-
Notifications
You must be signed in to change notification settings - Fork 2
/
fid.py
390 lines (328 loc) · 15.8 KB
/
fid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#!/usr/bin/env python3
''' Calculates the Frechet Inception Distance (FID) to evalulate GANs.
The FID metric calculates the distance between two distributions of images.
Typically, we have summary statistics (mean & covariance matrix) of one
of these distributions, while the 2nd distribution is given by a GAN.
When run as a stand-alone program, it compares the distribution of
images that are stored as PNG/JPEG at a specified location with a
distribution given by summary statistics (in pickle format).
The FID is calculated by assuming that X_1 and X_2 are the activations of
the pool_3 layer of the inception net for generated samples and real world
samples respectivly.
See --help to see further details.
'''
from __future__ import absolute_import, division, print_function
import numpy as np
import os
import gzip, pickle
# Peter's machine doesn't handle cuda&tensorflow well
os.environ['CUDA_VISIBLE_DEVICES'] = "-1"
import tensorflow as tf
from imageio import imread
from scipy import linalg
import pathlib
import urllib
import warnings
''' Code modified by Peter: '''
import glob
import cv2
def load_images_from_path(images_path, width=256):
# loads all images into memory (this might require a lot of RAM!)
image_list = glob.glob(os.path.join(images_path, '*.jpg'))
images = np.zeros((len(image_list), width, width, 3))
i = 0
for img_fn in image_list:
img = cv2.imread(img_fn, cv2.IMREAD_COLOR)
img = cv2.resize(img, (width, width))
img = img.reshape(1, width, width, 3)
images[i] = img
i += 1
return images
def calculate_fid_stats(images, batch_size=4, debug=False):
if debug: print("calculte FID stats...", end=" ", flush=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
mu, sigma = calculate_activation_statistics(images, sess, batch_size=batch_size)
if debug: print("finished")
return mu, sigma
def calculate_fid(gen_images_path, real_images_path, width=256, debug=False):
"""
Calculate the Frechet Inception Distance of images in a specified directory
Based on: https://github.com/bioinf-jku/TTUR
"""
inception_path = check_or_download_inception(None) # download inception network
images = load_images_from_path(real_images_path)
if debug: print("%d real images found and loaded" % len(images))
if debug: print("create inception graph..", end=" ", flush=True)
create_inception_graph(inception_path) # load the graph into the current TF graph
if debug: print("ok")
mu_real, sigma_real = calculate_fid_stats(images, debug=debug)
images = load_images_from_path(gen_images_path)
if debug: print("%d generated images found and loaded" % len(images))
mu_gen, sigma_gen = calculate_fid_stats(images, debug=debug)
fid_value = calculate_frechet_distance(mu_gen, sigma_gen, mu_real, sigma_real)
if debug: print("FID: %s" % fid_value)
return fid_value
''' End code modified by Peter '''
class InvalidFIDException(Exception):
pass
def create_inception_graph(pth):
"""Creates a graph from saved GraphDef file."""
# Creates graph from saved graph_def.pb.
with tf.io.gfile.GFile( pth, 'rb') as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString( f.read())
_ = tf.import_graph_def( graph_def, name='FID_Inception_Net')
#-------------------------------------------------------------------------------
# code for handling inception net derived from
# https://github.com/openai/improved-gan/blob/master/inception_score/model.py
def _get_inception_layer(sess):
"""Prepares inception net for batched usage and returns pool_3 layer. """
layername = 'FID_Inception_Net/pool_3:0'
pool3 = sess.graph.get_tensor_by_name(layername)
ops = pool3.graph.get_operations()
for op_idx, op in enumerate(ops):
for o in op.outputs:
shape = o.get_shape()
if shape._dims is not None:
#shape = [s.value for s in shape] TF 1.x
shape = [s for s in shape] #TF 2.x
new_shape = []
for j, s in enumerate(shape):
if s == 1 and j == 0:
new_shape.append(None)
else:
new_shape.append(s)
o.__dict__['_shape_val'] = tf.TensorShape(new_shape)
return pool3
#-------------------------------------------------------------------------------
def get_activations(images, sess, batch_size=50, verbose=False):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- images : Numpy array of dimension (n_images, hi, wi, 3). The values
must lie between 0 and 256.
-- sess : current session
-- batch_size : the images numpy array is split into batches with batch size
batch_size. A reasonable batch size depends on the disposable hardware.
-- verbose : If set to True and parameter out_step is given, the number of calculated
batches is reported.
Returns:
-- A numpy array of dimension (num images, 2048) that contains the
activations of the given tensor when feeding inception with the query tensor.
"""
inception_layer = _get_inception_layer(sess)
n_images = images.shape[0]
if batch_size > n_images:
print("warning: batch size is bigger than the data size. setting batch size to data size")
batch_size = n_images
n_batches = n_images//batch_size
pred_arr = np.empty((n_images,2048))
for i in range(n_batches):
if verbose:
print("\rPropagating batch %d/%d" % (i+1, n_batches), end="", flush=True)
start = i*batch_size
if start+batch_size < n_images:
end = start+batch_size
else:
end = n_images
batch = images[start:end]
pred = sess.run(inception_layer, {'FID_Inception_Net/ExpandDims:0': batch})
pred_arr[start:end] = pred.reshape(batch_size,-1)
if verbose:
print(" done")
return pred_arr
#-------------------------------------------------------------------------------
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of the pool_3 layer of the
inception net ( like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations of the pool_3 layer, precalcualted
on an representive data set.
-- sigma1: The covariance matrix over activations of the pool_3 layer for
generated samples.
-- sigma2: The covariance matrix over activations of the pool_3 layer,
precalcualted on an representive data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, "Training and test mean vectors have different lengths"
assert sigma1.shape == sigma2.shape, "Training and test covariances have different dimensions"
diff = mu1 - mu2
# product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = "fid calculation produces singular product; adding %s to diagonal of cov estimates" % eps
warnings.warn(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError("Imaginary component {}".format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
#-------------------------------------------------------------------------------
def calculate_activation_statistics(images, sess, batch_size=50, verbose=False):
"""Calculation of the statistics used by the FID.
Params:
-- images : Numpy array of dimension (n_images, hi, wi, 3). The values
must lie between 0 and 255.
-- sess : current session
-- batch_size : the images numpy array is split into batches with batch size
batch_size. A reasonable batch size depends on the available hardware.
-- verbose : If set to True and parameter out_step is given, the number of calculated
batches is reported.
Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the incption model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the incption model.
"""
act = get_activations(images, sess, batch_size, verbose)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
#------------------
# The following methods are implemented to obtain a batched version of the activations.
# This has the advantage to reduce memory requirements, at the cost of slightly reduced efficiency.
# - Pyrestone
#------------------
def load_image_batch(files):
"""Convenience method for batch-loading images
Params:
-- files : list of paths to image files. Images need to have same dimensions for all files.
Returns:
-- A numpy array of dimensions (num_images,hi, wi, 3) representing the image pixel values.
"""
return np.array([imread(str(fn)).astype(np.float32) for fn in files])
def get_activations_from_files(files, sess, batch_size=50, verbose=False):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- files : list of paths to image files. Images need to have same dimensions for all files.
-- sess : current session
-- batch_size : the images numpy array is split into batches with batch size
batch_size. A reasonable batch size depends on the disposable hardware.
-- verbose : If set to True and parameter out_step is given, the number of calculated
batches is reported.
Returns:
-- A numpy array of dimension (num images, 2048) that contains the
activations of the given tensor when feeding inception with the query tensor.
"""
inception_layer = _get_inception_layer(sess)
n_imgs = len(files)
if batch_size > n_imgs:
print("warning: batch size is bigger than the data size. setting batch size to data size")
batch_size = n_imgs
n_batches = n_imgs//batch_size + 1
pred_arr = np.empty((n_imgs,2048))
for i in range(n_batches):
if verbose:
print("\rPropagating batch %d/%d" % (i+1, n_batches), end="", flush=True)
start = i*batch_size
if start+batch_size < n_images:
end = start+batch_size
else:
end = n_images
batch = load_image_batch(files[start:end])
pred = sess.run(inception_layer, {'FID_Inception_Net/ExpandDims:0': batch})
pred_arr[start:end] = pred.reshape(batch_size,-1)
del batch #clean up memory
if verbose:
print(" done")
return pred_arr
def calculate_activation_statistics_from_files(files, sess, batch_size=50, verbose=False):
"""Calculation of the statistics used by the FID.
Params:
-- files : list of paths to image files. Images need to have same dimensions for all files.
-- sess : current session
-- batch_size : the images numpy array is split into batches with batch size
batch_size. A reasonable batch size depends on the available hardware.
-- verbose : If set to True and parameter out_step is given, the number of calculated
batches is reported.
Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the incption model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the incption model.
"""
act = get_activations_from_files(files, sess, batch_size, verbose)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# The following functions aren't needed for calculating the FID
# they're just here to make this module work as a stand-alone script
# for calculating FID scores
#-------------------------------------------------------------------------------
def check_or_download_inception(inception_path):
''' Checks if the path to the inception file is valid, or downloads
the file if it is not present. '''
INCEPTION_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
if inception_path is None:
inception_path = '/tmp'
inception_path = pathlib.Path(inception_path)
model_file = inception_path / 'classify_image_graph_def.pb'
if not model_file.exists():
print("Downloading Inception model")
from urllib import request
import tarfile
fn, _ = request.urlretrieve(INCEPTION_URL)
with tarfile.open(fn, mode='r') as f:
f.extract('classify_image_graph_def.pb', str(model_file.parent))
return str(model_file)
def _handle_path(path, sess, low_profile=False):
if path.endswith('.npz'):
f = np.load(path)
m, s = f['mu'][:], f['sigma'][:]
f.close()
else:
path = pathlib.Path(path)
files = list(path.glob('*.jpg')) + list(path.glob('*.png'))
if low_profile:
m, s = calculate_activation_statistics_from_files(files, sess)
else:
x = np.array([imread(str(fn)).astype(np.float32) for fn in files])
m, s = calculate_activation_statistics(x, sess)
del x #clean up memory
return m, s
def calculate_fid_given_paths(paths, inception_path, low_profile=False):
''' Calculates the FID of two paths. '''
inception_path = check_or_download_inception(inception_path)
for p in paths:
if not os.path.exists(p):
raise RuntimeError("Invalid path: %s" % p)
create_inception_graph(str(inception_path))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
m1, s1 = _handle_path(paths[0], sess, low_profile=low_profile)
m2, s2 = _handle_path(paths[1], sess, low_profile=low_profile)
fid_value = calculate_frechet_distance(m1, s1, m2, s2)
return fid_value
if __name__ == "__main__":
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("path", type=str, nargs=2,
help='Path to the generated images or to .npz statistic files')
parser.add_argument("-i", "--inception", type=str, default=None,
help='Path to Inception model (will be downloaded if not provided)')
parser.add_argument("--gpu", default="", type=str,
help='GPU to use (leave blank for CPU only)')
parser.add_argument("--lowprofile", action="store_true",
help='Keep only one batch of images in memory at a time. This reduces memory footprint, but may decrease speed slightly.')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
fid_value = calculate_fid_given_paths(args.path, args.inception, low_profile=args.lowprofile)
print("FID: ", fid_value)