the end, get the loss
D_loss_curr, G_loss_curr = sess.run([D_loss, G_loss], feed_dict={X: X_mb,
Z: sample_Z(batch_size, seq_length, latent_dim,
use_time=use_time)})
D_loss_curr = np.mean(D_loss_curr)
G_loss_curr = np.mean(G_loss_curr)
return D_loss_curr, G_loss_curr
def GAN_loss(Z, X, generator_settings, discriminator_settings):
# normal GAN
G_sample = generator(Z, **generator_settings)
D_real, D_logit_real = discriminator(X, **discriminator_settings)
D_fake, D_logit_fake = discriminator(G_sample, reuse=True, **discriminator_settings)
# Measures the probability error in discrete classification tasks in which each class is independent
# and not mutually exclusive.
# logits: predicted labels??
D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real)), 1)
D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake)), 1)
D_loss = D_loss_real + D_loss_fake
# G_loss = tf.reduce_mean(tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake)), axis=1))
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake)), 1)
return D_loss, G_loss
def GAN_solvers(D_loss, G_loss, learning_rate, batch_size, total_examples, l2norm_bound, batches_per_lot, sigma, dp=False):
"""
Optimizers
"""
discriminator_vars = [v for v in tf.trainable_variables() if v.name.startswith('discriminator')]
generator_vars = [v for v in tf.trainable_variables() if v.name.startswith('generator')]
if dp:
print('Using differentially private SGD to train discriminator!')
eps = tf.placeholder(tf.float32)
delta = tf.placeholder(tf.float32)
priv_accountant = accountant.GaussianMomentsAccountant(total_examples)
clip = True
l2norm_bound = l2norm_bound / batch_size
batches_per_lot = 1
gaussian_sanitizer = sanitizer.AmortizedGaussianSanitizer(
priv_accountant,
[l2norm_bound, clip])
# the trick is that we need to calculate the gradient with respect to
# each example in the batch, during the DP SGD step
D_solver = dp_optimizer.DPGradientDescentOptimizer(learning_rate,
[eps, delta],
sanitizer=gaussian_sanitizer,
sigma=sigma,
batches_per_lot=batches_per_lot).minimize(D_loss, var_list=discriminator_vars)
else:
D_loss_mean_over_batch = tf.reduce_mean(D_loss)
D_solver = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(D_loss_mean_over_batch, var_list=discriminator_vars)
priv_accountant = None
G_loss_mean_over_batch = tf.reduce_mean(G_loss)
G_solver = tf.train.AdamOptimizer().minimize(G_loss_mean_over_batch, var_list=generator_vars)
return D_solver, G_solver, priv_accountant
# --- to do with the model --- #
def create_placeholders(batch_size, seq_length, latent_dim, num_signals):
Z = tf.placeholder(tf.float32, [batch_size, seq_length, latent_dim])
X = tf.placeholder(tf.float32, [batch_size, seq_length, num_signals])
T = tf.placeholder(tf.float32, [batch_size, seq_length, num_signals])
return Z, X, T
def generator(z, hidden_units_g, seq_length, batch_size, num_signals, reuse=False, parameters=None, learn_scale=True):
"""
If parameters are supplied, initialise as such
"""
with tf.variable_scope("generator") as scope:
if reuse:
scope.reuse_variables()
if parameters is None:
W_out_G_initializer = tf.truncated_normal_initializer()
b_out_G_initializer = tf.truncated_normal_initializer()
scale_out_G_initializer = tf.constant_initializer(value=1.0)
lstm_initializer = None
bias_start = 1.0
else:
W_out_G_initializer = tf.constant_initializer(value=parameters['generator/W_out_G:0'])
b_out_G_initializer = tf.constant_initializer(value=parameters['generator/b_out_G:0'])
try:
scale_out_G_initializer = tf.constant_initializer(value=parameters['generator/scale_out_G:0'])
except KeyError:
scale_out_G_initializer = tf.constant_initializer(value=1)
assert learn_scale
lstm_initializer = tf.constant_initializer(value=parameters['generator/rnn/lstm_cell/weights:0'])
bias_start = parameters['generator/rnn/lstm_cell/biases:0']
W_out_G = tf.get_variable(name='W_out_G', shape=[hidden_units_g, num_signals],
initializer=W_out_G_initializer)
b_out_G = tf.get_variable(name='b_out_G', shape=num_signals, initializer=b_out_G_initializer)
scale_out_G = tf.get_variable(name='scale_out_G', shape=1, initializer=scale_out_G_initializer,
trainable=learn_scale)
# inputs
inputs = z
cell = LSTMCell(num_units=hidden_units_g,
state_is_tuple=True,
initializer=lstm_initializer,
bias_start=bias_start,
reuse=reuse)
rnn_outputs, rnn_states = tf.nn.dynamic_rnn(
cell=cell,
dtype=tf.float32,
sequence_length=[seq_length] * batch_size,
inputs=inputs)
rnn_outputs_2d = tf.reshape(rnn_outputs, [-1, hidden_units_g])
logits_2d = tf.matmul(rnn_outputs_2d, W_out_G) + b_out_G #out put weighted sum
# output_2d = tf.multiply(tf.nn.tanh(logits_2d), scale_out_G)
output_2d = tf.nn.tanh(logits_2d) # logits operation [-1, 1]
output_3d = tf.reshape(output_2d, [-1, seq_length, num_signals])
return output_3d
def discriminator(x, hidden_units_d, seq_length, batch_size, reuse=False, parameters=None, batch_mean=False):
with tf.variable_scope("discriminator") as scope:
if reuse:
scope.reuse_variables()
if parameters is None:
W_out_D = tf.get_variable(name='W_out_D', shape=[hidden_units_d, 1],
initializer=tf.truncated_normal_initializer())
b_out_D = tf.get_variable(name='b_out_D', shape=1,
initializer=tf.truncated_normal_initializer())
else:
W_out_D = tf.constant_initializer(value=parameters['discriminator/W_out_D:0'])
b_out_D = tf.constant_initializer(value=parameters['discriminator/b_out_D:0'])
# inputs
inputs = x
# add the average of the inputs to the inputs (mode collapse?
if batch_mean:
mean_over_batch = tf.stack([tf.reduce_mean(x, axis=0)] * batch_size, axis=0)
inputs = tf.concat([x, mean_over_batch], axis=2)
cell = tf.contrib.rnn.LSTMCell(num_units=hidden_units_d,
state_is_tuple=True,
reuse=reuse)
rnn_outputs, rnn_states = tf.nn.dynamic_rnn(
cell=cell,
dtype=tf.float32,
inputs=inputs)
# logit_final = tf.matmul(rnn_outputs[:, -1], W_final_D) + b_final_D
logits = tf.einsum('ijk,km', rnn_outputs, W_out_D) + b_out_D # output weighted sum
# real logits or actual output layer?
# logit is a function that maps probabilities ([0,1]) to ([-inf,inf]) ?
output = tf.nn.sigmoid(logits) # y = 1 / (1 + exp(-x)). output activation [0, 1]. Probability??
# sigmoid output ([0,1]), Probability?
return output, logits
# --- display ----#
def display_batch_progression(j, id_max):
'''
See epoch progression
'''
batch_progression = int((j / id_max) * 100)
sys.stdout.write(str(batch_progression) + ' % epoch' + chr(13))
_ = sys.stdout.flush
# --- to do with saving/loading --- #
def dump_parameters(identifier, sess):
"""
Save model parmaters to a numpy file
"""
# dump_path = './experiments/parameters/' + identifier + '.npy'
dump_path = './experiments/parameters/' + identifier + '.npy'
model_parameters = dict()
for v in tf.trainable_variables():
model_parameters[v.name] = sess.run(v)
np.save(dump_path, model_parameters)
print('Recorded', len(model_parameters), 'parameters to', dump_path)
return True
def load_parameters(identifier):
"""
Load parameters from a numpy file
"""
# load_path = './experiments/plots/parameters/' + identifier + '.npy'
# load_path = './experiments/plots/parameters/parameters_60/' + identifier + '.npy'
# load_path = './experiments/parameters/' + identifier + '.npy'
# load_path = './experiments/parameters/' + identifier + '.npy'
model_parameters = np.load(identifier).item()
return model_parameters